Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.  
							See raw diff
- ckpts/universal/global_step40/zero/18.input_layernorm.weight/fp32.pt +3 -0
 - ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
 - ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
 - ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
 - ckpts/universal/global_step40/zero/22.attention.dense.weight/exp_avg.pt +3 -0
 - ckpts/universal/global_step40/zero/22.attention.dense.weight/exp_avg_sq.pt +3 -0
 - ckpts/universal/global_step40/zero/22.attention.dense.weight/fp32.pt +3 -0
 - ckpts/universal/global_step40/zero/3.input_layernorm.weight/exp_avg.pt +3 -0
 - ckpts/universal/global_step40/zero/3.input_layernorm.weight/exp_avg_sq.pt +3 -0
 - ckpts/universal/global_step40/zero/3.input_layernorm.weight/fp32.pt +3 -0
 - venv/lib/python3.10/site-packages/jinja2/__pycache__/nativetypes.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/INSTALLER +1 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/License.txt +1568 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/METADATA +38 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/RECORD +22 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/WHEEL +5 -0
 - venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/top_level.txt +1 -0
 - venv/lib/python3.10/site-packages/sklearn/__init__.py +157 -0
 - venv/lib/python3.10/site-packages/sklearn/_config.py +373 -0
 - venv/lib/python3.10/site-packages/sklearn/_distributor_init.py +10 -0
 - venv/lib/python3.10/site-packages/sklearn/_isotonic.cpython-310-x86_64-linux-gnu.so +0 -0
 - venv/lib/python3.10/site-packages/sklearn/_min_dependencies.py +65 -0
 - venv/lib/python3.10/site-packages/sklearn/base.py +1478 -0
 - venv/lib/python3.10/site-packages/sklearn/calibration.py +1410 -0
 - venv/lib/python3.10/site-packages/sklearn/conftest.py +309 -0
 - venv/lib/python3.10/site-packages/sklearn/discriminant_analysis.py +1047 -0
 - venv/lib/python3.10/site-packages/sklearn/dummy.py +682 -0
 - venv/lib/python3.10/site-packages/sklearn/exceptions.py +191 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/__init__.py +24 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/__init__.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_base.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_iterative.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_knn.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/_base.py +1075 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/_iterative.py +906 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/_knn.py +401 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__init__.py +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/__init__.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_base.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_common.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_impute.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_knn.cpython-310.pyc +0 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/test_base.py +107 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/test_common.py +220 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/test_impute.py +1754 -0
 - venv/lib/python3.10/site-packages/sklearn/impute/tests/test_knn.py +547 -0
 - venv/lib/python3.10/site-packages/sklearn/isotonic.py +498 -0
 - venv/lib/python3.10/site-packages/sklearn/kernel_approximation.py +1137 -0
 - venv/lib/python3.10/site-packages/sklearn/kernel_ridge.py +237 -0
 - venv/lib/python3.10/site-packages/sklearn/linear_model/__init__.py +100 -0
 
    	
        ckpts/universal/global_step40/zero/18.input_layernorm.weight/fp32.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:d1177400b840e2c191169583a76002761f96bb99b5f67425ebd52751265e0ecb
         
     | 
| 3 | 
         
            +
            size 9293
         
     | 
    	
        ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:e6d96fb68895c0c01c25aac7ead04602097d2ff1ba9dc549846b0f78fd88af51
         
     | 
| 3 | 
         
            +
            size 33555612
         
     | 
    	
        ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:dc850f493ae005bbed8f11e1d964bb005efc7b87d26974f549c3f57b15378a36
         
     | 
| 3 | 
         
            +
            size 33555627
         
     | 
    	
        ckpts/universal/global_step40/zero/20.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:8f676a0ca800fa917113e3ac7a7d7b50bd5040655ea94cc4e2aa7d46c0563546
         
     | 
| 3 | 
         
            +
            size 33555533
         
     | 
    	
        ckpts/universal/global_step40/zero/22.attention.dense.weight/exp_avg.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:25067ad5627fbdd70ebfa32bacdee9f01e041d8465102b238a27530d597394bf
         
     | 
| 3 | 
         
            +
            size 16778396
         
     | 
    	
        ckpts/universal/global_step40/zero/22.attention.dense.weight/exp_avg_sq.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:fa94a7a348b85459f0c171b4b25a864011136bcf7ced192e4ea5633685bb68fa
         
     | 
| 3 | 
         
            +
            size 16778411
         
     | 
    	
        ckpts/universal/global_step40/zero/22.attention.dense.weight/fp32.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:9e7df42ccee30f27759c5675321c515c010dd0154eba474293c8b8a7b73e06db
         
     | 
| 3 | 
         
            +
            size 16778317
         
     | 
    	
        ckpts/universal/global_step40/zero/3.input_layernorm.weight/exp_avg.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:fc6f9da600277be3830c3a81a820de263e14381d13d3a4b8f7d0f52e2b72e156
         
     | 
| 3 | 
         
            +
            size 9372
         
     | 
    	
        ckpts/universal/global_step40/zero/3.input_layernorm.weight/exp_avg_sq.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:6ee3c5b3883fd1ad2a34badf88af87e7202b880f4142975263caa831546bd39b
         
     | 
| 3 | 
         
            +
            size 9387
         
     | 
    	
        ckpts/universal/global_step40/zero/3.input_layernorm.weight/fp32.pt
    ADDED
    
    | 
         @@ -0,0 +1,3 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            version https://git-lfs.github.com/spec/v1
         
     | 
| 2 | 
         
            +
            oid sha256:8f69ad1f4a732e803db53b885ce479ec9dbc0a2910ad826fb159401fb2f0255b
         
     | 
| 3 | 
         
            +
            size 9293
         
     | 
    	
        venv/lib/python3.10/site-packages/jinja2/__pycache__/nativetypes.cpython-310.pyc
    ADDED
    
    | 
         Binary file (5.01 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/INSTALLER
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            pip
         
     | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/License.txt
    ADDED
    
    | 
         @@ -0,0 +1,1568 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            End User License Agreement
         
     | 
| 2 | 
         
            +
            --------------------------
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            Preface
         
     | 
| 6 | 
         
            +
            -------
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            The Software License Agreement in Chapter 1 and the Supplement
         
     | 
| 9 | 
         
            +
            in Chapter 2 contain license terms and conditions that govern
         
     | 
| 10 | 
         
            +
            the use of NVIDIA software. By accepting this agreement, you
         
     | 
| 11 | 
         
            +
            agree to comply with all the terms and conditions applicable
         
     | 
| 12 | 
         
            +
            to the product(s) included herein.
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            NVIDIA Driver
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            Description
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            This package contains the operating system driver and
         
     | 
| 21 | 
         
            +
            fundamental system software components for NVIDIA GPUs.
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            NVIDIA CUDA Toolkit
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
            Description
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            The NVIDIA CUDA Toolkit provides command-line and graphical
         
     | 
| 30 | 
         
            +
            tools for building, debugging and optimizing the performance
         
     | 
| 31 | 
         
            +
            of applications accelerated by NVIDIA GPUs, runtime and math
         
     | 
| 32 | 
         
            +
            libraries, and documentation including programming guides,
         
     | 
| 33 | 
         
            +
            user manuals, and API references.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            Default Install Location of CUDA Toolkit
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            Windows platform:
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            %ProgramFiles%\NVIDIA GPU Computing Toolkit\CUDA\v#.#
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            Linux platform:
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            /usr/local/cuda-#.#
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
            Mac platform:
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            /Developer/NVIDIA/CUDA-#.#
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            NVIDIA CUDA Samples
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            Description
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
            This package includes over 100+ CUDA examples that demonstrate
         
     | 
| 57 | 
         
            +
            various CUDA programming principles, and efficient CUDA
         
     | 
| 58 | 
         
            +
            implementation of algorithms in specific application domains.
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
            Default Install Location of CUDA Samples
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            Windows platform:
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
            %ProgramData%\NVIDIA Corporation\CUDA Samples\v#.#
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            Linux platform:
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
            /usr/local/cuda-#.#/samples
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            and
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
            $HOME/NVIDIA_CUDA-#.#_Samples
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            Mac platform:
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
            /Developer/NVIDIA/CUDA-#.#/samples
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
            NVIDIA Nsight Visual Studio Edition (Windows only)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            Description
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            NVIDIA Nsight Development Platform, Visual Studio Edition is a
         
     | 
| 86 | 
         
            +
            development environment integrated into Microsoft Visual
         
     | 
| 87 | 
         
            +
            Studio that provides tools for debugging, profiling, analyzing
         
     | 
| 88 | 
         
            +
            and optimizing your GPU computing and graphics applications.
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            Default Install Location of Nsight Visual Studio Edition
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            Windows platform:
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
            %ProgramFiles(x86)%\NVIDIA Corporation\Nsight Visual Studio Edition #.#
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            1. License Agreement for NVIDIA Software Development Kits
         
     | 
| 99 | 
         
            +
            ---------------------------------------------------------
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
            Release Date: July 26, 2018
         
     | 
| 103 | 
         
            +
            ---------------------------
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
            Important NoticeRead before downloading, installing,
         
     | 
| 107 | 
         
            +
            copying or using the licensed software:
         
     | 
| 108 | 
         
            +
            -------------------------------------------------------
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
            This license agreement, including exhibits attached
         
     | 
| 111 | 
         
            +
            ("Agreement”) is a legal agreement between you and NVIDIA
         
     | 
| 112 | 
         
            +
            Corporation ("NVIDIA") and governs your use of a NVIDIA
         
     | 
| 113 | 
         
            +
            software development kit (“SDK”).
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            Each SDK has its own set of software and materials, but here
         
     | 
| 116 | 
         
            +
            is a description of the types of items that may be included in
         
     | 
| 117 | 
         
            +
            a SDK: source code, header files, APIs, data sets and assets
         
     | 
| 118 | 
         
            +
            (examples include images, textures, models, scenes, videos,
         
     | 
| 119 | 
         
            +
            native API input/output files), binary software, sample code,
         
     | 
| 120 | 
         
            +
            libraries, utility programs, programming code and
         
     | 
| 121 | 
         
            +
            documentation.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
            This Agreement can be accepted only by an adult of legal age
         
     | 
| 124 | 
         
            +
            of majority in the country in which the SDK is used.
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            If you are entering into this Agreement on behalf of a company
         
     | 
| 127 | 
         
            +
            or other legal entity, you represent that you have the legal
         
     | 
| 128 | 
         
            +
            authority to bind the entity to this Agreement, in which case
         
     | 
| 129 | 
         
            +
            “you” will mean the entity you represent.
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            If you don’t have the required age or authority to accept
         
     | 
| 132 | 
         
            +
            this Agreement, or if you don’t accept all the terms and
         
     | 
| 133 | 
         
            +
            conditions of this Agreement, do not download, install or use
         
     | 
| 134 | 
         
            +
            the SDK.
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
            You agree to use the SDK only for purposes that are permitted
         
     | 
| 137 | 
         
            +
            by (a) this Agreement, and (b) any applicable law, regulation
         
     | 
| 138 | 
         
            +
            or generally accepted practices or guidelines in the relevant
         
     | 
| 139 | 
         
            +
            jurisdictions.
         
     | 
| 140 | 
         
            +
             
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
            1.1. License
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            1.1.1. License Grant
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            Subject to the terms of this Agreement, NVIDIA hereby grants
         
     | 
| 148 | 
         
            +
            you a non-exclusive, non-transferable license, without the
         
     | 
| 149 | 
         
            +
            right to sublicense (except as expressly provided in this
         
     | 
| 150 | 
         
            +
            Agreement) to:
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
              1. Install and use the SDK,
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
              2. Modify and create derivative works of sample source code
         
     | 
| 155 | 
         
            +
                delivered in the SDK, and
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
              3. Distribute those portions of the SDK that are identified
         
     | 
| 158 | 
         
            +
                in this Agreement as distributable, as incorporated in
         
     | 
| 159 | 
         
            +
                object code format into a software application that meets
         
     | 
| 160 | 
         
            +
                the distribution requirements indicated in this Agreement.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
            1.1.2. Distribution Requirements
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
            These are the distribution requirements for you to exercise
         
     | 
| 166 | 
         
            +
            the distribution grant:
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
              1. Your application must have material additional
         
     | 
| 169 | 
         
            +
                functionality, beyond the included portions of the SDK.
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
              2. The distributable portions of the SDK shall only be
         
     | 
| 172 | 
         
            +
                accessed by your application.
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
              3. The following notice shall be included in modifications
         
     | 
| 175 | 
         
            +
                and derivative works of sample source code distributed:
         
     | 
| 176 | 
         
            +
                “This software contains source code provided by NVIDIA
         
     | 
| 177 | 
         
            +
                Corporation.”
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
              4. Unless a developer tool is identified in this Agreement
         
     | 
| 180 | 
         
            +
                as distributable, it is delivered for your internal use
         
     | 
| 181 | 
         
            +
                only.
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
              5. The terms under which you distribute your application
         
     | 
| 184 | 
         
            +
                must be consistent with the terms of this Agreement,
         
     | 
| 185 | 
         
            +
                including (without limitation) terms relating to the
         
     | 
| 186 | 
         
            +
                license grant and license restrictions and protection of
         
     | 
| 187 | 
         
            +
                NVIDIA’s intellectual property rights. Additionally, you
         
     | 
| 188 | 
         
            +
                agree that you will protect the privacy, security and
         
     | 
| 189 | 
         
            +
                legal rights of your application users.
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
              6. You agree to notify NVIDIA in writing of any known or
         
     | 
| 192 | 
         
            +
                suspected distribution or use of the SDK not in compliance
         
     | 
| 193 | 
         
            +
                with the requirements of this Agreement, and to enforce
         
     | 
| 194 | 
         
            +
                the terms of your agreements with respect to distributed
         
     | 
| 195 | 
         
            +
                SDK.
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
            1.1.3. Authorized Users
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
            You may allow employees and contractors of your entity or of
         
     | 
| 201 | 
         
            +
            your subsidiary(ies) to access and use the SDK from your
         
     | 
| 202 | 
         
            +
            secure network to perform work on your behalf.
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
            If you are an academic institution you may allow users
         
     | 
| 205 | 
         
            +
            enrolled or employed by the academic institution to access and
         
     | 
| 206 | 
         
            +
            use the SDK from your secure network.
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
            You are responsible for the compliance with the terms of this
         
     | 
| 209 | 
         
            +
            Agreement by your authorized users. If you become aware that
         
     | 
| 210 | 
         
            +
            your authorized users didn’t follow the terms of this
         
     | 
| 211 | 
         
            +
            Agreement, you agree to take reasonable steps to resolve the
         
     | 
| 212 | 
         
            +
            non-compliance and prevent new occurrences.
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
            1.1.4. Pre-Release SDK
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
            The SDK versions identified as alpha, beta, preview or
         
     | 
| 218 | 
         
            +
            otherwise as pre-release, may not be fully functional, may
         
     | 
| 219 | 
         
            +
            contain errors or design flaws, and may have reduced or
         
     | 
| 220 | 
         
            +
            different security, privacy, accessibility, availability, and
         
     | 
| 221 | 
         
            +
            reliability standards relative to commercial versions of
         
     | 
| 222 | 
         
            +
            NVIDIA software and materials. Use of a pre-release SDK may
         
     | 
| 223 | 
         
            +
            result in unexpected results, loss of data, project delays or
         
     | 
| 224 | 
         
            +
            other unpredictable damage or loss.
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
            You may use a pre-release SDK at your own risk, understanding
         
     | 
| 227 | 
         
            +
            that pre-release SDKs are not intended for use in production
         
     | 
| 228 | 
         
            +
            or business-critical systems.
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
            NVIDIA may choose not to make available a commercial version
         
     | 
| 231 | 
         
            +
            of any pre-release SDK. NVIDIA may also choose to abandon
         
     | 
| 232 | 
         
            +
            development and terminate the availability of a pre-release
         
     | 
| 233 | 
         
            +
            SDK at any time without liability.
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
            1.1.5. Updates
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
            NVIDIA may, at its option, make available patches, workarounds
         
     | 
| 239 | 
         
            +
            or other updates to this SDK. Unless the updates are provided
         
     | 
| 240 | 
         
            +
            with their separate governing terms, they are deemed part of
         
     | 
| 241 | 
         
            +
            the SDK licensed to you as provided in this Agreement. You
         
     | 
| 242 | 
         
            +
            agree that the form and content of the SDK that NVIDIA
         
     | 
| 243 | 
         
            +
            provides may change without prior notice to you. While NVIDIA
         
     | 
| 244 | 
         
            +
            generally maintains compatibility between versions, NVIDIA may
         
     | 
| 245 | 
         
            +
            in some cases make changes that introduce incompatibilities in
         
     | 
| 246 | 
         
            +
            future versions of the SDK.
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
            1.1.6. Third Party Licenses
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
            The SDK may come bundled with, or otherwise include or be
         
     | 
| 252 | 
         
            +
            distributed with, third party software licensed by a NVIDIA
         
     | 
| 253 | 
         
            +
            supplier and/or open source software provided under an open
         
     | 
| 254 | 
         
            +
            source license. Use of third party software is subject to the
         
     | 
| 255 | 
         
            +
            third-party license terms, or in the absence of third party
         
     | 
| 256 | 
         
            +
            terms, the terms of this Agreement. Copyright to third party
         
     | 
| 257 | 
         
            +
            software is held by the copyright holders indicated in the
         
     | 
| 258 | 
         
            +
            third-party software or license.
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
            1.1.7. Reservation of Rights
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
            NVIDIA reserves all rights, title, and interest in and to the
         
     | 
| 264 | 
         
            +
            SDK, not expressly granted to you under this Agreement.
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
            1.2. Limitations
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
            The following license limitations apply to your use of the
         
     | 
| 270 | 
         
            +
            SDK:
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
              1. You may not reverse engineer, decompile or disassemble,
         
     | 
| 273 | 
         
            +
                or remove copyright or other proprietary notices from any
         
     | 
| 274 | 
         
            +
                portion of the SDK or copies of the SDK.
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
              2. Except as expressly provided in this Agreement, you may
         
     | 
| 277 | 
         
            +
                not copy, sell, rent, sublicense, transfer, distribute,
         
     | 
| 278 | 
         
            +
                modify, or create derivative works of any portion of the
         
     | 
| 279 | 
         
            +
                SDK. For clarity, you may not distribute or sublicense the
         
     | 
| 280 | 
         
            +
                SDK as a stand-alone product.
         
     | 
| 281 | 
         
            +
             
     | 
| 282 | 
         
            +
              3. Unless you have an agreement with NVIDIA for this
         
     | 
| 283 | 
         
            +
                purpose, you may not indicate that an application created
         
     | 
| 284 | 
         
            +
                with the SDK is sponsored or endorsed by NVIDIA.
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
              4. You may not bypass, disable, or circumvent any
         
     | 
| 287 | 
         
            +
                encryption, security, digital rights management or
         
     | 
| 288 | 
         
            +
                authentication mechanism in the SDK.
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
              5. You may not use the SDK in any manner that would cause it
         
     | 
| 291 | 
         
            +
                to become subject to an open source software license. As
         
     | 
| 292 | 
         
            +
                examples, licenses that require as a condition of use,
         
     | 
| 293 | 
         
            +
                modification, and/or distribution that the SDK be:
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                  a. Disclosed or distributed in source code form;
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                  b. Licensed for the purpose of making derivative works;
         
     | 
| 298 | 
         
            +
                    or
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                  c. Redistributable at no charge.
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
              6. Unless you have an agreement with NVIDIA for this
         
     | 
| 303 | 
         
            +
                purpose, you may not use the SDK with any system or
         
     | 
| 304 | 
         
            +
                application where the use or failure of the system or
         
     | 
| 305 | 
         
            +
                application can reasonably be expected to threaten or
         
     | 
| 306 | 
         
            +
                result in personal injury, death, or catastrophic loss.
         
     | 
| 307 | 
         
            +
                Examples include use in avionics, navigation, military,
         
     | 
| 308 | 
         
            +
                medical, life support or other life critical applications.
         
     | 
| 309 | 
         
            +
                NVIDIA does not design, test or manufacture the SDK for
         
     | 
| 310 | 
         
            +
                these critical uses and NVIDIA shall not be liable to you
         
     | 
| 311 | 
         
            +
                or any third party, in whole or in part, for any claims or
         
     | 
| 312 | 
         
            +
                damages arising from such uses.
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
              7. You agree to defend, indemnify and hold harmless NVIDIA
         
     | 
| 315 | 
         
            +
                and its affiliates, and their respective employees,
         
     | 
| 316 | 
         
            +
                contractors, agents, officers and directors, from and
         
     | 
| 317 | 
         
            +
                against any and all claims, damages, obligations, losses,
         
     | 
| 318 | 
         
            +
                liabilities, costs or debt, fines, restitutions and
         
     | 
| 319 | 
         
            +
                expenses (including but not limited to attorney’s fees
         
     | 
| 320 | 
         
            +
                and costs incident to establishing the right of
         
     | 
| 321 | 
         
            +
                indemnification) arising out of or related to your use of
         
     | 
| 322 | 
         
            +
                the SDK outside of the scope of this Agreement, or not in
         
     | 
| 323 | 
         
            +
                compliance with its terms.
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
             
     | 
| 326 | 
         
            +
            1.3. Ownership
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
              1.  NVIDIA or its licensors hold all rights, title and
         
     | 
| 329 | 
         
            +
                interest in and to the SDK and its modifications and
         
     | 
| 330 | 
         
            +
                derivative works, including their respective intellectual
         
     | 
| 331 | 
         
            +
                property rights, subject to your rights described in this
         
     | 
| 332 | 
         
            +
                section. This SDK may include software and materials from
         
     | 
| 333 | 
         
            +
                NVIDIA’s licensors, and these licensors are intended
         
     | 
| 334 | 
         
            +
                third party beneficiaries that may enforce this Agreement
         
     | 
| 335 | 
         
            +
                with respect to their intellectual property rights.
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
              2.  You hold all rights, title and interest in and to your
         
     | 
| 338 | 
         
            +
                applications and your derivative works of the sample
         
     | 
| 339 | 
         
            +
                source code delivered in the SDK, including their
         
     | 
| 340 | 
         
            +
                respective intellectual property rights, subject to
         
     | 
| 341 | 
         
            +
                NVIDIA’s rights described in this section.
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
              3. You may, but don’t have to, provide to NVIDIA
         
     | 
| 344 | 
         
            +
                suggestions, feature requests or other feedback regarding
         
     | 
| 345 | 
         
            +
                the SDK, including possible enhancements or modifications
         
     | 
| 346 | 
         
            +
                to the SDK. For any feedback that you voluntarily provide,
         
     | 
| 347 | 
         
            +
                you hereby grant NVIDIA and its affiliates a perpetual,
         
     | 
| 348 | 
         
            +
                non-exclusive, worldwide, irrevocable license to use,
         
     | 
| 349 | 
         
            +
                reproduce, modify, license, sublicense (through multiple
         
     | 
| 350 | 
         
            +
                tiers of sublicensees), and distribute (through multiple
         
     | 
| 351 | 
         
            +
                tiers of distributors) it without the payment of any
         
     | 
| 352 | 
         
            +
                royalties or fees to you. NVIDIA will use feedback at its
         
     | 
| 353 | 
         
            +
                choice. NVIDIA is constantly looking for ways to improve
         
     | 
| 354 | 
         
            +
                its products, so you may send feedback to NVIDIA through
         
     | 
| 355 | 
         
            +
                the developer portal at https://developer.nvidia.com.
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
             
     | 
| 358 | 
         
            +
            1.4. No Warranties
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
            THE SDK IS PROVIDED BY NVIDIA “AS IS” AND “WITH ALL
         
     | 
| 361 | 
         
            +
            FAULTS.” TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND
         
     | 
| 362 | 
         
            +
            ITS AFFILIATES EXPRESSLY DISCLAIM ALL WARRANTIES OF ANY KIND
         
     | 
| 363 | 
         
            +
            OR NATURE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING,
         
     | 
| 364 | 
         
            +
            BUT NOT LIMITED TO, ANY WARRANTIES OF MERCHANTABILITY, FITNESS
         
     | 
| 365 | 
         
            +
            FOR A PARTICULAR PURPOSE, TITLE, NON-INFRINGEMENT, OR THE
         
     | 
| 366 | 
         
            +
            ABSENCE OF ANY DEFECTS THEREIN, WHETHER LATENT OR PATENT. NO
         
     | 
| 367 | 
         
            +
            WARRANTY IS MADE ON THE BASIS OF TRADE USAGE, COURSE OF
         
     | 
| 368 | 
         
            +
            DEALING OR COURSE OF TRADE.
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
            1.5. Limitation of Liability
         
     | 
| 372 | 
         
            +
             
     | 
| 373 | 
         
            +
            TO THE MAXIMUM EXTENT PERMITTED BY LAW, NVIDIA AND ITS
         
     | 
| 374 | 
         
            +
            AFFILIATES SHALL NOT BE LIABLE FOR ANY SPECIAL, INCIDENTAL,
         
     | 
| 375 | 
         
            +
            PUNITIVE OR CONSEQUENTIAL DAMAGES, OR ANY LOST PROFITS, LOSS
         
     | 
| 376 | 
         
            +
            OF USE, LOSS OF DATA OR LOSS OF GOODWILL, OR THE COSTS OF
         
     | 
| 377 | 
         
            +
            PROCURING SUBSTITUTE PRODUCTS, ARISING OUT OF OR IN CONNECTION
         
     | 
| 378 | 
         
            +
            WITH THIS AGREEMENT OR THE USE OR PERFORMANCE OF THE SDK,
         
     | 
| 379 | 
         
            +
            WHETHER SUCH LIABILITY ARISES FROM ANY CLAIM BASED UPON BREACH
         
     | 
| 380 | 
         
            +
            OF CONTRACT, BREACH OF WARRANTY, TORT (INCLUDING NEGLIGENCE),
         
     | 
| 381 | 
         
            +
            PRODUCT LIABILITY OR ANY OTHER CAUSE OF ACTION OR THEORY OF
         
     | 
| 382 | 
         
            +
            LIABILITY. IN NO EVENT WILL NVIDIA’S AND ITS AFFILIATES
         
     | 
| 383 | 
         
            +
            TOTAL CUMULATIVE LIABILITY UNDER OR ARISING OUT OF THIS
         
     | 
| 384 | 
         
            +
            AGREEMENT EXCEED US$10.00. THE NATURE OF THE LIABILITY OR THE
         
     | 
| 385 | 
         
            +
            NUMBER OF CLAIMS OR SUITS SHALL NOT ENLARGE OR EXTEND THIS
         
     | 
| 386 | 
         
            +
            LIMIT.
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
            These exclusions and limitations of liability shall apply
         
     | 
| 389 | 
         
            +
            regardless if NVIDIA or its affiliates have been advised of
         
     | 
| 390 | 
         
            +
            the possibility of such damages, and regardless of whether a
         
     | 
| 391 | 
         
            +
            remedy fails its essential purpose. These exclusions and
         
     | 
| 392 | 
         
            +
            limitations of liability form an essential basis of the
         
     | 
| 393 | 
         
            +
            bargain between the parties, and, absent any of these
         
     | 
| 394 | 
         
            +
            exclusions or limitations of liability, the provisions of this
         
     | 
| 395 | 
         
            +
            Agreement, including, without limitation, the economic terms,
         
     | 
| 396 | 
         
            +
            would be substantially different.
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
             
     | 
| 399 | 
         
            +
            1.6. Termination
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
              1. This Agreement will continue to apply until terminated by
         
     | 
| 402 | 
         
            +
                either you or NVIDIA as described below.
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
              2. If you want to terminate this Agreement, you may do so by
         
     | 
| 405 | 
         
            +
                stopping to use the SDK.
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
              3. NVIDIA may, at any time, terminate this Agreement if:
         
     | 
| 408 | 
         
            +
             
     | 
| 409 | 
         
            +
                  a. (i) you fail to comply with any term of this
         
     | 
| 410 | 
         
            +
                    Agreement and the non-compliance is not fixed within
         
     | 
| 411 | 
         
            +
                    thirty (30) days following notice from NVIDIA (or
         
     | 
| 412 | 
         
            +
                    immediately if you violate NVIDIA’s intellectual
         
     | 
| 413 | 
         
            +
                    property rights);
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                  b. (ii) you commence or participate in any legal
         
     | 
| 416 | 
         
            +
                    proceeding against NVIDIA with respect to the SDK; or
         
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
                  c. (iii) NVIDIA decides to no longer provide the SDK in
         
     | 
| 419 | 
         
            +
                    a country or, in NVIDIA’s sole discretion, the
         
     | 
| 420 | 
         
            +
                    continued use of it is no longer commercially viable.
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
              4. Upon any termination of this Agreement, you agree to
         
     | 
| 423 | 
         
            +
                promptly discontinue use of the SDK and destroy all copies
         
     | 
| 424 | 
         
            +
                in your possession or control. Your prior distributions in
         
     | 
| 425 | 
         
            +
                accordance with this Agreement are not affected by the
         
     | 
| 426 | 
         
            +
                termination of this Agreement. Upon written request, you
         
     | 
| 427 | 
         
            +
                will certify in writing that you have complied with your
         
     | 
| 428 | 
         
            +
                commitments under this section. Upon any termination of
         
     | 
| 429 | 
         
            +
                this Agreement all provisions survive except for the
         
     | 
| 430 | 
         
            +
                license grant provisions.
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
            1.7. General
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
            If you wish to assign this Agreement or your rights and
         
     | 
| 436 | 
         
            +
            obligations, including by merger, consolidation, dissolution
         
     | 
| 437 | 
         
            +
            or operation of law, contact NVIDIA to ask for permission. Any
         
     | 
| 438 | 
         
            +
            attempted assignment not approved by NVIDIA in writing shall
         
     | 
| 439 | 
         
            +
            be void and of no effect. NVIDIA may assign, delegate or
         
     | 
| 440 | 
         
            +
            transfer this Agreement and its rights and obligations, and if
         
     | 
| 441 | 
         
            +
            to a non-affiliate you will be notified.
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
            You agree to cooperate with NVIDIA and provide reasonably
         
     | 
| 444 | 
         
            +
            requested information to verify your compliance with this
         
     | 
| 445 | 
         
            +
            Agreement.
         
     | 
| 446 | 
         
            +
             
     | 
| 447 | 
         
            +
            This Agreement will be governed in all respects by the laws of
         
     | 
| 448 | 
         
            +
            the United States and of the State of Delaware as those laws
         
     | 
| 449 | 
         
            +
            are applied to contracts entered into and performed entirely
         
     | 
| 450 | 
         
            +
            within Delaware by Delaware residents, without regard to the
         
     | 
| 451 | 
         
            +
            conflicts of laws principles. The United Nations Convention on
         
     | 
| 452 | 
         
            +
            Contracts for the International Sale of Goods is specifically
         
     | 
| 453 | 
         
            +
            disclaimed. You agree to all terms of this Agreement in the
         
     | 
| 454 | 
         
            +
            English language.
         
     | 
| 455 | 
         
            +
             
     | 
| 456 | 
         
            +
            The state or federal courts residing in Santa Clara County,
         
     | 
| 457 | 
         
            +
            California shall have exclusive jurisdiction over any dispute
         
     | 
| 458 | 
         
            +
            or claim arising out of this Agreement. Notwithstanding this,
         
     | 
| 459 | 
         
            +
            you agree that NVIDIA shall still be allowed to apply for
         
     | 
| 460 | 
         
            +
            injunctive remedies or an equivalent type of urgent legal
         
     | 
| 461 | 
         
            +
            relief in any jurisdiction.
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
            If any court of competent jurisdiction determines that any
         
     | 
| 464 | 
         
            +
            provision of this Agreement is illegal, invalid or
         
     | 
| 465 | 
         
            +
            unenforceable, such provision will be construed as limited to
         
     | 
| 466 | 
         
            +
            the extent necessary to be consistent with and fully
         
     | 
| 467 | 
         
            +
            enforceable under the law and the remaining provisions will
         
     | 
| 468 | 
         
            +
            remain in full force and effect. Unless otherwise specified,
         
     | 
| 469 | 
         
            +
            remedies are cumulative.
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
            Each party acknowledges and agrees that the other is an
         
     | 
| 472 | 
         
            +
            independent contractor in the performance of this Agreement.
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
            The SDK has been developed entirely at private expense and is
         
     | 
| 475 | 
         
            +
            “commercial items” consisting of “commercial computer
         
     | 
| 476 | 
         
            +
            software” and “commercial computer software
         
     | 
| 477 | 
         
            +
            documentation” provided with RESTRICTED RIGHTS. Use,
         
     | 
| 478 | 
         
            +
            duplication or disclosure by the U.S. Government or a U.S.
         
     | 
| 479 | 
         
            +
            Government subcontractor is subject to the restrictions in
         
     | 
| 480 | 
         
            +
            this Agreement pursuant to DFARS 227.7202-3(a) or as set forth
         
     | 
| 481 | 
         
            +
            in subparagraphs (c)(1) and (2) of the Commercial Computer
         
     | 
| 482 | 
         
            +
            Software - Restricted Rights clause at FAR 52.227-19, as
         
     | 
| 483 | 
         
            +
            applicable. Contractor/manufacturer is NVIDIA, 2788 San Tomas
         
     | 
| 484 | 
         
            +
            Expressway, Santa Clara, CA 95051.
         
     | 
| 485 | 
         
            +
             
     | 
| 486 | 
         
            +
            The SDK is subject to United States export laws and
         
     | 
| 487 | 
         
            +
            regulations. You agree that you will not ship, transfer or
         
     | 
| 488 | 
         
            +
            export the SDK into any country, or use the SDK in any manner,
         
     | 
| 489 | 
         
            +
            prohibited by the United States Bureau of Industry and
         
     | 
| 490 | 
         
            +
            Security or economic sanctions regulations administered by the
         
     | 
| 491 | 
         
            +
            U.S. Department of Treasury’s Office of Foreign Assets
         
     | 
| 492 | 
         
            +
            Control (OFAC), or any applicable export laws, restrictions or
         
     | 
| 493 | 
         
            +
            regulations. These laws include restrictions on destinations,
         
     | 
| 494 | 
         
            +
            end users and end use. By accepting this Agreement, you
         
     | 
| 495 | 
         
            +
            confirm that you are not a resident or citizen of any country
         
     | 
| 496 | 
         
            +
            currently embargoed by the U.S. and that you are not otherwise
         
     | 
| 497 | 
         
            +
            prohibited from receiving the SDK.
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
            Any notice delivered by NVIDIA to you under this Agreement
         
     | 
| 500 | 
         
            +
            will be delivered via mail, email or fax. You agree that any
         
     | 
| 501 | 
         
            +
            notices that NVIDIA sends you electronically will satisfy any
         
     | 
| 502 | 
         
            +
            legal communication requirements. Please direct your legal
         
     | 
| 503 | 
         
            +
            notices or other correspondence to NVIDIA Corporation, 2788
         
     | 
| 504 | 
         
            +
            San Tomas Expressway, Santa Clara, California 95051, United
         
     | 
| 505 | 
         
            +
            States of America, Attention: Legal Department.
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
            This Agreement and any exhibits incorporated into this
         
     | 
| 508 | 
         
            +
            Agreement constitute the entire agreement of the parties with
         
     | 
| 509 | 
         
            +
            respect to the subject matter of this Agreement and supersede
         
     | 
| 510 | 
         
            +
            all prior negotiations or documentation exchanged between the
         
     | 
| 511 | 
         
            +
            parties relating to this SDK license. Any additional and/or
         
     | 
| 512 | 
         
            +
            conflicting terms on documents issued by you are null, void,
         
     | 
| 513 | 
         
            +
            and invalid. Any amendment or waiver under this Agreement
         
     | 
| 514 | 
         
            +
            shall be in writing and signed by representatives of both
         
     | 
| 515 | 
         
            +
            parties.
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
            2. CUDA Toolkit Supplement to Software License Agreement for
         
     | 
| 519 | 
         
            +
            NVIDIA Software Development Kits
         
     | 
| 520 | 
         
            +
            ------------------------------------------------------------
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
            Release date: August 16, 2018
         
     | 
| 524 | 
         
            +
            -----------------------------
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
            The terms in this supplement govern your use of the NVIDIA
         
     | 
| 527 | 
         
            +
            CUDA Toolkit SDK under the terms of your license agreement
         
     | 
| 528 | 
         
            +
            (“Agreement”) as modified by this supplement. Capitalized
         
     | 
| 529 | 
         
            +
            terms used but not defined below have the meaning assigned to
         
     | 
| 530 | 
         
            +
            them in the Agreement.
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
            This supplement is an exhibit to the Agreement and is
         
     | 
| 533 | 
         
            +
            incorporated as an integral part of the Agreement. In the
         
     | 
| 534 | 
         
            +
            event of conflict between the terms in this supplement and the
         
     | 
| 535 | 
         
            +
            terms in the Agreement, the terms in this supplement govern.
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
            2.1. License Scope
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
            The SDK is licensed for you to develop applications only for
         
     | 
| 541 | 
         
            +
            use in systems with NVIDIA GPUs.
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
            2.2. Distribution
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
            The portions of the SDK that are distributable under the
         
     | 
| 547 | 
         
            +
            Agreement are listed in Attachment A.
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
             
     | 
| 550 | 
         
            +
            2.3. Operating Systems
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
            Those portions of the SDK designed exclusively for use on the
         
     | 
| 553 | 
         
            +
            Linux or FreeBSD operating systems, or other operating systems
         
     | 
| 554 | 
         
            +
            derived from the source code to these operating systems, may
         
     | 
| 555 | 
         
            +
            be copied and redistributed for use in accordance with this
         
     | 
| 556 | 
         
            +
            Agreement, provided that the object code files are not
         
     | 
| 557 | 
         
            +
            modified in any way (except for unzipping of compressed
         
     | 
| 558 | 
         
            +
            files).
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
            2.4. Audio and Video Encoders and Decoders
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
            You acknowledge and agree that it is your sole responsibility
         
     | 
| 564 | 
         
            +
            to obtain any additional third-party licenses required to
         
     | 
| 565 | 
         
            +
            make, have made, use, have used, sell, import, and offer for
         
     | 
| 566 | 
         
            +
            sale your products or services that include or incorporate any
         
     | 
| 567 | 
         
            +
            third-party software and content relating to audio and/or
         
     | 
| 568 | 
         
            +
            video encoders and decoders from, including but not limited
         
     | 
| 569 | 
         
            +
            to, Microsoft, Thomson, Fraunhofer IIS, Sisvel S.p.A.,
         
     | 
| 570 | 
         
            +
            MPEG-LA, and Coding Technologies. NVIDIA does not grant to you
         
     | 
| 571 | 
         
            +
            under this Agreement any necessary patent or other rights with
         
     | 
| 572 | 
         
            +
            respect to any audio and/or video encoders and decoders.
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
            2.5. Licensing
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
            If the distribution terms in this Agreement are not suitable
         
     | 
| 578 | 
         
            +
            for your organization, or for any questions regarding this
         
     | 
| 579 | 
         
            +
            Agreement, please contact NVIDIA at
         
     | 
| 580 | |
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
            2.6. Attachment A
         
     | 
| 584 | 
         
            +
             
     | 
| 585 | 
         
            +
            The following portions of the SDK are distributable under the
         
     | 
| 586 | 
         
            +
            Agreement:
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
            Component
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
            CUDA Runtime
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
            Windows
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
            cudart.dll, cudart_static.lib, cudadevrt.lib
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
            Mac OSX
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
            libcudart.dylib, libcudart_static.a, libcudadevrt.a
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
            Linux
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
            libcudart.so, libcudart_static.a, libcudadevrt.a
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
            Android
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
            libcudart.so, libcudart_static.a, libcudadevrt.a
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
            Component
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
            CUDA FFT Library
         
     | 
| 611 | 
         
            +
             
     | 
| 612 | 
         
            +
            Windows
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
            cufft.dll, cufftw.dll, cufft.lib, cufftw.lib
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
            Mac OSX
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
            libcufft.dylib, libcufft_static.a, libcufftw.dylib,
         
     | 
| 619 | 
         
            +
            libcufftw_static.a
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
            Linux
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
            libcufft.so, libcufft_static.a, libcufftw.so,
         
     | 
| 624 | 
         
            +
            libcufftw_static.a
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
            Android
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
            libcufft.so, libcufft_static.a, libcufftw.so,
         
     | 
| 629 | 
         
            +
            libcufftw_static.a
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
            Component
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
            CUDA BLAS Library
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
            Windows
         
     | 
| 636 | 
         
            +
             
     | 
| 637 | 
         
            +
            cublas.dll, cublasLt.dll
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
            Mac OSX
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
            libcublas.dylib, libcublasLt.dylib, libcublas_static.a,
         
     | 
| 642 | 
         
            +
            libcublasLt_static.a
         
     | 
| 643 | 
         
            +
             
     | 
| 644 | 
         
            +
            Linux
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
            libcublas.so, libcublasLt.so, libcublas_static.a,
         
     | 
| 647 | 
         
            +
            libcublasLt_static.a
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
            Android
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
            libcublas.so, libcublasLt.so, libcublas_static.a,
         
     | 
| 652 | 
         
            +
            libcublasLt_static.a
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
            Component
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
            NVIDIA "Drop-in" BLAS Library
         
     | 
| 657 | 
         
            +
             
     | 
| 658 | 
         
            +
            Windows
         
     | 
| 659 | 
         
            +
             
     | 
| 660 | 
         
            +
            nvblas.dll
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
            Mac OSX
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
            libnvblas.dylib
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
            Linux
         
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
            libnvblas.so
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
            Component
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
            CUDA Sparse Matrix Library
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
            Windows
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
            cusparse.dll, cusparse.lib
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
            Mac OSX
         
     | 
| 679 | 
         
            +
             
     | 
| 680 | 
         
            +
            libcusparse.dylib, libcusparse_static.a
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
            Linux
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
            libcusparse.so, libcusparse_static.a
         
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
            Android
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
            libcusparse.so, libcusparse_static.a
         
     | 
| 689 | 
         
            +
             
     | 
| 690 | 
         
            +
            Component
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
            CUDA Linear Solver Library
         
     | 
| 693 | 
         
            +
             
     | 
| 694 | 
         
            +
            Windows
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
            cusolver.dll, cusolver.lib
         
     | 
| 697 | 
         
            +
             
     | 
| 698 | 
         
            +
            Mac OSX
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
            libcusolver.dylib, libcusolver_static.a
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
            Linux
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
            libcusolver.so, libcusolver_static.a
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
            Android
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
            libcusolver.so, libcusolver_static.a
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
            Component
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
            CUDA Random Number Generation Library
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
            Windows
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
            curand.dll, curand.lib
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
            Mac OSX
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
            libcurand.dylib, libcurand_static.a
         
     | 
| 721 | 
         
            +
             
     | 
| 722 | 
         
            +
            Linux
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
            libcurand.so, libcurand_static.a
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
            Android
         
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
            libcurand.so, libcurand_static.a
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
            Component
         
     | 
| 731 | 
         
            +
             
     | 
| 732 | 
         
            +
            CUDA Accelerated Graph Library
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
            Component
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
            NVIDIA Performance Primitives Library
         
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
            Windows
         
     | 
| 739 | 
         
            +
             
     | 
| 740 | 
         
            +
            nppc.dll, nppc.lib, nppial.dll, nppial.lib, nppicc.dll,
         
     | 
| 741 | 
         
            +
            nppicc.lib, nppicom.dll, nppicom.lib, nppidei.dll,
         
     | 
| 742 | 
         
            +
            nppidei.lib, nppif.dll, nppif.lib, nppig.dll, nppig.lib,
         
     | 
| 743 | 
         
            +
            nppim.dll, nppim.lib, nppist.dll, nppist.lib, nppisu.dll,
         
     | 
| 744 | 
         
            +
            nppisu.lib, nppitc.dll, nppitc.lib, npps.dll, npps.lib
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
            Mac OSX
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
            libnppc.dylib, libnppc_static.a, libnppial.dylib,
         
     | 
| 749 | 
         
            +
            libnppial_static.a, libnppicc.dylib, libnppicc_static.a,
         
     | 
| 750 | 
         
            +
            libnppicom.dylib, libnppicom_static.a, libnppidei.dylib,
         
     | 
| 751 | 
         
            +
            libnppidei_static.a, libnppif.dylib, libnppif_static.a,
         
     | 
| 752 | 
         
            +
            libnppig.dylib, libnppig_static.a, libnppim.dylib,
         
     | 
| 753 | 
         
            +
            libnppisu_static.a, libnppitc.dylib, libnppitc_static.a,
         
     | 
| 754 | 
         
            +
            libnpps.dylib, libnpps_static.a
         
     | 
| 755 | 
         
            +
             
     | 
| 756 | 
         
            +
            Linux
         
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
            libnppc.so, libnppc_static.a, libnppial.so,
         
     | 
| 759 | 
         
            +
            libnppial_static.a, libnppicc.so, libnppicc_static.a,
         
     | 
| 760 | 
         
            +
            libnppicom.so, libnppicom_static.a, libnppidei.so,
         
     | 
| 761 | 
         
            +
            libnppidei_static.a, libnppif.so, libnppif_static.a
         
     | 
| 762 | 
         
            +
            libnppig.so, libnppig_static.a, libnppim.so,
         
     | 
| 763 | 
         
            +
            libnppim_static.a, libnppist.so, libnppist_static.a,
         
     | 
| 764 | 
         
            +
            libnppisu.so, libnppisu_static.a, libnppitc.so
         
     | 
| 765 | 
         
            +
            libnppitc_static.a, libnpps.so, libnpps_static.a
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
            Android
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
            libnppc.so, libnppc_static.a, libnppial.so,
         
     | 
| 770 | 
         
            +
            libnppial_static.a, libnppicc.so, libnppicc_static.a,
         
     | 
| 771 | 
         
            +
            libnppicom.so, libnppicom_static.a, libnppidei.so,
         
     | 
| 772 | 
         
            +
            libnppidei_static.a, libnppif.so, libnppif_static.a
         
     | 
| 773 | 
         
            +
            libnppig.so, libnppig_static.a, libnppim.so,
         
     | 
| 774 | 
         
            +
            libnppim_static.a, libnppist.so, libnppist_static.a,
         
     | 
| 775 | 
         
            +
            libnppisu.so, libnppisu_static.a, libnppitc.so
         
     | 
| 776 | 
         
            +
            libnppitc_static.a, libnpps.so, libnpps_static.a
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
            Component
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
            NVIDIA JPEG Library
         
     | 
| 781 | 
         
            +
             
     | 
| 782 | 
         
            +
            Linux
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
            libnvjpeg.so, libnvjpeg_static.a
         
     | 
| 785 | 
         
            +
             
     | 
| 786 | 
         
            +
            Component
         
     | 
| 787 | 
         
            +
             
     | 
| 788 | 
         
            +
            Internal common library required for statically linking to
         
     | 
| 789 | 
         
            +
            cuBLAS, cuSPARSE, cuFFT, cuRAND, nvJPEG and NPP
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
            Mac OSX
         
     | 
| 792 | 
         
            +
             
     | 
| 793 | 
         
            +
            libculibos.a
         
     | 
| 794 | 
         
            +
             
     | 
| 795 | 
         
            +
            Linux
         
     | 
| 796 | 
         
            +
             
     | 
| 797 | 
         
            +
            libculibos.a
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
            Component
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
            NVIDIA Runtime Compilation Library and Header
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
            All
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
            nvrtc.h
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
            Windows
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
            nvrtc.dll, nvrtc-builtins.dll
         
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
            Mac OSX
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
            libnvrtc.dylib, libnvrtc-builtins.dylib
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
            Linux
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
            libnvrtc.so, libnvrtc-builtins.so
         
     | 
| 818 | 
         
            +
             
     | 
| 819 | 
         
            +
            Component
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
            NVIDIA Optimizing Compiler Library
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
            Windows
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
            nvvm.dll
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
            Mac OSX
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
            libnvvm.dylib
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
            Linux
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
            libnvvm.so
         
     | 
| 834 | 
         
            +
             
     | 
| 835 | 
         
            +
            Component
         
     | 
| 836 | 
         
            +
             
     | 
| 837 | 
         
            +
            NVIDIA Common Device Math Functions Library
         
     | 
| 838 | 
         
            +
             
     | 
| 839 | 
         
            +
            Windows
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
            libdevice.10.bc
         
     | 
| 842 | 
         
            +
             
     | 
| 843 | 
         
            +
            Mac OSX
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
            libdevice.10.bc
         
     | 
| 846 | 
         
            +
             
     | 
| 847 | 
         
            +
            Linux
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
            libdevice.10.bc
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
            Component
         
     | 
| 852 | 
         
            +
             
     | 
| 853 | 
         
            +
            CUDA Occupancy Calculation Header Library
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
            All
         
     | 
| 856 | 
         
            +
             
     | 
| 857 | 
         
            +
            cuda_occupancy.h
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
            Component
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
            CUDA Half Precision Headers
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
            All
         
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
            cuda_fp16.h, cuda_fp16.hpp
         
     | 
| 866 | 
         
            +
             
     | 
| 867 | 
         
            +
            Component
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
            CUDA Profiling Tools Interface (CUPTI) Library
         
     | 
| 870 | 
         
            +
             
     | 
| 871 | 
         
            +
            Windows
         
     | 
| 872 | 
         
            +
             
     | 
| 873 | 
         
            +
            cupti.dll
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
            Mac OSX
         
     | 
| 876 | 
         
            +
             
     | 
| 877 | 
         
            +
            libcupti.dylib
         
     | 
| 878 | 
         
            +
             
     | 
| 879 | 
         
            +
            Linux
         
     | 
| 880 | 
         
            +
             
     | 
| 881 | 
         
            +
            libcupti.so
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
            Component
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
            NVIDIA Tools Extension Library
         
     | 
| 886 | 
         
            +
             
     | 
| 887 | 
         
            +
            Windows
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
            nvToolsExt.dll, nvToolsExt.lib
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
            Mac OSX
         
     | 
| 892 | 
         
            +
             
     | 
| 893 | 
         
            +
            libnvToolsExt.dylib
         
     | 
| 894 | 
         
            +
             
     | 
| 895 | 
         
            +
            Linux
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
            libnvToolsExt.so
         
     | 
| 898 | 
         
            +
             
     | 
| 899 | 
         
            +
            Component
         
     | 
| 900 | 
         
            +
             
     | 
| 901 | 
         
            +
            NVIDIA CUDA Driver Libraries
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
            Linux
         
     | 
| 904 | 
         
            +
             
     | 
| 905 | 
         
            +
            libcuda.so, libnvidia-fatbinaryloader.so,
         
     | 
| 906 | 
         
            +
            libnvidia-ptxjitcompiler.so
         
     | 
| 907 | 
         
            +
             
     | 
| 908 | 
         
            +
            The NVIDIA CUDA Driver Libraries are only distributable in
         
     | 
| 909 | 
         
            +
            applications that meet this criteria:
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
              1. The application was developed starting from a NVIDIA CUDA
         
     | 
| 912 | 
         
            +
                container obtained from Docker Hub or the NVIDIA GPU
         
     | 
| 913 | 
         
            +
                Cloud, and
         
     | 
| 914 | 
         
            +
             
     | 
| 915 | 
         
            +
              2. The resulting application is packaged as a Docker
         
     | 
| 916 | 
         
            +
                container and distributed to users on Docker Hub or the
         
     | 
| 917 | 
         
            +
                NVIDIA GPU Cloud only.
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
             
     | 
| 920 | 
         
            +
            2.7. Attachment B
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
             
     | 
| 923 | 
         
            +
            Additional Licensing Obligations
         
     | 
| 924 | 
         
            +
             
     | 
| 925 | 
         
            +
            The following third party components included in the SOFTWARE
         
     | 
| 926 | 
         
            +
            are licensed to Licensee pursuant to the following terms and
         
     | 
| 927 | 
         
            +
            conditions:
         
     | 
| 928 | 
         
            +
             
     | 
| 929 | 
         
            +
              1. Licensee's use of the GDB third party component is
         
     | 
| 930 | 
         
            +
                subject to the terms and conditions of GNU GPL v3:
         
     | 
| 931 | 
         
            +
             
     | 
| 932 | 
         
            +
                This product includes copyrighted third-party software licensed
         
     | 
| 933 | 
         
            +
                under the terms of the GNU General Public License v3 ("GPL v3").
         
     | 
| 934 | 
         
            +
                All third-party software packages are copyright by their respective
         
     | 
| 935 | 
         
            +
                authors. GPL v3 terms and conditions are hereby incorporated into
         
     | 
| 936 | 
         
            +
                the Agreement by this reference:     http://www.gnu.org/licenses/gpl.txt
         
     | 
| 937 | 
         
            +
             
     | 
| 938 | 
         
            +
                Consistent with these licensing requirements, the software
         
     | 
| 939 | 
         
            +
                listed below is provided under the terms of the specified
         
     | 
| 940 | 
         
            +
                open source software licenses. To obtain source code for
         
     | 
| 941 | 
         
            +
                software provided under licenses that require
         
     | 
| 942 | 
         
            +
                redistribution of source code, including the GNU General
         
     | 
| 943 | 
         
            +
                Public License (GPL) and GNU Lesser General Public License
         
     | 
| 944 | 
         
            +
                (LGPL), contact [email protected]. This offer is
         
     | 
| 945 | 
         
            +
                valid for a period of three (3) years from the date of the
         
     | 
| 946 | 
         
            +
                distribution of this product by NVIDIA CORPORATION.
         
     | 
| 947 | 
         
            +
             
     | 
| 948 | 
         
            +
                Component          License
         
     | 
| 949 | 
         
            +
                CUDA-GDB           GPL v3
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
              2. Licensee represents and warrants that any and all third
         
     | 
| 952 | 
         
            +
                party licensing and/or royalty payment obligations in
         
     | 
| 953 | 
         
            +
                connection with Licensee's use of the H.264 video codecs
         
     | 
| 954 | 
         
            +
                are solely the responsibility of Licensee.
         
     | 
| 955 | 
         
            +
             
     | 
| 956 | 
         
            +
              3. Licensee's use of the Thrust library is subject to the
         
     | 
| 957 | 
         
            +
                terms and conditions of the Apache License Version 2.0.
         
     | 
| 958 | 
         
            +
                All third-party software packages are copyright by their
         
     | 
| 959 | 
         
            +
                respective authors. Apache License Version 2.0 terms and
         
     | 
| 960 | 
         
            +
                conditions are hereby incorporated into the Agreement by
         
     | 
| 961 | 
         
            +
                this reference.
         
     | 
| 962 | 
         
            +
                http://www.apache.org/licenses/LICENSE-2.0.html
         
     | 
| 963 | 
         
            +
             
     | 
| 964 | 
         
            +
                In addition, Licensee acknowledges the following notice:
         
     | 
| 965 | 
         
            +
                Thrust includes source code from the Boost Iterator,
         
     | 
| 966 | 
         
            +
                Tuple, System, and Random Number libraries.
         
     | 
| 967 | 
         
            +
             
     | 
| 968 | 
         
            +
                Boost Software License - Version 1.0 - August 17th, 2003
         
     | 
| 969 | 
         
            +
                . . . .
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                Permission is hereby granted, free of charge, to any person or
         
     | 
| 972 | 
         
            +
                organization obtaining a copy of the software and accompanying
         
     | 
| 973 | 
         
            +
                documentation covered by this license (the "Software") to use,
         
     | 
| 974 | 
         
            +
                reproduce, display, distribute, execute, and transmit the Software,
         
     | 
| 975 | 
         
            +
                and to prepare derivative works of the Software, and to permit
         
     | 
| 976 | 
         
            +
                third-parties to whom the Software is furnished to do so, all
         
     | 
| 977 | 
         
            +
                subject to the following:
         
     | 
| 978 | 
         
            +
             
     | 
| 979 | 
         
            +
                The copyright notices in the Software and this entire statement,
         
     | 
| 980 | 
         
            +
                including the above license grant, this restriction and the following
         
     | 
| 981 | 
         
            +
                disclaimer, must be included in all copies of the Software, in whole
         
     | 
| 982 | 
         
            +
                or in part, and all derivative works of the Software, unless such
         
     | 
| 983 | 
         
            +
                copies or derivative works are solely in the form of machine-executable
         
     | 
| 984 | 
         
            +
                object code generated by a source language processor.
         
     | 
| 985 | 
         
            +
             
     | 
| 986 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
         
     | 
| 987 | 
         
            +
                EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
         
     | 
| 988 | 
         
            +
                MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
         
     | 
| 989 | 
         
            +
                NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
         
     | 
| 990 | 
         
            +
                ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
         
     | 
| 991 | 
         
            +
                OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
         
     | 
| 992 | 
         
            +
                FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
         
     | 
| 993 | 
         
            +
                OTHER DEALINGS IN THE SOFTWARE.
         
     | 
| 994 | 
         
            +
             
     | 
| 995 | 
         
            +
              4. Licensee's use of the LLVM third party component is
         
     | 
| 996 | 
         
            +
                subject to the following terms and conditions:
         
     | 
| 997 | 
         
            +
             
     | 
| 998 | 
         
            +
                ======================================================
         
     | 
| 999 | 
         
            +
                LLVM Release License
         
     | 
| 1000 | 
         
            +
                ======================================================
         
     | 
| 1001 | 
         
            +
                University of Illinois/NCSA
         
     | 
| 1002 | 
         
            +
                Open Source License
         
     | 
| 1003 | 
         
            +
             
     | 
| 1004 | 
         
            +
                Copyright (c) 2003-2010 University of Illinois at Urbana-Champaign.
         
     | 
| 1005 | 
         
            +
                All rights reserved.
         
     | 
| 1006 | 
         
            +
             
     | 
| 1007 | 
         
            +
                Developed by:
         
     | 
| 1008 | 
         
            +
             
     | 
| 1009 | 
         
            +
                    LLVM Team
         
     | 
| 1010 | 
         
            +
             
     | 
| 1011 | 
         
            +
                    University of Illinois at Urbana-Champaign
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                    http://llvm.org
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                Permission is hereby granted, free of charge, to any person obtaining a copy
         
     | 
| 1016 | 
         
            +
                of this software and associated documentation files (the "Software"), to
         
     | 
| 1017 | 
         
            +
                deal with the Software without restriction, including without limitation the
         
     | 
| 1018 | 
         
            +
                rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
         
     | 
| 1019 | 
         
            +
                sell copies of the Software, and to permit persons to whom the Software is
         
     | 
| 1020 | 
         
            +
                furnished to do so, subject to the following conditions:
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                *  Redistributions of source code must retain the above copyright notice,
         
     | 
| 1023 | 
         
            +
                   this list of conditions and the following disclaimers.
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                *  Redistributions in binary form must reproduce the above copyright
         
     | 
| 1026 | 
         
            +
                   notice, this list of conditions and the following disclaimers in the
         
     | 
| 1027 | 
         
            +
                   documentation and/or other materials provided with the distribution.
         
     | 
| 1028 | 
         
            +
             
     | 
| 1029 | 
         
            +
                *  Neither the names of the LLVM Team, University of Illinois at Urbana-
         
     | 
| 1030 | 
         
            +
                   Champaign, nor the names of its contributors may be used to endorse or
         
     | 
| 1031 | 
         
            +
                   promote products derived from this Software without specific prior
         
     | 
| 1032 | 
         
            +
                   written permission.
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         
     | 
| 1035 | 
         
            +
                IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         
     | 
| 1036 | 
         
            +
                FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
         
     | 
| 1037 | 
         
            +
                THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
         
     | 
| 1038 | 
         
            +
                OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
         
     | 
| 1039 | 
         
            +
                ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
         
     | 
| 1040 | 
         
            +
                DEALINGS WITH THE SOFTWARE.
         
     | 
| 1041 | 
         
            +
             
     | 
| 1042 | 
         
            +
              5. Licensee's use (e.g. nvprof) of the PCRE third party
         
     | 
| 1043 | 
         
            +
                component is subject to the following terms and
         
     | 
| 1044 | 
         
            +
                conditions:
         
     | 
| 1045 | 
         
            +
             
     | 
| 1046 | 
         
            +
                ------------
         
     | 
| 1047 | 
         
            +
                PCRE LICENCE
         
     | 
| 1048 | 
         
            +
                ------------
         
     | 
| 1049 | 
         
            +
                PCRE is a library of functions to support regular expressions whose syntax
         
     | 
| 1050 | 
         
            +
                and semantics are as close as possible to those of the Perl 5 language.
         
     | 
| 1051 | 
         
            +
                Release 8 of PCRE is distributed under the terms of the "BSD" licence, as
         
     | 
| 1052 | 
         
            +
                specified below. The documentation for PCRE, supplied in the "doc"
         
     | 
| 1053 | 
         
            +
                directory, is distributed under the same terms as the software itself. The
         
     | 
| 1054 | 
         
            +
                basic library functions are written in C and are freestanding. Also
         
     | 
| 1055 | 
         
            +
                included in the distribution is a set of C++ wrapper functions, and a just-
         
     | 
| 1056 | 
         
            +
                in-time compiler that can be used to optimize pattern matching. These are
         
     | 
| 1057 | 
         
            +
                both optional features that can be omitted when the library is built.
         
     | 
| 1058 | 
         
            +
             
     | 
| 1059 | 
         
            +
                THE BASIC LIBRARY FUNCTIONS
         
     | 
| 1060 | 
         
            +
                ---------------------------
         
     | 
| 1061 | 
         
            +
                Written by:       Philip Hazel
         
     | 
| 1062 | 
         
            +
                Email local part: ph10
         
     | 
| 1063 | 
         
            +
                Email domain:     cam.ac.uk
         
     | 
| 1064 | 
         
            +
                University of Cambridge Computing Service,
         
     | 
| 1065 | 
         
            +
                Cambridge, England.
         
     | 
| 1066 | 
         
            +
                Copyright (c) 1997-2012 University of Cambridge
         
     | 
| 1067 | 
         
            +
                All rights reserved.
         
     | 
| 1068 | 
         
            +
             
     | 
| 1069 | 
         
            +
                PCRE JUST-IN-TIME COMPILATION SUPPORT
         
     | 
| 1070 | 
         
            +
                -------------------------------------
         
     | 
| 1071 | 
         
            +
                Written by:       Zoltan Herczeg
         
     | 
| 1072 | 
         
            +
                Email local part: hzmester
         
     | 
| 1073 | 
         
            +
                Emain domain:     freemail.hu
         
     | 
| 1074 | 
         
            +
                Copyright(c) 2010-2012 Zoltan Herczeg
         
     | 
| 1075 | 
         
            +
                All rights reserved.
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                STACK-LESS JUST-IN-TIME COMPILER
         
     | 
| 1078 | 
         
            +
                --------------------------------
         
     | 
| 1079 | 
         
            +
                Written by:       Zoltan Herczeg
         
     | 
| 1080 | 
         
            +
                Email local part: hzmester
         
     | 
| 1081 | 
         
            +
                Emain domain:     freemail.hu
         
     | 
| 1082 | 
         
            +
                Copyright(c) 2009-2012 Zoltan Herczeg
         
     | 
| 1083 | 
         
            +
                All rights reserved.
         
     | 
| 1084 | 
         
            +
             
     | 
| 1085 | 
         
            +
                THE C++ WRAPPER FUNCTIONS
         
     | 
| 1086 | 
         
            +
                -------------------------
         
     | 
| 1087 | 
         
            +
                Contributed by:   Google Inc.
         
     | 
| 1088 | 
         
            +
                Copyright (c) 2007-2012, Google Inc.
         
     | 
| 1089 | 
         
            +
                All rights reserved.
         
     | 
| 1090 | 
         
            +
             
     | 
| 1091 | 
         
            +
                THE "BSD" LICENCE
         
     | 
| 1092 | 
         
            +
                -----------------
         
     | 
| 1093 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1094 | 
         
            +
                modification, are permitted provided that the following conditions are met:
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                  * Redistributions of source code must retain the above copyright notice,
         
     | 
| 1097 | 
         
            +
                    this list of conditions and the following disclaimer.
         
     | 
| 1098 | 
         
            +
             
     | 
| 1099 | 
         
            +
                  * Redistributions in binary form must reproduce the above copyright
         
     | 
| 1100 | 
         
            +
                    notice, this list of conditions and the following disclaimer in the
         
     | 
| 1101 | 
         
            +
                    documentation and/or other materials provided with the distribution.
         
     | 
| 1102 | 
         
            +
             
     | 
| 1103 | 
         
            +
                  * Neither the name of the University of Cambridge nor the name of Google
         
     | 
| 1104 | 
         
            +
                    Inc. nor the names of their contributors may be used to endorse or
         
     | 
| 1105 | 
         
            +
                    promote products derived from this software without specific prior
         
     | 
| 1106 | 
         
            +
                    written permission.
         
     | 
| 1107 | 
         
            +
             
     | 
| 1108 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
         
     | 
| 1109 | 
         
            +
                AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
         
     | 
| 1110 | 
         
            +
                IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
         
     | 
| 1111 | 
         
            +
                ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
         
     | 
| 1112 | 
         
            +
                LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
         
     | 
| 1113 | 
         
            +
                CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
         
     | 
| 1114 | 
         
            +
                SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
         
     | 
| 1115 | 
         
            +
                INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
         
     | 
| 1116 | 
         
            +
                CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
         
     | 
| 1117 | 
         
            +
                ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
         
     | 
| 1118 | 
         
            +
                POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1119 | 
         
            +
             
     | 
| 1120 | 
         
            +
              6. Some of the cuBLAS library routines were written by or
         
     | 
| 1121 | 
         
            +
                derived from code written by Vasily Volkov and are subject
         
     | 
| 1122 | 
         
            +
                to the Modified Berkeley Software Distribution License as
         
     | 
| 1123 | 
         
            +
                follows:
         
     | 
| 1124 | 
         
            +
             
     | 
| 1125 | 
         
            +
                Copyright (c) 2007-2009, Regents of the University of California
         
     | 
| 1126 | 
         
            +
             
     | 
| 1127 | 
         
            +
                All rights reserved.
         
     | 
| 1128 | 
         
            +
             
     | 
| 1129 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1130 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1131 | 
         
            +
                met:
         
     | 
| 1132 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1133 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1134 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1135 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1136 | 
         
            +
                      disclaimer in the documentation and/or other materials provided
         
     | 
| 1137 | 
         
            +
                      with the distribution.
         
     | 
| 1138 | 
         
            +
                    * Neither the name of the University of California, Berkeley nor
         
     | 
| 1139 | 
         
            +
                      the names of its contributors may be used to endorse or promote
         
     | 
| 1140 | 
         
            +
                      products derived from this software without specific prior
         
     | 
| 1141 | 
         
            +
                      written permission.
         
     | 
| 1142 | 
         
            +
             
     | 
| 1143 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
         
     | 
| 1144 | 
         
            +
                IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
         
     | 
| 1145 | 
         
            +
                WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         
     | 
| 1146 | 
         
            +
                DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
         
     | 
| 1147 | 
         
            +
                INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
         
     | 
| 1148 | 
         
            +
                (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         
     | 
| 1149 | 
         
            +
                SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
         
     | 
| 1150 | 
         
            +
                HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
         
     | 
| 1151 | 
         
            +
                STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
         
     | 
| 1152 | 
         
            +
                IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
         
     | 
| 1153 | 
         
            +
                POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1154 | 
         
            +
             
     | 
| 1155 | 
         
            +
              7. Some of the cuBLAS library routines were written by or
         
     | 
| 1156 | 
         
            +
                derived from code written by Davide Barbieri and are
         
     | 
| 1157 | 
         
            +
                subject to the Modified Berkeley Software Distribution
         
     | 
| 1158 | 
         
            +
                License as follows:
         
     | 
| 1159 | 
         
            +
             
     | 
| 1160 | 
         
            +
                Copyright (c) 2008-2009 Davide Barbieri @ University of Rome Tor Vergata.
         
     | 
| 1161 | 
         
            +
             
     | 
| 1162 | 
         
            +
                All rights reserved.
         
     | 
| 1163 | 
         
            +
             
     | 
| 1164 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1165 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1166 | 
         
            +
                met:
         
     | 
| 1167 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1168 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1169 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1170 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1171 | 
         
            +
                      disclaimer in the documentation and/or other materials provided
         
     | 
| 1172 | 
         
            +
                      with the distribution.
         
     | 
| 1173 | 
         
            +
                    * The name of the author may not be used to endorse or promote
         
     | 
| 1174 | 
         
            +
                      products derived from this software without specific prior
         
     | 
| 1175 | 
         
            +
                      written permission.
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE AUTHOR "AS IS" AND ANY EXPRESS OR
         
     | 
| 1178 | 
         
            +
                IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
         
     | 
| 1179 | 
         
            +
                WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
         
     | 
| 1180 | 
         
            +
                DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
         
     | 
| 1181 | 
         
            +
                INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
         
     | 
| 1182 | 
         
            +
                (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
         
     | 
| 1183 | 
         
            +
                SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
         
     | 
| 1184 | 
         
            +
                HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
         
     | 
| 1185 | 
         
            +
                STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
         
     | 
| 1186 | 
         
            +
                IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
         
     | 
| 1187 | 
         
            +
                POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1188 | 
         
            +
             
     | 
| 1189 | 
         
            +
              8. Some of the cuBLAS library routines were derived from
         
     | 
| 1190 | 
         
            +
                code developed by the University of Tennessee and are
         
     | 
| 1191 | 
         
            +
                subject to the Modified Berkeley Software Distribution
         
     | 
| 1192 | 
         
            +
                License as follows:
         
     | 
| 1193 | 
         
            +
             
     | 
| 1194 | 
         
            +
                Copyright (c) 2010 The University of Tennessee.
         
     | 
| 1195 | 
         
            +
             
     | 
| 1196 | 
         
            +
                All rights reserved.
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1199 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1200 | 
         
            +
                met:
         
     | 
| 1201 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1202 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1203 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1204 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1205 | 
         
            +
                      disclaimer listed in this license in the documentation and/or
         
     | 
| 1206 | 
         
            +
                      other materials provided with the distribution.
         
     | 
| 1207 | 
         
            +
                    * Neither the name of the copyright holders nor the names of its
         
     | 
| 1208 | 
         
            +
                      contributors may be used to endorse or promote products derived
         
     | 
| 1209 | 
         
            +
                      from this software without specific prior written permission.
         
     | 
| 1210 | 
         
            +
             
     | 
| 1211 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1212 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1213 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1214 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1215 | 
         
            +
                OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1216 | 
         
            +
                SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         
     | 
| 1217 | 
         
            +
                LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1218 | 
         
            +
                DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1219 | 
         
            +
                THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1220 | 
         
            +
                (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1221 | 
         
            +
                OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1222 | 
         
            +
             
     | 
| 1223 | 
         
            +
              9. Some of the cuBLAS library routines were written by or
         
     | 
| 1224 | 
         
            +
                derived from code written by Jonathan Hogg and are subject
         
     | 
| 1225 | 
         
            +
                to the Modified Berkeley Software Distribution License as
         
     | 
| 1226 | 
         
            +
                follows:
         
     | 
| 1227 | 
         
            +
             
     | 
| 1228 | 
         
            +
                Copyright (c) 2012, The Science and Technology Facilities Council (STFC).
         
     | 
| 1229 | 
         
            +
             
     | 
| 1230 | 
         
            +
                All rights reserved.
         
     | 
| 1231 | 
         
            +
             
     | 
| 1232 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1233 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1234 | 
         
            +
                met:
         
     | 
| 1235 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1236 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1237 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1238 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1239 | 
         
            +
                      disclaimer in the documentation and/or other materials provided
         
     | 
| 1240 | 
         
            +
                      with the distribution.
         
     | 
| 1241 | 
         
            +
                    * Neither the name of the STFC nor the names of its contributors
         
     | 
| 1242 | 
         
            +
                      may be used to endorse or promote products derived from this
         
     | 
| 1243 | 
         
            +
                      software without specific prior written permission.
         
     | 
| 1244 | 
         
            +
             
     | 
| 1245 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1246 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1247 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1248 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE STFC BE
         
     | 
| 1249 | 
         
            +
                LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
         
     | 
| 1250 | 
         
            +
                CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
         
     | 
| 1251 | 
         
            +
                SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
         
     | 
| 1252 | 
         
            +
                BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY,
         
     | 
| 1253 | 
         
            +
                WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE
         
     | 
| 1254 | 
         
            +
                OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN
         
     | 
| 1255 | 
         
            +
                IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1256 | 
         
            +
             
     | 
| 1257 | 
         
            +
              10. Some of the cuBLAS library routines were written by or
         
     | 
| 1258 | 
         
            +
                derived from code written by Ahmad M. Abdelfattah, David
         
     | 
| 1259 | 
         
            +
                Keyes, and Hatem Ltaief, and are subject to the Apache
         
     | 
| 1260 | 
         
            +
                License, Version 2.0, as follows:
         
     | 
| 1261 | 
         
            +
             
     | 
| 1262 | 
         
            +
                 -- (C) Copyright 2013 King Abdullah University of Science and Technology
         
     | 
| 1263 | 
         
            +
                  Authors:
         
     | 
| 1264 | 
         
            +
                  Ahmad Abdelfattah ([email protected])
         
     | 
| 1265 | 
         
            +
                  David Keyes ([email protected])
         
     | 
| 1266 | 
         
            +
                  Hatem Ltaief ([email protected])
         
     | 
| 1267 | 
         
            +
             
     | 
| 1268 | 
         
            +
                  Redistribution  and  use  in  source and binary forms, with or without
         
     | 
| 1269 | 
         
            +
                  modification,  are  permitted  provided  that the following conditions
         
     | 
| 1270 | 
         
            +
                  are met:
         
     | 
| 1271 | 
         
            +
             
     | 
| 1272 | 
         
            +
                  * Redistributions  of  source  code  must  retain  the above copyright
         
     | 
| 1273 | 
         
            +
                    notice,  this  list  of  conditions  and  the  following  disclaimer.
         
     | 
| 1274 | 
         
            +
                  * Redistributions  in  binary  form must reproduce the above copyright
         
     | 
| 1275 | 
         
            +
                    notice,  this list of conditions and the following disclaimer in the
         
     | 
| 1276 | 
         
            +
                    documentation  and/or other materials provided with the distribution.
         
     | 
| 1277 | 
         
            +
                  * Neither  the  name of the King Abdullah University of Science and
         
     | 
| 1278 | 
         
            +
                    Technology nor the names of its contributors may be used to endorse
         
     | 
| 1279 | 
         
            +
                    or promote products derived from this software without specific prior
         
     | 
| 1280 | 
         
            +
                    written permission.
         
     | 
| 1281 | 
         
            +
             
     | 
| 1282 | 
         
            +
                  THIS  SOFTWARE  IS  PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1283 | 
         
            +
                  ``AS IS''  AND  ANY  EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1284 | 
         
            +
                  LIMITED  TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1285 | 
         
            +
                  A  PARTICULAR  PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1286 | 
         
            +
                  HOLDERS OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1287 | 
         
            +
                  SPECIAL,  EXEMPLARY,  OR  CONSEQUENTIAL  DAMAGES  (INCLUDING,  BUT NOT
         
     | 
| 1288 | 
         
            +
                  LIMITED  TO,  PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1289 | 
         
            +
                  DATA,  OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1290 | 
         
            +
                  THEORY  OF  LIABILITY,  WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1291 | 
         
            +
                  (INCLUDING  NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1292 | 
         
            +
                  OF  THIS  SOFTWARE,  EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE
         
     | 
| 1293 | 
         
            +
             
     | 
| 1294 | 
         
            +
              11. Some of the cuSPARSE library routines were written by or
         
     | 
| 1295 | 
         
            +
                derived from code written by Li-Wen Chang and are subject
         
     | 
| 1296 | 
         
            +
                to the NCSA Open Source License as follows:
         
     | 
| 1297 | 
         
            +
             
     | 
| 1298 | 
         
            +
                Copyright (c) 2012, University of Illinois.
         
     | 
| 1299 | 
         
            +
             
     | 
| 1300 | 
         
            +
                All rights reserved.
         
     | 
| 1301 | 
         
            +
             
     | 
| 1302 | 
         
            +
                Developed by: IMPACT Group, University of Illinois, http://impact.crhc.illinois.edu
         
     | 
| 1303 | 
         
            +
             
     | 
| 1304 | 
         
            +
                Permission is hereby granted, free of charge, to any person obtaining
         
     | 
| 1305 | 
         
            +
                a copy of this software and associated documentation files (the
         
     | 
| 1306 | 
         
            +
                "Software"), to deal with the Software without restriction, including
         
     | 
| 1307 | 
         
            +
                without limitation the rights to use, copy, modify, merge, publish,
         
     | 
| 1308 | 
         
            +
                distribute, sublicense, and/or sell copies of the Software, and to
         
     | 
| 1309 | 
         
            +
                permit persons to whom the Software is furnished to do so, subject to
         
     | 
| 1310 | 
         
            +
                the following conditions:
         
     | 
| 1311 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1312 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1313 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1314 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1315 | 
         
            +
                      disclaimers in the documentation and/or other materials provided
         
     | 
| 1316 | 
         
            +
                      with the distribution.
         
     | 
| 1317 | 
         
            +
                    * Neither the names of IMPACT Group, University of Illinois, nor
         
     | 
| 1318 | 
         
            +
                      the names of its contributors may be used to endorse or promote
         
     | 
| 1319 | 
         
            +
                      products derived from this Software without specific prior
         
     | 
| 1320 | 
         
            +
                      written permission.
         
     | 
| 1321 | 
         
            +
             
     | 
| 1322 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
         
     | 
| 1323 | 
         
            +
                EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
         
     | 
| 1324 | 
         
            +
                MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
         
     | 
| 1325 | 
         
            +
                NONINFRINGEMENT. IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT
         
     | 
| 1326 | 
         
            +
                HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
         
     | 
| 1327 | 
         
            +
                IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR
         
     | 
| 1328 | 
         
            +
                IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
         
     | 
| 1329 | 
         
            +
                SOFTWARE.
         
     | 
| 1330 | 
         
            +
             
     | 
| 1331 | 
         
            +
              12. Some of the cuRAND library routines were written by or
         
     | 
| 1332 | 
         
            +
                derived from code written by Mutsuo Saito and Makoto
         
     | 
| 1333 | 
         
            +
                Matsumoto and are subject to the following license:
         
     | 
| 1334 | 
         
            +
             
     | 
| 1335 | 
         
            +
                Copyright (c) 2009, 2010 Mutsuo Saito, Makoto Matsumoto and Hiroshima
         
     | 
| 1336 | 
         
            +
                University. All rights reserved.
         
     | 
| 1337 | 
         
            +
             
     | 
| 1338 | 
         
            +
                Copyright (c) 2011 Mutsuo Saito, Makoto Matsumoto, Hiroshima
         
     | 
| 1339 | 
         
            +
                University and University of Tokyo.  All rights reserved.
         
     | 
| 1340 | 
         
            +
             
     | 
| 1341 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1342 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1343 | 
         
            +
                met:
         
     | 
| 1344 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1345 | 
         
            +
                      notice, this list of conditions and the following disclaimer.
         
     | 
| 1346 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1347 | 
         
            +
                      copyright notice, this list of conditions and the following
         
     | 
| 1348 | 
         
            +
                      disclaimer in the documentation and/or other materials provided
         
     | 
| 1349 | 
         
            +
                      with the distribution.
         
     | 
| 1350 | 
         
            +
                    * Neither the name of the Hiroshima University nor the names of
         
     | 
| 1351 | 
         
            +
                      its contributors may be used to endorse or promote products
         
     | 
| 1352 | 
         
            +
                      derived from this software without specific prior written
         
     | 
| 1353 | 
         
            +
                      permission.
         
     | 
| 1354 | 
         
            +
             
     | 
| 1355 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1356 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1357 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1358 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1359 | 
         
            +
                OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1360 | 
         
            +
                SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         
     | 
| 1361 | 
         
            +
                LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1362 | 
         
            +
                DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1363 | 
         
            +
                THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1364 | 
         
            +
                (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1365 | 
         
            +
                OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1366 | 
         
            +
             
     | 
| 1367 | 
         
            +
              13. Some of the cuRAND library routines were derived from
         
     | 
| 1368 | 
         
            +
                code developed by D. E. Shaw Research and are subject to
         
     | 
| 1369 | 
         
            +
                the following license:
         
     | 
| 1370 | 
         
            +
             
     | 
| 1371 | 
         
            +
                Copyright 2010-2011, D. E. Shaw Research.
         
     | 
| 1372 | 
         
            +
             
     | 
| 1373 | 
         
            +
                All rights reserved.
         
     | 
| 1374 | 
         
            +
             
     | 
| 1375 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1376 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1377 | 
         
            +
                met:
         
     | 
| 1378 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1379 | 
         
            +
                      notice, this list of conditions, and the following disclaimer.
         
     | 
| 1380 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1381 | 
         
            +
                      copyright notice, this list of conditions, and the following
         
     | 
| 1382 | 
         
            +
                      disclaimer in the documentation and/or other materials provided
         
     | 
| 1383 | 
         
            +
                      with the distribution.
         
     | 
| 1384 | 
         
            +
                    * Neither the name of D. E. Shaw Research nor the names of its
         
     | 
| 1385 | 
         
            +
                      contributors may be used to endorse or promote products derived
         
     | 
| 1386 | 
         
            +
                      from this software without specific prior written permission.
         
     | 
| 1387 | 
         
            +
             
     | 
| 1388 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1389 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1390 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1391 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1392 | 
         
            +
                OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1393 | 
         
            +
                SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         
     | 
| 1394 | 
         
            +
                LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1395 | 
         
            +
                DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1396 | 
         
            +
                THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1397 | 
         
            +
                (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1398 | 
         
            +
                OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1399 | 
         
            +
             
     | 
| 1400 | 
         
            +
              14. Some of the Math library routines were written by or
         
     | 
| 1401 | 
         
            +
                derived from code developed by Norbert Juffa and are
         
     | 
| 1402 | 
         
            +
                subject to the following license:
         
     | 
| 1403 | 
         
            +
             
     | 
| 1404 | 
         
            +
                Copyright (c) 2015-2017, Norbert Juffa
         
     | 
| 1405 | 
         
            +
                All rights reserved.
         
     | 
| 1406 | 
         
            +
             
     | 
| 1407 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1408 | 
         
            +
                modification, are permitted provided that the following conditions
         
     | 
| 1409 | 
         
            +
                are met:
         
     | 
| 1410 | 
         
            +
             
     | 
| 1411 | 
         
            +
                1. Redistributions of source code must retain the above copyright
         
     | 
| 1412 | 
         
            +
                   notice, this list of conditions and the following disclaimer.
         
     | 
| 1413 | 
         
            +
             
     | 
| 1414 | 
         
            +
                2. Redistributions in binary form must reproduce the above copyright
         
     | 
| 1415 | 
         
            +
                   notice, this list of conditions and the following disclaimer in the
         
     | 
| 1416 | 
         
            +
                   documentation and/or other materials provided with the distribution.
         
     | 
| 1417 | 
         
            +
             
     | 
| 1418 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1419 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1420 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1421 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1422 | 
         
            +
                HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1423 | 
         
            +
                SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         
     | 
| 1424 | 
         
            +
                LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1425 | 
         
            +
                DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1426 | 
         
            +
                THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1427 | 
         
            +
                (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1428 | 
         
            +
                OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1429 | 
         
            +
             
     | 
| 1430 | 
         
            +
              15. Licensee's use of the lz4 third party component is
         
     | 
| 1431 | 
         
            +
                subject to the following terms and conditions:
         
     | 
| 1432 | 
         
            +
             
     | 
| 1433 | 
         
            +
                Copyright (C) 2011-2013, Yann Collet.
         
     | 
| 1434 | 
         
            +
                BSD 2-Clause License (http://www.opensource.org/licenses/bsd-license.php)
         
     | 
| 1435 | 
         
            +
             
     | 
| 1436 | 
         
            +
                Redistribution and use in source and binary forms, with or without
         
     | 
| 1437 | 
         
            +
                modification, are permitted provided that the following conditions are
         
     | 
| 1438 | 
         
            +
                met:
         
     | 
| 1439 | 
         
            +
             
     | 
| 1440 | 
         
            +
                    * Redistributions of source code must retain the above copyright
         
     | 
| 1441 | 
         
            +
                notice, this list of conditions and the following disclaimer.
         
     | 
| 1442 | 
         
            +
                    * Redistributions in binary form must reproduce the above
         
     | 
| 1443 | 
         
            +
                copyright notice, this list of conditions and the following disclaimer
         
     | 
| 1444 | 
         
            +
                in the documentation and/or other materials provided with the
         
     | 
| 1445 | 
         
            +
                distribution.
         
     | 
| 1446 | 
         
            +
             
     | 
| 1447 | 
         
            +
                THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
         
     | 
| 1448 | 
         
            +
                "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
         
     | 
| 1449 | 
         
            +
                LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
         
     | 
| 1450 | 
         
            +
                A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
         
     | 
| 1451 | 
         
            +
                OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
         
     | 
| 1452 | 
         
            +
                SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
         
     | 
| 1453 | 
         
            +
                LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
         
     | 
| 1454 | 
         
            +
                DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
         
     | 
| 1455 | 
         
            +
                THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
         
     | 
| 1456 | 
         
            +
                (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
         
     | 
| 1457 | 
         
            +
                OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
         
     | 
| 1458 | 
         
            +
             
     | 
| 1459 | 
         
            +
              16. The NPP library uses code from the Boost Math Toolkit,
         
     | 
| 1460 | 
         
            +
                and is subject to the following license:
         
     | 
| 1461 | 
         
            +
             
     | 
| 1462 | 
         
            +
                Boost Software License - Version 1.0 - August 17th, 2003
         
     | 
| 1463 | 
         
            +
                . . . .
         
     | 
| 1464 | 
         
            +
             
     | 
| 1465 | 
         
            +
                Permission is hereby granted, free of charge, to any person or
         
     | 
| 1466 | 
         
            +
                organization obtaining a copy of the software and accompanying
         
     | 
| 1467 | 
         
            +
                documentation covered by this license (the "Software") to use,
         
     | 
| 1468 | 
         
            +
                reproduce, display, distribute, execute, and transmit the Software,
         
     | 
| 1469 | 
         
            +
                and to prepare derivative works of the Software, and to permit
         
     | 
| 1470 | 
         
            +
                third-parties to whom the Software is furnished to do so, all
         
     | 
| 1471 | 
         
            +
                subject to the following:
         
     | 
| 1472 | 
         
            +
             
     | 
| 1473 | 
         
            +
                The copyright notices in the Software and this entire statement,
         
     | 
| 1474 | 
         
            +
                including the above license grant, this restriction and the following
         
     | 
| 1475 | 
         
            +
                disclaimer, must be included in all copies of the Software, in whole
         
     | 
| 1476 | 
         
            +
                or in part, and all derivative works of the Software, unless such
         
     | 
| 1477 | 
         
            +
                copies or derivative works are solely in the form of machine-executable
         
     | 
| 1478 | 
         
            +
                object code generated by a source language processor.
         
     | 
| 1479 | 
         
            +
             
     | 
| 1480 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
         
     | 
| 1481 | 
         
            +
                EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
         
     | 
| 1482 | 
         
            +
                MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE AND
         
     | 
| 1483 | 
         
            +
                NON-INFRINGEMENT. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR
         
     | 
| 1484 | 
         
            +
                ANYONE DISTRIBUTING THE SOFTWARE BE LIABLE FOR ANY DAMAGES OR
         
     | 
| 1485 | 
         
            +
                OTHER LIABILITY, WHETHER IN CONTRACT, TORT OR OTHERWISE, ARISING
         
     | 
| 1486 | 
         
            +
                FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
         
     | 
| 1487 | 
         
            +
                OTHER DEALINGS IN THE SOFTWARE.
         
     | 
| 1488 | 
         
            +
             
     | 
| 1489 | 
         
            +
              17. Portions of the Nsight Eclipse Edition is subject to the
         
     | 
| 1490 | 
         
            +
                following license:
         
     | 
| 1491 | 
         
            +
             
     | 
| 1492 | 
         
            +
                The Eclipse Foundation makes available all content in this plug-in
         
     | 
| 1493 | 
         
            +
                ("Content"). Unless otherwise indicated below, the Content is provided
         
     | 
| 1494 | 
         
            +
                to you under the terms and conditions of the Eclipse Public License
         
     | 
| 1495 | 
         
            +
                Version 1.0 ("EPL"). A copy of the EPL is available at http://
         
     | 
| 1496 | 
         
            +
                www.eclipse.org/legal/epl-v10.html. For purposes of the EPL, "Program"
         
     | 
| 1497 | 
         
            +
                will mean the Content.
         
     | 
| 1498 | 
         
            +
             
     | 
| 1499 | 
         
            +
                If you did not receive this Content directly from the Eclipse
         
     | 
| 1500 | 
         
            +
                Foundation, the Content is being redistributed by another party
         
     | 
| 1501 | 
         
            +
                ("Redistributor") and different terms and conditions may apply to your
         
     | 
| 1502 | 
         
            +
                use of any object code in the Content. Check the Redistributor's
         
     | 
| 1503 | 
         
            +
                license that was provided with the Content. If no such license exists,
         
     | 
| 1504 | 
         
            +
                contact the Redistributor. Unless otherwise indicated below, the terms
         
     | 
| 1505 | 
         
            +
                and conditions of the EPL still apply to any source code in the
         
     | 
| 1506 | 
         
            +
                Content and such source code may be obtained at http://www.eclipse.org.
         
     | 
| 1507 | 
         
            +
             
     | 
| 1508 | 
         
            +
              18. Some of the cuBLAS library routines uses code from
         
     | 
| 1509 | 
         
            +
                OpenAI, which is subject to the following license:
         
     | 
| 1510 | 
         
            +
             
     | 
| 1511 | 
         
            +
                License URL
         
     | 
| 1512 | 
         
            +
                https://github.com/openai/openai-gemm/blob/master/LICENSE
         
     | 
| 1513 | 
         
            +
             
     | 
| 1514 | 
         
            +
                License Text
         
     | 
| 1515 | 
         
            +
                The MIT License
         
     | 
| 1516 | 
         
            +
             
     | 
| 1517 | 
         
            +
                Copyright (c) 2016 OpenAI (http://openai.com), 2016 Google Inc.
         
     | 
| 1518 | 
         
            +
             
     | 
| 1519 | 
         
            +
                Permission is hereby granted, free of charge, to any person obtaining a copy
         
     | 
| 1520 | 
         
            +
                of this software and associated documentation files (the "Software"), to deal
         
     | 
| 1521 | 
         
            +
                in the Software without restriction, including without limitation the rights
         
     | 
| 1522 | 
         
            +
                to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
         
     | 
| 1523 | 
         
            +
                copies of the Software, and to permit persons to whom the Software is
         
     | 
| 1524 | 
         
            +
                furnished to do so, subject to the following conditions:
         
     | 
| 1525 | 
         
            +
             
     | 
| 1526 | 
         
            +
                The above copyright notice and this permission notice shall be included in
         
     | 
| 1527 | 
         
            +
                all copies or substantial portions of the Software.
         
     | 
| 1528 | 
         
            +
             
     | 
| 1529 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
         
     | 
| 1530 | 
         
            +
                IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         
     | 
| 1531 | 
         
            +
                FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         
     | 
| 1532 | 
         
            +
                AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         
     | 
| 1533 | 
         
            +
                LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         
     | 
| 1534 | 
         
            +
                OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
         
     | 
| 1535 | 
         
            +
                THE SOFTWARE.
         
     | 
| 1536 | 
         
            +
             
     | 
| 1537 | 
         
            +
              19. Licensee's use of the Visual Studio Setup Configuration
         
     | 
| 1538 | 
         
            +
                Samples is subject to the following license:
         
     | 
| 1539 | 
         
            +
             
     | 
| 1540 | 
         
            +
                The MIT License (MIT)
         
     | 
| 1541 | 
         
            +
                Copyright (C) Microsoft Corporation. All rights reserved.
         
     | 
| 1542 | 
         
            +
             
     | 
| 1543 | 
         
            +
                Permission is hereby granted, free of charge, to any person
         
     | 
| 1544 | 
         
            +
                obtaining a copy of this software and associated documentation
         
     | 
| 1545 | 
         
            +
                files (the "Software"), to deal in the Software without restriction,
         
     | 
| 1546 | 
         
            +
                including without limitation the rights to use, copy, modify, merge,
         
     | 
| 1547 | 
         
            +
                publish, distribute, sublicense, and/or sell copies of the Software,
         
     | 
| 1548 | 
         
            +
                and to permit persons to whom the Software is furnished to do so,
         
     | 
| 1549 | 
         
            +
                subject to the following conditions:
         
     | 
| 1550 | 
         
            +
             
     | 
| 1551 | 
         
            +
                The above copyright notice and this permission notice shall be included
         
     | 
| 1552 | 
         
            +
                in all copies or substantial portions of the Software.
         
     | 
| 1553 | 
         
            +
             
     | 
| 1554 | 
         
            +
                THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
         
     | 
| 1555 | 
         
            +
                OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
         
     | 
| 1556 | 
         
            +
                FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
         
     | 
| 1557 | 
         
            +
                AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
         
     | 
| 1558 | 
         
            +
                LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
         
     | 
| 1559 | 
         
            +
                OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
         
     | 
| 1560 | 
         
            +
             
     | 
| 1561 | 
         
            +
              20. Licensee's use of linmath.h header for CPU functions for
         
     | 
| 1562 | 
         
            +
                GL vector/matrix operations from lunarG is subject to the
         
     | 
| 1563 | 
         
            +
                Apache License Version 2.0.
         
     | 
| 1564 | 
         
            +
             
     | 
| 1565 | 
         
            +
              21. The DX12-CUDA sample uses the d3dx12.h header, which is
         
     | 
| 1566 | 
         
            +
                subject to the MIT license .
         
     | 
| 1567 | 
         
            +
             
     | 
| 1568 | 
         
            +
            -----------------
         
     | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/METADATA
    ADDED
    
    | 
         @@ -0,0 +1,38 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            Metadata-Version: 2.1
         
     | 
| 2 | 
         
            +
            Name: nvidia-cusolver-cu12
         
     | 
| 3 | 
         
            +
            Version: 11.4.5.107
         
     | 
| 4 | 
         
            +
            Summary: CUDA solver native runtime libraries
         
     | 
| 5 | 
         
            +
            Home-page: https://developer.nvidia.com/cuda-zone
         
     | 
| 6 | 
         
            +
            Author: Nvidia CUDA Installer Team
         
     | 
| 7 | 
         
            +
            Author-email: [email protected]
         
     | 
| 8 | 
         
            +
            License: NVIDIA Proprietary Software
         
     | 
| 9 | 
         
            +
            Keywords: cuda,nvidia,runtime,machine learning,deep learning
         
     | 
| 10 | 
         
            +
            Classifier: Development Status :: 4 - Beta
         
     | 
| 11 | 
         
            +
            Classifier: Intended Audience :: Developers
         
     | 
| 12 | 
         
            +
            Classifier: Intended Audience :: Education
         
     | 
| 13 | 
         
            +
            Classifier: Intended Audience :: Science/Research
         
     | 
| 14 | 
         
            +
            Classifier: License :: Other/Proprietary License
         
     | 
| 15 | 
         
            +
            Classifier: Natural Language :: English
         
     | 
| 16 | 
         
            +
            Classifier: Programming Language :: Python :: 3
         
     | 
| 17 | 
         
            +
            Classifier: Programming Language :: Python :: 3.5
         
     | 
| 18 | 
         
            +
            Classifier: Programming Language :: Python :: 3.6
         
     | 
| 19 | 
         
            +
            Classifier: Programming Language :: Python :: 3.7
         
     | 
| 20 | 
         
            +
            Classifier: Programming Language :: Python :: 3.8
         
     | 
| 21 | 
         
            +
            Classifier: Programming Language :: Python :: 3.9
         
     | 
| 22 | 
         
            +
            Classifier: Programming Language :: Python :: 3.10
         
     | 
| 23 | 
         
            +
            Classifier: Programming Language :: Python :: 3.11
         
     | 
| 24 | 
         
            +
            Classifier: Programming Language :: Python :: 3 :: Only
         
     | 
| 25 | 
         
            +
            Classifier: Topic :: Scientific/Engineering
         
     | 
| 26 | 
         
            +
            Classifier: Topic :: Scientific/Engineering :: Mathematics
         
     | 
| 27 | 
         
            +
            Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
         
     | 
| 28 | 
         
            +
            Classifier: Topic :: Software Development
         
     | 
| 29 | 
         
            +
            Classifier: Topic :: Software Development :: Libraries
         
     | 
| 30 | 
         
            +
            Classifier: Operating System :: Microsoft :: Windows
         
     | 
| 31 | 
         
            +
            Classifier: Operating System :: POSIX :: Linux
         
     | 
| 32 | 
         
            +
            Requires-Python: >=3
         
     | 
| 33 | 
         
            +
            License-File: License.txt
         
     | 
| 34 | 
         
            +
            Requires-Dist: nvidia-cublas-cu12
         
     | 
| 35 | 
         
            +
            Requires-Dist: nvidia-nvjitlink-cu12
         
     | 
| 36 | 
         
            +
            Requires-Dist: nvidia-cusparse-cu12
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            CUDA solver native runtime libraries
         
     | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/RECORD
    ADDED
    
    | 
         @@ -0,0 +1,22 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            nvidia/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 2 | 
         
            +
            nvidia/__pycache__/__init__.cpython-310.pyc,,
         
     | 
| 3 | 
         
            +
            nvidia/cusolver/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 4 | 
         
            +
            nvidia/cusolver/__pycache__/__init__.cpython-310.pyc,,
         
     | 
| 5 | 
         
            +
            nvidia/cusolver/include/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 6 | 
         
            +
            nvidia/cusolver/include/__pycache__/__init__.cpython-310.pyc,,
         
     | 
| 7 | 
         
            +
            nvidia/cusolver/include/cusolverDn.h,sha256=8KUcqUxWPr8jpz3ZVpTB6I3IXMme1ok7E7vi9XXKRzk,147406
         
     | 
| 8 | 
         
            +
            nvidia/cusolver/include/cusolverMg.h,sha256=N8989nnS2BleeMyuftbQgBDJ4sMAkLPSnmy_S_7fxng,11549
         
     | 
| 9 | 
         
            +
            nvidia/cusolver/include/cusolverRf.h,sha256=7BZfWeuMJ8w1Pz4iZeGmwvDZbDNNq0ivG5MHtiATtls,14292
         
     | 
| 10 | 
         
            +
            nvidia/cusolver/include/cusolverSp.h,sha256=8fev0XawDBd0xrOxUlQ3WhclKlUuVAT64zKxwnP8iT0,32561
         
     | 
| 11 | 
         
            +
            nvidia/cusolver/include/cusolverSp_LOWLEVEL_PREVIEW.h,sha256=rTuS0rxwGV3bAz50ua59WVPQ9SvlijORj732oPejoCk,37495
         
     | 
| 12 | 
         
            +
            nvidia/cusolver/include/cusolver_common.h,sha256=8SMCLEPkMN9Ni_KANkvPSHCieV1jrTARuS-Mhmuq5H8,8826
         
     | 
| 13 | 
         
            +
            nvidia/cusolver/lib/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
         
     | 
| 14 | 
         
            +
            nvidia/cusolver/lib/__pycache__/__init__.cpython-310.pyc,,
         
     | 
| 15 | 
         
            +
            nvidia/cusolver/lib/libcusolver.so.11,sha256=ECh6vHzpxfx-fBY3YVZrWZ6uGzYsR-EACRHRmEQ9bVI,114481816
         
     | 
| 16 | 
         
            +
            nvidia/cusolver/lib/libcusolverMg.so.11,sha256=0f3uK8NQhMAFtQ5r76UCApP7coB7wWG2pQOMh1RMmwY,79763496
         
     | 
| 17 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4
         
     | 
| 18 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/License.txt,sha256=rW9YU_ugyg0VnQ9Y1JrkmDDC-Mk_epJki5zpCttMbM0,59262
         
     | 
| 19 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/METADATA,sha256=b8Zxnx3ZVIwttTKBnzgVXjXu8-_pRL6wBkYMTV7i6gA,1626
         
     | 
| 20 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/RECORD,,
         
     | 
| 21 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/WHEEL,sha256=-kQi_VMfvRQozZJT7HUPMfY-5vLo0LVTmAylNJ3Ft98,106
         
     | 
| 22 | 
         
            +
            nvidia_cusolver_cu12-11.4.5.107.dist-info/top_level.txt,sha256=fTkAtiFuL16nUrB9ytDDtpytz2t0B4NvYTnRzwAhO14,7
         
     | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/WHEEL
    ADDED
    
    | 
         @@ -0,0 +1,5 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            Wheel-Version: 1.0
         
     | 
| 2 | 
         
            +
            Generator: bdist_wheel (0.37.1)
         
     | 
| 3 | 
         
            +
            Root-Is-Purelib: true
         
     | 
| 4 | 
         
            +
            Tag: py3-none-manylinux1_x86_64
         
     | 
| 5 | 
         
            +
             
     | 
    	
        venv/lib/python3.10/site-packages/nvidia_cusolver_cu12-11.4.5.107.dist-info/top_level.txt
    ADDED
    
    | 
         @@ -0,0 +1 @@ 
     | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            nvidia
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,157 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            The :mod:`sklearn` module includes functions to configure global settings and
         
     | 
| 3 | 
         
            +
            get information about the working environment.
         
     | 
| 4 | 
         
            +
            """
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # Machine learning module for Python
         
     | 
| 7 | 
         
            +
            # ==================================
         
     | 
| 8 | 
         
            +
            #
         
     | 
| 9 | 
         
            +
            # sklearn is a Python module integrating classical machine
         
     | 
| 10 | 
         
            +
            # learning algorithms in the tightly-knit world of scientific Python
         
     | 
| 11 | 
         
            +
            # packages (numpy, scipy, matplotlib).
         
     | 
| 12 | 
         
            +
            #
         
     | 
| 13 | 
         
            +
            # It aims to provide simple and efficient solutions to learning problems
         
     | 
| 14 | 
         
            +
            # that are accessible to everybody and reusable in various contexts:
         
     | 
| 15 | 
         
            +
            # machine-learning as a versatile tool for science and engineering.
         
     | 
| 16 | 
         
            +
            #
         
     | 
| 17 | 
         
            +
            # See https://scikit-learn.org for complete documentation.
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            import logging
         
     | 
| 20 | 
         
            +
            import os
         
     | 
| 21 | 
         
            +
            import random
         
     | 
| 22 | 
         
            +
            import sys
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            from ._config import config_context, get_config, set_config
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            logger = logging.getLogger(__name__)
         
     | 
| 27 | 
         
            +
             
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
            # PEP0440 compatible formatted version, see:
         
     | 
| 30 | 
         
            +
            # https://www.python.org/dev/peps/pep-0440/
         
     | 
| 31 | 
         
            +
            #
         
     | 
| 32 | 
         
            +
            # Generic release markers:
         
     | 
| 33 | 
         
            +
            #   X.Y.0   # For first release after an increment in Y
         
     | 
| 34 | 
         
            +
            #   X.Y.Z   # For bugfix releases
         
     | 
| 35 | 
         
            +
            #
         
     | 
| 36 | 
         
            +
            # Admissible pre-release markers:
         
     | 
| 37 | 
         
            +
            #   X.Y.ZaN   # Alpha release
         
     | 
| 38 | 
         
            +
            #   X.Y.ZbN   # Beta release
         
     | 
| 39 | 
         
            +
            #   X.Y.ZrcN  # Release Candidate
         
     | 
| 40 | 
         
            +
            #   X.Y.Z     # Final release
         
     | 
| 41 | 
         
            +
            #
         
     | 
| 42 | 
         
            +
            # Dev branch marker is: 'X.Y.dev' or 'X.Y.devN' where N is an integer.
         
     | 
| 43 | 
         
            +
            # 'X.Y.dev0' is the canonical version of 'X.Y.dev'
         
     | 
| 44 | 
         
            +
            #
         
     | 
| 45 | 
         
            +
            __version__ = "1.4.2"
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
            # On OSX, we can get a runtime error due to multiple OpenMP libraries loaded
         
     | 
| 49 | 
         
            +
            # simultaneously. This can happen for instance when calling BLAS inside a
         
     | 
| 50 | 
         
            +
            # prange. Setting the following environment variable allows multiple OpenMP
         
     | 
| 51 | 
         
            +
            # libraries to be loaded. It should not degrade performances since we manually
         
     | 
| 52 | 
         
            +
            # take care of potential over-subcription performance issues, in sections of
         
     | 
| 53 | 
         
            +
            # the code where nested OpenMP loops can happen, by dynamically reconfiguring
         
     | 
| 54 | 
         
            +
            # the inner OpenMP runtime to temporarily disable it while under the scope of
         
     | 
| 55 | 
         
            +
            # the outer OpenMP parallel section.
         
     | 
| 56 | 
         
            +
            os.environ.setdefault("KMP_DUPLICATE_LIB_OK", "True")
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # Workaround issue discovered in intel-openmp 2019.5:
         
     | 
| 59 | 
         
            +
            # https://github.com/ContinuumIO/anaconda-issues/issues/11294
         
     | 
| 60 | 
         
            +
            os.environ.setdefault("KMP_INIT_AT_FORK", "FALSE")
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
            try:
         
     | 
| 63 | 
         
            +
                # This variable is injected in the __builtins__ by the build
         
     | 
| 64 | 
         
            +
                # process. It is used to enable importing subpackages of sklearn when
         
     | 
| 65 | 
         
            +
                # the binaries are not built
         
     | 
| 66 | 
         
            +
                # mypy error: Cannot determine type of '__SKLEARN_SETUP__'
         
     | 
| 67 | 
         
            +
                __SKLEARN_SETUP__  # type: ignore
         
     | 
| 68 | 
         
            +
            except NameError:
         
     | 
| 69 | 
         
            +
                __SKLEARN_SETUP__ = False
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            if __SKLEARN_SETUP__:
         
     | 
| 72 | 
         
            +
                sys.stderr.write("Partial import of sklearn during the build process.\n")
         
     | 
| 73 | 
         
            +
                # We are not importing the rest of scikit-learn during the build
         
     | 
| 74 | 
         
            +
                # process, as it may not be compiled yet
         
     | 
| 75 | 
         
            +
            else:
         
     | 
| 76 | 
         
            +
                # `_distributor_init` allows distributors to run custom init code.
         
     | 
| 77 | 
         
            +
                # For instance, for the Windows wheel, this is used to pre-load the
         
     | 
| 78 | 
         
            +
                # vcomp shared library runtime for OpenMP embedded in the sklearn/.libs
         
     | 
| 79 | 
         
            +
                # sub-folder.
         
     | 
| 80 | 
         
            +
                # It is necessary to do this prior to importing show_versions as the
         
     | 
| 81 | 
         
            +
                # later is linked to the OpenMP runtime to make it possible to introspect
         
     | 
| 82 | 
         
            +
                # it and importing it first would fail if the OpenMP dll cannot be found.
         
     | 
| 83 | 
         
            +
                from . import (
         
     | 
| 84 | 
         
            +
                    __check_build,  # noqa: F401
         
     | 
| 85 | 
         
            +
                    _distributor_init,  # noqa: F401
         
     | 
| 86 | 
         
            +
                )
         
     | 
| 87 | 
         
            +
                from .base import clone
         
     | 
| 88 | 
         
            +
                from .utils._show_versions import show_versions
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                __all__ = [
         
     | 
| 91 | 
         
            +
                    "calibration",
         
     | 
| 92 | 
         
            +
                    "cluster",
         
     | 
| 93 | 
         
            +
                    "covariance",
         
     | 
| 94 | 
         
            +
                    "cross_decomposition",
         
     | 
| 95 | 
         
            +
                    "datasets",
         
     | 
| 96 | 
         
            +
                    "decomposition",
         
     | 
| 97 | 
         
            +
                    "dummy",
         
     | 
| 98 | 
         
            +
                    "ensemble",
         
     | 
| 99 | 
         
            +
                    "exceptions",
         
     | 
| 100 | 
         
            +
                    "experimental",
         
     | 
| 101 | 
         
            +
                    "externals",
         
     | 
| 102 | 
         
            +
                    "feature_extraction",
         
     | 
| 103 | 
         
            +
                    "feature_selection",
         
     | 
| 104 | 
         
            +
                    "gaussian_process",
         
     | 
| 105 | 
         
            +
                    "inspection",
         
     | 
| 106 | 
         
            +
                    "isotonic",
         
     | 
| 107 | 
         
            +
                    "kernel_approximation",
         
     | 
| 108 | 
         
            +
                    "kernel_ridge",
         
     | 
| 109 | 
         
            +
                    "linear_model",
         
     | 
| 110 | 
         
            +
                    "manifold",
         
     | 
| 111 | 
         
            +
                    "metrics",
         
     | 
| 112 | 
         
            +
                    "mixture",
         
     | 
| 113 | 
         
            +
                    "model_selection",
         
     | 
| 114 | 
         
            +
                    "multiclass",
         
     | 
| 115 | 
         
            +
                    "multioutput",
         
     | 
| 116 | 
         
            +
                    "naive_bayes",
         
     | 
| 117 | 
         
            +
                    "neighbors",
         
     | 
| 118 | 
         
            +
                    "neural_network",
         
     | 
| 119 | 
         
            +
                    "pipeline",
         
     | 
| 120 | 
         
            +
                    "preprocessing",
         
     | 
| 121 | 
         
            +
                    "random_projection",
         
     | 
| 122 | 
         
            +
                    "semi_supervised",
         
     | 
| 123 | 
         
            +
                    "svm",
         
     | 
| 124 | 
         
            +
                    "tree",
         
     | 
| 125 | 
         
            +
                    "discriminant_analysis",
         
     | 
| 126 | 
         
            +
                    "impute",
         
     | 
| 127 | 
         
            +
                    "compose",
         
     | 
| 128 | 
         
            +
                    # Non-modules:
         
     | 
| 129 | 
         
            +
                    "clone",
         
     | 
| 130 | 
         
            +
                    "get_config",
         
     | 
| 131 | 
         
            +
                    "set_config",
         
     | 
| 132 | 
         
            +
                    "config_context",
         
     | 
| 133 | 
         
            +
                    "show_versions",
         
     | 
| 134 | 
         
            +
                ]
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                _BUILT_WITH_MESON = False
         
     | 
| 137 | 
         
            +
                try:
         
     | 
| 138 | 
         
            +
                    import sklearn._built_with_meson  # noqa: F401
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    _BUILT_WITH_MESON = True
         
     | 
| 141 | 
         
            +
                except ModuleNotFoundError:
         
     | 
| 142 | 
         
            +
                    pass
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
            def setup_module(module):
         
     | 
| 146 | 
         
            +
                """Fixture for the tests to assure globally controllable seeding of RNGs"""
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                import numpy as np
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                # Check if a random seed exists in the environment, if not create one.
         
     | 
| 151 | 
         
            +
                _random_seed = os.environ.get("SKLEARN_SEED", None)
         
     | 
| 152 | 
         
            +
                if _random_seed is None:
         
     | 
| 153 | 
         
            +
                    _random_seed = np.random.uniform() * np.iinfo(np.int32).max
         
     | 
| 154 | 
         
            +
                _random_seed = int(_random_seed)
         
     | 
| 155 | 
         
            +
                print("I: Seeding RNGs with %r" % _random_seed)
         
     | 
| 156 | 
         
            +
                np.random.seed(_random_seed)
         
     | 
| 157 | 
         
            +
                random.seed(_random_seed)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/_config.py
    ADDED
    
    | 
         @@ -0,0 +1,373 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Global configuration state and functions for management
         
     | 
| 2 | 
         
            +
            """
         
     | 
| 3 | 
         
            +
            import os
         
     | 
| 4 | 
         
            +
            import threading
         
     | 
| 5 | 
         
            +
            from contextlib import contextmanager as contextmanager
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            _global_config = {
         
     | 
| 8 | 
         
            +
                "assume_finite": bool(os.environ.get("SKLEARN_ASSUME_FINITE", False)),
         
     | 
| 9 | 
         
            +
                "working_memory": int(os.environ.get("SKLEARN_WORKING_MEMORY", 1024)),
         
     | 
| 10 | 
         
            +
                "print_changed_only": True,
         
     | 
| 11 | 
         
            +
                "display": "diagram",
         
     | 
| 12 | 
         
            +
                "pairwise_dist_chunk_size": int(
         
     | 
| 13 | 
         
            +
                    os.environ.get("SKLEARN_PAIRWISE_DIST_CHUNK_SIZE", 256)
         
     | 
| 14 | 
         
            +
                ),
         
     | 
| 15 | 
         
            +
                "enable_cython_pairwise_dist": True,
         
     | 
| 16 | 
         
            +
                "array_api_dispatch": False,
         
     | 
| 17 | 
         
            +
                "transform_output": "default",
         
     | 
| 18 | 
         
            +
                "enable_metadata_routing": False,
         
     | 
| 19 | 
         
            +
                "skip_parameter_validation": False,
         
     | 
| 20 | 
         
            +
            }
         
     | 
| 21 | 
         
            +
            _threadlocal = threading.local()
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
            def _get_threadlocal_config():
         
     | 
| 25 | 
         
            +
                """Get a threadlocal **mutable** configuration. If the configuration
         
     | 
| 26 | 
         
            +
                does not exist, copy the default global configuration."""
         
     | 
| 27 | 
         
            +
                if not hasattr(_threadlocal, "global_config"):
         
     | 
| 28 | 
         
            +
                    _threadlocal.global_config = _global_config.copy()
         
     | 
| 29 | 
         
            +
                return _threadlocal.global_config
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
            def get_config():
         
     | 
| 33 | 
         
            +
                """Retrieve current values for configuration set by :func:`set_config`.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                Returns
         
     | 
| 36 | 
         
            +
                -------
         
     | 
| 37 | 
         
            +
                config : dict
         
     | 
| 38 | 
         
            +
                    Keys are parameter names that can be passed to :func:`set_config`.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                See Also
         
     | 
| 41 | 
         
            +
                --------
         
     | 
| 42 | 
         
            +
                config_context : Context manager for global scikit-learn configuration.
         
     | 
| 43 | 
         
            +
                set_config : Set global scikit-learn configuration.
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                Examples
         
     | 
| 46 | 
         
            +
                --------
         
     | 
| 47 | 
         
            +
                >>> import sklearn
         
     | 
| 48 | 
         
            +
                >>> config = sklearn.get_config()
         
     | 
| 49 | 
         
            +
                >>> config.keys()
         
     | 
| 50 | 
         
            +
                dict_keys([...])
         
     | 
| 51 | 
         
            +
                """
         
     | 
| 52 | 
         
            +
                # Return a copy of the threadlocal configuration so that users will
         
     | 
| 53 | 
         
            +
                # not be able to modify the configuration with the returned dict.
         
     | 
| 54 | 
         
            +
                return _get_threadlocal_config().copy()
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
            def set_config(
         
     | 
| 58 | 
         
            +
                assume_finite=None,
         
     | 
| 59 | 
         
            +
                working_memory=None,
         
     | 
| 60 | 
         
            +
                print_changed_only=None,
         
     | 
| 61 | 
         
            +
                display=None,
         
     | 
| 62 | 
         
            +
                pairwise_dist_chunk_size=None,
         
     | 
| 63 | 
         
            +
                enable_cython_pairwise_dist=None,
         
     | 
| 64 | 
         
            +
                array_api_dispatch=None,
         
     | 
| 65 | 
         
            +
                transform_output=None,
         
     | 
| 66 | 
         
            +
                enable_metadata_routing=None,
         
     | 
| 67 | 
         
            +
                skip_parameter_validation=None,
         
     | 
| 68 | 
         
            +
            ):
         
     | 
| 69 | 
         
            +
                """Set global scikit-learn configuration.
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                .. versionadded:: 0.19
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                Parameters
         
     | 
| 74 | 
         
            +
                ----------
         
     | 
| 75 | 
         
            +
                assume_finite : bool, default=None
         
     | 
| 76 | 
         
            +
                    If True, validation for finiteness will be skipped,
         
     | 
| 77 | 
         
            +
                    saving time, but leading to potential crashes. If
         
     | 
| 78 | 
         
            +
                    False, validation for finiteness will be performed,
         
     | 
| 79 | 
         
            +
                    avoiding error.  Global default: False.
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                    .. versionadded:: 0.19
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                working_memory : int, default=None
         
     | 
| 84 | 
         
            +
                    If set, scikit-learn will attempt to limit the size of temporary arrays
         
     | 
| 85 | 
         
            +
                    to this number of MiB (per job when parallelised), often saving both
         
     | 
| 86 | 
         
            +
                    computation time and memory on expensive operations that can be
         
     | 
| 87 | 
         
            +
                    performed in chunks. Global default: 1024.
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                    .. versionadded:: 0.20
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                print_changed_only : bool, default=None
         
     | 
| 92 | 
         
            +
                    If True, only the parameters that were set to non-default
         
     | 
| 93 | 
         
            +
                    values will be printed when printing an estimator. For example,
         
     | 
| 94 | 
         
            +
                    ``print(SVC())`` while True will only print 'SVC()' while the default
         
     | 
| 95 | 
         
            +
                    behaviour would be to print 'SVC(C=1.0, cache_size=200, ...)' with
         
     | 
| 96 | 
         
            +
                    all the non-changed parameters.
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                    .. versionadded:: 0.21
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
                display : {'text', 'diagram'}, default=None
         
     | 
| 101 | 
         
            +
                    If 'diagram', estimators will be displayed as a diagram in a Jupyter
         
     | 
| 102 | 
         
            +
                    lab or notebook context. If 'text', estimators will be displayed as
         
     | 
| 103 | 
         
            +
                    text. Default is 'diagram'.
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                    .. versionadded:: 0.23
         
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
                pairwise_dist_chunk_size : int, default=None
         
     | 
| 108 | 
         
            +
                    The number of row vectors per chunk for the accelerated pairwise-
         
     | 
| 109 | 
         
            +
                    distances reduction backend. Default is 256 (suitable for most of
         
     | 
| 110 | 
         
            +
                    modern laptops' caches and architectures).
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                    Intended for easier benchmarking and testing of scikit-learn internals.
         
     | 
| 113 | 
         
            +
                    End users are not expected to benefit from customizing this configuration
         
     | 
| 114 | 
         
            +
                    setting.
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                enable_cython_pairwise_dist : bool, default=None
         
     | 
| 119 | 
         
            +
                    Use the accelerated pairwise-distances reduction backend when
         
     | 
| 120 | 
         
            +
                    possible. Global default: True.
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                    Intended for easier benchmarking and testing of scikit-learn internals.
         
     | 
| 123 | 
         
            +
                    End users are not expected to benefit from customizing this configuration
         
     | 
| 124 | 
         
            +
                    setting.
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                array_api_dispatch : bool, default=None
         
     | 
| 129 | 
         
            +
                    Use Array API dispatching when inputs follow the Array API standard.
         
     | 
| 130 | 
         
            +
                    Default is False.
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                    See the :ref:`User Guide <array_api>` for more details.
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                transform_output : str, default=None
         
     | 
| 137 | 
         
            +
                    Configure output of `transform` and `fit_transform`.
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
         
     | 
| 140 | 
         
            +
                    for an example on how to use the API.
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    - `"default"`: Default output format of a transformer
         
     | 
| 143 | 
         
            +
                    - `"pandas"`: DataFrame output
         
     | 
| 144 | 
         
            +
                    - `"polars"`: Polars output
         
     | 
| 145 | 
         
            +
                    - `None`: Transform configuration is unchanged
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 148 | 
         
            +
                    .. versionadded:: 1.4
         
     | 
| 149 | 
         
            +
                        `"polars"` option was added.
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                enable_metadata_routing : bool, default=None
         
     | 
| 152 | 
         
            +
                    Enable metadata routing. By default this feature is disabled.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    Refer to :ref:`metadata routing user guide <metadata_routing>` for more
         
     | 
| 155 | 
         
            +
                    details.
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    - `True`: Metadata routing is enabled
         
     | 
| 158 | 
         
            +
                    - `False`: Metadata routing is disabled, use the old syntax.
         
     | 
| 159 | 
         
            +
                    - `None`: Configuration is unchanged
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    .. versionadded:: 1.3
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                skip_parameter_validation : bool, default=None
         
     | 
| 164 | 
         
            +
                    If `True`, disable the validation of the hyper-parameters' types and values in
         
     | 
| 165 | 
         
            +
                    the fit method of estimators and for arguments passed to public helper
         
     | 
| 166 | 
         
            +
                    functions. It can save time in some situations but can lead to low level
         
     | 
| 167 | 
         
            +
                    crashes and exceptions with confusing error messages.
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    Note that for data parameters, such as `X` and `y`, only type validation is
         
     | 
| 170 | 
         
            +
                    skipped but validation with `check_array` will continue to run.
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    .. versionadded:: 1.3
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                See Also
         
     | 
| 175 | 
         
            +
                --------
         
     | 
| 176 | 
         
            +
                config_context : Context manager for global scikit-learn configuration.
         
     | 
| 177 | 
         
            +
                get_config : Retrieve current values of the global configuration.
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                Examples
         
     | 
| 180 | 
         
            +
                --------
         
     | 
| 181 | 
         
            +
                >>> from sklearn import set_config
         
     | 
| 182 | 
         
            +
                >>> set_config(display='diagram')  # doctest: +SKIP
         
     | 
| 183 | 
         
            +
                """
         
     | 
| 184 | 
         
            +
                local_config = _get_threadlocal_config()
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                if assume_finite is not None:
         
     | 
| 187 | 
         
            +
                    local_config["assume_finite"] = assume_finite
         
     | 
| 188 | 
         
            +
                if working_memory is not None:
         
     | 
| 189 | 
         
            +
                    local_config["working_memory"] = working_memory
         
     | 
| 190 | 
         
            +
                if print_changed_only is not None:
         
     | 
| 191 | 
         
            +
                    local_config["print_changed_only"] = print_changed_only
         
     | 
| 192 | 
         
            +
                if display is not None:
         
     | 
| 193 | 
         
            +
                    local_config["display"] = display
         
     | 
| 194 | 
         
            +
                if pairwise_dist_chunk_size is not None:
         
     | 
| 195 | 
         
            +
                    local_config["pairwise_dist_chunk_size"] = pairwise_dist_chunk_size
         
     | 
| 196 | 
         
            +
                if enable_cython_pairwise_dist is not None:
         
     | 
| 197 | 
         
            +
                    local_config["enable_cython_pairwise_dist"] = enable_cython_pairwise_dist
         
     | 
| 198 | 
         
            +
                if array_api_dispatch is not None:
         
     | 
| 199 | 
         
            +
                    from .utils._array_api import _check_array_api_dispatch
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    _check_array_api_dispatch(array_api_dispatch)
         
     | 
| 202 | 
         
            +
                    local_config["array_api_dispatch"] = array_api_dispatch
         
     | 
| 203 | 
         
            +
                if transform_output is not None:
         
     | 
| 204 | 
         
            +
                    local_config["transform_output"] = transform_output
         
     | 
| 205 | 
         
            +
                if enable_metadata_routing is not None:
         
     | 
| 206 | 
         
            +
                    local_config["enable_metadata_routing"] = enable_metadata_routing
         
     | 
| 207 | 
         
            +
                if skip_parameter_validation is not None:
         
     | 
| 208 | 
         
            +
                    local_config["skip_parameter_validation"] = skip_parameter_validation
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
            @contextmanager
         
     | 
| 212 | 
         
            +
            def config_context(
         
     | 
| 213 | 
         
            +
                *,
         
     | 
| 214 | 
         
            +
                assume_finite=None,
         
     | 
| 215 | 
         
            +
                working_memory=None,
         
     | 
| 216 | 
         
            +
                print_changed_only=None,
         
     | 
| 217 | 
         
            +
                display=None,
         
     | 
| 218 | 
         
            +
                pairwise_dist_chunk_size=None,
         
     | 
| 219 | 
         
            +
                enable_cython_pairwise_dist=None,
         
     | 
| 220 | 
         
            +
                array_api_dispatch=None,
         
     | 
| 221 | 
         
            +
                transform_output=None,
         
     | 
| 222 | 
         
            +
                enable_metadata_routing=None,
         
     | 
| 223 | 
         
            +
                skip_parameter_validation=None,
         
     | 
| 224 | 
         
            +
            ):
         
     | 
| 225 | 
         
            +
                """Context manager for global scikit-learn configuration.
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                Parameters
         
     | 
| 228 | 
         
            +
                ----------
         
     | 
| 229 | 
         
            +
                assume_finite : bool, default=None
         
     | 
| 230 | 
         
            +
                    If True, validation for finiteness will be skipped,
         
     | 
| 231 | 
         
            +
                    saving time, but leading to potential crashes. If
         
     | 
| 232 | 
         
            +
                    False, validation for finiteness will be performed,
         
     | 
| 233 | 
         
            +
                    avoiding error. If None, the existing value won't change.
         
     | 
| 234 | 
         
            +
                    The default value is False.
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                working_memory : int, default=None
         
     | 
| 237 | 
         
            +
                    If set, scikit-learn will attempt to limit the size of temporary arrays
         
     | 
| 238 | 
         
            +
                    to this number of MiB (per job when parallelised), often saving both
         
     | 
| 239 | 
         
            +
                    computation time and memory on expensive operations that can be
         
     | 
| 240 | 
         
            +
                    performed in chunks. If None, the existing value won't change.
         
     | 
| 241 | 
         
            +
                    The default value is 1024.
         
