Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__init__.py +23 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_common_operator_config_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_qnnpack_pt2e.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/backend_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/executorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/fbgemm.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/native.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/observation_type.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/onednn.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/qnnpack.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/tensorrt.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/x86.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_common_operator_config_utils.py +637 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_qnnpack_pt2e.py +160 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py +659 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/executorch.py +494 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/fbgemm.py +116 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/native.py +204 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/observation_type.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py +542 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/qnnpack.py +160 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/tensorrt.py +81 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/utils.py +279 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/x86.py +113 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__init__.py +3 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_decomposed.py +925 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_equalize.py +820 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_lower_to_native_backend.py +1170 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/convert.py +1131 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/fuse.py +161 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/fuse_handler.py +120 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/graph_module.py +119 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/lower_to_qnnpack.py +18 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/lstm_utils.py +183 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/match_utils.py +237 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/pattern_utils.py +87 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py +1880 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/qconfig_mapping_utils.py +343 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/tracer.py +45 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py +885 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__init__.py +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/duplicate_dq_pass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/export_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/generate_numeric_debug_handle.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/graph_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/port_metadata_pass.cpython-310.pyc +0 -0
ckpts/universal/global_step120/zero/22.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e2129c796a503d48e2ff5300ecb2d6919f48fd02c874d0258fb2497679e53624
|
3 |
+
size 33555627
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__init__.py
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .backend_config import BackendConfig, BackendPatternConfig, DTypeConfig, DTypeWithConstraints, ObservationType
|
2 |
+
from .fbgemm import get_fbgemm_backend_config
|
3 |
+
from .native import get_native_backend_config, get_native_backend_config_dict
|
4 |
+
from .qnnpack import get_qnnpack_backend_config
|
5 |
+
from .tensorrt import get_tensorrt_backend_config, get_tensorrt_backend_config_dict
|
6 |
+
from .executorch import get_executorch_backend_config
|
7 |
+
from .onednn import get_onednn_backend_config
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"get_fbgemm_backend_config",
|
11 |
+
"get_native_backend_config",
|
12 |
+
"get_native_backend_config_dict",
|
13 |
+
"get_qnnpack_backend_config",
|
14 |
+
"get_tensorrt_backend_config",
|
15 |
+
"get_tensorrt_backend_config_dict",
|
16 |
+
"get_executorch_backend_config",
|
17 |
+
"BackendConfig",
|
18 |
+
"BackendPatternConfig",
|
19 |
+
"DTypeConfig",
|
20 |
+
"DTypeWithConstraints",
|
21 |
+
"ObservationType",
|
22 |
+
"get_onednn_backend_config",
|
23 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (886 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_common_operator_config_utils.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/_qnnpack_pt2e.cpython-310.pyc
ADDED
Binary file (3.2 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/backend_config.cpython-310.pyc
ADDED
Binary file (26.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/executorch.cpython-310.pyc
ADDED
Binary file (7.71 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/fbgemm.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/native.cpython-310.pyc
ADDED
Binary file (3.59 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/observation_type.cpython-310.pyc
ADDED
Binary file (212 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/onednn.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/qnnpack.cpython-310.pyc
ADDED
Binary file (2.63 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/tensorrt.cpython-310.pyc
ADDED
Binary file (2.09 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (9.6 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/__pycache__/x86.cpython-310.pyc
ADDED
Binary file (2.19 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_common_operator_config_utils.py
ADDED
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import operator
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.ao.nn.intrinsic as nni
|
7 |
+
import torch.ao.nn.intrinsic.qat as nniqat
|
8 |
+
import torch.ao.nn.qat as nnqat
|
9 |
+
import torch.ao.nn.quantized.reference as nnqr
|
10 |
+
from collections import namedtuple
|
11 |
+
from typing import Callable, Dict, List, Union
|
12 |
+
from .backend_config import (
|
13 |
+
BackendPatternConfig,
|
14 |
+
DTypeConfig,
|
15 |
+
DTypeWithConstraints,
|
16 |
+
ObservationType,
|
17 |
+
)
|
18 |
+
from ..fuser_method_mappings import (
|
19 |
+
_sequential_wrapper2,
|
20 |
+
fuse_conv_bn,
|
21 |
+
fuse_conv_bn_relu,
|
22 |
+
fuse_linear_bn,
|
23 |
+
fuse_convtranspose_bn,
|
24 |
+
)
|
25 |
+
|
26 |
+
__all__: List[str] = []
|
27 |
+
|
28 |
+
# TODO: rename to be more explicit, e.g. qat_conv_relu
|
29 |
+
_ConvMetadata = namedtuple(
|
30 |
+
"_ConvMetadata",
|
31 |
+
["root", "transpose", "bn", "reference", "transpose_reference",
|
32 |
+
"fused_conv_relu", "fused_conv_bn", "fused_conv_bn_relu",
|
33 |
+
"qat", "relu_qat", "bn_qat", "bn_relu_qat",
|
34 |
+
"func", "func_transpose"])
|
35 |
+
_Conv1dMetadata = _ConvMetadata(
|
36 |
+
nn.Conv1d, nn.ConvTranspose1d, nn.BatchNorm1d, nnqr.Conv1d, nnqr.ConvTranspose1d,
|
37 |
+
nni.ConvReLU1d, nni.ConvBn1d, nni.ConvBnReLU1d,
|
38 |
+
nnqat.Conv1d, nniqat.ConvReLU1d, nniqat.ConvBn1d, nniqat.ConvBnReLU1d,
|
39 |
+
F.conv1d, F.conv_transpose1d)
|
40 |
+
_Conv2dMetadata = _ConvMetadata(
|
41 |
+
nn.Conv2d, nn.ConvTranspose2d, nn.BatchNorm2d, nnqr.Conv2d, nnqr.ConvTranspose2d,
|
42 |
+
nni.ConvReLU2d, nni.ConvBn2d, nni.ConvBnReLU2d,
|
43 |
+
nnqat.Conv2d, nniqat.ConvReLU2d, nniqat.ConvBn2d, nniqat.ConvBnReLU2d,
|
44 |
+
F.conv2d, F.conv_transpose2d)
|
45 |
+
_Conv3dMetadata = _ConvMetadata(
|
46 |
+
nn.Conv3d, nn.ConvTranspose3d, nn.BatchNorm3d, nnqr.Conv3d, nnqr.ConvTranspose3d,
|
47 |
+
nni.ConvReLU3d, nni.ConvBn3d, nni.ConvBnReLU3d,
|
48 |
+
nnqat.Conv3d, nniqat.ConvReLU3d, nniqat.ConvBn3d, nniqat.ConvBnReLU3d,
|
49 |
+
F.conv3d, F.conv_transpose3d)
|
50 |
+
|
51 |
+
# Add constraints for fixed qparams ops like sigmoid and tanh to ensure values
|
52 |
+
# fall within the proper ranges, e.g. [0, 1] for sigmoid, [-1, 1] for tanh
|
53 |
+
_FIXED_QPARAM_OP_0TO1_CONSTRAINTS = DTypeWithConstraints(
|
54 |
+
dtype=torch.quint8,
|
55 |
+
quant_min_lower_bound=0,
|
56 |
+
quant_max_upper_bound=255,
|
57 |
+
scale_exact_match=1.0 / 256.0,
|
58 |
+
zero_point_exact_match=0,
|
59 |
+
)
|
60 |
+
_FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS = DTypeWithConstraints(
|
61 |
+
dtype=torch.quint8,
|
62 |
+
quant_min_lower_bound=0,
|
63 |
+
quant_max_upper_bound=255,
|
64 |
+
scale_exact_match=2.0 / 256.0,
|
65 |
+
zero_point_exact_match=128,
|
66 |
+
)
|
67 |
+
_FIXED_QPARAMS_OP_TO_CONSTRAINTS: Dict[Union[Callable, str], DTypeWithConstraints] = {
|
68 |
+
torch.nn.Hardsigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
69 |
+
torch.nn.functional.hardsigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
70 |
+
"hardsigmoid": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
71 |
+
"hardsigmoid_": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
72 |
+
torch.nn.Sigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
73 |
+
torch.sigmoid: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
74 |
+
"sigmoid": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
75 |
+
"sigmoid_": _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
76 |
+
torch.nn.Softmax: _FIXED_QPARAM_OP_0TO1_CONSTRAINTS,
|
77 |
+
torch.nn.Tanh: _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
|
78 |
+
torch.tanh: _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
|
79 |
+
"tanh": _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
|
80 |
+
"tanh_": _FIXED_QPARAM_OP_NEG1TO1_CONSTRAINTS,
|
81 |
+
}
|
82 |
+
|
83 |
+
def _get_binary_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
84 |
+
binary_op_configs: List[BackendPatternConfig] = []
|
85 |
+
num_tensor_args_to_observation_type_mapping = {
|
86 |
+
# TODO: this is not used right now since we have extra check in prepare
|
87 |
+
# will need to change this to NO_OBSERVER later after we implemented
|
88 |
+
# Tensor dtype inference properly
|
89 |
+
0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
90 |
+
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
|
91 |
+
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
92 |
+
}
|
93 |
+
for op_with_quantized_bop_scalar_variant in [operator.add, torch.add, operator.mul, torch.mul]:
|
94 |
+
bop_patterns = [
|
95 |
+
(op_with_quantized_bop_scalar_variant, nn.ReLU),
|
96 |
+
(op_with_quantized_bop_scalar_variant, F.relu),
|
97 |
+
(op_with_quantized_bop_scalar_variant, torch.relu),
|
98 |
+
op_with_quantized_bop_scalar_variant
|
99 |
+
]
|
100 |
+
for bop_pattern in bop_patterns:
|
101 |
+
binary_op_configs.append(
|
102 |
+
BackendPatternConfig(bop_pattern)
|
103 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
104 |
+
._set_num_tensor_args_to_observation_type(num_tensor_args_to_observation_type_mapping))
|
105 |
+
# matmul
|
106 |
+
binary_op_configs.append(
|
107 |
+
BackendPatternConfig(torch.matmul)
|
108 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
109 |
+
)
|
110 |
+
return binary_op_configs
|
111 |
+
|
112 |
+
def _get_linear_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
113 |
+
"""
|
114 |
+
Return all configs related to linear modules and ops.
|
115 |
+
"""
|
116 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
117 |
+
linear_configs: List[BackendPatternConfig] = []
|
118 |
+
|
119 |
+
# (1) Single linear modules/functions
|
120 |
+
# -------------------------------------
|
121 |
+
# linear module
|
122 |
+
linear_configs.append(
|
123 |
+
BackendPatternConfig(torch.nn.Linear)
|
124 |
+
.set_observation_type(observation_type) # noqa: E131
|
125 |
+
.set_dtype_configs(dtype_configs)
|
126 |
+
.set_root_module(torch.nn.Linear)
|
127 |
+
.set_reference_quantized_module(nnqr.Linear)
|
128 |
+
.set_qat_module(nnqat.Linear))
|
129 |
+
# linear qat module
|
130 |
+
linear_configs.append(
|
131 |
+
BackendPatternConfig(nnqat.Linear)
|
132 |
+
.set_observation_type(observation_type) # noqa: E131
|
133 |
+
.set_dtype_configs(dtype_configs)
|
134 |
+
.set_root_module(torch.nn.Linear)
|
135 |
+
.set_reference_quantized_module(nnqr.Linear))
|
136 |
+
# functional linear
|
137 |
+
linear_configs.append(
|
138 |
+
BackendPatternConfig(torch.nn.functional.linear)
|
139 |
+
.set_observation_type(observation_type) # noqa: E131
|
140 |
+
.set_dtype_configs(dtype_configs)
|
141 |
+
._set_input_type_to_index({"weight": 1, "bias": 2}))
|
142 |
+
|
143 |
+
# (2) Linear + relu
|
144 |
+
# -------------------
|
145 |
+
# 2.1 linear module + relu fusion config
|
146 |
+
# linear relu, linear module + relu module
|
147 |
+
linear_configs.append(
|
148 |
+
BackendPatternConfig((torch.nn.Linear, torch.nn.ReLU))
|
149 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
150 |
+
.set_fuser_method(_sequential_wrapper2(nni.LinearReLU))
|
151 |
+
.set_fused_module(nni.LinearReLU))
|
152 |
+
# linear relu, linear module + functional relu
|
153 |
+
linear_configs.append(
|
154 |
+
BackendPatternConfig((torch.nn.Linear, torch.nn.functional.relu))
|
155 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
156 |
+
.set_fuser_method(_sequential_wrapper2(nni.LinearReLU))
|
157 |
+
.set_fused_module(nni.LinearReLU))
|
158 |
+
|
159 |
+
# 2.2 linear module + relu, fused module configs
|
160 |
+
# linear relu, fused module
|
161 |
+
linear_configs.append(
|
162 |
+
BackendPatternConfig(nni.LinearReLU)
|
163 |
+
.set_observation_type(observation_type) # noqa: E131
|
164 |
+
.set_dtype_configs(dtype_configs)
|
165 |
+
.set_root_module(torch.nn.Linear)
|
166 |
+
.set_reference_quantized_module(nnqr.Linear)
|
167 |
+
.set_qat_module(nniqat.LinearReLU))
|
168 |
+
# linear relu, qat fused module
|
169 |
+
linear_configs.append(
|
170 |
+
BackendPatternConfig(nniqat.LinearReLU)
|
171 |
+
.set_observation_type(observation_type) # noqa: E131
|
172 |
+
.set_dtype_configs(dtype_configs)
|
173 |
+
.set_root_module(torch.nn.Linear)
|
174 |
+
.set_reference_quantized_module(nnqr.Linear))
|
175 |
+
# 2.3 functional linear + relu configs
|
176 |
+
# linear relu, functional linear + relu module
|
177 |
+
linear_configs.append(
|
178 |
+
BackendPatternConfig((F.linear, torch.nn.ReLU))
|
179 |
+
.set_observation_type(observation_type) # noqa: E131
|
180 |
+
.set_dtype_configs(dtype_configs))
|
181 |
+
# linear relu, functional linear + functional relu
|
182 |
+
linear_configs.append(
|
183 |
+
BackendPatternConfig((F.linear, F.relu))
|
184 |
+
.set_observation_type(observation_type) # noqa: E131
|
185 |
+
.set_dtype_configs(dtype_configs))
|
186 |
+
|
187 |
+
# (3) Linear + batchnorm
|
188 |
+
# ------------------------
|
189 |
+
# 3.1 linear bn fusion
|
190 |
+
linear_configs.append(
|
191 |
+
BackendPatternConfig((nn.Linear, nn.BatchNorm1d))
|
192 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
193 |
+
.set_fuser_method(fuse_linear_bn)
|
194 |
+
.set_fused_module(nni.LinearBn1d))
|
195 |
+
|
196 |
+
# 3.2 linear bn fused
|
197 |
+
# linear bn, fused module
|
198 |
+
linear_configs.append(
|
199 |
+
BackendPatternConfig(nni.LinearBn1d)
|
200 |
+
.set_observation_type(observation_type) # noqa: E131
|
201 |
+
.set_dtype_configs(dtype_configs)
|
202 |
+
.set_root_module(torch.nn.Linear)
|
203 |
+
.set_reference_quantized_module(nnqr.Linear)
|
204 |
+
.set_qat_module(nniqat.LinearBn1d))
|
205 |
+
# linear bn, qat fused module
|
206 |
+
linear_configs.append(
|
207 |
+
BackendPatternConfig(nniqat.LinearBn1d)
|
208 |
+
.set_observation_type(observation_type) # noqa: E131
|
209 |
+
.set_dtype_configs(dtype_configs)
|
210 |
+
.set_root_module(torch.nn.Linear)
|
211 |
+
.set_reference_quantized_module(nnqr.Linear))
|
212 |
+
return linear_configs
|
213 |
+
|
214 |
+
def _get_conv_configs(dtype_configs):
|
215 |
+
"""
|
216 |
+
Return all configs related to conv modules and ops.
|
217 |
+
"""
|
218 |
+
conv_configs = []
|
219 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
220 |
+
for convs in [_Conv1dMetadata, _Conv2dMetadata, _Conv3dMetadata]:
|
221 |
+
|
222 |
+
# (1) Single conv modules/functions
|
223 |
+
# -----------------------------------
|
224 |
+
# conv module
|
225 |
+
conv_configs.append(
|
226 |
+
BackendPatternConfig(convs.root)
|
227 |
+
.set_observation_type(observation_type) # noqa: E131
|
228 |
+
.set_dtype_configs(dtype_configs)
|
229 |
+
.set_root_module(convs.root)
|
230 |
+
.set_reference_quantized_module(convs.reference)
|
231 |
+
.set_qat_module(convs.qat))
|
232 |
+
# conv qat module
|
233 |
+
conv_configs.append(
|
234 |
+
BackendPatternConfig(convs.qat)
|
235 |
+
.set_observation_type(observation_type) # noqa: E131
|
236 |
+
.set_dtype_configs(dtype_configs)
|
237 |
+
.set_root_module(convs.root)
|
238 |
+
.set_reference_quantized_module(convs.reference))
|
239 |
+
# functional conv
|
240 |
+
conv_configs.append(
|
241 |
+
BackendPatternConfig(convs.func)
|
242 |
+
.set_observation_type(observation_type) # noqa: E131
|
243 |
+
.set_dtype_configs(dtype_configs)
|
244 |
+
._set_input_type_to_index({"weight": 1, "bias": 2}))
|
245 |
+
|
246 |
+
# (2) Conv + relu
|
247 |
+
# -----------------
|
248 |
+
# 2.1 conv module + relu fusion configs
|
249 |
+
# conv relu fusion, conv module + relu module
|
250 |
+
conv_configs.append(
|
251 |
+
BackendPatternConfig((convs.root, torch.nn.ReLU))
|
252 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
253 |
+
.set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
|
254 |
+
.set_fused_module(convs.fused_conv_relu))
|
255 |
+
# conv relu fusion, conv module + functional relu
|
256 |
+
conv_configs.append(
|
257 |
+
BackendPatternConfig((convs.root, F.relu))
|
258 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
259 |
+
.set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
|
260 |
+
.set_fused_module(convs.fused_conv_relu))
|
261 |
+
# 2.2 conv module + relu fused module configs
|
262 |
+
# conv relu, fused module
|
263 |
+
conv_configs.append(
|
264 |
+
BackendPatternConfig(convs.fused_conv_relu)
|
265 |
+
.set_observation_type(observation_type) # noqa: E131
|
266 |
+
.set_dtype_configs(dtype_configs)
|
267 |
+
.set_root_module(convs.root)
|
268 |
+
.set_reference_quantized_module(convs.reference)
|
269 |
+
.set_qat_module(convs.relu_qat))
|
270 |
+
# conv relu, qat fused module
|
271 |
+
conv_configs.append(
|
272 |
+
BackendPatternConfig(convs.relu_qat)
|
273 |
+
.set_observation_type(observation_type) # noqa: E131
|
274 |
+
.set_dtype_configs(dtype_configs)
|
275 |
+
.set_root_module(convs.root)
|
276 |
+
.set_reference_quantized_module(convs.reference))
|
277 |
+
# 2.3 functional conv + relu configs
|
278 |
+
# conv relu, functional conv + relu module
|
279 |
+
conv_configs.append(
|
280 |
+
BackendPatternConfig((convs.func, torch.nn.ReLU))
|
281 |
+
.set_observation_type(observation_type) # noqa: E131
|
282 |
+
.set_dtype_configs(dtype_configs))
|
283 |
+
# conv relu, functional conv + functional relu
|
284 |
+
conv_configs.append(
|
285 |
+
BackendPatternConfig((convs.func, F.relu))
|
286 |
+
.set_observation_type(observation_type) # noqa: E131
|
287 |
+
.set_dtype_configs(dtype_configs))
|
288 |
+
|
289 |
+
# fused conv relu
|
290 |
+
conv_configs.append(
|
291 |
+
BackendPatternConfig(convs.fused_conv_relu)
|
292 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
293 |
+
.set_qat_module(convs.relu_qat))
|
294 |
+
|
295 |
+
conv_configs.append(
|
296 |
+
BackendPatternConfig(convs.relu_qat)
|
297 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
298 |
+
.set_root_module(convs.root)
|
299 |
+
.set_reference_quantized_module(convs.reference))
|
300 |
+
|
301 |
+
# (3) Conv + batchnorm (+ relu)
|
302 |
+
# -------------------------------
|
303 |
+
# 3.1 conv bn fusion configs
|
304 |
+
# conv + bn fusion
|
305 |
+
conv_configs.append(
|
306 |
+
BackendPatternConfig((convs.root, convs.bn))
|
307 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
308 |
+
.set_fuser_method(fuse_conv_bn)
|
309 |
+
.set_fused_module(convs.fused_conv_bn))
|
310 |
+
# conv + bn + relu module fusion
|
311 |
+
conv_configs.append(
|
312 |
+
BackendPatternConfig((convs.root, convs.bn, nn.ReLU))
|
313 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
314 |
+
.set_fuser_method(fuse_conv_bn_relu)
|
315 |
+
.set_fused_module(convs.fused_conv_bn_relu))
|
316 |
+
# conv + bn + relu functional fusion
|
317 |
+
conv_configs.append(
|
318 |
+
BackendPatternConfig((convs.root, convs.bn, F.relu))
|
319 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
320 |
+
.set_root_module(convs.root)
|
321 |
+
.set_fuser_method(fuse_conv_bn_relu)
|
322 |
+
.set_fused_module(convs.fused_conv_bn_relu))
|
323 |
+
# TODO: we can add fusion for torch.relu as well
|
324 |
+
|
325 |
+
# 3.2 conv + bn (+ relu) fused module configs
|
326 |
+
# fused conv bn
|
327 |
+
conv_configs.append(
|
328 |
+
BackendPatternConfig(convs.fused_conv_bn)
|
329 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
330 |
+
.set_qat_module(convs.bn_qat))
|
331 |
+
|
332 |
+
# fused conv bn relu
|
333 |
+
conv_configs.append(
|
334 |
+
BackendPatternConfig(convs.fused_conv_bn_relu)
|
335 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
336 |
+
.set_qat_module(convs.bn_relu_qat))
|
337 |
+
|
338 |
+
# conv bn, qat fused module
|
339 |
+
conv_configs.append(
|
340 |
+
BackendPatternConfig(convs.bn_qat)
|
341 |
+
.set_observation_type(observation_type) # noqa: E131
|
342 |
+
.set_dtype_configs(dtype_configs)
|
343 |
+
.set_root_module(convs.root)
|
344 |
+
.set_reference_quantized_module(convs.reference))
|
345 |
+
# conv bn relu, qat fused module
|
346 |
+
conv_configs.append(
|
347 |
+
BackendPatternConfig(convs.bn_relu_qat)
|
348 |
+
.set_observation_type(observation_type) # noqa: E131
|
349 |
+
.set_dtype_configs(dtype_configs)
|
350 |
+
.set_root_module(convs.root)
|
351 |
+
.set_reference_quantized_module(convs.reference))
|
352 |
+
|
353 |
+
# (4) conv transpose and its fusion
|
354 |
+
# 4.1 conv transpose config
|
355 |
+
conv_configs.append(
|
356 |
+
BackendPatternConfig(convs.transpose)
|
357 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
358 |
+
.set_root_module(convs.transpose)
|
359 |
+
.set_reference_quantized_module(convs.transpose_reference))
|
360 |
+
|
361 |
+
# 4.2 conv transpose + bn fusion
|
362 |
+
conv_configs.append(
|
363 |
+
BackendPatternConfig((convs.transpose, convs.bn))
|
364 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
365 |
+
.set_fuser_method(fuse_convtranspose_bn)
|
366 |
+
.set_root_module(convs.transpose)
|
367 |
+
.set_reference_quantized_module(convs.transpose_reference))
|
368 |
+
|
369 |
+
# 4.3 functional conv transpose
|
370 |
+
conv_configs.append(
|
371 |
+
BackendPatternConfig(convs.func_transpose)
|
372 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
373 |
+
._set_input_type_to_index({"weight": 1, "bias": 2}))
|
374 |
+
|
375 |
+
return conv_configs
|
376 |
+
|
377 |
+
def _get_cat_config(dtype_configs: List[DTypeConfig]) -> BackendPatternConfig:
|
378 |
+
return BackendPatternConfig(torch.cat) \
|
379 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
|
380 |
+
.set_dtype_configs(dtype_configs)
|
381 |
+
|
382 |
+
def _get_ln_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
383 |
+
ln_configs = []
|
384 |
+
ln_configs.append(
|
385 |
+
BackendPatternConfig(torch.nn.LayerNorm)
|
386 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
387 |
+
.set_dtype_configs(dtype_configs)
|
388 |
+
)
|
389 |
+
ln_configs.append(
|
390 |
+
BackendPatternConfig(torch.nn.functional.layer_norm)
|
391 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
392 |
+
.set_dtype_configs(dtype_configs)
|
393 |
+
._set_input_type_to_index({"weight": 2, "bias": 3})
|
394 |
+
)
|
395 |
+
return ln_configs
|
396 |
+
|
397 |
+
def _get_default_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
398 |
+
configs = []
|
399 |
+
default_ops = [
|
400 |
+
torch.nn.ELU,
|
401 |
+
torch.nn.LeakyReLU,
|
402 |
+
torch.nn.Hardswish,
|
403 |
+
torch.nn.InstanceNorm1d,
|
404 |
+
torch.nn.InstanceNorm2d,
|
405 |
+
torch.nn.InstanceNorm3d,
|
406 |
+
torch.nn.Dropout,
|
407 |
+
torch.nn.PReLU,
|
408 |
+
torch.nn.functional.elu,
|
409 |
+
torch.nn.functional.hardswish,
|
410 |
+
torch.nn.functional.leaky_relu,
|
411 |
+
torch.nn.functional.dropout,
|
412 |
+
]
|
413 |
+
for op in default_ops:
|
414 |
+
configs.append(
|
415 |
+
BackendPatternConfig(op)
|
416 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
417 |
+
.set_dtype_configs(dtype_configs))
|
418 |
+
|
419 |
+
configs.append(
|
420 |
+
BackendPatternConfig(torch.nn.functional.group_norm)
|
421 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
422 |
+
.set_dtype_configs(dtype_configs)
|
423 |
+
._set_input_type_to_index({"weight": 2, "bias": 3})
|
424 |
+
)
|
425 |
+
|
426 |
+
configs.append(
|
427 |
+
BackendPatternConfig(torch.nn.functional.instance_norm)
|
428 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
429 |
+
.set_dtype_configs(dtype_configs)
|
430 |
+
._set_input_type_to_index({"weight": 3, "bias": 4})
|
431 |
+
)
|
432 |
+
return configs
|
433 |
+
|
434 |
+
def _add_fixed_qparams_to_dtype_configs(
|
435 |
+
dtype_configs: List[DTypeConfig],
|
436 |
+
constraints: DTypeWithConstraints,
|
437 |
+
) -> List[DTypeConfig]:
|
438 |
+
"""
|
439 |
+
Return a copy of the list of DTypeConfigs where activations are subject to the specified
|
440 |
+
constraints required for fixed qparams ops.
|
441 |
+
|
442 |
+
If the data type doesn't match the one in the constraints, simply leave the corresponding
|
443 |
+
DTypeConfig unchanged.
|
444 |
+
|
445 |
+
If `scale_min_lower_bound` or `scale_max_upper_bound` is specified in the activations,
|
446 |
+
throw an exception since these settings are incompatible with fixed qparams ops.
|
447 |
+
"""
|
448 |
+
new_dtype_configs = []
|
449 |
+
for dtype_config in dtype_configs:
|
450 |
+
dc = copy.deepcopy(dtype_config)
|
451 |
+
for orig_constraints in [dc.input_dtype_with_constraints, dc.output_dtype_with_constraints]:
|
452 |
+
if orig_constraints.dtype != constraints.dtype:
|
453 |
+
continue
|
454 |
+
if orig_constraints.scale_min_lower_bound is not None:
|
455 |
+
raise ValueError(f"scale_min_lower_bound is invalid for fixed qparams ops: {dtype_config}")
|
456 |
+
if orig_constraints.scale_max_upper_bound is not None:
|
457 |
+
raise ValueError(f"scale_max_upper_bound is invalid for fixed qparams ops: {dtype_config}")
|
458 |
+
orig_constraints.quant_min_lower_bound = constraints.quant_min_lower_bound
|
459 |
+
orig_constraints.quant_max_upper_bound = constraints.quant_max_upper_bound
|
460 |
+
orig_constraints.scale_exact_match = constraints.scale_exact_match
|
461 |
+
orig_constraints.zero_point_exact_match = constraints.zero_point_exact_match
|
462 |
+
new_dtype_configs.append(dc)
|
463 |
+
return new_dtype_configs
|
464 |
+
|
465 |
+
def _get_fixed_qparams_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
466 |
+
fixed_qparams_op_configs = []
|
467 |
+
for fixed_qparam_op, constraints in _FIXED_QPARAMS_OP_TO_CONSTRAINTS.items():
|
468 |
+
new_dtype_configs = _add_fixed_qparams_to_dtype_configs(dtype_configs, constraints)
|
469 |
+
fixed_qparams_op_configs.append(
|
470 |
+
BackendPatternConfig(fixed_qparam_op)
|
471 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
472 |
+
.set_dtype_configs(new_dtype_configs))
|
473 |
+
return fixed_qparams_op_configs
|
474 |
+
|
475 |
+
def _get_share_qparams_op_configs(dtype_configs):
|
476 |
+
""" Get the operator config for the operators that works for both float and quantized input
|
477 |
+
if input is quantized, the output Tensor shares the same quantization parameter
|
478 |
+
with input.
|
479 |
+
Example operator: avgpool2d, reshape, transpose, maxpool2d
|
480 |
+
Example observed operator:
|
481 |
+
observer_0 - avgpool2d - observer_0 (same observer instance as input)
|
482 |
+
"""
|
483 |
+
|
484 |
+
def _get_share_qprams_op_backend_config(op):
|
485 |
+
return BackendPatternConfig(op) \
|
486 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
|
487 |
+
.set_dtype_configs(dtype_configs)
|
488 |
+
|
489 |
+
share_qparams_ops = [
|
490 |
+
torch.nn.AdaptiveAvgPool1d,
|
491 |
+
torch.nn.AdaptiveAvgPool2d,
|
492 |
+
torch.nn.AdaptiveAvgPool3d,
|
493 |
+
torch.nn.AvgPool1d,
|
494 |
+
torch.nn.AvgPool2d,
|
495 |
+
torch.nn.AvgPool3d,
|
496 |
+
torch.nn.Hardtanh,
|
497 |
+
torch.nn.Identity,
|
498 |
+
torch.nn.MaxPool1d,
|
499 |
+
torch.nn.MaxPool2d,
|
500 |
+
torch.nn.MaxPool3d,
|
501 |
+
torch.nn.PixelShuffle,
|
502 |
+
torch.nn.PixelUnshuffle,
|
503 |
+
torch.nn.ReLU,
|
504 |
+
torch.nn.ReLU6,
|
505 |
+
torch.adaptive_avg_pool1d,
|
506 |
+
torch.nn.functional.adaptive_avg_pool2d,
|
507 |
+
torch.nn.functional.adaptive_avg_pool3d,
|
508 |
+
torch.nn.functional.hardtanh,
|
509 |
+
torch.nn.functional.hardtanh_,
|
510 |
+
torch.nn.functional.interpolate,
|
511 |
+
torch.nn.functional.max_pool1d,
|
512 |
+
torch.nn.functional.max_pool2d,
|
513 |
+
torch.nn.functional.max_pool3d,
|
514 |
+
torch.nn.functional.pixel_shuffle,
|
515 |
+
torch.nn.functional.pixel_unshuffle,
|
516 |
+
torch.nn.functional.relu,
|
517 |
+
torch.nn.functional.relu6,
|
518 |
+
torch.avg_pool1d,
|
519 |
+
torch._C._nn.avg_pool2d,
|
520 |
+
torch._C._nn.avg_pool3d,
|
521 |
+
torch.clamp,
|
522 |
+
torch.flatten,
|
523 |
+
torch.mean,
|
524 |
+
torch.narrow,
|
525 |
+
torch.repeat_interleave,
|
526 |
+
torch.transpose,
|
527 |
+
torch.squeeze,
|
528 |
+
torch.stack,
|
529 |
+
torch.unsqueeze,
|
530 |
+
operator.floordiv,
|
531 |
+
"contiguous",
|
532 |
+
"clamp",
|
533 |
+
"detach",
|
534 |
+
"detach_",
|
535 |
+
"mean",
|
536 |
+
"permute",
|
537 |
+
"repeat",
|
538 |
+
"repeat_interleave",
|
539 |
+
"reshape",
|
540 |
+
"resize_",
|
541 |
+
"relu",
|
542 |
+
"relu_",
|
543 |
+
"squeeze",
|
544 |
+
"squeeze_",
|
545 |
+
"transpose",
|
546 |
+
"unsqueeze",
|
547 |
+
"unsqueeze_",
|
548 |
+
"view"
|
549 |
+
]
|
550 |
+
return [_get_share_qprams_op_backend_config(op) for op in share_qparams_ops]
|
551 |
+
|
552 |
+
def _get_bn_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
553 |
+
""" Get configs related to batchnorm. """
|
554 |
+
bn_configs = []
|
555 |
+
bn_to_fused_bn = {
|
556 |
+
torch.nn.BatchNorm2d: nni.BNReLU2d,
|
557 |
+
torch.nn.BatchNorm3d: nni.BNReLU3d,
|
558 |
+
}
|
559 |
+
for bn in bn_to_fused_bn.keys():
|
560 |
+
fused_bn = bn_to_fused_bn[bn]
|
561 |
+
# bn module + relu module fusion config
|
562 |
+
bn_configs.append(
|
563 |
+
BackendPatternConfig((bn, nn.ReLU))
|
564 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
565 |
+
.set_fuser_method(_sequential_wrapper2(fused_bn))
|
566 |
+
.set_fused_module(fused_bn))
|
567 |
+
# bn module + F.relu fusion config
|
568 |
+
bn_configs.append(
|
569 |
+
BackendPatternConfig((bn, F.relu))
|
570 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
571 |
+
.set_fuser_method(_sequential_wrapper2(fused_bn))
|
572 |
+
.set_fused_module(fused_bn))
|
573 |
+
bn_configs.append(
|
574 |
+
BackendPatternConfig(bn)
|
575 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
576 |
+
.set_dtype_configs(dtype_configs))
|
577 |
+
|
578 |
+
# fused bn configs
|
579 |
+
for fused_bn in bn_to_fused_bn.values():
|
580 |
+
bn_configs.append(
|
581 |
+
BackendPatternConfig(fused_bn)
|
582 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
583 |
+
.set_dtype_configs(dtype_configs))
|
584 |
+
return bn_configs
|
585 |
+
|
586 |
+
def _get_rnn_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
587 |
+
rnn_op_configs = []
|
588 |
+
for rnn_op, ref_rnn_op in [
|
589 |
+
(nn.GRUCell, nnqr.GRUCell),
|
590 |
+
(nn.LSTMCell, nnqr.LSTMCell),
|
591 |
+
(nn.RNNCell, nnqr.RNNCell),
|
592 |
+
(nn.LSTM, nnqr.LSTM),
|
593 |
+
(nn.GRU, nnqr.GRU)
|
594 |
+
]:
|
595 |
+
rnn_op_configs.append(
|
596 |
+
BackendPatternConfig(rnn_op)
|
597 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
598 |
+
.set_dtype_configs(dtype_configs)
|
599 |
+
.set_root_module(rnn_op)
|
600 |
+
.set_reference_quantized_module(ref_rnn_op))
|
601 |
+
return rnn_op_configs
|
602 |
+
|
603 |
+
def _get_embedding_op_configs(dtype_configs: List[DTypeConfig]) -> List[BackendPatternConfig]:
|
604 |
+
embedding_op_configs = []
|
605 |
+
for embedding_op, qat_embedding_op, ref_embedding_op in [
|
606 |
+
(nn.Embedding, nnqat.Embedding, nnqr.Embedding),
|
607 |
+
(nn.EmbeddingBag, nnqat.EmbeddingBag, nnqr.EmbeddingBag),
|
608 |
+
]:
|
609 |
+
embedding_op_configs.append(
|
610 |
+
BackendPatternConfig(embedding_op)
|
611 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
612 |
+
.set_dtype_configs(dtype_configs)
|
613 |
+
.set_qat_module(qat_embedding_op)
|
614 |
+
.set_root_module(embedding_op)
|
615 |
+
.set_reference_quantized_module(ref_embedding_op))
|
616 |
+
|
617 |
+
# config for qat op
|
618 |
+
embedding_op_configs.append(
|
619 |
+
BackendPatternConfig(qat_embedding_op)
|
620 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) # noqa: E131
|
621 |
+
.set_dtype_configs(dtype_configs)
|
622 |
+
.set_root_module(embedding_op)
|
623 |
+
.set_reference_quantized_module(ref_embedding_op))
|
624 |
+
return embedding_op_configs
|
625 |
+
|
626 |
+
def _get_tensor_info_op_configs(dtype_configs):
|
627 |
+
"""
|
628 |
+
These ops work on tensors of different dtypes but return non-tensors
|
629 |
+
containing information about the input tensor.
|
630 |
+
"""
|
631 |
+
|
632 |
+
def _get_config(op):
|
633 |
+
return BackendPatternConfig(op) \
|
634 |
+
.set_observation_type(ObservationType.INPUT_OUTPUT_NOT_OBSERVED) \
|
635 |
+
.set_dtype_configs(dtype_configs)
|
636 |
+
|
637 |
+
return [_get_config(op) for op in ("shape", "size")]
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/_qnnpack_pt2e.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import operator
|
2 |
+
import torch
|
3 |
+
from torch.ao.quantization.backend_config import (
|
4 |
+
BackendConfig,
|
5 |
+
DTypeConfig,
|
6 |
+
ObservationType,
|
7 |
+
BackendPatternConfig,
|
8 |
+
)
|
9 |
+
|
10 |
+
weighted_op_quint8_dtype_config = DTypeConfig(
|
11 |
+
input_dtype=torch.quint8,
|
12 |
+
output_dtype=torch.quint8,
|
13 |
+
weight_dtype=torch.qint8,
|
14 |
+
bias_dtype=torch.float,
|
15 |
+
)
|
16 |
+
from typing import List
|
17 |
+
|
18 |
+
def get_linear_configs():
|
19 |
+
linear_configs = []
|
20 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
21 |
+
dtype_configs = [weighted_op_quint8_dtype_config]
|
22 |
+
|
23 |
+
# TODO: need to fix the way we insert observers for this pattern
|
24 |
+
# should be solved in the new fusion API
|
25 |
+
# reason that this doesn't work: the pattern is a bit complicated and we don't
|
26 |
+
# have a way to specify which input of the pattern we would like to observe
|
27 |
+
# pattern:
|
28 |
+
# bias input weight
|
29 |
+
# \ | /
|
30 |
+
# \ | t
|
31 |
+
# \ | /
|
32 |
+
# addmm
|
33 |
+
# we want to observe "weight" as weight, but there is not way to convey this
|
34 |
+
# information with current pattern language
|
35 |
+
#
|
36 |
+
# right now:
|
37 |
+
# original:
|
38 |
+
# weight - t \
|
39 |
+
# input - addmm
|
40 |
+
# observed (no hack):
|
41 |
+
# weight - t - observer \
|
42 |
+
# input - observer - addmm
|
43 |
+
# target:
|
44 |
+
# weight - observer - t \
|
45 |
+
# input - observer - addmm
|
46 |
+
|
47 |
+
# def root_node_getter(node_pattern):
|
48 |
+
# addmm, bias, act, weight = node_pattern
|
49 |
+
# return addmm
|
50 |
+
|
51 |
+
# linear_configs.append(
|
52 |
+
# BackendPatternConfig((torch.ops.aten.addmm.default, MatchAllNode, MatchAllNode, torch.ops.aten.t.default))
|
53 |
+
# .set_observation_type(observation_type) # noqa: E131
|
54 |
+
# .set_dtype_configs(dtype_configs)
|
55 |
+
# ._set_root_node_getter(root_node_getter))
|
56 |
+
|
57 |
+
linear_configs.append(
|
58 |
+
BackendPatternConfig(torch.ops.aten.addmm.default)
|
59 |
+
.set_observation_type(observation_type) # noqa: E131
|
60 |
+
.set_dtype_configs(dtype_configs)
|
61 |
+
._set_input_type_to_index({"weight": 2, "bias": 0})
|
62 |
+
)
|
63 |
+
# linear is decomposed to `t - mm` if bias is not present
|
64 |
+
linear_configs.append(
|
65 |
+
BackendPatternConfig(torch.ops.aten.mm.default)
|
66 |
+
.set_observation_type(observation_type) # noqa: E131
|
67 |
+
.set_dtype_configs(dtype_configs)
|
68 |
+
._set_input_type_to_index({"weight": 1})
|
69 |
+
)
|
70 |
+
return linear_configs
|
71 |
+
|
72 |
+
def get_conv_configs():
|
73 |
+
conv_configs = []
|
74 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
75 |
+
dtype_configs = [weighted_op_quint8_dtype_config]
|
76 |
+
conv_configs.append(
|
77 |
+
BackendPatternConfig(torch.ops.aten.convolution.default)
|
78 |
+
.set_observation_type(observation_type) # noqa: E131
|
79 |
+
.set_dtype_configs(dtype_configs)
|
80 |
+
._set_input_type_to_index({"weight": 1, "bias": 2})
|
81 |
+
)
|
82 |
+
conv_configs.append(
|
83 |
+
BackendPatternConfig((torch.ops.aten.convolution.default, torch.ops.aten.relu.default))
|
84 |
+
.set_observation_type(observation_type) # noqa: E131
|
85 |
+
.set_dtype_configs(dtype_configs)
|
86 |
+
._set_input_type_to_index({"weight": 1, "bias": 2})
|
87 |
+
)
|
88 |
+
# TODO: remove when functionalization is supported in PT2 mode
|
89 |
+
conv_configs.append(
|
90 |
+
BackendPatternConfig((torch.ops.aten.convolution.default, torch.ops.aten.relu_.default))
|
91 |
+
.set_observation_type(observation_type) # noqa: E131
|
92 |
+
.set_dtype_configs(dtype_configs)
|
93 |
+
._set_input_type_to_index({"weight": 1, "bias": 2})
|
94 |
+
)
|
95 |
+
return conv_configs
|
96 |
+
|
97 |
+
def get_pooling_configs():
|
98 |
+
backend_pattern_configs = []
|
99 |
+
observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
|
100 |
+
dtype_configs = [weighted_op_quint8_dtype_config]
|
101 |
+
|
102 |
+
def root_node_getter(node_pattern):
|
103 |
+
getitem, maxpool, index = node_pattern
|
104 |
+
return maxpool
|
105 |
+
|
106 |
+
backend_pattern_configs.append(
|
107 |
+
BackendPatternConfig()
|
108 |
+
._set_pattern_complex_format((operator.getitem, torch.ops.aten.max_pool2d_with_indices.default, 0))
|
109 |
+
.set_observation_type(observation_type) # noqa: E131
|
110 |
+
.set_dtype_configs(dtype_configs)
|
111 |
+
._set_root_node_getter(root_node_getter)
|
112 |
+
)
|
113 |
+
|
114 |
+
return backend_pattern_configs
|
115 |
+
|
116 |
+
def get_relu_configs():
|
117 |
+
backend_pattern_configs = []
|
118 |
+
observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
|
119 |
+
dtype_configs = [weighted_op_quint8_dtype_config]
|
120 |
+
backend_pattern_configs.append(
|
121 |
+
BackendPatternConfig(torch.ops.aten.relu.default)
|
122 |
+
.set_observation_type(observation_type) # noqa: E131
|
123 |
+
.set_dtype_configs(dtype_configs))
|
124 |
+
return backend_pattern_configs
|
125 |
+
|
126 |
+
def get_binary_op_configs():
|
127 |
+
binary_op_configs: List[BackendPatternConfig] = []
|
128 |
+
dtype_configs = [weighted_op_quint8_dtype_config]
|
129 |
+
num_tensor_args_to_observation_type_mapping = {
|
130 |
+
# TODO: this is not used right now since we have extra check in prepare
|
131 |
+
# will need to change this to NO_OBSERVER later after we implemented
|
132 |
+
# Tensor dtype inference properly
|
133 |
+
0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
134 |
+
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
|
135 |
+
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
136 |
+
}
|
137 |
+
for op_with_quantized_bop_scalar_variant in [torch.ops.aten.add.Tensor, torch.ops.aten.add_.Tensor]:
|
138 |
+
bop_patterns = [
|
139 |
+
(op_with_quantized_bop_scalar_variant, torch.ops.aten.relu.default),
|
140 |
+
op_with_quantized_bop_scalar_variant,
|
141 |
+
# TODO: remove when functionalization is supported in pt2_mode
|
142 |
+
(op_with_quantized_bop_scalar_variant, torch.ops.aten.relu_.default),
|
143 |
+
]
|
144 |
+
for bop_pattern in bop_patterns:
|
145 |
+
binary_op_configs.append(
|
146 |
+
BackendPatternConfig(bop_pattern)
|
147 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
148 |
+
._set_num_tensor_args_to_observation_type(num_tensor_args_to_observation_type_mapping))
|
149 |
+
|
150 |
+
return binary_op_configs
|
151 |
+
|
152 |
+
def get_qnnpack_pt2e_backend_config():
|
153 |
+
return (
|
154 |
+
BackendConfig("qnnpack_pytorch_2.0_export")
|
155 |
+
.set_backend_pattern_configs(get_linear_configs())
|
156 |
+
.set_backend_pattern_configs(get_binary_op_configs())
|
157 |
+
.set_backend_pattern_configs(get_conv_configs())
|
158 |
+
.set_backend_pattern_configs(get_pooling_configs())
|
159 |
+
.set_backend_pattern_configs(get_relu_configs())
|
160 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/backend_config.py
ADDED
@@ -0,0 +1,659 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Type, Union
|
4 |
+
|
5 |
+
import torch
|
6 |
+
from torch.ao.quantization.utils import Pattern
|
7 |
+
from enum import Enum
|
8 |
+
|
9 |
+
|
10 |
+
__all__ = [
|
11 |
+
"BackendConfig",
|
12 |
+
"BackendPatternConfig",
|
13 |
+
"DTypeConfig",
|
14 |
+
"DTypeWithConstraints",
|
15 |
+
"ObservationType",
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
# DTypeConfig dict keys
|
20 |
+
INPUT_DTYPE_DICT_KEY = "input_dtype"
|
21 |
+
OUTPUT_DTYPE_DICT_KEY = "output_dtype"
|
22 |
+
WEIGHT_DTYPE_DICT_KEY = "weight_dtype"
|
23 |
+
BIAS_DTYPE_DICT_KEY = "bias_dtype"
|
24 |
+
IS_DYNAMIC_DICT_KEY = "is_dynamic"
|
25 |
+
|
26 |
+
# BackendConfig dict keys
|
27 |
+
NAME_DICT_KEY = "name"
|
28 |
+
CONFIGS_DICT_KEY = "configs"
|
29 |
+
|
30 |
+
# BackendPatternConfig dict keys
|
31 |
+
PATTERN_DICT_KEY = "pattern"
|
32 |
+
PATTERN_COMPLEX_FORMAT_DICT_KEY = "pattern_complex_format"
|
33 |
+
OBSERVATION_TYPE_DICT_KEY = "observation_type"
|
34 |
+
DTYPE_CONFIGS_DICT_KEY = "dtype_configs"
|
35 |
+
ROOT_MODULE_DICT_KEY = "root_module"
|
36 |
+
QAT_MODULE_DICT_KEY = "qat_module"
|
37 |
+
REFERENCE_QUANTIZED_MODULE_DICT_KEY = "reference_quantized_module_for_root"
|
38 |
+
FUSED_MODULE_DICT_KEY = "fused_module"
|
39 |
+
FUSER_METHOD_DICT_KEY = "fuser_method"
|
40 |
+
ROOT_NODE_GETTER_DICT_KEY = "root_node_getter"
|
41 |
+
EXTRA_INPUTS_GETTER_DICT_KEY = "extra_inputs_getter"
|
42 |
+
NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY = "num_tensor_args_to_observation_type"
|
43 |
+
INPUT_TYPE_TO_INDEX_DICT_KEY = "input_type_to_index"
|
44 |
+
|
45 |
+
|
46 |
+
# TODO: maybe rename this to something that's not related to observer
|
47 |
+
# e.g. QParamsType
|
48 |
+
class ObservationType(Enum):
|
49 |
+
""" An enum that represents different ways of how an operator/operator pattern
|
50 |
+
should be observed
|
51 |
+
"""
|
52 |
+
|
53 |
+
OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT = 0
|
54 |
+
"""this means input and output are observed with different observers, based
|
55 |
+
on qconfig.activation
|
56 |
+
example: conv, linear, softmax
|
57 |
+
"""
|
58 |
+
|
59 |
+
OUTPUT_SHARE_OBSERVER_WITH_INPUT = 1
|
60 |
+
"""this means the output will use the same observer instance as input, based
|
61 |
+
on qconfig.activation
|
62 |
+
example: torch.cat, maxpool
|
63 |
+
"""
|
64 |
+
|
65 |
+
INPUT_OUTPUT_NOT_OBSERVED = 2
|
66 |
+
"""this means the input and output are never observed
|
67 |
+
example: x.shape, x.size
|
68 |
+
"""
|
69 |
+
|
70 |
+
|
71 |
+
@dataclass
|
72 |
+
class DTypeWithConstraints:
|
73 |
+
"""
|
74 |
+
Config for specifying additional constraints for a given dtype, such as quantization
|
75 |
+
value ranges, scale value ranges, and fixed quantization params, to be used in
|
76 |
+
:class:`~torch.ao.quantization.backend_config.DTypeConfig`.
|
77 |
+
|
78 |
+
The constraints currently supported are:
|
79 |
+
|
80 |
+
* `quant_min_lower_bound` and `quant_max_upper_bound`: Lower and upper
|
81 |
+
bounds for the minimum and maximum quantized values respectively. If
|
82 |
+
the QConfig’s `quant_min` and `quant_max` fall outside this range,
|
83 |
+
then the QConfig will be ignored.
|
84 |
+
|
85 |
+
* `scale_min_lower_bound` and `scale_max_upper_bound`: Lower and upper
|
86 |
+
bounds for the minimum and maximum scale values respectively. If the
|
87 |
+
QConfig’s minimum scale value (currently exposed as `eps`) falls below
|
88 |
+
the lower bound, then the QConfig will be ignored. Note that the upper
|
89 |
+
bound is currently not enforced.
|
90 |
+
|
91 |
+
* `scale_exact_match` and `zero_point_exact_match`: Exact match requirements
|
92 |
+
for scale and zero point, to be used for operators with fixed quantization
|
93 |
+
parameters such as sigmoid and tanh. If the observer specified in the QConfig
|
94 |
+
is neither `FixedQParamsObserver` nor `FixedQParamsFakeQuantize`, or if
|
95 |
+
the quantization parameters don't match, then the QConfig will be ignored.
|
96 |
+
"""
|
97 |
+
dtype: Optional[torch.dtype] = None
|
98 |
+
quant_min_lower_bound: Union[int, float, None] = None
|
99 |
+
quant_max_upper_bound: Union[int, float, None] = None
|
100 |
+
scale_min_lower_bound: Union[int, float, None] = None
|
101 |
+
scale_max_upper_bound: Union[int, float, None] = None
|
102 |
+
scale_exact_match: Optional[float] = None
|
103 |
+
zero_point_exact_match: Optional[int] = None
|
104 |
+
|
105 |
+
|
106 |
+
@dataclass
|
107 |
+
class DTypeConfig:
|
108 |
+
"""
|
109 |
+
Config object that specifies the supported data types passed as arguments to
|
110 |
+
quantize ops in the reference model spec, for input and output activations,
|
111 |
+
weights, and biases.
|
112 |
+
|
113 |
+
For example, consider the following reference model:
|
114 |
+
|
115 |
+
quant1 - [dequant1 - fp32_linear - quant2] - dequant2
|
116 |
+
|
117 |
+
The pattern in the square brackets refers to the reference pattern of
|
118 |
+
statically quantized linear. Setting the input dtype as `torch.quint8`
|
119 |
+
in the DTypeConfig means we pass in `torch.quint8` as the dtype argument
|
120 |
+
to the first quantize op (quant1). Similarly, setting the output dtype as
|
121 |
+
`torch.quint8` means we pass in `torch.quint8` as the dtype argument to
|
122 |
+
the second quantize op (quant2).
|
123 |
+
|
124 |
+
Note that the dtype here does not refer to the interface dtypes of the
|
125 |
+
op. For example, the "input dtype" here is not the dtype of the input
|
126 |
+
tensor passed to the quantized linear op. Though it can still be the
|
127 |
+
same as the interface dtype, this is not always the case, e.g. the
|
128 |
+
interface dtype is fp32 in dynamic quantization but the "input dtype"
|
129 |
+
specified in the DTypeConfig would still be quint8. The semantics of
|
130 |
+
dtypes here are the same as the semantics of the dtypes specified in
|
131 |
+
the observers.
|
132 |
+
|
133 |
+
These dtypes are matched against the ones specified in the user’s
|
134 |
+
QConfig. If there is a match, and the QConfig satisfies the constraints
|
135 |
+
specified in the DTypeConfig (if any), then we will quantize the given
|
136 |
+
pattern using this DTypeConfig. Otherwise, the QConfig is ignored and
|
137 |
+
the pattern will not be quantized.
|
138 |
+
|
139 |
+
Example usage::
|
140 |
+
|
141 |
+
>>> # xdoctest: +SKIP(failing)
|
142 |
+
>>> dtype_config1 = DTypeConfig(
|
143 |
+
... input_dtype=torch.quint8,
|
144 |
+
... output_dtype=torch.quint8,
|
145 |
+
... weight_dtype=torch.qint8,
|
146 |
+
... bias_dtype=torch.float)
|
147 |
+
|
148 |
+
>>> dtype_config2 = DTypeConfig(
|
149 |
+
... input_dtype=DTypeWithConstraints(
|
150 |
+
... dtype=torch.quint8,
|
151 |
+
... quant_min_lower_bound=0,
|
152 |
+
... quant_max_upper_bound=255,
|
153 |
+
... ),
|
154 |
+
... output_dtype=DTypeWithConstraints(
|
155 |
+
... dtype=torch.quint8,
|
156 |
+
... quant_min_lower_bound=0,
|
157 |
+
... quant_max_upper_bound=255,
|
158 |
+
... ),
|
159 |
+
... weight_dtype=DTypeWithConstraints(
|
160 |
+
... dtype=torch.qint8,
|
161 |
+
... quant_min_lower_bound=-128,
|
162 |
+
... quant_max_upper_bound=127,
|
163 |
+
... ),
|
164 |
+
... bias_dtype=torch.float)
|
165 |
+
|
166 |
+
>>> dtype_config1.input_dtype
|
167 |
+
torch.quint8
|
168 |
+
|
169 |
+
>>> dtype_config2.input_dtype
|
170 |
+
torch.quint8
|
171 |
+
|
172 |
+
>>> dtype_config2.input_dtype_with_constraints
|
173 |
+
DTypeWithConstraints(dtype=torch.quint8, quant_min_lower_bound=0, quant_max_upper_bound=255, \
|
174 |
+
scale_min_lower_bound=None, scale_max_upper_bound=None)
|
175 |
+
"""
|
176 |
+
input_dtype_with_constraints: DTypeWithConstraints
|
177 |
+
output_dtype_with_constraints: DTypeWithConstraints
|
178 |
+
weight_dtype_with_constraints: DTypeWithConstraints
|
179 |
+
bias_dtype: Optional[torch.dtype]
|
180 |
+
is_dynamic: Optional[bool]
|
181 |
+
|
182 |
+
def __init__(
|
183 |
+
self,
|
184 |
+
input_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
|
185 |
+
output_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
|
186 |
+
weight_dtype: Union[torch.dtype, DTypeWithConstraints, None] = None,
|
187 |
+
bias_dtype: Optional[torch.dtype] = None,
|
188 |
+
is_dynamic: Optional[bool] = None,
|
189 |
+
):
|
190 |
+
if isinstance(input_dtype, DTypeWithConstraints):
|
191 |
+
self.input_dtype_with_constraints = input_dtype
|
192 |
+
else:
|
193 |
+
self.input_dtype_with_constraints = DTypeWithConstraints(dtype=input_dtype)
|
194 |
+
|
195 |
+
if isinstance(output_dtype, DTypeWithConstraints):
|
196 |
+
self.output_dtype_with_constraints = output_dtype
|
197 |
+
else:
|
198 |
+
self.output_dtype_with_constraints = DTypeWithConstraints(dtype=output_dtype)
|
199 |
+
|
200 |
+
if isinstance(weight_dtype, DTypeWithConstraints):
|
201 |
+
self.weight_dtype_with_constraints = weight_dtype
|
202 |
+
else:
|
203 |
+
self.weight_dtype_with_constraints = DTypeWithConstraints(dtype=weight_dtype)
|
204 |
+
|
205 |
+
self.bias_dtype = bias_dtype
|
206 |
+
self.is_dynamic = is_dynamic
|
207 |
+
|
208 |
+
@property
|
209 |
+
def input_dtype(self) -> Optional[torch.dtype]:
|
210 |
+
return self.input_dtype_with_constraints.dtype
|
211 |
+
|
212 |
+
@property
|
213 |
+
def output_dtype(self) -> Optional[torch.dtype]:
|
214 |
+
return self.output_dtype_with_constraints.dtype
|
215 |
+
|
216 |
+
@property
|
217 |
+
def weight_dtype(self) -> Optional[torch.dtype]:
|
218 |
+
return self.weight_dtype_with_constraints.dtype
|
219 |
+
|
220 |
+
@classmethod
|
221 |
+
def from_dict(cls, dtype_config_dict: Dict[str, Any]) -> DTypeConfig:
|
222 |
+
"""
|
223 |
+
Create a ``DTypeConfig`` from a dictionary with the following items (all optional):
|
224 |
+
"input_dtype": torch.dtype or ``DTypeWithConstraints``
|
225 |
+
"output_dtype": torch.dtype or ``DTypeWithConstraints``
|
226 |
+
"weight_dtype": torch.dtype or ``DTypeWithConstraints``
|
227 |
+
"bias_type": torch.dtype
|
228 |
+
"is_dynamic": bool
|
229 |
+
"""
|
230 |
+
input_dtype = dtype_config_dict.get(INPUT_DTYPE_DICT_KEY, None)
|
231 |
+
if input_dtype is not None and not isinstance(input_dtype, (torch.dtype, DTypeWithConstraints)):
|
232 |
+
raise ValueError("Expected input_dtype to be a torch.dtype or DTypeWithConstraints")
|
233 |
+
output_dtype = dtype_config_dict.get(OUTPUT_DTYPE_DICT_KEY, None)
|
234 |
+
if output_dtype is not None and not isinstance(output_dtype, (torch.dtype, DTypeWithConstraints)):
|
235 |
+
raise ValueError("Expected output_dtype to be a torch.dtype or DTypeWithConstraints")
|
236 |
+
weight_dtype = dtype_config_dict.get(WEIGHT_DTYPE_DICT_KEY, None)
|
237 |
+
if weight_dtype is not None and not isinstance(weight_dtype, (torch.dtype, DTypeWithConstraints)):
|
238 |
+
raise ValueError("Expected weight_dtype to be a torch.dtype or DTypeWithConstraints")
|
239 |
+
bias_dtype = dtype_config_dict.get(BIAS_DTYPE_DICT_KEY, None)
|
240 |
+
is_dynamic = dtype_config_dict.get(IS_DYNAMIC_DICT_KEY, None)
|
241 |
+
return cls(input_dtype, output_dtype, weight_dtype, bias_dtype, is_dynamic)
|
242 |
+
|
243 |
+
def to_dict(self) -> Dict[str, Any]:
|
244 |
+
"""
|
245 |
+
Convert this ``DTypeConfig`` to a dictionary with the items described in
|
246 |
+
:func:`~torch.ao.quantization.backend_config.DTypeConfig.from_dict`.
|
247 |
+
"""
|
248 |
+
dtype_config_dict: Dict[str, Any] = {}
|
249 |
+
if self.input_dtype is not None:
|
250 |
+
dtype_config_dict[INPUT_DTYPE_DICT_KEY] = self.input_dtype_with_constraints
|
251 |
+
if self.output_dtype is not None:
|
252 |
+
dtype_config_dict[OUTPUT_DTYPE_DICT_KEY] = self.output_dtype_with_constraints
|
253 |
+
if self.weight_dtype is not None:
|
254 |
+
dtype_config_dict[WEIGHT_DTYPE_DICT_KEY] = self.weight_dtype_with_constraints
|
255 |
+
if self.bias_dtype is not None:
|
256 |
+
dtype_config_dict[BIAS_DTYPE_DICT_KEY] = self.bias_dtype
|
257 |
+
if self.is_dynamic is not None:
|
258 |
+
dtype_config_dict[IS_DYNAMIC_DICT_KEY] = self.is_dynamic
|
259 |
+
return dtype_config_dict
|
260 |
+
|
261 |
+
|
262 |
+
class BackendConfig:
|
263 |
+
# TODO: refer to NativeBackendConfig once that is implemented
|
264 |
+
"""Config that defines the set of patterns that can be quantized on a given backend, and how reference
|
265 |
+
quantized models can be produced from these patterns.
|
266 |
+
|
267 |
+
A pattern in this context refers to a module, a functional, an operator, or a directed acyclic graph
|
268 |
+
of the above. Each pattern supported on the target backend can be individually configured through
|
269 |
+
:class:`~torch.ao.quantization.backend_config.BackendPatternConfig` in terms of:
|
270 |
+
|
271 |
+
(1) The supported input/output activation, weight, and bias data types
|
272 |
+
|
273 |
+
(2) How observers and quant/dequant ops are inserted in order to construct the reference pattern, and
|
274 |
+
|
275 |
+
(3) (Optionally) Fusion, QAT, and reference module mappings.
|
276 |
+
|
277 |
+
The format of the patterns is described in:
|
278 |
+
https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md
|
279 |
+
|
280 |
+
Example usage::
|
281 |
+
|
282 |
+
import torch
|
283 |
+
from torch.ao.quantization.backend_config import (
|
284 |
+
BackendConfig,
|
285 |
+
BackendPatternConfig,
|
286 |
+
DTypeConfig,
|
287 |
+
ObservationType,
|
288 |
+
)
|
289 |
+
|
290 |
+
weighted_int8_dtype_config = DTypeConfig(
|
291 |
+
input_dtype=torch.quint8,
|
292 |
+
output_dtype=torch.quint8,
|
293 |
+
weight_dtype=torch.qint8,
|
294 |
+
bias_dtype=torch.float)
|
295 |
+
|
296 |
+
def fuse_conv2d_relu(is_qat, conv, relu):
|
297 |
+
return torch.ao.nn.intrinsic.ConvReLU2d(conv, relu)
|
298 |
+
|
299 |
+
# For quantizing Linear
|
300 |
+
linear_config = BackendPatternConfig(torch.nn.Linear) \
|
301 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
|
302 |
+
.add_dtype_config(weighted_int8_dtype_config) \
|
303 |
+
.set_root_module(torch.nn.Linear) \
|
304 |
+
.set_qat_module(torch.ao.nn.qat.Linear) \
|
305 |
+
.set_reference_quantized_module(torch.ao.nn.quantized.reference.Linear)
|
306 |
+
|
307 |
+
# For fusing Conv2d + ReLU into ConvReLU2d
|
308 |
+
conv_relu_config = BackendPatternConfig((torch.nn.Conv2d, torch.nn.ReLU)) \
|
309 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
|
310 |
+
.add_dtype_config(weighted_int8_dtype_config) \
|
311 |
+
.set_fused_module(torch.ao.nn.intrinsic.ConvReLU2d) \
|
312 |
+
.set_fuser_method(fuse_conv2d_relu)
|
313 |
+
|
314 |
+
# For quantizing ConvReLU2d
|
315 |
+
fused_conv_relu_config = BackendPatternConfig(torch.ao.nn.intrinsic.ConvReLU2d) \
|
316 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
|
317 |
+
.add_dtype_config(weighted_int8_dtype_config) \
|
318 |
+
.set_root_module(torch.nn.Conv2d) \
|
319 |
+
.set_qat_module(torch.ao.nn.intrinsic.qat.ConvReLU2d) \
|
320 |
+
.set_reference_quantized_module(torch.ao.nn.quantized.reference.Conv2d)
|
321 |
+
|
322 |
+
backend_config = BackendConfig("my_backend") \
|
323 |
+
.set_backend_pattern_config(linear_config) \
|
324 |
+
.set_backend_pattern_config(conv_relu_config) \
|
325 |
+
.set_backend_pattern_config(fused_conv_relu_config)
|
326 |
+
|
327 |
+
"""
|
328 |
+
def __init__(self, name: str = ""):
|
329 |
+
self.name = name
|
330 |
+
# Store all BackendPatternConfigs in a map to handle duplicates
|
331 |
+
# Note: the key in this map uses the complex reversed tuple format.
|
332 |
+
# This is intended only for internal use; users who wish to access
|
333 |
+
# the original patterns should go through `self.configs` instead.
|
334 |
+
self._pattern_complex_format_to_config: Dict[Pattern, BackendPatternConfig] = {}
|
335 |
+
|
336 |
+
def __repr__(self):
|
337 |
+
return f"BackendConfig({self.__dict__})"
|
338 |
+
|
339 |
+
def set_name(self, name: str) -> BackendConfig:
|
340 |
+
"""
|
341 |
+
Set the name of the target backend.
|
342 |
+
"""
|
343 |
+
self.name = name
|
344 |
+
return self
|
345 |
+
|
346 |
+
def set_backend_pattern_config(self, config: BackendPatternConfig) -> BackendConfig:
|
347 |
+
"""
|
348 |
+
Set the config for an pattern that can be run on the target backend.
|
349 |
+
This overrides any existing config for the given pattern.
|
350 |
+
"""
|
351 |
+
# Avoid circular dependencies
|
352 |
+
pattern_complex_format = torch.ao.quantization.backend_config.utils \
|
353 |
+
._get_pattern_in_reversed_nested_tuple_format(config) # type: ignore[attr-defined]
|
354 |
+
self._pattern_complex_format_to_config[pattern_complex_format] = config
|
355 |
+
return self
|
356 |
+
|
357 |
+
def set_backend_pattern_configs(self, configs: List[BackendPatternConfig]) -> BackendConfig:
|
358 |
+
"""
|
359 |
+
Set the configs for patterns that can be run on the target backend.
|
360 |
+
This overrides any existing config for a given pattern if it was previously registered already.
|
361 |
+
"""
|
362 |
+
for conf in configs:
|
363 |
+
self.set_backend_pattern_config(conf)
|
364 |
+
return self
|
365 |
+
|
366 |
+
@property
|
367 |
+
def configs(self) -> List[BackendPatternConfig]:
|
368 |
+
"""
|
369 |
+
Return a copy of the list of configs set in this `BackendConfig`.
|
370 |
+
"""
|
371 |
+
return list(self._pattern_complex_format_to_config.values())
|
372 |
+
|
373 |
+
@classmethod
|
374 |
+
def from_dict(cls, backend_config_dict: Dict[str, Any]) -> BackendConfig:
|
375 |
+
"""
|
376 |
+
Create a ``BackendConfig`` from a dictionary with the following items:
|
377 |
+
|
378 |
+
"name": the name of the target backend
|
379 |
+
|
380 |
+
"configs": a list of dictionaries that each represents a `BackendPatternConfig`
|
381 |
+
|
382 |
+
"""
|
383 |
+
conf = cls(backend_config_dict.get(NAME_DICT_KEY, ""))
|
384 |
+
for d in backend_config_dict.get(CONFIGS_DICT_KEY, []):
|
385 |
+
if isinstance(d, BackendPatternConfig):
|
386 |
+
conf.set_backend_pattern_config(d)
|
387 |
+
elif isinstance(d, Dict):
|
388 |
+
conf.set_backend_pattern_config(BackendPatternConfig.from_dict(d))
|
389 |
+
else:
|
390 |
+
raise ValueError(f"Expected backend_config_dict['{CONFIGS_DICT_KEY}'] to be a dictionary")
|
391 |
+
return conf
|
392 |
+
|
393 |
+
def to_dict(self) -> Dict[str, Any]:
|
394 |
+
"""
|
395 |
+
Convert this ``BackendConfig`` to a dictionary with the items described in
|
396 |
+
:func:`~torch.ao.quantization.backend_config.BackendConfig.from_dict`.
|
397 |
+
"""
|
398 |
+
return {
|
399 |
+
NAME_DICT_KEY: self.name,
|
400 |
+
CONFIGS_DICT_KEY: [c.to_dict() for c in self.configs],
|
401 |
+
}
|
402 |
+
|
403 |
+
|
404 |
+
class BackendPatternConfig:
|
405 |
+
"""
|
406 |
+
Config object that specifies quantization behavior for a given operator pattern.
|
407 |
+
For a detailed example usage, see :class:`~torch.ao.quantization.backend_config.BackendConfig`.
|
408 |
+
"""
|
409 |
+
def __init__(self, pattern: Optional[Pattern] = None):
|
410 |
+
self.pattern: Optional[Pattern] = pattern
|
411 |
+
self.observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
412 |
+
self.dtype_configs: List[DTypeConfig] = []
|
413 |
+
self.root_module: Optional[Type[torch.nn.Module]] = None
|
414 |
+
self.qat_module: Optional[Type[torch.nn.Module]] = None
|
415 |
+
self.reference_quantized_module: Optional[Type[torch.nn.Module]] = None
|
416 |
+
self.fused_module: Optional[Type[torch.nn.Module]] = None
|
417 |
+
self.fuser_method: Optional[Callable] = None
|
418 |
+
|
419 |
+
# Temporary/internal configs
|
420 |
+
self._root_node_getter: Optional[Callable] = None
|
421 |
+
self._extra_inputs_getter: Optional[Callable] = None
|
422 |
+
self._num_tensor_args_to_observation_type: Dict[int, ObservationType] = {}
|
423 |
+
self._input_type_to_index: Dict[str, int] = {}
|
424 |
+
self._pattern_complex_format: Optional[Pattern] = None
|
425 |
+
|
426 |
+
def __repr__(self):
|
427 |
+
dict_nonempty = {
|
428 |
+
k: v for k, v in self.__dict__.items()
|
429 |
+
if (
|
430 |
+
(not isinstance(v, (list, dict)) and v is not None)
|
431 |
+
or (isinstance(v, (list, dict)) and len(v) > 0)
|
432 |
+
)
|
433 |
+
}
|
434 |
+
return f"BackendPatternConfig({dict_nonempty})"
|
435 |
+
|
436 |
+
def set_pattern(self, pattern: Pattern) -> BackendPatternConfig:
|
437 |
+
"""
|
438 |
+
Set the pattern to configure.
|
439 |
+
|
440 |
+
The pattern can be a float module, functional operator, pytorch operator, or a tuple
|
441 |
+
combination of the above. Tuple patterns are treated as sequential patterns, and
|
442 |
+
currently only tuples of 2 or 3 elements are supported.
|
443 |
+
"""
|
444 |
+
if self._pattern_complex_format is not None:
|
445 |
+
raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set")
|
446 |
+
self.pattern = pattern
|
447 |
+
return self
|
448 |
+
|
449 |
+
def set_observation_type(self, observation_type: ObservationType) -> BackendPatternConfig:
|
450 |
+
"""
|
451 |
+
Set how observers should be inserted in the graph for this pattern.
|
452 |
+
|
453 |
+
Observation type here refers to how observers (or quant-dequant ops) will be placed
|
454 |
+
in the graph. This is used to produce the desired reference patterns understood by
|
455 |
+
the backend. Weighted ops such as linear and conv require different observers
|
456 |
+
(or quantization parameters passed to quantize ops in the reference model) for the
|
457 |
+
input and the output.
|
458 |
+
|
459 |
+
There are two observation types:
|
460 |
+
|
461 |
+
`OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT` (default): the output observer instance
|
462 |
+
will be different from the input. This is the most common observation type.
|
463 |
+
|
464 |
+
`OUTPUT_SHARE_OBSERVER_WITH_INPUT`: the output observer instance will be the
|
465 |
+
same as the input. This is useful for operators like `cat`.
|
466 |
+
|
467 |
+
Note: This will be renamed in the near future, since we will soon insert QuantDeQuantStubs
|
468 |
+
with observers (and fake quantizes) attached instead of observers themselves.
|
469 |
+
"""
|
470 |
+
self.observation_type = observation_type
|
471 |
+
return self
|
472 |
+
|
473 |
+
def add_dtype_config(self, dtype_config: DTypeConfig) -> BackendPatternConfig:
|
474 |
+
"""
|
475 |
+
Add a set of supported data types passed as arguments to quantize ops in the
|
476 |
+
reference model spec.
|
477 |
+
"""
|
478 |
+
self.dtype_configs.append(dtype_config)
|
479 |
+
return self
|
480 |
+
|
481 |
+
def set_dtype_configs(self, dtype_configs: List[DTypeConfig]) -> BackendPatternConfig:
|
482 |
+
"""
|
483 |
+
Set the supported data types passed as arguments to quantize ops in the
|
484 |
+
reference model spec, overriding all previously registered data types.
|
485 |
+
"""
|
486 |
+
self.dtype_configs = dtype_configs
|
487 |
+
return self
|
488 |
+
|
489 |
+
def set_root_module(self, root_module: Type[torch.nn.Module]) -> BackendPatternConfig:
|
490 |
+
"""
|
491 |
+
Set the module that represents the root for this pattern.
|
492 |
+
|
493 |
+
When we construct the reference quantized model during the convert phase,
|
494 |
+
the root modules (e.g. torch.nn.Linear for torch.ao.nn.intrinsic.LinearReLU)
|
495 |
+
will be swapped to the corresponding reference quantized modules (e.g.
|
496 |
+
torch.ao.nn.reference.quantized.Linear). This allows custom backends to
|
497 |
+
specify custom reference quantized module implementations to match the
|
498 |
+
numerics of their lowered operators. Since this is a one-to-one mapping,
|
499 |
+
both the root module and the reference quantized module must be specified
|
500 |
+
in the same BackendPatternConfig in order for the conversion to take place.
|
501 |
+
"""
|
502 |
+
self.root_module = root_module
|
503 |
+
return self
|
504 |
+
|
505 |
+
def set_qat_module(self, qat_module: Type[torch.nn.Module]) -> BackendPatternConfig:
|
506 |
+
"""
|
507 |
+
Set the module that represents the QAT implementation for this pattern.
|
508 |
+
"""
|
509 |
+
self.qat_module = qat_module
|
510 |
+
return self
|
511 |
+
|
512 |
+
def set_reference_quantized_module(self, reference_quantized_module: Type[torch.nn.Module]) -> BackendPatternConfig:
|
513 |
+
"""
|
514 |
+
Set the module that represents the reference quantized implementation for
|
515 |
+
this pattern's root module.
|
516 |
+
|
517 |
+
For more detail, see :func:`~torch.ao.quantization.backend_config.BackendPatternConfig.set_root_module`.
|
518 |
+
"""
|
519 |
+
self.reference_quantized_module = reference_quantized_module
|
520 |
+
return self
|
521 |
+
|
522 |
+
def set_fused_module(self, fused_module: Type[torch.nn.Module]) -> BackendPatternConfig:
|
523 |
+
"""
|
524 |
+
Set the module that represents the fused implementation for this pattern.
|
525 |
+
"""
|
526 |
+
self.fused_module = fused_module
|
527 |
+
return self
|
528 |
+
|
529 |
+
def set_fuser_method(self, fuser_method: Callable) -> BackendPatternConfig:
|
530 |
+
"""
|
531 |
+
Set the function that specifies how to fuse this BackendPatternConfig's pattern.
|
532 |
+
|
533 |
+
The first argument of this function should be `is_qat`, and the rest of the arguments
|
534 |
+
should be the items in the tuple pattern. The return value of this function should be
|
535 |
+
the resulting fused module.
|
536 |
+
|
537 |
+
For example, the fuser method for the pattern `(torch.nn.Linear, torch.nn.ReLU)` can be:
|
538 |
+
|
539 |
+
def fuse_linear_relu(is_qat, linear, relu):
|
540 |
+
return torch.ao.nn.intrinsic.LinearReLU(linear, relu)
|
541 |
+
|
542 |
+
For a more complicated example, see https://gist.github.com/jerryzh168/8bea7180a8ba3c279f2c9b050f2a69a6.
|
543 |
+
"""
|
544 |
+
self.fuser_method = fuser_method
|
545 |
+
return self
|
546 |
+
|
547 |
+
def _set_root_node_getter(self, root_node_getter: Callable) -> BackendPatternConfig:
|
548 |
+
self._root_node_getter = root_node_getter
|
549 |
+
return self
|
550 |
+
|
551 |
+
def _set_extra_inputs_getter(self, extra_inputs_getter: Callable) -> BackendPatternConfig:
|
552 |
+
self._extra_inputs_getter = extra_inputs_getter
|
553 |
+
return self
|
554 |
+
|
555 |
+
def _set_num_tensor_args_to_observation_type(
|
556 |
+
self, num_tensor_args_to_observation_type: Dict[int, ObservationType]) -> BackendPatternConfig:
|
557 |
+
self._num_tensor_args_to_observation_type = num_tensor_args_to_observation_type
|
558 |
+
return self
|
559 |
+
|
560 |
+
def _set_input_type_to_index(self, input_type_to_index: Dict[str, int]) -> BackendPatternConfig:
|
561 |
+
self._input_type_to_index = input_type_to_index
|
562 |
+
return self
|
563 |
+
|
564 |
+
def _set_pattern_complex_format(self, pattern: Pattern) -> BackendPatternConfig:
|
565 |
+
"""
|
566 |
+
Set the pattern to configure, using the reversed nested tuple format.
|
567 |
+
|
568 |
+
See the BackendConfig README for more detail:
|
569 |
+
https://github.com/pytorch/pytorch/blob/master/torch/ao/quantization/backend_config/README.md#advanced-pattern-specification
|
570 |
+
"""
|
571 |
+
if self.pattern is not None:
|
572 |
+
raise ValueError("Only one of 'pattern' or 'pattern_complex_format' can be set")
|
573 |
+
self._pattern_complex_format = pattern
|
574 |
+
return self
|
575 |
+
|
576 |
+
@classmethod
|
577 |
+
def from_dict(cls, backend_pattern_config_dict: Dict[str, Any]) -> BackendPatternConfig:
|
578 |
+
"""
|
579 |
+
Create a ``BackendPatternConfig`` from a dictionary with the following items:
|
580 |
+
|
581 |
+
"pattern": the pattern being configured
|
582 |
+
"observation_type": the :class:`~torch.ao.quantization.backend_config.ObservationType` that specifies how
|
583 |
+
observers should be inserted for this pattern
|
584 |
+
"dtype_configs": a list of dictionaries that represents :class:`~torch.ao.quantization.backend_config.DTypeConfig` s
|
585 |
+
"root_module": a :class:`torch.nn.Module` that represents the root for this pattern
|
586 |
+
"qat_module": a :class:`torch.nn.Module` that represents the QAT implementation for this pattern
|
587 |
+
"reference_quantized_module": a :class:`torch.nn.Module` that represents the reference quantized
|
588 |
+
implementation for this pattern's root module.
|
589 |
+
"fused_module": a :class:`torch.nn.Module` that represents the fused implementation for this pattern
|
590 |
+
"fuser_method": a function that specifies how to fuse the pattern for this pattern
|
591 |
+
"pattern_complex_format": the pattern specified in the reversed nested tuple format (deprecated)
|
592 |
+
|
593 |
+
"""
|
594 |
+
def _get_dtype_config(obj: Any) -> DTypeConfig:
|
595 |
+
"""
|
596 |
+
Convert the given object into a ``DTypeConfig`` if possible, else throw an exception.
|
597 |
+
"""
|
598 |
+
if isinstance(obj, DTypeConfig):
|
599 |
+
return obj
|
600 |
+
if isinstance(obj, Dict):
|
601 |
+
return DTypeConfig.from_dict(obj)
|
602 |
+
raise ValueError(
|
603 |
+
f"Expected a list of DTypeConfigs in "
|
604 |
+
f"backend_pattern_config_dict[\"{DTYPE_CONFIGS_DICT_KEY}\"], got '{type(obj)}'"
|
605 |
+
)
|
606 |
+
|
607 |
+
conf = cls()
|
608 |
+
if PATTERN_DICT_KEY in backend_pattern_config_dict:
|
609 |
+
conf.set_pattern(backend_pattern_config_dict[PATTERN_DICT_KEY])
|
610 |
+
if OBSERVATION_TYPE_DICT_KEY in backend_pattern_config_dict:
|
611 |
+
conf.set_observation_type(backend_pattern_config_dict[OBSERVATION_TYPE_DICT_KEY])
|
612 |
+
for d in backend_pattern_config_dict.get(DTYPE_CONFIGS_DICT_KEY, []):
|
613 |
+
conf.add_dtype_config(_get_dtype_config(d))
|
614 |
+
conf.set_root_module(backend_pattern_config_dict.get(ROOT_MODULE_DICT_KEY, None))
|
615 |
+
conf.set_qat_module(backend_pattern_config_dict.get(QAT_MODULE_DICT_KEY, None))
|
616 |
+
conf.set_reference_quantized_module(backend_pattern_config_dict.get(REFERENCE_QUANTIZED_MODULE_DICT_KEY, None))
|
617 |
+
conf.set_fused_module(backend_pattern_config_dict.get(FUSED_MODULE_DICT_KEY, None))
|
618 |
+
conf.set_fuser_method(backend_pattern_config_dict.get(FUSER_METHOD_DICT_KEY, None))
|
619 |
+
conf._set_root_node_getter(backend_pattern_config_dict.get(ROOT_NODE_GETTER_DICT_KEY, None))
|
620 |
+
conf._set_extra_inputs_getter(backend_pattern_config_dict.get(EXTRA_INPUTS_GETTER_DICT_KEY, None))
|
621 |
+
conf._set_num_tensor_args_to_observation_type(
|
622 |
+
backend_pattern_config_dict.get(NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY, {}))
|
623 |
+
conf._set_input_type_to_index(backend_pattern_config_dict.get(INPUT_TYPE_TO_INDEX_DICT_KEY, {}))
|
624 |
+
if PATTERN_COMPLEX_FORMAT_DICT_KEY in backend_pattern_config_dict:
|
625 |
+
conf._set_pattern_complex_format(backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY])
|
626 |
+
return conf
|
627 |
+
|
628 |
+
def to_dict(self) -> Dict[str, Any]:
|
629 |
+
"""
|
630 |
+
Convert this ``BackendPatternConfig`` to a dictionary with the items described in
|
631 |
+
:func:`~torch.ao.quantization.backend_config.BackendPatternConfig.from_dict`.
|
632 |
+
"""
|
633 |
+
backend_pattern_config_dict: Dict[str, Any] = {
|
634 |
+
OBSERVATION_TYPE_DICT_KEY: self.observation_type,
|
635 |
+
DTYPE_CONFIGS_DICT_KEY: [c.to_dict() for c in self.dtype_configs],
|
636 |
+
}
|
637 |
+
if self.pattern is not None:
|
638 |
+
backend_pattern_config_dict[PATTERN_DICT_KEY] = self.pattern
|
639 |
+
if self.root_module is not None:
|
640 |
+
backend_pattern_config_dict[ROOT_MODULE_DICT_KEY] = self.root_module
|
641 |
+
if self.qat_module is not None:
|
642 |
+
backend_pattern_config_dict[QAT_MODULE_DICT_KEY] = self.qat_module
|
643 |
+
if self.reference_quantized_module is not None:
|
644 |
+
backend_pattern_config_dict[REFERENCE_QUANTIZED_MODULE_DICT_KEY] = self.reference_quantized_module
|
645 |
+
if self.fused_module is not None:
|
646 |
+
backend_pattern_config_dict[FUSED_MODULE_DICT_KEY] = self.fused_module
|
647 |
+
if self.fuser_method is not None:
|
648 |
+
backend_pattern_config_dict[FUSER_METHOD_DICT_KEY] = self.fuser_method
|
649 |
+
if self._root_node_getter is not None:
|
650 |
+
backend_pattern_config_dict[ROOT_NODE_GETTER_DICT_KEY] = self._root_node_getter
|
651 |
+
if self._extra_inputs_getter is not None:
|
652 |
+
backend_pattern_config_dict[EXTRA_INPUTS_GETTER_DICT_KEY] = self._extra_inputs_getter
|
653 |
+
if len(self._num_tensor_args_to_observation_type) > 0:
|
654 |
+
backend_pattern_config_dict[NUM_TENSOR_ARGS_TO_OBSERVATION_TYPE_DICT_KEY] = self._num_tensor_args_to_observation_type
|
655 |
+
if len(self._input_type_to_index) > 0:
|
656 |
+
backend_pattern_config_dict[INPUT_TYPE_TO_INDEX_DICT_KEY] = self._input_type_to_index
|
657 |
+
if self._pattern_complex_format is not None:
|
658 |
+
backend_pattern_config_dict[PATTERN_COMPLEX_FORMAT_DICT_KEY] = self._pattern_complex_format
|
659 |
+
return backend_pattern_config_dict
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/executorch.py
ADDED
@@ -0,0 +1,494 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# TODO: rename executorch to qnnpack_executorch since executorch is a general runtime
|
2 |
+
# not a specific backend
|
3 |
+
|
4 |
+
import operator
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
import torch
|
8 |
+
import torch.ao.nn.qat as nnqat
|
9 |
+
import torch.ao.nn.quantized.reference as nnqr
|
10 |
+
import torch.nn as nn
|
11 |
+
import torch.nn.functional as F
|
12 |
+
|
13 |
+
from ..fuser_method_mappings import (
|
14 |
+
_sequential_wrapper2,
|
15 |
+
fuse_conv_bn,
|
16 |
+
fuse_conv_bn_relu,
|
17 |
+
)
|
18 |
+
from ._common_operator_config_utils import _Conv2dMetadata
|
19 |
+
from .backend_config import (
|
20 |
+
BackendConfig,
|
21 |
+
BackendPatternConfig,
|
22 |
+
DTypeConfig,
|
23 |
+
DTypeWithConstraints,
|
24 |
+
ObservationType,
|
25 |
+
)
|
26 |
+
from .qnnpack import (
|
27 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
28 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
__all__ = [
|
33 |
+
"get_executorch_backend_config",
|
34 |
+
]
|
35 |
+
|
36 |
+
|
37 |
+
# ===================
|
38 |
+
# | DTYPE CONFIGS |
|
39 |
+
# ===================
|
40 |
+
|
41 |
+
executorch_weighted_op_int8_dtype_config = DTypeConfig(
|
42 |
+
input_dtype=torch.quint8,
|
43 |
+
output_dtype=torch.quint8,
|
44 |
+
weight_dtype=torch.qint8,
|
45 |
+
bias_dtype=torch.float,
|
46 |
+
)
|
47 |
+
|
48 |
+
executorch_default_op_quint8_dtype_config = DTypeConfig(
|
49 |
+
input_dtype=torch.quint8,
|
50 |
+
output_dtype=torch.quint8,
|
51 |
+
)
|
52 |
+
|
53 |
+
executorch_default_dynamic_quint8_dtype_config = DTypeConfig(
|
54 |
+
input_dtype=torch.quint8,
|
55 |
+
output_dtype=torch.float,
|
56 |
+
weight_dtype=torch.qint8,
|
57 |
+
bias_dtype=torch.float,
|
58 |
+
is_dynamic=True,
|
59 |
+
)
|
60 |
+
|
61 |
+
executorch_act_qint8_scale_min_2_neg_12 = DTypeWithConstraints(
|
62 |
+
dtype=torch.qint8,
|
63 |
+
scale_min_lower_bound=2**-12,
|
64 |
+
)
|
65 |
+
|
66 |
+
executorch_weight_qint8_neg_127_to_127_scale_min_2_neg_12 = DTypeWithConstraints(
|
67 |
+
dtype=torch.qint8,
|
68 |
+
quant_min_lower_bound=-127,
|
69 |
+
quant_max_upper_bound=127,
|
70 |
+
scale_min_lower_bound=2**-12,
|
71 |
+
)
|
72 |
+
|
73 |
+
executorch_default_dynamic_qint8_dtype_config = DTypeConfig(
|
74 |
+
input_dtype=executorch_act_qint8_scale_min_2_neg_12,
|
75 |
+
output_dtype=torch.float,
|
76 |
+
weight_dtype=executorch_weight_qint8_neg_127_to_127_scale_min_2_neg_12,
|
77 |
+
bias_dtype=torch.float,
|
78 |
+
is_dynamic=True,
|
79 |
+
)
|
80 |
+
|
81 |
+
executorch_default_dynamic_float16_dtype_config = DTypeConfig(
|
82 |
+
input_dtype=torch.float16,
|
83 |
+
output_dtype=torch.float,
|
84 |
+
weight_dtype=torch.float16,
|
85 |
+
bias_dtype=torch.float,
|
86 |
+
is_dynamic=True,
|
87 |
+
)
|
88 |
+
|
89 |
+
executorch_weight_only_quint8_dtype_config = DTypeConfig(
|
90 |
+
input_dtype=torch.float,
|
91 |
+
output_dtype=torch.float,
|
92 |
+
weight_dtype=torch.quint8,
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
# =============================
|
97 |
+
# | BACKEND PATTERN CONFIGS |
|
98 |
+
# =============================
|
99 |
+
|
100 |
+
|
101 |
+
def _get_linear_configs() -> List[BackendPatternConfig]:
|
102 |
+
"""
|
103 |
+
Return all configs related to linear modules and ops.
|
104 |
+
"""
|
105 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
106 |
+
dtype_configs = [
|
107 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config,
|
108 |
+
executorch_weighted_op_int8_dtype_config,
|
109 |
+
executorch_default_dynamic_quint8_dtype_config,
|
110 |
+
executorch_default_dynamic_qint8_dtype_config,
|
111 |
+
executorch_default_dynamic_float16_dtype_config,
|
112 |
+
]
|
113 |
+
linear_configs: List[BackendPatternConfig] = []
|
114 |
+
# linear module
|
115 |
+
linear_configs.append(
|
116 |
+
BackendPatternConfig(torch.nn.Linear)
|
117 |
+
.set_observation_type(observation_type) # noqa: E131
|
118 |
+
.set_dtype_configs(dtype_configs)
|
119 |
+
.set_root_module(torch.nn.Linear)
|
120 |
+
.set_reference_quantized_module(nnqr.Linear)
|
121 |
+
.set_qat_module(nnqat.Linear)
|
122 |
+
)
|
123 |
+
# linear qat module
|
124 |
+
linear_configs.append(
|
125 |
+
BackendPatternConfig(nnqat.Linear)
|
126 |
+
.set_observation_type(observation_type) # noqa: E131
|
127 |
+
.set_dtype_configs(dtype_configs)
|
128 |
+
.set_root_module(torch.nn.Linear)
|
129 |
+
.set_reference_quantized_module(nnqr.Linear)
|
130 |
+
)
|
131 |
+
# functional linear
|
132 |
+
linear_configs.append(
|
133 |
+
BackendPatternConfig(torch.nn.functional.linear)
|
134 |
+
.set_observation_type(observation_type) # noqa: E131
|
135 |
+
.set_dtype_configs(dtype_configs)
|
136 |
+
._set_input_type_to_index({"weight": 1, "bias": 2})
|
137 |
+
)
|
138 |
+
return linear_configs
|
139 |
+
|
140 |
+
|
141 |
+
def _get_conv_configs() -> List[BackendPatternConfig]:
|
142 |
+
"""
|
143 |
+
Return all configs related to conv modules and ops.
|
144 |
+
"""
|
145 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
146 |
+
dtype_configs = [
|
147 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config,
|
148 |
+
executorch_weighted_op_int8_dtype_config,
|
149 |
+
]
|
150 |
+
conv_configs = []
|
151 |
+
for convs in [_Conv2dMetadata]:
|
152 |
+
# (1) Single conv modules/functions
|
153 |
+
# -----------------------------------
|
154 |
+
# conv module
|
155 |
+
conv_configs.append(
|
156 |
+
BackendPatternConfig(convs.root)
|
157 |
+
.set_observation_type(observation_type) # noqa: E131
|
158 |
+
.set_dtype_configs(dtype_configs)
|
159 |
+
.set_root_module(convs.root)
|
160 |
+
.set_reference_quantized_module(convs.reference)
|
161 |
+
.set_qat_module(convs.qat)
|
162 |
+
)
|
163 |
+
# conv qat module
|
164 |
+
conv_configs.append(
|
165 |
+
BackendPatternConfig(convs.qat)
|
166 |
+
.set_observation_type(observation_type) # noqa: E131
|
167 |
+
.set_dtype_configs(dtype_configs)
|
168 |
+
.set_root_module(convs.root)
|
169 |
+
.set_reference_quantized_module(convs.reference)
|
170 |
+
)
|
171 |
+
# functional conv
|
172 |
+
conv_configs.append(
|
173 |
+
BackendPatternConfig(convs.func)
|
174 |
+
.set_observation_type(observation_type) # noqa: E131
|
175 |
+
.set_dtype_configs(dtype_configs)
|
176 |
+
._set_input_type_to_index({"weight": 1, "bias": 2})
|
177 |
+
)
|
178 |
+
|
179 |
+
# (2) Conv + relu
|
180 |
+
# -----------------------------------
|
181 |
+
# conv module + relu module
|
182 |
+
conv_configs.append(
|
183 |
+
BackendPatternConfig((convs.root, nn.ReLU))
|
184 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
185 |
+
.set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
|
186 |
+
.set_fused_module(convs.fused_conv_relu)
|
187 |
+
)
|
188 |
+
# conv module + functional relu
|
189 |
+
conv_configs.append(
|
190 |
+
BackendPatternConfig((convs.root, F.relu))
|
191 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
192 |
+
.set_fuser_method(_sequential_wrapper2(convs.fused_conv_relu))
|
193 |
+
.set_fused_module(convs.fused_conv_relu)
|
194 |
+
)
|
195 |
+
# fused conv relu module
|
196 |
+
conv_configs.append(
|
197 |
+
BackendPatternConfig(convs.fused_conv_relu)
|
198 |
+
.set_observation_type(observation_type) # noqa: E131
|
199 |
+
.set_dtype_configs(dtype_configs)
|
200 |
+
.set_root_module(convs.root)
|
201 |
+
.set_reference_quantized_module(convs.reference)
|
202 |
+
.set_qat_module(convs.relu_qat)
|
203 |
+
)
|
204 |
+
# conv relu, qat fused module
|
205 |
+
conv_configs.append(
|
206 |
+
BackendPatternConfig(convs.relu_qat)
|
207 |
+
.set_observation_type(observation_type) # noqa: E131
|
208 |
+
.set_dtype_configs(dtype_configs)
|
209 |
+
.set_root_module(convs.root)
|
210 |
+
.set_reference_quantized_module(convs.reference)
|
211 |
+
)
|
212 |
+
# functional conv + relu module
|
213 |
+
conv_configs.append(
|
214 |
+
BackendPatternConfig((convs.func, nn.ReLU))
|
215 |
+
.set_observation_type(observation_type) # noqa: E131
|
216 |
+
.set_dtype_configs(dtype_configs)
|
217 |
+
)
|
218 |
+
# functional conv + functional relu
|
219 |
+
conv_configs.append(
|
220 |
+
BackendPatternConfig((convs.func, F.relu))
|
221 |
+
.set_observation_type(observation_type) # noqa: E131
|
222 |
+
.set_dtype_configs(dtype_configs)
|
223 |
+
)
|
224 |
+
# fused conv relu
|
225 |
+
conv_configs.append(
|
226 |
+
BackendPatternConfig(convs.fused_conv_relu)
|
227 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
228 |
+
.set_qat_module(convs.relu_qat)
|
229 |
+
)
|
230 |
+
|
231 |
+
conv_configs.append(
|
232 |
+
BackendPatternConfig(convs.relu_qat)
|
233 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
234 |
+
.set_root_module(convs.root)
|
235 |
+
.set_reference_quantized_module(convs.reference)
|
236 |
+
)
|
237 |
+
|
238 |
+
# (3) Conv + batchnorm (+ relu)
|
239 |
+
# -------------------------------
|
240 |
+
# conv + batchnorm (+ relu)
|
241 |
+
conv_configs.append(
|
242 |
+
BackendPatternConfig((convs.root, convs.bn))
|
243 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
244 |
+
.set_fuser_method(fuse_conv_bn)
|
245 |
+
.set_fused_module(convs.fused_conv_bn)
|
246 |
+
)
|
247 |
+
# conv + bn + relu module fusion
|
248 |
+
conv_configs.append(
|
249 |
+
BackendPatternConfig((convs.root, convs.bn, nn.ReLU))
|
250 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
251 |
+
.set_fuser_method(fuse_conv_bn_relu)
|
252 |
+
.set_fused_module(convs.fused_conv_bn_relu)
|
253 |
+
)
|
254 |
+
# conv + bn + relu functional fusion
|
255 |
+
conv_configs.append(
|
256 |
+
BackendPatternConfig((convs.root, convs.bn, F.relu))
|
257 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
258 |
+
.set_root_module(convs.root)
|
259 |
+
.set_fuser_method(fuse_conv_bn_relu)
|
260 |
+
.set_fused_module(convs.fused_conv_bn_relu)
|
261 |
+
)
|
262 |
+
# TODO: we can add fusion for torch.relu as well
|
263 |
+
# 3.2 conv + bn (+ relu) fused module configs
|
264 |
+
# fused conv bn
|
265 |
+
conv_configs.append(
|
266 |
+
BackendPatternConfig(convs.fused_conv_bn)
|
267 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
268 |
+
.set_qat_module(convs.bn_qat)
|
269 |
+
)
|
270 |
+
|
271 |
+
# fused conv bn relu
|
272 |
+
conv_configs.append(
|
273 |
+
BackendPatternConfig(convs.fused_conv_bn_relu)
|
274 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
275 |
+
.set_qat_module(convs.bn_relu_qat)
|
276 |
+
)
|
277 |
+
|
278 |
+
# conv bn, qat fused module
|
279 |
+
conv_configs.append(
|
280 |
+
BackendPatternConfig(convs.bn_qat)
|
281 |
+
.set_observation_type(observation_type) # noqa: E131
|
282 |
+
.set_dtype_configs(dtype_configs)
|
283 |
+
.set_root_module(convs.root)
|
284 |
+
.set_reference_quantized_module(convs.reference)
|
285 |
+
)
|
286 |
+
# conv bn relu, qat fused module
|
287 |
+
conv_configs.append(
|
288 |
+
BackendPatternConfig(convs.bn_relu_qat)
|
289 |
+
.set_observation_type(observation_type) # noqa: E131
|
290 |
+
.set_dtype_configs(dtype_configs)
|
291 |
+
.set_root_module(convs.root)
|
292 |
+
.set_reference_quantized_module(convs.reference)
|
293 |
+
)
|
294 |
+
return conv_configs
|
295 |
+
|
296 |
+
|
297 |
+
def _get_binary_ops_configs() -> List[BackendPatternConfig]:
|
298 |
+
"""
|
299 |
+
Return all configs related to binary ops.
|
300 |
+
"""
|
301 |
+
dtype_configs = [
|
302 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
303 |
+
executorch_weighted_op_int8_dtype_config,
|
304 |
+
]
|
305 |
+
num_tensor_args_to_observation_type_mapping = {
|
306 |
+
# TODO: this is not used right now since we have extra check in prepare
|
307 |
+
# will need to change this to NO_OBSERVER later after we implemented
|
308 |
+
# Tensor dtype inference properly
|
309 |
+
0: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
310 |
+
1: ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT,
|
311 |
+
2: ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT,
|
312 |
+
}
|
313 |
+
binary_op_configs: List[BackendPatternConfig] = []
|
314 |
+
for op in [operator.add, torch.add, operator.sub, torch.sub, operator.mul, torch.mul]:
|
315 |
+
bop_patterns = [
|
316 |
+
(op, torch.nn.ReLU),
|
317 |
+
(op, torch.nn.functional.relu),
|
318 |
+
(op, torch.relu),
|
319 |
+
op
|
320 |
+
]
|
321 |
+
for bop_pattern in bop_patterns:
|
322 |
+
binary_op_configs.append(
|
323 |
+
BackendPatternConfig(bop_pattern)
|
324 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
325 |
+
._set_num_tensor_args_to_observation_type(
|
326 |
+
num_tensor_args_to_observation_type_mapping
|
327 |
+
)
|
328 |
+
)
|
329 |
+
return binary_op_configs
|
330 |
+
|
331 |
+
|
332 |
+
def _get_share_qparams_ops_configs() -> List[BackendPatternConfig]:
|
333 |
+
"""
|
334 |
+
Return the operator configs for the operators that works for both float and quantized
|
335 |
+
input if input is quantized, the output Tensor shares the same quantization parameter
|
336 |
+
with input.
|
337 |
+
|
338 |
+
Example operator: avgpool2d, reshape, transpose, maxpool2d
|
339 |
+
Example observed operator:
|
340 |
+
observer_0 - avgpool2d - observer_0 (same observer instance as input)
|
341 |
+
"""
|
342 |
+
observation_type = ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT
|
343 |
+
dtype_configs = [
|
344 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
345 |
+
executorch_default_op_quint8_dtype_config,
|
346 |
+
]
|
347 |
+
share_qparams_ops = [
|
348 |
+
torch.nn.Flatten,
|
349 |
+
F.adaptive_avg_pool2d,
|
350 |
+
F.elu,
|
351 |
+
F.hardtanh,
|
352 |
+
F.max_pool2d,
|
353 |
+
F.pad,
|
354 |
+
F.relu,
|
355 |
+
F.relu6,
|
356 |
+
F.leaky_relu,
|
357 |
+
F.leaky_relu_,
|
358 |
+
torch.nn.AdaptiveAvgPool2d,
|
359 |
+
torch.nn.ConstantPad2d,
|
360 |
+
torch.nn.ELU,
|
361 |
+
torch.nn.MaxPool2d,
|
362 |
+
torch.nn.ReLU6,
|
363 |
+
torch.nn.Hardtanh,
|
364 |
+
torch.nn.LeakyReLU,
|
365 |
+
torch.clamp,
|
366 |
+
torch.flatten,
|
367 |
+
torch.mean,
|
368 |
+
torch.permute,
|
369 |
+
torch.permute_copy,
|
370 |
+
torch.squeeze,
|
371 |
+
"clamp",
|
372 |
+
"mean",
|
373 |
+
"permute",
|
374 |
+
"reshape",
|
375 |
+
"relu",
|
376 |
+
"relu_",
|
377 |
+
"squeeze",
|
378 |
+
"squeeze_",
|
379 |
+
"leaky_relu",
|
380 |
+
]
|
381 |
+
share_qparams_op_configs: List[BackendPatternConfig] = []
|
382 |
+
for op in share_qparams_ops:
|
383 |
+
share_qparams_op_configs.append(
|
384 |
+
BackendPatternConfig(op)
|
385 |
+
.set_observation_type(observation_type) # noqa: E131
|
386 |
+
.set_dtype_configs(dtype_configs)
|
387 |
+
)
|
388 |
+
return share_qparams_op_configs
|
389 |
+
|
390 |
+
|
391 |
+
def _get_bn_configs() -> List[BackendPatternConfig]:
|
392 |
+
"""
|
393 |
+
Return all configs related to batchnorm.
|
394 |
+
"""
|
395 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
396 |
+
dtype_configs = [
|
397 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
398 |
+
executorch_default_op_quint8_dtype_config,
|
399 |
+
]
|
400 |
+
bn_configs = []
|
401 |
+
bn_configs.append(
|
402 |
+
BackendPatternConfig(nn.BatchNorm2d)
|
403 |
+
.set_observation_type(observation_type) # noqa: E131
|
404 |
+
.set_dtype_configs(dtype_configs)
|
405 |
+
)
|
406 |
+
return bn_configs
|
407 |
+
|
408 |
+
|
409 |
+
def _get_cat_configs() -> List[BackendPatternConfig]:
|
410 |
+
dtype_configs = [
|
411 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
412 |
+
executorch_default_op_quint8_dtype_config,
|
413 |
+
]
|
414 |
+
cat_configs = []
|
415 |
+
cat_configs.append(
|
416 |
+
BackendPatternConfig(torch.cat)
|
417 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
|
418 |
+
.set_dtype_configs(dtype_configs)
|
419 |
+
)
|
420 |
+
cat_configs.append(
|
421 |
+
BackendPatternConfig(torch.concat)
|
422 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
|
423 |
+
.set_dtype_configs(dtype_configs)
|
424 |
+
)
|
425 |
+
cat_configs.append(
|
426 |
+
BackendPatternConfig(torch.concatenate)
|
427 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT)
|
428 |
+
.set_dtype_configs(dtype_configs)
|
429 |
+
)
|
430 |
+
return cat_configs
|
431 |
+
|
432 |
+
|
433 |
+
def _get_embedding_op_configs() -> List[BackendPatternConfig]:
|
434 |
+
dtype_configs = [
|
435 |
+
executorch_weight_only_quint8_dtype_config,
|
436 |
+
]
|
437 |
+
embedding_op_configs = []
|
438 |
+
for embedding_op, qat_embedding_op, ref_embedding_op in [
|
439 |
+
(nn.Embedding, nnqat.Embedding, nnqr.Embedding),
|
440 |
+
(nn.EmbeddingBag, nnqat.EmbeddingBag, nnqr.EmbeddingBag),
|
441 |
+
]:
|
442 |
+
embedding_op_configs.append(
|
443 |
+
BackendPatternConfig(embedding_op)
|
444 |
+
.set_observation_type(
|
445 |
+
ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
446 |
+
) # noqa: E131
|
447 |
+
.set_dtype_configs(dtype_configs)
|
448 |
+
.set_qat_module(qat_embedding_op)
|
449 |
+
.set_root_module(embedding_op)
|
450 |
+
.set_reference_quantized_module(ref_embedding_op)
|
451 |
+
)
|
452 |
+
# config for qat op
|
453 |
+
embedding_op_configs.append(
|
454 |
+
BackendPatternConfig(qat_embedding_op)
|
455 |
+
.set_observation_type(
|
456 |
+
ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
457 |
+
) # noqa: E131
|
458 |
+
.set_dtype_configs(dtype_configs)
|
459 |
+
.set_root_module(embedding_op)
|
460 |
+
.set_reference_quantized_module(ref_embedding_op)
|
461 |
+
)
|
462 |
+
|
463 |
+
# config for functional embedding
|
464 |
+
embedding_op_configs.append(
|
465 |
+
BackendPatternConfig(torch.nn.functional.embedding)
|
466 |
+
.set_observation_type(
|
467 |
+
ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
468 |
+
) # noqa: E131
|
469 |
+
.set_dtype_configs(dtype_configs)
|
470 |
+
._set_input_type_to_index({"weight": 1})
|
471 |
+
)
|
472 |
+
return embedding_op_configs
|
473 |
+
|
474 |
+
|
475 |
+
|
476 |
+
# =====================
|
477 |
+
# | BACKEND CONFIGS |
|
478 |
+
# =====================
|
479 |
+
|
480 |
+
|
481 |
+
def get_executorch_backend_config() -> BackendConfig:
|
482 |
+
"""
|
483 |
+
Return the `BackendConfig` for backends PyTorch lowers to through the Executorch stack.
|
484 |
+
"""
|
485 |
+
return (
|
486 |
+
BackendConfig("executorch")
|
487 |
+
.set_backend_pattern_configs(_get_linear_configs())
|
488 |
+
.set_backend_pattern_configs(_get_conv_configs())
|
489 |
+
.set_backend_pattern_configs(_get_binary_ops_configs())
|
490 |
+
.set_backend_pattern_configs(_get_share_qparams_ops_configs())
|
491 |
+
.set_backend_pattern_configs(_get_bn_configs())
|
492 |
+
.set_backend_pattern_configs(_get_cat_configs())
|
493 |
+
.set_backend_pattern_configs(_get_embedding_op_configs())
|
494 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/fbgemm.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ._common_operator_config_utils import (
|
3 |
+
_get_binary_op_configs,
|
4 |
+
_get_bn_configs,
|
5 |
+
_get_cat_config,
|
6 |
+
_get_conv_configs,
|
7 |
+
_get_default_op_configs,
|
8 |
+
_get_embedding_op_configs,
|
9 |
+
_get_fixed_qparams_op_configs,
|
10 |
+
_get_linear_configs,
|
11 |
+
_get_rnn_op_configs,
|
12 |
+
_get_share_qparams_op_configs,
|
13 |
+
_get_tensor_info_op_configs,
|
14 |
+
)
|
15 |
+
from .backend_config import BackendConfig, DTypeConfig
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"get_fbgemm_backend_config",
|
19 |
+
]
|
20 |
+
|
21 |
+
# ===================
|
22 |
+
# | DTYPE CONFIGS |
|
23 |
+
# ===================
|
24 |
+
|
25 |
+
# TODO: For now, these DTypeConfigs are identical to the ones defined in native.py
|
26 |
+
# In the future, once we support specifying quant_min/quant_max and scale_min/scale_max,
|
27 |
+
# these will diverge. In particular, for FBGEMM, we will restrict the activation quantized
|
28 |
+
# values to within [0, 127].
|
29 |
+
|
30 |
+
fbgemm_weighted_op_quint8_dtype_config = DTypeConfig(
|
31 |
+
input_dtype=torch.quint8,
|
32 |
+
output_dtype=torch.quint8,
|
33 |
+
weight_dtype=torch.qint8,
|
34 |
+
bias_dtype=torch.float,
|
35 |
+
)
|
36 |
+
|
37 |
+
fbgemm_default_op_quint8_dtype_config = DTypeConfig(
|
38 |
+
input_dtype=torch.quint8,
|
39 |
+
output_dtype=torch.quint8,
|
40 |
+
)
|
41 |
+
|
42 |
+
fbgemm_default_op_fp16_dtype_config = DTypeConfig(
|
43 |
+
input_dtype=torch.float16,
|
44 |
+
output_dtype=torch.float16,
|
45 |
+
weight_dtype=torch.float16,
|
46 |
+
bias_dtype=torch.float16,
|
47 |
+
)
|
48 |
+
|
49 |
+
fbgemm_default_dynamic_int8_dtype_config = DTypeConfig(
|
50 |
+
input_dtype=torch.quint8,
|
51 |
+
output_dtype=torch.float,
|
52 |
+
weight_dtype=torch.qint8,
|
53 |
+
bias_dtype=torch.float,
|
54 |
+
is_dynamic=True,
|
55 |
+
)
|
56 |
+
|
57 |
+
fbgemm_default_dynamic_float16_dtype_config = DTypeConfig(
|
58 |
+
input_dtype=torch.float16,
|
59 |
+
output_dtype=torch.float,
|
60 |
+
weight_dtype=torch.float16,
|
61 |
+
bias_dtype=torch.float,
|
62 |
+
is_dynamic=True,
|
63 |
+
)
|
64 |
+
|
65 |
+
fbgemm_weight_only_quint8_dtype_config = DTypeConfig(
|
66 |
+
input_dtype=torch.float,
|
67 |
+
output_dtype=torch.float,
|
68 |
+
weight_dtype=torch.quint8,
|
69 |
+
)
|
70 |
+
|
71 |
+
fbgemm_weight_only_quint4x2_dtype_config = DTypeConfig(
|
72 |
+
input_dtype=torch.float,
|
73 |
+
output_dtype=torch.float,
|
74 |
+
weight_dtype=torch.quint4x2,
|
75 |
+
)
|
76 |
+
|
77 |
+
|
78 |
+
# =====================
|
79 |
+
# | BACKEND CONFIGS |
|
80 |
+
# =====================
|
81 |
+
|
82 |
+
def get_fbgemm_backend_config() -> BackendConfig:
|
83 |
+
"""
|
84 |
+
Return the `BackendConfig` for PyTorch's native FBGEMM backend.
|
85 |
+
"""
|
86 |
+
conv_dtype_configs = [fbgemm_weighted_op_quint8_dtype_config]
|
87 |
+
linear_dtype_configs = [
|
88 |
+
fbgemm_weighted_op_quint8_dtype_config,
|
89 |
+
fbgemm_default_dynamic_int8_dtype_config,
|
90 |
+
fbgemm_default_dynamic_float16_dtype_config,
|
91 |
+
]
|
92 |
+
binary_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
|
93 |
+
default_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
|
94 |
+
fixed_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
|
95 |
+
share_qparams_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
|
96 |
+
tensor_info_op_dtype_configs = [fbgemm_default_op_quint8_dtype_config]
|
97 |
+
rnn_op_dtype_configs = [
|
98 |
+
fbgemm_default_dynamic_int8_dtype_config,
|
99 |
+
fbgemm_default_dynamic_float16_dtype_config,
|
100 |
+
]
|
101 |
+
embedding_op_dtype_configs = [
|
102 |
+
fbgemm_weight_only_quint8_dtype_config,
|
103 |
+
fbgemm_weight_only_quint4x2_dtype_config,
|
104 |
+
]
|
105 |
+
return BackendConfig("fbgemm") \
|
106 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
107 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
108 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
109 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
110 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
111 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
112 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
113 |
+
.set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
|
114 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
115 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
116 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/native.py
ADDED
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ._common_operator_config_utils import (
|
3 |
+
_get_binary_op_configs,
|
4 |
+
_get_bn_configs,
|
5 |
+
_get_cat_config,
|
6 |
+
_get_conv_configs,
|
7 |
+
_get_default_op_configs,
|
8 |
+
_get_embedding_op_configs,
|
9 |
+
_get_fixed_qparams_op_configs,
|
10 |
+
_get_linear_configs,
|
11 |
+
_get_ln_configs,
|
12 |
+
_get_rnn_op_configs,
|
13 |
+
_get_share_qparams_op_configs,
|
14 |
+
_get_tensor_info_op_configs,
|
15 |
+
)
|
16 |
+
from .backend_config import BackendConfig, DTypeConfig
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"get_test_only_legacy_native_backend_config",
|
20 |
+
"default_op_quint8_dtype_config",
|
21 |
+
"default_op_fp16_dtype_config",
|
22 |
+
"default_dynamic_int8_dtype_config",
|
23 |
+
"default_dynamic_float16_dtype_config",
|
24 |
+
"input_output_only_quint8_dtype_config",
|
25 |
+
"weight_only_quint8_dtype_config",
|
26 |
+
"weight_only_quint4x2_dtype_config",
|
27 |
+
"get_native_backend_config",
|
28 |
+
"get_native_backend_config_dict",
|
29 |
+
"get_test_only_legacy_native_backend_config_dict",
|
30 |
+
]
|
31 |
+
|
32 |
+
# ===================
|
33 |
+
# | DTYPE CONFIGS |
|
34 |
+
# ===================
|
35 |
+
|
36 |
+
# weighted op int8 dtype config
|
37 |
+
# this is config for ops that has quantized weights, like linear, conv
|
38 |
+
weighted_op_quint8_dtype_config = DTypeConfig(
|
39 |
+
input_dtype=torch.quint8,
|
40 |
+
output_dtype=torch.quint8,
|
41 |
+
weight_dtype=torch.qint8,
|
42 |
+
bias_dtype=torch.float,
|
43 |
+
)
|
44 |
+
|
45 |
+
default_op_quint8_dtype_config = DTypeConfig(
|
46 |
+
input_dtype=torch.quint8,
|
47 |
+
output_dtype=torch.quint8,
|
48 |
+
)
|
49 |
+
|
50 |
+
default_op_fp16_dtype_config = DTypeConfig(
|
51 |
+
input_dtype=torch.float16,
|
52 |
+
output_dtype=torch.float16,
|
53 |
+
weight_dtype=torch.float16,
|
54 |
+
bias_dtype=torch.float16,
|
55 |
+
)
|
56 |
+
|
57 |
+
default_dynamic_int8_dtype_config = DTypeConfig(
|
58 |
+
input_dtype=torch.quint8,
|
59 |
+
output_dtype=torch.float,
|
60 |
+
weight_dtype=torch.qint8,
|
61 |
+
bias_dtype=torch.float,
|
62 |
+
# currently the dtype check is not yet enabled, so we provided the dtype_configs but
|
63 |
+
# it is not really used yet,
|
64 |
+
# we will enable it a bit later after we moved everything to backend_config_dict
|
65 |
+
is_dynamic=True,
|
66 |
+
)
|
67 |
+
|
68 |
+
default_dynamic_float16_dtype_config = DTypeConfig(
|
69 |
+
input_dtype=torch.float16,
|
70 |
+
output_dtype=torch.float,
|
71 |
+
weight_dtype=torch.float16,
|
72 |
+
bias_dtype=torch.float,
|
73 |
+
# currently the dtype check is not yet enabled, so we provided the dtype_configs but
|
74 |
+
# it is not really used yet,
|
75 |
+
# we will enable it a bit later after we moved everything to backend_config_dict
|
76 |
+
is_dynamic=True,
|
77 |
+
)
|
78 |
+
|
79 |
+
# Needed for LayerNorm and f.layer_norm, since currently the kernel only supports float weights
|
80 |
+
input_output_only_quint8_dtype_config = DTypeConfig(
|
81 |
+
input_dtype=torch.quint8,
|
82 |
+
output_dtype=torch.quint8,
|
83 |
+
weight_dtype=torch.float,
|
84 |
+
bias_dtype=torch.float,
|
85 |
+
)
|
86 |
+
|
87 |
+
weight_only_quint8_dtype_config = DTypeConfig(
|
88 |
+
input_dtype=torch.float,
|
89 |
+
output_dtype=torch.float,
|
90 |
+
weight_dtype=torch.quint8,
|
91 |
+
)
|
92 |
+
|
93 |
+
weight_only_quint4x2_dtype_config = DTypeConfig(
|
94 |
+
input_dtype=torch.float,
|
95 |
+
output_dtype=torch.float,
|
96 |
+
weight_dtype=torch.quint4x2,
|
97 |
+
)
|
98 |
+
|
99 |
+
|
100 |
+
# =====================
|
101 |
+
# | BACKEND CONFIGS |
|
102 |
+
# =====================
|
103 |
+
|
104 |
+
def get_test_only_legacy_native_backend_config() -> BackendConfig:
|
105 |
+
"""
|
106 |
+
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional fp16 ops.
|
107 |
+
"""
|
108 |
+
conv_dtype_configs = [weighted_op_quint8_dtype_config]
|
109 |
+
linear_dtype_configs = [
|
110 |
+
weighted_op_quint8_dtype_config,
|
111 |
+
default_dynamic_int8_dtype_config,
|
112 |
+
default_dynamic_float16_dtype_config,
|
113 |
+
default_op_fp16_dtype_config,
|
114 |
+
]
|
115 |
+
binary_op_dtype_configs = [
|
116 |
+
default_op_quint8_dtype_config,
|
117 |
+
default_op_fp16_dtype_config,
|
118 |
+
]
|
119 |
+
default_op_dtype_configs = [default_op_quint8_dtype_config]
|
120 |
+
fixed_qparams_op_dtype_configs = [
|
121 |
+
default_op_quint8_dtype_config,
|
122 |
+
default_op_fp16_dtype_config,
|
123 |
+
]
|
124 |
+
share_qparams_op_dtype_configs = [
|
125 |
+
default_op_quint8_dtype_config,
|
126 |
+
default_op_fp16_dtype_config
|
127 |
+
]
|
128 |
+
tensor_info_op_dtype_configs = [
|
129 |
+
default_op_quint8_dtype_config,
|
130 |
+
]
|
131 |
+
rnn_op_dtype_configs = [
|
132 |
+
default_dynamic_int8_dtype_config,
|
133 |
+
default_dynamic_float16_dtype_config,
|
134 |
+
]
|
135 |
+
embedding_op_dtype_configs = [
|
136 |
+
weight_only_quint8_dtype_config,
|
137 |
+
weight_only_quint4x2_dtype_config,
|
138 |
+
]
|
139 |
+
layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
|
140 |
+
return BackendConfig("_native_and_fp16") \
|
141 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
142 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
143 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
144 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
145 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
146 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
147 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
148 |
+
.set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
|
149 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
150 |
+
.set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
|
151 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
152 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
153 |
+
|
154 |
+
def get_native_backend_config() -> BackendConfig:
|
155 |
+
"""
|
156 |
+
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack).
|
157 |
+
"""
|
158 |
+
# TODO: express this BackendConfig as a union of the FBGEMM and QNNPACK BackendConfigs
|
159 |
+
conv_dtype_configs = [weighted_op_quint8_dtype_config]
|
160 |
+
linear_dtype_configs = [
|
161 |
+
weighted_op_quint8_dtype_config,
|
162 |
+
default_dynamic_int8_dtype_config,
|
163 |
+
default_dynamic_float16_dtype_config,
|
164 |
+
]
|
165 |
+
binary_op_dtype_configs = [default_op_quint8_dtype_config]
|
166 |
+
default_op_dtype_configs = [default_op_quint8_dtype_config]
|
167 |
+
fixed_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
|
168 |
+
share_qparams_op_dtype_configs = [default_op_quint8_dtype_config]
|
169 |
+
tensor_info_op_dtype_configs = [default_op_quint8_dtype_config]
|
170 |
+
rnn_op_dtype_configs = [
|
171 |
+
default_dynamic_int8_dtype_config,
|
172 |
+
default_dynamic_float16_dtype_config,
|
173 |
+
]
|
174 |
+
embedding_op_dtype_configs = [
|
175 |
+
weight_only_quint8_dtype_config,
|
176 |
+
weight_only_quint4x2_dtype_config,
|
177 |
+
]
|
178 |
+
layer_norm_op_dtype_configs = [input_output_only_quint8_dtype_config]
|
179 |
+
return BackendConfig("native") \
|
180 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
181 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
182 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
183 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
184 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
185 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
186 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
187 |
+
.set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
|
188 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
189 |
+
.set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
|
190 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
191 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
192 |
+
|
193 |
+
def get_native_backend_config_dict():
|
194 |
+
"""
|
195 |
+
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) in dictionary form.
|
196 |
+
"""
|
197 |
+
return get_native_backend_config().to_dict()
|
198 |
+
|
199 |
+
def get_test_only_legacy_native_backend_config_dict():
|
200 |
+
"""
|
201 |
+
Return the `BackendConfig` for PyTorch Native backend (fbgemm/qnnpack) with various additional
|
202 |
+
fp16 ops in dictionary form.