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
                print_changed_only : bool, default=None
         
     | 
| 244 | 
         
            +
                    If True, only the parameters that were set to non-default
         
     | 
| 245 | 
         
            +
                    values will be printed when printing an estimator. For example,
         
     | 
| 246 | 
         
            +
                    ``print(SVC())`` while True will only print 'SVC()', but would print
         
     | 
| 247 | 
         
            +
                    'SVC(C=1.0, cache_size=200, ...)' with all the non-changed parameters
         
     | 
| 248 | 
         
            +
                    when False. If None, the existing value won't change.
         
     | 
| 249 | 
         
            +
                    The default value is True.
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                    .. versionchanged:: 0.23
         
     | 
| 252 | 
         
            +
                       Default changed from False to True.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                display : {'text', 'diagram'}, default=None
         
     | 
| 255 | 
         
            +
                    If 'diagram', estimators will be displayed as a diagram in a Jupyter
         
     | 
| 256 | 
         
            +
                    lab or notebook context. If 'text', estimators will be displayed as
         
     | 
| 257 | 
         
            +
                    text. If None, the existing value won't change.
         
     | 
| 258 | 
         
            +
                    The default value is 'diagram'.
         
     | 
| 259 | 
         
            +
             
     | 
| 260 | 
         
            +
                    .. versionadded:: 0.23
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                pairwise_dist_chunk_size : int, default=None
         
     | 
| 263 | 
         
            +
                    The number of row vectors per chunk for the accelerated pairwise-
         
     | 
| 264 | 
         
            +
                    distances reduction backend. Default is 256 (suitable for most of
         
     | 
| 265 | 
         
            +
                    modern laptops' caches and architectures).
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                    Intended for easier benchmarking and testing of scikit-learn internals.
         
     | 
| 268 | 
         
            +
                    End users are not expected to benefit from customizing this configuration
         
     | 
| 269 | 
         
            +
                    setting.
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                enable_cython_pairwise_dist : bool, default=None
         
     | 
| 274 | 
         
            +
                    Use the accelerated pairwise-distances reduction backend when
         
     | 
| 275 | 
         
            +
                    possible. Global default: True.
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                    Intended for easier benchmarking and testing of scikit-learn internals.
         
     | 
| 278 | 
         
            +
                    End users are not expected to benefit from customizing this configuration
         
     | 
| 279 | 
         
            +
                    setting.
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                array_api_dispatch : bool, default=None
         
     | 
| 284 | 
         
            +
                    Use Array API dispatching when inputs follow the Array API standard.
         
     | 
| 285 | 
         
            +
                    Default is False.
         
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
                    See the :ref:`User Guide <array_api>` for more details.
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                transform_output : str, default=None
         
     | 
| 292 | 
         
            +
                    Configure output of `transform` and `fit_transform`.
         
     | 
| 293 | 
         
            +
             
     | 
| 294 | 
         
            +
                    See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
         
     | 
| 295 | 
         
            +
                    for an example on how to use the API.
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                    - `"default"`: Default output format of a transformer
         
     | 
| 298 | 
         
            +
                    - `"pandas"`: DataFrame output
         
     | 
| 299 | 
         
            +
                    - `"polars"`: Polars output
         
     | 
| 300 | 
         
            +
                    - `None`: Transform configuration is unchanged
         
     | 
| 301 | 
         
            +
             
     | 
| 302 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 303 | 
         
            +
                    .. versionadded:: 1.4
         
     | 
| 304 | 
         
            +
                        `"polars"` option was added.
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                enable_metadata_routing : bool, default=None
         
     | 
| 307 | 
         
            +
                    Enable metadata routing. By default this feature is disabled.
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    Refer to :ref:`metadata routing user guide <metadata_routing>` for more
         
     | 
| 310 | 
         
            +
                    details.
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    - `True`: Metadata routing is enabled
         
     | 
| 313 | 
         
            +
                    - `False`: Metadata routing is disabled, use the old syntax.
         
     | 
| 314 | 
         
            +
                    - `None`: Configuration is unchanged
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    .. versionadded:: 1.3
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                skip_parameter_validation : bool, default=None
         
     | 
| 319 | 
         
            +
                    If `True`, disable the validation of the hyper-parameters' types and values in
         
     | 
| 320 | 
         
            +
                    the fit method of estimators and for arguments passed to public helper
         
     | 
| 321 | 
         
            +
                    functions. It can save time in some situations but can lead to low level
         
     | 
| 322 | 
         
            +
                    crashes and exceptions with confusing error messages.
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                    Note that for data parameters, such as `X` and `y`, only type validation is
         
     | 
| 325 | 
         
            +
                    skipped but validation with `check_array` will continue to run.
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    .. versionadded:: 1.3
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                Yields
         
     | 
| 330 | 
         
            +
                ------
         
     | 
| 331 | 
         
            +
                None.
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                See Also
         
     | 
| 334 | 
         
            +
                --------
         
     | 
| 335 | 
         
            +
                set_config : Set global scikit-learn configuration.
         
     | 
| 336 | 
         
            +
                get_config : Retrieve current values of the global configuration.
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                Notes
         
     | 
| 339 | 
         
            +
                -----
         
     | 
| 340 | 
         
            +
                All settings, not just those presently modified, will be returned to
         
     | 
| 341 | 
         
            +
                their previous values when the context manager is exited.
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                Examples
         
     | 
| 344 | 
         
            +
                --------
         
     | 
| 345 | 
         
            +
                >>> import sklearn
         
     | 
| 346 | 
         
            +
                >>> from sklearn.utils.validation import assert_all_finite
         
     | 
| 347 | 
         
            +
                >>> with sklearn.config_context(assume_finite=True):
         
     | 
| 348 | 
         
            +
                ...     assert_all_finite([float('nan')])
         
     | 
| 349 | 
         
            +
                >>> with sklearn.config_context(assume_finite=True):
         
     | 
| 350 | 
         
            +
                ...     with sklearn.config_context(assume_finite=False):
         
     | 
| 351 | 
         
            +
                ...         assert_all_finite([float('nan')])
         
     | 
| 352 | 
         
            +
                Traceback (most recent call last):
         
     | 
| 353 | 
         
            +
                ...
         
     | 
| 354 | 
         
            +
                ValueError: Input contains NaN...
         
     | 
| 355 | 
         
            +
                """
         
     | 
| 356 | 
         
            +
                old_config = get_config()
         
     | 
| 357 | 
         
            +
                set_config(
         
     | 
| 358 | 
         
            +
                    assume_finite=assume_finite,
         
     | 
| 359 | 
         
            +
                    working_memory=working_memory,
         
     | 
| 360 | 
         
            +
                    print_changed_only=print_changed_only,
         
     | 
| 361 | 
         
            +
                    display=display,
         
     | 
| 362 | 
         
            +
                    pairwise_dist_chunk_size=pairwise_dist_chunk_size,
         
     | 
| 363 | 
         
            +
                    enable_cython_pairwise_dist=enable_cython_pairwise_dist,
         
     | 
| 364 | 
         
            +
                    array_api_dispatch=array_api_dispatch,
         
     | 
| 365 | 
         
            +
                    transform_output=transform_output,
         
     | 
| 366 | 
         
            +
                    enable_metadata_routing=enable_metadata_routing,
         
     | 
| 367 | 
         
            +
                    skip_parameter_validation=skip_parameter_validation,
         
     | 
| 368 | 
         
            +
                )
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                try:
         
     | 
| 371 | 
         
            +
                    yield
         
     | 
| 372 | 
         
            +
                finally:
         
     | 
| 373 | 
         
            +
                    set_config(**old_config)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/_distributor_init.py
    ADDED
    
    | 
         @@ -0,0 +1,10 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """ Distributor init file
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            Distributors: you can add custom code here to support particular distributions
         
     | 
| 4 | 
         
            +
            of scikit-learn.
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            For example, this is a good place to put any checks for hardware requirements.
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            The scikit-learn standard source distribution will not put code in this file,
         
     | 
| 9 | 
         
            +
            so you can safely replace this file with your own version.
         
     | 
| 10 | 
         
            +
            """
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/_isotonic.cpython-310-x86_64-linux-gnu.so
    ADDED
    
    | 
         Binary file (307 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/_min_dependencies.py
    ADDED
    
    | 
         @@ -0,0 +1,65 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """All minimum dependencies for scikit-learn."""
         
     | 
| 2 | 
         
            +
            import argparse
         
     | 
| 3 | 
         
            +
            from collections import defaultdict
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # scipy and cython should by in sync with pyproject.toml
         
     | 
| 6 | 
         
            +
            NUMPY_MIN_VERSION = "1.19.5"
         
     | 
| 7 | 
         
            +
            SCIPY_MIN_VERSION = "1.6.0"
         
     | 
| 8 | 
         
            +
            JOBLIB_MIN_VERSION = "1.2.0"
         
     | 
| 9 | 
         
            +
            THREADPOOLCTL_MIN_VERSION = "2.0.0"
         
     | 
| 10 | 
         
            +
            PYTEST_MIN_VERSION = "7.1.2"
         
     | 
| 11 | 
         
            +
            CYTHON_MIN_VERSION = "3.0.8"
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            # 'build' and 'install' is included to have structured metadata for CI.
         
     | 
| 15 | 
         
            +
            # It will NOT be included in setup's extras_require
         
     | 
| 16 | 
         
            +
            # The values are (version_spec, comma separated tags)
         
     | 
| 17 | 
         
            +
            dependent_packages = {
         
     | 
| 18 | 
         
            +
                "numpy": (NUMPY_MIN_VERSION, "build, install"),
         
     | 
| 19 | 
         
            +
                "scipy": (SCIPY_MIN_VERSION, "build, install"),
         
     | 
| 20 | 
         
            +
                "joblib": (JOBLIB_MIN_VERSION, "install"),
         
     | 
| 21 | 
         
            +
                "threadpoolctl": (THREADPOOLCTL_MIN_VERSION, "install"),
         
     | 
| 22 | 
         
            +
                "cython": (CYTHON_MIN_VERSION, "build"),
         
     | 
| 23 | 
         
            +
                "matplotlib": ("3.3.4", "benchmark, docs, examples, tests"),
         
     | 
| 24 | 
         
            +
                "scikit-image": ("0.17.2", "docs, examples, tests"),
         
     | 
| 25 | 
         
            +
                "pandas": ("1.1.5", "benchmark, docs, examples, tests"),
         
     | 
| 26 | 
         
            +
                "seaborn": ("0.9.0", "docs, examples"),
         
     | 
| 27 | 
         
            +
                "memory_profiler": ("0.57.0", "benchmark, docs"),
         
     | 
| 28 | 
         
            +
                "pytest": (PYTEST_MIN_VERSION, "tests"),
         
     | 
| 29 | 
         
            +
                "pytest-cov": ("2.9.0", "tests"),
         
     | 
| 30 | 
         
            +
                "ruff": ("0.0.272", "tests"),
         
     | 
| 31 | 
         
            +
                "black": ("23.3.0", "tests"),
         
     | 
| 32 | 
         
            +
                "mypy": ("1.3", "tests"),
         
     | 
| 33 | 
         
            +
                "pyamg": ("4.0.0", "tests"),
         
     | 
| 34 | 
         
            +
                "polars": ("0.19.12", "tests"),
         
     | 
| 35 | 
         
            +
                "pyarrow": ("12.0.0", "tests"),
         
     | 
| 36 | 
         
            +
                "sphinx": ("6.0.0", "docs"),
         
     | 
| 37 | 
         
            +
                "sphinx-copybutton": ("0.5.2", "docs"),
         
     | 
| 38 | 
         
            +
                "sphinx-gallery": ("0.15.0", "docs"),
         
     | 
| 39 | 
         
            +
                "numpydoc": ("1.2.0", "docs, tests"),
         
     | 
| 40 | 
         
            +
                "Pillow": ("7.1.2", "docs"),
         
     | 
| 41 | 
         
            +
                "pooch": ("1.6.0", "docs, examples, tests"),
         
     | 
| 42 | 
         
            +
                "sphinx-prompt": ("1.3.0", "docs"),
         
     | 
| 43 | 
         
            +
                "sphinxext-opengraph": ("0.4.2", "docs"),
         
     | 
| 44 | 
         
            +
                "plotly": ("5.14.0", "docs, examples"),
         
     | 
| 45 | 
         
            +
                # XXX: Pin conda-lock to the latest released version (needs manual update
         
     | 
| 46 | 
         
            +
                # from time to time)
         
     | 
| 47 | 
         
            +
                "conda-lock": ("2.4.2", "maintenance"),
         
     | 
| 48 | 
         
            +
            }
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
            # create inverse mapping for setuptools
         
     | 
| 52 | 
         
            +
            tag_to_packages: dict = defaultdict(list)
         
     | 
| 53 | 
         
            +
            for package, (min_version, extras) in dependent_packages.items():
         
     | 
| 54 | 
         
            +
                for extra in extras.split(", "):
         
     | 
| 55 | 
         
            +
                    tag_to_packages[extra].append("{}>={}".format(package, min_version))
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
            # Used by CI to get the min dependencies
         
     | 
| 59 | 
         
            +
            if __name__ == "__main__":
         
     | 
| 60 | 
         
            +
                parser = argparse.ArgumentParser(description="Get min dependencies for a package")
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                parser.add_argument("package", choices=dependent_packages)
         
     | 
| 63 | 
         
            +
                args = parser.parse_args()
         
     | 
| 64 | 
         
            +
                min_version = dependent_packages[args.package][0]
         
     | 
| 65 | 
         
            +
                print(min_version)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/base.py
    ADDED
    
    | 
         @@ -0,0 +1,1478 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Base classes for all estimators."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            # Author: Gael Varoquaux <[email protected]>
         
     | 
| 4 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import copy
         
     | 
| 7 | 
         
            +
            import functools
         
     | 
| 8 | 
         
            +
            import inspect
         
     | 
| 9 | 
         
            +
            import platform
         
     | 
| 10 | 
         
            +
            import re
         
     | 
| 11 | 
         
            +
            import warnings
         
     | 
| 12 | 
         
            +
            from collections import defaultdict
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            import numpy as np
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            from . import __version__
         
     | 
| 17 | 
         
            +
            from ._config import config_context, get_config
         
     | 
| 18 | 
         
            +
            from .exceptions import InconsistentVersionWarning
         
     | 
| 19 | 
         
            +
            from .utils import _IS_32BIT
         
     | 
| 20 | 
         
            +
            from .utils._estimator_html_repr import _HTMLDocumentationLinkMixin, estimator_html_repr
         
     | 
| 21 | 
         
            +
            from .utils._metadata_requests import _MetadataRequester, _routing_enabled
         
     | 
| 22 | 
         
            +
            from .utils._param_validation import validate_parameter_constraints
         
     | 
| 23 | 
         
            +
            from .utils._set_output import _SetOutputMixin
         
     | 
| 24 | 
         
            +
            from .utils._tags import (
         
     | 
| 25 | 
         
            +
                _DEFAULT_TAGS,
         
     | 
| 26 | 
         
            +
            )
         
     | 
| 27 | 
         
            +
            from .utils.validation import (
         
     | 
| 28 | 
         
            +
                _check_feature_names_in,
         
     | 
| 29 | 
         
            +
                _check_y,
         
     | 
| 30 | 
         
            +
                _generate_get_feature_names_out,
         
     | 
| 31 | 
         
            +
                _get_feature_names,
         
     | 
| 32 | 
         
            +
                _is_fitted,
         
     | 
| 33 | 
         
            +
                _num_features,
         
     | 
| 34 | 
         
            +
                check_array,
         
     | 
| 35 | 
         
            +
                check_is_fitted,
         
     | 
| 36 | 
         
            +
                check_X_y,
         
     | 
| 37 | 
         
            +
            )
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            def clone(estimator, *, safe=True):
         
     | 
| 41 | 
         
            +
                """Construct a new unfitted estimator with the same parameters.
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
                Clone does a deep copy of the model in an estimator
         
     | 
| 44 | 
         
            +
                without actually copying attached data. It returns a new estimator
         
     | 
| 45 | 
         
            +
                with the same parameters that has not been fitted on any data.
         
     | 
| 46 | 
         
            +
             
     | 
| 47 | 
         
            +
                .. versionchanged:: 1.3
         
     | 
| 48 | 
         
            +
                    Delegates to `estimator.__sklearn_clone__` if the method exists.
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                Parameters
         
     | 
| 51 | 
         
            +
                ----------
         
     | 
| 52 | 
         
            +
                estimator : {list, tuple, set} of estimator instance or a single \
         
     | 
| 53 | 
         
            +
                        estimator instance
         
     | 
| 54 | 
         
            +
                    The estimator or group of estimators to be cloned.
         
     | 
| 55 | 
         
            +
                safe : bool, default=True
         
     | 
| 56 | 
         
            +
                    If safe is False, clone will fall back to a deep copy on objects
         
     | 
| 57 | 
         
            +
                    that are not estimators. Ignored if `estimator.__sklearn_clone__`
         
     | 
| 58 | 
         
            +
                    exists.
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                Returns
         
     | 
| 61 | 
         
            +
                -------
         
     | 
| 62 | 
         
            +
                estimator : object
         
     | 
| 63 | 
         
            +
                    The deep copy of the input, an estimator if input is an estimator.
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
                Notes
         
     | 
| 66 | 
         
            +
                -----
         
     | 
| 67 | 
         
            +
                If the estimator's `random_state` parameter is an integer (or if the
         
     | 
| 68 | 
         
            +
                estimator doesn't have a `random_state` parameter), an *exact clone* is
         
     | 
| 69 | 
         
            +
                returned: the clone and the original estimator will give the exact same
         
     | 
| 70 | 
         
            +
                results. Otherwise, *statistical clone* is returned: the clone might
         
     | 
| 71 | 
         
            +
                return different results from the original estimator. More details can be
         
     | 
| 72 | 
         
            +
                found in :ref:`randomness`.
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
                Examples
         
     | 
| 75 | 
         
            +
                --------
         
     | 
| 76 | 
         
            +
                >>> from sklearn.base import clone
         
     | 
| 77 | 
         
            +
                >>> from sklearn.linear_model import LogisticRegression
         
     | 
| 78 | 
         
            +
                >>> X = [[-1, 0], [0, 1], [0, -1], [1, 0]]
         
     | 
| 79 | 
         
            +
                >>> y = [0, 0, 1, 1]
         
     | 
| 80 | 
         
            +
                >>> classifier = LogisticRegression().fit(X, y)
         
     | 
| 81 | 
         
            +
                >>> cloned_classifier = clone(classifier)
         
     | 
| 82 | 
         
            +
                >>> hasattr(classifier, "classes_")
         
     | 
| 83 | 
         
            +
                True
         
     | 
| 84 | 
         
            +
                >>> hasattr(cloned_classifier, "classes_")
         
     | 
| 85 | 
         
            +
                False
         
     | 
| 86 | 
         
            +
                >>> classifier is cloned_classifier
         
     | 
| 87 | 
         
            +
                False
         
     | 
| 88 | 
         
            +
                """
         
     | 
| 89 | 
         
            +
                if hasattr(estimator, "__sklearn_clone__") and not inspect.isclass(estimator):
         
     | 
| 90 | 
         
            +
                    return estimator.__sklearn_clone__()
         
     | 
| 91 | 
         
            +
                return _clone_parametrized(estimator, safe=safe)
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
             
     | 
| 94 | 
         
            +
            def _clone_parametrized(estimator, *, safe=True):
         
     | 
| 95 | 
         
            +
                """Default implementation of clone. See :func:`sklearn.base.clone` for details."""
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                estimator_type = type(estimator)
         
     | 
| 98 | 
         
            +
                if estimator_type is dict:
         
     | 
| 99 | 
         
            +
                    return {k: clone(v, safe=safe) for k, v in estimator.items()}
         
     | 
| 100 | 
         
            +
                elif estimator_type in (list, tuple, set, frozenset):
         
     | 
| 101 | 
         
            +
                    return estimator_type([clone(e, safe=safe) for e in estimator])
         
     | 
| 102 | 
         
            +
                elif not hasattr(estimator, "get_params") or isinstance(estimator, type):
         
     | 
| 103 | 
         
            +
                    if not safe:
         
     | 
| 104 | 
         
            +
                        return copy.deepcopy(estimator)
         
     | 
| 105 | 
         
            +
                    else:
         
     | 
| 106 | 
         
            +
                        if isinstance(estimator, type):
         
     | 
| 107 | 
         
            +
                            raise TypeError(
         
     | 
| 108 | 
         
            +
                                "Cannot clone object. "
         
     | 
| 109 | 
         
            +
                                + "You should provide an instance of "
         
     | 
| 110 | 
         
            +
                                + "scikit-learn estimator instead of a class."
         
     | 
| 111 | 
         
            +
                            )
         
     | 
| 112 | 
         
            +
                        else:
         
     | 
| 113 | 
         
            +
                            raise TypeError(
         
     | 
| 114 | 
         
            +
                                "Cannot clone object '%s' (type %s): "
         
     | 
| 115 | 
         
            +
                                "it does not seem to be a scikit-learn "
         
     | 
| 116 | 
         
            +
                                "estimator as it does not implement a "
         
     | 
| 117 | 
         
            +
                                "'get_params' method." % (repr(estimator), type(estimator))
         
     | 
| 118 | 
         
            +
                            )
         
     | 
| 119 | 
         
            +
             
     | 
| 120 | 
         
            +
                klass = estimator.__class__
         
     | 
| 121 | 
         
            +
                new_object_params = estimator.get_params(deep=False)
         
     | 
| 122 | 
         
            +
                for name, param in new_object_params.items():
         
     | 
| 123 | 
         
            +
                    new_object_params[name] = clone(param, safe=False)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                new_object = klass(**new_object_params)
         
     | 
| 126 | 
         
            +
                try:
         
     | 
| 127 | 
         
            +
                    new_object._metadata_request = copy.deepcopy(estimator._metadata_request)
         
     | 
| 128 | 
         
            +
                except AttributeError:
         
     | 
| 129 | 
         
            +
                    pass
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                params_set = new_object.get_params(deep=False)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                # quick sanity check of the parameters of the clone
         
     | 
| 134 | 
         
            +
                for name in new_object_params:
         
     | 
| 135 | 
         
            +
                    param1 = new_object_params[name]
         
     | 
| 136 | 
         
            +
                    param2 = params_set[name]
         
     | 
| 137 | 
         
            +
                    if param1 is not param2:
         
     | 
| 138 | 
         
            +
                        raise RuntimeError(
         
     | 
| 139 | 
         
            +
                            "Cannot clone object %s, as the constructor "
         
     | 
| 140 | 
         
            +
                            "either does not set or modifies parameter %s" % (estimator, name)
         
     | 
| 141 | 
         
            +
                        )
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                # _sklearn_output_config is used by `set_output` to configure the output
         
     | 
| 144 | 
         
            +
                # container of an estimator.
         
     | 
| 145 | 
         
            +
                if hasattr(estimator, "_sklearn_output_config"):
         
     | 
| 146 | 
         
            +
                    new_object._sklearn_output_config = copy.deepcopy(
         
     | 
| 147 | 
         
            +
                        estimator._sklearn_output_config
         
     | 
| 148 | 
         
            +
                    )
         
     | 
| 149 | 
         
            +
                return new_object
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
            class BaseEstimator(_HTMLDocumentationLinkMixin, _MetadataRequester):
         
     | 
| 153 | 
         
            +
                """Base class for all estimators in scikit-learn.
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                Inheriting from this class provides default implementations of:
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                - setting and getting parameters used by `GridSearchCV` and friends;
         
     | 
| 158 | 
         
            +
                - textual and HTML representation displayed in terminals and IDEs;
         
     | 
| 159 | 
         
            +
                - estimator serialization;
         
     | 
| 160 | 
         
            +
                - parameters validation;
         
     | 
| 161 | 
         
            +
                - data validation;
         
     | 
| 162 | 
         
            +
                - feature names validation.
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                Read more in the :ref:`User Guide <rolling_your_own_estimator>`.
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                Notes
         
     | 
| 168 | 
         
            +
                -----
         
     | 
| 169 | 
         
            +
                All estimators should specify all the parameters that can be set
         
     | 
| 170 | 
         
            +
                at the class level in their ``__init__`` as explicit keyword
         
     | 
| 171 | 
         
            +
                arguments (no ``*args`` or ``**kwargs``).
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                Examples
         
     | 
| 174 | 
         
            +
                --------
         
     | 
| 175 | 
         
            +
                >>> import numpy as np
         
     | 
| 176 | 
         
            +
                >>> from sklearn.base import BaseEstimator
         
     | 
| 177 | 
         
            +
                >>> class MyEstimator(BaseEstimator):
         
     | 
| 178 | 
         
            +
                ...     def __init__(self, *, param=1):
         
     | 
| 179 | 
         
            +
                ...         self.param = param
         
     | 
| 180 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 181 | 
         
            +
                ...         self.is_fitted_ = True
         
     | 
| 182 | 
         
            +
                ...         return self
         
     | 
| 183 | 
         
            +
                ...     def predict(self, X):
         
     | 
| 184 | 
         
            +
                ...         return np.full(shape=X.shape[0], fill_value=self.param)
         
     | 
| 185 | 
         
            +
                >>> estimator = MyEstimator(param=2)
         
     | 
| 186 | 
         
            +
                >>> estimator.get_params()
         
     | 
| 187 | 
         
            +
                {'param': 2}
         
     | 
| 188 | 
         
            +
                >>> X = np.array([[1, 2], [2, 3], [3, 4]])
         
     | 
| 189 | 
         
            +
                >>> y = np.array([1, 0, 1])
         
     | 
| 190 | 
         
            +
                >>> estimator.fit(X, y).predict(X)
         
     | 
| 191 | 
         
            +
                array([2, 2, 2])
         
     | 
| 192 | 
         
            +
                >>> estimator.set_params(param=3).fit(X, y).predict(X)
         
     | 
| 193 | 
         
            +
                array([3, 3, 3])
         
     | 
| 194 | 
         
            +
                """
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                @classmethod
         
     | 
| 197 | 
         
            +
                def _get_param_names(cls):
         
     | 
| 198 | 
         
            +
                    """Get parameter names for the estimator"""
         
     | 
| 199 | 
         
            +
                    # fetch the constructor or the original constructor before
         
     | 
| 200 | 
         
            +
                    # deprecation wrapping if any
         
     | 
| 201 | 
         
            +
                    init = getattr(cls.__init__, "deprecated_original", cls.__init__)
         
     | 
| 202 | 
         
            +
                    if init is object.__init__:
         
     | 
| 203 | 
         
            +
                        # No explicit constructor to introspect
         
     | 
| 204 | 
         
            +
                        return []
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                    # introspect the constructor arguments to find the model parameters
         
     | 
| 207 | 
         
            +
                    # to represent
         
     | 
| 208 | 
         
            +
                    init_signature = inspect.signature(init)
         
     | 
| 209 | 
         
            +
                    # Consider the constructor parameters excluding 'self'
         
     | 
| 210 | 
         
            +
                    parameters = [
         
     | 
| 211 | 
         
            +
                        p
         
     | 
| 212 | 
         
            +
                        for p in init_signature.parameters.values()
         
     | 
| 213 | 
         
            +
                        if p.name != "self" and p.kind != p.VAR_KEYWORD
         
     | 
| 214 | 
         
            +
                    ]
         
     | 
| 215 | 
         
            +
                    for p in parameters:
         
     | 
| 216 | 
         
            +
                        if p.kind == p.VAR_POSITIONAL:
         
     | 
| 217 | 
         
            +
                            raise RuntimeError(
         
     | 
| 218 | 
         
            +
                                "scikit-learn estimators should always "
         
     | 
| 219 | 
         
            +
                                "specify their parameters in the signature"
         
     | 
| 220 | 
         
            +
                                " of their __init__ (no varargs)."
         
     | 
| 221 | 
         
            +
                                " %s with constructor %s doesn't "
         
     | 
| 222 | 
         
            +
                                " follow this convention." % (cls, init_signature)
         
     | 
| 223 | 
         
            +
                            )
         
     | 
| 224 | 
         
            +
                    # Extract and sort argument names excluding 'self'
         
     | 
| 225 | 
         
            +
                    return sorted([p.name for p in parameters])
         
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
                def get_params(self, deep=True):
         
     | 
| 228 | 
         
            +
                    """
         
     | 
| 229 | 
         
            +
                    Get parameters for this estimator.
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                    Parameters
         
     | 
| 232 | 
         
            +
                    ----------
         
     | 
| 233 | 
         
            +
                    deep : bool, default=True
         
     | 
| 234 | 
         
            +
                        If True, will return the parameters for this estimator and
         
     | 
| 235 | 
         
            +
                        contained subobjects that are estimators.
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    Returns
         
     | 
| 238 | 
         
            +
                    -------
         
     | 
| 239 | 
         
            +
                    params : dict
         
     | 
| 240 | 
         
            +
                        Parameter names mapped to their values.
         
     | 
| 241 | 
         
            +
                    """
         
     | 
| 242 | 
         
            +
                    out = dict()
         
     | 
| 243 | 
         
            +
                    for key in self._get_param_names():
         
     | 
| 244 | 
         
            +
                        value = getattr(self, key)
         
     | 
| 245 | 
         
            +
                        if deep and hasattr(value, "get_params") and not isinstance(value, type):
         
     | 
| 246 | 
         
            +
                            deep_items = value.get_params().items()
         
     | 
| 247 | 
         
            +
                            out.update((key + "__" + k, val) for k, val in deep_items)
         
     | 
| 248 | 
         
            +
                        out[key] = value
         
     | 
| 249 | 
         
            +
                    return out
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                def set_params(self, **params):
         
     | 
| 252 | 
         
            +
                    """Set the parameters of this estimator.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    The method works on simple estimators as well as on nested objects
         
     | 
| 255 | 
         
            +
                    (such as :class:`~sklearn.pipeline.Pipeline`). The latter have
         
     | 
| 256 | 
         
            +
                    parameters of the form ``<component>__<parameter>`` so that it's
         
     | 
| 257 | 
         
            +
                    possible to update each component of a nested object.
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                    Parameters
         
     | 
| 260 | 
         
            +
                    ----------
         
     | 
| 261 | 
         
            +
                    **params : dict
         
     | 
| 262 | 
         
            +
                        Estimator parameters.
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                    Returns
         
     | 
| 265 | 
         
            +
                    -------
         
     | 
| 266 | 
         
            +
                    self : estimator instance
         
     | 
| 267 | 
         
            +
                        Estimator instance.
         
     | 
| 268 | 
         
            +
                    """
         
     | 
| 269 | 
         
            +
                    if not params:
         
     | 
| 270 | 
         
            +
                        # Simple optimization to gain speed (inspect is slow)
         
     | 
| 271 | 
         
            +
                        return self
         
     | 
| 272 | 
         
            +
                    valid_params = self.get_params(deep=True)
         
     | 
| 273 | 
         
            +
             
     | 
| 274 | 
         
            +
                    nested_params = defaultdict(dict)  # grouped by prefix
         
     | 
| 275 | 
         
            +
                    for key, value in params.items():
         
     | 
| 276 | 
         
            +
                        key, delim, sub_key = key.partition("__")
         
     | 
| 277 | 
         
            +
                        if key not in valid_params:
         
     | 
| 278 | 
         
            +
                            local_valid_params = self._get_param_names()
         
     | 
| 279 | 
         
            +
                            raise ValueError(
         
     | 
| 280 | 
         
            +
                                f"Invalid parameter {key!r} for estimator {self}. "
         
     | 
| 281 | 
         
            +
                                f"Valid parameters are: {local_valid_params!r}."
         
     | 
| 282 | 
         
            +
                            )
         
     | 
| 283 | 
         
            +
             
     | 
| 284 | 
         
            +
                        if delim:
         
     | 
| 285 | 
         
            +
                            nested_params[key][sub_key] = value
         
     | 
| 286 | 
         
            +
                        else:
         
     | 
| 287 | 
         
            +
                            setattr(self, key, value)
         
     | 
| 288 | 
         
            +
                            valid_params[key] = value
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                    for key, sub_params in nested_params.items():
         
     | 
| 291 | 
         
            +
                        valid_params[key].set_params(**sub_params)
         
     | 
| 292 | 
         
            +
             
     | 
| 293 | 
         
            +
                    return self
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                def __sklearn_clone__(self):
         
     | 
| 296 | 
         
            +
                    return _clone_parametrized(self)
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def __repr__(self, N_CHAR_MAX=700):
         
     | 
| 299 | 
         
            +
                    # N_CHAR_MAX is the (approximate) maximum number of non-blank
         
     | 
| 300 | 
         
            +
                    # characters to render. We pass it as an optional parameter to ease
         
     | 
| 301 | 
         
            +
                    # the tests.
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    from .utils._pprint import _EstimatorPrettyPrinter
         
     | 
| 304 | 
         
            +
             
     | 
| 305 | 
         
            +
                    N_MAX_ELEMENTS_TO_SHOW = 30  # number of elements to show in sequences
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                    # use ellipsis for sequences with a lot of elements
         
     | 
| 308 | 
         
            +
                    pp = _EstimatorPrettyPrinter(
         
     | 
| 309 | 
         
            +
                        compact=True,
         
     | 
| 310 | 
         
            +
                        indent=1,
         
     | 
| 311 | 
         
            +
                        indent_at_name=True,
         
     | 
| 312 | 
         
            +
                        n_max_elements_to_show=N_MAX_ELEMENTS_TO_SHOW,
         
     | 
| 313 | 
         
            +
                    )
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    repr_ = pp.pformat(self)
         
     | 
| 316 | 
         
            +
             
     | 
| 317 | 
         
            +
                    # Use bruteforce ellipsis when there are a lot of non-blank characters
         
     | 
| 318 | 
         
            +
                    n_nonblank = len("".join(repr_.split()))
         
     | 
| 319 | 
         
            +
                    if n_nonblank > N_CHAR_MAX:
         
     | 
| 320 | 
         
            +
                        lim = N_CHAR_MAX // 2  # apprx number of chars to keep on both ends
         
     | 
| 321 | 
         
            +
                        regex = r"^(\s*\S){%d}" % lim
         
     | 
| 322 | 
         
            +
                        # The regex '^(\s*\S){%d}' % n
         
     | 
| 323 | 
         
            +
                        # matches from the start of the string until the nth non-blank
         
     | 
| 324 | 
         
            +
                        # character:
         
     | 
| 325 | 
         
            +
                        # - ^ matches the start of string
         
     | 
| 326 | 
         
            +
                        # - (pattern){n} matches n repetitions of pattern
         
     | 
| 327 | 
         
            +
                        # - \s*\S matches a non-blank char following zero or more blanks
         
     | 
| 328 | 
         
            +
                        left_lim = re.match(regex, repr_).end()
         
     | 
| 329 | 
         
            +
                        right_lim = re.match(regex, repr_[::-1]).end()
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                        if "\n" in repr_[left_lim:-right_lim]:
         
     | 
| 332 | 
         
            +
                            # The left side and right side aren't on the same line.
         
     | 
| 333 | 
         
            +
                            # To avoid weird cuts, e.g.:
         
     | 
| 334 | 
         
            +
                            # categoric...ore',
         
     | 
| 335 | 
         
            +
                            # we need to start the right side with an appropriate newline
         
     | 
| 336 | 
         
            +
                            # character so that it renders properly as:
         
     | 
| 337 | 
         
            +
                            # categoric...
         
     | 
| 338 | 
         
            +
                            # handle_unknown='ignore',
         
     | 
| 339 | 
         
            +
                            # so we add [^\n]*\n which matches until the next \n
         
     | 
| 340 | 
         
            +
                            regex += r"[^\n]*\n"
         
     | 
| 341 | 
         
            +
                            right_lim = re.match(regex, repr_[::-1]).end()
         
     | 
| 342 | 
         
            +
             
     | 
| 343 | 
         
            +
                        ellipsis = "..."
         
     | 
| 344 | 
         
            +
                        if left_lim + len(ellipsis) < len(repr_) - right_lim:
         
     | 
| 345 | 
         
            +
                            # Only add ellipsis if it results in a shorter repr
         
     | 
| 346 | 
         
            +
                            repr_ = repr_[:left_lim] + "..." + repr_[-right_lim:]
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                    return repr_
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                def __getstate__(self):
         
     | 
| 351 | 
         
            +
                    if getattr(self, "__slots__", None):
         
     | 
| 352 | 
         
            +
                        raise TypeError(
         
     | 
| 353 | 
         
            +
                            "You cannot use `__slots__` in objects inheriting from "
         
     | 
| 354 | 
         
            +
                            "`sklearn.base.BaseEstimator`."
         
     | 
| 355 | 
         
            +
                        )
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    try:
         
     | 
| 358 | 
         
            +
                        state = super().__getstate__()
         
     | 
| 359 | 
         
            +
                        if state is None:
         
     | 
| 360 | 
         
            +
                            # For Python 3.11+, empty instance (no `__slots__`,
         
     | 
| 361 | 
         
            +
                            # and `__dict__`) will return a state equal to `None`.
         
     | 
| 362 | 
         
            +
                            state = self.__dict__.copy()
         
     | 
| 363 | 
         
            +
                    except AttributeError:
         
     | 
| 364 | 
         
            +
                        # Python < 3.11
         
     | 
| 365 | 
         
            +
                        state = self.__dict__.copy()
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    if type(self).__module__.startswith("sklearn."):
         
     | 
| 368 | 
         
            +
                        return dict(state.items(), _sklearn_version=__version__)
         
     | 
| 369 | 
         
            +
                    else:
         
     | 
| 370 | 
         
            +
                        return state
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 373 | 
         
            +
                    if type(self).__module__.startswith("sklearn."):
         
     | 
| 374 | 
         
            +
                        pickle_version = state.pop("_sklearn_version", "pre-0.18")
         
     | 
| 375 | 
         
            +
                        if pickle_version != __version__:
         
     | 
| 376 | 
         
            +
                            warnings.warn(
         
     | 
| 377 | 
         
            +
                                InconsistentVersionWarning(
         
     | 
| 378 | 
         
            +
                                    estimator_name=self.__class__.__name__,
         
     | 
| 379 | 
         
            +
                                    current_sklearn_version=__version__,
         
     | 
| 380 | 
         
            +
                                    original_sklearn_version=pickle_version,
         
     | 
| 381 | 
         
            +
                                ),
         
     | 
| 382 | 
         
            +
                            )
         
     | 
| 383 | 
         
            +
                    try:
         
     | 
| 384 | 
         
            +
                        super().__setstate__(state)
         
     | 
| 385 | 
         
            +
                    except AttributeError:
         
     | 
| 386 | 
         
            +
                        self.__dict__.update(state)
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                def _more_tags(self):
         
     | 
| 389 | 
         
            +
                    return _DEFAULT_TAGS
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                def _get_tags(self):
         
     | 
| 392 | 
         
            +
                    collected_tags = {}
         
     | 
| 393 | 
         
            +
                    for base_class in reversed(inspect.getmro(self.__class__)):
         
     | 
| 394 | 
         
            +
                        if hasattr(base_class, "_more_tags"):
         
     | 
| 395 | 
         
            +
                            # need the if because mixins might not have _more_tags
         
     | 
| 396 | 
         
            +
                            # but might do redundant work in estimators
         
     | 
| 397 | 
         
            +
                            # (i.e. calling more tags on BaseEstimator multiple times)
         
     | 
| 398 | 
         
            +
                            more_tags = base_class._more_tags(self)
         
     | 
| 399 | 
         
            +
                            collected_tags.update(more_tags)
         
     | 
| 400 | 
         
            +
                    return collected_tags
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                def _check_n_features(self, X, reset):
         
     | 
| 403 | 
         
            +
                    """Set the `n_features_in_` attribute, or check against it.
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    Parameters
         
     | 
| 406 | 
         
            +
                    ----------
         
     | 
| 407 | 
         
            +
                    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 408 | 
         
            +
                        The input samples.
         
     | 
| 409 | 
         
            +
                    reset : bool
         
     | 
| 410 | 
         
            +
                        If True, the `n_features_in_` attribute is set to `X.shape[1]`.
         
     | 
| 411 | 
         
            +
                        If False and the attribute exists, then check that it is equal to
         
     | 
| 412 | 
         
            +
                        `X.shape[1]`. If False and the attribute does *not* exist, then
         
     | 
| 413 | 
         
            +
                        the check is skipped.
         
     | 
| 414 | 
         
            +
                        .. note::
         
     | 
| 415 | 
         
            +
                           It is recommended to call reset=True in `fit` and in the first
         
     | 
| 416 | 
         
            +
                           call to `partial_fit`. All other methods that validate `X`
         
     | 
| 417 | 
         
            +
                           should set `reset=False`.
         
     | 
| 418 | 
         
            +
                    """
         
     | 
| 419 | 
         
            +
                    try:
         
     | 
| 420 | 
         
            +
                        n_features = _num_features(X)
         
     | 
| 421 | 
         
            +
                    except TypeError as e:
         
     | 
| 422 | 
         
            +
                        if not reset and hasattr(self, "n_features_in_"):
         
     | 
| 423 | 
         
            +
                            raise ValueError(
         
     | 
| 424 | 
         
            +
                                "X does not contain any features, but "
         
     | 
| 425 | 
         
            +
                                f"{self.__class__.__name__} is expecting "
         
     | 
| 426 | 
         
            +
                                f"{self.n_features_in_} features"
         
     | 
| 427 | 
         
            +
                            ) from e
         
     | 
| 428 | 
         
            +
                        # If the number of features is not defined and reset=True,
         
     | 
| 429 | 
         
            +
                        # then we skip this check
         
     | 
| 430 | 
         
            +
                        return
         
     | 
| 431 | 
         
            +
             
     | 
| 432 | 
         
            +
                    if reset:
         
     | 
| 433 | 
         
            +
                        self.n_features_in_ = n_features
         
     | 
| 434 | 
         
            +
                        return
         
     | 
| 435 | 
         
            +
             
     | 
| 436 | 
         
            +
                    if not hasattr(self, "n_features_in_"):
         
     | 
| 437 | 
         
            +
                        # Skip this check if the expected number of expected input features
         
     | 
| 438 | 
         
            +
                        # was not recorded by calling fit first. This is typically the case
         
     | 
| 439 | 
         
            +
                        # for stateless transformers.
         
     | 
| 440 | 
         
            +
                        return
         
     | 
| 441 | 
         
            +
             
     | 
| 442 | 
         
            +
                    if n_features != self.n_features_in_:
         
     | 
| 443 | 
         
            +
                        raise ValueError(
         
     | 
| 444 | 
         
            +
                            f"X has {n_features} features, but {self.__class__.__name__} "
         
     | 
| 445 | 
         
            +
                            f"is expecting {self.n_features_in_} features as input."
         
     | 
| 446 | 
         
            +
                        )
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                def _check_feature_names(self, X, *, reset):
         
     | 
| 449 | 
         
            +
                    """Set or check the `feature_names_in_` attribute.
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    Parameters
         
     | 
| 454 | 
         
            +
                    ----------
         
     | 
| 455 | 
         
            +
                    X : {ndarray, dataframe} of shape (n_samples, n_features)
         
     | 
| 456 | 
         
            +
                        The input samples.
         
     | 
| 457 | 
         
            +
             
     | 
| 458 | 
         
            +
                    reset : bool
         
     | 
| 459 | 
         
            +
                        Whether to reset the `feature_names_in_` attribute.
         
     | 
| 460 | 
         
            +
                        If False, the input will be checked for consistency with
         
     | 
| 461 | 
         
            +
                        feature names of data provided when reset was last True.
         
     | 
| 462 | 
         
            +
                        .. note::
         
     | 
| 463 | 
         
            +
                           It is recommended to call `reset=True` in `fit` and in the first
         
     | 
| 464 | 
         
            +
                           call to `partial_fit`. All other methods that validate `X`
         
     | 
| 465 | 
         
            +
                           should set `reset=False`.
         
     | 
| 466 | 
         
            +
                    """
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                    if reset:
         
     | 
| 469 | 
         
            +
                        feature_names_in = _get_feature_names(X)
         
     | 
| 470 | 
         
            +
                        if feature_names_in is not None:
         
     | 
| 471 | 
         
            +
                            self.feature_names_in_ = feature_names_in
         
     | 
| 472 | 
         
            +
                        elif hasattr(self, "feature_names_in_"):
         
     | 
| 473 | 
         
            +
                            # Delete the attribute when the estimator is fitted on a new dataset
         
     | 
| 474 | 
         
            +
                            # that has no feature names.
         
     | 
| 475 | 
         
            +
                            delattr(self, "feature_names_in_")
         
     | 
| 476 | 
         
            +
                        return
         
     | 
| 477 | 
         
            +
             
     | 
| 478 | 
         
            +
                    fitted_feature_names = getattr(self, "feature_names_in_", None)
         
     | 
| 479 | 
         
            +
                    X_feature_names = _get_feature_names(X)
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                    if fitted_feature_names is None and X_feature_names is None:
         
     | 
| 482 | 
         
            +
                        # no feature names seen in fit and in X
         
     | 
| 483 | 
         
            +
                        return
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                    if X_feature_names is not None and fitted_feature_names is None:
         
     | 
| 486 | 
         
            +
                        warnings.warn(
         
     | 
| 487 | 
         
            +
                            f"X has feature names, but {self.__class__.__name__} was fitted without"
         
     | 
| 488 | 
         
            +
                            " feature names"
         
     | 
| 489 | 
         
            +
                        )
         
     | 
| 490 | 
         
            +
                        return
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                    if X_feature_names is None and fitted_feature_names is not None:
         
     | 
| 493 | 
         
            +
                        warnings.warn(
         
     | 
| 494 | 
         
            +
                            "X does not have valid feature names, but"
         
     | 
| 495 | 
         
            +
                            f" {self.__class__.__name__} was fitted with feature names"
         
     | 
| 496 | 
         
            +
                        )
         
     | 
| 497 | 
         
            +
                        return
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                    # validate the feature names against the `feature_names_in_` attribute
         
     | 
| 500 | 
         
            +
                    if len(fitted_feature_names) != len(X_feature_names) or np.any(
         
     | 
| 501 | 
         
            +
                        fitted_feature_names != X_feature_names
         
     | 
| 502 | 
         
            +
                    ):
         
     | 
| 503 | 
         
            +
                        message = (
         
     | 
| 504 | 
         
            +
                            "The feature names should match those that were passed during fit.\n"
         
     | 
| 505 | 
         
            +
                        )
         
     | 
| 506 | 
         
            +
                        fitted_feature_names_set = set(fitted_feature_names)
         
     | 
| 507 | 
         
            +
                        X_feature_names_set = set(X_feature_names)
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                        unexpected_names = sorted(X_feature_names_set - fitted_feature_names_set)
         
     | 
| 510 | 
         
            +
                        missing_names = sorted(fitted_feature_names_set - X_feature_names_set)
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                        def add_names(names):
         
     | 
| 513 | 
         
            +
                            output = ""
         
     | 
| 514 | 
         
            +
                            max_n_names = 5
         
     | 
| 515 | 
         
            +
                            for i, name in enumerate(names):
         
     | 
| 516 | 
         
            +
                                if i >= max_n_names:
         
     | 
| 517 | 
         
            +
                                    output += "- ...\n"
         
     | 
| 518 | 
         
            +
                                    break
         
     | 
| 519 | 
         
            +
                                output += f"- {name}\n"
         
     | 
| 520 | 
         
            +
                            return output
         
     | 
| 521 | 
         
            +
             
     | 
| 522 | 
         
            +
                        if unexpected_names:
         
     | 
| 523 | 
         
            +
                            message += "Feature names unseen at fit time:\n"
         
     | 
| 524 | 
         
            +
                            message += add_names(unexpected_names)
         
     | 
| 525 | 
         
            +
             
     | 
| 526 | 
         
            +
                        if missing_names:
         
     | 
| 527 | 
         
            +
                            message += "Feature names seen at fit time, yet now missing:\n"
         
     | 
| 528 | 
         
            +
                            message += add_names(missing_names)
         
     | 
| 529 | 
         
            +
             
     | 
| 530 | 
         
            +
                        if not missing_names and not unexpected_names:
         
     | 
| 531 | 
         
            +
                            message += (
         
     | 
| 532 | 
         
            +
                                "Feature names must be in the same order as they were in fit.\n"
         
     | 
| 533 | 
         
            +
                            )
         
     | 
| 534 | 
         
            +
             
     | 
| 535 | 
         
            +
                        raise ValueError(message)
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                def _validate_data(
         
     | 
| 538 | 
         
            +
                    self,
         
     | 
| 539 | 
         
            +
                    X="no_validation",
         
     | 
| 540 | 
         
            +
                    y="no_validation",
         
     | 
| 541 | 
         
            +
                    reset=True,
         
     | 
| 542 | 
         
            +
                    validate_separately=False,
         
     | 
| 543 | 
         
            +
                    cast_to_ndarray=True,
         
     | 
| 544 | 
         
            +
                    **check_params,
         
     | 
| 545 | 
         
            +
                ):
         
     | 
| 546 | 
         
            +
                    """Validate input data and set or check the `n_features_in_` attribute.
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
                    Parameters
         
     | 
| 549 | 
         
            +
                    ----------
         
     | 
| 550 | 
         
            +
                    X : {array-like, sparse matrix, dataframe} of shape \
         
     | 
| 551 | 
         
            +
                            (n_samples, n_features), default='no validation'
         
     | 
| 552 | 
         
            +
                        The input samples.
         
     | 
| 553 | 
         
            +
                        If `'no_validation'`, no validation is performed on `X`. This is
         
     | 
| 554 | 
         
            +
                        useful for meta-estimator which can delegate input validation to
         
     | 
| 555 | 
         
            +
                        their underlying estimator(s). In that case `y` must be passed and
         
     | 
| 556 | 
         
            +
                        the only accepted `check_params` are `multi_output` and
         
     | 
| 557 | 
         
            +
                        `y_numeric`.
         
     | 
| 558 | 
         
            +
             
     | 
| 559 | 
         
            +
                    y : array-like of shape (n_samples,), default='no_validation'
         
     | 
| 560 | 
         
            +
                        The targets.
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                        - If `None`, `check_array` is called on `X`. If the estimator's
         
     | 
| 563 | 
         
            +
                          requires_y tag is True, then an error will be raised.
         
     | 
| 564 | 
         
            +
                        - If `'no_validation'`, `check_array` is called on `X` and the
         
     | 
| 565 | 
         
            +
                          estimator's requires_y tag is ignored. This is a default
         
     | 
| 566 | 
         
            +
                          placeholder and is never meant to be explicitly set. In that case
         
     | 
| 567 | 
         
            +
                          `X` must be passed.
         
     | 
| 568 | 
         
            +
                        - Otherwise, only `y` with `_check_y` or both `X` and `y` are
         
     | 
| 569 | 
         
            +
                          checked with either `check_array` or `check_X_y` depending on
         
     | 
| 570 | 
         
            +
                          `validate_separately`.
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                    reset : bool, default=True
         
     | 
| 573 | 
         
            +
                        Whether to reset the `n_features_in_` attribute.
         
     | 
| 574 | 
         
            +
                        If False, the input will be checked for consistency with data
         
     | 
| 575 | 
         
            +
                        provided when reset was last True.
         
     | 
| 576 | 
         
            +
                        .. note::
         
     | 
| 577 | 
         
            +
                           It is recommended to call reset=True in `fit` and in the first
         
     | 
| 578 | 
         
            +
                           call to `partial_fit`. All other methods that validate `X`
         
     | 
| 579 | 
         
            +
                           should set `reset=False`.
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                    validate_separately : False or tuple of dicts, default=False
         
     | 
| 582 | 
         
            +
                        Only used if y is not None.
         
     | 
| 583 | 
         
            +
                        If False, call validate_X_y(). Else, it must be a tuple of kwargs
         
     | 
| 584 | 
         
            +
                        to be used for calling check_array() on X and y respectively.
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                        `estimator=self` is automatically added to these dicts to generate
         
     | 
| 587 | 
         
            +
                        more informative error message in case of invalid input data.
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    cast_to_ndarray : bool, default=True
         
     | 
| 590 | 
         
            +
                        Cast `X` and `y` to ndarray with checks in `check_params`. If
         
     | 
| 591 | 
         
            +
                        `False`, `X` and `y` are unchanged and only `feature_names_in_` and
         
     | 
| 592 | 
         
            +
                        `n_features_in_` are checked.
         
     | 
| 593 | 
         
            +
             
     | 
| 594 | 
         
            +
                    **check_params : kwargs
         
     | 
| 595 | 
         
            +
                        Parameters passed to :func:`sklearn.utils.check_array` or
         
     | 
| 596 | 
         
            +
                        :func:`sklearn.utils.check_X_y`. Ignored if validate_separately
         
     | 
| 597 | 
         
            +
                        is not False.
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                        `estimator=self` is automatically added to these params to generate
         
     | 
| 600 | 
         
            +
                        more informative error message in case of invalid input data.
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    Returns
         
     | 
| 603 | 
         
            +
                    -------
         
     | 
| 604 | 
         
            +
                    out : {ndarray, sparse matrix} or tuple of these
         
     | 
| 605 | 
         
            +
                        The validated input. A tuple is returned if both `X` and `y` are
         
     | 
| 606 | 
         
            +
                        validated.
         
     | 
| 607 | 
         
            +
                    """
         
     | 
| 608 | 
         
            +
                    self._check_feature_names(X, reset=reset)
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    if y is None and self._get_tags()["requires_y"]:
         
     | 
| 611 | 
         
            +
                        raise ValueError(
         
     | 
| 612 | 
         
            +
                            f"This {self.__class__.__name__} estimator "
         
     | 
| 613 | 
         
            +
                            "requires y to be passed, but the target y is None."
         
     | 
| 614 | 
         
            +
                        )
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                    no_val_X = isinstance(X, str) and X == "no_validation"
         
     | 
| 617 | 
         
            +
                    no_val_y = y is None or isinstance(y, str) and y == "no_validation"
         
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
                    if no_val_X and no_val_y:
         
     | 
| 620 | 
         
            +
                        raise ValueError("Validation should be done on X, y or both.")
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                    default_check_params = {"estimator": self}
         
     | 
| 623 | 
         
            +
                    check_params = {**default_check_params, **check_params}
         
     | 
| 624 | 
         
            +
             
     | 
| 625 | 
         
            +
                    if not cast_to_ndarray:
         
     | 
| 626 | 
         
            +
                        if not no_val_X and no_val_y:
         
     | 
| 627 | 
         
            +
                            out = X
         
     | 
| 628 | 
         
            +
                        elif no_val_X and not no_val_y:
         
     | 
| 629 | 
         
            +
                            out = y
         
     | 
| 630 | 
         
            +
                        else:
         
     | 
| 631 | 
         
            +
                            out = X, y
         
     | 
| 632 | 
         
            +
                    elif not no_val_X and no_val_y:
         
     | 
| 633 | 
         
            +
                        out = check_array(X, input_name="X", **check_params)
         
     | 
| 634 | 
         
            +
                    elif no_val_X and not no_val_y:
         
     | 
| 635 | 
         
            +
                        out = _check_y(y, **check_params)
         
     | 
| 636 | 
         
            +
                    else:
         
     | 
| 637 | 
         
            +
                        if validate_separately:
         
     | 
| 638 | 
         
            +
                            # We need this because some estimators validate X and y
         
     | 
| 639 | 
         
            +
                            # separately, and in general, separately calling check_array()
         
     | 
| 640 | 
         
            +
                            # on X and y isn't equivalent to just calling check_X_y()
         
     | 
| 641 | 
         
            +
                            # :(
         
     | 
| 642 | 
         
            +
                            check_X_params, check_y_params = validate_separately
         
     | 
| 643 | 
         
            +
                            if "estimator" not in check_X_params:
         
     | 
| 644 | 
         
            +
                                check_X_params = {**default_check_params, **check_X_params}
         
     | 
| 645 | 
         
            +
                            X = check_array(X, input_name="X", **check_X_params)
         
     | 
| 646 | 
         
            +
                            if "estimator" not in check_y_params:
         
     | 
| 647 | 
         
            +
                                check_y_params = {**default_check_params, **check_y_params}
         
     | 
| 648 | 
         
            +
                            y = check_array(y, input_name="y", **check_y_params)
         
     | 
| 649 | 
         
            +
                        else:
         
     | 
| 650 | 
         
            +
                            X, y = check_X_y(X, y, **check_params)
         
     | 
| 651 | 
         
            +
                        out = X, y
         
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
                    if not no_val_X and check_params.get("ensure_2d", True):
         
     | 
| 654 | 
         
            +
                        self._check_n_features(X, reset=reset)
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    return out
         
     | 
| 657 | 
         
            +
             
     | 
| 658 | 
         
            +
                def _validate_params(self):
         
     | 
| 659 | 
         
            +
                    """Validate types and values of constructor parameters
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    The expected type and values must be defined in the `_parameter_constraints`
         
     | 
| 662 | 
         
            +
                    class attribute, which is a dictionary `param_name: list of constraints`. See
         
     | 
| 663 | 
         
            +
                    the docstring of `validate_parameter_constraints` for a description of the
         
     | 
| 664 | 
         
            +
                    accepted constraints.
         
     | 
| 665 | 
         
            +
                    """
         
     | 
| 666 | 
         
            +
                    validate_parameter_constraints(
         
     | 
| 667 | 
         
            +
                        self._parameter_constraints,
         
     | 
| 668 | 
         
            +
                        self.get_params(deep=False),
         
     | 
| 669 | 
         
            +
                        caller_name=self.__class__.__name__,
         
     | 
| 670 | 
         
            +
                    )
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                @property
         
     | 
| 673 | 
         
            +
                def _repr_html_(self):
         
     | 
| 674 | 
         
            +
                    """HTML representation of estimator.
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
                    This is redundant with the logic of `_repr_mimebundle_`. The latter
         
     | 
| 677 | 
         
            +
                    should be favorted in the long term, `_repr_html_` is only
         
     | 
| 678 | 
         
            +
                    implemented for consumers who do not interpret `_repr_mimbundle_`.
         
     | 
| 679 | 
         
            +
                    """
         
     | 
| 680 | 
         
            +
                    if get_config()["display"] != "diagram":
         
     | 
| 681 | 
         
            +
                        raise AttributeError(
         
     | 
| 682 | 
         
            +
                            "_repr_html_ is only defined when the "
         
     | 
| 683 | 
         
            +
                            "'display' configuration option is set to "
         
     | 
| 684 | 
         
            +
                            "'diagram'"
         
     | 
| 685 | 
         
            +
                        )
         
     | 
| 686 | 
         
            +
                    return self._repr_html_inner
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
                def _repr_html_inner(self):
         
     | 
| 689 | 
         
            +
                    """This function is returned by the @property `_repr_html_` to make
         
     | 
| 690 | 
         
            +
                    `hasattr(estimator, "_repr_html_") return `True` or `False` depending
         
     | 
| 691 | 
         
            +
                    on `get_config()["display"]`.
         
     | 
| 692 | 
         
            +
                    """
         
     | 
| 693 | 
         
            +
                    return estimator_html_repr(self)
         
     | 
| 694 | 
         
            +
             
     | 
| 695 | 
         
            +
                def _repr_mimebundle_(self, **kwargs):
         
     | 
| 696 | 
         
            +
                    """Mime bundle used by jupyter kernels to display estimator"""
         
     | 
| 697 | 
         
            +
                    output = {"text/plain": repr(self)}
         
     | 
| 698 | 
         
            +
                    if get_config()["display"] == "diagram":
         
     | 
| 699 | 
         
            +
                        output["text/html"] = estimator_html_repr(self)
         
     | 
| 700 | 
         
            +
                    return output
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
             
     | 
| 703 | 
         
            +
            class ClassifierMixin:
         
     | 
| 704 | 
         
            +
                """Mixin class for all classifiers in scikit-learn.
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                - `_estimator_type` class attribute defaulting to `"classifier"`;
         
     | 
| 709 | 
         
            +
                - `score` method that default to :func:`~sklearn.metrics.accuracy_score`.
         
     | 
| 710 | 
         
            +
                - enforce that `fit` requires `y` to be passed through the `requires_y` tag.
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                Read more in the :ref:`User Guide <rolling_your_own_estimator>`.
         
     | 
| 713 | 
         
            +
             
     | 
| 714 | 
         
            +
                Examples
         
     | 
| 715 | 
         
            +
                --------
         
     | 
| 716 | 
         
            +
                >>> import numpy as np
         
     | 
| 717 | 
         
            +
                >>> from sklearn.base import BaseEstimator, ClassifierMixin
         
     | 
| 718 | 
         
            +
                >>> # Mixin classes should always be on the left-hand side for a correct MRO
         
     | 
| 719 | 
         
            +
                >>> class MyEstimator(ClassifierMixin, BaseEstimator):
         
     | 
| 720 | 
         
            +
                ...     def __init__(self, *, param=1):
         
     | 
| 721 | 
         
            +
                ...         self.param = param
         
     | 
| 722 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 723 | 
         
            +
                ...         self.is_fitted_ = True
         
     | 
| 724 | 
         
            +
                ...         return self
         
     | 
| 725 | 
         
            +
                ...     def predict(self, X):
         
     | 
| 726 | 
         
            +
                ...         return np.full(shape=X.shape[0], fill_value=self.param)
         
     | 
| 727 | 
         
            +
                >>> estimator = MyEstimator(param=1)
         
     | 
| 728 | 
         
            +
                >>> X = np.array([[1, 2], [2, 3], [3, 4]])
         
     | 
| 729 | 
         
            +
                >>> y = np.array([1, 0, 1])
         
     | 
| 730 | 
         
            +
                >>> estimator.fit(X, y).predict(X)
         
     | 
| 731 | 
         
            +
                array([1, 1, 1])
         
     | 
| 732 | 
         
            +
                >>> estimator.score(X, y)
         
     | 
| 733 | 
         
            +
                0.66...
         
     | 
| 734 | 
         
            +
                """
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                _estimator_type = "classifier"
         
     | 
| 737 | 
         
            +
             
     | 
| 738 | 
         
            +
                def score(self, X, y, sample_weight=None):
         
     | 
| 739 | 
         
            +
                    """
         
     | 
| 740 | 
         
            +
                    Return the mean accuracy on the given test data and labels.
         
     | 
| 741 | 
         
            +
             
     | 
| 742 | 
         
            +
                    In multi-label classification, this is the subset accuracy
         
     | 
| 743 | 
         
            +
                    which is a harsh metric since you require for each sample that
         
     | 
| 744 | 
         
            +
                    each label set be correctly predicted.
         
     | 
| 745 | 
         
            +
             
     | 
| 746 | 
         
            +
                    Parameters
         
     | 
| 747 | 
         
            +
                    ----------
         
     | 
| 748 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 749 | 
         
            +
                        Test samples.
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 752 | 
         
            +
                        True labels for `X`.
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 755 | 
         
            +
                        Sample weights.
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
                    Returns
         
     | 
| 758 | 
         
            +
                    -------
         
     | 
| 759 | 
         
            +
                    score : float
         
     | 
| 760 | 
         
            +
                        Mean accuracy of ``self.predict(X)`` w.r.t. `y`.
         
     | 
| 761 | 
         
            +
                    """
         
     | 
| 762 | 
         
            +
                    from .metrics import accuracy_score
         
     | 
| 763 | 
         
            +
             
     | 
| 764 | 
         
            +
                    return accuracy_score(y, self.predict(X), sample_weight=sample_weight)
         
     | 
| 765 | 
         
            +
             
     | 
| 766 | 
         
            +
                def _more_tags(self):
         
     | 
| 767 | 
         
            +
                    return {"requires_y": True}
         
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
            class RegressorMixin:
         
     | 
| 771 | 
         
            +
                """Mixin class for all regression estimators in scikit-learn.
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 774 | 
         
            +
             
     | 
| 775 | 
         
            +
                - `_estimator_type` class attribute defaulting to `"regressor"`;
         
     | 
| 776 | 
         
            +
                - `score` method that default to :func:`~sklearn.metrics.r2_score`.
         
     | 
| 777 | 
         
            +
                - enforce that `fit` requires `y` to be passed through the `requires_y` tag.
         
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
                Read more in the :ref:`User Guide <rolling_your_own_estimator>`.
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
                Examples
         
     | 
| 782 | 
         
            +
                --------
         
     | 
| 783 | 
         
            +
                >>> import numpy as np
         
     | 
| 784 | 
         
            +
                >>> from sklearn.base import BaseEstimator, RegressorMixin
         
     | 
| 785 | 
         
            +
                >>> # Mixin classes should always be on the left-hand side for a correct MRO
         
     | 
| 786 | 
         
            +
                >>> class MyEstimator(RegressorMixin, BaseEstimator):
         
     | 
| 787 | 
         
            +
                ...     def __init__(self, *, param=1):
         
     | 
| 788 | 
         
            +
                ...         self.param = param
         
     | 
| 789 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 790 | 
         
            +
                ...         self.is_fitted_ = True
         
     | 
| 791 | 
         
            +
                ...         return self
         
     | 
| 792 | 
         
            +
                ...     def predict(self, X):
         
     | 
| 793 | 
         
            +
                ...         return np.full(shape=X.shape[0], fill_value=self.param)
         
     | 
| 794 | 
         
            +
                >>> estimator = MyEstimator(param=0)
         
     | 
| 795 | 
         
            +
                >>> X = np.array([[1, 2], [2, 3], [3, 4]])
         
     | 
| 796 | 
         
            +
                >>> y = np.array([-1, 0, 1])
         
     | 
| 797 | 
         
            +
                >>> estimator.fit(X, y).predict(X)
         
     | 
| 798 | 
         
            +
                array([0, 0, 0])
         
     | 
| 799 | 
         
            +
                >>> estimator.score(X, y)
         
     | 
| 800 | 
         
            +
                0.0
         
     | 
| 801 | 
         
            +
                """
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                _estimator_type = "regressor"
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                def score(self, X, y, sample_weight=None):
         
     | 
| 806 | 
         
            +
                    """Return the coefficient of determination of the prediction.
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                    The coefficient of determination :math:`R^2` is defined as
         
     | 
| 809 | 
         
            +
                    :math:`(1 - \\frac{u}{v})`, where :math:`u` is the residual
         
     | 
| 810 | 
         
            +
                    sum of squares ``((y_true - y_pred)** 2).sum()`` and :math:`v`
         
     | 
| 811 | 
         
            +
                    is the total sum of squares ``((y_true - y_true.mean()) ** 2).sum()``.
         
     | 
| 812 | 
         
            +
                    The best possible score is 1.0 and it can be negative (because the
         
     | 
| 813 | 
         
            +
                    model can be arbitrarily worse). A constant model that always predicts
         
     | 
| 814 | 
         
            +
                    the expected value of `y`, disregarding the input features, would get
         
     | 
| 815 | 
         
            +
                    a :math:`R^2` score of 0.0.
         
     | 
| 816 | 
         
            +
             
     | 
| 817 | 
         
            +
                    Parameters
         
     | 
| 818 | 
         
            +
                    ----------
         
     | 
| 819 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 820 | 
         
            +
                        Test samples. For some estimators this may be a precomputed
         
     | 
| 821 | 
         
            +
                        kernel matrix or a list of generic objects instead with shape
         
     | 
| 822 | 
         
            +
                        ``(n_samples, n_samples_fitted)``, where ``n_samples_fitted``
         
     | 
| 823 | 
         
            +
                        is the number of samples used in the fitting for the estimator.
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 826 | 
         
            +
                        True values for `X`.
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 829 | 
         
            +
                        Sample weights.
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
                    Returns
         
     | 
| 832 | 
         
            +
                    -------
         
     | 
| 833 | 
         
            +
                    score : float
         
     | 
| 834 | 
         
            +
                        :math:`R^2` of ``self.predict(X)`` w.r.t. `y`.
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                    Notes
         
     | 
| 837 | 
         
            +
                    -----
         
     | 
| 838 | 
         
            +
                    The :math:`R^2` score used when calling ``score`` on a regressor uses
         
     | 
| 839 | 
         
            +
                    ``multioutput='uniform_average'`` from version 0.23 to keep consistent
         
     | 
| 840 | 
         
            +
                    with default value of :func:`~sklearn.metrics.r2_score`.
         
     | 
| 841 | 
         
            +
                    This influences the ``score`` method of all the multioutput
         
     | 
| 842 | 
         
            +
                    regressors (except for
         
     | 
| 843 | 
         
            +
                    :class:`~sklearn.multioutput.MultiOutputRegressor`).
         
     | 
| 844 | 
         
            +
                    """
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
                    from .metrics import r2_score
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                    y_pred = self.predict(X)
         
     | 
| 849 | 
         
            +
                    return r2_score(y, y_pred, sample_weight=sample_weight)
         
     | 
| 850 | 
         
            +
             
     | 
| 851 | 
         
            +
                def _more_tags(self):
         
     | 
| 852 | 
         
            +
                    return {"requires_y": True}
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
            class ClusterMixin:
         
     | 
| 856 | 
         
            +
                """Mixin class for all cluster estimators in scikit-learn.
         
     | 
| 857 | 
         
            +
             
     | 
| 858 | 
         
            +
                - `_estimator_type` class attribute defaulting to `"clusterer"`;
         
     | 
| 859 | 
         
            +
                - `fit_predict` method returning the cluster labels associated to each sample.
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                Examples
         
     | 
| 862 | 
         
            +
                --------
         
     | 
| 863 | 
         
            +
                >>> import numpy as np
         
     | 
| 864 | 
         
            +
                >>> from sklearn.base import BaseEstimator, ClusterMixin
         
     | 
| 865 | 
         
            +
                >>> class MyClusterer(ClusterMixin, BaseEstimator):
         
     | 
| 866 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 867 | 
         
            +
                ...         self.labels_ = np.ones(shape=(len(X),), dtype=np.int64)
         
     | 
| 868 | 
         
            +
                ...         return self
         
     | 
| 869 | 
         
            +
                >>> X = [[1, 2], [2, 3], [3, 4]]
         
     | 
| 870 | 
         
            +
                >>> MyClusterer().fit_predict(X)
         
     | 
| 871 | 
         
            +
                array([1, 1, 1])
         
     | 
| 872 | 
         
            +
                """
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                _estimator_type = "clusterer"
         
     | 
| 875 | 
         
            +
             
     | 
| 876 | 
         
            +
                def fit_predict(self, X, y=None, **kwargs):
         
     | 
| 877 | 
         
            +
                    """
         
     | 
| 878 | 
         
            +
                    Perform clustering on `X` and returns cluster labels.
         
     | 
| 879 | 
         
            +
             
     | 
| 880 | 
         
            +
                    Parameters
         
     | 
| 881 | 
         
            +
                    ----------
         
     | 
| 882 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 883 | 
         
            +
                        Input data.
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
                    y : Ignored
         
     | 
| 886 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 887 | 
         
            +
             
     | 
| 888 | 
         
            +
                    **kwargs : dict
         
     | 
| 889 | 
         
            +
                        Arguments to be passed to ``fit``.
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                        .. versionadded:: 1.4
         
     | 
| 892 | 
         
            +
             
     | 
| 893 | 
         
            +
                    Returns
         
     | 
| 894 | 
         
            +
                    -------
         
     | 
| 895 | 
         
            +
                    labels : ndarray of shape (n_samples,), dtype=np.int64
         
     | 
| 896 | 
         
            +
                        Cluster labels.
         
     | 
| 897 | 
         
            +
                    """
         
     | 
| 898 | 
         
            +
                    # non-optimized default implementation; override when a better
         
     | 
| 899 | 
         
            +
                    # method is possible for a given clustering algorithm
         
     | 
| 900 | 
         
            +
                    self.fit(X, **kwargs)
         
     | 
| 901 | 
         
            +
                    return self.labels_
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                def _more_tags(self):
         
     | 
| 904 | 
         
            +
                    return {"preserves_dtype": []}
         
     | 
| 905 | 
         
            +
             
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
            class BiclusterMixin:
         
     | 
| 908 | 
         
            +
                """Mixin class for all bicluster estimators in scikit-learn.
         
     | 
| 909 | 
         
            +
             
     | 
| 910 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 911 | 
         
            +
             
     | 
| 912 | 
         
            +
                - `biclusters_` property that returns the row and column indicators;
         
     | 
| 913 | 
         
            +
                - `get_indices` method that returns the row and column indices of a bicluster;
         
     | 
| 914 | 
         
            +
                - `get_shape` method that returns the shape of a bicluster;
         
     | 
| 915 | 
         
            +
                - `get_submatrix` method that returns the submatrix corresponding to a bicluster.
         
     | 
| 916 | 
         
            +
             
     | 
| 917 | 
         
            +
                Examples
         
     | 
| 918 | 
         
            +
                --------
         
     | 
| 919 | 
         
            +
                >>> import numpy as np
         
     | 
| 920 | 
         
            +
                >>> from sklearn.base import BaseEstimator, BiclusterMixin
         
     | 
| 921 | 
         
            +
                >>> class DummyBiClustering(BiclusterMixin, BaseEstimator):
         
     | 
| 922 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 923 | 
         
            +
                ...         self.rows_ = np.ones(shape=(1, X.shape[0]), dtype=bool)
         
     | 
| 924 | 
         
            +
                ...         self.columns_ = np.ones(shape=(1, X.shape[1]), dtype=bool)
         
     | 
| 925 | 
         
            +
                ...         return self
         
     | 
| 926 | 
         
            +
                >>> X = np.array([[1, 1], [2, 1], [1, 0],
         
     | 
| 927 | 
         
            +
                ...               [4, 7], [3, 5], [3, 6]])
         
     | 
| 928 | 
         
            +
                >>> bicluster = DummyBiClustering().fit(X)
         
     | 
| 929 | 
         
            +
                >>> hasattr(bicluster, "biclusters_")
         
     | 
| 930 | 
         
            +
                True
         
     | 
| 931 | 
         
            +
                >>> bicluster.get_indices(0)
         
     | 
| 932 | 
         
            +
                (array([0, 1, 2, 3, 4, 5]), array([0, 1]))
         
     | 
| 933 | 
         
            +
                """
         
     | 
| 934 | 
         
            +
             
     | 
| 935 | 
         
            +
                @property
         
     | 
| 936 | 
         
            +
                def biclusters_(self):
         
     | 
| 937 | 
         
            +
                    """Convenient way to get row and column indicators together.
         
     | 
| 938 | 
         
            +
             
     | 
| 939 | 
         
            +
                    Returns the ``rows_`` and ``columns_`` members.
         
     | 
| 940 | 
         
            +
                    """
         
     | 
| 941 | 
         
            +
                    return self.rows_, self.columns_
         
     | 
| 942 | 
         
            +
             
     | 
| 943 | 
         
            +
                def get_indices(self, i):
         
     | 
| 944 | 
         
            +
                    """Row and column indices of the `i`'th bicluster.
         
     | 
| 945 | 
         
            +
             
     | 
| 946 | 
         
            +
                    Only works if ``rows_`` and ``columns_`` attributes exist.
         
     | 
| 947 | 
         
            +
             
     | 
| 948 | 
         
            +
                    Parameters
         
     | 
| 949 | 
         
            +
                    ----------
         
     | 
| 950 | 
         
            +
                    i : int
         
     | 
| 951 | 
         
            +
                        The index of the cluster.
         
     | 
| 952 | 
         
            +
             
     | 
| 953 | 
         
            +
                    Returns
         
     | 
| 954 | 
         
            +
                    -------
         
     | 
| 955 | 
         
            +
                    row_ind : ndarray, dtype=np.intp
         
     | 
| 956 | 
         
            +
                        Indices of rows in the dataset that belong to the bicluster.
         
     | 
| 957 | 
         
            +
                    col_ind : ndarray, dtype=np.intp
         
     | 
| 958 | 
         
            +
                        Indices of columns in the dataset that belong to the bicluster.
         
     | 
| 959 | 
         
            +
                    """
         
     | 
| 960 | 
         
            +
                    rows = self.rows_[i]
         
     | 
| 961 | 
         
            +
                    columns = self.columns_[i]
         
     | 
| 962 | 
         
            +
                    return np.nonzero(rows)[0], np.nonzero(columns)[0]
         
     | 
| 963 | 
         
            +
             
     | 
| 964 | 
         
            +
                def get_shape(self, i):
         
     | 
| 965 | 
         
            +
                    """Shape of the `i`'th bicluster.
         
     | 
| 966 | 
         
            +
             
     | 
| 967 | 
         
            +
                    Parameters
         
     | 
| 968 | 
         
            +
                    ----------
         
     | 
| 969 | 
         
            +
                    i : int
         
     | 
| 970 | 
         
            +
                        The index of the cluster.
         
     | 
| 971 | 
         
            +
             
     | 
| 972 | 
         
            +
                    Returns
         
     | 
| 973 | 
         
            +
                    -------
         
     | 
| 974 | 
         
            +
                    n_rows : int
         
     | 
| 975 | 
         
            +
                        Number of rows in the bicluster.
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                    n_cols : int
         
     | 
| 978 | 
         
            +
                        Number of columns in the bicluster.
         
     | 
| 979 | 
         
            +
                    """
         
     | 
| 980 | 
         
            +
                    indices = self.get_indices(i)
         
     | 
| 981 | 
         
            +
                    return tuple(len(i) for i in indices)
         
     | 
| 982 | 
         
            +
             
     | 
| 983 | 
         
            +
                def get_submatrix(self, i, data):
         
     | 
| 984 | 
         
            +
                    """Return the submatrix corresponding to bicluster `i`.
         
     | 
| 985 | 
         
            +
             
     | 
| 986 | 
         
            +
                    Parameters
         
     | 
| 987 | 
         
            +
                    ----------
         
     | 
| 988 | 
         
            +
                    i : int
         
     | 
| 989 | 
         
            +
                        The index of the cluster.
         
     | 
| 990 | 
         
            +
                    data : array-like of shape (n_samples, n_features)
         
     | 
| 991 | 
         
            +
                        The data.
         
     | 
| 992 | 
         
            +
             
     | 
| 993 | 
         
            +
                    Returns
         
     | 
| 994 | 
         
            +
                    -------
         
     | 
| 995 | 
         
            +
                    submatrix : ndarray of shape (n_rows, n_cols)
         
     | 
| 996 | 
         
            +
                        The submatrix corresponding to bicluster `i`.
         
     | 
| 997 | 
         
            +
             
     | 
| 998 | 
         
            +
                    Notes
         
     | 
| 999 | 
         
            +
                    -----
         
     | 
| 1000 | 
         
            +
                    Works with sparse matrices. Only works if ``rows_`` and
         
     | 
| 1001 | 
         
            +
                    ``columns_`` attributes exist.
         
     | 
| 1002 | 
         
            +
                    """
         
     | 
| 1003 | 
         
            +
                    from .utils.validation import check_array
         
     | 
| 1004 | 
         
            +
             
     | 
| 1005 | 
         
            +
                    data = check_array(data, accept_sparse="csr")
         
     | 
| 1006 | 
         
            +
                    row_ind, col_ind = self.get_indices(i)
         
     | 
| 1007 | 
         
            +
                    return data[row_ind[:, np.newaxis], col_ind]
         
     | 
| 1008 | 
         
            +
             
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
            class TransformerMixin(_SetOutputMixin):
         
     | 
| 1011 | 
         
            +
                """Mixin class for all transformers in scikit-learn.
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                - a `fit_transform` method that delegates to `fit` and `transform`;
         
     | 
| 1016 | 
         
            +
                - a `set_output` method to output `X` as a specific container type.
         
     | 
| 1017 | 
         
            +
             
     | 
| 1018 | 
         
            +
                If :term:`get_feature_names_out` is defined, then :class:`BaseEstimator` will
         
     | 
| 1019 | 
         
            +
                automatically wrap `transform` and `fit_transform` to follow the `set_output`
         
     | 
| 1020 | 
         
            +
                API. See the :ref:`developer_api_set_output` for details.
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                :class:`OneToOneFeatureMixin` and
         
     | 
| 1023 | 
         
            +
                :class:`ClassNamePrefixFeaturesOutMixin` are helpful mixins for
         
     | 
| 1024 | 
         
            +
                defining :term:`get_feature_names_out`.
         
     | 
| 1025 | 
         
            +
             
     | 
| 1026 | 
         
            +
                Examples
         
     | 
| 1027 | 
         
            +
                --------
         
     | 
| 1028 | 
         
            +
                >>> import numpy as np
         
     | 
| 1029 | 
         
            +
                >>> from sklearn.base import BaseEstimator, TransformerMixin
         
     | 
| 1030 | 
         
            +
                >>> class MyTransformer(TransformerMixin, BaseEstimator):
         
     | 
| 1031 | 
         
            +
                ...     def __init__(self, *, param=1):
         
     | 
| 1032 | 
         
            +
                ...         self.param = param
         
     | 
| 1033 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1034 | 
         
            +
                ...         return self
         
     | 
| 1035 | 
         
            +
                ...     def transform(self, X):
         
     | 
| 1036 | 
         
            +
                ...         return np.full(shape=len(X), fill_value=self.param)
         
     | 
| 1037 | 
         
            +
                >>> transformer = MyTransformer()
         
     | 
| 1038 | 
         
            +
                >>> X = [[1, 2], [2, 3], [3, 4]]
         
     | 
| 1039 | 
         
            +
                >>> transformer.fit_transform(X)
         
     | 
| 1040 | 
         
            +
                array([1, 1, 1])
         
     | 
| 1041 | 
         
            +
                """
         
     | 
| 1042 | 
         
            +
             
     | 
| 1043 | 
         
            +
                def fit_transform(self, X, y=None, **fit_params):
         
     | 
| 1044 | 
         
            +
                    """
         
     | 
| 1045 | 
         
            +
                    Fit to data, then transform it.
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                    Fits transformer to `X` and `y` with optional parameters `fit_params`
         
     | 
| 1048 | 
         
            +
                    and returns a transformed version of `X`.
         
     | 
| 1049 | 
         
            +
             
     | 
| 1050 | 
         
            +
                    Parameters
         
     | 
| 1051 | 
         
            +
                    ----------
         
     | 
| 1052 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1053 | 
         
            +
                        Input samples.
         
     | 
| 1054 | 
         
            +
             
     | 
| 1055 | 
         
            +
                    y :  array-like of shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 1056 | 
         
            +
                            default=None
         
     | 
| 1057 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 1058 | 
         
            +
             
     | 
| 1059 | 
         
            +
                    **fit_params : dict
         
     | 
| 1060 | 
         
            +
                        Additional fit parameters.
         
     | 
| 1061 | 
         
            +
             
     | 
| 1062 | 
         
            +
                    Returns
         
     | 
| 1063 | 
         
            +
                    -------
         
     | 
| 1064 | 
         
            +
                    X_new : ndarray array of shape (n_samples, n_features_new)
         
     | 
| 1065 | 
         
            +
                        Transformed array.
         
     | 
| 1066 | 
         
            +
                    """
         
     | 
| 1067 | 
         
            +
                    # non-optimized default implementation; override when a better
         
     | 
| 1068 | 
         
            +
                    # method is possible for a given clustering algorithm
         
     | 
| 1069 | 
         
            +
             
     | 
| 1070 | 
         
            +
                    # we do not route parameters here, since consumers don't route. But
         
     | 
| 1071 | 
         
            +
                    # since it's possible for a `transform` method to also consume
         
     | 
| 1072 | 
         
            +
                    # metadata, we check if that's the case, and we raise a warning telling
         
     | 
| 1073 | 
         
            +
                    # users that they should implement a custom `fit_transform` method
         
     | 
| 1074 | 
         
            +
                    # to forward metadata to `transform` as well.
         
     | 
| 1075 | 
         
            +
                    #
         
     | 
| 1076 | 
         
            +
                    # For that, we calculate routing and check if anything would be routed
         
     | 
| 1077 | 
         
            +
                    # to `transform` if we were to route them.
         
     | 
| 1078 | 
         
            +
                    if _routing_enabled():
         
     | 
| 1079 | 
         
            +
                        transform_params = self.get_metadata_routing().consumes(
         
     | 
| 1080 | 
         
            +
                            method="transform", params=fit_params.keys()
         
     | 
| 1081 | 
         
            +
                        )
         
     | 
| 1082 | 
         
            +
                        if transform_params:
         
     | 
| 1083 | 
         
            +
                            warnings.warn(
         
     | 
| 1084 | 
         
            +
                                (
         
     | 
| 1085 | 
         
            +
                                    f"This object ({self.__class__.__name__}) has a `transform`"
         
     | 
| 1086 | 
         
            +
                                    " method which consumes metadata, but `fit_transform` does not"
         
     | 
| 1087 | 
         
            +
                                    " forward metadata to `transform`. Please implement a custom"
         
     | 
| 1088 | 
         
            +
                                    " `fit_transform` method to forward metadata to `transform` as"
         
     | 
| 1089 | 
         
            +
                                    " well. Alternatively, you can explicitly do"
         
     | 
| 1090 | 
         
            +
                                    " `set_transform_request`and set all values to `False` to"
         
     | 
| 1091 | 
         
            +
                                    " disable metadata routed to `transform`, if that's an option."
         
     | 
| 1092 | 
         
            +
                                ),
         
     | 
| 1093 | 
         
            +
                                UserWarning,
         
     | 
| 1094 | 
         
            +
                            )
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                    if y is None:
         
     | 
| 1097 | 
         
            +
                        # fit method of arity 1 (unsupervised transformation)
         
     | 
| 1098 | 
         
            +
                        return self.fit(X, **fit_params).transform(X)
         
     | 
| 1099 | 
         
            +
                    else:
         
     | 
| 1100 | 
         
            +
                        # fit method of arity 2 (supervised transformation)
         
     | 
| 1101 | 
         
            +
                        return self.fit(X, y, **fit_params).transform(X)
         
     | 
| 1102 | 
         
            +
             
     | 
| 1103 | 
         
            +
             
     | 
| 1104 | 
         
            +
            class OneToOneFeatureMixin:
         
     | 
| 1105 | 
         
            +
                """Provides `get_feature_names_out` for simple transformers.
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
                This mixin assumes there's a 1-to-1 correspondence between input features
         
     | 
| 1108 | 
         
            +
                and output features, such as :class:`~sklearn.preprocessing.StandardScaler`.
         
     | 
| 1109 | 
         
            +
             
     | 
| 1110 | 
         
            +
                Examples
         
     | 
| 1111 | 
         
            +
                --------
         
     | 
| 1112 | 
         
            +
                >>> import numpy as np
         
     | 
| 1113 | 
         
            +
                >>> from sklearn.base import OneToOneFeatureMixin
         
     | 
| 1114 | 
         
            +
                >>> class MyEstimator(OneToOneFeatureMixin):
         
     | 
| 1115 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1116 | 
         
            +
                ...         self.n_features_in_ = X.shape[1]
         
     | 
| 1117 | 
         
            +
                ...         return self
         
     | 
| 1118 | 
         
            +
                >>> X = np.array([[1, 2], [3, 4]])
         
     | 
| 1119 | 
         
            +
                >>> MyEstimator().fit(X).get_feature_names_out()
         
     | 
| 1120 | 
         
            +
                array(['x0', 'x1'], dtype=object)
         
     | 
| 1121 | 
         
            +
                """
         
     | 
| 1122 | 
         
            +
             
     | 
| 1123 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 1124 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 1125 | 
         
            +
             
     | 
| 1126 | 
         
            +
                    Parameters
         
     | 
| 1127 | 
         
            +
                    ----------
         
     | 
| 1128 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 1129 | 
         
            +
                        Input features.
         
     | 
| 1130 | 
         
            +
             
     | 
| 1131 | 
         
            +
                        - If `input_features` is `None`, then `feature_names_in_` is
         
     | 
| 1132 | 
         
            +
                          used as feature names in. If `feature_names_in_` is not defined,
         
     | 
| 1133 | 
         
            +
                          then the following input feature names are generated:
         
     | 
| 1134 | 
         
            +
                          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
         
     | 
| 1135 | 
         
            +
                        - If `input_features` is an array-like, then `input_features` must
         
     | 
| 1136 | 
         
            +
                          match `feature_names_in_` if `feature_names_in_` is defined.
         
     | 
| 1137 | 
         
            +
             
     | 
| 1138 | 
         
            +
                    Returns
         
     | 
| 1139 | 
         
            +
                    -------
         
     | 
| 1140 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 1141 | 
         
            +
                        Same as input features.
         
     | 
| 1142 | 
         
            +
                    """
         
     | 
| 1143 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 1144 | 
         
            +
                    return _check_feature_names_in(self, input_features)
         
     | 
| 1145 | 
         
            +
             
     | 
| 1146 | 
         
            +
             
     | 
| 1147 | 
         
            +
            class ClassNamePrefixFeaturesOutMixin:
         
     | 
| 1148 | 
         
            +
                """Mixin class for transformers that generate their own names by prefixing.
         
     | 
| 1149 | 
         
            +
             
     | 
| 1150 | 
         
            +
                This mixin is useful when the transformer needs to generate its own feature
         
     | 
| 1151 | 
         
            +
                names out, such as :class:`~sklearn.decomposition.PCA`. For example, if
         
     | 
| 1152 | 
         
            +
                :class:`~sklearn.decomposition.PCA` outputs 3 features, then the generated feature
         
     | 
| 1153 | 
         
            +
                names out are: `["pca0", "pca1", "pca2"]`.
         
     | 
| 1154 | 
         
            +
             
     | 
| 1155 | 
         
            +
                This mixin assumes that a `_n_features_out` attribute is defined when the
         
     | 
| 1156 | 
         
            +
                transformer is fitted. `_n_features_out` is the number of output features
         
     | 
| 1157 | 
         
            +
                that the transformer will return in `transform` of `fit_transform`.
         
     | 
| 1158 | 
         
            +
             
     | 
| 1159 | 
         
            +
                Examples
         
     | 
| 1160 | 
         
            +
                --------
         
     | 
| 1161 | 
         
            +
                >>> import numpy as np
         
     | 
| 1162 | 
         
            +
                >>> from sklearn.base import ClassNamePrefixFeaturesOutMixin
         
     | 
| 1163 | 
         
            +
                >>> class MyEstimator(ClassNamePrefixFeaturesOutMixin):
         
     | 
| 1164 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1165 | 
         
            +
                ...         self._n_features_out = X.shape[1]
         
     | 
| 1166 | 
         
            +
                ...         return self
         
     | 
| 1167 | 
         
            +
                >>> X = np.array([[1, 2], [3, 4]])
         
     | 
| 1168 | 
         
            +
                >>> MyEstimator().fit(X).get_feature_names_out()
         
     | 
| 1169 | 
         
            +
                array(['myestimator0', 'myestimator1'], dtype=object)
         
     | 
| 1170 | 
         
            +
                """
         
     | 
| 1171 | 
         
            +
             
     | 
| 1172 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 1173 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                    The feature names out will prefixed by the lowercased class name. For
         
     | 
| 1176 | 
         
            +
                    example, if the transformer outputs 3 features, then the feature names
         
     | 
| 1177 | 
         
            +
                    out are: `["class_name0", "class_name1", "class_name2"]`.
         
     | 
| 1178 | 
         
            +
             
     | 
| 1179 | 
         
            +
                    Parameters
         
     | 
| 1180 | 
         
            +
                    ----------
         
     | 
| 1181 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 1182 | 
         
            +
                        Only used to validate feature names with the names seen in `fit`.
         
     | 
| 1183 | 
         
            +
             
     | 
| 1184 | 
         
            +
                    Returns
         
     | 
| 1185 | 
         
            +
                    -------
         
     | 
| 1186 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 1187 | 
         
            +
                        Transformed feature names.
         
     | 
| 1188 | 
         
            +
                    """
         
     | 
| 1189 | 
         
            +
                    check_is_fitted(self, "_n_features_out")
         
     | 
| 1190 | 
         
            +
                    return _generate_get_feature_names_out(
         
     | 
| 1191 | 
         
            +
                        self, self._n_features_out, input_features=input_features
         
     | 
| 1192 | 
         
            +
                    )
         
     | 
| 1193 | 
         
            +
             
     | 
| 1194 | 
         
            +
             
     | 
| 1195 | 
         
            +
            class DensityMixin:
         
     | 
| 1196 | 
         
            +
                """Mixin class for all density estimators in scikit-learn.
         
     | 
| 1197 | 
         
            +
             
     | 
| 1198 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 1199 | 
         
            +
             
     | 
| 1200 | 
         
            +
                - `_estimator_type` class attribute defaulting to `"DensityEstimator"`;
         
     | 
| 1201 | 
         
            +
                - `score` method that default that do no-op.
         
     | 
| 1202 | 
         
            +
             
     | 
| 1203 | 
         
            +
                Examples
         
     | 
| 1204 | 
         
            +
                --------
         
     | 
| 1205 | 
         
            +
                >>> from sklearn.base import DensityMixin
         
     | 
| 1206 | 
         
            +
                >>> class MyEstimator(DensityMixin):
         
     | 
| 1207 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1208 | 
         
            +
                ...         self.is_fitted_ = True
         
     | 
| 1209 | 
         
            +
                ...         return self
         
     | 
| 1210 | 
         
            +
                >>> estimator = MyEstimator()
         
     | 
| 1211 | 
         
            +
                >>> hasattr(estimator, "score")
         
     | 
| 1212 | 
         
            +
                True
         
     | 
| 1213 | 
         
            +
                """
         
     | 
| 1214 | 
         
            +
             
     | 
| 1215 | 
         
            +
                _estimator_type = "DensityEstimator"
         
     | 
| 1216 | 
         
            +
             
     | 
| 1217 | 
         
            +
                def score(self, X, y=None):
         
     | 
| 1218 | 
         
            +
                    """Return the score of the model on the data `X`.
         
     | 
| 1219 | 
         
            +
             
     | 
| 1220 | 
         
            +
                    Parameters
         
     | 
| 1221 | 
         
            +
                    ----------
         
     | 
| 1222 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1223 | 
         
            +
                        Test samples.
         
     | 
| 1224 | 
         
            +
             
     | 
| 1225 | 
         
            +
                    y : Ignored
         
     | 
| 1226 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 1227 | 
         
            +
             
     | 
| 1228 | 
         
            +
                    Returns
         
     | 
| 1229 | 
         
            +
                    -------
         
     | 
| 1230 | 
         
            +
                    score : float
         
     | 
| 1231 | 
         
            +
                    """
         
     | 
| 1232 | 
         
            +
                    pass
         
     | 
| 1233 | 
         
            +
             
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
            class OutlierMixin:
         
     | 
| 1236 | 
         
            +
                """Mixin class for all outlier detection estimators in scikit-learn.
         
     | 
| 1237 | 
         
            +
             
     | 
| 1238 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 1239 | 
         
            +
             
     | 
| 1240 | 
         
            +
                - `_estimator_type` class attribute defaulting to `outlier_detector`;
         
     | 
| 1241 | 
         
            +
                - `fit_predict` method that default to `fit` and `predict`.
         
     | 
| 1242 | 
         
            +
             
     | 
| 1243 | 
         
            +
                Examples
         
     | 
| 1244 | 
         
            +
                --------
         
     | 
| 1245 | 
         
            +
                >>> import numpy as np
         
     | 
| 1246 | 
         
            +
                >>> from sklearn.base import BaseEstimator, OutlierMixin
         
     | 
| 1247 | 
         
            +
                >>> class MyEstimator(OutlierMixin):
         
     | 
| 1248 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1249 | 
         
            +
                ...         self.is_fitted_ = True
         
     | 
| 1250 | 
         
            +
                ...         return self
         
     | 
| 1251 | 
         
            +
                ...     def predict(self, X):
         
     | 
| 1252 | 
         
            +
                ...         return np.ones(shape=len(X))
         
     | 
| 1253 | 
         
            +
                >>> estimator = MyEstimator()
         
     | 
| 1254 | 
         
            +
                >>> X = np.array([[1, 2], [2, 3], [3, 4]])
         
     | 
| 1255 | 
         
            +
                >>> estimator.fit_predict(X)
         
     | 
| 1256 | 
         
            +
                array([1., 1., 1.])
         
     | 
| 1257 | 
         
            +
                """
         
     | 
| 1258 | 
         
            +
             
     | 
| 1259 | 
         
            +
                _estimator_type = "outlier_detector"
         
     | 
| 1260 | 
         
            +
             
     | 
| 1261 | 
         
            +
                def fit_predict(self, X, y=None, **kwargs):
         
     | 
| 1262 | 
         
            +
                    """Perform fit on X and returns labels for X.
         
     | 
| 1263 | 
         
            +
             
     | 
| 1264 | 
         
            +
                    Returns -1 for outliers and 1 for inliers.
         
     | 
| 1265 | 
         
            +
             
     | 
| 1266 | 
         
            +
                    Parameters
         
     | 
| 1267 | 
         
            +
                    ----------
         
     | 
| 1268 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 1269 | 
         
            +
                        The input samples.
         
     | 
| 1270 | 
         
            +
             
     | 
| 1271 | 
         
            +
                    y : Ignored
         
     | 
| 1272 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 1273 | 
         
            +
             
     | 
| 1274 | 
         
            +
                    **kwargs : dict
         
     | 
| 1275 | 
         
            +
                        Arguments to be passed to ``fit``.
         
     | 
| 1276 | 
         
            +
             
     | 
| 1277 | 
         
            +
                        .. versionadded:: 1.4
         
     | 
| 1278 | 
         
            +
             
     | 
| 1279 | 
         
            +
                    Returns
         
     | 
| 1280 | 
         
            +
                    -------
         
     | 
| 1281 | 
         
            +
                    y : ndarray of shape (n_samples,)
         
     | 
| 1282 | 
         
            +
                        1 for inliers, -1 for outliers.
         
     | 
| 1283 | 
         
            +
                    """
         
     | 
| 1284 | 
         
            +
                    # we do not route parameters here, since consumers don't route. But
         
     | 
| 1285 | 
         
            +
                    # since it's possible for a `predict` method to also consume
         
     | 
| 1286 | 
         
            +
                    # metadata, we check if that's the case, and we raise a warning telling
         
     | 
| 1287 | 
         
            +
                    # users that they should implement a custom `fit_predict` method
         
     | 
| 1288 | 
         
            +
                    # to forward metadata to `predict` as well.
         
     | 
| 1289 | 
         
            +
                    #
         
     | 
| 1290 | 
         
            +
                    # For that, we calculate routing and check if anything would be routed
         
     | 
| 1291 | 
         
            +
                    # to `predict` if we were to route them.
         
     | 
| 1292 | 
         
            +
                    if _routing_enabled():
         
     | 
| 1293 | 
         
            +
                        transform_params = self.get_metadata_routing().consumes(
         
     | 
| 1294 | 
         
            +
                            method="predict", params=kwargs.keys()
         
     | 
| 1295 | 
         
            +
                        )
         
     | 
| 1296 | 
         
            +
                        if transform_params:
         
     | 
| 1297 | 
         
            +
                            warnings.warn(
         
     | 
| 1298 | 
         
            +
                                (
         
     | 
| 1299 | 
         
            +
                                    f"This object ({self.__class__.__name__}) has a `predict` "
         
     | 
| 1300 | 
         
            +
                                    "method which consumes metadata, but `fit_predict` does not "
         
     | 
| 1301 | 
         
            +
                                    "forward metadata to `predict`. Please implement a custom "
         
     | 
| 1302 | 
         
            +
                                    "`fit_predict` method to forward metadata to `predict` as well."
         
     | 
| 1303 | 
         
            +
                                    "Alternatively, you can explicitly do `set_predict_request`"
         
     | 
| 1304 | 
         
            +
                                    "and set all values to `False` to disable metadata routed to "
         
     | 
| 1305 | 
         
            +
                                    "`predict`, if that's an option."
         
     | 
| 1306 | 
         
            +
                                ),
         
     | 
| 1307 | 
         
            +
                                UserWarning,
         
     | 
| 1308 | 
         
            +
                            )
         
     | 
| 1309 | 
         
            +
             
     | 
| 1310 | 
         
            +
                    # override for transductive outlier detectors like LocalOulierFactor
         
     | 
| 1311 | 
         
            +
                    return self.fit(X, **kwargs).predict(X)
         
     | 
| 1312 | 
         
            +
             
     | 
| 1313 | 
         
            +
             
     | 
| 1314 | 
         
            +
            class MetaEstimatorMixin:
         
     | 
| 1315 | 
         
            +
                """Mixin class for all meta estimators in scikit-learn.
         
     | 
| 1316 | 
         
            +
             
     | 
| 1317 | 
         
            +
                This mixin defines the following functionality:
         
     | 
| 1318 | 
         
            +
             
     | 
| 1319 | 
         
            +
                - define `_required_parameters` that specify the mandatory `estimator` parameter.
         
     | 
| 1320 | 
         
            +
             
     | 
| 1321 | 
         
            +
                Examples
         
     | 
| 1322 | 
         
            +
                --------
         
     | 
| 1323 | 
         
            +
                >>> from sklearn.base import MetaEstimatorMixin
         
     | 
| 1324 | 
         
            +
                >>> from sklearn.datasets import load_iris
         
     | 
| 1325 | 
         
            +
                >>> from sklearn.linear_model import LogisticRegression
         
     | 
| 1326 | 
         
            +
                >>> class MyEstimator(MetaEstimatorMixin):
         
     | 
| 1327 | 
         
            +
                ...     def __init__(self, *, estimator=None):
         
     | 
| 1328 | 
         
            +
                ...         self.estimator = estimator
         
     | 
| 1329 | 
         
            +
                ...     def fit(self, X, y=None):
         
     | 
| 1330 | 
         
            +
                ...         if self.estimator is None:
         
     | 
| 1331 | 
         
            +
                ...             self.estimator_ = LogisticRegression()
         
     | 
| 1332 | 
         
            +
                ...         else:
         
     | 
| 1333 | 
         
            +
                ...             self.estimator_ = self.estimator
         
     | 
| 1334 | 
         
            +
                ...         return self
         
     | 
| 1335 | 
         
            +
                >>> X, y = load_iris(return_X_y=True)
         
     | 
| 1336 | 
         
            +
                >>> estimator = MyEstimator().fit(X, y)
         
     | 
| 1337 | 
         
            +
                >>> estimator.estimator_
         
     | 
| 1338 | 
         
            +
                LogisticRegression()
         
     | 
| 1339 | 
         
            +
                """
         
     | 
| 1340 | 
         
            +
             
     | 
| 1341 | 
         
            +
                _required_parameters = ["estimator"]
         
     | 
| 1342 | 
         
            +
             
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
            class MultiOutputMixin:
         
     | 
| 1345 | 
         
            +
                """Mixin to mark estimators that support multioutput."""
         
     | 
| 1346 | 
         
            +
             
     | 
| 1347 | 
         
            +
                def _more_tags(self):
         
     | 
| 1348 | 
         
            +
                    return {"multioutput": True}
         
     | 
| 1349 | 
         
            +
             
     | 
| 1350 | 
         
            +
             
     | 
| 1351 | 
         
            +
            class _UnstableArchMixin:
         
     | 
| 1352 | 
         
            +
                """Mark estimators that are non-determinstic on 32bit or PowerPC"""
         
     | 
| 1353 | 
         
            +
             
     | 
| 1354 | 
         
            +
                def _more_tags(self):
         
     | 
| 1355 | 
         
            +
                    return {
         
     | 
| 1356 | 
         
            +
                        "non_deterministic": _IS_32BIT or platform.machine().startswith(
         
     | 
| 1357 | 
         
            +
                            ("ppc", "powerpc")
         
     | 
| 1358 | 
         
            +
                        )
         
     | 
| 1359 | 
         
            +
                    }
         
     | 
| 1360 | 
         
            +
             
     | 
| 1361 | 
         
            +
             
     | 
| 1362 | 
         
            +
            def is_classifier(estimator):
         
     | 
| 1363 | 
         
            +
                """Return True if the given estimator is (probably) a classifier.
         
     | 
| 1364 | 
         
            +
             
     | 
| 1365 | 
         
            +
                Parameters
         
     | 
| 1366 | 
         
            +
                ----------
         
     | 
| 1367 | 
         
            +
                estimator : object
         
     | 
| 1368 | 
         
            +
                    Estimator object to test.
         
     | 
| 1369 | 
         
            +
             
     | 
| 1370 | 
         
            +
                Returns
         
     | 
| 1371 | 
         
            +
                -------
         
     | 
| 1372 | 
         
            +
                out : bool
         
     | 
| 1373 | 
         
            +
                    True if estimator is a classifier and False otherwise.
         
     | 
| 1374 | 
         
            +
             
     | 
| 1375 | 
         
            +
                Examples
         
     | 
| 1376 | 
         
            +
                --------
         
     | 
| 1377 | 
         
            +
                >>> from sklearn.base import is_classifier
         
     | 
| 1378 | 
         
            +
                >>> from sklearn.svm import SVC, SVR
         
     | 
| 1379 | 
         
            +
                >>> classifier = SVC()
         
     | 
| 1380 | 
         
            +
                >>> regressor = SVR()
         
     | 
| 1381 | 
         
            +
                >>> is_classifier(classifier)
         
     | 
| 1382 | 
         
            +
                True
         
     | 
| 1383 | 
         
            +
                >>> is_classifier(regressor)
         
     | 
| 1384 | 
         
            +
                False
         
     | 
| 1385 | 
         
            +
                """
         
     | 
| 1386 | 
         
            +
                return getattr(estimator, "_estimator_type", None) == "classifier"
         
     | 
| 1387 | 
         
            +
             
     | 
| 1388 | 
         
            +
             
     | 
| 1389 | 
         
            +
            def is_regressor(estimator):
         
     | 
| 1390 | 
         
            +
                """Return True if the given estimator is (probably) a regressor.
         
     | 
| 1391 | 
         
            +
             
     | 
| 1392 | 
         
            +
                Parameters
         
     | 
| 1393 | 
         
            +
                ----------
         
     | 
| 1394 | 
         
            +
                estimator : estimator instance
         
     | 
| 1395 | 
         
            +
                    Estimator object to test.
         
     | 
| 1396 | 
         
            +
             
     | 
| 1397 | 
         
            +
                Returns
         
     | 
| 1398 | 
         
            +
                -------
         
     | 
| 1399 | 
         
            +
                out : bool
         
     | 
| 1400 | 
         
            +
                    True if estimator is a regressor and False otherwise.
         
     | 
| 1401 | 
         
            +
             
     | 
| 1402 | 
         
            +
                Examples
         
     | 
| 1403 | 
         
            +
                --------
         
     | 
| 1404 | 
         
            +
                >>> from sklearn.base import is_regressor
         
     | 
| 1405 | 
         
            +
                >>> from sklearn.svm import SVC, SVR
         
     | 
| 1406 | 
         
            +
                >>> classifier = SVC()
         
     | 
| 1407 | 
         
            +
                >>> regressor = SVR()
         
     | 
| 1408 | 
         
            +
                >>> is_regressor(classifier)
         
     | 
| 1409 | 
         
            +
                False
         
     | 
| 1410 | 
         
            +
                >>> is_regressor(regressor)
         
     | 
| 1411 | 
         
            +
                True
         
     | 
| 1412 | 
         
            +
                """
         
     | 
| 1413 | 
         
            +
                return getattr(estimator, "_estimator_type", None) == "regressor"
         
     | 
| 1414 | 
         
            +
             
     | 
| 1415 | 
         
            +
             
     | 
| 1416 | 
         
            +
            def is_outlier_detector(estimator):
         
     | 
| 1417 | 
         
            +
                """Return True if the given estimator is (probably) an outlier detector.
         
     | 
| 1418 | 
         
            +
             
     | 
| 1419 | 
         
            +
                Parameters
         
     | 
| 1420 | 
         
            +
                ----------
         
     | 
| 1421 | 
         
            +
                estimator : estimator instance
         
     | 
| 1422 | 
         
            +
                    Estimator object to test.
         
     | 
| 1423 | 
         
            +
             
     | 
| 1424 | 
         
            +
                Returns
         
     | 
| 1425 | 
         
            +
                -------
         
     | 
| 1426 | 
         
            +
                out : bool
         
     | 
| 1427 | 
         
            +
                    True if estimator is an outlier detector and False otherwise.
         
     | 
| 1428 | 
         
            +
                """
         
     | 
| 1429 | 
         
            +
                return getattr(estimator, "_estimator_type", None) == "outlier_detector"
         
     | 
| 1430 | 
         
            +
             
     | 
| 1431 | 
         
            +
             
     | 
| 1432 | 
         
            +
            def _fit_context(*, prefer_skip_nested_validation):
         
     | 
| 1433 | 
         
            +
                """Decorator to run the fit methods of estimators within context managers.
         
     | 
| 1434 | 
         
            +
             
     | 
| 1435 | 
         
            +
                Parameters
         
     | 
| 1436 | 
         
            +
                ----------
         
     | 
| 1437 | 
         
            +
                prefer_skip_nested_validation : bool
         
     | 
| 1438 | 
         
            +
                    If True, the validation of parameters of inner estimators or functions
         
     | 
| 1439 | 
         
            +
                    called during fit will be skipped.
         
     | 
| 1440 | 
         
            +
             
     | 
| 1441 | 
         
            +
                    This is useful to avoid validating many times the parameters passed by the
         
     | 
| 1442 | 
         
            +
                    user from the public facing API. It's also useful to avoid validating
         
     | 
| 1443 | 
         
            +
                    parameters that we pass internally to inner functions that are guaranteed to
         
     | 
| 1444 | 
         
            +
                    be valid by the test suite.
         
     | 
| 1445 | 
         
            +
             
     | 
| 1446 | 
         
            +
                    It should be set to True for most estimators, except for those that receive
         
     | 
| 1447 | 
         
            +
                    non-validated objects as parameters, such as meta-estimators that are given
         
     | 
| 1448 | 
         
            +
                    estimator objects.
         
     | 
| 1449 | 
         
            +
             
     | 
| 1450 | 
         
            +
                Returns
         
     | 
| 1451 | 
         
            +
                -------
         
     | 
| 1452 | 
         
            +
                decorated_fit : method
         
     | 
| 1453 | 
         
            +
                    The decorated fit method.
         
     | 
| 1454 | 
         
            +
                """
         
     | 
| 1455 | 
         
            +
             
     | 
| 1456 | 
         
            +
                def decorator(fit_method):
         
     | 
| 1457 | 
         
            +
                    @functools.wraps(fit_method)
         
     | 
| 1458 | 
         
            +
                    def wrapper(estimator, *args, **kwargs):
         
     | 
| 1459 | 
         
            +
                        global_skip_validation = get_config()["skip_parameter_validation"]
         
     | 
| 1460 | 
         
            +
             
     | 
| 1461 | 
         
            +
                        # we don't want to validate again for each call to partial_fit
         
     | 
| 1462 | 
         
            +
                        partial_fit_and_fitted = (
         
     | 
| 1463 | 
         
            +
                            fit_method.__name__ == "partial_fit" and _is_fitted(estimator)
         
     | 
| 1464 | 
         
            +
                        )
         
     | 
| 1465 | 
         
            +
             
     | 
| 1466 | 
         
            +
                        if not global_skip_validation and not partial_fit_and_fitted:
         
     | 
| 1467 | 
         
            +
                            estimator._validate_params()
         
     | 
| 1468 | 
         
            +
             
     | 
| 1469 | 
         
            +
                        with config_context(
         
     | 
| 1470 | 
         
            +
                            skip_parameter_validation=(
         
     | 
| 1471 | 
         
            +
                                prefer_skip_nested_validation or global_skip_validation
         
     | 
| 1472 | 
         
            +
                            )
         
     | 
| 1473 | 
         
            +
                        ):
         
     | 
| 1474 | 
         
            +
                            return fit_method(estimator, *args, **kwargs)
         
     | 
| 1475 | 
         
            +
             
     | 
| 1476 | 
         
            +
                    return wrapper
         
     | 
| 1477 | 
         
            +
             
     | 
| 1478 | 
         
            +
                return decorator
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/calibration.py
    ADDED
    
    | 
         @@ -0,0 +1,1410 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Calibration of predicted probabilities."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            # Author: Alexandre Gramfort <[email protected]>
         
     | 
| 4 | 
         
            +
            #         Balazs Kegl <[email protected]>
         
     | 
| 5 | 
         
            +
            #         Jan Hendrik Metzen <[email protected]>
         
     | 
| 6 | 
         
            +
            #         Mathieu Blondel <[email protected]>
         
     | 
| 7 | 
         
            +
            #
         
     | 
| 8 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import warnings
         
     | 
| 11 | 
         
            +
            from inspect import signature
         
     | 
| 12 | 
         
            +
            from math import log
         
     | 
| 13 | 
         
            +
            from numbers import Integral, Real
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import numpy as np
         
     | 
| 16 | 
         
            +
            from scipy.optimize import minimize
         
     | 
| 17 | 
         
            +
            from scipy.special import expit
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            from sklearn.utils import Bunch
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
            from ._loss import HalfBinomialLoss
         
     | 
| 22 | 
         
            +
            from .base import (
         
     | 
| 23 | 
         
            +
                BaseEstimator,
         
     | 
| 24 | 
         
            +
                ClassifierMixin,
         
     | 
| 25 | 
         
            +
                MetaEstimatorMixin,
         
     | 
| 26 | 
         
            +
                RegressorMixin,
         
     | 
| 27 | 
         
            +
                _fit_context,
         
     | 
| 28 | 
         
            +
                clone,
         
     | 
| 29 | 
         
            +
            )
         
     | 
| 30 | 
         
            +
            from .isotonic import IsotonicRegression
         
     | 
| 31 | 
         
            +
            from .model_selection import check_cv, cross_val_predict
         
     | 
| 32 | 
         
            +
            from .preprocessing import LabelEncoder, label_binarize
         
     | 
| 33 | 
         
            +
            from .svm import LinearSVC
         
     | 
| 34 | 
         
            +
            from .utils import (
         
     | 
| 35 | 
         
            +
                _safe_indexing,
         
     | 
| 36 | 
         
            +
                column_or_1d,
         
     | 
| 37 | 
         
            +
                indexable,
         
     | 
| 38 | 
         
            +
            )
         
     | 
| 39 | 
         
            +
            from .utils._param_validation import (
         
     | 
| 40 | 
         
            +
                HasMethods,
         
     | 
| 41 | 
         
            +
                Interval,
         
     | 
| 42 | 
         
            +
                StrOptions,
         
     | 
| 43 | 
         
            +
                validate_params,
         
     | 
| 44 | 
         
            +
            )
         
     | 
| 45 | 
         
            +
            from .utils._plotting import _BinaryClassifierCurveDisplayMixin
         
     | 
| 46 | 
         
            +
            from .utils._response import _get_response_values, _process_predict_proba
         
     | 
| 47 | 
         
            +
            from .utils.metadata_routing import (
         
     | 
| 48 | 
         
            +
                MetadataRouter,
         
     | 
| 49 | 
         
            +
                MethodMapping,
         
     | 
| 50 | 
         
            +
                _routing_enabled,
         
     | 
| 51 | 
         
            +
                process_routing,
         
     | 
| 52 | 
         
            +
            )
         
     | 
| 53 | 
         
            +
            from .utils.multiclass import check_classification_targets
         
     | 
| 54 | 
         
            +
            from .utils.parallel import Parallel, delayed
         
     | 
| 55 | 
         
            +
            from .utils.validation import (
         
     | 
| 56 | 
         
            +
                _check_method_params,
         
     | 
| 57 | 
         
            +
                _check_pos_label_consistency,
         
     | 
| 58 | 
         
            +
                _check_response_method,
         
     | 
| 59 | 
         
            +
                _check_sample_weight,
         
     | 
| 60 | 
         
            +
                _num_samples,
         
     | 
| 61 | 
         
            +
                check_consistent_length,
         
     | 
| 62 | 
         
            +
                check_is_fitted,
         
     | 
| 63 | 
         
            +
            )
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            class CalibratedClassifierCV(ClassifierMixin, MetaEstimatorMixin, BaseEstimator):
         
     | 
| 67 | 
         
            +
                """Probability calibration with isotonic regression or logistic regression.
         