|
203 |
+
"""
|
204 |
+
return get_test_only_legacy_native_backend_config().to_dict()
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/observation_type.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/onednn.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.ao.nn.intrinsic as nni
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import torch.ao.nn.quantized.reference as nnqr
|
6 |
+
from ._common_operator_config_utils import (
|
7 |
+
_get_conv_configs,
|
8 |
+
_get_linear_configs,
|
9 |
+
_get_binary_op_configs,
|
10 |
+
_get_bn_configs,
|
11 |
+
_get_cat_config,
|
12 |
+
_get_default_op_configs,
|
13 |
+
_get_embedding_op_configs,
|
14 |
+
_get_fixed_qparams_op_configs,
|
15 |
+
_get_ln_configs,
|
16 |
+
_get_rnn_op_configs,
|
17 |
+
_get_share_qparams_op_configs,
|
18 |
+
)
|
19 |
+
from .backend_config import (
|
20 |
+
BackendPatternConfig,
|
21 |
+
BackendConfig,
|
22 |
+
DTypeConfig,
|
23 |
+
ObservationType,
|
24 |
+
)
|
25 |
+
from ..fuser_method_mappings import (
|
26 |
+
_sequential_wrapper2,
|
27 |
+
)
|
28 |
+
import operator
|
29 |
+
from torch.ao.quantization.utils import MatchAllNode
|
30 |
+
import itertools
|
31 |
+
|
32 |
+
# ===================
|
33 |
+
# | DTYPE CONFIGS |
|
34 |
+
# ===================
|
35 |
+
|
36 |
+
onednn_weighted_op_int8_dtype_config = DTypeConfig(
|
37 |
+
input_dtype=torch.quint8,
|
38 |
+
output_dtype=torch.quint8,
|
39 |
+
weight_dtype=torch.qint8,
|
40 |
+
bias_dtype=torch.float,
|
41 |
+
)
|
42 |
+
|
43 |
+
onednn_op_quint8_dtype_config = DTypeConfig(
|
44 |
+
input_dtype=torch.quint8,
|
45 |
+
output_dtype=torch.quint8,
|
46 |
+
)
|
47 |
+
|
48 |
+
onednn_dynamic_int8_dtype_config = DTypeConfig(
|
49 |
+
input_dtype=torch.quint8,
|
50 |
+
output_dtype=torch.float,
|
51 |
+
weight_dtype=torch.qint8,
|
52 |
+
bias_dtype=torch.float,
|
53 |
+
is_dynamic=True,
|
54 |
+
)
|
55 |
+
|
56 |
+
onednn_weight_only_qint8_dtype_config = DTypeConfig(
|
57 |
+
input_dtype=torch.float,
|
58 |
+
output_dtype=torch.float,
|
59 |
+
weight_dtype=torch.qint8,
|
60 |
+
)
|
61 |
+
|
62 |
+
onednn_input_output_only_quint8_dtype_config = DTypeConfig(
|
63 |
+
input_dtype=torch.quint8,
|
64 |
+
output_dtype=torch.quint8,
|
65 |
+
weight_dtype=torch.float,
|
66 |
+
bias_dtype=torch.float,
|
67 |
+
)
|
68 |
+
|
69 |
+
# ===================
|
70 |
+
# | FUSER METHODS |
|
71 |
+
# ===================
|
72 |
+
|
73 |
+
def _fuse_linear_bn_leaky_relu(is_qat, linear, bn, leaky_relu):
|
74 |
+
r"""Given the linear, bn and leaky_relu modules, fuses them and returns the fused module
|
75 |
+
Args:
|
76 |
+
is_qat: a flag for whether we are using quantization aware training fusion
|
77 |
+
or post training quantization fusion
|
78 |
+
linear: Module instance of type Linear
|
79 |
+
bn: BatchNorm1d instance that needs to be fused with the linear layer
|
80 |
+
leaky_relu: LeakyReLU instance that needs to be fused with the linear layer
|
81 |
+
Examples::
|
82 |
+
>>> # xdoctest: +SKIP(failing)
|
83 |
+
>>> m1 = nn.Linear(20, 10)
|
84 |
+
>>> b1 = nn.BatchNorm1d(10)
|
85 |
+
>>> lr = nn.LeakyReLU(0.01)
|
86 |
+
>>> m2 = _fuse_linear_bn_leaky_relu(m1, b1, lr)
|
87 |
+
"""
|
88 |
+
assert linear.training == bn.training and bn.training == leaky_relu.training, \
|
89 |
+
"Linear, BN and LeakyReLU all must be in the same mode (train or eval)."
|
90 |
+
|
91 |
+
if is_qat:
|
92 |
+
raise NotImplementedError(f"Cannot fuse train modules: {(linear, bn, leaky_relu)}")
|
93 |
+
else:
|
94 |
+
map_to_fused_module_eval = {
|
95 |
+
nn.Linear: nni.LinearLeakyReLU,
|
96 |
+
}
|
97 |
+
fused_module = map_to_fused_module_eval.get(type(linear), None)
|
98 |
+
if fused_module is not None:
|
99 |
+
fused_linear = nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
|
100 |
+
fm = fused_module(fused_linear, leaky_relu)
|
101 |
+
return fm
|
102 |
+
else:
|
103 |
+
raise NotImplementedError(f"Cannot fuse eval modules: {(linear, bn, leaky_relu)}")
|
104 |
+
|
105 |
+
# ======================
|
106 |
+
# | CONFIGS FOR CONV |
|
107 |
+
# ======================
|
108 |
+
observation_type = ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT
|
109 |
+
|
110 |
+
conv_dtype_configs = [onednn_weighted_op_int8_dtype_config]
|
111 |
+
conv_configs = _get_conv_configs(conv_dtype_configs)
|
112 |
+
|
113 |
+
# (1) Conv2d + Add
|
114 |
+
|
115 |
+
# conv2d Y
|
116 |
+
# \ /
|
117 |
+
# add
|
118 |
+
|
119 |
+
# include:
|
120 |
+
# conv2d conv2d
|
121 |
+
# \ /
|
122 |
+
# add
|
123 |
+
|
124 |
+
def _fuse_conv_add_left(is_qat, add, conv, _):
|
125 |
+
return nni.ConvAdd2d(conv, add)
|
126 |
+
|
127 |
+
def _conv_add_root_node_getter_left(pattern):
|
128 |
+
_, conv, _ = pattern
|
129 |
+
return conv
|
130 |
+
|
131 |
+
def _conv_add_extra_inputs_getter_left(pattern):
|
132 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
133 |
+
are assumed to be copied over from root node to the fused node
|
134 |
+
"""
|
135 |
+
_, conv, extra_input = pattern
|
136 |
+
return [extra_input]
|
137 |
+
|
138 |
+
# conv2d
|
139 |
+
# \
|
140 |
+
# bn Y
|
141 |
+
# \ /
|
142 |
+
# add
|
143 |
+
|
144 |
+
def _fuse_conv_bn_add_left(is_qat, add, bn_conv, _):
|
145 |
+
bn, conv = bn_conv
|
146 |
+
if is_qat:
|
147 |
+
raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add)}")
|
148 |
+
else:
|
149 |
+
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
150 |
+
return nni.ConvAdd2d(fused_conv, add)
|
151 |
+
|
152 |
+
def _conv_bn_add_root_node_getter_left(add_pattern):
|
153 |
+
_, bn_conv, _ = add_pattern
|
154 |
+
bn, conv = bn_conv
|
155 |
+
return conv
|
156 |
+
|
157 |
+
def _conv_bn_add_extra_inputs_getter_left(add_pattern):
|
158 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
159 |
+
are assumed to be copied over from root node to the fused node
|
160 |
+
"""
|
161 |
+
_, bn_conv, extra_input = add_pattern
|
162 |
+
bn, conv = bn_conv
|
163 |
+
return [extra_input]
|
164 |
+
|
165 |
+
conv_add_left_optioins = itertools.product(
|
166 |
+
[True, False], # with_bn
|
167 |
+
[torch.add, operator.add], # add_op
|
168 |
+
)
|
169 |
+
|
170 |
+
for with_bn, add_op in conv_add_left_optioins:
|
171 |
+
if with_bn:
|
172 |
+
conv_configs.append(
|
173 |
+
BackendPatternConfig()
|
174 |
+
._set_pattern_complex_format((add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode)) # noqa: E131
|
175 |
+
.set_observation_type(observation_type)
|
176 |
+
.set_dtype_configs(conv_dtype_configs)
|
177 |
+
.set_fuser_method(_fuse_conv_bn_add_left)
|
178 |
+
._set_root_node_getter(_conv_bn_add_root_node_getter_left)
|
179 |
+
._set_extra_inputs_getter(_conv_bn_add_extra_inputs_getter_left)
|
180 |
+
.set_fused_module(nni.ConvAdd2d))
|
181 |
+
else:
|
182 |
+
conv_configs.append(
|
183 |
+
BackendPatternConfig()
|
184 |
+
._set_pattern_complex_format((add_op, nn.Conv2d, MatchAllNode)) # noqa: E131
|
185 |
+
.set_observation_type(observation_type)
|
186 |
+
.set_dtype_configs(conv_dtype_configs)
|
187 |
+
.set_fuser_method(_fuse_conv_add_left)
|
188 |
+
._set_root_node_getter(_conv_add_root_node_getter_left)
|
189 |
+
._set_extra_inputs_getter(_conv_add_extra_inputs_getter_left)
|
190 |
+
.set_fused_module(nni.ConvAdd2d))
|
191 |
+
|
192 |
+
# Y conv2d
|
193 |
+
# \ /
|
194 |
+
# add
|
195 |
+
|
196 |
+
def _fuse_conv_add_right(is_qat, add, _, conv):
|
197 |
+
return nni.ConvAdd2d(conv, add)
|
198 |
+
|
199 |
+
def _conv_add_root_node_getter_right(pattern):
|
200 |
+
add, _, conv = pattern
|
201 |
+
return conv
|
202 |
+
|
203 |
+
def _conv_add_extra_inputs_getter_right(pattern):
|
204 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
205 |
+
are assumed to be copied over from root node to the fused node
|
206 |
+
"""
|
207 |
+
_, extra_input, conv = pattern
|
208 |
+
return [extra_input]
|
209 |
+
|
210 |
+
# conv2d
|
211 |
+
# /
|
212 |
+
# Y bn
|
213 |
+
# \ /
|
214 |
+
# add
|
215 |
+
|
216 |
+
def _fuse_conv_bn_add_right(is_qat, add, _, bn_conv):
|
217 |
+
bn, conv = bn_conv
|
218 |
+
if is_qat:
|
219 |
+
raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add)}")
|
220 |
+
else:
|
221 |
+
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
222 |
+
return nni.ConvAdd2d(fused_conv, add)
|
223 |
+
|
224 |
+
def _conv_bn_add_root_node_getter_right(pattern):
|
225 |
+
add, _, bn_conv = pattern
|
226 |
+
bn, conv = bn_conv
|
227 |
+
return conv
|
228 |
+
|
229 |
+
def _conv_bn_add_extra_inputs_getter_right(pattern):
|
230 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
231 |
+
are assumed to be copied over from root node to the fused node
|
232 |
+
"""
|
233 |
+
_, extra_input, bn_conv = pattern
|
234 |
+
bn, conv = bn_conv
|
235 |
+
return [extra_input]
|
236 |
+
|
237 |
+
conv_add_optioins = itertools.product(
|
238 |
+
[True, False], # with_bn
|
239 |
+
[torch.add, operator.add], # add_op
|
240 |
+
)
|
241 |
+
|
242 |
+
for with_bn, add_op in conv_add_optioins:
|
243 |
+
if with_bn:
|
244 |
+
conv_configs.append(
|
245 |
+
BackendPatternConfig()
|
246 |
+
._set_pattern_complex_format((add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d))) # noqa: E131
|
247 |
+
.set_observation_type(observation_type)
|
248 |
+
.set_dtype_configs(conv_dtype_configs)
|
249 |
+
.set_fuser_method(_fuse_conv_bn_add_right)
|
250 |
+
._set_root_node_getter(_conv_bn_add_root_node_getter_right)
|
251 |
+
._set_extra_inputs_getter(_conv_bn_add_extra_inputs_getter_right)
|
252 |
+
.set_fused_module(nni.ConvAdd2d))
|
253 |
+
else:
|
254 |
+
conv_configs.append(
|
255 |
+
BackendPatternConfig()
|
256 |
+
._set_pattern_complex_format((add_op, MatchAllNode, nn.Conv2d)) # noqa: E131
|
257 |
+
.set_observation_type(observation_type)
|
258 |
+
.set_dtype_configs(conv_dtype_configs)
|
259 |
+
.set_fuser_method(_fuse_conv_add_right)
|
260 |
+
._set_root_node_getter(_conv_add_root_node_getter_right)
|
261 |
+
._set_extra_inputs_getter(_conv_add_extra_inputs_getter_right)
|
262 |
+
.set_fused_module(nni.ConvAdd2d))
|
263 |
+
|
264 |
+
conv_configs.append(
|
265 |
+
BackendPatternConfig(nni.ConvAdd2d)
|
266 |
+
.set_observation_type(observation_type) # noqa: E131
|
267 |
+
.set_dtype_configs(conv_dtype_configs)
|
268 |
+
.set_root_module(nn.Conv2d)
|
269 |
+
.set_reference_quantized_module(nnqr.Conv2d))
|
270 |
+
|
271 |
+
# (2) Conv2d + Add + Relu
|
272 |
+
|
273 |
+
# conv2d Y
|
274 |
+
# \ /
|
275 |
+
# add
|
276 |
+
# \
|
277 |
+
# relu
|
278 |
+
|
279 |
+
def _fuse_conv_add_relu_left(is_qat, relu, add_pattern):
|
280 |
+
add, conv, _ = add_pattern
|
281 |
+
return nni.ConvAddReLU2d(conv, add, relu)
|
282 |
+
|
283 |
+
def _conv_add_relu_root_node_getter_left(pattern):
|
284 |
+
relu, add_pattern = pattern
|
285 |
+
_, conv, _ = add_pattern
|
286 |
+
return conv
|
287 |
+
|
288 |
+
def _conv_add_relu_extra_inputs_getter_left(pattern):
|
289 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
290 |
+
are assumed to be copied over from root node to the fused node
|
291 |
+
"""
|
292 |
+
relu, add_pattern = pattern
|
293 |
+
_, conv, extra_input = add_pattern
|
294 |
+
return [extra_input]
|
295 |
+
|
296 |
+
# conv2d
|
297 |
+
# \
|
298 |
+
# bn Y
|
299 |
+
# \ /
|
300 |
+
# add
|
301 |
+
# \
|
302 |
+
# relu
|
303 |
+
|
304 |
+
def _fuse_conv_bn_add_relu_left(is_qat, relu, add_pattern):
|
305 |
+
add, bn_conv, _ = add_pattern
|
306 |
+
bn, conv = bn_conv
|
307 |
+
if is_qat:
|
308 |
+
raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add, relu)}")
|
309 |
+
else:
|
310 |
+
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
311 |
+
return nni.ConvAddReLU2d(fused_conv, add, relu)
|
312 |
+
|
313 |
+
def _conv_bn_add_relu_root_node_getter_left(pattern):
|
314 |
+
relu, add_pattern = pattern
|
315 |
+
_, bn_conv, _ = add_pattern
|
316 |
+
bn, conv = bn_conv
|
317 |
+
return conv
|
318 |
+
|
319 |
+
def _conv_bn_add_relu_extra_inputs_getter_left(pattern):
|
320 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
321 |
+
are assumed to be copied over from root node to the fused node
|
322 |
+
"""
|
323 |
+
relu, add_pattern = pattern
|
324 |
+
_, bn_conv, extra_input = add_pattern
|
325 |
+
bn, conv = bn_conv
|
326 |
+
return [extra_input]
|
327 |
+
|
328 |
+
conv_add_relu_left_optioins = itertools.product(
|
329 |
+
[True, False], # with_bn
|
330 |
+
[torch.add, operator.add], # add_op
|
331 |
+
)
|
332 |
+
|
333 |
+
for with_bn, add_op in conv_add_relu_left_optioins:
|
334 |
+
if with_bn:
|
335 |
+
conv_configs.append(
|
336 |
+
BackendPatternConfig()
|
337 |
+
._set_pattern_complex_format((nn.ReLU, (add_op, (nn.BatchNorm2d, nn.Conv2d), MatchAllNode))) # noqa: E131
|
338 |
+
.set_observation_type(observation_type)
|
339 |
+
.set_dtype_configs(conv_dtype_configs)
|
340 |
+
.set_fuser_method(_fuse_conv_bn_add_relu_left)
|
341 |
+
._set_root_node_getter(_conv_bn_add_relu_root_node_getter_left)
|
342 |
+
._set_extra_inputs_getter(_conv_bn_add_relu_extra_inputs_getter_left)
|
343 |
+
.set_fused_module(nni.ConvAddReLU2d))
|
344 |
+
else:
|
345 |
+
conv_configs.append(
|
346 |
+
BackendPatternConfig()
|
347 |
+
._set_pattern_complex_format((nn.ReLU, (add_op, nn.Conv2d, MatchAllNode))) # noqa: E131
|
348 |
+
.set_observation_type(observation_type)
|
349 |
+
.set_dtype_configs(conv_dtype_configs)
|
350 |
+
.set_fuser_method(_fuse_conv_add_relu_left)
|
351 |
+
._set_root_node_getter(_conv_add_relu_root_node_getter_left)
|
352 |
+
._set_extra_inputs_getter(_conv_add_relu_extra_inputs_getter_left)
|
353 |
+
.set_fused_module(nni.ConvAddReLU2d))
|
354 |
+
|
355 |
+
# Y conv2d
|
356 |
+
# \ /
|
357 |
+
# add
|
358 |
+
# \
|
359 |
+
# relu
|
360 |
+
|
361 |
+
def _fuse_conv_add_relu_right(is_qat, relu, add_pattern):
|
362 |
+
add, _, conv = add_pattern
|
363 |
+
return nni.ConvAddReLU2d(conv, add, relu)
|
364 |
+
|
365 |
+
def _conv_add_relu_root_node_getter_right(pattern):
|
366 |
+
relu, add_pattern = pattern
|
367 |
+
_, _, conv = add_pattern
|
368 |
+
return conv
|
369 |
+
|
370 |
+
def _conv_add_relu_extra_inputs_getter_right(pattern):
|
371 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
372 |
+
are assumed to be copied over from root node to the fused node
|
373 |
+
"""
|
374 |
+
relu, add_pattern = pattern
|
375 |
+
_, extra_input, conv = add_pattern
|
376 |
+
return [extra_input]
|
377 |
+
|
378 |
+
# conv2d
|
379 |
+
# /
|
380 |
+
# Y bn
|
381 |
+
# \ /
|
382 |
+
# add
|
383 |
+
# \
|
384 |
+
# relu
|
385 |
+
|
386 |
+
def _fuse_conv_bn_add_relu_right(is_qat, relu, add_pattern):
|
387 |
+
add, _, bn_conv = add_pattern
|
388 |
+
bn, conv = bn_conv
|
389 |
+
if is_qat:
|
390 |
+
raise NotImplementedError(f"Cannot fuse train modules: {(conv, bn, add, relu)}")
|
391 |
+
else:
|
392 |
+
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
|
393 |
+
return nni.ConvAddReLU2d(fused_conv, add, relu)
|
394 |
+
|
395 |
+
def _conv_bn_add_relu_root_node_getter_right(pattern):
|
396 |
+
relu, add_pattern = pattern
|
397 |
+
_, _, bn_conv = add_pattern
|
398 |
+
bn, conv = bn_conv
|
399 |
+
return conv
|
400 |
+
|
401 |
+
def _conv_bn_add_relu_extra_inputs_getter_right(pattern):
|
402 |
+
""" get inputs pattern for extra inputs, inputs for root node
|
403 |
+
are assumed to be copied over from root node to the fused node
|
404 |
+
"""
|
405 |
+
relu, add_pattern = pattern
|
406 |
+
_, extra_input, bn_conv = add_pattern
|
407 |
+
bn, conv = bn_conv
|
408 |
+
return [extra_input]
|
409 |
+
|
410 |
+
conv_add_relu_optioins = itertools.product(
|
411 |
+
[True, False], # with_bn
|
412 |
+
[torch.add, operator.add], # add_op
|
413 |
+
)
|
414 |
+
|
415 |
+
for with_bn, add_op in conv_add_relu_optioins:
|
416 |
+
if with_bn:
|
417 |
+
conv_configs.append(
|
418 |
+
BackendPatternConfig()
|
419 |
+
._set_pattern_complex_format((nn.ReLU, (add_op, MatchAllNode, (nn.BatchNorm2d, nn.Conv2d)))) # noqa: E131
|
420 |
+
.set_observation_type(observation_type)
|
421 |
+
.set_dtype_configs(conv_dtype_configs)
|
422 |
+
.set_fuser_method(_fuse_conv_bn_add_relu_right)
|
423 |
+
._set_root_node_getter(_conv_bn_add_relu_root_node_getter_right)
|
424 |
+
._set_extra_inputs_getter(_conv_bn_add_relu_extra_inputs_getter_right)
|
425 |
+
.set_fused_module(nni.ConvAddReLU2d))
|
426 |
+
else:
|
427 |
+
conv_configs.append(
|
428 |
+
BackendPatternConfig()
|
429 |
+
._set_pattern_complex_format((nn.ReLU, (add_op, MatchAllNode, nn.Conv2d))) # noqa: E131
|
430 |
+
.set_observation_type(observation_type)
|
431 |
+
.set_dtype_configs(conv_dtype_configs)
|
432 |
+
.set_fuser_method(_fuse_conv_add_relu_right)
|
433 |
+
._set_root_node_getter(_conv_add_relu_root_node_getter_right)
|
434 |
+
._set_extra_inputs_getter(_conv_add_relu_extra_inputs_getter_right)
|
435 |
+
.set_fused_module(nni.ConvAddReLU2d))
|
436 |
+
|
437 |
+
conv_configs.append(
|
438 |
+
BackendPatternConfig(nni.ConvAddReLU2d)
|
439 |
+
.set_observation_type(observation_type) # noqa: E131
|
440 |
+
.set_dtype_configs(conv_dtype_configs)
|
441 |
+
.set_root_module(nn.Conv2d)
|
442 |
+
.set_reference_quantized_module(nnqr.Conv2d))
|
443 |
+
|
444 |
+
# ========================
|
445 |
+
# | CONFIGS FOR LINEAR |
|
446 |
+
# ========================
|
447 |
+
|
448 |
+
linear_dtype_configs = [
|
449 |
+
onednn_weighted_op_int8_dtype_config,
|
450 |
+
onednn_dynamic_int8_dtype_config,
|
451 |
+
]
|
452 |
+
linear_configs = _get_linear_configs(linear_dtype_configs)
|
453 |
+
|
454 |
+
def _add_eltwise_fusion_configs(configs, root_module, root_op, post_module, post_op,
|
455 |
+
dtype_configs, fuser_method, fused_module, observation_type,
|
456 |
+
ref_quant_module):
|
457 |
+
# 1 base module + op module fusion config
|
458 |
+
configs.append(
|
459 |
+
BackendPatternConfig((root_module, post_module))
|
460 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
461 |
+
.set_fuser_method(fuser_method)
|
462 |
+
.set_fused_module(fused_module))
|
463 |
+
# base module + functional post op
|
464 |
+
configs.append(
|
465 |
+
BackendPatternConfig((root_module, post_op))
|
466 |
+
.set_dtype_configs(dtype_configs) # noqa: E131
|
467 |
+
.set_fuser_method(fuser_method)
|
468 |
+
.set_fused_module(fused_module))
|
469 |
+
|
470 |
+
# 2 fused module configs
|
471 |
+
configs.append(
|
472 |
+
BackendPatternConfig(fused_module)
|
473 |
+
.set_observation_type(observation_type) # noqa: E131
|
474 |
+
.set_dtype_configs(dtype_configs)
|
475 |
+
.set_root_module(root_module)
|
476 |
+
.set_reference_quantized_module(ref_quant_module))
|
477 |
+
|
478 |
+
# 3 functional base op + post op configs
|
479 |
+
configs.append(
|
480 |
+
BackendPatternConfig((root_op, post_module))
|
481 |
+
.set_observation_type(observation_type) # noqa: E131
|
482 |
+
.set_dtype_configs(dtype_configs))
|
483 |
+
configs.append(
|
484 |
+
BackendPatternConfig((root_op, post_op))
|
485 |
+
.set_observation_type(observation_type) # noqa: E131
|
486 |
+
.set_dtype_configs(dtype_configs))
|
487 |
+
|
488 |
+
# Configs for linear + leaky_relu fusion
|
489 |
+
_add_eltwise_fusion_configs(linear_configs, nn.Linear, F.linear,
|
490 |
+
nn.LeakyReLU, F.leaky_relu, linear_dtype_configs,
|
491 |
+
_sequential_wrapper2(nni.LinearLeakyReLU),
|
492 |
+
nni.LinearLeakyReLU, observation_type, nnqr.Linear)
|
493 |
+
|
494 |
+
# Configs for linear module + batchnorm + leaky_relu
|
495 |
+
linear_configs.append(
|
496 |
+
BackendPatternConfig((nn.Linear, nn.BatchNorm1d, nn.LeakyReLU))
|
497 |
+
.set_dtype_configs(linear_dtype_configs) # noqa: E131
|
498 |
+
.set_fuser_method(_fuse_linear_bn_leaky_relu)
|
499 |
+
.set_fused_module(nni.LinearLeakyReLU))
|
500 |
+
|
501 |
+
# Configs for linear + tanh fusion
|
502 |
+
_add_eltwise_fusion_configs(linear_configs, nn.Linear, F.linear,
|
503 |
+
nn.Tanh, torch.tanh, linear_dtype_configs,
|
504 |
+
_sequential_wrapper2(nni.LinearTanh),
|
505 |
+
nni.LinearTanh, observation_type, nnqr.Linear)
|
506 |
+
|
507 |
+
# ===========================
|
508 |
+
# | CONFIGS FOR OTHER OPS |
|
509 |
+
# ===========================
|
510 |
+
|
511 |
+
binary_op_dtype_configs = [onednn_op_quint8_dtype_config]
|
512 |
+
default_op_dtype_configs = [onednn_op_quint8_dtype_config]
|
513 |
+
fixed_qparams_op_dtype_configs = [onednn_op_quint8_dtype_config]
|
514 |
+
share_qparams_op_dtype_configs = [onednn_op_quint8_dtype_config]
|
515 |
+
rnn_op_dtype_configs = [onednn_dynamic_int8_dtype_config]
|
516 |
+
embedding_op_dtype_configs = [onednn_weight_only_qint8_dtype_config]
|
517 |
+
layer_norm_op_dtype_configs = [onednn_input_output_only_quint8_dtype_config]
|
518 |
+
|
519 |
+
# =====================
|
520 |
+
# | BACKEND CONFIGS |
|
521 |
+
# =====================
|
522 |
+
|
523 |
+
def get_onednn_backend_config() -> BackendConfig:
|
524 |
+
"""
|
525 |
+
Return the `BackendConfig` for PyTorch's native ONEDNN backend.
|
526 |
+
"""
|
527 |
+
return BackendConfig("onednn") \
|
528 |
+
.set_backend_pattern_configs(conv_configs) \
|
529 |
+
.set_backend_pattern_configs(linear_configs) \
|
530 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
531 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
532 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
533 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
534 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
535 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
536 |
+
.set_backend_pattern_configs(_get_ln_configs(layer_norm_op_dtype_configs)) \
|
537 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
538 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
539 |
+
|
540 |
+
__all__ = [
|
541 |
+
"get_onednn_backend_config",
|
542 |
+
]
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/qnnpack.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ._common_operator_config_utils import (
|
3 |
+
_get_binary_op_configs,
|
4 |
+
_get_bn_configs,
|
5 |
+
_get_cat_config,
|
6 |
+
_get_conv_configs,
|
7 |
+
_get_default_op_configs,
|
8 |
+
_get_embedding_op_configs,
|
9 |
+
_get_fixed_qparams_op_configs,
|
10 |
+
_get_linear_configs,
|
11 |
+
_get_rnn_op_configs,
|
12 |
+
_get_share_qparams_op_configs,
|
13 |
+
)
|
14 |
+
from .backend_config import BackendConfig, DTypeConfig, DTypeWithConstraints
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"get_qnnpack_backend_config",
|
18 |
+
]
|
19 |
+
|
20 |
+
# ===================
|
21 |
+
# | DTYPE CONFIGS |
|
22 |
+
# ===================
|
23 |
+
|
24 |
+
qnnpack_weighted_op_quint8_dtype_config = DTypeConfig(
|
25 |
+
input_dtype=torch.quint8,
|
26 |
+
output_dtype=torch.quint8,
|
27 |
+
weight_dtype=torch.qint8,
|
28 |
+
bias_dtype=torch.float,
|
29 |
+
)
|
30 |
+
|
31 |
+
qnnpack_default_op_quint8_dtype_config = DTypeConfig(
|
32 |
+
input_dtype=torch.quint8,
|
33 |
+
output_dtype=torch.quint8,
|
34 |
+
)
|
35 |
+
|
36 |
+
qnnpack_default_op_fp16_dtype_config = DTypeConfig(
|
37 |
+
input_dtype=torch.float16,
|
38 |
+
output_dtype=torch.float16,
|
39 |
+
weight_dtype=torch.float16,
|
40 |
+
bias_dtype=torch.float16,
|
41 |
+
)
|
42 |
+
|
43 |
+
qnnpack_default_dynamic_int8_dtype_config = DTypeConfig(
|
44 |
+
input_dtype=torch.quint8,
|
45 |
+
output_dtype=torch.float,
|
46 |
+
weight_dtype=torch.qint8,
|
47 |
+
bias_dtype=torch.float,
|
48 |
+
is_dynamic=True,
|
49 |
+
)
|
50 |
+
|
51 |
+
qnnpack_default_dynamic_float16_dtype_config = DTypeConfig(
|
52 |
+
input_dtype=torch.float16,
|
53 |
+
output_dtype=torch.float,
|
54 |
+
weight_dtype=torch.float16,
|
55 |
+
bias_dtype=torch.float,
|
56 |
+
is_dynamic=True,
|
57 |
+
)
|
58 |
+
|
59 |
+
qnnpack_weight_only_quint8_dtype_config = DTypeConfig(
|
60 |
+
input_dtype=torch.float,
|
61 |
+
output_dtype=torch.float,
|
62 |
+
weight_dtype=torch.quint8,
|
63 |
+
)
|
64 |
+
|
65 |
+
qnnpack_weight_only_quint4x2_dtype_config = DTypeConfig(
|
66 |
+
input_dtype=torch.float,
|
67 |
+
output_dtype=torch.float,
|
68 |
+
weight_dtype=torch.quint4x2,
|
69 |
+
)
|
70 |
+
|
71 |
+
# xnnpack compatible dtype configs
|
72 |
+
|
73 |
+
# We restrict scale values to be 2 ** -12 to ensure the
|
74 |
+
# requantization scale never falls below the xnnpack lower
|
75 |
+
# threshold. Additionally, for qint8 weight, we restrict
|
76 |
+
# the quantization values to [-127, +127], excluding -128.
|
77 |
+
# For more detail, refer to the description of
|
78 |
+
# `default_symmetric_qnnpack_qconfig`.
|
79 |
+
|
80 |
+
# TODO: add additional restriction on qscheme to ensure it
|
81 |
+
# is either per_tensor_symmetric or per_channel_symmetric
|
82 |
+
|
83 |
+
qnnpack_act_qint8_scale_min_2_neg_12 = DTypeWithConstraints(
|
84 |
+
dtype=torch.qint8,
|
85 |
+
scale_min_lower_bound=2 ** -12,
|
86 |
+
)
|
87 |
+
|
88 |
+
qnnpack_weight_qint8_neg_127_to_127_scale_min_2_neg_12 = DTypeWithConstraints(
|
89 |
+
dtype=torch.qint8,
|
90 |
+
quant_min_lower_bound=-127,
|
91 |
+
quant_max_upper_bound=127,
|
92 |
+
scale_min_lower_bound=2 ** -12,
|
93 |
+
)
|
94 |
+
|
95 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config = DTypeConfig(
|
96 |
+
input_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
|
97 |
+
output_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
|
98 |
+
weight_dtype=qnnpack_weight_qint8_neg_127_to_127_scale_min_2_neg_12,
|
99 |
+
bias_dtype=torch.float,
|
100 |
+
)
|
101 |
+
|
102 |
+
qnnpack_default_op_qint8_symmetric_dtype_config = DTypeConfig(
|
103 |
+
input_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
|
104 |
+
output_dtype=qnnpack_act_qint8_scale_min_2_neg_12,
|
105 |
+
)
|
106 |
+
|
107 |
+
|
108 |
+
# =====================
|
109 |
+
# | BACKEND CONFIGS |
|
110 |
+
# =====================
|
111 |
+
|
112 |
+
def get_qnnpack_backend_config() -> BackendConfig:
|
113 |
+
"""
|
114 |
+
Return the `BackendConfig` for PyTorch's native QNNPACK backend.
|
115 |
+
"""
|
116 |
+
conv_dtype_configs = [
|
117 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config,
|
118 |
+
qnnpack_weighted_op_quint8_dtype_config,
|
119 |
+
]
|
120 |
+
linear_dtype_configs = [
|
121 |
+
qnnpack_weighted_op_qint8_symmetric_dtype_config,
|
122 |
+
qnnpack_weighted_op_quint8_dtype_config,
|
123 |
+
qnnpack_default_dynamic_int8_dtype_config,
|
124 |
+
qnnpack_default_dynamic_float16_dtype_config,
|
125 |
+
]
|
126 |
+
binary_op_dtype_configs = [
|
127 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
128 |
+
qnnpack_default_op_quint8_dtype_config,
|
129 |
+
]
|
130 |
+
default_op_dtype_configs = [
|
131 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
132 |
+
qnnpack_default_op_quint8_dtype_config,
|
133 |
+
]
|
134 |
+
fixed_qparams_op_dtype_configs = [
|
135 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
136 |
+
qnnpack_default_op_quint8_dtype_config,
|
137 |
+
]
|
138 |
+
share_qparams_op_dtype_configs = [
|
139 |
+
qnnpack_default_op_qint8_symmetric_dtype_config,
|
140 |
+
qnnpack_default_op_quint8_dtype_config,
|
141 |
+
]
|
142 |
+
rnn_op_dtype_configs = [
|
143 |
+
qnnpack_default_dynamic_int8_dtype_config,
|
144 |
+
qnnpack_default_dynamic_float16_dtype_config,
|
145 |
+
]
|
146 |
+
embedding_op_dtype_configs = [
|
147 |
+
qnnpack_weight_only_quint8_dtype_config,
|
148 |
+
qnnpack_weight_only_quint4x2_dtype_config,
|
149 |
+
]
|
150 |
+
return BackendConfig("qnnpack") \
|
151 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
152 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
153 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
154 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
155 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
156 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
157 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
158 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
159 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
160 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/tensorrt.py
ADDED
@@ -0,0 +1,81 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from .backend_config import (
|
3 |
+
BackendConfig,
|
4 |
+
BackendPatternConfig,
|
5 |
+
DTypeConfig,
|
6 |
+
ObservationType
|
7 |
+
)
|
8 |
+
from ._common_operator_config_utils import (
|
9 |
+
_get_binary_op_configs,
|
10 |
+
_get_linear_configs,
|
11 |
+
_get_conv_configs,
|
12 |
+
_get_share_qparams_op_configs,
|
13 |
+
_get_tensor_info_op_configs,
|
14 |
+
)
|
15 |
+
|
16 |
+
__all__ = [
|
17 |
+
"get_tensorrt_backend_config",
|
18 |
+
"get_tensorrt_backend_config_dict",
|
19 |
+
]
|
20 |
+
|
21 |
+
def get_tensorrt_backend_config() -> BackendConfig:
|
22 |
+
"""
|
23 |
+
Return the `BackendConfig` for the TensorRT backend.
|
24 |
+
NOTE: Current api will change in the future, it's just to unblock experimentation for
|
25 |
+
new backends, please don't use it right now.
|
26 |
+
TODO: add a README when it's more stable
|
27 |
+
"""
|
28 |
+
# dtype configs
|
29 |
+
weighted_op_qint8_dtype_config = DTypeConfig(
|
30 |
+
input_dtype=torch.qint8,
|
31 |
+
output_dtype=torch.qint8,
|
32 |
+
weight_dtype=torch.qint8,
|
33 |
+
bias_dtype=torch.float,
|
34 |
+
)
|
35 |
+
non_weighted_op_qint8_dtype_config = DTypeConfig(
|
36 |
+
input_dtype=torch.qint8,
|
37 |
+
output_dtype=torch.qint8,
|
38 |
+
)
|
39 |
+
|
40 |
+
addmm_config = BackendPatternConfig(torch.addmm) \
|
41 |
+
.set_observation_type(ObservationType.OUTPUT_USE_DIFFERENT_OBSERVER_AS_INPUT) \
|
42 |
+
.add_dtype_config(weighted_op_qint8_dtype_config) \
|
43 |
+
._set_input_type_to_index({
|
44 |
+
"bias": 0,
|
45 |
+
"input": 1,
|
46 |
+
"weight": 2,
|
47 |
+
})
|
48 |
+
cat_config = BackendPatternConfig(torch.cat) \
|
49 |
+
.set_observation_type(ObservationType.OUTPUT_SHARE_OBSERVER_WITH_INPUT) \
|
50 |
+
.add_dtype_config(non_weighted_op_qint8_dtype_config)
|
51 |
+
conv_dtype_configs = [
|
52 |
+
weighted_op_qint8_dtype_config,
|
53 |
+
]
|
54 |
+
linear_dtype_configs = [
|
55 |
+
weighted_op_qint8_dtype_config,
|
56 |
+
]
|
57 |
+
binary_op_dtype_configs = [
|
58 |
+
weighted_op_qint8_dtype_config,
|
59 |
+
]
|
60 |
+
share_qparams_op_dtype_configs = [
|
61 |
+
non_weighted_op_qint8_dtype_config,
|
62 |
+
]
|
63 |
+
tensor_info_op_dtype_configs = [
|
64 |
+
non_weighted_op_qint8_dtype_config,
|
65 |
+
]
|
66 |
+
# there might be things not supported in fx2trt, but it will error out
|
67 |
+
# during fx2trt conversion and can support them after that
|
68 |
+
return BackendConfig("tensorrt") \
|
69 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
70 |
+
.set_backend_pattern_config(addmm_config) \
|
71 |
+
.set_backend_pattern_config(cat_config) \
|
72 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
73 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
74 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
75 |
+
.set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs))
|
76 |
+
|
77 |
+
def get_tensorrt_backend_config_dict():
|
78 |
+
"""
|
79 |
+
Return the `BackendConfig` for the TensorRT backend in dictionary form.
|
80 |
+
"""
|
81 |
+
return get_tensorrt_backend_config().to_dict()
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/utils.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Dict, Any, List, Callable, Union, Tuple, Type
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from .backend_config import (
|
7 |
+
BackendConfig,
|
8 |
+
BackendPatternConfig,
|
9 |
+
DTypeConfig,
|
10 |
+
)
|
11 |
+
from ..utils import Pattern
|
12 |
+
from ..fuser_method_mappings import (
|
13 |
+
_reverse2,
|
14 |
+
_reverse3,
|
15 |
+
)
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"get_pattern_to_dtype_configs",
|
19 |
+
"get_qat_module_classes",
|
20 |
+
"get_fused_module_classes",
|
21 |
+
"get_pattern_to_input_type_to_index",
|
22 |
+
"get_root_module_to_quantized_reference_module",
|
23 |
+
"get_fuser_method_mapping",
|
24 |
+
"get_module_to_qat_module",
|
25 |
+
"get_fusion_pattern_to_root_node_getter",
|
26 |
+
"get_fusion_pattern_to_extra_inputs_getter",
|
27 |
+
"remove_boolean_dispatch_from_name",
|
28 |
+
"pattern_to_human_readable",
|
29 |
+
"entry_to_pretty_str",
|
30 |
+
]
|
31 |
+
|
32 |
+
def get_pattern_to_dtype_configs(backend_config: BackendConfig) -> Dict[Pattern, List[DTypeConfig]]:
|
33 |
+
pattern_to_dtype_configs: Dict[Pattern, List[DTypeConfig]] = {}
|
34 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
35 |
+
pattern_to_dtype_configs[pattern] = config.dtype_configs
|
36 |
+
return pattern_to_dtype_configs
|
37 |
+
|
38 |
+
def get_qat_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
|
39 |
+
qat_module_classes = []
|
40 |
+
for config in backend_config.configs:
|
41 |
+
if config.qat_module is not None:
|
42 |
+
qat_module_classes.append(config.qat_module)
|
43 |
+
return tuple(set(qat_module_classes))
|
44 |
+
|
45 |
+
def get_fused_module_classes(backend_config: BackendConfig) -> Tuple[type, ...]:
|
46 |
+
fused_module_classes = []
|
47 |
+
for config in backend_config.configs:
|
48 |
+
if config.fused_module is not None:
|
49 |
+
fused_module_classes.append(config.fused_module)
|
50 |
+
return tuple(set(fused_module_classes))
|
51 |
+
|
52 |
+
def get_pattern_to_input_type_to_index(backend_config: BackendConfig) -> Dict[Pattern, Dict[str, int]]:
|
53 |
+
pattern_to_input_type_to_index: Dict[Pattern, Dict[str, int]] = {}
|
54 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
55 |
+
pattern_to_input_type_to_index[pattern] = config._input_type_to_index
|
56 |
+
return pattern_to_input_type_to_index
|
57 |
+
|
58 |
+
def get_root_module_to_quantized_reference_module(
|
59 |
+
backend_config: BackendConfig) -> Dict[Type[torch.nn.Module], Type[torch.nn.Module]]:
|
60 |
+
mapping: Dict[Type[torch.nn.Module], Type[torch.nn.Module]] = {}
|
61 |
+
for config in backend_config.configs:
|
62 |
+
if config.root_module is not None and config.reference_quantized_module is not None:
|
63 |
+
mapping[config.root_module] = config.reference_quantized_module
|
64 |
+
return mapping
|
65 |
+
|
66 |
+
def get_fuser_method_mapping(backend_config: BackendConfig) -> Dict[Pattern, Union[nn.Sequential, Callable]]:
|
67 |
+
fuser_method_mapping : Dict[Pattern, Union[nn.Sequential, Callable]] = {}
|
68 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
69 |
+
if config.fuser_method is not None:
|
70 |
+
# Note: both the fuser method and the pattern are specified in forward order in the
|
71 |
+
# BackendConfig, but the internal pattern matching code uses the reversed nested tuple
|
72 |
+
# format, so we need to convert both to the internal format
|
73 |
+
fuser_method = _get_fuser_method_in_reversed_nested_tuple_format(config)
|
74 |
+
fuser_method_mapping[pattern] = fuser_method
|
75 |
+
return fuser_method_mapping
|
76 |
+
|
77 |
+
def get_module_to_qat_module(backend_config: BackendConfig) -> Dict[Pattern, Type[torch.nn.Module]]:
|
78 |
+
module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]] = {}
|
79 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
80 |
+
if config.qat_module is not None:
|
81 |
+
module_to_qat_module[pattern] = config.qat_module
|
82 |
+
return module_to_qat_module
|
83 |
+
|
84 |
+
def get_fusion_pattern_to_root_node_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
|
85 |
+
""" Get a map from fusion pattern to a function that returns the root node
|
86 |
+
from the fusion pattern, e.g. the most common one is:
|
87 |
+
def get_root_node(node_pattern):
|
88 |
+
while not isinstance(node_pattern[-1], Node):
|
89 |
+
node_pattern = node_pattern[-1]
|
90 |
+
return node_pattern[-1]
|
91 |
+
This can work for all patterns whose root node is the "last node" in the pattern,
|
92 |
+
e.g. (torch.add, MatchAllNode, (torch.ReLU, torch.Conv2d))
|
93 |
+
"""
|
94 |
+
root_node_getter_mapping: Dict[Pattern, Callable] = {}
|
95 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
96 |
+
if config._root_node_getter is not None:
|
97 |
+
root_node_getter_mapping[pattern] = config._root_node_getter
|
98 |
+
return root_node_getter_mapping
|
99 |
+
|
100 |
+
def get_fusion_pattern_to_extra_inputs_getter(backend_config: BackendConfig) -> Dict[Pattern, Callable]:
|
101 |
+
""" Get a map from fusion pattern to a function that returns extra input nodes
|
102 |
+
from the fusion pattern, in the order required by the root node. This is optional,
|
103 |
+
if not specified, we will not copy over any extra inputs for the root node.
|
104 |
+
Example:
|
105 |
+
# Let's say we have the pattern (torch.add, MatchAllNode, (torch.nn.BatchNorm2d, torch.nn.Conv2d))
|
106 |
+
# and root node is torch.nn.Conv2d, and the node in MatchAllNode would be an extra
|
107 |
+
# argument to the fused module, we can unpack the pattern and return the node at
|
108 |
+
# MatchAllNode here
|
109 |
+
# we can implement extra_inputs_getter as follows:
|
110 |
+
def extra_inputs_getter(pattern) -> List[Any]:
|
111 |
+
add, extra_input, conv_pattern = pattern
|
112 |
+
return [extra_input]
|
113 |
+
"""
|
114 |
+
extra_inputs_getter_mapping: Dict[Pattern, Callable] = {}
|
115 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
116 |
+
if config._extra_inputs_getter is not None:
|
117 |
+
extra_inputs_getter_mapping[pattern] = config._extra_inputs_getter
|
118 |
+
return extra_inputs_getter_mapping
|
119 |
+
|
120 |
+
def remove_boolean_dispatch_from_name(p) -> Any:
|
121 |
+
"""
|
122 |
+
Some ops have a default string representation such as
|
123 |
+
'<function boolean_dispatch.<locals>.fn at 0x7ff1106bf280>',
|
124 |
+
this function replaces them with the hardcoded function names.
|
125 |
+
"""
|
126 |
+
if p is F.fractional_max_pool2d:
|
127 |
+
return "torch.nn.functional.fractional_max_pool2d"
|
128 |
+
elif p is F.fractional_max_pool3d:
|
129 |
+
return "torch.nn.functional.fractional_max_pool3d"
|
130 |
+
elif p is F.max_pool1d:
|
131 |
+
return "torch.nn.functional.max_pool1d"
|
132 |
+
elif p is F.max_pool2d:
|
133 |
+
return "torch.nn.functional.max_pool2d"
|
134 |
+
elif p is F.max_pool3d:
|
135 |
+
return "torch.nn.functional.max_pool3d"
|
136 |
+
elif p is F.adaptive_max_pool1d:
|
137 |
+
return "torch.nn.functional.adaptive_max_pool1d"
|
138 |
+
elif p is F.adaptive_max_pool2d:
|
139 |
+
return "torch.nn.functional.adaptive_max_pool2d"
|
140 |
+
elif p is F.adaptive_max_pool3d:
|
141 |
+
return "torch.nn.functional.adaptive_max_pool3d"
|
142 |
+
assert "boolean_dispatch" not in str(p), \
|
143 |
+
f"{p} does not have a human readable representation in " + \
|
144 |
+
"quantization documentation"
|
145 |
+
return p
|
146 |
+
|
147 |
+
def pattern_to_human_readable(p) -> Any:
|
148 |
+
if isinstance(p, tuple):
|
149 |
+
# nested patterns, recurse
|
150 |
+
return tuple(pattern_to_human_readable(inner_p) for inner_p in p)
|
151 |
+
elif isinstance(p, str):
|
152 |
+
# method names are already human readable
|
153 |
+
return p
|
154 |
+
else:
|
155 |
+
p = remove_boolean_dispatch_from_name(p)
|
156 |
+
return p
|
157 |
+
|
158 |
+
# TODO(future PR): move backend_config_dict to use dataclass and move this logic to
|
159 |
+
# the corresponding __str__ function
|
160 |
+
def entry_to_pretty_str(entry) -> str:
|
161 |
+
"""
|
162 |
+
Given a backend_config_dict entry, returns a string with the human readable
|
163 |
+
representation of it.
|
164 |
+
"""
|
165 |
+
s = "{\n"
|
166 |
+
|
167 |
+
# always output the pattern first
|
168 |
+
if "pattern" in entry:
|
169 |
+
pattern_str = pattern_to_human_readable(entry["pattern"])
|
170 |
+
|
171 |
+
s += f" 'pattern': {pattern_str},\n"
|
172 |
+
|
173 |
+
# custom output for dtype_configs to make it look nice
|
174 |
+
if "dtype_configs" in entry:
|
175 |
+
s += " 'dtype_configs': [\n"
|
176 |
+
for dtype_config in entry["dtype_configs"]:
|
177 |
+
s += " {\n"
|
178 |
+
for k, v in dtype_config.items():
|
179 |
+
s += f" '{k}': {v},\n"
|
180 |
+
s += " },\n"
|
181 |
+
s += " ],\n"
|
182 |
+
|
183 |
+
# custom output for num_tensor_args_to_observation_type to make it look nice
|
184 |
+
if "num_tensor_args_to_observation_type" in entry:
|
185 |
+
s += " 'num_tensor_args_to_observation_type': {\n"
|
186 |
+
for k, v in entry["num_tensor_args_to_observation_type"].items():
|
187 |
+
s += f" {k}: {v},\n"
|
188 |
+
s += " },\n"
|
189 |
+
|
190 |
+
# output all the other fields
|
191 |
+
custom_handled_fields = [
|
192 |
+
"pattern",
|
193 |
+
"dtype_configs",
|
194 |
+
"num_tensor_args_to_observation_type",
|
195 |
+
]
|
196 |
+
for field_name in entry:
|
197 |
+
if field_name in custom_handled_fields:
|
198 |
+
continue
|
199 |
+
s += f" '{field_name}': {entry[field_name]},\n"
|
200 |
+
|
201 |
+
s += "}"
|
202 |
+
return s
|
203 |
+
|
204 |
+
def _get_pattern_in_reversed_nested_tuple_format(config: BackendPatternConfig) -> Pattern:
|
205 |
+
"""
|
206 |
+
Return the pattern specified in the given config in the reversed nested tuple format
|
207 |
+
used internally in the quantization pattern matching code.
|
208 |
+
|
209 |
+
If the pattern is not a tuple, or the pattern is already specified in the reversed
|
210 |
+
nested tuple format, return the pattern as is. Otherwise:
|
211 |
+
|
212 |
+
For 2-tuples (a, b), return (b, a).
|
213 |
+
For 3-tuples (a, b, c), return (c, (b, a)).
|
214 |
+
|
215 |
+
For example:
|
216 |
+
* Given nn.Linear, return nn.Linear
|
217 |
+
* Given (nn.Linear, nn.ReLU), return (nn.ReLU, nn.Linear)
|
218 |
+
* Given (nn.Conv2d, nn.BatchNorm2d, nn.ReLU), return
|
219 |
+
(nn.ReLU, (nn.BatchNorm2d, nn.Conv2d))
|
220 |
+
|
221 |
+
For context, the reason why this is needed is the user-facing BackendConfig
|
222 |
+
API accepts the flat 2-or-3-tuple format in forward order. While this simple
|
223 |
+
format handles the vast majority of use cases, it does not handle the more
|
224 |
+
complex ones, and so the internal pattern matching code for quantization uses
|
225 |
+
the following, more general reversed nested tuple format instead:
|
226 |
+
|
227 |
+
operator = module_type | functional | torch op | native op | MatchAllNode
|
228 |
+
Pattern = (operator, Pattern, Pattern, ...) | operator
|
229 |
+
|
230 |
+
In the future, we expect to replace the above complex format with the one used
|
231 |
+
by the subgraph rewriter in torch.fx, so we don't have to maintain our own
|
232 |
+
complex pattern matching code. Then we won't need this helper function anymore.
|
233 |
+
"""
|
234 |
+
if config._pattern_complex_format is not None:
|
235 |
+
return config._pattern_complex_format
|
236 |
+
if config.pattern is None:
|
237 |
+
raise ValueError("Either 'pattern' or 'pattern_complex_format' must be specified")
|
238 |
+
if not isinstance(config.pattern, tuple):
|
239 |
+
return config.pattern
|
240 |
+
|
241 |
+
# Pattern is specified in the simple tuple format, need to convert
|
242 |
+
if len(config.pattern) == 2:
|
243 |
+
(a, b) = config.pattern
|
244 |
+
return (b, a)
|
245 |
+
elif len(config.pattern) == 3:
|
246 |
+
(a, b, c) = config.pattern
|
247 |
+
return (c, (b, a))
|
248 |
+
else:
|
249 |
+
raise ValueError("Expected a tuple with 2 or 3 elements, got: ", config.pattern)
|
250 |
+
|
251 |
+
def _get_fuser_method_in_reversed_nested_tuple_format(config: BackendPatternConfig) -> Callable:
|
252 |
+
"""
|
253 |
+
Return the fuser method specified in the given config in the reversed nested
|
254 |
+
tuple format used internally in the quantization pattern matching code.
|
255 |
+
|
256 |
+
If pattern is specified in the reversed nested tuple format, we assume the
|
257 |
+
fuser method is also specified in this format and simply return it as is.
|
258 |
+
Otherwise, we convert the fuser method as follows:
|
259 |
+
|
260 |
+
* Given f(is_qat, conv, relu), return f'(is_qat, relu, conv)
|
261 |
+
* Given f(is_qat, conv, bn, relu), return f'(is_qat, relu, bn_conv),
|
262 |
+
where bn_conv is a 2-tuple (bn, conv)
|
263 |
+
|
264 |
+
The first argument of a fuser method is always `is_qat` and is not affected
|
265 |
+
in the conversion. We currently only support functions with 3 or 4 arguments.
|
266 |
+
"""
|
267 |
+
assert config.fuser_method is not None
|
268 |
+
if config._pattern_complex_format is not None:
|
269 |
+
return config.fuser_method
|
270 |
+
if not isinstance(config.pattern, tuple):
|
271 |
+
raise ValueError("Expected pattern to be a tuple, got: ", config.pattern)
|
272 |
+
|
273 |
+
# Pattern is specified in the simple tuple format, need to convert
|
274 |
+
if len(config.pattern) == 2:
|
275 |
+
return _reverse2(config.fuser_method)
|
276 |
+
elif len(config.pattern) == 3:
|
277 |
+
return _reverse3(config.fuser_method)
|
278 |
+
else:
|
279 |
+
raise ValueError("Expected a tuple with 2 or 3 elements, got: ", config.pattern)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/backend_config/x86.py
ADDED
@@ -0,0 +1,113 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ._common_operator_config_utils import (
|
3 |
+
_get_binary_op_configs,
|
4 |
+
_get_bn_configs,
|
5 |
+
_get_cat_config,
|
6 |
+
_get_conv_configs,
|
7 |
+
_get_default_op_configs,
|
8 |
+
_get_embedding_op_configs,
|
9 |
+
_get_fixed_qparams_op_configs,
|
10 |
+
_get_linear_configs,
|
11 |
+
_get_rnn_op_configs,
|
12 |
+
_get_share_qparams_op_configs,
|
13 |
+
_get_tensor_info_op_configs,
|
14 |
+
)
|
15 |
+
from .backend_config import BackendConfig, DTypeConfig
|
16 |
+
|
17 |
+
__all__ = [
|
18 |
+
"get_x86_backend_config",
|
19 |
+
]
|
20 |
+
|
21 |
+
# ===================
|
22 |
+
# | DTYPE CONFIGS |
|
23 |
+
# ===================
|
24 |
+
|
25 |
+
# X86 aligns with FBGEMM for now
|
26 |
+
|
27 |
+
x86_weighted_op_int8_dtype_config = DTypeConfig(
|
28 |
+
input_dtype=torch.quint8,
|
29 |
+
output_dtype=torch.quint8,
|
30 |
+
weight_dtype=torch.qint8,
|
31 |
+
bias_dtype=torch.float,
|
32 |
+
)
|
33 |
+
|
34 |
+
x86_default_op_quint8_dtype_config = DTypeConfig(
|
35 |
+
input_dtype=torch.quint8,
|
36 |
+
output_dtype=torch.quint8,
|
37 |
+
)
|
38 |
+
|
39 |
+
x86_default_op_fp16_dtype_config = DTypeConfig(
|
40 |
+
input_dtype=torch.float16,
|
41 |
+
output_dtype=torch.float16,
|
42 |
+
weight_dtype=torch.float16,
|
43 |
+
bias_dtype=torch.float16,
|
44 |
+
)
|
45 |
+
|
46 |
+
x86_default_dynamic_int8_dtype_config = DTypeConfig(
|
47 |
+
input_dtype=torch.quint8,
|
48 |
+
output_dtype=torch.float,
|
49 |
+
weight_dtype=torch.qint8,
|
50 |
+
bias_dtype=torch.float,
|
51 |
+
is_dynamic=True,
|
52 |
+
)
|
53 |
+
|
54 |
+
x86_default_dynamic_float16_dtype_config = DTypeConfig(
|
55 |
+
input_dtype=torch.float16,
|
56 |
+
output_dtype=torch.float,
|
57 |
+
weight_dtype=torch.float16,
|
58 |
+
bias_dtype=torch.float,
|
59 |
+
is_dynamic=True,
|
60 |
+
)
|
61 |
+
|
62 |
+
x86_weight_only_quint8_dtype_config = DTypeConfig(
|
63 |
+
input_dtype=torch.float,
|
64 |
+
output_dtype=torch.float,
|
65 |
+
weight_dtype=torch.quint8,
|
66 |
+
)
|
67 |
+
|
68 |
+
x86_weight_only_quint4x2_dtype_config = DTypeConfig(
|
69 |
+
input_dtype=torch.float,
|
70 |
+
output_dtype=torch.float,
|
71 |
+
weight_dtype=torch.quint4x2,
|
72 |
+
)
|
73 |
+
|
74 |
+
|
75 |
+
# =====================
|
76 |
+
# | BACKEND CONFIGS |
|
77 |
+
# =====================
|
78 |
+
|
79 |
+
def get_x86_backend_config() -> BackendConfig:
|
80 |
+
"""
|
81 |
+
Return the `BackendConfig` for PyTorch's native x86 backend.
|
82 |
+
"""
|
83 |
+
conv_dtype_configs = [x86_weighted_op_int8_dtype_config]
|
84 |
+
linear_dtype_configs = [
|
85 |
+
x86_weighted_op_int8_dtype_config,
|
86 |
+
x86_default_dynamic_int8_dtype_config,
|
87 |
+
x86_default_dynamic_float16_dtype_config,
|
88 |
+
]
|
89 |
+
binary_op_dtype_configs = [x86_weighted_op_int8_dtype_config]
|
90 |
+
default_op_dtype_configs = [x86_default_op_quint8_dtype_config]
|
91 |
+
fixed_qparams_op_dtype_configs = [x86_weighted_op_int8_dtype_config]
|
92 |
+
share_qparams_op_dtype_configs = [x86_default_op_quint8_dtype_config]
|
93 |
+
tensor_info_op_dtype_configs = [x86_default_op_quint8_dtype_config]
|
94 |
+
rnn_op_dtype_configs = [
|
95 |
+
x86_default_dynamic_int8_dtype_config,
|
96 |
+
x86_default_dynamic_float16_dtype_config,
|
97 |
+
]
|
98 |
+
embedding_op_dtype_configs = [
|
99 |
+
x86_weight_only_quint8_dtype_config,
|
100 |
+
x86_weight_only_quint4x2_dtype_config,
|
101 |
+
]
|
102 |
+
return BackendConfig("x86") \
|
103 |
+
.set_backend_pattern_configs(_get_conv_configs(conv_dtype_configs)) \
|
104 |
+
.set_backend_pattern_configs(_get_linear_configs(linear_dtype_configs)) \
|
105 |
+
.set_backend_pattern_configs(_get_binary_op_configs(binary_op_dtype_configs)) \
|
106 |
+
.set_backend_pattern_config(_get_cat_config(default_op_dtype_configs)) \
|
107 |
+
.set_backend_pattern_configs(_get_default_op_configs(default_op_dtype_configs)) \
|
108 |
+
.set_backend_pattern_configs(_get_fixed_qparams_op_configs(fixed_qparams_op_dtype_configs)) \
|
109 |
+
.set_backend_pattern_configs(_get_share_qparams_op_configs(share_qparams_op_dtype_configs)) \
|
110 |
+
.set_backend_pattern_configs(_get_tensor_info_op_configs(tensor_info_op_dtype_configs)) \
|
111 |
+
.set_backend_pattern_configs(_get_bn_configs(default_op_dtype_configs)) \
|
112 |
+
.set_backend_pattern_configs(_get_rnn_op_configs(rnn_op_dtype_configs)) \
|
113 |
+
.set_backend_pattern_configs(_get_embedding_op_configs(embedding_op_dtype_configs))
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/__init__.py
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
from .prepare import prepare
|
2 |
+
from .convert import convert
|
3 |
+
from .fuse import fuse
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_decomposed.py
ADDED
@@ -0,0 +1,925 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
from typing import Optional, Tuple
|
3 |
+
|
4 |
+
import torch
|
5 |
+
from torch.library import Library, impl
|
6 |
+
from torch.ao.quantization.utils import determine_qparams, validate_qmin_qmax
|
7 |
+
from torch._refs import _unsqueeze_multiple
|
8 |
+
|
9 |
+
|
10 |
+
# Note: decomposed means decomposed quantized tensor, using decomposed so that the
|
11 |
+
# name is not too long
|
12 |
+
quantized_decomposed_lib = Library("quantized_decomposed", "DEF")
|
13 |
+
|
14 |
+
_DTYPE_TO_QVALUE_BOUNDS = {
|
15 |
+
torch.uint8: (0, 255),
|
16 |
+
torch.int8: (-128, 127),
|
17 |
+
torch.int16: (-(2**15), 2**15 - 1),
|
18 |
+
torch.int32: (-(2**31), 2**31 - 1)
|
19 |
+
}
|
20 |
+
|
21 |
+
# Helper to check the passed in quant min and max are valid for the dtype
|
22 |
+
def _quant_min_max_bounds_check(quant_min, quant_max, dtype):
|
23 |
+
if dtype not in _DTYPE_TO_QVALUE_BOUNDS:
|
24 |
+
raise ValueError(f"Unsupported dtype: {dtype}")
|
25 |
+
quant_min_lower_bound, quant_max_upper_bound = _DTYPE_TO_QVALUE_BOUNDS[dtype]
|
26 |
+
|
27 |
+
assert quant_min >= quant_min_lower_bound, \
|
28 |
+
"quant_min out of bound for dtype, " \
|
29 |
+
f"quant_min_lower_bound: {quant_min_lower_bound} quant_min: {quant_min}"
|
30 |
+
|
31 |
+
assert quant_max <= quant_max_upper_bound, \
|
32 |
+
"quant_max out of bound for dtype, " \
|
33 |
+
f"quant_max_upper_bound: {quant_max_upper_bound} quant_max: {quant_max}"
|
34 |
+
|
35 |
+
quantized_decomposed_lib.define(
|
36 |
+
"quantize_per_tensor(Tensor input, float scale, int zero_point, "
|
37 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
38 |
+
|
39 |
+
@impl(quantized_decomposed_lib, "quantize_per_tensor", "CompositeExplicitAutograd")
|
40 |
+
def quantize_per_tensor(
|
41 |
+
input: torch.Tensor,
|
42 |
+
scale: float,
|
43 |
+
zero_point: int,
|
44 |
+
quant_min: int,
|
45 |
+
quant_max: int,
|
46 |
+
dtype: torch.dtype
|
47 |
+
) -> torch.Tensor:
|
48 |
+
""" Affine quantization for the Tensor using the same quantization parameters to map
|
49 |
+
from floating point to quantized values
|
50 |
+
|
51 |
+
Args:
|
52 |
+
input (torch.Tensor): original float32 or bfloat16 Tensor
|
53 |
+
scale (float): quantization parameter for affine quantization
|
54 |
+
zero_point (int): quantization parameter for affine quantization
|
55 |
+
quant_min (int): minimum quantized value for output Tensor
|
56 |
+
quant_max (int): maximum quantized value for output Tensor
|
57 |
+
dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
|
61 |
+
are not stored in the Tensor, we are storing them in function arguments instead
|
62 |
+
"""
|
63 |
+
if input.dtype == torch.bfloat16:
|
64 |
+
input = input.to(torch.float32)
|
65 |
+
|
66 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
67 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
68 |
+
|
69 |
+
inv_scale = 1.0 / scale
|
70 |
+
return torch.clamp(torch.round(input * inv_scale) + zero_point, quant_min, quant_max).to(dtype)
|
71 |
+
|
72 |
+
quantized_decomposed_lib.define(
|
73 |
+
"quantize_per_tensor.tensor(Tensor input, Tensor scale, Tensor zero_point, "
|
74 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
75 |
+
|
76 |
+
@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor", "CompositeExplicitAutograd")
|
77 |
+
def quantize_per_tensor_tensor(
|
78 |
+
input: torch.Tensor,
|
79 |
+
scale: torch.Tensor,
|
80 |
+
zero_point: torch.Tensor,
|
81 |
+
quant_min: int,
|
82 |
+
quant_max: int,
|
83 |
+
dtype: torch.dtype
|
84 |
+
) -> torch.Tensor:
|
85 |
+
""" Affine quantization for the Tensor using the same quantization parameters to map
|
86 |
+
from floating point to quantized values
|
87 |
+
Same as `quantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
|
88 |
+
scalar values
|
89 |
+
"""
|
90 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
91 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
92 |
+
return quantize_per_tensor(input, scale.item(), zero_point.item(), quant_min, quant_max, dtype)
|
93 |
+
|
94 |
+
@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor", "Meta")
|
95 |
+
def quantize_per_tensor_tensor_meta(input, scale, zero_point, quant_min, quant_max, dtype):
|
96 |
+
if input.dtype == torch.bfloat16:
|
97 |
+
input = input.to(torch.float32)
|
98 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
99 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
100 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
101 |
+
return torch.empty_like(input, dtype=dtype)
|
102 |
+
|
103 |
+
# TODO: remove other variants and keep this one
|
104 |
+
quantized_decomposed_lib.define(
|
105 |
+
"quantize_per_tensor.tensor2(Tensor input, Tensor scale, Tensor zero_point, "
|
106 |
+
"Tensor quant_min, Tensor quant_max, ScalarType dtype) -> Tensor")
|
107 |
+
|
108 |
+
@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor2", "CompositeExplicitAutograd")
|
109 |
+
def quantize_per_tensor_tensor2(
|
110 |
+
input: torch.Tensor,
|
111 |
+
scale: torch.Tensor,
|
112 |
+
zero_point: torch.Tensor,
|
113 |
+
quant_min: torch.Tensor,
|
114 |
+
quant_max: torch.Tensor,
|
115 |
+
dtype: torch.dtype
|
116 |
+
) -> torch.Tensor:
|
117 |
+
""" Affine quantization for the Tensor using the same quantization parameters to map
|
118 |
+
from floating point to quantized values
|
119 |
+
Same as `quantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
|
120 |
+
scalar values
|
121 |
+
"""
|
122 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
123 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
124 |
+
return quantize_per_tensor(input, scale.item(), zero_point.item(), quant_min.item(), quant_max.item(), dtype)
|
125 |
+
|
126 |
+
@impl(quantized_decomposed_lib, "quantize_per_tensor.tensor2", "Meta")
|
127 |
+
def quantize_per_tensor_tensor2_meta(input, scale, zero_point, quant_min, quant_max, dtype):
|
128 |
+
return quantize_per_tensor_tensor_meta(input, scale, zero_point, quant_min, quant_max, dtype)
|
129 |
+
|
130 |
+
# Note: quant_min/quant_max/dtype are not used in the operator, but for now it's kept in
|
131 |
+
# the signature as metadata for the input Tensor, this might be useful for pattern
|
132 |
+
# matching in the future
|
133 |
+
# We will revisit this later if we found there are no use cases for it
|
134 |
+
quantized_decomposed_lib.define(
|
135 |
+
"dequantize_per_tensor(Tensor input, float scale, int zero_point, "
|
136 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
137 |
+
|
138 |
+
@impl(quantized_decomposed_lib, "dequantize_per_tensor", "CompositeExplicitAutograd")
|
139 |
+
def dequantize_per_tensor(
|
140 |
+
input: torch.Tensor,
|
141 |
+
scale: float,
|
142 |
+
zero_point: int,
|
143 |
+
quant_min: int,
|
144 |
+
quant_max: int,
|
145 |
+
dtype: torch.dtype
|
146 |
+
) -> torch.Tensor:
|
147 |
+
""" Affine dequantization for the Tensor using the same quantization parameters to map
|
148 |
+
from quantized values to floating point values
|
149 |
+
|
150 |
+
Args:
|
151 |
+
input (torch.Tensor): Tensor with dtype matching `dtype` argument,
|
152 |
+
e.g. (`torch.uint8`), it is a per tensor quantized Tensor if combined with
|
153 |
+
quantization parameters in the argument of this function (scale/zero_point)
|
154 |
+
|
155 |
+
scale (float): quantization parameter for affine quantization
|
156 |
+
|
157 |
+
zero_point (int): quantization parameter for affine quantization
|
158 |
+
|
159 |
+
quant_min (int): minimum quantized value for input Tensor (not used in computation,
|
160 |
+
reserved for pattern matching)
|
161 |
+
|
162 |
+
quant_max (int): maximum quantized value for input Tensor (not used in computation,
|
163 |
+
reserved for pattern matching)
|
164 |
+
|
165 |
+
dtype (torch.dtype): dtype for input Tensor (not used in computation,
|
166 |
+
reserved for pattern matching)
|
167 |
+
|
168 |
+
Returns:
|
169 |
+
dequantized float32 Tensor
|
170 |
+
"""
|
171 |
+
assert input.dtype == dtype, f"Expecting input to have dtype: {dtype}, but got {input.dtype}"
|
172 |
+
if dtype in _DTYPE_TO_QVALUE_BOUNDS:
|
173 |
+
# TODO: investigate why
|
174 |
+
# (input - zero_point).to(torch.float32) * scale
|
175 |
+
# failed the test
|
176 |
+
return (input.to(torch.float32) - zero_point) * scale
|
177 |
+
else:
|
178 |
+
raise ValueError(f"Unsupported dtype in dequantize_per_tensor: {dtype}")
|
179 |
+
|
180 |
+
|
181 |
+
quantized_decomposed_lib.define(
|
182 |
+
"dequantize_per_tensor.tensor(Tensor input, Tensor scale, Tensor zero_point, "
|
183 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
184 |
+
|
185 |
+
@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor", "CompositeExplicitAutograd")
|
186 |
+
def dequantize_per_tensor_tensor(
|
187 |
+
input: torch.Tensor,
|
188 |
+
scale: torch.Tensor,
|
189 |
+
zero_point: torch.Tensor,
|
190 |
+
quant_min: int,
|
191 |
+
quant_max: int,
|
192 |
+
dtype: torch.dtype
|
193 |
+
) -> torch.Tensor:
|
194 |
+
""" Affine dequantization for the Tensor using the same quantization parameters to map
|
195 |
+
from quantized values to floating point values
|
196 |
+
Same as `dequantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
|
197 |
+
scalar values
|
198 |
+
"""
|
199 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
200 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
201 |
+
return dequantize_per_tensor(input, scale.item(), zero_point.item(), quant_min, quant_max, dtype)
|
202 |
+
|
203 |
+
@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor", "Meta")
|
204 |
+
def dequantize_per_tensor_tensor_meta(input, scale, zero_point, quant_min, quant_max, dtype):
|
205 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
206 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
207 |
+
assert input.dtype == dtype, f"Expecting input to have dtype: {dtype}"
|
208 |
+
if dtype in _DTYPE_TO_QVALUE_BOUNDS:
|
209 |
+
return torch.empty_like(input, dtype=torch.float32)
|
210 |
+
else:
|
211 |
+
raise ValueError(f"Unsupported dtype in dequantize_per_tensor: {dtype}")
|
212 |
+
|
213 |
+
# TODO: remove other variants and keep this one
|
214 |
+
quantized_decomposed_lib.define(
|
215 |
+
"dequantize_per_tensor.tensor2(Tensor input, Tensor scale, Tensor zero_point, "
|
216 |
+
"Tensor quant_min, Tensor quant_max, ScalarType dtype) -> Tensor")
|
217 |
+
|
218 |
+
@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor2", "CompositeExplicitAutograd")
|
219 |
+
def dequantize_per_tensor_tensor2(
|
220 |
+
input: torch.Tensor,
|
221 |
+
scale: torch.Tensor,
|
222 |
+
zero_point: torch.Tensor,
|
223 |
+
quant_min: torch.Tensor,
|
224 |
+
quant_max: torch.Tensor,
|
225 |
+
dtype: torch.dtype
|
226 |
+
) -> torch.Tensor:
|
227 |
+
""" Affine dequantization for the Tensor using the same quantization parameters to map
|
228 |
+
from quantized values to floating point values
|
229 |
+
Same as `dequantize_per_tensor` but scale and zero_point are Scalar Tensor instead of
|
230 |
+
scalar values
|
231 |
+
"""
|
232 |
+
assert zero_point.numel() == 1, f"Expecting zero_point tensor to be one element, but received : {zero_point.numel()}"
|
233 |
+
assert scale.numel() == 1, f"Expecting scale tensor to be one element, but received : {scale.numel()}"
|
234 |
+
return dequantize_per_tensor(input, scale.item(), zero_point.item(), quant_min.item(), quant_max.item(), dtype)
|
235 |
+
|
236 |
+
@impl(quantized_decomposed_lib, "dequantize_per_tensor.tensor2", "Meta")
|
237 |
+
def dequantize_per_tensor_tensor2_meta(input, scale, zero_point, quant_min, quant_max, dtype):
|
238 |
+
return dequantize_per_tensor_tensor_meta(input, scale, zero_point, quant_min, quant_max, dtype)
|
239 |
+
|
240 |
+
quantized_decomposed_lib.define(
|
241 |
+
"choose_qparams.tensor(Tensor input, int quant_min, int quant_max, "
|
242 |
+
"float eps, ScalarType dtype) -> (Tensor, Tensor)")
|
243 |
+
|
244 |
+
@impl(quantized_decomposed_lib, "choose_qparams.tensor", "CompositeExplicitAutograd")
|
245 |
+
def choose_qparams_tensor(
|
246 |
+
input: torch.Tensor,
|
247 |
+
qmin: int,
|
248 |
+
qmax: int,
|
249 |
+
eps: float,
|
250 |
+
dtype: torch.dtype
|
251 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
252 |
+
""" Given an input Tensor, derive the per tensor affine quantization parameter
|
253 |
+
(scale and zero_point) for target quantized Tensor from the Tensor
|
254 |
+
|
255 |
+
Args:
|
256 |
+
input (torch.Tensor): floating point input Tensor
|
257 |
+
quant_min (int): minimum quantized value for target quantized Tensor
|
258 |
+
quant_max (int): maximum quantized value for target quantized Tensor
|
259 |
+
dtype (torch.dtype): dtype for target quantized Tensor
|
260 |
+
|
261 |
+
Returns:
|
262 |
+
scale (float): quantization parameter for the target quantized Tensor
|
263 |
+
zero_point (int): quantization parameter for the target quantized Tensor
|
264 |
+
"""
|
265 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
266 |
+
assert dtype in _DTYPE_TO_QVALUE_BOUNDS, \
|
267 |
+
f"Expecting target dtype to be one of {_DTYPE_TO_QVALUE_BOUNDS.keys()}, but got: {dtype}"
|
268 |
+
validate_qmin_qmax(qmin, qmax)
|
269 |
+
|
270 |
+
min_val, max_val = torch.aminmax(input)
|
271 |
+
|
272 |
+
return determine_qparams(
|
273 |
+
min_val, max_val, qmin, qmax, dtype, torch.Tensor([eps]), has_customized_qrange=False)
|
274 |
+
|
275 |
+
quantized_decomposed_lib.define(
|
276 |
+
"choose_qparams_symmetric.tensor(Tensor input, int quant_min, int quant_max, "
|
277 |
+
"float eps, ScalarType dtype) -> (Tensor, Tensor)")
|
278 |
+
|
279 |
+
@impl(quantized_decomposed_lib, "choose_qparams_symmetric.tensor", "CompositeExplicitAutograd")
|
280 |
+
def choose_qparams_symmetric_tensor(
|
281 |
+
input: torch.Tensor,
|
282 |
+
qmin: int,
|
283 |
+
qmax: int,
|
284 |
+
eps: float,
|
285 |
+
dtype: torch.dtype
|
286 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
287 |
+
""" Given an input Tensor, derive the per tensor affine quantization parameter
|
288 |
+
(scale and zero_point) for target quantized Tensor from the Tensor
|
289 |
+
|
290 |
+
Args:
|
291 |
+
input (torch.Tensor): floating point input Tensor
|
292 |
+
quant_min (int): minimum quantized value for target quantized Tensor
|
293 |
+
quant_max (int): maximum quantized value for target quantized Tensor
|
294 |
+
dtype (torch.dtype): dtype for target quantized Tensor
|
295 |
+
|
296 |
+
Returns:
|
297 |
+
scale (float): quantization parameter for the target quantized Tensor
|
298 |
+
zero_point (int): quantization parameter for the target quantized Tensor
|
299 |
+
"""
|
300 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
301 |
+
assert dtype in _DTYPE_TO_QVALUE_BOUNDS, \
|
302 |
+
f"Expecting target dtype to be one of {_DTYPE_TO_QVALUE_BOUNDS.keys()}, but got: {dtype}"
|
303 |
+
validate_qmin_qmax(qmin, qmax)
|
304 |
+
|
305 |
+
min_val, max_val = torch.aminmax(input)
|
306 |
+
return determine_qparams(
|
307 |
+
min_val,
|
308 |
+
max_val,
|
309 |
+
qmin,
|
310 |
+
qmax,
|
311 |
+
dtype,
|
312 |
+
torch.Tensor([eps]),
|
313 |
+
has_customized_qrange=False,
|
314 |
+
qscheme=torch.per_tensor_symmetric
|
315 |
+
)
|
316 |
+
|
317 |
+
@impl(quantized_decomposed_lib, "choose_qparams.tensor", "Meta")
|
318 |
+
def choose_qparams_tensor_meta(
|
319 |
+
input: torch.Tensor,
|
320 |
+
quant_min: int,
|
321 |
+
quant_max: int,
|
322 |
+
eps: float,
|
323 |
+
dtype: torch.dtype
|
324 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
325 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
326 |
+
assert quant_min < quant_max, f"Expecting quant_min to be smaller than quant_max but received min: \
|
327 |
+
{quant_min} max: {quant_max}"
|
328 |
+
return torch.empty(1, dtype=torch.double, device=input.device), torch.empty(1, dtype=torch.int64, device=input.device)
|
329 |
+
|
330 |
+
@impl(quantized_decomposed_lib, "choose_qparams_symmetric.tensor", "Meta")
|
331 |
+
def choose_qparams_symmetric_tensor_meta(
|
332 |
+
input: torch.Tensor,
|
333 |
+
quant_min: int,
|
334 |
+
quant_max: int,
|
335 |
+
eps: float,
|
336 |
+
dtype: torch.dtype
|
337 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
338 |
+
return torch.empty(1, dtype=torch.double, device=input.device), torch.empty(1, dtype=torch.int64, device=input.device)
|
339 |
+
|
340 |
+
# Helper function used to implement per-channel quantization against any axis
|
341 |
+
def _permute_to_axis_zero(x, axis):
|
342 |
+
new_axis_list = list(range(x.dim()))
|
343 |
+
new_axis_list[axis] = 0
|
344 |
+
new_axis_list[0] = axis
|
345 |
+
y = x.permute(tuple(new_axis_list))
|
346 |
+
return y, new_axis_list
|
347 |
+
|
348 |
+
quantized_decomposed_lib.define(
|
349 |
+
"quantize_per_channel(Tensor input, Tensor scales, Tensor zero_points, int axis, "
|
350 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
351 |
+
|
352 |
+
@impl(quantized_decomposed_lib, "quantize_per_channel", "CompositeExplicitAutograd")
|
353 |
+
def quantize_per_channel(
|
354 |
+
input: torch.Tensor,
|
355 |
+
scales: torch.Tensor,
|
356 |
+
zero_points: torch.Tensor,
|
357 |
+
axis: int,
|
358 |
+
quant_min: int,
|
359 |
+
quant_max: int,
|
360 |
+
dtype: torch.dtype
|
361 |
+
) -> torch.Tensor:
|
362 |
+
""" Affine per channel quantization for the Tensor using the same quantization
|
363 |
+
parameters for each channel/axis to map from floating point to quantized values
|
364 |
+
|
365 |
+
Args:
|
366 |
+
input (torch.Tensor): original float32 or bfloat16 Tensor
|
367 |
+
scales (torch.Tensor): a list of scale quantization parameter for
|
368 |
+
affine quantization, one per channel
|
369 |
+
zero_point (torch.Tensor): a list of zero_point quantization parameter for
|
370 |
+
affine quantization, one per channel
|
371 |
+
quant_min (int): minimum quantized value for output Tensor
|
372 |
+
quant_max (int): maximum quantized value for output Tensor
|
373 |
+
dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor
|
374 |
+
|
375 |
+
Returns:
|
376 |
+
Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
|
377 |
+
are not stored in the Tensor, we are storing them in function arguments instead
|
378 |
+
"""
|
379 |
+
if input.dtype == torch.bfloat16:
|
380 |
+
input = input.to(torch.float32)
|
381 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
382 |
+
assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
|
383 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
384 |
+
input, permute_axis_list = _permute_to_axis_zero(input, axis)
|
385 |
+
res = torch.zeros_like(input)
|
386 |
+
|
387 |
+
for i in range(input.size(0)):
|
388 |
+
res[i] = torch.clamp(
|
389 |
+
torch.round(input[i] * (1.0 / scales[i])) + zero_points[i],
|
390 |
+
quant_min,
|
391 |
+
quant_max
|
392 |
+
)
|
393 |
+
|
394 |
+
out = res.permute(tuple(permute_axis_list))
|
395 |
+
return out.to(dtype)
|
396 |
+
|
397 |
+
@impl(quantized_decomposed_lib, "quantize_per_channel", "Meta")
|
398 |
+
def quantize_per_channel_meta(
|
399 |
+
input: torch.Tensor,
|
400 |
+
scales: torch.Tensor,
|
401 |
+
zero_points: torch.Tensor,
|
402 |
+
axis: int,
|
403 |
+
quant_min: int,
|
404 |
+
quant_max: int,
|
405 |
+
dtype: torch.dtype
|
406 |
+
) -> torch.Tensor:
|
407 |
+
if input.dtype == torch.bfloat16:
|
408 |
+
input = input.to(torch.float32)
|
409 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
410 |
+
assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
|
411 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
412 |
+
return torch.empty_like(input, dtype=dtype)
|
413 |
+
|
414 |
+
# Note: quant_min/quant_max/dtype are not used in the operator, but for now it's kept in
|
415 |
+
# the signature as metadata for the input Tensor, this might be useful for pattern
|
416 |
+
# matching in the future
|
417 |
+
# We will revisit this later if we found there are no use cases for it
|
418 |
+
quantized_decomposed_lib.define(
|
419 |
+
"dequantize_per_channel(Tensor input, Tensor scales, Tensor zero_points, int axis, "
|
420 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor")
|
421 |
+
|
422 |
+
@impl(quantized_decomposed_lib, "dequantize_per_channel", "CompositeExplicitAutograd")
|
423 |
+
def dequantize_per_channel(
|
424 |
+
input: torch.Tensor,
|
425 |
+
scales: torch.Tensor,
|
426 |
+
zero_points: torch.Tensor,
|
427 |
+
axis: int,
|
428 |
+
quant_min: int,
|
429 |
+
quant_max: int,
|
430 |
+
dtype: torch.dtype
|
431 |
+
) -> torch.Tensor:
|
432 |
+
""" Affine per channel dequantization for the Tensor using the same quantization
|
433 |
+
parameters for each channel/axis to map from quantized values to floating point values
|
434 |
+
|
435 |
+
Args:
|
436 |
+
input (torch.Tensor): Tensor with dtype matching `dtype` argument,
|
437 |
+
e.g. (`torch.uint8`), it is a per channel quantized Tensor if combined with
|
438 |
+
quantization parameter in the argument of this function (scales/zero_points/axis)
|
439 |
+
|
440 |
+
scales (torch.Tensor): a list of scale quantization parameter for
|
441 |
+
affine quantization, one per channel
|
442 |
+
|
443 |
+
zero_points (torch.Tensor): a list of zero_point quantization parameter for
|
444 |
+
affine quantization, one per channel
|
445 |
+
|
446 |
+
quant_min (int): minimum quantized value for output Tensor (not used in computation,
|
447 |
+
reserved for pattern matching)
|
448 |
+
|
449 |
+
quant_max (int): maximum quantized value for output Tensor (not used in computation,
|
450 |
+
reserved for pattern matching)
|
451 |
+
|
452 |
+
dtype (torch.dtype): requested dtype for output Tensor (not used in computation,
|
453 |
+
reserved for pattern matching)
|
454 |
+
|
455 |
+
Returns:
|
456 |
+
dequantized float32 Tensor
|
457 |
+
"""
|
458 |
+
assert input.dtype == dtype, f"Expecting input to have dtype {dtype}, but got dtype: {input.dtype}"
|
459 |
+
assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
|
460 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
461 |
+
input, permute_axis_list = _permute_to_axis_zero(input, axis)
|
462 |
+
res = torch.zeros_like(input, dtype=torch.float32)
|
463 |
+
|
464 |
+
for i in range(input.size(0)):
|
465 |
+
# TODO: investigate why
|
466 |
+
# (input[i] - zero_points[i]).to(torch.float32) * scales[i]
|
467 |
+
# failed the test
|
468 |
+
res[i] = (input[i].to(torch.float32) - zero_points[i]) * scales[i]
|
469 |
+
|
470 |
+
out = res.permute(tuple(permute_axis_list))
|
471 |
+
return out
|
472 |
+
|
473 |
+
@impl(quantized_decomposed_lib, "dequantize_per_channel", "Meta")
|
474 |
+
def dequantize_per_channel_meta(
|
475 |
+
input: torch.Tensor,
|
476 |
+
scales: torch.Tensor,
|
477 |
+
zero_points: torch.Tensor,
|
478 |
+
axis: int,
|
479 |
+
quant_min: int,
|
480 |
+
quant_max: int,
|
481 |
+
dtype: torch.dtype
|
482 |
+
) -> torch.Tensor:
|
483 |
+
assert input.dtype == dtype, f"Expecting input to have dtype {dtype}, but got dtype: {input.dtype}"
|
484 |
+
assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
|
485 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
486 |
+
return torch.empty_like(input, dtype=torch.float32)
|
487 |
+
|
488 |
+
|
489 |
+
quantized_decomposed_lib.define(
|
490 |
+
"choose_qparams_per_token(Tensor input, ScalarType dtype) -> (Tensor, Tensor)"
|
491 |
+
)
|
492 |
+
|
493 |
+
|
494 |
+
@impl(
|
495 |
+
quantized_decomposed_lib,
|
496 |
+
"choose_qparams_per_token",
|
497 |
+
"CompositeExplicitAutograd",
|
498 |
+
)
|
499 |
+
def choose_qparams_per_token(
|
500 |
+
input: torch.Tensor,
|
501 |
+
dtype: torch.dtype,
|
502 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
503 |
+
"""Choose quantization parameters for per token quantization. This means for a N dimension Tensor
|
504 |
+
(M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
|
505 |
+
every N elements with the same quantization parameter. The dimension for scales/zero_points
|
506 |
+
will be (M1 * M2 ... * Mn)
|
507 |
+
|
508 |
+
Args:
|
509 |
+
input (torch.Tensor): original float32/float16 Tensor
|
510 |
+
dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
|
511 |
+
|
512 |
+
Returns:
|
513 |
+
scales and zero_points, both float32 Tensors
|
514 |
+
"""
|
515 |
+
|
516 |
+
scales = input.abs().amax(dim=-1, keepdim=True)
|
517 |
+
if scales.dtype == torch.float16:
|
518 |
+
scales = (
|
519 |
+
scales.float()
|
520 |
+
) # want float scales to avoid overflows for fp16, (bf16 has wide enough range)
|
521 |
+
if dtype == torch.int8:
|
522 |
+
n_bits = 8
|
523 |
+
quant_max = 2 ** (n_bits - 1) - 1
|
524 |
+
else:
|
525 |
+
raise Exception(f"unsupported dtype in choose_qparams_per_token: {dtype}")
|
526 |
+
|
527 |
+
scales = scales.clamp(min=1e-5).div(quant_max)
|
528 |
+
zero_points = torch.zeros_like(scales)
|
529 |
+
return scales, zero_points
|
530 |
+
|
531 |
+
|
532 |
+
@impl(
|
533 |
+
quantized_decomposed_lib,
|
534 |
+
"choose_qparams_per_token",
|
535 |
+
"Meta",
|
536 |
+
)
|
537 |
+
def choose_qparams_per_token_meta(
|
538 |
+
input: torch.Tensor,
|
539 |
+
dtype: torch.dtype,
|
540 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
541 |
+
size = (1, input.size(-1))
|
542 |
+
return torch.empty(size, dtype=torch.double, device=input.device), torch.empty(
|
543 |
+
size, dtype=torch.int64, device=input.device
|
544 |
+
)
|
545 |
+
|
546 |
+
|
547 |
+
# TODO: move this to https://github.com/pytorch/pytorch/blob/main/torch/ao/quantization/fx/_decomposed.py
|
548 |
+
quantized_decomposed_lib.define(
|
549 |
+
"choose_qparams_per_token_asymmetric(Tensor input, ScalarType dtype) -> (Tensor, Tensor)"
|
550 |
+
)
|
551 |
+
|
552 |
+
|
553 |
+
@impl(
|
554 |
+
quantized_decomposed_lib,
|
555 |
+
"choose_qparams_per_token_asymmetric",
|
556 |
+
"CompositeExplicitAutograd",
|
557 |
+
)
|
558 |
+
def choose_qparams_per_token_asymmetric(
|
559 |
+
input: torch.Tensor,
|
560 |
+
dtype: torch.dtype,
|
561 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
562 |
+
"""Choose quantization parameters for per token quantization. This means for a N dimension Tensor
|
563 |
+
(M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
|
564 |
+
every N elements with the same quantization parameter. The dimension for scales/zero_points
|
565 |
+
will be (M1 * M2 ... * Mn)
|
566 |
+
|
567 |
+
Args:
|
568 |
+
input (torch.Tensor): original float32/float16 Tensor
|
569 |
+
dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
|
570 |
+
|
571 |
+
Returns:
|
572 |
+
scales and zero_points, both float32 Tensors
|
573 |
+
"""
|
574 |
+
# Based on https://github.com/google/XNNPACK/blob/df156f0cf3db5a4576cc711123eeb54915f82ffc/src/xnnpack/quantization.h#L18
|
575 |
+
qmin, qmax = -128, 127
|
576 |
+
min_val, max_val = torch.aminmax(input, dim=-1, keepdim=True)
|
577 |
+
min_val_neg = torch.min(min_val, torch.zeros_like(min_val))
|
578 |
+
max_val_pos = torch.max(max_val, torch.zeros_like(max_val))
|
579 |
+
eps = torch.finfo(torch.float32).eps # use xnnpack eps?
|
580 |
+
|
581 |
+
# scale
|
582 |
+
scale = (max_val_pos - min_val_neg) / float(qmax - qmin)
|
583 |
+
scale = scale.clamp(min=eps)
|
584 |
+
|
585 |
+
# zero point
|
586 |
+
descaled_min = min_val_neg / scale
|
587 |
+
descaled_max = max_val_pos / scale
|
588 |
+
zero_point_from_min_error = qmin + descaled_min
|
589 |
+
zero_point_from_max_error = qmax + descaled_max
|
590 |
+
zero_point = torch.where(
|
591 |
+
zero_point_from_min_error + zero_point_from_max_error > 0,
|
592 |
+
qmin - descaled_min,
|
593 |
+
qmax - descaled_max,
|
594 |
+
)
|
595 |
+
zero_point = torch.clamp(zero_point, qmin, qmax).round()
|
596 |
+
|
597 |
+
return scale.to(torch.float32), zero_point.to(torch.float32)
|
598 |
+
|
599 |
+
|
600 |
+
@impl(
|
601 |
+
quantized_decomposed_lib,
|
602 |
+
"choose_qparams_per_token_asymmetric",
|
603 |
+
"Meta",
|
604 |
+
)
|
605 |
+
def choose_qparams_per_token_asymmetric_meta(
|
606 |
+
input: torch.Tensor,
|
607 |
+
dtype: torch.dtype,
|
608 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
609 |
+
size = (1, input.size(-1))
|
610 |
+
return torch.empty(size, dtype=torch.double, device=input.device), torch.empty(
|
611 |
+
size, dtype=torch.int64, device=input.device
|
612 |
+
)
|
613 |
+
|
614 |
+
|
615 |
+
def _per_token_quant_qparam_dim_check(input, scales, zero_points):
|
616 |
+
num_tokens = math.prod(list(input.size())[:-1])
|
617 |
+
assert (
|
618 |
+
num_tokens == scales.numel()
|
619 |
+
), f"num_tokens: {num_tokens} scales: {scales.size()}"
|
620 |
+
assert (
|
621 |
+
num_tokens == zero_points.numel()
|
622 |
+
), f"num_tokens: {num_tokens} zero_points: {zero_points.size()}"
|
623 |
+
|
624 |
+
|
625 |
+
quantized_decomposed_lib.define(
|
626 |
+
"quantize_per_token(Tensor input, Tensor scales, Tensor zero_points, "
|
627 |
+
"int quant_min, int quant_max, ScalarType dtype) -> Tensor"
|
628 |
+
)
|
629 |
+
|
630 |
+
|
631 |
+
@impl(quantized_decomposed_lib, "quantize_per_token", "CompositeExplicitAutograd")
|
632 |
+
def quantize_per_token(
|
633 |
+
input: torch.Tensor,
|
634 |
+
scales: torch.Tensor,
|
635 |
+
zero_points: torch.Tensor,
|
636 |
+
quant_min: int,
|
637 |
+
quant_max: int,
|
638 |
+
dtype: torch.dtype,
|
639 |
+
):
|
640 |
+
"""Per token quantization for the Tensor using the quantization parameters to map
|
641 |
+
from floating point to quantized values. This means for a N dimension Tensor
|
642 |
+
(M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
|
643 |
+
every N elements with the same quantization parameter. The dimension for scales/zero_points
|
644 |
+
will be (M1 * M2 ... * Mn)
|
645 |
+
|
646 |
+
Args:
|
647 |
+
input (torch.Tensor): original float32 or bfloat16 Tensor
|
648 |
+
scales (float32 torch.Tensor): quantization parameter for per token affine quantization
|
649 |
+
zero_points (int32 torch.Tensor): quantization parameter for per token affine quantization
|
650 |
+
quant_min (int): minimum quantized value for output Tensor
|
651 |
+
quant_max (int): maximum quantized value for output Tensor
|
652 |
+
dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor
|
653 |
+
|
654 |
+
Returns:
|
655 |
+
Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
|
656 |
+
are not stored in the Tensor, we are storing them in function arguments instead
|
657 |
+
"""
|
658 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
659 |
+
_per_token_quant_qparam_dim_check(input, scales, zero_points)
|
660 |
+
input = (
|
661 |
+
torch.round(input / scales + zero_points).clamp(quant_min, quant_max).to(dtype)
|
662 |
+
)
|
663 |
+
return input
|
664 |
+
|
665 |
+
|
666 |
+
@impl(quantized_decomposed_lib, "quantize_per_token", "Meta")
|
667 |
+
def quantize_per_token_meta(
|
668 |
+
input: torch.Tensor,
|
669 |
+
scales: torch.Tensor,
|
670 |
+
zero_points: torch.Tensor,
|
671 |
+
quant_min: int,
|
672 |
+
quant_max: int,
|
673 |
+
dtype: torch.dtype,
|
674 |
+
):
|
675 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
676 |
+
return torch.empty_like(input, dtype=dtype)
|
677 |
+
|
678 |
+
|
679 |
+
quantized_decomposed_lib.define(
|
680 |
+
"dequantize_per_token(Tensor input, Tensor scales, Tensor zero_points, "
|
681 |
+
"int quant_min, int quant_max, ScalarType dtype, ScalarType output_dtype) -> Tensor"
|
682 |
+
)
|
683 |
+
|
684 |
+
|
685 |
+
@impl(quantized_decomposed_lib, "dequantize_per_token", "CompositeExplicitAutograd")
|
686 |
+
def dequantize_per_token(
|
687 |
+
input: torch.Tensor,
|
688 |
+
scales: torch.Tensor,
|
689 |
+
zero_points: torch.Tensor,
|
690 |
+
quant_min: int,
|
691 |
+
quant_max: int,
|
692 |
+
dtype: torch.dtype,
|
693 |
+
output_dtype: torch.dtype = torch.float32,
|
694 |
+
):
|
695 |
+
"""Per token dequantization for the Tensor using the quantization parameters to map
|
696 |
+
from floating point to quantized values. This means for a N dimension Tensor
|
697 |
+
(M1, M2, ...Mn, N), we calculate scales/zero_points for each N elements and quantize
|
698 |
+
every N elements with the same quantization parameter. The dimension for scales/zero_points
|
699 |
+
will be (M1 * M2 ... * Mn)
|
700 |
+
|
701 |
+
Args:
|
702 |
+
input (torch.Tensor): quantized Tensor (uint8, int8 etc.)
|
703 |
+
scales (float32 torch.Tensor): quantization parameter for per token affine quantization
|
704 |
+
zero_points (int32 torch.Tensor): quantization parameter for per token affine quantization
|
705 |
+
quant_min (int): minimum quantized value for input Tensor
|
706 |
+
quant_max (int): maximum quantized value for input Tensor
|
707 |
+
dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
|
708 |
+
output_dtype (torch.dtype): dtype (e.g. torch.float32) for output Tensor
|
709 |
+
|
710 |
+
Returns:
|
711 |
+
dequantized Tensor with dtype `output_dtype`
|
712 |
+
"""
|
713 |
+
input = input - zero_points
|
714 |
+
input = input.to(output_dtype) * scales
|
715 |
+
return input
|
716 |
+
|
717 |
+
|
718 |
+
@impl(quantized_decomposed_lib, "dequantize_per_token", "Meta")
|
719 |
+
def dequantize_per_token_meta(
|
720 |
+
input: torch.Tensor,
|
721 |
+
scales: torch.Tensor,
|
722 |
+
zero_points: torch.Tensor,
|
723 |
+
quant_min: int,
|
724 |
+
quant_max: int,
|
725 |
+
dtype: torch.dtype,
|
726 |
+
output_dtype: torch.dtype = torch.float32,
|
727 |
+
):
|
728 |
+
_quant_min_max_bounds_check(quant_min, quant_max, dtype)
|
729 |
+
# TODO: support fp16
|
730 |
+
return torch.empty_like(input, dtype=output_dtype)
|
731 |
+
|
732 |
+
|
733 |
+
quantized_decomposed_lib.define(
|
734 |
+
"quantize_per_channel_group(Tensor input, Tensor scales, Tensor zero_points, int quant_min, "
|
735 |
+
"int quant_max, ScalarType dtype, int group_size) -> Tensor"
|
736 |
+
)
|
737 |
+
|
738 |
+
|
739 |
+
# TODO: dtype is ignored for now
|
740 |
+
@impl(
|
741 |
+
quantized_decomposed_lib, "quantize_per_channel_group", "CompositeExplicitAutograd"
|
742 |
+
)
|
743 |
+
def quantize_per_channel_group(
|
744 |
+
input: torch.Tensor,
|
745 |
+
scales: torch.Tensor,
|
746 |
+
zero_points: torch.Tensor,
|
747 |
+
quant_min: int,
|
748 |
+
quant_max: int,
|
749 |
+
dtype: torch.dtype,
|
750 |
+
group_size=128,
|
751 |
+
):
|
752 |
+
assert group_size > 1
|
753 |
+
# needed for GPTQ single column quantize
|
754 |
+
if group_size > input.shape[-1] and scales.shape[-1] == 1:
|
755 |
+
group_size = input.shape[-1]
|
756 |
+
|
757 |
+
assert input.shape[-1] % group_size == 0
|
758 |
+
assert input.dim() == 2
|
759 |
+
|
760 |
+
# TODO: check for dtype, currently we can't express torch.int4 so it's omitted
|
761 |
+
to_quant = input.reshape(-1, group_size)
|
762 |
+
assert torch.isnan(to_quant).sum() == 0
|
763 |
+
|
764 |
+
scales = scales.reshape(-1, 1)
|
765 |
+
zero_points = zero_points.reshape(-1, 1)
|
766 |
+
|
767 |
+
input_int8 = (
|
768 |
+
to_quant.div(scales)
|
769 |
+
.add(zero_points)
|
770 |
+
.round()
|
771 |
+
.clamp_(quant_min, quant_max)
|
772 |
+
.to(dtype)
|
773 |
+
.reshape_as(input)
|
774 |
+
)
|
775 |
+
|
776 |
+
return input_int8
|
777 |
+
|
778 |
+
|
779 |
+
@impl(quantized_decomposed_lib, "quantize_per_channel_group", "Meta")
|
780 |
+
def quantize_per_channel_group_meta(
|
781 |
+
input: torch.Tensor,
|
782 |
+
scales: torch.Tensor,
|
783 |
+
zero_points: torch.Tensor,
|
784 |
+
quant_min: int,
|
785 |
+
quant_max: int,
|
786 |
+
dtype: torch.dtype,
|
787 |
+
group_size=128,
|
788 |
+
):
|
789 |
+
"""Groupwise quantization within each channel for an 2-d Tensor using the quantization parameters
|
790 |
+
to map from floating point to quantized values. This means for each row of a 2-d Tensor
|
791 |
+
(M, N), we calculate scales/zero_points for each `group_size` elements
|
792 |
+
and quantize every `group_size` elements with the same quantization parameter.
|
793 |
+
The dimension for scales/zero_points will be (M * ceil(N, group_size),)
|
794 |
+
|
795 |
+
Args:
|
796 |
+
input (torch.Tensor): original float32 or bfloat16 Tensor
|
797 |
+
scales (float32 torch.Tensor): quantization parameter for per channel group affine quantization
|
798 |
+
zero_points (int32 torch.Tensor): quantization parameter for per channel group affine quantization
|
799 |
+
quant_min (int): minimum quantized value for output Tensor
|
800 |
+
quant_max (int): maximum quantized value for output Tensor
|
801 |
+
dtype (torch.dtype): requested dtype (e.g. torch.uint8) for output Tensor
|
802 |
+
|
803 |
+
Returns:
|
804 |
+
Tensor with requested dtype (e.g. torch.uint8), note the quantization parameters
|
805 |
+
are not stored in the Tensor, we are storing them in function arguments instead
|
806 |
+
"""
|
807 |
+
assert group_size > 1
|
808 |
+
# needed for GPTQ single column quantize
|
809 |
+
if group_size > input.shape[-1] and scales.shape[-1] == 1:
|
810 |
+
group_size = input.shape[-1]
|
811 |
+
|
812 |
+
assert input.shape[-1] % group_size == 0
|
813 |
+
assert input.dim() == 2
|
814 |
+
return torch.empty_like(input, dtype=dtype)
|
815 |
+
|
816 |
+
|
817 |
+
quantized_decomposed_lib.define(
|
818 |
+
"dequantize_per_channel_group(Tensor input, Tensor scales, Tensor? zero_points, int quant_min, "
|
819 |
+
"int quant_max, ScalarType dtype, int group_size, ScalarType output_dtype) -> Tensor"
|
820 |
+
)
|
821 |
+
|
822 |
+
|
823 |
+
@impl(
|
824 |
+
quantized_decomposed_lib,
|
825 |
+
"dequantize_per_channel_group",
|
826 |
+
"CompositeExplicitAutograd",
|
827 |
+
)
|
828 |
+
def dequantize_per_channel_group(
|
829 |
+
w_int8: torch.Tensor,
|
830 |
+
scales: torch.Tensor,
|
831 |
+
zero_points: Optional[torch.Tensor],
|
832 |
+
quant_min: int,
|
833 |
+
quant_max: int,
|
834 |
+
dtype: torch.dtype,
|
835 |
+
group_size: int = 128,
|
836 |
+
output_dtype: torch.dtype = torch.float32,
|
837 |
+
):
|
838 |
+
"""Groupwise dequantization within each channel for an 2-d Tensor using the quantization parameters
|
839 |
+
to map from floating point to quantized values. This means for each row of a 2-d Tensor
|
840 |
+
(M, N), we calculate scales/zero_points for each `group_size` elements
|
841 |
+
and quantize every `group_size` elements with the same quantization parameter.
|
842 |
+
The dimension for scales/zero_points will be (M * ceil(N, group_size),)
|
843 |
+
|
844 |
+
Args:
|
845 |
+
input (torch.Tensor): quantized Tensor (uint8/int8 etc.)
|
846 |
+
scales (float32 torch.Tensor): quantization parameter for per channel group affine quantization
|
847 |
+
zero_points (int32 torch.Tensor): quantization parameter for per channel group affine quantization
|
848 |
+
quant_min (int): minimum quantized value for input Tensor
|
849 |
+
quant_max (int): maximum quantized value for input Tensor
|
850 |
+
dtype (torch.dtype): dtype (e.g. torch.uint8) for input Tensor
|
851 |
+
output_dtype (torch.dtype): dtype (e.g. torch.float32) for output Tensor
|
852 |
+
|
853 |
+
Returns:
|
854 |
+
dequantized Tensor with dtype `output_dtype`
|
855 |
+
"""
|
856 |
+
|
857 |
+
assert group_size > 1
|
858 |
+
# needed for GPTQ single column dequantize
|
859 |
+
if group_size > w_int8.shape[-1] and scales.shape[-1] == 1:
|
860 |
+
group_size = w_int8.shape[-1]
|
861 |
+
assert w_int8.shape[-1] % group_size == 0
|
862 |
+
assert w_int8.dim() == 2
|
863 |
+
|
864 |
+
w_int8_grouped = w_int8.reshape(-1, group_size)
|
865 |
+
scales = scales.reshape(-1, 1)
|
866 |
+
if zero_points is not None:
|
867 |
+
zp = zero_points.reshape(-1, 1)
|
868 |
+
else:
|
869 |
+
zp = torch.zeros([], dtype=torch.int32, device=scales.device)
|
870 |
+
w_dq = w_int8_grouped.sub(zp).mul(scales).reshape_as(w_int8).to(output_dtype)
|
871 |
+
return w_dq
|
872 |
+
|
873 |
+
|
874 |
+
quantized_decomposed_lib.define(
|
875 |
+
"fake_quant_per_channel(Tensor input, Tensor scales, Tensor zero_points, int axis, "
|
876 |
+
"int quant_min, int quant_max) -> Tensor")
|
877 |
+
|
878 |
+
class FakeQuantPerChannel(torch.autograd.Function):
|
879 |
+
@staticmethod
|
880 |
+
def forward(ctx, input, scales, zero_points, axis, quant_min, quant_max):
|
881 |
+
with torch._C._AutoDispatchBelowAutograd():
|
882 |
+
if input.dtype == torch.bfloat16:
|
883 |
+
input = input.to(torch.float32)
|
884 |
+
if scales.dtype != torch.float32:
|
885 |
+
scales = scales.to(torch.float32)
|
886 |
+
if zero_points.dtype != torch.int32:
|
887 |
+
zero_points = zero_points.to(torch.int32)
|
888 |
+
assert input.dtype == torch.float32, f"Expecting input to have dtype torch.float32, but got dtype: {input.dtype}"
|
889 |
+
assert axis < input.dim(), f"Expecting axis to be < {input.dim()}"
|
890 |
+
broadcast_dims = list(range(0, axis)) + list(range(axis + 1, input.ndim))
|
891 |
+
unsqueeze_scales = _unsqueeze_multiple(scales, broadcast_dims)
|
892 |
+
unsqueeze_zero_points = _unsqueeze_multiple(zero_points, broadcast_dims)
|
893 |
+
temp = torch.round(input * (1.0 / unsqueeze_scales)) + unsqueeze_zero_points
|
894 |
+
out = (torch.clamp(temp, quant_min, quant_max) - unsqueeze_zero_points) * unsqueeze_scales
|
895 |
+
mask = torch.logical_and((temp >= quant_min), (temp <= quant_max))
|
896 |
+
|
897 |
+
ctx.save_for_backward(mask)
|
898 |
+
return out
|
899 |
+
|
900 |
+
@staticmethod
|
901 |
+
def backward(ctx, gy):
|
902 |
+
mask, = ctx.saved_tensors
|
903 |
+
return gy * mask, None, None, None, None, None
|
904 |
+
|
905 |
+
@impl(quantized_decomposed_lib, "fake_quant_per_channel", "AutogradCPU")
|
906 |
+
def fake_quant_per_channel(
|
907 |
+
input: torch.Tensor,
|
908 |
+
scales: torch.Tensor,
|
909 |
+
zero_points: torch.Tensor,
|
910 |
+
axis: int,
|
911 |
+
quant_min: int,
|
912 |
+
quant_max: int,
|
913 |
+
) -> torch.Tensor:
|
914 |
+
return FakeQuantPerChannel.apply(input, scales, zero_points, axis, quant_min, quant_max)
|
915 |
+
|
916 |
+
@impl(quantized_decomposed_lib, "fake_quant_per_channel", "Meta")
|
917 |
+
def fake_quant_per_channel_meta(
|
918 |
+
input: torch.Tensor,
|
919 |
+
scales: torch.Tensor,
|
920 |
+
zero_points: torch.Tensor,
|
921 |
+
axis: int,
|
922 |
+
quant_min: int,
|
923 |
+
quant_max: int,
|
924 |
+
) -> torch.Tensor:
|
925 |
+
return torch.empty_like(input)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_equalize.py
ADDED
@@ -0,0 +1,820 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
from collections import namedtuple
|
4 |
+
from typing import Any, Dict, List, Optional, Tuple
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torch.nn as nn
|
8 |
+
import torch.nn.functional as F
|
9 |
+
import torch.ao.nn.intrinsic as nni
|
10 |
+
from torch.fx import GraphModule
|
11 |
+
from torch.fx.graph import Node
|
12 |
+
from torch.ao.quantization.fx.graph_module import _get_observed_graph_module_attr
|
13 |
+
|
14 |
+
from ..observer import _with_args, ObserverBase, PerChannelMinMaxObserver
|
15 |
+
from ..utils import _parent_name, check_min_max_valid
|
16 |
+
|
17 |
+
from .utils import (
|
18 |
+
get_new_attr_name_with_prefix,
|
19 |
+
maybe_get_next_module,
|
20 |
+
node_arg_is_weight,
|
21 |
+
)
|
22 |
+
|
23 |
+
CUSTOM_MODULE_SUPP_LIST: List[Any] = []
|
24 |
+
|
25 |
+
def reshape_scale(scale: torch.Tensor, axis: int, input: torch.Tensor) -> torch.Tensor:
|
26 |
+
"""Reshapes the scale so that we can multiply it to the input by the given axis.
|
27 |
+
"""
|
28 |
+
new_shape = [1] * input.ndim
|
29 |
+
new_shape[axis] = input.size(axis)
|
30 |
+
return scale.view(new_shape)
|
31 |
+
|
32 |
+
qsheme_mapping_per_tensor_to_per_channel = {
|
33 |
+
torch.per_tensor_affine: torch.per_channel_affine,
|
34 |
+
torch.per_tensor_symmetric: torch.per_channel_symmetric,
|
35 |
+
}
|
36 |
+
|
37 |
+
|
38 |
+
class _InputEqualizationObserver(nn.Module):
|
39 |
+
r"""Observer for tracking the running min/max values of input columns, and
|
40 |
+
computing the quantization parameters for the overall min/max input values.
|
41 |
+
|
42 |
+
Args:
|
43 |
+
dtype: Quantized data type
|
44 |
+
qscheme: Quantization scheme
|
45 |
+
quant_min: Minimum quantization value. If unspecified, it will
|
46 |
+
follow the 8-bit setup.
|
47 |
+
quant_max: Maximum quantization value. If unspecified, it will
|
48 |
+
follow the 8-bit setup.
|
49 |
+
|
50 |
+
The running minimum/maximum :math:`x_\text{min/max}` are computed in the
|
51 |
+
same way as :class:`~torch.ao.quantization.observer.PerChannelMinMaxObserver`,
|
52 |
+
with the difference that the running min/max values are stored per column.
|
53 |
+
This observer is intended to be used along with a WeightEqualizationObserver
|
54 |
+
to calculate the equalization scale.
|
55 |
+
"""
|
56 |
+
|
57 |
+
def __init__(self, dtype=torch.quint8, qscheme=torch.per_tensor_affine,
|
58 |
+
quant_min=None, quant_max=None, factory_kwargs=None) -> None:
|
59 |
+
super().__init__()
|
60 |
+
|
61 |
+
if qscheme not in {torch.per_tensor_affine, torch.per_tensor_symmetric}:
|
62 |
+
raise TypeError("Input qscheme must be per-tensor")
|
63 |
+
|
64 |
+
self.dtype = dtype
|
65 |
+
self.qscheme = qscheme
|
66 |
+
|
67 |
+
per_channel_qscheme = qsheme_mapping_per_tensor_to_per_channel[qscheme]
|
68 |
+
self.input_obs = PerChannelMinMaxObserver(ch_axis=1, dtype=dtype,
|
69 |
+
qscheme=per_channel_qscheme,
|
70 |
+
quant_min=quant_min,
|
71 |
+
quant_max=quant_max,
|
72 |
+
factory_kwargs=factory_kwargs)
|
73 |
+
|
74 |
+
self.equalization_scale = torch.tensor(1)
|
75 |
+
self.equalization_shape: List[int] = []
|
76 |
+
|
77 |
+
def forward(self, x_orig):
|
78 |
+
if not (x_orig.ndim >= 2 and x_orig.ndim <= 5):
|
79 |
+
raise ValueError("InputEqualizationObserver only supports Linear and Conv layers")
|
80 |
+
|
81 |
+
# Calculate the shape needed to reshape the equalization scale later (needed for Conv layers)
|
82 |
+
self.equalization_shape = [1] * x_orig.ndim
|
83 |
+
self.equalization_shape[1] = x_orig.size(1)
|
84 |
+
|
85 |
+
return self.input_obs(x_orig)
|
86 |
+
|
87 |
+
def get_input_minmax(self):
|
88 |
+
return (self.input_obs.min_val, self.input_obs.max_val)
|
89 |
+
|
90 |
+
def set_equalization_scale(self, equalization_scale):
|
91 |
+
# Reshape the equalization scale along axis=1 so that it can be
|
92 |
+
# multiplied with the input along axis=1
|
93 |
+
if equalization_scale.nelement() == 1 and equalization_scale == torch.tensor(1):
|
94 |
+
return
|
95 |
+
self.equalization_scale = torch.reshape(equalization_scale, self.equalization_shape)
|
96 |
+
|
97 |
+
def calculate_scaled_minmax(self):
|
98 |
+
r""" Returns the scaled min/max inputs
|
99 |
+
"""
|
100 |
+
if self.equalization_scale.nelement() == 1 and self.equalization_scale == torch.tensor(1):
|
101 |
+
warnings.warn(
|
102 |
+
"Must call calculate_equalization_scale before calling calculate_scaled_minmax. " +
|
103 |
+
"Will not scale the next quantization observer."
|
104 |
+
)
|
105 |
+
return None, None
|
106 |
+
|
107 |
+
# Calculate qparams for the scaled min/max inputs
|
108 |
+
# Scale the input by the equalization scale located at the same column
|
109 |
+
# index
|
110 |
+
(min_inputs, max_inputs) = self.get_input_minmax()
|
111 |
+
equalization_scale_reshaped = reshape_scale(self.equalization_scale, 0, min_inputs)
|
112 |
+
min_input_scaled = torch.min(torch.mul(min_inputs, equalization_scale_reshaped))
|
113 |
+
max_input_scaled = torch.max(torch.mul(max_inputs, equalization_scale_reshaped))
|
114 |
+
|
115 |
+
return min_input_scaled, max_input_scaled
|
116 |
+
|
117 |
+
with_args = classmethod(_with_args)
|
118 |
+
|
119 |
+
|
120 |
+
class _WeightEqualizationObserver(nn.Module):
|
121 |
+
r"""Observer for tracking the running min/max values of weight columns and
|
122 |
+
rows, and computing the quantization parameters for the weight rows.
|
123 |
+
|
124 |
+
Args:
|
125 |
+
dtype: Quantized data type
|
126 |
+
qscheme: Quantization scheme
|
127 |
+
quant_min: Minimum quantization value. If unspecified, it will
|
128 |
+
follow the 8-bit setup.
|
129 |
+
quant_max: Maximum quantization value. If unspecified, it will
|
130 |
+
follow the 8-bit setup.
|
131 |
+
|
132 |
+
This observer is made up of 1 PerChannelMinMaxObserver `weight_col_obs` used
|
133 |
+
to record the running minimum and maximum of columns of incoming weight
|
134 |
+
tensors. This observer is intended to be used along with an
|
135 |
+
InputEqualizationObserver to calculate the equalization scale.
|
136 |
+
|
137 |
+
The running minimum/maximum :math:`w_\text{min/max}` are computed in the
|
138 |
+
same way as :class:`~torch.ao.quantization.observer.PerChannelMinMaxObserver`.
|
139 |
+
"""
|
140 |
+
|
141 |
+
def __init__(self, dtype=torch.qint8, qscheme=torch.per_tensor_affine, quant_min=None,
|
142 |
+
quant_max=None, factory_kwargs=None) -> None:
|
143 |
+
super().__init__()
|
144 |
+
|
145 |
+
self.dtype = dtype
|
146 |
+
self.qscheme = qscheme
|
147 |
+
self.ch_axis = 1
|
148 |
+
|
149 |
+
per_channel_qscheme = qscheme
|
150 |
+
if qscheme in {torch.per_tensor_affine, torch.per_tensor_symmetric}:
|
151 |
+
per_channel_qscheme = qsheme_mapping_per_tensor_to_per_channel[qscheme]
|
152 |
+
self.weight_col_obs = PerChannelMinMaxObserver(ch_axis=1, dtype=dtype,
|
153 |
+
qscheme=per_channel_qscheme,
|
154 |
+
quant_min=quant_min,
|
155 |
+
quant_max=quant_max,
|
156 |
+
factory_kwargs=factory_kwargs)
|
157 |
+
|
158 |
+
self.equalization_scale = torch.tensor(1)
|
159 |
+
|
160 |
+
def forward(self, w_orig):
|
161 |
+
if not (w_orig.ndim >= 2 and w_orig.ndim <= 5):
|
162 |
+
raise ValueError("InputEqualizationObserver only supports Linear and Conv layers")
|
163 |
+
|
164 |
+
return self.weight_col_obs(w_orig)
|
165 |
+
|
166 |
+
def get_weight_col_minmax(self):
|
167 |
+
return (self.weight_col_obs.min_val, self.weight_col_obs.max_val)
|
168 |
+
|
169 |
+
def set_equalization_scale(self, equalization_scale):
|
170 |
+
self.equalization_scale = equalization_scale
|
171 |
+
|
172 |
+
with_args = classmethod(_with_args)
|
173 |
+
|
174 |
+
|
175 |
+
def calculate_equalization_scale(input_obs: _InputEqualizationObserver,
|
176 |
+
weight_obs: _WeightEqualizationObserver) -> torch.Tensor:
|
177 |
+
r""" Calculates the equalization scale and sets the equalization_scale value
|
178 |
+
in the observers.
|
179 |
+
|
180 |
+
Args:
|
181 |
+
input_obs: Observer that tracks the ranges for the input columns
|
182 |
+
weight_obs: Observer that tracks the ranges for the weight columns
|
183 |
+
"""
|
184 |
+
|
185 |
+
(min_inputs, max_inputs) = input_obs.get_input_minmax()
|
186 |
+
(min_weights, max_weights) = weight_obs.get_weight_col_minmax()
|
187 |
+
|
188 |
+
if not (check_min_max_valid(min_inputs, max_inputs) and check_min_max_valid(min_weights, max_weights)):
|
189 |
+
warnings.warn(
|
190 |
+
"Must run observer before calling calculate_equalization_scale. " +
|
191 |
+
"Returning default equalization scale torch.tensor(1)."
|
192 |
+
)
|
193 |
+
return torch.tensor(1)
|
194 |
+
|
195 |
+
if not (min_inputs.shape == min_weights.shape):
|
196 |
+
raise ValueError(
|
197 |
+
"Input and Weight must have the same column dimension. " +
|
198 |
+
f"Found {min_inputs.shape} and {min_weights.shape} shapes instead."
|
199 |
+
)
|
200 |
+
|
201 |
+
equalization_scale = torch.sqrt((max_weights - min_weights) / (max_inputs - min_inputs))
|
202 |
+
# Replace all 'inf', 'nan', 0's with 1s to prevent errors
|
203 |
+
equalization_scale[equalization_scale == 0.] = 1
|
204 |
+
equalization_scale = torch.nan_to_num(equalization_scale, nan=1, posinf=1, neginf=1)
|
205 |
+
return equalization_scale
|
206 |
+
|
207 |
+
|
208 |
+
class EqualizationQConfig(namedtuple('EqualizationQConfig', ['input_activation', 'weight'])):
|
209 |
+
"""
|
210 |
+
Describes how to quantize a layer or a part of the network specifically for
|
211 |
+
input-weight equalization by providing settings (observer classes) for
|
212 |
+
inputs, outputs, and weights.
|
213 |
+
|
214 |
+
Note that EqualizationQConfig needs to contain observer **classes** (like
|
215 |
+
MinMaxObserver) or a callable that returns instances on invocation, not the
|
216 |
+
concrete observer instances themselves.
|
217 |
+
Quantization function will instantiate observers multiple times for each of
|
218 |
+
the layers.
|
219 |
+
|
220 |
+
Observer classes have usually reasonable default arguments, but they can be
|
221 |
+
overwritten with `with_args` method (that behaves like functools.partial):
|
222 |
+
|
223 |
+
my_qconfig = EqualizationQConfig(input_activation=_InputEqualizationObserver.with_args(dtype=torch.qint8),
|
224 |
+
weight=_WeightEqualizationObserver.with_args(dtype=torch.qint8))
|
225 |
+
"""
|
226 |
+
def __new__(cls, input_activation=torch.nn.Identity, weight=torch.nn.Identity):
|
227 |
+
if isinstance(input_activation, nn.Module) or isinstance(weight, nn.Module):
|
228 |
+
raise ValueError("EqualizationQConfig received observer instance, please pass observer class instead. " +
|
229 |
+
"Use MyObserver.with_args(x=1) to override arguments to constructor if needed")
|
230 |
+
self = super().__new__(cls, input_activation, weight)
|
231 |
+
return self
|
232 |
+
|
233 |
+
|
234 |
+
input_equalization_observer = _InputEqualizationObserver.with_args(
|
235 |
+
dtype=torch.quint8, qscheme=torch.per_tensor_symmetric)
|
236 |
+
weight_equalization_observer = _WeightEqualizationObserver.with_args(
|
237 |
+
dtype=torch.qint8, qscheme=torch.per_channel_symmetric)
|
238 |
+
default_equalization_qconfig = EqualizationQConfig(input_activation=input_equalization_observer,
|
239 |
+
weight=weight_equalization_observer)
|
240 |
+
|
241 |
+
|
242 |
+
def fused_module_supports_equalization(module) -> bool:
|
243 |
+
""" Checks if the fused node supports equalization. """
|
244 |
+
return type(module) in [nni.LinearReLU, nni.ConvReLU1d, nni.ConvReLU2d, nni.ConvReLU3d]
|
245 |
+
|
246 |
+
def nn_module_supports_equalization(module) -> bool:
|
247 |
+
""" Checks if the torch.nn node supports equalization. """
|
248 |
+
return type(module) in [nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d]
|
249 |
+
|
250 |
+
def custom_module_supports_equalization(module) -> bool:
|
251 |
+
""" Checks if the custom node supports equalization. """
|
252 |
+
return type(module) in CUSTOM_MODULE_SUPP_LIST
|
253 |
+
|
254 |
+
|
255 |
+
def node_supports_equalization(node: Node, modules) -> bool:
|
256 |
+
""" Checks if the current node supports equalization
|
257 |
+
Currently we only support nn.Linear/F.Linear and nn.Conv/F.conv layers
|
258 |
+
"""
|
259 |
+
if node.op == 'call_module':
|
260 |
+
return nn_module_supports_equalization(modules[str(node.target)]) or \
|
261 |
+
fused_module_supports_equalization(modules[str(node.target)]) or \
|
262 |
+
custom_module_supports_equalization(modules[str(node.target)])
|
263 |
+
elif node.op == 'call_function':
|
264 |
+
return node.target in [F.linear, F.conv1d, F.conv2d, F.conv3d]
|
265 |
+
return False
|
266 |
+
|
267 |
+
def is_equalization_observer(observer: nn.Module) -> bool:
|
268 |
+
return (isinstance(observer, (_InputEqualizationObserver, _WeightEqualizationObserver)))
|
269 |
+
|
270 |
+
|
271 |
+
###############################################################################
|
272 |
+
# Functions for equalization during convert #
|
273 |
+
###############################################################################
|
274 |
+
|
275 |
+
def get_op_node_and_weight_eq_obs(
|
276 |
+
input_eq_obs_node: Node,
|
277 |
+
model: GraphModule,
|
278 |
+
modules: Dict[str, nn.Module]
|
279 |
+
) -> Tuple[Optional[Node], Optional[_WeightEqualizationObserver]]:
|
280 |
+
""" Gets the following weight equalization observer. There should always
|
281 |
+
exist a weight equalization observer after an input equalization observer.