     | 
| 68 | 
         
            +
             
     | 
| 69 | 
         
            +
                This class uses cross-validation to both estimate the parameters of a
         
     | 
| 70 | 
         
            +
                classifier and subsequently calibrate a classifier. With default
         
     | 
| 71 | 
         
            +
                `ensemble=True`, for each cv split it
         
     | 
| 72 | 
         
            +
                fits a copy of the base estimator to the training subset, and calibrates it
         
     | 
| 73 | 
         
            +
                using the testing subset. For prediction, predicted probabilities are
         
     | 
| 74 | 
         
            +
                averaged across these individual calibrated classifiers. When
         
     | 
| 75 | 
         
            +
                `ensemble=False`, cross-validation is used to obtain unbiased predictions,
         
     | 
| 76 | 
         
            +
                via :func:`~sklearn.model_selection.cross_val_predict`, which are then
         
     | 
| 77 | 
         
            +
                used for calibration. For prediction, the base estimator, trained using all
         
     | 
| 78 | 
         
            +
                the data, is used. This is the prediction method implemented when
         
     | 
| 79 | 
         
            +
                `probabilities=True` for :class:`~sklearn.svm.SVC` and :class:`~sklearn.svm.NuSVC`
         
     | 
| 80 | 
         
            +
                estimators (see :ref:`User Guide <scores_probabilities>` for details).
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                Already fitted classifiers can be calibrated via the parameter
         
     | 
| 83 | 
         
            +
                `cv="prefit"`. In this case, no cross-validation is used and all provided
         
     | 
| 84 | 
         
            +
                data is used for calibration. The user has to take care manually that data
         
     | 
| 85 | 
         
            +
                for model fitting and calibration are disjoint.
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                The calibration is based on the :term:`decision_function` method of the
         
     | 
| 88 | 
         
            +
                `estimator` if it exists, else on :term:`predict_proba`.
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                Read more in the :ref:`User Guide <calibration>`.
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                Parameters
         
     | 
| 93 | 
         
            +
                ----------
         
     | 
| 94 | 
         
            +
                estimator : estimator instance, default=None
         
     | 
| 95 | 
         
            +
                    The classifier whose output need to be calibrated to provide more
         
     | 
| 96 | 
         
            +
                    accurate `predict_proba` outputs. The default classifier is
         
     | 
| 97 | 
         
            +
                    a :class:`~sklearn.svm.LinearSVC`.
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                method : {'sigmoid', 'isotonic'}, default='sigmoid'
         
     | 
| 102 | 
         
            +
                    The method to use for calibration. Can be 'sigmoid' which
         
     | 
| 103 | 
         
            +
                    corresponds to Platt's method (i.e. a logistic regression model) or
         
     | 
| 104 | 
         
            +
                    'isotonic' which is a non-parametric approach. It is not advised to
         
     | 
| 105 | 
         
            +
                    use isotonic calibration with too few calibration samples
         
     | 
| 106 | 
         
            +
                    ``(<<1000)`` since it tends to overfit.
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                cv : int, cross-validation generator, iterable or "prefit", \
         
     | 
| 109 | 
         
            +
                        default=None
         
     | 
| 110 | 
         
            +
                    Determines the cross-validation splitting strategy.
         
     | 
| 111 | 
         
            +
                    Possible inputs for cv are:
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                    - None, to use the default 5-fold cross-validation,
         
     | 
| 114 | 
         
            +
                    - integer, to specify the number of folds.
         
     | 
| 115 | 
         
            +
                    - :term:`CV splitter`,
         
     | 
| 116 | 
         
            +
                    - An iterable yielding (train, test) splits as arrays of indices.
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                    For integer/None inputs, if ``y`` is binary or multiclass,
         
     | 
| 119 | 
         
            +
                    :class:`~sklearn.model_selection.StratifiedKFold` is used. If ``y`` is
         
     | 
| 120 | 
         
            +
                    neither binary nor multiclass, :class:`~sklearn.model_selection.KFold`
         
     | 
| 121 | 
         
            +
                    is used.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    Refer to the :ref:`User Guide <cross_validation>` for the various
         
     | 
| 124 | 
         
            +
                    cross-validation strategies that can be used here.
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    If "prefit" is passed, it is assumed that `estimator` has been
         
     | 
| 127 | 
         
            +
                    fitted already and all data is used for calibration.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    .. versionchanged:: 0.22
         
     | 
| 130 | 
         
            +
                        ``cv`` default value if None changed from 3-fold to 5-fold.
         
     | 
| 131 | 
         
            +
             
     | 
| 132 | 
         
            +
                n_jobs : int, default=None
         
     | 
| 133 | 
         
            +
                    Number of jobs to run in parallel.
         
     | 
| 134 | 
         
            +
                    ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
         
     | 
| 135 | 
         
            +
                    ``-1`` means using all processors.
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                    Base estimator clones are fitted in parallel across cross-validation
         
     | 
| 138 | 
         
            +
                    iterations. Therefore parallelism happens only when `cv != "prefit"`.
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                    See :term:`Glossary <n_jobs>` for more details.
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                ensemble : bool, default=True
         
     | 
| 145 | 
         
            +
                    Determines how the calibrator is fitted when `cv` is not `'prefit'`.
         
     | 
| 146 | 
         
            +
                    Ignored if `cv='prefit'`.
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                    If `True`, the `estimator` is fitted using training data, and
         
     | 
| 149 | 
         
            +
                    calibrated using testing data, for each `cv` fold. The final estimator
         
     | 
| 150 | 
         
            +
                    is an ensemble of `n_cv` fitted classifier and calibrator pairs, where
         
     | 
| 151 | 
         
            +
                    `n_cv` is the number of cross-validation folds. The output is the
         
     | 
| 152 | 
         
            +
                    average predicted probabilities of all pairs.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    If `False`, `cv` is used to compute unbiased predictions, via
         
     | 
| 155 | 
         
            +
                    :func:`~sklearn.model_selection.cross_val_predict`, which are then
         
     | 
| 156 | 
         
            +
                    used for calibration. At prediction time, the classifier used is the
         
     | 
| 157 | 
         
            +
                    `estimator` trained on all the data.
         
     | 
| 158 | 
         
            +
                    Note that this method is also internally implemented  in
         
     | 
| 159 | 
         
            +
                    :mod:`sklearn.svm` estimators with the `probabilities=True` parameter.
         
     | 
| 160 | 
         
            +
             
     | 
| 161 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                Attributes
         
     | 
| 164 | 
         
            +
                ----------
         
     | 
| 165 | 
         
            +
                classes_ : ndarray of shape (n_classes,)
         
     | 
| 166 | 
         
            +
                    The class labels.
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                n_features_in_ : int
         
     | 
| 169 | 
         
            +
                    Number of features seen during :term:`fit`. Only defined if the
         
     | 
| 170 | 
         
            +
                    underlying estimator exposes such an attribute when fit.
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 175 | 
         
            +
                    Names of features seen during :term:`fit`. Only defined if the
         
     | 
| 176 | 
         
            +
                    underlying estimator exposes such an attribute when fit.
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                calibrated_classifiers_ : list (len() equal to cv or 1 if `cv="prefit"` \
         
     | 
| 181 | 
         
            +
                        or `ensemble=False`)
         
     | 
| 182 | 
         
            +
                    The list of classifier and calibrator pairs.
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                    - When `cv="prefit"`, the fitted `estimator` and fitted
         
     | 
| 185 | 
         
            +
                      calibrator.
         
     | 
| 186 | 
         
            +
                    - When `cv` is not "prefit" and `ensemble=True`, `n_cv` fitted
         
     | 
| 187 | 
         
            +
                      `estimator` and calibrator pairs. `n_cv` is the number of
         
     | 
| 188 | 
         
            +
                      cross-validation folds.
         
     | 
| 189 | 
         
            +
                    - When `cv` is not "prefit" and `ensemble=False`, the `estimator`,
         
     | 
| 190 | 
         
            +
                      fitted on all the data, and fitted calibrator.
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                    .. versionchanged:: 0.24
         
     | 
| 193 | 
         
            +
                        Single calibrated classifier case when `ensemble=False`.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                See Also
         
     | 
| 196 | 
         
            +
                --------
         
     | 
| 197 | 
         
            +
                calibration_curve : Compute true and predicted probabilities
         
     | 
| 198 | 
         
            +
                    for a calibration curve.
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                References
         
     | 
| 201 | 
         
            +
                ----------
         
     | 
| 202 | 
         
            +
                .. [1] Obtaining calibrated probability estimates from decision trees
         
     | 
| 203 | 
         
            +
                       and naive Bayesian classifiers, B. Zadrozny & C. Elkan, ICML 2001
         
     | 
| 204 | 
         
            +
             
     | 
| 205 | 
         
            +
                .. [2] Transforming Classifier Scores into Accurate Multiclass
         
     | 
| 206 | 
         
            +
                       Probability Estimates, B. Zadrozny & C. Elkan, (KDD 2002)
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                .. [3] Probabilistic Outputs for Support Vector Machines and Comparisons to
         
     | 
| 209 | 
         
            +
                       Regularized Likelihood Methods, J. Platt, (1999)
         
     | 
| 210 | 
         
            +
             
     | 
| 211 | 
         
            +
                .. [4] Predicting Good Probabilities with Supervised Learning,
         
     | 
| 212 | 
         
            +
                       A. Niculescu-Mizil & R. Caruana, ICML 2005
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                Examples
         
     | 
| 215 | 
         
            +
                --------
         
     | 
| 216 | 
         
            +
                >>> from sklearn.datasets import make_classification
         
     | 
| 217 | 
         
            +
                >>> from sklearn.naive_bayes import GaussianNB
         
     | 
| 218 | 
         
            +
                >>> from sklearn.calibration import CalibratedClassifierCV
         
     | 
| 219 | 
         
            +
                >>> X, y = make_classification(n_samples=100, n_features=2,
         
     | 
| 220 | 
         
            +
                ...                            n_redundant=0, random_state=42)
         
     | 
| 221 | 
         
            +
                >>> base_clf = GaussianNB()
         
     | 
| 222 | 
         
            +
                >>> calibrated_clf = CalibratedClassifierCV(base_clf, cv=3)
         
     | 
| 223 | 
         
            +
                >>> calibrated_clf.fit(X, y)
         
     | 
| 224 | 
         
            +
                CalibratedClassifierCV(...)
         
     | 
| 225 | 
         
            +
                >>> len(calibrated_clf.calibrated_classifiers_)
         
     | 
| 226 | 
         
            +
                3
         
     | 
| 227 | 
         
            +
                >>> calibrated_clf.predict_proba(X)[:5, :]
         
     | 
| 228 | 
         
            +
                array([[0.110..., 0.889...],
         
     | 
| 229 | 
         
            +
                       [0.072..., 0.927...],
         
     | 
| 230 | 
         
            +
                       [0.928..., 0.071...],
         
     | 
| 231 | 
         
            +
                       [0.928..., 0.071...],
         
     | 
| 232 | 
         
            +
                       [0.071..., 0.928...]])
         
     | 
| 233 | 
         
            +
                >>> from sklearn.model_selection import train_test_split
         
     | 
| 234 | 
         
            +
                >>> X, y = make_classification(n_samples=100, n_features=2,
         
     | 
| 235 | 
         
            +
                ...                            n_redundant=0, random_state=42)
         
     | 
| 236 | 
         
            +
                >>> X_train, X_calib, y_train, y_calib = train_test_split(
         
     | 
| 237 | 
         
            +
                ...        X, y, random_state=42
         
     | 
| 238 | 
         
            +
                ... )
         
     | 
| 239 | 
         
            +
                >>> base_clf = GaussianNB()
         
     | 
| 240 | 
         
            +
                >>> base_clf.fit(X_train, y_train)
         
     | 
| 241 | 
         
            +
                GaussianNB()
         
     | 
| 242 | 
         
            +
                >>> calibrated_clf = CalibratedClassifierCV(base_clf, cv="prefit")
         
     | 
| 243 | 
         
            +
                >>> calibrated_clf.fit(X_calib, y_calib)
         
     | 
| 244 | 
         
            +
                CalibratedClassifierCV(...)
         
     | 
| 245 | 
         
            +
                >>> len(calibrated_clf.calibrated_classifiers_)
         
     | 
| 246 | 
         
            +
                1
         
     | 
| 247 | 
         
            +
                >>> calibrated_clf.predict_proba([[-0.5, 0.5]])
         
     | 
| 248 | 
         
            +
                array([[0.936..., 0.063...]])
         
     | 
| 249 | 
         
            +
                """
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 252 | 
         
            +
                    "estimator": [
         
     | 
| 253 | 
         
            +
                        HasMethods(["fit", "predict_proba"]),
         
     | 
| 254 | 
         
            +
                        HasMethods(["fit", "decision_function"]),
         
     | 
| 255 | 
         
            +
                        None,
         
     | 
| 256 | 
         
            +
                    ],
         
     | 
| 257 | 
         
            +
                    "method": [StrOptions({"isotonic", "sigmoid"})],
         
     | 
| 258 | 
         
            +
                    "cv": ["cv_object", StrOptions({"prefit"})],
         
     | 
| 259 | 
         
            +
                    "n_jobs": [Integral, None],
         
     | 
| 260 | 
         
            +
                    "ensemble": ["boolean"],
         
     | 
| 261 | 
         
            +
                }
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                def __init__(
         
     | 
| 264 | 
         
            +
                    self,
         
     | 
| 265 | 
         
            +
                    estimator=None,
         
     | 
| 266 | 
         
            +
                    *,
         
     | 
| 267 | 
         
            +
                    method="sigmoid",
         
     | 
| 268 | 
         
            +
                    cv=None,
         
     | 
| 269 | 
         
            +
                    n_jobs=None,
         
     | 
| 270 | 
         
            +
                    ensemble=True,
         
     | 
| 271 | 
         
            +
                ):
         
     | 
| 272 | 
         
            +
                    self.estimator = estimator
         
     | 
| 273 | 
         
            +
                    self.method = method
         
     | 
| 274 | 
         
            +
                    self.cv = cv
         
     | 
| 275 | 
         
            +
                    self.n_jobs = n_jobs
         
     | 
| 276 | 
         
            +
                    self.ensemble = ensemble
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                def _get_estimator(self):
         
     | 
| 279 | 
         
            +
                    """Resolve which estimator to return (default is LinearSVC)"""
         
     | 
| 280 | 
         
            +
                    if self.estimator is None:
         
     | 
| 281 | 
         
            +
                        # we want all classifiers that don't expose a random_state
         
     | 
| 282 | 
         
            +
                        # to be deterministic (and we don't want to expose this one).
         
     | 
| 283 | 
         
            +
                        estimator = LinearSVC(random_state=0, dual="auto")
         
     | 
| 284 | 
         
            +
                        if _routing_enabled():
         
     | 
| 285 | 
         
            +
                            estimator.set_fit_request(sample_weight=True)
         
     | 
| 286 | 
         
            +
                    else:
         
     | 
| 287 | 
         
            +
                        estimator = self.estimator
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    return estimator
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                @_fit_context(
         
     | 
| 292 | 
         
            +
                    # CalibratedClassifierCV.estimator is not validated yet
         
     | 
| 293 | 
         
            +
                    prefer_skip_nested_validation=False
         
     | 
| 294 | 
         
            +
                )
         
     | 
| 295 | 
         
            +
                def fit(self, X, y, sample_weight=None, **fit_params):
         
     | 
| 296 | 
         
            +
                    """Fit the calibrated model.
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    Parameters
         
     | 
| 299 | 
         
            +
                    ----------
         
     | 
| 300 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 301 | 
         
            +
                        Training data.
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 304 | 
         
            +
                        Target values.
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 307 | 
         
            +
                        Sample weights. If None, then samples are equally weighted.
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    **fit_params : dict
         
     | 
| 310 | 
         
            +
                        Parameters to pass to the `fit` method of the underlying
         
     | 
| 311 | 
         
            +
                        classifier.
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                    Returns
         
     | 
| 314 | 
         
            +
                    -------
         
     | 
| 315 | 
         
            +
                    self : object
         
     | 
| 316 | 
         
            +
                        Returns an instance of self.
         
     | 
| 317 | 
         
            +
                    """
         
     | 
| 318 | 
         
            +
                    check_classification_targets(y)
         
     | 
| 319 | 
         
            +
                    X, y = indexable(X, y)
         
     | 
| 320 | 
         
            +
                    if sample_weight is not None:
         
     | 
| 321 | 
         
            +
                        sample_weight = _check_sample_weight(sample_weight, X)
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                    estimator = self._get_estimator()
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                    self.calibrated_classifiers_ = []
         
     | 
| 326 | 
         
            +
                    if self.cv == "prefit":
         
     | 
| 327 | 
         
            +
                        # `classes_` should be consistent with that of estimator
         
     | 
| 328 | 
         
            +
                        check_is_fitted(self.estimator, attributes=["classes_"])
         
     | 
| 329 | 
         
            +
                        self.classes_ = self.estimator.classes_
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                        predictions, _ = _get_response_values(
         
     | 
| 332 | 
         
            +
                            estimator,
         
     | 
| 333 | 
         
            +
                            X,
         
     | 
| 334 | 
         
            +
                            response_method=["decision_function", "predict_proba"],
         
     | 
| 335 | 
         
            +
                        )
         
     | 
| 336 | 
         
            +
                        if predictions.ndim == 1:
         
     | 
| 337 | 
         
            +
                            # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
         
     | 
| 338 | 
         
            +
                            predictions = predictions.reshape(-1, 1)
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                        calibrated_classifier = _fit_calibrator(
         
     | 
| 341 | 
         
            +
                            estimator,
         
     | 
| 342 | 
         
            +
                            predictions,
         
     | 
| 343 | 
         
            +
                            y,
         
     | 
| 344 | 
         
            +
                            self.classes_,
         
     | 
| 345 | 
         
            +
                            self.method,
         
     | 
| 346 | 
         
            +
                            sample_weight,
         
     | 
| 347 | 
         
            +
                        )
         
     | 
| 348 | 
         
            +
                        self.calibrated_classifiers_.append(calibrated_classifier)
         
     | 
| 349 | 
         
            +
                    else:
         
     | 
| 350 | 
         
            +
                        # Set `classes_` using all `y`
         
     | 
| 351 | 
         
            +
                        label_encoder_ = LabelEncoder().fit(y)
         
     | 
| 352 | 
         
            +
                        self.classes_ = label_encoder_.classes_
         
     | 
| 353 | 
         
            +
             
     | 
| 354 | 
         
            +
                        if _routing_enabled():
         
     | 
| 355 | 
         
            +
                            routed_params = process_routing(
         
     | 
| 356 | 
         
            +
                                self,
         
     | 
| 357 | 
         
            +
                                "fit",
         
     | 
| 358 | 
         
            +
                                sample_weight=sample_weight,
         
     | 
| 359 | 
         
            +
                                **fit_params,
         
     | 
| 360 | 
         
            +
                            )
         
     | 
| 361 | 
         
            +
                        else:
         
     | 
| 362 | 
         
            +
                            # sample_weight checks
         
     | 
| 363 | 
         
            +
                            fit_parameters = signature(estimator.fit).parameters
         
     | 
| 364 | 
         
            +
                            supports_sw = "sample_weight" in fit_parameters
         
     | 
| 365 | 
         
            +
                            if sample_weight is not None and not supports_sw:
         
     | 
| 366 | 
         
            +
                                estimator_name = type(estimator).__name__
         
     | 
| 367 | 
         
            +
                                warnings.warn(
         
     | 
| 368 | 
         
            +
                                    f"Since {estimator_name} does not appear to accept"
         
     | 
| 369 | 
         
            +
                                    " sample_weight, sample weights will only be used for the"
         
     | 
| 370 | 
         
            +
                                    " calibration itself. This can be caused by a limitation of"
         
     | 
| 371 | 
         
            +
                                    " the current scikit-learn API. See the following issue for"
         
     | 
| 372 | 
         
            +
                                    " more details:"
         
     | 
| 373 | 
         
            +
                                    " https://github.com/scikit-learn/scikit-learn/issues/21134."
         
     | 
| 374 | 
         
            +
                                    " Be warned that the result of the calibration is likely to be"
         
     | 
| 375 | 
         
            +
                                    " incorrect."
         
     | 
| 376 | 
         
            +
                                )
         
     | 
| 377 | 
         
            +
                            routed_params = Bunch()
         
     | 
| 378 | 
         
            +
                            routed_params.splitter = Bunch(split={})  # no routing for splitter
         
     | 
| 379 | 
         
            +
                            routed_params.estimator = Bunch(fit=fit_params)
         
     | 
| 380 | 
         
            +
                            if sample_weight is not None and supports_sw:
         
     | 
| 381 | 
         
            +
                                routed_params.estimator.fit["sample_weight"] = sample_weight
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                        # Check that each cross-validation fold can have at least one
         
     | 
| 384 | 
         
            +
                        # example per class
         
     | 
| 385 | 
         
            +
                        if isinstance(self.cv, int):
         
     | 
| 386 | 
         
            +
                            n_folds = self.cv
         
     | 
| 387 | 
         
            +
                        elif hasattr(self.cv, "n_splits"):
         
     | 
| 388 | 
         
            +
                            n_folds = self.cv.n_splits
         
     | 
| 389 | 
         
            +
                        else:
         
     | 
| 390 | 
         
            +
                            n_folds = None
         
     | 
| 391 | 
         
            +
                        if n_folds and np.any(
         
     | 
| 392 | 
         
            +
                            [np.sum(y == class_) < n_folds for class_ in self.classes_]
         
     | 
| 393 | 
         
            +
                        ):
         
     | 
| 394 | 
         
            +
                            raise ValueError(
         
     | 
| 395 | 
         
            +
                                f"Requesting {n_folds}-fold "
         
     | 
| 396 | 
         
            +
                                "cross-validation but provided less than "
         
     | 
| 397 | 
         
            +
                                f"{n_folds} examples for at least one class."
         
     | 
| 398 | 
         
            +
                            )
         
     | 
| 399 | 
         
            +
                        cv = check_cv(self.cv, y, classifier=True)
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                        if self.ensemble:
         
     | 
| 402 | 
         
            +
                            parallel = Parallel(n_jobs=self.n_jobs)
         
     | 
| 403 | 
         
            +
                            self.calibrated_classifiers_ = parallel(
         
     | 
| 404 | 
         
            +
                                delayed(_fit_classifier_calibrator_pair)(
         
     | 
| 405 | 
         
            +
                                    clone(estimator),
         
     | 
| 406 | 
         
            +
                                    X,
         
     | 
| 407 | 
         
            +
                                    y,
         
     | 
| 408 | 
         
            +
                                    train=train,
         
     | 
| 409 | 
         
            +
                                    test=test,
         
     | 
| 410 | 
         
            +
                                    method=self.method,
         
     | 
| 411 | 
         
            +
                                    classes=self.classes_,
         
     | 
| 412 | 
         
            +
                                    sample_weight=sample_weight,
         
     | 
| 413 | 
         
            +
                                    fit_params=routed_params.estimator.fit,
         
     | 
| 414 | 
         
            +
                                )
         
     | 
| 415 | 
         
            +
                                for train, test in cv.split(X, y, **routed_params.splitter.split)
         
     | 
| 416 | 
         
            +
                            )
         
     | 
| 417 | 
         
            +
                        else:
         
     | 
| 418 | 
         
            +
                            this_estimator = clone(estimator)
         
     | 
| 419 | 
         
            +
                            method_name = _check_response_method(
         
     | 
| 420 | 
         
            +
                                this_estimator,
         
     | 
| 421 | 
         
            +
                                ["decision_function", "predict_proba"],
         
     | 
| 422 | 
         
            +
                            ).__name__
         
     | 
| 423 | 
         
            +
                            predictions = cross_val_predict(
         
     | 
| 424 | 
         
            +
                                estimator=this_estimator,
         
     | 
| 425 | 
         
            +
                                X=X,
         
     | 
| 426 | 
         
            +
                                y=y,
         
     | 
| 427 | 
         
            +
                                cv=cv,
         
     | 
| 428 | 
         
            +
                                method=method_name,
         
     | 
| 429 | 
         
            +
                                n_jobs=self.n_jobs,
         
     | 
| 430 | 
         
            +
                                params=routed_params.estimator.fit,
         
     | 
| 431 | 
         
            +
                            )
         
     | 
| 432 | 
         
            +
                            if len(self.classes_) == 2:
         
     | 
| 433 | 
         
            +
                                # Ensure shape (n_samples, 1) in the binary case
         
     | 
| 434 | 
         
            +
                                if method_name == "predict_proba":
         
     | 
| 435 | 
         
            +
                                    # Select the probability column of the postive class
         
     | 
| 436 | 
         
            +
                                    predictions = _process_predict_proba(
         
     | 
| 437 | 
         
            +
                                        y_pred=predictions,
         
     | 
| 438 | 
         
            +
                                        target_type="binary",
         
     | 
| 439 | 
         
            +
                                        classes=self.classes_,
         
     | 
| 440 | 
         
            +
                                        pos_label=self.classes_[1],
         
     | 
| 441 | 
         
            +
                                    )
         
     | 
| 442 | 
         
            +
                                predictions = predictions.reshape(-1, 1)
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                            this_estimator.fit(X, y, **routed_params.estimator.fit)
         
     | 
| 445 | 
         
            +
                            # Note: Here we don't pass on fit_params because the supported
         
     | 
| 446 | 
         
            +
                            # calibrators don't support fit_params anyway
         
     | 
| 447 | 
         
            +
                            calibrated_classifier = _fit_calibrator(
         
     | 
| 448 | 
         
            +
                                this_estimator,
         
     | 
| 449 | 
         
            +
                                predictions,
         
     | 
| 450 | 
         
            +
                                y,
         
     | 
| 451 | 
         
            +
                                self.classes_,
         
     | 
| 452 | 
         
            +
                                self.method,
         
     | 
| 453 | 
         
            +
                                sample_weight,
         
     | 
| 454 | 
         
            +
                            )
         
     | 
| 455 | 
         
            +
                            self.calibrated_classifiers_.append(calibrated_classifier)
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                    first_clf = self.calibrated_classifiers_[0].estimator
         
     | 
| 458 | 
         
            +
                    if hasattr(first_clf, "n_features_in_"):
         
     | 
| 459 | 
         
            +
                        self.n_features_in_ = first_clf.n_features_in_
         
     | 
| 460 | 
         
            +
                    if hasattr(first_clf, "feature_names_in_"):
         
     | 
| 461 | 
         
            +
                        self.feature_names_in_ = first_clf.feature_names_in_
         
     | 
| 462 | 
         
            +
                    return self
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                def predict_proba(self, X):
         
     | 
| 465 | 
         
            +
                    """Calibrated probabilities of classification.
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                    This function returns calibrated probabilities of classification
         
     | 
| 468 | 
         
            +
                    according to each class on an array of test vectors X.
         
     | 
| 469 | 
         
            +
             
     | 
| 470 | 
         
            +
                    Parameters
         
     | 
| 471 | 
         
            +
                    ----------
         
     | 
| 472 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 473 | 
         
            +
                        The samples, as accepted by `estimator.predict_proba`.
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                    Returns
         
     | 
| 476 | 
         
            +
                    -------
         
     | 
| 477 | 
         
            +
                    C : ndarray of shape (n_samples, n_classes)
         
     | 
| 478 | 
         
            +
                        The predicted probas.
         
     | 
| 479 | 
         
            +
                    """
         
     | 
| 480 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 481 | 
         
            +
                    # Compute the arithmetic mean of the predictions of the calibrated
         
     | 
| 482 | 
         
            +
                    # classifiers
         
     | 
| 483 | 
         
            +
                    mean_proba = np.zeros((_num_samples(X), len(self.classes_)))
         
     | 
| 484 | 
         
            +
                    for calibrated_classifier in self.calibrated_classifiers_:
         
     | 
| 485 | 
         
            +
                        proba = calibrated_classifier.predict_proba(X)
         
     | 
| 486 | 
         
            +
                        mean_proba += proba
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                    mean_proba /= len(self.calibrated_classifiers_)
         
     | 
| 489 | 
         
            +
             
     | 
| 490 | 
         
            +
                    return mean_proba
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                def predict(self, X):
         
     | 
| 493 | 
         
            +
                    """Predict the target of new samples.
         
     | 
| 494 | 
         
            +
             
     | 
| 495 | 
         
            +
                    The predicted class is the class that has the highest probability,
         
     | 
| 496 | 
         
            +
                    and can thus be different from the prediction of the uncalibrated classifier.
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                    Parameters
         
     | 
| 499 | 
         
            +
                    ----------
         
     | 
| 500 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 501 | 
         
            +
                        The samples, as accepted by `estimator.predict`.
         
     | 
| 502 | 
         
            +
             
     | 
| 503 | 
         
            +
                    Returns
         
     | 
| 504 | 
         
            +
                    -------
         
     | 
| 505 | 
         
            +
                    C : ndarray of shape (n_samples,)
         
     | 
| 506 | 
         
            +
                        The predicted class.
         
     | 
| 507 | 
         
            +
                    """
         
     | 
| 508 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 509 | 
         
            +
                    return self.classes_[np.argmax(self.predict_proba(X), axis=1)]
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                def get_metadata_routing(self):
         
     | 
| 512 | 
         
            +
                    """Get metadata routing of this object.
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    Please check :ref:`User Guide <metadata_routing>` on how the routing
         
     | 
| 515 | 
         
            +
                    mechanism works.
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                    Returns
         
     | 
| 518 | 
         
            +
                    -------
         
     | 
| 519 | 
         
            +
                    routing : MetadataRouter
         
     | 
| 520 | 
         
            +
                        A :class:`~sklearn.utils.metadata_routing.MetadataRouter` encapsulating
         
     | 
| 521 | 
         
            +
                        routing information.
         
     | 
| 522 | 
         
            +
                    """
         
     | 
| 523 | 
         
            +
                    router = (
         
     | 
| 524 | 
         
            +
                        MetadataRouter(owner=self.__class__.__name__)
         
     | 
| 525 | 
         
            +
                        .add_self_request(self)
         
     | 
| 526 | 
         
            +
                        .add(
         
     | 
| 527 | 
         
            +
                            estimator=self._get_estimator(),
         
     | 
| 528 | 
         
            +
                            method_mapping=MethodMapping().add(callee="fit", caller="fit"),
         
     | 
| 529 | 
         
            +
                        )
         
     | 
| 530 | 
         
            +
                        .add(
         
     | 
| 531 | 
         
            +
                            splitter=self.cv,
         
     | 
| 532 | 
         
            +
                            method_mapping=MethodMapping().add(callee="split", caller="fit"),
         
     | 
| 533 | 
         
            +
                        )
         
     | 
| 534 | 
         
            +
                    )
         
     | 
| 535 | 
         
            +
                    return router
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                def _more_tags(self):
         
     | 
| 538 | 
         
            +
                    return {
         
     | 
| 539 | 
         
            +
                        "_xfail_checks": {
         
     | 
| 540 | 
         
            +
                            "check_sample_weights_invariance": (
         
     | 
| 541 | 
         
            +
                                "Due to the cross-validation and sample ordering, removing a sample"
         
     | 
| 542 | 
         
            +
                                " is not strictly equal to putting is weight to zero. Specific unit"
         
     | 
| 543 | 
         
            +
                                " tests are added for CalibratedClassifierCV specifically."
         
     | 
| 544 | 
         
            +
                            ),
         
     | 
| 545 | 
         
            +
                        }
         
     | 
| 546 | 
         
            +
                    }
         
     | 
| 547 | 
         
            +
             
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
            def _fit_classifier_calibrator_pair(
         
     | 
| 550 | 
         
            +
                estimator,
         
     | 
| 551 | 
         
            +
                X,
         
     | 
| 552 | 
         
            +
                y,
         
     | 
| 553 | 
         
            +
                train,
         
     | 
| 554 | 
         
            +
                test,
         
     | 
| 555 | 
         
            +
                method,
         
     | 
| 556 | 
         
            +
                classes,
         
     | 
| 557 | 
         
            +
                sample_weight=None,
         
     | 
| 558 | 
         
            +
                fit_params=None,
         
     | 
| 559 | 
         
            +
            ):
         
     | 
| 560 | 
         
            +
                """Fit a classifier/calibration pair on a given train/test split.
         
     | 
| 561 | 
         
            +
             
     | 
| 562 | 
         
            +
                Fit the classifier on the train set, compute its predictions on the test
         
     | 
| 563 | 
         
            +
                set and use the predictions as input to fit the calibrator along with the
         
     | 
| 564 | 
         
            +
                test labels.
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                Parameters
         
     | 
| 567 | 
         
            +
                ----------
         
     | 
| 568 | 
         
            +
                estimator : estimator instance
         
     | 
| 569 | 
         
            +
                    Cloned base estimator.
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                X : array-like, shape (n_samples, n_features)
         
     | 
| 572 | 
         
            +
                    Sample data.
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                y : array-like, shape (n_samples,)
         
     | 
| 575 | 
         
            +
                    Targets.
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                train : ndarray, shape (n_train_indices,)
         
     | 
| 578 | 
         
            +
                    Indices of the training subset.
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                test : ndarray, shape (n_test_indices,)
         
     | 
| 581 | 
         
            +
                    Indices of the testing subset.
         
     | 
| 582 | 
         
            +
             
     | 
| 583 | 
         
            +
                method : {'sigmoid', 'isotonic'}
         
     | 
| 584 | 
         
            +
                    Method to use for calibration.
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                classes : ndarray, shape (n_classes,)
         
     | 
| 587 | 
         
            +
                    The target classes.
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                sample_weight : array-like, default=None
         
     | 
| 590 | 
         
            +
                    Sample weights for `X`.
         
     | 
| 591 | 
         
            +
             
     | 
| 592 | 
         
            +
                fit_params : dict, default=None
         
     | 
| 593 | 
         
            +
                    Parameters to pass to the `fit` method of the underlying
         
     | 
| 594 | 
         
            +
                    classifier.
         
     | 
| 595 | 
         
            +
             
     | 
| 596 | 
         
            +
                Returns
         
     | 
| 597 | 
         
            +
                -------
         
     | 
| 598 | 
         
            +
                calibrated_classifier : _CalibratedClassifier instance
         
     | 
| 599 | 
         
            +
                """
         
     | 
| 600 | 
         
            +
                fit_params_train = _check_method_params(X, params=fit_params, indices=train)
         
     | 
| 601 | 
         
            +
                X_train, y_train = _safe_indexing(X, train), _safe_indexing(y, train)
         
     | 
| 602 | 
         
            +
                X_test, y_test = _safe_indexing(X, test), _safe_indexing(y, test)
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
                estimator.fit(X_train, y_train, **fit_params_train)
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                predictions, _ = _get_response_values(
         
     | 
| 607 | 
         
            +
                    estimator,
         
     | 
| 608 | 
         
            +
                    X_test,
         
     | 
| 609 | 
         
            +
                    response_method=["decision_function", "predict_proba"],
         
     | 
| 610 | 
         
            +
                )
         
     | 
| 611 | 
         
            +
                if predictions.ndim == 1:
         
     | 
| 612 | 
         
            +
                    # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
         
     | 
| 613 | 
         
            +
                    predictions = predictions.reshape(-1, 1)
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                sw_test = None if sample_weight is None else _safe_indexing(sample_weight, test)
         
     | 
| 616 | 
         
            +
                calibrated_classifier = _fit_calibrator(
         
     | 
| 617 | 
         
            +
                    estimator, predictions, y_test, classes, method, sample_weight=sw_test
         
     | 
| 618 | 
         
            +
                )
         
     | 
| 619 | 
         
            +
                return calibrated_classifier
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
            def _fit_calibrator(clf, predictions, y, classes, method, sample_weight=None):
         
     | 
| 623 | 
         
            +
                """Fit calibrator(s) and return a `_CalibratedClassifier`
         
     | 
| 624 | 
         
            +
                instance.
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                `n_classes` (i.e. `len(clf.classes_)`) calibrators are fitted.
         
     | 
| 627 | 
         
            +
                However, if `n_classes` equals 2, one calibrator is fitted.
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                Parameters
         
     | 
| 630 | 
         
            +
                ----------
         
     | 
| 631 | 
         
            +
                clf : estimator instance
         
     | 
| 632 | 
         
            +
                    Fitted classifier.
         
     | 
| 633 | 
         
            +
             
     | 
| 634 | 
         
            +
                predictions : array-like, shape (n_samples, n_classes) or (n_samples, 1) \
         
     | 
| 635 | 
         
            +
                                when binary.
         
     | 
| 636 | 
         
            +
                    Raw predictions returned by the un-calibrated base classifier.
         
     | 
| 637 | 
         
            +
             
     | 
| 638 | 
         
            +
                y : array-like, shape (n_samples,)
         
     | 
| 639 | 
         
            +
                    The targets.
         
     | 
| 640 | 
         
            +
             
     | 
| 641 | 
         
            +
                classes : ndarray, shape (n_classes,)
         
     | 
| 642 | 
         
            +
                    All the prediction classes.
         
     | 
| 643 | 
         
            +
             
     | 
| 644 | 
         
            +
                method : {'sigmoid', 'isotonic'}
         
     | 
| 645 | 
         
            +
                    The method to use for calibration.
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                sample_weight : ndarray, shape (n_samples,), default=None
         
     | 
| 648 | 
         
            +
                    Sample weights. If None, then samples are equally weighted.
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                Returns
         
     | 
| 651 | 
         
            +
                -------
         
     | 
| 652 | 
         
            +
                pipeline : _CalibratedClassifier instance
         
     | 
| 653 | 
         
            +
                """
         
     | 
| 654 | 
         
            +
                Y = label_binarize(y, classes=classes)
         
     | 
| 655 | 
         
            +
                label_encoder = LabelEncoder().fit(classes)
         
     | 
| 656 | 
         
            +
                pos_class_indices = label_encoder.transform(clf.classes_)
         
     | 
| 657 | 
         
            +
                calibrators = []
         
     | 
| 658 | 
         
            +
                for class_idx, this_pred in zip(pos_class_indices, predictions.T):
         
     | 
| 659 | 
         
            +
                    if method == "isotonic":
         
     | 
| 660 | 
         
            +
                        calibrator = IsotonicRegression(out_of_bounds="clip")
         
     | 
| 661 | 
         
            +
                    else:  # "sigmoid"
         
     | 
| 662 | 
         
            +
                        calibrator = _SigmoidCalibration()
         
     | 
| 663 | 
         
            +
                    calibrator.fit(this_pred, Y[:, class_idx], sample_weight)
         
     | 
| 664 | 
         
            +
                    calibrators.append(calibrator)
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
                pipeline = _CalibratedClassifier(clf, calibrators, method=method, classes=classes)
         
     | 
| 667 | 
         
            +
                return pipeline
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
            class _CalibratedClassifier:
         
     | 
| 671 | 
         
            +
                """Pipeline-like chaining a fitted classifier and its fitted calibrators.
         
     | 
| 672 | 
         
            +
             
     | 
| 673 | 
         
            +
                Parameters
         
     | 
| 674 | 
         
            +
                ----------
         
     | 
| 675 | 
         
            +
                estimator : estimator instance
         
     | 
| 676 | 
         
            +
                    Fitted classifier.
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
                calibrators : list of fitted estimator instances
         
     | 
| 679 | 
         
            +
                    List of fitted calibrators (either 'IsotonicRegression' or
         
     | 
| 680 | 
         
            +
                    '_SigmoidCalibration'). The number of calibrators equals the number of
         
     | 
| 681 | 
         
            +
                    classes. However, if there are 2 classes, the list contains only one
         
     | 
| 682 | 
         
            +
                    fitted calibrator.
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                classes : array-like of shape (n_classes,)
         
     | 
| 685 | 
         
            +
                    All the prediction classes.
         
     | 
| 686 | 
         
            +
             
     | 
| 687 | 
         
            +
                method : {'sigmoid', 'isotonic'}, default='sigmoid'
         
     | 
| 688 | 
         
            +
                    The method to use for calibration. Can be 'sigmoid' which
         
     | 
| 689 | 
         
            +
                    corresponds to Platt's method or 'isotonic' which is a
         
     | 
| 690 | 
         
            +
                    non-parametric approach based on isotonic regression.
         
     | 
| 691 | 
         
            +
                """
         
     | 
| 692 | 
         
            +
             
     | 
| 693 | 
         
            +
                def __init__(self, estimator, calibrators, *, classes, method="sigmoid"):
         
     | 
| 694 | 
         
            +
                    self.estimator = estimator
         
     | 
| 695 | 
         
            +
                    self.calibrators = calibrators
         
     | 
| 696 | 
         
            +
                    self.classes = classes
         
     | 
| 697 | 
         
            +
                    self.method = method
         
     | 
| 698 | 
         
            +
             
     | 
| 699 | 
         
            +
                def predict_proba(self, X):
         
     | 
| 700 | 
         
            +
                    """Calculate calibrated probabilities.
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                    Calculates classification calibrated probabilities
         
     | 
| 703 | 
         
            +
                    for each class, in a one-vs-all manner, for `X`.
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                    Parameters
         
     | 
| 706 | 
         
            +
                    ----------
         
     | 
| 707 | 
         
            +
                    X : ndarray of shape (n_samples, n_features)
         
     | 
| 708 | 
         
            +
                        The sample data.
         
     | 
| 709 | 
         
            +
             
     | 
| 710 | 
         
            +
                    Returns
         
     | 
| 711 | 
         
            +
                    -------
         
     | 
| 712 | 
         
            +
                    proba : array, shape (n_samples, n_classes)
         
     | 
| 713 | 
         
            +
                        The predicted probabilities. Can be exact zeros.
         
     | 
| 714 | 
         
            +
                    """
         
     | 
| 715 | 
         
            +
                    predictions, _ = _get_response_values(
         
     | 
| 716 | 
         
            +
                        self.estimator,
         
     | 
| 717 | 
         
            +
                        X,
         
     | 
| 718 | 
         
            +
                        response_method=["decision_function", "predict_proba"],
         
     | 
| 719 | 
         
            +
                    )
         
     | 
| 720 | 
         
            +
                    if predictions.ndim == 1:
         
     | 
| 721 | 
         
            +
                        # Reshape binary output from `(n_samples,)` to `(n_samples, 1)`
         
     | 
| 722 | 
         
            +
                        predictions = predictions.reshape(-1, 1)
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    n_classes = len(self.classes)
         
     | 
| 725 | 
         
            +
             
     | 
| 726 | 
         
            +
                    label_encoder = LabelEncoder().fit(self.classes)
         
     | 
| 727 | 
         
            +
                    pos_class_indices = label_encoder.transform(self.estimator.classes_)
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                    proba = np.zeros((_num_samples(X), n_classes))
         
     | 
| 730 | 
         
            +
                    for class_idx, this_pred, calibrator in zip(
         
     | 
| 731 | 
         
            +
                        pos_class_indices, predictions.T, self.calibrators
         
     | 
| 732 | 
         
            +
                    ):
         
     | 
| 733 | 
         
            +
                        if n_classes == 2:
         
     | 
| 734 | 
         
            +
                            # When binary, `predictions` consists only of predictions for
         
     | 
| 735 | 
         
            +
                            # clf.classes_[1] but `pos_class_indices` = 0
         
     | 
| 736 | 
         
            +
                            class_idx += 1
         
     | 
| 737 | 
         
            +
                        proba[:, class_idx] = calibrator.predict(this_pred)
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
                    # Normalize the probabilities
         
     | 
| 740 | 
         
            +
                    if n_classes == 2:
         
     | 
| 741 | 
         
            +
                        proba[:, 0] = 1.0 - proba[:, 1]
         
     | 
| 742 | 
         
            +
                    else:
         
     | 
| 743 | 
         
            +
                        denominator = np.sum(proba, axis=1)[:, np.newaxis]
         
     | 
| 744 | 
         
            +
                        # In the edge case where for each class calibrator returns a null
         
     | 
| 745 | 
         
            +
                        # probability for a given sample, use the uniform distribution
         
     | 
| 746 | 
         
            +
                        # instead.
         
     | 
| 747 | 
         
            +
                        uniform_proba = np.full_like(proba, 1 / n_classes)
         
     | 
| 748 | 
         
            +
                        proba = np.divide(
         
     | 
| 749 | 
         
            +
                            proba, denominator, out=uniform_proba, where=denominator != 0
         
     | 
| 750 | 
         
            +
                        )
         
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
                    # Deal with cases where the predicted probability minimally exceeds 1.0
         
     | 
| 753 | 
         
            +
                    proba[(1.0 < proba) & (proba <= 1.0 + 1e-5)] = 1.0
         
     | 
| 754 | 
         
            +
             
     | 
| 755 | 
         
            +
                    return proba
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
            # The max_abs_prediction_threshold was approximated using
         
     | 
| 759 | 
         
            +
            # logit(np.finfo(np.float64).eps) which is about -36
         
     | 
| 760 | 
         
            +
            def _sigmoid_calibration(
         
     | 
| 761 | 
         
            +
                predictions, y, sample_weight=None, max_abs_prediction_threshold=30
         
     | 
| 762 | 
         
            +
            ):
         
     | 
| 763 | 
         
            +
                """Probability Calibration with sigmoid method (Platt 2000)
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                Parameters
         
     | 
| 766 | 
         
            +
                ----------
         
     | 
| 767 | 
         
            +
                predictions : ndarray of shape (n_samples,)
         
     | 
| 768 | 
         
            +
                    The decision function or predict proba for the samples.
         
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
                y : ndarray of shape (n_samples,)
         
     | 
| 771 | 
         
            +
                    The targets.
         
     | 
| 772 | 
         
            +
             
     | 
| 773 | 
         
            +
                sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 774 | 
         
            +
                    Sample weights. If None, then samples are equally weighted.
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
                Returns
         
     | 
| 777 | 
         
            +
                -------
         
     | 
| 778 | 
         
            +
                a : float
         
     | 
| 779 | 
         
            +
                    The slope.
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
                b : float
         
     | 
| 782 | 
         
            +
                    The intercept.
         
     | 
| 783 | 
         
            +
             
     | 
| 784 | 
         
            +
                References
         
     | 
| 785 | 
         
            +
                ----------
         
     | 
| 786 | 
         
            +
                Platt, "Probabilistic Outputs for Support Vector Machines"
         
     | 
| 787 | 
         
            +
                """
         
     | 
| 788 | 
         
            +
                predictions = column_or_1d(predictions)
         
     | 
| 789 | 
         
            +
                y = column_or_1d(y)
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
                F = predictions  # F follows Platt's notations
         
     | 
| 792 | 
         
            +
             
     | 
| 793 | 
         
            +
                scale_constant = 1.0
         
     | 
| 794 | 
         
            +
                max_prediction = np.max(np.abs(F))
         
     | 
| 795 | 
         
            +
             
     | 
| 796 | 
         
            +
                # If the predictions have large values we scale them in order to bring
         
     | 
| 797 | 
         
            +
                # them within a suitable range. This has no effect on the final
         
     | 
| 798 | 
         
            +
                # (prediction) result because linear models like Logisitic Regression
         
     | 
| 799 | 
         
            +
                # without a penalty are invariant to multiplying the features by a
         
     | 
| 800 | 
         
            +
                # constant.
         
     | 
| 801 | 
         
            +
                if max_prediction >= max_abs_prediction_threshold:
         
     | 
| 802 | 
         
            +
                    scale_constant = max_prediction
         
     | 
| 803 | 
         
            +
                    # We rescale the features in a copy: inplace rescaling could confuse
         
     | 
| 804 | 
         
            +
                    # the caller and make the code harder to reason about.
         
     | 
| 805 | 
         
            +
                    F = F / scale_constant
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                # Bayesian priors (see Platt end of section 2.2):
         
     | 
| 808 | 
         
            +
                # It corresponds to the number of samples, taking into account the
         
     | 
| 809 | 
         
            +
                # `sample_weight`.
         
     | 
| 810 | 
         
            +
                mask_negative_samples = y <= 0
         
     | 
| 811 | 
         
            +
                if sample_weight is not None:
         
     | 
| 812 | 
         
            +
                    prior0 = (sample_weight[mask_negative_samples]).sum()
         
     | 
| 813 | 
         
            +
                    prior1 = (sample_weight[~mask_negative_samples]).sum()
         
     | 
| 814 | 
         
            +
                else:
         
     | 
| 815 | 
         
            +
                    prior0 = float(np.sum(mask_negative_samples))
         
     | 
| 816 | 
         
            +
                    prior1 = y.shape[0] - prior0
         
     | 
| 817 | 
         
            +
                T = np.zeros_like(y, dtype=predictions.dtype)
         
     | 
| 818 | 
         
            +
                T[y > 0] = (prior1 + 1.0) / (prior1 + 2.0)
         
     | 
| 819 | 
         
            +
                T[y <= 0] = 1.0 / (prior0 + 2.0)
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                bin_loss = HalfBinomialLoss()
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                def loss_grad(AB):
         
     | 
| 824 | 
         
            +
                    # .astype below is needed to ensure y_true and raw_prediction have the
         
     | 
| 825 | 
         
            +
                    # same dtype. With result = np.float64(0) * np.array([1, 2], dtype=np.float32)
         
     | 
| 826 | 
         
            +
                    # - in Numpy 2, result.dtype is float64
         
     | 
| 827 | 
         
            +
                    # - in Numpy<2, result.dtype is float32
         
     | 
| 828 | 
         
            +
                    raw_prediction = -(AB[0] * F + AB[1]).astype(dtype=predictions.dtype)
         
     | 
| 829 | 
         
            +
                    l, g = bin_loss.loss_gradient(
         
     | 
| 830 | 
         
            +
                        y_true=T,
         
     | 
| 831 | 
         
            +
                        raw_prediction=raw_prediction,
         
     | 
| 832 | 
         
            +
                        sample_weight=sample_weight,
         
     | 
| 833 | 
         
            +
                    )
         
     | 
| 834 | 
         
            +
                    loss = l.sum()
         
     | 
| 835 | 
         
            +
                    # TODO: Remove casting to np.float64 when minimum supported SciPy is 1.11.2
         
     | 
| 836 | 
         
            +
                    # With SciPy >= 1.11.2, the LBFGS implementation will cast to float64
         
     | 
| 837 | 
         
            +
                    # https://github.com/scipy/scipy/pull/18825.
         
     | 
| 838 | 
         
            +
                    # Here we cast to float64 to support SciPy < 1.11.2
         
     | 
| 839 | 
         
            +
                    grad = np.asarray([-g @ F, -g.sum()], dtype=np.float64)
         
     | 
| 840 | 
         
            +
                    return loss, grad
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                AB0 = np.array([0.0, log((prior0 + 1.0) / (prior1 + 1.0))])
         
     | 
| 843 | 
         
            +
             
     | 
| 844 | 
         
            +
                opt_result = minimize(
         
     | 
| 845 | 
         
            +
                    loss_grad,
         
     | 
| 846 | 
         
            +
                    AB0,
         
     | 
| 847 | 
         
            +
                    method="L-BFGS-B",
         
     | 
| 848 | 
         
            +
                    jac=True,
         
     | 
| 849 | 
         
            +
                    options={
         
     | 
| 850 | 
         
            +
                        "gtol": 1e-6,
         
     | 
| 851 | 
         
            +
                        "ftol": 64 * np.finfo(float).eps,
         
     | 
| 852 | 
         
            +
                    },
         
     | 
| 853 | 
         
            +
                )
         
     | 
| 854 | 
         
            +
                AB_ = opt_result.x
         
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
                # The tuned multiplicative parameter is converted back to the original
         
     | 
| 857 | 
         
            +
                # input feature scale. The offset parameter does not need rescaling since
         
     | 
| 858 | 
         
            +
                # we did not rescale the outcome variable.
         
     | 
| 859 | 
         
            +
                return AB_[0] / scale_constant, AB_[1]
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
             
     | 
| 862 | 
         
            +
            class _SigmoidCalibration(RegressorMixin, BaseEstimator):
         
     | 
| 863 | 
         
            +
                """Sigmoid regression model.
         
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
                Attributes
         
     | 
| 866 | 
         
            +
                ----------
         
     | 
| 867 | 
         
            +
                a_ : float
         
     | 
| 868 | 
         
            +
                    The slope.
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
                b_ : float
         
     | 
| 871 | 
         
            +
                    The intercept.
         
     | 
| 872 | 
         
            +
                """
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                def fit(self, X, y, sample_weight=None):
         
     | 
| 875 | 
         
            +
                    """Fit the model using X, y as training data.
         
     | 
| 876 | 
         
            +
             
     | 
| 877 | 
         
            +
                    Parameters
         
     | 
| 878 | 
         
            +
                    ----------
         
     | 
| 879 | 
         
            +
                    X : array-like of shape (n_samples,)
         
     | 
| 880 | 
         
            +
                        Training data.
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 883 | 
         
            +
                        Training target.
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 886 | 
         
            +
                        Sample weights. If None, then samples are equally weighted.
         
     | 
| 887 | 
         
            +
             
     | 
| 888 | 
         
            +
                    Returns
         
     | 
| 889 | 
         
            +
                    -------
         
     | 
| 890 | 
         
            +
                    self : object
         
     | 
| 891 | 
         
            +
                        Returns an instance of self.
         
     | 
| 892 | 
         
            +
                    """
         
     | 
| 893 | 
         
            +
                    X = column_or_1d(X)
         
     | 
| 894 | 
         
            +
                    y = column_or_1d(y)
         
     | 
| 895 | 
         
            +
                    X, y = indexable(X, y)
         
     | 
| 896 | 
         
            +
             
     | 
| 897 | 
         
            +
                    self.a_, self.b_ = _sigmoid_calibration(X, y, sample_weight)
         
     | 
| 898 | 
         
            +
                    return self
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                def predict(self, T):
         
     | 
| 901 | 
         
            +
                    """Predict new data by linear interpolation.
         
     | 
| 902 | 
         
            +
             
     | 
| 903 | 
         
            +
                    Parameters
         
     | 
| 904 | 
         
            +
                    ----------
         
     | 
| 905 | 
         
            +
                    T : array-like of shape (n_samples,)
         
     | 
| 906 | 
         
            +
                        Data to predict from.
         
     | 
| 907 | 
         
            +
             
     | 
| 908 | 
         
            +
                    Returns
         
     | 
| 909 | 
         
            +
                    -------
         
     | 
| 910 | 
         
            +
                    T_ : ndarray of shape (n_samples,)
         
     | 
| 911 | 
         
            +
                        The predicted data.
         
     | 
| 912 | 
         
            +
                    """
         
     | 
| 913 | 
         
            +
                    T = column_or_1d(T)
         
     | 
| 914 | 
         
            +
                    return expit(-(self.a_ * T + self.b_))
         
     | 
| 915 | 
         
            +
             
     | 
| 916 | 
         
            +
             
     | 
| 917 | 
         
            +
            @validate_params(
         
     | 
| 918 | 
         
            +
                {
         
     | 
| 919 | 
         
            +
                    "y_true": ["array-like"],
         
     | 
| 920 | 
         
            +
                    "y_prob": ["array-like"],
         
     | 
| 921 | 
         
            +
                    "pos_label": [Real, str, "boolean", None],
         
     | 
| 922 | 
         
            +
                    "n_bins": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 923 | 
         
            +
                    "strategy": [StrOptions({"uniform", "quantile"})],
         
     | 
| 924 | 
         
            +
                },
         
     | 
| 925 | 
         
            +
                prefer_skip_nested_validation=True,
         
     | 
| 926 | 
         
            +
            )
         
     | 
| 927 | 
         
            +
            def calibration_curve(
         
     | 
| 928 | 
         
            +
                y_true,
         
     | 
| 929 | 
         
            +
                y_prob,
         
     | 
| 930 | 
         
            +
                *,
         
     | 
| 931 | 
         
            +
                pos_label=None,
         
     | 
| 932 | 
         
            +
                n_bins=5,
         
     | 
| 933 | 
         
            +
                strategy="uniform",
         
     | 
| 934 | 
         
            +
            ):
         
     | 
| 935 | 
         
            +
                """Compute true and predicted probabilities for a calibration curve.
         
     | 
| 936 | 
         
            +
             
     | 
| 937 | 
         
            +
                The method assumes the inputs come from a binary classifier, and
         
     | 
| 938 | 
         
            +
                discretize the [0, 1] interval into bins.
         
     | 
| 939 | 
         
            +
             
     | 
| 940 | 
         
            +
                Calibration curves may also be referred to as reliability diagrams.
         
     | 
| 941 | 
         
            +
             
     | 
| 942 | 
         
            +
                Read more in the :ref:`User Guide <calibration>`.
         
     | 
| 943 | 
         
            +
             
     | 
| 944 | 
         
            +
                Parameters
         
     | 
| 945 | 
         
            +
                ----------
         
     | 
| 946 | 
         
            +
                y_true : array-like of shape (n_samples,)
         
     | 
| 947 | 
         
            +
                    True targets.
         
     | 
| 948 | 
         
            +
             
     | 
| 949 | 
         
            +
                y_prob : array-like of shape (n_samples,)
         
     | 
| 950 | 
         
            +
                    Probabilities of the positive class.
         
     | 
| 951 | 
         
            +
             
     | 
| 952 | 
         
            +
                pos_label : int, float, bool or str, default=None
         
     | 
| 953 | 
         
            +
                    The label of the positive class.
         
     | 
| 954 | 
         
            +
             
     | 
| 955 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 956 | 
         
            +
             
     | 
| 957 | 
         
            +
                n_bins : int, default=5
         
     | 
| 958 | 
         
            +
                    Number of bins to discretize the [0, 1] interval. A bigger number
         
     | 
| 959 | 
         
            +
                    requires more data. Bins with no samples (i.e. without
         
     | 
| 960 | 
         
            +
                    corresponding values in `y_prob`) will not be returned, thus the
         
     | 
| 961 | 
         
            +
                    returned arrays may have less than `n_bins` values.
         
     | 
| 962 | 
         
            +
             
     | 
| 963 | 
         
            +
                strategy : {'uniform', 'quantile'}, default='uniform'
         
     | 
| 964 | 
         
            +
                    Strategy used to define the widths of the bins.
         
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
                    uniform
         
     | 
| 967 | 
         
            +
                        The bins have identical widths.
         
     | 
| 968 | 
         
            +
                    quantile
         
     | 
| 969 | 
         
            +
                        The bins have the same number of samples and depend on `y_prob`.
         
     | 
| 970 | 
         
            +
             
     | 
| 971 | 
         
            +
                Returns
         
     | 
| 972 | 
         
            +
                -------
         
     | 
| 973 | 
         
            +
                prob_true : ndarray of shape (n_bins,) or smaller
         
     | 
| 974 | 
         
            +
                    The proportion of samples whose class is the positive class, in each
         
     | 
| 975 | 
         
            +
                    bin (fraction of positives).
         
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
                prob_pred : ndarray of shape (n_bins,) or smaller
         
     | 
| 978 | 
         
            +
                    The mean predicted probability in each bin.
         
     | 
| 979 | 
         
            +
             
     | 
| 980 | 
         
            +
                References
         
     | 
| 981 | 
         
            +
                ----------
         
     | 
| 982 | 
         
            +
                Alexandru Niculescu-Mizil and Rich Caruana (2005) Predicting Good
         
     | 
| 983 | 
         
            +
                Probabilities With Supervised Learning, in Proceedings of the 22nd
         
     | 
| 984 | 
         
            +
                International Conference on Machine Learning (ICML).
         
     | 
| 985 | 
         
            +
                See section 4 (Qualitative Analysis of Predictions).
         
     | 
| 986 | 
         
            +
             
     | 
| 987 | 
         
            +
                Examples
         
     | 
| 988 | 
         
            +
                --------
         
     | 
| 989 | 
         
            +
                >>> import numpy as np
         
     | 
| 990 | 
         
            +
                >>> from sklearn.calibration import calibration_curve
         
     | 
| 991 | 
         
            +
                >>> y_true = np.array([0, 0, 0, 0, 1, 1, 1, 1, 1])
         
     | 
| 992 | 
         
            +
                >>> y_pred = np.array([0.1, 0.2, 0.3, 0.4, 0.65, 0.7, 0.8, 0.9,  1.])
         
     | 
| 993 | 
         
            +
                >>> prob_true, prob_pred = calibration_curve(y_true, y_pred, n_bins=3)
         
     | 
| 994 | 
         
            +
                >>> prob_true
         
     | 
| 995 | 
         
            +
                array([0. , 0.5, 1. ])
         
     | 
| 996 | 
         
            +
                >>> prob_pred
         
     | 
| 997 | 
         
            +
                array([0.2  , 0.525, 0.85 ])
         
     | 
| 998 | 
         
            +
                """
         
     | 
| 999 | 
         
            +
                y_true = column_or_1d(y_true)
         
     | 
| 1000 | 
         
            +
                y_prob = column_or_1d(y_prob)
         
     | 
| 1001 | 
         
            +
                check_consistent_length(y_true, y_prob)
         
     | 
| 1002 | 
         
            +
                pos_label = _check_pos_label_consistency(pos_label, y_true)
         
     | 
| 1003 | 
         
            +
             
     | 
| 1004 | 
         
            +
                if y_prob.min() < 0 or y_prob.max() > 1:
         
     | 
| 1005 | 
         
            +
                    raise ValueError("y_prob has values outside [0, 1].")
         
     | 
| 1006 | 
         
            +
             
     | 
| 1007 | 
         
            +
                labels = np.unique(y_true)
         
     | 
| 1008 | 
         
            +
                if len(labels) > 2:
         
     | 
| 1009 | 
         
            +
                    raise ValueError(
         
     | 
| 1010 | 
         
            +
                        f"Only binary classification is supported. Provided labels {labels}."
         
     | 
| 1011 | 
         
            +
                    )
         
     | 
| 1012 | 
         
            +
                y_true = y_true == pos_label
         
     | 
| 1013 | 
         
            +
             
     | 
| 1014 | 
         
            +
                if strategy == "quantile":  # Determine bin edges by distribution of data
         
     | 
| 1015 | 
         
            +
                    quantiles = np.linspace(0, 1, n_bins + 1)
         
     | 
| 1016 | 
         
            +
                    bins = np.percentile(y_prob, quantiles * 100)
         
     | 
| 1017 | 
         
            +
                elif strategy == "uniform":
         
     | 
| 1018 | 
         
            +
                    bins = np.linspace(0.0, 1.0, n_bins + 1)
         
     | 
| 1019 | 
         
            +
                else:
         
     | 
| 1020 | 
         
            +
                    raise ValueError(
         
     | 
| 1021 | 
         
            +
                        "Invalid entry to 'strategy' input. Strategy "
         
     | 
| 1022 | 
         
            +
                        "must be either 'quantile' or 'uniform'."
         
     | 
| 1023 | 
         
            +
                    )
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                binids = np.searchsorted(bins[1:-1], y_prob)
         
     | 
| 1026 | 
         
            +
             
     | 
| 1027 | 
         
            +
                bin_sums = np.bincount(binids, weights=y_prob, minlength=len(bins))
         
     | 
| 1028 | 
         
            +
                bin_true = np.bincount(binids, weights=y_true, minlength=len(bins))
         
     | 
| 1029 | 
         
            +
                bin_total = np.bincount(binids, minlength=len(bins))
         
     | 
| 1030 | 
         
            +
             
     | 
| 1031 | 
         
            +
                nonzero = bin_total != 0
         
     | 
| 1032 | 
         
            +
                prob_true = bin_true[nonzero] / bin_total[nonzero]
         
     | 
| 1033 | 
         
            +
                prob_pred = bin_sums[nonzero] / bin_total[nonzero]
         
     | 
| 1034 | 
         
            +
             
     | 
| 1035 | 
         
            +
                return prob_true, prob_pred
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
             
     | 
| 1038 | 
         
            +
            class CalibrationDisplay(_BinaryClassifierCurveDisplayMixin):
         
     | 
| 1039 | 
         
            +
                """Calibration curve (also known as reliability diagram) visualization.
         
     | 
| 1040 | 
         
            +
             
     | 
| 1041 | 
         
            +
                It is recommended to use
         
     | 
| 1042 | 
         
            +
                :func:`~sklearn.calibration.CalibrationDisplay.from_estimator` or
         
     | 
| 1043 | 
         
            +
                :func:`~sklearn.calibration.CalibrationDisplay.from_predictions`
         
     | 
| 1044 | 
         
            +
                to create a `CalibrationDisplay`. All parameters are stored as attributes.
         
     | 
| 1045 | 
         
            +
             
     | 
| 1046 | 
         
            +
                Read more about calibration in the :ref:`User Guide <calibration>` and
         
     | 
| 1047 | 
         
            +
                more about the scikit-learn visualization API in :ref:`visualizations`.
         
     | 
| 1048 | 
         
            +
             
     | 
| 1049 | 
         
            +
                .. versionadded:: 1.0
         
     | 
| 1050 | 
         
            +
             
     | 
| 1051 | 
         
            +
                Parameters
         
     | 
| 1052 | 
         
            +
                ----------
         
     | 
| 1053 | 
         
            +
                prob_true : ndarray of shape (n_bins,)
         
     | 
| 1054 | 
         
            +
                    The proportion of samples whose class is the positive class (fraction
         
     | 
| 1055 | 
         
            +
                    of positives), in each bin.
         
     | 
| 1056 | 
         
            +
             
     | 
| 1057 | 
         
            +
                prob_pred : ndarray of shape (n_bins,)
         
     | 
| 1058 | 
         
            +
                    The mean predicted probability in each bin.
         
     | 
| 1059 | 
         
            +
             
     | 
| 1060 | 
         
            +
                y_prob : ndarray of shape (n_samples,)
         
     | 
| 1061 | 
         
            +
                    Probability estimates for the positive class, for each sample.
         
     | 
| 1062 | 
         
            +
             
     | 
| 1063 | 
         
            +
                estimator_name : str, default=None
         
     | 
| 1064 | 
         
            +
                    Name of estimator. If None, the estimator name is not shown.
         
     | 
| 1065 | 
         
            +
             
     | 
| 1066 | 
         
            +
                pos_label : int, float, bool or str, default=None
         
     | 
| 1067 | 
         
            +
                    The positive class when computing the calibration curve.
         
     | 
| 1068 | 
         
            +
                    By default, `pos_label` is set to `estimators.classes_[1]` when using
         
     | 
| 1069 | 
         
            +
                    `from_estimator` and set to 1 when using `from_predictions`.
         
     | 
| 1070 | 
         
            +
             
     | 
| 1071 | 
         
            +
                    .. versionadded:: 1.1
         
     | 
| 1072 | 
         
            +
             
     | 
| 1073 | 
         
            +
                Attributes
         
     | 
| 1074 | 
         
            +
                ----------
         
     | 
| 1075 | 
         
            +
                line_ : matplotlib Artist
         
     | 
| 1076 | 
         
            +
                    Calibration curve.
         
     | 
| 1077 | 
         
            +
             
     | 
| 1078 | 
         
            +
                ax_ : matplotlib Axes
         
     | 
| 1079 | 
         
            +
                    Axes with calibration curve.
         
     | 
| 1080 | 
         
            +
             
     | 
| 1081 | 
         
            +
                figure_ : matplotlib Figure
         
     | 
| 1082 | 
         
            +
                    Figure containing the curve.
         
     | 
| 1083 | 
         
            +
             
     | 
| 1084 | 
         
            +
                See Also
         
     | 
| 1085 | 
         
            +
                --------
         
     | 
| 1086 | 
         
            +
                calibration_curve : Compute true and predicted probabilities for a
         
     | 
| 1087 | 
         
            +
                    calibration curve.
         
     | 
| 1088 | 
         
            +
                CalibrationDisplay.from_predictions : Plot calibration curve using true
         
     | 
| 1089 | 
         
            +
                    and predicted labels.
         
     | 
| 1090 | 
         
            +
                CalibrationDisplay.from_estimator : Plot calibration curve using an
         
     | 
| 1091 | 
         
            +
                    estimator and data.
         
     | 
| 1092 | 
         
            +
             
     | 
| 1093 | 
         
            +
                Examples
         
     | 
| 1094 | 
         
            +
                --------
         
     | 
| 1095 | 
         
            +
                >>> from sklearn.datasets import make_classification
         
     | 
| 1096 | 
         
            +
                >>> from sklearn.model_selection import train_test_split
         
     | 
| 1097 | 
         
            +
                >>> from sklearn.linear_model import LogisticRegression
         
     | 
| 1098 | 
         
            +
                >>> from sklearn.calibration import calibration_curve, CalibrationDisplay
         
     | 
| 1099 | 
         
            +
                >>> X, y = make_classification(random_state=0)
         
     | 
| 1100 | 
         
            +
                >>> X_train, X_test, y_train, y_test = train_test_split(
         
     | 
| 1101 | 
         
            +
                ...     X, y, random_state=0)
         
     | 
| 1102 | 
         
            +
                >>> clf = LogisticRegression(random_state=0)
         
     | 
| 1103 | 
         
            +
                >>> clf.fit(X_train, y_train)
         
     | 
| 1104 | 
         
            +
                LogisticRegression(random_state=0)
         
     | 
| 1105 | 
         
            +
                >>> y_prob = clf.predict_proba(X_test)[:, 1]
         
     | 
| 1106 | 
         
            +
                >>> prob_true, prob_pred = calibration_curve(y_test, y_prob, n_bins=10)
         
     | 
| 1107 | 
         
            +
                >>> disp = CalibrationDisplay(prob_true, prob_pred, y_prob)
         
     | 
| 1108 | 
         
            +
                >>> disp.plot()
         
     | 
| 1109 | 
         
            +
                <...>
         
     | 
| 1110 | 
         
            +
                """
         
     | 
| 1111 | 
         
            +
             
     | 
| 1112 | 
         
            +
                def __init__(
         
     | 
| 1113 | 
         
            +
                    self, prob_true, prob_pred, y_prob, *, estimator_name=None, pos_label=None
         
     | 
| 1114 | 
         
            +
                ):
         
     | 
| 1115 | 
         
            +
                    self.prob_true = prob_true
         
     | 
| 1116 | 
         
            +
                    self.prob_pred = prob_pred
         
     | 
| 1117 | 
         
            +
                    self.y_prob = y_prob
         
     | 
| 1118 | 
         
            +
                    self.estimator_name = estimator_name
         
     | 
| 1119 | 
         
            +
                    self.pos_label = pos_label
         
     | 
| 1120 | 
         
            +
             
     | 
| 1121 | 
         
            +
                def plot(self, *, ax=None, name=None, ref_line=True, **kwargs):
         
     | 
| 1122 | 
         
            +
                    """Plot visualization.
         
     | 
| 1123 | 
         
            +
             
     | 
| 1124 | 
         
            +
                    Extra keyword arguments will be passed to
         
     | 
| 1125 | 
         
            +
                    :func:`matplotlib.pyplot.plot`.
         
     | 
| 1126 | 
         
            +
             
     | 
| 1127 | 
         
            +
                    Parameters
         
     | 
| 1128 | 
         
            +
                    ----------
         
     | 
| 1129 | 
         
            +
                    ax : Matplotlib Axes, default=None
         
     | 
| 1130 | 
         
            +
                        Axes object to plot on. If `None`, a new figure and axes is
         
     | 
| 1131 | 
         
            +
                        created.
         
     | 
| 1132 | 
         
            +
             
     | 
| 1133 | 
         
            +
                    name : str, default=None
         
     | 
| 1134 | 
         
            +
                        Name for labeling curve. If `None`, use `estimator_name` if
         
     | 
| 1135 | 
         
            +
                        not `None`, otherwise no labeling is shown.
         
     | 
| 1136 | 
         
            +
             
     | 
| 1137 | 
         
            +
                    ref_line : bool, default=True
         
     | 
| 1138 | 
         
            +
                        If `True`, plots a reference line representing a perfectly
         
     | 
| 1139 | 
         
            +
                        calibrated classifier.
         
     | 
| 1140 | 
         
            +
             
     | 
| 1141 | 
         
            +
                    **kwargs : dict
         
     | 
| 1142 | 
         
            +
                        Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
         
     | 
| 1143 | 
         
            +
             
     | 
| 1144 | 
         
            +
                    Returns
         
     | 
| 1145 | 
         
            +
                    -------
         
     | 
| 1146 | 
         
            +
                    display : :class:`~sklearn.calibration.CalibrationDisplay`
         
     | 
| 1147 | 
         
            +
                        Object that stores computed values.
         
     | 
| 1148 | 
         
            +
                    """
         
     | 
| 1149 | 
         
            +
                    self.ax_, self.figure_, name = self._validate_plot_params(ax=ax, name=name)
         
     | 
| 1150 | 
         
            +
             
     | 
| 1151 | 
         
            +
                    info_pos_label = (
         
     | 
| 1152 | 
         
            +
                        f"(Positive class: {self.pos_label})" if self.pos_label is not None else ""
         
     | 
| 1153 | 
         
            +
                    )
         
     | 
| 1154 | 
         
            +
             
     | 
| 1155 | 
         
            +
                    line_kwargs = {"marker": "s", "linestyle": "-"}
         
     | 
| 1156 | 
         
            +
                    if name is not None:
         
     | 
| 1157 | 
         
            +
                        line_kwargs["label"] = name
         
     | 
| 1158 | 
         
            +
                    line_kwargs.update(**kwargs)
         
     | 
| 1159 | 
         
            +
             
     | 
| 1160 | 
         
            +
                    ref_line_label = "Perfectly calibrated"
         
     | 
| 1161 | 
         
            +
                    existing_ref_line = ref_line_label in self.ax_.get_legend_handles_labels()[1]
         
     | 
| 1162 | 
         
            +
                    if ref_line and not existing_ref_line:
         
     | 
| 1163 | 
         
            +
                        self.ax_.plot([0, 1], [0, 1], "k:", label=ref_line_label)
         
     | 
| 1164 | 
         
            +
                    self.line_ = self.ax_.plot(self.prob_pred, self.prob_true, **line_kwargs)[0]
         
     | 
| 1165 | 
         
            +
             
     | 
| 1166 | 
         
            +
                    # We always have to show the legend for at least the reference line
         
     | 
| 1167 | 
         
            +
                    self.ax_.legend(loc="lower right")
         
     | 
| 1168 | 
         
            +
             
     | 
| 1169 | 
         
            +
                    xlabel = f"Mean predicted probability {info_pos_label}"
         
     | 
| 1170 | 
         
            +
                    ylabel = f"Fraction of positives {info_pos_label}"
         
     | 
| 1171 | 
         
            +
                    self.ax_.set(xlabel=xlabel, ylabel=ylabel)
         
     | 
| 1172 | 
         
            +
             
     | 
| 1173 | 
         
            +
                    return self
         
     | 
| 1174 | 
         
            +
             
     | 
| 1175 | 
         
            +
                @classmethod
         
     | 
| 1176 | 
         
            +
                def from_estimator(
         
     | 
| 1177 | 
         
            +
                    cls,
         
     | 
| 1178 | 
         
            +
                    estimator,
         
     | 
| 1179 | 
         
            +
                    X,
         
     | 
| 1180 | 
         
            +
                    y,
         
     | 
| 1181 | 
         
            +
                    *,
         
     | 
| 1182 | 
         
            +
                    n_bins=5,
         
     | 
| 1183 | 
         
            +
                    strategy="uniform",
         
     | 
| 1184 | 
         
            +
                    pos_label=None,
         
     | 
| 1185 | 
         
            +
                    name=None,
         
     | 
| 1186 | 
         
            +
                    ref_line=True,
         
     | 
| 1187 | 
         
            +
                    ax=None,
         
     | 
| 1188 | 
         
            +
                    **kwargs,
         
     | 
| 1189 | 
         
            +
                ):
         
     | 
| 1190 | 
         
            +
                    """Plot calibration curve using a binary classifier and data.
         
     | 
| 1191 | 
         
            +
             
     | 
| 1192 | 
         
            +
                    A calibration curve, also known as a reliability diagram, uses inputs
         
     | 
| 1193 | 
         
            +
                    from a binary classifier and plots the average predicted probability
         
     | 
| 1194 | 
         
            +
                    for each bin against the fraction of positive classes, on the
         
     | 
| 1195 | 
         
            +
                    y-axis.
         
     | 
| 1196 | 
         
            +
             
     | 
| 1197 | 
         
            +
                    Extra keyword arguments will be passed to
         
     | 
| 1198 | 
         
            +
                    :func:`matplotlib.pyplot.plot`.
         
     | 
| 1199 | 
         
            +
             
     | 
| 1200 | 
         
            +
                    Read more about calibration in the :ref:`User Guide <calibration>` and
         
     | 
| 1201 | 
         
            +
                    more about the scikit-learn visualization API in :ref:`visualizations`.
         
     | 
| 1202 | 
         
            +
             
     | 
| 1203 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 1204 | 
         
            +
             
     | 
| 1205 | 
         
            +
                    Parameters
         
     | 
| 1206 | 
         
            +
                    ----------
         
     | 
| 1207 | 
         
            +
                    estimator : estimator instance
         
     | 
| 1208 | 
         
            +
                        Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
         
     | 
| 1209 | 
         
            +
                        in which the last estimator is a classifier. The classifier must
         
     | 
| 1210 | 
         
            +
                        have a :term:`predict_proba` method.
         
     | 
| 1211 | 
         
            +
             
     | 
| 1212 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 1213 | 
         
            +
                        Input values.
         
     | 
| 1214 | 
         
            +
             
     | 
| 1215 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 1216 | 
         
            +
                        Binary target values.
         
     | 
| 1217 | 
         
            +
             
     | 
| 1218 | 
         
            +
                    n_bins : int, default=5
         
     | 
| 1219 | 
         
            +
                        Number of bins to discretize the [0, 1] interval into when
         
     | 
| 1220 | 
         
            +
                        calculating the calibration curve. A bigger number requires more
         
     | 
| 1221 | 
         
            +
                        data.
         
     | 
| 1222 | 
         
            +
             
     | 
| 1223 | 
         
            +
                    strategy : {'uniform', 'quantile'}, default='uniform'
         
     | 
| 1224 | 
         
            +
                        Strategy used to define the widths of the bins.
         
     | 
| 1225 | 
         
            +
             
     | 
| 1226 | 
         
            +
                        - `'uniform'`: The bins have identical widths.
         
     | 
| 1227 | 
         
            +
                        - `'quantile'`: The bins have the same number of samples and depend
         
     | 
| 1228 | 
         
            +
                          on predicted probabilities.
         
     | 
| 1229 | 
         
            +
             
     | 
| 1230 | 
         
            +
                    pos_label : int, float, bool or str, default=None
         
     | 
| 1231 | 
         
            +
                        The positive class when computing the calibration curve.
         
     | 
| 1232 | 
         
            +
                        By default, `estimators.classes_[1]` is considered as the
         
     | 
| 1233 | 
         
            +
                        positive class.
         
     | 
| 1234 | 
         
            +
             
     | 
| 1235 | 
         
            +
                        .. versionadded:: 1.1
         
     | 
| 1236 | 
         
            +
             
     | 
| 1237 | 
         
            +
                    name : str, default=None
         
     | 
| 1238 | 
         
            +
                        Name for labeling curve. If `None`, the name of the estimator is
         
     | 
| 1239 | 
         
            +
                        used.
         
     | 
| 1240 | 
         
            +
             
     | 
| 1241 | 
         
            +
                    ref_line : bool, default=True
         
     | 
| 1242 | 
         
            +
                        If `True`, plots a reference line representing a perfectly
         
     | 
| 1243 | 
         
            +
                        calibrated classifier.
         
     | 
| 1244 | 
         
            +
             
     | 
| 1245 | 
         
            +
                    ax : matplotlib axes, default=None
         
     | 
| 1246 | 
         
            +
                        Axes object to plot on. If `None`, a new figure and axes is
         
     | 
| 1247 | 
         
            +
                        created.
         
     | 
| 1248 | 
         
            +
             
     | 
| 1249 | 
         
            +
                    **kwargs : dict
         
     | 
| 1250 | 
         
            +
                        Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
         
     | 
| 1251 | 
         
            +
             
     | 
| 1252 | 
         
            +
                    Returns
         
     | 
| 1253 | 
         
            +
                    -------
         
     | 
| 1254 | 
         
            +
                    display : :class:`~sklearn.calibration.CalibrationDisplay`.
         
     | 
| 1255 | 
         
            +
                        Object that stores computed values.
         
     | 
| 1256 | 
         
            +
             
     | 
| 1257 | 
         
            +
                    See Also
         
     | 
| 1258 | 
         
            +
                    --------
         
     | 
| 1259 | 
         
            +
                    CalibrationDisplay.from_predictions : Plot calibration curve using true
         
     | 
| 1260 | 
         
            +
                        and predicted labels.
         
     | 
| 1261 | 
         
            +
             
     | 
| 1262 | 
         
            +
                    Examples
         
     | 
| 1263 | 
         
            +
                    --------
         
     | 
| 1264 | 
         
            +
                    >>> import matplotlib.pyplot as plt
         
     | 
| 1265 | 
         
            +
                    >>> from sklearn.datasets import make_classification
         
     | 
| 1266 | 
         
            +
                    >>> from sklearn.model_selection import train_test_split
         
     | 
| 1267 | 
         
            +
                    >>> from sklearn.linear_model import LogisticRegression
         
     | 
| 1268 | 
         
            +
                    >>> from sklearn.calibration import CalibrationDisplay
         
     | 
| 1269 | 
         
            +
                    >>> X, y = make_classification(random_state=0)
         
     | 
| 1270 | 
         
            +
                    >>> X_train, X_test, y_train, y_test = train_test_split(
         
     | 
| 1271 | 
         
            +
                    ...     X, y, random_state=0)
         
     | 
| 1272 | 
         
            +
                    >>> clf = LogisticRegression(random_state=0)
         
     | 
| 1273 | 
         
            +
                    >>> clf.fit(X_train, y_train)
         
     | 
| 1274 | 
         
            +
                    LogisticRegression(random_state=0)
         
     | 
| 1275 | 
         
            +
                    >>> disp = CalibrationDisplay.from_estimator(clf, X_test, y_test)
         
     | 
| 1276 | 
         
            +
                    >>> plt.show()
         
     | 
| 1277 | 
         
            +
                    """
         
     | 
| 1278 | 
         
            +
                    y_prob, pos_label, name = cls._validate_and_get_response_values(
         
     | 
| 1279 | 
         
            +
                        estimator,
         
     | 
| 1280 | 
         
            +
                        X,
         
     | 
| 1281 | 
         
            +
                        y,
         
     | 
| 1282 | 
         
            +
                        response_method="predict_proba",
         
     | 
| 1283 | 
         
            +
                        pos_label=pos_label,
         
     | 
| 1284 | 
         
            +
                        name=name,
         
     | 
| 1285 | 
         
            +
                    )
         
     | 
| 1286 | 
         
            +
             
     | 
| 1287 | 
         
            +
                    return cls.from_predictions(
         
     | 
| 1288 | 
         
            +
                        y,
         
     | 
| 1289 | 
         
            +
                        y_prob,
         
     | 
| 1290 | 
         
            +
                        n_bins=n_bins,
         
     | 
| 1291 | 
         
            +
                        strategy=strategy,
         
     | 
| 1292 | 
         
            +
                        pos_label=pos_label,
         
     | 
| 1293 | 
         
            +
                        name=name,
         
     | 
| 1294 | 
         
            +
                        ref_line=ref_line,
         
     | 
| 1295 | 
         
            +
                        ax=ax,
         
     | 
| 1296 | 
         
            +
                        **kwargs,
         
     | 
| 1297 | 
         
            +
                    )
         
     | 
| 1298 | 
         
            +
             
     | 
| 1299 | 
         
            +
                @classmethod
         
     | 
| 1300 | 
         
            +
                def from_predictions(
         
     | 
| 1301 | 
         
            +
                    cls,
         
     | 
| 1302 | 
         
            +
                    y_true,
         
     | 
| 1303 | 
         
            +
                    y_prob,
         
     | 
| 1304 | 
         
            +
                    *,
         
     | 
| 1305 | 
         
            +
                    n_bins=5,
         
     | 
| 1306 | 
         
            +
                    strategy="uniform",
         
     | 
| 1307 | 
         
            +
                    pos_label=None,
         
     | 
| 1308 | 
         
            +
                    name=None,
         
     | 
| 1309 | 
         
            +
                    ref_line=True,
         
     | 
| 1310 | 
         
            +
                    ax=None,
         
     | 
| 1311 | 
         
            +
                    **kwargs,
         
     | 
| 1312 | 
         
            +
                ):
         
     | 
| 1313 | 
         
            +
                    """Plot calibration curve using true labels and predicted probabilities.
         
     | 
| 1314 | 
         
            +
             
     | 
| 1315 | 
         
            +
                    Calibration curve, also known as reliability diagram, uses inputs
         
     | 
| 1316 | 
         
            +
                    from a binary classifier and plots the average predicted probability
         
     | 
| 1317 | 
         
            +
                    for each bin against the fraction of positive classes, on the
         
     | 
| 1318 | 
         
            +
                    y-axis.
         
     | 
| 1319 | 
         
            +
             
     | 
| 1320 | 
         
            +
                    Extra keyword arguments will be passed to
         
     | 
| 1321 | 
         
            +
                    :func:`matplotlib.pyplot.plot`.
         
     | 
| 1322 | 
         
            +
             
     | 
| 1323 | 
         
            +
                    Read more about calibration in the :ref:`User Guide <calibration>` and
         
     | 
| 1324 | 
         
            +
                    more about the scikit-learn visualization API in :ref:`visualizations`.
         
     | 
| 1325 | 
         
            +
             
     | 
| 1326 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 1327 | 
         
            +
             
     | 
| 1328 | 
         
            +
                    Parameters
         
     | 
| 1329 | 
         
            +
                    ----------
         
     | 
| 1330 | 
         
            +
                    y_true : array-like of shape (n_samples,)
         
     | 
| 1331 | 
         
            +
                        True labels.
         
     | 
| 1332 | 
         
            +
             
     | 
| 1333 | 
         
            +
                    y_prob : array-like of shape (n_samples,)
         
     | 
| 1334 | 
         
            +
                        The predicted probabilities of the positive class.
         
     | 
| 1335 | 
         
            +
             
     | 
| 1336 | 
         
            +
                    n_bins : int, default=5
         
     | 
| 1337 | 
         
            +
                        Number of bins to discretize the [0, 1] interval into when
         
     | 
| 1338 | 
         
            +
                        calculating the calibration curve. A bigger number requires more
         
     | 
| 1339 | 
         
            +
                        data.
         
     | 
| 1340 | 
         
            +
             
     | 
| 1341 | 
         
            +
                    strategy : {'uniform', 'quantile'}, default='uniform'
         
     | 
| 1342 | 
         
            +
                        Strategy used to define the widths of the bins.
         
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
                        - `'uniform'`: The bins have identical widths.
         
     | 
| 1345 | 
         
            +
                        - `'quantile'`: The bins have the same number of samples and depend
         
     | 
| 1346 | 
         
            +
                          on predicted probabilities.
         
     | 
| 1347 | 
         
            +
             
     | 
| 1348 | 
         
            +
                    pos_label : int, float, bool or str, default=None
         
     | 
| 1349 | 
         
            +
                        The positive class when computing the calibration curve.
         
     | 
| 1350 | 
         
            +
                        By default `pos_label` is set to 1.
         
     | 
| 1351 | 
         
            +
             
     | 
| 1352 | 
         
            +
                        .. versionadded:: 1.1
         
     | 
| 1353 | 
         
            +
             
     | 
| 1354 | 
         
            +
                    name : str, default=None
         
     | 
| 1355 | 
         
            +
                        Name for labeling curve.
         
     | 
| 1356 | 
         
            +
             
     | 
| 1357 | 
         
            +
                    ref_line : bool, default=True
         
     | 
| 1358 | 
         
            +
                        If `True`, plots a reference line representing a perfectly
         
     | 
| 1359 | 
         
            +
                        calibrated classifier.
         
     | 
| 1360 | 
         
            +
             
     | 
| 1361 | 
         
            +
                    ax : matplotlib axes, default=None
         
     | 
| 1362 | 
         
            +
                        Axes object to plot on. If `None`, a new figure and axes is
         
     | 
| 1363 | 
         
            +
                        created.
         
     | 
| 1364 | 
         
            +
             
     | 
| 1365 | 
         
            +
                    **kwargs : dict
         
     | 
| 1366 | 
         
            +
                        Keyword arguments to be passed to :func:`matplotlib.pyplot.plot`.
         
     | 
| 1367 | 
         
            +
             
     | 
| 1368 | 
         
            +
                    Returns
         
     | 
| 1369 | 
         
            +
                    -------
         
     | 
| 1370 | 
         
            +
                    display : :class:`~sklearn.calibration.CalibrationDisplay`.
         
     | 
| 1371 | 
         
            +
                        Object that stores computed values.
         
     | 
| 1372 | 
         
            +
             
     | 
| 1373 | 
         
            +
                    See Also
         
     | 
| 1374 | 
         
            +
                    --------
         
     | 
| 1375 | 
         
            +
                    CalibrationDisplay.from_estimator : Plot calibration curve using an
         
     | 
| 1376 | 
         
            +
                        estimator and data.
         
     | 
| 1377 | 
         
            +
             
     | 
| 1378 | 
         
            +
                    Examples
         
     | 
| 1379 | 
         
            +
                    --------
         
     | 
| 1380 | 
         
            +
                    >>> import matplotlib.pyplot as plt
         
     | 
| 1381 | 
         
            +
                    >>> from sklearn.datasets import make_classification
         
     | 
| 1382 | 
         
            +
                    >>> from sklearn.model_selection import train_test_split
         
     | 
| 1383 | 
         
            +
                    >>> from sklearn.linear_model import LogisticRegression
         
     | 
| 1384 | 
         
            +
                    >>> from sklearn.calibration import CalibrationDisplay
         
     | 
| 1385 | 
         
            +
                    >>> X, y = make_classification(random_state=0)
         
     | 
| 1386 | 
         
            +
                    >>> X_train, X_test, y_train, y_test = train_test_split(
         
     | 
| 1387 | 
         
            +
                    ...     X, y, random_state=0)
         
     | 
| 1388 | 
         
            +
                    >>> clf = LogisticRegression(random_state=0)
         
     | 
| 1389 | 
         
            +
                    >>> clf.fit(X_train, y_train)
         
     | 
| 1390 | 
         
            +
                    LogisticRegression(random_state=0)
         
     | 
| 1391 | 
         
            +
                    >>> y_prob = clf.predict_proba(X_test)[:, 1]
         
     | 
| 1392 | 
         
            +
                    >>> disp = CalibrationDisplay.from_predictions(y_test, y_prob)
         
     | 
| 1393 | 
         
            +
                    >>> plt.show()
         
     | 
| 1394 | 
         
            +
                    """
         
     | 
| 1395 | 
         
            +
                    pos_label_validated, name = cls._validate_from_predictions_params(
         
     | 
| 1396 | 
         
            +
                        y_true, y_prob, sample_weight=None, pos_label=pos_label, name=name
         
     | 
| 1397 | 
         
            +
                    )
         
     | 
| 1398 | 
         
            +
             
     | 
| 1399 | 
         
            +
                    prob_true, prob_pred = calibration_curve(
         
     | 
| 1400 | 
         
            +
                        y_true, y_prob, n_bins=n_bins, strategy=strategy, pos_label=pos_label
         
     | 
| 1401 | 
         
            +
                    )
         
     | 
| 1402 | 
         
            +
             
     | 
| 1403 | 
         
            +
                    disp = cls(
         
     | 
| 1404 | 
         
            +
                        prob_true=prob_true,
         
     | 
| 1405 | 
         
            +
                        prob_pred=prob_pred,
         
     | 
| 1406 | 
         
            +
                        y_prob=y_prob,
         
     | 
| 1407 | 
         
            +
                        estimator_name=name,
         
     | 
| 1408 | 
         
            +
                        pos_label=pos_label_validated,
         
     | 
| 1409 | 
         
            +
                    )
         
     | 
| 1410 | 
         
            +
                    return disp.plot(ax=ax, ref_line=ref_line, **kwargs)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/conftest.py
    ADDED
    
    | 
         @@ -0,0 +1,309 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import builtins
         
     | 
| 2 | 
         
            +
            import platform
         
     | 
| 3 | 
         
            +
            import sys
         
     | 
| 4 | 
         
            +
            from contextlib import suppress
         
     | 
| 5 | 
         
            +
            from functools import wraps
         
     | 
| 6 | 
         
            +
            from os import environ
         
     | 
| 7 | 
         
            +
            from unittest import SkipTest
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            import joblib
         
     | 
| 10 | 
         
            +
            import numpy as np
         
     | 
| 11 | 
         
            +
            import pytest
         
     | 
| 12 | 
         
            +
            from _pytest.doctest import DoctestItem
         
     | 
| 13 | 
         
            +
            from threadpoolctl import threadpool_limits
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            from sklearn import config_context, set_config
         
     | 
| 16 | 
         
            +
            from sklearn._min_dependencies import PYTEST_MIN_VERSION
         
     | 
| 17 | 
         
            +
            from sklearn.datasets import (
         
     | 
| 18 | 
         
            +
                fetch_20newsgroups,
         
     | 
| 19 | 
         
            +
                fetch_20newsgroups_vectorized,
         
     | 
| 20 | 
         
            +
                fetch_california_housing,
         
     | 
| 21 | 
         
            +
                fetch_covtype,
         
     | 
| 22 | 
         
            +
                fetch_kddcup99,
         
     | 
| 23 | 
         
            +
                fetch_olivetti_faces,
         
     | 
| 24 | 
         
            +
                fetch_rcv1,
         
     | 
| 25 | 
         
            +
                fetch_species_distributions,
         
     | 
| 26 | 
         
            +
            )
         
     | 
| 27 | 
         
            +
            from sklearn.tests import random_seed
         
     | 
| 28 | 
         
            +
            from sklearn.utils import _IS_32BIT
         
     | 
| 29 | 
         
            +
            from sklearn.utils._testing import get_pytest_filterwarning_lines
         
     | 
| 30 | 
         
            +
            from sklearn.utils.fixes import (
         
     | 
| 31 | 
         
            +
                np_base_version,
         
     | 
| 32 | 
         
            +
                parse_version,
         
     | 
| 33 | 
         
            +
                sp_version,
         
     | 
| 34 | 
         
            +
            )
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
            if parse_version(pytest.__version__) < parse_version(PYTEST_MIN_VERSION):
         
     | 
| 37 | 
         
            +
                raise ImportError(
         
     | 
| 38 | 
         
            +
                    f"Your version of pytest is too old. Got version {pytest.__version__}, you"
         
     | 
| 39 | 
         
            +
                    f" should have pytest >= {PYTEST_MIN_VERSION} installed."
         
     | 
| 40 | 
         
            +
                )
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
            scipy_datasets_require_network = sp_version >= parse_version("1.10")
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            @pytest.fixture
         
     | 
| 46 | 
         
            +
            def enable_slep006():
         
     | 
| 47 | 
         
            +
                """Enable SLEP006 for all tests."""
         
     | 
| 48 | 
         
            +
                with config_context(enable_metadata_routing=True):
         
     | 
| 49 | 
         
            +
                    yield
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
            def raccoon_face_or_skip():
         
     | 
| 53 | 
         
            +
                # SciPy >= 1.10 requires network to access to get data
         
     | 
| 54 | 
         
            +
                if scipy_datasets_require_network:
         
     | 
| 55 | 
         
            +
                    run_network_tests = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0"
         
     | 
| 56 | 
         
            +
                    if not run_network_tests:
         
     | 
| 57 | 
         
            +
                        raise SkipTest("test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0")
         
     | 
| 58 | 
         
            +
             
     | 
| 59 | 
         
            +
                    try:
         
     | 
| 60 | 
         
            +
                        import pooch  # noqa
         
     | 
| 61 | 
         
            +
                    except ImportError:
         
     | 
| 62 | 
         
            +
                        raise SkipTest("test requires pooch to be installed")
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                    from scipy.datasets import face
         
     | 
| 65 | 
         
            +
                else:
         
     | 
| 66 | 
         
            +
                    from scipy.misc import face
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                return face(gray=True)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
            dataset_fetchers = {
         
     | 
| 72 | 
         
            +
                "fetch_20newsgroups_fxt": fetch_20newsgroups,
         
     | 
| 73 | 
         
            +
                "fetch_20newsgroups_vectorized_fxt": fetch_20newsgroups_vectorized,
         
     | 
| 74 | 
         
            +
                "fetch_california_housing_fxt": fetch_california_housing,
         
     | 
| 75 | 
         
            +
                "fetch_covtype_fxt": fetch_covtype,
         
     | 
| 76 | 
         
            +
                "fetch_kddcup99_fxt": fetch_kddcup99,
         
     | 
| 77 | 
         
            +
                "fetch_olivetti_faces_fxt": fetch_olivetti_faces,
         
     | 
| 78 | 
         
            +
                "fetch_rcv1_fxt": fetch_rcv1,
         
     | 
| 79 | 
         
            +
                "fetch_species_distributions_fxt": fetch_species_distributions,
         
     | 
| 80 | 
         
            +
            }
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
            if scipy_datasets_require_network:
         
     | 
| 83 | 
         
            +
                dataset_fetchers["raccoon_face_fxt"] = raccoon_face_or_skip
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
            _SKIP32_MARK = pytest.mark.skipif(
         
     | 
| 86 | 
         
            +
                environ.get("SKLEARN_RUN_FLOAT32_TESTS", "0") != "1",
         
     | 
| 87 | 
         
            +
                reason="Set SKLEARN_RUN_FLOAT32_TESTS=1 to run float32 dtype tests",
         
     | 
| 88 | 
         
            +
            )
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
            # Global fixtures
         
     | 
| 92 | 
         
            +
            @pytest.fixture(params=[pytest.param(np.float32, marks=_SKIP32_MARK), np.float64])
         
     | 
| 93 | 
         
            +
            def global_dtype(request):
         
     | 
| 94 | 
         
            +
                yield request.param
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
            def _fetch_fixture(f):
         
     | 
| 98 | 
         
            +
                """Fetch dataset (download if missing and requested by environment)."""
         
     | 
| 99 | 
         
            +
                download_if_missing = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0"
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                @wraps(f)
         
     | 
| 102 | 
         
            +
                def wrapped(*args, **kwargs):
         
     | 
| 103 | 
         
            +
                    kwargs["download_if_missing"] = download_if_missing
         
     | 
| 104 | 
         
            +
                    try:
         
     | 
| 105 | 
         
            +
                        return f(*args, **kwargs)
         
     | 
| 106 | 
         
            +
                    except OSError as e:
         
     | 
| 107 | 
         
            +
                        if str(e) != "Data not found and `download_if_missing` is False":
         
     | 
| 108 | 
         
            +
                            raise
         
     | 
| 109 | 
         
            +
                        pytest.skip("test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0")
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                return pytest.fixture(lambda: wrapped)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
            # Adds fixtures for fetching data
         
     | 
| 115 | 
         
            +
            fetch_20newsgroups_fxt = _fetch_fixture(fetch_20newsgroups)
         
     | 
| 116 | 
         
            +
            fetch_20newsgroups_vectorized_fxt = _fetch_fixture(fetch_20newsgroups_vectorized)
         
     | 
| 117 | 
         
            +
            fetch_california_housing_fxt = _fetch_fixture(fetch_california_housing)
         
     | 
| 118 | 
         
            +
            fetch_covtype_fxt = _fetch_fixture(fetch_covtype)
         
     | 
| 119 | 
         
            +
            fetch_kddcup99_fxt = _fetch_fixture(fetch_kddcup99)
         
     | 
| 120 | 
         
            +
            fetch_olivetti_faces_fxt = _fetch_fixture(fetch_olivetti_faces)
         
     | 
| 121 | 
         
            +
            fetch_rcv1_fxt = _fetch_fixture(fetch_rcv1)
         
     | 
| 122 | 
         
            +
            fetch_species_distributions_fxt = _fetch_fixture(fetch_species_distributions)
         
     | 
| 123 | 
         
            +
            raccoon_face_fxt = pytest.fixture(raccoon_face_or_skip)
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
            def pytest_collection_modifyitems(config, items):
         
     | 
| 127 | 
         
            +
                """Called after collect is completed.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                Parameters
         
     | 
| 130 | 
         
            +
                ----------
         
     | 
| 131 | 
         
            +
                config : pytest config
         
     | 
| 132 | 
         
            +
                items : list of collected items
         
     | 
| 133 | 
         
            +
                """
         
     | 
| 134 | 
         
            +
                run_network_tests = environ.get("SKLEARN_SKIP_NETWORK_TESTS", "1") == "0"
         
     | 
| 135 | 
         
            +
                skip_network = pytest.mark.skip(
         
     | 
| 136 | 
         
            +
                    reason="test is enabled when SKLEARN_SKIP_NETWORK_TESTS=0"
         
     | 
| 137 | 
         
            +
                )
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                # download datasets during collection to avoid thread unsafe behavior
         
     | 
| 140 | 
         
            +
                # when running pytest in parallel with pytest-xdist
         
     | 
| 141 | 
         
            +
                dataset_features_set = set(dataset_fetchers)
         
     | 
| 142 | 
         
            +
                datasets_to_download = set()
         
     | 
| 143 | 
         
            +
             
     | 
| 144 | 
         
            +
                for item in items:
         
     | 
| 145 | 
         
            +
                    if isinstance(item, DoctestItem) and "fetch_" in item.name:
         
     | 
| 146 | 
         
            +
                        fetcher_function_name = item.name.split(".")[-1]
         
     | 
| 147 | 
         
            +
                        dataset_fetchers_key = f"{fetcher_function_name}_fxt"
         
     | 
| 148 | 
         
            +
                        dataset_to_fetch = set([dataset_fetchers_key]) & dataset_features_set
         
     | 
| 149 | 
         
            +
                    elif not hasattr(item, "fixturenames"):
         
     | 
| 150 | 
         
            +
                        continue
         
     | 
| 151 | 
         
            +
                    else:
         
     | 
| 152 | 
         
            +
                        item_fixtures = set(item.fixturenames)
         
     | 
| 153 | 
         
            +
                        dataset_to_fetch = item_fixtures & dataset_features_set
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    if not dataset_to_fetch:
         
     | 
| 156 | 
         
            +
                        continue
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                    if run_network_tests:
         
     | 
| 159 | 
         
            +
                        datasets_to_download |= dataset_to_fetch
         
     | 
| 160 | 
         
            +
                    else:
         
     | 
| 161 | 
         
            +
                        # network tests are skipped
         
     | 
| 162 | 
         
            +
                        item.add_marker(skip_network)
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                # Only download datasets on the first worker spawned by pytest-xdist
         
     | 
| 165 | 
         
            +
                # to avoid thread unsafe behavior. If pytest-xdist is not used, we still
         
     | 
| 166 | 
         
            +
                # download before tests run.
         
     | 
| 167 | 
         
            +
                worker_id = environ.get("PYTEST_XDIST_WORKER", "gw0")
         
     | 
| 168 | 
         
            +
                if worker_id == "gw0" and run_network_tests:
         
     | 
| 169 | 
         
            +
                    for name in datasets_to_download:
         
     | 
| 170 | 
         
            +
                        with suppress(SkipTest):
         
     | 
| 171 | 
         
            +
                            dataset_fetchers[name]()
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                for item in items:
         
     | 
| 174 | 
         
            +
                    # Known failure on with GradientBoostingClassifier on ARM64
         
     | 
| 175 | 
         
            +
                    if (
         
     | 
| 176 | 
         
            +
                        item.name.endswith("GradientBoostingClassifier")
         
     | 
| 177 | 
         
            +
                        and platform.machine() == "aarch64"
         
     | 
| 178 | 
         
            +
                    ):
         
     | 
| 179 | 
         
            +
                        marker = pytest.mark.xfail(
         
     | 
| 180 | 
         
            +
                            reason=(
         
     | 
| 181 | 
         
            +
                                "know failure. See "
         
     | 
| 182 | 
         
            +
                                "https://github.com/scikit-learn/scikit-learn/issues/17797"  # noqa
         
     | 
| 183 | 
         
            +
                            )
         
     | 
| 184 | 
         
            +
                        )
         
     | 
| 185 | 
         
            +
                        item.add_marker(marker)
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                skip_doctests = False
         
     | 
| 188 | 
         
            +
                try:
         
     | 
| 189 | 
         
            +
                    import matplotlib  # noqa
         
     | 
| 190 | 
         
            +
                except ImportError:
         
     | 
| 191 | 
         
            +
                    skip_doctests = True
         
     | 
| 192 | 
         
            +
                    reason = "matplotlib is required to run the doctests"
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                if _IS_32BIT:
         
     | 
| 195 | 
         
            +
                    reason = "doctest are only run when the default numpy int is 64 bits."
         
     | 
| 196 | 
         
            +
                    skip_doctests = True
         
     | 
| 197 | 
         
            +
                elif sys.platform.startswith("win32"):
         
     | 
| 198 | 
         
            +
                    reason = (
         
     | 
| 199 | 
         
            +
                        "doctests are not run for Windows because numpy arrays "
         
     | 
| 200 | 
         
            +
                        "repr is inconsistent across platforms."
         
     | 
| 201 | 
         
            +
                    )
         
     | 
| 202 | 
         
            +
                    skip_doctests = True
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                if np_base_version >= parse_version("2"):
         
     | 
| 205 | 
         
            +
                    reason = "Due to NEP 51 numpy scalar repr has changed in numpy 2"
         
     | 
| 206 | 
         
            +
                    skip_doctests = True
         
     | 
| 207 | 
         
            +
             
     | 
| 208 | 
         
            +
                # Normally doctest has the entire module's scope. Here we set globs to an empty dict
         
     | 
| 209 | 
         
            +
                # to remove the module's scope:
         
     | 
| 210 | 
         
            +
                # https://docs.python.org/3/library/doctest.html#what-s-the-execution-context
         
     | 
| 211 | 
         
            +
                for item in items:
         
     | 
| 212 | 
         
            +
                    if isinstance(item, DoctestItem):
         
     | 
| 213 | 
         
            +
                        item.dtest.globs = {}
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                if skip_doctests:
         
     | 
| 216 | 
         
            +
                    skip_marker = pytest.mark.skip(reason=reason)
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                    for item in items:
         
     | 
| 219 | 
         
            +
                        if isinstance(item, DoctestItem):
         
     | 
| 220 | 
         
            +
                            # work-around an internal error with pytest if adding a skip
         
     | 
| 221 | 
         
            +
                            # mark to a doctest in a contextmanager, see
         
     | 
| 222 | 
         
            +
                            # https://github.com/pytest-dev/pytest/issues/8796 for more
         
     | 
| 223 | 
         
            +
                            # details.
         
     | 
| 224 | 
         
            +
                            if item.name != "sklearn._config.config_context":
         
     | 
| 225 | 
         
            +
                                item.add_marker(skip_marker)
         
     | 
| 226 | 
         
            +
                try:
         
     | 
| 227 | 
         
            +
                    import PIL  # noqa
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    pillow_installed = True
         
     | 
| 230 | 
         
            +
                except ImportError:
         
     | 
| 231 | 
         
            +
                    pillow_installed = False
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                if not pillow_installed:
         
     | 
| 234 | 
         
            +
                    skip_marker = pytest.mark.skip(reason="pillow (or PIL) not installed!")
         
     | 
| 235 | 
         
            +
                    for item in items:
         
     | 
| 236 | 
         
            +
                        if item.name in [
         
     | 
| 237 | 
         
            +
                            "sklearn.feature_extraction.image.PatchExtractor",
         
     | 
| 238 | 
         
            +
                            "sklearn.feature_extraction.image.extract_patches_2d",
         
     | 
| 239 | 
         
            +
                        ]:
         
     | 
| 240 | 
         
            +
                            item.add_marker(skip_marker)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
             
     | 
| 243 | 
         
            +
            @pytest.fixture(scope="function")
         
     | 
| 244 | 
         
            +
            def pyplot():
         
     | 
| 245 | 
         
            +
                """Setup and teardown fixture for matplotlib.
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                This fixture checks if we can import matplotlib. If not, the tests will be
         
     | 
| 248 | 
         
            +
                skipped. Otherwise, we close the figures before and after running the
         
     | 
| 249 | 
         
            +
                functions.
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                Returns
         
     | 
| 252 | 
         
            +
                -------
         
     | 
| 253 | 
         
            +
                pyplot : module
         
     | 
| 254 | 
         
            +
                    The ``matplotlib.pyplot`` module.
         
     | 
| 255 | 
         
            +
                """
         
     | 
| 256 | 
         
            +
                pyplot = pytest.importorskip("matplotlib.pyplot")
         
     | 
| 257 | 
         
            +
                pyplot.close("all")
         
     | 
| 258 | 
         
            +
                yield pyplot
         
     | 
| 259 | 
         
            +
                pyplot.close("all")
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
            def pytest_configure(config):
         
     | 
| 263 | 
         
            +
                # Use matplotlib agg backend during the tests including doctests
         
     | 
| 264 | 
         
            +
                try:
         
     | 
| 265 | 
         
            +
                    import matplotlib
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                    matplotlib.use("agg")
         
     | 
| 268 | 
         
            +
                except ImportError:
         
     | 
| 269 | 
         
            +
                    pass
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                allowed_parallelism = joblib.cpu_count(only_physical_cores=True)
         
     | 
| 272 | 
         
            +
                xdist_worker_count = environ.get("PYTEST_XDIST_WORKER_COUNT")
         
     | 
| 273 | 
         
            +
                if xdist_worker_count is not None:
         
     | 
| 274 | 
         
            +
                    # Set the number of OpenMP and BLAS threads based on the number of workers
         
     | 
| 275 | 
         
            +
                    # xdist is using to prevent oversubscription.
         
     | 
| 276 | 
         
            +
                    allowed_parallelism = max(allowed_parallelism // int(xdist_worker_count), 1)
         
     | 
| 277 | 
         
            +
                threadpool_limits(allowed_parallelism)
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                # Register global_random_seed plugin if it is not already registered
         
     | 
| 280 | 
         
            +
                if not config.pluginmanager.hasplugin("sklearn.tests.random_seed"):
         
     | 
| 281 | 
         
            +
                    config.pluginmanager.register(random_seed)
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                if environ.get("SKLEARN_WARNINGS_AS_ERRORS", "0") != "0":
         
     | 
| 284 | 
         
            +
                    # This seems like the only way to programmatically change the config
         
     | 
| 285 | 
         
            +
                    # filterwarnings. This was suggested in
         
     | 
| 286 | 
         
            +
                    # https://github.com/pytest-dev/pytest/issues/3311#issuecomment-373177592
         
     | 
| 287 | 
         
            +
                    for line in get_pytest_filterwarning_lines():
         
     | 
| 288 | 
         
            +
                        config.addinivalue_line("filterwarnings", line)
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
            @pytest.fixture
         
     | 
| 292 | 
         
            +
            def hide_available_pandas(monkeypatch):
         
     | 
| 293 | 
         
            +
                """Pretend pandas was not installed."""
         
     | 
| 294 | 
         
            +
                import_orig = builtins.__import__
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                def mocked_import(name, *args, **kwargs):
         
     | 
| 297 | 
         
            +
                    if name == "pandas":
         
     | 
| 298 | 
         
            +
                        raise ImportError()
         
     | 
| 299 | 
         
            +
                    return import_orig(name, *args, **kwargs)
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                monkeypatch.setattr(builtins, "__import__", mocked_import)
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
            @pytest.fixture
         
     | 
| 305 | 
         
            +
            def print_changed_only_false():
         
     | 
| 306 | 
         
            +
                """Set `print_changed_only` to False for the duration of the test."""
         
     | 
| 307 | 
         
            +
                set_config(print_changed_only=False)
         
     | 
| 308 | 
         
            +
                yield
         
     | 
| 309 | 
         
            +
                set_config(print_changed_only=True)  # reset to default
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/discriminant_analysis.py
    ADDED
    
    | 
         @@ -0,0 +1,1047 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            Linear Discriminant Analysis and Quadratic Discriminant Analysis
         
     | 
| 3 | 
         
            +
            """
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # Authors: Clemens Brunner
         
     | 
| 6 | 
         
            +
            #          Martin Billinger
         
     | 
| 7 | 
         
            +
            #          Matthieu Perrot
         
     | 
| 8 | 
         
            +
            #          Mathieu Blondel
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            # License: BSD 3-Clause
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            import warnings
         
     | 
| 13 | 
         
            +
            from numbers import Integral, Real
         
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            import numpy as np
         
     | 
| 16 | 
         
            +
            import scipy.linalg
         
     | 
| 17 | 
         
            +
            from scipy import linalg
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
            from .base import (
         
     | 
| 20 | 
         
            +
                BaseEstimator,
         
     | 
| 21 | 
         
            +
                ClassifierMixin,
         
     | 
| 22 | 
         
            +
                ClassNamePrefixFeaturesOutMixin,
         
     | 
| 23 | 
         
            +
                TransformerMixin,
         
     | 
| 24 | 
         
            +
                _fit_context,
         
     | 
| 25 | 
         
            +
            )
         
     | 
| 26 | 
         
            +
            from .covariance import empirical_covariance, ledoit_wolf, shrunk_covariance
         
     | 
| 27 | 
         
            +
            from .linear_model._base import LinearClassifierMixin
         
     | 
| 28 | 
         
            +
            from .preprocessing import StandardScaler
         
     | 
| 29 | 
         
            +
            from .utils._array_api import _expit, device, get_namespace, size
         
     | 
| 30 | 
         
            +
            from .utils._param_validation import HasMethods, Interval, StrOptions
         
     | 
| 31 | 
         
            +
            from .utils.extmath import softmax
         
     | 
| 32 | 
         
            +
            from .utils.multiclass import check_classification_targets, unique_labels
         
     | 
| 33 | 
         
            +
            from .utils.validation import check_is_fitted
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            __all__ = ["LinearDiscriminantAnalysis", "QuadraticDiscriminantAnalysis"]
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
            def _cov(X, shrinkage=None, covariance_estimator=None):
         
     | 
| 39 | 
         
            +
                """Estimate covariance matrix (using optional covariance_estimator).
         
     | 
| 40 | 
         
            +
                Parameters
         
     | 
| 41 | 
         
            +
                ----------
         
     | 
| 42 | 
         
            +
                X : array-like of shape (n_samples, n_features)
         
     | 
| 43 | 
         
            +
                    Input data.
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                shrinkage : {'empirical', 'auto'} or float, default=None
         
     | 
| 46 | 
         
            +
                    Shrinkage parameter, possible values:
         
     | 
| 47 | 
         
            +
                      - None or 'empirical': no shrinkage (default).
         
     | 
| 48 | 
         
            +
                      - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
         
     | 
| 49 | 
         
            +
                      - float between 0 and 1: fixed shrinkage parameter.
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                    Shrinkage parameter is ignored if  `covariance_estimator`
         
     | 
| 52 | 
         
            +
                    is not None.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                covariance_estimator : estimator, default=None
         
     | 
| 55 | 
         
            +
                    If not None, `covariance_estimator` is used to estimate
         
     | 
| 56 | 
         
            +
                    the covariance matrices instead of relying on the empirical
         
     | 
| 57 | 
         
            +
                    covariance estimator (with potential shrinkage).
         
     | 
| 58 | 
         
            +
                    The object should have a fit method and a ``covariance_`` attribute
         
     | 
| 59 | 
         
            +
                    like the estimators in :mod:`sklearn.covariance``.
         
     | 
| 60 | 
         
            +
                    if None the shrinkage parameter drives the estimate.
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 63 | 
         
            +
             
     | 
| 64 | 
         
            +
                Returns
         
     | 
| 65 | 
         
            +
                -------
         
     | 
| 66 | 
         
            +
                s : ndarray of shape (n_features, n_features)
         
     | 
| 67 | 
         
            +
                    Estimated covariance matrix.
         
     | 
| 68 | 
         
            +
                """
         
     | 
| 69 | 
         
            +
                if covariance_estimator is None:
         
     | 
| 70 | 
         
            +
                    shrinkage = "empirical" if shrinkage is None else shrinkage
         
     | 
| 71 | 
         
            +
                    if isinstance(shrinkage, str):
         
     | 
| 72 | 
         
            +
                        if shrinkage == "auto":
         
     | 
| 73 | 
         
            +
                            sc = StandardScaler()  # standardize features
         
     | 
| 74 | 
         
            +
                            X = sc.fit_transform(X)
         
     | 
| 75 | 
         
            +
                            s = ledoit_wolf(X)[0]
         
     | 
| 76 | 
         
            +
                            # rescale
         
     | 
| 77 | 
         
            +
                            s = sc.scale_[:, np.newaxis] * s * sc.scale_[np.newaxis, :]
         
     | 
| 78 | 
         
            +
                        elif shrinkage == "empirical":
         
     | 
| 79 | 
         
            +
                            s = empirical_covariance(X)
         
     | 
| 80 | 
         
            +
                    elif isinstance(shrinkage, Real):
         
     | 
| 81 | 
         
            +
                        s = shrunk_covariance(empirical_covariance(X), shrinkage)
         
     | 
| 82 | 
         
            +
                else:
         
     | 
| 83 | 
         
            +
                    if shrinkage is not None and shrinkage != 0:
         
     | 
| 84 | 
         
            +
                        raise ValueError(
         
     | 
| 85 | 
         
            +
                            "covariance_estimator and shrinkage parameters "
         
     | 
| 86 | 
         
            +
                            "are not None. Only one of the two can be set."
         
     | 
| 87 | 
         
            +
                        )
         
     | 
| 88 | 
         
            +
                    covariance_estimator.fit(X)
         
     | 
| 89 | 
         
            +
                    if not hasattr(covariance_estimator, "covariance_"):
         
     | 
| 90 | 
         
            +
                        raise ValueError(
         
     | 
| 91 | 
         
            +
                            "%s does not have a covariance_ attribute"
         
     | 
| 92 | 
         
            +
                            % covariance_estimator.__class__.__name__
         
     | 
| 93 | 
         
            +
                        )
         
     | 
| 94 | 
         
            +
                    s = covariance_estimator.covariance_
         
     | 
| 95 | 
         
            +
                return s
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            def _class_means(X, y):
         
     | 
| 99 | 
         
            +
                """Compute class means.
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                Parameters
         
     | 
| 102 | 
         
            +
                ----------
         
     | 
| 103 | 
         
            +
                X : array-like of shape (n_samples, n_features)
         
     | 
| 104 | 
         
            +
                    Input data.
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                y : array-like of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 107 | 
         
            +
                    Target values.
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                Returns
         
     | 
| 110 | 
         
            +
                -------
         
     | 
| 111 | 
         
            +
                means : array-like of shape (n_classes, n_features)
         
     | 
| 112 | 
         
            +
                    Class means.
         
     | 
| 113 | 
         
            +
                """
         
     | 
| 114 | 
         
            +
                xp, is_array_api_compliant = get_namespace(X)
         
     | 
| 115 | 
         
            +
                classes, y = xp.unique_inverse(y)
         
     | 
| 116 | 
         
            +
                means = xp.zeros((classes.shape[0], X.shape[1]), device=device(X), dtype=X.dtype)
         
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
                if is_array_api_compliant:
         
     | 
| 119 | 
         
            +
                    for i in range(classes.shape[0]):
         
     | 
| 120 | 
         
            +
                        means[i, :] = xp.mean(X[y == i], axis=0)
         
     | 
| 121 | 
         
            +
                else:
         
     | 
| 122 | 
         
            +
                    # TODO: Explore the choice of using bincount + add.at as it seems sub optimal
         
     | 
| 123 | 
         
            +
                    # from a performance-wise
         
     | 
| 124 | 
         
            +
                    cnt = np.bincount(y)
         
     | 
| 125 | 
         
            +
                    np.add.at(means, y, X)
         
     | 
| 126 | 
         
            +
                    means /= cnt[:, None]
         
     | 
| 127 | 
         
            +
                return means
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            def _class_cov(X, y, priors, shrinkage=None, covariance_estimator=None):
         
     | 
| 131 | 
         
            +
                """Compute weighted within-class covariance matrix.
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                The per-class covariance are weighted by the class priors.
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                Parameters
         
     | 
| 136 | 
         
            +
                ----------
         
     | 
| 137 | 
         
            +
                X : array-like of shape (n_samples, n_features)
         
     | 
| 138 | 
         
            +
                    Input data.
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                y : array-like of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 141 | 
         
            +
                    Target values.
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                priors : array-like of shape (n_classes,)
         
     | 
| 144 | 
         
            +
                    Class priors.
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                shrinkage : 'auto' or float, default=None
         
     | 
| 147 | 
         
            +
                    Shrinkage parameter, possible values:
         
     | 
| 148 | 
         
            +
                      - None: no shrinkage (default).
         
     | 
| 149 | 
         
            +
                      - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
         
     | 
| 150 | 
         
            +
                      - float between 0 and 1: fixed shrinkage parameter.
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                    Shrinkage parameter is ignored if `covariance_estimator` is not None.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                covariance_estimator : estimator, default=None
         
     | 
| 155 | 
         
            +
                    If not None, `covariance_estimator` is used to estimate
         
     | 
| 156 | 
         
            +
                    the covariance matrices instead of relying the empirical
         
     | 
| 157 | 
         
            +
                    covariance estimator (with potential shrinkage).
         
     | 
| 158 | 
         
            +
                    The object should have a fit method and a ``covariance_`` attribute
         
     | 
| 159 | 
         
            +
                    like the estimators in sklearn.covariance.
         
     | 
| 160 | 
         
            +
                    If None, the shrinkage parameter drives the estimate.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                Returns
         
     | 
| 165 | 
         
            +
                -------
         
     | 
| 166 | 
         
            +
                cov : array-like of shape (n_features, n_features)
         
     | 
| 167 | 
         
            +
                    Weighted within-class covariance matrix
         
     | 
| 168 | 
         
            +
                """
         
     | 
| 169 | 
         
            +
                classes = np.unique(y)
         
     | 
| 170 | 
         
            +
                cov = np.zeros(shape=(X.shape[1], X.shape[1]))
         
     | 
| 171 | 
         
            +
                for idx, group in enumerate(classes):
         
     | 
| 172 | 
         
            +
                    Xg = X[y == group, :]
         
     | 
| 173 | 
         
            +
                    cov += priors[idx] * np.atleast_2d(_cov(Xg, shrinkage, covariance_estimator))
         
     | 
| 174 | 
         
            +
                return cov
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
            class LinearDiscriminantAnalysis(
         
     | 
| 178 | 
         
            +
                ClassNamePrefixFeaturesOutMixin,
         
     | 
| 179 | 
         
            +
                LinearClassifierMixin,
         
     | 
| 180 | 
         
            +
                TransformerMixin,
         
     | 
| 181 | 
         
            +
                BaseEstimator,
         
     | 
| 182 | 
         
            +
            ):
         
     | 
| 183 | 
         
            +
                """Linear Discriminant Analysis.
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                A classifier with a linear decision boundary, generated by fitting class
         
     | 
| 186 | 
         
            +
                conditional densities to the data and using Bayes' rule.
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                The model fits a Gaussian density to each class, assuming that all classes
         
     | 
| 189 | 
         
            +
                share the same covariance matrix.
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                The fitted model can also be used to reduce the dimensionality of the input
         
     | 
| 192 | 
         
            +
                by projecting it to the most discriminative directions, using the
         
     | 
| 193 | 
         
            +
                `transform` method.
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                .. versionadded:: 0.17
         
     | 
| 196 | 
         
            +
                   *LinearDiscriminantAnalysis*.
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                Read more in the :ref:`User Guide <lda_qda>`.
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                Parameters
         
     | 
| 201 | 
         
            +
                ----------
         
     | 
| 202 | 
         
            +
                solver : {'svd', 'lsqr', 'eigen'}, default='svd'
         
     | 
| 203 | 
         
            +
                    Solver to use, possible values:
         
     | 
| 204 | 
         
            +
                      - 'svd': Singular value decomposition (default).
         
     | 
| 205 | 
         
            +
                        Does not compute the covariance matrix, therefore this solver is
         
     | 
| 206 | 
         
            +
                        recommended for data with a large number of features.
         
     | 
| 207 | 
         
            +
                      - 'lsqr': Least squares solution.
         
     | 
| 208 | 
         
            +
                        Can be combined with shrinkage or custom covariance estimator.
         
     | 
| 209 | 
         
            +
                      - 'eigen': Eigenvalue decomposition.
         
     | 
| 210 | 
         
            +
                        Can be combined with shrinkage or custom covariance estimator.
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    .. versionchanged:: 1.2
         
     | 
| 213 | 
         
            +
                        `solver="svd"` now has experimental Array API support. See the
         
     | 
| 214 | 
         
            +
                        :ref:`Array API User Guide <array_api>` for more details.
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                shrinkage : 'auto' or float, default=None
         
     | 
| 217 | 
         
            +
                    Shrinkage parameter, possible values:
         
     | 
| 218 | 
         
            +
                      - None: no shrinkage (default).
         
     | 
| 219 | 
         
            +
                      - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
         
     | 
| 220 | 
         
            +
                      - float between 0 and 1: fixed shrinkage parameter.
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                    This should be left to None if `covariance_estimator` is used.
         
     | 
| 223 | 
         
            +
                    Note that shrinkage works only with 'lsqr' and 'eigen' solvers.
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                priors : array-like of shape (n_classes,), default=None
         
     | 
| 226 | 
         
            +
                    The class prior probabilities. By default, the class proportions are
         
     | 
| 227 | 
         
            +
                    inferred from the training data.
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                n_components : int, default=None
         
     | 
| 230 | 
         
            +
                    Number of components (<= min(n_classes - 1, n_features)) for
         
     | 
| 231 | 
         
            +
                    dimensionality reduction. If None, will be set to
         
     | 
| 232 | 
         
            +
                    min(n_classes - 1, n_features). This parameter only affects the
         
     | 
| 233 | 
         
            +
                    `transform` method.
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                store_covariance : bool, default=False
         
     | 
| 236 | 
         
            +
                    If True, explicitly compute the weighted within-class covariance
         
     | 
| 237 | 
         
            +
                    matrix when solver is 'svd'. The matrix is always computed
         
     | 
| 238 | 
         
            +
                    and stored for the other solvers.
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    .. versionadded:: 0.17
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                tol : float, default=1.0e-4
         
     | 
| 243 | 
         
            +
                    Absolute threshold for a singular value of X to be considered
         
     | 
| 244 | 
         
            +
                    significant, used to estimate the rank of X. Dimensions whose
         
     | 
| 245 | 
         
            +
                    singular values are non-significant are discarded. Only used if
         
     | 
| 246 | 
         
            +
                    solver is 'svd'.
         