|
282 |
+
|
283 |
+
Returns the operation node that follows the input equalization observer node
|
284 |
+
and the weight equalization observer
|
285 |
+
"""
|
286 |
+
|
287 |
+
# Find the op node that comes directly after the input equalization observer
|
288 |
+
op_node = None
|
289 |
+
for user in input_eq_obs_node.users.keys():
|
290 |
+
if node_supports_equalization(user, modules):
|
291 |
+
op_node = user
|
292 |
+
break
|
293 |
+
|
294 |
+
assert op_node is not None
|
295 |
+
if op_node.op == 'call_module':
|
296 |
+
# If the op_node is a nn.Linear layer, then it must have a
|
297 |
+
# WeightEqualizationObserver configuration
|
298 |
+
maybe_equalization_node_name_to_config = _get_observed_graph_module_attr(model, "equalization_node_name_to_qconfig")
|
299 |
+
assert maybe_equalization_node_name_to_config is not None
|
300 |
+
equalization_node_name_to_qconfig: Dict[str, Any] = maybe_equalization_node_name_to_config # type: ignore[assignment]
|
301 |
+
assert equalization_node_name_to_qconfig.get(op_node.name, None) is not None
|
302 |
+
weight_eq_obs = equalization_node_name_to_qconfig.get(op_node.name, None).weight()
|
303 |
+
|
304 |
+
assert isinstance(weight_eq_obs, _WeightEqualizationObserver)
|
305 |
+
return op_node, weight_eq_obs
|
306 |
+
|
307 |
+
elif op_node.op == 'call_function':
|
308 |
+
weight_node = maybe_get_weight_eq_obs_node(op_node, modules)
|
309 |
+
if weight_node is not None:
|
310 |
+
weight_eq_obs = modules[str(weight_node.target)]
|
311 |
+
assert isinstance(weight_eq_obs, _WeightEqualizationObserver)
|
312 |
+
return op_node, weight_eq_obs
|
313 |
+
|
314 |
+
return None, None
|
315 |
+
|
316 |
+
def maybe_get_weight_eq_obs_node(op_node: Node, modules: Dict[str, nn.Module]) -> Optional[Node]:
|
317 |
+
""" Gets the weight equalization observer node if it exists.
|
318 |
+
"""
|
319 |
+
assert op_node.op == 'call_function'
|
320 |
+
for node_arg in op_node.args:
|
321 |
+
if node_arg_is_weight(op_node, node_arg):
|
322 |
+
assert (isinstance(node_arg, Node) and node_arg.op == 'call_module' and
|
323 |
+
isinstance(modules[str(node_arg.target)], _WeightEqualizationObserver))
|
324 |
+
return node_arg
|
325 |
+
return None
|
326 |
+
|
327 |
+
def maybe_get_next_input_eq_obs(node: Node, modules: Dict[str, nn.Module]) -> Optional[_InputEqualizationObserver]:
|
328 |
+
""" Gets the following input equalization observer if it exists.
|
329 |
+
|
330 |
+
For example, in the case of connecting linear layers:
|
331 |
+
x -> inp_obs1 -> eq_obs1 -> linear1 -> out_obs1 -> eq_obs2 -> linear2 -> out_obs2
|
332 |
+
If the node being passed in is the linear1 node, then we want to return eq_obs2,
|
333 |
+
the following equalization observer for linear2.
|
334 |
+
|
335 |
+
However, if there are no connecting layers:
|
336 |
+
x -> inp_obs1 -> eq_obs1 -> linear1 -> out_obs1 -> add
|
337 |
+
Then we want to return None.
|
338 |
+
|
339 |
+
In the case of an unfused linear-relu layer with a connecting linear layer:
|
340 |
+
linear1 -> relu -> out_obs1 -> eq_obs2 -> linear2 -> out_obs2
|
341 |
+
Since it is unfused, we want to skip over the relu layer and return eq_obs2,
|
342 |
+
the following equalization observer for linear2.
|
343 |
+
"""
|
344 |
+
|
345 |
+
assert node_supports_equalization(node, modules)
|
346 |
+
|
347 |
+
# Locate the following nn.ReLU or F.relu node if it exists
|
348 |
+
maybe_relu_node = maybe_get_next_module(node, modules, nn.ReLU)
|
349 |
+
if maybe_relu_node is None:
|
350 |
+
maybe_relu_node = maybe_get_next_module(node, modules, target_functional_type=F.relu)
|
351 |
+
|
352 |
+
# Locate the following output observer if it exists.
|
353 |
+
# We will skip the relu node if it exists.
|
354 |
+
maybe_obs_node = (
|
355 |
+
maybe_get_next_module(node, modules, ObserverBase)
|
356 |
+
if maybe_relu_node is None
|
357 |
+
else maybe_get_next_module(maybe_relu_node, modules, ObserverBase)
|
358 |
+
)
|
359 |
+
if maybe_obs_node is None:
|
360 |
+
return None
|
361 |
+
|
362 |
+
maybe_eq_obs_node = maybe_get_next_module(maybe_obs_node, modules, _InputEqualizationObserver)
|
363 |
+
if maybe_eq_obs_node is None:
|
364 |
+
return None
|
365 |
+
|
366 |
+
maybe_eq_obs = modules[str(maybe_eq_obs_node)]
|
367 |
+
assert isinstance(maybe_eq_obs, _InputEqualizationObserver)
|
368 |
+
return maybe_eq_obs
|
369 |
+
|
370 |
+
def maybe_get_next_equalization_scale(node: Node, modules: Dict[str, nn.Module]) -> Optional[torch.Tensor]:
|
371 |
+
""" If the next next node is an InputEqualizationObserver then we want to
|
372 |
+
return its equalization scale, else we return 1
|
373 |
+
|
374 |
+
This is used in the case where there are two connecting linear layers:
|
375 |
+
linear1 -> LinearOutObs -> InputEqObs -> linear2
|
376 |
+
In this case, the node given is linear1 and we want to locate the InputEqObs.
|
377 |
+
"""
|
378 |
+
next_inp_eq_obs = maybe_get_next_input_eq_obs(node, modules)
|
379 |
+
if next_inp_eq_obs:
|
380 |
+
if next_inp_eq_obs.equalization_scale.nelement() == 1 and \
|
381 |
+
next_inp_eq_obs.equalization_scale == torch.tensor(1):
|
382 |
+
return None
|
383 |
+
return next_inp_eq_obs.equalization_scale
|
384 |
+
return None
|
385 |
+
|
386 |
+
def scale_input_observer(node: Node, modules: Dict[str, nn.Module]) -> None:
|
387 |
+
""" Scales the following input quantization observer's min/max values by
|
388 |
+
updating the values with the scaled min/max values calculated by the input
|
389 |
+
equalization observer
|
390 |
+
"""
|
391 |
+
input_eq_obs = modules[str(node.target)]
|
392 |
+
assert isinstance(input_eq_obs, _InputEqualizationObserver)
|
393 |
+
|
394 |
+
input_quant_obs_node = node.args[0]
|
395 |
+
assert isinstance(input_quant_obs_node, Node)
|
396 |
+
|
397 |
+
input_quant_obs = modules[str(input_quant_obs_node.target)]
|
398 |
+
if not isinstance(input_quant_obs, ObserverBase):
|
399 |
+
return
|
400 |
+
|
401 |
+
min_input_scaled, max_input_scaled = input_eq_obs.calculate_scaled_minmax()
|
402 |
+
if min_input_scaled is None and max_input_scaled is None:
|
403 |
+
return
|
404 |
+
input_quant_obs.min_val = min_input_scaled
|
405 |
+
input_quant_obs.max_val = max_input_scaled
|
406 |
+
|
407 |
+
def scale_weight_node(
|
408 |
+
node: Node,
|
409 |
+
modules: Dict[str, nn.Module],
|
410 |
+
equalization_scale: torch.Tensor,
|
411 |
+
next_equalization_scale: Optional[torch.Tensor],
|
412 |
+
) -> None:
|
413 |
+
""" Scale the weights for input-weight equalization by multiplying the
|
414 |
+
weight by 1/equalization_scale and next_equalization_scale
|
415 |
+
|
416 |
+
Args:
|
417 |
+
node: Current node whose weights we want to scale
|
418 |
+
equalization_scale: Current node's calculated equalization scale
|
419 |
+
next_equalization_scale: Next node's calculated equalization scale if
|
420 |
+
the following node needs to be equalized, 1 otherwise
|
421 |
+
"""
|
422 |
+
if equalization_scale is None:
|
423 |
+
return
|
424 |
+
|
425 |
+
if fused_module_supports_equalization(modules[str(node.target)]):
|
426 |
+
op_module = modules[str(node.target)][0] # type: ignore[index]
|
427 |
+
else:
|
428 |
+
op_module = modules[str(node.target)]
|
429 |
+
assert nn_module_supports_equalization(op_module) or custom_module_supports_equalization(op_module)
|
430 |
+
|
431 |
+
# Scale the weights for input-weight equalization
|
432 |
+
# If the following layer needs to be equalized then we will multiply its scale
|
433 |
+
weight = op_module.weight
|
434 |
+
assert isinstance(weight, torch.Tensor)
|
435 |
+
|
436 |
+
# Scale the weights by the reciprocal of the equalization scale
|
437 |
+
# Reshape the equalization scale so that we can multiply it to the weight along axis=1
|
438 |
+
equalization_scale_reshaped = reshape_scale(equalization_scale, 1, weight)
|
439 |
+
scaled_weight = torch.mul(weight, torch.reciprocal(equalization_scale_reshaped))
|
440 |
+
|
441 |
+
if next_equalization_scale is None:
|
442 |
+
op_module.weight = nn.Parameter(scaled_weight)
|
443 |
+
return
|
444 |
+
|
445 |
+
# Multiply the weights row wise by the next equalization scale
|
446 |
+
# Reshape the equalization scale so that we can multiply it to the weight along axis=0
|
447 |
+
next_equalization_scale_reshaped = reshape_scale(next_equalization_scale, 0, weight)
|
448 |
+
scaled_weight = torch.mul(scaled_weight, next_equalization_scale_reshaped)
|
449 |
+
|
450 |
+
op_module.weight = nn.Parameter(scaled_weight)
|
451 |
+
|
452 |
+
# Multiply the bias element wise by the next equalization scale
|
453 |
+
bias = op_module.bias
|
454 |
+
if bias is None:
|
455 |
+
return
|
456 |
+
assert isinstance(bias, torch.Tensor)
|
457 |
+
|
458 |
+
# Reshape the equalization scale so that we can multiply it element-wise to the bias
|
459 |
+
next_equalization_scale_reshaped = reshape_scale(next_equalization_scale, 0, bias)
|
460 |
+
scaled_bias = torch.mul(bias, next_equalization_scale_reshaped)
|
461 |
+
op_module.bias = nn.Parameter(scaled_bias)
|
462 |
+
|
463 |
+
def scale_weight_functional(
|
464 |
+
op_node: Node,
|
465 |
+
model: GraphModule,
|
466 |
+
modules: Dict[str, nn.Module],
|
467 |
+
equalization_scale: torch.Tensor,
|
468 |
+
next_equalization_scale: Optional[torch.Tensor],
|
469 |
+
) -> None:
|
470 |
+
""" Scales the weight value for functional layers
|
471 |
+
"""
|
472 |
+
if equalization_scale is None:
|
473 |
+
return
|
474 |
+
|
475 |
+
# From the given op_node, the path looks like:
|
476 |
+
# get_attr(weight) -> weight_quant_obs -> weight_eq_obs -> op_node
|
477 |
+
# So we want to trace back from the op_node to get the equalization observer
|
478 |
+
# node, then the quantization observer node, and then finally the weight
|
479 |
+
# node which contains the weight values.
|
480 |
+
|
481 |
+
# Get the equalization observer node
|
482 |
+
weight_eq_obs_node = maybe_get_weight_eq_obs_node(op_node, modules)
|
483 |
+
if weight_eq_obs_node is None:
|
484 |
+
return
|
485 |
+
|
486 |
+
# Get the quantization observer node
|
487 |
+
weight_quant_obs_node = weight_eq_obs_node.args[0]
|
488 |
+
if weight_quant_obs_node is None:
|
489 |
+
return
|
490 |
+
assert (isinstance(weight_quant_obs_node, Node) and
|
491 |
+
isinstance(modules[str(weight_quant_obs_node.target)], ObserverBase))
|
492 |
+
|
493 |
+
# Get the get_attr(weight) node
|
494 |
+
weight_node = weight_quant_obs_node.args[0]
|
495 |
+
if weight_node is None:
|
496 |
+
return
|
497 |
+
assert isinstance(weight_node, Node) and weight_node.op == 'get_attr'
|
498 |
+
|
499 |
+
weight_parent_name, weight_name = _parent_name(weight_node.target)
|
500 |
+
weight = getattr(modules[weight_parent_name], weight_name)
|
501 |
+
|
502 |
+
# Scale the weights for input-weight equalization
|
503 |
+
# If the following layer needs to be equalized then we will multiply its scale
|
504 |
+
# Reshape the equalization scale so that we can multiply it to the weight along axis=1
|
505 |
+
equalization_scale_reshaped = reshape_scale(equalization_scale, 1, weight)
|
506 |
+
scaled_weight = torch.mul(weight, torch.reciprocal(equalization_scale_reshaped))
|
507 |
+
|
508 |
+
if next_equalization_scale is None:
|
509 |
+
setattr(modules[weight_parent_name], weight_name, scaled_weight)
|
510 |
+
return
|
511 |
+
|
512 |
+
# Multiply the weights row wise by the next equalization scale
|
513 |
+
# Reshape the equalization scale so that we can multiply it to the weight along axis=1
|
514 |
+
next_equalization_scale_reshaped = reshape_scale(next_equalization_scale, 0, scaled_weight)
|
515 |
+
scaled_weight = torch.mul(scaled_weight, next_equalization_scale_reshaped)
|
516 |
+
|
517 |
+
setattr(modules[weight_parent_name], weight_name, scaled_weight)
|
518 |
+
assert torch.allclose(model.get_buffer(str(weight_node.target)), scaled_weight)
|
519 |
+
|
520 |
+
# Multiply the bias element wise by the next equalization scale
|
521 |
+
bias_node = None
|
522 |
+
for node in op_node.args:
|
523 |
+
# Find the node containing the weight values
|
524 |
+
if isinstance(node, Node) and node.op == 'get_attr' and 'bias' in node.name:
|
525 |
+
bias_node = node
|
526 |
+
break
|
527 |
+
if bias_node is None:
|
528 |
+
return
|
529 |
+
|
530 |
+
bias_parent_name, bias_name = _parent_name(bias_node.target)
|
531 |
+
bias = getattr(modules[bias_parent_name], bias_name)
|
532 |
+
|
533 |
+
# Reshape the equalization scale so that we can multiply it element-wise to the bias
|
534 |
+
next_equalization_scale_reshaped = reshape_scale(next_equalization_scale, 0, bias)
|
535 |
+
scaled_bias = torch.mul(bias, next_equalization_scale_reshaped)
|
536 |
+
setattr(modules[bias_parent_name], bias_name, scaled_bias)
|
537 |
+
|
538 |
+
def clear_weight_quant_obs_node(op_node: Node, modules: Dict[str, nn.Module]) -> None:
|
539 |
+
""" Given the operation node, we want find the corresponding quantization
|
540 |
+
observer and reset its min/max values
|
541 |
+
"""
|
542 |
+
weight_eq_obs_node = maybe_get_weight_eq_obs_node(op_node, modules)
|
543 |
+
if weight_eq_obs_node is None:
|
544 |
+
return
|
545 |
+
|
546 |
+
weight_quant_obs_node = weight_eq_obs_node.args[0]
|
547 |
+
if weight_quant_obs_node is None:
|
548 |
+
return
|
549 |
+
assert isinstance(weight_quant_obs_node, Node)
|
550 |
+
|
551 |
+
weight_quant_obs = modules[str(weight_quant_obs_node.target)]
|
552 |
+
assert isinstance(modules[str(weight_quant_obs_node.target)], ObserverBase)
|
553 |
+
weight_quant_obs.reset_min_max_vals() # type: ignore[operator]
|
554 |
+
|
555 |
+
def remove_node(model: GraphModule, node: Node, prev_node: Node):
|
556 |
+
""" Removes the given node from the model by replacing all of its users with
|
557 |
+
the given previous node
|
558 |
+
"""
|
559 |
+
# For all of the current node's users, replace the current node with
|
560 |
+
# the input quantization observer node
|
561 |
+
orig_users = list(node.users.keys())
|
562 |
+
for user_node in orig_users:
|
563 |
+
user_node.replace_input_with(node, prev_node)
|
564 |
+
|
565 |
+
# Erase the InputEqualizationObserver node
|
566 |
+
model.graph.erase_node(node)
|
567 |
+
|
568 |
+
def update_obs_for_equalization(model: GraphModule, modules: Dict[str, nn.Module]) -> Dict[str, _WeightEqualizationObserver]:
|
569 |
+
""" Update all of the observer's equalization scale. For each
|
570 |
+
InputEqualizationObserver, we will find the location of the next
|
571 |
+
WeightEqualizationObserver, create it, and calculate the equalization scale
|
572 |
+
based on the two observers.
|
573 |
+
|
574 |
+
We will then return a dictionary mapping operation node names to
|
575 |
+
the corresponding WeightEqualizationObservers for that operation.
|
576 |
+
"""
|
577 |
+
weight_eq_obs_dict = {}
|
578 |
+
for node in model.graph.nodes:
|
579 |
+
if node.op == 'call_module' and isinstance(modules[node.target], _InputEqualizationObserver):
|
580 |
+
input_eq_obs = modules[node.target]
|
581 |
+
assert isinstance(input_eq_obs, _InputEqualizationObserver)
|
582 |
+
op_node, weight_eq_obs = get_op_node_and_weight_eq_obs(node, model, modules)
|
583 |
+
|
584 |
+
if op_node is None or weight_eq_obs is None:
|
585 |
+
continue
|
586 |
+
|
587 |
+
if op_node.op == 'call_module':
|
588 |
+
# Calibrate the weight equalization observer since it has just
|
589 |
+
# been created
|
590 |
+
if fused_module_supports_equalization(modules[str(op_node.target)]):
|
591 |
+
module = modules[str(op_node.target)][0] # type: ignore[index]
|
592 |
+
assert nn_module_supports_equalization(module)
|
593 |
+
weight_eq_obs(module.weight)
|
594 |
+
else:
|
595 |
+
weight_eq_obs(modules[str(op_node.target)].weight)
|
596 |
+
|
597 |
+
# Calculate and set the equalization scale values
|
598 |
+
equalization_scale = calculate_equalization_scale(input_eq_obs, weight_eq_obs)
|
599 |
+
input_eq_obs.set_equalization_scale(equalization_scale)
|
600 |
+
weight_eq_obs.set_equalization_scale(equalization_scale)
|
601 |
+
|
602 |
+
weight_eq_obs_dict[op_node.name] = weight_eq_obs
|
603 |
+
|
604 |
+
return weight_eq_obs_dict
|
605 |
+
|
606 |
+
def convert_eq_obs(
|
607 |
+
model: GraphModule,
|
608 |
+
modules: Dict[str, nn.Module],
|
609 |
+
weight_eq_obs_dict: Dict[str, _WeightEqualizationObserver],
|
610 |
+
) -> None:
|
611 |
+
""" Converts the equalization operations and updates the other nodes in the
|
612 |
+
following way:
|
613 |
+
- Removes the input equalization observers and inserts a mul operator
|
614 |
+
along with an equalization scale node wherever applicable (we do not
|
615 |
+
want to insert a mul operator between connecting linear layers).
|
616 |
+
- Updates the input quantization observers with the scaled input min/max
|
617 |
+
values.
|
618 |
+
- Scales the weights by the current and next equalization scales.
|
619 |
+
- Removes the weight equalization observer node if it exists.
|
620 |
+
|
621 |
+
Before (after prepare):
|
622 |
+
weight values
|
623 |
+
|
|
624 |
+
WeightQuantObs
|
625 |
+
|
|
626 |
+
WeightEqObs
|
627 |
+
|
|
628 |
+
x -> InpQuantObs -> InpEqObs -> linear -> OutQuantObs
|
629 |
+
|
630 |
+
After this function:
|
631 |
+
scaled weight values
|
632 |
+
|
|
633 |
+
equalization scale WeightQuantObs
|
634 |
+
| |
|
635 |
+
x -> mul -> InpQuantObs (scaled min/max) -> linear -> OutQuantObs
|
636 |
+
|
637 |
+
After convert:
|
638 |
+
equalization scale scaled weight values
|
639 |
+
| |
|
640 |
+
x -> mul -> quantize_per_tensor -> quantized::linear
|
641 |
+
|
642 |
+
Note that although the equalization observer appeared after the quantization
|
643 |
+
observer after prepare_fx, the mul node appears before the quantization node
|
644 |
+
after convert_fx. This is because placing the equalization observer after
|
645 |
+
the quantization observer in prepare_fx would allow us to keep the invariant
|
646 |
+
that the graph before the current node inserts its observers is not
|
647 |
+
modified.
|
648 |
+
|
649 |
+
Having the equalization observer before the quantization observer would also
|
650 |
+
cause some inconsistences between the ordering of the quantization and
|
651 |
+
equalization observers.
|
652 |
+
For example, a single linear layer would look like:
|
653 |
+
x -> InpEqObs1 -> InpQuantObs1 -> linear1 -> OutQuantObs1
|
654 |
+
But between two connected linear layers, it would look like:
|
655 |
+
linear1 -> OutQuantObs1 -> InpEqObs2 -> linear2 -> OutQuantObs2
|
656 |
+
"""
|
657 |
+
for node in model.graph.nodes:
|
658 |
+
if node.op == 'call_module' and isinstance(modules[node.target], _InputEqualizationObserver):
|
659 |
+
inp_quant_obs_node = node.args[0]
|
660 |
+
prev_node = inp_quant_obs_node.args[0]
|
661 |
+
|
662 |
+
# If the previous node is a layer that needs to be equalized, then
|
663 |
+
# we will remove the current node because we do not need to add any
|
664 |
+
# equalization nodes between two layers that need to be equalized
|
665 |
+
|
666 |
+
# Before: linear1/relu (prev_node) -> output_quant_obs1 (inp_quant_obs_node) -> input_eq_obs2 (node) -> linear2
|
667 |
+
# After: linear1/relu (prev_node) -> output_quant_obs1 (inp_quant_obs_node) -> linear2
|
668 |
+
if node_supports_equalization(prev_node, modules) or "relu" in prev_node.name:
|
669 |
+
remove_node(model, node, inp_quant_obs_node)
|
670 |
+
continue
|
671 |
+
|
672 |
+
# Update the following input quantization observer's min/max values
|
673 |
+
scale_input_observer(node, modules)
|
674 |
+
|
675 |
+
# Remove the InputEqualization node and add a mul operator before
|
676 |
+
# the quantization observer node that appears before the equalization node
|
677 |
+
# Before: x -> input_quant_obs -> input_eq_obs -> linear
|
678 |
+
# After: x -> mul -> input_quant_obs -> linear
|
679 |
+
|
680 |
+
# Create a node containing the equalization scale
|
681 |
+
with model.graph.inserting_before(inp_quant_obs_node):
|
682 |
+
get_new_eq_scale_name = get_new_attr_name_with_prefix(prev_node.name + '_equalization_scale')
|
683 |
+
name = get_new_eq_scale_name(modules)
|
684 |
+
setattr(model, name, modules[node.target].equalization_scale)
|
685 |
+
eq_scale_node = model.graph.create_node('get_attr', name)
|
686 |
+
|
687 |
+
# Create a node multiplying the input with the equalization scale
|
688 |
+
with model.graph.inserting_after(eq_scale_node):
|
689 |
+
inputs = (prev_node, eq_scale_node)
|
690 |
+
mul_node = model.graph.create_node("call_function", torch.mul, inputs)
|
691 |
+
|
692 |
+
# Set the mul nod to be the input_quant_obs_node's input instead of
|
693 |
+
# the previous node
|
694 |
+
inp_quant_obs_node.replace_input_with(prev_node, mul_node)
|
695 |
+
remove_node(model, node, inp_quant_obs_node)
|
696 |
+
|
697 |
+
elif weight_eq_obs_dict.get(node.name, None) is not None:
|
698 |
+
weight_eq_obs = weight_eq_obs_dict.get(node.name)
|
699 |
+
assert isinstance(weight_eq_obs, _WeightEqualizationObserver)
|
700 |
+
equalization_scale = weight_eq_obs.equalization_scale
|
701 |
+
|
702 |
+
if equalization_scale.nelement() == 1 and equalization_scale == torch.tensor(1):
|
703 |
+
equalization_scale = None # type: ignore[assignment]
|
704 |
+
maybe_next_equalization_scale = maybe_get_next_equalization_scale(node, modules)
|
705 |
+
|
706 |
+
# Scale the weight nodes
|
707 |
+
if node.op == 'call_module':
|
708 |
+
scale_weight_node(node, modules, equalization_scale, maybe_next_equalization_scale)
|
709 |
+
elif node.op == 'call_function':
|
710 |
+
scale_weight_functional(node, model, modules, equalization_scale, maybe_next_equalization_scale)
|
711 |
+
|
712 |
+
weight_eq_obs_node = maybe_get_weight_eq_obs_node(node, modules)
|
713 |
+
if weight_eq_obs_node is None:
|
714 |
+
return
|
715 |
+
assert isinstance(modules[str(weight_eq_obs_node.target)], _WeightEqualizationObserver)
|
716 |
+
|
717 |
+
# Clear the quantization observer's min/max values so that they
|
718 |
+
# can get updated later based on the new scale values
|
719 |
+
clear_weight_quant_obs_node(node, modules)
|
720 |
+
|
721 |
+
# Erase the weight equalization observer node
|
722 |
+
prev_node = weight_eq_obs_node.args[0]
|
723 |
+
remove_node(model, weight_eq_obs_node, prev_node)
|
724 |
+
else:
|
725 |
+
raise ValueError("Expected operation node to be 'call_module' or 'call_function" +
|
726 |
+
f"Instead got node {node.name} as '{node.op}'.")
|
727 |
+
|
728 |
+
def _convert_equalization_ref(model: GraphModule):
|
729 |
+
""" Reference function which applies changes needed for equalization, but
|
730 |
+
does not quantize the nodes
|
731 |
+
"""
|
732 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
733 |
+
|
734 |
+
# Calculate the equalization scale, update the observers with the scaled
|
735 |
+
# inputs, and scale the weight
|
736 |
+
weight_eq_obs_dict = update_obs_for_equalization(model, modules)
|
737 |
+
convert_eq_obs(model, modules, weight_eq_obs_dict)
|
738 |
+
|
739 |
+
return GraphModule(model, model.graph)
|
740 |
+
|
741 |
+
|
742 |
+
###############################################################################
|
743 |
+
# Functions for running the equalized model on the Numeric Suite #
|
744 |
+
###############################################################################
|
745 |
+
|
746 |
+
def get_layer_sqnr_dict(model_a: nn.Module, model_b: nn.Module, x: torch.Tensor) -> Dict[str, float]:
|
747 |
+
""" Runs the Numeric Suite on model_a and model_b and returns a dictionary
|
748 |
+
containing the SQNR between layers in model_a and model_b.
|
749 |
+
|
750 |
+
Note: In order to support equalized models, this function has a hacky fix in
|
751 |
+
which we do not match any torch.mul operators. This is because equalized
|
752 |
+
models contain extra mul operators to scale the input by the equalization
|
753 |
+
scale, but this edge case has not been resolved yet within the numeric suite code.
|
754 |
+
|
755 |
+
Args:
|
756 |
+
model_a: A float model
|
757 |
+
model_b: A quantized model
|
758 |
+
x: Inputs to use during calibration
|
759 |
+
"""
|
760 |
+
import torch.ao.ns._numeric_suite_fx as ns
|
761 |
+
from torch.ao.ns.fx.mappings import get_unmatchable_types_map
|
762 |
+
|
763 |
+
unmatchable_types_map = get_unmatchable_types_map()
|
764 |
+
unmatchable_types_map["funs_unmatchable"].add(torch.mul)
|
765 |
+
|
766 |
+
model_a_ns, model_b_ns = ns.add_loggers(
|
767 |
+
'fp32', model_a,
|
768 |
+
'int8', model_b,
|
769 |
+
ns.OutputLogger,
|
770 |
+
unmatchable_types_map=unmatchable_types_map
|
771 |
+
)
|
772 |
+
|
773 |
+
model_a_ns(x)
|
774 |
+
model_b_ns(x)
|
775 |
+
|
776 |
+
activation_comparison_dict = ns.extract_logger_info(
|
777 |
+
model_a_ns,
|
778 |
+
model_b_ns,
|
779 |
+
ns.OutputLogger,
|
780 |
+
'int8')
|
781 |
+
ns.extend_logger_results_with_comparison(
|
782 |
+
activation_comparison_dict,
|
783 |
+
'fp32', 'int8',
|
784 |
+
torch.ao.ns.fx.utils.compute_sqnr, 'sqnr'
|
785 |
+
)
|
786 |
+
|
787 |
+
# Construct a dictionary mapping layer names to the SQNR values
|
788 |
+
layer_sqnr_dict = {}
|
789 |
+
for key in activation_comparison_dict:
|
790 |
+
layer = activation_comparison_dict[key]['node_output']['int8'][0]['fqn']
|
791 |
+
sqnr = activation_comparison_dict[key]['node_output']['int8'][0]['sqnr'][0]
|
792 |
+
layer_sqnr_dict[layer] = sqnr
|
793 |
+
|
794 |
+
return layer_sqnr_dict
|
795 |
+
|
796 |
+
def get_equalization_qconfig_dict(
|
797 |
+
layer_sqnr_dict: Dict[str, float],
|
798 |
+
num_layers_to_equalize: int
|
799 |
+
) -> Any:
|
800 |
+
""" Given the layer to SQNR dictionary, find the layers with the highest
|
801 |
+
quantization errors, and return an equalization_qconfig_dict
|
802 |
+
specifying to only equalize those top layers.
|
803 |
+
|
804 |
+
Args:
|
805 |
+
layer_sqnr_dict: Dictionary mapping layer names to SQNR values (found
|
806 |
+
when comparing an equalized model against a float model)
|
807 |
+
num_layers_to_equalize: Number of layers with the highest quantization
|
808 |
+
errors to equalize
|
809 |
+
"""
|
810 |
+
|
811 |
+
# Sort the layer_sqnr_dictionary values and get the layers with the lowest
|
812 |
+
# SQNR values (aka highest quantization errors)
|
813 |
+
layer_sqnr_sorted = sorted(layer_sqnr_dict.items(), key=lambda item: item[1])
|
814 |
+
layers_to_equalize = layer_sqnr_sorted[:num_layers_to_equalize]
|
815 |
+
|
816 |
+
# Constructs an equalization_qconfig_dict that specifies to only equalize
|
817 |
+
# the layers with the highest quantization errors
|
818 |
+
module_to_qconfig_list = [(item[0], default_equalization_qconfig) for item in layers_to_equalize]
|
819 |
+
equalization_qconfig_dict = {"module_name": module_to_qconfig_list}
|
820 |
+
return equalization_qconfig_dict
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/_lower_to_native_backend.py
ADDED
@@ -0,0 +1,1170 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.fx import map_arg, Node
|
3 |
+
from torch.fx.graph import Graph
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.nn.functional as F
|
6 |
+
import torch.ao.nn.intrinsic as nni
|
7 |
+
import torch.ao.nn.intrinsic.quantized as nniq
|
8 |
+
import torch.ao.nn.intrinsic.quantized.dynamic as nniqd
|
9 |
+
import torch.ao.nn.quantized as nnq
|
10 |
+
import torch.ao.nn.quantized.dynamic as nnqd
|
11 |
+
import torch.ao.nn.quantized.reference as nnqr
|
12 |
+
from torch.ao.nn.quantized.modules.utils import WeightedQuantizedModule
|
13 |
+
from torch.fx import GraphModule
|
14 |
+
from .utils import (
|
15 |
+
collect_producer_nodes,
|
16 |
+
get_linear_prepack_op_for_dtype,
|
17 |
+
get_new_attr_name_with_prefix,
|
18 |
+
get_qconv_prepack_op,
|
19 |
+
graph_module_from_producer_nodes,
|
20 |
+
)
|
21 |
+
from ..utils import _parent_name
|
22 |
+
from ..qconfig import QConfigAny
|
23 |
+
from ..quantization_mappings import get_quantized_operator
|
24 |
+
from .utils import create_node_from_old_node_preserve_meta
|
25 |
+
from typing import Dict, Tuple, Type, List, Callable, Any, Union, Set, Optional
|
26 |
+
import operator
|
27 |
+
|
28 |
+
QOP_TO_ARG_NAMES_TO_SKIP = {
|
29 |
+
torch._ops.ops.quantized.hardswish: ['inplace'],
|
30 |
+
torch._ops.ops.quantized.elu: ['inplace'],
|
31 |
+
torch._ops.ops.quantized.dropout: ['inplace'],
|
32 |
+
torch._ops.ops.quantized.instance_norm:
|
33 |
+
['running_mean', 'running_var', 'use_input_stats', 'momentum'],
|
34 |
+
}
|
35 |
+
|
36 |
+
def _is_node_in_list(node, modules, func_list, method_list, module_type_list):
|
37 |
+
is_call_function = node.op == "call_function" and node.target in func_list
|
38 |
+
is_call_method = node.op == "call_method" and node.target in method_list
|
39 |
+
is_call_module = node.op == "call_module" and type(modules[str(node.target)]) in module_type_list
|
40 |
+
return is_call_function, is_call_method, is_call_module
|
41 |
+
|
42 |
+
def is_fixed_qparams_node(node, modules):
|
43 |
+
func_list = [
|
44 |
+
torch.nn.functional.hardsigmoid,
|
45 |
+
torch.nn.functional.sigmoid,
|
46 |
+
torch.sigmoid,
|
47 |
+
torch.tanh,
|
48 |
+
]
|
49 |
+
method_list = [
|
50 |
+
"hardsigmoid",
|
51 |
+
"hardsigmoid_",
|
52 |
+
"sigmoid",
|
53 |
+
"sigmoid_",
|
54 |
+
"tanh",
|
55 |
+
"tanh_",
|
56 |
+
]
|
57 |
+
module_type_list = [
|
58 |
+
torch.nn.Hardsigmoid,
|
59 |
+
torch.nn.Sigmoid,
|
60 |
+
torch.nn.Tanh,
|
61 |
+
torch.nn.Softmax,
|
62 |
+
]
|
63 |
+
return _is_node_in_list(node, modules, func_list, method_list, module_type_list)
|
64 |
+
|
65 |
+
def is_default_node(node, modules):
|
66 |
+
func_list = [
|
67 |
+
torch.nn.functional.elu,
|
68 |
+
torch.nn.functional.hardswish,
|
69 |
+
torch.nn.functional.instance_norm,
|
70 |
+
torch.nn.functional.layer_norm,
|
71 |
+
torch.nn.functional.leaky_relu,
|
72 |
+
torch.nn.functional.dropout,
|
73 |
+
]
|
74 |
+
method_list: List[Any] = []
|
75 |
+
module_type_list = [
|
76 |
+
nnqr.ConvTranspose1d,
|
77 |
+
nnqr.ConvTranspose2d,
|
78 |
+
nnqr.ConvTranspose3d,
|
79 |
+
torch.nn.ELU,
|
80 |
+
torch.nn.LeakyReLU,
|
81 |
+
torch.nn.Hardswish,
|
82 |
+
torch.nn.InstanceNorm1d,
|
83 |
+
torch.nn.InstanceNorm2d,
|
84 |
+
torch.nn.InstanceNorm3d,
|
85 |
+
torch.nn.LayerNorm,
|
86 |
+
torch.nn.Dropout,
|
87 |
+
torch.nn.PReLU,
|
88 |
+
torch.nn.BatchNorm2d,
|
89 |
+
torch.nn.BatchNorm3d,
|
90 |
+
torch.ao.nn.intrinsic.BNReLU2d,
|
91 |
+
torch.ao.nn.intrinsic.BNReLU3d,
|
92 |
+
]
|
93 |
+
return _is_node_in_list(node, modules, func_list, method_list, module_type_list)
|
94 |
+
|
95 |
+
def is_copy_node(node, modules):
|
96 |
+
func_list = [
|
97 |
+
torch.adaptive_avg_pool1d,
|
98 |
+
torch.nn.functional.adaptive_avg_pool2d,
|
99 |
+
torch.nn.functional.adaptive_avg_pool3d,
|
100 |
+
torch.nn.functional.hardtanh,
|
101 |
+
torch.nn.functional.hardtanh_,
|
102 |
+
torch.nn.functional.interpolate,
|
103 |
+
torch.nn.functional.max_pool1d,
|
104 |
+
torch.nn.functional.max_pool2d,
|
105 |
+
torch.nn.functional.max_pool3d,
|
106 |
+
torch.nn.functional.relu,
|
107 |
+
torch.nn.functional.relu6,
|
108 |
+
torch.avg_pool1d,
|
109 |
+
torch._C._nn.avg_pool2d,
|
110 |
+
torch._C._nn.avg_pool3d,
|
111 |
+
torch.clamp,
|
112 |
+
torch.flatten,
|
113 |
+
torch.mean,
|
114 |
+
operator.floordiv,
|
115 |
+
# F.channel_shuffle and torch.channel_shuffle are essentially the same thing
|
116 |
+
# so we only need to put one of them here
|
117 |
+
torch.channel_shuffle,
|
118 |
+
]
|
119 |
+
method_list = [
|
120 |
+
"clamp",
|
121 |
+
"mean",
|
122 |
+
"relu",
|
123 |
+
"relu_",
|
124 |
+
]
|
125 |
+
module_type_list = [
|
126 |
+
torch.nn.AdaptiveAvgPool1d,
|
127 |
+
torch.nn.AdaptiveAvgPool2d,
|
128 |
+
torch.nn.AdaptiveAvgPool3d,
|
129 |
+
torch.nn.AvgPool1d,
|
130 |
+
torch.nn.AvgPool2d,
|
131 |
+
torch.nn.AvgPool3d,
|
132 |
+
torch.nn.Hardtanh,
|
133 |
+
torch.nn.MaxPool1d,
|
134 |
+
torch.nn.MaxPool2d,
|
135 |
+
torch.nn.MaxPool3d,
|
136 |
+
torch.nn.ReLU,
|
137 |
+
torch.nn.ReLU6,
|
138 |
+
torch.nn.ChannelShuffle,
|
139 |
+
]
|
140 |
+
return _is_node_in_list(node, modules, func_list, method_list, module_type_list)
|
141 |
+
|
142 |
+
def is_general_tensor_shape_node(node, modules):
|
143 |
+
func_list = [
|
144 |
+
torch.narrow,
|
145 |
+
torch.transpose,
|
146 |
+
torch.repeat_interleave,
|
147 |
+
torch.squeeze,
|
148 |
+
torch.stack,
|
149 |
+
torch.unsqueeze,
|
150 |
+
torch.nn.functional.pixel_shuffle,
|
151 |
+
torch.nn.functional.pixel_unshuffle,
|
152 |
+
]
|
153 |
+
method_list = [
|
154 |
+
"contiguous",
|
155 |
+
"detach",
|
156 |
+
"detach_",
|
157 |
+
"permute",
|
158 |
+
"repeat",
|
159 |
+
"repeat_interleave",
|
160 |
+
"reshape",
|
161 |
+
"resize_",
|
162 |
+
"shape",
|
163 |
+
"size",
|
164 |
+
"squeeze",
|
165 |
+
"squeeze_",
|
166 |
+
"transpose",
|
167 |
+
"unsqueeze",
|
168 |
+
"unsqueeze_",
|
169 |
+
"view",
|
170 |
+
]
|
171 |
+
module_type_list = [
|
172 |
+
torch.nn.Identity,
|
173 |
+
torch.nn.PixelShuffle,
|
174 |
+
torch.nn.PixelUnshuffle,
|
175 |
+
]
|
176 |
+
return _is_node_in_list(node, modules, func_list, method_list, module_type_list)
|
177 |
+
|
178 |
+
def is_other_node(node, modules):
|
179 |
+
func_list = [
|
180 |
+
torch.cat,
|
181 |
+
]
|
182 |
+
method_list: List[Any] = []
|
183 |
+
module_type_list: List[Any] = []
|
184 |
+
return _is_node_in_list(node, modules, func_list, method_list, module_type_list)
|
185 |
+
|
186 |
+
def is_special_pattern_node(node, modules):
|
187 |
+
res_function, res_method, res_module = False, False, False
|
188 |
+
for checker in [is_fixed_qparams_node, is_default_node, is_copy_node, is_general_tensor_shape_node, is_other_node]:
|
189 |
+
is_call_function, is_call_method, is_call_module = checker(node, modules)
|
190 |
+
res_function = res_function or is_call_function
|
191 |
+
res_method = res_method or is_call_method
|
192 |
+
res_module = res_module or is_call_module
|
193 |
+
return res_function, res_method, res_module
|
194 |
+
|
195 |
+
def is_dequantize_node(node):
|
196 |
+
return isinstance(node, Node) and node.op == "call_method" and node.target == "dequantize"
|
197 |
+
|
198 |
+
def is_getattr_tensor_metadata_node(node):
|
199 |
+
return node.op == "call_function" and \
|
200 |
+
node.target == getattr and \
|
201 |
+
node.args[1] in ["shape"]
|
202 |
+
|
203 |
+
def is_get_tensor_info_node(node):
|
204 |
+
return node.op == "call_method" and \
|
205 |
+
node.target in ["shape", "size"]
|
206 |
+
|
207 |
+
def should_skip_lowering(op: torch.fx.node.Node, qconfig_map: Dict[str, QConfigAny]):
|
208 |
+
"""
|
209 |
+
Return True if the op is configured with a None qconfig, False otherwise.
|
210 |
+
Note: maybe need to generalize this to also check for the dtype, and we
|
211 |
+
only lower when dtype matches, but right now fbgemm/qnnpack only support
|
212 |
+
a single dtype, so it is OK for now.
|
213 |
+
"""
|
214 |
+
return op.name in qconfig_map and qconfig_map[op.name] is None
|
215 |
+
|
216 |
+
# Mapping from reference module class to the replacement static quantized module class for lowering
|
217 |
+
STATIC_LOWER_MODULE_MAP: Dict[Type[nn.Module], Type[WeightedQuantizedModule]] = {
|
218 |
+
nnqr.Linear: nnq.Linear,
|
219 |
+
nnqr.Conv1d: nnq.Conv1d,
|
220 |
+
nnqr.Conv2d: nnq.Conv2d,
|
221 |
+
nnqr.Conv3d: nnq.Conv3d,
|
222 |
+
}
|
223 |
+
|
224 |
+
# Mapping from reference module class to the replacement dynamic quantized module class for lowering
|
225 |
+
DYNAMIC_LOWER_MODULE_MAP: Dict[Type[nn.Module], Type[nn.Module]] = {
|
226 |
+
nnqr.Linear: nnqd.Linear,
|
227 |
+
nnqr.GRUCell: nnqd.GRUCell,
|
228 |
+
nnqr.LSTMCell: nnqd.LSTMCell,
|
229 |
+
nnqr.RNNCell: nnqd.RNNCell,
|
230 |
+
nnqr.LSTM: nnqd.LSTM,
|
231 |
+
nnqr.GRU: nnqd.GRU,
|
232 |
+
}
|
233 |
+
|
234 |
+
# Mapping from reference module class to the replacement weight only quantized module class for lowering
|
235 |
+
# TODO: correct the namespace for these modules
|
236 |
+
WEIGHT_ONLY_LOWER_MODULE_MAP: Dict[Type[nn.Module], Type[nn.Module]] = {
|
237 |
+
nnqr.Embedding: nnq.Embedding,
|
238 |
+
nnqr.EmbeddingBag: nnq.EmbeddingBag,
|
239 |
+
}
|
240 |
+
|
241 |
+
# TODO: merge with STATIC_LOWER_MODULE_MAP after we merge
|
242 |
+
# _lower_static_weighted_ref_module and special_pattern_replacement
|
243 |
+
SPECIAL_PATTERN_LOWER_MODULE_MAP = {
|
244 |
+
nn.BatchNorm2d: nnq.BatchNorm2d,
|
245 |
+
nn.BatchNorm3d: nnq.BatchNorm3d,
|
246 |
+
nnqr.ConvTranspose1d: nnq.ConvTranspose1d,
|
247 |
+
nnqr.ConvTranspose2d: nnq.ConvTranspose2d,
|
248 |
+
nnqr.ConvTranspose3d: nnq.ConvTranspose3d,
|
249 |
+
nn.ELU: nnq.ELU,
|
250 |
+
nn.LeakyReLU: nnq.LeakyReLU,
|
251 |
+
nn.Hardswish: nnq.Hardswish,
|
252 |
+
nn.InstanceNorm1d: nnq.InstanceNorm1d,
|
253 |
+
nn.InstanceNorm2d: nnq.InstanceNorm2d,
|
254 |
+
nn.InstanceNorm3d: nnq.InstanceNorm3d,
|
255 |
+
nn.LayerNorm: nnq.LayerNorm,
|
256 |
+
nn.Dropout: nnq.Dropout,
|
257 |
+
nn.Softmax: nnq.Softmax,
|
258 |
+
nn.PReLU: nnq.PReLU,
|
259 |
+
nni.BNReLU2d: nniq.BNReLU2d,
|
260 |
+
nni.BNReLU3d: nniq.BNReLU3d,
|
261 |
+
}
|
262 |
+
|
263 |
+
# Mapping from fused module class to a 2-tuple of:
|
264 |
+
# 1) The inner reference module class
|
265 |
+
# 2) The replacement static quantized module class for lowering
|
266 |
+
STATIC_LOWER_FUSED_MODULE_MAP: Dict[Type[nn.Module], Tuple[Type[nn.Module], Type[WeightedQuantizedModule]]] = {
|
267 |
+
nni.LinearReLU: (nnqr.Linear, nniq.LinearReLU),
|
268 |
+
# TODO: LinearLeakyReLU is registered as global but it is only fused and
|
269 |
+
# lowered when ondnn's backend config is used. Maybe need to separate
|
270 |
+
# registration and lowering functions for different backends in the future.
|
271 |
+
nni.LinearLeakyReLU: (nnqr.Linear, nniq.LinearLeakyReLU),
|
272 |
+
nni.LinearTanh: (nnqr.Linear, nniq.LinearTanh),
|
273 |
+
nni.ConvReLU1d: (nnqr.Conv1d, nniq.ConvReLU1d),
|
274 |
+
nni.ConvReLU2d: (nnqr.Conv2d, nniq.ConvReLU2d),
|
275 |
+
nni.ConvReLU3d: (nnqr.Conv3d, nniq.ConvReLU3d),
|
276 |
+
}
|
277 |
+
|
278 |
+
# The difference between STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP and STATIC_LOWER_FUSED_MODULE_MAP:
|
279 |
+
# The refer node inside STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP has 2 inputs.
|
280 |
+
# Mapping from fused module class to a 2-tuple of:
|
281 |
+
# 1) The inner reference module class
|
282 |
+
# 2) The replacement static quantized module class for lowering
|
283 |
+
STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP: Dict[Type[nn.Module], Tuple[Type[nn.Module], Type[WeightedQuantizedModule]]] = {
|
284 |
+
nni.ConvAdd2d: (nnqr.Conv2d, nniq.ConvAdd2d),
|
285 |
+
nni.ConvAddReLU2d: (nnqr.Conv2d, nniq.ConvAddReLU2d),
|
286 |
+
}
|
287 |
+
|
288 |
+
# Mapping from fused module class to a 2-tuple of:
|
289 |
+
# 1) The inner reference module class
|
290 |
+
# 2) The replacement dynamic quantized module class for lowering
|
291 |
+
DYNAMIC_LOWER_FUSED_MODULE_MAP: Dict[Type[nn.Module], Tuple[Type[nn.Module], Type[nn.Module]]] = {
|
292 |
+
nni.LinearReLU: (nnqr.Linear, nniqd.LinearReLU),
|
293 |
+
}
|
294 |
+
|
295 |
+
# Mapping from a functional to lower to a 2-tuple of
|
296 |
+
# 1) The quantized version of the op
|
297 |
+
# 2) The quantized version of the op fused with relu, if it exists, else None
|
298 |
+
STATIC_LOWER_FUNCTIONAL_MAP: Dict[Callable, Tuple[Callable, Optional[Callable]]] = {
|
299 |
+
F.linear: (torch.ops.quantized.linear, torch.ops.quantized.linear_relu),
|
300 |
+
F.conv1d: (torch.ops.quantized.conv1d, torch.ops.quantized.conv1d_relu),
|
301 |
+
F.conv2d: (torch.ops.quantized.conv2d, torch.ops.quantized.conv2d_relu),
|
302 |
+
F.conv3d: (torch.ops.quantized.conv3d, torch.ops.quantized.conv3d_relu),
|
303 |
+
F.conv_transpose1d: (torch.ops.quantized.conv_transpose1d, None),
|
304 |
+
F.conv_transpose2d: (torch.ops.quantized.conv_transpose2d, None),
|
305 |
+
F.conv_transpose3d: (torch.ops.quantized.conv_transpose3d, None),
|
306 |
+
}
|
307 |
+
|
308 |
+
WEIGHT_PREPACK_OPS: Set[Callable] = {
|
309 |
+
torch._ops.ops.quantized.linear_prepack,
|
310 |
+
torch._ops.ops.quantized.linear_prepack_fp16,
|
311 |
+
torch._ops.ops.quantized.conv1d_prepack,
|
312 |
+
torch._ops.ops.quantized.conv2d_prepack,
|
313 |
+
torch._ops.ops.quantized.conv3d_prepack,
|
314 |
+
torch.ops.quantized.conv_transpose1d_prepack,
|
315 |
+
torch.ops.quantized.conv_transpose2d_prepack,
|
316 |
+
torch.ops.quantized.conv_transpose3d_prepack,
|
317 |
+
}
|
318 |
+
|
319 |
+
# Mapping from a functional to a dictionary, where the key is a 2-tuple of
|
320 |
+
# (input_activation_dtype, weight_dtype) and the value is a 2-tuple of
|
321 |
+
# 1) The dynamically quantized version of the op
|
322 |
+
# 2) The dynamically quantized version of the op fused with relu, if it exists, else None
|
323 |
+
DYNAMIC_LOWER_FUNCTIONAL_MAP: Dict[Callable, Dict[Tuple[torch.dtype, torch.dtype], Tuple[Callable, Optional[Callable]]]] = {
|
324 |
+
F.linear: {
|
325 |
+
(torch.quint8, torch.qint8): (torch.ops.quantized.linear_dynamic,
|
326 |
+
torch.ops.quantized.linear_relu_dynamic),
|
327 |
+
(torch.float16, torch.float16): (torch.ops.quantized.linear_dynamic_fp16,
|
328 |
+
torch.ops.quantized.linear_relu_dynamic_fp16)
|
329 |
+
},
|
330 |
+
# dynamic conv + relu is not available yet
|
331 |
+
F.conv1d: {
|
332 |
+
(torch.quint8, torch.qint8): (torch.ops.quantized.conv1d_dynamic, None),
|
333 |
+
},
|
334 |
+
F.conv2d: {
|
335 |
+
(torch.quint8, torch.qint8): (torch.ops.quantized.conv2d_dynamic, None),
|
336 |
+
},
|
337 |
+
F.conv3d: {
|
338 |
+
(torch.quint8, torch.qint8): (torch.ops.quantized.conv3d_dynamic, None),
|
339 |
+
},
|
340 |
+
}
|
341 |
+
|
342 |
+
CONV_FUNCTIONAL_OPS: Set[Callable] = {
|
343 |
+
F.conv1d,
|
344 |
+
F.conv2d,
|
345 |
+
F.conv3d,
|
346 |
+
}
|
347 |
+
|
348 |
+
CONV_TRANSPOSE_FUNCTIONAL_OPS: Set[Callable] = {
|
349 |
+
F.conv_transpose1d,
|
350 |
+
F.conv_transpose2d,
|
351 |
+
F.conv_transpose3d,
|
352 |
+
}
|
353 |
+
|
354 |
+
# TODO: add tests for lowering these ops
|
355 |
+
QBIN_OP_MAPPING: Dict[Union[Callable, str], Callable] = {
|
356 |
+
operator.add: torch.ops.quantized.add,
|
357 |
+
torch.add: torch.ops.quantized.add,
|
358 |
+
operator.mul: torch.ops.quantized.mul,
|
359 |
+
operator.matmul: torch.ops.quantized.matmul,
|
360 |
+
torch.mul: torch.ops.quantized.mul,
|
361 |
+
torch.matmul: torch.ops.quantized.matmul,
|
362 |
+
}
|
363 |
+
QBIN_RELU_OP_MAPPING: Dict[Union[Callable, str], Callable] = {
|
364 |
+
operator.add: torch.ops.quantized.add_relu,
|
365 |
+
torch.add: torch.ops.quantized.add_relu,
|
366 |
+
operator.mul: torch.ops.quantized.mul_relu,
|
367 |
+
torch.mul: torch.ops.quantized.mul_relu,
|
368 |
+
}
|
369 |
+
|
370 |
+
def _save_packed_weight(self, destination, prefix, keep_vars):
|
371 |
+
for attr_name in dir(self):
|
372 |
+
if "_packed_weight" in attr_name and \
|
373 |
+
isinstance(getattr(self, attr_name), torch._C.ScriptObject): # type: ignore[attr-defined]
|
374 |
+
packed_weight = getattr(self, attr_name)
|
375 |
+
destination[prefix + attr_name] = packed_weight
|
376 |
+
|
377 |
+
def _load_packed_weight(self, state_dict, prefix, local_metadata, strict,
|
378 |
+
missing_keys, unexpected_keys, error_msgs):
|
379 |
+
attrs_to_pop = []
|
380 |
+
for attr_name in state_dict:
|
381 |
+
if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject): # type: ignore[attr-defined] # noqa: B950
|
382 |
+
setattr(self, attr_name, state_dict[attr_name])
|
383 |
+
attrs_to_pop.append(attr_name)
|
384 |
+
|
385 |
+
# pop the packed param attributesn
|
386 |
+
for attr_name in attrs_to_pop:
|
387 |
+
state_dict.pop(attr_name)
|
388 |
+
|
389 |
+
def fold_weight(
|
390 |
+
quantized_model: GraphModule,
|
391 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
392 |
+
) -> GraphModule:
|
393 |
+
"""
|
394 |
+
Trace back from the weight node util we hit getattr, reconstruct the
|
395 |
+
graph module with the traced nodes and run the graph module to pack the
|
396 |
+
weight. then replace the original chain of ops with the packed weight.
|
397 |
+
"""
|
398 |
+
packed_weights = {}
|
399 |
+
# map from folded node name to the prepacked weight name
|
400 |
+
folded_nodes = {}
|
401 |
+
# get packed weights
|
402 |
+
for node in quantized_model.graph.nodes:
|
403 |
+
if node.op == 'call_function' and node.target in WEIGHT_PREPACK_OPS:
|
404 |
+
nodes_to_fold = collect_producer_nodes(node)
|
405 |
+
if nodes_to_fold is not None:
|
406 |
+
for node_to_fold in nodes_to_fold:
|
407 |
+
folded_nodes[node_to_fold.name] = node
|
408 |
+
|
409 |
+
prepacking_module = graph_module_from_producer_nodes(
|
410 |
+
quantized_model, nodes_to_fold)
|
411 |
+
packed_weight = prepacking_module()
|
412 |
+
packed_weights[node.name] = packed_weight
|
413 |
+
|
414 |
+
# remove folded nodes and replace the prepacking node with getattr
|
415 |
+
folded_graph = Graph()
|
416 |
+
env: Dict[Any, Any] = {}
|
417 |
+
|
418 |
+
def load_arg(a):
|
419 |
+
return map_arg(a, lambda node: env[node.name])
|
420 |
+
|
421 |
+
for node in quantized_model.graph.nodes:
|
422 |
+
prepack_node = folded_nodes.get(node.name, None)
|
423 |
+
if prepack_node is node:
|
424 |
+
packed_weight = packed_weights[node.name]
|
425 |
+
# add a prepacked attribute to root
|
426 |
+
op_node = next(iter(prepack_node.users))
|
427 |
+
module_path, _ = node_name_to_scope[op_node.name]
|
428 |
+
get_new_packed_weight_name = \
|
429 |
+
get_new_attr_name_with_prefix(module_path + '_packed_weight_')
|
430 |
+
packed_weight_name = get_new_packed_weight_name(quantized_model)
|
431 |
+
setattr(quantized_model, packed_weight_name, packed_weight)
|
432 |
+
# replace prepack node with a getattr node
|
433 |
+
env[node.name] = folded_graph.create_node(
|
434 |
+
'get_attr', packed_weight_name, (), {})
|
435 |
+
elif prepack_node is not None:
|
436 |
+
# remove the foled node
|
437 |
+
continue
|
438 |
+
else:
|
439 |
+
# copy other nodes
|
440 |
+
env[node.name] = folded_graph.node_copy(node, load_arg)
|
441 |
+
|
442 |
+
quantized_model = GraphModule(quantized_model, folded_graph)
|
443 |
+
quantized_model._register_state_dict_hook(_save_packed_weight)
|
444 |
+
quantized_model._register_load_state_dict_pre_hook(_load_packed_weight, with_module=True)
|
445 |
+
return quantized_model
|
446 |
+
|
447 |
+
def _get_module(node: Node, modules: Dict[str, nn.Module]) -> Optional[nn.Module]:
|
448 |
+
"""
|
449 |
+
Return the `torch.nn.Module` that corresponds to the specified node's target.
|
450 |
+
If no such node exists, return None.
|
451 |
+
"""
|
452 |
+
if node.op == "call_module" and str(node.target) in modules:
|
453 |
+
return modules[str(node.target)]
|
454 |
+
else:
|
455 |
+
return None
|
456 |
+
|
457 |
+
def _match_static_pattern(
|
458 |
+
node: Node,
|
459 |
+
modules: Dict[str, nn.Module],
|
460 |
+
qconfig_map: Dict[str, QConfigAny],
|
461 |
+
matching_modules_or_ops: List[Callable],
|
462 |
+
dequantize_node_arg_indices: List[int]
|
463 |
+
) -> Union[Tuple[Node, Node, Node], Tuple[None, None, None]]:
|
464 |
+
"""
|
465 |
+
Match the pattern (dequantize - ref node - quantize) against the node provided.
|
466 |
+
|
467 |
+
If there is a match, return a 3-tuple of:
|
468 |
+
1) q_node: the quantize node,
|
469 |
+
2) relu_node: a relu node wrapping the ref_node, and
|
470 |
+
3) ref_node: a reference module or functional node to replace with its quantized counterpart
|
471 |
+
Otherwise, if there is no match, return a 3-tuple of (None, None, None).
|
472 |
+
|
473 |
+
Parameters:
|
474 |
+
node: The `torch.fx.Node` to match against.
|
475 |
+
modules: A mapping from node names to modules in the model graph, used for module lookup.
|
476 |
+
qconfig_map: A mapping from node names to the qconfigs associated with the nodes.
|
477 |
+
If the corresponding qconfig for the reference node is None, then return no match.
|
478 |
+
matching_modules_or_ops: Either a list of functions or a list of `torch.nn.Module`s.
|
479 |
+
If the reference node is not in this list, then return no match.
|
480 |
+
dequantize_node_arg_indices: A list of indices in the reference node args where dequantize
|
481 |
+
nodes may be present. An empty list means skipping the check for dequantize nodes.
|
482 |
+
"""
|
483 |
+
SKIP_LOWERING_VALUE = (None, None, None)
|
484 |
+
|
485 |
+
# Match quantize node
|
486 |
+
if node.op != "call_function" or node.target != torch.quantize_per_tensor:
|
487 |
+
return SKIP_LOWERING_VALUE
|
488 |
+
q_node = node
|
489 |
+
ref_node = q_node.args[0]
|
490 |
+
assert isinstance(ref_node, Node)
|
491 |
+
|
492 |
+
# Handle cases where the node is wrapped in a ReLU
|
493 |
+
if (ref_node.op == "call_function" and ref_node.target in (F.relu, torch.relu)) or\
|
494 |
+
(ref_node.op == "call_module" and type(_get_module(ref_node, modules)) == nn.ReLU):
|
495 |
+
relu_node = ref_node
|
496 |
+
ref_node = relu_node.args[0]
|
497 |
+
assert isinstance(ref_node, Node)
|
498 |
+
else:
|
499 |
+
relu_node = None
|
500 |
+
if should_skip_lowering(ref_node, qconfig_map):
|
501 |
+
return SKIP_LOWERING_VALUE
|
502 |
+
|
503 |
+
# Match reference module or functional
|
504 |
+
if isinstance(matching_modules_or_ops[0], type) and issubclass(matching_modules_or_ops[0], nn.Module):
|
505 |
+
expected_op = "call_module"
|
506 |
+
match_key = type(_get_module(ref_node, modules))
|
507 |
+
else:
|
508 |
+
expected_op = "call_function"
|
509 |
+
match_key = ref_node.target
|
510 |
+
if ref_node.op != expected_op or match_key not in matching_modules_or_ops:
|
511 |
+
return SKIP_LOWERING_VALUE
|
512 |
+
|
513 |
+
# Match dequantize node(s). Both of the following conditions must pass:
|
514 |
+
# (1) All `torch.fx.Node`s at the matching indices must be a dequantize node
|
515 |
+
# (2) There must be at least one dequantize node
|
516 |
+
matched_dequantize = False
|
517 |
+
for i in dequantize_node_arg_indices:
|
518 |
+
assert i < len(ref_node.args), \
|
519 |
+
f"Dequantize index {i} exceeded reference node's arg length {len(ref_node.args)}"
|
520 |
+
arg = ref_node.args[i]
|
521 |
+
if is_dequantize_node(arg):
|
522 |
+
matched_dequantize = True
|
523 |
+
elif isinstance(arg, Node):
|
524 |
+
return SKIP_LOWERING_VALUE
|
525 |
+
if not matched_dequantize:
|
526 |
+
return SKIP_LOWERING_VALUE
|
527 |
+
|
528 |
+
return (q_node, relu_node, ref_node)
|
529 |
+
|
530 |
+
def _match_static_pattern_with_two_inputs(
|
531 |
+
node: Node,
|
532 |
+
modules: Dict[str, nn.Module],
|
533 |
+
qconfig_map: Dict[str, QConfigAny],
|
534 |
+
matching_modules_or_ops: List[Callable]
|
535 |
+
) -> Union[Tuple[Node, Node], Tuple[None, None]]:
|
536 |
+
"""
|
537 |
+
(dequantize \
|
538 |
+
Match the pattern (dequantize - ref node - quantize) against the node provided.