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
                    .. versionadded:: 0.17
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                covariance_estimator : covariance estimator, default=None
         
     | 
| 251 | 
         
            +
                    If not None, `covariance_estimator` is used to estimate
         
     | 
| 252 | 
         
            +
                    the covariance matrices instead of relying on the empirical
         
     | 
| 253 | 
         
            +
                    covariance estimator (with potential shrinkage).
         
     | 
| 254 | 
         
            +
                    The object should have a fit method and a ``covariance_`` attribute
         
     | 
| 255 | 
         
            +
                    like the estimators in :mod:`sklearn.covariance`.
         
     | 
| 256 | 
         
            +
                    if None the shrinkage parameter drives the estimate.
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                    This should be left to None if `shrinkage` is used.
         
     | 
| 259 | 
         
            +
                    Note that `covariance_estimator` works only with 'lsqr' and 'eigen'
         
     | 
| 260 | 
         
            +
                    solvers.
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                Attributes
         
     | 
| 265 | 
         
            +
                ----------
         
     | 
| 266 | 
         
            +
                coef_ : ndarray of shape (n_features,) or (n_classes, n_features)
         
     | 
| 267 | 
         
            +
                    Weight vector(s).
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                intercept_ : ndarray of shape (n_classes,)
         
     | 
| 270 | 
         
            +
                    Intercept term.
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                covariance_ : array-like of shape (n_features, n_features)
         
     | 
| 273 | 
         
            +
                    Weighted within-class covariance matrix. It corresponds to
         
     | 
| 274 | 
         
            +
                    `sum_k prior_k * C_k` where `C_k` is the covariance matrix of the
         
     | 
| 275 | 
         
            +
                    samples in class `k`. The `C_k` are estimated using the (potentially
         
     | 
| 276 | 
         
            +
                    shrunk) biased estimator of covariance. If solver is 'svd', only
         
     | 
| 277 | 
         
            +
                    exists when `store_covariance` is True.
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                explained_variance_ratio_ : ndarray of shape (n_components,)
         
     | 
| 280 | 
         
            +
                    Percentage of variance explained by each of the selected components.
         
     | 
| 281 | 
         
            +
                    If ``n_components`` is not set then all components are stored and the
         
     | 
| 282 | 
         
            +
                    sum of explained variances is equal to 1.0. Only available when eigen
         
     | 
| 283 | 
         
            +
                    or svd solver is used.
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                means_ : array-like of shape (n_classes, n_features)
         
     | 
| 286 | 
         
            +
                    Class-wise means.
         
     | 
| 287 | 
         
            +
             
     | 
| 288 | 
         
            +
                priors_ : array-like of shape (n_classes,)
         
     | 
| 289 | 
         
            +
                    Class priors (sum to 1).
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                scalings_ : array-like of shape (rank, n_classes - 1)
         
     | 
| 292 | 
         
            +
                    Scaling of the features in the space spanned by the class centroids.
         
     | 
| 293 | 
         
            +
                    Only available for 'svd' and 'eigen' solvers.
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                xbar_ : array-like of shape (n_features,)
         
     | 
| 296 | 
         
            +
                    Overall mean. Only present if solver is 'svd'.
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                classes_ : array-like of shape (n_classes,)
         
     | 
| 299 | 
         
            +
                    Unique class labels.
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                n_features_in_ : int
         
     | 
| 302 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 307 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 308 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                See Also
         
     | 
| 313 | 
         
            +
                --------
         
     | 
| 314 | 
         
            +
                QuadraticDiscriminantAnalysis : Quadratic Discriminant Analysis.
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                Examples
         
     | 
| 317 | 
         
            +
                --------
         
     | 
| 318 | 
         
            +
                >>> import numpy as np
         
     | 
| 319 | 
         
            +
                >>> from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
         
     | 
| 320 | 
         
            +
                >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
         
     | 
| 321 | 
         
            +
                >>> y = np.array([1, 1, 1, 2, 2, 2])
         
     | 
| 322 | 
         
            +
                >>> clf = LinearDiscriminantAnalysis()
         
     | 
| 323 | 
         
            +
                >>> clf.fit(X, y)
         
     | 
| 324 | 
         
            +
                LinearDiscriminantAnalysis()
         
     | 
| 325 | 
         
            +
                >>> print(clf.predict([[-0.8, -1]]))
         
     | 
| 326 | 
         
            +
                [1]
         
     | 
| 327 | 
         
            +
                """
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 330 | 
         
            +
                    "solver": [StrOptions({"svd", "lsqr", "eigen"})],
         
     | 
| 331 | 
         
            +
                    "shrinkage": [StrOptions({"auto"}), Interval(Real, 0, 1, closed="both"), None],
         
     | 
| 332 | 
         
            +
                    "n_components": [Interval(Integral, 1, None, closed="left"), None],
         
     | 
| 333 | 
         
            +
                    "priors": ["array-like", None],
         
     | 
| 334 | 
         
            +
                    "store_covariance": ["boolean"],
         
     | 
| 335 | 
         
            +
                    "tol": [Interval(Real, 0, None, closed="left")],
         
     | 
| 336 | 
         
            +
                    "covariance_estimator": [HasMethods("fit"), None],
         
     | 
| 337 | 
         
            +
                }
         
     | 
| 338 | 
         
            +
             
     | 
| 339 | 
         
            +
                def __init__(
         
     | 
| 340 | 
         
            +
                    self,
         
     | 
| 341 | 
         
            +
                    solver="svd",
         
     | 
| 342 | 
         
            +
                    shrinkage=None,
         
     | 
| 343 | 
         
            +
                    priors=None,
         
     | 
| 344 | 
         
            +
                    n_components=None,
         
     | 
| 345 | 
         
            +
                    store_covariance=False,
         
     | 
| 346 | 
         
            +
                    tol=1e-4,
         
     | 
| 347 | 
         
            +
                    covariance_estimator=None,
         
     | 
| 348 | 
         
            +
                ):
         
     | 
| 349 | 
         
            +
                    self.solver = solver
         
     | 
| 350 | 
         
            +
                    self.shrinkage = shrinkage
         
     | 
| 351 | 
         
            +
                    self.priors = priors
         
     | 
| 352 | 
         
            +
                    self.n_components = n_components
         
     | 
| 353 | 
         
            +
                    self.store_covariance = store_covariance  # used only in svd solver
         
     | 
| 354 | 
         
            +
                    self.tol = tol  # used only in svd solver
         
     | 
| 355 | 
         
            +
                    self.covariance_estimator = covariance_estimator
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                def _solve_lstsq(self, X, y, shrinkage, covariance_estimator):
         
     | 
| 358 | 
         
            +
                    """Least squares solver.
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    The least squares solver computes a straightforward solution of the
         
     | 
| 361 | 
         
            +
                    optimal decision rule based directly on the discriminant functions. It
         
     | 
| 362 | 
         
            +
                    can only be used for classification (with any covariance estimator),
         
     | 
| 363 | 
         
            +
                    because
         
     | 
| 364 | 
         
            +
                    estimation of eigenvectors is not performed. Therefore, dimensionality
         
     | 
| 365 | 
         
            +
                    reduction with the transform is not supported.
         
     | 
| 366 | 
         
            +
             
     | 
| 367 | 
         
            +
                    Parameters
         
     | 
| 368 | 
         
            +
                    ----------
         
     | 
| 369 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 370 | 
         
            +
                        Training data.
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_classes)
         
     | 
| 373 | 
         
            +
                        Target values.
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                    shrinkage : 'auto', float or None
         
     | 
| 376 | 
         
            +
                        Shrinkage parameter, possible values:
         
     | 
| 377 | 
         
            +
                          - None: no shrinkage.
         
     | 
| 378 | 
         
            +
                          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
         
     | 
| 379 | 
         
            +
                          - float between 0 and 1: fixed shrinkage parameter.
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                        Shrinkage parameter is ignored if  `covariance_estimator` i
         
     | 
| 382 | 
         
            +
                        not None
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                    covariance_estimator : estimator, default=None
         
     | 
| 385 | 
         
            +
                        If not None, `covariance_estimator` is used to estimate
         
     | 
| 386 | 
         
            +
                        the covariance matrices instead of relying the empirical
         
     | 
| 387 | 
         
            +
                        covariance estimator (with potential shrinkage).
         
     | 
| 388 | 
         
            +
                        The object should have a fit method and a ``covariance_`` attribute
         
     | 
| 389 | 
         
            +
                        like the estimators in sklearn.covariance.
         
     | 
| 390 | 
         
            +
                        if None the shrinkage parameter drives the estimate.
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                        .. versionadded:: 0.24
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                    Notes
         
     | 
| 395 | 
         
            +
                    -----
         
     | 
| 396 | 
         
            +
                    This solver is based on [1]_, section 2.6.2, pp. 39-41.
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    References
         
     | 
| 399 | 
         
            +
                    ----------
         
     | 
| 400 | 
         
            +
                    .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
         
     | 
| 401 | 
         
            +
                       (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
         
     | 
| 402 | 
         
            +
                       0-471-05669-3.
         
     | 
| 403 | 
         
            +
                    """
         
     | 
| 404 | 
         
            +
                    self.means_ = _class_means(X, y)
         
     | 
| 405 | 
         
            +
                    self.covariance_ = _class_cov(
         
     | 
| 406 | 
         
            +
                        X, y, self.priors_, shrinkage, covariance_estimator
         
     | 
| 407 | 
         
            +
                    )
         
     | 
| 408 | 
         
            +
                    self.coef_ = linalg.lstsq(self.covariance_, self.means_.T)[0].T
         
     | 
| 409 | 
         
            +
                    self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(
         
     | 
| 410 | 
         
            +
                        self.priors_
         
     | 
| 411 | 
         
            +
                    )
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                def _solve_eigen(self, X, y, shrinkage, covariance_estimator):
         
     | 
| 414 | 
         
            +
                    """Eigenvalue solver.
         
     | 
| 415 | 
         
            +
             
     | 
| 416 | 
         
            +
                    The eigenvalue solver computes the optimal solution of the Rayleigh
         
     | 
| 417 | 
         
            +
                    coefficient (basically the ratio of between class scatter to within
         
     | 
| 418 | 
         
            +
                    class scatter). This solver supports both classification and
         
     | 
| 419 | 
         
            +
                    dimensionality reduction (with any covariance estimator).
         
     | 
| 420 | 
         
            +
             
     | 
| 421 | 
         
            +
                    Parameters
         
     | 
| 422 | 
         
            +
                    ----------
         
     | 
| 423 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 424 | 
         
            +
                        Training data.
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 427 | 
         
            +
                        Target values.
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
                    shrinkage : 'auto', float or None
         
     | 
| 430 | 
         
            +
                        Shrinkage parameter, possible values:
         
     | 
| 431 | 
         
            +
                          - None: no shrinkage.
         
     | 
| 432 | 
         
            +
                          - 'auto': automatic shrinkage using the Ledoit-Wolf lemma.
         
     | 
| 433 | 
         
            +
                          - float between 0 and 1: fixed shrinkage constant.
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                        Shrinkage parameter is ignored if  `covariance_estimator` i
         
     | 
| 436 | 
         
            +
                        not None
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    covariance_estimator : estimator, default=None
         
     | 
| 439 | 
         
            +
                        If not None, `covariance_estimator` is used to estimate
         
     | 
| 440 | 
         
            +
                        the covariance matrices instead of relying the empirical
         
     | 
| 441 | 
         
            +
                        covariance estimator (with potential shrinkage).
         
     | 
| 442 | 
         
            +
                        The object should have a fit method and a ``covariance_`` attribute
         
     | 
| 443 | 
         
            +
                        like the estimators in sklearn.covariance.
         
     | 
| 444 | 
         
            +
                        if None the shrinkage parameter drives the estimate.
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                        .. versionadded:: 0.24
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                    Notes
         
     | 
| 449 | 
         
            +
                    -----
         
     | 
| 450 | 
         
            +
                    This solver is based on [1]_, section 3.8.3, pp. 121-124.
         
     | 
| 451 | 
         
            +
             
     | 
| 452 | 
         
            +
                    References
         
     | 
| 453 | 
         
            +
                    ----------
         
     | 
| 454 | 
         
            +
                    .. [1] R. O. Duda, P. E. Hart, D. G. Stork. Pattern Classification
         
     | 
| 455 | 
         
            +
                       (Second Edition). John Wiley & Sons, Inc., New York, 2001. ISBN
         
     | 
| 456 | 
         
            +
                       0-471-05669-3.
         
     | 
| 457 | 
         
            +
                    """
         
     | 
| 458 | 
         
            +
                    self.means_ = _class_means(X, y)
         
     | 
| 459 | 
         
            +
                    self.covariance_ = _class_cov(
         
     | 
| 460 | 
         
            +
                        X, y, self.priors_, shrinkage, covariance_estimator
         
     | 
| 461 | 
         
            +
                    )
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                    Sw = self.covariance_  # within scatter
         
     | 
| 464 | 
         
            +
                    St = _cov(X, shrinkage, covariance_estimator)  # total scatter
         
     | 
| 465 | 
         
            +
                    Sb = St - Sw  # between scatter
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                    evals, evecs = linalg.eigh(Sb, Sw)
         
     | 
| 468 | 
         
            +
                    self.explained_variance_ratio_ = np.sort(evals / np.sum(evals))[::-1][
         
     | 
| 469 | 
         
            +
                        : self._max_components
         
     | 
| 470 | 
         
            +
                    ]
         
     | 
| 471 | 
         
            +
                    evecs = evecs[:, np.argsort(evals)[::-1]]  # sort eigenvectors
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    self.scalings_ = evecs
         
     | 
| 474 | 
         
            +
                    self.coef_ = np.dot(self.means_, evecs).dot(evecs.T)
         
     | 
| 475 | 
         
            +
                    self.intercept_ = -0.5 * np.diag(np.dot(self.means_, self.coef_.T)) + np.log(
         
     | 
| 476 | 
         
            +
                        self.priors_
         
     | 
| 477 | 
         
            +
                    )
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                def _solve_svd(self, X, y):
         
     | 
| 480 | 
         
            +
                    """SVD solver.
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                    Parameters
         
     | 
| 483 | 
         
            +
                    ----------
         
     | 
| 484 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 485 | 
         
            +
                        Training data.
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 488 | 
         
            +
                        Target values.
         
     | 
| 489 | 
         
            +
                    """
         
     | 
| 490 | 
         
            +
                    xp, is_array_api_compliant = get_namespace(X)
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
                    if is_array_api_compliant:
         
     | 
| 493 | 
         
            +
                        svd = xp.linalg.svd
         
     | 
| 494 | 
         
            +
                    else:
         
     | 
| 495 | 
         
            +
                        svd = scipy.linalg.svd
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                    n_samples, n_features = X.shape
         
     | 
| 498 | 
         
            +
                    n_classes = self.classes_.shape[0]
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                    self.means_ = _class_means(X, y)
         
     | 
| 501 | 
         
            +
                    if self.store_covariance:
         
     | 
| 502 | 
         
            +
                        self.covariance_ = _class_cov(X, y, self.priors_)
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                    Xc = []
         
     | 
| 505 | 
         
            +
                    for idx, group in enumerate(self.classes_):
         
     | 
| 506 | 
         
            +
                        Xg = X[y == group]
         
     | 
| 507 | 
         
            +
                        Xc.append(Xg - self.means_[idx, :])
         
     | 
| 508 | 
         
            +
             
     | 
| 509 | 
         
            +
                    self.xbar_ = self.priors_ @ self.means_
         
     | 
| 510 | 
         
            +
             
     | 
| 511 | 
         
            +
                    Xc = xp.concat(Xc, axis=0)
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                    # 1) within (univariate) scaling by with classes std-dev
         
     | 
| 514 | 
         
            +
                    std = xp.std(Xc, axis=0)
         
     | 
| 515 | 
         
            +
                    # avoid division by zero in normalization
         
     | 
| 516 | 
         
            +
                    std[std == 0] = 1.0
         
     | 
| 517 | 
         
            +
                    fac = xp.asarray(1.0 / (n_samples - n_classes))
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
                    # 2) Within variance scaling
         
     | 
| 520 | 
         
            +
                    X = xp.sqrt(fac) * (Xc / std)
         
     | 
| 521 | 
         
            +
                    # SVD of centered (within)scaled data
         
     | 
| 522 | 
         
            +
                    U, S, Vt = svd(X, full_matrices=False)
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                    rank = xp.sum(xp.astype(S > self.tol, xp.int32))
         
     | 
| 525 | 
         
            +
                    # Scaling of within covariance is: V' 1/S
         
     | 
| 526 | 
         
            +
                    scalings = (Vt[:rank, :] / std).T / S[:rank]
         
     | 
| 527 | 
         
            +
                    fac = 1.0 if n_classes == 1 else 1.0 / (n_classes - 1)
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                    # 3) Between variance scaling
         
     | 
| 530 | 
         
            +
                    # Scale weighted centers
         
     | 
| 531 | 
         
            +
                    X = (
         
     | 
| 532 | 
         
            +
                        (xp.sqrt((n_samples * self.priors_) * fac)) * (self.means_ - self.xbar_).T
         
     | 
| 533 | 
         
            +
                    ).T @ scalings
         
     | 
| 534 | 
         
            +
                    # Centers are living in a space with n_classes-1 dim (maximum)
         
     | 
| 535 | 
         
            +
                    # Use SVD to find projection in the space spanned by the
         
     | 
| 536 | 
         
            +
                    # (n_classes) centers
         
     | 
| 537 | 
         
            +
                    _, S, Vt = svd(X, full_matrices=False)
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                    if self._max_components == 0:
         
     | 
| 540 | 
         
            +
                        self.explained_variance_ratio_ = xp.empty((0,), dtype=S.dtype)
         
     | 
| 541 | 
         
            +
                    else:
         
     | 
| 542 | 
         
            +
                        self.explained_variance_ratio_ = (S**2 / xp.sum(S**2))[
         
     | 
| 543 | 
         
            +
                            : self._max_components
         
     | 
| 544 | 
         
            +
                        ]
         
     | 
| 545 | 
         
            +
             
     | 
| 546 | 
         
            +
                    rank = xp.sum(xp.astype(S > self.tol * S[0], xp.int32))
         
     | 
| 547 | 
         
            +
                    self.scalings_ = scalings @ Vt.T[:, :rank]
         
     | 
| 548 | 
         
            +
                    coef = (self.means_ - self.xbar_) @ self.scalings_
         
     | 
| 549 | 
         
            +
                    self.intercept_ = -0.5 * xp.sum(coef**2, axis=1) + xp.log(self.priors_)
         
     | 
| 550 | 
         
            +
                    self.coef_ = coef @ self.scalings_.T
         
     | 
| 551 | 
         
            +
                    self.intercept_ -= self.xbar_ @ self.coef_.T
         
     | 
| 552 | 
         
            +
             
     | 
| 553 | 
         
            +
                @_fit_context(
         
     | 
| 554 | 
         
            +
                    # LinearDiscriminantAnalysis.covariance_estimator is not validated yet
         
     | 
| 555 | 
         
            +
                    prefer_skip_nested_validation=False
         
     | 
| 556 | 
         
            +
                )
         
     | 
| 557 | 
         
            +
                def fit(self, X, y):
         
     | 
| 558 | 
         
            +
                    """Fit the Linear Discriminant Analysis model.
         
     | 
| 559 | 
         
            +
             
     | 
| 560 | 
         
            +
                       .. versionchanged:: 0.19
         
     | 
| 561 | 
         
            +
                          *store_covariance* has been moved to main constructor.
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                       .. versionchanged:: 0.19
         
     | 
| 564 | 
         
            +
                          *tol* has been moved to main constructor.
         
     | 
| 565 | 
         
            +
             
     | 
| 566 | 
         
            +
                    Parameters
         
     | 
| 567 | 
         
            +
                    ----------
         
     | 
| 568 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 569 | 
         
            +
                        Training data.
         
     | 
| 570 | 
         
            +
             
     | 
| 571 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 572 | 
         
            +
                        Target values.
         
     | 
| 573 | 
         
            +
             
     | 
| 574 | 
         
            +
                    Returns
         
     | 
| 575 | 
         
            +
                    -------
         
     | 
| 576 | 
         
            +
                    self : object
         
     | 
| 577 | 
         
            +
                        Fitted estimator.
         
     | 
| 578 | 
         
            +
                    """
         
     | 
| 579 | 
         
            +
                    xp, _ = get_namespace(X)
         
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
                    X, y = self._validate_data(
         
     | 
| 582 | 
         
            +
                        X, y, ensure_min_samples=2, dtype=[xp.float64, xp.float32]
         
     | 
| 583 | 
         
            +
                    )
         
     | 
| 584 | 
         
            +
                    self.classes_ = unique_labels(y)
         
     | 
| 585 | 
         
            +
                    n_samples, _ = X.shape
         
     | 
| 586 | 
         
            +
                    n_classes = self.classes_.shape[0]
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                    if n_samples == n_classes:
         
     | 
| 589 | 
         
            +
                        raise ValueError(
         
     | 
| 590 | 
         
            +
                            "The number of samples must be more than the number of classes."
         
     | 
| 591 | 
         
            +
                        )
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                    if self.priors is None:  # estimate priors from sample
         
     | 
| 594 | 
         
            +
                        _, cnts = xp.unique_counts(y)  # non-negative ints
         
     | 
| 595 | 
         
            +
                        self.priors_ = xp.astype(cnts, X.dtype) / float(y.shape[0])
         
     | 
| 596 | 
         
            +
                    else:
         
     | 
| 597 | 
         
            +
                        self.priors_ = xp.asarray(self.priors, dtype=X.dtype)
         
     | 
| 598 | 
         
            +
             
     | 
| 599 | 
         
            +
                    if xp.any(self.priors_ < 0):
         
     | 
| 600 | 
         
            +
                        raise ValueError("priors must be non-negative")
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                    if xp.abs(xp.sum(self.priors_) - 1.0) > 1e-5:
         
     | 
| 603 | 
         
            +
                        warnings.warn("The priors do not sum to 1. Renormalizing", UserWarning)
         
     | 
| 604 | 
         
            +
                        self.priors_ = self.priors_ / self.priors_.sum()
         
     | 
| 605 | 
         
            +
             
     | 
| 606 | 
         
            +
                    # Maximum number of components no matter what n_components is
         
     | 
| 607 | 
         
            +
                    # specified:
         
     | 
| 608 | 
         
            +
                    max_components = min(n_classes - 1, X.shape[1])
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                    if self.n_components is None:
         
     | 
| 611 | 
         
            +
                        self._max_components = max_components
         
     | 
| 612 | 
         
            +
                    else:
         
     | 
| 613 | 
         
            +
                        if self.n_components > max_components:
         
     | 
| 614 | 
         
            +
                            raise ValueError(
         
     | 
| 615 | 
         
            +
                                "n_components cannot be larger than min(n_features, n_classes - 1)."
         
     | 
| 616 | 
         
            +
                            )
         
     | 
| 617 | 
         
            +
                        self._max_components = self.n_components
         
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
                    if self.solver == "svd":
         
     | 
| 620 | 
         
            +
                        if self.shrinkage is not None:
         
     | 
| 621 | 
         
            +
                            raise NotImplementedError("shrinkage not supported with 'svd' solver.")
         
     | 
| 622 | 
         
            +
                        if self.covariance_estimator is not None:
         
     | 
| 623 | 
         
            +
                            raise ValueError(
         
     | 
| 624 | 
         
            +
                                "covariance estimator "
         
     | 
| 625 | 
         
            +
                                "is not supported "
         
     | 
| 626 | 
         
            +
                                "with svd solver. Try another solver"
         
     | 
| 627 | 
         
            +
                            )
         
     | 
| 628 | 
         
            +
                        self._solve_svd(X, y)
         
     | 
| 629 | 
         
            +
                    elif self.solver == "lsqr":
         
     | 
| 630 | 
         
            +
                        self._solve_lstsq(
         
     | 
| 631 | 
         
            +
                            X,
         
     | 
| 632 | 
         
            +
                            y,
         
     | 
| 633 | 
         
            +
                            shrinkage=self.shrinkage,
         
     | 
| 634 | 
         
            +
                            covariance_estimator=self.covariance_estimator,
         
     | 
| 635 | 
         
            +
                        )
         
     | 
| 636 | 
         
            +
                    elif self.solver == "eigen":
         
     | 
| 637 | 
         
            +
                        self._solve_eigen(
         
     | 
| 638 | 
         
            +
                            X,
         
     | 
| 639 | 
         
            +
                            y,
         
     | 
| 640 | 
         
            +
                            shrinkage=self.shrinkage,
         
     | 
| 641 | 
         
            +
                            covariance_estimator=self.covariance_estimator,
         
     | 
| 642 | 
         
            +
                        )
         
     | 
| 643 | 
         
            +
                    if size(self.classes_) == 2:  # treat binary case as a special case
         
     | 
| 644 | 
         
            +
                        coef_ = xp.asarray(self.coef_[1, :] - self.coef_[0, :], dtype=X.dtype)
         
     | 
| 645 | 
         
            +
                        self.coef_ = xp.reshape(coef_, (1, -1))
         
     | 
| 646 | 
         
            +
                        intercept_ = xp.asarray(
         
     | 
| 647 | 
         
            +
                            self.intercept_[1] - self.intercept_[0], dtype=X.dtype
         
     | 
| 648 | 
         
            +
                        )
         
     | 
| 649 | 
         
            +
                        self.intercept_ = xp.reshape(intercept_, (1,))
         
     | 
| 650 | 
         
            +
                    self._n_features_out = self._max_components
         
     | 
| 651 | 
         
            +
                    return self
         
     | 
| 652 | 
         
            +
             
     | 
| 653 | 
         
            +
                def transform(self, X):
         
     | 
| 654 | 
         
            +
                    """Project data to maximize class separation.
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                    Parameters
         
     | 
| 657 | 
         
            +
                    ----------
         
     | 
| 658 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 659 | 
         
            +
                        Input data.
         
     | 
| 660 | 
         
            +
             
     | 
| 661 | 
         
            +
                    Returns
         
     | 
| 662 | 
         
            +
                    -------
         
     | 
| 663 | 
         
            +
                    X_new : ndarray of shape (n_samples, n_components) or \
         
     | 
| 664 | 
         
            +
                        (n_samples, min(rank, n_components))
         
     | 
| 665 | 
         
            +
                        Transformed data. In the case of the 'svd' solver, the shape
         
     | 
| 666 | 
         
            +
                        is (n_samples, min(rank, n_components)).
         
     | 
| 667 | 
         
            +
                    """
         
     | 
| 668 | 
         
            +
                    if self.solver == "lsqr":
         
     | 
| 669 | 
         
            +
                        raise NotImplementedError(
         
     | 
| 670 | 
         
            +
                            "transform not implemented for 'lsqr' solver (use 'svd' or 'eigen')."
         
     | 
| 671 | 
         
            +
                        )
         
     | 
| 672 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 673 | 
         
            +
                    xp, _ = get_namespace(X)
         
     | 
| 674 | 
         
            +
                    X = self._validate_data(X, reset=False)
         
     | 
| 675 | 
         
            +
             
     | 
| 676 | 
         
            +
                    if self.solver == "svd":
         
     | 
| 677 | 
         
            +
                        X_new = (X - self.xbar_) @ self.scalings_
         
     | 
| 678 | 
         
            +
                    elif self.solver == "eigen":
         
     | 
| 679 | 
         
            +
                        X_new = X @ self.scalings_
         
     | 
| 680 | 
         
            +
             
     | 
| 681 | 
         
            +
                    return X_new[:, : self._max_components]
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
                def predict_proba(self, X):
         
     | 
| 684 | 
         
            +
                    """Estimate probability.
         
     | 
| 685 | 
         
            +
             
     | 
| 686 | 
         
            +
                    Parameters
         
     | 
| 687 | 
         
            +
                    ----------
         
     | 
| 688 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 689 | 
         
            +
                        Input data.
         
     | 
| 690 | 
         
            +
             
     | 
| 691 | 
         
            +
                    Returns
         
     | 
| 692 | 
         
            +
                    -------
         
     | 
| 693 | 
         
            +
                    C : ndarray of shape (n_samples, n_classes)
         
     | 
| 694 | 
         
            +
                        Estimated probabilities.
         
     | 
| 695 | 
         
            +
                    """
         
     | 
| 696 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 697 | 
         
            +
                    xp, is_array_api_compliant = get_namespace(X)
         
     | 
| 698 | 
         
            +
                    decision = self.decision_function(X)
         
     | 
| 699 | 
         
            +
                    if size(self.classes_) == 2:
         
     | 
| 700 | 
         
            +
                        proba = _expit(decision)
         
     | 
| 701 | 
         
            +
                        return xp.stack([1 - proba, proba], axis=1)
         
     | 
| 702 | 
         
            +
                    else:
         
     | 
| 703 | 
         
            +
                        return softmax(decision)
         
     | 
| 704 | 
         
            +
             
     | 
| 705 | 
         
            +
                def predict_log_proba(self, X):
         
     | 
| 706 | 
         
            +
                    """Estimate log probability.
         
     | 
| 707 | 
         
            +
             
     | 
| 708 | 
         
            +
                    Parameters
         
     | 
| 709 | 
         
            +
                    ----------
         
     | 
| 710 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 711 | 
         
            +
                        Input data.
         
     | 
| 712 | 
         
            +
             
     | 
| 713 | 
         
            +
                    Returns
         
     | 
| 714 | 
         
            +
                    -------
         
     | 
| 715 | 
         
            +
                    C : ndarray of shape (n_samples, n_classes)
         
     | 
| 716 | 
         
            +
                        Estimated log probabilities.
         
     | 
| 717 | 
         
            +
                    """
         
     | 
| 718 | 
         
            +
                    xp, _ = get_namespace(X)
         
     | 
| 719 | 
         
            +
                    prediction = self.predict_proba(X)
         
     | 
| 720 | 
         
            +
             
     | 
| 721 | 
         
            +
                    info = xp.finfo(prediction.dtype)
         
     | 
| 722 | 
         
            +
                    if hasattr(info, "smallest_normal"):
         
     | 
| 723 | 
         
            +
                        smallest_normal = info.smallest_normal
         
     | 
| 724 | 
         
            +
                    else:
         
     | 
| 725 | 
         
            +
                        # smallest_normal was introduced in NumPy 1.22
         
     | 
| 726 | 
         
            +
                        smallest_normal = info.tiny
         
     | 
| 727 | 
         
            +
             
     | 
| 728 | 
         
            +
                    prediction[prediction == 0.0] += smallest_normal
         
     | 
| 729 | 
         
            +
                    return xp.log(prediction)
         
     | 
| 730 | 
         
            +
             
     | 
| 731 | 
         
            +
                def decision_function(self, X):
         
     | 
| 732 | 
         
            +
                    """Apply decision function to an array of samples.
         
     | 
| 733 | 
         
            +
             
     | 
| 734 | 
         
            +
                    The decision function is equal (up to a constant factor) to the
         
     | 
| 735 | 
         
            +
                    log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
         
     | 
| 736 | 
         
            +
                    classification setting this instead corresponds to the difference
         
     | 
| 737 | 
         
            +
                    `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
                    Parameters
         
     | 
| 740 | 
         
            +
                    ----------
         
     | 
| 741 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 742 | 
         
            +
                        Array of samples (test vectors).
         
     | 
| 743 | 
         
            +
             
     | 
| 744 | 
         
            +
                    Returns
         
     | 
| 745 | 
         
            +
                    -------
         
     | 
| 746 | 
         
            +
                    C : ndarray of shape (n_samples,) or (n_samples, n_classes)
         
     | 
| 747 | 
         
            +
                        Decision function values related to each class, per sample.
         
     | 
| 748 | 
         
            +
                        In the two-class case, the shape is (n_samples,), giving the
         
     | 
| 749 | 
         
            +
                        log likelihood ratio of the positive class.
         
     | 
| 750 | 
         
            +
                    """
         
     | 
| 751 | 
         
            +
                    # Only override for the doc
         
     | 
| 752 | 
         
            +
                    return super().decision_function(X)
         
     | 
| 753 | 
         
            +
             
     | 
| 754 | 
         
            +
                def _more_tags(self):
         
     | 
| 755 | 
         
            +
                    return {"array_api_support": True}
         
     | 
| 756 | 
         
            +
             
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
            class QuadraticDiscriminantAnalysis(ClassifierMixin, BaseEstimator):
         
     | 
| 759 | 
         
            +
                """Quadratic Discriminant Analysis.
         
     | 
| 760 | 
         
            +
             
     | 
| 761 | 
         
            +
                A classifier with a quadratic decision boundary, generated
         
     | 
| 762 | 
         
            +
                by fitting class conditional densities to the data
         
     | 
| 763 | 
         
            +
                and using Bayes' rule.
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                The model fits a Gaussian density to each class.
         
     | 
| 766 | 
         
            +
             
     | 
| 767 | 
         
            +
                .. versionadded:: 0.17
         
     | 
| 768 | 
         
            +
                   *QuadraticDiscriminantAnalysis*
         
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
                Read more in the :ref:`User Guide <lda_qda>`.
         
     | 
| 771 | 
         
            +
             
     | 
| 772 | 
         
            +
                Parameters
         
     | 
| 773 | 
         
            +
                ----------
         
     | 
| 774 | 
         
            +
                priors : array-like of shape (n_classes,), default=None
         
     | 
| 775 | 
         
            +
                    Class priors. By default, the class proportions are inferred from the
         
     | 
| 776 | 
         
            +
                    training data.
         
     | 
| 777 | 
         
            +
             
     | 
| 778 | 
         
            +
                reg_param : float, default=0.0
         
     | 
| 779 | 
         
            +
                    Regularizes the per-class covariance estimates by transforming S2 as
         
     | 
| 780 | 
         
            +
                    ``S2 = (1 - reg_param) * S2 + reg_param * np.eye(n_features)``,
         
     | 
| 781 | 
         
            +
                    where S2 corresponds to the `scaling_` attribute of a given class.
         
     | 
| 782 | 
         
            +
             
     | 
| 783 | 
         
            +
                store_covariance : bool, default=False
         
     | 
| 784 | 
         
            +
                    If True, the class covariance matrices are explicitly computed and
         
     | 
| 785 | 
         
            +
                    stored in the `self.covariance_` attribute.
         
     | 
| 786 | 
         
            +
             
     | 
| 787 | 
         
            +
                    .. versionadded:: 0.17
         
     | 
| 788 | 
         
            +
             
     | 
| 789 | 
         
            +
                tol : float, default=1.0e-4
         
     | 
| 790 | 
         
            +
                    Absolute threshold for a singular value to be considered significant,
         
     | 
| 791 | 
         
            +
                    used to estimate the rank of `Xk` where `Xk` is the centered matrix
         
     | 
| 792 | 
         
            +
                    of samples in class k. This parameter does not affect the
         
     | 
| 793 | 
         
            +
                    predictions. It only controls a warning that is raised when features
         
     | 
| 794 | 
         
            +
                    are considered to be colinear.
         
     | 
| 795 | 
         
            +
             
     | 
| 796 | 
         
            +
                    .. versionadded:: 0.17
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                Attributes
         
     | 
| 799 | 
         
            +
                ----------
         
     | 
| 800 | 
         
            +
                covariance_ : list of len n_classes of ndarray \
         
     | 
| 801 | 
         
            +
                        of shape (n_features, n_features)
         
     | 
| 802 | 
         
            +
                    For each class, gives the covariance matrix estimated using the
         
     | 
| 803 | 
         
            +
                    samples of that class. The estimations are unbiased. Only present if
         
     | 
| 804 | 
         
            +
                    `store_covariance` is True.
         
     | 
| 805 | 
         
            +
             
     | 
| 806 | 
         
            +
                means_ : array-like of shape (n_classes, n_features)
         
     | 
| 807 | 
         
            +
                    Class-wise means.
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                priors_ : array-like of shape (n_classes,)
         
     | 
| 810 | 
         
            +
                    Class priors (sum to 1).
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                rotations_ : list of len n_classes of ndarray of shape (n_features, n_k)
         
     | 
| 813 | 
         
            +
                    For each class k an array of shape (n_features, n_k), where
         
     | 
| 814 | 
         
            +
                    ``n_k = min(n_features, number of elements in class k)``
         
     | 
| 815 | 
         
            +
                    It is the rotation of the Gaussian distribution, i.e. its
         
     | 
| 816 | 
         
            +
                    principal axis. It corresponds to `V`, the matrix of eigenvectors
         
     | 
| 817 | 
         
            +
                    coming from the SVD of `Xk = U S Vt` where `Xk` is the centered
         
     | 
| 818 | 
         
            +
                    matrix of samples from class k.
         
     | 
| 819 | 
         
            +
             
     | 
| 820 | 
         
            +
                scalings_ : list of len n_classes of ndarray of shape (n_k,)
         
     | 
| 821 | 
         
            +
                    For each class, contains the scaling of
         
     | 
| 822 | 
         
            +
                    the Gaussian distributions along its principal axes, i.e. the
         
     | 
| 823 | 
         
            +
                    variance in the rotated coordinate system. It corresponds to `S^2 /
         
     | 
| 824 | 
         
            +
                    (n_samples - 1)`, where `S` is the diagonal matrix of singular values
         
     | 
| 825 | 
         
            +
                    from the SVD of `Xk`, where `Xk` is the centered matrix of samples
         
     | 
| 826 | 
         
            +
                    from class k.
         
     | 
| 827 | 
         
            +
             
     | 
| 828 | 
         
            +
                classes_ : ndarray of shape (n_classes,)
         
     | 
| 829 | 
         
            +
                    Unique class labels.
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
                n_features_in_ : int
         
     | 
| 832 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 837 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 838 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 839 | 
         
            +
             
     | 
| 840 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                See Also
         
     | 
| 843 | 
         
            +
                --------
         
     | 
| 844 | 
         
            +
                LinearDiscriminantAnalysis : Linear Discriminant Analysis.
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
                Examples
         
     | 
| 847 | 
         
            +
                --------
         
     | 
| 848 | 
         
            +
                >>> from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
         
     | 
| 849 | 
         
            +
                >>> import numpy as np
         
     | 
| 850 | 
         
            +
                >>> X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
         
     | 
| 851 | 
         
            +
                >>> y = np.array([1, 1, 1, 2, 2, 2])
         
     | 
| 852 | 
         
            +
                >>> clf = QuadraticDiscriminantAnalysis()
         
     | 
| 853 | 
         
            +
                >>> clf.fit(X, y)
         
     | 
| 854 | 
         
            +
                QuadraticDiscriminantAnalysis()
         
     | 
| 855 | 
         
            +
                >>> print(clf.predict([[-0.8, -1]]))
         
     | 
| 856 | 
         
            +
                [1]
         
     | 
| 857 | 
         
            +
                """
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 860 | 
         
            +
                    "priors": ["array-like", None],
         
     | 
| 861 | 
         
            +
                    "reg_param": [Interval(Real, 0, 1, closed="both")],
         
     | 
| 862 | 
         
            +
                    "store_covariance": ["boolean"],
         
     | 
| 863 | 
         
            +
                    "tol": [Interval(Real, 0, None, closed="left")],
         
     | 
| 864 | 
         
            +
                }
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                def __init__(
         
     | 
| 867 | 
         
            +
                    self, *, priors=None, reg_param=0.0, store_covariance=False, tol=1.0e-4
         
     | 
| 868 | 
         
            +
                ):
         
     | 
| 869 | 
         
            +
                    self.priors = priors
         
     | 
| 870 | 
         
            +
                    self.reg_param = reg_param
         
     | 
| 871 | 
         
            +
                    self.store_covariance = store_covariance
         
     | 
| 872 | 
         
            +
                    self.tol = tol
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 875 | 
         
            +
                def fit(self, X, y):
         
     | 
| 876 | 
         
            +
                    """Fit the model according to the given training data and parameters.
         
     | 
| 877 | 
         
            +
             
     | 
| 878 | 
         
            +
                        .. versionchanged:: 0.19
         
     | 
| 879 | 
         
            +
                           ``store_covariances`` has been moved to main constructor as
         
     | 
| 880 | 
         
            +
                           ``store_covariance``
         
     | 
| 881 | 
         
            +
             
     | 
| 882 | 
         
            +
                        .. versionchanged:: 0.19
         
     | 
| 883 | 
         
            +
                           ``tol`` has been moved to main constructor.
         
     | 
| 884 | 
         
            +
             
     | 
| 885 | 
         
            +
                    Parameters
         
     | 
| 886 | 
         
            +
                    ----------
         
     | 
| 887 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 888 | 
         
            +
                        Training vector, where `n_samples` is the number of samples and
         
     | 
| 889 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 892 | 
         
            +
                        Target values (integers).
         
     | 
| 893 | 
         
            +
             
     | 
| 894 | 
         
            +
                    Returns
         
     | 
| 895 | 
         
            +
                    -------
         
     | 
| 896 | 
         
            +
                    self : object
         
     | 
| 897 | 
         
            +
                        Fitted estimator.
         
     | 
| 898 | 
         
            +
                    """
         
     | 
| 899 | 
         
            +
                    X, y = self._validate_data(X, y)
         
     | 
| 900 | 
         
            +
                    check_classification_targets(y)
         
     | 
| 901 | 
         
            +
                    self.classes_, y = np.unique(y, return_inverse=True)
         
     | 
| 902 | 
         
            +
                    n_samples, n_features = X.shape
         
     | 
| 903 | 
         
            +
                    n_classes = len(self.classes_)
         
     | 
| 904 | 
         
            +
                    if n_classes < 2:
         
     | 
| 905 | 
         
            +
                        raise ValueError(
         
     | 
| 906 | 
         
            +
                            "The number of classes has to be greater than one; got %d class"
         
     | 
| 907 | 
         
            +
                            % (n_classes)
         
     | 
| 908 | 
         
            +
                        )
         
     | 
| 909 | 
         
            +
                    if self.priors is None:
         
     | 
| 910 | 
         
            +
                        self.priors_ = np.bincount(y) / float(n_samples)
         
     | 
| 911 | 
         
            +
                    else:
         
     | 
| 912 | 
         
            +
                        self.priors_ = np.array(self.priors)
         
     | 
| 913 | 
         
            +
             
     | 
| 914 | 
         
            +
                    cov = None
         
     | 
| 915 | 
         
            +
                    store_covariance = self.store_covariance
         
     | 
| 916 | 
         
            +
                    if store_covariance:
         
     | 
| 917 | 
         
            +
                        cov = []
         
     | 
| 918 | 
         
            +
                    means = []
         
     | 
| 919 | 
         
            +
                    scalings = []
         
     | 
| 920 | 
         
            +
                    rotations = []
         
     | 
| 921 | 
         
            +
                    for ind in range(n_classes):
         
     | 
| 922 | 
         
            +
                        Xg = X[y == ind, :]
         
     | 
| 923 | 
         
            +
                        meang = Xg.mean(0)
         
     | 
| 924 | 
         
            +
                        means.append(meang)
         
     | 
| 925 | 
         
            +
                        if len(Xg) == 1:
         
     | 
| 926 | 
         
            +
                            raise ValueError(
         
     | 
| 927 | 
         
            +
                                "y has only 1 sample in class %s, covariance is ill defined."
         
     | 
| 928 | 
         
            +
                                % str(self.classes_[ind])
         
     | 
| 929 | 
         
            +
                            )
         
     | 
| 930 | 
         
            +
                        Xgc = Xg - meang
         
     | 
| 931 | 
         
            +
                        # Xgc = U * S * V.T
         
     | 
| 932 | 
         
            +
                        _, S, Vt = np.linalg.svd(Xgc, full_matrices=False)
         
     | 
| 933 | 
         
            +
                        rank = np.sum(S > self.tol)
         
     | 
| 934 | 
         
            +
                        if rank < n_features:
         
     | 
| 935 | 
         
            +
                            warnings.warn("Variables are collinear")
         
     | 
| 936 | 
         
            +
                        S2 = (S**2) / (len(Xg) - 1)
         
     | 
| 937 | 
         
            +
                        S2 = ((1 - self.reg_param) * S2) + self.reg_param
         
     | 
| 938 | 
         
            +
                        if self.store_covariance or store_covariance:
         
     | 
| 939 | 
         
            +
                            # cov = V * (S^2 / (n-1)) * V.T
         
     | 
| 940 | 
         
            +
                            cov.append(np.dot(S2 * Vt.T, Vt))
         
     | 
| 941 | 
         
            +
                        scalings.append(S2)
         
     | 
| 942 | 
         
            +
                        rotations.append(Vt.T)
         
     | 
| 943 | 
         
            +
                    if self.store_covariance or store_covariance:
         
     | 
| 944 | 
         
            +
                        self.covariance_ = cov
         
     | 
| 945 | 
         
            +
                    self.means_ = np.asarray(means)
         
     | 
| 946 | 
         
            +
                    self.scalings_ = scalings
         
     | 
| 947 | 
         
            +
                    self.rotations_ = rotations
         
     | 
| 948 | 
         
            +
                    return self
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                def _decision_function(self, X):
         
     | 
| 951 | 
         
            +
                    # return log posterior, see eq (4.12) p. 110 of the ESL.
         
     | 
| 952 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 953 | 
         
            +
             
     | 
| 954 | 
         
            +
                    X = self._validate_data(X, reset=False)
         
     | 
| 955 | 
         
            +
                    norm2 = []
         
     | 
| 956 | 
         
            +
                    for i in range(len(self.classes_)):
         
     | 
| 957 | 
         
            +
                        R = self.rotations_[i]
         
     | 
| 958 | 
         
            +
                        S = self.scalings_[i]
         
     | 
| 959 | 
         
            +
                        Xm = X - self.means_[i]
         
     | 
| 960 | 
         
            +
                        X2 = np.dot(Xm, R * (S ** (-0.5)))
         
     | 
| 961 | 
         
            +
                        norm2.append(np.sum(X2**2, axis=1))
         
     | 
| 962 | 
         
            +
                    norm2 = np.array(norm2).T  # shape = [len(X), n_classes]
         
     | 
| 963 | 
         
            +
                    u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
         
     | 
| 964 | 
         
            +
                    return -0.5 * (norm2 + u) + np.log(self.priors_)
         
     | 
| 965 | 
         
            +
             
     | 
| 966 | 
         
            +
                def decision_function(self, X):
         
     | 
| 967 | 
         
            +
                    """Apply decision function to an array of samples.
         
     | 
| 968 | 
         
            +
             
     | 
| 969 | 
         
            +
                    The decision function is equal (up to a constant factor) to the
         
     | 
| 970 | 
         
            +
                    log-posterior of the model, i.e. `log p(y = k | x)`. In a binary
         
     | 
| 971 | 
         
            +
                    classification setting this instead corresponds to the difference
         
     | 
| 972 | 
         
            +
                    `log p(y = 1 | x) - log p(y = 0 | x)`. See :ref:`lda_qda_math`.
         
     | 
| 973 | 
         
            +
             
     | 
| 974 | 
         
            +
                    Parameters
         
     | 
| 975 | 
         
            +
                    ----------
         
     | 
| 976 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 977 | 
         
            +
                        Array of samples (test vectors).
         
     | 
| 978 | 
         
            +
             
     | 
| 979 | 
         
            +
                    Returns
         
     | 
| 980 | 
         
            +
                    -------
         
     | 
| 981 | 
         
            +
                    C : ndarray of shape (n_samples,) or (n_samples, n_classes)
         
     | 
| 982 | 
         
            +
                        Decision function values related to each class, per sample.
         
     | 
| 983 | 
         
            +
                        In the two-class case, the shape is (n_samples,), giving the
         
     | 
| 984 | 
         
            +
                        log likelihood ratio of the positive class.
         
     | 
| 985 | 
         
            +
                    """
         
     | 
| 986 | 
         
            +
                    dec_func = self._decision_function(X)
         
     | 
| 987 | 
         
            +
                    # handle special case of two classes
         
     | 
| 988 | 
         
            +
                    if len(self.classes_) == 2:
         
     | 
| 989 | 
         
            +
                        return dec_func[:, 1] - dec_func[:, 0]
         
     | 
| 990 | 
         
            +
                    return dec_func
         
     | 
| 991 | 
         
            +
             
     | 
| 992 | 
         
            +
                def predict(self, X):
         
     | 
| 993 | 
         
            +
                    """Perform classification on an array of test vectors X.
         
     | 
| 994 | 
         
            +
             
     | 
| 995 | 
         
            +
                    The predicted class C for each sample in X is returned.
         
     | 
| 996 | 
         
            +
             
     | 
| 997 | 
         
            +
                    Parameters
         
     | 
| 998 | 
         
            +
                    ----------
         
     | 
| 999 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1000 | 
         
            +
                        Vector to be scored, where `n_samples` is the number of samples and
         
     | 
| 1001 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 1002 | 
         
            +
             
     | 
| 1003 | 
         
            +
                    Returns
         
     | 
| 1004 | 
         
            +
                    -------
         
     | 
| 1005 | 
         
            +
                    C : ndarray of shape (n_samples,)
         
     | 
| 1006 | 
         
            +
                        Estimated probabilities.
         
     | 
| 1007 | 
         
            +
                    """
         
     | 
| 1008 | 
         
            +
                    d = self._decision_function(X)
         
     | 
| 1009 | 
         
            +
                    y_pred = self.classes_.take(d.argmax(1))
         
     | 
| 1010 | 
         
            +
                    return y_pred
         
     | 
| 1011 | 
         
            +
             
     | 
| 1012 | 
         
            +
                def predict_proba(self, X):
         
     | 
| 1013 | 
         
            +
                    """Return posterior probabilities of classification.
         
     | 
| 1014 | 
         
            +
             
     | 
| 1015 | 
         
            +
                    Parameters
         
     | 
| 1016 | 
         
            +
                    ----------
         
     | 
| 1017 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1018 | 
         
            +
                        Array of samples/test vectors.
         
     | 
| 1019 | 
         
            +
             
     | 
| 1020 | 
         
            +
                    Returns
         
     | 
| 1021 | 
         
            +
                    -------
         
     | 
| 1022 | 
         
            +
                    C : ndarray of shape (n_samples, n_classes)
         
     | 
| 1023 | 
         
            +
                        Posterior probabilities of classification per class.
         
     | 
| 1024 | 
         
            +
                    """
         
     | 
| 1025 | 
         
            +
                    values = self._decision_function(X)
         
     | 
| 1026 | 
         
            +
                    # compute the likelihood of the underlying gaussian models
         
     | 
| 1027 | 
         
            +
                    # up to a multiplicative constant.
         
     | 
| 1028 | 
         
            +
                    likelihood = np.exp(values - values.max(axis=1)[:, np.newaxis])
         
     | 
| 1029 | 
         
            +
                    # compute posterior probabilities
         
     | 
| 1030 | 
         
            +
                    return likelihood / likelihood.sum(axis=1)[:, np.newaxis]
         
     | 
| 1031 | 
         
            +
             
     | 
| 1032 | 
         
            +
                def predict_log_proba(self, X):
         
     | 
| 1033 | 
         
            +
                    """Return log of posterior probabilities of classification.
         
     | 
| 1034 | 
         
            +
             
     | 
| 1035 | 
         
            +
                    Parameters
         
     | 
| 1036 | 
         
            +
                    ----------
         
     | 
| 1037 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1038 | 
         
            +
                        Array of samples/test vectors.
         
     | 
| 1039 | 
         
            +
             
     | 
| 1040 | 
         
            +
                    Returns
         
     | 
| 1041 | 
         
            +
                    -------
         
     | 
| 1042 | 
         
            +
                    C : ndarray of shape (n_samples, n_classes)
         
     | 
| 1043 | 
         
            +
                        Posterior log-probabilities of classification per class.
         
     | 
| 1044 | 
         
            +
                    """
         
     | 
| 1045 | 
         
            +
                    # XXX : can do better to avoid precision overflows
         
     | 
| 1046 | 
         
            +
                    probas_ = self.predict_proba(X)
         
     | 
| 1047 | 
         
            +
                    return np.log(probas_)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/dummy.py
    ADDED
    
    | 
         @@ -0,0 +1,682 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Author: Mathieu Blondel <[email protected]>
         
     | 
| 2 | 
         
            +
            #         Arnaud Joly <[email protected]>
         
     | 
| 3 | 
         
            +
            #         Maheshakya Wijewardena <[email protected]>
         
     | 
| 4 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import warnings
         
     | 
| 7 | 
         
            +
            from numbers import Integral, Real
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            import numpy as np
         
     | 
| 10 | 
         
            +
            import scipy.sparse as sp
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            from .base import (
         
     | 
| 13 | 
         
            +
                BaseEstimator,
         
     | 
| 14 | 
         
            +
                ClassifierMixin,
         
     | 
| 15 | 
         
            +
                MultiOutputMixin,
         
     | 
| 16 | 
         
            +
                RegressorMixin,
         
     | 
| 17 | 
         
            +
                _fit_context,
         
     | 
| 18 | 
         
            +
            )
         
     | 
| 19 | 
         
            +
            from .utils import check_random_state
         
     | 
| 20 | 
         
            +
            from .utils._param_validation import Interval, StrOptions
         
     | 
| 21 | 
         
            +
            from .utils.multiclass import class_distribution
         
     | 
| 22 | 
         
            +
            from .utils.random import _random_choice_csc
         
     | 
| 23 | 
         
            +
            from .utils.stats import _weighted_percentile
         
     | 
| 24 | 
         
            +
            from .utils.validation import (
         
     | 
| 25 | 
         
            +
                _check_sample_weight,
         
     | 
| 26 | 
         
            +
                _num_samples,
         
     | 
| 27 | 
         
            +
                check_array,
         
     | 
| 28 | 
         
            +
                check_consistent_length,
         
     | 
| 29 | 
         
            +
                check_is_fitted,
         
     | 
| 30 | 
         
            +
            )
         
     | 
| 31 | 
         
            +
             
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
            class DummyClassifier(MultiOutputMixin, ClassifierMixin, BaseEstimator):
         
     | 
| 34 | 
         
            +
                """DummyClassifier makes predictions that ignore the input features.
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                This classifier serves as a simple baseline to compare against other more
         
     | 
| 37 | 
         
            +
                complex classifiers.
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                The specific behavior of the baseline is selected with the `strategy`
         
     | 
| 40 | 
         
            +
                parameter.
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                All strategies make predictions that ignore the input feature values passed
         
     | 
| 43 | 
         
            +
                as the `X` argument to `fit` and `predict`. The predictions, however,
         
     | 
| 44 | 
         
            +
                typically depend on values observed in the `y` parameter passed to `fit`.
         
     | 
| 45 | 
         
            +
             
     | 
| 46 | 
         
            +
                Note that the "stratified" and "uniform" strategies lead to
         
     | 
| 47 | 
         
            +
                non-deterministic predictions that can be rendered deterministic by setting
         
     | 
| 48 | 
         
            +
                the `random_state` parameter if needed. The other strategies are naturally
         
     | 
| 49 | 
         
            +
                deterministic and, once fit, always return the same constant prediction
         
     | 
| 50 | 
         
            +
                for any value of `X`.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                Read more in the :ref:`User Guide <dummy_estimators>`.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                .. versionadded:: 0.13
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                Parameters
         
     | 
| 57 | 
         
            +
                ----------
         
     | 
| 58 | 
         
            +
                strategy : {"most_frequent", "prior", "stratified", "uniform", \
         
     | 
| 59 | 
         
            +
                        "constant"}, default="prior"
         
     | 
| 60 | 
         
            +
                    Strategy to use to generate predictions.
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                    * "most_frequent": the `predict` method always returns the most
         
     | 
| 63 | 
         
            +
                      frequent class label in the observed `y` argument passed to `fit`.
         
     | 
| 64 | 
         
            +
                      The `predict_proba` method returns the matching one-hot encoded
         
     | 
| 65 | 
         
            +
                      vector.
         
     | 
| 66 | 
         
            +
                    * "prior": the `predict` method always returns the most frequent
         
     | 
| 67 | 
         
            +
                      class label in the observed `y` argument passed to `fit` (like
         
     | 
| 68 | 
         
            +
                      "most_frequent"). ``predict_proba`` always returns the empirical
         
     | 
| 69 | 
         
            +
                      class distribution of `y` also known as the empirical class prior
         
     | 
| 70 | 
         
            +
                      distribution.
         
     | 
| 71 | 
         
            +
                    * "stratified": the `predict_proba` method randomly samples one-hot
         
     | 
| 72 | 
         
            +
                      vectors from a multinomial distribution parametrized by the empirical
         
     | 
| 73 | 
         
            +
                      class prior probabilities.
         
     | 
| 74 | 
         
            +
                      The `predict` method returns the class label which got probability
         
     | 
| 75 | 
         
            +
                      one in the one-hot vector of `predict_proba`.
         
     | 
| 76 | 
         
            +
                      Each sampled row of both methods is therefore independent and
         
     | 
| 77 | 
         
            +
                      identically distributed.
         
     | 
| 78 | 
         
            +
                    * "uniform": generates predictions uniformly at random from the list
         
     | 
| 79 | 
         
            +
                      of unique classes observed in `y`, i.e. each class has equal
         
     | 
| 80 | 
         
            +
                      probability.
         
     | 
| 81 | 
         
            +
                    * "constant": always predicts a constant label that is provided by
         
     | 
| 82 | 
         
            +
                      the user. This is useful for metrics that evaluate a non-majority
         
     | 
| 83 | 
         
            +
                      class.
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                      .. versionchanged:: 0.24
         
     | 
| 86 | 
         
            +
                         The default value of `strategy` has changed to "prior" in version
         
     | 
| 87 | 
         
            +
                         0.24.
         
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
                random_state : int, RandomState instance or None, default=None
         
     | 
| 90 | 
         
            +
                    Controls the randomness to generate the predictions when
         
     | 
| 91 | 
         
            +
                    ``strategy='stratified'`` or ``strategy='uniform'``.
         
     | 
| 92 | 
         
            +
                    Pass an int for reproducible output across multiple function calls.
         
     | 
| 93 | 
         
            +
                    See :term:`Glossary <random_state>`.
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                constant : int or str or array-like of shape (n_outputs,), default=None
         
     | 
| 96 | 
         
            +
                    The explicit constant as predicted by the "constant" strategy. This
         
     | 
| 97 | 
         
            +
                    parameter is useful only for the "constant" strategy.
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                Attributes
         
     | 
| 100 | 
         
            +
                ----------
         
     | 
| 101 | 
         
            +
                classes_ : ndarray of shape (n_classes,) or list of such arrays
         
     | 
| 102 | 
         
            +
                    Unique class labels observed in `y`. For multi-output classification
         
     | 
| 103 | 
         
            +
                    problems, this attribute is a list of arrays as each output has an
         
     | 
| 104 | 
         
            +
                    independent set of possible classes.
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                n_classes_ : int or list of int
         
     | 
| 107 | 
         
            +
                    Number of label for each output.
         
     | 
| 108 | 
         
            +
             
     | 
| 109 | 
         
            +
                class_prior_ : ndarray of shape (n_classes,) or list of such arrays
         
     | 
| 110 | 
         
            +
                    Frequency of each class observed in `y`. For multioutput classification
         
     | 
| 111 | 
         
            +
                    problems, this is computed independently for each output.
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                n_outputs_ : int
         
     | 
| 114 | 
         
            +
                    Number of outputs.
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                sparse_output_ : bool
         
     | 
| 117 | 
         
            +
                    True if the array returned from predict is to be in sparse CSC format.
         
     | 
| 118 | 
         
            +
                    Is automatically set to True if the input `y` is passed in sparse
         
     | 
| 119 | 
         
            +
                    format.
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                See Also
         
     | 
| 122 | 
         
            +
                --------
         
     | 
| 123 | 
         
            +
                DummyRegressor : Regressor that makes predictions using simple rules.
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                Examples
         
     | 
| 126 | 
         
            +
                --------
         
     | 
| 127 | 
         
            +
                >>> import numpy as np
         
     | 
| 128 | 
         
            +
                >>> from sklearn.dummy import DummyClassifier
         
     | 
| 129 | 
         
            +
                >>> X = np.array([-1, 1, 1, 1])
         
     | 
| 130 | 
         
            +
                >>> y = np.array([0, 1, 1, 1])
         
     | 
| 131 | 
         
            +
                >>> dummy_clf = DummyClassifier(strategy="most_frequent")
         
     | 
| 132 | 
         
            +
                >>> dummy_clf.fit(X, y)
         
     | 
| 133 | 
         
            +
                DummyClassifier(strategy='most_frequent')
         
     | 
| 134 | 
         
            +
                >>> dummy_clf.predict(X)
         
     | 
| 135 | 
         
            +
                array([1, 1, 1, 1])
         
     | 
| 136 | 
         
            +
                >>> dummy_clf.score(X, y)
         
     | 
| 137 | 
         
            +
                0.75
         
     | 
| 138 | 
         
            +
                """
         
     | 
| 139 | 
         
            +
             
     | 
| 140 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 141 | 
         
            +
                    "strategy": [
         
     | 
| 142 | 
         
            +
                        StrOptions({"most_frequent", "prior", "stratified", "uniform", "constant"})
         
     | 
| 143 | 
         
            +
                    ],
         
     | 
| 144 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 145 | 
         
            +
                    "constant": [Integral, str, "array-like", None],
         
     | 
| 146 | 
         
            +
                }
         
     | 
| 147 | 
         
            +
             
     | 
| 148 | 
         
            +
                def __init__(self, *, strategy="prior", random_state=None, constant=None):
         
     | 
| 149 | 
         
            +
                    self.strategy = strategy
         
     | 
| 150 | 
         
            +
                    self.random_state = random_state
         
     | 
| 151 | 
         
            +
                    self.constant = constant
         
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 154 | 
         
            +
                def fit(self, X, y, sample_weight=None):
         
     | 
| 155 | 
         
            +
                    """Fit the baseline classifier.
         
     | 
| 156 | 
         
            +
             
     | 
| 157 | 
         
            +
                    Parameters
         
     | 
| 158 | 
         
            +
                    ----------
         
     | 
| 159 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 160 | 
         
            +
                        Training data.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 163 | 
         
            +
                        Target values.
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 166 | 
         
            +
                        Sample weights.
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                    Returns
         
     | 
| 169 | 
         
            +
                    -------
         
     | 
| 170 | 
         
            +
                    self : object
         
     | 
| 171 | 
         
            +
                        Returns the instance itself.
         
     | 
| 172 | 
         
            +
                    """
         
     | 
| 173 | 
         
            +
                    self._strategy = self.strategy
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    if self._strategy == "uniform" and sp.issparse(y):
         
     | 
| 176 | 
         
            +
                        y = y.toarray()
         
     | 
| 177 | 
         
            +
                        warnings.warn(
         
     | 
| 178 | 
         
            +
                            (
         
     | 
| 179 | 
         
            +
                                "A local copy of the target data has been converted "
         
     | 
| 180 | 
         
            +
                                "to a numpy array. Predicting on sparse target data "
         
     | 
| 181 | 
         
            +
                                "with the uniform strategy would not save memory "
         
     | 
| 182 | 
         
            +
                                "and would be slower."
         
     | 
| 183 | 
         
            +
                            ),
         
     | 
| 184 | 
         
            +
                            UserWarning,
         
     | 
| 185 | 
         
            +
                        )
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    self.sparse_output_ = sp.issparse(y)
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    if not self.sparse_output_:
         
     | 
| 190 | 
         
            +
                        y = np.asarray(y)
         
     | 
| 191 | 
         
            +
                        y = np.atleast_1d(y)
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    if y.ndim == 1:
         
     | 
| 194 | 
         
            +
                        y = np.reshape(y, (-1, 1))
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    self.n_outputs_ = y.shape[1]
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                    check_consistent_length(X, y)
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                    if sample_weight is not None:
         
     | 
| 201 | 
         
            +
                        sample_weight = _check_sample_weight(sample_weight, X)
         
     | 
| 202 | 
         
            +
             
     | 
| 203 | 
         
            +
                    if self._strategy == "constant":
         
     | 
| 204 | 
         
            +
                        if self.constant is None:
         
     | 
| 205 | 
         
            +
                            raise ValueError(
         
     | 
| 206 | 
         
            +
                                "Constant target value has to be specified "
         
     | 
| 207 | 
         
            +
                                "when the constant strategy is used."
         
     | 
| 208 | 
         
            +
                            )
         
     | 
| 209 | 
         
            +
                        else:
         
     | 
| 210 | 
         
            +
                            constant = np.reshape(np.atleast_1d(self.constant), (-1, 1))
         
     | 
| 211 | 
         
            +
                            if constant.shape[0] != self.n_outputs_:
         
     | 
| 212 | 
         
            +
                                raise ValueError(
         
     | 
| 213 | 
         
            +
                                    "Constant target value should have shape (%d, 1)."
         
     | 
| 214 | 
         
            +
                                    % self.n_outputs_
         
     | 
| 215 | 
         
            +
                                )
         
     | 
| 216 | 
         
            +
             
     | 
| 217 | 
         
            +
                    (self.classes_, self.n_classes_, self.class_prior_) = class_distribution(
         
     | 
| 218 | 
         
            +
                        y, sample_weight
         
     | 
| 219 | 
         
            +
                    )
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    if self._strategy == "constant":
         
     | 
| 222 | 
         
            +
                        for k in range(self.n_outputs_):
         
     | 
| 223 | 
         
            +
                            if not any(constant[k][0] == c for c in self.classes_[k]):
         
     | 
| 224 | 
         
            +
                                # Checking in case of constant strategy if the constant
         
     | 
| 225 | 
         
            +
                                # provided by the user is in y.
         
     | 
| 226 | 
         
            +
                                err_msg = (
         
     | 
| 227 | 
         
            +
                                    "The constant target value must be present in "
         
     | 
| 228 | 
         
            +
                                    "the training data. You provided constant={}. "
         
     | 
| 229 | 
         
            +
                                    "Possible values are: {}.".format(
         
     | 
| 230 | 
         
            +
                                        self.constant, self.classes_[k].tolist()
         
     | 
| 231 | 
         
            +
                                    )
         
     | 
| 232 | 
         
            +
                                )
         
     | 
| 233 | 
         
            +
                                raise ValueError(err_msg)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 236 | 
         
            +
                        self.n_classes_ = self.n_classes_[0]
         
     | 
| 237 | 
         
            +
                        self.classes_ = self.classes_[0]
         
     | 
| 238 | 
         
            +
                        self.class_prior_ = self.class_prior_[0]
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                    return self
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                def predict(self, X):
         
     | 
| 243 | 
         
            +
                    """Perform classification on test vectors X.
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    Parameters
         
     | 
| 246 | 
         
            +
                    ----------
         
     | 
| 247 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 248 | 
         
            +
                        Test data.
         
     | 
| 249 | 
         
            +
             
     | 
| 250 | 
         
            +
                    Returns
         
     | 
| 251 | 
         
            +
                    -------
         
     | 
| 252 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 253 | 
         
            +
                        Predicted target values for X.
         
     | 
| 254 | 
         
            +
                    """
         
     | 
| 255 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 256 | 
         
            +
             
     | 
| 257 | 
         
            +
                    # numpy random_state expects Python int and not long as size argument
         
     | 
| 258 | 
         
            +
                    # under Windows
         
     | 
| 259 | 
         
            +
                    n_samples = _num_samples(X)
         
     | 
| 260 | 
         
            +
                    rs = check_random_state(self.random_state)
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    n_classes_ = self.n_classes_
         
     | 
| 263 | 
         
            +
                    classes_ = self.classes_
         
     | 
| 264 | 
         
            +
                    class_prior_ = self.class_prior_
         
     | 
| 265 | 
         
            +
                    constant = self.constant
         
     | 
| 266 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 267 | 
         
            +
                        # Get same type even for self.n_outputs_ == 1
         
     | 
| 268 | 
         
            +
                        n_classes_ = [n_classes_]
         
     | 
| 269 | 
         
            +
                        classes_ = [classes_]
         
     | 
| 270 | 
         
            +
                        class_prior_ = [class_prior_]
         
     | 
| 271 | 
         
            +
                        constant = [constant]
         
     | 
| 272 | 
         
            +
                    # Compute probability only once
         
     | 
| 273 | 
         
            +
                    if self._strategy == "stratified":
         
     | 
| 274 | 
         
            +
                        proba = self.predict_proba(X)
         
     | 
| 275 | 
         
            +
                        if self.n_outputs_ == 1:
         
     | 
| 276 | 
         
            +
                            proba = [proba]
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                    if self.sparse_output_:
         
     | 
| 279 | 
         
            +
                        class_prob = None
         
     | 
| 280 | 
         
            +
                        if self._strategy in ("most_frequent", "prior"):
         
     | 
| 281 | 
         
            +
                            classes_ = [np.array([cp.argmax()]) for cp in class_prior_]
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                        elif self._strategy == "stratified":
         
     | 
| 284 | 
         
            +
                            class_prob = class_prior_
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                        elif self._strategy == "uniform":
         
     | 
| 287 | 
         
            +
                            raise ValueError(
         
     | 
| 288 | 
         
            +
                                "Sparse target prediction is not "
         
     | 
| 289 | 
         
            +
                                "supported with the uniform strategy"
         
     | 
| 290 | 
         
            +
                            )
         
     | 
| 291 | 
         
            +
             
     | 
| 292 | 
         
            +
                        elif self._strategy == "constant":
         
     | 
| 293 | 
         
            +
                            classes_ = [np.array([c]) for c in constant]
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                        y = _random_choice_csc(n_samples, classes_, class_prob, self.random_state)
         
     | 
| 296 | 
         
            +
                    else:
         
     | 
| 297 | 
         
            +
                        if self._strategy in ("most_frequent", "prior"):
         
     | 
| 298 | 
         
            +
                            y = np.tile(
         
     | 
| 299 | 
         
            +
                                [
         
     | 
| 300 | 
         
            +
                                    classes_[k][class_prior_[k].argmax()]
         
     | 
| 301 | 
         
            +
                                    for k in range(self.n_outputs_)
         
     | 
| 302 | 
         
            +
                                ],
         
     | 
| 303 | 
         
            +
                                [n_samples, 1],
         
     | 
| 304 | 
         
            +
                            )
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                        elif self._strategy == "stratified":
         
     | 
| 307 | 
         
            +
                            y = np.vstack(
         
     | 
| 308 | 
         
            +
                                [
         
     | 
| 309 | 
         
            +
                                    classes_[k][proba[k].argmax(axis=1)]
         
     | 
| 310 | 
         
            +
                                    for k in range(self.n_outputs_)
         
     | 
| 311 | 
         
            +
                                ]
         
     | 
| 312 | 
         
            +
                            ).T
         
     | 
| 313 | 
         
            +
             
     | 
| 314 | 
         
            +
                        elif self._strategy == "uniform":
         
     | 
| 315 | 
         
            +
                            ret = [
         
     | 
| 316 | 
         
            +
                                classes_[k][rs.randint(n_classes_[k], size=n_samples)]
         
     | 
| 317 | 
         
            +
                                for k in range(self.n_outputs_)
         
     | 
| 318 | 
         
            +
                            ]
         
     | 
| 319 | 
         
            +
                            y = np.vstack(ret).T
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                        elif self._strategy == "constant":
         
     | 
| 322 | 
         
            +
                            y = np.tile(self.constant, (n_samples, 1))
         
     | 
| 323 | 
         
            +
             
     | 
| 324 | 
         
            +
                        if self.n_outputs_ == 1:
         
     | 
| 325 | 
         
            +
                            y = np.ravel(y)
         
     | 
| 326 | 
         
            +
             
     | 
| 327 | 
         
            +
                    return y
         
     | 
| 328 | 
         
            +
             
     | 
| 329 | 
         
            +
                def predict_proba(self, X):
         
     | 
| 330 | 
         
            +
                    """
         
     | 
| 331 | 
         
            +
                    Return probability estimates for the test vectors X.
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                    Parameters
         
     | 
| 334 | 
         
            +
                    ----------
         
     | 
| 335 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 336 | 
         
            +
                        Test data.
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                    Returns
         
     | 
| 339 | 
         
            +
                    -------
         
     | 
| 340 | 
         
            +
                    P : ndarray of shape (n_samples, n_classes) or list of such arrays
         
     | 
| 341 | 
         
            +
                        Returns the probability of the sample for each class in
         
     | 
| 342 | 
         
            +
                        the model, where classes are ordered arithmetically, for each
         
     | 
| 343 | 
         
            +
                        output.
         
     | 
| 344 | 
         
            +
                    """
         
     | 
| 345 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                    # numpy random_state expects Python int and not long as size argument
         
     | 
| 348 | 
         
            +
                    # under Windows
         
     | 
| 349 | 
         
            +
                    n_samples = _num_samples(X)
         
     | 
| 350 | 
         
            +
                    rs = check_random_state(self.random_state)
         
     | 
| 351 | 
         
            +
             
     | 
| 352 | 
         
            +
                    n_classes_ = self.n_classes_
         
     | 
| 353 | 
         
            +
                    classes_ = self.classes_
         
     | 
| 354 | 
         
            +
                    class_prior_ = self.class_prior_
         
     | 
| 355 | 
         
            +
                    constant = self.constant
         
     | 
| 356 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 357 | 
         
            +
                        # Get same type even for self.n_outputs_ == 1
         
     | 
| 358 | 
         
            +
                        n_classes_ = [n_classes_]
         
     | 
| 359 | 
         
            +
                        classes_ = [classes_]
         
     | 
| 360 | 
         
            +
                        class_prior_ = [class_prior_]
         
     | 
| 361 | 
         
            +
                        constant = [constant]
         
     | 
| 362 | 
         
            +
             
     | 
| 363 | 
         
            +
                    P = []
         
     | 
| 364 | 
         
            +
                    for k in range(self.n_outputs_):
         
     | 
| 365 | 
         
            +
                        if self._strategy == "most_frequent":
         
     | 
| 366 | 
         
            +
                            ind = class_prior_[k].argmax()
         
     | 
| 367 | 
         
            +
                            out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
         
     | 
| 368 | 
         
            +
                            out[:, ind] = 1.0
         
     | 
| 369 | 
         
            +
                        elif self._strategy == "prior":
         
     | 
| 370 | 
         
            +
                            out = np.ones((n_samples, 1)) * class_prior_[k]
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                        elif self._strategy == "stratified":
         
     | 
| 373 | 
         
            +
                            out = rs.multinomial(1, class_prior_[k], size=n_samples)
         
     | 
| 374 | 
         
            +
                            out = out.astype(np.float64)
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                        elif self._strategy == "uniform":
         
     | 
| 377 | 
         
            +
                            out = np.ones((n_samples, n_classes_[k]), dtype=np.float64)
         
     | 
| 378 | 
         
            +
                            out /= n_classes_[k]
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                        elif self._strategy == "constant":
         
     | 
| 381 | 
         
            +
                            ind = np.where(classes_[k] == constant[k])
         
     | 
| 382 | 
         
            +
                            out = np.zeros((n_samples, n_classes_[k]), dtype=np.float64)
         
     | 
| 383 | 
         
            +
                            out[:, ind] = 1.0
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                        P.append(out)
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 388 | 
         
            +
                        P = P[0]
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                    return P
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                def predict_log_proba(self, X):
         
     | 
| 393 | 
         
            +
                    """
         
     | 
| 394 | 
         
            +
                    Return log probability estimates for the test vectors X.
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                    Parameters
         
     | 
| 397 | 
         
            +
                    ----------
         
     | 
| 398 | 
         
            +
                    X : {array-like, object with finite length or shape}
         
     | 
| 399 | 
         
            +
                        Training data.
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    Returns
         
     | 
| 402 | 
         
            +
                    -------
         
     | 
| 403 | 
         
            +
                    P : ndarray of shape (n_samples, n_classes) or list of such arrays
         
     | 
| 404 | 
         
            +
                        Returns the log probability of the sample for each class in
         
     | 
| 405 | 
         
            +
                        the model, where classes are ordered arithmetically for each
         
     | 
| 406 | 
         
            +
                        output.
         
     | 
| 407 | 
         
            +
                    """
         
     | 
| 408 | 
         
            +
                    proba = self.predict_proba(X)
         
     | 
| 409 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 410 | 
         
            +
                        return np.log(proba)
         
     | 
| 411 | 
         
            +
                    else:
         
     | 
| 412 | 
         
            +
                        return [np.log(p) for p in proba]
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                def _more_tags(self):
         
     | 
| 415 | 
         
            +
                    return {
         
     | 
| 416 | 
         
            +
                        "poor_score": True,
         
     | 
| 417 | 
         
            +
                        "no_validation": True,
         
     | 
| 418 | 
         
            +
                        "_xfail_checks": {
         
     | 
| 419 | 
         
            +
                            "check_methods_subset_invariance": "fails for the predict method",
         
     | 
| 420 | 
         
            +
                            "check_methods_sample_order_invariance": "fails for the predict method",
         
     | 
| 421 | 
         
            +
                        },
         
     | 
| 422 | 
         
            +
                    }
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
                def score(self, X, y, sample_weight=None):
         
     | 
| 425 | 
         
            +
                    """Return the mean accuracy on the given test data and labels.
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                    In multi-label classification, this is the subset accuracy
         
     | 
| 428 | 
         
            +
                    which is a harsh metric since you require for each sample that
         
     | 
| 429 | 
         
            +
                    each label set be correctly predicted.
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    Parameters
         
     | 
| 432 | 
         
            +
                    ----------
         
     | 
| 433 | 
         
            +
                    X : None or array-like of shape (n_samples, n_features)
         
     | 
| 434 | 
         
            +
                        Test samples. Passing None as test samples gives the same result
         
     | 
| 435 | 
         
            +
                        as passing real test samples, since DummyClassifier
         
     | 
| 436 | 
         
            +
                        operates independently of the sampled observations.
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 439 | 
         
            +
                        True labels for X.
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 442 | 
         
            +
                        Sample weights.
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                    Returns
         
     | 
| 445 | 
         
            +
                    -------
         
     | 
| 446 | 
         
            +
                    score : float
         
     | 
| 447 | 
         
            +
                        Mean accuracy of self.predict(X) w.r.t. y.
         
     | 
| 448 | 
         
            +
                    """
         
     | 
| 449 | 
         
            +
                    if X is None:
         
     | 
| 450 | 
         
            +
                        X = np.zeros(shape=(len(y), 1))
         
     | 
| 451 | 
         
            +
                    return super().score(X, y, sample_weight)
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
            class DummyRegressor(MultiOutputMixin, RegressorMixin, BaseEstimator):
         
     | 
| 455 | 
         
            +
                """Regressor that makes predictions using simple rules.
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                This regressor is useful as a simple baseline to compare with other
         
     | 
| 458 | 
         
            +
                (real) regressors. Do not use it for real problems.
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                Read more in the :ref:`User Guide <dummy_estimators>`.
         
     | 
| 461 | 
         
            +
             
     | 
| 462 | 
         
            +
                .. versionadded:: 0.13
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                Parameters
         
     | 
| 465 | 
         
            +
                ----------
         
     | 
| 466 | 
         
            +
                strategy : {"mean", "median", "quantile", "constant"}, default="mean"
         
     | 
| 467 | 
         
            +
                    Strategy to use to generate predictions.
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                    * "mean": always predicts the mean of the training set
         
     | 
| 470 | 
         
            +
                    * "median": always predicts the median of the training set
         
     | 
| 471 | 
         
            +
                    * "quantile": always predicts a specified quantile of the training set,
         
     | 
| 472 | 
         
            +
                      provided with the quantile parameter.
         
     | 
| 473 | 
         
            +
                    * "constant": always predicts a constant value that is provided by
         
     | 
| 474 | 
         
            +
                      the user.
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                constant : int or float or array-like of shape (n_outputs,), default=None
         
     | 
| 477 | 
         
            +
                    The explicit constant as predicted by the "constant" strategy. This
         
     | 
| 478 | 
         
            +
                    parameter is useful only for the "constant" strategy.
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                quantile : float in [0.0, 1.0], default=None
         
     | 
| 481 | 
         
            +
                    The quantile to predict using the "quantile" strategy. A quantile of
         
     | 
| 482 | 
         
            +
                    0.5 corresponds to the median, while 0.0 to the minimum and 1.0 to the
         
     | 
| 483 | 
         
            +
                    maximum.
         
     | 
| 484 | 
         
            +
             
     | 
| 485 | 
         
            +
                Attributes
         
     | 
| 486 | 
         
            +
                ----------
         
     | 
| 487 | 
         
            +
                constant_ : ndarray of shape (1, n_outputs)
         
     | 
| 488 | 
         
            +
                    Mean or median or quantile of the training targets or constant value
         
     | 
| 489 | 
         
            +
                    given by the user.
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                n_outputs_ : int
         
     | 
| 492 | 
         
            +
                    Number of outputs.
         
     | 
| 493 | 
         
            +
             
     | 
| 494 | 
         
            +
                See Also
         
     | 
| 495 | 
         
            +
                --------
         
     | 
| 496 | 
         
            +
                DummyClassifier: Classifier that makes predictions using simple rules.
         
     | 
| 497 | 
         
            +
             
     | 
| 498 | 
         
            +
                Examples
         
     | 
| 499 | 
         
            +
                --------
         
     | 
| 500 | 
         
            +
                >>> import numpy as np
         
     | 
| 501 | 
         
            +
                >>> from sklearn.dummy import DummyRegressor
         
     | 
| 502 | 
         
            +
                >>> X = np.array([1.0, 2.0, 3.0, 4.0])
         
     | 
| 503 | 
         
            +
                >>> y = np.array([2.0, 3.0, 5.0, 10.0])
         
     | 
| 504 | 
         
            +
                >>> dummy_regr = DummyRegressor(strategy="mean")
         
     | 
| 505 | 
         
            +
                >>> dummy_regr.fit(X, y)
         
     | 
| 506 | 
         
            +
                DummyRegressor()
         
     | 
| 507 | 
         
            +
                >>> dummy_regr.predict(X)
         
     | 
| 508 | 
         
            +
                array([5., 5., 5., 5.])
         
     | 
| 509 | 
         
            +
                >>> dummy_regr.score(X, y)
         
     | 
| 510 | 
         
            +
                0.0
         
     | 
| 511 | 
         
            +
                """
         
     | 
| 512 | 
         
            +
             
     | 
| 513 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 514 | 
         
            +
                    "strategy": [StrOptions({"mean", "median", "quantile", "constant"})],
         
     | 
| 515 | 
         
            +
                    "quantile": [Interval(Real, 0.0, 1.0, closed="both"), None],
         
     | 
| 516 | 
         
            +
                    "constant": [
         
     | 
| 517 | 
         
            +
                        Interval(Real, None, None, closed="neither"),
         
     | 
| 518 | 
         
            +
                        "array-like",
         
     | 
| 519 | 
         
            +
                        None,
         
     | 
| 520 | 
         
            +
                    ],
         
     | 
| 521 | 
         
            +
                }
         
     | 
| 522 | 
         
            +
             
     | 
| 523 | 
         
            +
                def __init__(self, *, strategy="mean", constant=None, quantile=None):
         
     | 
| 524 | 
         
            +
                    self.strategy = strategy
         
     | 
| 525 | 
         
            +
                    self.constant = constant
         
     | 
| 526 | 
         
            +
                    self.quantile = quantile
         
     | 
| 527 | 
         
            +
             
     | 
| 528 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 529 | 
         
            +
                def fit(self, X, y, sample_weight=None):
         
     | 
| 530 | 
         
            +
                    """Fit the random regressor.
         
     | 
| 531 | 
         
            +
             
     | 
| 532 | 
         
            +
                    Parameters
         
     | 
| 533 | 
         
            +
                    ----------
         
     | 
| 534 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 535 | 
         
            +
                        Training data.
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 538 | 
         
            +
                        Target values.
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 541 | 
         
            +
                        Sample weights.
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
                    Returns
         
     | 
| 544 | 
         
            +
                    -------
         
     | 
| 545 | 
         
            +
                    self : object
         
     | 
| 546 | 
         
            +
                        Fitted estimator.
         
     | 
| 547 | 
         
            +
                    """
         
     | 
| 548 | 
         
            +
                    y = check_array(y, ensure_2d=False, input_name="y")
         
     | 
| 549 | 
         
            +
                    if len(y) == 0:
         
     | 
| 550 | 
         
            +
                        raise ValueError("y must not be empty.")
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    if y.ndim == 1:
         
     | 
| 553 | 
         
            +
                        y = np.reshape(y, (-1, 1))
         
     | 
| 554 | 
         
            +
                    self.n_outputs_ = y.shape[1]
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                    check_consistent_length(X, y, sample_weight)
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                    if sample_weight is not None:
         
     | 
| 559 | 
         
            +
                        sample_weight = _check_sample_weight(sample_weight, X)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    if self.strategy == "mean":
         
     | 
| 562 | 
         
            +
                        self.constant_ = np.average(y, axis=0, weights=sample_weight)
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    elif self.strategy == "median":
         
     | 
| 565 | 
         
            +
                        if sample_weight is None:
         
     | 
| 566 | 
         
            +
                            self.constant_ = np.median(y, axis=0)
         
     | 
| 567 | 
         
            +
                        else:
         
     | 
| 568 | 
         
            +
                            self.constant_ = [
         
     | 
| 569 | 
         
            +
                                _weighted_percentile(y[:, k], sample_weight, percentile=50.0)
         
     | 
| 570 | 
         
            +
                                for k in range(self.n_outputs_)
         
     | 
| 571 | 
         
            +
                            ]
         
     | 
| 572 | 
         
            +
             
     | 
| 573 | 
         
            +
                    elif self.strategy == "quantile":
         
     | 
| 574 | 
         
            +
                        if self.quantile is None:
         
     | 
| 575 | 
         
            +
                            raise ValueError(
         
     | 
| 576 | 
         
            +
                                "When using `strategy='quantile', you have to specify the desired "
         
     | 
| 577 | 
         
            +
                                "quantile in the range [0, 1]."
         
     | 
| 578 | 
         
            +
                            )
         
     | 
| 579 | 
         
            +
                        percentile = self.quantile * 100.0
         
     | 
| 580 | 
         
            +
                        if sample_weight is None:
         
     | 
| 581 | 
         
            +
                            self.constant_ = np.percentile(y, axis=0, q=percentile)
         
     | 
| 582 | 
         
            +
                        else:
         
     | 
| 583 | 
         
            +
                            self.constant_ = [
         
     | 
| 584 | 
         
            +
                                _weighted_percentile(y[:, k], sample_weight, percentile=percentile)
         
     | 
| 585 | 
         
            +
                                for k in range(self.n_outputs_)
         
     | 
| 586 | 
         
            +
                            ]
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                    elif self.strategy == "constant":
         
     | 
| 589 | 
         
            +
                        if self.constant is None:
         
     | 
| 590 | 
         
            +
                            raise TypeError(
         
     | 
| 591 | 
         
            +
                                "Constant target value has to be specified "
         
     | 
| 592 | 
         
            +
                                "when the constant strategy is used."
         
     | 
| 593 | 
         
            +
                            )
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                        self.constant_ = check_array(
         
     | 
| 596 | 
         
            +
                            self.constant,
         
     | 
| 597 | 
         
            +
                            accept_sparse=["csr", "csc", "coo"],
         
     | 
| 598 | 
         
            +
                            ensure_2d=False,
         
     | 
| 599 | 
         
            +
                            ensure_min_samples=0,
         
     | 
| 600 | 
         
            +
                        )
         
     | 
| 601 | 
         
            +
             
     | 
| 602 | 
         
            +
                        if self.n_outputs_ != 1 and self.constant_.shape[0] != y.shape[1]:
         
     | 
| 603 | 
         
            +
                            raise ValueError(
         
     | 
| 604 | 
         
            +
                                "Constant target value should have shape (%d, 1)." % y.shape[1]
         
     | 
| 605 | 
         
            +
                            )
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    self.constant_ = np.reshape(self.constant_, (1, -1))
         
     | 
| 608 | 
         
            +
                    return self
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                def predict(self, X, return_std=False):
         
     | 
| 611 | 
         
            +
                    """Perform classification on test vectors X.
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    Parameters
         
     | 
| 614 | 
         
            +
                    ----------
         
     | 
| 615 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 616 | 
         
            +
                        Test data.
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                    return_std : bool, default=False
         
     | 
| 619 | 
         
            +
                        Whether to return the standard deviation of posterior prediction.
         
     | 
| 620 | 
         
            +
                        All zeros in this case.
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                        .. versionadded:: 0.20
         
     | 
| 623 | 
         
            +
             
     | 
| 624 | 
         
            +
                    Returns
         
     | 
| 625 | 
         
            +
                    -------
         
     | 
| 626 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 627 | 
         
            +
                        Predicted target values for X.
         
     | 
| 628 | 
         
            +
             
     | 
| 629 | 
         
            +
                    y_std : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 630 | 
         
            +
                        Standard deviation of predictive distribution of query points.
         
     | 
| 631 | 
         
            +
                    """
         
     | 
| 632 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 633 | 
         
            +
                    n_samples = _num_samples(X)
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    y = np.full(
         
     | 
| 636 | 
         
            +
                        (n_samples, self.n_outputs_),
         
     | 
| 637 | 
         
            +
                        self.constant_,
         
     | 
| 638 | 
         
            +
                        dtype=np.array(self.constant_).dtype,
         
     | 
| 639 | 
         
            +
                    )
         
     | 
| 640 | 
         
            +
                    y_std = np.zeros((n_samples, self.n_outputs_))
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                    if self.n_outputs_ == 1:
         
     | 
| 643 | 
         
            +
                        y = np.ravel(y)
         
     | 
| 644 | 
         
            +
                        y_std = np.ravel(y_std)
         
     | 
| 645 | 
         
            +
             
     | 
| 646 | 
         
            +
                    return (y, y_std) if return_std else y
         
     | 
| 647 | 
         
            +
             
     | 
| 648 | 
         
            +
                def _more_tags(self):
         
     | 
| 649 | 
         
            +
                    return {"poor_score": True, "no_validation": True}
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                def score(self, X, y, sample_weight=None):
         
     | 
| 652 | 
         
            +
                    """Return the coefficient of determination R^2 of the prediction.
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
                    The coefficient R^2 is defined as `(1 - u/v)`, where `u` is the
         
     | 
| 655 | 
         
            +
                    residual sum of squares `((y_true - y_pred) ** 2).sum()` and `v` is the
         
     | 
| 656 | 
         
            +
                    total sum of squares `((y_true - y_true.mean()) ** 2).sum()`. The best
         
     | 
| 657 | 
         
            +
                    possible score is 1.0 and it can be negative (because the model can be
         
     | 
| 658 | 
         
            +
                    arbitrarily worse). A constant model that always predicts the expected
         
     | 
| 659 | 
         
            +
                    value of y, disregarding the input features, would get a R^2 score of
         
     | 
| 660 | 
         
            +
                    0.0.
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
                    Parameters
         
     | 
| 663 | 
         
            +
                    ----------
         
     | 
| 664 | 
         
            +
                    X : None or array-like of shape (n_samples, n_features)
         
     | 
| 665 | 
         
            +
                        Test samples. Passing None as test samples gives the same result
         
     | 
| 666 | 
         
            +
                        as passing real test samples, since `DummyRegressor`
         
     | 
| 667 | 
         
            +
                        operates independently of the sampled observations.
         
     | 
| 668 | 
         
            +
             
     | 
| 669 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs)
         
     | 
| 670 | 
         
            +
                        True values for X.
         
     | 
| 671 | 
         
            +
             
     | 
| 672 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 673 | 
         
            +
                        Sample weights.
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                    Returns
         
     | 
| 676 | 
         
            +
                    -------
         
     | 
| 677 | 
         
            +
                    score : float
         
     | 
| 678 | 
         
            +
                        R^2 of `self.predict(X)` w.r.t. y.
         
     | 
| 679 | 
         
            +
                    """
         
     | 
| 680 | 
         
            +
                    if X is None:
         
     | 
| 681 | 
         
            +
                        X = np.zeros(shape=(len(y), 1))
         
     | 
| 682 | 
         
            +
                    return super().score(X, y, sample_weight)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/exceptions.py
    ADDED
    
    | 
         @@ -0,0 +1,191 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            The :mod:`sklearn.exceptions` module includes all custom warnings and error
         
     | 
| 3 | 
         
            +
            classes used across scikit-learn.
         
     | 
| 4 | 
         
            +
            """
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            __all__ = [
         
     | 
| 7 | 
         
            +
                "NotFittedError",
         
     | 
| 8 | 
         
            +
                "ConvergenceWarning",
         
     | 
| 9 | 
         
            +
                "DataConversionWarning",
         
     | 
| 10 | 
         
            +
                "DataDimensionalityWarning",
         
     | 
| 11 | 
         
            +
                "EfficiencyWarning",
         
     | 
| 12 | 
         
            +
                "FitFailedWarning",
         
     | 
| 13 | 
         
            +
                "SkipTestWarning",
         
     | 
| 14 | 
         
            +
                "UndefinedMetricWarning",
         
     | 
| 15 | 
         
            +
                "PositiveSpectrumWarning",
         
     | 
| 16 | 
         
            +
                "UnsetMetadataPassedError",
         
     | 
| 17 | 
         
            +
            ]
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class UnsetMetadataPassedError(ValueError):
         
     | 
| 21 | 
         
            +
                """Exception class to raise if a metadata is passed which is not explicitly \
         
     | 
| 22 | 
         
            +
                    requested (metadata=True) or not requested (metadata=False).
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
                .. versionadded:: 1.3
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                Parameters
         
     | 
| 27 | 
         
            +
                ----------
         
     | 
| 28 | 
         
            +
                message : str
         
     | 
| 29 | 
         
            +
                    The message
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                unrequested_params : dict
         
     | 
| 32 | 
         
            +
                    A dictionary of parameters and their values which are provided but not
         
     | 
| 33 | 
         
            +
                    requested.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                routed_params : dict
         
     | 
| 36 | 
         
            +
                    A dictionary of routed parameters.
         
     | 
| 37 | 
         
            +
                """
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                def __init__(self, *, message, unrequested_params, routed_params):
         
     | 
| 40 | 
         
            +
                    super().__init__(message)
         
     | 
| 41 | 
         
            +
                    self.unrequested_params = unrequested_params
         
     | 
| 42 | 
         
            +
                    self.routed_params = routed_params
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            class NotFittedError(ValueError, AttributeError):
         
     | 
| 46 | 
         
            +
                """Exception class to raise if estimator is used before fitting.
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                This class inherits from both ValueError and AttributeError to help with
         
     | 
| 49 | 
         
            +
                exception handling and backward compatibility.
         
     | 
| 50 | 
         
            +
             
     | 
| 51 | 
         
            +
                Examples
         
     | 
| 52 | 
         
            +
                --------
         
     | 
| 53 | 
         
            +
                >>> from sklearn.svm import LinearSVC
         
     | 
| 54 | 
         
            +
                >>> from sklearn.exceptions import NotFittedError
         
     | 
| 55 | 
         
            +
                >>> try:
         
     | 
| 56 | 
         
            +
                ...     LinearSVC().predict([[1, 2], [2, 3], [3, 4]])
         
     | 
| 57 | 
         
            +
                ... except NotFittedError as e:
         
     | 
| 58 | 
         
            +
                ...     print(repr(e))
         
     | 
| 59 | 
         
            +
                NotFittedError("This LinearSVC instance is not fitted yet. Call 'fit' with
         
     | 
| 60 | 
         
            +
                appropriate arguments before using this estimator."...)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 63 | 
         
            +
                   Moved from sklearn.utils.validation.
         
     | 
| 64 | 
         
            +
                """
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
            class ConvergenceWarning(UserWarning):
         
     | 
| 68 | 
         
            +
                """Custom warning to capture convergence problems
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 71 | 
         
            +
                   Moved from sklearn.utils.
         
     | 
| 72 | 
         
            +
                """
         
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
            class DataConversionWarning(UserWarning):
         
     | 
| 76 | 
         
            +
                """Warning used to notify implicit data conversions happening in the code.
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                This warning occurs when some input data needs to be converted or
         
     | 
| 79 | 
         
            +
                interpreted in a way that may not match the user's expectations.
         
     | 
| 80 | 
         
            +
             
     | 
| 81 | 
         
            +
                For example, this warning may occur when the user
         
     | 
| 82 | 
         
            +
                    - passes an integer array to a function which expects float input and
         
     | 
| 83 | 
         
            +
                      will convert the input
         
     | 
| 84 | 
         
            +
                    - requests a non-copying operation, but a copy is required to meet the
         
     | 
| 85 | 
         
            +
                      implementation's data-type expectations;
         
     | 
| 86 | 
         
            +
                    - passes an input whose shape can be interpreted ambiguously.
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 89 | 
         
            +
                   Moved from sklearn.utils.validation.
         
     | 
| 90 | 
         
            +
                """
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            class DataDimensionalityWarning(UserWarning):
         
     | 
| 94 | 
         
            +
                """Custom warning to notify potential issues with data dimensionality.
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                For example, in random projection, this warning is raised when the
         
     | 
| 97 | 
         
            +
                number of components, which quantifies the dimensionality of the target
         
     | 
| 98 | 
         
            +
                projection space, is higher than the number of features, which quantifies
         
     | 
| 99 | 
         
            +
                the dimensionality of the original source space, to imply that the
         
     | 
| 100 | 
         
            +
                dimensionality of the problem will not be reduced.
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 103 | 
         
            +
                   Moved from sklearn.utils.
         
     | 
| 104 | 
         
            +
                """
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            class EfficiencyWarning(UserWarning):
         
     | 
| 108 | 
         
            +
                """Warning used to notify the user of inefficient computation.
         
     | 
| 109 | 
         
            +
             
     | 
| 110 | 
         
            +
                This warning notifies the user that the efficiency may not be optimal due
         
     | 
| 111 | 
         
            +
                to some reason which may be included as a part of the warning message.
         
     | 
| 112 | 
         
            +
                This may be subclassed into a more specific Warning class.
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                .. versionadded:: 0.18
         
     | 
| 115 | 
         
            +
                """
         
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
             
     | 
| 118 | 
         
            +
            class FitFailedWarning(RuntimeWarning):
         
     | 
| 119 | 
         
            +
                """Warning class used if there is an error while fitting the estimator.
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                This Warning is used in meta estimators GridSearchCV and RandomizedSearchCV
         
     | 
| 122 | 
         
            +
                and the cross-validation helper function cross_val_score to warn when there
         
     | 
| 123 | 
         
            +
                is an error while fitting the estimator.
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 126 | 
         
            +
                   Moved from sklearn.cross_validation.
         
     | 
| 127 | 
         
            +
                """
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
            class SkipTestWarning(UserWarning):
         
     | 
| 131 | 
         
            +
                """Warning class used to notify the user of a test that was skipped.
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                For example, one of the estimator checks requires a pandas import.
         
     | 
| 134 | 
         
            +
                If the pandas package cannot be imported, the test will be skipped rather
         
     | 
| 135 | 
         
            +
                than register as a failure.
         
     | 
| 136 | 
         
            +
                """
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
            class UndefinedMetricWarning(UserWarning):
         
     | 
| 140 | 
         
            +
                """Warning used when the metric is invalid
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                .. versionchanged:: 0.18
         
     | 
| 143 | 
         
            +
                   Moved from sklearn.base.
         
     | 
| 144 | 
         
            +
                """
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
            class PositiveSpectrumWarning(UserWarning):
         
     | 
| 148 | 
         
            +
                """Warning raised when the eigenvalues of a PSD matrix have issues
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                This warning is typically raised by ``_check_psd_eigenvalues`` when the
         
     | 
| 151 | 
         
            +
                eigenvalues of a positive semidefinite (PSD) matrix such as a gram matrix
         
     | 
| 152 | 
         
            +
                (kernel) present significant negative eigenvalues, or bad conditioning i.e.
         
     | 
| 153 | 
         
            +
                very small non-zero eigenvalues compared to the largest eigenvalue.
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                .. versionadded:: 0.22
         
     | 
| 156 | 
         
            +
                """
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
            class InconsistentVersionWarning(UserWarning):
         
     | 
| 160 | 
         
            +
                """Warning raised when an estimator is unpickled with a inconsistent version.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                Parameters
         
     | 
| 163 | 
         
            +
                ----------
         
     | 
| 164 | 
         
            +
                estimator_name : str
         
     | 
| 165 | 
         
            +
                    Estimator name.
         
     | 
| 166 | 
         
            +
             
     | 
| 167 | 
         
            +
                current_sklearn_version : str
         
     | 
| 168 | 
         
            +
                    Current scikit-learn version.
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                original_sklearn_version : str
         
     | 
| 171 | 
         
            +
                    Original scikit-learn version.
         
     | 
| 172 | 
         
            +
                """
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                def __init__(
         
     | 
| 175 | 
         
            +
                    self, *, estimator_name, current_sklearn_version, original_sklearn_version
         
     | 
| 176 | 
         
            +
                ):
         
     | 
| 177 | 
         
            +
                    self.estimator_name = estimator_name
         
     | 
| 178 | 
         
            +
                    self.current_sklearn_version = current_sklearn_version
         
     | 
| 179 | 
         
            +
                    self.original_sklearn_version = original_sklearn_version
         
     | 
| 180 | 
         
            +
             
     | 
| 181 | 
         
            +
                def __str__(self):
         
     | 
| 182 | 
         
            +
                    return (
         
     | 
| 183 | 
         
            +
                        f"Trying to unpickle estimator {self.estimator_name} from version"
         
     | 
| 184 | 
         
            +
                        f" {self.original_sklearn_version} when "
         
     | 
| 185 | 
         
            +
                        f"using version {self.current_sklearn_version}. This might lead to breaking"
         
     | 
| 186 | 
         
            +
                        " code or "
         
     | 
| 187 | 
         
            +
                        "invalid results. Use at your own risk. "
         
     | 
| 188 | 
         
            +
                        "For more info please refer to:\n"
         
     | 
| 189 | 
         
            +
                        "https://scikit-learn.org/stable/model_persistence.html"
         
     | 
| 190 | 
         
            +
                        "#security-maintainability-limitations"
         
     | 
| 191 | 
         
            +
                    )
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,24 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Transformers for missing value imputation"""
         
     | 
| 2 | 
         
            +
            import typing
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from ._base import MissingIndicator, SimpleImputer
         
     | 
| 5 | 
         
            +
            from ._knn import KNNImputer
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            if typing.TYPE_CHECKING:
         
     | 
| 8 | 
         
            +
                # Avoid errors in type checkers (e.g. mypy) for experimental estimators.
         
     | 
| 9 | 
         
            +
                # TODO: remove this check once the estimator is no longer experimental.
         
     | 
| 10 | 
         
            +
                from ._iterative import IterativeImputer  # noqa
         
     | 
| 11 | 
         
            +
             
     | 
| 12 | 
         
            +
            __all__ = ["MissingIndicator", "SimpleImputer", "KNNImputer"]
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
             
     | 
| 15 | 
         
            +
            # TODO: remove this check once the estimator is no longer experimental.
         
     | 
| 16 | 
         
            +
            def __getattr__(name):
         
     | 
| 17 | 
         
            +
                if name == "IterativeImputer":
         
     | 
| 18 | 
         
            +
                    raise ImportError(
         
     | 
| 19 | 
         
            +
                        f"{name} is experimental and the API might change without any "
         
     | 
| 20 | 
         
            +
                        "deprecation cycle. To use it, you need to explicitly import "
         
     | 
| 21 | 
         
            +
                        "enable_iterative_imputer:\n"
         
     | 
| 22 | 
         
            +
                        "from sklearn.experimental import enable_iterative_imputer"
         
     | 
| 23 | 
         
            +
                    )
         
     | 
| 24 | 
         
            +
                raise AttributeError(f"module {__name__} has no attribute {name}")
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (906 Bytes). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_base.cpython-310.pyc
    ADDED
    
    | 
         Binary file (29.4 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_iterative.cpython-310.pyc
    ADDED
    
    | 
         Binary file (28.4 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/__pycache__/_knn.cpython-310.pyc
    ADDED
    
    | 
         Binary file (11.5 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/_base.py
    ADDED
    
    | 
         @@ -0,0 +1,1075 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Authors: Nicolas Tresegnie <[email protected]>
         
     | 
| 2 | 
         
            +
            #          Sergey Feldman <[email protected]>
         
     | 
| 3 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            import numbers
         
     | 
| 6 | 
         
            +
            import warnings
         
     | 
| 7 | 
         
            +
            from collections import Counter
         
     | 
| 8 | 
         
            +
            from functools import partial
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import numpy as np
         
     | 
| 11 | 
         
            +
            import numpy.ma as ma
         
     | 
| 12 | 
         
            +
            from scipy import sparse as sp
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from ..base import BaseEstimator, TransformerMixin, _fit_context
         
     | 
| 15 | 
         
            +
            from ..utils import _is_pandas_na, is_scalar_nan
         
     | 
| 16 | 
         
            +
            from ..utils._mask import _get_mask
         
     | 
| 17 | 
         
            +
            from ..utils._param_validation import MissingValues, StrOptions
         
     | 
| 18 | 
         
            +
            from ..utils.fixes import _mode
         
     | 
| 19 | 
         
            +
            from ..utils.sparsefuncs import _get_median
         
     | 
| 20 | 
         
            +
            from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            def _check_inputs_dtype(X, missing_values):
         
     | 
| 24 | 
         
            +
                if _is_pandas_na(missing_values):
         
     | 
| 25 | 
         
            +
                    # Allow using `pd.NA` as missing values to impute numerical arrays.
         
     | 
| 26 | 
         
            +
                    return
         
     | 
| 27 | 
         
            +
                if X.dtype.kind in ("f", "i", "u") and not isinstance(missing_values, numbers.Real):
         
     | 
| 28 | 
         
            +
                    raise ValueError(
         
     | 
| 29 | 
         
            +
                        "'X' and 'missing_values' types are expected to be"
         
     | 
| 30 | 
         
            +
                        " both numerical. Got X.dtype={} and "
         
     | 
| 31 | 
         
            +
                        " type(missing_values)={}.".format(X.dtype, type(missing_values))
         
     | 
| 32 | 
         
            +
                    )
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            def _most_frequent(array, extra_value, n_repeat):
         
     | 
| 36 | 
         
            +
                """Compute the most frequent value in a 1d array extended with
         
     | 
| 37 | 
         
            +
                [extra_value] * n_repeat, where extra_value is assumed to be not part
         
     | 
| 38 | 
         
            +
                of the array."""
         
     | 
| 39 | 
         
            +
                # Compute the most frequent value in array only
         
     | 
| 40 | 
         
            +
                if array.size > 0:
         
     | 
| 41 | 
         
            +
                    if array.dtype == object:
         
     | 
| 42 | 
         
            +
                        # scipy.stats.mode is slow with object dtype array.
         
     | 
| 43 | 
         
            +
                        # Python Counter is more efficient
         
     | 
| 44 | 
         
            +
                        counter = Counter(array)
         
     | 
| 45 | 
         
            +
                        most_frequent_count = counter.most_common(1)[0][1]
         
     | 
| 46 | 
         
            +
                        # tie breaking similarly to scipy.stats.mode
         
     | 
| 47 | 
         
            +
                        most_frequent_value = min(
         
     | 
| 48 | 
         
            +
                            value
         
     | 
| 49 | 
         
            +
                            for value, count in counter.items()
         
     | 
| 50 | 
         
            +
                            if count == most_frequent_count
         
     | 
| 51 | 
         
            +
                        )
         
     | 
| 52 | 
         
            +
                    else:
         
     | 
| 53 | 
         
            +
                        mode = _mode(array)
         
     | 
| 54 | 
         
            +
                        most_frequent_value = mode[0][0]
         
     | 
| 55 | 
         
            +
                        most_frequent_count = mode[1][0]
         
     | 
| 56 | 
         
            +
                else:
         
     | 
| 57 | 
         
            +
                    most_frequent_value = 0
         
     | 
| 58 | 
         
            +
                    most_frequent_count = 0
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                # Compare to array + [extra_value] * n_repeat
         
     | 
| 61 | 
         
            +
                if most_frequent_count == 0 and n_repeat == 0:
         
     | 
| 62 | 
         
            +
                    return np.nan
         
     | 
| 63 | 
         
            +
                elif most_frequent_count < n_repeat:
         
     | 
| 64 | 
         
            +
                    return extra_value
         
     | 
| 65 | 
         
            +
                elif most_frequent_count > n_repeat:
         
     | 
| 66 | 
         
            +
                    return most_frequent_value
         
     | 
| 67 | 
         
            +
                elif most_frequent_count == n_repeat:
         
     | 
| 68 | 
         
            +
                    # tie breaking similarly to scipy.stats.mode
         
     | 
| 69 | 
         
            +
                    return min(most_frequent_value, extra_value)
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
            class _BaseImputer(TransformerMixin, BaseEstimator):
         
     | 
| 73 | 
         
            +
                """Base class for all imputers.
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                It adds automatically support for `add_indicator`.
         
     | 
| 76 | 
         
            +
                """
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 79 | 
         
            +
                    "missing_values": [MissingValues()],
         
     | 
| 80 | 
         
            +
                    "add_indicator": ["boolean"],
         
     | 
| 81 | 
         
            +
                    "keep_empty_features": ["boolean"],
         
     | 
| 82 | 
         
            +
                }
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                def __init__(
         
     | 
| 85 | 
         
            +
                    self, *, missing_values=np.nan, add_indicator=False, keep_empty_features=False
         
     | 
| 86 | 
         
            +
                ):
         
     | 
| 87 | 
         
            +
                    self.missing_values = missing_values
         
     | 
| 88 | 
         
            +
                    self.add_indicator = add_indicator
         
     | 
| 89 | 
         
            +
                    self.keep_empty_features = keep_empty_features
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                def _fit_indicator(self, X):
         
     | 
| 92 | 
         
            +
                    """Fit a MissingIndicator."""
         
     | 
| 93 | 
         
            +
                    if self.add_indicator:
         
     | 
| 94 | 
         
            +
                        self.indicator_ = MissingIndicator(
         
     | 
| 95 | 
         
            +
                            missing_values=self.missing_values, error_on_new=False
         
     | 
| 96 | 
         
            +
                        )
         
     | 
| 97 | 
         
            +
                        self.indicator_._fit(X, precomputed=True)
         
     | 
| 98 | 
         
            +
                    else:
         
     | 
| 99 | 
         
            +
                        self.indicator_ = None
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                def _transform_indicator(self, X):
         
     | 
| 102 | 
         
            +
                    """Compute the indicator mask.'
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                    Note that X must be the original data as passed to the imputer before
         
     | 
| 105 | 
         
            +
                    any imputation, since imputation may be done inplace in some cases.
         
     | 
| 106 | 
         
            +
                    """
         
     | 
| 107 | 
         
            +
                    if self.add_indicator:
         
     | 
| 108 | 
         
            +
                        if not hasattr(self, "indicator_"):
         
     | 
| 109 | 
         
            +
                            raise ValueError(
         
     | 
| 110 | 
         
            +
                                "Make sure to call _fit_indicator before _transform_indicator"
         
     | 
| 111 | 
         
            +
                            )
         
     | 
| 112 | 
         
            +
                        return self.indicator_.transform(X)
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                def _concatenate_indicator(self, X_imputed, X_indicator):
         
     | 
| 115 | 
         
            +
                    """Concatenate indicator mask with the imputed data."""
         
     | 
| 116 | 
         
            +
                    if not self.add_indicator:
         
     | 
| 117 | 
         
            +
                        return X_imputed
         
     | 
| 118 | 
         
            +
             
     | 
| 119 | 
         
            +
                    if sp.issparse(X_imputed):
         
     | 
| 120 | 
         
            +
                        # sp.hstack may result in different formats between sparse arrays and
         
     | 
| 121 | 
         
            +
                        # matrices; specify the format to keep consistent behavior
         
     | 
| 122 | 
         
            +
                        hstack = partial(sp.hstack, format=X_imputed.format)
         
     | 
| 123 | 
         
            +
                    else:
         
     | 
| 124 | 
         
            +
                        hstack = np.hstack
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                    if X_indicator is None:
         
     | 
| 127 | 
         
            +
                        raise ValueError(
         
     | 
| 128 | 
         
            +
                            "Data from the missing indicator are not provided. Call "
         
     | 
| 129 | 
         
            +
                            "_fit_indicator and _transform_indicator in the imputer "
         
     | 
| 130 | 
         
            +
                            "implementation."
         
     | 
| 131 | 
         
            +
                        )
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                    return hstack((X_imputed, X_indicator))
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                def _concatenate_indicator_feature_names_out(self, names, input_features):
         
     | 
| 136 | 
         
            +
                    if not self.add_indicator:
         
     | 
| 137 | 
         
            +
                        return names
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                    indicator_names = self.indicator_.get_feature_names_out(input_features)
         
     | 
| 140 | 
         
            +
                    return np.concatenate([names, indicator_names])
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                def _more_tags(self):
         
     | 
| 143 | 
         
            +
                    return {"allow_nan": is_scalar_nan(self.missing_values)}
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
            class SimpleImputer(_BaseImputer):
         
     | 
| 147 | 
         
            +
                """Univariate imputer for completing missing values with simple strategies.
         
     | 
| 148 | 
         
            +
             
     | 
| 149 | 
         
            +
                Replace missing values using a descriptive statistic (e.g. mean, median, or
         
     | 
| 150 | 
         
            +
                most frequent) along each column, or using a constant value.
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                Read more in the :ref:`User Guide <impute>`.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                .. versionadded:: 0.20
         
     | 
| 155 | 
         
            +
                   `SimpleImputer` replaces the previous `sklearn.preprocessing.Imputer`
         
     | 
| 156 | 
         
            +
                   estimator which is now removed.
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                Parameters
         
     | 
| 159 | 
         
            +
                ----------
         
     | 
| 160 | 
         
            +
                missing_values : int, float, str, np.nan, None or pandas.NA, default=np.nan
         
     | 
| 161 | 
         
            +
                    The placeholder for the missing values. All occurrences of
         
     | 
| 162 | 
         
            +
                    `missing_values` will be imputed. For pandas' dataframes with
         
     | 
| 163 | 
         
            +
                    nullable integer dtypes with missing values, `missing_values`
         
     | 
| 164 | 
         
            +
                    can be set to either `np.nan` or `pd.NA`.
         
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
                strategy : str, default='mean'
         
     | 
| 167 | 
         
            +
                    The imputation strategy.
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    - If "mean", then replace missing values using the mean along
         
     | 
| 170 | 
         
            +
                      each column. Can only be used with numeric data.
         
     | 
| 171 | 
         
            +
                    - If "median", then replace missing values using the median along
         
     | 
| 172 | 
         
            +
                      each column. Can only be used with numeric data.
         
     | 
| 173 | 
         
            +
                    - If "most_frequent", then replace missing using the most frequent
         
     | 
| 174 | 
         
            +
                      value along each column. Can be used with strings or numeric data.
         
     | 
| 175 | 
         
            +
                      If there is more than one such value, only the smallest is returned.
         
     | 
| 176 | 
         
            +
                    - If "constant", then replace missing values with fill_value. Can be
         
     | 
| 177 | 
         
            +
                      used with strings or numeric data.
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                    .. versionadded:: 0.20
         
     | 
| 180 | 
         
            +
                       strategy="constant" for fixed value imputation.
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                fill_value : str or numerical value, default=None
         
     | 
| 183 | 
         
            +
                    When strategy == "constant", `fill_value` is used to replace all
         
     | 
| 184 | 
         
            +
                    occurrences of missing_values. For string or object data types,
         
     | 
| 185 | 
         
            +
                    `fill_value` must be a string.
         
     | 
| 186 | 
         
            +
                    If `None`, `fill_value` will be 0 when imputing numerical
         
     | 
| 187 | 
         
            +
                    data and "missing_value" for strings or object data types.
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                copy : bool, default=True
         
     | 
| 190 | 
         
            +
                    If True, a copy of X will be created. If False, imputation will
         
     | 
| 191 | 
         
            +
                    be done in-place whenever possible. Note that, in the following cases,
         
     | 
| 192 | 
         
            +
                    a new copy will always be made, even if `copy=False`:
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                    - If `X` is not an array of floating values;
         
     | 
| 195 | 
         
            +
                    - If `X` is encoded as a CSR matrix;
         
     | 
| 196 | 
         
            +
                    - If `add_indicator=True`.
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                add_indicator : bool, default=False
         
     | 
| 199 | 
         
            +
                    If True, a :class:`MissingIndicator` transform will stack onto output
         
     | 
| 200 | 
         
            +
                    of the imputer's transform. This allows a predictive estimator
         
     | 
| 201 | 
         
            +
                    to account for missingness despite imputation. If a feature has no
         
     | 
| 202 | 
         
            +
                    missing values at fit/train time, the feature won't appear on
         
     | 
| 203 | 
         
            +
                    the missing indicator even if there are missing values at
         
     | 
| 204 | 
         
            +
                    transform/test time.
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                keep_empty_features : bool, default=False
         
     | 
| 207 | 
         
            +
                    If True, features that consist exclusively of missing values when
         
     | 
| 208 | 
         
            +
                    `fit` is called are returned in results when `transform` is called.
         
     | 
| 209 | 
         
            +
                    The imputed value is always `0` except when `strategy="constant"`
         
     | 
| 210 | 
         
            +
                    in which case `fill_value` will be used instead.
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                Attributes
         
     | 
| 215 | 
         
            +
                ----------
         
     | 
| 216 | 
         
            +
                statistics_ : array of shape (n_features,)
         
     | 
| 217 | 
         
            +
                    The imputation fill value for each feature.
         
     | 
| 218 | 
         
            +
                    Computing statistics can result in `np.nan` values.
         
     | 
| 219 | 
         
            +
                    During :meth:`transform`, features corresponding to `np.nan`
         
     | 
| 220 | 
         
            +
                    statistics will be discarded.
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                indicator_ : :class:`~sklearn.impute.MissingIndicator`
         
     | 
| 223 | 
         
            +
                    Indicator used to add binary indicators for missing values.
         
     | 
| 224 | 
         
            +
                    `None` if `add_indicator=False`.
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                n_features_in_ : int
         
     | 
| 227 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 232 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 233 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                See Also
         
     | 
| 238 | 
         
            +
                --------
         
     | 
| 239 | 
         
            +
                IterativeImputer : Multivariate imputer that estimates values to impute for
         
     | 
| 240 | 
         
            +
                    each feature with missing values from all the others.
         
     | 
| 241 | 
         
            +
                KNNImputer : Multivariate imputer that estimates missing features using
         
     | 
| 242 | 
         
            +
                    nearest samples.
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                Notes
         
     | 
| 245 | 
         
            +
                -----
         
     | 
| 246 | 
         
            +
                Columns which only contained missing values at :meth:`fit` are discarded
         
     | 
| 247 | 
         
            +
                upon :meth:`transform` if strategy is not `"constant"`.
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                In a prediction context, simple imputation usually performs poorly when
         
     | 
| 250 | 
         
            +
                associated with a weak learner. However, with a powerful learner, it can
         
     | 
| 251 | 
         
            +
                lead to as good or better performance than complex imputation such as
         
     | 
| 252 | 
         
            +
                :class:`~sklearn.impute.IterativeImputer` or :class:`~sklearn.impute.KNNImputer`.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                Examples
         
     | 
| 255 | 
         
            +
                --------
         
     | 
| 256 | 
         
            +
                >>> import numpy as np
         
     | 
| 257 | 
         
            +
                >>> from sklearn.impute import SimpleImputer
         
     | 
| 258 | 
         
            +
                >>> imp_mean = SimpleImputer(missing_values=np.nan, strategy='mean')
         
     | 
| 259 | 
         
            +
                >>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
         
     | 
| 260 | 
         
            +
                SimpleImputer()
         
     | 
| 261 | 
         
            +
                >>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
         
     | 
| 262 | 
         
            +
                >>> print(imp_mean.transform(X))
         
     | 
| 263 | 
         
            +
                [[ 7.   2.   3. ]
         
     | 
| 264 | 
         
            +
                 [ 4.   3.5  6. ]
         
     | 
| 265 | 
         
            +
                 [10.   3.5  9. ]]
         
     | 
| 266 | 
         
            +
             
     | 
| 267 | 
         
            +
                For a more detailed example see
         
     | 
| 268 | 
         
            +
                :ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`.
         
     | 
| 269 | 
         
            +
                """
         
     | 
| 270 | 
         
            +
             
     | 
| 271 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 272 | 
         
            +
                    **_BaseImputer._parameter_constraints,
         
     | 
| 273 | 
         
            +
                    "strategy": [StrOptions({"mean", "median", "most_frequent", "constant"})],
         
     | 
| 274 | 
         
            +
                    "fill_value": "no_validation",  # any object is valid
         
     | 
| 275 | 
         
            +
                    "copy": ["boolean"],
         
     | 
| 276 | 
         
            +
                }
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                def __init__(
         
     | 
| 279 | 
         
            +
                    self,
         
     | 
| 280 | 
         
            +
                    *,
         
     | 
| 281 | 
         
            +
                    missing_values=np.nan,
         
     | 
| 282 | 
         
            +
                    strategy="mean",
         
     | 
| 283 | 
         
            +
                    fill_value=None,
         
     | 
| 284 | 
         
            +
                    copy=True,
         
     | 
| 285 | 
         
            +
                    add_indicator=False,
         
     | 
| 286 | 
         
            +
                    keep_empty_features=False,
         
     | 
| 287 | 
         
            +
                ):
         
     | 
| 288 | 
         
            +
                    super().__init__(
         
     | 
| 289 | 
         
            +
                        missing_values=missing_values,
         
     | 
| 290 | 
         
            +
                        add_indicator=add_indicator,
         
     | 
| 291 | 
         
            +
                        keep_empty_features=keep_empty_features,
         
     | 
| 292 | 
         
            +
                    )
         
     | 
| 293 | 
         
            +
                    self.strategy = strategy
         
     | 
| 294 | 
         
            +
                    self.fill_value = fill_value
         
     | 
| 295 | 
         
            +
                    self.copy = copy
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                def _validate_input(self, X, in_fit):
         
     | 
| 298 | 
         
            +
                    if self.strategy in ("most_frequent", "constant"):
         
     | 
| 299 | 
         
            +
                        # If input is a list of strings, dtype = object.
         
     | 
| 300 | 
         
            +
                        # Otherwise ValueError is raised in SimpleImputer
         
     | 
| 301 | 
         
            +
                        # with strategy='most_frequent' or 'constant'
         
     | 
| 302 | 
         
            +
                        # because the list is converted to Unicode numpy array
         
     | 
| 303 | 
         
            +
                        if isinstance(X, list) and any(
         
     | 
| 304 | 
         
            +
                            isinstance(elem, str) for row in X for elem in row
         
     | 
| 305 | 
         
            +
                        ):
         
     | 
| 306 | 
         
            +
                            dtype = object
         
     | 
| 307 | 
         
            +
                        else:
         
     | 
| 308 | 
         
            +
                            dtype = None
         
     | 
| 309 | 
         
            +
                    else:
         
     | 
| 310 | 
         
            +
                        dtype = FLOAT_DTYPES
         
     | 
| 311 | 
         
            +
             
     | 
| 312 | 
         
            +
                    if not in_fit and self._fit_dtype.kind == "O":
         
     | 
| 313 | 
         
            +
                        # Use object dtype if fitted on object dtypes
         
     | 
| 314 | 
         
            +
                        dtype = self._fit_dtype
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                    if _is_pandas_na(self.missing_values) or is_scalar_nan(self.missing_values):
         
     | 
| 317 | 
         
            +
                        force_all_finite = "allow-nan"
         
     | 
| 318 | 
         
            +
                    else:
         
     | 
| 319 | 
         
            +
                        force_all_finite = True
         
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
                    try:
         
     | 
| 322 | 
         
            +
                        X = self._validate_data(
         
     | 
| 323 | 
         
            +
                            X,
         
     | 
| 324 | 
         
            +
                            reset=in_fit,
         
     | 
| 325 | 
         
            +
                            accept_sparse="csc",
         
     | 
| 326 | 
         
            +
                            dtype=dtype,
         
     | 
| 327 | 
         
            +
                            force_all_finite=force_all_finite,
         
     | 
| 328 | 
         
            +
                            copy=self.copy,
         
     | 
| 329 | 
         
            +
                        )
         
     | 
| 330 | 
         
            +
                    except ValueError as ve:
         
     | 
| 331 | 
         
            +
                        if "could not convert" in str(ve):
         
     | 
| 332 | 
         
            +
                            new_ve = ValueError(
         
     | 
| 333 | 
         
            +
                                "Cannot use {} strategy with non-numeric data:\n{}".format(
         
     | 
| 334 | 
         
            +
                                    self.strategy, ve
         
     | 
| 335 | 
         
            +
                                )
         
     | 
| 336 | 
         
            +
                            )
         
     | 
| 337 | 
         
            +
                            raise new_ve from None
         
     | 
| 338 | 
         
            +
                        else:
         
     | 
| 339 | 
         
            +
                            raise ve
         
     | 
| 340 | 
         
            +
             
     | 
| 341 | 
         
            +
                    if in_fit:
         
     | 
| 342 | 
         
            +
                        # Use the dtype seen in `fit` for non-`fit` conversion
         
     | 
| 343 | 
         
            +
                        self._fit_dtype = X.dtype
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                    _check_inputs_dtype(X, self.missing_values)
         
     | 
| 346 | 
         
            +
                    if X.dtype.kind not in ("i", "u", "f", "O"):
         
     | 
| 347 | 
         
            +
                        raise ValueError(
         
     | 
| 348 | 
         
            +
                            "SimpleImputer does not support data with dtype "
         
     | 
| 349 | 
         
            +
                            "{0}. Please provide either a numeric array (with"
         
     | 
| 350 | 
         
            +
                            " a floating point or integer dtype) or "
         
     | 
| 351 | 
         
            +
                            "categorical data represented either as an array "
         
     | 
| 352 | 
         
            +
                            "with integer dtype or an array of string values "
         
     | 
| 353 | 
         
            +
                            "with an object dtype.".format(X.dtype)
         
     | 
| 354 | 
         
            +
                        )
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                    if sp.issparse(X) and self.missing_values == 0:
         
     | 
| 357 | 
         
            +
                        # missing_values = 0 not allowed with sparse data as it would
         
     | 
| 358 | 
         
            +
                        # force densification
         
     | 
| 359 | 
         
            +
                        raise ValueError(
         
     | 
| 360 | 
         
            +
                            "Imputation not possible when missing_values "
         
     | 
| 361 | 
         
            +
                            "== 0 and input is sparse. Provide a dense "
         
     | 
| 362 | 
         
            +
                            "array instead."
         
     | 
| 363 | 
         
            +
                        )
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    if self.strategy == "constant":
         
     | 
| 366 | 
         
            +
                        if in_fit and self.fill_value is not None:
         
     | 
| 367 | 
         
            +
                            fill_value_dtype = type(self.fill_value)
         
     | 
| 368 | 
         
            +
                            err_msg = (
         
     | 
| 369 | 
         
            +
                                f"fill_value={self.fill_value!r} (of type {fill_value_dtype!r}) "
         
     | 
| 370 | 
         
            +
                                f"cannot be cast to the input data that is {X.dtype!r}. Make sure "
         
     | 
| 371 | 
         
            +
                                "that both dtypes are of the same kind."
         
     | 
| 372 | 
         
            +
                            )
         
     | 
| 373 | 
         
            +
                        elif not in_fit:
         
     | 
| 374 | 
         
            +
                            fill_value_dtype = self.statistics_.dtype
         
     | 
| 375 | 
         
            +
                            err_msg = (
         
     | 
| 376 | 
         
            +
                                f"The dtype of the filling value (i.e. {fill_value_dtype!r}) "
         
     | 
| 377 | 
         
            +
                                f"cannot be cast to the input data that is {X.dtype!r}. Make sure "
         
     | 
| 378 | 
         
            +
                                "that the dtypes of the input data is of the same kind between "
         
     | 
| 379 | 
         
            +
                                "fit and transform."
         
     | 
| 380 | 
         
            +
                            )
         
     | 
| 381 | 
         
            +
                        else:
         
     | 
| 382 | 
         
            +
                            # By default, fill_value=None, and the replacement is always
         
     | 
| 383 | 
         
            +
                            # compatible with the input data
         
     | 
| 384 | 
         
            +
                            fill_value_dtype = X.dtype
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                        # Make sure we can safely cast fill_value dtype to the input data dtype
         
     | 
| 387 | 
         
            +
                        if not np.can_cast(fill_value_dtype, X.dtype, casting="same_kind"):
         
     | 
| 388 | 
         
            +
                            raise ValueError(err_msg)
         
     | 
| 389 | 
         
            +
             
     | 
| 390 | 
         
            +
                    return X
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 393 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 394 | 
         
            +
                    """Fit the imputer on `X`.
         
     | 
| 395 | 
         
            +
             
     | 
| 396 | 
         
            +
                    Parameters
         
     | 
| 397 | 
         
            +
                    ----------
         
     | 
| 398 | 
         
            +
                    X : {array-like, sparse matrix}, shape (n_samples, n_features)
         
     | 
| 399 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 400 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 401 | 
         
            +
             
     | 
| 402 | 
         
            +
                    y : Ignored
         
     | 
| 403 | 
         
            +
                        Not used, present here for API consistency by convention.
         
     | 
| 404 | 
         
            +
             
     | 
| 405 | 
         
            +
                    Returns
         
     | 
| 406 | 
         
            +
                    -------
         
     | 
| 407 | 
         
            +
                    self : object
         
     | 
| 408 | 
         
            +
                        Fitted estimator.
         
     | 
| 409 | 
         
            +
                    """
         
     | 
| 410 | 
         
            +
                    X = self._validate_input(X, in_fit=True)
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                    # default fill_value is 0 for numerical input and "missing_value"
         
     | 
| 413 | 
         
            +
                    # otherwise
         
     | 
| 414 | 
         
            +
                    if self.fill_value is None:
         
     | 
| 415 | 
         
            +
                        if X.dtype.kind in ("i", "u", "f"):
         
     | 
| 416 | 
         
            +
                            fill_value = 0
         
     | 
| 417 | 
         
            +
                        else:
         
     | 
| 418 | 
         
            +
                            fill_value = "missing_value"
         
     | 
| 419 | 
         
            +
                    else:
         
     | 
| 420 | 
         
            +
                        fill_value = self.fill_value
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    if sp.issparse(X):
         
     | 
| 423 | 
         
            +
                        self.statistics_ = self._sparse_fit(
         
     | 
| 424 | 
         
            +
                            X, self.strategy, self.missing_values, fill_value
         
     | 
| 425 | 
         
            +
                        )
         
     | 
| 426 | 
         
            +
                    else:
         
     | 
| 427 | 
         
            +
                        self.statistics_ = self._dense_fit(
         
     | 
| 428 | 
         
            +
                            X, self.strategy, self.missing_values, fill_value
         
     | 
| 429 | 
         
            +
                        )
         
     | 
| 430 | 
         
            +
             
     | 
| 431 | 
         
            +
                    return self
         
     | 
| 432 | 
         
            +
             
     | 
| 433 | 
         
            +
                def _sparse_fit(self, X, strategy, missing_values, fill_value):
         
     | 
| 434 | 
         
            +
                    """Fit the transformer on sparse data."""
         
     | 
| 435 | 
         
            +
                    missing_mask = _get_mask(X, missing_values)
         
     | 
| 436 | 
         
            +
                    mask_data = missing_mask.data
         
     | 
| 437 | 
         
            +
                    n_implicit_zeros = X.shape[0] - np.diff(X.indptr)
         
     | 
| 438 | 
         
            +
             
     | 
| 439 | 
         
            +
                    statistics = np.empty(X.shape[1])
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                    if strategy == "constant":
         
     | 
| 442 | 
         
            +
                        # for constant strategy, self.statistics_ is used to store
         
     | 
| 443 | 
         
            +
                        # fill_value in each column
         
     | 
| 444 | 
         
            +
                        statistics.fill(fill_value)
         
     | 
| 445 | 
         
            +
                    else:
         
     | 
| 446 | 
         
            +
                        for i in range(X.shape[1]):
         
     | 
| 447 | 
         
            +
                            column = X.data[X.indptr[i] : X.indptr[i + 1]]
         
     | 
| 448 | 
         
            +
                            mask_column = mask_data[X.indptr[i] : X.indptr[i + 1]]
         
     | 
| 449 | 
         
            +
                            column = column[~mask_column]
         
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
                            # combine explicit and implicit zeros
         
     | 
| 452 | 
         
            +
                            mask_zeros = _get_mask(column, 0)
         
     | 
| 453 | 
         
            +
                            column = column[~mask_zeros]
         
     | 
| 454 | 
         
            +
                            n_explicit_zeros = mask_zeros.sum()
         
     | 
| 455 | 
         
            +
                            n_zeros = n_implicit_zeros[i] + n_explicit_zeros
         
     | 
| 456 | 
         
            +
             
     | 
| 457 | 
         
            +
                            if len(column) == 0 and self.keep_empty_features:
         
     | 
| 458 | 
         
            +
                                # in case we want to keep columns with only missing values.
         
     | 
| 459 | 
         
            +
                                statistics[i] = 0
         
     | 
| 460 | 
         
            +
                            else:
         
     | 
| 461 | 
         
            +
                                if strategy == "mean":
         
     | 
| 462 | 
         
            +
                                    s = column.size + n_zeros
         
     | 
| 463 | 
         
            +
                                    statistics[i] = np.nan if s == 0 else column.sum() / s
         
     | 
| 464 | 
         
            +
             
     | 
| 465 | 
         
            +
                                elif strategy == "median":
         
     | 
| 466 | 
         
            +
                                    statistics[i] = _get_median(column, n_zeros)
         
     | 
| 467 | 
         
            +
             
     | 
| 468 | 
         
            +
                                elif strategy == "most_frequent":
         
     | 
| 469 | 
         
            +
                                    statistics[i] = _most_frequent(column, 0, n_zeros)
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    super()._fit_indicator(missing_mask)
         
     | 
| 472 | 
         
            +
             
     | 
| 473 | 
         
            +
                    return statistics
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                def _dense_fit(self, X, strategy, missing_values, fill_value):
         
     | 
| 476 | 
         
            +
                    """Fit the transformer on dense data."""
         
     | 
| 477 | 
         
            +
                    missing_mask = _get_mask(X, missing_values)
         
     | 
| 478 | 
         
            +
                    masked_X = ma.masked_array(X, mask=missing_mask)
         
     | 
| 479 | 
         
            +
             
     | 
| 480 | 
         
            +
                    super()._fit_indicator(missing_mask)
         
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
                    # Mean
         
     | 
| 483 | 
         
            +
                    if strategy == "mean":
         
     | 
| 484 | 
         
            +
                        mean_masked = np.ma.mean(masked_X, axis=0)
         
     | 
| 485 | 
         
            +
                        # Avoid the warning "Warning: converting a masked element to nan."
         
     | 
| 486 | 
         
            +
                        mean = np.ma.getdata(mean_masked)
         
     | 
| 487 | 
         
            +
                        mean[np.ma.getmask(mean_masked)] = 0 if self.keep_empty_features else np.nan
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                        return mean
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    # Median
         
     | 
| 492 | 
         
            +
                    elif strategy == "median":
         
     | 
| 493 | 
         
            +
                        median_masked = np.ma.median(masked_X, axis=0)
         
     | 
| 494 | 
         
            +
                        # Avoid the warning "Warning: converting a masked element to nan."
         
     | 
| 495 | 
         
            +
                        median = np.ma.getdata(median_masked)
         
     | 
| 496 | 
         
            +
                        median[np.ma.getmaskarray(median_masked)] = (
         
     | 
| 497 | 
         
            +
                            0 if self.keep_empty_features else np.nan
         
     | 
| 498 | 
         
            +
                        )
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                        return median
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    # Most frequent
         
     | 
| 503 | 
         
            +
                    elif strategy == "most_frequent":
         
     | 
| 504 | 
         
            +
                        # Avoid use of scipy.stats.mstats.mode due to the required
         
     | 
| 505 | 
         
            +
                        # additional overhead and slow benchmarking performance.
         
     | 
| 506 | 
         
            +
                        # See Issue 14325 and PR 14399 for full discussion.
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                        # To be able access the elements by columns
         
     | 
| 509 | 
         
            +
                        X = X.transpose()
         
     | 
| 510 | 
         
            +
                        mask = missing_mask.transpose()
         
     | 
| 511 | 
         
            +
             
     | 
| 512 | 
         
            +
                        if X.dtype.kind == "O":
         
     | 
| 513 | 
         
            +
                            most_frequent = np.empty(X.shape[0], dtype=object)
         
     | 
| 514 | 
         
            +
                        else:
         
     | 
| 515 | 
         
            +
                            most_frequent = np.empty(X.shape[0])
         
     | 
| 516 | 
         
            +
             
     | 
| 517 | 
         
            +
                        for i, (row, row_mask) in enumerate(zip(X[:], mask[:])):
         
     | 
| 518 | 
         
            +
                            row_mask = np.logical_not(row_mask).astype(bool)
         
     | 
| 519 | 
         
            +
                            row = row[row_mask]
         
     | 
| 520 | 
         
            +
                            if len(row) == 0 and self.keep_empty_features:
         
     | 
| 521 | 
         
            +
                                most_frequent[i] = 0
         
     | 
| 522 | 
         
            +
                            else:
         
     | 
| 523 | 
         
            +
                                most_frequent[i] = _most_frequent(row, np.nan, 0)
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                        return most_frequent
         
     | 
| 526 | 
         
            +
             
     | 
| 527 | 
         
            +
                    # Constant
         
     | 
| 528 | 
         
            +
                    elif strategy == "constant":
         
     | 
| 529 | 
         
            +
                        # for constant strategy, self.statistcs_ is used to store
         
     | 
| 530 | 
         
            +
                        # fill_value in each column
         
     | 
| 531 | 
         
            +
                        return np.full(X.shape[1], fill_value, dtype=X.dtype)
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                def transform(self, X):
         
     | 
| 534 | 
         
            +
                    """Impute all missing values in `X`.
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
                    Parameters
         
     | 
| 537 | 
         
            +
                    ----------
         
     | 
| 538 | 
         
            +
                    X : {array-like, sparse matrix}, shape (n_samples, n_features)
         
     | 
| 539 | 
         
            +
                        The input data to complete.
         
     | 
| 540 | 
         
            +
             
     | 
| 541 | 
         
            +
                    Returns
         
     | 
| 542 | 
         
            +
                    -------
         
     | 
| 543 | 
         
            +
                    X_imputed : {ndarray, sparse matrix} of shape \
         
     | 
| 544 | 
         
            +
                            (n_samples, n_features_out)
         
     | 
| 545 | 
         
            +
                        `X` with imputed values.
         
     | 
| 546 | 
         
            +
                    """
         
     | 
| 547 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                    X = self._validate_input(X, in_fit=False)
         
     | 
| 550 | 
         
            +
                    statistics = self.statistics_
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    if X.shape[1] != statistics.shape[0]:
         
     | 
| 553 | 
         
            +
                        raise ValueError(
         
     | 
| 554 | 
         
            +
                            "X has %d features per sample, expected %d"
         
     | 
| 555 | 
         
            +
                            % (X.shape[1], self.statistics_.shape[0])
         
     | 
| 556 | 
         
            +
                        )
         
     | 
| 557 | 
         
            +
             
     | 
| 558 | 
         
            +
                    # compute mask before eliminating invalid features
         
     | 
| 559 | 
         
            +
                    missing_mask = _get_mask(X, self.missing_values)
         
     | 
| 560 | 
         
            +
             
     | 
| 561 | 
         
            +
                    # Decide whether to keep missing features
         
     | 
| 562 | 
         
            +
                    if self.strategy == "constant" or self.keep_empty_features:
         
     | 
| 563 | 
         
            +
                        valid_statistics = statistics
         
     | 
| 564 | 
         
            +
                        valid_statistics_indexes = None
         
     | 
| 565 | 
         
            +
                    else:
         
     | 
| 566 | 
         
            +
                        # same as np.isnan but also works for object dtypes
         
     | 
| 567 | 
         
            +
                        invalid_mask = _get_mask(statistics, np.nan)
         
     | 
| 568 | 
         
            +
                        valid_mask = np.logical_not(invalid_mask)
         
     | 
| 569 | 
         
            +
                        valid_statistics = statistics[valid_mask]
         
     | 
| 570 | 
         
            +
                        valid_statistics_indexes = np.flatnonzero(valid_mask)
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                        if invalid_mask.any():
         
     | 
| 573 | 
         
            +
                            invalid_features = np.arange(X.shape[1])[invalid_mask]
         
     | 
| 574 | 
         
            +
                            # use feature names warning if features are provided
         
     | 
| 575 | 
         
            +
                            if hasattr(self, "feature_names_in_"):
         
     | 
| 576 | 
         
            +
                                invalid_features = self.feature_names_in_[invalid_features]
         
     | 
| 577 | 
         
            +
                            warnings.warn(
         
     | 
| 578 | 
         
            +
                                "Skipping features without any observed values:"
         
     | 
| 579 | 
         
            +
                                f" {invalid_features}. At least one non-missing value is needed"
         
     | 
| 580 | 
         
            +
                                f" for imputation with strategy='{self.strategy}'."
         
     | 
| 581 | 
         
            +
                            )
         
     | 
| 582 | 
         
            +
                            X = X[:, valid_statistics_indexes]
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                    # Do actual imputation
         
     | 
| 585 | 
         
            +
                    if sp.issparse(X):
         
     | 
| 586 | 
         
            +
                        if self.missing_values == 0:
         
     | 
| 587 | 
         
            +
                            raise ValueError(
         
     | 
| 588 | 
         
            +
                                "Imputation not possible when missing_values "
         
     | 
| 589 | 
         
            +
                                "== 0 and input is sparse. Provide a dense "
         
     | 
| 590 | 
         
            +
                                "array instead."
         
     | 
| 591 | 
         
            +
                            )
         
     | 
| 592 | 
         
            +
                        else:
         
     | 
| 593 | 
         
            +
                            # if no invalid statistics are found, use the mask computed
         
     | 
| 594 | 
         
            +
                            # before, else recompute mask
         
     | 
| 595 | 
         
            +
                            if valid_statistics_indexes is None:
         
     | 
| 596 | 
         
            +
                                mask = missing_mask.data
         
     | 
| 597 | 
         
            +
                            else:
         
     | 
| 598 | 
         
            +
                                mask = _get_mask(X.data, self.missing_values)
         
     | 
| 599 | 
         
            +
                            indexes = np.repeat(
         
     | 
| 600 | 
         
            +
                                np.arange(len(X.indptr) - 1, dtype=int), np.diff(X.indptr)
         
     | 
| 601 | 
         
            +
                            )[mask]
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                            X.data[mask] = valid_statistics[indexes].astype(X.dtype, copy=False)
         
     | 
| 604 | 
         
            +
                    else:
         
     | 
| 605 | 
         
            +
                        # use mask computed before eliminating invalid mask
         
     | 
| 606 | 
         
            +
                        if valid_statistics_indexes is None:
         
     | 
| 607 | 
         
            +
                            mask_valid_features = missing_mask
         
     | 
| 608 | 
         
            +
                        else:
         
     | 
| 609 | 
         
            +
                            mask_valid_features = missing_mask[:, valid_statistics_indexes]
         
     | 
| 610 | 
         
            +
                        n_missing = np.sum(mask_valid_features, axis=0)
         
     | 
| 611 | 
         
            +
                        values = np.repeat(valid_statistics, n_missing)
         
     | 
| 612 | 
         
            +
                        coordinates = np.where(mask_valid_features.transpose())[::-1]
         
     | 
| 613 | 
         
            +
             
     | 
| 614 | 
         
            +
                        X[coordinates] = values
         
     | 
| 615 | 
         
            +
             
     | 
| 616 | 
         
            +
                    X_indicator = super()._transform_indicator(missing_mask)
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
                    return super()._concatenate_indicator(X, X_indicator)
         
     | 
| 619 | 
         
            +
             
     | 
| 620 | 
         
            +
                def inverse_transform(self, X):
         
     | 
| 621 | 
         
            +
                    """Convert the data back to the original representation.
         
     | 
| 622 | 
         
            +
             
     | 
| 623 | 
         
            +
                    Inverts the `transform` operation performed on an array.
         
     | 
| 624 | 
         
            +
                    This operation can only be performed after :class:`SimpleImputer` is
         
     | 
| 625 | 
         
            +
                    instantiated with `add_indicator=True`.
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
                    Note that `inverse_transform` can only invert the transform in
         
     | 
| 628 | 
         
            +
                    features that have binary indicators for missing values. If a feature
         
     | 
| 629 | 
         
            +
                    has no missing values at `fit` time, the feature won't have a binary
         
     | 
| 630 | 
         
            +
                    indicator, and the imputation done at `transform` time won't be
         
     | 
| 631 | 
         
            +
                    inverted.
         
     | 
| 632 | 
         
            +
             
     | 
| 633 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    Parameters
         
     | 
| 636 | 
         
            +
                    ----------
         
     | 
| 637 | 
         
            +
                    X : array-like of shape \
         
     | 
| 638 | 
         
            +
                            (n_samples, n_features + n_features_missing_indicator)
         
     | 
| 639 | 
         
            +
                        The imputed data to be reverted to original data. It has to be
         
     | 
| 640 | 
         
            +
                        an augmented array of imputed data and the missing indicator mask.
         
     | 
| 641 | 
         
            +
             
     | 
| 642 | 
         
            +
                    Returns
         
     | 
| 643 | 
         
            +
                    -------
         
     | 
| 644 | 
         
            +
                    X_original : ndarray of shape (n_samples, n_features)
         
     | 
| 645 | 
         
            +
                        The original `X` with missing values as it was prior
         
     | 
| 646 | 
         
            +
                        to imputation.
         
     | 
| 647 | 
         
            +
                    """
         
     | 
| 648 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 649 | 
         
            +
             
     | 
| 650 | 
         
            +
                    if not self.add_indicator:
         
     | 
| 651 | 
         
            +
                        raise ValueError(
         
     | 
| 652 | 
         
            +
                            "'inverse_transform' works only when "
         
     | 
| 653 | 
         
            +
                            "'SimpleImputer' is instantiated with "
         
     | 
| 654 | 
         
            +
                            "'add_indicator=True'. "
         
     | 
| 655 | 
         
            +
                            f"Got 'add_indicator={self.add_indicator}' "
         
     | 
| 656 | 
         
            +
                            "instead."
         
     | 
| 657 | 
         
            +
                        )
         
     | 
| 658 | 
         
            +
             
     | 
| 659 | 
         
            +
                    n_features_missing = len(self.indicator_.features_)
         
     | 
| 660 | 
         
            +
                    non_empty_feature_count = X.shape[1] - n_features_missing
         
     | 
| 661 | 
         
            +
                    array_imputed = X[:, :non_empty_feature_count].copy()
         
     | 
| 662 | 
         
            +
                    missing_mask = X[:, non_empty_feature_count:].astype(bool)
         
     | 
| 663 | 
         
            +
             
     | 
| 664 | 
         
            +
                    n_features_original = len(self.statistics_)
         
     | 
| 665 | 
         
            +
                    shape_original = (X.shape[0], n_features_original)
         
     | 
| 666 | 
         
            +
                    X_original = np.zeros(shape_original)
         
     | 
| 667 | 
         
            +
                    X_original[:, self.indicator_.features_] = missing_mask
         
     | 
| 668 | 
         
            +
                    full_mask = X_original.astype(bool)
         
     | 
| 669 | 
         
            +
             
     | 
| 670 | 
         
            +
                    imputed_idx, original_idx = 0, 0
         
     | 
| 671 | 
         
            +
                    while imputed_idx < len(array_imputed.T):
         
     | 
| 672 | 
         
            +
                        if not np.all(X_original[:, original_idx]):
         
     | 
| 673 | 
         
            +
                            X_original[:, original_idx] = array_imputed.T[imputed_idx]
         
     | 
| 674 | 
         
            +
                            imputed_idx += 1
         
     | 
| 675 | 
         
            +
                            original_idx += 1
         
     | 
| 676 | 
         
            +
                        else:
         
     | 
| 677 | 
         
            +
                            original_idx += 1
         
     | 
| 678 | 
         
            +
             
     | 
| 679 | 
         
            +
                    X_original[full_mask] = self.missing_values
         
     | 
| 680 | 
         
            +
                    return X_original
         
     | 
| 681 | 
         
            +
             
     | 
| 682 | 
         
            +
                def _more_tags(self):
         
     | 
| 683 | 
         
            +
                    return {
         
     | 
| 684 | 
         
            +
                        "allow_nan": _is_pandas_na(self.missing_values) or is_scalar_nan(
         
     | 
| 685 | 
         
            +
                            self.missing_values
         
     | 
| 686 | 
         
            +
                        )
         
     | 
| 687 | 
         
            +
                    }
         
     | 
| 688 | 
         
            +
             
     | 
| 689 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 690 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                    Parameters
         
     | 
| 693 | 
         
            +
                    ----------
         
     | 
| 694 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 695 | 
         
            +
                        Input features.
         
     | 
| 696 | 
         
            +
             
     | 
| 697 | 
         
            +
                        - If `input_features` is `None`, then `feature_names_in_` is
         
     | 
| 698 | 
         
            +
                          used as feature names in. If `feature_names_in_` is not defined,
         
     | 
| 699 | 
         
            +
                          then the following input feature names are generated:
         
     | 
| 700 | 
         
            +
                          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
         
     | 
| 701 | 
         
            +
                        - If `input_features` is an array-like, then `input_features` must
         
     | 
| 702 | 
         
            +
                          match `feature_names_in_` if `feature_names_in_` is defined.
         
     | 
| 703 | 
         
            +
             
     | 
| 704 | 
         
            +
                    Returns
         
     | 
| 705 | 
         
            +
                    -------
         
     | 
| 706 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 707 | 
         
            +
                        Transformed feature names.
         
     | 
| 708 | 
         
            +
                    """
         
     | 
| 709 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 710 | 
         
            +
                    input_features = _check_feature_names_in(self, input_features)
         
     | 
| 711 | 
         
            +
                    non_missing_mask = np.logical_not(_get_mask(self.statistics_, np.nan))
         
     | 
| 712 | 
         
            +
                    names = input_features[non_missing_mask]
         
     | 
| 713 | 
         
            +
                    return self._concatenate_indicator_feature_names_out(names, input_features)
         
     | 
| 714 | 
         
            +
             
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
            class MissingIndicator(TransformerMixin, BaseEstimator):
         
     | 
| 717 | 
         
            +
                """Binary indicators for missing values.
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                Note that this component typically should not be used in a vanilla
         
     | 
| 720 | 
         
            +
                :class:`~sklearn.pipeline.Pipeline` consisting of transformers and a
         
     | 
| 721 | 
         
            +
                classifier, but rather could be added using a
         
     | 
| 722 | 
         
            +
                :class:`~sklearn.pipeline.FeatureUnion` or
         
     | 
| 723 | 
         
            +
                :class:`~sklearn.compose.ColumnTransformer`.
         
     | 
| 724 | 
         
            +
             
     | 
| 725 | 
         
            +
                Read more in the :ref:`User Guide <impute>`.
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                .. versionadded:: 0.20
         
     | 
| 728 | 
         
            +
             
     | 
| 729 | 
         
            +
                Parameters
         
     | 
| 730 | 
         
            +
                ----------
         
     | 
| 731 | 
         
            +
                missing_values : int, float, str, np.nan or None, default=np.nan
         
     | 
| 732 | 
         
            +
                    The placeholder for the missing values. All occurrences of
         
     | 
| 733 | 
         
            +
                    `missing_values` will be imputed. For pandas' dataframes with
         
     | 
| 734 | 
         
            +
                    nullable integer dtypes with missing values, `missing_values`
         
     | 
| 735 | 
         
            +
                    should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
         
     | 
| 736 | 
         
            +
             
     | 
| 737 | 
         
            +
                features : {'missing-only', 'all'}, default='missing-only'
         
     | 
| 738 | 
         
            +
                    Whether the imputer mask should represent all or a subset of
         
     | 
| 739 | 
         
            +
                    features.
         
     | 
| 740 | 
         
            +
             
     | 
| 741 | 
         
            +
                    - If `'missing-only'` (default), the imputer mask will only represent
         
     | 
| 742 | 
         
            +
                      features containing missing values during fit time.
         
     | 
| 743 | 
         
            +
                    - If `'all'`, the imputer mask will represent all features.
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                sparse : bool or 'auto', default='auto'
         
     | 
| 746 | 
         
            +
                    Whether the imputer mask format should be sparse or dense.
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                    - If `'auto'` (default), the imputer mask will be of same type as
         
     | 
| 749 | 
         
            +
                      input.
         
     | 
| 750 | 
         
            +
                    - If `True`, the imputer mask will be a sparse matrix.
         
     | 
| 751 | 
         
            +
                    - If `False`, the imputer mask will be a numpy array.
         
     | 
| 752 | 
         
            +
             
     | 
| 753 | 
         
            +
                error_on_new : bool, default=True
         
     | 
| 754 | 
         
            +
                    If `True`, :meth:`transform` will raise an error when there are
         
     | 
| 755 | 
         
            +
                    features with missing values that have no missing values in
         
     | 
| 756 | 
         
            +
                    :meth:`fit`. This is applicable only when `features='missing-only'`.
         
     | 
| 757 | 
         
            +
             
     | 
| 758 | 
         
            +
                Attributes
         
     | 
| 759 | 
         
            +
                ----------
         
     | 
| 760 | 
         
            +
                features_ : ndarray of shape (n_missing_features,) or (n_features,)
         
     | 
| 761 | 
         
            +
                    The features indices which will be returned when calling
         
     | 
| 762 | 
         
            +
                    :meth:`transform`. They are computed during :meth:`fit`. If
         
     | 
| 763 | 
         
            +
                    `features='all'`, `features_` is equal to `range(n_features)`.
         
     | 
| 764 | 
         
            +
             
     | 
| 765 | 
         
            +
                n_features_in_ : int
         
     | 
| 766 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 767 | 
         
            +
             
     | 
| 768 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 769 | 
         
            +
             
     | 
| 770 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 771 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 772 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 773 | 
         
            +
             
     | 
| 774 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 775 | 
         
            +
             
     | 
| 776 | 
         
            +
                See Also
         
     | 
| 777 | 
         
            +
                --------
         
     | 
| 778 | 
         
            +
                SimpleImputer : Univariate imputation of missing values.
         
     | 
| 779 | 
         
            +
                IterativeImputer : Multivariate imputation of missing values.
         
     | 
| 780 | 
         
            +
             
     | 
| 781 | 
         
            +
                Examples
         
     | 
| 782 | 
         
            +
                --------
         
     | 
| 783 | 
         
            +
                >>> import numpy as np
         
     | 
| 784 | 
         
            +
                >>> from sklearn.impute import MissingIndicator
         
     | 
| 785 | 
         
            +
                >>> X1 = np.array([[np.nan, 1, 3],
         
     | 
| 786 | 
         
            +
                ...                [4, 0, np.nan],
         
     | 
| 787 | 
         
            +
                ...                [8, 1, 0]])
         
     | 
| 788 | 
         
            +
                >>> X2 = np.array([[5, 1, np.nan],
         
     | 
| 789 | 
         
            +
                ...                [np.nan, 2, 3],
         
     | 
| 790 | 
         
            +
                ...                [2, 4, 0]])
         
     | 
| 791 | 
         
            +
                >>> indicator = MissingIndicator()
         
     | 
| 792 | 
         
            +
                >>> indicator.fit(X1)
         
     | 
| 793 | 
         
            +
                MissingIndicator()
         
     | 
| 794 | 
         
            +
                >>> X2_tr = indicator.transform(X2)
         
     | 
| 795 | 
         
            +
                >>> X2_tr
         
     | 
| 796 | 
         
            +
                array([[False,  True],
         
     | 
| 797 | 
         
            +
                       [ True, False],
         
     | 
| 798 | 
         
            +
                       [False, False]])
         
     | 
| 799 | 
         
            +
                """
         
     | 
| 800 | 
         
            +
             
     | 
| 801 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 802 | 
         
            +
                    "missing_values": [MissingValues()],
         
     | 
| 803 | 
         
            +
                    "features": [StrOptions({"missing-only", "all"})],
         
     | 
| 804 | 
         
            +
                    "sparse": ["boolean", StrOptions({"auto"})],
         
     | 
| 805 | 
         
            +
                    "error_on_new": ["boolean"],
         
     | 
| 806 | 
         
            +
                }
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                def __init__(
         
     | 
| 809 | 
         
            +
                    self,
         
     | 
| 810 | 
         
            +
                    *,
         
     | 
| 811 | 
         
            +
                    missing_values=np.nan,
         
     | 
| 812 | 
         
            +
                    features="missing-only",
         
     | 
| 813 | 
         
            +
                    sparse="auto",
         
     | 
| 814 | 
         
            +
                    error_on_new=True,
         
     | 
| 815 | 
         
            +
                ):
         
     | 
| 816 | 
         
            +
                    self.missing_values = missing_values
         
     | 
| 817 | 
         
            +
                    self.features = features
         
     | 
| 818 | 
         
            +
                    self.sparse = sparse
         
     | 
| 819 | 
         
            +
                    self.error_on_new = error_on_new
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                def _get_missing_features_info(self, X):
         
     | 
| 822 | 
         
            +
                    """Compute the imputer mask and the indices of the features
         
     | 
| 823 | 
         
            +
                    containing missing values.
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                    Parameters
         
     | 
| 826 | 
         
            +
                    ----------
         
     | 
| 827 | 
         
            +
                    X : {ndarray, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 828 | 
         
            +
                        The input data with missing values. Note that `X` has been
         
     | 
| 829 | 
         
            +
                        checked in :meth:`fit` and :meth:`transform` before to call this
         
     | 
| 830 | 
         
            +
                        function.
         
     | 
| 831 | 
         
            +
             
     | 
| 832 | 
         
            +
                    Returns
         
     | 
| 833 | 
         
            +
                    -------
         
     | 
| 834 | 
         
            +
                    imputer_mask : {ndarray, sparse matrix} of shape \
         
     | 
| 835 | 
         
            +
                    (n_samples, n_features)
         
     | 
| 836 | 
         
            +
                        The imputer mask of the original data.
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                    features_with_missing : ndarray of shape (n_features_with_missing)
         
     | 
| 839 | 
         
            +
                        The features containing missing values.
         
     | 
| 840 | 
         
            +
                    """
         
     | 
| 841 | 
         
            +
                    if not self._precomputed:
         
     | 
| 842 | 
         
            +
                        imputer_mask = _get_mask(X, self.missing_values)
         
     | 
| 843 | 
         
            +
                    else:
         
     | 
| 844 | 
         
            +
                        imputer_mask = X
         
     | 
| 845 | 
         
            +
             
     | 
| 846 | 
         
            +
                    if sp.issparse(X):
         
     | 
| 847 | 
         
            +
                        imputer_mask.eliminate_zeros()
         
     | 
| 848 | 
         
            +
             
     | 
| 849 | 
         
            +
                        if self.features == "missing-only":
         
     | 
| 850 | 
         
            +
                            n_missing = imputer_mask.getnnz(axis=0)
         
     | 
| 851 | 
         
            +
             
     | 
| 852 | 
         
            +
                        if self.sparse is False:
         
     | 
| 853 | 
         
            +
                            imputer_mask = imputer_mask.toarray()
         
     | 
| 854 | 
         
            +
                        elif imputer_mask.format == "csr":
         
     | 
| 855 | 
         
            +
                            imputer_mask = imputer_mask.tocsc()
         
     | 
| 856 | 
         
            +
                    else:
         
     | 
| 857 | 
         
            +
                        if not self._precomputed:
         
     | 
| 858 | 
         
            +
                            imputer_mask = _get_mask(X, self.missing_values)
         
     | 
| 859 | 
         
            +
                        else:
         
     | 
| 860 | 
         
            +
                            imputer_mask = X
         
     | 
| 861 | 
         
            +
             
     | 
| 862 | 
         
            +
                        if self.features == "missing-only":
         
     | 
| 863 | 
         
            +
                            n_missing = imputer_mask.sum(axis=0)
         
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
                        if self.sparse is True:
         
     | 
| 866 | 
         
            +
                            imputer_mask = sp.csc_matrix(imputer_mask)
         
     | 
| 867 | 
         
            +
             
     | 
| 868 | 
         
            +
                    if self.features == "all":
         
     | 
| 869 | 
         
            +
                        features_indices = np.arange(X.shape[1])
         
     | 
| 870 | 
         
            +
                    else:
         
     | 
| 871 | 
         
            +
                        features_indices = np.flatnonzero(n_missing)
         
     | 
| 872 | 
         
            +
             
     | 
| 873 | 
         
            +
                    return imputer_mask, features_indices
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                def _validate_input(self, X, in_fit):
         
     | 
| 876 | 
         
            +
                    if not is_scalar_nan(self.missing_values):
         
     | 
| 877 | 
         
            +
                        force_all_finite = True
         
     | 
| 878 | 
         
            +
                    else:
         
     | 
| 879 | 
         
            +
                        force_all_finite = "allow-nan"
         
     | 
| 880 | 
         
            +
                    X = self._validate_data(
         
     | 
| 881 | 
         
            +
                        X,
         
     | 
| 882 | 
         
            +
                        reset=in_fit,
         
     | 
| 883 | 
         
            +
                        accept_sparse=("csc", "csr"),
         
     | 
| 884 | 
         
            +
                        dtype=None,
         
     | 
| 885 | 
         
            +
                        force_all_finite=force_all_finite,
         
     | 
| 886 | 
         
            +
                    )
         
     | 
| 887 | 
         
            +
                    _check_inputs_dtype(X, self.missing_values)
         
     | 
| 888 | 
         
            +
                    if X.dtype.kind not in ("i", "u", "f", "O"):
         
     | 
| 889 | 
         
            +
                        raise ValueError(
         
     | 
| 890 | 
         
            +
                            "MissingIndicator does not support data with "
         
     | 
| 891 | 
         
            +
                            "dtype {0}. Please provide either a numeric array"
         
     | 
| 892 | 
         
            +
                            " (with a floating point or integer dtype) or "
         
     | 
| 893 | 
         
            +
                            "categorical data represented either as an array "
         
     | 
| 894 | 
         
            +
                            "with integer dtype or an array of string values "
         
     | 
| 895 | 
         
            +
                            "with an object dtype.".format(X.dtype)
         
     | 
| 896 | 
         
            +
                        )
         
     | 
| 897 | 
         
            +
             
     | 
| 898 | 
         
            +
                    if sp.issparse(X) and self.missing_values == 0:
         
     | 
| 899 | 
         
            +
                        # missing_values = 0 not allowed with sparse data as it would
         
     | 
| 900 | 
         
            +
                        # force densification
         
     | 
| 901 | 
         
            +
                        raise ValueError(
         
     | 
| 902 | 
         
            +
                            "Sparse input with missing_values=0 is "
         
     | 
| 903 | 
         
            +
                            "not supported. Provide a dense "
         
     | 
| 904 | 
         
            +
                            "array instead."
         
     | 
| 905 | 
         
            +
                        )
         
     | 
| 906 | 
         
            +
             
     | 
| 907 | 
         
            +
                    return X
         
     | 
| 908 | 
         
            +
             
     | 
| 909 | 
         
            +
                def _fit(self, X, y=None, precomputed=False):
         
     | 
| 910 | 
         
            +
                    """Fit the transformer on `X`.
         
     | 
| 911 | 
         
            +
             
     | 
| 912 | 
         
            +
                    Parameters
         
     | 
| 913 | 
         
            +
                    ----------
         
     | 
| 914 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 915 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 916 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 917 | 
         
            +
                        If `precomputed=True`, then `X` is a mask of the input data.
         
     | 
| 918 | 
         
            +
             
     | 
| 919 | 
         
            +
                    precomputed : bool
         
     | 
| 920 | 
         
            +
                        Whether the input data is a mask.
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                    Returns
         
     | 
| 923 | 
         
            +
                    -------
         
     | 
| 924 | 
         
            +
                    imputer_mask : {ndarray, sparse matrix} of shape (n_samples, \
         
     | 
| 925 | 
         
            +
                    n_features)
         
     | 
| 926 | 
         
            +
                        The imputer mask of the original data.
         
     | 
| 927 | 
         
            +
                    """
         
     | 
| 928 | 
         
            +
                    if precomputed:
         
     | 
| 929 | 
         
            +
                        if not (hasattr(X, "dtype") and X.dtype.kind == "b"):
         
     | 
| 930 | 
         
            +
                            raise ValueError("precomputed is True but the input data is not a mask")
         
     | 
| 931 | 
         
            +
                        self._precomputed = True
         
     | 
| 932 | 
         
            +
                    else:
         
     | 
| 933 | 
         
            +
                        self._precomputed = False
         
     | 
| 934 | 
         
            +
             
     | 
| 935 | 
         
            +
                    # Need not validate X again as it would have already been validated
         
     | 
| 936 | 
         
            +
                    # in the Imputer calling MissingIndicator
         
     | 
| 937 | 
         
            +
                    if not self._precomputed:
         
     | 
| 938 | 
         
            +
                        X = self._validate_input(X, in_fit=True)
         
     | 
| 939 | 
         
            +
                    else:
         
     | 
| 940 | 
         
            +
                        # only create `n_features_in_` in the precomputed case
         
     | 
| 941 | 
         
            +
                        self._check_n_features(X, reset=True)
         
     | 
| 942 | 
         
            +
             
     | 
| 943 | 
         
            +
                    self._n_features = X.shape[1]
         
     | 
| 944 | 
         
            +
             
     | 
| 945 | 
         
            +
                    missing_features_info = self._get_missing_features_info(X)
         
     | 
| 946 | 
         
            +
                    self.features_ = missing_features_info[1]
         
     | 
| 947 | 
         
            +
             
     | 
| 948 | 
         
            +
                    return missing_features_info[0]
         
     | 
| 949 | 
         
            +
             
     | 
| 950 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 951 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 952 | 
         
            +
                    """Fit the transformer on `X`.
         
     | 
| 953 | 
         
            +
             
     | 
| 954 | 
         
            +
                    Parameters
         
     | 
| 955 | 
         
            +
                    ----------
         
     | 
| 956 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 957 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 958 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 959 | 
         
            +
             
     | 
| 960 | 
         
            +
                    y : Ignored
         
     | 
| 961 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 962 | 
         
            +
             
     | 
| 963 | 
         
            +
                    Returns
         
     | 
| 964 | 
         
            +
                    -------
         
     | 
| 965 | 
         
            +
                    self : object
         
     | 
| 966 | 
         
            +
                        Fitted estimator.
         
     | 
| 967 | 
         
            +
                    """
         
     | 
| 968 | 
         
            +
                    self._fit(X, y)
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                    return self
         
     | 
| 971 | 
         
            +
             
     | 
| 972 | 
         
            +
                def transform(self, X):
         
     | 
| 973 | 
         
            +
                    """Generate missing values indicator for `X`.
         
     | 
| 974 | 
         
            +
             
     | 
| 975 | 
         
            +
                    Parameters
         
     | 
| 976 | 
         
            +
                    ----------
         
     | 
| 977 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 978 | 
         
            +
                        The input data to complete.
         
     | 
| 979 | 
         
            +
             
     | 
| 980 | 
         
            +
                    Returns
         
     | 
| 981 | 
         
            +
                    -------
         
     | 
| 982 | 
         
            +
                    Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \
         
     | 
| 983 | 
         
            +
                    or (n_samples, n_features_with_missing)
         
     | 
| 984 | 
         
            +
                        The missing indicator for input data. The data type of `Xt`
         
     | 
| 985 | 
         
            +
                        will be boolean.
         
     | 
| 986 | 
         
            +
                    """
         
     | 
| 987 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 988 | 
         
            +
             
     | 
| 989 | 
         
            +
                    # Need not validate X again as it would have already been validated
         
     | 
| 990 | 
         
            +
                    # in the Imputer calling MissingIndicator
         
     | 
| 991 | 
         
            +
                    if not self._precomputed:
         
     | 
| 992 | 
         
            +
                        X = self._validate_input(X, in_fit=False)
         
     | 
| 993 | 
         
            +
                    else:
         
     | 
| 994 | 
         
            +
                        if not (hasattr(X, "dtype") and X.dtype.kind == "b"):
         
     | 
| 995 | 
         
            +
                            raise ValueError("precomputed is True but the input data is not a mask")
         
     | 
| 996 | 
         
            +
             
     | 
| 997 | 
         
            +
                    imputer_mask, features = self._get_missing_features_info(X)
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                    if self.features == "missing-only":
         
     | 
| 1000 | 
         
            +
                        features_diff_fit_trans = np.setdiff1d(features, self.features_)
         
     | 
| 1001 | 
         
            +
                        if self.error_on_new and features_diff_fit_trans.size > 0:
         
     | 
| 1002 | 
         
            +
                            raise ValueError(
         
     | 
| 1003 | 
         
            +
                                "The features {} have missing values "
         
     | 
| 1004 | 
         
            +
                                "in transform but have no missing values "
         
     | 
| 1005 | 
         
            +
                                "in fit.".format(features_diff_fit_trans)
         
     | 
| 1006 | 
         
            +
                            )
         
     | 
| 1007 | 
         
            +
             
     | 
| 1008 | 
         
            +
                        if self.features_.size < self._n_features:
         
     | 
| 1009 | 
         
            +
                            imputer_mask = imputer_mask[:, self.features_]
         
     | 
| 1010 | 
         
            +
             
     | 
| 1011 | 
         
            +
                    return imputer_mask
         
     | 
| 1012 | 
         
            +
             
     | 
| 1013 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 1014 | 
         
            +
                def fit_transform(self, X, y=None):
         
     | 
| 1015 | 
         
            +
                    """Generate missing values indicator for `X`.
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                    Parameters
         
     | 
| 1018 | 
         
            +
                    ----------
         
     | 
| 1019 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 1020 | 
         
            +
                        The input data to complete.
         
     | 
| 1021 | 
         
            +
             
     | 
| 1022 | 
         
            +
                    y : Ignored
         
     | 
| 1023 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 1024 | 
         
            +
             
     | 
| 1025 | 
         
            +
                    Returns
         
     | 
| 1026 | 
         
            +
                    -------
         
     | 
| 1027 | 
         
            +
                    Xt : {ndarray, sparse matrix} of shape (n_samples, n_features) \
         
     | 
| 1028 | 
         
            +
                    or (n_samples, n_features_with_missing)
         
     | 
| 1029 | 
         
            +
                        The missing indicator for input data. The data type of `Xt`
         
     | 
| 1030 | 
         
            +
                        will be boolean.
         
     | 
| 1031 | 
         
            +
                    """
         
     | 
| 1032 | 
         
            +
                    imputer_mask = self._fit(X, y)
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                    if self.features_.size < self._n_features:
         
     | 
| 1035 | 
         
            +
                        imputer_mask = imputer_mask[:, self.features_]
         
     | 
| 1036 | 
         
            +
             
     | 
| 1037 | 
         
            +
                    return imputer_mask
         
     | 
| 1038 | 
         
            +
             
     | 
| 1039 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 1040 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 1041 | 
         
            +
             
     | 
| 1042 | 
         
            +
                    Parameters
         
     | 
| 1043 | 
         
            +
                    ----------
         
     | 
| 1044 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 1045 | 
         
            +
                        Input features.
         
     | 
| 1046 | 
         
            +
             
     | 
| 1047 | 
         
            +
                        - If `input_features` is `None`, then `feature_names_in_` is
         
     | 
| 1048 | 
         
            +
                          used as feature names in. If `feature_names_in_` is not defined,
         
     | 
| 1049 | 
         
            +
                          then the following input feature names are generated:
         
     | 
| 1050 | 
         
            +
                          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
         
     | 
| 1051 | 
         
            +
                        - If `input_features` is an array-like, then `input_features` must
         
     | 
| 1052 | 
         
            +
                          match `feature_names_in_` if `feature_names_in_` is defined.
         
     | 
| 1053 | 
         
            +
             
     | 
| 1054 | 
         
            +
                    Returns
         
     | 
| 1055 | 
         
            +
                    -------
         
     | 
| 1056 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 1057 | 
         
            +
                        Transformed feature names.
         
     | 
| 1058 | 
         
            +
                    """
         
     | 
| 1059 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 1060 | 
         
            +
                    input_features = _check_feature_names_in(self, input_features)
         
     | 
| 1061 | 
         
            +
                    prefix = self.__class__.__name__.lower()
         
     | 
| 1062 | 
         
            +
                    return np.asarray(
         
     | 
| 1063 | 
         
            +
                        [
         
     | 
| 1064 | 
         
            +
                            f"{prefix}_{feature_name}"
         
     | 
| 1065 | 
         
            +
                            for feature_name in input_features[self.features_]
         
     | 
| 1066 | 
         
            +
                        ],
         
     | 
| 1067 | 
         
            +
                        dtype=object,
         
     | 
| 1068 | 
         
            +
                    )
         
     | 
| 1069 | 
         
            +
             
     | 
| 1070 | 
         
            +
                def _more_tags(self):
         
     | 
| 1071 | 
         
            +
                    return {
         
     | 
| 1072 | 
         
            +
                        "allow_nan": True,
         
     | 
| 1073 | 
         
            +
                        "X_types": ["2darray", "string"],
         
     | 
| 1074 | 
         
            +
                        "preserves_dtype": [],
         
     | 
| 1075 | 
         
            +
                    }
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/_iterative.py
    ADDED
    
    | 
         @@ -0,0 +1,906 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import warnings
         
     | 
| 2 | 
         
            +
            from collections import namedtuple
         
     | 
| 3 | 
         
            +
            from numbers import Integral, Real
         
     | 
| 4 | 
         
            +
            from time import time
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import numpy as np
         
     | 
| 7 | 
         
            +
            from scipy import stats
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from ..base import _fit_context, clone
         
     | 
| 10 | 
         
            +
            from ..exceptions import ConvergenceWarning
         
     | 
| 11 | 
         
            +
            from ..preprocessing import normalize
         
     | 
| 12 | 
         
            +
            from ..utils import (
         
     | 
| 13 | 
         
            +
                _safe_assign,
         
     | 
| 14 | 
         
            +
                _safe_indexing,
         
     | 
| 15 | 
         
            +
                check_array,
         
     | 
| 16 | 
         
            +
                check_random_state,
         
     | 
| 17 | 
         
            +
                is_scalar_nan,
         
     | 
| 18 | 
         
            +
            )
         
     | 
| 19 | 
         
            +
            from ..utils._mask import _get_mask
         
     | 
| 20 | 
         
            +
            from ..utils._param_validation import HasMethods, Interval, StrOptions
         
     | 
| 21 | 
         
            +
            from ..utils.metadata_routing import _RoutingNotSupportedMixin
         
     | 
| 22 | 
         
            +
            from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
         
     | 
| 23 | 
         
            +
            from ._base import SimpleImputer, _BaseImputer, _check_inputs_dtype
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            _ImputerTriplet = namedtuple(
         
     | 
| 26 | 
         
            +
                "_ImputerTriplet", ["feat_idx", "neighbor_feat_idx", "estimator"]
         
     | 
| 27 | 
         
            +
            )
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
            def _assign_where(X1, X2, cond):
         
     | 
| 31 | 
         
            +
                """Assign X2 to X1 where cond is True.
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                Parameters
         
     | 
| 34 | 
         
            +
                ----------
         
     | 
| 35 | 
         
            +
                X1 : ndarray or dataframe of shape (n_samples, n_features)
         
     | 
| 36 | 
         
            +
                    Data.
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                X2 : ndarray of shape (n_samples, n_features)
         
     | 
| 39 | 
         
            +
                    Data to be assigned.
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                cond : ndarray of shape (n_samples, n_features)
         
     | 
| 42 | 
         
            +
                    Boolean mask to assign data.
         
     | 
| 43 | 
         
            +
                """
         
     | 
| 44 | 
         
            +
                if hasattr(X1, "mask"):  # pandas dataframes
         
     | 
| 45 | 
         
            +
                    X1.mask(cond=cond, other=X2, inplace=True)
         
     | 
| 46 | 
         
            +
                else:  # ndarrays
         
     | 
| 47 | 
         
            +
                    X1[cond] = X2[cond]
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            class IterativeImputer(_RoutingNotSupportedMixin, _BaseImputer):
         
     | 
| 51 | 
         
            +
                """Multivariate imputer that estimates each feature from all the others.
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
                A strategy for imputing missing values by modeling each feature with
         
     | 
| 54 | 
         
            +
                missing values as a function of other features in a round-robin fashion.
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                Read more in the :ref:`User Guide <iterative_imputer>`.
         
     | 
| 57 | 
         
            +
             
     | 
| 58 | 
         
            +
                .. versionadded:: 0.21
         
     | 
| 59 | 
         
            +
             
     | 
| 60 | 
         
            +
                .. note::
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                  This estimator is still **experimental** for now: the predictions
         
     | 
| 63 | 
         
            +
                  and the API might change without any deprecation cycle. To use it,
         
     | 
| 64 | 
         
            +
                  you need to explicitly import `enable_iterative_imputer`::
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                    >>> # explicitly require this experimental feature
         
     | 
| 67 | 
         
            +
                    >>> from sklearn.experimental import enable_iterative_imputer  # noqa
         
     | 
| 68 | 
         
            +
                    >>> # now you can import normally from sklearn.impute
         
     | 
| 69 | 
         
            +
                    >>> from sklearn.impute import IterativeImputer
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                Parameters
         
     | 
| 72 | 
         
            +
                ----------
         
     | 
| 73 | 
         
            +
                estimator : estimator object, default=BayesianRidge()
         
     | 
| 74 | 
         
            +
                    The estimator to use at each step of the round-robin imputation.
         
     | 
| 75 | 
         
            +
                    If `sample_posterior=True`, the estimator must support
         
     | 
| 76 | 
         
            +
                    `return_std` in its `predict` method.
         
     | 
| 77 | 
         
            +
             
     | 
| 78 | 
         
            +
                missing_values : int or np.nan, default=np.nan
         
     | 
| 79 | 
         
            +
                    The placeholder for the missing values. All occurrences of
         
     | 
| 80 | 
         
            +
                    `missing_values` will be imputed. For pandas' dataframes with
         
     | 
| 81 | 
         
            +
                    nullable integer dtypes with missing values, `missing_values`
         
     | 
| 82 | 
         
            +
                    should be set to `np.nan`, since `pd.NA` will be converted to `np.nan`.
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                sample_posterior : bool, default=False
         
     | 
| 85 | 
         
            +
                    Whether to sample from the (Gaussian) predictive posterior of the
         
     | 
| 86 | 
         
            +
                    fitted estimator for each imputation. Estimator must support
         
     | 
| 87 | 
         
            +
                    `return_std` in its `predict` method if set to `True`. Set to
         
     | 
| 88 | 
         
            +
                    `True` if using `IterativeImputer` for multiple imputations.
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
                max_iter : int, default=10
         
     | 
| 91 | 
         
            +
                    Maximum number of imputation rounds to perform before returning the
         
     | 
| 92 | 
         
            +
                    imputations computed during the final round. A round is a single
         
     | 
| 93 | 
         
            +
                    imputation of each feature with missing values. The stopping criterion
         
     | 
| 94 | 
         
            +
                    is met once `max(abs(X_t - X_{t-1}))/max(abs(X[known_vals])) < tol`,
         
     | 
| 95 | 
         
            +
                    where `X_t` is `X` at iteration `t`. Note that early stopping is only
         
     | 
| 96 | 
         
            +
                    applied if `sample_posterior=False`.
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                tol : float, default=1e-3
         
     | 
| 99 | 
         
            +
                    Tolerance of the stopping condition.
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                n_nearest_features : int, default=None
         
     | 
| 102 | 
         
            +
                    Number of other features to use to estimate the missing values of
         
     | 
| 103 | 
         
            +
                    each feature column. Nearness between features is measured using
         
     | 
| 104 | 
         
            +
                    the absolute correlation coefficient between each feature pair (after
         
     | 
| 105 | 
         
            +
                    initial imputation). To ensure coverage of features throughout the
         
     | 
| 106 | 
         
            +
                    imputation process, the neighbor features are not necessarily nearest,
         
     | 
| 107 | 
         
            +
                    but are drawn with probability proportional to correlation for each
         
     | 
| 108 | 
         
            +
                    imputed target feature. Can provide significant speed-up when the
         
     | 
| 109 | 
         
            +
                    number of features is huge. If `None`, all features will be used.
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                initial_strategy : {'mean', 'median', 'most_frequent', 'constant'}, \
         
     | 
| 112 | 
         
            +
                        default='mean'
         
     | 
| 113 | 
         
            +
                    Which strategy to use to initialize the missing values. Same as the
         
     | 
| 114 | 
         
            +
                    `strategy` parameter in :class:`~sklearn.impute.SimpleImputer`.
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                fill_value : str or numerical value, default=None
         
     | 
| 117 | 
         
            +
                    When `strategy="constant"`, `fill_value` is used to replace all
         
     | 
| 118 | 
         
            +
                    occurrences of missing_values. For string or object data types,
         
     | 
| 119 | 
         
            +
                    `fill_value` must be a string.
         
     | 
| 120 | 
         
            +
                    If `None`, `fill_value` will be 0 when imputing numerical
         
     | 
| 121 | 
         
            +
                    data and "missing_value" for strings or object data types.
         
     | 
| 122 | 
         
            +
             
     | 
| 123 | 
         
            +
                    .. versionadded:: 1.3
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                imputation_order : {'ascending', 'descending', 'roman', 'arabic', \
         
     | 
| 126 | 
         
            +
                        'random'}, default='ascending'
         
     | 
| 127 | 
         
            +
                    The order in which the features will be imputed. Possible values:
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                    - `'ascending'`: From features with fewest missing values to most.
         
     | 
| 130 | 
         
            +
                    - `'descending'`: From features with most missing values to fewest.
         
     | 
| 131 | 
         
            +
                    - `'roman'`: Left to right.
         
     | 
| 132 | 
         
            +
                    - `'arabic'`: Right to left.
         
     | 
| 133 | 
         
            +
                    - `'random'`: A random order for each round.
         
     | 
| 134 | 
         
            +
             
     | 
| 135 | 
         
            +
                skip_complete : bool, default=False
         
     | 
| 136 | 
         
            +
                    If `True` then features with missing values during :meth:`transform`
         
     | 
| 137 | 
         
            +
                    which did not have any missing values during :meth:`fit` will be
         
     | 
| 138 | 
         
            +
                    imputed with the initial imputation method only. Set to `True` if you
         
     | 
| 139 | 
         
            +
                    have many features with no missing values at both :meth:`fit` and
         
     | 
| 140 | 
         
            +
                    :meth:`transform` time to save compute.
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                min_value : float or array-like of shape (n_features,), default=-np.inf
         
     | 
| 143 | 
         
            +
                    Minimum possible imputed value. Broadcast to shape `(n_features,)` if
         
     | 
| 144 | 
         
            +
                    scalar. If array-like, expects shape `(n_features,)`, one min value for
         
     | 
| 145 | 
         
            +
                    each feature. The default is `-np.inf`.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                    .. versionchanged:: 0.23
         
     | 
| 148 | 
         
            +
                       Added support for array-like.
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                max_value : float or array-like of shape (n_features,), default=np.inf
         
     | 
| 151 | 
         
            +
                    Maximum possible imputed value. Broadcast to shape `(n_features,)` if
         
     | 
| 152 | 
         
            +
                    scalar. If array-like, expects shape `(n_features,)`, one max value for
         
     | 
| 153 | 
         
            +
                    each feature. The default is `np.inf`.
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                    .. versionchanged:: 0.23
         
     | 
| 156 | 
         
            +
                       Added support for array-like.
         
     | 
| 157 | 
         
            +
             
     | 
| 158 | 
         
            +
                verbose : int, default=0
         
     | 
| 159 | 
         
            +
                    Verbosity flag, controls the debug messages that are issued
         
     | 
| 160 | 
         
            +
                    as functions are evaluated. The higher, the more verbose. Can be 0, 1,
         
     | 
| 161 | 
         
            +
                    or 2.
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                random_state : int, RandomState instance or None, default=None
         
     | 
| 164 | 
         
            +
                    The seed of the pseudo random number generator to use. Randomizes
         
     | 
| 165 | 
         
            +
                    selection of estimator features if `n_nearest_features` is not `None`,
         
     | 
| 166 | 
         
            +
                    the `imputation_order` if `random`, and the sampling from posterior if
         
     | 
| 167 | 
         
            +
                    `sample_posterior=True`. Use an integer for determinism.
         
     | 
| 168 | 
         
            +
                    See :term:`the Glossary <random_state>`.
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                add_indicator : bool, default=False
         
     | 
| 171 | 
         
            +
                    If `True`, a :class:`MissingIndicator` transform will stack onto output
         
     | 
| 172 | 
         
            +
                    of the imputer's transform. This allows a predictive estimator
         
     | 
| 173 | 
         
            +
                    to account for missingness despite imputation. If a feature has no
         
     | 
| 174 | 
         
            +
                    missing values at fit/train time, the feature won't appear on
         
     | 
| 175 | 
         
            +
                    the missing indicator even if there are missing values at
         
     | 
| 176 | 
         
            +
                    transform/test time.
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                keep_empty_features : bool, default=False
         
     | 
| 179 | 
         
            +
                    If True, features that consist exclusively of missing values when
         
     | 
| 180 | 
         
            +
                    `fit` is called are returned in results when `transform` is called.
         
     | 
| 181 | 
         
            +
                    The imputed value is always `0` except when
         
     | 
| 182 | 
         
            +
                    `initial_strategy="constant"` in which case `fill_value` will be
         
     | 
| 183 | 
         
            +
                    used instead.
         
     | 
| 184 | 
         
            +
             
     | 
| 185 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                Attributes
         
     | 
| 188 | 
         
            +
                ----------
         
     | 
| 189 | 
         
            +
                initial_imputer_ : object of type :class:`~sklearn.impute.SimpleImputer`
         
     | 
| 190 | 
         
            +
                    Imputer used to initialize the missing values.
         
     | 
| 191 | 
         
            +
             
     | 
| 192 | 
         
            +
                imputation_sequence_ : list of tuples
         
     | 
| 193 | 
         
            +
                    Each tuple has `(feat_idx, neighbor_feat_idx, estimator)`, where
         
     | 
| 194 | 
         
            +
                    `feat_idx` is the current feature to be imputed,
         
     | 
| 195 | 
         
            +
                    `neighbor_feat_idx` is the array of other features used to impute the
         
     | 
| 196 | 
         
            +
                    current feature, and `estimator` is the trained estimator used for
         
     | 
| 197 | 
         
            +
                    the imputation. Length is `self.n_features_with_missing_ *
         
     | 
| 198 | 
         
            +
                    self.n_iter_`.
         
     | 
| 199 | 
         
            +
             
     | 
| 200 | 
         
            +
                n_iter_ : int
         
     | 
| 201 | 
         
            +
                    Number of iteration rounds that occurred. Will be less than
         
     | 
| 202 | 
         
            +
                    `self.max_iter` if early stopping criterion was reached.
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                n_features_in_ : int
         
     | 
| 205 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 210 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 211 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 212 | 
         
            +
             
     | 
| 213 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                n_features_with_missing_ : int
         
     | 
| 216 | 
         
            +
                    Number of features with missing values.
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                indicator_ : :class:`~sklearn.impute.MissingIndicator`
         
     | 
| 219 | 
         
            +
                    Indicator used to add binary indicators for missing values.
         
     | 
| 220 | 
         
            +
                    `None` if `add_indicator=False`.
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                random_state_ : RandomState instance
         
     | 
| 223 | 
         
            +
                    RandomState instance that is generated either from a seed, the random
         
     | 
| 224 | 
         
            +
                    number generator or by `np.random`.
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
                See Also
         
     | 
| 227 | 
         
            +
                --------
         
     | 
| 228 | 
         
            +
                SimpleImputer : Univariate imputer for completing missing values
         
     | 
| 229 | 
         
            +
                    with simple strategies.
         
     | 
| 230 | 
         
            +
                KNNImputer : Multivariate imputer that estimates missing features using
         
     | 
| 231 | 
         
            +
                    nearest samples.
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                Notes
         
     | 
| 234 | 
         
            +
                -----
         
     | 
| 235 | 
         
            +
                To support imputation in inductive mode we store each feature's estimator
         
     | 
| 236 | 
         
            +
                during the :meth:`fit` phase, and predict without refitting (in order)
         
     | 
| 237 | 
         
            +
                during the :meth:`transform` phase.
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                Features which contain all missing values at :meth:`fit` are discarded upon
         
     | 
| 240 | 
         
            +
                :meth:`transform`.
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                Using defaults, the imputer scales in :math:`\\mathcal{O}(knp^3\\min(n,p))`
         
     | 
| 243 | 
         
            +
                where :math:`k` = `max_iter`, :math:`n` the number of samples and
         
     | 
| 244 | 
         
            +
                :math:`p` the number of features. It thus becomes prohibitively costly when
         
     | 
| 245 | 
         
            +
                the number of features increases. Setting
         
     | 
| 246 | 
         
            +
                `n_nearest_features << n_features`, `skip_complete=True` or increasing `tol`
         
     | 
| 247 | 
         
            +
                can help to reduce its computational cost.
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                Depending on the nature of missing values, simple imputers can be
         
     | 
| 250 | 
         
            +
                preferable in a prediction context.
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                References
         
     | 
| 253 | 
         
            +
                ----------
         
     | 
| 254 | 
         
            +
                .. [1] `Stef van Buuren, Karin Groothuis-Oudshoorn (2011). "mice:
         
     | 
| 255 | 
         
            +
                    Multivariate Imputation by Chained Equations in R". Journal of
         
     | 
| 256 | 
         
            +
                    Statistical Software 45: 1-67.
         
     | 
| 257 | 
         
            +
                    <https://www.jstatsoft.org/article/view/v045i03>`_
         
     | 
| 258 | 
         
            +
             
     | 
| 259 | 
         
            +
                .. [2] `S. F. Buck, (1960). "A Method of Estimation of Missing Values in
         
     | 
| 260 | 
         
            +
                    Multivariate Data Suitable for use with an Electronic Computer".
         
     | 
| 261 | 
         
            +
                    Journal of the Royal Statistical Society 22(2): 302-306.
         
     | 
| 262 | 
         
            +
                    <https://www.jstor.org/stable/2984099>`_
         
     | 
| 263 | 
         
            +
             
     | 
| 264 | 
         
            +
                Examples
         
     | 
| 265 | 
         
            +
                --------
         
     | 
| 266 | 
         
            +
                >>> import numpy as np
         
     | 
| 267 | 
         
            +
                >>> from sklearn.experimental import enable_iterative_imputer
         
     | 
| 268 | 
         
            +
                >>> from sklearn.impute import IterativeImputer
         
     | 
| 269 | 
         
            +
                >>> imp_mean = IterativeImputer(random_state=0)
         
     | 
| 270 | 
         
            +
                >>> imp_mean.fit([[7, 2, 3], [4, np.nan, 6], [10, 5, 9]])
         
     | 
| 271 | 
         
            +
                IterativeImputer(random_state=0)
         
     | 
| 272 | 
         
            +
                >>> X = [[np.nan, 2, 3], [4, np.nan, 6], [10, np.nan, 9]]
         
     | 
| 273 | 
         
            +
                >>> imp_mean.transform(X)
         
     | 
| 274 | 
         
            +
                array([[ 6.9584...,  2.       ,  3.        ],
         
     | 
| 275 | 
         
            +
                       [ 4.       ,  2.6000...,  6.        ],
         
     | 
| 276 | 
         
            +
                       [10.       ,  4.9999...,  9.        ]])
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                For a more detailed example see
         
     | 
| 279 | 
         
            +
                :ref:`sphx_glr_auto_examples_impute_plot_missing_values.py` or
         
     | 
| 280 | 
         
            +
                :ref:`sphx_glr_auto_examples_impute_plot_iterative_imputer_variants_comparison.py`.
         
     | 
| 281 | 
         
            +
                """
         
     | 
| 282 | 
         
            +
             
     | 
| 283 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 284 | 
         
            +
                    **_BaseImputer._parameter_constraints,
         
     | 
| 285 | 
         
            +
                    "estimator": [None, HasMethods(["fit", "predict"])],
         
     | 
| 286 | 
         
            +
                    "sample_posterior": ["boolean"],
         
     | 
| 287 | 
         
            +
                    "max_iter": [Interval(Integral, 0, None, closed="left")],
         
     | 
| 288 | 
         
            +
                    "tol": [Interval(Real, 0, None, closed="left")],
         
     | 
| 289 | 
         
            +
                    "n_nearest_features": [None, Interval(Integral, 1, None, closed="left")],
         
     | 
| 290 | 
         
            +
                    "initial_strategy": [
         
     | 
| 291 | 
         
            +
                        StrOptions({"mean", "median", "most_frequent", "constant"})
         
     | 
| 292 | 
         
            +
                    ],
         
     | 
| 293 | 
         
            +
                    "fill_value": "no_validation",  # any object is valid
         
     | 
| 294 | 
         
            +
                    "imputation_order": [
         
     | 
| 295 | 
         
            +
                        StrOptions({"ascending", "descending", "roman", "arabic", "random"})
         
     | 
| 296 | 
         
            +
                    ],
         
     | 
| 297 | 
         
            +
                    "skip_complete": ["boolean"],
         
     | 
| 298 | 
         
            +
                    "min_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
         
     | 
| 299 | 
         
            +
                    "max_value": [None, Interval(Real, None, None, closed="both"), "array-like"],
         
     | 
| 300 | 
         
            +
                    "verbose": ["verbose"],
         
     | 
| 301 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 302 | 
         
            +
                }
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                def __init__(
         
     | 
| 305 | 
         
            +
                    self,
         
     | 
| 306 | 
         
            +
                    estimator=None,
         
     | 
| 307 | 
         
            +
                    *,
         
     | 
| 308 | 
         
            +
                    missing_values=np.nan,
         
     | 
| 309 | 
         
            +
                    sample_posterior=False,
         
     | 
| 310 | 
         
            +
                    max_iter=10,
         
     | 
| 311 | 
         
            +
                    tol=1e-3,
         
     | 
| 312 | 
         
            +
                    n_nearest_features=None,
         
     | 
| 313 | 
         
            +
                    initial_strategy="mean",
         
     | 
| 314 | 
         
            +
                    fill_value=None,
         
     | 
| 315 | 
         
            +
                    imputation_order="ascending",
         
     | 
| 316 | 
         
            +
                    skip_complete=False,
         
     | 
| 317 | 
         
            +
                    min_value=-np.inf,
         
     | 
| 318 | 
         
            +
                    max_value=np.inf,
         
     | 
| 319 | 
         
            +
                    verbose=0,
         
     | 
| 320 | 
         
            +
                    random_state=None,
         
     | 
| 321 | 
         
            +
                    add_indicator=False,
         
     | 
| 322 | 
         
            +
                    keep_empty_features=False,
         
     | 
| 323 | 
         
            +
                ):
         
     | 
| 324 | 
         
            +
                    super().__init__(
         
     | 
| 325 | 
         
            +
                        missing_values=missing_values,
         
     | 
| 326 | 
         
            +
                        add_indicator=add_indicator,
         
     | 
| 327 | 
         
            +
                        keep_empty_features=keep_empty_features,
         
     | 
| 328 | 
         
            +
                    )
         
     | 
| 329 | 
         
            +
             
     | 
| 330 | 
         
            +
                    self.estimator = estimator
         
     | 
| 331 | 
         
            +
                    self.sample_posterior = sample_posterior
         
     | 
| 332 | 
         
            +
                    self.max_iter = max_iter
         
     | 
| 333 | 
         
            +
                    self.tol = tol
         
     | 
| 334 | 
         
            +
                    self.n_nearest_features = n_nearest_features
         
     | 
| 335 | 
         
            +
                    self.initial_strategy = initial_strategy
         
     | 
| 336 | 
         
            +
                    self.fill_value = fill_value
         
     | 
| 337 | 
         
            +
                    self.imputation_order = imputation_order
         
     | 
| 338 | 
         
            +
                    self.skip_complete = skip_complete
         
     | 
| 339 | 
         
            +
                    self.min_value = min_value
         
     | 
| 340 | 
         
            +
                    self.max_value = max_value
         
     | 
| 341 | 
         
            +
                    self.verbose = verbose
         
     | 
| 342 | 
         
            +
                    self.random_state = random_state
         
     | 
| 343 | 
         
            +
             
     | 
| 344 | 
         
            +
                def _impute_one_feature(
         
     | 
| 345 | 
         
            +
                    self,
         
     | 
| 346 | 
         
            +
                    X_filled,
         
     | 
| 347 | 
         
            +
                    mask_missing_values,
         
     | 
| 348 | 
         
            +
                    feat_idx,
         
     | 
| 349 | 
         
            +
                    neighbor_feat_idx,
         
     | 
| 350 | 
         
            +
                    estimator=None,
         
     | 
| 351 | 
         
            +
                    fit_mode=True,
         
     | 
| 352 | 
         
            +
                ):
         
     | 
| 353 | 
         
            +
                    """Impute a single feature from the others provided.
         
     | 
| 354 | 
         
            +
             
     | 
| 355 | 
         
            +
                    This function predicts the missing values of one of the features using
         
     | 
| 356 | 
         
            +
                    the current estimates of all the other features. The `estimator` must
         
     | 
| 357 | 
         
            +
                    support `return_std=True` in its `predict` method for this function
         
     | 
| 358 | 
         
            +
                    to work.
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                    Parameters
         
     | 
| 361 | 
         
            +
                    ----------
         
     | 
| 362 | 
         
            +
                    X_filled : ndarray
         
     | 
| 363 | 
         
            +
                        Input data with the most recent imputations.
         
     | 
| 364 | 
         
            +
             
     | 
| 365 | 
         
            +
                    mask_missing_values : ndarray
         
     | 
| 366 | 
         
            +
                        Input data's missing indicator matrix.
         
     | 
| 367 | 
         
            +
             
     | 
| 368 | 
         
            +
                    feat_idx : int
         
     | 
| 369 | 
         
            +
                        Index of the feature currently being imputed.
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                    neighbor_feat_idx : ndarray
         
     | 
| 372 | 
         
            +
                        Indices of the features to be used in imputing `feat_idx`.
         
     | 
| 373 | 
         
            +
             
     | 
| 374 | 
         
            +
                    estimator : object
         
     | 
| 375 | 
         
            +
                        The estimator to use at this step of the round-robin imputation.
         
     | 
| 376 | 
         
            +
                        If `sample_posterior=True`, the estimator must support
         
     | 
| 377 | 
         
            +
                        `return_std` in its `predict` method.
         
     | 
| 378 | 
         
            +
                        If None, it will be cloned from self._estimator.
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    fit_mode : boolean, default=True
         
     | 
| 381 | 
         
            +
                        Whether to fit and predict with the estimator or just predict.
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                    Returns
         
     | 
| 384 | 
         
            +
                    -------
         
     | 
| 385 | 
         
            +
                    X_filled : ndarray
         
     | 
| 386 | 
         
            +
                        Input data with `X_filled[missing_row_mask, feat_idx]` updated.
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    estimator : estimator with sklearn API
         
     | 
| 389 | 
         
            +
                        The fitted estimator used to impute
         
     | 
| 390 | 
         
            +
                        `X_filled[missing_row_mask, feat_idx]`.
         
     | 
| 391 | 
         
            +
                    """
         
     | 
| 392 | 
         
            +
                    if estimator is None and fit_mode is False:
         
     | 
| 393 | 
         
            +
                        raise ValueError(
         
     | 
| 394 | 
         
            +
                            "If fit_mode is False, then an already-fitted "
         
     | 
| 395 | 
         
            +
                            "estimator should be passed in."
         
     | 
| 396 | 
         
            +
                        )
         
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
                    if estimator is None:
         
     | 
| 399 | 
         
            +
                        estimator = clone(self._estimator)
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                    missing_row_mask = mask_missing_values[:, feat_idx]
         
     | 
| 402 | 
         
            +
                    if fit_mode:
         
     | 
| 403 | 
         
            +
                        X_train = _safe_indexing(
         
     | 
| 404 | 
         
            +
                            _safe_indexing(X_filled, neighbor_feat_idx, axis=1),
         
     | 
| 405 | 
         
            +
                            ~missing_row_mask,
         
     | 
| 406 | 
         
            +
                            axis=0,
         
     | 
| 407 | 
         
            +
                        )
         
     | 
| 408 | 
         
            +
                        y_train = _safe_indexing(
         
     | 
| 409 | 
         
            +
                            _safe_indexing(X_filled, feat_idx, axis=1),
         
     | 
| 410 | 
         
            +
                            ~missing_row_mask,
         
     | 
| 411 | 
         
            +
                            axis=0,
         
     | 
| 412 | 
         
            +
                        )
         
     | 
| 413 | 
         
            +
                        estimator.fit(X_train, y_train)
         
     | 
| 414 | 
         
            +
             
     | 
| 415 | 
         
            +
                    # if no missing values, don't predict
         
     | 
| 416 | 
         
            +
                    if np.sum(missing_row_mask) == 0:
         
     | 
| 417 | 
         
            +
                        return X_filled, estimator
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                    # get posterior samples if there is at least one missing value
         
     | 
| 420 | 
         
            +
                    X_test = _safe_indexing(
         
     | 
| 421 | 
         
            +
                        _safe_indexing(X_filled, neighbor_feat_idx, axis=1),
         
     | 
| 422 | 
         
            +
                        missing_row_mask,
         
     | 
| 423 | 
         
            +
                        axis=0,
         
     | 
| 424 | 
         
            +
                    )
         
     | 
| 425 | 
         
            +
                    if self.sample_posterior:
         
     | 
| 426 | 
         
            +
                        mus, sigmas = estimator.predict(X_test, return_std=True)
         
     | 
| 427 | 
         
            +
                        imputed_values = np.zeros(mus.shape, dtype=X_filled.dtype)
         
     | 
| 428 | 
         
            +
                        # two types of problems: (1) non-positive sigmas
         
     | 
| 429 | 
         
            +
                        # (2) mus outside legal range of min_value and max_value
         
     | 
| 430 | 
         
            +
                        # (results in inf sample)
         
     | 
| 431 | 
         
            +
                        positive_sigmas = sigmas > 0
         
     | 
| 432 | 
         
            +
                        imputed_values[~positive_sigmas] = mus[~positive_sigmas]
         
     | 
| 433 | 
         
            +
                        mus_too_low = mus < self._min_value[feat_idx]
         
     | 
| 434 | 
         
            +
                        imputed_values[mus_too_low] = self._min_value[feat_idx]
         
     | 
| 435 | 
         
            +
                        mus_too_high = mus > self._max_value[feat_idx]
         
     | 
| 436 | 
         
            +
                        imputed_values[mus_too_high] = self._max_value[feat_idx]
         
     | 
| 437 | 
         
            +
                        # the rest can be sampled without statistical issues
         
     | 
| 438 | 
         
            +
                        inrange_mask = positive_sigmas & ~mus_too_low & ~mus_too_high
         
     | 
| 439 | 
         
            +
                        mus = mus[inrange_mask]
         
     | 
| 440 | 
         
            +
                        sigmas = sigmas[inrange_mask]
         
     | 
| 441 | 
         
            +
                        a = (self._min_value[feat_idx] - mus) / sigmas
         
     | 
| 442 | 
         
            +
                        b = (self._max_value[feat_idx] - mus) / sigmas
         
     | 
| 443 | 
         
            +
             
     | 
| 444 | 
         
            +
                        truncated_normal = stats.truncnorm(a=a, b=b, loc=mus, scale=sigmas)
         
     | 
| 445 | 
         
            +
                        imputed_values[inrange_mask] = truncated_normal.rvs(
         
     | 
| 446 | 
         
            +
                            random_state=self.random_state_
         
     | 
| 447 | 
         
            +
                        )
         
     | 
| 448 | 
         
            +
                    else:
         
     | 
| 449 | 
         
            +
                        imputed_values = estimator.predict(X_test)
         
     | 
| 450 | 
         
            +
                        imputed_values = np.clip(
         
     | 
| 451 | 
         
            +
                            imputed_values, self._min_value[feat_idx], self._max_value[feat_idx]
         
     | 
| 452 | 
         
            +
                        )
         
     | 
| 453 | 
         
            +
             
     | 
| 454 | 
         
            +
                    # update the feature
         
     | 
| 455 | 
         
            +
                    _safe_assign(
         
     | 
| 456 | 
         
            +
                        X_filled,
         
     | 
| 457 | 
         
            +
                        imputed_values,
         
     | 
| 458 | 
         
            +
                        row_indexer=missing_row_mask,
         
     | 
| 459 | 
         
            +
                        column_indexer=feat_idx,
         
     | 
| 460 | 
         
            +
                    )
         
     | 
| 461 | 
         
            +
                    return X_filled, estimator
         
     | 
| 462 | 
         
            +
             
     | 
| 463 | 
         
            +
                def _get_neighbor_feat_idx(self, n_features, feat_idx, abs_corr_mat):
         
     | 
| 464 | 
         
            +
                    """Get a list of other features to predict `feat_idx`.
         
     | 
| 465 | 
         
            +
             
     | 
| 466 | 
         
            +
                    If `self.n_nearest_features` is less than or equal to the total
         
     | 
| 467 | 
         
            +
                    number of features, then use a probability proportional to the absolute
         
     | 
| 468 | 
         
            +
                    correlation between `feat_idx` and each other feature to randomly
         
     | 
| 469 | 
         
            +
                    choose a subsample of the other features (without replacement).
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                    Parameters
         
     | 
| 472 | 
         
            +
                    ----------
         
     | 
| 473 | 
         
            +
                    n_features : int
         
     | 
| 474 | 
         
            +
                        Number of features in `X`.
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                    feat_idx : int
         
     | 
| 477 | 
         
            +
                        Index of the feature currently being imputed.
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                    abs_corr_mat : ndarray, shape (n_features, n_features)
         
     | 
| 480 | 
         
            +
                        Absolute correlation matrix of `X`. The diagonal has been zeroed
         
     | 
| 481 | 
         
            +
                        out and each feature has been normalized to sum to 1. Can be None.
         
     | 
| 482 | 
         
            +
             
     | 
| 483 | 
         
            +
                    Returns
         
     | 
| 484 | 
         
            +
                    -------
         
     | 
| 485 | 
         
            +
                    neighbor_feat_idx : array-like
         
     | 
| 486 | 
         
            +
                        The features to use to impute `feat_idx`.
         
     | 
| 487 | 
         
            +
                    """
         
     | 
| 488 | 
         
            +
                    if self.n_nearest_features is not None and self.n_nearest_features < n_features:
         
     | 
| 489 | 
         
            +
                        p = abs_corr_mat[:, feat_idx]
         
     | 
| 490 | 
         
            +
                        neighbor_feat_idx = self.random_state_.choice(
         
     | 
| 491 | 
         
            +
                            np.arange(n_features), self.n_nearest_features, replace=False, p=p
         
     | 
| 492 | 
         
            +
                        )
         
     | 
| 493 | 
         
            +
                    else:
         
     | 
| 494 | 
         
            +
                        inds_left = np.arange(feat_idx)
         
     | 
| 495 | 
         
            +
                        inds_right = np.arange(feat_idx + 1, n_features)
         
     | 
| 496 | 
         
            +
                        neighbor_feat_idx = np.concatenate((inds_left, inds_right))
         
     | 
| 497 | 
         
            +
                    return neighbor_feat_idx
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                def _get_ordered_idx(self, mask_missing_values):
         
     | 
| 500 | 
         
            +
                    """Decide in what order we will update the features.
         
     | 
| 501 | 
         
            +
             
     | 
| 502 | 
         
            +
                    As a homage to the MICE R package, we will have 4 main options of
         
     | 
| 503 | 
         
            +
                    how to order the updates, and use a random order if anything else
         
     | 
| 504 | 
         
            +
                    is specified.
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
                    Also, this function skips features which have no missing values.
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                    Parameters
         
     | 
| 509 | 
         
            +
                    ----------
         
     | 
| 510 | 
         
            +
                    mask_missing_values : array-like, shape (n_samples, n_features)
         
     | 
| 511 | 
         
            +
                        Input data's missing indicator matrix, where `n_samples` is the
         
     | 
| 512 | 
         
            +
                        number of samples and `n_features` is the number of features.
         
     | 
| 513 | 
         
            +
             
     | 
| 514 | 
         
            +
                    Returns
         
     | 
| 515 | 
         
            +
                    -------
         
     | 
| 516 | 
         
            +
                    ordered_idx : ndarray, shape (n_features,)
         
     | 
| 517 | 
         
            +
                        The order in which to impute the features.
         
     | 
| 518 | 
         
            +
                    """
         
     | 
| 519 | 
         
            +
                    frac_of_missing_values = mask_missing_values.mean(axis=0)
         
     | 
| 520 | 
         
            +
                    if self.skip_complete:
         
     | 
| 521 | 
         
            +
                        missing_values_idx = np.flatnonzero(frac_of_missing_values)
         
     | 
| 522 | 
         
            +
                    else:
         
     | 
| 523 | 
         
            +
                        missing_values_idx = np.arange(np.shape(frac_of_missing_values)[0])
         
     | 
| 524 | 
         
            +
                    if self.imputation_order == "roman":
         
     | 
| 525 | 
         
            +
                        ordered_idx = missing_values_idx
         
     | 
| 526 | 
         
            +
                    elif self.imputation_order == "arabic":
         
     | 
| 527 | 
         
            +
                        ordered_idx = missing_values_idx[::-1]
         
     | 
| 528 | 
         
            +
                    elif self.imputation_order == "ascending":
         
     | 
| 529 | 
         
            +
                        n = len(frac_of_missing_values) - len(missing_values_idx)
         
     | 
| 530 | 
         
            +
                        ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:]
         
     | 
| 531 | 
         
            +
                    elif self.imputation_order == "descending":
         
     | 
| 532 | 
         
            +
                        n = len(frac_of_missing_values) - len(missing_values_idx)
         
     | 
| 533 | 
         
            +
                        ordered_idx = np.argsort(frac_of_missing_values, kind="mergesort")[n:][::-1]
         
     | 
| 534 | 
         
            +
                    elif self.imputation_order == "random":
         
     | 
| 535 | 
         
            +
                        ordered_idx = missing_values_idx
         
     | 
| 536 | 
         
            +
                        self.random_state_.shuffle(ordered_idx)
         
     | 
| 537 | 
         
            +
                    return ordered_idx
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                def _get_abs_corr_mat(self, X_filled, tolerance=1e-6):
         
     | 
| 540 | 
         
            +
                    """Get absolute correlation matrix between features.
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                    Parameters
         
     | 
| 543 | 
         
            +
                    ----------
         
     | 
| 544 | 
         
            +
                    X_filled : ndarray, shape (n_samples, n_features)
         
     | 
| 545 | 
         
            +
                        Input data with the most recent imputations.
         
     | 
| 546 | 
         
            +
             
     | 
| 547 | 
         
            +
                    tolerance : float, default=1e-6
         
     | 
| 548 | 
         
            +
                        `abs_corr_mat` can have nans, which will be replaced
         
     | 
| 549 | 
         
            +
                        with `tolerance`.
         
     | 
| 550 | 
         
            +
             
     | 
| 551 | 
         
            +
                    Returns
         
     | 
| 552 | 
         
            +
                    -------
         
     | 
| 553 | 
         
            +
                    abs_corr_mat : ndarray, shape (n_features, n_features)
         
     | 
| 554 | 
         
            +
                        Absolute correlation matrix of `X` at the beginning of the
         
     | 
| 555 | 
         
            +
                        current round. The diagonal has been zeroed out and each feature's
         
     | 
| 556 | 
         
            +
                        absolute correlations with all others have been normalized to sum
         
     | 
| 557 | 
         
            +
                        to 1.
         
     | 
| 558 | 
         
            +
                    """
         
     | 
| 559 | 
         
            +
                    n_features = X_filled.shape[1]
         
     | 
| 560 | 
         
            +
                    if self.n_nearest_features is None or self.n_nearest_features >= n_features:
         
     | 
| 561 | 
         
            +
                        return None
         
     | 
| 562 | 
         
            +
                    with np.errstate(invalid="ignore"):
         
     | 
| 563 | 
         
            +
                        # if a feature in the neighborhood has only a single value
         
     | 
| 564 | 
         
            +
                        # (e.g., categorical feature), the std. dev. will be null and
         
     | 
| 565 | 
         
            +
                        # np.corrcoef will raise a warning due to a division by zero
         
     | 
| 566 | 
         
            +
                        abs_corr_mat = np.abs(np.corrcoef(X_filled.T))
         
     | 
| 567 | 
         
            +
                    # np.corrcoef is not defined for features with zero std
         
     | 
| 568 | 
         
            +
                    abs_corr_mat[np.isnan(abs_corr_mat)] = tolerance
         
     | 
| 569 | 
         
            +
                    # ensures exploration, i.e. at least some probability of sampling
         
     | 
| 570 | 
         
            +
                    np.clip(abs_corr_mat, tolerance, None, out=abs_corr_mat)
         
     | 
| 571 | 
         
            +
                    # features are not their own neighbors
         
     | 
| 572 | 
         
            +
                    np.fill_diagonal(abs_corr_mat, 0)
         
     | 
| 573 | 
         
            +
                    # needs to sum to 1 for np.random.choice sampling
         
     | 
| 574 | 
         
            +
                    abs_corr_mat = normalize(abs_corr_mat, norm="l1", axis=0, copy=False)
         
     | 
| 575 | 
         
            +
                    return abs_corr_mat
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                def _initial_imputation(self, X, in_fit=False):
         
     | 
| 578 | 
         
            +
                    """Perform initial imputation for input `X`.
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
                    Parameters
         
     | 
| 581 | 
         
            +
                    ----------
         
     | 
| 582 | 
         
            +
                    X : ndarray of shape (n_samples, n_features)
         
     | 
| 583 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 584 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 585 | 
         
            +
             
     | 
| 586 | 
         
            +
                    in_fit : bool, default=False
         
     | 
| 587 | 
         
            +
                        Whether function is called in :meth:`fit`.
         
     | 
| 588 | 
         
            +
             
     | 
| 589 | 
         
            +
                    Returns
         
     | 
| 590 | 
         
            +
                    -------
         
     | 
| 591 | 
         
            +
                    Xt : ndarray of shape (n_samples, n_features)
         
     | 
| 592 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 593 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                    X_filled : ndarray of shape (n_samples, n_features)
         
     | 
| 596 | 
         
            +
                        Input data with the most recent imputations.
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                    mask_missing_values : ndarray of shape (n_samples, n_features)
         
     | 
| 599 | 
         
            +
                        Input data's missing indicator matrix, where `n_samples` is the
         
     | 
| 600 | 
         
            +
                        number of samples and `n_features` is the number of features,
         
     | 
| 601 | 
         
            +
                        masked by non-missing features.
         
     | 
| 602 | 
         
            +
             
     | 
| 603 | 
         
            +
                    X_missing_mask : ndarray, shape (n_samples, n_features)
         
     | 
| 604 | 
         
            +
                        Input data's mask matrix indicating missing datapoints, where
         
     | 
| 605 | 
         
            +
                        `n_samples` is the number of samples and `n_features` is the
         
     | 
| 606 | 
         
            +
                        number of features.
         
     | 
| 607 | 
         
            +
                    """
         
     | 
| 608 | 
         
            +
                    if is_scalar_nan(self.missing_values):
         
     | 
| 609 | 
         
            +
                        force_all_finite = "allow-nan"
         
     | 
| 610 | 
         
            +
                    else:
         
     | 
| 611 | 
         
            +
                        force_all_finite = True
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    X = self._validate_data(
         
     | 
| 614 | 
         
            +
                        X,
         
     | 
| 615 | 
         
            +
                        dtype=FLOAT_DTYPES,
         
     | 
| 616 | 
         
            +
                        order="F",
         
     | 
| 617 | 
         
            +
                        reset=in_fit,
         
     | 
| 618 | 
         
            +
                        force_all_finite=force_all_finite,
         
     | 
| 619 | 
         
            +
                    )
         
     | 
| 620 | 
         
            +
                    _check_inputs_dtype(X, self.missing_values)
         
     | 
| 621 | 
         
            +
             
     | 
| 622 | 
         
            +
                    X_missing_mask = _get_mask(X, self.missing_values)
         
     | 
| 623 | 
         
            +
                    mask_missing_values = X_missing_mask.copy()
         
     | 
| 624 | 
         
            +
                    if self.initial_imputer_ is None:
         
     | 
| 625 | 
         
            +
                        self.initial_imputer_ = SimpleImputer(
         
     | 
| 626 | 
         
            +
                            missing_values=self.missing_values,
         
     | 
| 627 | 
         
            +
                            strategy=self.initial_strategy,
         
     | 
| 628 | 
         
            +
                            fill_value=self.fill_value,
         
     | 
| 629 | 
         
            +
                            keep_empty_features=self.keep_empty_features,
         
     | 
| 630 | 
         
            +
                        ).set_output(transform="default")
         
     | 
| 631 | 
         
            +
                        X_filled = self.initial_imputer_.fit_transform(X)
         
     | 
| 632 | 
         
            +
                    else:
         
     | 
| 633 | 
         
            +
                        X_filled = self.initial_imputer_.transform(X)
         
     | 
| 634 | 
         
            +
             
     | 
| 635 | 
         
            +
                    valid_mask = np.flatnonzero(
         
     | 
| 636 | 
         
            +
                        np.logical_not(np.isnan(self.initial_imputer_.statistics_))
         
     | 
| 637 | 
         
            +
                    )
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                    if not self.keep_empty_features:
         
     | 
| 640 | 
         
            +
                        # drop empty features
         
     | 
| 641 | 
         
            +
                        Xt = X[:, valid_mask]
         
     | 
| 642 | 
         
            +
                        mask_missing_values = mask_missing_values[:, valid_mask]
         
     | 
| 643 | 
         
            +
                    else:
         
     | 
| 644 | 
         
            +
                        # mark empty features as not missing and keep the original
         
     | 
| 645 | 
         
            +
                        # imputation
         
     | 
| 646 | 
         
            +
                        mask_missing_values[:, valid_mask] = True
         
     | 
| 647 | 
         
            +
                        Xt = X
         
     | 
| 648 | 
         
            +
             
     | 
| 649 | 
         
            +
                    return Xt, X_filled, mask_missing_values, X_missing_mask
         
     | 
| 650 | 
         
            +
             
     | 
| 651 | 
         
            +
                @staticmethod
         
     | 
| 652 | 
         
            +
                def _validate_limit(limit, limit_type, n_features):
         
     | 
| 653 | 
         
            +
                    """Validate the limits (min/max) of the feature values.
         
     | 
| 654 | 
         
            +
             
     | 
| 655 | 
         
            +
                    Converts scalar min/max limits to vectors of shape `(n_features,)`.
         
     | 
| 656 | 
         
            +
             
     | 
| 657 | 
         
            +
                    Parameters
         
     | 
| 658 | 
         
            +
                    ----------
         
     | 
| 659 | 
         
            +
                    limit: scalar or array-like
         
     | 
| 660 | 
         
            +
                        The user-specified limit (i.e, min_value or max_value).
         
     | 
| 661 | 
         
            +
                    limit_type: {'max', 'min'}
         
     | 
| 662 | 
         
            +
                        Type of limit to validate.
         
     | 
| 663 | 
         
            +
                    n_features: int
         
     | 
| 664 | 
         
            +
                        Number of features in the dataset.
         
     | 
| 665 | 
         
            +
             
     | 
| 666 | 
         
            +
                    Returns
         
     | 
| 667 | 
         
            +
                    -------
         
     | 
| 668 | 
         
            +
                    limit: ndarray, shape(n_features,)
         
     | 
| 669 | 
         
            +
                        Array of limits, one for each feature.
         
     | 
| 670 | 
         
            +
                    """
         
     | 
| 671 | 
         
            +
                    limit_bound = np.inf if limit_type == "max" else -np.inf
         
     | 
| 672 | 
         
            +
                    limit = limit_bound if limit is None else limit
         
     | 
| 673 | 
         
            +
                    if np.isscalar(limit):
         
     | 
| 674 | 
         
            +
                        limit = np.full(n_features, limit)
         
     | 
| 675 | 
         
            +
                    limit = check_array(limit, force_all_finite=False, copy=False, ensure_2d=False)
         
     | 
| 676 | 
         
            +
                    if not limit.shape[0] == n_features:
         
     | 
| 677 | 
         
            +
                        raise ValueError(
         
     | 
| 678 | 
         
            +
                            f"'{limit_type}_value' should be of "
         
     | 
| 679 | 
         
            +
                            f"shape ({n_features},) when an array-like "
         
     | 
| 680 | 
         
            +
                            f"is provided. Got {limit.shape}, instead."
         
     | 
| 681 | 
         
            +
                        )
         
     | 
| 682 | 
         
            +
                    return limit
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                @_fit_context(
         
     | 
| 685 | 
         
            +
                    # IterativeImputer.estimator is not validated yet
         
     | 
| 686 | 
         
            +
                    prefer_skip_nested_validation=False
         
     | 
| 687 | 
         
            +
                )
         
     | 
| 688 | 
         
            +
                def fit_transform(self, X, y=None):
         
     | 
| 689 | 
         
            +
                    """Fit the imputer on `X` and return the transformed `X`.
         
     | 
| 690 | 
         
            +
             
     | 
| 691 | 
         
            +
                    Parameters
         
     | 
| 692 | 
         
            +
                    ----------
         
     | 
| 693 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 694 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 695 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 696 | 
         
            +
             
     | 
| 697 | 
         
            +
                    y : Ignored
         
     | 
| 698 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 699 | 
         
            +
             
     | 
| 700 | 
         
            +
                    Returns
         
     | 
| 701 | 
         
            +
                    -------
         
     | 
| 702 | 
         
            +
                    Xt : array-like, shape (n_samples, n_features)
         
     | 
| 703 | 
         
            +
                        The imputed input data.
         
     | 
| 704 | 
         
            +
                    """
         
     | 
| 705 | 
         
            +
                    self.random_state_ = getattr(
         
     | 
| 706 | 
         
            +
                        self, "random_state_", check_random_state(self.random_state)
         
     | 
| 707 | 
         
            +
                    )
         
     | 
| 708 | 
         
            +
             
     | 
| 709 | 
         
            +
                    if self.estimator is None:
         
     | 
| 710 | 
         
            +
                        from ..linear_model import BayesianRidge
         
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
                        self._estimator = BayesianRidge()
         
     | 
| 713 | 
         
            +
                    else:
         
     | 
| 714 | 
         
            +
                        self._estimator = clone(self.estimator)
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                    self.imputation_sequence_ = []
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                    self.initial_imputer_ = None
         
     | 
| 719 | 
         
            +
             
     | 
| 720 | 
         
            +
                    X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
         
     | 
| 721 | 
         
            +
                        X, in_fit=True
         
     | 
| 722 | 
         
            +
                    )
         
     | 
| 723 | 
         
            +
             
     | 
| 724 | 
         
            +
                    super()._fit_indicator(complete_mask)
         
     | 
| 725 | 
         
            +
                    X_indicator = super()._transform_indicator(complete_mask)
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                    if self.max_iter == 0 or np.all(mask_missing_values):
         
     | 
| 728 | 
         
            +
                        self.n_iter_ = 0
         
     | 
| 729 | 
         
            +
                        return super()._concatenate_indicator(Xt, X_indicator)
         
     | 
| 730 | 
         
            +
             
     | 
| 731 | 
         
            +
                    # Edge case: a single feature. We return the initial ...
         
     | 
| 732 | 
         
            +
                    if Xt.shape[1] == 1:
         
     | 
| 733 | 
         
            +
                        self.n_iter_ = 0
         
     | 
| 734 | 
         
            +
                        return super()._concatenate_indicator(Xt, X_indicator)
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                    self._min_value = self._validate_limit(self.min_value, "min", X.shape[1])
         
     | 
| 737 | 
         
            +
                    self._max_value = self._validate_limit(self.max_value, "max", X.shape[1])
         
     | 
| 738 | 
         
            +
             
     | 
| 739 | 
         
            +
                    if not np.all(np.greater(self._max_value, self._min_value)):
         
     | 
| 740 | 
         
            +
                        raise ValueError("One (or more) features have min_value >= max_value.")
         
     | 
| 741 | 
         
            +
             
     | 
| 742 | 
         
            +
                    # order in which to impute
         
     | 
| 743 | 
         
            +
                    # note this is probably too slow for large feature data (d > 100000)
         
     | 
| 744 | 
         
            +
                    # and a better way would be good.
         
     | 
| 745 | 
         
            +
                    # see: https://goo.gl/KyCNwj and subsequent comments
         
     | 
| 746 | 
         
            +
                    ordered_idx = self._get_ordered_idx(mask_missing_values)
         
     | 
| 747 | 
         
            +
                    self.n_features_with_missing_ = len(ordered_idx)
         
     | 
| 748 | 
         
            +
             
     | 
| 749 | 
         
            +
                    abs_corr_mat = self._get_abs_corr_mat(Xt)
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                    n_samples, n_features = Xt.shape
         
     | 
| 752 | 
         
            +
                    if self.verbose > 0:
         
     | 
| 753 | 
         
            +
                        print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
         
     | 
| 754 | 
         
            +
                    start_t = time()
         
     | 
| 755 | 
         
            +
                    if not self.sample_posterior:
         
     | 
| 756 | 
         
            +
                        Xt_previous = Xt.copy()
         
     | 
| 757 | 
         
            +
                        normalized_tol = self.tol * np.max(np.abs(X[~mask_missing_values]))
         
     | 
| 758 | 
         
            +
                    for self.n_iter_ in range(1, self.max_iter + 1):
         
     | 
| 759 | 
         
            +
                        if self.imputation_order == "random":
         
     | 
| 760 | 
         
            +
                            ordered_idx = self._get_ordered_idx(mask_missing_values)
         
     | 
| 761 | 
         
            +
             
     | 
| 762 | 
         
            +
                        for feat_idx in ordered_idx:
         
     | 
| 763 | 
         
            +
                            neighbor_feat_idx = self._get_neighbor_feat_idx(
         
     | 
| 764 | 
         
            +
                                n_features, feat_idx, abs_corr_mat
         
     | 
| 765 | 
         
            +
                            )
         
     | 
| 766 | 
         
            +
                            Xt, estimator = self._impute_one_feature(
         
     | 
| 767 | 
         
            +
                                Xt,
         
     | 
| 768 | 
         
            +
                                mask_missing_values,
         
     | 
| 769 | 
         
            +
                                feat_idx,
         
     | 
| 770 | 
         
            +
                                neighbor_feat_idx,
         
     | 
| 771 | 
         
            +
                                estimator=None,
         
     | 
| 772 | 
         
            +
                                fit_mode=True,
         
     | 
| 773 | 
         
            +
                            )
         
     | 
| 774 | 
         
            +
                            estimator_triplet = _ImputerTriplet(
         
     | 
| 775 | 
         
            +
                                feat_idx, neighbor_feat_idx, estimator
         
     | 
| 776 | 
         
            +
                            )
         
     | 
| 777 | 
         
            +
                            self.imputation_sequence_.append(estimator_triplet)
         
     | 
| 778 | 
         
            +
             
     | 
| 779 | 
         
            +
                        if self.verbose > 1:
         
     | 
| 780 | 
         
            +
                            print(
         
     | 
| 781 | 
         
            +
                                "[IterativeImputer] Ending imputation round "
         
     | 
| 782 | 
         
            +
                                "%d/%d, elapsed time %0.2f"
         
     | 
| 783 | 
         
            +
                                % (self.n_iter_, self.max_iter, time() - start_t)
         
     | 
| 784 | 
         
            +
                            )
         
     | 
| 785 | 
         
            +
             
     | 
| 786 | 
         
            +
                        if not self.sample_posterior:
         
     | 
| 787 | 
         
            +
                            inf_norm = np.linalg.norm(Xt - Xt_previous, ord=np.inf, axis=None)
         
     | 
| 788 | 
         
            +
                            if self.verbose > 0:
         
     | 
| 789 | 
         
            +
                                print(
         
     | 
| 790 | 
         
            +
                                    "[IterativeImputer] Change: {}, scaled tolerance: {} ".format(
         
     | 
| 791 | 
         
            +
                                        inf_norm, normalized_tol
         
     | 
| 792 | 
         
            +
                                    )
         
     | 
| 793 | 
         
            +
                                )
         
     | 
| 794 | 
         
            +
                            if inf_norm < normalized_tol:
         
     | 
| 795 | 
         
            +
                                if self.verbose > 0:
         
     | 
| 796 | 
         
            +
                                    print("[IterativeImputer] Early stopping criterion reached.")
         
     | 
| 797 | 
         
            +
                                break
         
     | 
| 798 | 
         
            +
                            Xt_previous = Xt.copy()
         
     | 
| 799 | 
         
            +
                    else:
         
     | 
| 800 | 
         
            +
                        if not self.sample_posterior:
         
     | 
| 801 | 
         
            +
                            warnings.warn(
         
     | 
| 802 | 
         
            +
                                "[IterativeImputer] Early stopping criterion not reached.",
         
     | 
| 803 | 
         
            +
                                ConvergenceWarning,
         
     | 
| 804 | 
         
            +
                            )
         
     | 
| 805 | 
         
            +
                    _assign_where(Xt, X, cond=~mask_missing_values)
         
     | 
| 806 | 
         
            +
             
     | 
| 807 | 
         
            +
                    return super()._concatenate_indicator(Xt, X_indicator)
         
     | 
| 808 | 
         
            +
             
     | 
| 809 | 
         
            +
                def transform(self, X):
         
     | 
| 810 | 
         
            +
                    """Impute all missing values in `X`.
         
     | 
| 811 | 
         
            +
             
     | 
| 812 | 
         
            +
                    Note that this is stochastic, and that if `random_state` is not fixed,
         
     | 
| 813 | 
         
            +
                    repeated calls, or permuted input, results will differ.
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                    Parameters
         
     | 
| 816 | 
         
            +
                    ----------
         
     | 
| 817 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 818 | 
         
            +
                        The input data to complete.
         
     | 
| 819 | 
         
            +
             
     | 
| 820 | 
         
            +
                    Returns
         
     | 
| 821 | 
         
            +
                    -------
         
     | 
| 822 | 
         
            +
                    Xt : array-like, shape (n_samples, n_features)
         
     | 
| 823 | 
         
            +
                         The imputed input data.
         
     | 
| 824 | 
         
            +
                    """
         
     | 
| 825 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 826 | 
         
            +
             
     | 
| 827 | 
         
            +
                    X, Xt, mask_missing_values, complete_mask = self._initial_imputation(
         
     | 
| 828 | 
         
            +
                        X, in_fit=False
         
     | 
| 829 | 
         
            +
                    )
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
                    X_indicator = super()._transform_indicator(complete_mask)
         
     | 
| 832 | 
         
            +
             
     | 
| 833 | 
         
            +
                    if self.n_iter_ == 0 or np.all(mask_missing_values):
         
     | 
| 834 | 
         
            +
                        return super()._concatenate_indicator(Xt, X_indicator)
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                    imputations_per_round = len(self.imputation_sequence_) // self.n_iter_
         
     | 
| 837 | 
         
            +
                    i_rnd = 0
         
     | 
| 838 | 
         
            +
                    if self.verbose > 0:
         
     | 
| 839 | 
         
            +
                        print("[IterativeImputer] Completing matrix with shape %s" % (X.shape,))
         
     | 
| 840 | 
         
            +
                    start_t = time()
         
     | 
| 841 | 
         
            +
                    for it, estimator_triplet in enumerate(self.imputation_sequence_):
         
     | 
| 842 | 
         
            +
                        Xt, _ = self._impute_one_feature(
         
     | 
| 843 | 
         
            +
                            Xt,
         
     | 
| 844 | 
         
            +
                            mask_missing_values,
         
     | 
| 845 | 
         
            +
                            estimator_triplet.feat_idx,
         
     | 
| 846 | 
         
            +
                            estimator_triplet.neighbor_feat_idx,
         
     | 
| 847 | 
         
            +
                            estimator=estimator_triplet.estimator,
         
     | 
| 848 | 
         
            +
                            fit_mode=False,
         
     | 
| 849 | 
         
            +
                        )
         
     | 
| 850 | 
         
            +
                        if not (it + 1) % imputations_per_round:
         
     | 
| 851 | 
         
            +
                            if self.verbose > 1:
         
     | 
| 852 | 
         
            +
                                print(
         
     | 
| 853 | 
         
            +
                                    "[IterativeImputer] Ending imputation round "
         
     | 
| 854 | 
         
            +
                                    "%d/%d, elapsed time %0.2f"
         
     | 
| 855 | 
         
            +
                                    % (i_rnd + 1, self.n_iter_, time() - start_t)
         
     | 
| 856 | 
         
            +
                                )
         
     | 
| 857 | 
         
            +
                            i_rnd += 1
         
     | 
| 858 | 
         
            +
             
     | 
| 859 | 
         
            +
                    _assign_where(Xt, X, cond=~mask_missing_values)
         
     | 
| 860 | 
         
            +
             
     | 
| 861 | 
         
            +
                    return super()._concatenate_indicator(Xt, X_indicator)
         
     | 
| 862 | 
         
            +
             
     | 
| 863 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 864 | 
         
            +
                    """Fit the imputer on `X` and return self.
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                    Parameters
         
     | 
| 867 | 
         
            +
                    ----------
         
     | 
| 868 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 869 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 870 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                    y : Ignored
         
     | 
| 873 | 
         
            +
                        Not used, present for API consistency by convention.
         
     | 
| 874 | 
         
            +
             
     | 
| 875 | 
         
            +
                    Returns
         
     | 
| 876 | 
         
            +
                    -------
         
     | 
| 877 | 
         
            +
                    self : object
         
     | 
| 878 | 
         
            +
                        Fitted estimator.
         
     | 
| 879 | 
         
            +
                    """
         
     | 
| 880 | 
         
            +
                    self.fit_transform(X)
         
     | 
| 881 | 
         
            +
                    return self
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 884 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 885 | 
         
            +
             
     | 
| 886 | 
         
            +
                    Parameters
         
     | 
| 887 | 
         
            +
                    ----------
         
     | 
| 888 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 889 | 
         
            +
                        Input features.
         
     | 
| 890 | 
         
            +
             
     | 
| 891 | 
         
            +
                        - If `input_features` is `None`, then `feature_names_in_` is
         
     | 
| 892 | 
         
            +
                          used as feature names in. If `feature_names_in_` is not defined,
         
     | 
| 893 | 
         
            +
                          then the following input feature names are generated:
         
     | 
| 894 | 
         
            +
                          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
         
     | 
| 895 | 
         
            +
                        - If `input_features` is an array-like, then `input_features` must
         
     | 
| 896 | 
         
            +
                          match `feature_names_in_` if `feature_names_in_` is defined.
         
     | 
| 897 | 
         
            +
             
     | 
| 898 | 
         
            +
                    Returns
         
     | 
| 899 | 
         
            +
                    -------
         
     | 
| 900 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 901 | 
         
            +
                        Transformed feature names.
         
     | 
| 902 | 
         
            +
                    """
         
     | 
| 903 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 904 | 
         
            +
                    input_features = _check_feature_names_in(self, input_features)
         
     | 
| 905 | 
         
            +
                    names = self.initial_imputer_.get_feature_names_out(input_features)
         
     | 
| 906 | 
         
            +
                    return self._concatenate_indicator_feature_names_out(names, input_features)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/_knn.py
    ADDED
    
    | 
         @@ -0,0 +1,401 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Authors: Ashim Bhattarai <[email protected]>
         
     | 
| 2 | 
         
            +
            #          Thomas J Fan <[email protected]>
         
     | 
| 3 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            from numbers import Integral
         
     | 
| 6 | 
         
            +
             
     | 
| 7 | 
         
            +
            import numpy as np
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from ..base import _fit_context
         
     | 
| 10 | 
         
            +
            from ..metrics import pairwise_distances_chunked
         
     | 
| 11 | 
         
            +
            from ..metrics.pairwise import _NAN_METRICS
         
     | 
| 12 | 
         
            +
            from ..neighbors._base import _get_weights
         
     | 
| 13 | 
         
            +
            from ..utils import is_scalar_nan
         
     | 
| 14 | 
         
            +
            from ..utils._mask import _get_mask
         
     | 
| 15 | 
         
            +
            from ..utils._param_validation import Hidden, Interval, StrOptions
         
     | 
| 16 | 
         
            +
            from ..utils.validation import FLOAT_DTYPES, _check_feature_names_in, check_is_fitted
         
     | 
| 17 | 
         
            +
            from ._base import _BaseImputer
         
     | 
| 18 | 
         
            +
             
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            class KNNImputer(_BaseImputer):
         
     | 
| 21 | 
         
            +
                """Imputation for completing missing values using k-Nearest Neighbors.
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
                Each sample's missing values are imputed using the mean value from
         
     | 
| 24 | 
         
            +
                `n_neighbors` nearest neighbors found in the training set. Two samples are
         
     | 
| 25 | 
         
            +
                close if the features that neither is missing are close.
         
     | 
| 26 | 
         
            +
             
     | 
| 27 | 
         
            +
                Read more in the :ref:`User Guide <knnimpute>`.
         
     | 
| 28 | 
         
            +
             
     | 
| 29 | 
         
            +
                .. versionadded:: 0.22
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                Parameters
         
     | 
| 32 | 
         
            +
                ----------
         
     | 
| 33 | 
         
            +
                missing_values : int, float, str, np.nan or None, default=np.nan
         
     | 
| 34 | 
         
            +
                    The placeholder for the missing values. All occurrences of
         
     | 
| 35 | 
         
            +
                    `missing_values` will be imputed. For pandas' dataframes with
         
     | 
| 36 | 
         
            +
                    nullable integer dtypes with missing values, `missing_values`
         
     | 
| 37 | 
         
            +
                    should be set to np.nan, since `pd.NA` will be converted to np.nan.
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
                n_neighbors : int, default=5
         
     | 
| 40 | 
         
            +
                    Number of neighboring samples to use for imputation.
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
                weights : {'uniform', 'distance'} or callable, default='uniform'
         
     | 
| 43 | 
         
            +
                    Weight function used in prediction.  Possible values:
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                    - 'uniform' : uniform weights. All points in each neighborhood are
         
     | 
| 46 | 
         
            +
                      weighted equally.
         
     | 
| 47 | 
         
            +
                    - 'distance' : weight points by the inverse of their distance.
         
     | 
| 48 | 
         
            +
                      in this case, closer neighbors of a query point will have a
         
     | 
| 49 | 
         
            +
                      greater influence than neighbors which are further away.
         
     | 
| 50 | 
         
            +
                    - callable : a user-defined function which accepts an
         
     | 
| 51 | 
         
            +
                      array of distances, and returns an array of the same shape
         
     | 
| 52 | 
         
            +
                      containing the weights.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                metric : {'nan_euclidean'} or callable, default='nan_euclidean'
         
     | 
| 55 | 
         
            +
                    Distance metric for searching neighbors. Possible values:
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                    - 'nan_euclidean'
         
     | 
| 58 | 
         
            +
                    - callable : a user-defined function which conforms to the definition
         
     | 
| 59 | 
         
            +
                      of ``_pairwise_callable(X, Y, metric, **kwds)``. The function
         
     | 
| 60 | 
         
            +
                      accepts two arrays, X and Y, and a `missing_values` keyword in
         
     | 
| 61 | 
         
            +
                      `kwds` and returns a scalar distance value.
         