|
539 |
+
|
540 |
+
If there is a match, return a 2-tuple of:
|
541 |
+
1) q_node: the quantize node,
|
542 |
+
2) ref_node: a reference module or functional node to replace with its quantized counterpart
|
543 |
+
Otherwise, if there is no match, return a 2-tuple of (None, None).
|
544 |
+
|
545 |
+
Parameters:
|
546 |
+
node: The `torch.fx.Node` to match against.
|
547 |
+
modules: A mapping from node names to modules in the model graph, used for module lookup.
|
548 |
+
qconfig_map: A mapping from node names to the qconfigs associated with the nodes.
|
549 |
+
If the corresponding qconfig for the reference node is None, then return no match.
|
550 |
+
matching_modules_or_ops: Either a list of functions or a list of `torch.nn.Module`s.
|
551 |
+
If the reference node is not in this list, then return no match.
|
552 |
+
"""
|
553 |
+
SKIP_LOWERING_VALUE = (None, None)
|
554 |
+
|
555 |
+
# Match quantize node
|
556 |
+
if node.op != "call_function" or node.target != torch.quantize_per_tensor:
|
557 |
+
return SKIP_LOWERING_VALUE
|
558 |
+
q_node = node
|
559 |
+
ref_node = q_node.args[0]
|
560 |
+
assert isinstance(ref_node, Node)
|
561 |
+
|
562 |
+
if should_skip_lowering(ref_node, qconfig_map):
|
563 |
+
return SKIP_LOWERING_VALUE
|
564 |
+
|
565 |
+
# Match reference module or functional
|
566 |
+
if isinstance(matching_modules_or_ops[0], type) and issubclass(matching_modules_or_ops[0], nn.Module):
|
567 |
+
expected_op = "call_module"
|
568 |
+
match_key = type(_get_module(ref_node, modules))
|
569 |
+
else:
|
570 |
+
# This pass only support op of "call_module"
|
571 |
+
return SKIP_LOWERING_VALUE
|
572 |
+
|
573 |
+
if ref_node.op != expected_op or match_key not in matching_modules_or_ops:
|
574 |
+
return SKIP_LOWERING_VALUE
|
575 |
+
|
576 |
+
# Check ref_node has 2 input nodes, both are dq node.
|
577 |
+
if len(ref_node.args) != 2:
|
578 |
+
return SKIP_LOWERING_VALUE
|
579 |
+
for i in range(len(ref_node.args)):
|
580 |
+
arg = ref_node.args[i]
|
581 |
+
if not is_dequantize_node(arg):
|
582 |
+
return SKIP_LOWERING_VALUE
|
583 |
+
|
584 |
+
return (q_node, ref_node)
|
585 |
+
|
586 |
+
def _lower_static_weighted_ref_module(
|
587 |
+
model: GraphModule,
|
588 |
+
qconfig_map: Dict[str, QConfigAny]):
|
589 |
+
"""
|
590 |
+
Traverse the graph and find dequantize - ref module - quantize patterns
|
591 |
+
and replace them with the quantized version of the ref module.
|
592 |
+
"""
|
593 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
594 |
+
nodes = list(model.graph.nodes)
|
595 |
+
for n in model.graph.nodes:
|
596 |
+
# Step 0: Find nodes that match this pattern (dequantize - ref module - quantize)
|
597 |
+
matching_modules = list(STATIC_LOWER_MODULE_MAP.keys()) + list(STATIC_LOWER_FUSED_MODULE_MAP.keys())
|
598 |
+
(q_node, relu_node, ref_node) = _match_static_pattern(
|
599 |
+
n, modules, qconfig_map, matching_modules, dequantize_node_arg_indices=[0]) # type: ignore[arg-type]
|
600 |
+
if q_node is None:
|
601 |
+
continue
|
602 |
+
assert ref_node is not None
|
603 |
+
(_, scale_node, zero_point_node, _) = q_node.args
|
604 |
+
ref_module = _get_module(ref_node, modules)
|
605 |
+
ref_class = type(ref_module)
|
606 |
+
assert isinstance(scale_node, Node)
|
607 |
+
assert isinstance(zero_point_node, Node)
|
608 |
+
assert issubclass(ref_class, nn.Module)
|
609 |
+
|
610 |
+
# Step 1: Change this pattern to use the corresponding quantized module
|
611 |
+
# For fused modules, we also check whether the inner module is a reference module
|
612 |
+
# If so, we replace the entire fused module with the corresponding quantized module
|
613 |
+
if ref_class in STATIC_LOWER_FUSED_MODULE_MAP:
|
614 |
+
inner_ref_class, q_class = STATIC_LOWER_FUSED_MODULE_MAP[ref_class]
|
615 |
+
if type(ref_module[0]) != inner_ref_class: # type: ignore[index]
|
616 |
+
continue
|
617 |
+
else:
|
618 |
+
q_class = STATIC_LOWER_MODULE_MAP[ref_class]
|
619 |
+
output_scale = getattr(model, scale_node.target)
|
620 |
+
output_zero_point = getattr(model, zero_point_node.target)
|
621 |
+
q_module = q_class.from_reference(ref_module, output_scale, output_zero_point)
|
622 |
+
# replace reference module with quantized module
|
623 |
+
parent_name, module_name = _parent_name(ref_node.target)
|
624 |
+
setattr(modules[parent_name], module_name, q_module)
|
625 |
+
|
626 |
+
# Step 2: Reroute around dq_node, and remove q_node and its args
|
627 |
+
assert len(ref_node.args) == 1
|
628 |
+
dq_node = ref_node.args[0]
|
629 |
+
assert isinstance(dq_node, Node)
|
630 |
+
ref_node.replace_input_with(dq_node, dq_node.args[0])
|
631 |
+
q_node.replace_all_uses_with(ref_node)
|
632 |
+
model.graph.erase_node(q_node)
|
633 |
+
model.graph.erase_node(scale_node)
|
634 |
+
model.graph.erase_node(zero_point_node)
|
635 |
+
|
636 |
+
def _lower_static_weighted_ref_module_with_two_inputs(
|
637 |
+
model: GraphModule,
|
638 |
+
qconfig_map: Dict[str, QConfigAny]):
|
639 |
+
"""
|
640 |
+
Traverse the graph and find patterns
|
641 |
+
dequantize dequantize
|
642 |
+
\\ //
|
643 |
+
ref module
|
644 |
+
\\
|
645 |
+
quantize
|
646 |
+
and replace them with the quantized version of the ref module.
|
647 |
+
"""
|
648 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
649 |
+
nodes = list(model.graph.nodes)
|
650 |
+
for n in model.graph.nodes:
|
651 |
+
# (dequantize \
|
652 |
+
# Step 0: Find nodes that match this pattern (dequantize - ref module - quantize)
|
653 |
+
matching_modules = list(STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP.keys())
|
654 |
+
(q_node, ref_node) = _match_static_pattern_with_two_inputs(
|
655 |
+
n, modules, qconfig_map, matching_modules) # type: ignore[arg-type]
|
656 |
+
if q_node is None:
|
657 |
+
continue
|
658 |
+
assert ref_node is not None
|
659 |
+
(_, scale_node, zero_point_node, _) = q_node.args
|
660 |
+
ref_module = _get_module(ref_node, modules)
|
661 |
+
ref_class = type(ref_module)
|
662 |
+
assert isinstance(scale_node, Node)
|
663 |
+
assert isinstance(zero_point_node, Node)
|
664 |
+
assert issubclass(ref_class, nn.Module)
|
665 |
+
|
666 |
+
# Step 1: Change this pattern to use the corresponding quantized module
|
667 |
+
# For fused modules, we also check whether the inner module is a reference module
|
668 |
+
# If so, we replace the entire fused module with the corresponding quantized module
|
669 |
+
if ref_class in STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP:
|
670 |
+
inner_ref_class, q_class = STATIC_LOWER_FUSED_MODULE_TWO_INPUTS_MAP[ref_class]
|
671 |
+
if type(ref_module[0]) != inner_ref_class: # type: ignore[index]
|
672 |
+
continue
|
673 |
+
else:
|
674 |
+
continue
|
675 |
+
output_scale = getattr(model, scale_node.target)
|
676 |
+
output_zero_point = getattr(model, zero_point_node.target)
|
677 |
+
q_module = q_class.from_reference(ref_module, output_scale, output_zero_point)
|
678 |
+
# replace reference module with quantized module
|
679 |
+
parent_name, module_name = _parent_name(ref_node.target)
|
680 |
+
setattr(modules[parent_name], module_name, q_module)
|
681 |
+
|
682 |
+
# Step 2: Reroute around dq_node, and remove q_node and its args
|
683 |
+
assert len(ref_node.args) == 2
|
684 |
+
for arg in ref_node.args:
|
685 |
+
if not is_dequantize_node(arg):
|
686 |
+
continue
|
687 |
+
dq_node = arg
|
688 |
+
assert isinstance(dq_node, Node)
|
689 |
+
ref_node.replace_input_with(dq_node, dq_node.args[0])
|
690 |
+
|
691 |
+
q_node.replace_all_uses_with(ref_node)
|
692 |
+
model.graph.erase_node(q_node)
|
693 |
+
model.graph.erase_node(scale_node)
|
694 |
+
model.graph.erase_node(zero_point_node)
|
695 |
+
|
696 |
+
def _lower_dynamic_weighted_ref_module(model: GraphModule):
|
697 |
+
"""
|
698 |
+
Traverse the graph and find quantize_per_tensor_dynamic - dequantize - ref_module patterns
|
699 |
+
and replace them with the dynamically quantized version of the ref module.
|
700 |
+
"""
|
701 |
+
named_modules = dict(model.named_modules(remove_duplicate=False))
|
702 |
+
for n in model.graph.nodes:
|
703 |
+
if n.op != "call_module" or \
|
704 |
+
type(named_modules[str(n.target)]) not in \
|
705 |
+
set(DYNAMIC_LOWER_MODULE_MAP.keys()).union(
|
706 |
+
set(DYNAMIC_LOWER_FUSED_MODULE_MAP.keys())):
|
707 |
+
continue
|
708 |
+
ref_node = n
|
709 |
+
dq_node = ref_node.args[0]
|
710 |
+
if dq_node.op != "call_method" or dq_node.target != "dequantize":
|
711 |
+
continue
|
712 |
+
|
713 |
+
input_dynamic_q_node = dq_node.args[0]
|
714 |
+
|
715 |
+
if input_dynamic_q_node.op != "call_function" or \
|
716 |
+
input_dynamic_q_node.target != torch.quantize_per_tensor_dynamic:
|
717 |
+
continue
|
718 |
+
|
719 |
+
activation_dtype = input_dynamic_q_node.args[1]
|
720 |
+
is_fp16 = activation_dtype == torch.float16
|
721 |
+
is_int8 = activation_dtype in [torch.quint8, torch.qint8]
|
722 |
+
if not is_int8 and not is_fp16:
|
723 |
+
continue
|
724 |
+
|
725 |
+
ref_module = named_modules[str(ref_node.target)]
|
726 |
+
ref_class = type(ref_module)
|
727 |
+
if ref_class in DYNAMIC_LOWER_FUSED_MODULE_MAP:
|
728 |
+
inner_ref_class, q_class = DYNAMIC_LOWER_FUSED_MODULE_MAP[ref_class]
|
729 |
+
if type(ref_module[0]) != inner_ref_class:
|
730 |
+
continue
|
731 |
+
else:
|
732 |
+
q_class = DYNAMIC_LOWER_MODULE_MAP.get(ref_class) # type: ignore[assignment]
|
733 |
+
# TODO: maybe define a WeightedDynamicallyQuantizedModule
|
734 |
+
q_module = q_class.from_reference(ref_module) # type: ignore[attr-defined]
|
735 |
+
|
736 |
+
# replace reference module with dynamically quantized module
|
737 |
+
parent_name, module_name = _parent_name(ref_node.target)
|
738 |
+
setattr(named_modules[parent_name], module_name, q_module)
|
739 |
+
ref_node.replace_input_with(dq_node, input_dynamic_q_node.args[0])
|
740 |
+
|
741 |
+
def _lower_weight_only_weighted_ref_module(model: GraphModule):
|
742 |
+
"""
|
743 |
+
Traverse the graph and find ref_module patterns
|
744 |
+
and replace them with the weight only quantized version of the ref module.
|
745 |
+
"""
|
746 |
+
named_modules = dict(model.named_modules(remove_duplicate=False))
|
747 |
+
for n in model.graph.nodes:
|
748 |
+
if n.op != "call_module" or \
|
749 |
+
type(named_modules[str(n.target)]) not in \
|
750 |
+
set(WEIGHT_ONLY_LOWER_MODULE_MAP.keys()):
|
751 |
+
continue
|
752 |
+
ref_node = n
|
753 |
+
ref_module = named_modules[str(ref_node.target)]
|
754 |
+
ref_class = type(ref_module)
|
755 |
+
q_class = WEIGHT_ONLY_LOWER_MODULE_MAP.get(ref_class)
|
756 |
+
# TODO: WeightedQuantizedModule is currently assuming static quant apis
|
757 |
+
# with output_scale, output_zero_point in from_reference, we may want to
|
758 |
+
# relax that, or rename this
|
759 |
+
# TODO: maybe define a WeightedWeightOnlyQuantizedModule
|
760 |
+
q_module = q_class.from_reference(ref_module) # type: ignore[union-attr]
|
761 |
+
|
762 |
+
# replace reference module with dynamically quantized module
|
763 |
+
parent_name, module_name = _parent_name(ref_node.target)
|
764 |
+
setattr(named_modules[parent_name], module_name, q_module)
|
765 |
+
|
766 |
+
def _lower_static_weighted_ref_functional(
|
767 |
+
model: GraphModule,
|
768 |
+
qconfig_map: Dict[str, QConfigAny]):
|
769 |
+
"""
|
770 |
+
Traverse the graph and replace functional reference patterns with their quantized versions.
|
771 |
+
"""
|
772 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
773 |
+
nodes = list(model.graph.nodes)
|
774 |
+
for n in model.graph.nodes:
|
775 |
+
# Step 0: Find nodes that match this pattern (dequantize - functional op - quantize)
|
776 |
+
matching_ops = list(STATIC_LOWER_FUNCTIONAL_MAP.keys())
|
777 |
+
(q_node, relu_node, func_node) = _match_static_pattern(
|
778 |
+
n, modules, qconfig_map, matching_ops, dequantize_node_arg_indices=[0, 1])
|
779 |
+
if q_node is None:
|
780 |
+
continue
|
781 |
+
assert func_node is not None
|
782 |
+
(_, output_scale_node, output_zp_node, _) = q_node.args
|
783 |
+
(input_dq_node, weight_dq_node, *remaining_func_args) = func_node.args
|
784 |
+
assert isinstance(output_zp_node, Node)
|
785 |
+
assert isinstance(input_dq_node, Node)
|
786 |
+
assert isinstance(weight_dq_node, Node)
|
787 |
+
quantized_weight = weight_dq_node.args[0]
|
788 |
+
assert isinstance(quantized_weight, Node)
|
789 |
+
if quantized_weight.op != "call_function" or\
|
790 |
+
quantized_weight.target not in (torch.quantize_per_tensor, torch.quantize_per_channel):
|
791 |
+
continue
|
792 |
+
|
793 |
+
# Step 1: Replace quantized weights with packed weights, which will be folded later
|
794 |
+
# Use the right prepack op and prepare the corresponding args
|
795 |
+
# Linear prepack args: (quantized weights[, bias])
|
796 |
+
# Conv prepack args: (quantized weights[, bias, stride, padding, dilation, groups])
|
797 |
+
prepack_args = [quantized_weight] + remaining_func_args
|
798 |
+
if func_node.target == F.linear:
|
799 |
+
weight_dtype = quantized_weight.args[-1]
|
800 |
+
prepack_op = get_linear_prepack_op_for_dtype(weight_dtype)
|
801 |
+
elif func_node.target in CONV_FUNCTIONAL_OPS:
|
802 |
+
prepack_op = get_qconv_prepack_op(func_node.target) # type: ignore[arg-type]
|
803 |
+
# For conv1d, the stride, padding, and dilation args may be ints,
|
804 |
+
# in which case we need to convert them to tuples
|
805 |
+
if func_node.target == F.conv1d:
|
806 |
+
for i in [2, 3, 4]:
|
807 |
+
if len(prepack_args) > i and isinstance(prepack_args[i], int):
|
808 |
+
prepack_args[i] = (prepack_args[i],)
|
809 |
+
elif func_node.target in CONV_TRANSPOSE_FUNCTIONAL_OPS:
|
810 |
+
prepack_op = get_qconv_prepack_op(func_node.target) # type: ignore[arg-type]
|
811 |
+
# For conv_transpose1d, the stride, padding, and dilation args may be ints,
|
812 |
+
# in which case we need to convert them to tuples
|
813 |
+
if func_node.target == F.conv_transpose1d:
|
814 |
+
# Note prepack_args[5] is groups.
|
815 |
+
for i in [2, 3, 4, 6]:
|
816 |
+
if len(prepack_args) > i and isinstance(prepack_args[i], int):
|
817 |
+
prepack_args[i] = (prepack_args[i],)
|
818 |
+
# swap dilation and groups
|
819 |
+
# prepack op has arguments: {w, b, stride, padding, output_padding, dilation, groups}
|
820 |
+
# transposed conv op has arguments: {x, w, b, stride, padding, output_padding, groups, dilation}
|
821 |
+
if (len(prepack_args) > 6):
|
822 |
+
prepack_args[5], prepack_args[6] = prepack_args[6], prepack_args[5]
|
823 |
+
else:
|
824 |
+
raise ValueError(f"Lowering is not supported for op '{func_node.target}'")
|
825 |
+
with model.graph.inserting_before(output_scale_node):
|
826 |
+
# kwargs of the func node are needed for prepack op (i.e., quantized::linear_prepack)
|
827 |
+
# They are not needed for compute op (i.e., quantized::linear)
|
828 |
+
kwargs = func_node.kwargs
|
829 |
+
# F.linear uses 'bias' key for bias while qlinear_prepack uses 'B' for bias
|
830 |
+
if func_node.target == F.linear and 'bias' in kwargs:
|
831 |
+
kwargs = kwargs.copy()
|
832 |
+
kwargs['B'] = kwargs['bias']
|
833 |
+
del kwargs['bias']
|
834 |
+
packed_weight = model.graph.create_node("call_function", prepack_op, tuple(prepack_args), kwargs)
|
835 |
+
|
836 |
+
# Step 2: Replace reference pattern with the corresponding quantized op
|
837 |
+
(q_func, q_relu_func) = STATIC_LOWER_FUNCTIONAL_MAP[func_node.target] # type: ignore[index]
|
838 |
+
# conv_transpose does not support fusion with relu yet. q_relu_func is None in such cases
|
839 |
+
if q_relu_func is not None:
|
840 |
+
func_node.target = q_relu_func if relu_node is not None else q_func
|
841 |
+
else:
|
842 |
+
func_node.target = q_func
|
843 |
+
func_node.args = (input_dq_node.args[0], packed_weight, output_scale_node, output_zp_node)
|
844 |
+
# kwargs for func_node has been moved to kwargs for prepack op
|
845 |
+
func_node.kwargs = {}
|
846 |
+
q_node.replace_all_uses_with(func_node)
|
847 |
+
# Move func_node after output_zp_node in the graph
|
848 |
+
output_zp_node.append(func_node)
|
849 |
+
|
850 |
+
# Clean up: Remove quantize node, and the relu node if it exists
|
851 |
+
model.graph.erase_node(q_node)
|
852 |
+
if relu_node is not None and q_relu_func is not None:
|
853 |
+
model.graph.erase_node(relu_node)
|
854 |
+
|
855 |
+
def _lower_dynamic_weighted_ref_functional(
|
856 |
+
model: GraphModule,
|
857 |
+
qconfig_map: Dict[str, QConfigAny]):
|
858 |
+
"""
|
859 |
+
Traverse the graph and replace functional reference patterns with their dynamically
|
860 |
+
quantized versions.
|
861 |
+
Examples:
|
862 |
+
quantize_per_tensor_dynamic - dequantize - functional linear --> linear_dynamic
|
863 |
+
to(torch.float16) - dequantize - functional linear --> linear_dynamic_fp16
|
864 |
+
"""
|
865 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
866 |
+
nodes = list(model.graph.nodes)
|
867 |
+
# we want to search in reserved order so that we can match the larger patterns first
|
868 |
+
# e.g. we want to match linear - relu before linear.
|
869 |
+
for n in reversed(model.graph.nodes):
|
870 |
+
|
871 |
+
# Step 0: Find nodes that match this pattern
|
872 |
+
# (quantize_per_tensor_dynamic - dequantize - dynamically quantized op)
|
873 |
+
# We search for the pattern backwards, starting with the quantize node
|
874 |
+
# Quantize node args: (func, scale, zp, dtype)
|
875 |
+
func_node = n
|
876 |
+
# Handle cases where the functional op is wrapped in a ReLU
|
877 |
+
if func_node.op == "call_function" and func_node.target == F.relu or \
|
878 |
+
func_node.op == "call_module" and \
|
879 |
+
type(modules[str(func_node.target)]) == torch.nn.ReLU:
|
880 |
+
relu_node = func_node
|
881 |
+
func_node = relu_node.args[0]
|
882 |
+
else:
|
883 |
+
relu_node = None
|
884 |
+
if should_skip_lowering(func_node, qconfig_map):
|
885 |
+
continue
|
886 |
+
# Linear args: (dequantized inputs, dequantized weights[, bias])
|
887 |
+
# Conv args: (dequantized inputs, dequantized weights[, bias, stride, padding, dilation, groups])
|
888 |
+
if func_node.op != "call_function" or func_node.target not in DYNAMIC_LOWER_FUNCTIONAL_MAP:
|
889 |
+
continue
|
890 |
+
(input_dq_node, weight_dq_node, *remaining_func_args) = func_node.args
|
891 |
+
if input_dq_node.op != "call_method" or input_dq_node.target != "dequantize" or \
|
892 |
+
weight_dq_node.op != "call_method" or weight_dq_node.target != "dequantize":
|
893 |
+
continue
|
894 |
+
|
895 |
+
input_dynamic_q_node = input_dq_node.args[0]
|
896 |
+
|
897 |
+
if input_dynamic_q_node.op != "call_function" or \
|
898 |
+
input_dynamic_q_node.target != torch.quantize_per_tensor_dynamic:
|
899 |
+
continue
|
900 |
+
|
901 |
+
reduce_range_node = None
|
902 |
+
(pattern_input, activation_dtype, reduce_range_node) = input_dynamic_q_node.args
|
903 |
+
is_fp16 = activation_dtype == torch.float16
|
904 |
+
is_int8 = activation_dtype in [torch.quint8, torch.qint8]
|
905 |
+
if not is_int8 and not is_fp16:
|
906 |
+
continue
|
907 |
+
|
908 |
+
quantized_weight = weight_dq_node.args[0]
|
909 |
+
weight_dtype = quantized_weight.args[-1]
|
910 |
+
|
911 |
+
# Step 1: Try to select reference pattern with the corresponding quantized op
|
912 |
+
dynamic_quant_dtype_key = (activation_dtype, weight_dtype)
|
913 |
+
if dynamic_quant_dtype_key not in DYNAMIC_LOWER_FUNCTIONAL_MAP[func_node.target]:
|
914 |
+
print(f"Didn't find dtype combination {dynamic_quant_dtype_key} during "
|
915 |
+
f"dynamic quantized op lowering for {func_node.target}")
|
916 |
+
continue
|
917 |
+
(q_func, q_relu_func) = DYNAMIC_LOWER_FUNCTIONAL_MAP[func_node.target][dynamic_quant_dtype_key]
|
918 |
+
|
919 |
+
if q_func is None or q_relu_func is None:
|
920 |
+
print("Didn't find corresponding quantized function or quantized relu function "
|
921 |
+
f"for {func_node.target}, {dynamic_quant_dtype_key}")
|
922 |
+
continue
|
923 |
+
|
924 |
+
# Step 2: Replace quantized weights with packed weights, which will be folded later
|
925 |
+
# Use the right prepack op and prepare the corresponding args
|
926 |
+
# Linear prepack args: (quantized weights[, bias])
|
927 |
+
# Conv prepack args: (quantized weights[, bias, stride, padding, dilation, groups])
|
928 |
+
prepack_args = [quantized_weight] + remaining_func_args
|
929 |
+
if func_node.target == F.linear:
|
930 |
+
prepack_op = get_linear_prepack_op_for_dtype(weight_dtype)
|
931 |
+
elif func_node.target in CONV_FUNCTIONAL_OPS:
|
932 |
+
prepack_op = get_qconv_prepack_op(func_node.target)
|
933 |
+
# For conv1d, the stride, padding, and dilation args may be ints,
|
934 |
+
# in which case we need to convert them to tuples
|
935 |
+
if func_node.target == F.conv1d:
|
936 |
+
for i in [2, 3, 4]:
|
937 |
+
if len(prepack_args) > i and isinstance(prepack_args[i], int):
|
938 |
+
prepack_args[i] = (prepack_args[i],)
|
939 |
+
else:
|
940 |
+
raise ValueError(f"Lowering is not supported for op '{func_node.target}'")
|
941 |
+
with model.graph.inserting_before(func_node):
|
942 |
+
packed_weight = model.graph.create_node("call_function", prepack_op, tuple(prepack_args), {})
|
943 |
+
|
944 |
+
# Step 3: Replace reference pattern with the corresponding quantized op
|
945 |
+
func_node.target = q_relu_func if relu_node is not None else q_func
|
946 |
+
if is_int8:
|
947 |
+
func_node.args = (pattern_input, packed_weight, reduce_range_node)
|
948 |
+
else:
|
949 |
+
func_node.args = (pattern_input, packed_weight)
|
950 |
+
|
951 |
+
if relu_node is not None:
|
952 |
+
relu_node.replace_all_uses_with(func_node)
|
953 |
+
|
954 |
+
# Step 4: Remove the relu node if it exists
|
955 |
+
if relu_node is not None:
|
956 |
+
model.graph.erase_node(relu_node)
|
957 |
+
|
958 |
+
def _lower_quantized_binary_op(
|
959 |
+
model: GraphModule,
|
960 |
+
qconfig_map: Dict[str, QConfigAny]):
|
961 |
+
binary_ops_to_lower: List[Callable] = [operator.add, torch.add, operator.mul, torch.mul, torch.matmul]
|
962 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
963 |
+
for n in model.graph.nodes:
|
964 |
+
# Step 0: Find nodes that match this pattern (dequantize - ref module - quantize)
|
965 |
+
(q_node, relu_node, bop_node) = _match_static_pattern(
|
966 |
+
n, modules, qconfig_map, binary_ops_to_lower, dequantize_node_arg_indices=[0, 1])
|
967 |
+
if q_node is None:
|
968 |
+
continue
|
969 |
+
assert bop_node is not None
|
970 |
+
(_, scale_node, zero_point_node, _) = q_node.args
|
971 |
+
|
972 |
+
# Step 1: Remove dequant nodes
|
973 |
+
num_dq_nodes = 0
|
974 |
+
for arg in bop_node.args:
|
975 |
+
if not is_dequantize_node(arg):
|
976 |
+
continue
|
977 |
+
dq_node = arg
|
978 |
+
assert isinstance(dq_node, Node)
|
979 |
+
dn_input = dq_node.args[0]
|
980 |
+
bop_node.replace_input_with(dq_node, dn_input)
|
981 |
+
num_dq_nodes += 1
|
982 |
+
assert num_dq_nodes > 0
|
983 |
+
|
984 |
+
# Step 2: Swap binary op to quantized binary op
|
985 |
+
assert bop_node.target in QBIN_OP_MAPPING
|
986 |
+
binop_to_qbinop = QBIN_OP_MAPPING if relu_node is None else QBIN_RELU_OP_MAPPING
|
987 |
+
qbin_op = binop_to_qbinop[bop_node.target]
|
988 |
+
# prepare the args for quantized binary op
|
989 |
+
# (x, y)
|
990 |
+
qop_node_args = list(bop_node.args)
|
991 |
+
# (x, y, scale, zero_point)
|
992 |
+
# add scale and zero_point arguments for Tensor - Tensor operation
|
993 |
+
if num_dq_nodes == 2:
|
994 |
+
qop_node_args.extend([scale_node, zero_point_node])
|
995 |
+
# insert a call to quantized binary op and remove the original binary op
|
996 |
+
with model.graph.inserting_after(q_node):
|
997 |
+
qop_node = create_node_from_old_node_preserve_meta(
|
998 |
+
model.graph,
|
999 |
+
("call_function", qbin_op, tuple(qop_node_args), {}),
|
1000 |
+
bop_node)
|
1001 |
+
q_node.replace_all_uses_with(qop_node)
|
1002 |
+
|
1003 |
+
# Step 3: Remove quantize node, binary op node, and relu node if any
|
1004 |
+
model.graph.erase_node(q_node)
|
1005 |
+
if relu_node is not None:
|
1006 |
+
model.graph.erase_node(relu_node)
|
1007 |
+
model.graph.erase_node(bop_node)
|
1008 |
+
|
1009 |
+
def special_pattern_replacement(model: GraphModule):
|
1010 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
1011 |
+
for n in model.graph.nodes:
|
1012 |
+
q_node = n
|
1013 |
+
is_quantize = q_node.target == torch.quantize_per_tensor
|
1014 |
+
is_to_fp16 = q_node.op == "call_method" and q_node.target == "to" and \
|
1015 |
+
len(q_node.args) == 2 and q_node.args[1] == torch.float16
|
1016 |
+
if not (is_quantize or is_to_fp16):
|
1017 |
+
continue
|
1018 |
+
ref_node = q_node.args[0]
|
1019 |
+
# get output scale/zero_point/dtype from the quantize node
|
1020 |
+
# ref_node, scale_node, zero_point_node, dtype = q_node.args
|
1021 |
+
# TODO: add safety checks that users for the ref_node and dq_node needs to be one
|
1022 |
+
is_call_function, is_call_method, is_call_module = is_fixed_qparams_node(ref_node, modules)
|
1023 |
+
if is_to_fp16 and (is_call_function or is_call_method or is_call_module):
|
1024 |
+
# TODO: add a warning or error out here? (bc-breaking if error out)
|
1025 |
+
# warnings.warn(
|
1026 |
+
# "Only reference patterns are currently supported for {dtype} dtype with {op} op"
|
1027 |
+
# "".format(dtype=dtypes, op=ref_node))
|
1028 |
+
continue
|
1029 |
+
|
1030 |
+
is_call_function, is_call_method, is_call_module = is_default_node(ref_node, modules)
|
1031 |
+
if is_to_fp16 and (is_call_function or is_call_method or is_call_module):
|
1032 |
+
# TODO: add a warning or error out here? (bc-breaking if error out)
|
1033 |
+
continue
|
1034 |
+
|
1035 |
+
# This check includes all supported ops
|
1036 |
+
is_call_function, is_call_method, is_call_module = is_special_pattern_node(ref_node, modules)
|
1037 |
+
if not (is_call_module or is_call_function or is_call_method):
|
1038 |
+
continue
|
1039 |
+
assert len(ref_node.args) > 0 or len(ref_node.kwargs) > 0
|
1040 |
+
dq_node_or_nodes = ref_node.args[0] if len(ref_node.args) > 0 else next(iter(ref_node.kwargs.values()))
|
1041 |
+
assert isinstance(dq_node_or_nodes, (Node, tuple, list))
|
1042 |
+
is_dequantize = False
|
1043 |
+
if isinstance(dq_node_or_nodes, Node):
|
1044 |
+
is_dequantize = dq_node_or_nodes.op == 'call_method' and \
|
1045 |
+
dq_node_or_nodes.target == 'dequantize'
|
1046 |
+
elif isinstance(dq_node_or_nodes, (tuple, list)):
|
1047 |
+
is_dequantize = all(
|
1048 |
+
x.op == 'call_method' and x.target == 'dequantize'
|
1049 |
+
for x in dq_node_or_nodes)
|
1050 |
+
|
1051 |
+
if not is_dequantize:
|
1052 |
+
continue
|
1053 |
+
|
1054 |
+
# TODO: enable we have patterns that needs to swap the modules
|
1055 |
+
if is_call_module:
|
1056 |
+
ref_module = modules[ref_node.target]
|
1057 |
+
if type(ref_module) in SPECIAL_PATTERN_LOWER_MODULE_MAP and is_quantize:
|
1058 |
+
qmodule_cls = SPECIAL_PATTERN_LOWER_MODULE_MAP.get(type(ref_module))
|
1059 |
+
scale_node = q_node.args[1]
|
1060 |
+
zero_point_node = q_node.args[2]
|
1061 |
+
output_scale = getattr(model, scale_node.target)
|
1062 |
+
output_zero_point = getattr(model, zero_point_node.target)
|
1063 |
+
|
1064 |
+
qmodule = qmodule_cls.from_reference(ref_module, output_scale, output_zero_point) # type:ignore[union-attr]
|
1065 |
+
# replace reference module with quantized module
|
1066 |
+
parent_name, module_name = _parent_name(ref_node.target)
|
1067 |
+
setattr(modules[parent_name], module_name, qmodule)
|
1068 |
+
|
1069 |
+
# reroute around dq node:
|
1070 |
+
dq_nodes: List[Node] = []
|
1071 |
+
if isinstance(dq_node_or_nodes, Node):
|
1072 |
+
dq_nodes = [dq_node_or_nodes]
|
1073 |
+
elif isinstance(dq_node_or_nodes, (tuple, list)):
|
1074 |
+
dq_nodes = list(dq_node_or_nodes)
|
1075 |
+
|
1076 |
+
for dq_node in dq_nodes:
|
1077 |
+
dn_input = dq_node.args[0]
|
1078 |
+
ref_node.replace_input_with(dq_node, dn_input)
|
1079 |
+
|
1080 |
+
# store q node args
|
1081 |
+
qnode_qparams = list(q_node.args)[1:]
|
1082 |
+
# replace uses of q node with input and remove q node
|
1083 |
+
q_node_input = q_node.args[0]
|
1084 |
+
q_node.replace_all_uses_with(q_node_input)
|
1085 |
+
model.graph.erase_node(q_node)
|
1086 |
+
|
1087 |
+
is_call_function, is_call_method, is_call_module = is_default_node(ref_node, modules)
|
1088 |
+
if is_call_function:
|
1089 |
+
# pass scale/zer_point arguments from quantize_per_tensor to the default node operator
|
1090 |
+
# insert an op after the zero_point node so that the scale/zero_point
|
1091 |
+
# nodes are is available
|
1092 |
+
qop = get_quantized_operator(ref_node.target)
|
1093 |
+
args = list(ref_node.args)
|
1094 |
+
kwargs = dict(ref_node.kwargs)
|
1095 |
+
if qop in QOP_TO_ARG_NAMES_TO_SKIP:
|
1096 |
+
args_to_skip = QOP_TO_ARG_NAMES_TO_SKIP[qop]
|
1097 |
+
for arg in args_to_skip:
|
1098 |
+
if arg in kwargs:
|
1099 |
+
kwargs.pop(arg)
|
1100 |
+
kwargs["output_scale"] = qnode_qparams[0]
|
1101 |
+
kwargs["output_zero_point"] = qnode_qparams[1]
|
1102 |
+
with model.graph.inserting_after(qnode_qparams[1]):
|
1103 |
+
qop_node = create_node_from_old_node_preserve_meta(
|
1104 |
+
model.graph,
|
1105 |
+
("call_function", qop, tuple(args), kwargs),
|
1106 |
+
ref_node)
|
1107 |
+
ref_node.replace_all_uses_with(qop_node)
|
1108 |
+
model.graph.erase_node(ref_node)
|
1109 |
+
else:
|
1110 |
+
# remove scale/zero_point node for quantize node
|
1111 |
+
for n in qnode_qparams:
|
1112 |
+
if isinstance(n, Node):
|
1113 |
+
model.graph.erase_node(n)
|
1114 |
+
|
1115 |
+
return model
|
1116 |
+
|
1117 |
+
def _lower_getattr_tensor_metadta_op(model: GraphModule):
|
1118 |
+
""" Modified the graph of the model inplace, to skip extra dequantize op before
|
1119 |
+
the general tensor shape ops when possible
|
1120 |
+
"""
|
1121 |
+
for n in model.graph.nodes:
|
1122 |
+
if is_getattr_tensor_metadata_node(n):
|
1123 |
+
maybe_dq = n.args[0]
|
1124 |
+
if maybe_dq.op != "call_method" or maybe_dq.target != "dequantize":
|
1125 |
+
continue
|
1126 |
+
# skip the dequantize node
|
1127 |
+
args = list(n.args)
|
1128 |
+
args[0] = n.args[0].args[0]
|
1129 |
+
n.args = tuple(args)
|
1130 |
+
|
1131 |
+
def _lower_get_tensor_info_op(model: GraphModule):
|
1132 |
+
""" Modified the graph of the model inplace, to skip extra dequantize op before
|
1133 |
+
the general tensor shape ops when possible
|
1134 |
+
"""
|
1135 |
+
for n in model.graph.nodes:
|
1136 |
+
if not is_get_tensor_info_node(n):
|
1137 |
+
continue
|
1138 |
+
maybe_dq = n.args[0]
|
1139 |
+
if maybe_dq.op != "call_method" or maybe_dq.target != "dequantize":
|
1140 |
+
continue
|
1141 |
+
# skip the dequantize node
|
1142 |
+
args = list(n.args)
|
1143 |
+
args[0] = n.args[0].args[0]
|
1144 |
+
n.args = tuple(args)
|
1145 |
+
|
1146 |
+
def _lower_to_native_backend(
|
1147 |
+
model: GraphModule,
|
1148 |
+
qconfig_map: Dict[str, QConfigAny],
|
1149 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
1150 |
+
) -> GraphModule:
|
1151 |
+
""" Lower a quantized reference model (with reference quantized operator patterns)
|
1152 |
+
to the native backend in PyTorch (fbgemm/qnnpack), both backends shares the same
|
1153 |
+
operator signature so they can be lowered with the same function
|
1154 |
+
"""
|
1155 |
+
_lower_static_weighted_ref_module(model, qconfig_map)
|
1156 |
+
_lower_static_weighted_ref_module_with_two_inputs(model, qconfig_map)
|
1157 |
+
_lower_dynamic_weighted_ref_module(model)
|
1158 |
+
_lower_weight_only_weighted_ref_module(model)
|
1159 |
+
_lower_static_weighted_ref_functional(model, qconfig_map)
|
1160 |
+
_lower_dynamic_weighted_ref_functional(model, qconfig_map)
|
1161 |
+
_lower_quantized_binary_op(model, qconfig_map)
|
1162 |
+
_lower_getattr_tensor_metadta_op(model)
|
1163 |
+
_lower_get_tensor_info_op(model)
|
1164 |
+
special_pattern_replacement(model)
|
1165 |
+
model.graph.eliminate_dead_code()
|
1166 |
+
model = fold_weight(model, node_name_to_scope)
|
1167 |
+
model.graph.eliminate_dead_code()
|
1168 |
+
model.recompile()
|
1169 |
+
model.graph.lint()
|
1170 |
+
return model
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/convert.py
ADDED
@@ -0,0 +1,1131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# mypy: ignore-errors
|
2 |
+
|
3 |
+
from typing import Any, Dict, List, Optional, Set, Tuple, Union, Type, Callable
|
4 |
+
from torch.ao.quantization.quant_type import QuantType
|
5 |
+
import torch
|
6 |
+
import copy
|
7 |
+
import warnings
|
8 |
+
from torch.fx import (
|
9 |
+
GraphModule,
|
10 |
+
)
|
11 |
+
from torch.fx.graph import (
|
12 |
+
Graph,
|
13 |
+
Node,
|
14 |
+
Argument,
|
15 |
+
)
|
16 |
+
from ..utils import (
|
17 |
+
activation_is_statically_quantized,
|
18 |
+
weight_is_quantized,
|
19 |
+
get_qparam_dict,
|
20 |
+
_parent_name,
|
21 |
+
get_swapped_custom_module_class,
|
22 |
+
)
|
23 |
+
from ..qconfig import (
|
24 |
+
QConfigAny,
|
25 |
+
qconfig_equals
|
26 |
+
)
|
27 |
+
from ..qconfig_mapping import QConfigMapping
|
28 |
+
from .qconfig_mapping_utils import (
|
29 |
+
_generate_node_name_to_qconfig,
|
30 |
+
_compare_prepare_convert_qconfig_mappings,
|
31 |
+
_update_qconfig_for_fusion,
|
32 |
+
_is_qconfig_supported_by_dtype_configs,
|
33 |
+
_update_qconfig_for_qat,
|
34 |
+
)
|
35 |
+
from torch.ao.quantization.backend_config.utils import (
|
36 |
+
get_root_module_to_quantized_reference_module,
|
37 |
+
get_pattern_to_dtype_configs,
|
38 |
+
get_fused_module_classes,
|
39 |
+
get_qat_module_classes,
|
40 |
+
)
|
41 |
+
from torch.ao.quantization.backend_config import (
|
42 |
+
BackendConfig,
|
43 |
+
get_native_backend_config,
|
44 |
+
)
|
45 |
+
from torch.ao.quantization.observer import _is_activation_post_process
|
46 |
+
from .graph_module import (
|
47 |
+
_is_observed_module,
|
48 |
+
_is_observed_standalone_module,
|
49 |
+
)
|
50 |
+
from ._equalize import update_obs_for_equalization, convert_eq_obs
|
51 |
+
from torch.nn.utils.parametrize import type_before_parametrizations
|
52 |
+
from .utils import (
|
53 |
+
_get_module,
|
54 |
+
_is_custom_module_lstm,
|
55 |
+
_is_custom_module_mha,
|
56 |
+
assert_and_get_unique_device,
|
57 |
+
get_custom_module_class_keys,
|
58 |
+
create_getattr_from_value,
|
59 |
+
collect_producer_nodes,
|
60 |
+
graph_module_from_producer_nodes,
|
61 |
+
node_arg_is_weight,
|
62 |
+
)
|
63 |
+
from torch.ao.quantization.utils import (
|
64 |
+
is_per_channel,
|
65 |
+
to_underlying_dtype,
|
66 |
+
)
|
67 |
+
from torch.ao.quantization.quantize import (
|
68 |
+
_remove_qconfig,
|
69 |
+
)
|
70 |
+
from torch.ao.quantization.stubs import DeQuantStub
|
71 |
+
from .custom_config import (
|
72 |
+
ConvertCustomConfig,
|
73 |
+
PrepareCustomConfig,
|
74 |
+
)
|
75 |
+
from .lower_to_fbgemm import lower_to_fbgemm
|
76 |
+
# importing the lib so that the quantized_decomposed ops are registered
|
77 |
+
from ._decomposed import quantized_decomposed_lib # noqa: F401
|
78 |
+
import operator
|
79 |
+
|
80 |
+
__all__ = [
|
81 |
+
"convert",
|
82 |
+
"convert_custom_module",
|
83 |
+
"convert_standalone_module",
|
84 |
+
"convert_weighted_module",
|
85 |
+
]
|
86 |
+
|
87 |
+
_QSCHEME_TO_CHOOSE_QPARAMS_OP = {
|
88 |
+
torch.per_tensor_affine: torch.ops.quantized_decomposed.choose_qparams.tensor,
|
89 |
+
torch.per_tensor_symmetric: torch.ops.quantized_decomposed.choose_qparams_symmetric.tensor,
|
90 |
+
}
|
91 |
+
|
92 |
+
def _replace_observer_with_quantize_dequantize_node_decomposed(
|
93 |
+
model: torch.fx.GraphModule,
|
94 |
+
node: Node,
|
95 |
+
modules: Dict[str, torch.nn.Module],
|
96 |
+
node_name_to_scope: Dict[str, Tuple[str, type]],
|
97 |
+
node_name_to_qconfig: Dict[str, QConfigAny]) -> None:
|
98 |
+
""" Replace activation_post_process module call node with quantize and
|
99 |
+
dequantize node working with decomposed Tensor
|
100 |
+
|
101 |
+
Before:
|
102 |
+
... -> observer_0(x) -> ...
|
103 |
+
After:
|
104 |
+
... -> torch.ops.quantized_decomposed.quantize_per_tensor(x, ...) ->
|
105 |
+
torch.ops.quantized_decomposed.dequantize_per_tensor() -> ...
|
106 |
+
|
107 |
+
or quantize_per_channel and dequantize_per_channel
|
108 |
+
"""
|
109 |
+
graph = model.graph
|
110 |
+
assert modules is not None
|
111 |
+
assert isinstance(node.target, str)
|
112 |
+
module_path, prefix = _get_module_path_and_prefix(node, node_name_to_scope, node_name_to_qconfig)
|
113 |
+
activation_post_process = modules[node.target]
|
114 |
+
if hasattr(activation_post_process, "convert"):
|
115 |
+
activation_post_process.convert(model, node)
|
116 |
+
return
|
117 |
+
# skip replacing observers to quant/dequant nodes if the qconfigs of all
|
118 |
+
# consumers and producers of this observer are None
|
119 |
+
skip_replacement = all(_has_none_qconfig(n, node_name_to_qconfig) for n in
|
120 |
+
list(node.args) + list(node.users.keys()))
|
121 |
+
if skip_replacement or not _is_conversion_supported(activation_post_process):
|
122 |
+
# didn't find corresponding quantize op and info for the activation_post_process
|
123 |
+
# so we just remove the observer
|
124 |
+
with graph.inserting_before(node):
|
125 |
+
node.replace_all_uses_with(node.args[0])
|
126 |
+
graph.erase_node(node)
|
127 |
+
return
|
128 |
+
|
129 |
+
# otherwise, we can convert the activation_post_process module call to quantize/dequantize node
|
130 |
+
|
131 |
+
# 1. extract the information from activation_post_process module for generating
|
132 |
+
# the quantize and dequantize operator
|
133 |
+
dtype = activation_post_process.dtype # type: ignore[attr-defined]
|
134 |
+
|
135 |
+
is_dynamic = False
|
136 |
+
if hasattr(activation_post_process, "is_dynamic"):
|
137 |
+
is_dynamic = activation_post_process.is_dynamic # type: ignore[assignment]
|
138 |
+
|
139 |
+
if dtype in [torch.quint8, torch.qint8, torch.qint32, torch.uint8, torch.int8, torch.int16, torch.int32] and \
|
140 |
+
(not is_dynamic):
|
141 |
+
# TODO: probably should cleanup this condition check, it's hard
|
142 |
+
# to reason about this if and the following elif
|
143 |
+
|
144 |
+
# uint8/int8/int32 static quantization branch
|
145 |
+
|
146 |
+
# 1. extract information for inserting q/dq node from activation_post_process
|
147 |
+
node_type = "call_function"
|
148 |
+
quantize_op : Optional[Callable] = None
|
149 |
+
scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[attr-defined, operator]
|
150 |
+
if is_per_channel(activation_post_process.qscheme): # type: ignore[attr-defined]
|
151 |
+
ch_axis = int(activation_post_process.ch_axis) # type: ignore[attr-defined, arg-type]
|
152 |
+
quantize_op = torch.ops.quantized_decomposed.quantize_per_channel.default
|
153 |
+
dequantize_op = torch.ops.quantized_decomposed.dequantize_per_channel.default
|
154 |
+
quant_min = activation_post_process.quant_min
|
155 |
+
quant_max = activation_post_process.quant_max
|
156 |
+
dtype_ = to_underlying_dtype(dtype)
|
157 |
+
qparams = {
|
158 |
+
"_scale_": scale,
|
159 |
+
"_zero_point_": zero_point,
|
160 |
+
"_axis_": ch_axis,
|
161 |
+
"_quant_min_": quant_min,
|
162 |
+
"_quant_max_": quant_max,
|
163 |
+
"_dtype_": dtype_
|
164 |
+
}
|
165 |
+
else:
|
166 |
+
quantize_op = torch.ops.quantized_decomposed.quantize_per_tensor.default
|
167 |
+
dequantize_op = torch.ops.quantized_decomposed.dequantize_per_tensor.default
|
168 |
+
scale = float(scale)
|
169 |
+
zero_point = int(zero_point)
|
170 |
+
quant_min = activation_post_process.quant_min # type: ignore[attr-defined]
|
171 |
+
quant_max = activation_post_process.quant_max # type: ignore[attr-defined]
|
172 |
+
dtype_ = to_underlying_dtype(dtype)
|
173 |
+
qparams = {
|
174 |
+
"_scale_": scale,
|
175 |
+
"_zero_point_": zero_point,
|
176 |
+
"_quant_min_": quant_min,
|
177 |
+
"_quant_max_": quant_max,
|
178 |
+
"_dtype_": dtype_
|
179 |
+
}
|
180 |
+
|
181 |
+
# 2. replace activation_post_process node with quantize and dequantize
|
182 |
+
with graph.inserting_before(node):
|
183 |
+
input_node = node.args[0]
|
184 |
+
quantize_op_inputs = [input_node]
|
185 |
+
for key, value_or_node in qparams.items():
|
186 |
+
# TODO: we can add the information of whether a value needs to
|
187 |
+
# be registered as an attribute in qparams dict itself
|
188 |
+
if key in ['_scale_', '_zero_point_'] and (not isinstance(value_or_node, (float, int))):
|
189 |
+
# For scale and zero_point values we register them as buffers in the root module.
|
190 |
+
# However, note that when the values are not tensors, as in the case of
|
191 |
+
# per_tensor quantization, they will be treated as literals.
|
192 |
+
# However, registering them as a node seems to cause issue with dynamo
|
193 |
+
# tracing where it may consider tensor overload as opposed to default.
|
194 |
+
# With extra check of scale and zero_point being scalar, it makes
|
195 |
+
# sure that the default overload can be used.
|
196 |
+
# TODO: maybe need more complex attr name here
|
197 |
+
qparam_node = create_getattr_from_value(
|
198 |
+
model, graph, module_path + prefix + key, value_or_node)
|
199 |
+
quantize_op_inputs.append(qparam_node)
|
200 |
+
else:
|
201 |
+
# for qparams that are not scale/zero_point (like axis, dtype) we store them as literals in the graph.
|
202 |
+
quantize_op_inputs.append(value_or_node)
|
203 |
+
|
204 |
+
quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
|
205 |
+
# use the same qparams from quantize op
|
206 |
+
dq_inputs = [quantized_node] + quantize_op_inputs[1:]
|
207 |
+
dequantized_node = graph.call_function(
|
208 |
+
dequantize_op,
|
209 |
+
tuple(dq_inputs),
|
210 |
+
{}
|
211 |
+
)
|
212 |
+
|
213 |
+
def remap_fn(x):
|
214 |
+
return dequantized_node if x is node else x
|
215 |
+
|
216 |
+
# remap numeric_debug_handle
|
217 |
+
for user_node in node.users:
|
218 |
+
if "numeric_debug_handle" in user_node.meta:
|
219 |
+
numeric_debug_handle = user_node.meta["numeric_debug_handle"]
|
220 |
+
user_node.meta["numeric_debug_handle"] = {remap_fn(k): v for k, v in numeric_debug_handle.items()}
|
221 |
+
node.replace_all_uses_with(dequantized_node)
|
222 |
+
graph.erase_node(node)
|
223 |
+
elif is_dynamic:
|
224 |
+
|
225 |
+
# uint8/int8/fp16 dynamic quantization
|
226 |
+
|
227 |
+
# 1. extract information for inserting q/dq node from activation_post_process
|
228 |
+
node_type = "call_function"
|
229 |
+
quantize_op = torch.ops.quantized_decomposed.quantize_per_tensor.tensor
|
230 |
+
# we only use choose_qparams for is_decomposed now,
|
231 |
+
# but we should probably align the non-decomposed path with this as well,
|
232 |
+
# and that can be done after we remove reduce_range flag
|
233 |
+
# 1. extract qparams from activation_post_process module
|
234 |
+
dtype_ = to_underlying_dtype(dtype)
|
235 |
+
assert dtype_ in [torch.uint8, torch.int8], \
|
236 |
+
"only uint8 and int8 are supported in reference flow for " \
|
237 |
+
"dynamic quantization right now"
|
238 |
+
quant_min = activation_post_process.quant_min # type: ignore[attr-defined]
|
239 |
+
quant_max = activation_post_process.quant_max # type: ignore[attr-defined]
|
240 |
+
qscheme = getattr(activation_post_process, "qscheme", torch.per_tensor_affine) # type: ignore[attr-defined]
|
241 |
+
eps = getattr(activation_post_process, "eps", torch.finfo(torch.float32).eps) # type: ignore[attr-defined]
|
242 |
+
# note: scale and zero_point are missing for quantize_per_tensor op
|
243 |
+
# we'll need to get this from choose_qparams op, which we'll add after
|
244 |
+
# this step
|
245 |
+
qparams = {
|
246 |
+
"_quant_min_": quant_min,
|
247 |
+
"_quant_max_": quant_max,
|
248 |
+
"_eps_": eps,
|
249 |
+
"_dtype_": dtype_
|
250 |
+
}
|
251 |
+
|
252 |
+
choose_qparams_op = _QSCHEME_TO_CHOOSE_QPARAMS_OP[qscheme]
|
253 |
+
# 2. insert choose_qparams op and update the qparams list
|
254 |
+
with graph.inserting_before(node):
|
255 |
+
input_node = node.args[0]
|
256 |
+
choose_qparams_op_inputs = [node.args[0]]
|
257 |
+
for key, value in qparams.items():
|
258 |
+
# we have quant_min, quant_max and dtype, all should be stored
|
259 |
+
# as literals
|
260 |
+
choose_qparams_op_inputs.append(value)
|
261 |
+
choose_qparams_node = graph.create_node(
|
262 |
+
"call_function",
|
263 |
+
choose_qparams_op,
|
264 |
+
tuple(choose_qparams_op_inputs),
|
265 |
+
{}
|
266 |
+
)
|
267 |
+
# choose_qparms returns (scale, zero_point)
|
268 |
+
scale_node = graph.create_node(
|
269 |
+
"call_function",
|
270 |
+
operator.getitem,
|
271 |
+
(choose_qparams_node, 0),
|
272 |
+
{}
|
273 |
+
)
|
274 |
+
zero_point_node = graph.create_node(
|
275 |
+
"call_function",
|
276 |
+
operator.getitem,
|
277 |
+
(choose_qparams_node, 1),
|
278 |
+
{}
|
279 |
+
)
|
280 |
+
quant_min = qparams["_quant_min_"]
|
281 |
+
quant_max = qparams["_quant_max_"]
|
282 |
+
dtype = qparams["_dtype_"]
|
283 |
+
qparams = {
|
284 |
+
"_scale_": scale_node,
|
285 |
+
"_zero_point_": zero_point_node,
|
286 |
+
"_quant_min_": quant_min,
|
287 |
+
"_quant_max_": quant_max,
|
288 |
+
"_dtype_": dtype
|
289 |
+
}
|
290 |
+
|
291 |
+
# 3. replace activation_post_process node to quantize and dequantize node
|
292 |
+
with graph.inserting_before(node):
|
293 |
+
input_node = node.args[0]
|
294 |
+
quantize_op_inputs = [input_node]
|
295 |
+
for key, value_or_node in qparams.items():
|
296 |
+
# TODO: we can add the information of whether a value needs to
|
297 |
+
# be registered as an attribute in qparams dict itself
|
298 |
+
if key in ['_scale_', '_zero_point_']:
|
299 |
+
# in this case we have a node in the graph since it's dynamically
|
300 |
+
# computed from the input, with choose_qparams op
|
301 |
+
qparam_node = value_or_node
|
302 |
+
quantize_op_inputs.append(qparam_node)
|
303 |
+
else:
|
304 |
+
# for qparams that are not scale/zero_point (like axis, dtype) we
|
305 |
+
# store them as literals in the graph.
|
306 |
+
quantize_op_inputs.append(value_or_node)
|
307 |
+
|
308 |
+
quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
|
309 |
+
# use the same qparams from quantize op
|
310 |
+
dq_inputs = [quantized_node] + quantize_op_inputs[1:]
|
311 |
+
# need to use the tensor variant of this op, since scale and zero_point
|
312 |
+
# from choose_qparam are Tensors, instead of float/int, this is to
|
313 |
+
# prevent these nodes being traced away by downstream systems
|
314 |
+
dequantize_op = torch.ops.quantized_decomposed.dequantize_per_tensor.tensor
|
315 |
+
dequantized_node = graph.call_function(
|
316 |
+
dequantize_op,
|
317 |
+
tuple(dq_inputs),
|
318 |
+
{}
|
319 |
+
)
|
320 |
+
|
321 |
+
def remap_fn(x):
|
322 |
+
return dequantized_node if x is node else x
|
323 |
+
|
324 |
+
# remap numeric_debug_handle
|
325 |
+
for user_node in node.users:
|
326 |
+
if "numeric_debug_handle" in user_node.meta:
|
327 |
+
numeric_debug_handle = user_node.meta["numeric_debug_handle"]
|
328 |
+
user_node.meta["numeric_debug_handle"] = {remap_fn(k): v for k, v in numeric_debug_handle.items()}
|
329 |
+
node.replace_all_uses_with(dequantized_node)
|
330 |
+
graph.erase_node(node)
|
331 |
+
elif dtype == torch.float16:
|
332 |
+
raise NotImplementedError("decomposed to float16 op not implemented yet")
|
333 |
+
|
334 |
+
# should not reach since we have checks in the beginning to make sure the
|
335 |
+
# activation_post_process is supported
|
336 |
+
|
337 |
+
def _replace_observer_with_quantize_dequantize_node(
|
338 |
+
model: torch.fx.GraphModule,
|
339 |
+
node: Node,
|
340 |
+
modules: Dict[str, torch.nn.Module],
|
341 |
+
node_name_to_scope: Dict[str, Tuple[str, type]],
|
342 |
+
node_name_to_qconfig: Dict[str, QConfigAny]) -> None:
|
343 |
+
""" Replace activation_post_process module call node with quantize and
|
344 |
+
dequantize node
|
345 |
+
|
346 |
+
Before:
|
347 |
+
... -> observer_0(x) -> ...
|
348 |
+
After:
|
349 |
+
... -> torch.quantize_per_tensor(x, ...) -> x.dequantize() -> ...