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
                copy : bool, default=True
         
     | 
| 64 | 
         
            +
                    If True, a copy of X will be created. If False, imputation will
         
     | 
| 65 | 
         
            +
                    be done in-place whenever possible.
         
     | 
| 66 | 
         
            +
             
     | 
| 67 | 
         
            +
                add_indicator : bool, default=False
         
     | 
| 68 | 
         
            +
                    If True, a :class:`MissingIndicator` transform will stack onto the
         
     | 
| 69 | 
         
            +
                    output of the imputer's transform. This allows a predictive estimator
         
     | 
| 70 | 
         
            +
                    to account for missingness despite imputation. If a feature has no
         
     | 
| 71 | 
         
            +
                    missing values at fit/train time, the feature won't appear on the
         
     | 
| 72 | 
         
            +
                    missing indicator even if there are missing values at transform/test
         
     | 
| 73 | 
         
            +
                    time.
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                keep_empty_features : bool, default=False
         
     | 
| 76 | 
         
            +
                    If True, features that consist exclusively of missing values when
         
     | 
| 77 | 
         
            +
                    `fit` is called are returned in results when `transform` is called.
         
     | 
| 78 | 
         
            +
                    The imputed value is always `0`.
         
     | 
| 79 | 
         
            +
             
     | 
| 80 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                Attributes
         
     | 
| 83 | 
         
            +
                ----------
         
     | 
| 84 | 
         
            +
                indicator_ : :class:`~sklearn.impute.MissingIndicator`
         
     | 
| 85 | 
         
            +
                    Indicator used to add binary indicators for missing values.
         
     | 
| 86 | 
         
            +
                    ``None`` if add_indicator is False.
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                n_features_in_ : int
         
     | 
| 89 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 94 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 95 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
                See Also
         
     | 
| 100 | 
         
            +
                --------
         
     | 
| 101 | 
         
            +
                SimpleImputer : Univariate imputer for completing missing values
         
     | 
| 102 | 
         
            +
                    with simple strategies.
         
     | 
| 103 | 
         
            +
                IterativeImputer : Multivariate imputer that estimates values to impute for
         
     | 
| 104 | 
         
            +
                    each feature with missing values from all the others.
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
                References
         
     | 
| 107 | 
         
            +
                ----------
         
     | 
| 108 | 
         
            +
                * `Olga Troyanskaya, Michael Cantor, Gavin Sherlock, Pat Brown, Trevor
         
     | 
| 109 | 
         
            +
                  Hastie, Robert Tibshirani, David Botstein and Russ B. Altman, Missing
         
     | 
| 110 | 
         
            +
                  value estimation methods for DNA microarrays, BIOINFORMATICS Vol. 17
         
     | 
| 111 | 
         
            +
                  no. 6, 2001 Pages 520-525.
         
     | 
| 112 | 
         
            +
                  <https://academic.oup.com/bioinformatics/article/17/6/520/272365>`_
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                Examples
         
     | 
| 115 | 
         
            +
                --------
         
     | 
| 116 | 
         
            +
                >>> import numpy as np
         
     | 
| 117 | 
         
            +
                >>> from sklearn.impute import KNNImputer
         
     | 
| 118 | 
         
            +
                >>> X = [[1, 2, np.nan], [3, 4, 3], [np.nan, 6, 5], [8, 8, 7]]
         
     | 
| 119 | 
         
            +
                >>> imputer = KNNImputer(n_neighbors=2)
         
     | 
| 120 | 
         
            +
                >>> imputer.fit_transform(X)
         
     | 
| 121 | 
         
            +
                array([[1. , 2. , 4. ],
         
     | 
| 122 | 
         
            +
                       [3. , 4. , 3. ],
         
     | 
| 123 | 
         
            +
                       [5.5, 6. , 5. ],
         
     | 
| 124 | 
         
            +
                       [8. , 8. , 7. ]])
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                For a more detailed example see
         
     | 
| 127 | 
         
            +
                :ref:`sphx_glr_auto_examples_impute_plot_missing_values.py`.
         
     | 
| 128 | 
         
            +
                """
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 131 | 
         
            +
                    **_BaseImputer._parameter_constraints,
         
     | 
| 132 | 
         
            +
                    "n_neighbors": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 133 | 
         
            +
                    "weights": [StrOptions({"uniform", "distance"}), callable, Hidden(None)],
         
     | 
| 134 | 
         
            +
                    "metric": [StrOptions(set(_NAN_METRICS)), callable],
         
     | 
| 135 | 
         
            +
                    "copy": ["boolean"],
         
     | 
| 136 | 
         
            +
                }
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def __init__(
         
     | 
| 139 | 
         
            +
                    self,
         
     | 
| 140 | 
         
            +
                    *,
         
     | 
| 141 | 
         
            +
                    missing_values=np.nan,
         
     | 
| 142 | 
         
            +
                    n_neighbors=5,
         
     | 
| 143 | 
         
            +
                    weights="uniform",
         
     | 
| 144 | 
         
            +
                    metric="nan_euclidean",
         
     | 
| 145 | 
         
            +
                    copy=True,
         
     | 
| 146 | 
         
            +
                    add_indicator=False,
         
     | 
| 147 | 
         
            +
                    keep_empty_features=False,
         
     | 
| 148 | 
         
            +
                ):
         
     | 
| 149 | 
         
            +
                    super().__init__(
         
     | 
| 150 | 
         
            +
                        missing_values=missing_values,
         
     | 
| 151 | 
         
            +
                        add_indicator=add_indicator,
         
     | 
| 152 | 
         
            +
                        keep_empty_features=keep_empty_features,
         
     | 
| 153 | 
         
            +
                    )
         
     | 
| 154 | 
         
            +
                    self.n_neighbors = n_neighbors
         
     | 
| 155 | 
         
            +
                    self.weights = weights
         
     | 
| 156 | 
         
            +
                    self.metric = metric
         
     | 
| 157 | 
         
            +
                    self.copy = copy
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
                def _calc_impute(self, dist_pot_donors, n_neighbors, fit_X_col, mask_fit_X_col):
         
     | 
| 160 | 
         
            +
                    """Helper function to impute a single column.
         
     | 
| 161 | 
         
            +
             
     | 
| 162 | 
         
            +
                    Parameters
         
     | 
| 163 | 
         
            +
                    ----------
         
     | 
| 164 | 
         
            +
                    dist_pot_donors : ndarray of shape (n_receivers, n_potential_donors)
         
     | 
| 165 | 
         
            +
                        Distance matrix between the receivers and potential donors from
         
     | 
| 166 | 
         
            +
                        training set. There must be at least one non-nan distance between
         
     | 
| 167 | 
         
            +
                        a receiver and a potential donor.
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
                    n_neighbors : int
         
     | 
| 170 | 
         
            +
                        Number of neighbors to consider.
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    fit_X_col : ndarray of shape (n_potential_donors,)
         
     | 
| 173 | 
         
            +
                        Column of potential donors from training set.
         
     | 
| 174 | 
         
            +
             
     | 
| 175 | 
         
            +
                    mask_fit_X_col : ndarray of shape (n_potential_donors,)
         
     | 
| 176 | 
         
            +
                        Missing mask for fit_X_col.
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                    Returns
         
     | 
| 179 | 
         
            +
                    -------
         
     | 
| 180 | 
         
            +
                    imputed_values: ndarray of shape (n_receivers,)
         
     | 
| 181 | 
         
            +
                        Imputed values for receiver.
         
     | 
| 182 | 
         
            +
                    """
         
     | 
| 183 | 
         
            +
                    # Get donors
         
     | 
| 184 | 
         
            +
                    donors_idx = np.argpartition(dist_pot_donors, n_neighbors - 1, axis=1)[
         
     | 
| 185 | 
         
            +
                        :, :n_neighbors
         
     | 
| 186 | 
         
            +
                    ]
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                    # Get weight matrix from distance matrix
         
     | 
| 189 | 
         
            +
                    donors_dist = dist_pot_donors[
         
     | 
| 190 | 
         
            +
                        np.arange(donors_idx.shape[0])[:, None], donors_idx
         
     | 
| 191 | 
         
            +
                    ]
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    weight_matrix = _get_weights(donors_dist, self.weights)
         
     | 
| 194 | 
         
            +
             
     | 
| 195 | 
         
            +
                    # fill nans with zeros
         
     | 
| 196 | 
         
            +
                    if weight_matrix is not None:
         
     | 
| 197 | 
         
            +
                        weight_matrix[np.isnan(weight_matrix)] = 0.0
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    # Retrieve donor values and calculate kNN average
         
     | 
| 200 | 
         
            +
                    donors = fit_X_col.take(donors_idx)
         
     | 
| 201 | 
         
            +
                    donors_mask = mask_fit_X_col.take(donors_idx)
         
     | 
| 202 | 
         
            +
                    donors = np.ma.array(donors, mask=donors_mask)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    return np.ma.average(donors, axis=1, weights=weight_matrix).data
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 207 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 208 | 
         
            +
                    """Fit the imputer on X.
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    Parameters
         
     | 
| 211 | 
         
            +
                    ----------
         
     | 
| 212 | 
         
            +
                    X : array-like shape of (n_samples, n_features)
         
     | 
| 213 | 
         
            +
                        Input data, where `n_samples` is the number of samples and
         
     | 
| 214 | 
         
            +
                        `n_features` is the number of features.
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    y : Ignored
         
     | 
| 217 | 
         
            +
                        Not used, present here for API consistency by convention.
         
     | 
| 218 | 
         
            +
             
     | 
| 219 | 
         
            +
                    Returns
         
     | 
| 220 | 
         
            +
                    -------
         
     | 
| 221 | 
         
            +
                    self : object
         
     | 
| 222 | 
         
            +
                        The fitted `KNNImputer` class instance.
         
     | 
| 223 | 
         
            +
                    """
         
     | 
| 224 | 
         
            +
                    # Check data integrity and calling arguments
         
     | 
| 225 | 
         
            +
                    if not is_scalar_nan(self.missing_values):
         
     | 
| 226 | 
         
            +
                        force_all_finite = True
         
     | 
| 227 | 
         
            +
                    else:
         
     | 
| 228 | 
         
            +
                        force_all_finite = "allow-nan"
         
     | 
| 229 | 
         
            +
             
     | 
| 230 | 
         
            +
                    X = self._validate_data(
         
     | 
| 231 | 
         
            +
                        X,
         
     | 
| 232 | 
         
            +
                        accept_sparse=False,
         
     | 
| 233 | 
         
            +
                        dtype=FLOAT_DTYPES,
         
     | 
| 234 | 
         
            +
                        force_all_finite=force_all_finite,
         
     | 
| 235 | 
         
            +
                        copy=self.copy,
         
     | 
| 236 | 
         
            +
                    )
         
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
                    self._fit_X = X
         
     | 
| 239 | 
         
            +
                    self._mask_fit_X = _get_mask(self._fit_X, self.missing_values)
         
     | 
| 240 | 
         
            +
                    self._valid_mask = ~np.all(self._mask_fit_X, axis=0)
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                    super()._fit_indicator(self._mask_fit_X)
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                    return self
         
     | 
| 245 | 
         
            +
             
     | 
| 246 | 
         
            +
                def transform(self, X):
         
     | 
| 247 | 
         
            +
                    """Impute all missing values in X.
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                    Parameters
         
     | 
| 250 | 
         
            +
                    ----------
         
     | 
| 251 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 252 | 
         
            +
                        The input data to complete.
         
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
                    Returns
         
     | 
| 255 | 
         
            +
                    -------
         
     | 
| 256 | 
         
            +
                    X : array-like of shape (n_samples, n_output_features)
         
     | 
| 257 | 
         
            +
                        The imputed dataset. `n_output_features` is the number of features
         
     | 
| 258 | 
         
            +
                        that is not always missing during `fit`.
         
     | 
| 259 | 
         
            +
                    """
         
     | 
| 260 | 
         
            +
             
     | 
| 261 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 262 | 
         
            +
                    if not is_scalar_nan(self.missing_values):
         
     | 
| 263 | 
         
            +
                        force_all_finite = True
         
     | 
| 264 | 
         
            +
                    else:
         
     | 
| 265 | 
         
            +
                        force_all_finite = "allow-nan"
         
     | 
| 266 | 
         
            +
                    X = self._validate_data(
         
     | 
| 267 | 
         
            +
                        X,
         
     | 
| 268 | 
         
            +
                        accept_sparse=False,
         
     | 
| 269 | 
         
            +
                        dtype=FLOAT_DTYPES,
         
     | 
| 270 | 
         
            +
                        force_all_finite=force_all_finite,
         
     | 
| 271 | 
         
            +
                        copy=self.copy,
         
     | 
| 272 | 
         
            +
                        reset=False,
         
     | 
| 273 | 
         
            +
                    )
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                    mask = _get_mask(X, self.missing_values)
         
     | 
| 276 | 
         
            +
                    mask_fit_X = self._mask_fit_X
         
     | 
| 277 | 
         
            +
                    valid_mask = self._valid_mask
         
     | 
| 278 | 
         
            +
             
     | 
| 279 | 
         
            +
                    X_indicator = super()._transform_indicator(mask)
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                    # Removes columns where the training data is all nan
         
     | 
| 282 | 
         
            +
                    if not np.any(mask):
         
     | 
| 283 | 
         
            +
                        # No missing values in X
         
     | 
| 284 | 
         
            +
                        if self.keep_empty_features:
         
     | 
| 285 | 
         
            +
                            Xc = X
         
     | 
| 286 | 
         
            +
                            Xc[:, ~valid_mask] = 0
         
     | 
| 287 | 
         
            +
                        else:
         
     | 
| 288 | 
         
            +
                            Xc = X[:, valid_mask]
         
     | 
| 289 | 
         
            +
             
     | 
| 290 | 
         
            +
                        # Even if there are no missing values in X, we still concatenate Xc
         
     | 
| 291 | 
         
            +
                        # with the missing value indicator matrix, X_indicator.
         
     | 
| 292 | 
         
            +
                        # This is to ensure that the output maintains consistency in terms
         
     | 
| 293 | 
         
            +
                        # of columns, regardless of whether missing values exist in X or not.
         
     | 
| 294 | 
         
            +
                        return super()._concatenate_indicator(Xc, X_indicator)
         
     | 
| 295 | 
         
            +
             
     | 
| 296 | 
         
            +
                    row_missing_idx = np.flatnonzero(mask.any(axis=1))
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                    non_missing_fix_X = np.logical_not(mask_fit_X)
         
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
                    # Maps from indices from X to indices in dist matrix
         
     | 
| 301 | 
         
            +
                    dist_idx_map = np.zeros(X.shape[0], dtype=int)
         
     | 
| 302 | 
         
            +
                    dist_idx_map[row_missing_idx] = np.arange(row_missing_idx.shape[0])
         
     | 
| 303 | 
         
            +
             
     | 
| 304 | 
         
            +
                    def process_chunk(dist_chunk, start):
         
     | 
| 305 | 
         
            +
                        row_missing_chunk = row_missing_idx[start : start + len(dist_chunk)]
         
     | 
| 306 | 
         
            +
             
     | 
| 307 | 
         
            +
                        # Find and impute missing by column
         
     | 
| 308 | 
         
            +
                        for col in range(X.shape[1]):
         
     | 
| 309 | 
         
            +
                            if not valid_mask[col]:
         
     | 
| 310 | 
         
            +
                                # column was all missing during training
         
     | 
| 311 | 
         
            +
                                continue
         
     | 
| 312 | 
         
            +
             
     | 
| 313 | 
         
            +
                            col_mask = mask[row_missing_chunk, col]
         
     | 
| 314 | 
         
            +
                            if not np.any(col_mask):
         
     | 
| 315 | 
         
            +
                                # column has no missing values
         
     | 
| 316 | 
         
            +
                                continue
         
     | 
| 317 | 
         
            +
             
     | 
| 318 | 
         
            +
                            (potential_donors_idx,) = np.nonzero(non_missing_fix_X[:, col])
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                            # receivers_idx are indices in X
         
     | 
| 321 | 
         
            +
                            receivers_idx = row_missing_chunk[np.flatnonzero(col_mask)]
         
     | 
| 322 | 
         
            +
             
     | 
| 323 | 
         
            +
                            # distances for samples that needed imputation for column
         
     | 
| 324 | 
         
            +
                            dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][
         
     | 
| 325 | 
         
            +
                                :, potential_donors_idx
         
     | 
| 326 | 
         
            +
                            ]
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                            # receivers with all nan distances impute with mean
         
     | 
| 329 | 
         
            +
                            all_nan_dist_mask = np.isnan(dist_subset).all(axis=1)
         
     | 
| 330 | 
         
            +
                            all_nan_receivers_idx = receivers_idx[all_nan_dist_mask]
         
     | 
| 331 | 
         
            +
             
     | 
| 332 | 
         
            +
                            if all_nan_receivers_idx.size:
         
     | 
| 333 | 
         
            +
                                col_mean = np.ma.array(
         
     | 
| 334 | 
         
            +
                                    self._fit_X[:, col], mask=mask_fit_X[:, col]
         
     | 
| 335 | 
         
            +
                                ).mean()
         
     | 
| 336 | 
         
            +
                                X[all_nan_receivers_idx, col] = col_mean
         
     | 
| 337 | 
         
            +
             
     | 
| 338 | 
         
            +
                                if len(all_nan_receivers_idx) == len(receivers_idx):
         
     | 
| 339 | 
         
            +
                                    # all receivers imputed with mean
         
     | 
| 340 | 
         
            +
                                    continue
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                                # receivers with at least one defined distance
         
     | 
| 343 | 
         
            +
                                receivers_idx = receivers_idx[~all_nan_dist_mask]
         
     | 
| 344 | 
         
            +
                                dist_subset = dist_chunk[dist_idx_map[receivers_idx] - start][
         
     | 
| 345 | 
         
            +
                                    :, potential_donors_idx
         
     | 
| 346 | 
         
            +
                                ]
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
                            n_neighbors = min(self.n_neighbors, len(potential_donors_idx))
         
     | 
| 349 | 
         
            +
                            value = self._calc_impute(
         
     | 
| 350 | 
         
            +
                                dist_subset,
         
     | 
| 351 | 
         
            +
                                n_neighbors,
         
     | 
| 352 | 
         
            +
                                self._fit_X[potential_donors_idx, col],
         
     | 
| 353 | 
         
            +
                                mask_fit_X[potential_donors_idx, col],
         
     | 
| 354 | 
         
            +
                            )
         
     | 
| 355 | 
         
            +
                            X[receivers_idx, col] = value
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    # process in fixed-memory chunks
         
     | 
| 358 | 
         
            +
                    gen = pairwise_distances_chunked(
         
     | 
| 359 | 
         
            +
                        X[row_missing_idx, :],
         
     | 
| 360 | 
         
            +
                        self._fit_X,
         
     | 
| 361 | 
         
            +
                        metric=self.metric,
         
     | 
| 362 | 
         
            +
                        missing_values=self.missing_values,
         
     | 
| 363 | 
         
            +
                        force_all_finite=force_all_finite,
         
     | 
| 364 | 
         
            +
                        reduce_func=process_chunk,
         
     | 
| 365 | 
         
            +
                    )
         
     | 
| 366 | 
         
            +
                    for chunk in gen:
         
     | 
| 367 | 
         
            +
                        # process_chunk modifies X in place. No return value.
         
     | 
| 368 | 
         
            +
                        pass
         
     | 
| 369 | 
         
            +
             
     | 
| 370 | 
         
            +
                    if self.keep_empty_features:
         
     | 
| 371 | 
         
            +
                        Xc = X
         
     | 
| 372 | 
         
            +
                        Xc[:, ~valid_mask] = 0
         
     | 
| 373 | 
         
            +
                    else:
         
     | 
| 374 | 
         
            +
                        Xc = X[:, valid_mask]
         
     | 
| 375 | 
         
            +
             
     | 
| 376 | 
         
            +
                    return super()._concatenate_indicator(Xc, X_indicator)
         
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 379 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                    Parameters
         
     | 
| 382 | 
         
            +
                    ----------
         
     | 
| 383 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 384 | 
         
            +
                        Input features.
         
     | 
| 385 | 
         
            +
             
     | 
| 386 | 
         
            +
                        - If `input_features` is `None`, then `feature_names_in_` is
         
     | 
| 387 | 
         
            +
                          used as feature names in. If `feature_names_in_` is not defined,
         
     | 
| 388 | 
         
            +
                          then the following input feature names are generated:
         
     | 
| 389 | 
         
            +
                          `["x0", "x1", ..., "x(n_features_in_ - 1)"]`.
         
     | 
| 390 | 
         
            +
                        - If `input_features` is an array-like, then `input_features` must
         
     | 
| 391 | 
         
            +
                          match `feature_names_in_` if `feature_names_in_` is defined.
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    Returns
         
     | 
| 394 | 
         
            +
                    -------
         
     | 
| 395 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 396 | 
         
            +
                        Transformed feature names.
         
     | 
| 397 | 
         
            +
                    """
         
     | 
| 398 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 399 | 
         
            +
                    input_features = _check_feature_names_in(self, input_features)
         
     | 
| 400 | 
         
            +
                    names = input_features[self._valid_mask]
         
     | 
| 401 | 
         
            +
                    return self._concatenate_indicator_feature_names_out(names, input_features)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__init__.py
    ADDED
    
    | 
         
            File without changes
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/__init__.cpython-310.pyc
    ADDED
    
    | 
         Binary file (188 Bytes). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_base.cpython-310.pyc
    ADDED
    
    | 
         Binary file (4.46 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_common.cpython-310.pyc
    ADDED
    
    | 
         Binary file (5.78 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_impute.cpython-310.pyc
    ADDED
    
    | 
         Binary file (43.1 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/__pycache__/test_knn.cpython-310.pyc
    ADDED
    
    | 
         Binary file (12 kB). View file 
     | 
| 
         | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/test_base.py
    ADDED
    
    | 
         @@ -0,0 +1,107 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import pytest
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from sklearn.impute._base import _BaseImputer
         
     | 
| 5 | 
         
            +
            from sklearn.impute._iterative import _assign_where
         
     | 
| 6 | 
         
            +
            from sklearn.utils._mask import _get_mask
         
     | 
| 7 | 
         
            +
            from sklearn.utils._testing import _convert_container, assert_allclose
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            @pytest.fixture
         
     | 
| 11 | 
         
            +
            def data():
         
     | 
| 12 | 
         
            +
                X = np.random.randn(10, 2)
         
     | 
| 13 | 
         
            +
                X[::2] = np.nan
         
     | 
| 14 | 
         
            +
                return X
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            class NoFitIndicatorImputer(_BaseImputer):
         
     | 
| 18 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 19 | 
         
            +
                    return self
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                def transform(self, X, y=None):
         
     | 
| 22 | 
         
            +
                    return self._concatenate_indicator(X, self._transform_indicator(X))
         
     | 
| 23 | 
         
            +
             
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
            class NoTransformIndicatorImputer(_BaseImputer):
         
     | 
| 26 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 27 | 
         
            +
                    mask = _get_mask(X, value_to_mask=np.nan)
         
     | 
| 28 | 
         
            +
                    super()._fit_indicator(mask)
         
     | 
| 29 | 
         
            +
                    return self
         
     | 
| 30 | 
         
            +
             
     | 
| 31 | 
         
            +
                def transform(self, X, y=None):
         
     | 
| 32 | 
         
            +
                    return self._concatenate_indicator(X, None)
         
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
            class NoPrecomputedMaskFit(_BaseImputer):
         
     | 
| 36 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 37 | 
         
            +
                    self._fit_indicator(X)
         
     | 
| 38 | 
         
            +
                    return self
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                def transform(self, X):
         
     | 
| 41 | 
         
            +
                    return self._concatenate_indicator(X, self._transform_indicator(X))
         
     | 
| 42 | 
         
            +
             
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
            class NoPrecomputedMaskTransform(_BaseImputer):
         
     | 
| 45 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 46 | 
         
            +
                    mask = _get_mask(X, value_to_mask=np.nan)
         
     | 
| 47 | 
         
            +
                    self._fit_indicator(mask)
         
     | 
| 48 | 
         
            +
                    return self
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                def transform(self, X):
         
     | 
| 51 | 
         
            +
                    return self._concatenate_indicator(X, self._transform_indicator(X))
         
     | 
| 52 | 
         
            +
             
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
            def test_base_imputer_not_fit(data):
         
     | 
| 55 | 
         
            +
                imputer = NoFitIndicatorImputer(add_indicator=True)
         
     | 
| 56 | 
         
            +
                err_msg = "Make sure to call _fit_indicator before _transform_indicator"
         
     | 
| 57 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 58 | 
         
            +
                    imputer.fit(data).transform(data)
         
     | 
| 59 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 60 | 
         
            +
                    imputer.fit_transform(data)
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
             
     | 
| 63 | 
         
            +
            def test_base_imputer_not_transform(data):
         
     | 
| 64 | 
         
            +
                imputer = NoTransformIndicatorImputer(add_indicator=True)
         
     | 
| 65 | 
         
            +
                err_msg = (
         
     | 
| 66 | 
         
            +
                    "Call _fit_indicator and _transform_indicator in the imputer implementation"
         
     | 
| 67 | 
         
            +
                )
         
     | 
| 68 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 69 | 
         
            +
                    imputer.fit(data).transform(data)
         
     | 
| 70 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 71 | 
         
            +
                    imputer.fit_transform(data)
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
             
     | 
| 74 | 
         
            +
            def test_base_no_precomputed_mask_fit(data):
         
     | 
| 75 | 
         
            +
                imputer = NoPrecomputedMaskFit(add_indicator=True)
         
     | 
| 76 | 
         
            +
                err_msg = "precomputed is True but the input data is not a mask"
         
     | 
| 77 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 78 | 
         
            +
                    imputer.fit(data)
         
     | 
| 79 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 80 | 
         
            +
                    imputer.fit_transform(data)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
            def test_base_no_precomputed_mask_transform(data):
         
     | 
| 84 | 
         
            +
                imputer = NoPrecomputedMaskTransform(add_indicator=True)
         
     | 
| 85 | 
         
            +
                err_msg = "precomputed is True but the input data is not a mask"
         
     | 
| 86 | 
         
            +
                imputer.fit(data)
         
     | 
| 87 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 88 | 
         
            +
                    imputer.transform(data)
         
     | 
| 89 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 90 | 
         
            +
                    imputer.fit_transform(data)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
            @pytest.mark.parametrize("X1_type", ["array", "dataframe"])
         
     | 
| 94 | 
         
            +
            def test_assign_where(X1_type):
         
     | 
| 95 | 
         
            +
                """Check the behaviour of the private helpers `_assign_where`."""
         
     | 
| 96 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                n_samples, n_features = 10, 5
         
     | 
| 99 | 
         
            +
                X1 = _convert_container(rng.randn(n_samples, n_features), constructor_name=X1_type)
         
     | 
| 100 | 
         
            +
                X2 = rng.randn(n_samples, n_features)
         
     | 
| 101 | 
         
            +
                mask = rng.randint(0, 2, size=(n_samples, n_features)).astype(bool)
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                _assign_where(X1, X2, mask)
         
     | 
| 104 | 
         
            +
             
     | 
| 105 | 
         
            +
                if X1_type == "dataframe":
         
     | 
| 106 | 
         
            +
                    X1 = X1.to_numpy()
         
     | 
| 107 | 
         
            +
                assert_allclose(X1[mask], X2[mask])
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/test_common.py
    ADDED
    
    | 
         @@ -0,0 +1,220 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import pytest
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from sklearn.experimental import enable_iterative_imputer  # noqa
         
     | 
| 5 | 
         
            +
            from sklearn.impute import IterativeImputer, KNNImputer, SimpleImputer
         
     | 
| 6 | 
         
            +
            from sklearn.utils._testing import (
         
     | 
| 7 | 
         
            +
                assert_allclose,
         
     | 
| 8 | 
         
            +
                assert_allclose_dense_sparse,
         
     | 
| 9 | 
         
            +
                assert_array_equal,
         
     | 
| 10 | 
         
            +
            )
         
     | 
| 11 | 
         
            +
            from sklearn.utils.fixes import CSR_CONTAINERS
         
     | 
| 12 | 
         
            +
             
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            def imputers():
         
     | 
| 15 | 
         
            +
                return [IterativeImputer(tol=0.1), KNNImputer(), SimpleImputer()]
         
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            def sparse_imputers():
         
     | 
| 19 | 
         
            +
                return [SimpleImputer()]
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
            # ConvergenceWarning will be raised by the IterativeImputer
         
     | 
| 23 | 
         
            +
            @pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
         
     | 
| 24 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 25 | 
         
            +
            def test_imputation_missing_value_in_test_array(imputer):
         
     | 
| 26 | 
         
            +
                # [Non Regression Test for issue #13968] Missing value in test set should
         
     | 
| 27 | 
         
            +
                # not throw an error and return a finite dataset
         
     | 
| 28 | 
         
            +
                train = [[1], [2]]
         
     | 
| 29 | 
         
            +
                test = [[3], [np.nan]]
         
     | 
| 30 | 
         
            +
                imputer.set_params(add_indicator=True)
         
     | 
| 31 | 
         
            +
                imputer.fit(train).transform(test)
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
             
     | 
| 34 | 
         
            +
            # ConvergenceWarning will be raised by the IterativeImputer
         
     | 
| 35 | 
         
            +
            @pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
         
     | 
| 36 | 
         
            +
            @pytest.mark.parametrize("marker", [np.nan, -1, 0])
         
     | 
| 37 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 38 | 
         
            +
            def test_imputers_add_indicator(marker, imputer):
         
     | 
| 39 | 
         
            +
                X = np.array(
         
     | 
| 40 | 
         
            +
                    [
         
     | 
| 41 | 
         
            +
                        [marker, 1, 5, marker, 1],
         
     | 
| 42 | 
         
            +
                        [2, marker, 1, marker, 2],
         
     | 
| 43 | 
         
            +
                        [6, 3, marker, marker, 3],
         
     | 
| 44 | 
         
            +
                        [1, 2, 9, marker, 4],
         
     | 
| 45 | 
         
            +
                    ]
         
     | 
| 46 | 
         
            +
                )
         
     | 
| 47 | 
         
            +
                X_true_indicator = np.array(
         
     | 
| 48 | 
         
            +
                    [
         
     | 
| 49 | 
         
            +
                        [1.0, 0.0, 0.0, 1.0],
         
     | 
| 50 | 
         
            +
                        [0.0, 1.0, 0.0, 1.0],
         
     | 
| 51 | 
         
            +
                        [0.0, 0.0, 1.0, 1.0],
         
     | 
| 52 | 
         
            +
                        [0.0, 0.0, 0.0, 1.0],
         
     | 
| 53 | 
         
            +
                    ]
         
     | 
| 54 | 
         
            +
                )
         
     | 
| 55 | 
         
            +
                imputer.set_params(missing_values=marker, add_indicator=True)
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 58 | 
         
            +
                assert_allclose(X_trans[:, -4:], X_true_indicator)
         
     | 
| 59 | 
         
            +
                assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                imputer.set_params(add_indicator=False)
         
     | 
| 62 | 
         
            +
                X_trans_no_indicator = imputer.fit_transform(X)
         
     | 
| 63 | 
         
            +
                assert_allclose(X_trans[:, :-4], X_trans_no_indicator)
         
     | 
| 64 | 
         
            +
             
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
            # ConvergenceWarning will be raised by the IterativeImputer
         
     | 
| 67 | 
         
            +
            @pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
         
     | 
| 68 | 
         
            +
            @pytest.mark.parametrize("marker", [np.nan, -1])
         
     | 
| 69 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 70 | 
         
            +
                "imputer", sparse_imputers(), ids=lambda x: x.__class__.__name__
         
     | 
| 71 | 
         
            +
            )
         
     | 
| 72 | 
         
            +
            @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
         
     | 
| 73 | 
         
            +
            def test_imputers_add_indicator_sparse(imputer, marker, csr_container):
         
     | 
| 74 | 
         
            +
                X = csr_container(
         
     | 
| 75 | 
         
            +
                    [
         
     | 
| 76 | 
         
            +
                        [marker, 1, 5, marker, 1],
         
     | 
| 77 | 
         
            +
                        [2, marker, 1, marker, 2],
         
     | 
| 78 | 
         
            +
                        [6, 3, marker, marker, 3],
         
     | 
| 79 | 
         
            +
                        [1, 2, 9, marker, 4],
         
     | 
| 80 | 
         
            +
                    ]
         
     | 
| 81 | 
         
            +
                )
         
     | 
| 82 | 
         
            +
                X_true_indicator = csr_container(
         
     | 
| 83 | 
         
            +
                    [
         
     | 
| 84 | 
         
            +
                        [1.0, 0.0, 0.0, 1.0],
         
     | 
| 85 | 
         
            +
                        [0.0, 1.0, 0.0, 1.0],
         
     | 
| 86 | 
         
            +
                        [0.0, 0.0, 1.0, 1.0],
         
     | 
| 87 | 
         
            +
                        [0.0, 0.0, 0.0, 1.0],
         
     | 
| 88 | 
         
            +
                    ]
         
     | 
| 89 | 
         
            +
                )
         
     | 
| 90 | 
         
            +
                imputer.set_params(missing_values=marker, add_indicator=True)
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 93 | 
         
            +
                assert_allclose_dense_sparse(X_trans[:, -4:], X_true_indicator)
         
     | 
| 94 | 
         
            +
                assert_array_equal(imputer.indicator_.features_, np.array([0, 1, 2, 3]))
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                imputer.set_params(add_indicator=False)
         
     | 
| 97 | 
         
            +
                X_trans_no_indicator = imputer.fit_transform(X)
         
     | 
| 98 | 
         
            +
                assert_allclose_dense_sparse(X_trans[:, :-4], X_trans_no_indicator)
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
            # ConvergenceWarning will be raised by the IterativeImputer
         
     | 
| 102 | 
         
            +
            @pytest.mark.filterwarnings("ignore::sklearn.exceptions.ConvergenceWarning")
         
     | 
| 103 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 104 | 
         
            +
            @pytest.mark.parametrize("add_indicator", [True, False])
         
     | 
| 105 | 
         
            +
            def test_imputers_pandas_na_integer_array_support(imputer, add_indicator):
         
     | 
| 106 | 
         
            +
                # Test pandas IntegerArray with pd.NA
         
     | 
| 107 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 108 | 
         
            +
                marker = np.nan
         
     | 
| 109 | 
         
            +
                imputer = imputer.set_params(add_indicator=add_indicator, missing_values=marker)
         
     | 
| 110 | 
         
            +
             
     | 
| 111 | 
         
            +
                X = np.array(
         
     | 
| 112 | 
         
            +
                    [
         
     | 
| 113 | 
         
            +
                        [marker, 1, 5, marker, 1],
         
     | 
| 114 | 
         
            +
                        [2, marker, 1, marker, 2],
         
     | 
| 115 | 
         
            +
                        [6, 3, marker, marker, 3],
         
     | 
| 116 | 
         
            +
                        [1, 2, 9, marker, 4],
         
     | 
| 117 | 
         
            +
                    ]
         
     | 
| 118 | 
         
            +
                )
         
     | 
| 119 | 
         
            +
                # fit on numpy array
         
     | 
| 120 | 
         
            +
                X_trans_expected = imputer.fit_transform(X)
         
     | 
| 121 | 
         
            +
             
     | 
| 122 | 
         
            +
                # Creates dataframe with IntegerArrays with pd.NA
         
     | 
| 123 | 
         
            +
                X_df = pd.DataFrame(X, dtype="Int16", columns=["a", "b", "c", "d", "e"])
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                # fit on pandas dataframe with IntegerArrays
         
     | 
| 126 | 
         
            +
                X_trans = imputer.fit_transform(X_df)
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
                assert_allclose(X_trans_expected, X_trans)
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 132 | 
         
            +
            @pytest.mark.parametrize("add_indicator", [True, False])
         
     | 
| 133 | 
         
            +
            def test_imputers_feature_names_out_pandas(imputer, add_indicator):
         
     | 
| 134 | 
         
            +
                """Check feature names out for imputers."""
         
     | 
| 135 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 136 | 
         
            +
                marker = np.nan
         
     | 
| 137 | 
         
            +
                imputer = imputer.set_params(add_indicator=add_indicator, missing_values=marker)
         
     | 
| 138 | 
         
            +
             
     | 
| 139 | 
         
            +
                X = np.array(
         
     | 
| 140 | 
         
            +
                    [
         
     | 
| 141 | 
         
            +
                        [marker, 1, 5, 3, marker, 1],
         
     | 
| 142 | 
         
            +
                        [2, marker, 1, 4, marker, 2],
         
     | 
| 143 | 
         
            +
                        [6, 3, 7, marker, marker, 3],
         
     | 
| 144 | 
         
            +
                        [1, 2, 9, 8, marker, 4],
         
     | 
| 145 | 
         
            +
                    ]
         
     | 
| 146 | 
         
            +
                )
         
     | 
| 147 | 
         
            +
                X_df = pd.DataFrame(X, columns=["a", "b", "c", "d", "e", "f"])
         
     | 
| 148 | 
         
            +
                imputer.fit(X_df)
         
     | 
| 149 | 
         
            +
             
     | 
| 150 | 
         
            +
                names = imputer.get_feature_names_out()
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
                if add_indicator:
         
     | 
| 153 | 
         
            +
                    expected_names = [
         
     | 
| 154 | 
         
            +
                        "a",
         
     | 
| 155 | 
         
            +
                        "b",
         
     | 
| 156 | 
         
            +
                        "c",
         
     | 
| 157 | 
         
            +
                        "d",
         
     | 
| 158 | 
         
            +
                        "f",
         
     | 
| 159 | 
         
            +
                        "missingindicator_a",
         
     | 
| 160 | 
         
            +
                        "missingindicator_b",
         
     | 
| 161 | 
         
            +
                        "missingindicator_d",
         
     | 
| 162 | 
         
            +
                        "missingindicator_e",
         
     | 
| 163 | 
         
            +
                    ]
         
     | 
| 164 | 
         
            +
                    assert_array_equal(expected_names, names)
         
     | 
| 165 | 
         
            +
                else:
         
     | 
| 166 | 
         
            +
                    expected_names = ["a", "b", "c", "d", "f"]
         
     | 
| 167 | 
         
            +
                    assert_array_equal(expected_names, names)
         
     | 
| 168 | 
         
            +
             
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
            @pytest.mark.parametrize("keep_empty_features", [True, False])
         
     | 
| 171 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 172 | 
         
            +
            def test_keep_empty_features(imputer, keep_empty_features):
         
     | 
| 173 | 
         
            +
                """Check that the imputer keeps features with only missing values."""
         
     | 
| 174 | 
         
            +
                X = np.array([[np.nan, 1], [np.nan, 2], [np.nan, 3]])
         
     | 
| 175 | 
         
            +
                imputer = imputer.set_params(
         
     | 
| 176 | 
         
            +
                    add_indicator=False, keep_empty_features=keep_empty_features
         
     | 
| 177 | 
         
            +
                )
         
     | 
| 178 | 
         
            +
             
     | 
| 179 | 
         
            +
                for method in ["fit_transform", "transform"]:
         
     | 
| 180 | 
         
            +
                    X_imputed = getattr(imputer, method)(X)
         
     | 
| 181 | 
         
            +
                    if keep_empty_features:
         
     | 
| 182 | 
         
            +
                        assert X_imputed.shape == X.shape
         
     | 
| 183 | 
         
            +
                    else:
         
     | 
| 184 | 
         
            +
                        assert X_imputed.shape == (X.shape[0], X.shape[1] - 1)
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
            @pytest.mark.parametrize("imputer", imputers(), ids=lambda x: x.__class__.__name__)
         
     | 
| 188 | 
         
            +
            @pytest.mark.parametrize("missing_value_test", [np.nan, 1])
         
     | 
| 189 | 
         
            +
            def test_imputation_adds_missing_indicator_if_add_indicator_is_true(
         
     | 
| 190 | 
         
            +
                imputer, missing_value_test
         
     | 
| 191 | 
         
            +
            ):
         
     | 
| 192 | 
         
            +
                """Check that missing indicator always exists when add_indicator=True.
         
     | 
| 193 | 
         
            +
             
     | 
| 194 | 
         
            +
                Non-regression test for gh-26590.
         
     | 
| 195 | 
         
            +
                """
         
     | 
| 196 | 
         
            +
                X_train = np.array([[0, np.nan], [1, 2]])
         
     | 
| 197 | 
         
            +
             
     | 
| 198 | 
         
            +
                # Test data where missing_value_test variable can be set to np.nan or 1.
         
     | 
| 199 | 
         
            +
                X_test = np.array([[0, missing_value_test], [1, 2]])
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                imputer.set_params(add_indicator=True)
         
     | 
| 202 | 
         
            +
                imputer.fit(X_train)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                X_test_imputed_with_indicator = imputer.transform(X_test)
         
     | 
| 205 | 
         
            +
                assert X_test_imputed_with_indicator.shape == (2, 3)
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                imputer.set_params(add_indicator=False)
         
     | 
| 208 | 
         
            +
                imputer.fit(X_train)
         
     | 
| 209 | 
         
            +
                X_test_imputed_without_indicator = imputer.transform(X_test)
         
     | 
| 210 | 
         
            +
                assert X_test_imputed_without_indicator.shape == (2, 2)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                assert_allclose(
         
     | 
| 213 | 
         
            +
                    X_test_imputed_with_indicator[:, :-1], X_test_imputed_without_indicator
         
     | 
| 214 | 
         
            +
                )
         
     | 
| 215 | 
         
            +
                if np.isnan(missing_value_test):
         
     | 
| 216 | 
         
            +
                    expected_missing_indicator = [1, 0]
         
     | 
| 217 | 
         
            +
                else:
         
     | 
| 218 | 
         
            +
                    expected_missing_indicator = [0, 0]
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                assert_allclose(X_test_imputed_with_indicator[:, -1], expected_missing_indicator)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/test_impute.py
    ADDED
    
    | 
         @@ -0,0 +1,1754 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import io
         
     | 
| 2 | 
         
            +
            import re
         
     | 
| 3 | 
         
            +
            import warnings
         
     | 
| 4 | 
         
            +
            from itertools import product
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import numpy as np
         
     | 
| 7 | 
         
            +
            import pytest
         
     | 
| 8 | 
         
            +
            from scipy import sparse
         
     | 
| 9 | 
         
            +
            from scipy.stats import kstest
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            from sklearn import tree
         
     | 
| 12 | 
         
            +
            from sklearn.datasets import load_diabetes
         
     | 
| 13 | 
         
            +
            from sklearn.dummy import DummyRegressor
         
     | 
| 14 | 
         
            +
            from sklearn.exceptions import ConvergenceWarning
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
            # make IterativeImputer available
         
     | 
| 17 | 
         
            +
            from sklearn.experimental import enable_iterative_imputer  # noqa
         
     | 
| 18 | 
         
            +
            from sklearn.impute import IterativeImputer, KNNImputer, MissingIndicator, SimpleImputer
         
     | 
| 19 | 
         
            +
            from sklearn.impute._base import _most_frequent
         
     | 
| 20 | 
         
            +
            from sklearn.linear_model import ARDRegression, BayesianRidge, RidgeCV
         
     | 
| 21 | 
         
            +
            from sklearn.model_selection import GridSearchCV
         
     | 
| 22 | 
         
            +
            from sklearn.pipeline import Pipeline, make_union
         
     | 
| 23 | 
         
            +
            from sklearn.random_projection import _sparse_random_matrix
         
     | 
| 24 | 
         
            +
            from sklearn.utils._testing import (
         
     | 
| 25 | 
         
            +
                _convert_container,
         
     | 
| 26 | 
         
            +
                assert_allclose,
         
     | 
| 27 | 
         
            +
                assert_allclose_dense_sparse,
         
     | 
| 28 | 
         
            +
                assert_array_almost_equal,
         
     | 
| 29 | 
         
            +
                assert_array_equal,
         
     | 
| 30 | 
         
            +
            )
         
     | 
| 31 | 
         
            +
            from sklearn.utils.fixes import (
         
     | 
| 32 | 
         
            +
                BSR_CONTAINERS,
         
     | 
| 33 | 
         
            +
                COO_CONTAINERS,
         
     | 
| 34 | 
         
            +
                CSC_CONTAINERS,
         
     | 
| 35 | 
         
            +
                CSR_CONTAINERS,
         
     | 
| 36 | 
         
            +
                LIL_CONTAINERS,
         
     | 
| 37 | 
         
            +
            )
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            def _assert_array_equal_and_same_dtype(x, y):
         
     | 
| 41 | 
         
            +
                assert_array_equal(x, y)
         
     | 
| 42 | 
         
            +
                assert x.dtype == y.dtype
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
            def _assert_allclose_and_same_dtype(x, y):
         
     | 
| 46 | 
         
            +
                assert_allclose(x, y)
         
     | 
| 47 | 
         
            +
                assert x.dtype == y.dtype
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            def _check_statistics(
         
     | 
| 51 | 
         
            +
                X, X_true, strategy, statistics, missing_values, sparse_container
         
     | 
| 52 | 
         
            +
            ):
         
     | 
| 53 | 
         
            +
                """Utility function for testing imputation for a given strategy.
         
     | 
| 54 | 
         
            +
             
     | 
| 55 | 
         
            +
                Test with dense and sparse arrays
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                Check that:
         
     | 
| 58 | 
         
            +
                    - the statistics (mean, median, mode) are correct
         
     | 
| 59 | 
         
            +
                    - the missing values are imputed correctly"""
         
     | 
| 60 | 
         
            +
             
     | 
| 61 | 
         
            +
                err_msg = "Parameters: strategy = %s, missing_values = %s, sparse = {0}" % (
         
     | 
| 62 | 
         
            +
                    strategy,
         
     | 
| 63 | 
         
            +
                    missing_values,
         
     | 
| 64 | 
         
            +
                )
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                assert_ae = assert_array_equal
         
     | 
| 67 | 
         
            +
             
     | 
| 68 | 
         
            +
                if X.dtype.kind == "f" or X_true.dtype.kind == "f":
         
     | 
| 69 | 
         
            +
                    assert_ae = assert_array_almost_equal
         
     | 
| 70 | 
         
            +
             
     | 
| 71 | 
         
            +
                # Normal matrix
         
     | 
| 72 | 
         
            +
                imputer = SimpleImputer(missing_values=missing_values, strategy=strategy)
         
     | 
| 73 | 
         
            +
                X_trans = imputer.fit(X).transform(X.copy())
         
     | 
| 74 | 
         
            +
                assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(False))
         
     | 
| 75 | 
         
            +
                assert_ae(X_trans, X_true, err_msg=err_msg.format(False))
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                # Sparse matrix
         
     | 
| 78 | 
         
            +
                imputer = SimpleImputer(missing_values=missing_values, strategy=strategy)
         
     | 
| 79 | 
         
            +
                imputer.fit(sparse_container(X))
         
     | 
| 80 | 
         
            +
                X_trans = imputer.transform(sparse_container(X.copy()))
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                if sparse.issparse(X_trans):
         
     | 
| 83 | 
         
            +
                    X_trans = X_trans.toarray()
         
     | 
| 84 | 
         
            +
             
     | 
| 85 | 
         
            +
                assert_ae(imputer.statistics_, statistics, err_msg=err_msg.format(True))
         
     | 
| 86 | 
         
            +
                assert_ae(X_trans, X_true, err_msg=err_msg.format(True))
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
             
     | 
| 89 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent", "constant"])
         
     | 
| 90 | 
         
            +
            @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
         
     | 
| 91 | 
         
            +
            def test_imputation_shape(strategy, csr_container):
         
     | 
| 92 | 
         
            +
                # Verify the shapes of the imputed matrix for different strategies.
         
     | 
| 93 | 
         
            +
                X = np.random.randn(10, 2)
         
     | 
| 94 | 
         
            +
                X[::2] = np.nan
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                imputer = SimpleImputer(strategy=strategy)
         
     | 
| 97 | 
         
            +
                X_imputed = imputer.fit_transform(csr_container(X))
         
     | 
| 98 | 
         
            +
                assert X_imputed.shape == (10, 2)
         
     | 
| 99 | 
         
            +
                X_imputed = imputer.fit_transform(X)
         
     | 
| 100 | 
         
            +
                assert X_imputed.shape == (10, 2)
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                iterative_imputer = IterativeImputer(initial_strategy=strategy)
         
     | 
| 103 | 
         
            +
                X_imputed = iterative_imputer.fit_transform(X)
         
     | 
| 104 | 
         
            +
                assert X_imputed.shape == (10, 2)
         
     | 
| 105 | 
         
            +
             
     | 
| 106 | 
         
            +
             
     | 
| 107 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"])
         
     | 
| 108 | 
         
            +
            def test_imputation_deletion_warning(strategy):
         
     | 
| 109 | 
         
            +
                X = np.ones((3, 5))
         
     | 
| 110 | 
         
            +
                X[:, 0] = np.nan
         
     | 
| 111 | 
         
            +
                imputer = SimpleImputer(strategy=strategy).fit(X)
         
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
                with pytest.warns(UserWarning, match="Skipping"):
         
     | 
| 114 | 
         
            +
                    imputer.transform(X)
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
             
     | 
| 117 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"])
         
     | 
| 118 | 
         
            +
            def test_imputation_deletion_warning_feature_names(strategy):
         
     | 
| 119 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                missing_values = np.nan
         
     | 
| 122 | 
         
            +
                feature_names = np.array(["a", "b", "c", "d"], dtype=object)
         
     | 
| 123 | 
         
            +
                X = pd.DataFrame(
         
     | 
| 124 | 
         
            +
                    [
         
     | 
| 125 | 
         
            +
                        [missing_values, missing_values, 1, missing_values],
         
     | 
| 126 | 
         
            +
                        [4, missing_values, 2, 10],
         
     | 
| 127 | 
         
            +
                    ],
         
     | 
| 128 | 
         
            +
                    columns=feature_names,
         
     | 
| 129 | 
         
            +
                )
         
     | 
| 130 | 
         
            +
             
     | 
| 131 | 
         
            +
                imputer = SimpleImputer(strategy=strategy).fit(X)
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                # check SimpleImputer returning feature name attribute correctly
         
     | 
| 134 | 
         
            +
                assert_array_equal(imputer.feature_names_in_, feature_names)
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                # ensure that skipped feature warning includes feature name
         
     | 
| 137 | 
         
            +
                with pytest.warns(
         
     | 
| 138 | 
         
            +
                    UserWarning, match=r"Skipping features without any observed values: \['b'\]"
         
     | 
| 139 | 
         
            +
                ):
         
     | 
| 140 | 
         
            +
                    imputer.transform(X)
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent", "constant"])
         
     | 
| 144 | 
         
            +
            @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
         
     | 
| 145 | 
         
            +
            def test_imputation_error_sparse_0(strategy, csc_container):
         
     | 
| 146 | 
         
            +
                # check that error are raised when missing_values = 0 and input is sparse
         
     | 
| 147 | 
         
            +
                X = np.ones((3, 5))
         
     | 
| 148 | 
         
            +
                X[0] = 0
         
     | 
| 149 | 
         
            +
                X = csc_container(X)
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                imputer = SimpleImputer(strategy=strategy, missing_values=0)
         
     | 
| 152 | 
         
            +
                with pytest.raises(ValueError, match="Provide a dense array"):
         
     | 
| 153 | 
         
            +
                    imputer.fit(X)
         
     | 
| 154 | 
         
            +
             
     | 
| 155 | 
         
            +
                imputer.fit(X.toarray())
         
     | 
| 156 | 
         
            +
                with pytest.raises(ValueError, match="Provide a dense array"):
         
     | 
| 157 | 
         
            +
                    imputer.transform(X)
         
     | 
| 158 | 
         
            +
             
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
            def safe_median(arr, *args, **kwargs):
         
     | 
| 161 | 
         
            +
                # np.median([]) raises a TypeError for numpy >= 1.10.1
         
     | 
| 162 | 
         
            +
                length = arr.size if hasattr(arr, "size") else len(arr)
         
     | 
| 163 | 
         
            +
                return np.nan if length == 0 else np.median(arr, *args, **kwargs)
         
     | 
| 164 | 
         
            +
             
     | 
| 165 | 
         
            +
             
     | 
| 166 | 
         
            +
            def safe_mean(arr, *args, **kwargs):
         
     | 
| 167 | 
         
            +
                # np.mean([]) raises a RuntimeWarning for numpy >= 1.10.1
         
     | 
| 168 | 
         
            +
                length = arr.size if hasattr(arr, "size") else len(arr)
         
     | 
| 169 | 
         
            +
                return np.nan if length == 0 else np.mean(arr, *args, **kwargs)
         
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
            @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
         
     | 
| 173 | 
         
            +
            def test_imputation_mean_median(csc_container):
         
     | 
| 174 | 
         
            +
                # Test imputation using the mean and median strategies, when
         
     | 
| 175 | 
         
            +
                # missing_values != 0.
         
     | 
| 176 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                dim = 10
         
     | 
| 179 | 
         
            +
                dec = 10
         
     | 
| 180 | 
         
            +
                shape = (dim * dim, dim + dec)
         
     | 
| 181 | 
         
            +
             
     | 
| 182 | 
         
            +
                zeros = np.zeros(shape[0])
         
     | 
| 183 | 
         
            +
                values = np.arange(1, shape[0] + 1)
         
     | 
| 184 | 
         
            +
                values[4::2] = -values[4::2]
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                tests = [
         
     | 
| 187 | 
         
            +
                    ("mean", np.nan, lambda z, v, p: safe_mean(np.hstack((z, v)))),
         
     | 
| 188 | 
         
            +
                    ("median", np.nan, lambda z, v, p: safe_median(np.hstack((z, v)))),
         
     | 
| 189 | 
         
            +
                ]
         
     | 
| 190 | 
         
            +
             
     | 
| 191 | 
         
            +
                for strategy, test_missing_values, true_value_fun in tests:
         
     | 
| 192 | 
         
            +
                    X = np.empty(shape)
         
     | 
| 193 | 
         
            +
                    X_true = np.empty(shape)
         
     | 
| 194 | 
         
            +
                    true_statistics = np.empty(shape[1])
         
     | 
| 195 | 
         
            +
             
     | 
| 196 | 
         
            +
                    # Create a matrix X with columns
         
     | 
| 197 | 
         
            +
                    #    - with only zeros,
         
     | 
| 198 | 
         
            +
                    #    - with only missing values
         
     | 
| 199 | 
         
            +
                    #    - with zeros, missing values and values
         
     | 
| 200 | 
         
            +
                    # And a matrix X_true containing all true values
         
     | 
| 201 | 
         
            +
                    for j in range(shape[1]):
         
     | 
| 202 | 
         
            +
                        nb_zeros = (j - dec + 1 > 0) * (j - dec + 1) * (j - dec + 1)
         
     | 
| 203 | 
         
            +
                        nb_missing_values = max(shape[0] + dec * dec - (j + dec) * (j + dec), 0)
         
     | 
| 204 | 
         
            +
                        nb_values = shape[0] - nb_zeros - nb_missing_values
         
     | 
| 205 | 
         
            +
             
     | 
| 206 | 
         
            +
                        z = zeros[:nb_zeros]
         
     | 
| 207 | 
         
            +
                        p = np.repeat(test_missing_values, nb_missing_values)
         
     | 
| 208 | 
         
            +
                        v = values[rng.permutation(len(values))[:nb_values]]
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                        true_statistics[j] = true_value_fun(z, v, p)
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                        # Create the columns
         
     | 
| 213 | 
         
            +
                        X[:, j] = np.hstack((v, z, p))
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                        if 0 == test_missing_values:
         
     | 
| 216 | 
         
            +
                            # XXX unreached code as of v0.22
         
     | 
| 217 | 
         
            +
                            X_true[:, j] = np.hstack(
         
     | 
| 218 | 
         
            +
                                (v, np.repeat(true_statistics[j], nb_missing_values + nb_zeros))
         
     | 
| 219 | 
         
            +
                            )
         
     | 
| 220 | 
         
            +
                        else:
         
     | 
| 221 | 
         
            +
                            X_true[:, j] = np.hstack(
         
     | 
| 222 | 
         
            +
                                (v, z, np.repeat(true_statistics[j], nb_missing_values))
         
     | 
| 223 | 
         
            +
                            )
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                        # Shuffle them the same way
         
     | 
| 226 | 
         
            +
                        np.random.RandomState(j).shuffle(X[:, j])
         
     | 
| 227 | 
         
            +
                        np.random.RandomState(j).shuffle(X_true[:, j])
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    # Mean doesn't support columns containing NaNs, median does
         
     | 
| 230 | 
         
            +
                    if strategy == "median":
         
     | 
| 231 | 
         
            +
                        cols_to_keep = ~np.isnan(X_true).any(axis=0)
         
     | 
| 232 | 
         
            +
                    else:
         
     | 
| 233 | 
         
            +
                        cols_to_keep = ~np.isnan(X_true).all(axis=0)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                    X_true = X_true[:, cols_to_keep]
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
                    _check_statistics(
         
     | 
| 238 | 
         
            +
                        X, X_true, strategy, true_statistics, test_missing_values, csc_container
         
     | 
| 239 | 
         
            +
                    )
         
     | 
| 240 | 
         
            +
             
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
            @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
         
     | 
| 243 | 
         
            +
            def test_imputation_median_special_cases(csc_container):
         
     | 
| 244 | 
         
            +
                # Test median imputation with sparse boundary cases
         
     | 
| 245 | 
         
            +
                X = np.array(
         
     | 
| 246 | 
         
            +
                    [
         
     | 
| 247 | 
         
            +
                        [0, np.nan, np.nan],  # odd: implicit zero
         
     | 
| 248 | 
         
            +
                        [5, np.nan, np.nan],  # odd: explicit nonzero
         
     | 
| 249 | 
         
            +
                        [0, 0, np.nan],  # even: average two zeros
         
     | 
| 250 | 
         
            +
                        [-5, 0, np.nan],  # even: avg zero and neg
         
     | 
| 251 | 
         
            +
                        [0, 5, np.nan],  # even: avg zero and pos
         
     | 
| 252 | 
         
            +
                        [4, 5, np.nan],  # even: avg nonzeros
         
     | 
| 253 | 
         
            +
                        [-4, -5, np.nan],  # even: avg negatives
         
     | 
| 254 | 
         
            +
                        [-1, 2, np.nan],  # even: crossing neg and pos
         
     | 
| 255 | 
         
            +
                    ]
         
     | 
| 256 | 
         
            +
                ).transpose()
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                X_imputed_median = np.array(
         
     | 
| 259 | 
         
            +
                    [
         
     | 
| 260 | 
         
            +
                        [0, 0, 0],
         
     | 
| 261 | 
         
            +
                        [5, 5, 5],
         
     | 
| 262 | 
         
            +
                        [0, 0, 0],
         
     | 
| 263 | 
         
            +
                        [-5, 0, -2.5],
         
     | 
| 264 | 
         
            +
                        [0, 5, 2.5],
         
     | 
| 265 | 
         
            +
                        [4, 5, 4.5],
         
     | 
| 266 | 
         
            +
                        [-4, -5, -4.5],
         
     | 
| 267 | 
         
            +
                        [-1, 2, 0.5],
         
     | 
| 268 | 
         
            +
                    ]
         
     | 
| 269 | 
         
            +
                ).transpose()
         
     | 
| 270 | 
         
            +
                statistics_median = [0, 5, 0, -2.5, 2.5, 4.5, -4.5, 0.5]
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                _check_statistics(
         
     | 
| 273 | 
         
            +
                    X, X_imputed_median, "median", statistics_median, np.nan, csc_container
         
     | 
| 274 | 
         
            +
                )
         
     | 
| 275 | 
         
            +
             
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median"])
         
     | 
| 278 | 
         
            +
            @pytest.mark.parametrize("dtype", [None, object, str])
         
     | 
| 279 | 
         
            +
            def test_imputation_mean_median_error_invalid_type(strategy, dtype):
         
     | 
| 280 | 
         
            +
                X = np.array([["a", "b", 3], [4, "e", 6], ["g", "h", 9]], dtype=dtype)
         
     | 
| 281 | 
         
            +
                msg = "non-numeric data:\ncould not convert string to float:"
         
     | 
| 282 | 
         
            +
                with pytest.raises(ValueError, match=msg):
         
     | 
| 283 | 
         
            +
                    imputer = SimpleImputer(strategy=strategy)
         
     | 
| 284 | 
         
            +
                    imputer.fit_transform(X)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
             
     | 
| 287 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median"])
         
     | 
| 288 | 
         
            +
            @pytest.mark.parametrize("type", ["list", "dataframe"])
         
     | 
| 289 | 
         
            +
            def test_imputation_mean_median_error_invalid_type_list_pandas(strategy, type):
         
     | 
| 290 | 
         
            +
                X = [["a", "b", 3], [4, "e", 6], ["g", "h", 9]]
         
     | 
| 291 | 
         
            +
                if type == "dataframe":
         
     | 
| 292 | 
         
            +
                    pd = pytest.importorskip("pandas")
         
     | 
| 293 | 
         
            +
                    X = pd.DataFrame(X)
         
     | 
| 294 | 
         
            +
                msg = "non-numeric data:\ncould not convert string to float:"
         
     | 
| 295 | 
         
            +
                with pytest.raises(ValueError, match=msg):
         
     | 
| 296 | 
         
            +
                    imputer = SimpleImputer(strategy=strategy)
         
     | 
| 297 | 
         
            +
                    imputer.fit_transform(X)
         
     | 
| 298 | 
         
            +
             
     | 
| 299 | 
         
            +
             
     | 
| 300 | 
         
            +
            @pytest.mark.parametrize("strategy", ["constant", "most_frequent"])
         
     | 
| 301 | 
         
            +
            @pytest.mark.parametrize("dtype", [str, np.dtype("U"), np.dtype("S")])
         
     | 
| 302 | 
         
            +
            def test_imputation_const_mostf_error_invalid_types(strategy, dtype):
         
     | 
| 303 | 
         
            +
                # Test imputation on non-numeric data using "most_frequent" and "constant"
         
     | 
| 304 | 
         
            +
                # strategy
         
     | 
| 305 | 
         
            +
                X = np.array(
         
     | 
| 306 | 
         
            +
                    [
         
     | 
| 307 | 
         
            +
                        [np.nan, np.nan, "a", "f"],
         
     | 
| 308 | 
         
            +
                        [np.nan, "c", np.nan, "d"],
         
     | 
| 309 | 
         
            +
                        [np.nan, "b", "d", np.nan],
         
     | 
| 310 | 
         
            +
                        [np.nan, "c", "d", "h"],
         
     | 
| 311 | 
         
            +
                    ],
         
     | 
| 312 | 
         
            +
                    dtype=dtype,
         
     | 
| 313 | 
         
            +
                )
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                err_msg = "SimpleImputer does not support data"
         
     | 
| 316 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 317 | 
         
            +
                    imputer = SimpleImputer(strategy=strategy)
         
     | 
| 318 | 
         
            +
                    imputer.fit(X).transform(X)
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
             
     | 
| 321 | 
         
            +
            @pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
         
     | 
| 322 | 
         
            +
            def test_imputation_most_frequent(csc_container):
         
     | 
| 323 | 
         
            +
                # Test imputation using the most-frequent strategy.
         
     | 
| 324 | 
         
            +
                X = np.array(
         
     | 
| 325 | 
         
            +
                    [
         
     | 
| 326 | 
         
            +
                        [-1, -1, 0, 5],
         
     | 
| 327 | 
         
            +
                        [-1, 2, -1, 3],
         
     | 
| 328 | 
         
            +
                        [-1, 1, 3, -1],
         
     | 
| 329 | 
         
            +
                        [-1, 2, 3, 7],
         
     | 
| 330 | 
         
            +
                    ]
         
     | 
| 331 | 
         
            +
                )
         
     | 
| 332 | 
         
            +
             
     | 
| 333 | 
         
            +
                X_true = np.array(
         
     | 
| 334 | 
         
            +
                    [
         
     | 
| 335 | 
         
            +
                        [2, 0, 5],
         
     | 
| 336 | 
         
            +
                        [2, 3, 3],
         
     | 
| 337 | 
         
            +
                        [1, 3, 3],
         
     | 
| 338 | 
         
            +
                        [2, 3, 7],
         
     | 
| 339 | 
         
            +
                    ]
         
     | 
| 340 | 
         
            +
                )
         
     | 
| 341 | 
         
            +
             
     | 
| 342 | 
         
            +
                # scipy.stats.mode, used in SimpleImputer, doesn't return the first most
         
     | 
| 343 | 
         
            +
                # frequent as promised in the doc but the lowest most frequent. When this
         
     | 
| 344 | 
         
            +
                # test will fail after an update of scipy, SimpleImputer will need to be
         
     | 
| 345 | 
         
            +
                # updated to be consistent with the new (correct) behaviour
         
     | 
| 346 | 
         
            +
                _check_statistics(X, X_true, "most_frequent", [np.nan, 2, 3, 3], -1, csc_container)
         
     | 
| 347 | 
         
            +
             
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
            @pytest.mark.parametrize("marker", [None, np.nan, "NAN", "", 0])
         
     | 
| 350 | 
         
            +
            def test_imputation_most_frequent_objects(marker):
         
     | 
| 351 | 
         
            +
                # Test imputation using the most-frequent strategy.
         
     | 
| 352 | 
         
            +
                X = np.array(
         
     | 
| 353 | 
         
            +
                    [
         
     | 
| 354 | 
         
            +
                        [marker, marker, "a", "f"],
         
     | 
| 355 | 
         
            +
                        [marker, "c", marker, "d"],
         
     | 
| 356 | 
         
            +
                        [marker, "b", "d", marker],
         
     | 
| 357 | 
         
            +
                        [marker, "c", "d", "h"],
         
     | 
| 358 | 
         
            +
                    ],
         
     | 
| 359 | 
         
            +
                    dtype=object,
         
     | 
| 360 | 
         
            +
                )
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                X_true = np.array(
         
     | 
| 363 | 
         
            +
                    [
         
     | 
| 364 | 
         
            +
                        ["c", "a", "f"],
         
     | 
| 365 | 
         
            +
                        ["c", "d", "d"],
         
     | 
| 366 | 
         
            +
                        ["b", "d", "d"],
         
     | 
| 367 | 
         
            +
                        ["c", "d", "h"],
         
     | 
| 368 | 
         
            +
                    ],
         
     | 
| 369 | 
         
            +
                    dtype=object,
         
     | 
| 370 | 
         
            +
                )
         
     | 
| 371 | 
         
            +
             
     | 
| 372 | 
         
            +
                imputer = SimpleImputer(missing_values=marker, strategy="most_frequent")
         
     | 
| 373 | 
         
            +
                X_trans = imputer.fit(X).transform(X)
         
     | 
| 374 | 
         
            +
             
     | 
| 375 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 376 | 
         
            +
             
     | 
| 377 | 
         
            +
             
     | 
| 378 | 
         
            +
            @pytest.mark.parametrize("dtype", [object, "category"])
         
     | 
| 379 | 
         
            +
            def test_imputation_most_frequent_pandas(dtype):
         
     | 
| 380 | 
         
            +
                # Test imputation using the most frequent strategy on pandas df
         
     | 
| 381 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                f = io.StringIO("Cat1,Cat2,Cat3,Cat4\n,i,x,\na,,y,\na,j,,\nb,j,x,")
         
     | 
| 384 | 
         
            +
             
     | 
| 385 | 
         
            +
                df = pd.read_csv(f, dtype=dtype)
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                X_true = np.array(
         
     | 
| 388 | 
         
            +
                    [["a", "i", "x"], ["a", "j", "y"], ["a", "j", "x"], ["b", "j", "x"]],
         
     | 
| 389 | 
         
            +
                    dtype=object,
         
     | 
| 390 | 
         
            +
                )
         
     | 
| 391 | 
         
            +
             
     | 
| 392 | 
         
            +
                imputer = SimpleImputer(strategy="most_frequent")
         
     | 
| 393 | 
         
            +
                X_trans = imputer.fit_transform(df)
         
     | 
| 394 | 
         
            +
             
     | 
| 395 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
             
     | 
| 398 | 
         
            +
            @pytest.mark.parametrize("X_data, missing_value", [(1, 0), (1.0, np.nan)])
         
     | 
| 399 | 
         
            +
            def test_imputation_constant_error_invalid_type(X_data, missing_value):
         
     | 
| 400 | 
         
            +
                # Verify that exceptions are raised on invalid fill_value type
         
     | 
| 401 | 
         
            +
                X = np.full((3, 5), X_data, dtype=float)
         
     | 
| 402 | 
         
            +
                X[0, 0] = missing_value
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                fill_value = "x"
         
     | 
| 405 | 
         
            +
                err_msg = f"fill_value={fill_value!r} (of type {type(fill_value)!r}) cannot be cast"
         
     | 
| 406 | 
         
            +
                with pytest.raises(ValueError, match=re.escape(err_msg)):
         
     | 
| 407 | 
         
            +
                    imputer = SimpleImputer(
         
     | 
| 408 | 
         
            +
                        missing_values=missing_value, strategy="constant", fill_value=fill_value
         
     | 
| 409 | 
         
            +
                    )
         
     | 
| 410 | 
         
            +
                    imputer.fit_transform(X)
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
            def test_imputation_constant_integer():
         
     | 
| 414 | 
         
            +
                # Test imputation using the constant strategy on integers
         
     | 
| 415 | 
         
            +
                X = np.array([[-1, 2, 3, -1], [4, -1, 5, -1], [6, 7, -1, -1], [8, 9, 0, -1]])
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                X_true = np.array([[0, 2, 3, 0], [4, 0, 5, 0], [6, 7, 0, 0], [8, 9, 0, 0]])
         
     | 
| 418 | 
         
            +
             
     | 
| 419 | 
         
            +
                imputer = SimpleImputer(missing_values=-1, strategy="constant", fill_value=0)
         
     | 
| 420 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 423 | 
         
            +
             
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
            @pytest.mark.parametrize("array_constructor", CSR_CONTAINERS + [np.asarray])
         
     | 
| 426 | 
         
            +
            def test_imputation_constant_float(array_constructor):
         
     | 
| 427 | 
         
            +
                # Test imputation using the constant strategy on floats
         
     | 
| 428 | 
         
            +
                X = np.array(
         
     | 
| 429 | 
         
            +
                    [
         
     | 
| 430 | 
         
            +
                        [np.nan, 1.1, 0, np.nan],
         
     | 
| 431 | 
         
            +
                        [1.2, np.nan, 1.3, np.nan],
         
     | 
| 432 | 
         
            +
                        [0, 0, np.nan, np.nan],
         
     | 
| 433 | 
         
            +
                        [1.4, 1.5, 0, np.nan],
         
     | 
| 434 | 
         
            +
                    ]
         
     | 
| 435 | 
         
            +
                )
         
     | 
| 436 | 
         
            +
             
     | 
| 437 | 
         
            +
                X_true = np.array(
         
     | 
| 438 | 
         
            +
                    [[-1, 1.1, 0, -1], [1.2, -1, 1.3, -1], [0, 0, -1, -1], [1.4, 1.5, 0, -1]]
         
     | 
| 439 | 
         
            +
                )
         
     | 
| 440 | 
         
            +
             
     | 
| 441 | 
         
            +
                X = array_constructor(X)
         
     | 
| 442 | 
         
            +
             
     | 
| 443 | 
         
            +
                X_true = array_constructor(X_true)
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                imputer = SimpleImputer(strategy="constant", fill_value=-1)
         
     | 
| 446 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                assert_allclose_dense_sparse(X_trans, X_true)
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
             
     | 
| 451 | 
         
            +
            @pytest.mark.parametrize("marker", [None, np.nan, "NAN", "", 0])
         
     | 
| 452 | 
         
            +
            def test_imputation_constant_object(marker):
         
     | 
| 453 | 
         
            +
                # Test imputation using the constant strategy on objects
         
     | 
| 454 | 
         
            +
                X = np.array(
         
     | 
| 455 | 
         
            +
                    [
         
     | 
| 456 | 
         
            +
                        [marker, "a", "b", marker],
         
     | 
| 457 | 
         
            +
                        ["c", marker, "d", marker],
         
     | 
| 458 | 
         
            +
                        ["e", "f", marker, marker],
         
     | 
| 459 | 
         
            +
                        ["g", "h", "i", marker],
         
     | 
| 460 | 
         
            +
                    ],
         
     | 
| 461 | 
         
            +
                    dtype=object,
         
     | 
| 462 | 
         
            +
                )
         
     | 
| 463 | 
         
            +
             
     | 
| 464 | 
         
            +
                X_true = np.array(
         
     | 
| 465 | 
         
            +
                    [
         
     | 
| 466 | 
         
            +
                        ["missing", "a", "b", "missing"],
         
     | 
| 467 | 
         
            +
                        ["c", "missing", "d", "missing"],
         
     | 
| 468 | 
         
            +
                        ["e", "f", "missing", "missing"],
         
     | 
| 469 | 
         
            +
                        ["g", "h", "i", "missing"],
         
     | 
| 470 | 
         
            +
                    ],
         
     | 
| 471 | 
         
            +
                    dtype=object,
         
     | 
| 472 | 
         
            +
                )
         
     | 
| 473 | 
         
            +
             
     | 
| 474 | 
         
            +
                imputer = SimpleImputer(
         
     | 
| 475 | 
         
            +
                    missing_values=marker, strategy="constant", fill_value="missing"
         
     | 
| 476 | 
         
            +
                )
         
     | 
| 477 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 478 | 
         
            +
             
     | 
| 479 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
             
     | 
| 482 | 
         
            +
            @pytest.mark.parametrize("dtype", [object, "category"])
         
     | 
| 483 | 
         
            +
            def test_imputation_constant_pandas(dtype):
         
     | 
| 484 | 
         
            +
                # Test imputation using the constant strategy on pandas df
         
     | 
| 485 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 486 | 
         
            +
             
     | 
| 487 | 
         
            +
                f = io.StringIO("Cat1,Cat2,Cat3,Cat4\n,i,x,\na,,y,\na,j,,\nb,j,x,")
         
     | 
| 488 | 
         
            +
             
     | 
| 489 | 
         
            +
                df = pd.read_csv(f, dtype=dtype)
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                X_true = np.array(
         
     | 
| 492 | 
         
            +
                    [
         
     | 
| 493 | 
         
            +
                        ["missing_value", "i", "x", "missing_value"],
         
     | 
| 494 | 
         
            +
                        ["a", "missing_value", "y", "missing_value"],
         
     | 
| 495 | 
         
            +
                        ["a", "j", "missing_value", "missing_value"],
         
     | 
| 496 | 
         
            +
                        ["b", "j", "x", "missing_value"],
         
     | 
| 497 | 
         
            +
                    ],
         
     | 
| 498 | 
         
            +
                    dtype=object,
         
     | 
| 499 | 
         
            +
                )
         
     | 
| 500 | 
         
            +
             
     | 
| 501 | 
         
            +
                imputer = SimpleImputer(strategy="constant")
         
     | 
| 502 | 
         
            +
                X_trans = imputer.fit_transform(df)
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 505 | 
         
            +
             
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
            @pytest.mark.parametrize("X", [[[1], [2]], [[1], [np.nan]]])
         
     | 
| 508 | 
         
            +
            def test_iterative_imputer_one_feature(X):
         
     | 
| 509 | 
         
            +
                # check we exit early when there is a single feature
         
     | 
| 510 | 
         
            +
                imputer = IterativeImputer().fit(X)
         
     | 
| 511 | 
         
            +
                assert imputer.n_iter_ == 0
         
     | 
| 512 | 
         
            +
                imputer = IterativeImputer()
         
     | 
| 513 | 
         
            +
                imputer.fit([[1], [2]])
         
     | 
| 514 | 
         
            +
                assert imputer.n_iter_ == 0
         
     | 
| 515 | 
         
            +
                imputer.fit([[1], [np.nan]])
         
     | 
| 516 | 
         
            +
                assert imputer.n_iter_ == 0
         
     | 
| 517 | 
         
            +
             
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
            def test_imputation_pipeline_grid_search():
         
     | 
| 520 | 
         
            +
                # Test imputation within a pipeline + gridsearch.
         
     | 
| 521 | 
         
            +
                X = _sparse_random_matrix(100, 100, density=0.10)
         
     | 
| 522 | 
         
            +
                missing_values = X.data[0]
         
     | 
| 523 | 
         
            +
             
     | 
| 524 | 
         
            +
                pipeline = Pipeline(
         
     | 
| 525 | 
         
            +
                    [
         
     | 
| 526 | 
         
            +
                        ("imputer", SimpleImputer(missing_values=missing_values)),
         
     | 
| 527 | 
         
            +
                        ("tree", tree.DecisionTreeRegressor(random_state=0)),
         
     | 
| 528 | 
         
            +
                    ]
         
     | 
| 529 | 
         
            +
                )
         
     | 
| 530 | 
         
            +
             
     | 
| 531 | 
         
            +
                parameters = {"imputer__strategy": ["mean", "median", "most_frequent"]}
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                Y = _sparse_random_matrix(100, 1, density=0.10).toarray()
         
     | 
| 534 | 
         
            +
                gs = GridSearchCV(pipeline, parameters)
         
     | 
| 535 | 
         
            +
                gs.fit(X, Y)
         
     | 
| 536 | 
         
            +
             
     | 
| 537 | 
         
            +
             
     | 
| 538 | 
         
            +
            def test_imputation_copy():
         
     | 
| 539 | 
         
            +
                # Test imputation with copy
         
     | 
| 540 | 
         
            +
                X_orig = _sparse_random_matrix(5, 5, density=0.75, random_state=0)
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                # copy=True, dense => copy
         
     | 
| 543 | 
         
            +
                X = X_orig.copy().toarray()
         
     | 
| 544 | 
         
            +
                imputer = SimpleImputer(missing_values=0, strategy="mean", copy=True)
         
     | 
| 545 | 
         
            +
                Xt = imputer.fit(X).transform(X)
         
     | 
| 546 | 
         
            +
                Xt[0, 0] = -1
         
     | 
| 547 | 
         
            +
                assert not np.all(X == Xt)
         
     | 
| 548 | 
         
            +
             
     | 
| 549 | 
         
            +
                # copy=True, sparse csr => copy
         
     | 
| 550 | 
         
            +
                X = X_orig.copy()
         
     | 
| 551 | 
         
            +
                imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=True)
         
     | 
| 552 | 
         
            +
                Xt = imputer.fit(X).transform(X)
         
     | 
| 553 | 
         
            +
                Xt.data[0] = -1
         
     | 
| 554 | 
         
            +
                assert not np.all(X.data == Xt.data)
         
     | 
| 555 | 
         
            +
             
     | 
| 556 | 
         
            +
                # copy=False, dense => no copy
         
     | 
| 557 | 
         
            +
                X = X_orig.copy().toarray()
         
     | 
| 558 | 
         
            +
                imputer = SimpleImputer(missing_values=0, strategy="mean", copy=False)
         
     | 
| 559 | 
         
            +
                Xt = imputer.fit(X).transform(X)
         
     | 
| 560 | 
         
            +
                Xt[0, 0] = -1
         
     | 
| 561 | 
         
            +
                assert_array_almost_equal(X, Xt)
         
     | 
| 562 | 
         
            +
             
     | 
| 563 | 
         
            +
                # copy=False, sparse csc => no copy
         
     | 
| 564 | 
         
            +
                X = X_orig.copy().tocsc()
         
     | 
| 565 | 
         
            +
                imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=False)
         
     | 
| 566 | 
         
            +
                Xt = imputer.fit(X).transform(X)
         
     | 
| 567 | 
         
            +
                Xt.data[0] = -1
         
     | 
| 568 | 
         
            +
                assert_array_almost_equal(X.data, Xt.data)
         
     | 
| 569 | 
         
            +
             
     | 
| 570 | 
         
            +
                # copy=False, sparse csr => copy
         
     | 
| 571 | 
         
            +
                X = X_orig.copy()
         
     | 
| 572 | 
         
            +
                imputer = SimpleImputer(missing_values=X.data[0], strategy="mean", copy=False)
         
     | 
| 573 | 
         
            +
                Xt = imputer.fit(X).transform(X)
         
     | 
| 574 | 
         
            +
                Xt.data[0] = -1
         
     | 
| 575 | 
         
            +
                assert not np.all(X.data == Xt.data)
         
     | 
| 576 | 
         
            +
             
     | 
| 577 | 
         
            +
                # Note: If X is sparse and if missing_values=0, then a (dense) copy of X is
         
     | 
| 578 | 
         
            +
                # made, even if copy=False.
         
     | 
| 579 | 
         
            +
             
     | 
| 580 | 
         
            +
             
     | 
| 581 | 
         
            +
            def test_iterative_imputer_zero_iters():
         
     | 
| 582 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 583 | 
         
            +
             
     | 
| 584 | 
         
            +
                n = 100
         
     | 
| 585 | 
         
            +
                d = 10
         
     | 
| 586 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 587 | 
         
            +
                missing_flag = X == 0
         
     | 
| 588 | 
         
            +
                X[missing_flag] = np.nan
         
     | 
| 589 | 
         
            +
             
     | 
| 590 | 
         
            +
                imputer = IterativeImputer(max_iter=0)
         
     | 
| 591 | 
         
            +
                X_imputed = imputer.fit_transform(X)
         
     | 
| 592 | 
         
            +
                # with max_iter=0, only initial imputation is performed
         
     | 
| 593 | 
         
            +
                assert_allclose(X_imputed, imputer.initial_imputer_.transform(X))
         
     | 
| 594 | 
         
            +
             
     | 
| 595 | 
         
            +
                # repeat but force n_iter_ to 0
         
     | 
| 596 | 
         
            +
                imputer = IterativeImputer(max_iter=5).fit(X)
         
     | 
| 597 | 
         
            +
                # transformed should not be equal to initial imputation
         
     | 
| 598 | 
         
            +
                assert not np.all(imputer.transform(X) == imputer.initial_imputer_.transform(X))
         
     | 
| 599 | 
         
            +
             
     | 
| 600 | 
         
            +
                imputer.n_iter_ = 0
         
     | 
| 601 | 
         
            +
                # now they should be equal as only initial imputation is done
         
     | 
| 602 | 
         
            +
                assert_allclose(imputer.transform(X), imputer.initial_imputer_.transform(X))
         
     | 
| 603 | 
         
            +
             
     | 
| 604 | 
         
            +
             
     | 
| 605 | 
         
            +
            def test_iterative_imputer_verbose():
         
     | 
| 606 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 607 | 
         
            +
             
     | 
| 608 | 
         
            +
                n = 100
         
     | 
| 609 | 
         
            +
                d = 3
         
     | 
| 610 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 611 | 
         
            +
                imputer = IterativeImputer(missing_values=0, max_iter=1, verbose=1)
         
     | 
| 612 | 
         
            +
                imputer.fit(X)
         
     | 
| 613 | 
         
            +
                imputer.transform(X)
         
     | 
| 614 | 
         
            +
                imputer = IterativeImputer(missing_values=0, max_iter=1, verbose=2)
         
     | 
| 615 | 
         
            +
                imputer.fit(X)
         
     | 
| 616 | 
         
            +
                imputer.transform(X)
         
     | 
| 617 | 
         
            +
             
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
            def test_iterative_imputer_all_missing():
         
     | 
| 620 | 
         
            +
                n = 100
         
     | 
| 621 | 
         
            +
                d = 3
         
     | 
| 622 | 
         
            +
                X = np.zeros((n, d))
         
     | 
| 623 | 
         
            +
                imputer = IterativeImputer(missing_values=0, max_iter=1)
         
     | 
| 624 | 
         
            +
                X_imputed = imputer.fit_transform(X)
         
     | 
| 625 | 
         
            +
                assert_allclose(X_imputed, imputer.initial_imputer_.transform(X))
         
     | 
| 626 | 
         
            +
             
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 629 | 
         
            +
                "imputation_order", ["random", "roman", "ascending", "descending", "arabic"]
         
     | 
| 630 | 
         
            +
            )
         
     | 
| 631 | 
         
            +
            def test_iterative_imputer_imputation_order(imputation_order):
         
     | 
| 632 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 633 | 
         
            +
                n = 100
         
     | 
| 634 | 
         
            +
                d = 10
         
     | 
| 635 | 
         
            +
                max_iter = 2
         
     | 
| 636 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 637 | 
         
            +
                X[:, 0] = 1  # this column should not be discarded by IterativeImputer
         
     | 
| 638 | 
         
            +
             
     | 
| 639 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 640 | 
         
            +
                    missing_values=0,
         
     | 
| 641 | 
         
            +
                    max_iter=max_iter,
         
     | 
| 642 | 
         
            +
                    n_nearest_features=5,
         
     | 
| 643 | 
         
            +
                    sample_posterior=False,
         
     | 
| 644 | 
         
            +
                    skip_complete=True,
         
     | 
| 645 | 
         
            +
                    min_value=0,
         
     | 
| 646 | 
         
            +
                    max_value=1,
         
     | 
| 647 | 
         
            +
                    verbose=1,
         
     | 
| 648 | 
         
            +
                    imputation_order=imputation_order,
         
     | 
| 649 | 
         
            +
                    random_state=rng,
         
     | 
| 650 | 
         
            +
                )
         
     | 
| 651 | 
         
            +
                imputer.fit_transform(X)
         
     | 
| 652 | 
         
            +
                ordered_idx = [i.feat_idx for i in imputer.imputation_sequence_]
         
     | 
| 653 | 
         
            +
             
     | 
| 654 | 
         
            +
                assert len(ordered_idx) // imputer.n_iter_ == imputer.n_features_with_missing_
         
     | 
| 655 | 
         
            +
             
     | 
| 656 | 
         
            +
                if imputation_order == "roman":
         
     | 
| 657 | 
         
            +
                    assert np.all(ordered_idx[: d - 1] == np.arange(1, d))
         
     | 
| 658 | 
         
            +
                elif imputation_order == "arabic":
         
     | 
| 659 | 
         
            +
                    assert np.all(ordered_idx[: d - 1] == np.arange(d - 1, 0, -1))
         
     | 
| 660 | 
         
            +
                elif imputation_order == "random":
         
     | 
| 661 | 
         
            +
                    ordered_idx_round_1 = ordered_idx[: d - 1]
         
     | 
| 662 | 
         
            +
                    ordered_idx_round_2 = ordered_idx[d - 1 :]
         
     | 
| 663 | 
         
            +
                    assert ordered_idx_round_1 != ordered_idx_round_2
         
     | 
| 664 | 
         
            +
                elif "ending" in imputation_order:
         
     | 
| 665 | 
         
            +
                    assert len(ordered_idx) == max_iter * (d - 1)
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
             
     | 
| 668 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 669 | 
         
            +
                "estimator", [None, DummyRegressor(), BayesianRidge(), ARDRegression(), RidgeCV()]
         
     | 
| 670 | 
         
            +
            )
         
     | 
| 671 | 
         
            +
            def test_iterative_imputer_estimators(estimator):
         
     | 
| 672 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 673 | 
         
            +
             
     | 
| 674 | 
         
            +
                n = 100
         
     | 
| 675 | 
         
            +
                d = 10
         
     | 
| 676 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 679 | 
         
            +
                    missing_values=0, max_iter=1, estimator=estimator, random_state=rng
         
     | 
| 680 | 
         
            +
                )
         
     | 
| 681 | 
         
            +
                imputer.fit_transform(X)
         
     | 
| 682 | 
         
            +
             
     | 
| 683 | 
         
            +
                # check that types are correct for estimators
         
     | 
| 684 | 
         
            +
                hashes = []
         
     | 
| 685 | 
         
            +
                for triplet in imputer.imputation_sequence_:
         
     | 
| 686 | 
         
            +
                    expected_type = (
         
     | 
| 687 | 
         
            +
                        type(estimator) if estimator is not None else type(BayesianRidge())
         
     | 
| 688 | 
         
            +
                    )
         
     | 
| 689 | 
         
            +
                    assert isinstance(triplet.estimator, expected_type)
         
     | 
| 690 | 
         
            +
                    hashes.append(id(triplet.estimator))
         
     | 
| 691 | 
         
            +
             
     | 
| 692 | 
         
            +
                # check that each estimator is unique
         
     | 
| 693 | 
         
            +
                assert len(set(hashes)) == len(hashes)
         
     | 
| 694 | 
         
            +
             
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
            def test_iterative_imputer_clip():
         
     | 
| 697 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 698 | 
         
            +
                n = 100
         
     | 
| 699 | 
         
            +
                d = 10
         
     | 
| 700 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 701 | 
         
            +
             
     | 
| 702 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 703 | 
         
            +
                    missing_values=0, max_iter=1, min_value=0.1, max_value=0.2, random_state=rng
         
     | 
| 704 | 
         
            +
                )
         
     | 
| 705 | 
         
            +
             
     | 
| 706 | 
         
            +
                Xt = imputer.fit_transform(X)
         
     | 
| 707 | 
         
            +
                assert_allclose(np.min(Xt[X == 0]), 0.1)
         
     | 
| 708 | 
         
            +
                assert_allclose(np.max(Xt[X == 0]), 0.2)
         
     | 
| 709 | 
         
            +
                assert_allclose(Xt[X != 0], X[X != 0])
         
     | 
| 710 | 
         
            +
             
     | 
| 711 | 
         
            +
             
     | 
| 712 | 
         
            +
            def test_iterative_imputer_clip_truncnorm():
         
     | 
| 713 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 714 | 
         
            +
                n = 100
         
     | 
| 715 | 
         
            +
                d = 10
         
     | 
| 716 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng).toarray()
         
     | 
| 717 | 
         
            +
                X[:, 0] = 1
         
     | 
| 718 | 
         
            +
             
     | 
| 719 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 720 | 
         
            +
                    missing_values=0,
         
     | 
| 721 | 
         
            +
                    max_iter=2,
         
     | 
| 722 | 
         
            +
                    n_nearest_features=5,
         
     | 
| 723 | 
         
            +
                    sample_posterior=True,
         
     | 
| 724 | 
         
            +
                    min_value=0.1,
         
     | 
| 725 | 
         
            +
                    max_value=0.2,
         
     | 
| 726 | 
         
            +
                    verbose=1,
         
     | 
| 727 | 
         
            +
                    imputation_order="random",
         
     | 
| 728 | 
         
            +
                    random_state=rng,
         
     | 
| 729 | 
         
            +
                )
         
     | 
| 730 | 
         
            +
                Xt = imputer.fit_transform(X)
         
     | 
| 731 | 
         
            +
                assert_allclose(np.min(Xt[X == 0]), 0.1)
         
     | 
| 732 | 
         
            +
                assert_allclose(np.max(Xt[X == 0]), 0.2)
         
     | 
| 733 | 
         
            +
                assert_allclose(Xt[X != 0], X[X != 0])
         
     | 
| 734 | 
         
            +
             
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
            def test_iterative_imputer_truncated_normal_posterior():
         
     | 
| 737 | 
         
            +
                #  test that the values that are imputed using `sample_posterior=True`
         
     | 
| 738 | 
         
            +
                #  with boundaries (`min_value` and `max_value` are not None) are drawn
         
     | 
| 739 | 
         
            +
                #  from a distribution that looks gaussian via the Kolmogorov Smirnov test.
         
     | 
| 740 | 
         
            +
                #  note that starting from the wrong random seed will make this test fail
         
     | 
| 741 | 
         
            +
                #  because random sampling doesn't occur at all when the imputation
         
     | 
| 742 | 
         
            +
                #  is outside of the (min_value, max_value) range
         
     | 
| 743 | 
         
            +
                rng = np.random.RandomState(42)
         
     | 
| 744 | 
         
            +
             
     | 
| 745 | 
         
            +
                X = rng.normal(size=(5, 5))
         
     | 
| 746 | 
         
            +
                X[0][0] = np.nan
         
     | 
| 747 | 
         
            +
             
     | 
| 748 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 749 | 
         
            +
                    min_value=0, max_value=0.5, sample_posterior=True, random_state=rng
         
     | 
| 750 | 
         
            +
                )
         
     | 
| 751 | 
         
            +
             
     | 
| 752 | 
         
            +
                imputer.fit_transform(X)
         
     | 
| 753 | 
         
            +
                # generate multiple imputations for the single missing value
         
     | 
| 754 | 
         
            +
                imputations = np.array([imputer.transform(X)[0][0] for _ in range(100)])
         
     | 
| 755 | 
         
            +
             
     | 
| 756 | 
         
            +
                assert all(imputations >= 0)
         
     | 
| 757 | 
         
            +
                assert all(imputations <= 0.5)
         
     | 
| 758 | 
         
            +
             
     | 
| 759 | 
         
            +
                mu, sigma = imputations.mean(), imputations.std()
         
     | 
| 760 | 
         
            +
                ks_statistic, p_value = kstest((imputations - mu) / sigma, "norm")
         
     | 
| 761 | 
         
            +
                if sigma == 0:
         
     | 
| 762 | 
         
            +
                    sigma += 1e-12
         
     | 
| 763 | 
         
            +
                ks_statistic, p_value = kstest((imputations - mu) / sigma, "norm")
         
     | 
| 764 | 
         
            +
                # we want to fail to reject null hypothesis
         
     | 
| 765 | 
         
            +
                # null hypothesis: distributions are the same
         
     | 
| 766 | 
         
            +
                assert ks_statistic < 0.2 or p_value > 0.1, "The posterior does appear to be normal"
         
     | 
| 767 | 
         
            +
             
     | 
| 768 | 
         
            +
             
     | 
| 769 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"])
         
     | 
| 770 | 
         
            +
            def test_iterative_imputer_missing_at_transform(strategy):
         
     | 
| 771 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 772 | 
         
            +
                n = 100
         
     | 
| 773 | 
         
            +
                d = 10
         
     | 
| 774 | 
         
            +
                X_train = rng.randint(low=0, high=3, size=(n, d))
         
     | 
| 775 | 
         
            +
                X_test = rng.randint(low=0, high=3, size=(n, d))
         
     | 
| 776 | 
         
            +
             
     | 
| 777 | 
         
            +
                X_train[:, 0] = 1  # definitely no missing values in 0th column
         
     | 
| 778 | 
         
            +
                X_test[0, 0] = 0  # definitely missing value in 0th column
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 781 | 
         
            +
                    missing_values=0, max_iter=1, initial_strategy=strategy, random_state=rng
         
     | 
| 782 | 
         
            +
                ).fit(X_train)
         
     | 
| 783 | 
         
            +
                initial_imputer = SimpleImputer(missing_values=0, strategy=strategy).fit(X_train)
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                # if there were no missing values at time of fit, then imputer will
         
     | 
| 786 | 
         
            +
                # only use the initial imputer for that feature at transform
         
     | 
| 787 | 
         
            +
                assert_allclose(
         
     | 
| 788 | 
         
            +
                    imputer.transform(X_test)[:, 0], initial_imputer.transform(X_test)[:, 0]
         
     | 
| 789 | 
         
            +
                )
         
     | 
| 790 | 
         
            +
             
     | 
| 791 | 
         
            +
             
     | 
| 792 | 
         
            +
            def test_iterative_imputer_transform_stochasticity():
         
     | 
| 793 | 
         
            +
                rng1 = np.random.RandomState(0)
         
     | 
| 794 | 
         
            +
                rng2 = np.random.RandomState(1)
         
     | 
| 795 | 
         
            +
                n = 100
         
     | 
| 796 | 
         
            +
                d = 10
         
     | 
| 797 | 
         
            +
                X = _sparse_random_matrix(n, d, density=0.10, random_state=rng1).toarray()
         
     | 
| 798 | 
         
            +
             
     | 
| 799 | 
         
            +
                # when sample_posterior=True, two transforms shouldn't be equal
         
     | 
| 800 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 801 | 
         
            +
                    missing_values=0, max_iter=1, sample_posterior=True, random_state=rng1
         
     | 
| 802 | 
         
            +
                )
         
     | 
| 803 | 
         
            +
                imputer.fit(X)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                X_fitted_1 = imputer.transform(X)
         
     | 
| 806 | 
         
            +
                X_fitted_2 = imputer.transform(X)
         
     | 
| 807 | 
         
            +
             
     | 
| 808 | 
         
            +
                # sufficient to assert that the means are not the same
         
     | 
| 809 | 
         
            +
                assert np.mean(X_fitted_1) != pytest.approx(np.mean(X_fitted_2))
         
     | 
| 810 | 
         
            +
             
     | 
| 811 | 
         
            +
                # when sample_posterior=False, and n_nearest_features=None
         
     | 
| 812 | 
         
            +
                # and imputation_order is not random
         
     | 
| 813 | 
         
            +
                # the two transforms should be identical even if rng are different
         
     | 
| 814 | 
         
            +
                imputer1 = IterativeImputer(
         
     | 
| 815 | 
         
            +
                    missing_values=0,
         
     | 
| 816 | 
         
            +
                    max_iter=1,
         
     | 
| 817 | 
         
            +
                    sample_posterior=False,
         
     | 
| 818 | 
         
            +
                    n_nearest_features=None,
         
     | 
| 819 | 
         
            +
                    imputation_order="ascending",
         
     | 
| 820 | 
         
            +
                    random_state=rng1,
         
     | 
| 821 | 
         
            +
                )
         
     | 
| 822 | 
         
            +
             
     | 
| 823 | 
         
            +
                imputer2 = IterativeImputer(
         
     | 
| 824 | 
         
            +
                    missing_values=0,
         
     | 
| 825 | 
         
            +
                    max_iter=1,
         
     | 
| 826 | 
         
            +
                    sample_posterior=False,
         
     | 
| 827 | 
         
            +
                    n_nearest_features=None,
         
     | 
| 828 | 
         
            +
                    imputation_order="ascending",
         
     | 
| 829 | 
         
            +
                    random_state=rng2,
         
     | 
| 830 | 
         
            +
                )
         
     | 
| 831 | 
         
            +
                imputer1.fit(X)
         
     | 
| 832 | 
         
            +
                imputer2.fit(X)
         
     | 
| 833 | 
         
            +
             
     | 
| 834 | 
         
            +
                X_fitted_1a = imputer1.transform(X)
         
     | 
| 835 | 
         
            +
                X_fitted_1b = imputer1.transform(X)
         
     | 
| 836 | 
         
            +
                X_fitted_2 = imputer2.transform(X)
         
     | 
| 837 | 
         
            +
             
     | 
| 838 | 
         
            +
                assert_allclose(X_fitted_1a, X_fitted_1b)
         
     | 
| 839 | 
         
            +
                assert_allclose(X_fitted_1a, X_fitted_2)
         
     | 
| 840 | 
         
            +
             
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
            def test_iterative_imputer_no_missing():
         
     | 
| 843 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 844 | 
         
            +
                X = rng.rand(100, 100)
         
     | 
| 845 | 
         
            +
                X[:, 0] = np.nan
         
     | 
| 846 | 
         
            +
                m1 = IterativeImputer(max_iter=10, random_state=rng)
         
     | 
| 847 | 
         
            +
                m2 = IterativeImputer(max_iter=10, random_state=rng)
         
     | 
| 848 | 
         
            +
                pred1 = m1.fit(X).transform(X)
         
     | 
| 849 | 
         
            +
                pred2 = m2.fit_transform(X)
         
     | 
| 850 | 
         
            +
                # should exclude the first column entirely
         
     | 
| 851 | 
         
            +
                assert_allclose(X[:, 1:], pred1)
         
     | 
| 852 | 
         
            +
                # fit and fit_transform should both be identical
         
     | 
| 853 | 
         
            +
                assert_allclose(pred1, pred2)
         
     | 
| 854 | 
         
            +
             
     | 
| 855 | 
         
            +
             
     | 
| 856 | 
         
            +
            def test_iterative_imputer_rank_one():
         
     | 
| 857 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 858 | 
         
            +
                d = 50
         
     | 
| 859 | 
         
            +
                A = rng.rand(d, 1)
         
     | 
| 860 | 
         
            +
                B = rng.rand(1, d)
         
     | 
| 861 | 
         
            +
                X = np.dot(A, B)
         
     | 
| 862 | 
         
            +
                nan_mask = rng.rand(d, d) < 0.5
         
     | 
| 863 | 
         
            +
                X_missing = X.copy()
         
     | 
| 864 | 
         
            +
                X_missing[nan_mask] = np.nan
         
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
                imputer = IterativeImputer(max_iter=5, verbose=1, random_state=rng)
         
     | 
| 867 | 
         
            +
                X_filled = imputer.fit_transform(X_missing)
         
     | 
| 868 | 
         
            +
                assert_allclose(X_filled, X, atol=0.02)
         
     | 
| 869 | 
         
            +
             
     | 
| 870 | 
         
            +
             
     | 
| 871 | 
         
            +
            @pytest.mark.parametrize("rank", [3, 5])
         
     | 
| 872 | 
         
            +
            def test_iterative_imputer_transform_recovery(rank):
         
     | 
| 873 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 874 | 
         
            +
                n = 70
         
     | 
| 875 | 
         
            +
                d = 70
         
     | 
| 876 | 
         
            +
                A = rng.rand(n, rank)
         
     | 
| 877 | 
         
            +
                B = rng.rand(rank, d)
         
     | 
| 878 | 
         
            +
                X_filled = np.dot(A, B)
         
     | 
| 879 | 
         
            +
                nan_mask = rng.rand(n, d) < 0.5
         
     | 
| 880 | 
         
            +
                X_missing = X_filled.copy()
         
     | 
| 881 | 
         
            +
                X_missing[nan_mask] = np.nan
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                # split up data in half
         
     | 
| 884 | 
         
            +
                n = n // 2
         
     | 
| 885 | 
         
            +
                X_train = X_missing[:n]
         
     | 
| 886 | 
         
            +
                X_test_filled = X_filled[n:]
         
     | 
| 887 | 
         
            +
                X_test = X_missing[n:]
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 890 | 
         
            +
                    max_iter=5, imputation_order="descending", verbose=1, random_state=rng
         
     | 
| 891 | 
         
            +
                ).fit(X_train)
         
     | 
| 892 | 
         
            +
                X_test_est = imputer.transform(X_test)
         
     | 
| 893 | 
         
            +
                assert_allclose(X_test_filled, X_test_est, atol=0.1)
         
     | 
| 894 | 
         
            +
             
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
            def test_iterative_imputer_additive_matrix():
         
     | 
| 897 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 898 | 
         
            +
                n = 100
         
     | 
| 899 | 
         
            +
                d = 10
         
     | 
| 900 | 
         
            +
                A = rng.randn(n, d)
         
     | 
| 901 | 
         
            +
                B = rng.randn(n, d)
         
     | 
| 902 | 
         
            +
                X_filled = np.zeros(A.shape)
         
     | 
| 903 | 
         
            +
                for i in range(d):
         
     | 
| 904 | 
         
            +
                    for j in range(d):
         
     | 
| 905 | 
         
            +
                        X_filled[:, (i + j) % d] += (A[:, i] + B[:, j]) / 2
         
     | 
| 906 | 
         
            +
                # a quarter is randomly missing
         
     | 
| 907 | 
         
            +
                nan_mask = rng.rand(n, d) < 0.25
         
     | 
| 908 | 
         
            +
                X_missing = X_filled.copy()
         
     | 
| 909 | 
         
            +
                X_missing[nan_mask] = np.nan
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
                # split up data
         
     | 
| 912 | 
         
            +
                n = n // 2
         
     | 
| 913 | 
         
            +
                X_train = X_missing[:n]
         
     | 
| 914 | 
         
            +
                X_test_filled = X_filled[n:]
         
     | 
| 915 | 
         
            +
                X_test = X_missing[n:]
         
     | 
| 916 | 
         
            +
             
     | 
| 917 | 
         
            +
                imputer = IterativeImputer(max_iter=10, verbose=1, random_state=rng).fit(X_train)
         
     | 
| 918 | 
         
            +
                X_test_est = imputer.transform(X_test)
         
     | 
| 919 | 
         
            +
                assert_allclose(X_test_filled, X_test_est, rtol=1e-3, atol=0.01)
         
     | 
| 920 | 
         
            +
             
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
            def test_iterative_imputer_early_stopping():
         
     | 
| 923 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 924 | 
         
            +
                n = 50
         
     | 
| 925 | 
         
            +
                d = 5
         
     | 
| 926 | 
         
            +
                A = rng.rand(n, 1)
         
     | 
| 927 | 
         
            +
                B = rng.rand(1, d)
         
     | 
| 928 | 
         
            +
                X = np.dot(A, B)
         
     | 
| 929 | 
         
            +
                nan_mask = rng.rand(n, d) < 0.5
         
     | 
| 930 | 
         
            +
                X_missing = X.copy()
         
     | 
| 931 | 
         
            +
                X_missing[nan_mask] = np.nan
         
     | 
| 932 | 
         
            +
             
     | 
| 933 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 934 | 
         
            +
                    max_iter=100, tol=1e-2, sample_posterior=False, verbose=1, random_state=rng
         
     | 
| 935 | 
         
            +
                )
         
     | 
| 936 | 
         
            +
                X_filled_100 = imputer.fit_transform(X_missing)
         
     | 
| 937 | 
         
            +
                assert len(imputer.imputation_sequence_) == d * imputer.n_iter_
         
     | 
| 938 | 
         
            +
             
     | 
| 939 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 940 | 
         
            +
                    max_iter=imputer.n_iter_, sample_posterior=False, verbose=1, random_state=rng
         
     | 
| 941 | 
         
            +
                )
         
     | 
| 942 | 
         
            +
                X_filled_early = imputer.fit_transform(X_missing)
         
     | 
| 943 | 
         
            +
                assert_allclose(X_filled_100, X_filled_early, atol=1e-7)
         
     | 
| 944 | 
         
            +
             
     | 
| 945 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 946 | 
         
            +
                    max_iter=100, tol=0, sample_posterior=False, verbose=1, random_state=rng
         
     | 
| 947 | 
         
            +
                )
         
     | 
| 948 | 
         
            +
                imputer.fit(X_missing)
         
     | 
| 949 | 
         
            +
                assert imputer.n_iter_ == imputer.max_iter
         
     | 
| 950 | 
         
            +
             
     | 
| 951 | 
         
            +
             
     | 
| 952 | 
         
            +
            def test_iterative_imputer_catch_warning():
         
     | 
| 953 | 
         
            +
                # check that we catch a RuntimeWarning due to a division by zero when a
         
     | 
| 954 | 
         
            +
                # feature is constant in the dataset
         
     | 
| 955 | 
         
            +
                X, y = load_diabetes(return_X_y=True)
         
     | 
| 956 | 
         
            +
                n_samples, n_features = X.shape
         
     | 
| 957 | 
         
            +
             
     | 
| 958 | 
         
            +
                # simulate that a feature only contain one category during fit
         
     | 
| 959 | 
         
            +
                X[:, 3] = 1
         
     | 
| 960 | 
         
            +
             
     | 
| 961 | 
         
            +
                # add some missing values
         
     | 
| 962 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 963 | 
         
            +
                missing_rate = 0.15
         
     | 
| 964 | 
         
            +
                for feat in range(n_features):
         
     | 
| 965 | 
         
            +
                    sample_idx = rng.choice(
         
     | 
| 966 | 
         
            +
                        np.arange(n_samples), size=int(n_samples * missing_rate), replace=False
         
     | 
| 967 | 
         
            +
                    )
         
     | 
| 968 | 
         
            +
                    X[sample_idx, feat] = np.nan
         
     | 
| 969 | 
         
            +
             
     | 
| 970 | 
         
            +
                imputer = IterativeImputer(n_nearest_features=5, sample_posterior=True)
         
     | 
| 971 | 
         
            +
                with warnings.catch_warnings():
         
     | 
| 972 | 
         
            +
                    warnings.simplefilter("error", RuntimeWarning)
         
     | 
| 973 | 
         
            +
                    X_fill = imputer.fit_transform(X, y)
         
     | 
| 974 | 
         
            +
                assert not np.any(np.isnan(X_fill))
         
     | 
| 975 | 
         
            +
             
     | 
| 976 | 
         
            +
             
     | 
| 977 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 978 | 
         
            +
                "min_value, max_value, correct_output",
         
     | 
| 979 | 
         
            +
                [
         
     | 
| 980 | 
         
            +
                    (0, 100, np.array([[0] * 3, [100] * 3])),
         
     | 
| 981 | 
         
            +
                    (None, None, np.array([[-np.inf] * 3, [np.inf] * 3])),
         
     | 
| 982 | 
         
            +
                    (-np.inf, np.inf, np.array([[-np.inf] * 3, [np.inf] * 3])),
         
     | 
| 983 | 
         
            +
                    ([-5, 5, 10], [100, 200, 300], np.array([[-5, 5, 10], [100, 200, 300]])),
         
     | 
| 984 | 
         
            +
                    (
         
     | 
| 985 | 
         
            +
                        [-5, -np.inf, 10],
         
     | 
| 986 | 
         
            +
                        [100, 200, np.inf],
         
     | 
| 987 | 
         
            +
                        np.array([[-5, -np.inf, 10], [100, 200, np.inf]]),
         
     | 
| 988 | 
         
            +
                    ),
         
     | 
| 989 | 
         
            +
                ],
         
     | 
| 990 | 
         
            +
                ids=["scalars", "None-default", "inf", "lists", "lists-with-inf"],
         
     | 
| 991 | 
         
            +
            )
         
     | 
| 992 | 
         
            +
            def test_iterative_imputer_min_max_array_like(min_value, max_value, correct_output):
         
     | 
| 993 | 
         
            +
                # check that passing scalar or array-like
         
     | 
| 994 | 
         
            +
                # for min_value and max_value in IterativeImputer works
         
     | 
| 995 | 
         
            +
                X = np.random.RandomState(0).randn(10, 3)
         
     | 
| 996 | 
         
            +
                imputer = IterativeImputer(min_value=min_value, max_value=max_value)
         
     | 
| 997 | 
         
            +
                imputer.fit(X)
         
     | 
| 998 | 
         
            +
             
     | 
| 999 | 
         
            +
                assert isinstance(imputer._min_value, np.ndarray) and isinstance(
         
     | 
| 1000 | 
         
            +
                    imputer._max_value, np.ndarray
         
     | 
| 1001 | 
         
            +
                )
         
     | 
| 1002 | 
         
            +
                assert (imputer._min_value.shape[0] == X.shape[1]) and (
         
     | 
| 1003 | 
         
            +
                    imputer._max_value.shape[0] == X.shape[1]
         
     | 
| 1004 | 
         
            +
                )
         
     | 
| 1005 | 
         
            +
             
     | 
| 1006 | 
         
            +
                assert_allclose(correct_output[0, :], imputer._min_value)
         
     | 
| 1007 | 
         
            +
                assert_allclose(correct_output[1, :], imputer._max_value)
         
     | 
| 1008 | 
         
            +
             
     | 
| 1009 | 
         
            +
             
     | 
| 1010 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1011 | 
         
            +
                "min_value, max_value, err_msg",
         
     | 
| 1012 | 
         
            +
                [
         
     | 
| 1013 | 
         
            +
                    (100, 0, "min_value >= max_value."),
         
     | 
| 1014 | 
         
            +
                    (np.inf, -np.inf, "min_value >= max_value."),
         
     | 
| 1015 | 
         
            +
                    ([-5, 5], [100, 200, 0], "_value' should be of shape"),
         
     | 
| 1016 | 
         
            +
                ],
         
     | 
| 1017 | 
         
            +
            )
         
     | 
| 1018 | 
         
            +
            def test_iterative_imputer_catch_min_max_error(min_value, max_value, err_msg):
         
     | 
| 1019 | 
         
            +
                # check that passing scalar or array-like
         
     | 
| 1020 | 
         
            +
                # for min_value and max_value in IterativeImputer works
         
     | 
| 1021 | 
         
            +
                X = np.random.random((10, 3))
         
     | 
| 1022 | 
         
            +
                imputer = IterativeImputer(min_value=min_value, max_value=max_value)
         
     | 
| 1023 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 1024 | 
         
            +
                    imputer.fit(X)
         
     | 
| 1025 | 
         
            +
             
     | 
| 1026 | 
         
            +
             
     | 
| 1027 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1028 | 
         
            +
                "min_max_1, min_max_2",
         
     | 
| 1029 | 
         
            +
                [([None, None], [-np.inf, np.inf]), ([-10, 10], [[-10] * 4, [10] * 4])],
         
     | 
| 1030 | 
         
            +
                ids=["None-vs-inf", "Scalar-vs-vector"],
         
     | 
| 1031 | 
         
            +
            )
         
     | 
| 1032 | 
         
            +
            def test_iterative_imputer_min_max_array_like_imputation(min_max_1, min_max_2):
         
     | 
| 1033 | 
         
            +
                # Test that None/inf and scalar/vector give the same imputation
         
     | 
| 1034 | 
         
            +
                X_train = np.array(
         
     | 
| 1035 | 
         
            +
                    [
         
     | 
| 1036 | 
         
            +
                        [np.nan, 2, 2, 1],
         
     | 
| 1037 | 
         
            +
                        [10, np.nan, np.nan, 7],
         
     | 
| 1038 | 
         
            +
                        [3, 1, np.nan, 1],
         
     | 
| 1039 | 
         
            +
                        [np.nan, 4, 2, np.nan],
         
     | 
| 1040 | 
         
            +
                    ]
         
     | 
| 1041 | 
         
            +
                )
         
     | 
| 1042 | 
         
            +
                X_test = np.array(
         
     | 
| 1043 | 
         
            +
                    [[np.nan, 2, np.nan, 5], [2, 4, np.nan, np.nan], [np.nan, 1, 10, 1]]
         
     | 
| 1044 | 
         
            +
                )
         
     | 
| 1045 | 
         
            +
                imputer1 = IterativeImputer(
         
     | 
| 1046 | 
         
            +
                    min_value=min_max_1[0], max_value=min_max_1[1], random_state=0
         
     | 
| 1047 | 
         
            +
                )
         
     | 
| 1048 | 
         
            +
                imputer2 = IterativeImputer(
         
     | 
| 1049 | 
         
            +
                    min_value=min_max_2[0], max_value=min_max_2[1], random_state=0
         
     | 
| 1050 | 
         
            +
                )
         
     | 
| 1051 | 
         
            +
                X_test_imputed1 = imputer1.fit(X_train).transform(X_test)
         
     | 
| 1052 | 
         
            +
                X_test_imputed2 = imputer2.fit(X_train).transform(X_test)
         
     | 
| 1053 | 
         
            +
                assert_allclose(X_test_imputed1[:, 0], X_test_imputed2[:, 0])
         
     | 
| 1054 | 
         
            +
             
     | 
| 1055 | 
         
            +
             
     | 
| 1056 | 
         
            +
            @pytest.mark.parametrize("skip_complete", [True, False])
         
     | 
| 1057 | 
         
            +
            def test_iterative_imputer_skip_non_missing(skip_complete):
         
     | 
| 1058 | 
         
            +
                # check the imputing strategy when missing data are present in the
         
     | 
| 1059 | 
         
            +
                # testing set only.
         