|
350 |
+
"""
|
351 |
+
assert modules is not None
|
352 |
+
assert isinstance(node.target, str)
|
353 |
+
graph = model.graph
|
354 |
+
module_path, prefix = _get_module_path_and_prefix(node, node_name_to_scope, node_name_to_qconfig)
|
355 |
+
activation_post_process = modules[node.target]
|
356 |
+
# skip replacing observers to quant/dequant nodes if the qconfigs of all
|
357 |
+
# consumers and producers of this observer are None
|
358 |
+
skip_replacement = all(_has_none_qconfig(n, node_name_to_qconfig) for n in
|
359 |
+
list(node.args) + list(node.users.keys()))
|
360 |
+
if skip_replacement or not _is_conversion_supported(activation_post_process):
|
361 |
+
# didn't find corresponding quantize op and info for the activation_post_process
|
362 |
+
# so we just remove the observer
|
363 |
+
with graph.inserting_before(node):
|
364 |
+
node.replace_all_uses_with(node.args[0])
|
365 |
+
graph.erase_node(node)
|
366 |
+
return
|
367 |
+
|
368 |
+
# otherwise, we can convert the activation_post_process module call to quantize/dequantize node
|
369 |
+
dtype = activation_post_process.dtype # type: ignore[attr-defined]
|
370 |
+
|
371 |
+
is_dynamic = False
|
372 |
+
if hasattr(activation_post_process, "is_dynamic"):
|
373 |
+
is_dynamic = activation_post_process.is_dynamic # type: ignore[attr-defined, assignment]
|
374 |
+
|
375 |
+
if dtype in [torch.quint8, torch.qint8, torch.qint32] and \
|
376 |
+
(not is_dynamic):
|
377 |
+
# TODO: probably should cleanup this condition check, it's hard
|
378 |
+
# to reason about this if and the following elif
|
379 |
+
|
380 |
+
# uint8/int8/int32 static quantization branch
|
381 |
+
|
382 |
+
# 1. extract the information from activation_post_process module for generating
|
383 |
+
# the quantize and dequantize operator
|
384 |
+
node_type = "call_function"
|
385 |
+
quantize_op : Optional[Callable] = None
|
386 |
+
scale, zero_point = activation_post_process.calculate_qparams() # type: ignore[attr-defined, operator]
|
387 |
+
if is_per_channel(activation_post_process.qscheme): # type: ignore[attr-defined]
|
388 |
+
ch_axis = int(activation_post_process.ch_axis) # type: ignore[attr-defined, arg-type]
|
389 |
+
qparams = {"_scale_": scale, "_zero_point_": zero_point, "_axis_": ch_axis, "_dtype_": dtype}
|
390 |
+
quantize_op = torch.quantize_per_channel
|
391 |
+
else:
|
392 |
+
scale = float(scale)
|
393 |
+
zero_point = int(zero_point)
|
394 |
+
qparams = {"_scale_": scale, "_zero_point_": zero_point, "_dtype_": dtype}
|
395 |
+
quantize_op = torch.quantize_per_tensor
|
396 |
+
|
397 |
+
# 2. replace activation_post_process node with quantize and dequantize
|
398 |
+
with graph.inserting_before(node):
|
399 |
+
input_node = node.args[0]
|
400 |
+
quantize_op_inputs = [input_node]
|
401 |
+
for key, value_or_node in qparams.items():
|
402 |
+
# TODO: we can add the information of whether a value needs to
|
403 |
+
# be registered as an attribute in qparams dict itself
|
404 |
+
if key in ['_scale_', '_zero_point_']:
|
405 |
+
# For scale and zero_point values we register them as buffers in the root module.
|
406 |
+
# TODO: maybe need more complex attr name here
|
407 |
+
qparam_node = create_getattr_from_value(
|
408 |
+
model, graph, module_path + prefix + key, value_or_node)
|
409 |
+
quantize_op_inputs.append(qparam_node)
|
410 |
+
else:
|
411 |
+
# for qparams that are not scale/zero_point (like axis, dtype) we store them as literals in the graph.
|
412 |
+
quantize_op_inputs.append(value_or_node)
|
413 |
+
|
414 |
+
quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
|
415 |
+
dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
|
416 |
+
node.replace_all_uses_with(dequantized_node)
|
417 |
+
graph.erase_node(node)
|
418 |
+
elif is_dynamic:
|
419 |
+
|
420 |
+
# uint8/int8/fp16 dynamic quantization branch
|
421 |
+
|
422 |
+
node_type = "call_function"
|
423 |
+
quantize_op = torch.quantize_per_tensor_dynamic
|
424 |
+
# TODO: get reduce range from observer
|
425 |
+
# reduce_range = activation_post_process.reduce_range
|
426 |
+
reduce_range = torch.backends.quantized.engine in ("fbgemm", "x86")
|
427 |
+
qparams = {"_dtype_": dtype, "_reduce_range_": reduce_range}
|
428 |
+
|
429 |
+
with graph.inserting_before(node):
|
430 |
+
input_node = node.args[0]
|
431 |
+
quantize_op_inputs = [input_node]
|
432 |
+
for key, value in qparams.items():
|
433 |
+
quantize_op_inputs.append(value)
|
434 |
+
|
435 |
+
quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
|
436 |
+
dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
|
437 |
+
node.replace_all_uses_with(dequantized_node)
|
438 |
+
graph.erase_node(node)
|
439 |
+
elif dtype == torch.float16:
|
440 |
+
node_type = "call_method"
|
441 |
+
quantize_op = "to" # type: ignore[assignment]
|
442 |
+
qparams = {"_dtype_": dtype}
|
443 |
+
with graph.inserting_before(node):
|
444 |
+
input_node = node.args[0]
|
445 |
+
quantize_op_inputs = [input_node]
|
446 |
+
for key, value in qparams.items():
|
447 |
+
# TODO: we can add the information of whether a value needs to
|
448 |
+
# be registered as an attribute in qparams dict itself
|
449 |
+
quantize_op_inputs.append(value)
|
450 |
+
|
451 |
+
quantized_node = graph.create_node(node_type, quantize_op, tuple(quantize_op_inputs), {})
|
452 |
+
dequantized_node = graph.call_method("dequantize", args=(quantized_node,))
|
453 |
+
node.replace_all_uses_with(dequantized_node)
|
454 |
+
graph.erase_node(node)
|
455 |
+
|
456 |
+
# should not reach since we have checks in the beginning to make sure the
|
457 |
+
# activation_post_process is supported
|
458 |
+
|
459 |
+
# this is a temporary hack for custom module, we may want to implement
|
460 |
+
# this properly after the custom module class design is finalized
|
461 |
+
# TODO: DeQuantStubs are currently inserted only after custom module LSTM, while observers are inserted
|
462 |
+
# after all other custom modules. In the future, we should simply insert QuantStubs before and DeQuantStubs
|
463 |
+
# after custom modules in general, and replace these with "quantize" and "dequantize" nodes respectively.
|
464 |
+
def _replace_observer_or_dequant_stub_with_dequantize_node(node: Node, graph: Graph) -> None:
|
465 |
+
call_custom_module_node = node.args[0]
|
466 |
+
assert isinstance(call_custom_module_node, Node), \
|
467 |
+
f"Expecting the for call custom module node to be a Node, but got {call_custom_module_node}"
|
468 |
+
node.replace_all_uses_with(call_custom_module_node)
|
469 |
+
graph.erase_node(node)
|
470 |
+
_insert_dequantize_node(call_custom_module_node, graph)
|
471 |
+
|
472 |
+
def _is_conversion_supported(activation_post_process: torch.nn.Module) -> bool:
|
473 |
+
dtype = activation_post_process.dtype # type: ignore[attr-defined]
|
474 |
+
|
475 |
+
is_dynamic = False
|
476 |
+
if hasattr(activation_post_process, "is_dynamic"):
|
477 |
+
is_dynamic = activation_post_process.is_dynamic # type: ignore[attr-defined, assignment]
|
478 |
+
|
479 |
+
return (
|
480 |
+
(dtype in [
|
481 |
+
torch.quint8,
|
482 |
+
torch.qint8,
|
483 |
+
torch.qint32,
|
484 |
+
torch.uint8,
|
485 |
+
torch.int8,
|
486 |
+
torch.int16,
|
487 |
+
torch.int32
|
488 |
+
] and (not is_dynamic)) or # type: ignore[return-value]
|
489 |
+
is_dynamic or
|
490 |
+
dtype == torch.float16
|
491 |
+
)
|
492 |
+
|
493 |
+
def _has_none_qconfig(node: Argument, node_name_to_qconfig: Dict[str, QConfigAny]) -> bool:
|
494 |
+
""" Check if a node has a qconfig of None, i.e. user requested to not quantize
|
495 |
+
the node
|
496 |
+
"""
|
497 |
+
return isinstance(node, Node) and node.name in node_name_to_qconfig and node_name_to_qconfig[node.name] is None
|
498 |
+
|
499 |
+
def _run_weight_observers(observed: GraphModule, backend_config: BackendConfig) -> None:
|
500 |
+
""" Extract the subgraph that produces the weight for dynamic quant
|
501 |
+
or weight only quant node and run the subgraph to observe the weight.
|
502 |
+
Note that the observers of dynamic quant or weight only quant ops are
|
503 |
+
run during the convert step.
|
504 |
+
"""
|
505 |
+
for node in observed.graph.nodes:
|
506 |
+
if node.op != "call_function":
|
507 |
+
continue
|
508 |
+
for node_arg in node.args:
|
509 |
+
# node_arg is weight
|
510 |
+
if node_arg and node_arg_is_weight(node, node_arg):
|
511 |
+
weight_observer_nodes = collect_producer_nodes(node_arg)
|
512 |
+
if weight_observer_nodes is None:
|
513 |
+
continue
|
514 |
+
weight_observer_module = \
|
515 |
+
graph_module_from_producer_nodes(
|
516 |
+
observed, weight_observer_nodes)
|
517 |
+
# run the weight observer
|
518 |
+
weight_observer_module()
|
519 |
+
|
520 |
+
def _maybe_recursive_remove_dequantize(arg: Any, node: Node, graph: Graph) -> None:
|
521 |
+
""" If the arg is a dequantize Node, or a list/tuple/dict of dequantize Node,
|
522 |
+
we'll recursively remove the dequantize Node
|
523 |
+
"""
|
524 |
+
if isinstance(arg, Node) and \
|
525 |
+
arg.op == "call_method" and \
|
526 |
+
arg.target == "dequantize":
|
527 |
+
quantize_node = arg.args[0]
|
528 |
+
# we only replace the specific use since dequantize could be used by other nodes
|
529 |
+
# as well
|
530 |
+
node.replace_input_with(arg, quantize_node)
|
531 |
+
elif isinstance(arg, (list, tuple)):
|
532 |
+
for arg_element in arg:
|
533 |
+
_maybe_recursive_remove_dequantize(arg_element, node, graph)
|
534 |
+
elif isinstance(arg, dict):
|
535 |
+
for arg_element in arg.values():
|
536 |
+
_maybe_recursive_remove_dequantize(arg_element, node, graph)
|
537 |
+
else:
|
538 |
+
warnings.warn(f"Unsupported node type in recursive remove dequantize: {type(arg)}")
|
539 |
+
|
540 |
+
def _get_module_path_and_prefix(
|
541 |
+
obs_node: Node,
|
542 |
+
node_name_to_scope: Dict[str, Tuple[str, type]],
|
543 |
+
node_name_to_qconfig: Dict[str, QConfigAny]) -> Tuple[str, str]:
|
544 |
+
""" Given and observer node, get the `Scope` or the fully qualified name for
|
545 |
+
the submodule containing the observed node, also return a prefix of "_input"
|
546 |
+
when the observed node is an input of a F.linear op, and not the output of another
|
547 |
+
quantized op.
|
548 |
+
TODO: this logic is hacky, we should think about how to remove it or make it more
|
549 |
+
general
|
550 |
+
"""
|
551 |
+
observed_node = obs_node.args[0]
|
552 |
+
# an observer can be inserted for both input of the next operator or output of the previous
|
553 |
+
# operator (they can be the same)
|
554 |
+
# this flag identifies if the observer is inserted only because the observed node is
|
555 |
+
# the input of the next operator
|
556 |
+
assert isinstance(observed_node, Node), \
|
557 |
+
f"Expecting observed node to be a Node, but got {observed_node}"
|
558 |
+
is_input_observer_only = node_name_to_qconfig[observed_node.name] is None \
|
559 |
+
if observed_node.name in node_name_to_qconfig else None
|
560 |
+
if is_input_observer_only:
|
561 |
+
# if the quantize function is at the input of op, then we find the first user of the observer_node
|
562 |
+
# to get the path. If a linear call_function is in the user list, we return the first instance
|
563 |
+
# of linear node to get the FQN.
|
564 |
+
users = list(obs_node.users)
|
565 |
+
first_linear_use_or_first_use = users[0] if users else None
|
566 |
+
linear_node = None
|
567 |
+
for n in users:
|
568 |
+
if n.op == "call_function" and n.target == torch.nn.functional.linear:
|
569 |
+
linear_node = n
|
570 |
+
break
|
571 |
+
if linear_node:
|
572 |
+
first_linear_use_or_first_use = linear_node
|
573 |
+
prefix = "_input"
|
574 |
+
else:
|
575 |
+
# if the quantize function is at the output of the op, we use the observer input node to get the path
|
576 |
+
first_linear_use_or_first_use = observed_node
|
577 |
+
prefix = ""
|
578 |
+
|
579 |
+
if first_linear_use_or_first_use and first_linear_use_or_first_use.name in node_name_to_scope:
|
580 |
+
module_path, _ = node_name_to_scope[first_linear_use_or_first_use.name]
|
581 |
+
else:
|
582 |
+
# TODO: it's not used, so actually we can skip quantization
|
583 |
+
# but this requires changing return type of quantize_node
|
584 |
+
# we can fix it later if needed
|
585 |
+
module_path = ""
|
586 |
+
return module_path, prefix
|
587 |
+
|
588 |
+
def _insert_dequantize_node(
|
589 |
+
node: Node,
|
590 |
+
graph: Graph) -> None:
|
591 |
+
""" Inserts dequantize node for `node` in `graph`
|
592 |
+
"""
|
593 |
+
with graph.inserting_after(node):
|
594 |
+
dequantize_node = graph.call_method("dequantize", (node,))
|
595 |
+
for user_node in dict(node.users):
|
596 |
+
if user_node is not dequantize_node:
|
597 |
+
user_node.replace_input_with(node, dequantize_node)
|
598 |
+
|
599 |
+
def _maybe_get_observer_for_node(
|
600 |
+
node: Node,
|
601 |
+
modules: Dict[str, torch.nn.Module]
|
602 |
+
) -> Optional[torch.nn.Module]:
|
603 |
+
"""
|
604 |
+
If the node is observed, return the observer
|
605 |
+
instance. Otherwise, return None.
|
606 |
+
"""
|
607 |
+
for maybe_obs_node in node.users.keys():
|
608 |
+
if maybe_obs_node.op == 'call_module':
|
609 |
+
maybe_obs = modules[str(maybe_obs_node.target)]
|
610 |
+
if _is_activation_post_process(maybe_obs):
|
611 |
+
return maybe_obs
|
612 |
+
return None
|
613 |
+
|
614 |
+
def convert_standalone_module(
|
615 |
+
node: Node,
|
616 |
+
modules: Dict[str, torch.nn.Module],
|
617 |
+
model: torch.fx.GraphModule,
|
618 |
+
is_reference: bool,
|
619 |
+
backend_config: Optional[BackendConfig]) -> None:
|
620 |
+
""" Converts a observed standalone module to a quantized standalone module by calling
|
621 |
+
the fx convert api, currently using the same `is_reference` flag as parent, but we may
|
622 |
+
changing this behavior in the future (e.g. separating quantization and lowering for
|
623 |
+
standalone module as well)
|
624 |
+
|
625 |
+
Args:
|
626 |
+
- node: The call_module node of the observed standalone module
|
627 |
+
- modules: named_module of original model
|
628 |
+
- model: original model
|
629 |
+
- is_reference: a flag from parent provided by user to decide if we want to
|
630 |
+
produce a reference model or a fbgemm/qnnpack model
|
631 |
+
- backend_config: backend configuration of the target backend of quantization
|
632 |
+
"""
|
633 |
+
# TODO: remove is_reference flag
|
634 |
+
if is_reference:
|
635 |
+
convert_fn = torch.ao.quantization.quantize_fx.convert_to_reference_fx
|
636 |
+
else:
|
637 |
+
convert_fn = torch.ao.quantization.quantize_fx.convert_fx # type: ignore[attr-defined]
|
638 |
+
# We know that observed standalone module is a GraphModule since
|
639 |
+
# it's produced by us
|
640 |
+
observed_standalone_module : GraphModule = modules[str(node.target)] # type: ignore[assignment]
|
641 |
+
sm_input_quantized_idxs = \
|
642 |
+
observed_standalone_module \
|
643 |
+
.meta["_observed_graph_module_attrs"].standalone_module_input_quantized_idxs
|
644 |
+
# remove the dequantize nodes for inputs
|
645 |
+
args = list(node.args)
|
646 |
+
for idx in range(len(args)):
|
647 |
+
if idx in sm_input_quantized_idxs:
|
648 |
+
arg = args[idx]
|
649 |
+
if arg.op == "call_method" and arg.target == "dequantize": # type: ignore[union-attr]
|
650 |
+
quantize_node = arg.args[0] # type: ignore[union-attr]
|
651 |
+
node.replace_input_with(arg, quantize_node)
|
652 |
+
if len(arg.users) == 0: # type: ignore[union-attr]
|
653 |
+
model.graph.erase_node(arg)
|
654 |
+
# add dequantize node for output
|
655 |
+
sm_output_quantized_idxs = \
|
656 |
+
observed_standalone_module \
|
657 |
+
.meta["_observed_graph_module_attrs"].standalone_module_output_quantized_idxs
|
658 |
+
if len(sm_output_quantized_idxs) > 0:
|
659 |
+
assert sm_output_quantized_idxs[0] == 0, "Currently only quantized"
|
660 |
+
"output idxs = [0] is supported"
|
661 |
+
|
662 |
+
# if it's non-empty, then it means the output is kept in quantized form
|
663 |
+
# we'll just add a dequantize node after this node
|
664 |
+
_insert_dequantize_node(node, model.graph)
|
665 |
+
|
666 |
+
# TODO: allow convert_custom_config to override backend_config
|
667 |
+
# for standalone module
|
668 |
+
quantized_standalone_module = convert_fn(
|
669 |
+
observed_standalone_module,
|
670 |
+
backend_config=backend_config)
|
671 |
+
parent_name, name = _parent_name(node.target)
|
672 |
+
# update the modules dict
|
673 |
+
setattr(modules[parent_name], name, quantized_standalone_module)
|
674 |
+
modules[str(node.target)] = quantized_standalone_module
|
675 |
+
|
676 |
+
def convert_weighted_module(
|
677 |
+
node: Node,
|
678 |
+
modules: Dict[str, torch.nn.Module],
|
679 |
+
observed_node_names: Set[str],
|
680 |
+
node_name_to_qconfig: Dict[str, QConfigAny],
|
681 |
+
backend_config: BackendConfig,
|
682 |
+
is_decomposed: bool = False,
|
683 |
+
is_reference: bool = False,
|
684 |
+
) -> None:
|
685 |
+
""" Convert a weighted module to reference quantized module in the model
|
686 |
+
If the QConfig of a QAT module is not set, the module will still be converted to
|
687 |
+
a float module.
|
688 |
+
|
689 |
+
Args:
|
690 |
+
- node: The call_module node of the observed standalone module
|
691 |
+
- modules: named_module of original model
|
692 |
+
- observed_node_names: names for the set of observed fx node, we can skip
|
693 |
+
this conversion if the node is not observed
|
694 |
+
"""
|
695 |
+
original_module = modules[str(node.target)]
|
696 |
+
qconfig: QConfigAny = original_module.qconfig # type: ignore[assignment]
|
697 |
+
weight_post_process = None
|
698 |
+
qat_module_classes = get_qat_module_classes(backend_config)
|
699 |
+
|
700 |
+
if isinstance(
|
701 |
+
original_module,
|
702 |
+
qat_module_classes):
|
703 |
+
# Converting qat module to a float module, we need to attach
|
704 |
+
# weight fake_quant to the module, weight fake_quant is assumed to be run during
|
705 |
+
# QAT so we don't need to run it again here
|
706 |
+
weight_post_process = original_module.weight_fake_quant
|
707 |
+
original_module = original_module.to_float() # type: ignore[operator]
|
708 |
+
# change qat module to float module
|
709 |
+
parent_name, name = _parent_name(node.target)
|
710 |
+
setattr(modules[parent_name], name, original_module)
|
711 |
+
|
712 |
+
is_observed = node.name in observed_node_names
|
713 |
+
# If a qconfig is not defined for this node, then skip converting to a reference module
|
714 |
+
if qconfig is None or _has_none_qconfig(node, node_name_to_qconfig) or not is_observed:
|
715 |
+
return
|
716 |
+
|
717 |
+
# skip converting to reference quantized module if the qconfig is not supported
|
718 |
+
pattern_to_dtype_configs = get_pattern_to_dtype_configs(backend_config)
|
719 |
+
dtype_configs = pattern_to_dtype_configs.get(type(original_module), [])
|
720 |
+
if not _is_qconfig_supported_by_dtype_configs(qconfig, dtype_configs):
|
721 |
+
return
|
722 |
+
|
723 |
+
# TODO: rename weight_is_statically_quantized to weight_is_int8_quantized
|
724 |
+
is_weight_quantized = weight_is_quantized(qconfig)
|
725 |
+
|
726 |
+
# the condition for swapping the module to reference quantized module is:
|
727 |
+
# weights need to be quantized
|
728 |
+
if not is_weight_quantized:
|
729 |
+
return
|
730 |
+
|
731 |
+
fused_module = None
|
732 |
+
float_module = original_module
|
733 |
+
# extract the individual float_module and fused module
|
734 |
+
if isinstance(original_module, torch.ao.nn.intrinsic._FusedModule):
|
735 |
+
fused_module = float_module
|
736 |
+
float_module = fused_module[0] # type: ignore[index]
|
737 |
+
|
738 |
+
# TODO: move this to the reference quantized module
|
739 |
+
# weight_qparams or weight_qparams dict
|
740 |
+
wq_or_wq_dict = {"is_decomposed": is_decomposed}
|
741 |
+
if isinstance(float_module, torch.nn.RNNCellBase):
|
742 |
+
weight_post_process_ih = qconfig.weight() # type: ignore[union-attr, operator]
|
743 |
+
weight_post_process_hh = qconfig.weight() # type: ignore[union-attr, operator]
|
744 |
+
weight_post_process_ih(float_module.weight_ih)
|
745 |
+
weight_post_process_hh(float_module.weight_hh)
|
746 |
+
weight_qparams_ih = get_qparam_dict(weight_post_process_ih)
|
747 |
+
weight_qparams_hh = get_qparam_dict(weight_post_process_hh)
|
748 |
+
wq_or_wq_dict.update({
|
749 |
+
"weight_ih": weight_qparams_ih,
|
750 |
+
"weight_hh": weight_qparams_hh,
|
751 |
+
})
|
752 |
+
elif isinstance(float_module, (torch.nn.LSTM, torch.nn.GRU)):
|
753 |
+
# format for wq_or_wq_dict (flattened attributes):
|
754 |
+
# {"weight_ih_l0_scale": ..., "weight_ih_l0_qscheme": ..., ...}
|
755 |
+
for wn in float_module._flat_weights_names:
|
756 |
+
if hasattr(float_module, wn) and wn.startswith("weight"):
|
757 |
+
weight = getattr(float_module, wn)
|
758 |
+
weight_post_process = qconfig.weight() # type: ignore[union-attr, operator]
|
759 |
+
if weight_post_process.dtype == torch.qint8: # type: ignore[union-attr]
|
760 |
+
weight_post_process(weight) # type: ignore[operator, misc]
|
761 |
+
wq_or_wq_dict[wn] = get_qparam_dict(weight_post_process)
|
762 |
+
else:
|
763 |
+
# weight_post_process is None means the original module is not a QAT module
|
764 |
+
# we need to get weight_post_process from qconfig in this case
|
765 |
+
is_ptq = weight_post_process is None
|
766 |
+
if is_ptq:
|
767 |
+
weight_post_process = qconfig.weight() # type: ignore[union-attr, operator]
|
768 |
+
device = assert_and_get_unique_device(float_module)
|
769 |
+
if device:
|
770 |
+
weight_post_process.to(device)
|
771 |
+
|
772 |
+
# Call weight observer/fake_quant at least once to ensure the scales and zero points
|
773 |
+
# have the right shapes. Note: there are two cases where we don't have to do this:
|
774 |
+
#
|
775 |
+
# (1) QAT: The model's forward method already calls the weight observer/fake_quant,
|
776 |
+
# and this typically happens during training, so we don't need to do it here.
|
777 |
+
#
|
778 |
+
# (2) Non-reference (lowered) case: The quantized module's from_float method already
|
779 |
+
# calls the weight observer/fake_quant, so we don't have to do it here.
|
780 |
+
#
|
781 |
+
# Currently we ignore both cases and call the weight observer/fake_quant here
|
782 |
+
# regardless, which is technically incorrect. For (1), this is mainly to preserve BC
|
783 |
+
# in test code, which may not always train before convert. In the future, we should
|
784 |
+
# break BC for these two cases. See https://github.com/pytorch/pytorch/issues/73941.
|
785 |
+
#
|
786 |
+
# For PT2, however, we don't need to preserve BC here, so we can skip this hack
|
787 |
+
# for QAT. We identify this case as (is_decomposed + is_reference + is_qat).
|
788 |
+
# Note that we still need it for PTQ in the PT2 flow since the model's forward
|
789 |
+
# method doesn't call the weight observer.
|
790 |
+
is_qat = not is_ptq
|
791 |
+
if not (is_decomposed and is_reference and is_qat):
|
792 |
+
weight_post_process(float_module.weight) # type: ignore[operator]
|
793 |
+
|
794 |
+
wq_or_wq_dict.update(get_qparam_dict(weight_post_process))
|
795 |
+
|
796 |
+
# We use the same reference module for all modes of quantization: static, dynamic, weight_only
|
797 |
+
# root_module_to_quantized_reference_module: module mapping from root (floating point) module class
|
798 |
+
# to quantized reference module class, e.g. nn.Conv2d to nn.quantized._reference.Conv2d
|
799 |
+
root_module_to_quantized_reference_module = get_root_module_to_quantized_reference_module(backend_config)
|
800 |
+
ref_qmodule_cls = root_module_to_quantized_reference_module.get(type_before_parametrizations(float_module), None)
|
801 |
+
assert (
|
802 |
+
ref_qmodule_cls is not None
|
803 |
+
), f"No reference quantized module class configured for {type_before_parametrizations(float_module)}"
|
804 |
+
ref_qmodule = ref_qmodule_cls.from_float(float_module, wq_or_wq_dict) # type: ignore[attr-defined]
|
805 |
+
if fused_module is not None:
|
806 |
+
fused_module[0] = ref_qmodule # type: ignore[operator]
|
807 |
+
else:
|
808 |
+
parent_name, name = _parent_name(node.target)
|
809 |
+
setattr(modules[parent_name], name, ref_qmodule)
|
810 |
+
|
811 |
+
def _remove_previous_dequantize_in_custom_module(node: Node, prev_node: Node, graph: Graph) -> None:
|
812 |
+
"""
|
813 |
+
Given a custom module `node`, if the previous node is a dequantize, reroute the custom as follows:
|
814 |
+
|
815 |
+
Before: quantize - dequantize - custom_module
|
816 |
+
After: quantize - custom_module
|
817 |
+
\\ - dequantize
|
818 |
+
"""
|
819 |
+
# expecting the input node for a custom module node to be a Node
|
820 |
+
assert isinstance(prev_node, Node), \
|
821 |
+
f"Expecting the argument for custom module node to be a Node, but got {prev_node}"
|
822 |
+
if prev_node.op == "call_method" and prev_node.target == "dequantize":
|
823 |
+
node.replace_input_with(prev_node, prev_node.args[0])
|
824 |
+
# Remove the dequantize node if it doesn't have other users
|
825 |
+
if len(prev_node.users) == 0:
|
826 |
+
graph.erase_node(prev_node)
|
827 |
+
|
828 |
+
def convert_custom_module(
|
829 |
+
node: Node,
|
830 |
+
graph: Graph,
|
831 |
+
modules: Dict[str, torch.nn.Module],
|
832 |
+
custom_module_class_mapping: Dict[QuantType, Dict[Type, Type]],
|
833 |
+
statically_quantized_custom_module_nodes: Set[Node]) -> None:
|
834 |
+
""" Converts an observed custom module to a quantized custom module based on
|
835 |
+
`custom_module_class_mapping`
|
836 |
+
For static quantization, we'll also remove the previous `dequantize` node and
|
837 |
+
attach the observer node for output to the module, the observer for the node
|
838 |
+
will be converted to a dequantize node instead of quantize-dequantize pairs
|
839 |
+
later in the graph. In the end we would have a quantized custom module that
|
840 |
+
has the same interface as a default quantized module in nn.quantized namespace,
|
841 |
+
i.e. quantized input and quantized output.
|
842 |
+
|
843 |
+
Args:
|
844 |
+
- node: The call_module node of the observed standalone module
|
845 |
+
- graph: The graph containing the node
|
846 |
+
- modules: named_module of original model
|
847 |
+
- custom_module_class_mapping: mapping from observed custom module class to
|
848 |
+
quantized custom module class, used to swap custom modules
|
849 |
+
- statically_quantized_custom_module_nodes: we'll add the custom module node
|
850 |
+
if we find it is statically quantized, this will be used later when converting
|
851 |
+
observers to quant/dequant node pairs, if the observed node is a statically
|
852 |
+
quantized custom module nodes, we'll convert the observer to a dequantize node,
|
853 |
+
this is to keep the interface the same as the default quantized module.
|
854 |
+
TODO: maybe we want to redesign this part to align with reference model design
|
855 |
+
as well, but there has been some discussions around the interface, so we can do
|
856 |
+
it later.
|
857 |
+
"""
|
858 |
+
observed_custom_module = modules[str(node.target)]
|
859 |
+
maybe_obs = _maybe_get_observer_for_node(node, modules)
|
860 |
+
qconfig = observed_custom_module.qconfig
|
861 |
+
if activation_is_statically_quantized(qconfig):
|
862 |
+
statically_quantized_custom_module_nodes.add(node)
|
863 |
+
if _is_custom_module_lstm(node, modules):
|
864 |
+
# The inputs are tuples in the form (input, (hidden0, hidden1))
|
865 |
+
# Ensure all three input nodes are quantized
|
866 |
+
assert (
|
867 |
+
len(node.args) == 2 and
|
868 |
+
isinstance(node.args[1], tuple) and
|
869 |
+
len(node.args[1]) == 2
|
870 |
+
)
|
871 |
+
(inputs, (hidden0, hidden1)) = node.args # type: ignore[misc]
|
872 |
+
assert isinstance(inputs, Node)
|
873 |
+
assert isinstance(hidden0, Node)
|
874 |
+
assert isinstance(hidden1, Node)
|
875 |
+
_remove_previous_dequantize_in_custom_module(node, inputs, graph)
|
876 |
+
_remove_previous_dequantize_in_custom_module(node, hidden0, graph)
|
877 |
+
_remove_previous_dequantize_in_custom_module(node, hidden1, graph)
|
878 |
+
elif _is_custom_module_mha(node, modules):
|
879 |
+
# Inputs are in the form (query, key, value)
|
880 |
+
# TODO: This is the first step in enabling the full fx custom module
|
881 |
+
# quantization path for MultiheadAttention, and only covers the inputs
|
882 |
+
# to the module.
|
883 |
+
# Additional handling is yet to be implemented for the outputs, similar
|
884 |
+
# to LSTM custom module
|
885 |
+
assert len(node.args) == 3
|
886 |
+
query, key, value = node.args
|
887 |
+
assert isinstance(query, Node)
|
888 |
+
assert isinstance(key, Node)
|
889 |
+
assert isinstance(value, Node)
|
890 |
+
_remove_previous_dequantize_in_custom_module(node, query, graph)
|
891 |
+
_remove_previous_dequantize_in_custom_module(node, key, graph)
|
892 |
+
_remove_previous_dequantize_in_custom_module(node, value, graph)
|
893 |
+
else:
|
894 |
+
# remove the previous dequant node to ensure the inputs are quantized
|
895 |
+
arg = node.args[0]
|
896 |
+
assert isinstance(arg, Node)
|
897 |
+
_remove_previous_dequantize_in_custom_module(node, arg, graph)
|
898 |
+
# absorb the following observer into the module conversion
|
899 |
+
activation_post_process = _maybe_get_observer_for_node(node, modules)
|
900 |
+
assert activation_post_process is not None
|
901 |
+
observed_custom_module.activation_post_process = activation_post_process
|
902 |
+
|
903 |
+
# swap the observed custom module to quantized custom module
|
904 |
+
quantized_custom_module_class = get_swapped_custom_module_class(
|
905 |
+
observed_custom_module, custom_module_class_mapping, qconfig)
|
906 |
+
quantized_custom_module = \
|
907 |
+
quantized_custom_module_class.from_observed(observed_custom_module)
|
908 |
+
parent_name, name = _parent_name(node.target)
|
909 |
+
setattr(modules[parent_name], name, quantized_custom_module)
|
910 |
+
|
911 |
+
def convert(
|
912 |
+
model: GraphModule, is_reference: bool = False,
|
913 |
+
convert_custom_config: Union[ConvertCustomConfig, Dict[str, Any], None] = None,
|
914 |
+
is_standalone_module: bool = False,
|
915 |
+
_remove_qconfig_flag: bool = True,
|
916 |
+
qconfig_mapping: Union[QConfigMapping, Dict[str, Any], None] = None,
|
917 |
+
backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
|
918 |
+
is_decomposed: bool = False) -> GraphModule:
|
919 |
+
"""
|
920 |
+
We will convert an observed model (a module with observer calls) to a reference
|
921 |
+
quantized model, the rule is simple:
|
922 |
+
1. for each observer module call in the graph, we'll convert it to calls to
|
923 |
+
quantize and dequantize functions based on the observer instance
|
924 |
+
2. for weighted operations like linear/conv, we need to convert them to reference
|
925 |
+
quantized module, this requires us to know whether the dtype configured for the
|
926 |
+
weight is supported in the backend, this is done in prepare step and the result
|
927 |
+
is stored in observed_node_names, we can decide whether we need to swap the
|
928 |
+
module based on this set
|
929 |
+
|
930 |
+
Args:
|
931 |
+
* `is_standalone_module`: when this flag is True, it means we are quantizing
|
932 |
+
a submodule that is not inlined in parent module, and will be quantized
|
933 |
+
separately as one unit.
|
934 |
+
|
935 |
+
* `is_decomposed`: a boolean flag to indicate whether we want to use the
|
936 |
+
quantize operator for decomposed quantized tensor
|
937 |
+
(torch.ops.quantized_decomposed.quantize_per_tensor) or default/standalone
|
938 |
+
quantized tensor (torch.quantize_per_tensor)
|
939 |
+
|
940 |
+
Returns:
|
941 |
+
a quantized standalone module, whether input/output is quantized is
|
942 |
+
specified by prepare_custom_config, with
|
943 |
+
input_quantized_idxs, output_quantized_idxs, please
|
944 |
+
see docs for :func:`~torch.ao.quantization.prepare_fx` for details
|
945 |
+
"""
|
946 |
+
if convert_custom_config is None:
|
947 |
+
convert_custom_config = ConvertCustomConfig()
|
948 |
+
|
949 |
+
if isinstance(convert_custom_config, Dict):
|
950 |
+
warnings.warn(
|
951 |
+
"Passing a convert_custom_config_dict to convert is deprecated and will not be supported "
|
952 |
+
"in a future version. Please pass in a ConvertCustomConfig instead.")
|
953 |
+
convert_custom_config = ConvertCustomConfig.from_dict(convert_custom_config)
|
954 |
+
|
955 |
+
if isinstance(qconfig_mapping, Dict):
|
956 |
+
warnings.warn(
|
957 |
+
"Passing a QConfig dictionary to convert is deprecated and will not be supported "
|
958 |
+
"in a future version. Please pass in a QConfigMapping instead.")
|
959 |
+
qconfig_mapping = QConfigMapping.from_dict(qconfig_mapping) if qconfig_mapping else None
|
960 |
+
qconfig_mapping = copy.deepcopy(qconfig_mapping)
|
961 |
+
assert qconfig_mapping is None or isinstance(qconfig_mapping, QConfigMapping)
|
962 |
+
|
963 |
+
if isinstance(backend_config, Dict):
|
964 |
+
warnings.warn(
|
965 |
+
"Passing a backend_config_dict to prepare is deprecated and will not be supported "
|
966 |
+
"in a future version. Please pass in a BackendConfig instead.")
|
967 |
+
backend_config = BackendConfig.from_dict(backend_config)
|
968 |
+
|
969 |
+
if backend_config is None:
|
970 |
+
backend_config = get_native_backend_config()
|
971 |
+
|
972 |
+
assert _is_observed_module(model), \
|
973 |
+
'incoming model must be produced by prepare_fx'
|
974 |
+
observed_graph_module_attrs = model.meta["_observed_graph_module_attrs"]
|
975 |
+
node_name_to_scope: Dict[str, Tuple[str, type]] = observed_graph_module_attrs.node_name_to_scope
|
976 |
+
prepare_custom_config: PrepareCustomConfig = observed_graph_module_attrs.prepare_custom_config
|
977 |
+
observed_node_names: Set[str] = observed_graph_module_attrs.observed_node_names
|
978 |
+
node_name_to_qconfig: Dict[str, QConfigAny] = observed_graph_module_attrs.node_name_to_qconfig # type: ignore[assignment]
|
979 |
+
|
980 |
+
# mapping from fully qualified module name to module instance
|
981 |
+
# for example,
|
982 |
+
# {
|
983 |
+
# '': Model(...),
|
984 |
+
# 'linear': Linear(...),
|
985 |
+
# 'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
|
986 |
+
# }
|
987 |
+
# We use remove_duplicate=False here because torch.cat uses
|
988 |
+
# the same activation_post_process module instance but different names
|
989 |
+
modules = dict(model.named_modules(remove_duplicate=False))
|
990 |
+
|
991 |
+
# TODO refactor this code once we update the prepare logic to have additional information on
|
992 |
+
# which graph nodes have been observed and share that with convert to decide which observers to ignore.
|
993 |
+
if qconfig_mapping:
|
994 |
+
prepare_qconfig_mapping: QConfigMapping = observed_graph_module_attrs.qconfig_mapping # type: ignore[assignment]
|
995 |
+
modules_copy = copy.deepcopy(modules)
|
996 |
+
|
997 |
+
if observed_graph_module_attrs.is_qat:
|
998 |
+
_update_qconfig_for_qat(qconfig_mapping, backend_config)
|
999 |
+
_update_qconfig_for_fusion(model, qconfig_mapping)
|
1000 |
+
|
1001 |
+
_compare_prepare_convert_qconfig_mappings(prepare_qconfig_mapping, qconfig_mapping) # type: ignore[arg-type]
|
1002 |
+
convert_node_name_to_qconfig = _generate_node_name_to_qconfig(
|
1003 |
+
model, modules_copy, model.graph, qconfig_mapping, node_name_to_scope)
|
1004 |
+
# check the convert_node_name_to_qconfig generated and ensure that
|
1005 |
+
# all the values either match what was set in prepare node_name_to_qconfig
|
1006 |
+
# or are set to None in the convert_node_name_to_qconfig.
|
1007 |
+
for k, v in node_name_to_qconfig.items():
|
1008 |
+
assert k in convert_node_name_to_qconfig, f'Expected key {k} in convert node_name_to_qconfig'
|
1009 |
+
if convert_node_name_to_qconfig[k] is not None:
|
1010 |
+
assert qconfig_equals(v, convert_node_name_to_qconfig[k]), \
|
1011 |
+
f"Expected k {k} to have the same value in prepare and convert QConfigMappings, " \
|
1012 |
+
f"but {v} was updated to {convert_node_name_to_qconfig[k]}"
|
1013 |
+
node_name_to_qconfig = convert_node_name_to_qconfig
|
1014 |
+
|
1015 |
+
custom_module_classes = get_custom_module_class_keys(convert_custom_config.observed_to_quantized_mapping)
|
1016 |
+
custom_module_class_mapping = convert_custom_config.observed_to_quantized_mapping
|
1017 |
+
|
1018 |
+
if observed_graph_module_attrs.equalization_node_name_to_qconfig is not None:
|
1019 |
+
# If we want to do equalization then do the following:
|
1020 |
+
# Calculate the equalization scale, update the observers with the scaled
|
1021 |
+
# inputs, and scale the weight
|
1022 |
+
weight_eq_obs_dict = update_obs_for_equalization(model, modules)
|
1023 |
+
convert_eq_obs(model, modules, weight_eq_obs_dict)
|
1024 |
+
|
1025 |
+
# always run weight observers in the top level forward method
|
1026 |
+
# for dynamic quant ops or weight only quant ops
|
1027 |
+
_run_weight_observers(model, backend_config)
|
1028 |
+
|
1029 |
+
graph_inputs: List[str] = []
|
1030 |
+
for node in model.graph.nodes:
|
1031 |
+
if node.op == 'placeholder':
|
1032 |
+
graph_inputs.append(node.name)
|
1033 |
+
|
1034 |
+
# additional state to override inputs to be quantized, if specified
|
1035 |
+
# by the user
|
1036 |
+
placeholder_node_seen_cnt = 0
|
1037 |
+
input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
|
1038 |
+
output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
|
1039 |
+
|
1040 |
+
root_module_to_quantized_reference_module = get_root_module_to_quantized_reference_module(backend_config)
|
1041 |
+
# convert tuples so that it can work with isinstance(module, tuple_of_classes)
|
1042 |
+
root_module_classes = tuple(root_module_to_quantized_reference_module.keys())
|
1043 |
+
qat_module_classes = get_qat_module_classes(backend_config)
|
1044 |
+
fused_module_classes = get_fused_module_classes(backend_config)
|
1045 |
+
statically_quantized_custom_module_nodes: Set[Node] = set()
|
1046 |
+
|
1047 |
+
for node in list(model.graph.nodes):
|
1048 |
+
if node.op == 'placeholder':
|
1049 |
+
cur_placeholder_node_idx = placeholder_node_seen_cnt
|
1050 |
+
placeholder_node_seen_cnt += 1
|
1051 |
+
if cur_placeholder_node_idx in input_quantized_idxs:
|
1052 |
+
# Inputs are assumed to be quantized if the user specified the
|
1053 |
+
# input_quantized_idxs override.
|
1054 |
+
# we need to dequantize the inputs since all operators took
|
1055 |
+
# floating point inputs in reference quantized models
|
1056 |
+
_insert_dequantize_node(node, model.graph)
|
1057 |
+
elif node.op == "output":
|
1058 |
+
# If the argument is empty we don't need to do anything
|
1059 |
+
if len(output_quantized_idxs) == 0:
|
1060 |
+
continue
|
1061 |
+
# Result are kept quantized if the user specified the
|
1062 |
+
# output_quantized_idxs override.
|
1063 |
+
# Remove the dequantize operator for the node in the end if any
|
1064 |
+
return_node = node
|
1065 |
+
output = node.args[0]
|
1066 |
+
# outputs can be Node, list, tuple, dict, other cases are not supported yet
|
1067 |
+
if isinstance(output, (list, tuple)):
|
1068 |
+
for idx in output_quantized_idxs:
|
1069 |
+
_maybe_recursive_remove_dequantize(output[idx], return_node, model.graph)
|
1070 |
+
elif isinstance(output, (Node, dict)):
|
1071 |
+
# we treat dict as a single argument currently, but it can be extended
|
1072 |
+
# to support {"key": dtype} after we change output_quantized_idxs to
|
1073 |
+
# dict
|
1074 |
+
if 0 in output_quantized_idxs:
|
1075 |
+
_maybe_recursive_remove_dequantize(output, return_node, model.graph)
|
1076 |
+
else:
|
1077 |
+
warnings.warn(f"Unsupported node type for output_quantized_idxs: {type(output)}")
|
1078 |
+
elif node.op == "call_module":
|
1079 |
+
mod = _get_module(node, modules)
|
1080 |
+
assert mod is not None
|
1081 |
+
if _is_activation_post_process(mod):
|
1082 |
+
observed_node = node.args[0]
|
1083 |
+
if observed_node in statically_quantized_custom_module_nodes:
|
1084 |
+
_replace_observer_or_dequant_stub_with_dequantize_node(node, model.graph)
|
1085 |
+
else:
|
1086 |
+
if is_decomposed:
|
1087 |
+
_replace_observer_with_quantize_dequantize_node_decomposed(
|
1088 |
+
model, node, modules, node_name_to_scope,
|
1089 |
+
node_name_to_qconfig)
|
1090 |
+
else:
|
1091 |
+
_replace_observer_with_quantize_dequantize_node(
|
1092 |
+
model, node, modules, node_name_to_scope,
|
1093 |
+
node_name_to_qconfig)
|
1094 |
+
elif isinstance(mod, DeQuantStub):
|
1095 |
+
_replace_observer_or_dequant_stub_with_dequantize_node(node, model.graph)
|
1096 |
+
elif _is_observed_standalone_module(mod):
|
1097 |
+
convert_standalone_module(
|
1098 |
+
node, modules, model, is_reference, backend_config)
|
1099 |
+
# below this point `type_before_parametrizations` is used
|
1100 |
+
# instead of `type` to handle situations with fx quant + sparsity
|
1101 |
+
elif type_before_parametrizations(mod) in set(
|
1102 |
+
root_module_classes).union(qat_module_classes).union(fused_module_classes):
|
1103 |
+
# extra check for fused module classes to make sure they are fused module classes
|
1104 |
+
# of target modules
|
1105 |
+
if type_before_parametrizations(mod) in fused_module_classes and \
|
1106 |
+
type_before_parametrizations(mod[0]) not in root_module_classes: # type: ignore[index]
|
1107 |
+
continue
|
1108 |
+
convert_weighted_module(
|
1109 |
+
node, modules, observed_node_names, node_name_to_qconfig, backend_config,
|
1110 |
+
is_decomposed, is_reference)
|
1111 |
+
elif type_before_parametrizations(mod) in custom_module_classes:
|
1112 |
+
convert_custom_module(
|
1113 |
+
node, model.graph, modules, custom_module_class_mapping,
|
1114 |
+
statically_quantized_custom_module_nodes)
|
1115 |
+
|
1116 |
+
# remove deadcode after converting observers to quant/dequant ops
|
1117 |
+
model.graph.eliminate_dead_code()
|
1118 |
+
model = GraphModule(model, model.graph)
|
1119 |
+
|
1120 |
+
# TODO: maybe move this to quantize_fx.py
|
1121 |
+
if not is_reference:
|
1122 |
+
model = lower_to_fbgemm(model, node_name_to_qconfig, node_name_to_scope)
|
1123 |
+
|
1124 |
+
# TODO: this looks hacky, we want to check why we need this and see if we can
|
1125 |
+
# remove this
|
1126 |
+
# removes qconfig and activation_post_process modules
|
1127 |
+
if _remove_qconfig_flag:
|
1128 |
+
_remove_qconfig(model)
|
1129 |
+
model.delete_all_unused_submodules()
|
1130 |
+
model.meta.pop("_observed_graph_module_attrs", None)
|
1131 |
+
return model
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/fuse.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from torch.fx import (
|
2 |
+
GraphModule,
|
3 |
+
Node,
|
4 |
+
map_arg
|
5 |
+
)
|
6 |
+
from torch.fx.graph import Graph
|
7 |
+
from .match_utils import (
|
8 |
+
_is_match,
|
9 |
+
MatchAllNode,
|
10 |
+
)
|
11 |
+
from .pattern_utils import (
|
12 |
+
_sorted_patterns_dict,
|
13 |
+
)
|
14 |
+
|
15 |
+
from ..backend_config import (
|
16 |
+
BackendConfig,
|
17 |
+
get_native_backend_config,
|
18 |
+
)
|
19 |
+
from ..backend_config.utils import (
|
20 |
+
get_fuser_method_mapping,
|
21 |
+
get_fusion_pattern_to_root_node_getter,
|
22 |
+
get_fusion_pattern_to_extra_inputs_getter,
|
23 |
+
)
|
24 |
+
|
25 |
+
from .custom_config import FuseCustomConfig
|
26 |
+
|
27 |
+
from .fuse_handler import (
|
28 |
+
_get_fusion_pattern_to_fuse_handler_cls,
|
29 |
+
FuseHandler,
|
30 |
+
)
|
31 |
+
|
32 |
+
from typing import Any, Callable, Dict, List, Tuple, Union
|
33 |
+
import warnings
|
34 |
+
|
35 |
+
from torch.ao.quantization.utils import Pattern, NodePattern
|
36 |
+
|
37 |
+
|
38 |
+
__all__ = [
|
39 |
+
"fuse",
|
40 |
+
# TODO: We should make this private in the future
|
41 |
+
# This is currently needed for test_public_bindings for some reason
|
42 |
+
"FuseHandler",
|
43 |
+
]
|
44 |
+
|
45 |
+
|
46 |
+
def fuse(
|
47 |
+
model: GraphModule,
|
48 |
+
is_qat: bool,
|
49 |
+
fuse_custom_config: Union[FuseCustomConfig, Dict[str, Any], None] = None,
|
50 |
+
backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
|
51 |
+
) -> GraphModule:
|
52 |
+
if fuse_custom_config is None:
|
53 |
+
fuse_custom_config = FuseCustomConfig()
|
54 |
+
|
55 |
+
if isinstance(fuse_custom_config, Dict):
|
56 |
+
warnings.warn(
|
57 |
+
"Passing a fuse_custom_config_dict to fuse is deprecated and will not be supported "
|
58 |
+
"in a future version. Please pass in a FuseCustomConfig instead.")
|
59 |
+
fuse_custom_config = FuseCustomConfig.from_dict(fuse_custom_config)
|
60 |
+
|
61 |
+
if isinstance(backend_config, Dict):
|
62 |
+
warnings.warn(
|
63 |
+
"Passing a backend_config_dict to prepare is deprecated and will not be supported "
|
64 |
+
"in a future version. Please pass in a BackendConfig instead.")
|
65 |
+
backend_config = BackendConfig.from_dict(backend_config)
|
66 |
+
|
67 |
+
named_modules = dict(model.named_modules())
|
68 |
+
|
69 |
+
if backend_config is None:
|
70 |
+
backend_config = get_native_backend_config()
|
71 |
+
|
72 |
+
fusion_pattern_to_fuse_handler_cls = _sorted_patterns_dict(_get_fusion_pattern_to_fuse_handler_cls(backend_config))
|
73 |
+
fuser_method_mapping = get_fuser_method_mapping(backend_config)
|
74 |
+
fusion_pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
|
75 |
+
fusion_pattern_to_extra_inputs_getter = get_fusion_pattern_to_extra_inputs_getter(backend_config)
|
76 |
+
|
77 |
+
# find fusion
|
78 |
+
fusion_pairs = _find_matches(
|
79 |
+
model, model.graph, fusion_pattern_to_fuse_handler_cls)
|
80 |
+
# TODO: change this to inplace changes to graph, since we no longer construct
|
81 |
+
# new GraphModule anymore
|
82 |
+
fused_graph = Graph()
|
83 |
+
env: Dict[Any, Any] = {}
|
84 |
+
|
85 |
+
def load_arg(a):
|
86 |
+
return map_arg(a, lambda node: env[node.name])
|
87 |
+
|
88 |
+
def default_root_node_getter(node_pattern):
|
89 |
+
while not isinstance(node_pattern[-1], Node):
|
90 |
+
node_pattern = node_pattern[-1]
|
91 |
+
return node_pattern[-1]
|
92 |
+
|
93 |
+
for node in model.graph.nodes:
|
94 |
+
maybe_last_node, pattern, matched_node_pattern, obj, node_to_subpattern = \
|
95 |
+
fusion_pairs.get(node.name, (None, None, None, None, None))
|
96 |
+
# get the corresponding subpattern for the current node
|
97 |
+
if node_to_subpattern is not None:
|
98 |
+
node_subpattern = node_to_subpattern.get(node, None)
|
99 |
+
else:
|
100 |
+
node_subpattern = None
|
101 |
+
if maybe_last_node is node:
|
102 |
+
assert obj is not None
|
103 |
+
root_node_getter = fusion_pattern_to_root_node_getter.get(pattern, default_root_node_getter)
|
104 |
+
root_node = root_node_getter(matched_node_pattern) # type: ignore[index]
|
105 |
+
extra_inputs_getter = fusion_pattern_to_extra_inputs_getter.get(pattern, None)
|
106 |
+
extra_inputs = []
|
107 |
+
if extra_inputs_getter is not None:
|
108 |
+
extra_inputs = extra_inputs_getter(matched_node_pattern)
|
109 |
+
# TODO: add validation that root_node is a module and has the same type
|
110 |
+
# as the root_module in the configuration
|
111 |
+
env[node.name] = obj.fuse(
|
112 |
+
load_arg, named_modules, fused_graph, root_node, extra_inputs, matched_node_pattern, # type: ignore[arg-type]
|
113 |
+
fuse_custom_config, fuser_method_mapping, is_qat)
|
114 |
+
elif maybe_last_node is None or node_subpattern is MatchAllNode:
|
115 |
+
env[node.name] = fused_graph.node_copy(node, load_arg)
|
116 |
+
# node matched in patterns and is not root is removed here
|
117 |
+
|
118 |
+
model = GraphModule(model, fused_graph)
|
119 |
+
return model
|
120 |
+
|
121 |
+
def _find_matches(
|
122 |
+
root: GraphModule,
|
123 |
+
graph: Graph,
|
124 |
+
pattern_to_fuse_handler_cls: Dict[Pattern, Callable],
|
125 |
+
) -> Dict[str, Tuple[Node, Pattern, NodePattern, FuseHandler, Dict[Node, Any]]]:
|
126 |
+
modules = dict(root.named_modules())
|
127 |
+
# node name -> (root_node, match_value)
|
128 |
+
match_map : Dict[
|
129 |
+
str, Tuple[Node, Pattern, NodePattern, FuseHandler, Dict[Node, Any]]] = {}
|
130 |
+
# a map from node to the matched subpattern
|
131 |
+
node_to_subpattern: Dict[Node, Any] = {}
|
132 |
+
|
133 |
+
# TODO: dedup with quantization matching function in match_utils.py
|
134 |
+
def apply_match(pattern, node, match, matched_node_pattern, node_to_subpattern):
|
135 |
+
if isinstance(pattern, tuple):
|
136 |
+
s, *args = pattern
|
137 |
+
current_node_pattern: List[Node] = []
|
138 |
+
apply_match(s, node, match, current_node_pattern, node_to_subpattern)
|
139 |
+
for subpattern, arg in zip(args, node.args):
|
140 |
+
apply_match(subpattern, arg, match, current_node_pattern, node_to_subpattern)
|
141 |
+
matched_node_pattern.append(tuple(current_node_pattern))
|
142 |
+
else:
|
143 |
+
# the first pattern matches will take precedence
|
144 |
+
if node.name not in match_map:
|
145 |
+
matched_node_pattern.append(node)
|
146 |
+
# MatchAllNode here is actually MatchAllInputNode which should not
|
147 |
+
# be added to match_map
|
148 |
+
if pattern is not MatchAllNode:
|
149 |
+
node_to_subpattern[node] = pattern
|
150 |
+
root_node, pattern, handler = match
|
151 |
+
match_map[node.name] = (root_node, pattern, matched_node_pattern, handler, node_to_subpattern)
|
152 |
+
|
153 |
+
for node in reversed(graph.nodes):
|
154 |
+
if node.name not in match_map:
|
155 |
+
for pattern, fuse_handler_cls in pattern_to_fuse_handler_cls.items():
|
156 |
+
matched_node_pattern: List[Node] = []
|
157 |
+
if _is_match(modules, node, pattern):
|
158 |
+
apply_match(pattern, node, (node, pattern, fuse_handler_cls(node)), matched_node_pattern, node_to_subpattern)
|
159 |
+
break
|
160 |
+
|
161 |
+
return match_map
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/fuse_handler.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.ao.quantization.backend_config import BackendConfig
|
3 |
+
from torch.fx.graph import Node, Graph
|
4 |
+
from ..utils import _parent_name, NodePattern, Pattern
|
5 |
+
from ..fuser_method_mappings import get_fuser_method_new
|
6 |
+
from abc import ABC, abstractmethod
|
7 |
+
from typing import Any, Callable, Dict, List, Union
|
8 |
+
from .custom_config import FuseCustomConfig
|
9 |
+
from .match_utils import MatchAllNode
|
10 |
+
from torch.nn.utils.parametrize import type_before_parametrizations
|
11 |
+
|
12 |
+
__all__ = [
|
13 |
+
"DefaultFuseHandler",
|
14 |
+
"FuseHandler",
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
# ----------------------------
|
19 |
+
# Fusion Pattern Registrations
|
20 |
+
# ----------------------------
|
21 |
+
|
22 |
+
# Base Pattern Handler
|
23 |
+
class FuseHandler(ABC):
|
24 |
+
""" Base handler class for the fusion patterns
|
25 |
+
"""
|
26 |
+
@abstractmethod
|
27 |
+
def __init__(self, node: Node):
|
28 |
+
pass
|
29 |
+
|
30 |
+
@abstractmethod
|
31 |
+
def fuse(self,
|
32 |
+
load_arg: Callable,
|
33 |
+
named_modules: Dict[str, torch.nn.Module],
|
34 |
+
fused_graph: Graph,
|
35 |
+
root_node: Node,
|
36 |
+
extra_inputs: List[Any],
|
37 |
+
matched_node_pattern: NodePattern,
|
38 |
+
fuse_custom_config: FuseCustomConfig,
|
39 |
+
fuser_method_mapping: Dict[Pattern, Union[torch.nn.Sequential, Callable]],
|
40 |
+
is_qat: bool) -> Node:
|
41 |
+
pass
|
42 |
+
|
43 |
+
class DefaultFuseHandler(FuseHandler):
|
44 |
+
def __init__(
|
45 |
+
self,
|
46 |
+
node: Node):
|
47 |
+
super().__init__(node)
|
48 |
+
|
49 |
+
def fuse(self,
|
50 |
+
load_arg: Callable,
|
51 |
+
named_modules: Dict[str, torch.nn.Module],
|
52 |
+
fused_graph: Graph,
|
53 |
+
root_node: Node,
|
54 |
+
extra_inputs: List[Any],
|
55 |
+
matched_node_pattern: NodePattern,
|
56 |
+
fuse_custom_config: FuseCustomConfig,
|
57 |
+
fuser_method_mapping: Dict[Pattern, Union[torch.nn.Sequential, Callable]],
|
58 |
+
is_qat: bool) -> Node:
|
59 |
+
assert root_node.op == "call_module", "Expecting module node to be a call_module Node"
|
60 |
+
root_module = named_modules[str(root_node.target)]
|
61 |
+
|
62 |
+
def get_modules(pattern):
|
63 |
+
""" Given a node pattern, extract the corresponding modules
|
64 |
+
e.g. input: (relu_node, (bn_node, conv_node))
|
65 |
+
output: (relu_module, (bn_module, conv_module))
|
66 |
+
"""
|
67 |
+
if isinstance(pattern, (tuple, list)):
|
68 |
+
n, *args = pattern
|
69 |
+
modules: List[torch.nn.Module] = []
|
70 |
+
modules.append(get_modules(n))
|
71 |
+
for a in args:
|
72 |
+
modules.append(get_modules(a))
|
73 |
+
return tuple(modules)
|
74 |
+
else:
|
75 |
+
n = pattern
|
76 |
+
if n.op == "call_module":
|
77 |
+
return named_modules[n.target]
|
78 |
+
elif n.op == "call_function" and n.target == torch.nn.functional.relu:
|
79 |
+
relu = torch.nn.ReLU()
|
80 |
+
relu.training = root_module.training
|
81 |
+
return relu
|
82 |
+
elif n.op == "call_function" or n.op == "call_method":
|
83 |
+
return n.target
|
84 |
+
else:
|
85 |
+
return MatchAllNode
|
86 |
+
|
87 |
+
# since relu can be used multiple times, we'll need to create a relu module for each match
|
88 |
+
matched_modules = get_modules(matched_node_pattern)
|
89 |
+
|
90 |
+
def get_matched_types(m):
|
91 |
+
if isinstance(m, tuple):
|
92 |
+
return tuple(map(get_matched_types, m))
|
93 |
+
if isinstance(m, torch.nn.Module):
|
94 |
+
return type_before_parametrizations(m)
|
95 |
+
return m
|
96 |
+
|
97 |
+
matched_module_types = get_matched_types(matched_modules)
|
98 |
+
module_parent_name, module_name = _parent_name(root_node.target)
|
99 |
+
fuser_method = get_fuser_method_new(matched_module_types, fuser_method_mapping)
|
100 |
+
# TODO: change the signature for fuser_method to take matched module patterns
|
101 |
+
# as input
|
102 |
+
fused_module = fuser_method(is_qat, *matched_modules)
|
103 |
+
setattr(named_modules[module_parent_name], module_name, fused_module)
|
104 |
+
extra_args = []
|
105 |
+
for input in extra_inputs:
|
106 |
+
extra_args.append(load_arg(input))
|
107 |
+
node = fused_graph.node_copy(root_node, load_arg)
|
108 |
+
args = list(node.args)
|
109 |
+
args.extend(extra_args)
|
110 |
+
node.args = tuple(args)
|
111 |
+
return node
|
112 |
+
|
113 |
+
def _get_fusion_pattern_to_fuse_handler_cls(
|
114 |
+
backend_config: BackendConfig) -> Dict[Pattern, Callable]:
|
115 |
+
fusion_pattern_to_fuse_handlers: Dict[Pattern, Callable] = {}
|
116 |
+
for pattern, config in backend_config._pattern_complex_format_to_config.items():
|
117 |
+
if config.fuser_method is not None:
|
118 |
+
# TODO: is this logic right?
|
119 |
+
fusion_pattern_to_fuse_handlers[pattern] = DefaultFuseHandler
|
120 |
+
return fusion_pattern_to_fuse_handlers
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/graph_module.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import copy
|
3 |
+
from torch.fx import GraphModule
|
4 |
+
from torch.fx.graph import Graph
|
5 |
+
from typing import Union, Dict, Any, Set
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"FusedGraphModule",
|
9 |
+
"ObservedGraphModule",
|
10 |
+
"ObservedStandaloneGraphModule",
|
11 |
+
"QuantizedGraphModule",
|
12 |
+
]
|
13 |
+
|
14 |
+
class FusedGraphModule(GraphModule):
|
15 |
+
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
16 |
+
self.preserved_attr_names = preserved_attr_names
|
17 |
+
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
18 |
+
super().__init__(root, graph)
|
19 |
+
for attr in preserved_attrs:
|
20 |
+
setattr(self, attr, preserved_attrs[attr])
|
21 |
+
|
22 |
+
# GraphModule does not copy attributes which are not in the __dict__
|
23 |
+
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
24 |
+
# to copy the quantization specific attributes correctly.
|
25 |
+
def __deepcopy__(self, memo):
|
26 |
+
fake_mod = torch.nn.Module()
|
27 |
+
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
28 |
+
return FusedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
29 |
+
|
30 |
+
class ObservedGraphModule(GraphModule):
|
31 |
+
|
32 |
+
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
33 |
+
self.preserved_attr_names = {
|
34 |
+
'_activation_post_process_map',
|
35 |
+
'_activation_post_process_indexes',
|
36 |
+
'_patterns',
|
37 |
+
'_node_name_to_qconfig',
|
38 |
+
'_prepare_custom_config',
|
39 |
+
'_equalization_node_name_to_qconfig',
|
40 |
+
'_node_name_to_scope',
|
41 |
+
'_qconfig_mapping',
|
42 |
+
'_is_qat',
|
43 |
+
'_observed_node_names'}.union(preserved_attr_names)
|
44 |
+
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
45 |
+
super().__init__(root, graph)
|
46 |
+
for attr in preserved_attrs:
|
47 |
+
setattr(self, attr, preserved_attrs[attr])
|
48 |
+
|
49 |
+
# GraphModule does not copy attributes which are not in the __dict__
|
50 |
+
# of vanilla nn.Module. So, we override __deepcopy__ in order
|
51 |
+
# to copy the quantization specific attributes correctly.
|
52 |
+
def __deepcopy__(self, memo):
|
53 |
+
fake_mod = torch.nn.Module()
|
54 |
+
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
55 |
+
return ObservedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
56 |
+
|
57 |
+
def _is_observed_module(module: Any) -> bool:
|
58 |
+
return hasattr(module, "meta") and "_observed_graph_module_attrs" in module.meta
|
59 |
+
|
60 |
+
def _get_observed_graph_module_attr(model: Union[torch.nn.Module, GraphModule], attr_name: str) -> Any:
|
61 |
+
if hasattr(model, "meta") and "_observed_graph_module_attrs" in model.meta: # type: ignore[operator, index]
|
62 |
+
return getattr(model.meta["_observed_graph_module_attrs"], attr_name) # type: ignore[index]
|
63 |
+
return None
|
64 |
+
|
65 |
+
class ObservedStandaloneGraphModule(ObservedGraphModule):
|
66 |
+
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
67 |
+
preserved_attr_names = preserved_attr_names.union({
|
68 |
+
"_standalone_module_input_quantized_idxs",
|
69 |
+
"_standalone_module_output_quantized_idxs"})
|
70 |
+
super().__init__(root, graph, preserved_attr_names)
|
71 |
+
|
72 |
+
def __deepcopy__(self, memo):
|
73 |
+
fake_mod = torch.nn.Module()
|
74 |
+
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
75 |
+
return ObservedStandaloneGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
76 |
+
|
77 |
+
def _is_observed_standalone_module(module: Any) -> bool:
|
78 |
+
return _is_observed_module(module) and module.meta["_observed_graph_module_attrs"].is_observed_standalone_module
|
79 |
+
|
80 |
+
def _save_packed_weight(self, destination, prefix, keep_vars):
|
81 |
+
for attr_name in dir(self):
|
82 |
+
if "_packed_weight" in attr_name and \
|
83 |
+
isinstance(getattr(self, attr_name), torch._C.ScriptObject): # type: ignore[attr-defined]
|
84 |
+
packed_weight = getattr(self, attr_name)
|
85 |
+
destination[prefix + attr_name] = packed_weight
|
86 |
+
|
87 |
+
class QuantizedGraphModule(GraphModule):
|
88 |
+
""" This class is created to make sure PackedParams
|
89 |
+
(e.g. LinearPackedParams, Conv2dPackedParams) to appear in state_dict
|
90 |
+
so that we can serialize and deserialize quantized graph module with
|
91 |
+
torch.save(m.state_dict()) and m.load_state_dict(state_dict)
|
92 |
+
"""
|
93 |
+
def __init__(self, root: Union[torch.nn.Module, Dict[str, Any]], graph: Graph, preserved_attr_names: Set[str]):
|
94 |
+
self.preserved_attr_names = preserved_attr_names
|
95 |
+
preserved_attrs = {attr: getattr(root, attr) for attr in self.preserved_attr_names if hasattr(root, attr)}
|
96 |
+
super().__init__(root, graph)
|
97 |
+
for attr in preserved_attrs:
|
98 |
+
setattr(self, attr, preserved_attrs[attr])
|
99 |
+
self._register_state_dict_hook(_save_packed_weight)
|
100 |
+
|
101 |
+
def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict,
|
102 |
+
missing_keys, unexpected_keys, error_msgs):
|
103 |
+
attrs_to_pop = []
|
104 |
+
for attr_name in state_dict:
|
105 |
+
if attr_name.startswith("_packed_weight") and isinstance(state_dict[attr_name], torch._C.ScriptObject): # type: ignore[attr-defined] # noqa: B950
|
106 |
+
setattr(self, attr_name, state_dict[attr_name])
|
107 |
+
attrs_to_pop.append(attr_name)
|
108 |
+
|
109 |
+
# pop the packed param attributesn
|
110 |
+
for attr_name in attrs_to_pop:
|
111 |
+
state_dict.pop(attr_name)
|
112 |
+
|
113 |
+
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
|
114 |
+
|
115 |
+
|
116 |
+
def __deepcopy__(self, memo):
|
117 |
+
fake_mod = torch.nn.Module()
|
118 |
+
fake_mod.__dict__ = copy.deepcopy(self.__dict__)
|
119 |
+
return QuantizedGraphModule(fake_mod, copy.deepcopy(self.graph), copy.deepcopy(self.preserved_attr_names))
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/lower_to_qnnpack.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._lower_to_native_backend import _lower_to_native_backend
|
2 |
+
from ..qconfig import QConfigAny
|
3 |
+
from torch.fx import GraphModule
|
4 |
+
from typing import Dict, Tuple
|
5 |
+
|
6 |
+
__all__ = [
|
7 |
+
"lower_to_qnnpack"
|
8 |
+
]
|
9 |
+
|
10 |
+
def lower_to_qnnpack(
|
11 |
+
model: GraphModule,
|
12 |
+
qconfig_map: Dict[str, QConfigAny],
|
13 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
14 |
+
) -> GraphModule:
|
15 |
+
""" Lower a quantized reference model (with reference quantized operator patterns)
|
16 |
+
to qnnpack
|
17 |
+
"""
|
18 |
+
return _lower_to_native_backend(model, qconfig_map, node_name_to_scope)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/lstm_utils.py
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import operator
|
3 |
+
import torch
|
4 |
+
from typing import Any, Callable, Optional, Tuple
|
5 |
+
from torch.ao.quantization import (
|
6 |
+
default_weight_observer,
|
7 |
+
default_weight_fake_quant,
|
8 |
+
FakeQuantizeBase,
|
9 |
+
QConfig,
|
10 |
+
QConfigMapping,
|
11 |
+
)
|
12 |
+
from torch.ao.quantization.backend_config import BackendConfig
|
13 |
+
from torch.ao.quantization.observer import _PartialWrapper
|
14 |
+
from torch.ao.quantization.quantize_fx import (
|
15 |
+
convert_to_reference_fx,
|
16 |
+
prepare_fx,
|
17 |
+
)
|
18 |
+
|
19 |
+
# TODO: move all LSTM util functions from fx/utils.py to this file
|
20 |
+
def _get_lstm_with_individually_observed_parts(
|
21 |
+
float_lstm: torch.nn.LSTM,
|
22 |
+
example_inputs: Tuple[Any, ...],
|
23 |
+
backend_config: Optional[BackendConfig] = None,
|
24 |
+
linear_output_obs_ctr: Optional[_PartialWrapper] = None,
|
25 |
+
sigmoid_obs_ctr: Optional[_PartialWrapper] = None,
|
26 |
+
tanh_obs_ctr: Optional[_PartialWrapper] = None,
|
27 |
+
cell_state_obs_ctr: Optional[_PartialWrapper] = None,
|
28 |
+
hidden_state_obs_ctr: Optional[_PartialWrapper] = None,
|
29 |
+
) -> torch.ao.nn.quantizable.LSTM:
|
30 |
+
"""
|
31 |
+
Return an observed `torch.ao.nn.quantizable.LSTM` created from a `torch.nn.LSTM`
|
32 |
+
with specific observers or fake quantizes assigned to the inner ops or submodules.