     | 
| 1060 | 
         
            +
                # taken from: https://github.com/scikit-learn/scikit-learn/issues/14383
         
     | 
| 1061 | 
         
            +
                rng = np.random.RandomState(0)
         
     | 
| 1062 | 
         
            +
                X_train = np.array([[5, 2, 2, 1], [10, 1, 2, 7], [3, 1, 1, 1], [8, 4, 2, 2]])
         
     | 
| 1063 | 
         
            +
                X_test = np.array([[np.nan, 2, 4, 5], [np.nan, 4, 1, 2], [np.nan, 1, 10, 1]])
         
     | 
| 1064 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 1065 | 
         
            +
                    initial_strategy="mean", skip_complete=skip_complete, random_state=rng
         
     | 
| 1066 | 
         
            +
                )
         
     | 
| 1067 | 
         
            +
                X_test_est = imputer.fit(X_train).transform(X_test)
         
     | 
| 1068 | 
         
            +
                if skip_complete:
         
     | 
| 1069 | 
         
            +
                    # impute with the initial strategy: 'mean'
         
     | 
| 1070 | 
         
            +
                    assert_allclose(X_test_est[:, 0], np.mean(X_train[:, 0]))
         
     | 
| 1071 | 
         
            +
                else:
         
     | 
| 1072 | 
         
            +
                    assert_allclose(X_test_est[:, 0], [11, 7, 12], rtol=1e-4)
         
     | 
| 1073 | 
         
            +
             
     | 
| 1074 | 
         
            +
             
     | 
| 1075 | 
         
            +
            @pytest.mark.parametrize("rs_imputer", [None, 1, np.random.RandomState(seed=1)])
         
     | 
| 1076 | 
         
            +
            @pytest.mark.parametrize("rs_estimator", [None, 1, np.random.RandomState(seed=1)])
         
     | 
| 1077 | 
         
            +
            def test_iterative_imputer_dont_set_random_state(rs_imputer, rs_estimator):
         
     | 
| 1078 | 
         
            +
                class ZeroEstimator:
         
     | 
| 1079 | 
         
            +
                    def __init__(self, random_state):
         
     | 
| 1080 | 
         
            +
                        self.random_state = random_state
         
     | 
| 1081 | 
         
            +
             
     | 
| 1082 | 
         
            +
                    def fit(self, *args, **kgards):
         
     | 
| 1083 | 
         
            +
                        return self
         
     | 
| 1084 | 
         
            +
             
     | 
| 1085 | 
         
            +
                    def predict(self, X):
         
     | 
| 1086 | 
         
            +
                        return np.zeros(X.shape[0])
         
     | 
| 1087 | 
         
            +
             
     | 
| 1088 | 
         
            +
                estimator = ZeroEstimator(random_state=rs_estimator)
         
     | 
| 1089 | 
         
            +
                imputer = IterativeImputer(random_state=rs_imputer)
         
     | 
| 1090 | 
         
            +
                X_train = np.zeros((10, 3))
         
     | 
| 1091 | 
         
            +
                imputer.fit(X_train)
         
     | 
| 1092 | 
         
            +
                assert estimator.random_state == rs_estimator
         
     | 
| 1093 | 
         
            +
             
     | 
| 1094 | 
         
            +
             
     | 
| 1095 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1096 | 
         
            +
                "X_fit, X_trans, params, msg_err",
         
     | 
| 1097 | 
         
            +
                [
         
     | 
| 1098 | 
         
            +
                    (
         
     | 
| 1099 | 
         
            +
                        np.array([[-1, 1], [1, 2]]),
         
     | 
| 1100 | 
         
            +
                        np.array([[-1, 1], [1, -1]]),
         
     | 
| 1101 | 
         
            +
                        {"features": "missing-only", "sparse": "auto"},
         
     | 
| 1102 | 
         
            +
                        "have missing values in transform but have no missing values in fit",
         
     | 
| 1103 | 
         
            +
                    ),
         
     | 
| 1104 | 
         
            +
                    (
         
     | 
| 1105 | 
         
            +
                        np.array([["a", "b"], ["c", "a"]], dtype=str),
         
     | 
| 1106 | 
         
            +
                        np.array([["a", "b"], ["c", "a"]], dtype=str),
         
     | 
| 1107 | 
         
            +
                        {},
         
     | 
| 1108 | 
         
            +
                        "MissingIndicator does not support data with dtype",
         
     | 
| 1109 | 
         
            +
                    ),
         
     | 
| 1110 | 
         
            +
                ],
         
     | 
| 1111 | 
         
            +
            )
         
     | 
| 1112 | 
         
            +
            def test_missing_indicator_error(X_fit, X_trans, params, msg_err):
         
     | 
| 1113 | 
         
            +
                indicator = MissingIndicator(missing_values=-1)
         
     | 
| 1114 | 
         
            +
                indicator.set_params(**params)
         
     | 
| 1115 | 
         
            +
                with pytest.raises(ValueError, match=msg_err):
         
     | 
| 1116 | 
         
            +
                    indicator.fit(X_fit).transform(X_trans)
         
     | 
| 1117 | 
         
            +
             
     | 
| 1118 | 
         
            +
             
     | 
| 1119 | 
         
            +
            def _generate_missing_indicator_cases():
         
     | 
| 1120 | 
         
            +
                missing_values_dtypes = [(0, np.int32), (np.nan, np.float64), (-1, np.int32)]
         
     | 
| 1121 | 
         
            +
                arr_types = (
         
     | 
| 1122 | 
         
            +
                    [np.array]
         
     | 
| 1123 | 
         
            +
                    + CSC_CONTAINERS
         
     | 
| 1124 | 
         
            +
                    + CSR_CONTAINERS
         
     | 
| 1125 | 
         
            +
                    + COO_CONTAINERS
         
     | 
| 1126 | 
         
            +
                    + LIL_CONTAINERS
         
     | 
| 1127 | 
         
            +
                    + BSR_CONTAINERS
         
     | 
| 1128 | 
         
            +
                )
         
     | 
| 1129 | 
         
            +
                return [
         
     | 
| 1130 | 
         
            +
                    (arr_type, missing_values, dtype)
         
     | 
| 1131 | 
         
            +
                    for arr_type, (missing_values, dtype) in product(
         
     | 
| 1132 | 
         
            +
                        arr_types, missing_values_dtypes
         
     | 
| 1133 | 
         
            +
                    )
         
     | 
| 1134 | 
         
            +
                    if not (missing_values == 0 and arr_type is not np.array)
         
     | 
| 1135 | 
         
            +
                ]
         
     | 
| 1136 | 
         
            +
             
     | 
| 1137 | 
         
            +
             
     | 
| 1138 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1139 | 
         
            +
                "arr_type, missing_values, dtype", _generate_missing_indicator_cases()
         
     | 
| 1140 | 
         
            +
            )
         
     | 
| 1141 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1142 | 
         
            +
                "param_features, n_features, features_indices",
         
     | 
| 1143 | 
         
            +
                [("missing-only", 3, np.array([0, 1, 2])), ("all", 3, np.array([0, 1, 2]))],
         
     | 
| 1144 | 
         
            +
            )
         
     | 
| 1145 | 
         
            +
            def test_missing_indicator_new(
         
     | 
| 1146 | 
         
            +
                missing_values, arr_type, dtype, param_features, n_features, features_indices
         
     | 
| 1147 | 
         
            +
            ):
         
     | 
| 1148 | 
         
            +
                X_fit = np.array([[missing_values, missing_values, 1], [4, 2, missing_values]])
         
     | 
| 1149 | 
         
            +
                X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]])
         
     | 
| 1150 | 
         
            +
                X_fit_expected = np.array([[1, 1, 0], [0, 0, 1]])
         
     | 
| 1151 | 
         
            +
                X_trans_expected = np.array([[1, 1, 0], [0, 0, 0]])
         
     | 
| 1152 | 
         
            +
             
     | 
| 1153 | 
         
            +
                # convert the input to the right array format and right dtype
         
     | 
| 1154 | 
         
            +
                X_fit = arr_type(X_fit).astype(dtype)
         
     | 
| 1155 | 
         
            +
                X_trans = arr_type(X_trans).astype(dtype)
         
     | 
| 1156 | 
         
            +
                X_fit_expected = X_fit_expected.astype(dtype)
         
     | 
| 1157 | 
         
            +
                X_trans_expected = X_trans_expected.astype(dtype)
         
     | 
| 1158 | 
         
            +
             
     | 
| 1159 | 
         
            +
                indicator = MissingIndicator(
         
     | 
| 1160 | 
         
            +
                    missing_values=missing_values, features=param_features, sparse=False
         
     | 
| 1161 | 
         
            +
                )
         
     | 
| 1162 | 
         
            +
                X_fit_mask = indicator.fit_transform(X_fit)
         
     | 
| 1163 | 
         
            +
                X_trans_mask = indicator.transform(X_trans)
         
     | 
| 1164 | 
         
            +
             
     | 
| 1165 | 
         
            +
                assert X_fit_mask.shape[1] == n_features
         
     | 
| 1166 | 
         
            +
                assert X_trans_mask.shape[1] == n_features
         
     | 
| 1167 | 
         
            +
             
     | 
| 1168 | 
         
            +
                assert_array_equal(indicator.features_, features_indices)
         
     | 
| 1169 | 
         
            +
                assert_allclose(X_fit_mask, X_fit_expected[:, features_indices])
         
     | 
| 1170 | 
         
            +
                assert_allclose(X_trans_mask, X_trans_expected[:, features_indices])
         
     | 
| 1171 | 
         
            +
             
     | 
| 1172 | 
         
            +
                assert X_fit_mask.dtype == bool
         
     | 
| 1173 | 
         
            +
                assert X_trans_mask.dtype == bool
         
     | 
| 1174 | 
         
            +
                assert isinstance(X_fit_mask, np.ndarray)
         
     | 
| 1175 | 
         
            +
                assert isinstance(X_trans_mask, np.ndarray)
         
     | 
| 1176 | 
         
            +
             
     | 
| 1177 | 
         
            +
                indicator.set_params(sparse=True)
         
     | 
| 1178 | 
         
            +
                X_fit_mask_sparse = indicator.fit_transform(X_fit)
         
     | 
| 1179 | 
         
            +
                X_trans_mask_sparse = indicator.transform(X_trans)
         
     | 
| 1180 | 
         
            +
             
     | 
| 1181 | 
         
            +
                assert X_fit_mask_sparse.dtype == bool
         
     | 
| 1182 | 
         
            +
                assert X_trans_mask_sparse.dtype == bool
         
     | 
| 1183 | 
         
            +
                assert X_fit_mask_sparse.format == "csc"
         
     | 
| 1184 | 
         
            +
                assert X_trans_mask_sparse.format == "csc"
         
     | 
| 1185 | 
         
            +
                assert_allclose(X_fit_mask_sparse.toarray(), X_fit_mask)
         
     | 
| 1186 | 
         
            +
                assert_allclose(X_trans_mask_sparse.toarray(), X_trans_mask)
         
     | 
| 1187 | 
         
            +
             
     | 
| 1188 | 
         
            +
             
     | 
| 1189 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1190 | 
         
            +
                "arr_type",
         
     | 
| 1191 | 
         
            +
                CSC_CONTAINERS + CSR_CONTAINERS + COO_CONTAINERS + LIL_CONTAINERS + BSR_CONTAINERS,
         
     | 
| 1192 | 
         
            +
            )
         
     | 
| 1193 | 
         
            +
            def test_missing_indicator_raise_on_sparse_with_missing_0(arr_type):
         
     | 
| 1194 | 
         
            +
                # test for sparse input and missing_value == 0
         
     | 
| 1195 | 
         
            +
             
     | 
| 1196 | 
         
            +
                missing_values = 0
         
     | 
| 1197 | 
         
            +
                X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]])
         
     | 
| 1198 | 
         
            +
                X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]])
         
     | 
| 1199 | 
         
            +
             
     | 
| 1200 | 
         
            +
                # convert the input to the right array format
         
     | 
| 1201 | 
         
            +
                X_fit_sparse = arr_type(X_fit)
         
     | 
| 1202 | 
         
            +
                X_trans_sparse = arr_type(X_trans)
         
     | 
| 1203 | 
         
            +
             
     | 
| 1204 | 
         
            +
                indicator = MissingIndicator(missing_values=missing_values)
         
     | 
| 1205 | 
         
            +
             
     | 
| 1206 | 
         
            +
                with pytest.raises(ValueError, match="Sparse input with missing_values=0"):
         
     | 
| 1207 | 
         
            +
                    indicator.fit_transform(X_fit_sparse)
         
     | 
| 1208 | 
         
            +
             
     | 
| 1209 | 
         
            +
                indicator.fit_transform(X_fit)
         
     | 
| 1210 | 
         
            +
                with pytest.raises(ValueError, match="Sparse input with missing_values=0"):
         
     | 
| 1211 | 
         
            +
                    indicator.transform(X_trans_sparse)
         
     | 
| 1212 | 
         
            +
             
     | 
| 1213 | 
         
            +
             
     | 
| 1214 | 
         
            +
            @pytest.mark.parametrize("param_sparse", [True, False, "auto"])
         
     | 
| 1215 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1216 | 
         
            +
                "arr_type, missing_values",
         
     | 
| 1217 | 
         
            +
                [(np.array, 0)]
         
     | 
| 1218 | 
         
            +
                + list(
         
     | 
| 1219 | 
         
            +
                    product(
         
     | 
| 1220 | 
         
            +
                        CSC_CONTAINERS
         
     | 
| 1221 | 
         
            +
                        + CSR_CONTAINERS
         
     | 
| 1222 | 
         
            +
                        + COO_CONTAINERS
         
     | 
| 1223 | 
         
            +
                        + LIL_CONTAINERS
         
     | 
| 1224 | 
         
            +
                        + BSR_CONTAINERS,
         
     | 
| 1225 | 
         
            +
                        [np.nan],
         
     | 
| 1226 | 
         
            +
                    )
         
     | 
| 1227 | 
         
            +
                ),
         
     | 
| 1228 | 
         
            +
            )
         
     | 
| 1229 | 
         
            +
            def test_missing_indicator_sparse_param(arr_type, missing_values, param_sparse):
         
     | 
| 1230 | 
         
            +
                # check the format of the output with different sparse parameter
         
     | 
| 1231 | 
         
            +
                X_fit = np.array([[missing_values, missing_values, 1], [4, missing_values, 2]])
         
     | 
| 1232 | 
         
            +
                X_trans = np.array([[missing_values, missing_values, 1], [4, 12, 10]])
         
     | 
| 1233 | 
         
            +
                X_fit = arr_type(X_fit).astype(np.float64)
         
     | 
| 1234 | 
         
            +
                X_trans = arr_type(X_trans).astype(np.float64)
         
     | 
| 1235 | 
         
            +
             
     | 
| 1236 | 
         
            +
                indicator = MissingIndicator(missing_values=missing_values, sparse=param_sparse)
         
     | 
| 1237 | 
         
            +
                X_fit_mask = indicator.fit_transform(X_fit)
         
     | 
| 1238 | 
         
            +
                X_trans_mask = indicator.transform(X_trans)
         
     | 
| 1239 | 
         
            +
             
     | 
| 1240 | 
         
            +
                if param_sparse is True:
         
     | 
| 1241 | 
         
            +
                    assert X_fit_mask.format == "csc"
         
     | 
| 1242 | 
         
            +
                    assert X_trans_mask.format == "csc"
         
     | 
| 1243 | 
         
            +
                elif param_sparse == "auto" and missing_values == 0:
         
     | 
| 1244 | 
         
            +
                    assert isinstance(X_fit_mask, np.ndarray)
         
     | 
| 1245 | 
         
            +
                    assert isinstance(X_trans_mask, np.ndarray)
         
     | 
| 1246 | 
         
            +
                elif param_sparse is False:
         
     | 
| 1247 | 
         
            +
                    assert isinstance(X_fit_mask, np.ndarray)
         
     | 
| 1248 | 
         
            +
                    assert isinstance(X_trans_mask, np.ndarray)
         
     | 
| 1249 | 
         
            +
                else:
         
     | 
| 1250 | 
         
            +
                    if sparse.issparse(X_fit):
         
     | 
| 1251 | 
         
            +
                        assert X_fit_mask.format == "csc"
         
     | 
| 1252 | 
         
            +
                        assert X_trans_mask.format == "csc"
         
     | 
| 1253 | 
         
            +
                    else:
         
     | 
| 1254 | 
         
            +
                        assert isinstance(X_fit_mask, np.ndarray)
         
     | 
| 1255 | 
         
            +
                        assert isinstance(X_trans_mask, np.ndarray)
         
     | 
| 1256 | 
         
            +
             
     | 
| 1257 | 
         
            +
             
     | 
| 1258 | 
         
            +
            def test_missing_indicator_string():
         
     | 
| 1259 | 
         
            +
                X = np.array([["a", "b", "c"], ["b", "c", "a"]], dtype=object)
         
     | 
| 1260 | 
         
            +
                indicator = MissingIndicator(missing_values="a", features="all")
         
     | 
| 1261 | 
         
            +
                X_trans = indicator.fit_transform(X)
         
     | 
| 1262 | 
         
            +
                assert_array_equal(X_trans, np.array([[True, False, False], [False, False, True]]))
         
     | 
| 1263 | 
         
            +
             
     | 
| 1264 | 
         
            +
             
     | 
| 1265 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1266 | 
         
            +
                "X, missing_values, X_trans_exp",
         
     | 
| 1267 | 
         
            +
                [
         
     | 
| 1268 | 
         
            +
                    (
         
     | 
| 1269 | 
         
            +
                        np.array([["a", "b"], ["b", "a"]], dtype=object),
         
     | 
| 1270 | 
         
            +
                        "a",
         
     | 
| 1271 | 
         
            +
                        np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object),
         
     | 
| 1272 | 
         
            +
                    ),
         
     | 
| 1273 | 
         
            +
                    (
         
     | 
| 1274 | 
         
            +
                        np.array([[np.nan, 1.0], [1.0, np.nan]]),
         
     | 
| 1275 | 
         
            +
                        np.nan,
         
     | 
| 1276 | 
         
            +
                        np.array([[1.0, 1.0, True, False], [1.0, 1.0, False, True]]),
         
     | 
| 1277 | 
         
            +
                    ),
         
     | 
| 1278 | 
         
            +
                    (
         
     | 
| 1279 | 
         
            +
                        np.array([[np.nan, "b"], ["b", np.nan]], dtype=object),
         
     | 
| 1280 | 
         
            +
                        np.nan,
         
     | 
| 1281 | 
         
            +
                        np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object),
         
     | 
| 1282 | 
         
            +
                    ),
         
     | 
| 1283 | 
         
            +
                    (
         
     | 
| 1284 | 
         
            +
                        np.array([[None, "b"], ["b", None]], dtype=object),
         
     | 
| 1285 | 
         
            +
                        None,
         
     | 
| 1286 | 
         
            +
                        np.array([["b", "b", True, False], ["b", "b", False, True]], dtype=object),
         
     | 
| 1287 | 
         
            +
                    ),
         
     | 
| 1288 | 
         
            +
                ],
         
     | 
| 1289 | 
         
            +
            )
         
     | 
| 1290 | 
         
            +
            def test_missing_indicator_with_imputer(X, missing_values, X_trans_exp):
         
     | 
| 1291 | 
         
            +
                trans = make_union(
         
     | 
| 1292 | 
         
            +
                    SimpleImputer(missing_values=missing_values, strategy="most_frequent"),
         
     | 
| 1293 | 
         
            +
                    MissingIndicator(missing_values=missing_values),
         
     | 
| 1294 | 
         
            +
                )
         
     | 
| 1295 | 
         
            +
                X_trans = trans.fit_transform(X)
         
     | 
| 1296 | 
         
            +
                assert_array_equal(X_trans, X_trans_exp)
         
     | 
| 1297 | 
         
            +
             
     | 
| 1298 | 
         
            +
             
     | 
| 1299 | 
         
            +
            @pytest.mark.parametrize("imputer_constructor", [SimpleImputer, IterativeImputer])
         
     | 
| 1300 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1301 | 
         
            +
                "imputer_missing_values, missing_value, err_msg",
         
     | 
| 1302 | 
         
            +
                [
         
     | 
| 1303 | 
         
            +
                    ("NaN", np.nan, "Input X contains NaN"),
         
     | 
| 1304 | 
         
            +
                    ("-1", -1, "types are expected to be both numerical."),
         
     | 
| 1305 | 
         
            +
                ],
         
     | 
| 1306 | 
         
            +
            )
         
     | 
| 1307 | 
         
            +
            def test_inconsistent_dtype_X_missing_values(
         
     | 
| 1308 | 
         
            +
                imputer_constructor, imputer_missing_values, missing_value, err_msg
         
     | 
| 1309 | 
         
            +
            ):
         
     | 
| 1310 | 
         
            +
                # regression test for issue #11390. Comparison between incoherent dtype
         
     | 
| 1311 | 
         
            +
                # for X and missing_values was not raising a proper error.
         
     | 
| 1312 | 
         
            +
                rng = np.random.RandomState(42)
         
     | 
| 1313 | 
         
            +
                X = rng.randn(10, 10)
         
     | 
| 1314 | 
         
            +
                X[0, 0] = missing_value
         
     | 
| 1315 | 
         
            +
             
     | 
| 1316 | 
         
            +
                imputer = imputer_constructor(missing_values=imputer_missing_values)
         
     | 
| 1317 | 
         
            +
             
     | 
| 1318 | 
         
            +
                with pytest.raises(ValueError, match=err_msg):
         
     | 
| 1319 | 
         
            +
                    imputer.fit_transform(X)
         
     | 
| 1320 | 
         
            +
             
     | 
| 1321 | 
         
            +
             
     | 
| 1322 | 
         
            +
            def test_missing_indicator_no_missing():
         
     | 
| 1323 | 
         
            +
                # check that all features are dropped if there are no missing values when
         
     | 
| 1324 | 
         
            +
                # features='missing-only' (#13491)
         
     | 
| 1325 | 
         
            +
                X = np.array([[1, 1], [1, 1]])
         
     | 
| 1326 | 
         
            +
             
     | 
| 1327 | 
         
            +
                mi = MissingIndicator(features="missing-only", missing_values=-1)
         
     | 
| 1328 | 
         
            +
                Xt = mi.fit_transform(X)
         
     | 
| 1329 | 
         
            +
             
     | 
| 1330 | 
         
            +
                assert Xt.shape[1] == 0
         
     | 
| 1331 | 
         
            +
             
     | 
| 1332 | 
         
            +
             
     | 
| 1333 | 
         
            +
            @pytest.mark.parametrize("csr_container", CSR_CONTAINERS)
         
     | 
| 1334 | 
         
            +
            def test_missing_indicator_sparse_no_explicit_zeros(csr_container):
         
     | 
| 1335 | 
         
            +
                # Check that non missing values don't become explicit zeros in the mask
         
     | 
| 1336 | 
         
            +
                # generated by missing indicator when X is sparse. (#13491)
         
     | 
| 1337 | 
         
            +
                X = csr_container([[0, 1, 2], [1, 2, 0], [2, 0, 1]])
         
     | 
| 1338 | 
         
            +
             
     | 
| 1339 | 
         
            +
                mi = MissingIndicator(features="all", missing_values=1)
         
     | 
| 1340 | 
         
            +
                Xt = mi.fit_transform(X)
         
     | 
| 1341 | 
         
            +
             
     | 
| 1342 | 
         
            +
                assert Xt.getnnz() == Xt.sum()
         
     | 
| 1343 | 
         
            +
             
     | 
| 1344 | 
         
            +
             
     | 
| 1345 | 
         
            +
            @pytest.mark.parametrize("imputer_constructor", [SimpleImputer, IterativeImputer])
         
     | 
| 1346 | 
         
            +
            def test_imputer_without_indicator(imputer_constructor):
         
     | 
| 1347 | 
         
            +
                X = np.array([[1, 1], [1, 1]])
         
     | 
| 1348 | 
         
            +
                imputer = imputer_constructor()
         
     | 
| 1349 | 
         
            +
                imputer.fit(X)
         
     | 
| 1350 | 
         
            +
             
     | 
| 1351 | 
         
            +
                assert imputer.indicator_ is None
         
     | 
| 1352 | 
         
            +
             
     | 
| 1353 | 
         
            +
             
     | 
| 1354 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1355 | 
         
            +
                "arr_type",
         
     | 
| 1356 | 
         
            +
                CSC_CONTAINERS + CSR_CONTAINERS + COO_CONTAINERS + LIL_CONTAINERS + BSR_CONTAINERS,
         
     | 
| 1357 | 
         
            +
            )
         
     | 
| 1358 | 
         
            +
            def test_simple_imputation_add_indicator_sparse_matrix(arr_type):
         
     | 
| 1359 | 
         
            +
                X_sparse = arr_type([[np.nan, 1, 5], [2, np.nan, 1], [6, 3, np.nan], [1, 2, 9]])
         
     | 
| 1360 | 
         
            +
                X_true = np.array(
         
     | 
| 1361 | 
         
            +
                    [
         
     | 
| 1362 | 
         
            +
                        [3.0, 1.0, 5.0, 1.0, 0.0, 0.0],
         
     | 
| 1363 | 
         
            +
                        [2.0, 2.0, 1.0, 0.0, 1.0, 0.0],
         
     | 
| 1364 | 
         
            +
                        [6.0, 3.0, 5.0, 0.0, 0.0, 1.0],
         
     | 
| 1365 | 
         
            +
                        [1.0, 2.0, 9.0, 0.0, 0.0, 0.0],
         
     | 
| 1366 | 
         
            +
                    ]
         
     | 
| 1367 | 
         
            +
                )
         
     | 
| 1368 | 
         
            +
             
     | 
| 1369 | 
         
            +
                imputer = SimpleImputer(missing_values=np.nan, add_indicator=True)
         
     | 
| 1370 | 
         
            +
                X_trans = imputer.fit_transform(X_sparse)
         
     | 
| 1371 | 
         
            +
             
     | 
| 1372 | 
         
            +
                assert sparse.issparse(X_trans)
         
     | 
| 1373 | 
         
            +
                assert X_trans.shape == X_true.shape
         
     | 
| 1374 | 
         
            +
                assert_allclose(X_trans.toarray(), X_true)
         
     | 
| 1375 | 
         
            +
             
     | 
| 1376 | 
         
            +
             
     | 
| 1377 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1378 | 
         
            +
                "strategy, expected", [("most_frequent", "b"), ("constant", "missing_value")]
         
     | 
| 1379 | 
         
            +
            )
         
     | 
| 1380 | 
         
            +
            def test_simple_imputation_string_list(strategy, expected):
         
     | 
| 1381 | 
         
            +
                X = [["a", "b"], ["c", np.nan]]
         
     | 
| 1382 | 
         
            +
             
     | 
| 1383 | 
         
            +
                X_true = np.array([["a", "b"], ["c", expected]], dtype=object)
         
     | 
| 1384 | 
         
            +
             
     | 
| 1385 | 
         
            +
                imputer = SimpleImputer(strategy=strategy)
         
     | 
| 1386 | 
         
            +
                X_trans = imputer.fit_transform(X)
         
     | 
| 1387 | 
         
            +
             
     | 
| 1388 | 
         
            +
                assert_array_equal(X_trans, X_true)
         
     | 
| 1389 | 
         
            +
             
     | 
| 1390 | 
         
            +
             
     | 
| 1391 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1392 | 
         
            +
                "order, idx_order",
         
     | 
| 1393 | 
         
            +
                [("ascending", [3, 4, 2, 0, 1]), ("descending", [1, 0, 2, 4, 3])],
         
     | 
| 1394 | 
         
            +
            )
         
     | 
| 1395 | 
         
            +
            def test_imputation_order(order, idx_order):
         
     | 
| 1396 | 
         
            +
                # regression test for #15393
         
     | 
| 1397 | 
         
            +
                rng = np.random.RandomState(42)
         
     | 
| 1398 | 
         
            +
                X = rng.rand(100, 5)
         
     | 
| 1399 | 
         
            +
                X[:50, 1] = np.nan
         
     | 
| 1400 | 
         
            +
                X[:30, 0] = np.nan
         
     | 
| 1401 | 
         
            +
                X[:20, 2] = np.nan
         
     | 
| 1402 | 
         
            +
                X[:10, 4] = np.nan
         
     | 
| 1403 | 
         
            +
             
     | 
| 1404 | 
         
            +
                with pytest.warns(ConvergenceWarning):
         
     | 
| 1405 | 
         
            +
                    trs = IterativeImputer(max_iter=1, imputation_order=order, random_state=0).fit(
         
     | 
| 1406 | 
         
            +
                        X
         
     | 
| 1407 | 
         
            +
                    )
         
     | 
| 1408 | 
         
            +
                    idx = [x.feat_idx for x in trs.imputation_sequence_]
         
     | 
| 1409 | 
         
            +
                    assert idx == idx_order
         
     | 
| 1410 | 
         
            +
             
     | 
| 1411 | 
         
            +
             
     | 
| 1412 | 
         
            +
            @pytest.mark.parametrize("missing_value", [-1, np.nan])
         
     | 
| 1413 | 
         
            +
            def test_simple_imputation_inverse_transform(missing_value):
         
     | 
| 1414 | 
         
            +
                # Test inverse_transform feature for np.nan
         
     | 
| 1415 | 
         
            +
                X_1 = np.array(
         
     | 
| 1416 | 
         
            +
                    [
         
     | 
| 1417 | 
         
            +
                        [9, missing_value, 3, -1],
         
     | 
| 1418 | 
         
            +
                        [4, -1, 5, 4],
         
     | 
| 1419 | 
         
            +
                        [6, 7, missing_value, -1],
         
     | 
| 1420 | 
         
            +
                        [8, 9, 0, missing_value],
         
     | 
| 1421 | 
         
            +
                    ]
         
     | 
| 1422 | 
         
            +
                )
         
     | 
| 1423 | 
         
            +
             
     | 
| 1424 | 
         
            +
                X_2 = np.array(
         
     | 
| 1425 | 
         
            +
                    [
         
     | 
| 1426 | 
         
            +
                        [5, 4, 2, 1],
         
     | 
| 1427 | 
         
            +
                        [2, 1, missing_value, 3],
         
     | 
| 1428 | 
         
            +
                        [9, missing_value, 7, 1],
         
     | 
| 1429 | 
         
            +
                        [6, 4, 2, missing_value],
         
     | 
| 1430 | 
         
            +
                    ]
         
     | 
| 1431 | 
         
            +
                )
         
     | 
| 1432 | 
         
            +
             
     | 
| 1433 | 
         
            +
                X_3 = np.array(
         
     | 
| 1434 | 
         
            +
                    [
         
     | 
| 1435 | 
         
            +
                        [1, missing_value, 5, 9],
         
     | 
| 1436 | 
         
            +
                        [missing_value, 4, missing_value, missing_value],
         
     | 
| 1437 | 
         
            +
                        [2, missing_value, 7, missing_value],
         
     | 
| 1438 | 
         
            +
                        [missing_value, 3, missing_value, 8],
         
     | 
| 1439 | 
         
            +
                    ]
         
     | 
| 1440 | 
         
            +
                )
         
     | 
| 1441 | 
         
            +
             
     | 
| 1442 | 
         
            +
                X_4 = np.array(
         
     | 
| 1443 | 
         
            +
                    [
         
     | 
| 1444 | 
         
            +
                        [1, 1, 1, 3],
         
     | 
| 1445 | 
         
            +
                        [missing_value, 2, missing_value, 1],
         
     | 
| 1446 | 
         
            +
                        [2, 3, 3, 4],
         
     | 
| 1447 | 
         
            +
                        [missing_value, 4, missing_value, 2],
         
     | 
| 1448 | 
         
            +
                    ]
         
     | 
| 1449 | 
         
            +
                )
         
     | 
| 1450 | 
         
            +
             
     | 
| 1451 | 
         
            +
                imputer = SimpleImputer(
         
     | 
| 1452 | 
         
            +
                    missing_values=missing_value, strategy="mean", add_indicator=True
         
     | 
| 1453 | 
         
            +
                )
         
     | 
| 1454 | 
         
            +
             
     | 
| 1455 | 
         
            +
                X_1_trans = imputer.fit_transform(X_1)
         
     | 
| 1456 | 
         
            +
                X_1_inv_trans = imputer.inverse_transform(X_1_trans)
         
     | 
| 1457 | 
         
            +
             
     | 
| 1458 | 
         
            +
                X_2_trans = imputer.transform(X_2)  # test on new data
         
     | 
| 1459 | 
         
            +
                X_2_inv_trans = imputer.inverse_transform(X_2_trans)
         
     | 
| 1460 | 
         
            +
             
     | 
| 1461 | 
         
            +
                assert_array_equal(X_1_inv_trans, X_1)
         
     | 
| 1462 | 
         
            +
                assert_array_equal(X_2_inv_trans, X_2)
         
     | 
| 1463 | 
         
            +
             
     | 
| 1464 | 
         
            +
                for X in [X_3, X_4]:
         
     | 
| 1465 | 
         
            +
                    X_trans = imputer.fit_transform(X)
         
     | 
| 1466 | 
         
            +
                    X_inv_trans = imputer.inverse_transform(X_trans)
         
     | 
| 1467 | 
         
            +
                    assert_array_equal(X_inv_trans, X)
         
     | 
| 1468 | 
         
            +
             
     | 
| 1469 | 
         
            +
             
     | 
| 1470 | 
         
            +
            @pytest.mark.parametrize("missing_value", [-1, np.nan])
         
     | 
| 1471 | 
         
            +
            def test_simple_imputation_inverse_transform_exceptions(missing_value):
         
     | 
| 1472 | 
         
            +
                X_1 = np.array(
         
     | 
| 1473 | 
         
            +
                    [
         
     | 
| 1474 | 
         
            +
                        [9, missing_value, 3, -1],
         
     | 
| 1475 | 
         
            +
                        [4, -1, 5, 4],
         
     | 
| 1476 | 
         
            +
                        [6, 7, missing_value, -1],
         
     | 
| 1477 | 
         
            +
                        [8, 9, 0, missing_value],
         
     | 
| 1478 | 
         
            +
                    ]
         
     | 
| 1479 | 
         
            +
                )
         
     | 
| 1480 | 
         
            +
             
     | 
| 1481 | 
         
            +
                imputer = SimpleImputer(missing_values=missing_value, strategy="mean")
         
     | 
| 1482 | 
         
            +
                X_1_trans = imputer.fit_transform(X_1)
         
     | 
| 1483 | 
         
            +
                with pytest.raises(
         
     | 
| 1484 | 
         
            +
                    ValueError, match=f"Got 'add_indicator={imputer.add_indicator}'"
         
     | 
| 1485 | 
         
            +
                ):
         
     | 
| 1486 | 
         
            +
                    imputer.inverse_transform(X_1_trans)
         
     | 
| 1487 | 
         
            +
             
     | 
| 1488 | 
         
            +
             
     | 
| 1489 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1490 | 
         
            +
                "expected,array,dtype,extra_value,n_repeat",
         
     | 
| 1491 | 
         
            +
                [
         
     | 
| 1492 | 
         
            +
                    # array of object dtype
         
     | 
| 1493 | 
         
            +
                    ("extra_value", ["a", "b", "c"], object, "extra_value", 2),
         
     | 
| 1494 | 
         
            +
                    (
         
     | 
| 1495 | 
         
            +
                        "most_frequent_value",
         
     | 
| 1496 | 
         
            +
                        ["most_frequent_value", "most_frequent_value", "value"],
         
     | 
| 1497 | 
         
            +
                        object,
         
     | 
| 1498 | 
         
            +
                        "extra_value",
         
     | 
| 1499 | 
         
            +
                        1,
         
     | 
| 1500 | 
         
            +
                    ),
         
     | 
| 1501 | 
         
            +
                    ("a", ["min_value", "min_valuevalue"], object, "a", 2),
         
     | 
| 1502 | 
         
            +
                    ("min_value", ["min_value", "min_value", "value"], object, "z", 2),
         
     | 
| 1503 | 
         
            +
                    # array of numeric dtype
         
     | 
| 1504 | 
         
            +
                    (10, [1, 2, 3], int, 10, 2),
         
     | 
| 1505 | 
         
            +
                    (1, [1, 1, 2], int, 10, 1),
         
     | 
| 1506 | 
         
            +
                    (10, [20, 20, 1], int, 10, 2),
         
     | 
| 1507 | 
         
            +
                    (1, [1, 1, 20], int, 10, 2),
         
     | 
| 1508 | 
         
            +
                ],
         
     | 
| 1509 | 
         
            +
            )
         
     | 
| 1510 | 
         
            +
            def test_most_frequent(expected, array, dtype, extra_value, n_repeat):
         
     | 
| 1511 | 
         
            +
                assert expected == _most_frequent(
         
     | 
| 1512 | 
         
            +
                    np.array(array, dtype=dtype), extra_value, n_repeat
         
     | 
| 1513 | 
         
            +
                )
         
     | 
| 1514 | 
         
            +
             
     | 
| 1515 | 
         
            +
             
     | 
| 1516 | 
         
            +
            @pytest.mark.parametrize(
         
     | 
| 1517 | 
         
            +
                "initial_strategy", ["mean", "median", "most_frequent", "constant"]
         
     | 
| 1518 | 
         
            +
            )
         
     | 
| 1519 | 
         
            +
            def test_iterative_imputer_keep_empty_features(initial_strategy):
         
     | 
| 1520 | 
         
            +
                """Check the behaviour of the iterative imputer with different initial strategy
         
     | 
| 1521 | 
         
            +
                and keeping empty features (i.e. features containing only missing values).
         
     | 
| 1522 | 
         
            +
                """
         
     | 
| 1523 | 
         
            +
                X = np.array([[1, np.nan, 2], [3, np.nan, np.nan]])
         
     | 
| 1524 | 
         
            +
             
     | 
| 1525 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 1526 | 
         
            +
                    initial_strategy=initial_strategy, keep_empty_features=True
         
     | 
| 1527 | 
         
            +
                )
         
     | 
| 1528 | 
         
            +
                X_imputed = imputer.fit_transform(X)
         
     | 
| 1529 | 
         
            +
                assert_allclose(X_imputed[:, 1], 0)
         
     | 
| 1530 | 
         
            +
                X_imputed = imputer.transform(X)
         
     | 
| 1531 | 
         
            +
                assert_allclose(X_imputed[:, 1], 0)
         
     | 
| 1532 | 
         
            +
             
     | 
| 1533 | 
         
            +
             
     | 
| 1534 | 
         
            +
            def test_iterative_imputer_constant_fill_value():
         
     | 
| 1535 | 
         
            +
                """Check that we propagate properly the parameter `fill_value`."""
         
     | 
| 1536 | 
         
            +
                X = np.array([[-1, 2, 3, -1], [4, -1, 5, -1], [6, 7, -1, -1], [8, 9, 0, -1]])
         
     | 
| 1537 | 
         
            +
             
     | 
| 1538 | 
         
            +
                fill_value = 100
         
     | 
| 1539 | 
         
            +
                imputer = IterativeImputer(
         
     | 
| 1540 | 
         
            +
                    missing_values=-1,
         
     | 
| 1541 | 
         
            +
                    initial_strategy="constant",
         
     | 
| 1542 | 
         
            +
                    fill_value=fill_value,
         
     | 
| 1543 | 
         
            +
                    max_iter=0,
         
     | 
| 1544 | 
         
            +
                )
         
     | 
| 1545 | 
         
            +
                imputer.fit_transform(X)
         
     | 
| 1546 | 
         
            +
                assert_array_equal(imputer.initial_imputer_.statistics_, fill_value)
         
     | 
| 1547 | 
         
            +
             
     | 
| 1548 | 
         
            +
             
     | 
| 1549 | 
         
            +
            @pytest.mark.parametrize("keep_empty_features", [True, False])
         
     | 
| 1550 | 
         
            +
            def test_knn_imputer_keep_empty_features(keep_empty_features):
         
     | 
| 1551 | 
         
            +
                """Check the behaviour of `keep_empty_features` for `KNNImputer`."""
         
     | 
| 1552 | 
         
            +
                X = np.array([[1, np.nan, 2], [3, np.nan, np.nan]])
         
     | 
| 1553 | 
         
            +
             
     | 
| 1554 | 
         
            +
                imputer = KNNImputer(keep_empty_features=keep_empty_features)
         
     | 
| 1555 | 
         
            +
             
     | 
| 1556 | 
         
            +
                for method in ["fit_transform", "transform"]:
         
     | 
| 1557 | 
         
            +
                    X_imputed = getattr(imputer, method)(X)
         
     | 
| 1558 | 
         
            +
                    if keep_empty_features:
         
     | 
| 1559 | 
         
            +
                        assert X_imputed.shape == X.shape
         
     | 
| 1560 | 
         
            +
                        assert_array_equal(X_imputed[:, 1], 0)
         
     | 
| 1561 | 
         
            +
                    else:
         
     | 
| 1562 | 
         
            +
                        assert X_imputed.shape == (X.shape[0], X.shape[1] - 1)
         
     | 
| 1563 | 
         
            +
             
     | 
| 1564 | 
         
            +
             
     | 
| 1565 | 
         
            +
            def test_simple_impute_pd_na():
         
     | 
| 1566 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 1567 | 
         
            +
             
     | 
| 1568 | 
         
            +
                # Impute pandas array of string types.
         
     | 
| 1569 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series(["abc", None, "de"], dtype="string")})
         
     | 
| 1570 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value="na")
         
     | 
| 1571 | 
         
            +
                _assert_array_equal_and_same_dtype(
         
     | 
| 1572 | 
         
            +
                    imputer.fit_transform(df), np.array([["abc"], ["na"], ["de"]], dtype=object)
         
     | 
| 1573 | 
         
            +
                )
         
     | 
| 1574 | 
         
            +
             
     | 
| 1575 | 
         
            +
                # Impute pandas array of string types without any missing values.
         
     | 
| 1576 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series(["abc", "de", "fgh"], dtype="string")})
         
     | 
| 1577 | 
         
            +
                imputer = SimpleImputer(fill_value="ok", strategy="constant")
         
     | 
| 1578 | 
         
            +
                _assert_array_equal_and_same_dtype(
         
     | 
| 1579 | 
         
            +
                    imputer.fit_transform(df), np.array([["abc"], ["de"], ["fgh"]], dtype=object)
         
     | 
| 1580 | 
         
            +
                )
         
     | 
| 1581 | 
         
            +
             
     | 
| 1582 | 
         
            +
                # Impute pandas array of integer types.
         
     | 
| 1583 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series([1, None, 3], dtype="Int64")})
         
     | 
| 1584 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value=-1)
         
     | 
| 1585 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1586 | 
         
            +
                    imputer.fit_transform(df), np.array([[1], [-1], [3]], dtype="float64")
         
     | 
| 1587 | 
         
            +
                )
         
     | 
| 1588 | 
         
            +
             
     | 
| 1589 | 
         
            +
                # Use `np.nan` also works.
         
     | 
| 1590 | 
         
            +
                imputer = SimpleImputer(missing_values=np.nan, strategy="constant", fill_value=-1)
         
     | 
| 1591 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1592 | 
         
            +
                    imputer.fit_transform(df), np.array([[1], [-1], [3]], dtype="float64")
         
     | 
| 1593 | 
         
            +
                )
         
     | 
| 1594 | 
         
            +
             
     | 
| 1595 | 
         
            +
                # Impute pandas array of integer types with 'median' strategy.
         
     | 
| 1596 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series([1, None, 2, 3], dtype="Int64")})
         
     | 
| 1597 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="median")
         
     | 
| 1598 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1599 | 
         
            +
                    imputer.fit_transform(df), np.array([[1], [2], [2], [3]], dtype="float64")
         
     | 
| 1600 | 
         
            +
                )
         
     | 
| 1601 | 
         
            +
             
     | 
| 1602 | 
         
            +
                # Impute pandas array of integer types with 'mean' strategy.
         
     | 
| 1603 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series([1, None, 2], dtype="Int64")})
         
     | 
| 1604 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="mean")
         
     | 
| 1605 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1606 | 
         
            +
                    imputer.fit_transform(df), np.array([[1], [1.5], [2]], dtype="float64")
         
     | 
| 1607 | 
         
            +
                )
         
     | 
| 1608 | 
         
            +
             
     | 
| 1609 | 
         
            +
                # Impute pandas array of float types.
         
     | 
| 1610 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series([1.0, None, 3.0], dtype="float64")})
         
     | 
| 1611 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="constant", fill_value=-2.0)
         
     | 
| 1612 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1613 | 
         
            +
                    imputer.fit_transform(df), np.array([[1.0], [-2.0], [3.0]], dtype="float64")
         
     | 
| 1614 | 
         
            +
                )
         
     | 
| 1615 | 
         
            +
             
     | 
| 1616 | 
         
            +
                # Impute pandas array of float types with 'median' strategy.
         
     | 
| 1617 | 
         
            +
                df = pd.DataFrame({"feature": pd.Series([1.0, None, 2.0, 3.0], dtype="float64")})
         
     | 
| 1618 | 
         
            +
                imputer = SimpleImputer(missing_values=pd.NA, strategy="median")
         
     | 
| 1619 | 
         
            +
                _assert_allclose_and_same_dtype(
         
     | 
| 1620 | 
         
            +
                    imputer.fit_transform(df),
         
     | 
| 1621 | 
         
            +
                    np.array([[1.0], [2.0], [2.0], [3.0]], dtype="float64"),
         
     | 
| 1622 | 
         
            +
                )
         
     | 
| 1623 | 
         
            +
             
     | 
| 1624 | 
         
            +
             
     | 
| 1625 | 
         
            +
            def test_missing_indicator_feature_names_out():
         
     | 
| 1626 | 
         
            +
                """Check that missing indicator return the feature names with a prefix."""
         
     | 
| 1627 | 
         
            +
                pd = pytest.importorskip("pandas")
         
     | 
| 1628 | 
         
            +
             
     | 
| 1629 | 
         
            +
                missing_values = np.nan
         
     | 
| 1630 | 
         
            +
                X = pd.DataFrame(
         
     | 
| 1631 | 
         
            +
                    [
         
     | 
| 1632 | 
         
            +
                        [missing_values, missing_values, 1, missing_values],
         
     | 
| 1633 | 
         
            +
                        [4, missing_values, 2, 10],
         
     | 
| 1634 | 
         
            +
                    ],
         
     | 
| 1635 | 
         
            +
                    columns=["a", "b", "c", "d"],
         
     | 
| 1636 | 
         
            +
                )
         
     | 
| 1637 | 
         
            +
             
     | 
| 1638 | 
         
            +
                indicator = MissingIndicator(missing_values=missing_values).fit(X)
         
     | 
| 1639 | 
         
            +
                feature_names = indicator.get_feature_names_out()
         
     | 
| 1640 | 
         
            +
                expected_names = ["missingindicator_a", "missingindicator_b", "missingindicator_d"]
         
     | 
| 1641 | 
         
            +
                assert_array_equal(expected_names, feature_names)
         
     | 
| 1642 | 
         
            +
             
     | 
| 1643 | 
         
            +
             
     | 
| 1644 | 
         
            +
            def test_imputer_lists_fit_transform():
         
     | 
| 1645 | 
         
            +
                """Check transform uses object dtype when fitted on an object dtype.
         
     | 
| 1646 | 
         
            +
             
     | 
| 1647 | 
         
            +
                Non-regression test for #19572.
         
     | 
| 1648 | 
         
            +
                """
         
     | 
| 1649 | 
         
            +
             
     | 
| 1650 | 
         
            +
                X = [["a", "b"], ["c", "b"], ["a", "a"]]
         
     | 
| 1651 | 
         
            +
                imp_frequent = SimpleImputer(strategy="most_frequent").fit(X)
         
     | 
| 1652 | 
         
            +
                X_trans = imp_frequent.transform([[np.nan, np.nan]])
         
     | 
| 1653 | 
         
            +
                assert X_trans.dtype == object
         
     | 
| 1654 | 
         
            +
                assert_array_equal(X_trans, [["a", "b"]])
         
     | 
| 1655 | 
         
            +
             
     | 
| 1656 | 
         
            +
             
     | 
| 1657 | 
         
            +
            @pytest.mark.parametrize("dtype_test", [np.float32, np.float64])
         
     | 
| 1658 | 
         
            +
            def test_imputer_transform_preserves_numeric_dtype(dtype_test):
         
     | 
| 1659 | 
         
            +
                """Check transform preserves numeric dtype independent of fit dtype."""
         
     | 
| 1660 | 
         
            +
                X = np.asarray(
         
     | 
| 1661 | 
         
            +
                    [[1.2, 3.4, np.nan], [np.nan, 1.2, 1.3], [4.2, 2, 1]], dtype=np.float64
         
     | 
| 1662 | 
         
            +
                )
         
     | 
| 1663 | 
         
            +
                imp = SimpleImputer().fit(X)
         
     | 
| 1664 | 
         
            +
             
     | 
| 1665 | 
         
            +
                X_test = np.asarray([[np.nan, np.nan, np.nan]], dtype=dtype_test)
         
     | 
| 1666 | 
         
            +
                X_trans = imp.transform(X_test)
         
     | 
| 1667 | 
         
            +
                assert X_trans.dtype == dtype_test
         
     | 
| 1668 | 
         
            +
             
     | 
| 1669 | 
         
            +
             
     | 
| 1670 | 
         
            +
            @pytest.mark.parametrize("array_type", ["array", "sparse"])
         
     | 
| 1671 | 
         
            +
            @pytest.mark.parametrize("keep_empty_features", [True, False])
         
     | 
| 1672 | 
         
            +
            def test_simple_imputer_constant_keep_empty_features(array_type, keep_empty_features):
         
     | 
| 1673 | 
         
            +
                """Check the behaviour of `keep_empty_features` with `strategy='constant'.
         
     | 
| 1674 | 
         
            +
                For backward compatibility, a column full of missing values will always be
         
     | 
| 1675 | 
         
            +
                fill and never dropped.
         
     | 
| 1676 | 
         
            +
                """
         
     | 
| 1677 | 
         
            +
                X = np.array([[np.nan, 2], [np.nan, 3], [np.nan, 6]])
         
     | 
| 1678 | 
         
            +
                X = _convert_container(X, array_type)
         
     | 
| 1679 | 
         
            +
                fill_value = 10
         
     | 
| 1680 | 
         
            +
                imputer = SimpleImputer(
         
     | 
| 1681 | 
         
            +
                    strategy="constant",
         
     | 
| 1682 | 
         
            +
                    fill_value=fill_value,
         
     | 
| 1683 | 
         
            +
                    keep_empty_features=keep_empty_features,
         
     | 
| 1684 | 
         
            +
                )
         
     | 
| 1685 | 
         
            +
             
     | 
| 1686 | 
         
            +
                for method in ["fit_transform", "transform"]:
         
     | 
| 1687 | 
         
            +
                    X_imputed = getattr(imputer, method)(X)
         
     | 
| 1688 | 
         
            +
                    assert X_imputed.shape == X.shape
         
     | 
| 1689 | 
         
            +
                    constant_feature = (
         
     | 
| 1690 | 
         
            +
                        X_imputed[:, 0].toarray() if array_type == "sparse" else X_imputed[:, 0]
         
     | 
| 1691 | 
         
            +
                    )
         
     | 
| 1692 | 
         
            +
                    assert_array_equal(constant_feature, fill_value)
         
     | 
| 1693 | 
         
            +
             
     | 
| 1694 | 
         
            +
             
     | 
| 1695 | 
         
            +
            @pytest.mark.parametrize("array_type", ["array", "sparse"])
         
     | 
| 1696 | 
         
            +
            @pytest.mark.parametrize("strategy", ["mean", "median", "most_frequent"])
         
     | 
| 1697 | 
         
            +
            @pytest.mark.parametrize("keep_empty_features", [True, False])
         
     | 
| 1698 | 
         
            +
            def test_simple_imputer_keep_empty_features(strategy, array_type, keep_empty_features):
         
     | 
| 1699 | 
         
            +
                """Check the behaviour of `keep_empty_features` with all strategies but
         
     | 
| 1700 | 
         
            +
                'constant'.
         
     | 
| 1701 | 
         
            +
                """
         
     | 
| 1702 | 
         
            +
                X = np.array([[np.nan, 2], [np.nan, 3], [np.nan, 6]])
         
     | 
| 1703 | 
         
            +
                X = _convert_container(X, array_type)
         
     | 
| 1704 | 
         
            +
                imputer = SimpleImputer(strategy=strategy, keep_empty_features=keep_empty_features)
         
     | 
| 1705 | 
         
            +
             
     | 
| 1706 | 
         
            +
                for method in ["fit_transform", "transform"]:
         
     | 
| 1707 | 
         
            +
                    X_imputed = getattr(imputer, method)(X)
         
     | 
| 1708 | 
         
            +
                    if keep_empty_features:
         
     | 
| 1709 | 
         
            +
                        assert X_imputed.shape == X.shape
         
     | 
| 1710 | 
         
            +
                        constant_feature = (
         
     | 
| 1711 | 
         
            +
                            X_imputed[:, 0].toarray() if array_type == "sparse" else X_imputed[:, 0]
         
     | 
| 1712 | 
         
            +
                        )
         
     | 
| 1713 | 
         
            +
                        assert_array_equal(constant_feature, 0)
         
     | 
| 1714 | 
         
            +
                    else:
         
     | 
| 1715 | 
         
            +
                        assert X_imputed.shape == (X.shape[0], X.shape[1] - 1)
         
     | 
| 1716 | 
         
            +
             
     | 
| 1717 | 
         
            +
             
     | 
| 1718 | 
         
            +
            def test_simple_imputer_constant_fill_value_casting():
         
     | 
| 1719 | 
         
            +
                """Check that we raise a proper error message when we cannot cast the fill value
         
     | 
| 1720 | 
         
            +
                to the input data type. Otherwise, check that the casting is done properly.
         
     | 
| 1721 | 
         
            +
             
     | 
| 1722 | 
         
            +
                Non-regression test for:
         
     | 
| 1723 | 
         
            +
                https://github.com/scikit-learn/scikit-learn/issues/28309
         
     | 
| 1724 | 
         
            +
                """
         
     | 
| 1725 | 
         
            +
                # cannot cast fill_value at fit
         
     | 
| 1726 | 
         
            +
                fill_value = 1.5
         
     | 
| 1727 | 
         
            +
                X_int64 = np.array([[1, 2, 3], [2, 3, 4]], dtype=np.int64)
         
     | 
| 1728 | 
         
            +
                imputer = SimpleImputer(
         
     | 
| 1729 | 
         
            +
                    strategy="constant", fill_value=fill_value, missing_values=2
         
     | 
| 1730 | 
         
            +
                )
         
     | 
| 1731 | 
         
            +
                err_msg = f"fill_value={fill_value!r} (of type {type(fill_value)!r}) cannot be cast"
         
     | 
| 1732 | 
         
            +
                with pytest.raises(ValueError, match=re.escape(err_msg)):
         
     | 
| 1733 | 
         
            +
                    imputer.fit(X_int64)
         
     | 
| 1734 | 
         
            +
             
     | 
| 1735 | 
         
            +
                # cannot cast fill_value at transform
         
     | 
| 1736 | 
         
            +
                X_float64 = np.array([[1, 2, 3], [2, 3, 4]], dtype=np.float64)
         
     | 
| 1737 | 
         
            +
                imputer.fit(X_float64)
         
     | 
| 1738 | 
         
            +
                err_msg = (
         
     | 
| 1739 | 
         
            +
                    f"The dtype of the filling value (i.e. {imputer.statistics_.dtype!r}) "
         
     | 
| 1740 | 
         
            +
                    "cannot be cast"
         
     | 
| 1741 | 
         
            +
                )
         
     | 
| 1742 | 
         
            +
                with pytest.raises(ValueError, match=re.escape(err_msg)):
         
     | 
| 1743 | 
         
            +
                    imputer.transform(X_int64)
         
     | 
| 1744 | 
         
            +
             
     | 
| 1745 | 
         
            +
                # check that no error is raised when having the same kind of dtype
         
     | 
| 1746 | 
         
            +
                fill_value_list = [np.float64(1.5), 1.5, 1]
         
     | 
| 1747 | 
         
            +
                X_float32 = X_float64.astype(np.float32)
         
     | 
| 1748 | 
         
            +
             
     | 
| 1749 | 
         
            +
                for fill_value in fill_value_list:
         
     | 
| 1750 | 
         
            +
                    imputer = SimpleImputer(
         
     | 
| 1751 | 
         
            +
                        strategy="constant", fill_value=fill_value, missing_values=2
         
     | 
| 1752 | 
         
            +
                    )
         
     | 
| 1753 | 
         
            +
                    X_trans = imputer.fit_transform(X_float32)
         
     | 
| 1754 | 
         
            +
                    assert X_trans.dtype == X_float32.dtype
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/impute/tests/test_knn.py
    ADDED
    
    | 
         @@ -0,0 +1,547 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            import numpy as np
         
     | 
| 2 | 
         
            +
            import pytest
         
     | 
| 3 | 
         
            +
             
     | 
| 4 | 
         
            +
            from sklearn import config_context
         
     | 
| 5 | 
         
            +
            from sklearn.impute import KNNImputer
         
     | 
| 6 | 
         
            +
            from sklearn.metrics.pairwise import nan_euclidean_distances, pairwise_distances
         
     | 
| 7 | 
         
            +
            from sklearn.neighbors import KNeighborsRegressor
         
     | 
| 8 | 
         
            +
            from sklearn.utils._testing import assert_allclose
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            @pytest.mark.parametrize("weights", ["uniform", "distance"])
         
     | 
| 12 | 
         
            +
            @pytest.mark.parametrize("n_neighbors", range(1, 6))
         
     | 
| 13 | 
         
            +
            def test_knn_imputer_shape(weights, n_neighbors):
         
     | 
| 14 | 
         
            +
                # Verify the shapes of the imputed matrix for different weights and
         
     | 
| 15 | 
         
            +
                # number of neighbors.
         
     | 
| 16 | 
         
            +
                n_rows = 10
         
     | 
| 17 | 
         
            +
                n_cols = 2
         
     | 
| 18 | 
         
            +
                X = np.random.rand(n_rows, n_cols)
         
     | 
| 19 | 
         
            +
                X[0, 0] = np.nan
         
     | 
| 20 | 
         
            +
             
     | 
| 21 | 
         
            +
                imputer = KNNImputer(n_neighbors=n_neighbors, weights=weights)
         
     | 
| 22 | 
         
            +
                X_imputed = imputer.fit_transform(X)
         
     | 
| 23 | 
         
            +
                assert X_imputed.shape == (n_rows, n_cols)
         
     | 
| 24 | 
         
            +
             
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 27 | 
         
            +
            def test_knn_imputer_default_with_invalid_input(na):
         
     | 
| 28 | 
         
            +
                # Test imputation with default values and invalid input
         
     | 
| 29 | 
         
            +
             
     | 
| 30 | 
         
            +
                # Test with inf present
         
     | 
| 31 | 
         
            +
                X = np.array(
         
     | 
| 32 | 
         
            +
                    [
         
     | 
| 33 | 
         
            +
                        [np.inf, 1, 1, 2, na],
         
     | 
| 34 | 
         
            +
                        [2, 1, 2, 2, 3],
         
     | 
| 35 | 
         
            +
                        [3, 2, 3, 3, 8],
         
     | 
| 36 | 
         
            +
                        [na, 6, 0, 5, 13],
         
     | 
| 37 | 
         
            +
                        [na, 7, 0, 7, 8],
         
     | 
| 38 | 
         
            +
                        [6, 6, 2, 5, 7],
         
     | 
| 39 | 
         
            +
                    ]
         
     | 
| 40 | 
         
            +
                )
         
     | 
| 41 | 
         
            +
                with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"):
         
     | 
| 42 | 
         
            +
                    KNNImputer(missing_values=na).fit(X)
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                # Test with inf present in matrix passed in transform()
         
     | 
| 45 | 
         
            +
                X = np.array(
         
     | 
| 46 | 
         
            +
                    [
         
     | 
| 47 | 
         
            +
                        [np.inf, 1, 1, 2, na],
         
     | 
| 48 | 
         
            +
                        [2, 1, 2, 2, 3],
         
     | 
| 49 | 
         
            +
                        [3, 2, 3, 3, 8],
         
     | 
| 50 | 
         
            +
                        [na, 6, 0, 5, 13],
         
     | 
| 51 | 
         
            +
                        [na, 7, 0, 7, 8],
         
     | 
| 52 | 
         
            +
                        [6, 6, 2, 5, 7],
         
     | 
| 53 | 
         
            +
                    ]
         
     | 
| 54 | 
         
            +
                )
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                X_fit = np.array(
         
     | 
| 57 | 
         
            +
                    [
         
     | 
| 58 | 
         
            +
                        [0, 1, 1, 2, na],
         
     | 
| 59 | 
         
            +
                        [2, 1, 2, 2, 3],
         
     | 
| 60 | 
         
            +
                        [3, 2, 3, 3, 8],
         
     | 
| 61 | 
         
            +
                        [na, 6, 0, 5, 13],
         
     | 
| 62 | 
         
            +
                        [na, 7, 0, 7, 8],
         
     | 
| 63 | 
         
            +
                        [6, 6, 2, 5, 7],
         
     | 
| 64 | 
         
            +
                    ]
         
     | 
| 65 | 
         
            +
                )
         
     | 
| 66 | 
         
            +
                imputer = KNNImputer(missing_values=na).fit(X_fit)
         
     | 
| 67 | 
         
            +
                with pytest.raises(ValueError, match="Input X contains (infinity|NaN)"):
         
     | 
| 68 | 
         
            +
                    imputer.transform(X)
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                # Test with missing_values=0 when NaN present
         
     | 
| 71 | 
         
            +
                imputer = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform")
         
     | 
| 72 | 
         
            +
                X = np.array(
         
     | 
| 73 | 
         
            +
                    [
         
     | 
| 74 | 
         
            +
                        [np.nan, 0, 0, 0, 5],
         
     | 
| 75 | 
         
            +
                        [np.nan, 1, 0, np.nan, 3],
         
     | 
| 76 | 
         
            +
                        [np.nan, 2, 0, 0, 0],
         
     | 
| 77 | 
         
            +
                        [np.nan, 6, 0, 5, 13],
         
     | 
| 78 | 
         
            +
                    ]
         
     | 
| 79 | 
         
            +
                )
         
     | 
| 80 | 
         
            +
                msg = "Input X contains NaN"
         
     | 
| 81 | 
         
            +
                with pytest.raises(ValueError, match=msg):
         
     | 
| 82 | 
         
            +
                    imputer.fit(X)
         
     | 
| 83 | 
         
            +
             
     | 
| 84 | 
         
            +
                X = np.array(
         
     | 
| 85 | 
         
            +
                    [
         
     | 
| 86 | 
         
            +
                        [0, 0],
         
     | 
| 87 | 
         
            +
                        [np.nan, 2],
         
     | 
| 88 | 
         
            +
                    ]
         
     | 
| 89 | 
         
            +
                )
         
     | 
| 90 | 
         
            +
             
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 93 | 
         
            +
            def test_knn_imputer_removes_all_na_features(na):
         
     | 
| 94 | 
         
            +
                X = np.array(
         
     | 
| 95 | 
         
            +
                    [
         
     | 
| 96 | 
         
            +
                        [1, 1, na, 1, 1, 1.0],
         
     | 
| 97 | 
         
            +
                        [2, 3, na, 2, 2, 2],
         
     | 
| 98 | 
         
            +
                        [3, 4, na, 3, 3, na],
         
     | 
| 99 | 
         
            +
                        [6, 4, na, na, 6, 6],
         
     | 
| 100 | 
         
            +
                    ]
         
     | 
| 101 | 
         
            +
                )
         
     | 
| 102 | 
         
            +
                knn = KNNImputer(missing_values=na, n_neighbors=2).fit(X)
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                X_transform = knn.transform(X)
         
     | 
| 105 | 
         
            +
                assert not np.isnan(X_transform).any()
         
     | 
| 106 | 
         
            +
                assert X_transform.shape == (4, 5)
         
     | 
| 107 | 
         
            +
             
     | 
| 108 | 
         
            +
                X_test = np.arange(0, 12).reshape(2, 6)
         
     | 
| 109 | 
         
            +
                X_transform = knn.transform(X_test)
         
     | 
| 110 | 
         
            +
                assert_allclose(X_test[:, [0, 1, 3, 4, 5]], X_transform)
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
             
     | 
| 113 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 114 | 
         
            +
            def test_knn_imputer_zero_nan_imputes_the_same(na):
         
     | 
| 115 | 
         
            +
                # Test with an imputable matrix and compare with different missing_values
         
     | 
| 116 | 
         
            +
                X_zero = np.array(
         
     | 
| 117 | 
         
            +
                    [
         
     | 
| 118 | 
         
            +
                        [1, 0, 1, 1, 1.0],
         
     | 
| 119 | 
         
            +
                        [2, 2, 2, 2, 2],
         
     | 
| 120 | 
         
            +
                        [3, 3, 3, 3, 0],
         
     | 
| 121 | 
         
            +
                        [6, 6, 0, 6, 6],
         
     | 
| 122 | 
         
            +
                    ]
         
     | 
| 123 | 
         
            +
                )
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                X_nan = np.array(
         
     | 
| 126 | 
         
            +
                    [
         
     | 
| 127 | 
         
            +
                        [1, na, 1, 1, 1.0],
         
     | 
| 128 | 
         
            +
                        [2, 2, 2, 2, 2],
         
     | 
| 129 | 
         
            +
                        [3, 3, 3, 3, na],
         
     | 
| 130 | 
         
            +
                        [6, 6, na, 6, 6],
         
     | 
| 131 | 
         
            +
                    ]
         
     | 
| 132 | 
         
            +
                )
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                X_imputed = np.array(
         
     | 
| 135 | 
         
            +
                    [
         
     | 
| 136 | 
         
            +
                        [1, 2.5, 1, 1, 1.0],
         
     | 
| 137 | 
         
            +
                        [2, 2, 2, 2, 2],
         
     | 
| 138 | 
         
            +
                        [3, 3, 3, 3, 1.5],
         
     | 
| 139 | 
         
            +
                        [6, 6, 2.5, 6, 6],
         
     | 
| 140 | 
         
            +
                    ]
         
     | 
| 141 | 
         
            +
                )
         
     | 
| 142 | 
         
            +
             
     | 
| 143 | 
         
            +
                imputer_zero = KNNImputer(missing_values=0, n_neighbors=2, weights="uniform")
         
     | 
| 144 | 
         
            +
             
     | 
| 145 | 
         
            +
                imputer_nan = KNNImputer(missing_values=na, n_neighbors=2, weights="uniform")
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                assert_allclose(imputer_zero.fit_transform(X_zero), X_imputed)
         
     | 
| 148 | 
         
            +
                assert_allclose(
         
     | 
| 149 | 
         
            +
                    imputer_zero.fit_transform(X_zero), imputer_nan.fit_transform(X_nan)
         
     | 
| 150 | 
         
            +
                )
         
     | 
| 151 | 
         
            +
             
     | 
| 152 | 
         
            +
             
     | 
| 153 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 154 | 
         
            +
            def test_knn_imputer_verify(na):
         
     | 
| 155 | 
         
            +
                # Test with an imputable matrix
         
     | 
| 156 | 
         
            +
                X = np.array(
         
     | 
| 157 | 
         
            +
                    [
         
     | 
| 158 | 
         
            +
                        [1, 0, 0, 1],
         
     | 
| 159 | 
         
            +
                        [2, 1, 2, na],
         
     | 
| 160 | 
         
            +
                        [3, 2, 3, na],
         
     | 
| 161 | 
         
            +
                        [na, 4, 5, 5],
         
     | 
| 162 | 
         
            +
                        [6, na, 6, 7],
         
     | 
| 163 | 
         
            +
                        [8, 8, 8, 8],
         
     | 
| 164 | 
         
            +
                        [16, 15, 18, 19],
         
     | 
| 165 | 
         
            +
                    ]
         
     | 
| 166 | 
         
            +
                )
         
     | 
| 167 | 
         
            +
             
     | 
| 168 | 
         
            +
                X_imputed = np.array(
         
     | 
| 169 | 
         
            +
                    [
         
     | 
| 170 | 
         
            +
                        [1, 0, 0, 1],
         
     | 
| 171 | 
         
            +
                        [2, 1, 2, 8],
         
     | 
| 172 | 
         
            +
                        [3, 2, 3, 8],
         
     | 
| 173 | 
         
            +
                        [4, 4, 5, 5],
         
     | 
| 174 | 
         
            +
                        [6, 3, 6, 7],
         
     | 
| 175 | 
         
            +
                        [8, 8, 8, 8],
         
     | 
| 176 | 
         
            +
                        [16, 15, 18, 19],
         
     | 
| 177 | 
         
            +
                    ]
         
     | 
| 178 | 
         
            +
                )
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                imputer = KNNImputer(missing_values=na)
         
     | 
| 181 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                # Test when there is not enough neighbors
         
     | 
| 184 | 
         
            +
                X = np.array(
         
     | 
| 185 | 
         
            +
                    [
         
     | 
| 186 | 
         
            +
                        [1, 0, 0, na],
         
     | 
| 187 | 
         
            +
                        [2, 1, 2, na],
         
     | 
| 188 | 
         
            +
                        [3, 2, 3, na],
         
     | 
| 189 | 
         
            +
                        [4, 4, 5, na],
         
     | 
| 190 | 
         
            +
                        [6, 7, 6, na],
         
     | 
| 191 | 
         
            +
                        [8, 8, 8, na],
         
     | 
| 192 | 
         
            +
                        [20, 20, 20, 20],
         
     | 
| 193 | 
         
            +
                        [22, 22, 22, 22],
         
     | 
| 194 | 
         
            +
                    ]
         
     | 
| 195 | 
         
            +
                )
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                # Not enough neighbors, use column mean from training
         
     | 
| 198 | 
         
            +
                X_impute_value = (20 + 22) / 2
         
     | 
| 199 | 
         
            +
                X_imputed = np.array(
         
     | 
| 200 | 
         
            +
                    [
         
     | 
| 201 | 
         
            +
                        [1, 0, 0, X_impute_value],
         
     | 
| 202 | 
         
            +
                        [2, 1, 2, X_impute_value],
         
     | 
| 203 | 
         
            +
                        [3, 2, 3, X_impute_value],
         
     | 
| 204 | 
         
            +
                        [4, 4, 5, X_impute_value],
         
     | 
| 205 | 
         
            +
                        [6, 7, 6, X_impute_value],
         
     | 
| 206 | 
         
            +
                        [8, 8, 8, X_impute_value],
         
     | 
| 207 | 
         
            +
                        [20, 20, 20, 20],
         
     | 
| 208 | 
         
            +
                        [22, 22, 22, 22],
         
     | 
| 209 | 
         
            +
                    ]
         
     | 
| 210 | 
         
            +
                )
         
     | 
| 211 | 
         
            +
             
     | 
| 212 | 
         
            +
                imputer = KNNImputer(missing_values=na)
         
     | 
| 213 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                # Test when data in fit() and transform() are different
         
     | 
| 216 | 
         
            +
                X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 16]])
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                X1 = np.array([[1, 0], [3, 2], [4, na]])
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                X_2_1 = (0 + 3 + 6 + 7 + 8) / 5
         
     | 
| 221 | 
         
            +
                X1_imputed = np.array([[1, 0], [3, 2], [4, X_2_1]])
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                imputer = KNNImputer(missing_values=na)
         
     | 
| 224 | 
         
            +
                assert_allclose(imputer.fit(X).transform(X1), X1_imputed)
         
     | 
| 225 | 
         
            +
             
     | 
| 226 | 
         
            +
             
     | 
| 227 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 228 | 
         
            +
            def test_knn_imputer_one_n_neighbors(na):
         
     | 
| 229 | 
         
            +
                X = np.array([[0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13]])
         
     | 
| 230 | 
         
            +
             
     | 
| 231 | 
         
            +
                X_imputed = np.array([[0, 0], [4, 2], [4, 3], [5, 3], [7, 7], [7, 8], [14, 13]])
         
     | 
| 232 | 
         
            +
             
     | 
| 233 | 
         
            +
                imputer = KNNImputer(n_neighbors=1, missing_values=na)
         
     | 
| 234 | 
         
            +
             
     | 
| 235 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 236 | 
         
            +
             
     | 
| 237 | 
         
            +
             
     | 
| 238 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 239 | 
         
            +
            def test_knn_imputer_all_samples_are_neighbors(na):
         
     | 
| 240 | 
         
            +
                X = np.array([[0, 0], [na, 2], [4, 3], [5, na], [7, 7], [na, 8], [14, 13]])
         
     | 
| 241 | 
         
            +
             
     | 
| 242 | 
         
            +
                X_imputed = np.array([[0, 0], [6, 2], [4, 3], [5, 5.5], [7, 7], [6, 8], [14, 13]])
         
     | 
| 243 | 
         
            +
             
     | 
| 244 | 
         
            +
                n_neighbors = X.shape[0] - 1
         
     | 
| 245 | 
         
            +
                imputer = KNNImputer(n_neighbors=n_neighbors, missing_values=na)
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 248 | 
         
            +
             
     | 
| 249 | 
         
            +
                n_neighbors = X.shape[0]
         
     | 
| 250 | 
         
            +
                imputer_plus1 = KNNImputer(n_neighbors=n_neighbors, missing_values=na)
         
     | 
| 251 | 
         
            +
                assert_allclose(imputer_plus1.fit_transform(X), X_imputed)
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
             
     | 
| 254 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 255 | 
         
            +
            def test_knn_imputer_weight_uniform(na):
         
     | 
| 256 | 
         
            +
                X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]])
         
     | 
| 257 | 
         
            +
             
     | 
| 258 | 
         
            +
                # Test with "uniform" weight (or unweighted)
         
     | 
| 259 | 
         
            +
                X_imputed_uniform = np.array(
         
     | 
| 260 | 
         
            +
                    [[0, 0], [5, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]]
         
     | 
| 261 | 
         
            +
                )
         
     | 
| 262 | 
         
            +
             
     | 
| 263 | 
         
            +
                imputer = KNNImputer(weights="uniform", missing_values=na)
         
     | 
| 264 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
         
     | 
| 265 | 
         
            +
             
     | 
| 266 | 
         
            +
                # Test with "callable" weight
         
     | 
| 267 | 
         
            +
                def no_weight(dist):
         
     | 
| 268 | 
         
            +
                    return None
         
     | 
| 269 | 
         
            +
             
     | 
| 270 | 
         
            +
                imputer = KNNImputer(weights=no_weight, missing_values=na)
         
     | 
| 271 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
         
     | 
| 272 | 
         
            +
             
     | 
| 273 | 
         
            +
                # Test with "callable" uniform weight
         
     | 
| 274 | 
         
            +
                def uniform_weight(dist):
         
     | 
| 275 | 
         
            +
                    return np.ones_like(dist)
         
     | 
| 276 | 
         
            +
             
     | 
| 277 | 
         
            +
                imputer = KNNImputer(weights=uniform_weight, missing_values=na)
         
     | 
| 278 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed_uniform)
         
     | 
| 279 | 
         
            +
             
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
            @pytest.mark.parametrize("na", [np.nan, -1])
         
     | 
| 282 | 
         
            +
            def test_knn_imputer_weight_distance(na):
         
     | 
| 283 | 
         
            +
                X = np.array([[0, 0], [na, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]])
         
     | 
| 284 | 
         
            +
             
     | 
| 285 | 
         
            +
                # Test with "distance" weight
         
     | 
| 286 | 
         
            +
                nn = KNeighborsRegressor(metric="euclidean", weights="distance")
         
     | 
| 287 | 
         
            +
                X_rows_idx = [0, 2, 3, 4, 5, 6]
         
     | 
| 288 | 
         
            +
                nn.fit(X[X_rows_idx, 1:], X[X_rows_idx, 0])
         
     | 
| 289 | 
         
            +
                knn_imputed_value = nn.predict(X[1:2, 1:])[0]
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                # Manual calculation
         
     | 
| 292 | 
         
            +
                X_neighbors_idx = [0, 2, 3, 4, 5]
         
     | 
| 293 | 
         
            +
                dist = nan_euclidean_distances(X[1:2, :], X, missing_values=na)
         
     | 
| 294 | 
         
            +
                weights = 1 / dist[:, X_neighbors_idx].ravel()
         
     | 
| 295 | 
         
            +
                manual_imputed_value = np.average(X[X_neighbors_idx, 0], weights=weights)
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                X_imputed_distance1 = np.array(
         
     | 
| 298 | 
         
            +
                    [[0, 0], [manual_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]]
         
     | 
| 299 | 
         
            +
                )
         
     | 
| 300 | 
         
            +
             
     | 
| 301 | 
         
            +
                # NearestNeighbor calculation
         
     | 
| 302 | 
         
            +
                X_imputed_distance2 = np.array(
         
     | 
| 303 | 
         
            +
                    [[0, 0], [knn_imputed_value, 2], [4, 3], [5, 6], [7, 7], [9, 8], [11, 10]]
         
     | 
| 304 | 
         
            +
                )
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                imputer = KNNImputer(weights="distance", missing_values=na)
         
     | 
| 307 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed_distance1)
         
     | 
| 308 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed_distance2)
         
     | 
| 309 | 
         
            +
             
     | 
| 310 | 
         
            +
                # Test with weights = "distance" and n_neighbors=2
         
     | 
| 311 | 
         
            +
                X = np.array(
         
     | 
| 312 | 
         
            +
                    [
         
     | 
| 313 | 
         
            +
                        [na, 0, 0],
         
     | 
| 314 | 
         
            +
                        [2, 1, 2],
         
     | 
| 315 | 
         
            +
                        [3, 2, 3],
         
     | 
| 316 | 
         
            +
                        [4, 5, 5],
         
     | 
| 317 | 
         
            +
                    ]
         
     | 
| 318 | 
         
            +
                )
         
     | 
| 319 | 
         
            +
             
     | 
| 320 | 
         
            +
                # neighbors are rows 1, 2, the nan_euclidean_distances are:
         
     | 
| 321 | 
         
            +
                dist_0_1 = np.sqrt((3 / 2) * ((1 - 0) ** 2 + (2 - 0) ** 2))
         
     | 
| 322 | 
         
            +
                dist_0_2 = np.sqrt((3 / 2) * ((2 - 0) ** 2 + (3 - 0) ** 2))
         
     | 
| 323 | 
         
            +
                imputed_value = np.average([2, 3], weights=[1 / dist_0_1, 1 / dist_0_2])
         
     | 
| 324 | 
         
            +
             
     | 
| 325 | 
         
            +
                X_imputed = np.array(
         
     | 
| 326 | 
         
            +
                    [
         
     | 
| 327 | 
         
            +
                        [imputed_value, 0, 0],
         
     | 
| 328 | 
         
            +
                        [2, 1, 2],
         
     | 
| 329 | 
         
            +
                        [3, 2, 3],
         
     | 
| 330 | 
         
            +
                        [4, 5, 5],
         
     | 
| 331 | 
         
            +
                    ]
         
     | 
| 332 | 
         
            +
                )
         
     | 
| 333 | 
         
            +
             
     | 
| 334 | 
         
            +
                imputer = KNNImputer(n_neighbors=2, weights="distance", missing_values=na)
         
     | 
| 335 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 336 | 
         
            +
             
     | 
| 337 | 
         
            +
                # Test with varying missingness patterns
         
     | 
| 338 | 
         
            +
                X = np.array(
         
     | 
| 339 | 
         
            +
                    [
         
     | 
| 340 | 
         
            +
                        [1, 0, 0, 1],
         
     | 
| 341 | 
         
            +
                        [0, na, 1, na],
         
     | 
| 342 | 
         
            +
                        [1, 1, 1, na],
         
     | 
| 343 | 
         
            +
                        [0, 1, 0, 0],
         
     | 
| 344 | 
         
            +
                        [0, 0, 0, 0],
         
     | 
| 345 | 
         
            +
                        [1, 0, 1, 1],
         
     | 
| 346 | 
         
            +
                        [10, 10, 10, 10],
         
     | 
| 347 | 
         
            +
                    ]
         
     | 
| 348 | 
         
            +
                )
         
     | 
| 349 | 
         
            +
             
     | 
| 350 | 
         
            +
                # Get weights of donor neighbors
         
     | 
| 351 | 
         
            +
                dist = nan_euclidean_distances(X, missing_values=na)
         
     | 
| 352 | 
         
            +
                r1c1_nbor_dists = dist[1, [0, 2, 3, 4, 5]]
         
     | 
| 353 | 
         
            +
                r1c3_nbor_dists = dist[1, [0, 3, 4, 5, 6]]
         
     | 
| 354 | 
         
            +
                r1c1_nbor_wt = 1 / r1c1_nbor_dists
         
     | 
| 355 | 
         
            +
                r1c3_nbor_wt = 1 / r1c3_nbor_dists
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                r2c3_nbor_dists = dist[2, [0, 3, 4, 5, 6]]
         
     | 
| 358 | 
         
            +
                r2c3_nbor_wt = 1 / r2c3_nbor_dists
         
     | 
| 359 | 
         
            +
             
     | 
| 360 | 
         
            +
                # Collect donor values
         
     | 
| 361 | 
         
            +
                col1_donor_values = np.ma.masked_invalid(X[[0, 2, 3, 4, 5], 1]).copy()
         
     | 
| 362 | 
         
            +
                col3_donor_values = np.ma.masked_invalid(X[[0, 3, 4, 5, 6], 3]).copy()
         
     | 
| 363 | 
         
            +
             
     | 
| 364 | 
         
            +
                # Final imputed values
         
     | 
| 365 | 
         
            +
                r1c1_imp = np.ma.average(col1_donor_values, weights=r1c1_nbor_wt)
         
     | 
| 366 | 
         
            +
                r1c3_imp = np.ma.average(col3_donor_values, weights=r1c3_nbor_wt)
         
     | 
| 367 | 
         
            +
                r2c3_imp = np.ma.average(col3_donor_values, weights=r2c3_nbor_wt)
         
     | 
| 368 | 
         
            +
             
     | 
| 369 | 
         
            +
                X_imputed = np.array(
         
     | 
| 370 | 
         
            +
                    [
         
     | 
| 371 | 
         
            +
                        [1, 0, 0, 1],
         
     | 
| 372 | 
         
            +
                        [0, r1c1_imp, 1, r1c3_imp],
         
     | 
| 373 | 
         
            +
                        [1, 1, 1, r2c3_imp],
         
     | 
| 374 | 
         
            +
                        [0, 1, 0, 0],
         
     | 
| 375 | 
         
            +
                        [0, 0, 0, 0],
         
     | 
| 376 | 
         
            +
                        [1, 0, 1, 1],
         
     | 
| 377 | 
         
            +
                        [10, 10, 10, 10],
         
     | 
| 378 | 
         
            +
                    ]
         
     | 
| 379 | 
         
            +
                )
         
     | 
| 380 | 
         
            +
             
     | 
| 381 | 
         
            +
                imputer = KNNImputer(weights="distance", missing_values=na)
         
     | 
| 382 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 383 | 
         
            +
             
     | 
| 384 | 
         
            +
                X = np.array(
         
     | 
| 385 | 
         
            +
                    [
         
     | 
| 386 | 
         
            +
                        [0, 0, 0, na],
         
     | 
| 387 | 
         
            +
                        [1, 1, 1, na],
         
     | 
| 388 | 
         
            +
                        [2, 2, na, 2],
         
     | 
| 389 | 
         
            +
                        [3, 3, 3, 3],
         
     | 
| 390 | 
         
            +
                        [4, 4, 4, 4],
         
     | 
| 391 | 
         
            +
                        [5, 5, 5, 5],
         
     | 
| 392 | 
         
            +
                        [6, 6, 6, 6],
         
     | 
| 393 | 
         
            +
                        [na, 7, 7, 7],
         
     | 
| 394 | 
         
            +
                    ]
         
     | 
| 395 | 
         
            +
                )
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                dist = pairwise_distances(
         
     | 
| 398 | 
         
            +
                    X, metric="nan_euclidean", squared=False, missing_values=na
         
     | 
| 399 | 
         
            +
                )
         
     | 
| 400 | 
         
            +
             
     | 
| 401 | 
         
            +
                # Calculate weights
         
     | 
| 402 | 
         
            +
                r0c3_w = 1.0 / dist[0, 2:-1]
         
     | 
| 403 | 
         
            +
                r1c3_w = 1.0 / dist[1, 2:-1]
         
     | 
| 404 | 
         
            +
                r2c2_w = 1.0 / dist[2, (0, 1, 3, 4, 5)]
         
     | 
| 405 | 
         
            +
                r7c0_w = 1.0 / dist[7, 2:7]
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                # Calculate weighted averages
         
     | 
| 408 | 
         
            +
                r0c3 = np.average(X[2:-1, -1], weights=r0c3_w)
         
     | 
| 409 | 
         
            +
                r1c3 = np.average(X[2:-1, -1], weights=r1c3_w)
         
     | 
| 410 | 
         
            +
                r2c2 = np.average(X[(0, 1, 3, 4, 5), 2], weights=r2c2_w)
         
     | 
| 411 | 
         
            +
                r7c0 = np.average(X[2:7, 0], weights=r7c0_w)
         
     | 
| 412 | 
         
            +
             
     | 
| 413 | 
         
            +
                X_imputed = np.array(
         
     | 
| 414 | 
         
            +
                    [
         
     | 
| 415 | 
         
            +
                        [0, 0, 0, r0c3],
         
     | 
| 416 | 
         
            +
                        [1, 1, 1, r1c3],
         
     | 
| 417 | 
         
            +
                        [2, 2, r2c2, 2],
         
     | 
| 418 | 
         
            +
                        [3, 3, 3, 3],
         
     | 
| 419 | 
         
            +
                        [4, 4, 4, 4],
         
     | 
| 420 | 
         
            +
                        [5, 5, 5, 5],
         
     | 
| 421 | 
         
            +
                        [6, 6, 6, 6],
         
     | 
| 422 | 
         
            +
                        [r7c0, 7, 7, 7],
         
     | 
| 423 | 
         
            +
                    ]
         
     | 
| 424 | 
         
            +
                )
         
     | 
| 425 | 
         
            +
             
     | 
| 426 | 
         
            +
                imputer_comp_wt = KNNImputer(missing_values=na, weights="distance")
         
     | 
| 427 | 
         
            +
                assert_allclose(imputer_comp_wt.fit_transform(X), X_imputed)
         
     | 
| 428 | 
         
            +
             
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
            def test_knn_imputer_callable_metric():
         
     | 
| 431 | 
         
            +
                # Define callable metric that returns the l1 norm:
         
     | 
| 432 | 
         
            +
                def custom_callable(x, y, missing_values=np.nan, squared=False):
         
     | 
| 433 | 
         
            +
                    x = np.ma.array(x, mask=np.isnan(x))
         
     | 
| 434 | 
         
            +
                    y = np.ma.array(y, mask=np.isnan(y))
         
     | 
| 435 | 
         
            +
                    dist = np.nansum(np.abs(x - y))
         
     | 
| 436 | 
         
            +
                    return dist
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                X = np.array([[4, 3, 3, np.nan], [6, 9, 6, 9], [4, 8, 6, 9], [np.nan, 9, 11, 10.0]])
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                X_0_3 = (9 + 9) / 2
         
     | 
| 441 | 
         
            +
                X_3_0 = (6 + 4) / 2
         
     | 
| 442 | 
         
            +
                X_imputed = np.array(
         
     | 
| 443 | 
         
            +
                    [[4, 3, 3, X_0_3], [6, 9, 6, 9], [4, 8, 6, 9], [X_3_0, 9, 11, 10.0]]
         
     | 
| 444 | 
         
            +
                )
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                imputer = KNNImputer(n_neighbors=2, metric=custom_callable)
         
     | 
| 447 | 
         
            +
                assert_allclose(imputer.fit_transform(X), X_imputed)
         
     | 
| 448 | 
         
            +
             
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
            @pytest.mark.parametrize("working_memory", [None, 0])
         
     | 
| 451 | 
         
            +
            @pytest.mark.parametrize("na", [-1, np.nan])
         
     | 
| 452 | 
         
            +
            # Note that we use working_memory=0 to ensure that chunking is tested, even
         
     | 
| 453 | 
         
            +
            # for a small dataset. However, it should raise a UserWarning that we ignore.
         
     | 
| 454 | 
         
            +
            @pytest.mark.filterwarnings("ignore:adhere to working_memory")
         
     | 
| 455 | 
         
            +
            def test_knn_imputer_with_simple_example(na, working_memory):
         
     | 
| 456 | 
         
            +
                X = np.array(
         
     | 
| 457 | 
         
            +
                    [
         
     | 
| 458 | 
         
            +
                        [0, na, 0, na],
         
     | 
| 459 | 
         
            +
                        [1, 1, 1, na],
         
     | 
| 460 | 
         
            +
                        [2, 2, na, 2],
         
     | 
| 461 | 
         
            +
                        [3, 3, 3, 3],
         
     | 
| 462 | 
         
            +
                        [4, 4, 4, 4],
         
     | 
| 463 | 
         
            +
                        [5, 5, 5, 5],
         
     | 
| 464 | 
         
            +
                        [6, 6, 6, 6],
         
     | 
| 465 | 
         
            +
                        [na, 7, 7, 7],
         
     | 
| 466 | 
         
            +
                    ]
         
     | 
| 467 | 
         
            +
                )
         
     | 
| 468 | 
         
            +
             
     | 
| 469 | 
         
            +
                r0c1 = np.mean(X[1:6, 1])
         
     | 
| 470 | 
         
            +
                r0c3 = np.mean(X[2:-1, -1])
         
     | 
| 471 | 
         
            +
                r1c3 = np.mean(X[2:-1, -1])
         
     | 
| 472 | 
         
            +
                r2c2 = np.mean(X[[0, 1, 3, 4, 5], 2])
         
     | 
| 473 | 
         
            +
                r7c0 = np.mean(X[2:-1, 0])
         
     | 
| 474 | 
         
            +
             
     | 
| 475 | 
         
            +
                X_imputed = np.array(
         
     | 
| 476 | 
         
            +
                    [
         
     | 
| 477 | 
         
            +
                        [0, r0c1, 0, r0c3],
         
     | 
| 478 | 
         
            +
                        [1, 1, 1, r1c3],
         
     | 
| 479 | 
         
            +
                        [2, 2, r2c2, 2],
         
     | 
| 480 | 
         
            +
                        [3, 3, 3, 3],
         
     | 
| 481 | 
         
            +
                        [4, 4, 4, 4],
         
     | 
| 482 | 
         
            +
                        [5, 5, 5, 5],
         
     | 
| 483 | 
         
            +
                        [6, 6, 6, 6],
         
     | 
| 484 | 
         
            +
                        [r7c0, 7, 7, 7],
         
     | 
| 485 | 
         
            +
                    ]
         
     | 
| 486 | 
         
            +
                )
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                with config_context(working_memory=working_memory):
         
     | 
| 489 | 
         
            +
                    imputer_comp = KNNImputer(missing_values=na)
         
     | 
| 490 | 
         
            +
                    assert_allclose(imputer_comp.fit_transform(X), X_imputed)
         
     | 
| 491 | 
         
            +
             
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
            @pytest.mark.parametrize("na", [-1, np.nan])
         
     | 
| 494 | 
         
            +
            @pytest.mark.parametrize("weights", ["uniform", "distance"])
         
     | 
| 495 | 
         
            +
            def test_knn_imputer_not_enough_valid_distances(na, weights):
         
     | 
| 496 | 
         
            +
                # Samples with needed feature has nan distance
         
     | 
| 497 | 
         
            +
                X1 = np.array([[na, 11], [na, 1], [3, na]])
         
     | 
| 498 | 
         
            +
                X1_imputed = np.array([[3, 11], [3, 1], [3, 6]])
         
     | 
| 499 | 
         
            +
             
     | 
| 500 | 
         
            +
                knn = KNNImputer(missing_values=na, n_neighbors=1, weights=weights)
         
     | 
| 501 | 
         
            +
                assert_allclose(knn.fit_transform(X1), X1_imputed)
         
     | 
| 502 | 
         
            +
             
     | 
| 503 | 
         
            +
                X2 = np.array([[4, na]])
         
     | 
| 504 | 
         
            +
                X2_imputed = np.array([[4, 6]])
         
     | 
| 505 | 
         
            +
                assert_allclose(knn.transform(X2), X2_imputed)
         
     | 
| 506 | 
         
            +
             
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
            @pytest.mark.parametrize("na", [-1, np.nan])
         
     | 
| 509 | 
         
            +
            def test_knn_imputer_drops_all_nan_features(na):
         
     | 
| 510 | 
         
            +
                X1 = np.array([[na, 1], [na, 2]])
         
     | 
| 511 | 
         
            +
                knn = KNNImputer(missing_values=na, n_neighbors=1)
         
     | 
| 512 | 
         
            +
                X1_expected = np.array([[1], [2]])
         
     | 
| 513 | 
         
            +
                assert_allclose(knn.fit_transform(X1), X1_expected)
         
     | 
| 514 | 
         
            +
             
     | 
| 515 | 
         
            +
                X2 = np.array([[1, 2], [3, na]])
         
     | 
| 516 | 
         
            +
                X2_expected = np.array([[2], [1.5]])
         
     | 
| 517 | 
         
            +
                assert_allclose(knn.transform(X2), X2_expected)
         
     | 
| 518 | 
         
            +
             
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
            @pytest.mark.parametrize("working_memory", [None, 0])
         
     | 
| 521 | 
         
            +
            @pytest.mark.parametrize("na", [-1, np.nan])
         
     | 
| 522 | 
         
            +
            def test_knn_imputer_distance_weighted_not_enough_neighbors(na, working_memory):
         
     | 
| 523 | 
         
            +
                X = np.array([[3, na], [2, na], [na, 4], [5, 6], [6, 8], [na, 5]])
         
     | 
| 524 | 
         
            +
             
     | 
| 525 | 
         
            +
                dist = pairwise_distances(
         
     | 
| 526 | 
         
            +
                    X, metric="nan_euclidean", squared=False, missing_values=na
         
     | 
| 527 | 
         
            +
                )
         
     | 
| 528 | 
         
            +
             
     | 
| 529 | 
         
            +
                X_01 = np.average(X[3:5, 1], weights=1 / dist[0, 3:5])
         
     | 
| 530 | 
         
            +
                X_11 = np.average(X[3:5, 1], weights=1 / dist[1, 3:5])
         
     | 
| 531 | 
         
            +
                X_20 = np.average(X[3:5, 0], weights=1 / dist[2, 3:5])
         
     | 
| 532 | 
         
            +
                X_50 = np.average(X[3:5, 0], weights=1 / dist[5, 3:5])
         
     | 
| 533 | 
         
            +
             
     | 
| 534 | 
         
            +
                X_expected = np.array([[3, X_01], [2, X_11], [X_20, 4], [5, 6], [6, 8], [X_50, 5]])
         
     | 
| 535 | 
         
            +
             
     | 
| 536 | 
         
            +
                with config_context(working_memory=working_memory):
         
     | 
| 537 | 
         
            +
                    knn_3 = KNNImputer(missing_values=na, n_neighbors=3, weights="distance")
         
     | 
| 538 | 
         
            +
                    assert_allclose(knn_3.fit_transform(X), X_expected)
         
     | 
| 539 | 
         
            +
             
     | 
| 540 | 
         
            +
                    knn_4 = KNNImputer(missing_values=na, n_neighbors=4, weights="distance")
         
     | 
| 541 | 
         
            +
                    assert_allclose(knn_4.fit_transform(X), X_expected)
         
     | 
| 542 | 
         
            +
             
     | 
| 543 | 
         
            +
             
     | 
| 544 | 
         
            +
            @pytest.mark.parametrize("na, allow_nan", [(-1, False), (np.nan, True)])
         
     | 
| 545 | 
         
            +
            def test_knn_tags(na, allow_nan):
         
     | 
| 546 | 
         
            +
                knn = KNNImputer(missing_values=na)
         
     | 
| 547 | 
         
            +
                assert knn._get_tags()["allow_nan"] == allow_nan
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/isotonic.py
    ADDED
    
    | 
         @@ -0,0 +1,498 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            # Authors: Fabian Pedregosa <[email protected]>
         
     | 
| 2 | 
         
            +
            #          Alexandre Gramfort <[email protected]>
         
     | 
| 3 | 
         
            +
            #          Nelle Varoquaux <[email protected]>
         
     | 
| 4 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            import math
         
     | 
| 7 | 
         
            +
            import warnings
         
     | 
| 8 | 
         
            +
            from numbers import Real
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            import numpy as np
         
     | 
| 11 | 
         
            +
            from scipy import interpolate
         
     | 
| 12 | 
         
            +
            from scipy.stats import spearmanr
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            from ._isotonic import _inplace_contiguous_isotonic_regression, _make_unique
         
     | 
| 15 | 
         
            +
            from .base import BaseEstimator, RegressorMixin, TransformerMixin, _fit_context
         
     | 
| 16 | 
         
            +
            from .utils import check_array, check_consistent_length
         
     | 
| 17 | 
         
            +
            from .utils._param_validation import Interval, StrOptions, validate_params
         
     | 
| 18 | 
         
            +
            from .utils.validation import _check_sample_weight, check_is_fitted
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
            __all__ = ["check_increasing", "isotonic_regression", "IsotonicRegression"]
         
     | 
| 21 | 
         
            +
             
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            @validate_params(
         
     | 
| 24 | 
         
            +
                {
         
     | 
| 25 | 
         
            +
                    "x": ["array-like"],
         
     | 
| 26 | 
         
            +
                    "y": ["array-like"],
         
     | 
| 27 | 
         
            +
                },
         
     | 
| 28 | 
         
            +
                prefer_skip_nested_validation=True,
         
     | 
| 29 | 
         
            +
            )
         
     | 
| 30 | 
         
            +
            def check_increasing(x, y):
         
     | 
| 31 | 
         
            +
                """Determine whether y is monotonically correlated with x.
         
     | 
| 32 | 
         
            +
             
     | 
| 33 | 
         
            +
                y is found increasing or decreasing with respect to x based on a Spearman
         
     | 
| 34 | 
         
            +
                correlation test.
         
     | 
| 35 | 
         
            +
             
     | 
| 36 | 
         
            +
                Parameters
         
     | 
| 37 | 
         
            +
                ----------
         
     | 
| 38 | 
         
            +
                x : array-like of shape (n_samples,)
         
     | 
| 39 | 
         
            +
                        Training data.
         
     | 
| 40 | 
         
            +
             
     | 
| 41 | 
         
            +
                y : array-like of shape (n_samples,)
         
     | 
| 42 | 
         
            +
                    Training target.
         
     | 
| 43 | 
         
            +
             
     | 
| 44 | 
         
            +
                Returns
         
     | 
| 45 | 
         
            +
                -------
         
     | 
| 46 | 
         
            +
                increasing_bool : boolean
         
     | 
| 47 | 
         
            +
                    Whether the relationship is increasing or decreasing.
         
     | 
| 48 | 
         
            +
             
     | 
| 49 | 
         
            +
                Notes
         
     | 
| 50 | 
         
            +
                -----
         
     | 
| 51 | 
         
            +
                The Spearman correlation coefficient is estimated from the data, and the
         
     | 
| 52 | 
         
            +
                sign of the resulting estimate is used as the result.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                In the event that the 95% confidence interval based on Fisher transform
         
     | 
| 55 | 
         
            +
                spans zero, a warning is raised.
         
     | 
| 56 | 
         
            +
             
     | 
| 57 | 
         
            +
                References
         
     | 
| 58 | 
         
            +
                ----------
         
     | 
| 59 | 
         
            +
                Fisher transformation. Wikipedia.
         
     | 
| 60 | 
         
            +
                https://en.wikipedia.org/wiki/Fisher_transformation
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                Examples
         
     | 
| 63 | 
         
            +
                --------
         
     | 
| 64 | 
         
            +
                >>> from sklearn.isotonic import check_increasing
         
     | 
| 65 | 
         
            +
                >>> x, y = [1, 2, 3, 4, 5], [2, 4, 6, 8, 10]
         
     | 
| 66 | 
         
            +
                >>> check_increasing(x, y)
         
     | 
| 67 | 
         
            +
                True
         
     | 
| 68 | 
         
            +
                >>> y = [10, 8, 6, 4, 2]
         
     | 
| 69 | 
         
            +
                >>> check_increasing(x, y)
         
     | 
| 70 | 
         
            +
                False
         
     | 
| 71 | 
         
            +
                """
         
     | 
| 72 | 
         
            +
             
     | 
| 73 | 
         
            +
                # Calculate Spearman rho estimate and set return accordingly.
         
     | 
| 74 | 
         
            +
                rho, _ = spearmanr(x, y)
         
     | 
| 75 | 
         
            +
                increasing_bool = rho >= 0
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                # Run Fisher transform to get the rho CI, but handle rho=+/-1
         
     | 
| 78 | 
         
            +
                if rho not in [-1.0, 1.0] and len(x) > 3:
         
     | 
| 79 | 
         
            +
                    F = 0.5 * math.log((1.0 + rho) / (1.0 - rho))
         
     | 
| 80 | 
         
            +
                    F_se = 1 / math.sqrt(len(x) - 3)
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                    # Use a 95% CI, i.e., +/-1.96 S.E.
         
     | 
| 83 | 
         
            +
                    # https://en.wikipedia.org/wiki/Fisher_transformation
         
     | 
| 84 | 
         
            +
                    rho_0 = math.tanh(F - 1.96 * F_se)
         
     | 
| 85 | 
         
            +
                    rho_1 = math.tanh(F + 1.96 * F_se)
         
     | 
| 86 | 
         
            +
             
     | 
| 87 | 
         
            +
                    # Warn if the CI spans zero.
         
     | 
| 88 | 
         
            +
                    if np.sign(rho_0) != np.sign(rho_1):
         
     | 
| 89 | 
         
            +
                        warnings.warn(
         
     | 
| 90 | 
         
            +
                            "Confidence interval of the Spearman "
         
     | 
| 91 | 
         
            +
                            "correlation coefficient spans zero. "
         
     | 
| 92 | 
         
            +
                            "Determination of ``increasing`` may be "
         
     | 
| 93 | 
         
            +
                            "suspect."
         
     | 
| 94 | 
         
            +
                        )
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                return increasing_bool
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
             
     | 
| 99 | 
         
            +
            @validate_params(
         
     | 
| 100 | 
         
            +
                {
         
     | 
| 101 | 
         
            +
                    "y": ["array-like"],
         
     | 
| 102 | 
         
            +
                    "sample_weight": ["array-like", None],
         
     | 
| 103 | 
         
            +
                    "y_min": [Interval(Real, None, None, closed="both"), None],
         
     | 
| 104 | 
         
            +
                    "y_max": [Interval(Real, None, None, closed="both"), None],
         
     | 
| 105 | 
         
            +
                    "increasing": ["boolean"],
         
     | 
| 106 | 
         
            +
                },
         
     | 
| 107 | 
         
            +
                prefer_skip_nested_validation=True,
         
     | 
| 108 | 
         
            +
            )
         
     | 
| 109 | 
         
            +
            def isotonic_regression(
         
     | 
| 110 | 
         
            +
                y, *, sample_weight=None, y_min=None, y_max=None, increasing=True
         
     | 
| 111 | 
         
            +
            ):
         
     | 
| 112 | 
         
            +
                """Solve the isotonic regression model.
         
     | 
| 113 | 
         
            +
             
     | 
| 114 | 
         
            +
                Read more in the :ref:`User Guide <isotonic>`.
         
     | 
| 115 | 
         
            +
             
     | 
| 116 | 
         
            +
                Parameters
         
     | 
| 117 | 
         
            +
                ----------
         
     | 
| 118 | 
         
            +
                y : array-like of shape (n_samples,)
         
     | 
| 119 | 
         
            +
                    The data.
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 122 | 
         
            +
                    Weights on each point of the regression.
         
     | 
| 123 | 
         
            +
                    If None, weight is set to 1 (equal weights).
         
     | 
| 124 | 
         
            +
             
     | 
| 125 | 
         
            +
                y_min : float, default=None
         
     | 
| 126 | 
         
            +
                    Lower bound on the lowest predicted value (the minimum value may
         
     | 
| 127 | 
         
            +
                    still be higher). If not set, defaults to -inf.
         
     | 
| 128 | 
         
            +
             
     | 
| 129 | 
         
            +
                y_max : float, default=None
         
     | 
| 130 | 
         
            +
                    Upper bound on the highest predicted value (the maximum may still be
         
     | 
| 131 | 
         
            +
                    lower). If not set, defaults to +inf.
         
     | 
| 132 | 
         
            +
             
     | 
| 133 | 
         
            +
                increasing : bool, default=True
         
     | 
| 134 | 
         
            +
                    Whether to compute ``y_`` is increasing (if set to True) or decreasing
         
     | 
| 135 | 
         
            +
                    (if set to False).
         
     | 
| 136 | 
         
            +
             
     | 
| 137 | 
         
            +
                Returns
         
     | 
| 138 | 
         
            +
                -------
         
     | 
| 139 | 
         
            +
                y_ : ndarray of shape (n_samples,)
         
     | 
| 140 | 
         
            +
                    Isotonic fit of y.
         
     | 
| 141 | 
         
            +
             
     | 
| 142 | 
         
            +
                References
         
     | 
| 143 | 
         
            +
                ----------
         
     | 
| 144 | 
         
            +
                "Active set algorithms for isotonic regression; A unifying framework"
         
     | 
| 145 | 
         
            +
                by Michael J. Best and Nilotpal Chakravarti, section 3.
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                Examples
         
     | 
| 148 | 
         
            +
                --------
         
     | 
| 149 | 
         
            +
                >>> from sklearn.isotonic import isotonic_regression
         
     | 
| 150 | 
         
            +
                >>> isotonic_regression([5, 3, 1, 2, 8, 10, 7, 9, 6, 4])
         
     | 
| 151 | 
         
            +
                array([2.75   , 2.75   , 2.75   , 2.75   , 7.33...,
         
     | 
| 152 | 
         
            +
                       7.33..., 7.33..., 7.33..., 7.33..., 7.33...])
         
     | 
| 153 | 
         
            +
                """
         
     | 
| 154 | 
         
            +
                order = np.s_[:] if increasing else np.s_[::-1]
         
     | 
| 155 | 
         
            +
                y = check_array(y, ensure_2d=False, input_name="y", dtype=[np.float64, np.float32])
         
     | 
| 156 | 
         
            +
                y = np.array(y[order], dtype=y.dtype)
         
     | 
| 157 | 
         
            +
                sample_weight = _check_sample_weight(sample_weight, y, dtype=y.dtype, copy=True)
         
     | 
| 158 | 
         
            +
                sample_weight = np.ascontiguousarray(sample_weight[order])
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                _inplace_contiguous_isotonic_regression(y, sample_weight)
         
     | 
| 161 | 
         
            +
                if y_min is not None or y_max is not None:
         
     | 
| 162 | 
         
            +
                    # Older versions of np.clip don't accept None as a bound, so use np.inf
         
     | 
| 163 | 
         
            +
                    if y_min is None:
         
     | 
| 164 | 
         
            +
                        y_min = -np.inf
         
     | 
| 165 | 
         
            +
                    if y_max is None:
         
     | 
| 166 | 
         
            +
                        y_max = np.inf
         
     | 
| 167 | 
         
            +
                    np.clip(y, y_min, y_max, y)
         
     | 
| 168 | 
         
            +
                return y[order]
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
             
     | 
| 171 | 
         
            +
            class IsotonicRegression(RegressorMixin, TransformerMixin, BaseEstimator):
         
     | 
| 172 | 
         
            +
                """Isotonic regression model.
         
     | 
| 173 | 
         
            +
             
     | 
| 174 | 
         
            +
                Read more in the :ref:`User Guide <isotonic>`.
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                .. versionadded:: 0.13
         
     | 
| 177 | 
         
            +
             
     | 
| 178 | 
         
            +
                Parameters
         
     | 
| 179 | 
         
            +
                ----------
         
     | 
| 180 | 
         
            +
                y_min : float, default=None
         
     | 
| 181 | 
         
            +
                    Lower bound on the lowest predicted value (the minimum value may
         
     | 
| 182 | 
         
            +
                    still be higher). If not set, defaults to -inf.
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                y_max : float, default=None
         
     | 
| 185 | 
         
            +
                    Upper bound on the highest predicted value (the maximum may still be
         
     | 
| 186 | 
         
            +
                    lower). If not set, defaults to +inf.
         
     | 
| 187 | 
         
            +
             
     | 
| 188 | 
         
            +
                increasing : bool or 'auto', default=True
         
     | 
| 189 | 
         
            +
                    Determines whether the predictions should be constrained to increase
         
     | 
| 190 | 
         
            +
                    or decrease with `X`. 'auto' will decide based on the Spearman
         
     | 
| 191 | 
         
            +
                    correlation estimate's sign.
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                out_of_bounds : {'nan', 'clip', 'raise'}, default='nan'
         
     | 
| 194 | 
         
            +
                    Handles how `X` values outside of the training domain are handled
         
     | 
| 195 | 
         
            +
                    during prediction.
         
     | 
| 196 | 
         
            +
             
     | 
| 197 | 
         
            +
                    - 'nan', predictions will be NaN.
         
     | 
| 198 | 
         
            +
                    - 'clip', predictions will be set to the value corresponding to
         
     | 
| 199 | 
         
            +
                      the nearest train interval endpoint.
         
     | 
| 200 | 
         
            +
                    - 'raise', a `ValueError` is raised.
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                Attributes
         
     | 
| 203 | 
         
            +
                ----------
         
     | 
| 204 | 
         
            +
                X_min_ : float
         
     | 
| 205 | 
         
            +
                    Minimum value of input array `X_` for left bound.
         
     | 
| 206 | 
         
            +
             
     | 
| 207 | 
         
            +
                X_max_ : float
         
     | 
| 208 | 
         
            +
                    Maximum value of input array `X_` for right bound.
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                X_thresholds_ : ndarray of shape (n_thresholds,)
         
     | 
| 211 | 
         
            +
                    Unique ascending `X` values used to interpolate
         
     | 
| 212 | 
         
            +
                    the y = f(X) monotonic function.
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                y_thresholds_ : ndarray of shape (n_thresholds,)
         
     | 
| 217 | 
         
            +
                    De-duplicated `y` values suitable to interpolate the y = f(X)
         
     | 
| 218 | 
         
            +
                    monotonic function.
         
     | 
| 219 | 
         
            +
             
     | 
| 220 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 221 | 
         
            +
             
     | 
| 222 | 
         
            +
                f_ : function
         
     | 
| 223 | 
         
            +
                    The stepwise interpolating function that covers the input domain ``X``.
         
     | 
| 224 | 
         
            +
             
     | 
| 225 | 
         
            +
                increasing_ : bool
         
     | 
| 226 | 
         
            +
                    Inferred value for ``increasing``.
         
     | 
| 227 | 
         
            +
             
     | 
| 228 | 
         
            +
                See Also
         
     | 
| 229 | 
         
            +
                --------
         
     | 
| 230 | 
         
            +
                sklearn.linear_model.LinearRegression : Ordinary least squares Linear
         
     | 
| 231 | 
         
            +
                    Regression.
         
     | 
| 232 | 
         
            +
                sklearn.ensemble.HistGradientBoostingRegressor : Gradient boosting that
         
     | 
| 233 | 
         
            +
                    is a non-parametric model accepting monotonicity constraints.
         
     | 
| 234 | 
         
            +
                isotonic_regression : Function to solve the isotonic regression model.
         
     | 
| 235 | 
         
            +
             
     | 
| 236 | 
         
            +
                Notes
         
     | 
| 237 | 
         
            +
                -----
         
     | 
| 238 | 
         
            +
                Ties are broken using the secondary method from de Leeuw, 1977.
         
     | 
| 239 | 
         
            +
             
     | 
| 240 | 
         
            +
                References
         
     | 
| 241 | 
         
            +
                ----------
         
     | 
| 242 | 
         
            +
                Isotonic Median Regression: A Linear Programming Approach
         
     | 
| 243 | 
         
            +
                Nilotpal Chakravarti
         
     | 
| 244 | 
         
            +
                Mathematics of Operations Research
         
     | 
| 245 | 
         
            +
                Vol. 14, No. 2 (May, 1989), pp. 303-308
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
                Isotone Optimization in R : Pool-Adjacent-Violators
         
     | 
| 248 | 
         
            +
                Algorithm (PAVA) and Active Set Methods
         
     | 
| 249 | 
         
            +
                de Leeuw, Hornik, Mair
         
     | 
| 250 | 
         
            +
                Journal of Statistical Software 2009
         
     | 
| 251 | 
         
            +
             
     | 
| 252 | 
         
            +
                Correctness of Kruskal's algorithms for monotone regression with ties
         
     | 
| 253 | 
         
            +
                de Leeuw, Psychometrica, 1977
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                Examples
         
     | 
| 256 | 
         
            +
                --------
         
     | 
| 257 | 
         
            +
                >>> from sklearn.datasets import make_regression
         
     | 
| 258 | 
         
            +
                >>> from sklearn.isotonic import IsotonicRegression
         
     | 
| 259 | 
         
            +
                >>> X, y = make_regression(n_samples=10, n_features=1, random_state=41)
         
     | 
| 260 | 
         
            +
                >>> iso_reg = IsotonicRegression().fit(X, y)
         
     | 
| 261 | 
         
            +
                >>> iso_reg.predict([.1, .2])
         
     | 
| 262 | 
         
            +
                array([1.8628..., 3.7256...])
         
     | 
| 263 | 
         
            +
                """
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 266 | 
         
            +
                    "y_min": [Interval(Real, None, None, closed="both"), None],
         
     | 
| 267 | 
         
            +
                    "y_max": [Interval(Real, None, None, closed="both"), None],
         
     | 
| 268 | 
         
            +
                    "increasing": ["boolean", StrOptions({"auto"})],
         
     | 
| 269 | 
         
            +
                    "out_of_bounds": [StrOptions({"nan", "clip", "raise"})],
         
     | 
| 270 | 
         
            +
                }
         
     | 
| 271 | 
         
            +
             
     | 
| 272 | 
         
            +
                def __init__(self, *, y_min=None, y_max=None, increasing=True, out_of_bounds="nan"):
         
     | 
| 273 | 
         
            +
                    self.y_min = y_min
         
     | 
| 274 | 
         
            +
                    self.y_max = y_max
         
     | 
| 275 | 
         
            +
                    self.increasing = increasing
         
     | 
| 276 | 
         
            +
                    self.out_of_bounds = out_of_bounds
         
     | 
| 277 | 
         
            +
             
     | 
| 278 | 
         
            +
                def _check_input_data_shape(self, X):
         
     | 
| 279 | 
         
            +
                    if not (X.ndim == 1 or (X.ndim == 2 and X.shape[1] == 1)):
         
     | 
| 280 | 
         
            +
                        msg = (
         
     | 
| 281 | 
         
            +
                            "Isotonic regression input X should be a 1d array or "
         
     | 
| 282 | 
         
            +
                            "2d array with 1 feature"
         
     | 
| 283 | 
         
            +
                        )
         
     | 
| 284 | 
         
            +
                        raise ValueError(msg)
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                def _build_f(self, X, y):
         
     | 
| 287 | 
         
            +
                    """Build the f_ interp1d function."""
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    bounds_error = self.out_of_bounds == "raise"
         
     | 
| 290 | 
         
            +
                    if len(y) == 1:
         
     | 
| 291 | 
         
            +
                        # single y, constant prediction
         
     | 
| 292 | 
         
            +
                        self.f_ = lambda x: y.repeat(x.shape)
         
     | 
| 293 | 
         
            +
                    else:
         
     | 
| 294 | 
         
            +
                        self.f_ = interpolate.interp1d(
         
     | 
| 295 | 
         
            +
                            X, y, kind="linear", bounds_error=bounds_error
         
     | 
| 296 | 
         
            +
                        )
         
     | 
| 297 | 
         
            +
             
     | 
| 298 | 
         
            +
                def _build_y(self, X, y, sample_weight, trim_duplicates=True):
         
     | 
| 299 | 
         
            +
                    """Build the y_ IsotonicRegression."""
         
     | 
| 300 | 
         
            +
                    self._check_input_data_shape(X)
         
     | 
| 301 | 
         
            +
                    X = X.reshape(-1)  # use 1d view
         
     | 
| 302 | 
         
            +
             
     | 
| 303 | 
         
            +
                    # Determine increasing if auto-determination requested
         
     | 
| 304 | 
         
            +
                    if self.increasing == "auto":
         
     | 
| 305 | 
         
            +
                        self.increasing_ = check_increasing(X, y)
         
     | 
| 306 | 
         
            +
                    else:
         
     | 
| 307 | 
         
            +
                        self.increasing_ = self.increasing
         
     | 
| 308 | 
         
            +
             
     | 
| 309 | 
         
            +
                    # If sample_weights is passed, removed zero-weight values and clean
         
     | 
| 310 | 
         
            +
                    # order
         
     | 
| 311 | 
         
            +
                    sample_weight = _check_sample_weight(sample_weight, X, dtype=X.dtype)
         
     | 
| 312 | 
         
            +
                    mask = sample_weight > 0
         
     | 
| 313 | 
         
            +
                    X, y, sample_weight = X[mask], y[mask], sample_weight[mask]
         
     | 
| 314 | 
         
            +
             
     | 
| 315 | 
         
            +
                    order = np.lexsort((y, X))
         
     | 
| 316 | 
         
            +
                    X, y, sample_weight = [array[order] for array in [X, y, sample_weight]]
         
     | 
| 317 | 
         
            +
                    unique_X, unique_y, unique_sample_weight = _make_unique(X, y, sample_weight)
         
     | 
| 318 | 
         
            +
             
     | 
| 319 | 
         
            +
                    X = unique_X
         
     | 
| 320 | 
         
            +
                    y = isotonic_regression(
         
     | 
| 321 | 
         
            +
                        unique_y,
         
     | 
| 322 | 
         
            +
                        sample_weight=unique_sample_weight,
         
     | 
| 323 | 
         
            +
                        y_min=self.y_min,
         
     | 
| 324 | 
         
            +
                        y_max=self.y_max,
         
     | 
| 325 | 
         
            +
                        increasing=self.increasing_,
         
     | 
| 326 | 
         
            +
                    )
         
     | 
| 327 | 
         
            +
             
     | 
| 328 | 
         
            +
                    # Handle the left and right bounds on X
         
     | 
| 329 | 
         
            +
                    self.X_min_, self.X_max_ = np.min(X), np.max(X)
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                    if trim_duplicates:
         
     | 
| 332 | 
         
            +
                        # Remove unnecessary points for faster prediction
         
     | 
| 333 | 
         
            +
                        keep_data = np.ones((len(y),), dtype=bool)
         
     | 
| 334 | 
         
            +
                        # Aside from the 1st and last point, remove points whose y values
         
     | 
| 335 | 
         
            +
                        # are equal to both the point before and the point after it.
         
     | 
| 336 | 
         
            +
                        keep_data[1:-1] = np.logical_or(
         
     | 
| 337 | 
         
            +
                            np.not_equal(y[1:-1], y[:-2]), np.not_equal(y[1:-1], y[2:])
         
     | 
| 338 | 
         
            +
                        )
         
     | 
| 339 | 
         
            +
                        return X[keep_data], y[keep_data]
         
     | 
| 340 | 
         
            +
                    else:
         
     | 
| 341 | 
         
            +
                        # The ability to turn off trim_duplicates is only used to it make
         
     | 
| 342 | 
         
            +
                        # easier to unit test that removing duplicates in y does not have
         
     | 
| 343 | 
         
            +
                        # any impact the resulting interpolation function (besides
         
     | 
| 344 | 
         
            +
                        # prediction speed).
         
     | 
| 345 | 
         
            +
                        return X, y
         
     | 
| 346 | 
         
            +
             
     | 
| 347 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 348 | 
         
            +
                def fit(self, X, y, sample_weight=None):
         
     | 
| 349 | 
         
            +
                    """Fit the model using X, y as training data.
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                    Parameters
         
     | 
| 352 | 
         
            +
                    ----------
         
     | 
| 353 | 
         
            +
                    X : array-like of shape (n_samples,) or (n_samples, 1)
         
     | 
| 354 | 
         
            +
                        Training data.
         
     | 
| 355 | 
         
            +
             
     | 
| 356 | 
         
            +
                        .. versionchanged:: 0.24
         
     | 
| 357 | 
         
            +
                           Also accepts 2d array with 1 feature.
         
     | 
| 358 | 
         
            +
             
     | 
| 359 | 
         
            +
                    y : array-like of shape (n_samples,)
         
     | 
| 360 | 
         
            +
                        Training target.
         
     | 
| 361 | 
         
            +
             
     | 
| 362 | 
         
            +
                    sample_weight : array-like of shape (n_samples,), default=None
         
     | 
| 363 | 
         
            +
                        Weights. If set to None, all weights will be set to 1 (equal
         
     | 
| 364 | 
         
            +
                        weights).
         
     | 
| 365 | 
         
            +
             
     | 
| 366 | 
         
            +
                    Returns
         
     | 
| 367 | 
         
            +
                    -------
         
     | 
| 368 | 
         
            +
                    self : object
         
     | 
| 369 | 
         
            +
                        Returns an instance of self.
         
     | 
| 370 | 
         
            +
             
     | 
| 371 | 
         
            +
                    Notes
         
     | 
| 372 | 
         
            +
                    -----
         
     | 
| 373 | 
         
            +
                    X is stored for future use, as :meth:`transform` needs X to interpolate
         
     | 
| 374 | 
         
            +
                    new input data.
         
     | 
| 375 | 
         
            +
                    """
         
     | 
| 376 | 
         
            +
                    check_params = dict(accept_sparse=False, ensure_2d=False)
         
     | 
| 377 | 
         
            +
                    X = check_array(
         
     | 
| 378 | 
         
            +
                        X, input_name="X", dtype=[np.float64, np.float32], **check_params
         
     | 
| 379 | 
         
            +
                    )
         
     | 
| 380 | 
         
            +
                    y = check_array(y, input_name="y", dtype=X.dtype, **check_params)
         
     | 
| 381 | 
         
            +
                    check_consistent_length(X, y, sample_weight)
         
     | 
| 382 | 
         
            +
             
     | 
| 383 | 
         
            +
                    # Transform y by running the isotonic regression algorithm and
         
     | 
| 384 | 
         
            +
                    # transform X accordingly.
         
     | 
| 385 | 
         
            +
                    X, y = self._build_y(X, y, sample_weight)
         
     | 
| 386 | 
         
            +
             
     | 
| 387 | 
         
            +
                    # It is necessary to store the non-redundant part of the training set
         
     | 
| 388 | 
         
            +
                    # on the model to make it possible to support model persistence via
         
     | 
| 389 | 
         
            +
                    # the pickle module as the object built by scipy.interp1d is not
         
     | 
| 390 | 
         
            +
                    # picklable directly.
         
     | 
| 391 | 
         
            +
                    self.X_thresholds_, self.y_thresholds_ = X, y
         
     | 
| 392 | 
         
            +
             
     | 
| 393 | 
         
            +
                    # Build the interpolation function
         
     | 
| 394 | 
         
            +
                    self._build_f(X, y)
         
     | 
| 395 | 
         
            +
                    return self
         
     | 
| 396 | 
         
            +
             
     | 
| 397 | 
         
            +
                def _transform(self, T):
         
     | 
| 398 | 
         
            +
                    """`_transform` is called by both `transform` and `predict` methods.
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    Since `transform` is wrapped to output arrays of specific types (e.g.
         
     | 
| 401 | 
         
            +
                    NumPy arrays, pandas DataFrame), we cannot make `predict` call `transform`
         
     | 
| 402 | 
         
            +
                    directly.
         
     | 
| 403 | 
         
            +
             
     | 
| 404 | 
         
            +
                    The above behaviour could be changed in the future, if we decide to output
         
     | 
| 405 | 
         
            +
                    other type of arrays when calling `predict`.
         
     | 
| 406 | 
         
            +
                    """
         
     | 
| 407 | 
         
            +
                    if hasattr(self, "X_thresholds_"):
         
     | 
| 408 | 
         
            +
                        dtype = self.X_thresholds_.dtype
         
     | 
| 409 | 
         
            +
                    else:
         
     | 
| 410 | 
         
            +
                        dtype = np.float64
         
     | 
| 411 | 
         
            +
             
     | 
| 412 | 
         
            +
                    T = check_array(T, dtype=dtype, ensure_2d=False)
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                    self._check_input_data_shape(T)
         
     | 
| 415 | 
         
            +
                    T = T.reshape(-1)  # use 1d view
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
                    if self.out_of_bounds == "clip":
         
     | 
| 418 | 
         
            +
                        T = np.clip(T, self.X_min_, self.X_max_)
         
     | 
| 419 | 
         
            +
             
     | 
| 420 | 
         
            +
                    res = self.f_(T)
         
     | 
| 421 | 
         
            +
             
     | 
| 422 | 
         
            +
                    # on scipy 0.17, interp1d up-casts to float64, so we cast back
         
     | 
| 423 | 
         
            +
                    res = res.astype(T.dtype)
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
                    return res
         
     | 
| 426 | 
         
            +
             
     | 
| 427 | 
         
            +
                def transform(self, T):
         
     | 
| 428 | 
         
            +
                    """Transform new data by linear interpolation.
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                    Parameters
         
     | 
| 431 | 
         
            +
                    ----------
         
     | 
| 432 | 
         
            +
                    T : array-like of shape (n_samples,) or (n_samples, 1)
         
     | 
| 433 | 
         
            +
                        Data to transform.
         
     | 
| 434 | 
         
            +
             
     | 
| 435 | 
         
            +
                        .. versionchanged:: 0.24
         
     | 
| 436 | 
         
            +
                           Also accepts 2d array with 1 feature.
         
     | 
| 437 | 
         
            +
             
     | 
| 438 | 
         
            +
                    Returns
         
     | 
| 439 | 
         
            +
                    -------
         
     | 
| 440 | 
         
            +
                    y_pred : ndarray of shape (n_samples,)
         
     | 
| 441 | 
         
            +
                        The transformed data.
         
     | 
| 442 | 
         
            +
                    """
         
     | 
| 443 | 
         
            +
                    return self._transform(T)
         
     | 
| 444 | 
         
            +
             
     | 
| 445 | 
         
            +
                def predict(self, T):
         
     | 
| 446 | 
         
            +
                    """Predict new data by linear interpolation.
         
     | 
| 447 | 
         
            +
             
     | 
| 448 | 
         
            +
                    Parameters
         
     | 
| 449 | 
         
            +
                    ----------
         
     | 
| 450 | 
         
            +
                    T : array-like of shape (n_samples,) or (n_samples, 1)
         
     | 
| 451 | 
         
            +
                        Data to transform.
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    Returns
         
     | 
| 454 | 
         
            +
                    -------
         
     | 
| 455 | 
         
            +
                    y_pred : ndarray of shape (n_samples,)
         
     | 
| 456 | 
         
            +
                        Transformed data.
         
     | 
| 457 | 
         
            +
                    """
         
     | 
| 458 | 
         
            +
                    return self._transform(T)
         
     | 
| 459 | 
         
            +
             
     | 
| 460 | 
         
            +
                # We implement get_feature_names_out here instead of using
         
     | 
| 461 | 
         
            +
                # `ClassNamePrefixFeaturesOutMixin`` because `input_features` are ignored.
         
     | 
| 462 | 
         
            +
                # `input_features` are ignored because `IsotonicRegression` accepts 1d
         
     | 
| 463 | 
         
            +
                # arrays and the semantics of `feature_names_in_` are not clear for 1d arrays.
         
     | 
| 464 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 465 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 466 | 
         
            +
             
     | 
| 467 | 
         
            +
                    Parameters
         
     | 
| 468 | 
         
            +
                    ----------
         
     | 
| 469 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 470 | 
         
            +
                        Ignored.
         
     | 
| 471 | 
         
            +
             
     | 
| 472 | 
         
            +
                    Returns
         
     | 
| 473 | 
         
            +
                    -------
         
     | 
| 474 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 475 | 
         
            +
                        An ndarray with one string i.e. ["isotonicregression0"].
         
     | 
| 476 | 
         
            +
                    """
         
     | 
| 477 | 
         
            +
                    check_is_fitted(self, "f_")
         
     | 
| 478 | 
         
            +
                    class_name = self.__class__.__name__.lower()
         
     | 
| 479 | 
         
            +
                    return np.asarray([f"{class_name}0"], dtype=object)
         
     | 
| 480 | 
         
            +
             
     | 
| 481 | 
         
            +
                def __getstate__(self):
         
     | 
| 482 | 
         
            +
                    """Pickle-protocol - return state of the estimator."""
         
     | 
| 483 | 
         
            +
                    state = super().__getstate__()
         
     | 
| 484 | 
         
            +
                    # remove interpolation method
         
     | 
| 485 | 
         
            +
                    state.pop("f_", None)
         
     | 
| 486 | 
         
            +
                    return state
         
     | 
| 487 | 
         
            +
             
     | 
| 488 | 
         
            +
                def __setstate__(self, state):
         
     | 
| 489 | 
         
            +
                    """Pickle-protocol - set state of the estimator.
         
     | 
| 490 | 
         
            +
             
     | 
| 491 | 
         
            +
                    We need to rebuild the interpolation function.
         
     | 
| 492 | 
         
            +
                    """
         
     | 
| 493 | 
         
            +
                    super().__setstate__(state)
         
     | 
| 494 | 
         
            +
                    if hasattr(self, "X_thresholds_") and hasattr(self, "y_thresholds_"):
         
     | 
| 495 | 
         
            +
                        self._build_f(self.X_thresholds_, self.y_thresholds_)
         
     | 
| 496 | 
         
            +
             
     | 
| 497 | 
         
            +
                def _more_tags(self):
         
     | 
| 498 | 
         
            +
                    return {"X_types": ["1darray"]}
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/kernel_approximation.py
    ADDED
    
    | 
         @@ -0,0 +1,1137 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            The :mod:`sklearn.kernel_approximation` module implements several
         
     | 
| 3 | 
         
            +
            approximate kernel feature maps based on Fourier transforms and Count Sketches.
         
     | 
| 4 | 
         
            +
            """
         
     | 
| 5 | 
         
            +
             
     | 
| 6 | 
         
            +
            # Author: Andreas Mueller <[email protected]>
         
     | 
| 7 | 
         
            +
            #         Daniel Lopez-Sanchez (TensorSketch) <[email protected]>
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 10 | 
         
            +
             
     | 
| 11 | 
         
            +
            import warnings
         
     | 
| 12 | 
         
            +
            from numbers import Integral, Real
         
     | 
| 13 | 
         
            +
             
     | 
| 14 | 
         
            +
            import numpy as np
         
     | 
| 15 | 
         
            +
            import scipy.sparse as sp
         
     | 
| 16 | 
         
            +
            from scipy.linalg import svd
         
     | 
| 17 | 
         
            +
             
     | 
| 18 | 
         
            +
            try:
         
     | 
| 19 | 
         
            +
                from scipy.fft import fft, ifft
         
     | 
| 20 | 
         
            +
            except ImportError:  # scipy < 1.4
         
     | 
| 21 | 
         
            +
                from scipy.fftpack import fft, ifft
         
     | 
| 22 | 
         
            +
             
     | 
| 23 | 
         
            +
            from .base import (
         
     | 
| 24 | 
         
            +
                BaseEstimator,
         
     | 
| 25 | 
         
            +
                ClassNamePrefixFeaturesOutMixin,
         
     | 
| 26 | 
         
            +
                TransformerMixin,
         
     | 
| 27 | 
         
            +
                _fit_context,
         
     | 
| 28 | 
         
            +
            )
         
     | 
| 29 | 
         
            +
            from .metrics.pairwise import KERNEL_PARAMS, PAIRWISE_KERNEL_FUNCTIONS, pairwise_kernels
         
     | 
| 30 | 
         
            +
            from .utils import check_random_state, deprecated
         
     | 
| 31 | 
         
            +
            from .utils._param_validation import Interval, StrOptions
         
     | 
| 32 | 
         
            +
            from .utils.extmath import safe_sparse_dot
         
     | 
| 33 | 
         
            +
            from .utils.validation import (
         
     | 
| 34 | 
         
            +
                _check_feature_names_in,
         
     | 
| 35 | 
         
            +
                check_is_fitted,
         
     | 
| 36 | 
         
            +
                check_non_negative,
         
     | 
| 37 | 
         
            +
            )
         
     | 
| 38 | 
         
            +
             
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
            class PolynomialCountSketch(
         
     | 
| 41 | 
         
            +
                ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
         
     | 
| 42 | 
         
            +
            ):
         
     | 
| 43 | 
         
            +
                """Polynomial kernel approximation via Tensor Sketch.
         
     | 
| 44 | 
         
            +
             
     | 
| 45 | 
         
            +
                Implements Tensor Sketch, which approximates the feature map
         
     | 
| 46 | 
         
            +
                of the polynomial kernel::
         
     | 
| 47 | 
         
            +
             
     | 
| 48 | 
         
            +
                    K(X, Y) = (gamma * <X, Y> + coef0)^degree
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
                by efficiently computing a Count Sketch of the outer product of a
         
     | 
| 51 | 
         
            +
                vector with itself using Fast Fourier Transforms (FFT). Read more in the
         
     | 
| 52 | 
         
            +
                :ref:`User Guide <polynomial_kernel_approx>`.
         
     | 
| 53 | 
         
            +
             
     | 
| 54 | 
         
            +
                .. versionadded:: 0.24
         
     | 
| 55 | 
         
            +
             
     | 
| 56 | 
         
            +
                Parameters
         
     | 
| 57 | 
         
            +
                ----------
         
     | 
| 58 | 
         
            +
                gamma : float, default=1.0
         
     | 
| 59 | 
         
            +
                    Parameter of the polynomial kernel whose feature map
         
     | 
| 60 | 
         
            +
                    will be approximated.
         
     | 
| 61 | 
         
            +
             
     | 
| 62 | 
         
            +
                degree : int, default=2
         
     | 
| 63 | 
         
            +
                    Degree of the polynomial kernel whose feature map
         
     | 
| 64 | 
         
            +
                    will be approximated.
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                coef0 : int, default=0
         
     | 
| 67 | 
         
            +
                    Constant term of the polynomial kernel whose feature map
         
     | 
| 68 | 
         
            +
                    will be approximated.
         
     | 
| 69 | 
         
            +
             
     | 
| 70 | 
         
            +
                n_components : int, default=100
         
     | 
| 71 | 
         
            +
                    Dimensionality of the output feature space. Usually, `n_components`
         
     | 
| 72 | 
         
            +
                    should be greater than the number of features in input samples in
         
     | 
| 73 | 
         
            +
                    order to achieve good performance. The optimal score / run time
         
     | 
| 74 | 
         
            +
                    balance is typically achieved around `n_components` = 10 * `n_features`,
         
     | 
| 75 | 
         
            +
                    but this depends on the specific dataset being used.
         
     | 
| 76 | 
         
            +
             
     | 
| 77 | 
         
            +
                random_state : int, RandomState instance, default=None
         
     | 
| 78 | 
         
            +
                    Determines random number generation for indexHash and bitHash
         
     | 
| 79 | 
         
            +
                    initialization. Pass an int for reproducible results across multiple
         
     | 
| 80 | 
         
            +
                    function calls. See :term:`Glossary <random_state>`.
         
     | 
| 81 | 
         
            +
             
     | 
| 82 | 
         
            +
                Attributes
         
     | 
| 83 | 
         
            +
                ----------
         
     | 
| 84 | 
         
            +
                indexHash_ : ndarray of shape (degree, n_features), dtype=int64
         
     | 
| 85 | 
         
            +
                    Array of indexes in range [0, n_components) used to represent
         
     | 
| 86 | 
         
            +
                    the 2-wise independent hash functions for Count Sketch computation.
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                bitHash_ : ndarray of shape (degree, n_features), dtype=float32
         
     | 
| 89 | 
         
            +
                    Array with random entries in {+1, -1}, used to represent
         
     | 
| 90 | 
         
            +
                    the 2-wise independent hash functions for Count Sketch computation.
         
     | 
| 91 | 
         
            +
             
     | 
| 92 | 
         
            +
                n_features_in_ : int
         
     | 
| 93 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 94 | 
         
            +
             
     | 
| 95 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 96 | 
         
            +
             
     | 
| 97 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 98 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 99 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 100 | 
         
            +
             
     | 
| 101 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 102 | 
         
            +
             
     | 
| 103 | 
         
            +
                See Also
         
     | 
| 104 | 
         
            +
                --------
         
     | 
| 105 | 
         
            +
                AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
         
     | 
| 106 | 
         
            +
                Nystroem : Approximate a kernel map using a subset of the training data.
         
     | 
| 107 | 
         
            +
                RBFSampler : Approximate a RBF kernel feature map using random Fourier
         
     | 
| 108 | 
         
            +
                    features.
         
     | 
| 109 | 
         
            +
                SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
         
     | 
| 110 | 
         
            +
                sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
         
     | 
| 111 | 
         
            +
             
     | 
| 112 | 
         
            +
                Examples
         
     | 
| 113 | 
         
            +
                --------
         
     | 
| 114 | 
         
            +
                >>> from sklearn.kernel_approximation import PolynomialCountSketch
         
     | 
| 115 | 
         
            +
                >>> from sklearn.linear_model import SGDClassifier
         
     | 
| 116 | 
         
            +
                >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
         
     | 
| 117 | 
         
            +
                >>> y = [0, 0, 1, 1]
         
     | 
| 118 | 
         
            +
                >>> ps = PolynomialCountSketch(degree=3, random_state=1)
         
     | 
| 119 | 
         
            +
                >>> X_features = ps.fit_transform(X)
         
     | 
| 120 | 
         
            +
                >>> clf = SGDClassifier(max_iter=10, tol=1e-3)
         
     | 
| 121 | 
         
            +
                >>> clf.fit(X_features, y)
         
     | 
| 122 | 
         
            +
                SGDClassifier(max_iter=10)
         
     | 
| 123 | 
         
            +
                >>> clf.score(X_features, y)
         
     | 
| 124 | 
         
            +
                1.0
         
     | 
| 125 | 
         
            +
             
     | 
| 126 | 
         
            +
                For a more detailed example of usage, see
         
     | 
| 127 | 
         
            +
                :ref:`sphx_glr_auto_examples_kernel_approximation_plot_scalable_poly_kernels.py`
         
     | 
| 128 | 
         
            +
                """
         
     | 
| 129 | 
         
            +
             
     | 
| 130 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 131 | 
         
            +
                    "gamma": [Interval(Real, 0, None, closed="left")],
         
     | 
| 132 | 
         
            +
                    "degree": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 133 | 
         
            +
                    "coef0": [Interval(Real, None, None, closed="neither")],
         
     | 
| 134 | 
         
            +
                    "n_components": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 135 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 136 | 
         
            +
                }
         
     | 
| 137 | 
         
            +
             
     | 
| 138 | 
         
            +
                def __init__(
         
     | 
| 139 | 
         
            +
                    self, *, gamma=1.0, degree=2, coef0=0, n_components=100, random_state=None
         
     | 
| 140 | 
         
            +
                ):
         
     | 
| 141 | 
         
            +
                    self.gamma = gamma
         
     | 
| 142 | 
         
            +
                    self.degree = degree
         
     | 
| 143 | 
         
            +
                    self.coef0 = coef0
         
     | 
| 144 | 
         
            +
                    self.n_components = n_components
         
     | 
| 145 | 
         
            +
                    self.random_state = random_state
         
     | 
| 146 | 
         
            +
             
     | 
| 147 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 148 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 149 | 
         
            +
                    """Fit the model with X.
         
     | 
| 150 | 
         
            +
             
     | 
| 151 | 
         
            +
                    Initializes the internal variables. The method needs no information
         
     | 
| 152 | 
         
            +
                    about the distribution of data, so we only care about n_features in X.
         
     | 
| 153 | 
         
            +
             
     | 
| 154 | 
         
            +
                    Parameters
         
     | 
| 155 | 
         
            +
                    ----------
         
     | 
| 156 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 157 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 158 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 159 | 
         
            +
             
     | 
| 160 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 161 | 
         
            +
                            default=None
         
     | 
| 162 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 163 | 
         
            +
             
     | 
| 164 | 
         
            +
                    Returns
         
     | 
| 165 | 
         
            +
                    -------
         
     | 
| 166 | 
         
            +
                    self : object
         
     | 
| 167 | 
         
            +
                        Returns the instance itself.
         
     | 
| 168 | 
         
            +
                    """
         
     | 
| 169 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csc")
         
     | 
| 170 | 
         
            +
                    random_state = check_random_state(self.random_state)
         
     | 
| 171 | 
         
            +
             
     | 
| 172 | 
         
            +
                    n_features = X.shape[1]
         
     | 
| 173 | 
         
            +
                    if self.coef0 != 0:
         
     | 
| 174 | 
         
            +
                        n_features += 1
         
     | 
| 175 | 
         
            +
             
     | 
| 176 | 
         
            +
                    self.indexHash_ = random_state.randint(
         
     | 
| 177 | 
         
            +
                        0, high=self.n_components, size=(self.degree, n_features)
         
     | 
| 178 | 
         
            +
                    )
         
     | 
| 179 | 
         
            +
             
     | 
| 180 | 
         
            +
                    self.bitHash_ = random_state.choice(a=[-1, 1], size=(self.degree, n_features))
         
     | 
| 181 | 
         
            +
                    self._n_features_out = self.n_components
         
     | 
| 182 | 
         
            +
                    return self
         
     | 
| 183 | 
         
            +
             
     | 
| 184 | 
         
            +
                def transform(self, X):
         
     | 
| 185 | 
         
            +
                    """Generate the feature map approximation for X.
         
     | 
| 186 | 
         
            +
             
     | 
| 187 | 
         
            +
                    Parameters
         
     | 
| 188 | 
         
            +
                    ----------
         
     | 
| 189 | 
         
            +
                    X : {array-like}, shape (n_samples, n_features)
         
     | 
| 190 | 
         
            +
                        New data, where `n_samples` is the number of samples
         
     | 
| 191 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 192 | 
         
            +
             
     | 
| 193 | 
         
            +
                    Returns
         
     | 
| 194 | 
         
            +
                    -------
         
     | 
| 195 | 
         
            +
                    X_new : array-like, shape (n_samples, n_components)
         
     | 
| 196 | 
         
            +
                        Returns the instance itself.
         
     | 
| 197 | 
         
            +
                    """
         
     | 
| 198 | 
         
            +
             
     | 
| 199 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 200 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csc", reset=False)
         
     | 
| 201 | 
         
            +
             
     | 
| 202 | 
         
            +
                    X_gamma = np.sqrt(self.gamma) * X
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    if sp.issparse(X_gamma) and self.coef0 != 0:
         
     | 
| 205 | 
         
            +
                        X_gamma = sp.hstack(
         
     | 
| 206 | 
         
            +
                            [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))],
         
     | 
| 207 | 
         
            +
                            format="csc",
         
     | 
| 208 | 
         
            +
                        )
         
     | 
| 209 | 
         
            +
             
     | 
| 210 | 
         
            +
                    elif not sp.issparse(X_gamma) and self.coef0 != 0:
         
     | 
| 211 | 
         
            +
                        X_gamma = np.hstack(
         
     | 
| 212 | 
         
            +
                            [X_gamma, np.sqrt(self.coef0) * np.ones((X_gamma.shape[0], 1))]
         
     | 
| 213 | 
         
            +
                        )
         
     | 
| 214 | 
         
            +
             
     | 
| 215 | 
         
            +
                    if X_gamma.shape[1] != self.indexHash_.shape[1]:
         
     | 
| 216 | 
         
            +
                        raise ValueError(
         
     | 
| 217 | 
         
            +
                            "Number of features of test samples does not"
         
     | 
| 218 | 
         
            +
                            " match that of training samples."
         
     | 
| 219 | 
         
            +
                        )
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    count_sketches = np.zeros((X_gamma.shape[0], self.degree, self.n_components))
         
     | 
| 222 | 
         
            +
             
     | 
| 223 | 
         
            +
                    if sp.issparse(X_gamma):
         
     | 
| 224 | 
         
            +
                        for j in range(X_gamma.shape[1]):
         
     | 
| 225 | 
         
            +
                            for d in range(self.degree):
         
     | 
| 226 | 
         
            +
                                iHashIndex = self.indexHash_[d, j]
         
     | 
| 227 | 
         
            +
                                iHashBit = self.bitHash_[d, j]
         
     | 
| 228 | 
         
            +
                                count_sketches[:, d, iHashIndex] += (
         
     | 
| 229 | 
         
            +
                                    (iHashBit * X_gamma[:, [j]]).toarray().ravel()
         
     | 
| 230 | 
         
            +
                                )
         
     | 
| 231 | 
         
            +
             
     | 
| 232 | 
         
            +
                    else:
         
     | 
| 233 | 
         
            +
                        for j in range(X_gamma.shape[1]):
         
     | 
| 234 | 
         
            +
                            for d in range(self.degree):
         
     | 
| 235 | 
         
            +
                                iHashIndex = self.indexHash_[d, j]
         
     | 
| 236 | 
         
            +
                                iHashBit = self.bitHash_[d, j]
         
     | 
| 237 | 
         
            +
                                count_sketches[:, d, iHashIndex] += iHashBit * X_gamma[:, j]
         
     | 
| 238 | 
         
            +
             
     | 
| 239 | 
         
            +
                    # For each same, compute a count sketch of phi(x) using the polynomial
         
     | 
| 240 | 
         
            +
                    # multiplication (via FFT) of p count sketches of x.
         
     | 
| 241 | 
         
            +
                    count_sketches_fft = fft(count_sketches, axis=2, overwrite_x=True)
         
     | 
| 242 | 
         
            +
                    count_sketches_fft_prod = np.prod(count_sketches_fft, axis=1)
         
     | 
| 243 | 
         
            +
                    data_sketch = np.real(ifft(count_sketches_fft_prod, overwrite_x=True))
         
     | 
| 244 | 
         
            +
             
     | 
| 245 | 
         
            +
                    return data_sketch
         
     | 
| 246 | 
         
            +
             
     | 
| 247 | 
         
            +
             
     | 
| 248 | 
         
            +
            class RBFSampler(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
         
     | 
| 249 | 
         
            +
                """Approximate a RBF kernel feature map using random Fourier features.
         
     | 
| 250 | 
         
            +
             
     | 
| 251 | 
         
            +
                It implements a variant of Random Kitchen Sinks.[1]
         
     | 
| 252 | 
         
            +
             
     | 
| 253 | 
         
            +
                Read more in the :ref:`User Guide <rbf_kernel_approx>`.
         
     | 
| 254 | 
         
            +
             
     | 
| 255 | 
         
            +
                Parameters
         
     | 
| 256 | 
         
            +
                ----------
         
     | 
| 257 | 
         
            +
                gamma : 'scale' or float, default=1.0
         
     | 
| 258 | 
         
            +
                    Parameter of RBF kernel: exp(-gamma * x^2).
         
     | 
| 259 | 
         
            +
                    If ``gamma='scale'`` is passed then it uses
         
     | 
| 260 | 
         
            +
                    1 / (n_features * X.var()) as value of gamma.
         
     | 
| 261 | 
         
            +
             
     | 
| 262 | 
         
            +
                    .. versionadded:: 1.2
         
     | 
| 263 | 
         
            +
                       The option `"scale"` was added in 1.2.
         
     | 
| 264 | 
         
            +
             
     | 
| 265 | 
         
            +
                n_components : int, default=100
         
     | 
| 266 | 
         
            +
                    Number of Monte Carlo samples per original feature.
         
     | 
| 267 | 
         
            +
                    Equals the dimensionality of the computed feature space.
         
     | 
| 268 | 
         
            +
             
     | 
| 269 | 
         
            +
                random_state : int, RandomState instance or None, default=None
         
     | 
| 270 | 
         
            +
                    Pseudo-random number generator to control the generation of the random
         
     | 
| 271 | 
         
            +
                    weights and random offset when fitting the training data.
         
     | 
| 272 | 
         
            +
                    Pass an int for reproducible output across multiple function calls.
         
     | 
| 273 | 
         
            +
                    See :term:`Glossary <random_state>`.
         
     | 
| 274 | 
         
            +
             
     | 
| 275 | 
         
            +
                Attributes
         
     | 
| 276 | 
         
            +
                ----------
         
     | 
| 277 | 
         
            +
                random_offset_ : ndarray of shape (n_components,), dtype={np.float64, np.float32}
         
     | 
| 278 | 
         
            +
                    Random offset used to compute the projection in the `n_components`
         
     | 
| 279 | 
         
            +
                    dimensions of the feature space.
         
     | 
| 280 | 
         
            +
             
     | 
| 281 | 
         
            +
                random_weights_ : ndarray of shape (n_features, n_components),\
         
     | 
| 282 | 
         
            +
                    dtype={np.float64, np.float32}
         
     | 
| 283 | 
         
            +
                    Random projection directions drawn from the Fourier transform
         
     | 
| 284 | 
         
            +
                    of the RBF kernel.
         
     | 
| 285 | 
         
            +
             
     | 
| 286 | 
         
            +
                n_features_in_ : int
         
     | 
| 287 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 288 | 
         
            +
             
     | 
| 289 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 290 | 
         
            +
             
     | 
| 291 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 292 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 293 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 294 | 
         
            +
             
     | 
| 295 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 296 | 
         
            +
             
     | 
| 297 | 
         
            +
                See Also
         
     | 
| 298 | 
         
            +
                --------
         
     | 
| 299 | 
         
            +
                AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
         
     | 
| 300 | 
         
            +
                Nystroem : Approximate a kernel map using a subset of the training data.
         
     | 
| 301 | 
         
            +
                PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch.
         
     | 
| 302 | 
         
            +
                SkewedChi2Sampler : Approximate feature map for
         
     | 
| 303 | 
         
            +
                    "skewed chi-squared" kernel.
         
     | 
| 304 | 
         
            +
                sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
         
     | 
| 305 | 
         
            +
             
     | 
| 306 | 
         
            +
                Notes
         
     | 
| 307 | 
         
            +
                -----
         
     | 
| 308 | 
         
            +
                See "Random Features for Large-Scale Kernel Machines" by A. Rahimi and
         
     | 
| 309 | 
         
            +
                Benjamin Recht.
         
     | 
| 310 | 
         
            +
             
     | 
| 311 | 
         
            +
                [1] "Weighted Sums of Random Kitchen Sinks: Replacing
         
     | 
| 312 | 
         
            +
                minimization with randomization in learning" by A. Rahimi and
         
     | 
| 313 | 
         
            +
                Benjamin Recht.
         
     | 
| 314 | 
         
            +
                (https://people.eecs.berkeley.edu/~brecht/papers/08.rah.rec.nips.pdf)
         
     | 
| 315 | 
         
            +
             
     | 
| 316 | 
         
            +
                Examples
         
     | 
| 317 | 
         
            +
                --------
         
     | 
| 318 | 
         
            +
                >>> from sklearn.kernel_approximation import RBFSampler
         
     | 
| 319 | 
         
            +
                >>> from sklearn.linear_model import SGDClassifier
         
     | 
| 320 | 
         
            +
                >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
         
     | 
| 321 | 
         
            +
                >>> y = [0, 0, 1, 1]
         
     | 
| 322 | 
         
            +
                >>> rbf_feature = RBFSampler(gamma=1, random_state=1)
         
     | 
| 323 | 
         
            +
                >>> X_features = rbf_feature.fit_transform(X)
         
     | 
| 324 | 
         
            +
                >>> clf = SGDClassifier(max_iter=5, tol=1e-3)
         
     | 
| 325 | 
         
            +
                >>> clf.fit(X_features, y)
         
     | 
| 326 | 
         
            +
                SGDClassifier(max_iter=5)
         
     | 
| 327 | 
         
            +
                >>> clf.score(X_features, y)
         
     | 
| 328 | 
         
            +
                1.0
         
     | 
| 329 | 
         
            +
                """
         
     | 
| 330 | 
         
            +
             
     | 
| 331 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 332 | 
         
            +
                    "gamma": [
         
     | 
| 333 | 
         
            +
                        StrOptions({"scale"}),
         
     | 
| 334 | 
         
            +
                        Interval(Real, 0.0, None, closed="left"),
         
     | 
| 335 | 
         
            +
                    ],
         
     | 
| 336 | 
         
            +
                    "n_components": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 337 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 338 | 
         
            +
                }
         
     | 
| 339 | 
         
            +
             
     | 
| 340 | 
         
            +
                def __init__(self, *, gamma=1.0, n_components=100, random_state=None):
         
     | 
| 341 | 
         
            +
                    self.gamma = gamma
         
     | 
| 342 | 
         
            +
                    self.n_components = n_components
         
     | 
| 343 | 
         
            +
                    self.random_state = random_state
         
     | 
| 344 | 
         
            +
             
     | 
| 345 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 346 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 347 | 
         
            +
                    """Fit the model with X.
         
     | 
| 348 | 
         
            +
             
     | 
| 349 | 
         
            +
                    Samples random projection according to n_features.
         
     | 
| 350 | 
         
            +
             
     | 
| 351 | 
         
            +
                    Parameters
         
     | 
| 352 | 
         
            +
                    ----------
         
     | 
| 353 | 
         
            +
                    X : {array-like, sparse matrix}, shape (n_samples, n_features)
         
     | 
| 354 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 355 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 356 | 
         
            +
             
     | 
| 357 | 
         
            +
                    y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 358 | 
         
            +
                            default=None
         
     | 
| 359 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 360 | 
         
            +
             
     | 
| 361 | 
         
            +
                    Returns
         
     | 
| 362 | 
         
            +
                    -------
         
     | 
| 363 | 
         
            +
                    self : object
         
     | 
| 364 | 
         
            +
                        Returns the instance itself.
         
     | 
| 365 | 
         
            +
                    """
         
     | 
| 366 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr")
         
     | 
| 367 | 
         
            +
                    random_state = check_random_state(self.random_state)
         
     | 
| 368 | 
         
            +
                    n_features = X.shape[1]
         
     | 
| 369 | 
         
            +
                    sparse = sp.issparse(X)
         
     | 
| 370 | 
         
            +
                    if self.gamma == "scale":
         
     | 
| 371 | 
         
            +
                        # var = E[X^2] - E[X]^2 if sparse
         
     | 
| 372 | 
         
            +
                        X_var = (X.multiply(X)).mean() - (X.mean()) ** 2 if sparse else X.var()
         
     | 
| 373 | 
         
            +
                        self._gamma = 1.0 / (n_features * X_var) if X_var != 0 else 1.0
         
     | 
| 374 | 
         
            +
                    else:
         
     | 
| 375 | 
         
            +
                        self._gamma = self.gamma
         
     | 
| 376 | 
         
            +
                    self.random_weights_ = (2.0 * self._gamma) ** 0.5 * random_state.normal(
         
     | 
| 377 | 
         
            +
                        size=(n_features, self.n_components)
         
     | 
| 378 | 
         
            +
                    )
         
     | 
| 379 | 
         
            +
             
     | 
| 380 | 
         
            +
                    self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)
         
     | 
| 381 | 
         
            +
             
     | 
| 382 | 
         
            +
                    if X.dtype == np.float32:
         
     | 
| 383 | 
         
            +
                        # Setting the data type of the fitted attribute will ensure the
         
     | 
| 384 | 
         
            +
                        # output data type during `transform`.
         
     | 
| 385 | 
         
            +
                        self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)
         
     | 
| 386 | 
         
            +
                        self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)
         
     | 
| 387 | 
         
            +
             
     | 
| 388 | 
         
            +
                    self._n_features_out = self.n_components
         
     | 
| 389 | 
         
            +
                    return self
         
     | 
| 390 | 
         
            +
             
     | 
| 391 | 
         
            +
                def transform(self, X):
         
     | 
| 392 | 
         
            +
                    """Apply the approximate feature map to X.
         
     | 
| 393 | 
         
            +
             
     | 
| 394 | 
         
            +
                    Parameters
         
     | 
| 395 | 
         
            +
                    ----------
         
     | 
| 396 | 
         
            +
                    X : {array-like, sparse matrix}, shape (n_samples, n_features)
         
     | 
| 397 | 
         
            +
                        New data, where `n_samples` is the number of samples
         
     | 
| 398 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 399 | 
         
            +
             
     | 
| 400 | 
         
            +
                    Returns
         
     | 
| 401 | 
         
            +
                    -------
         
     | 
| 402 | 
         
            +
                    X_new : array-like, shape (n_samples, n_components)
         
     | 
| 403 | 
         
            +
                        Returns the instance itself.
         
     | 
| 404 | 
         
            +
                    """
         
     | 
| 405 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 406 | 
         
            +
             
     | 
| 407 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr", reset=False)
         
     | 
| 408 | 
         
            +
                    projection = safe_sparse_dot(X, self.random_weights_)
         
     | 
| 409 | 
         
            +
                    projection += self.random_offset_
         
     | 
| 410 | 
         
            +
                    np.cos(projection, projection)
         
     | 
| 411 | 
         
            +
                    projection *= (2.0 / self.n_components) ** 0.5
         
     | 
| 412 | 
         
            +
                    return projection
         
     | 
| 413 | 
         
            +
             
     | 
| 414 | 
         
            +
                def _more_tags(self):
         
     | 
| 415 | 
         
            +
                    return {"preserves_dtype": [np.float64, np.float32]}
         
     | 
| 416 | 
         
            +
             
     | 
| 417 | 
         
            +
             
     | 
| 418 | 
         
            +
            class SkewedChi2Sampler(
         
     | 
| 419 | 
         
            +
                ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator
         
     | 
| 420 | 
         
            +
            ):
         
     | 
| 421 | 
         
            +
                """Approximate feature map for "skewed chi-squared" kernel.
         
     | 
| 422 | 
         
            +
             
     | 
| 423 | 
         
            +
                Read more in the :ref:`User Guide <skewed_chi_kernel_approx>`.
         
     | 
| 424 | 
         
            +
             
     | 
| 425 | 
         
            +
                Parameters
         
     | 
| 426 | 
         
            +
                ----------
         
     | 
| 427 | 
         
            +
                skewedness : float, default=1.0
         
     | 
| 428 | 
         
            +
                    "skewedness" parameter of the kernel. Needs to be cross-validated.
         
     | 
| 429 | 
         
            +
             
     | 
| 430 | 
         
            +
                n_components : int, default=100
         
     | 
| 431 | 
         
            +
                    Number of Monte Carlo samples per original feature.
         
     | 
| 432 | 
         
            +
                    Equals the dimensionality of the computed feature space.
         
     | 
| 433 | 
         
            +
             
     | 
| 434 | 
         
            +
                random_state : int, RandomState instance or None, default=None
         
     | 
| 435 | 
         
            +
                    Pseudo-random number generator to control the generation of the random
         
     | 
| 436 | 
         
            +
                    weights and random offset when fitting the training data.
         
     | 
| 437 | 
         
            +
                    Pass an int for reproducible output across multiple function calls.
         
     | 
| 438 | 
         
            +
                    See :term:`Glossary <random_state>`.
         
     | 
| 439 | 
         
            +
             
     | 
| 440 | 
         
            +
                Attributes
         
     | 
| 441 | 
         
            +
                ----------
         
     | 
| 442 | 
         
            +
                random_weights_ : ndarray of shape (n_features, n_components)
         
     | 
| 443 | 
         
            +
                    Weight array, sampled from a secant hyperbolic distribution, which will
         
     | 
| 444 | 
         
            +
                    be used to linearly transform the log of the data.
         
     | 
| 445 | 
         
            +
             
     | 
| 446 | 
         
            +
                random_offset_ : ndarray of shape (n_features, n_components)
         
     | 
| 447 | 
         
            +
                    Bias term, which will be added to the data. It is uniformly distributed
         
     | 
| 448 | 
         
            +
                    between 0 and 2*pi.
         
     | 
| 449 | 
         
            +
             
     | 
| 450 | 
         
            +
                n_features_in_ : int
         
     | 
| 451 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 452 | 
         
            +
             
     | 
| 453 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 454 | 
         
            +
             
     | 
| 455 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 456 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 457 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 458 | 
         
            +
             
     | 
| 459 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 460 | 
         
            +
             
     | 
| 461 | 
         
            +
                See Also
         
     | 
| 462 | 
         
            +
                --------
         
     | 
| 463 | 
         
            +
                AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
         
     | 
| 464 | 
         
            +
                Nystroem : Approximate a kernel map using a subset of the training data.
         
     | 
| 465 | 
         
            +
                RBFSampler : Approximate a RBF kernel feature map using random Fourier
         
     | 
| 466 | 
         
            +
                    features.
         
     | 
| 467 | 
         
            +
                SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
         
     | 
| 468 | 
         
            +
                sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
         
     | 
| 469 | 
         
            +
                sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
         
     | 
| 470 | 
         
            +
             
     | 
| 471 | 
         
            +
                References
         
     | 
| 472 | 
         
            +
                ----------
         
     | 
| 473 | 
         
            +
                See "Random Fourier Approximations for Skewed Multiplicative Histogram
         
     | 
| 474 | 
         
            +
                Kernels" by Fuxin Li, Catalin Ionescu and Cristian Sminchisescu.
         
     | 
| 475 | 
         
            +
             
     | 
| 476 | 
         
            +
                Examples
         
     | 
| 477 | 
         
            +
                --------
         
     | 
| 478 | 
         
            +
                >>> from sklearn.kernel_approximation import SkewedChi2Sampler
         
     | 
| 479 | 
         
            +
                >>> from sklearn.linear_model import SGDClassifier
         
     | 
| 480 | 
         
            +
                >>> X = [[0, 0], [1, 1], [1, 0], [0, 1]]
         
     | 
| 481 | 
         
            +
                >>> y = [0, 0, 1, 1]
         
     | 
| 482 | 
         
            +
                >>> chi2_feature = SkewedChi2Sampler(skewedness=.01,
         
     | 
| 483 | 
         
            +
                ...                                  n_components=10,
         
     | 
| 484 | 
         
            +
                ...                                  random_state=0)
         
     | 
| 485 | 
         
            +
                >>> X_features = chi2_feature.fit_transform(X, y)
         
     | 
| 486 | 
         
            +
                >>> clf = SGDClassifier(max_iter=10, tol=1e-3)
         
     | 
| 487 | 
         
            +
                >>> clf.fit(X_features, y)
         
     | 
| 488 | 
         
            +
                SGDClassifier(max_iter=10)
         
     | 
| 489 | 
         
            +
                >>> clf.score(X_features, y)
         
     | 
| 490 | 
         
            +
                1.0
         
     | 
| 491 | 
         
            +
                """
         
     | 
| 492 | 
         
            +
             
     | 
| 493 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 494 | 
         
            +
                    "skewedness": [Interval(Real, None, None, closed="neither")],
         
     | 
| 495 | 
         
            +
                    "n_components": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 496 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 497 | 
         
            +
                }
         
     | 
| 498 | 
         
            +
             
     | 
| 499 | 
         
            +
                def __init__(self, *, skewedness=1.0, n_components=100, random_state=None):
         
     | 
| 500 | 
         
            +
                    self.skewedness = skewedness
         
     | 
| 501 | 
         
            +
                    self.n_components = n_components
         
     | 
| 502 | 
         
            +
                    self.random_state = random_state
         
     | 
| 503 | 
         
            +
             
     | 
| 504 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 505 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 506 | 
         
            +
                    """Fit the model with X.
         
     | 
| 507 | 
         
            +
             
     | 
| 508 | 
         
            +
                    Samples random projection according to n_features.
         
     | 
| 509 | 
         
            +
             
     | 
| 510 | 
         
            +
                    Parameters
         
     | 
| 511 | 
         
            +
                    ----------
         
     | 
| 512 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 513 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 514 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 515 | 
         
            +
             
     | 
| 516 | 
         
            +
                    y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 517 | 
         
            +
                            default=None
         
     | 
| 518 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 519 | 
         
            +
             
     | 
| 520 | 
         
            +
                    Returns
         
     | 
| 521 | 
         
            +
                    -------
         
     | 
| 522 | 
         
            +
                    self : object
         
     | 
| 523 | 
         
            +
                        Returns the instance itself.
         
     | 
| 524 | 
         
            +
                    """
         
     | 
| 525 | 
         
            +
                    X = self._validate_data(X)
         
     | 
| 526 | 
         
            +
                    random_state = check_random_state(self.random_state)
         
     | 
| 527 | 
         
            +
                    n_features = X.shape[1]
         
     | 
| 528 | 
         
            +
                    uniform = random_state.uniform(size=(n_features, self.n_components))
         
     | 
| 529 | 
         
            +
                    # transform by inverse CDF of sech
         
     | 
| 530 | 
         
            +
                    self.random_weights_ = 1.0 / np.pi * np.log(np.tan(np.pi / 2.0 * uniform))
         
     | 
| 531 | 
         
            +
                    self.random_offset_ = random_state.uniform(0, 2 * np.pi, size=self.n_components)
         
     | 
| 532 | 
         
            +
             
     | 
| 533 | 
         
            +
                    if X.dtype == np.float32:
         
     | 
| 534 | 
         
            +
                        # Setting the data type of the fitted attribute will ensure the
         
     | 
| 535 | 
         
            +
                        # output data type during `transform`.
         
     | 
| 536 | 
         
            +
                        self.random_weights_ = self.random_weights_.astype(X.dtype, copy=False)
         
     | 
| 537 | 
         
            +
                        self.random_offset_ = self.random_offset_.astype(X.dtype, copy=False)
         
     | 
| 538 | 
         
            +
             
     | 
| 539 | 
         
            +
                    self._n_features_out = self.n_components
         
     | 
| 540 | 
         
            +
                    return self
         
     | 
| 541 | 
         
            +
             
     | 
| 542 | 
         
            +
                def transform(self, X):
         
     | 
| 543 | 
         
            +
                    """Apply the approximate feature map to X.
         
     | 
| 544 | 
         
            +
             
     | 
| 545 | 
         
            +
                    Parameters
         
     | 
| 546 | 
         
            +
                    ----------
         
     | 
| 547 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 548 | 
         
            +
                        New data, where `n_samples` is the number of samples
         
     | 
| 549 | 
         
            +
                        and `n_features` is the number of features. All values of X must be
         
     | 
| 550 | 
         
            +
                        strictly greater than "-skewedness".
         
     | 
| 551 | 
         
            +
             
     | 
| 552 | 
         
            +
                    Returns
         
     | 
| 553 | 
         
            +
                    -------
         
     | 
| 554 | 
         
            +
                    X_new : array-like, shape (n_samples, n_components)
         
     | 
| 555 | 
         
            +
                        Returns the instance itself.
         
     | 
| 556 | 
         
            +
                    """
         
     | 
| 557 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 558 | 
         
            +
                    X = self._validate_data(
         
     | 
| 559 | 
         
            +
                        X, copy=True, dtype=[np.float64, np.float32], reset=False
         
     | 
| 560 | 
         
            +
                    )
         
     | 
| 561 | 
         
            +
                    if (X <= -self.skewedness).any():
         
     | 
| 562 | 
         
            +
                        raise ValueError("X may not contain entries smaller than -skewedness.")
         
     | 
| 563 | 
         
            +
             
     | 
| 564 | 
         
            +
                    X += self.skewedness
         
     | 
| 565 | 
         
            +
                    np.log(X, X)
         
     | 
| 566 | 
         
            +
                    projection = safe_sparse_dot(X, self.random_weights_)
         
     | 
| 567 | 
         
            +
                    projection += self.random_offset_
         
     | 
| 568 | 
         
            +
                    np.cos(projection, projection)
         
     | 
| 569 | 
         
            +
                    projection *= np.sqrt(2.0) / np.sqrt(self.n_components)
         
     | 
| 570 | 
         
            +
                    return projection
         
     | 
| 571 | 
         
            +
             
     | 
| 572 | 
         
            +
                def _more_tags(self):
         
     | 
| 573 | 
         
            +
                    return {"preserves_dtype": [np.float64, np.float32]}
         
     | 
| 574 | 
         
            +
             
     | 
| 575 | 
         
            +
             
     | 
| 576 | 
         
            +
            class AdditiveChi2Sampler(TransformerMixin, BaseEstimator):
         
     | 
| 577 | 
         
            +
                """Approximate feature map for additive chi2 kernel.
         
     | 
| 578 | 
         
            +
             
     | 
| 579 | 
         
            +
                Uses sampling the fourier transform of the kernel characteristic
         
     | 
| 580 | 
         
            +
                at regular intervals.
         
     | 
| 581 | 
         
            +
             
     | 
| 582 | 
         
            +
                Since the kernel that is to be approximated is additive, the components of
         
     | 
| 583 | 
         
            +
                the input vectors can be treated separately.  Each entry in the original
         
     | 
| 584 | 
         
            +
                space is transformed into 2*sample_steps-1 features, where sample_steps is
         
     | 
| 585 | 
         
            +
                a parameter of the method. Typical values of sample_steps include 1, 2 and
         
     | 
| 586 | 
         
            +
                3.
         
     | 
| 587 | 
         
            +
             
     | 
| 588 | 
         
            +
                Optimal choices for the sampling interval for certain data ranges can be
         
     | 
| 589 | 
         
            +
                computed (see the reference). The default values should be reasonable.
         
     | 
| 590 | 
         
            +
             
     | 
| 591 | 
         
            +
                Read more in the :ref:`User Guide <additive_chi_kernel_approx>`.
         
     | 
| 592 | 
         
            +
             
     | 
| 593 | 
         
            +
                Parameters
         
     | 
| 594 | 
         
            +
                ----------
         
     | 
| 595 | 
         
            +
                sample_steps : int, default=2
         
     | 
| 596 | 
         
            +
                    Gives the number of (complex) sampling points.
         
     | 
| 597 | 
         
            +
             
     | 
| 598 | 
         
            +
                sample_interval : float, default=None
         
     | 
| 599 | 
         
            +
                    Sampling interval. Must be specified when sample_steps not in {1,2,3}.
         
     | 
| 600 | 
         
            +
             
     | 
| 601 | 
         
            +
                Attributes
         
     | 
| 602 | 
         
            +
                ----------
         
     | 
| 603 | 
         
            +
                sample_interval_ : float
         
     | 
| 604 | 
         
            +
                    Stored sampling interval. Specified as a parameter if `sample_steps`
         
     | 
| 605 | 
         
            +
                    not in {1,2,3}.
         
     | 
| 606 | 
         
            +
             
     | 
| 607 | 
         
            +
                    .. deprecated:: 1.3
         
     | 
| 608 | 
         
            +
                       `sample_interval_` serves internal purposes only and will be removed in 1.5.
         
     | 
| 609 | 
         
            +
             
     | 
| 610 | 
         
            +
                n_features_in_ : int
         
     | 
| 611 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 612 | 
         
            +
             
     | 
| 613 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 614 | 
         
            +
             
     | 
| 615 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 616 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 617 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 618 | 
         
            +
             
     | 
| 619 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 620 | 
         
            +
             
     | 
| 621 | 
         
            +
                See Also
         
     | 
| 622 | 
         
            +
                --------
         
     | 
| 623 | 
         
            +
                SkewedChi2Sampler : A Fourier-approximation to a non-additive variant of
         
     | 
| 624 | 
         
            +
                    the chi squared kernel.
         
     | 
| 625 | 
         
            +
             
     | 
| 626 | 
         
            +
                sklearn.metrics.pairwise.chi2_kernel : The exact chi squared kernel.
         
     | 
| 627 | 
         
            +
             
     | 
| 628 | 
         
            +
                sklearn.metrics.pairwise.additive_chi2_kernel : The exact additive chi
         
     | 
| 629 | 
         
            +
                    squared kernel.
         
     | 
| 630 | 
         
            +
             
     | 
| 631 | 
         
            +
                Notes
         
     | 
| 632 | 
         
            +
                -----
         
     | 
| 633 | 
         
            +
                This estimator approximates a slightly different version of the additive
         
     | 
| 634 | 
         
            +
                chi squared kernel then ``metric.additive_chi2`` computes.
         
     | 
| 635 | 
         
            +
             
     | 
| 636 | 
         
            +
                This estimator is stateless and does not need to be fitted. However, we
         
     | 
| 637 | 
         
            +
                recommend to call :meth:`fit_transform` instead of :meth:`transform`, as
         
     | 
| 638 | 
         
            +
                parameter validation is only performed in :meth:`fit`.
         
     | 
| 639 | 
         
            +
             
     | 
| 640 | 
         
            +
                References
         
     | 
| 641 | 
         
            +
                ----------
         
     | 
| 642 | 
         
            +
                See `"Efficient additive kernels via explicit feature maps"
         
     | 
| 643 | 
         
            +
                <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>`_
         
     | 
| 644 | 
         
            +
                A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence,
         
     | 
| 645 | 
         
            +
                2011
         
     | 
| 646 | 
         
            +
             
     | 
| 647 | 
         
            +
                Examples
         
     | 
| 648 | 
         
            +
                --------
         
     | 
| 649 | 
         
            +
                >>> from sklearn.datasets import load_digits
         
     | 
| 650 | 
         
            +
                >>> from sklearn.linear_model import SGDClassifier
         
     | 
| 651 | 
         
            +
                >>> from sklearn.kernel_approximation import AdditiveChi2Sampler
         
     | 
| 652 | 
         
            +
                >>> X, y = load_digits(return_X_y=True)
         
     | 
| 653 | 
         
            +
                >>> chi2sampler = AdditiveChi2Sampler(sample_steps=2)
         
     | 
| 654 | 
         
            +
                >>> X_transformed = chi2sampler.fit_transform(X, y)
         
     | 
| 655 | 
         
            +
                >>> clf = SGDClassifier(max_iter=5, random_state=0, tol=1e-3)
         
     | 
| 656 | 
         
            +
                >>> clf.fit(X_transformed, y)
         
     | 
| 657 | 
         
            +
                SGDClassifier(max_iter=5, random_state=0)
         
     | 
| 658 | 
         
            +
                >>> clf.score(X_transformed, y)
         
     | 
| 659 | 
         
            +
                0.9499...
         
     | 
| 660 | 
         
            +
                """
         
     | 
| 661 | 
         
            +
             
     | 
| 662 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 663 | 
         
            +
                    "sample_steps": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 664 | 
         
            +
                    "sample_interval": [Interval(Real, 0, None, closed="left"), None],
         
     | 
| 665 | 
         
            +
                }
         
     | 
| 666 | 
         
            +
             
     | 
| 667 | 
         
            +
                def __init__(self, *, sample_steps=2, sample_interval=None):
         
     | 
| 668 | 
         
            +
                    self.sample_steps = sample_steps
         
     | 
| 669 | 
         
            +
                    self.sample_interval = sample_interval
         
     | 
| 670 | 
         
            +
             
     | 
| 671 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 672 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 673 | 
         
            +
                    """Only validates estimator's parameters.
         
     | 
| 674 | 
         
            +
             
     | 
| 675 | 
         
            +
                    This method allows to: (i) validate the estimator's parameters and
         
     | 
| 676 | 
         
            +
                    (ii) be consistent with the scikit-learn transformer API.
         
     | 
| 677 | 
         
            +
             
     | 
| 678 | 
         
            +
                    Parameters
         
     | 
| 679 | 
         
            +
                    ----------
         
     | 
| 680 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 681 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 682 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 683 | 
         
            +
             
     | 
| 684 | 
         
            +
                    y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 685 | 
         
            +
                            default=None
         
     | 
| 686 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 687 | 
         
            +
             
     | 
| 688 | 
         
            +
                    Returns
         
     | 
| 689 | 
         
            +
                    -------
         
     | 
| 690 | 
         
            +
                    self : object
         
     | 
| 691 | 
         
            +
                        Returns the transformer.
         
     | 
| 692 | 
         
            +
                    """
         
     | 
| 693 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr")
         
     | 
| 694 | 
         
            +
                    check_non_negative(X, "X in AdditiveChi2Sampler.fit")
         
     | 
| 695 | 
         
            +
             
     | 
| 696 | 
         
            +
                    # TODO(1.5): remove the setting of _sample_interval from fit
         
     | 
| 697 | 
         
            +
                    if self.sample_interval is None:
         
     | 
| 698 | 
         
            +
                        # See figure 2 c) of "Efficient additive kernels via explicit feature maps"
         
     | 
| 699 | 
         
            +
                        # <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>
         
     | 
| 700 | 
         
            +
                        # A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence,
         
     | 
| 701 | 
         
            +
                        # 2011
         
     | 
| 702 | 
         
            +
                        if self.sample_steps == 1:
         
     | 
| 703 | 
         
            +
                            self._sample_interval = 0.8
         
     | 
| 704 | 
         
            +
                        elif self.sample_steps == 2:
         
     | 
| 705 | 
         
            +
                            self._sample_interval = 0.5
         
     | 
| 706 | 
         
            +
                        elif self.sample_steps == 3:
         
     | 
| 707 | 
         
            +
                            self._sample_interval = 0.4
         
     | 
| 708 | 
         
            +
                        else:
         
     | 
| 709 | 
         
            +
                            raise ValueError(
         
     | 
| 710 | 
         
            +
                                "If sample_steps is not in [1, 2, 3],"
         
     | 
| 711 | 
         
            +
                                " you need to provide sample_interval"
         
     | 
| 712 | 
         
            +
                            )
         
     | 
| 713 | 
         
            +
                    else:
         
     | 
| 714 | 
         
            +
                        self._sample_interval = self.sample_interval
         
     | 
| 715 | 
         
            +
             
     | 
| 716 | 
         
            +
                    return self
         
     | 
| 717 | 
         
            +
             
     | 
| 718 | 
         
            +
                # TODO(1.5): remove
         
     | 
| 719 | 
         
            +
                @deprecated(  # type: ignore
         
     | 
| 720 | 
         
            +
                    "The ``sample_interval_`` attribute was deprecated in version 1.3 and "
         
     | 
| 721 | 
         
            +
                    "will be removed 1.5."
         
     | 
| 722 | 
         
            +
                )
         
     | 
| 723 | 
         
            +
                @property
         
     | 
| 724 | 
         
            +
                def sample_interval_(self):
         
     | 
| 725 | 
         
            +
                    return self._sample_interval
         
     | 
| 726 | 
         
            +
             
     | 
| 727 | 
         
            +
                def transform(self, X):
         
     | 
| 728 | 
         
            +
                    """Apply approximate feature map to X.
         
     | 
| 729 | 
         
            +
             
     | 
| 730 | 
         
            +
                    Parameters
         
     | 
| 731 | 
         
            +
                    ----------
         
     | 
| 732 | 
         
            +
                    X : {array-like, sparse matrix}, shape (n_samples, n_features)
         
     | 
| 733 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 734 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 735 | 
         
            +
             
     | 
| 736 | 
         
            +
                    Returns
         
     | 
| 737 | 
         
            +
                    -------
         
     | 
| 738 | 
         
            +
                    X_new : {ndarray, sparse matrix}, \
         
     | 
| 739 | 
         
            +
                           shape = (n_samples, n_features * (2*sample_steps - 1))
         
     | 
| 740 | 
         
            +
                        Whether the return value is an array or sparse matrix depends on
         
     | 
| 741 | 
         
            +
                        the type of the input X.
         
     | 
| 742 | 
         
            +
                    """
         
     | 
| 743 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr", reset=False)
         
     | 
| 744 | 
         
            +
                    check_non_negative(X, "X in AdditiveChi2Sampler.transform")
         
     | 
| 745 | 
         
            +
                    sparse = sp.issparse(X)
         
     | 
| 746 | 
         
            +
             
     | 
| 747 | 
         
            +
                    if hasattr(self, "_sample_interval"):
         
     | 
| 748 | 
         
            +
                        # TODO(1.5): remove this branch
         
     | 
| 749 | 
         
            +
                        sample_interval = self._sample_interval
         
     | 
| 750 | 
         
            +
             
     | 
| 751 | 
         
            +
                    else:
         
     | 
| 752 | 
         
            +
                        if self.sample_interval is None:
         
     | 
| 753 | 
         
            +
                            # See figure 2 c) of "Efficient additive kernels via explicit feature maps" # noqa
         
     | 
| 754 | 
         
            +
                            # <http://www.robots.ox.ac.uk/~vedaldi/assets/pubs/vedaldi11efficient.pdf>
         
     | 
| 755 | 
         
            +
                            # A. Vedaldi and A. Zisserman, Pattern Analysis and Machine Intelligence, # noqa
         
     | 
| 756 | 
         
            +
                            # 2011
         
     | 
| 757 | 
         
            +
                            if self.sample_steps == 1:
         
     | 
| 758 | 
         
            +
                                sample_interval = 0.8
         
     | 
| 759 | 
         
            +
                            elif self.sample_steps == 2:
         
     | 
| 760 | 
         
            +
                                sample_interval = 0.5
         
     | 
| 761 | 
         
            +
                            elif self.sample_steps == 3:
         
     | 
| 762 | 
         
            +
                                sample_interval = 0.4
         
     | 
| 763 | 
         
            +
                            else:
         
     | 
| 764 | 
         
            +
                                raise ValueError(
         
     | 
| 765 | 
         
            +
                                    "If sample_steps is not in [1, 2, 3],"
         
     | 
| 766 | 
         
            +
                                    " you need to provide sample_interval"
         
     | 
| 767 | 
         
            +
                                )
         
     | 
| 768 | 
         
            +
                        else:
         
     | 
| 769 | 
         
            +
                            sample_interval = self.sample_interval
         
     | 
| 770 | 
         
            +
             
     | 
| 771 | 
         
            +
                    # zeroth component
         
     | 
| 772 | 
         
            +
                    # 1/cosh = sech
         
     | 
| 773 | 
         
            +
                    # cosh(0) = 1.0
         
     | 
| 774 | 
         
            +
                    transf = self._transform_sparse if sparse else self._transform_dense
         
     | 
| 775 | 
         
            +
                    return transf(X, self.sample_steps, sample_interval)
         
     | 
| 776 | 
         
            +
             
     | 
| 777 | 
         
            +
                def get_feature_names_out(self, input_features=None):
         
     | 
| 778 | 
         
            +
                    """Get output feature names for transformation.
         
     | 
| 779 | 
         
            +
             
     | 
| 780 | 
         
            +
                    Parameters
         
     | 
| 781 | 
         
            +
                    ----------
         
     | 
| 782 | 
         
            +
                    input_features : array-like of str or None, default=None
         
     | 
| 783 | 
         
            +
                        Only used to validate feature names with the names seen in :meth:`fit`.
         
     | 
| 784 | 
         
            +
             
     | 
| 785 | 
         
            +
                    Returns
         
     | 
| 786 | 
         
            +
                    -------
         
     | 
| 787 | 
         
            +
                    feature_names_out : ndarray of str objects
         
     | 
| 788 | 
         
            +
                        Transformed feature names.
         
     | 
| 789 | 
         
            +
                    """
         
     | 
| 790 | 
         
            +
                    check_is_fitted(self, "n_features_in_")
         
     | 
| 791 | 
         
            +
                    input_features = _check_feature_names_in(
         
     | 
| 792 | 
         
            +
                        self, input_features, generate_names=True
         
     | 
| 793 | 
         
            +
                    )
         
     | 
| 794 | 
         
            +
                    est_name = self.__class__.__name__.lower()
         
     | 
| 795 | 
         
            +
             
     | 
| 796 | 
         
            +
                    names_list = [f"{est_name}_{name}_sqrt" for name in input_features]
         
     | 
| 797 | 
         
            +
             
     | 
| 798 | 
         
            +
                    for j in range(1, self.sample_steps):
         
     | 
| 799 | 
         
            +
                        cos_names = [f"{est_name}_{name}_cos{j}" for name in input_features]
         
     | 
| 800 | 
         
            +
                        sin_names = [f"{est_name}_{name}_sin{j}" for name in input_features]
         
     | 
| 801 | 
         
            +
                        names_list.extend(cos_names + sin_names)
         
     | 
| 802 | 
         
            +
             
     | 
| 803 | 
         
            +
                    return np.asarray(names_list, dtype=object)
         
     | 
| 804 | 
         
            +
             
     | 
| 805 | 
         
            +
                @staticmethod
         
     | 
| 806 | 
         
            +
                def _transform_dense(X, sample_steps, sample_interval):
         
     | 
| 807 | 
         
            +
                    non_zero = X != 0.0
         
     | 
| 808 | 
         
            +
                    X_nz = X[non_zero]
         
     | 
| 809 | 
         
            +
             
     | 
| 810 | 
         
            +
                    X_step = np.zeros_like(X)
         
     | 
| 811 | 
         
            +
                    X_step[non_zero] = np.sqrt(X_nz * sample_interval)
         
     | 
| 812 | 
         
            +
             
     | 
| 813 | 
         
            +
                    X_new = [X_step]
         
     | 
| 814 | 
         
            +
             
     | 
| 815 | 
         
            +
                    log_step_nz = sample_interval * np.log(X_nz)
         
     | 
| 816 | 
         
            +
                    step_nz = 2 * X_nz * sample_interval
         
     | 
| 817 | 
         
            +
             
     | 
| 818 | 
         
            +
                    for j in range(1, sample_steps):
         
     | 
| 819 | 
         
            +
                        factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval))
         
     | 
| 820 | 
         
            +
             
     | 
| 821 | 
         
            +
                        X_step = np.zeros_like(X)
         
     | 
| 822 | 
         
            +
                        X_step[non_zero] = factor_nz * np.cos(j * log_step_nz)
         
     | 
| 823 | 
         
            +
                        X_new.append(X_step)
         
     | 
| 824 | 
         
            +
             
     | 
| 825 | 
         
            +
                        X_step = np.zeros_like(X)
         
     | 
| 826 | 
         
            +
                        X_step[non_zero] = factor_nz * np.sin(j * log_step_nz)
         
     | 
| 827 | 
         
            +
                        X_new.append(X_step)
         
     | 
| 828 | 
         
            +
             
     | 
| 829 | 
         
            +
                    return np.hstack(X_new)
         
     | 
| 830 | 
         
            +
             
     | 
| 831 | 
         
            +
                @staticmethod
         
     | 
| 832 | 
         
            +
                def _transform_sparse(X, sample_steps, sample_interval):
         
     | 
| 833 | 
         
            +
                    indices = X.indices.copy()
         
     | 
| 834 | 
         
            +
                    indptr = X.indptr.copy()
         
     | 
| 835 | 
         
            +
             
     | 
| 836 | 
         
            +
                    data_step = np.sqrt(X.data * sample_interval)
         
     | 
| 837 | 
         
            +
                    X_step = sp.csr_matrix(
         
     | 
| 838 | 
         
            +
                        (data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
         
     | 
| 839 | 
         
            +
                    )
         
     | 
| 840 | 
         
            +
                    X_new = [X_step]
         
     | 
| 841 | 
         
            +
             
     | 
| 842 | 
         
            +
                    log_step_nz = sample_interval * np.log(X.data)
         
     | 
| 843 | 
         
            +
                    step_nz = 2 * X.data * sample_interval
         
     | 
| 844 | 
         
            +
             
     | 
| 845 | 
         
            +
                    for j in range(1, sample_steps):
         
     | 
| 846 | 
         
            +
                        factor_nz = np.sqrt(step_nz / np.cosh(np.pi * j * sample_interval))
         
     | 
| 847 | 
         
            +
             
     | 
| 848 | 
         
            +
                        data_step = factor_nz * np.cos(j * log_step_nz)
         
     | 
| 849 | 
         
            +
                        X_step = sp.csr_matrix(
         
     | 
| 850 | 
         
            +
                            (data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
         
     | 
| 851 | 
         
            +
                        )
         
     | 
| 852 | 
         
            +
                        X_new.append(X_step)
         
     | 
| 853 | 
         
            +
             
     | 
| 854 | 
         
            +
                        data_step = factor_nz * np.sin(j * log_step_nz)
         
     | 
| 855 | 
         
            +
                        X_step = sp.csr_matrix(
         
     | 
| 856 | 
         
            +
                            (data_step, indices, indptr), shape=X.shape, dtype=X.dtype, copy=False
         
     | 
| 857 | 
         
            +
                        )
         
     | 
| 858 | 
         
            +
                        X_new.append(X_step)
         
     | 
| 859 | 
         
            +
             
     | 
| 860 | 
         
            +
                    return sp.hstack(X_new)
         
     | 
| 861 | 
         
            +
             
     | 
| 862 | 
         
            +
                def _more_tags(self):
         
     | 
| 863 | 
         
            +
                    return {"stateless": True, "requires_positive_X": True}
         
     | 
| 864 | 
         
            +
             
     | 
| 865 | 
         
            +
             
     | 
| 866 | 
         
            +
            class Nystroem(ClassNamePrefixFeaturesOutMixin, TransformerMixin, BaseEstimator):
         
     | 
| 867 | 
         
            +
                """Approximate a kernel map using a subset of the training data.
         
     | 
| 868 | 
         
            +
             
     | 
| 869 | 
         
            +
                Constructs an approximate feature map for an arbitrary kernel
         
     | 
| 870 | 
         
            +
                using a subset of the data as basis.
         
     | 
| 871 | 
         
            +
             
     | 
| 872 | 
         
            +
                Read more in the :ref:`User Guide <nystroem_kernel_approx>`.
         
     | 
| 873 | 
         
            +
             
     | 
| 874 | 
         
            +
                .. versionadded:: 0.13
         
     | 
| 875 | 
         
            +
             
     | 
| 876 | 
         
            +
                Parameters
         
     | 
| 877 | 
         
            +
                ----------
         
     | 
| 878 | 
         
            +
                kernel : str or callable, default='rbf'
         
     | 
| 879 | 
         
            +
                    Kernel map to be approximated. A callable should accept two arguments
         
     | 
| 880 | 
         
            +
                    and the keyword arguments passed to this object as `kernel_params`, and
         
     | 
| 881 | 
         
            +
                    should return a floating point number.
         
     | 
| 882 | 
         
            +
             
     | 
| 883 | 
         
            +
                gamma : float, default=None
         
     | 
| 884 | 
         
            +
                    Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
         
     | 
| 885 | 
         
            +
                    and sigmoid kernels. Interpretation of the default value is left to
         
     | 
| 886 | 
         
            +
                    the kernel; see the documentation for sklearn.metrics.pairwise.
         
     | 
| 887 | 
         
            +
                    Ignored by other kernels.
         
     | 
| 888 | 
         
            +
             
     | 
| 889 | 
         
            +
                coef0 : float, default=None
         
     | 
| 890 | 
         
            +
                    Zero coefficient for polynomial and sigmoid kernels.
         
     | 
| 891 | 
         
            +
                    Ignored by other kernels.
         
     | 
| 892 | 
         
            +
             
     | 
| 893 | 
         
            +
                degree : float, default=None
         
     | 
| 894 | 
         
            +
                    Degree of the polynomial kernel. Ignored by other kernels.
         
     | 
| 895 | 
         
            +
             
     | 
| 896 | 
         
            +
                kernel_params : dict, default=None
         
     | 
| 897 | 
         
            +
                    Additional parameters (keyword arguments) for kernel function passed
         
     | 
| 898 | 
         
            +
                    as callable object.
         
     | 
| 899 | 
         
            +
             
     | 
| 900 | 
         
            +
                n_components : int, default=100
         
     | 
| 901 | 
         
            +
                    Number of features to construct.
         
     | 
| 902 | 
         
            +
                    How many data points will be used to construct the mapping.
         
     | 
| 903 | 
         
            +
             
     | 
| 904 | 
         
            +
                random_state : int, RandomState instance or None, default=None
         
     | 
| 905 | 
         
            +
                    Pseudo-random number generator to control the uniform sampling without
         
     | 
| 906 | 
         
            +
                    replacement of `n_components` of the training data to construct the
         
     | 
| 907 | 
         
            +
                    basis kernel.
         
     | 
| 908 | 
         
            +
                    Pass an int for reproducible output across multiple function calls.
         
     | 
| 909 | 
         
            +
                    See :term:`Glossary <random_state>`.
         
     | 
| 910 | 
         
            +
             
     | 
| 911 | 
         
            +
                n_jobs : int, default=None
         
     | 
| 912 | 
         
            +
                    The number of jobs to use for the computation. This works by breaking
         
     | 
| 913 | 
         
            +
                    down the kernel matrix into `n_jobs` even slices and computing them in
         
     | 
| 914 | 
         
            +
                    parallel.
         
     | 
| 915 | 
         
            +
             
     | 
| 916 | 
         
            +
                    ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context.
         
     | 
| 917 | 
         
            +
                    ``-1`` means using all processors. See :term:`Glossary <n_jobs>`
         
     | 
| 918 | 
         
            +
                    for more details.
         
     | 
| 919 | 
         
            +
             
     | 
| 920 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 921 | 
         
            +
             
     | 
| 922 | 
         
            +
                Attributes
         
     | 
| 923 | 
         
            +
                ----------
         
     | 
| 924 | 
         
            +
                components_ : ndarray of shape (n_components, n_features)
         
     | 
| 925 | 
         
            +
                    Subset of training points used to construct the feature map.
         
     | 
| 926 | 
         
            +
             
     | 
| 927 | 
         
            +
                component_indices_ : ndarray of shape (n_components)
         
     | 
| 928 | 
         
            +
                    Indices of ``components_`` in the training set.
         
     | 
| 929 | 
         
            +
             
     | 
| 930 | 
         
            +
                normalization_ : ndarray of shape (n_components, n_components)
         
     | 
| 931 | 
         
            +
                    Normalization matrix needed for embedding.
         
     | 
| 932 | 
         
            +
                    Square root of the kernel matrix on ``components_``.
         
     | 
| 933 | 
         
            +
             
     | 
| 934 | 
         
            +
                n_features_in_ : int
         
     | 
| 935 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 936 | 
         
            +
             
     | 
| 937 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 938 | 
         
            +
             
     | 
| 939 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 940 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 941 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 942 | 
         
            +
             
     | 
| 943 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 944 | 
         
            +
             
     | 
| 945 | 
         
            +
                See Also
         
     | 
| 946 | 
         
            +
                --------
         
     | 
| 947 | 
         
            +
                AdditiveChi2Sampler : Approximate feature map for additive chi2 kernel.
         
     | 
| 948 | 
         
            +
                PolynomialCountSketch : Polynomial kernel approximation via Tensor Sketch.
         
     | 
| 949 | 
         
            +
                RBFSampler : Approximate a RBF kernel feature map using random Fourier
         
     | 
| 950 | 
         
            +
                    features.
         
     | 
| 951 | 
         
            +
                SkewedChi2Sampler : Approximate feature map for "skewed chi-squared" kernel.
         
     | 
| 952 | 
         
            +
                sklearn.metrics.pairwise.kernel_metrics : List of built-in kernels.
         
     | 
| 953 | 
         
            +
             
     | 
| 954 | 
         
            +
                References
         
     | 
| 955 | 
         
            +
                ----------
         
     | 
| 956 | 
         
            +
                * Williams, C.K.I. and Seeger, M.
         
     | 
| 957 | 
         
            +
                  "Using the Nystroem method to speed up kernel machines",
         
     | 
| 958 | 
         
            +
                  Advances in neural information processing systems 2001
         
     | 
| 959 | 
         
            +
             
     | 
| 960 | 
         
            +
                * T. Yang, Y. Li, M. Mahdavi, R. Jin and Z. Zhou
         
     | 
| 961 | 
         
            +
                  "Nystroem Method vs Random Fourier Features: A Theoretical and Empirical
         
     | 
| 962 | 
         
            +
                  Comparison",
         
     | 
| 963 | 
         
            +
                  Advances in Neural Information Processing Systems 2012
         
     | 
| 964 | 
         
            +
             
     | 
| 965 | 
         
            +
                Examples
         
     | 
| 966 | 
         
            +
                --------
         
     | 
| 967 | 
         
            +
                >>> from sklearn import datasets, svm
         
     | 
| 968 | 
         
            +
                >>> from sklearn.kernel_approximation import Nystroem
         
     | 
| 969 | 
         
            +
                >>> X, y = datasets.load_digits(n_class=9, return_X_y=True)
         
     | 
| 970 | 
         
            +
                >>> data = X / 16.
         
     | 
| 971 | 
         
            +
                >>> clf = svm.LinearSVC(dual="auto")
         
     | 
| 972 | 
         
            +
                >>> feature_map_nystroem = Nystroem(gamma=.2,
         
     | 
| 973 | 
         
            +
                ...                                 random_state=1,
         
     | 
| 974 | 
         
            +
                ...                                 n_components=300)
         
     | 
| 975 | 
         
            +
                >>> data_transformed = feature_map_nystroem.fit_transform(data)
         
     | 
| 976 | 
         
            +
                >>> clf.fit(data_transformed, y)
         
     | 
| 977 | 
         
            +
                LinearSVC(dual='auto')
         
     | 
| 978 | 
         
            +
                >>> clf.score(data_transformed, y)
         
     | 
| 979 | 
         
            +
                0.9987...
         
     | 
| 980 | 
         
            +
                """
         
     | 
| 981 | 
         
            +
             
     | 
| 982 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 983 | 
         
            +
                    "kernel": [
         
     | 
| 984 | 
         
            +
                        StrOptions(set(PAIRWISE_KERNEL_FUNCTIONS.keys()) | {"precomputed"}),
         
     | 
| 985 | 
         
            +
                        callable,
         
     | 
| 986 | 
         
            +
                    ],
         
     | 
| 987 | 
         
            +
                    "gamma": [Interval(Real, 0, None, closed="left"), None],
         
     | 
| 988 | 
         
            +
                    "coef0": [Interval(Real, None, None, closed="neither"), None],
         
     | 
| 989 | 
         
            +
                    "degree": [Interval(Real, 1, None, closed="left"), None],
         
     | 
| 990 | 
         
            +
                    "kernel_params": [dict, None],
         
     | 
| 991 | 
         
            +
                    "n_components": [Interval(Integral, 1, None, closed="left")],
         
     | 
| 992 | 
         
            +
                    "random_state": ["random_state"],
         
     | 
| 993 | 
         
            +
                    "n_jobs": [Integral, None],
         
     | 
| 994 | 
         
            +
                }
         
     | 
| 995 | 
         
            +
             
     | 
| 996 | 
         
            +
                def __init__(
         
     | 
| 997 | 
         
            +
                    self,
         
     | 
| 998 | 
         
            +
                    kernel="rbf",
         
     | 
| 999 | 
         
            +
                    *,
         
     | 
| 1000 | 
         
            +
                    gamma=None,
         
     | 
| 1001 | 
         
            +
                    coef0=None,
         
     | 
| 1002 | 
         
            +
                    degree=None,
         
     | 
| 1003 | 
         
            +
                    kernel_params=None,
         
     | 
| 1004 | 
         
            +
                    n_components=100,
         
     | 
| 1005 | 
         
            +
                    random_state=None,
         
     | 
| 1006 | 
         
            +
                    n_jobs=None,
         
     | 
| 1007 | 
         
            +
                ):
         
     | 
| 1008 | 
         
            +
                    self.kernel = kernel
         
     | 
| 1009 | 
         
            +
                    self.gamma = gamma
         
     | 
| 1010 | 
         
            +
                    self.coef0 = coef0
         
     | 
| 1011 | 
         
            +
                    self.degree = degree
         
     | 
| 1012 | 
         
            +
                    self.kernel_params = kernel_params
         
     | 
| 1013 | 
         
            +
                    self.n_components = n_components
         
     | 
| 1014 | 
         
            +
                    self.random_state = random_state
         
     | 
| 1015 | 
         
            +
                    self.n_jobs = n_jobs
         
     | 
| 1016 | 
         
            +
             
     | 
| 1017 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 1018 | 
         
            +
                def fit(self, X, y=None):
         
     | 
| 1019 | 
         
            +
                    """Fit estimator to data.
         
     | 
| 1020 | 
         
            +
             
     | 
| 1021 | 
         
            +
                    Samples a subset of training points, computes kernel
         
     | 
| 1022 | 
         
            +
                    on these and computes normalization matrix.
         
     | 
| 1023 | 
         
            +
             
     | 
| 1024 | 
         
            +
                    Parameters
         
     | 
| 1025 | 
         
            +
                    ----------
         
     | 
| 1026 | 
         
            +
                    X : array-like, shape (n_samples, n_features)
         
     | 
| 1027 | 
         
            +
                        Training data, where `n_samples` is the number of samples
         
     | 
| 1028 | 
         
            +
                        and `n_features` is the number of features.
         
     | 
| 1029 | 
         
            +
             
     | 
| 1030 | 
         
            +
                    y : array-like, shape (n_samples,) or (n_samples, n_outputs), \
         
     | 
| 1031 | 
         
            +
                            default=None
         
     | 
| 1032 | 
         
            +
                        Target values (None for unsupervised transformations).
         
     | 
| 1033 | 
         
            +
             
     | 
| 1034 | 
         
            +
                    Returns
         
     | 
| 1035 | 
         
            +
                    -------
         
     | 
| 1036 | 
         
            +
                    self : object
         
     | 
| 1037 | 
         
            +
                        Returns the instance itself.
         
     | 
| 1038 | 
         
            +
                    """
         
     | 
| 1039 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr")
         
     | 
| 1040 | 
         
            +
                    rnd = check_random_state(self.random_state)
         
     | 
| 1041 | 
         
            +
                    n_samples = X.shape[0]
         
     | 
| 1042 | 
         
            +
             
     | 
| 1043 | 
         
            +
                    # get basis vectors
         
     | 
| 1044 | 
         
            +
                    if self.n_components > n_samples:
         
     | 
| 1045 | 
         
            +
                        # XXX should we just bail?
         
     | 
| 1046 | 
         
            +
                        n_components = n_samples
         
     | 
| 1047 | 
         
            +
                        warnings.warn(
         
     | 
| 1048 | 
         
            +
                            "n_components > n_samples. This is not possible.\n"
         
     | 
| 1049 | 
         
            +
                            "n_components was set to n_samples, which results"
         
     | 
| 1050 | 
         
            +
                            " in inefficient evaluation of the full kernel."
         
     | 
| 1051 | 
         
            +
                        )
         
     | 
| 1052 | 
         
            +
             
     | 
| 1053 | 
         
            +
                    else:
         
     | 
| 1054 | 
         
            +
                        n_components = self.n_components
         
     | 
| 1055 | 
         
            +
                    n_components = min(n_samples, n_components)
         
     | 
| 1056 | 
         
            +
                    inds = rnd.permutation(n_samples)
         
     | 
| 1057 | 
         
            +
                    basis_inds = inds[:n_components]
         
     | 
| 1058 | 
         
            +
                    basis = X[basis_inds]
         
     | 
| 1059 | 
         
            +
             
     | 
| 1060 | 
         
            +
                    basis_kernel = pairwise_kernels(
         
     | 
| 1061 | 
         
            +
                        basis,
         
     | 
| 1062 | 
         
            +
                        metric=self.kernel,
         
     | 
| 1063 | 
         
            +
                        filter_params=True,
         
     | 
| 1064 | 
         
            +
                        n_jobs=self.n_jobs,
         
     | 
| 1065 | 
         
            +
                        **self._get_kernel_params(),
         
     | 
| 1066 | 
         
            +
                    )
         
     | 
| 1067 | 
         
            +
             
     | 
| 1068 | 
         
            +
                    # sqrt of kernel matrix on basis vectors
         
     | 
| 1069 | 
         
            +
                    U, S, V = svd(basis_kernel)
         
     | 
| 1070 | 
         
            +
                    S = np.maximum(S, 1e-12)
         
     | 
| 1071 | 
         
            +
                    self.normalization_ = np.dot(U / np.sqrt(S), V)
         
     | 
| 1072 | 
         
            +
                    self.components_ = basis
         
     | 
| 1073 | 
         
            +
                    self.component_indices_ = basis_inds
         
     | 
| 1074 | 
         
            +
                    self._n_features_out = n_components
         
     | 
| 1075 | 
         
            +
                    return self
         
     | 
| 1076 | 
         
            +
             
     | 
| 1077 | 
         
            +
                def transform(self, X):
         
     | 
| 1078 | 
         
            +
                    """Apply feature map to X.
         
     | 
| 1079 | 
         
            +
             
     | 
| 1080 | 
         
            +
                    Computes an approximate feature map using the kernel
         
     | 
| 1081 | 
         
            +
                    between some training points and X.
         
     | 
| 1082 | 
         
            +
             
     | 
| 1083 | 
         
            +
                    Parameters
         
     | 
| 1084 | 
         
            +
                    ----------
         
     | 
| 1085 | 
         
            +
                    X : array-like of shape (n_samples, n_features)
         
     | 
| 1086 | 
         
            +
                        Data to transform.
         
     | 
| 1087 | 
         
            +
             
     | 
| 1088 | 
         
            +
                    Returns
         
     | 
| 1089 | 
         
            +
                    -------
         
     | 
| 1090 | 
         
            +
                    X_transformed : ndarray of shape (n_samples, n_components)
         
     | 
| 1091 | 
         
            +
                        Transformed data.
         
     | 
| 1092 | 
         
            +
                    """
         
     | 
| 1093 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 1094 | 
         
            +
                    X = self._validate_data(X, accept_sparse="csr", reset=False)
         
     | 
| 1095 | 
         
            +
             
     | 
| 1096 | 
         
            +
                    kernel_params = self._get_kernel_params()
         
     | 
| 1097 | 
         
            +
                    embedded = pairwise_kernels(
         
     | 
| 1098 | 
         
            +
                        X,
         
     | 
| 1099 | 
         
            +
                        self.components_,
         
     | 
| 1100 | 
         
            +
                        metric=self.kernel,
         
     | 
| 1101 | 
         
            +
                        filter_params=True,
         
     | 
| 1102 | 
         
            +
                        n_jobs=self.n_jobs,
         
     | 
| 1103 | 
         
            +
                        **kernel_params,
         
     | 
| 1104 | 
         
            +
                    )
         
     | 
| 1105 | 
         
            +
                    return np.dot(embedded, self.normalization_.T)
         
     | 
| 1106 | 
         
            +
             
     | 
| 1107 | 
         
            +
                def _get_kernel_params(self):
         
     | 
| 1108 | 
         
            +
                    params = self.kernel_params
         
     | 
| 1109 | 
         
            +
                    if params is None:
         
     | 
| 1110 | 
         
            +
                        params = {}
         
     | 
| 1111 | 
         
            +
                    if not callable(self.kernel) and self.kernel != "precomputed":
         
     | 
| 1112 | 
         
            +
                        for param in KERNEL_PARAMS[self.kernel]:
         
     | 
| 1113 | 
         
            +
                            if getattr(self, param) is not None:
         
     | 
| 1114 | 
         
            +
                                params[param] = getattr(self, param)
         
     | 
| 1115 | 
         
            +
                    else:
         
     | 
| 1116 | 
         
            +
                        if (
         
     | 
| 1117 | 
         
            +
                            self.gamma is not None
         
     | 
| 1118 | 
         
            +
                            or self.coef0 is not None
         
     | 
| 1119 | 
         
            +
                            or self.degree is not None
         
     | 
| 1120 | 
         
            +
                        ):
         
     | 
| 1121 | 
         
            +
                            raise ValueError(
         
     | 
| 1122 | 
         
            +
                                "Don't pass gamma, coef0 or degree to "
         
     | 
| 1123 | 
         
            +
                                "Nystroem if using a callable "
         
     | 
| 1124 | 
         
            +
                                "or precomputed kernel"
         
     | 
| 1125 | 
         
            +
                            )
         
     | 
| 1126 | 
         
            +
             
     | 
| 1127 | 
         
            +
                    return params
         
     | 
| 1128 | 
         
            +
             
     | 
| 1129 | 
         
            +
                def _more_tags(self):
         
     | 
| 1130 | 
         
            +
                    return {
         
     | 
| 1131 | 
         
            +
                        "_xfail_checks": {
         
     | 
| 1132 | 
         
            +
                            "check_transformer_preserve_dtypes": (
         
     | 
| 1133 | 
         
            +
                                "dtypes are preserved but not at a close enough precision"
         
     | 
| 1134 | 
         
            +
                            )
         
     | 
| 1135 | 
         
            +
                        },
         
     | 
| 1136 | 
         
            +
                        "preserves_dtype": [np.float64, np.float32],
         
     | 
| 1137 | 
         
            +
                    }
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/kernel_ridge.py
    ADDED
    
    | 
         @@ -0,0 +1,237 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """Module :mod:`sklearn.kernel_ridge` implements kernel ridge regression."""
         
     | 
| 2 | 
         
            +
             
     | 
| 3 | 
         
            +
            # Authors: Mathieu Blondel <[email protected]>
         
     | 
| 4 | 
         
            +
            #          Jan Hendrik Metzen <[email protected]>
         
     | 
| 5 | 
         
            +
            # License: BSD 3 clause
         
     | 
| 6 | 
         
            +
            from numbers import Real
         
     | 
| 7 | 
         
            +
             
     | 
| 8 | 
         
            +
            import numpy as np
         
     | 
| 9 | 
         
            +
             
     | 
| 10 | 
         
            +
            from .base import BaseEstimator, MultiOutputMixin, RegressorMixin, _fit_context
         
     | 
| 11 | 
         
            +
            from .linear_model._ridge import _solve_cholesky_kernel
         
     | 
| 12 | 
         
            +
            from .metrics.pairwise import PAIRWISE_KERNEL_FUNCTIONS, pairwise_kernels
         
     | 
| 13 | 
         
            +
            from .utils._param_validation import Interval, StrOptions
         
     | 
| 14 | 
         
            +
            from .utils.validation import _check_sample_weight, check_is_fitted
         
     | 
| 15 | 
         
            +
             
     | 
| 16 | 
         
            +
             
     | 
| 17 | 
         
            +
            class KernelRidge(MultiOutputMixin, RegressorMixin, BaseEstimator):
         
     | 
| 18 | 
         
            +
                """Kernel ridge regression.
         
     | 
| 19 | 
         
            +
             
     | 
| 20 | 
         
            +
                Kernel ridge regression (KRR) combines ridge regression (linear least
         
     | 
| 21 | 
         
            +
                squares with l2-norm regularization) with the kernel trick. It thus
         
     | 
| 22 | 
         
            +
                learns a linear function in the space induced by the respective kernel and
         
     | 
| 23 | 
         
            +
                the data. For non-linear kernels, this corresponds to a non-linear
         
     | 
| 24 | 
         
            +
                function in the original space.
         
     | 
| 25 | 
         
            +
             
     | 
| 26 | 
         
            +
                The form of the model learned by KRR is identical to support vector
         
     | 
| 27 | 
         
            +
                regression (SVR). However, different loss functions are used: KRR uses
         
     | 
| 28 | 
         
            +
                squared error loss while support vector regression uses epsilon-insensitive
         
     | 
| 29 | 
         
            +
                loss, both combined with l2 regularization. In contrast to SVR, fitting a
         
     | 
| 30 | 
         
            +
                KRR model can be done in closed-form and is typically faster for
         
     | 
| 31 | 
         
            +
                medium-sized datasets. On the other hand, the learned model is non-sparse
         
     | 
| 32 | 
         
            +
                and thus slower than SVR, which learns a sparse model for epsilon > 0, at
         
     | 
| 33 | 
         
            +
                prediction-time.
         
     | 
| 34 | 
         
            +
             
     | 
| 35 | 
         
            +
                This estimator has built-in support for multi-variate regression
         
     | 
| 36 | 
         
            +
                (i.e., when y is a 2d-array of shape [n_samples, n_targets]).
         
     | 
| 37 | 
         
            +
             
     | 
| 38 | 
         
            +
                Read more in the :ref:`User Guide <kernel_ridge>`.
         
     | 
| 39 | 
         
            +
             
     | 
| 40 | 
         
            +
                Parameters
         
     | 
| 41 | 
         
            +
                ----------
         
     | 
| 42 | 
         
            +
                alpha : float or array-like of shape (n_targets,), default=1.0
         
     | 
| 43 | 
         
            +
                    Regularization strength; must be a positive float. Regularization
         
     | 
| 44 | 
         
            +
                    improves the conditioning of the problem and reduces the variance of
         
     | 
| 45 | 
         
            +
                    the estimates. Larger values specify stronger regularization.
         
     | 
| 46 | 
         
            +
                    Alpha corresponds to ``1 / (2C)`` in other linear models such as
         
     | 
| 47 | 
         
            +
                    :class:`~sklearn.linear_model.LogisticRegression` or
         
     | 
| 48 | 
         
            +
                    :class:`~sklearn.svm.LinearSVC`. If an array is passed, penalties are
         
     | 
| 49 | 
         
            +
                    assumed to be specific to the targets. Hence they must correspond in
         
     | 
| 50 | 
         
            +
                    number. See :ref:`ridge_regression` for formula.
         
     | 
| 51 | 
         
            +
             
     | 
| 52 | 
         
            +
                kernel : str or callable, default="linear"
         
     | 
| 53 | 
         
            +
                    Kernel mapping used internally. This parameter is directly passed to
         
     | 
| 54 | 
         
            +
                    :class:`~sklearn.metrics.pairwise.pairwise_kernels`.
         
     | 
| 55 | 
         
            +
                    If `kernel` is a string, it must be one of the metrics
         
     | 
| 56 | 
         
            +
                    in `pairwise.PAIRWISE_KERNEL_FUNCTIONS` or "precomputed".
         
     | 
| 57 | 
         
            +
                    If `kernel` is "precomputed", X is assumed to be a kernel matrix.
         
     | 
| 58 | 
         
            +
                    Alternatively, if `kernel` is a callable function, it is called on
         
     | 
| 59 | 
         
            +
                    each pair of instances (rows) and the resulting value recorded. The
         
     | 
| 60 | 
         
            +
                    callable should take two rows from X as input and return the
         
     | 
| 61 | 
         
            +
                    corresponding kernel value as a single number. This means that
         
     | 
| 62 | 
         
            +
                    callables from :mod:`sklearn.metrics.pairwise` are not allowed, as
         
     | 
| 63 | 
         
            +
                    they operate on matrices, not single samples. Use the string
         
     | 
| 64 | 
         
            +
                    identifying the kernel instead.
         
     | 
| 65 | 
         
            +
             
     | 
| 66 | 
         
            +
                gamma : float, default=None
         
     | 
| 67 | 
         
            +
                    Gamma parameter for the RBF, laplacian, polynomial, exponential chi2
         
     | 
| 68 | 
         
            +
                    and sigmoid kernels. Interpretation of the default value is left to
         
     | 
| 69 | 
         
            +
                    the kernel; see the documentation for sklearn.metrics.pairwise.
         
     | 
| 70 | 
         
            +
                    Ignored by other kernels.
         
     | 
| 71 | 
         
            +
             
     | 
| 72 | 
         
            +
                degree : float, default=3
         
     | 
| 73 | 
         
            +
                    Degree of the polynomial kernel. Ignored by other kernels.
         
     | 
| 74 | 
         
            +
             
     | 
| 75 | 
         
            +
                coef0 : float, default=1
         
     | 
| 76 | 
         
            +
                    Zero coefficient for polynomial and sigmoid kernels.
         
     | 
| 77 | 
         
            +
                    Ignored by other kernels.
         
     | 
| 78 | 
         
            +
             
     | 
| 79 | 
         
            +
                kernel_params : dict, default=None
         
     | 
| 80 | 
         
            +
                    Additional parameters (keyword arguments) for kernel function passed
         
     | 
| 81 | 
         
            +
                    as callable object.
         
     | 
| 82 | 
         
            +
             
     | 
| 83 | 
         
            +
                Attributes
         
     | 
| 84 | 
         
            +
                ----------
         
     | 
| 85 | 
         
            +
                dual_coef_ : ndarray of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 86 | 
         
            +
                    Representation of weight vector(s) in kernel space
         
     | 
| 87 | 
         
            +
             
     | 
| 88 | 
         
            +
                X_fit_ : {ndarray, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 89 | 
         
            +
                    Training data, which is also required for prediction. If
         
     | 
| 90 | 
         
            +
                    kernel == "precomputed" this is instead the precomputed
         
     | 
| 91 | 
         
            +
                    training matrix, of shape (n_samples, n_samples).
         
     | 
| 92 | 
         
            +
             
     | 
| 93 | 
         
            +
                n_features_in_ : int
         
     | 
| 94 | 
         
            +
                    Number of features seen during :term:`fit`.
         
     | 
| 95 | 
         
            +
             
     | 
| 96 | 
         
            +
                    .. versionadded:: 0.24
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
                feature_names_in_ : ndarray of shape (`n_features_in_`,)
         
     | 
| 99 | 
         
            +
                    Names of features seen during :term:`fit`. Defined only when `X`
         
     | 
| 100 | 
         
            +
                    has feature names that are all strings.
         
     | 
| 101 | 
         
            +
             
     | 
| 102 | 
         
            +
                    .. versionadded:: 1.0
         
     | 
| 103 | 
         
            +
             
     | 
| 104 | 
         
            +
                See Also
         
     | 
| 105 | 
         
            +
                --------
         
     | 
| 106 | 
         
            +
                sklearn.gaussian_process.GaussianProcessRegressor : Gaussian
         
     | 
| 107 | 
         
            +
                    Process regressor providing automatic kernel hyperparameters
         
     | 
| 108 | 
         
            +
                    tuning and predictions uncertainty.
         
     | 
| 109 | 
         
            +
                sklearn.linear_model.Ridge : Linear ridge regression.
         
     | 
| 110 | 
         
            +
                sklearn.linear_model.RidgeCV : Ridge regression with built-in
         
     | 
| 111 | 
         
            +
                    cross-validation.
         
     | 
| 112 | 
         
            +
                sklearn.svm.SVR : Support Vector Regression accepting a large variety
         
     | 
| 113 | 
         
            +
                    of kernels.
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
                References
         
     | 
| 116 | 
         
            +
                ----------
         
     | 
| 117 | 
         
            +
                * Kevin P. Murphy
         
     | 
| 118 | 
         
            +
                  "Machine Learning: A Probabilistic Perspective", The MIT Press
         
     | 
| 119 | 
         
            +
                  chapter 14.4.3, pp. 492-493
         
     | 
| 120 | 
         
            +
             
     | 
| 121 | 
         
            +
                Examples
         
     | 
| 122 | 
         
            +
                --------
         
     | 
| 123 | 
         
            +
                >>> from sklearn.kernel_ridge import KernelRidge
         
     | 
| 124 | 
         
            +
                >>> import numpy as np
         
     | 
| 125 | 
         
            +
                >>> n_samples, n_features = 10, 5
         
     | 
| 126 | 
         
            +
                >>> rng = np.random.RandomState(0)
         
     | 
| 127 | 
         
            +
                >>> y = rng.randn(n_samples)
         
     | 
| 128 | 
         
            +
                >>> X = rng.randn(n_samples, n_features)
         
     | 
| 129 | 
         
            +
                >>> krr = KernelRidge(alpha=1.0)
         
     | 
| 130 | 
         
            +
                >>> krr.fit(X, y)
         
     | 
| 131 | 
         
            +
                KernelRidge(alpha=1.0)
         
     | 
| 132 | 
         
            +
                """
         
     | 
| 133 | 
         
            +
             
     | 
| 134 | 
         
            +
                _parameter_constraints: dict = {
         
     | 
| 135 | 
         
            +
                    "alpha": [Interval(Real, 0, None, closed="left"), "array-like"],
         
     | 
| 136 | 
         
            +
                    "kernel": [
         
     | 
| 137 | 
         
            +
                        StrOptions(set(PAIRWISE_KERNEL_FUNCTIONS.keys()) | {"precomputed"}),
         
     | 
| 138 | 
         
            +
                        callable,
         
     | 
| 139 | 
         
            +
                    ],
         
     | 
| 140 | 
         
            +
                    "gamma": [Interval(Real, 0, None, closed="left"), None],
         
     | 
| 141 | 
         
            +
                    "degree": [Interval(Real, 0, None, closed="left")],
         
     | 
| 142 | 
         
            +
                    "coef0": [Interval(Real, None, None, closed="neither")],
         
     | 
| 143 | 
         
            +
                    "kernel_params": [dict, None],
         
     | 
| 144 | 
         
            +
                }
         
     | 
| 145 | 
         
            +
             
     | 
| 146 | 
         
            +
                def __init__(
         
     | 
| 147 | 
         
            +
                    self,
         
     | 
| 148 | 
         
            +
                    alpha=1,
         
     | 
| 149 | 
         
            +
                    *,
         
     | 
| 150 | 
         
            +
                    kernel="linear",
         
     | 
| 151 | 
         
            +
                    gamma=None,
         
     | 
| 152 | 
         
            +
                    degree=3,
         
     | 
| 153 | 
         
            +
                    coef0=1,
         
     | 
| 154 | 
         
            +
                    kernel_params=None,
         
     | 
| 155 | 
         
            +
                ):
         
     | 
| 156 | 
         
            +
                    self.alpha = alpha
         
     | 
| 157 | 
         
            +
                    self.kernel = kernel
         
     | 
| 158 | 
         
            +
                    self.gamma = gamma
         
     | 
| 159 | 
         
            +
                    self.degree = degree
         
     | 
| 160 | 
         
            +
                    self.coef0 = coef0
         
     | 
| 161 | 
         
            +
                    self.kernel_params = kernel_params
         
     | 
| 162 | 
         
            +
             
     | 
| 163 | 
         
            +
                def _get_kernel(self, X, Y=None):
         
     | 
| 164 | 
         
            +
                    if callable(self.kernel):
         
     | 
| 165 | 
         
            +
                        params = self.kernel_params or {}
         
     | 
| 166 | 
         
            +
                    else:
         
     | 
| 167 | 
         
            +
                        params = {"gamma": self.gamma, "degree": self.degree, "coef0": self.coef0}
         
     | 
| 168 | 
         
            +
                    return pairwise_kernels(X, Y, metric=self.kernel, filter_params=True, **params)
         
     | 
| 169 | 
         
            +
             
     | 
| 170 | 
         
            +
                def _more_tags(self):
         
     | 
| 171 | 
         
            +
                    return {"pairwise": self.kernel == "precomputed"}
         
     | 
| 172 | 
         
            +
             
     | 
| 173 | 
         
            +
                @_fit_context(prefer_skip_nested_validation=True)
         
     | 
| 174 | 
         
            +
                def fit(self, X, y, sample_weight=None):
         
     | 
| 175 | 
         
            +
                    """Fit Kernel Ridge regression model.
         
     | 
| 176 | 
         
            +
             
     | 
| 177 | 
         
            +
                    Parameters
         
     | 
| 178 | 
         
            +
                    ----------
         
     | 
| 179 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 180 | 
         
            +
                        Training data. If kernel == "precomputed" this is instead
         
     | 
| 181 | 
         
            +
                        a precomputed kernel matrix, of shape (n_samples, n_samples).
         
     | 
| 182 | 
         
            +
             
     | 
| 183 | 
         
            +
                    y : array-like of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 184 | 
         
            +
                        Target values.
         
     | 
| 185 | 
         
            +
             
     | 
| 186 | 
         
            +
                    sample_weight : float or array-like of shape (n_samples,), default=None
         
     | 
| 187 | 
         
            +
                        Individual weights for each sample, ignored if None is passed.
         
     | 
| 188 | 
         
            +
             
     | 
| 189 | 
         
            +
                    Returns
         
     | 
| 190 | 
         
            +
                    -------
         
     | 
| 191 | 
         
            +
                    self : object
         
     | 
| 192 | 
         
            +
                        Returns the instance itself.
         
     | 
| 193 | 
         
            +
                    """
         
     | 
| 194 | 
         
            +
                    # Convert data
         
     | 
| 195 | 
         
            +
                    X, y = self._validate_data(
         
     | 
| 196 | 
         
            +
                        X, y, accept_sparse=("csr", "csc"), multi_output=True, y_numeric=True
         
     | 
| 197 | 
         
            +
                    )
         
     | 
| 198 | 
         
            +
                    if sample_weight is not None and not isinstance(sample_weight, float):
         
     | 
| 199 | 
         
            +
                        sample_weight = _check_sample_weight(sample_weight, X)
         
     | 
| 200 | 
         
            +
             
     | 
| 201 | 
         
            +
                    K = self._get_kernel(X)
         
     | 
| 202 | 
         
            +
                    alpha = np.atleast_1d(self.alpha)
         
     | 
| 203 | 
         
            +
             
     | 
| 204 | 
         
            +
                    ravel = False
         
     | 
| 205 | 
         
            +
                    if len(y.shape) == 1:
         
     | 
| 206 | 
         
            +
                        y = y.reshape(-1, 1)
         
     | 
| 207 | 
         
            +
                        ravel = True
         
     | 
| 208 | 
         
            +
             
     | 
| 209 | 
         
            +
                    copy = self.kernel == "precomputed"
         
     | 
| 210 | 
         
            +
                    self.dual_coef_ = _solve_cholesky_kernel(K, y, alpha, sample_weight, copy)
         
     | 
| 211 | 
         
            +
                    if ravel:
         
     | 
| 212 | 
         
            +
                        self.dual_coef_ = self.dual_coef_.ravel()
         
     | 
| 213 | 
         
            +
             
     | 
| 214 | 
         
            +
                    self.X_fit_ = X
         
     | 
| 215 | 
         
            +
             
     | 
| 216 | 
         
            +
                    return self
         
     | 
| 217 | 
         
            +
             
     | 
| 218 | 
         
            +
                def predict(self, X):
         
     | 
| 219 | 
         
            +
                    """Predict using the kernel ridge model.
         
     | 
| 220 | 
         
            +
             
     | 
| 221 | 
         
            +
                    Parameters
         
     | 
| 222 | 
         
            +
                    ----------
         
     | 
| 223 | 
         
            +
                    X : {array-like, sparse matrix} of shape (n_samples, n_features)
         
     | 
| 224 | 
         
            +
                        Samples. If kernel == "precomputed" this is instead a
         
     | 
| 225 | 
         
            +
                        precomputed kernel matrix, shape = [n_samples,
         
     | 
| 226 | 
         
            +
                        n_samples_fitted], where n_samples_fitted is the number of
         
     | 
| 227 | 
         
            +
                        samples used in the fitting for this estimator.
         
     | 
| 228 | 
         
            +
             
     | 
| 229 | 
         
            +
                    Returns
         
     | 
| 230 | 
         
            +
                    -------
         
     | 
| 231 | 
         
            +
                    C : ndarray of shape (n_samples,) or (n_samples, n_targets)
         
     | 
| 232 | 
         
            +
                        Returns predicted values.
         
     | 
| 233 | 
         
            +
                    """
         
     | 
| 234 | 
         
            +
                    check_is_fitted(self)
         
     | 
| 235 | 
         
            +
                    X = self._validate_data(X, accept_sparse=("csr", "csc"), reset=False)
         
     | 
| 236 | 
         
            +
                    K = self._get_kernel(X, self.X_fit_)
         
     | 
| 237 | 
         
            +
                    return np.dot(K, self.dual_coef_)
         
     | 
    	
        venv/lib/python3.10/site-packages/sklearn/linear_model/__init__.py
    ADDED
    
    | 
         @@ -0,0 +1,100 @@ 
     | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
| 
         | 
|
| 1 | 
         
            +
            """
         
     | 
| 2 | 
         
            +
            The :mod:`sklearn.linear_model` module implements a variety of linear models.
         
     | 
| 3 | 
         
            +
            """
         
     | 
| 4 | 
         
            +
             
     | 
| 5 | 
         
            +
            # See http://scikit-learn.sourceforge.net/modules/sgd.html and
         
     | 
| 6 | 
         
            +
            # http://scikit-learn.sourceforge.net/modules/linear_model.html for
         
     | 
| 7 | 
         
            +
            # complete documentation.
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
            +
            from ._base import LinearRegression
         
     | 
| 10 | 
         
            +
            from ._bayes import ARDRegression, BayesianRidge
         
     | 
| 11 | 
         
            +
            from ._coordinate_descent import (
         
     | 
| 12 | 
         
            +
                ElasticNet,
         
     | 
| 13 | 
         
            +
                ElasticNetCV,
         
     | 
| 14 | 
         
            +
                Lasso,
         
     | 
| 15 | 
         
            +
                LassoCV,
         
     | 
| 16 | 
         
            +
                MultiTaskElasticNet,
         
     | 
| 17 | 
         
            +
                MultiTaskElasticNetCV,
         
     | 
| 18 | 
         
            +
                MultiTaskLasso,
         
     | 
| 19 | 
         
            +
                MultiTaskLassoCV,
         
     | 
| 20 | 
         
            +
                enet_path,
         
     | 
| 21 | 
         
            +
                lasso_path,
         
     | 
| 22 | 
         
            +
            )
         
     | 
| 23 | 
         
            +
            from ._glm import GammaRegressor, PoissonRegressor, TweedieRegressor
         
     | 
| 24 | 
         
            +
            from ._huber import HuberRegressor
         
     | 
| 25 | 
         
            +
            from ._least_angle import (
         
     | 
| 26 | 
         
            +
                Lars,
         
     | 
| 27 | 
         
            +
                LarsCV,
         
     | 
| 28 | 
         
            +
                LassoLars,
         
     | 
| 29 | 
         
            +
                LassoLarsCV,
         
     | 
| 30 | 
         
            +
                LassoLarsIC,
         
     | 
| 31 | 
         
            +
                lars_path,
         
     | 
| 32 | 
         
            +
                lars_path_gram,
         
     | 
| 33 | 
         
            +
            )
         
     | 
| 34 | 
         
            +
            from ._logistic import LogisticRegression, LogisticRegressionCV
         
     | 
| 35 | 
         
            +
            from ._omp import (
         
     | 
| 36 | 
         
            +
                OrthogonalMatchingPursuit,
         
     | 
| 37 | 
         
            +
                OrthogonalMatchingPursuitCV,
         
     | 
| 38 | 
         
            +
                orthogonal_mp,
         
     | 
| 39 | 
         
            +
                orthogonal_mp_gram,
         
     | 
| 40 | 
         
            +
            )
         
     | 
| 41 | 
         
            +
            from ._passive_aggressive import PassiveAggressiveClassifier, PassiveAggressiveRegressor
         
     | 
| 42 | 
         
            +
            from ._perceptron import Perceptron
         
     | 
| 43 | 
         
            +
            from ._quantile import QuantileRegressor
         
     | 
| 44 | 
         
            +
            from ._ransac import RANSACRegressor
         
     | 
| 45 | 
         
            +
            from ._ridge import Ridge, RidgeClassifier, RidgeClassifierCV, RidgeCV, ridge_regression
         
     | 
| 46 | 
         
            +
            from ._sgd_fast import Hinge, Huber, Log, ModifiedHuber, SquaredLoss
         
     | 
| 47 | 
         
            +
            from ._stochastic_gradient import SGDClassifier, SGDOneClassSVM, SGDRegressor
         
     | 
| 48 | 
         
            +
            from ._theil_sen import TheilSenRegressor
         
     | 
| 49 | 
         
            +
             
     | 
| 50 | 
         
            +
            __all__ = [
         
     | 
| 51 | 
         
            +
                "ARDRegression",
         
     | 
| 52 | 
         
            +
                "BayesianRidge",
         
     | 
| 53 | 
         
            +
                "ElasticNet",
         
     | 
| 54 | 
         
            +
                "ElasticNetCV",
         
     | 
| 55 | 
         
            +
                "Hinge",
         
     | 
| 56 | 
         
            +
                "Huber",
         
     | 
| 57 | 
         
            +
                "HuberRegressor",
         
     | 
| 58 | 
         
            +
                "Lars",
         
     | 
| 59 | 
         
            +
                "LarsCV",
         
     | 
| 60 | 
         
            +
                "Lasso",
         
     | 
| 61 | 
         
            +
                "LassoCV",
         
     | 
| 62 | 
         
            +
                "LassoLars",
         
     | 
| 63 | 
         
            +
                "LassoLarsCV",
         
     | 
| 64 | 
         
            +
                "LassoLarsIC",
         
     | 
| 65 | 
         
            +
                "LinearRegression",
         
     | 
| 66 | 
         
            +
                "Log",
         
     | 
| 67 | 
         
            +
                "LogisticRegression",
         
     | 
| 68 | 
         
            +
                "LogisticRegressionCV",
         
     | 
| 69 | 
         
            +
                "ModifiedHuber",
         
     | 
| 70 | 
         
            +
                "MultiTaskElasticNet",
         
     | 
| 71 | 
         
            +
                "MultiTaskElasticNetCV",
         
     | 
| 72 | 
         
            +
                "MultiTaskLasso",
         
     | 
| 73 | 
         
            +
                "MultiTaskLassoCV",
         
     | 
| 74 | 
         
            +
                "OrthogonalMatchingPursuit",
         
     | 
| 75 | 
         
            +
                "OrthogonalMatchingPursuitCV",
         
     | 
| 76 | 
         
            +
                "PassiveAggressiveClassifier",
         
     | 
| 77 | 
         
            +
                "PassiveAggressiveRegressor",
         
     | 
| 78 | 
         
            +
                "Perceptron",
         
     | 
| 79 | 
         
            +
                "QuantileRegressor",
         
     | 
| 80 | 
         
            +
                "Ridge",
         
     | 
| 81 | 
         
            +
                "RidgeCV",
         
     | 
| 82 | 
         
            +
                "RidgeClassifier",
         
     | 
| 83 | 
         
            +
                "RidgeClassifierCV",
         
     | 
| 84 | 
         
            +
                "SGDClassifier",
         
     | 
| 85 | 
         
            +
                "SGDRegressor",
         
     | 
| 86 | 
         
            +
                "SGDOneClassSVM",
         
     | 
| 87 | 
         
            +
                "SquaredLoss",
         
     | 
| 88 | 
         
            +
                "TheilSenRegressor",
         
     | 
| 89 | 
         
            +
                "enet_path",
         
     | 
| 90 | 
         
            +
                "lars_path",
         
     | 
| 91 | 
         
            +
                "lars_path_gram",
         
     | 
| 92 | 
         
            +
                "lasso_path",
         
     | 
| 93 | 
         
            +
                "orthogonal_mp",
         
     | 
| 94 | 
         
            +
                "orthogonal_mp_gram",
         
     | 
| 95 | 
         
            +
                "ridge_regression",
         
     | 
| 96 | 
         
            +
                "RANSACRegressor",
         
     | 
| 97 | 
         
            +
                "PoissonRegressor",
         
     | 
| 98 | 
         
            +
                "GammaRegressor",
         
     | 
| 99 | 
         
            +
                "TweedieRegressor",
         
     | 
| 100 | 
         
            +
            ]
         
     |