|
33 |
+
|
34 |
+
In both eager and FX graph mode quantization, `torch.ao.nn.quantizable.LSTM` is
|
35 |
+
used as an observed custom module, which is responsible for inserting its own
|
36 |
+
observers. By default, all inner ops inherit the parent custom module's QConfig.
|
37 |
+
Users who wish to override this behavior may extend `torch.ao.nn.quantizable.LSTM`
|
38 |
+
and use this helper function to customize the observer insertion logic.
|
39 |
+
|
40 |
+
This is meant to be used to convert a float module to an observed module in the
|
41 |
+
custom module flow.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
`float_lstm`: The float LSTM module
|
45 |
+
`example_inputs`: example inputs for the forward function of the LSTM module
|
46 |
+
`backend_config`: BackendConfig to use to observe the LSTM module
|
47 |
+
`linear_output_obs_ctr`: observer or fake quantize for linear outputs Wx + b,
|
48 |
+
where W is the weight matrix, b is the bias, and x is either the inputs
|
49 |
+
or the hidden state from the previous layer (if any)
|
50 |
+
`sigmoid_obs_ctr`: observer or fake quantize for sigmoid activations
|
51 |
+
`tanh_obs_ctr`: observer or fake quantize for tanh activations
|
52 |
+
`cell_state_obs_ctr`: observer or fake quantize for the cell state
|
53 |
+
`hidden_state_obs_ctr`: observer or fake quantize for the hidden state and
|
54 |
+
the output
|
55 |
+
|
56 |
+
Return:
|
57 |
+
A `torch.ao.nn.quantizable.LSTM` with the specified observers or fake quantizes
|
58 |
+
assigned to the inner ops.
|
59 |
+
"""
|
60 |
+
def make_qconfig(obs_ctr: _PartialWrapper) -> QConfig:
|
61 |
+
"""
|
62 |
+
Make a QConfig with fixed qparams observers or fake quantizes.
|
63 |
+
"""
|
64 |
+
if isinstance(obs_ctr(), FakeQuantizeBase):
|
65 |
+
weight = default_weight_fake_quant
|
66 |
+
else:
|
67 |
+
weight = default_weight_observer
|
68 |
+
return QConfig(activation=obs_ctr, weight=weight)
|
69 |
+
|
70 |
+
quantizable_lstm = torch.ao.nn.quantizable.LSTM(
|
71 |
+
float_lstm.input_size, float_lstm.hidden_size, float_lstm.num_layers, float_lstm.bias,
|
72 |
+
float_lstm.batch_first, float_lstm.dropout, float_lstm.bidirectional)
|
73 |
+
quantizable_lstm.qconfig = float_lstm.qconfig
|
74 |
+
|
75 |
+
for idx in range(float_lstm.num_layers):
|
76 |
+
quantizable_lstm.layers[idx] = torch.ao.nn.quantizable.modules.rnn._LSTMLayer.from_float(float_lstm,
|
77 |
+
idx,
|
78 |
+
float_lstm.qconfig,
|
79 |
+
batch_first=False)
|
80 |
+
|
81 |
+
# Build QConfigMapping for the LSTM cell
|
82 |
+
# Note: FloatFunctional qconfigs will be configured separately below
|
83 |
+
cell_qm = QConfigMapping().set_global(float_lstm.qconfig) # type: ignore[arg-type]
|
84 |
+
if sigmoid_obs_ctr is not None:
|
85 |
+
cell_qm.set_module_name("input_gate", make_qconfig(sigmoid_obs_ctr))
|
86 |
+
cell_qm.set_module_name("forget_gate", make_qconfig(sigmoid_obs_ctr))
|
87 |
+
cell_qm.set_module_name("output_gate", make_qconfig(sigmoid_obs_ctr))
|
88 |
+
if tanh_obs_ctr is not None:
|
89 |
+
cell_qm.set_module_name("cell_gate", make_qconfig(tanh_obs_ctr))
|
90 |
+
|
91 |
+
# Insert observers into each LSTM cell
|
92 |
+
# TODO: maybe make this work for layer_bw as well
|
93 |
+
for layer in quantizable_lstm.layers:
|
94 |
+
cell = layer.layer_fw.cell
|
95 |
+
cell = prepare_fx(cell, cell_qm, example_inputs, backend_config=backend_config)
|
96 |
+
# HACK: Manually replace the activation_post_process following these ops.
|
97 |
+
# This is needed for FloatFunctional ops because there is currently no way
|
98 |
+
# to configure these ops in FX graph mode quantization today. This is because
|
99 |
+
# the FloatFunctional modules simply disappear from the graph after tracing.
|
100 |
+
# In the future, we should rewrite quantizable LSTM without FloatFunctionals.
|
101 |
+
op_index_to_activation_post_process_ctr = {
|
102 |
+
(torch.add, 0): linear_output_obs_ctr, # gates.add
|
103 |
+
(torch.mul, 0): cell_state_obs_ctr, # fgate_cx.mul
|
104 |
+
(torch.mul, 1): cell_state_obs_ctr, # igate_cgate.mul
|
105 |
+
(torch.add, 1): cell_state_obs_ctr, # fgate_cx_igate_cgate.add
|
106 |
+
(torch.mul, 2): hidden_state_obs_ctr, # ogate_cy.mul
|
107 |
+
}
|
108 |
+
add_count = 0
|
109 |
+
mul_count = 0
|
110 |
+
for node in cell.graph.nodes:
|
111 |
+
op_index: Optional[Tuple[Callable, int]] = None # e.g. (torch.add, 1)
|
112 |
+
if node.target == torch.add:
|
113 |
+
op_index = (torch.add, add_count)
|
114 |
+
add_count += 1
|
115 |
+
elif node.target == torch.mul:
|
116 |
+
op_index = (torch.mul, mul_count)
|
117 |
+
mul_count += 1
|
118 |
+
else:
|
119 |
+
# Neither torch.add nor torch.mul
|
120 |
+
continue
|
121 |
+
if op_index not in op_index_to_activation_post_process_ctr:
|
122 |
+
continue
|
123 |
+
assert len(node.users) == 1
|
124 |
+
activation_post_process_name = next(iter(node.users.keys())).name
|
125 |
+
activation_post_process_ctr = op_index_to_activation_post_process_ctr[op_index]
|
126 |
+
if activation_post_process_ctr is not None:
|
127 |
+
setattr(cell, activation_post_process_name, activation_post_process_ctr())
|
128 |
+
layer.layer_fw.cell = cell
|
129 |
+
return quantizable_lstm
|
130 |
+
|
131 |
+
def _get_reference_quantized_lstm_module(
|
132 |
+
observed_lstm: torch.ao.nn.quantizable.LSTM,
|
133 |
+
backend_config: Optional[BackendConfig] = None,
|
134 |
+
) -> torch.ao.nn.quantized.LSTM:
|
135 |
+
"""
|
136 |
+
Return a `torch.ao.nn.quantized.LSTM` created from a `torch.ao.nn.quantizable.LSTM`
|
137 |
+
with observers or fake quantizes inserted through `prepare_fx`, e.g. from
|
138 |
+
`_get_lstm_with_individually_observed_parts`.
|
139 |
+
|
140 |
+
This is meant to be used to convert an observed module to a quantized module in the
|
141 |
+
custom module flow.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
`observed_lstm`: a `torch.ao.nn.quantizable.LSTM` observed through `prepare_fx`
|
145 |
+
`backend_config`: BackendConfig to use to produce the reference quantized model
|
146 |
+
|
147 |
+
Return:
|
148 |
+
A reference `torch.ao.nn.quantized.LSTM` module.
|
149 |
+
"""
|
150 |
+
quantized_lstm = torch.ao.nn.quantized.LSTM(
|
151 |
+
observed_lstm.input_size, observed_lstm.hidden_size, observed_lstm.num_layers,
|
152 |
+
observed_lstm.bias, observed_lstm.batch_first, observed_lstm.dropout,
|
153 |
+
observed_lstm.bidirectional)
|
154 |
+
|
155 |
+
for i, layer in enumerate(quantized_lstm.layers):
|
156 |
+
cell = copy.deepcopy(observed_lstm.layers.get_submodule(str(i)).layer_fw.cell) # type: ignore[union-attr]
|
157 |
+
cell = convert_to_reference_fx(cell, backend_config=backend_config) # type: ignore[arg-type]
|
158 |
+
assert isinstance(cell, torch.fx.GraphModule)
|
159 |
+
# HACK: Manually remove input quantize nodes and output dequantize nodes,
|
160 |
+
# since custom modules expect quint8 inputs and outputs for now. Note that
|
161 |
+
# this functionality is supposedly handled through PrepareCustomConfig's
|
162 |
+
# `set_input_quantized_indexes` and `set_output_quantized_indexes`, but that
|
163 |
+
# API doesn't currently handle tuple inputs and outputs, so we have to do
|
164 |
+
# this manually for now. In the future we should (1) relax the restriction
|
165 |
+
# on custom module input/output dtypes, and (2) expand support for complex
|
166 |
+
# input/output structures.
|
167 |
+
for node in cell.graph.nodes:
|
168 |
+
if node.target == torch.quantize_per_tensor:
|
169 |
+
arg = node.args[0]
|
170 |
+
# Remove quantize(x), quantize(hidden[0]), and quantize(hidden[1])
|
171 |
+
if arg.target == "x" or (arg.target == operator.getitem and arg.args[0].target == "hidden"):
|
172 |
+
with cell.graph.inserting_before(node):
|
173 |
+
node.replace_all_uses_with(arg)
|
174 |
+
cell.graph.erase_node(node)
|
175 |
+
if node.target == "output":
|
176 |
+
# Remove all dequantize nodes in the output tuple
|
177 |
+
for arg in node.args[0]:
|
178 |
+
with cell.graph.inserting_before(node):
|
179 |
+
node.replace_input_with(arg, arg.args[0])
|
180 |
+
cell.graph.eliminate_dead_code()
|
181 |
+
cell.recompile()
|
182 |
+
layer.layer_fw.cell = cell
|
183 |
+
return quantized_lstm
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/match_utils.py
ADDED
@@ -0,0 +1,237 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import torch
|
3 |
+
from torch.fx.graph import (
|
4 |
+
Graph,
|
5 |
+
Node,
|
6 |
+
)
|
7 |
+
from torch.ao.quantization.utils import Pattern
|
8 |
+
from .quantize_handler import (
|
9 |
+
QuantizeHandler,
|
10 |
+
)
|
11 |
+
from ..qconfig import (
|
12 |
+
QConfigAny,
|
13 |
+
)
|
14 |
+
from ..utils import (
|
15 |
+
MatchAllNode
|
16 |
+
)
|
17 |
+
from .graph_module import (
|
18 |
+
_is_observed_standalone_module,
|
19 |
+
)
|
20 |
+
from torch.nn.utils.parametrize import type_before_parametrizations
|
21 |
+
from typing import Any, Dict, List, Callable, Optional, Tuple, Type, Set, Iterable
|
22 |
+
|
23 |
+
|
24 |
+
__all__: List[str] = []
|
25 |
+
|
26 |
+
# TODO(future PR): the 1st argument is typed as `List[Node]`, but a better type
|
27 |
+
# would be a recursive `List[Union[Node, Tuple[Union[Node, ...]]]]`
|
28 |
+
_MatchResult = Tuple[Node, List[Node], Optional[Pattern], QuantizeHandler]
|
29 |
+
|
30 |
+
_MatchResultWithQConfig = Tuple[Node, List[Node], Optional[Pattern], QuantizeHandler,
|
31 |
+
QConfigAny]
|
32 |
+
|
33 |
+
# Note: The order of patterns is important! match function will take whatever is matched first, so we'll
|
34 |
+
# need to put the fusion patterns before single patterns. For example, add_relu should be registered come before relu.
|
35 |
+
# decorators are applied in the reverse order we see. Also when we match the nodes in the graph with these patterns,
|
36 |
+
# we'll start from the last node of the graph and traverse back.
|
37 |
+
def _is_match(modules, node, pattern, max_uses=sys.maxsize):
|
38 |
+
""" Matches a node in fx against a pattern
|
39 |
+
"""
|
40 |
+
if isinstance(pattern, tuple):
|
41 |
+
self_match, *arg_matches = pattern
|
42 |
+
if self_match is getattr:
|
43 |
+
assert len(pattern) == 2, 'Expecting getattr pattern to have two elements'
|
44 |
+
arg_matches = []
|
45 |
+
else:
|
46 |
+
self_match = pattern
|
47 |
+
arg_matches = []
|
48 |
+
|
49 |
+
if isinstance(self_match, type) and issubclass(self_match, MatchAllNode):
|
50 |
+
return True
|
51 |
+
|
52 |
+
if node == pattern:
|
53 |
+
return True
|
54 |
+
|
55 |
+
if not isinstance(node, Node) or len(node.users) > max_uses:
|
56 |
+
return False
|
57 |
+
|
58 |
+
if isinstance(self_match, type) and issubclass(self_match, torch.nn.Module):
|
59 |
+
if node.op != 'call_module':
|
60 |
+
return False
|
61 |
+
if not type_before_parametrizations(modules[node.target]) == self_match:
|
62 |
+
return False
|
63 |
+
elif callable(self_match):
|
64 |
+
if node.op != 'call_function' or node.target is not self_match:
|
65 |
+
return False
|
66 |
+
elif node.target is getattr:
|
67 |
+
if node.args[1] != pattern[1]:
|
68 |
+
return False
|
69 |
+
elif isinstance(self_match, str):
|
70 |
+
if node.op != 'call_method' or node.target != self_match:
|
71 |
+
return False
|
72 |
+
elif node.target != self_match:
|
73 |
+
return False
|
74 |
+
|
75 |
+
if not arg_matches:
|
76 |
+
return True
|
77 |
+
|
78 |
+
if len(arg_matches) != len(node.args):
|
79 |
+
return False
|
80 |
+
|
81 |
+
return all(_is_match(modules, node, arg_match, max_uses=1) for node, arg_match in zip(node.args, arg_matches))
|
82 |
+
|
83 |
+
def _find_matches(
|
84 |
+
graph: Graph,
|
85 |
+
modules: Dict[str, torch.nn.Module],
|
86 |
+
patterns: Dict[Pattern, QuantizeHandler],
|
87 |
+
root_node_getter_mapping: Dict[Pattern, Callable],
|
88 |
+
standalone_module_names: Optional[List[str]] = None,
|
89 |
+
standalone_module_classes: Optional[List[Type]] = None,
|
90 |
+
custom_module_classes: Optional[List[Any]] = None) -> Dict[str, _MatchResult]:
|
91 |
+
"""
|
92 |
+
Matches the nodes in the input graph to quantization patterns, and
|
93 |
+
outputs the information needed to quantize them in future steps.
|
94 |
+
|
95 |
+
Inputs:
|
96 |
+
- graph: an fx.Graph object
|
97 |
+
- modules: a mapping of fully qualified module name to instance,
|
98 |
+
for example, {'foo': ModuleFoo, ...}
|
99 |
+
- patterns: a mapping from a tuple of nodes in reverse order to
|
100 |
+
uninitialized QuantizeHandler subclass.
|
101 |
+
|
102 |
+
Outputs a map of
|
103 |
+
node_name ->
|
104 |
+
(node, matched_values, matched_pattern, QuantizeHandler instance,
|
105 |
+
qconfig)
|
106 |
+
|
107 |
+
For example, {
|
108 |
+
'relu_1': (relu_1, [relu_1], torch.nn.functional.relu,
|
109 |
+
<CopyNodeQuantizeHandler instance>, QConfig(...)),
|
110 |
+
...
|
111 |
+
}
|
112 |
+
"""
|
113 |
+
if custom_module_classes is None:
|
114 |
+
custom_module_classes = []
|
115 |
+
|
116 |
+
if standalone_module_classes is None:
|
117 |
+
standalone_module_classes = []
|
118 |
+
|
119 |
+
if standalone_module_names is None:
|
120 |
+
standalone_module_names = []
|
121 |
+
|
122 |
+
match_map: Dict[str, _MatchResult] = {}
|
123 |
+
all_matched : Set[str] = set()
|
124 |
+
|
125 |
+
def _recursive_record_node_in_match_map(
|
126 |
+
last_node,
|
127 |
+
match_map,
|
128 |
+
node_pattern,
|
129 |
+
matched_node_pattern,
|
130 |
+
pattern,
|
131 |
+
match_value):
|
132 |
+
if isinstance(node_pattern, Node):
|
133 |
+
match_map[node_pattern.name] = (
|
134 |
+
last_node, matched_node_pattern, pattern, match_value)
|
135 |
+
elif not isinstance(node_pattern, Iterable):
|
136 |
+
return
|
137 |
+
else:
|
138 |
+
for n in node_pattern:
|
139 |
+
_recursive_record_node_in_match_map(last_node, match_map, n, matched_node_pattern, pattern, match_value)
|
140 |
+
|
141 |
+
# TODO: 1. merge with fuse matcher 2. document the code
|
142 |
+
def record_match(
|
143 |
+
pattern,
|
144 |
+
node,
|
145 |
+
last_node,
|
146 |
+
matched_node_pattern,
|
147 |
+
match_map):
|
148 |
+
if isinstance(pattern, tuple):
|
149 |
+
s, *args = pattern
|
150 |
+
is_single_arg = len(args) == 1
|
151 |
+
current_node_pattern: List[Node] = []
|
152 |
+
record_match(
|
153 |
+
s,
|
154 |
+
node,
|
155 |
+
last_node,
|
156 |
+
matched_node_pattern,
|
157 |
+
match_map)
|
158 |
+
if pattern[0] is not getattr:
|
159 |
+
for subpattern, arg in zip(args, node.args):
|
160 |
+
record_match(
|
161 |
+
subpattern,
|
162 |
+
arg,
|
163 |
+
node,
|
164 |
+
current_node_pattern,
|
165 |
+
match_map)
|
166 |
+
if len(current_node_pattern) > 1:
|
167 |
+
# current_node_pattern is the node pattern we get from matching
|
168 |
+
# the subpattern with arguments of the node
|
169 |
+
# we use is_single_arg to recover the original structure of the pattern
|
170 |
+
# if the original pattern has a single argument, we will have
|
171 |
+
# (original_op, (original_arg, ...))
|
172 |
+
# otherwise, we'll have a list of arguments
|
173 |
+
# (original_op, arg0, arg1, arg2, ...)
|
174 |
+
if is_single_arg:
|
175 |
+
matched_node_pattern.append(tuple(current_node_pattern))
|
176 |
+
else:
|
177 |
+
matched_node_pattern.extend(list(current_node_pattern))
|
178 |
+
else:
|
179 |
+
matched_node_pattern.append(current_node_pattern[0])
|
180 |
+
else:
|
181 |
+
matched_node_pattern.append(node)
|
182 |
+
|
183 |
+
for node in reversed(graph.nodes):
|
184 |
+
if node.name not in match_map and node.name not in all_matched:
|
185 |
+
for pattern, quantize_handler_cls in patterns.items():
|
186 |
+
root_node_getter = root_node_getter_mapping.get(pattern, None)
|
187 |
+
if _is_match(modules, node, pattern) and node.name not in match_map:
|
188 |
+
matched_node_pattern: List[Node] = []
|
189 |
+
record_match(
|
190 |
+
pattern,
|
191 |
+
node,
|
192 |
+
node,
|
193 |
+
matched_node_pattern,
|
194 |
+
match_map)
|
195 |
+
quantize_handler = quantize_handler_cls( # type: ignore[operator]
|
196 |
+
matched_node_pattern,
|
197 |
+
modules,
|
198 |
+
root_node_getter)
|
199 |
+
last_node = node
|
200 |
+
# record the match for all nodes in the pattern
|
201 |
+
_recursive_record_node_in_match_map(
|
202 |
+
last_node,
|
203 |
+
match_map,
|
204 |
+
# we need to record all nodes in the matched pattern in the match_map
|
205 |
+
matched_node_pattern,
|
206 |
+
# this is a part of the value corresponding to the node
|
207 |
+
matched_node_pattern,
|
208 |
+
pattern,
|
209 |
+
quantize_handler)
|
210 |
+
break
|
211 |
+
|
212 |
+
# add custom module instances to the match result
|
213 |
+
assert modules is not None
|
214 |
+
for node in graph.nodes:
|
215 |
+
if node.op == 'call_module' and \
|
216 |
+
type(modules[node.target]) in custom_module_classes:
|
217 |
+
match_map[node.name] = (
|
218 |
+
node, node, None, QuantizeHandler(node, modules, is_custom_module=True))
|
219 |
+
|
220 |
+
def is_standalone_module(node_target: str, modules: Dict[str, torch.nn.Module]):
|
221 |
+
assert modules is not None
|
222 |
+
return (
|
223 |
+
node_target in standalone_module_names or # type: ignore[operator]
|
224 |
+
type(modules[node_target]) in standalone_module_classes # type: ignore[operator]
|
225 |
+
)
|
226 |
+
|
227 |
+
# add standalone modules to the match
|
228 |
+
for node in graph.nodes:
|
229 |
+
if node.op == 'call_module' and \
|
230 |
+
(is_standalone_module(node.target, modules) or
|
231 |
+
_is_observed_standalone_module(modules[node.target])):
|
232 |
+
# add node to matched nodes
|
233 |
+
match_map[node.name] = (
|
234 |
+
node, node, None,
|
235 |
+
QuantizeHandler(node, modules, is_standalone_module=True))
|
236 |
+
|
237 |
+
return match_map
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/pattern_utils.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections import OrderedDict
|
2 |
+
from typing import Dict, Any
|
3 |
+
from torch.ao.quantization.utils import Pattern
|
4 |
+
from ..fake_quantize import FixedQParamsFakeQuantize
|
5 |
+
from ..observer import ObserverBase
|
6 |
+
import copy
|
7 |
+
|
8 |
+
__all__ = [
|
9 |
+
"get_default_fusion_patterns",
|
10 |
+
"get_default_quant_patterns",
|
11 |
+
"get_default_output_activation_post_process_map",
|
12 |
+
]
|
13 |
+
|
14 |
+
# TODO(future PR): fix the typing on QuantizeHandler (currently a circular dependency)
|
15 |
+
QuantizeHandler = Any
|
16 |
+
|
17 |
+
# pattern for conv bn fusion
|
18 |
+
_DEFAULT_FUSION_PATTERNS: Dict[Pattern, QuantizeHandler] = OrderedDict()
|
19 |
+
def _register_fusion_pattern(pattern):
|
20 |
+
def insert(fn):
|
21 |
+
_DEFAULT_FUSION_PATTERNS[pattern] = fn
|
22 |
+
return fn
|
23 |
+
return insert
|
24 |
+
|
25 |
+
def get_default_fusion_patterns() -> Dict[Pattern, QuantizeHandler]:
|
26 |
+
return copy.copy(_DEFAULT_FUSION_PATTERNS)
|
27 |
+
|
28 |
+
_DEFAULT_QUANTIZATION_PATTERNS: Dict[Pattern, QuantizeHandler] = OrderedDict()
|
29 |
+
|
30 |
+
# Mapping from pattern to activation_post_process(observer/fake_quant) constructor for output activation
|
31 |
+
# e.g. pattern: torch.sigmoid,
|
32 |
+
# output_activation_post_process: default_fixed_qparams_range_0to1_fake_quant
|
33 |
+
_DEFAULT_OUTPUT_FAKE_QUANTIZE_MAP: Dict[Pattern, QuantizeHandler] = {}
|
34 |
+
_DEFAULT_OUTPUT_OBSERVER_MAP: Dict[Pattern, QuantizeHandler] = {}
|
35 |
+
|
36 |
+
# Register pattern for both static quantization and qat
|
37 |
+
def _register_quant_pattern(pattern, fixed_qparams_observer=None):
|
38 |
+
def insert(fn):
|
39 |
+
_DEFAULT_QUANTIZATION_PATTERNS[pattern] = fn
|
40 |
+
if fixed_qparams_observer is not None:
|
41 |
+
_DEFAULT_OUTPUT_FAKE_QUANTIZE_MAP[pattern] = FixedQParamsFakeQuantize.with_args(observer=fixed_qparams_observer)
|
42 |
+
_DEFAULT_OUTPUT_OBSERVER_MAP[pattern] = fixed_qparams_observer
|
43 |
+
return fn
|
44 |
+
return insert
|
45 |
+
|
46 |
+
# Get patterns for both static quantization and qat
|
47 |
+
def get_default_quant_patterns() -> Dict[Pattern, QuantizeHandler]:
|
48 |
+
return copy.copy(_DEFAULT_QUANTIZATION_PATTERNS)
|
49 |
+
|
50 |
+
# a map from pattern to output activation post process constructor
|
51 |
+
# e.g. torch.sigmoid -> default_affine_fixed_qparam_fake_quant
|
52 |
+
def get_default_output_activation_post_process_map(is_training) -> Dict[Pattern, ObserverBase]:
|
53 |
+
if is_training:
|
54 |
+
return copy.copy(_DEFAULT_OUTPUT_FAKE_QUANTIZE_MAP)
|
55 |
+
else:
|
56 |
+
return copy.copy(_DEFAULT_OUTPUT_OBSERVER_MAP)
|
57 |
+
|
58 |
+
# Example use of register pattern function:
|
59 |
+
# @_register_fusion_pattern(torch.nn.ReLU, (torch.nn.BatchNorm2d, torch.nn.Conv2d)))
|
60 |
+
# class ConvOrLinearBNReLUFusion():
|
61 |
+
# def __init__(...):
|
62 |
+
# ...
|
63 |
+
#
|
64 |
+
|
65 |
+
def _sorted_patterns_dict(patterns_dict: Dict[Pattern, QuantizeHandler]) -> Dict[Pattern, QuantizeHandler]:
|
66 |
+
"""
|
67 |
+
Return a sorted version of the patterns dictionary such that longer patterns are matched first,
|
68 |
+
e.g. match (F.relu, F.linear) before F.relu.
|
69 |
+
This works for current use cases, but we may need to have a more clever way to sort
|
70 |
+
things to address more complex patterns
|
71 |
+
"""
|
72 |
+
|
73 |
+
def get_len(pattern):
|
74 |
+
""" this will calculate the length of the pattern by counting all the entries
|
75 |
+
in the pattern.
|
76 |
+
this will make sure (nn.ReLU, (nn.BatchNorm, nn.Conv2d)) comes before
|
77 |
+
(nn.BatchNorm, nn.Conv2d) so that we can match the former first
|
78 |
+
"""
|
79 |
+
len = 0
|
80 |
+
if isinstance(pattern, tuple):
|
81 |
+
for item in pattern:
|
82 |
+
len += get_len(item)
|
83 |
+
else:
|
84 |
+
len += 1
|
85 |
+
return len
|
86 |
+
|
87 |
+
return OrderedDict(sorted(patterns_dict.items(), key=lambda kv: -get_len(kv[0]) if isinstance(kv[0], tuple) else 1))
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/prepare.py
ADDED
@@ -0,0 +1,1880 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import torch
|
3 |
+
import warnings
|
4 |
+
from torch.fx import (
|
5 |
+
GraphModule,
|
6 |
+
)
|
7 |
+
from torch.fx.graph import (
|
8 |
+
Graph,
|
9 |
+
Node,
|
10 |
+
)
|
11 |
+
from torch.fx.node import Argument
|
12 |
+
|
13 |
+
from ..quantize import (
|
14 |
+
propagate_qconfig_,
|
15 |
+
)
|
16 |
+
from ..observer import (
|
17 |
+
_is_activation_post_process,
|
18 |
+
_PartialWrapper,
|
19 |
+
)
|
20 |
+
from ..qconfig import (
|
21 |
+
_is_reuse_input_qconfig,
|
22 |
+
QConfigAny,
|
23 |
+
)
|
24 |
+
from ..qconfig_mapping import (
|
25 |
+
QConfigMapping,
|
26 |
+
)
|
27 |
+
from .qconfig_mapping_utils import (
|
28 |
+
_generate_node_name_to_qconfig,
|
29 |
+
_update_qconfig_for_fusion,
|
30 |
+
_get_flattened_qconfig_dict,
|
31 |
+
_update_qconfig_for_qat,
|
32 |
+
)
|
33 |
+
|
34 |
+
from .quantize_handler import (
|
35 |
+
_default_root_node_getter,
|
36 |
+
_get_pattern_to_quantize_handlers,
|
37 |
+
QuantizeHandler,
|
38 |
+
)
|
39 |
+
|
40 |
+
from torch.ao.quantization import (
|
41 |
+
ObserverBase,
|
42 |
+
FixedQParamsObserver,
|
43 |
+
FixedQParamsFakeQuantize,
|
44 |
+
_DerivedObserverOrFakeQuantize,
|
45 |
+
)
|
46 |
+
|
47 |
+
from torch.ao.quantization.utils import (
|
48 |
+
Pattern,
|
49 |
+
NodePattern,
|
50 |
+
)
|
51 |
+
|
52 |
+
from ._equalize import (
|
53 |
+
is_equalization_observer,
|
54 |
+
node_supports_equalization,
|
55 |
+
)
|
56 |
+
|
57 |
+
from .pattern_utils import (
|
58 |
+
_sorted_patterns_dict,
|
59 |
+
)
|
60 |
+
|
61 |
+
from .match_utils import (
|
62 |
+
_MatchResultWithQConfig,
|
63 |
+
_find_matches,
|
64 |
+
)
|
65 |
+
|
66 |
+
from .utils import (
|
67 |
+
_insert_dequant_stubs_for_custom_module_lstm_output,
|
68 |
+
_is_custom_module_lstm,
|
69 |
+
_maybe_get_custom_module_lstm_from_node_arg,
|
70 |
+
_qconfig_satisfies_dtype_config_constraints,
|
71 |
+
get_custom_module_class_keys,
|
72 |
+
all_node_args_have_no_tensors,
|
73 |
+
assert_and_get_unique_device,
|
74 |
+
get_non_observable_arg_indexes_and_types,
|
75 |
+
get_new_attr_name_with_prefix,
|
76 |
+
node_arg_is_weight,
|
77 |
+
node_arg_is_bias,
|
78 |
+
NON_QUANTIZABLE_WEIGHT_OPS,
|
79 |
+
ObservedGraphModuleAttrs,
|
80 |
+
)
|
81 |
+
|
82 |
+
from torch.ao.quantization import (
|
83 |
+
PlaceholderObserver
|
84 |
+
)
|
85 |
+
from torch.ao.quantization.quantize import (
|
86 |
+
convert
|
87 |
+
)
|
88 |
+
|
89 |
+
from ..utils import (
|
90 |
+
_parent_name,
|
91 |
+
get_qconfig_dtypes,
|
92 |
+
get_swapped_custom_module_class,
|
93 |
+
)
|
94 |
+
|
95 |
+
from ..backend_config.utils import (
|
96 |
+
get_pattern_to_dtype_configs,
|
97 |
+
get_module_to_qat_module,
|
98 |
+
get_fusion_pattern_to_root_node_getter,
|
99 |
+
)
|
100 |
+
from ..backend_config import (
|
101 |
+
BackendConfig,
|
102 |
+
DTypeConfig,
|
103 |
+
get_native_backend_config,
|
104 |
+
)
|
105 |
+
from .custom_config import (
|
106 |
+
PrepareCustomConfig,
|
107 |
+
StandaloneModuleConfigEntry,
|
108 |
+
)
|
109 |
+
from torch.ao.quantization.quantizer import (
|
110 |
+
EdgeOrNode,
|
111 |
+
QuantizationSpec,
|
112 |
+
QuantizationSpecBase,
|
113 |
+
FixedQParamsQuantizationSpec,
|
114 |
+
SharedQuantizationSpec,
|
115 |
+
DerivedQuantizationSpec,
|
116 |
+
)
|
117 |
+
from torch.ao.quantization import ObserverOrFakeQuantize
|
118 |
+
|
119 |
+
from torch._subclasses import FakeTensor
|
120 |
+
|
121 |
+
from typing import Any, Dict, List, Optional, Set, Tuple, Type, Union
|
122 |
+
from dataclasses import asdict
|
123 |
+
|
124 |
+
__all__ = [
|
125 |
+
"insert_observers_for_model",
|
126 |
+
"prepare",
|
127 |
+
"propagate_dtypes_for_known_nodes",
|
128 |
+
]
|
129 |
+
|
130 |
+
|
131 |
+
# list of dtypes to not add observers to
|
132 |
+
_DO_NOT_OBS_DTYPE_LIST = [int, float, torch.bool, None]
|
133 |
+
_OBS_DTYPE_LIST = [
|
134 |
+
torch.quint8,
|
135 |
+
torch.qint8,
|
136 |
+
torch.qint32,
|
137 |
+
torch.float16,
|
138 |
+
torch.uint8,
|
139 |
+
torch.int8,
|
140 |
+
torch.int16,
|
141 |
+
torch.int32
|
142 |
+
]
|
143 |
+
|
144 |
+
_DEFAULT_FP32_OBS_OR_FQ_CTR = PlaceholderObserver.with_args(dtype=torch.float)
|
145 |
+
|
146 |
+
# note: the following default target dtype info dicts are temporary,
|
147 |
+
# should be moved to the new programmable API class soon
|
148 |
+
_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO = {
|
149 |
+
"input_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig.activation,
|
150 |
+
"output_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig.activation
|
151 |
+
}
|
152 |
+
|
153 |
+
_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO = {
|
154 |
+
"input_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_quint8_placeholder_qconfig.activation,
|
155 |
+
"output_act_obs_or_fq_ctr": torch.ao.quantization.qconfig._default_quint8_placeholder_qconfig.activation
|
156 |
+
}
|
157 |
+
|
158 |
+
|
159 |
+
def _get_observer_kwargs(quant_spec: Union[QuantizationSpec, FixedQParamsQuantizationSpec]):
|
160 |
+
kwargs_dict = asdict(quant_spec)
|
161 |
+
return copy.deepcopy(kwargs_dict)
|
162 |
+
|
163 |
+
def _get_qspec_for_arg(
|
164 |
+
arg: Node,
|
165 |
+
input_qspec_map: Dict[Node, QuantizationSpecBase],
|
166 |
+
named_modules: Dict[str, torch.nn.Module]
|
167 |
+
) -> Optional[QuantizationSpecBase]:
|
168 |
+
while _is_activation_post_process_node(arg, named_modules):
|
169 |
+
arg = arg.args[0] # type: ignore[assignment]
|
170 |
+
return input_qspec_map.get(arg, None)
|
171 |
+
|
172 |
+
def _create_obs_or_fq_from_qspec(
|
173 |
+
quantization_spec: Optional[QuantizationSpecBase],
|
174 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
175 |
+
is_qat: bool,
|
176 |
+
):
|
177 |
+
""" Create observer or fake quantize objects based on quantization spec
|
178 |
+
|
179 |
+
Args:
|
180 |
+
quantization_spec: used to store parameters to create the observer or fake quantizer
|
181 |
+
obs_or_fq_map: this is a map from edge/output to the corresponding observer/fake_quant
|
182 |
+
instance, it may be reused for different edge/output depending on configuration
|
183 |
+
"""
|
184 |
+
if quantization_spec is None:
|
185 |
+
return None
|
186 |
+
if isinstance(quantization_spec, SharedQuantizationSpec):
|
187 |
+
edge_or_node = quantization_spec.edge_or_node
|
188 |
+
assert edge_or_node in obs_or_fq_map, \
|
189 |
+
"please make sure only refer to edge or node that has " \
|
190 |
+
f"observer/fake_quant inserted: '{edge_or_node}' not in\n{obs_or_fq_map.keys()}"
|
191 |
+
return obs_or_fq_map[edge_or_node]
|
192 |
+
elif isinstance(quantization_spec, DerivedQuantizationSpec):
|
193 |
+
# can't use asdict, so not calling get_observer_kwargs here
|
194 |
+
kwargs = {
|
195 |
+
"dtype": quantization_spec.dtype,
|
196 |
+
"derive_qparams_fn": quantization_spec.derive_qparams_fn,
|
197 |
+
"quant_min": quantization_spec.quant_min,
|
198 |
+
"quant_max": quantization_spec.quant_max,
|
199 |
+
"qscheme": quantization_spec.qscheme,
|
200 |
+
"ch_axis": quantization_spec.ch_axis,
|
201 |
+
}
|
202 |
+
edge_or_nodes = quantization_spec.derived_from
|
203 |
+
obs_or_fqs = [obs_or_fq_map[k] for k in edge_or_nodes]
|
204 |
+
kwargs["obs_or_fqs"] = obs_or_fqs
|
205 |
+
return _DerivedObserverOrFakeQuantize.with_args(**kwargs)()
|
206 |
+
elif isinstance(quantization_spec, FixedQParamsQuantizationSpec):
|
207 |
+
kwargs = _get_observer_kwargs(quantization_spec)
|
208 |
+
observer_ctr = FixedQParamsObserver.with_args(**kwargs)
|
209 |
+
if is_qat:
|
210 |
+
return FixedQParamsFakeQuantize.with_args(observer=observer_ctr)
|
211 |
+
else:
|
212 |
+
return observer_ctr()
|
213 |
+
|
214 |
+
assert isinstance(quantization_spec, QuantizationSpec)
|
215 |
+
observer_or_fake_quant_ctr = quantization_spec.observer_or_fake_quant_ctr
|
216 |
+
kwargs = _get_observer_kwargs(quantization_spec)
|
217 |
+
kwargs.pop("observer_or_fake_quant_ctr")
|
218 |
+
# we will remove is_dynamic from QuantizationSpec because
|
219 |
+
# it seems that dynamic range quantization
|
220 |
+
obs_or_fq_class = observer_or_fake_quant_ctr
|
221 |
+
if isinstance(observer_or_fake_quant_ctr, _PartialWrapper):
|
222 |
+
obs_or_fq_class = observer_or_fake_quant_ctr.p.func # type: ignore[union-attr, assignment]
|
223 |
+
if "PerChannel" not in obs_or_fq_class.__name__: # type: ignore[operator, union-attr]
|
224 |
+
kwargs.pop("ch_axis")
|
225 |
+
return observer_or_fake_quant_ctr.with_args(**kwargs)()
|
226 |
+
|
227 |
+
def _needs_obs_or_fq(
|
228 |
+
prev_output_dtype: Any,
|
229 |
+
prev_output_is_dynamic: bool,
|
230 |
+
cur_target_dtype: Any,
|
231 |
+
cur_target_is_dynamic: bool,
|
232 |
+
reuse_input_obs_or_fq: bool,
|
233 |
+
is_zeroth_arg: bool = False) -> bool:
|
234 |
+
"""
|
235 |
+
note: we will treat "not specified" as torch.float for now
|
236 |
+
utility function that checks if we should insert an observer or fake quant node
|
237 |
+
base on the requested dtype for the nodes from user
|
238 |
+
|
239 |
+
is_zeroth_arg: we only dynamically quantize the first arg of the node right now
|
240 |
+
this should be removed when we enable configuring dynamic quantization
|
241 |
+
for a specific argument, this can be removed if we deprecate fx graph mode
|
242 |
+
quantization
|
243 |
+
|
244 |
+
"""
|
245 |
+
|
246 |
+
# need to insert placeholder observer for dynamic quantization so that it can
|
247 |
+
# be converted to choose_qparams -> q -> dq in convert step
|
248 |
+
if cur_target_is_dynamic:
|
249 |
+
assert cur_target_dtype in _OBS_DTYPE_LIST, \
|
250 |
+
f"Expected cur_target_dtype to be torch.float, but got: {cur_target_dtype}"
|
251 |
+
assert prev_output_dtype not in _DO_NOT_OBS_DTYPE_LIST
|
252 |
+
return is_zeroth_arg
|
253 |
+
if reuse_input_obs_or_fq:
|
254 |
+
return False
|
255 |
+
# non dynamic quantization
|
256 |
+
if cur_target_dtype in _OBS_DTYPE_LIST:
|
257 |
+
return prev_output_dtype in _OBS_DTYPE_LIST + [torch.float] and cur_target_dtype != prev_output_dtype
|
258 |
+
|
259 |
+
# lots of error checking are skipped here for now
|
260 |
+
return False
|
261 |
+
|
262 |
+
def _is_activation_post_process_node(node: Node, named_modules: Dict[str, torch.nn.Module]) -> bool:
|
263 |
+
return isinstance(node, torch.fx.Node) and node.op == "call_module" and \
|
264 |
+
_is_activation_post_process(named_modules[str(node.target)])
|
265 |
+
|
266 |
+
def _get_dtype_and_is_dynamic(obs_or_fq: Optional[ObserverOrFakeQuantize]) -> Tuple[Optional[torch.dtype], bool]:
|
267 |
+
""" Given a constructor for observer or fake quant module, returns
|
268 |
+
a Tuple of dtype and is_dynamic
|
269 |
+
"""
|
270 |
+
# TODO: instead of instantiating the instance, we can use inspect to get the default args
|
271 |
+
if obs_or_fq is None:
|
272 |
+
return None, False
|
273 |
+
else:
|
274 |
+
return obs_or_fq.dtype, getattr(obs_or_fq, "is_dynamic", False) # type: ignore[return-value]
|
275 |
+
|
276 |
+
def _is_input_arg_dtype_supported_by_backend(
|
277 |
+
arg: Argument,
|
278 |
+
node: Node,
|
279 |
+
qconfig: QConfigAny,
|
280 |
+
dtype_config: DTypeConfig,
|
281 |
+
backend_config: BackendConfig,
|
282 |
+
) -> bool:
|
283 |
+
""" Check if the configured qconfig for the argument
|
284 |
+
is supported by the backend or not
|
285 |
+
"""
|
286 |
+
if isinstance(arg, (list, tuple)):
|
287 |
+
return all(_is_input_arg_dtype_supported_by_backend(
|
288 |
+
a, node, qconfig,
|
289 |
+
dtype_config, backend_config) for a in arg)
|
290 |
+
if not isinstance(arg, Node):
|
291 |
+
return True
|
292 |
+
# TODO: support check for standalone module
|
293 |
+
is_weight = node_arg_is_weight(node, arg)
|
294 |
+
is_bias = node_arg_is_bias(node, arg)
|
295 |
+
is_activation = not is_weight and not is_bias
|
296 |
+
if is_activation:
|
297 |
+
input_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr")
|
298 |
+
input_act_obs_or_fq = input_act_obs_or_fq_ctr() if input_act_obs_or_fq_ctr else None
|
299 |
+
qconfig_dtype, qconfig_is_dynamic = _get_dtype_and_is_dynamic(input_act_obs_or_fq)
|
300 |
+
# TODO(future PR): remove the cast to bool below after figuring
|
301 |
+
# out why backend_config has is_dynamic set to None in some cases.
|
302 |
+
return (dtype_config.input_dtype is None) or (
|
303 |
+
dtype_config.input_dtype == qconfig_dtype and
|
304 |
+
bool(dtype_config.is_dynamic) == bool(qconfig_is_dynamic) and
|
305 |
+
_qconfig_satisfies_dtype_config_constraints(qconfig, dtype_config.input_dtype_with_constraints)
|
306 |
+
)
|
307 |
+
elif is_weight:
|
308 |
+
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
|
309 |
+
weight_obs_or_fq_ctr = node.meta["target_dtype_info"].get("weight_obs_or_fq_ctr", None)
|
310 |
+
weight_obs_or_fq = weight_obs_or_fq_ctr() if weight_obs_or_fq_ctr else None
|
311 |
+
qconfig_weight_dtype, _ = _get_dtype_and_is_dynamic(weight_obs_or_fq)
|
312 |
+
backend_config_weight_dtype = dtype_config.weight_dtype
|
313 |
+
dtype_matches = qconfig_weight_dtype == backend_config_weight_dtype
|
314 |
+
qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
|
315 |
+
qconfig, dtype_config.weight_dtype_with_constraints, is_activation=False)
|
316 |
+
return backend_config_weight_dtype is None or (dtype_matches and qconfig_satisfies_constraints)
|
317 |
+
else: # bias
|
318 |
+
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
|
319 |
+
bias_obs_or_fq_ctr = node.meta["target_dtype_info"].get("bias_obs_or_fq_ctr", None)
|
320 |
+
bias_obs_or_fq = bias_obs_or_fq_ctr() if bias_obs_or_fq_ctr else None
|
321 |
+
qconfig_bias_dtype, _ = _get_dtype_and_is_dynamic(bias_obs_or_fq)
|
322 |
+
backend_config_bias_dtype = dtype_config.bias_dtype
|
323 |
+
return backend_config_bias_dtype is None or qconfig_bias_dtype == backend_config_bias_dtype
|
324 |
+
|
325 |
+
def _is_output_dtype_supported_by_backend(
|
326 |
+
node: Node,
|
327 |
+
qconfig: QConfigAny,
|
328 |
+
dtype_config: DTypeConfig,
|
329 |
+
) -> bool:
|
330 |
+
""" Check if the configured qconfig for the output
|
331 |
+
is supported by the backend or not
|
332 |
+
"""
|
333 |
+
# TODO: move dtype check into `_qconfig_satisfies_dtype_config_constraints` as well
|
334 |
+
backend_config_output_dtype = dtype_config.output_dtype
|
335 |
+
# TODO: we should check is_dynamic here as well, the code from _is_input_arg_dtype_supported_by_backend
|
336 |
+
# from input activation check can be reused here
|
337 |
+
qconfig_output_dtype = None
|
338 |
+
output_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
|
339 |
+
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
|
340 |
+
qconfig_output_dtype, qconfig_output_is_dynamic = _get_dtype_and_is_dynamic(output_act_obs_or_fq)
|
341 |
+
# TODO: this is a hack because we can only specify one activation_obs_or_fq for
|
342 |
+
# qconfig (qconfig.activation), and we are only supporting dynamically quantized
|
343 |
+
# linear op which has fp32 output dtype, this should be removed if we generalize
|
344 |
+
# the structure of qconfig in the future
|
345 |
+
if qconfig_output_is_dynamic:
|
346 |
+
qconfig_output_dtype = torch.float32
|
347 |
+
dtype_matches = qconfig_output_dtype == backend_config_output_dtype
|
348 |
+
qconfig_satisfies_constraints = _qconfig_satisfies_dtype_config_constraints(
|
349 |
+
qconfig, dtype_config.output_dtype_with_constraints)
|
350 |
+
return backend_config_output_dtype is None or (dtype_matches and qconfig_satisfies_constraints)
|
351 |
+
|
352 |
+
def _is_observer_in_same_graph(
|
353 |
+
node: Node,
|
354 |
+
named_modules: Dict[str, torch.nn.Module],
|
355 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
356 |
+
is_qat,
|
357 |
+
):
|
358 |
+
""" Check if observer in same graph
|
359 |
+
when the node output is not fp32 and input is 'placeholder'
|
360 |
+
the input is assumed to be quantized, so it is observed
|
361 |
+
in a different place rather than not observed.
|
362 |
+
"""
|
363 |
+
node_output_dtype = _get_arg_target_dtype_as_output(node, named_modules, obs_or_fq_map, is_qat)
|
364 |
+
if len(node.args) > 0 and isinstance(node.args[0], Node):
|
365 |
+
if node_output_dtype in [torch.quint8, torch.uint8] and node.args[0].op == 'placeholder':
|
366 |
+
return False
|
367 |
+
return True
|
368 |
+
|
369 |
+
def _is_pattern_dtype_config_and_qconfig_supported_by_backend(
|
370 |
+
pattern: Optional[Pattern],
|
371 |
+
matched_node_pattern: Optional[List[Node]],
|
372 |
+
qconfig: QConfigAny,
|
373 |
+
backend_config: BackendConfig,
|
374 |
+
) -> bool:
|
375 |
+
""" Check if the dtype configuration of a pattern is supported by
|
376 |
+
the backend or not, and whether the qconfig satisfies constraints
|
377 |
+
specified in the corresponding dtype config.
|
378 |
+
"""
|
379 |
+
if backend_config is None or pattern is None:
|
380 |
+
return True
|
381 |
+
assert matched_node_pattern is not None and len(matched_node_pattern) >= 1
|
382 |
+
pattern_to_dtype_configs = get_pattern_to_dtype_configs(backend_config)
|
383 |
+
dtype_configs: List[DTypeConfig] = pattern_to_dtype_configs.get(pattern, [])
|
384 |
+
pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
|
385 |
+
|
386 |
+
root_node_getter = pattern_to_root_node_getter.get(pattern, _default_root_node_getter)
|
387 |
+
root_node = root_node_getter(matched_node_pattern)
|
388 |
+
input_node = root_node
|
389 |
+
output_node = matched_node_pattern[0]
|
390 |
+
for dtype_config in dtype_configs:
|
391 |
+
# check if arg dtype are supported
|
392 |
+
supported = True
|
393 |
+
for arg in list(input_node.args) + list(input_node.kwargs.values()):
|
394 |
+
supported = supported and _is_input_arg_dtype_supported_by_backend(
|
395 |
+
arg, input_node, qconfig, dtype_config, backend_config)
|
396 |
+
# check if output dtype is supported
|
397 |
+
supported = supported and _is_output_dtype_supported_by_backend(
|
398 |
+
output_node, qconfig, dtype_config)
|
399 |
+
if supported:
|
400 |
+
return True
|
401 |
+
return False
|
402 |
+
|
403 |
+
def _get_standalone_module_configs(
|
404 |
+
node: Node,
|
405 |
+
named_modules: Dict[str, torch.nn.Module],
|
406 |
+
prepare_custom_config: PrepareCustomConfig,
|
407 |
+
parent_qconfig: QConfigAny,
|
408 |
+
parent_backend_config: Optional[BackendConfig],
|
409 |
+
) -> Tuple[QConfigMapping, Tuple[Any, ...], PrepareCustomConfig, Optional[BackendConfig]]:
|
410 |
+
"""
|
411 |
+
Returns the standalone module QConfigMapping and PrepareCustomConfig
|
412 |
+
for `node`, assuming that the module pointed to by `node` is
|
413 |
+
a standalone modules.
|
414 |
+
"""
|
415 |
+
module_name = str(node.target)
|
416 |
+
module_type = type(named_modules[module_name]) # type: ignore[index]
|
417 |
+
# name config has precedence over type config
|
418 |
+
config_entry = StandaloneModuleConfigEntry(None, (), None, None)
|
419 |
+
config_entry = prepare_custom_config.standalone_module_classes.get(module_type, config_entry)
|
420 |
+
config_entry = prepare_custom_config.standalone_module_names.get(module_name, config_entry)
|
421 |
+
# fallback to use parent module's qconfig if user didn't specify qconfig dict
|
422 |
+
qconfig_mapping = config_entry.qconfig_mapping or QConfigMapping().set_global(parent_qconfig)
|
423 |
+
example_inputs = config_entry.example_inputs
|
424 |
+
prepare_custom_config = config_entry.prepare_custom_config or PrepareCustomConfig()
|
425 |
+
backend_config = config_entry.backend_config or parent_backend_config
|
426 |
+
return (qconfig_mapping, example_inputs, prepare_custom_config, backend_config)
|
427 |
+
|
428 |
+
def _qat_swap_modules(
|
429 |
+
root: torch.nn.Module,
|
430 |
+
module_to_qat_module: Dict[Pattern, Type[torch.nn.Module]]) -> None:
|
431 |
+
convert(root, mapping=module_to_qat_module, inplace=True, remove_qconfig=False)
|
432 |
+
|
433 |
+
def _add_matched_node_name_to_set(matched_node_pattern: NodePattern, s: Set[str]):
|
434 |
+
if isinstance(matched_node_pattern, Node):
|
435 |
+
s.add(matched_node_pattern.name)
|
436 |
+
elif isinstance(matched_node_pattern, (list, tuple)):
|
437 |
+
for maybe_node in matched_node_pattern:
|
438 |
+
_add_matched_node_name_to_set(maybe_node, s)
|
439 |
+
|
440 |
+
def _insert_obs_or_fq(
|
441 |
+
node: Node,
|
442 |
+
obs_or_fq: ObserverOrFakeQuantize,
|
443 |
+
model: torch.nn.Module,
|
444 |
+
named_modules: Dict[str, torch.nn.Module],
|
445 |
+
graph: Graph,
|
446 |
+
) -> Node:
|
447 |
+
"""
|
448 |
+
Attaches `obs_or_fq` to `model`, and creates a node which calls
|
449 |
+
`obs_or_fq` on the output of `node`.
|
450 |
+
|
451 |
+
obs_or_fq: an instance of Observer or FakeQuantize module
|
452 |
+
"""
|
453 |
+
model_device = assert_and_get_unique_device(model)
|
454 |
+
if model_device:
|
455 |
+
obs_or_fq.to(model_device)
|
456 |
+
# add obs_or_fq module as attribute
|
457 |
+
if is_equalization_observer(obs_or_fq):
|
458 |
+
prefix = node.name + '_equalization_process_'
|
459 |
+
else:
|
460 |
+
prefix = 'activation_post_process_'
|
461 |
+
get_new_obs_or_fq_name = get_new_attr_name_with_prefix(prefix)
|
462 |
+
obs_or_fq_name = get_new_obs_or_fq_name(model)
|
463 |
+
setattr(model, obs_or_fq_name, obs_or_fq)
|
464 |
+
named_modules[obs_or_fq_name] = obs_or_fq
|
465 |
+
with graph.inserting_after(node):
|
466 |
+
new_obs = graph.create_node(
|
467 |
+
'call_module', obs_or_fq_name, (node,), {})
|
468 |
+
return new_obs
|
469 |
+
|
470 |
+
def _set_target_dtype_info_for_matched_node_pattern(
|
471 |
+
matched_node_pattern: NodePattern,
|
472 |
+
last_node: Node,
|
473 |
+
qconfig: QConfigAny,
|
474 |
+
qhandler: Optional[QuantizeHandler],
|
475 |
+
backend_config: BackendConfig,
|
476 |
+
named_modules: Dict[str, torch.nn.Module],
|
477 |
+
cache_for_no_tensor_check: Dict[Node, bool],
|
478 |
+
processed_nodes: Set[Node],
|
479 |
+
) -> None:
|
480 |
+
""" Sets the target_dtype_info for each node in matched_node_pattern
|
481 |
+
Note: processed_nodes is used to ensure we only process each node once
|
482 |
+
"""
|
483 |
+
if isinstance(matched_node_pattern, (list, tuple)):
|
484 |
+
for node_pattern in matched_node_pattern:
|
485 |
+
_set_target_dtype_info_for_matched_node_pattern(
|
486 |
+
node_pattern,
|
487 |
+
last_node,
|
488 |
+
qconfig,
|
489 |
+
qhandler,
|
490 |
+
backend_config,
|
491 |
+
named_modules,
|
492 |
+
cache_for_no_tensor_check,
|
493 |
+
processed_nodes
|
494 |
+
)
|
495 |
+
|
496 |
+
# set target_dtype_info if matched_node_pattern is a Node
|
497 |
+
# other types of matched object, e.g. int, float literals, are ignored
|
498 |
+
elif isinstance(matched_node_pattern, Node):
|
499 |
+
# for pyre
|
500 |
+
assert isinstance(matched_node_pattern, Node)
|
501 |
+
node = matched_node_pattern
|
502 |
+
if node in processed_nodes:
|
503 |
+
return
|
504 |
+
processed_nodes.add(node)
|
505 |
+
|
506 |
+
if qconfig is None:
|
507 |
+
return
|
508 |
+
# TODO: refactor the following code in terms of apply a qconfig to a pattern
|
509 |
+
# e.g. for a pattern with op1 -> op2 -> op3, and qconfig = QConfig(input_act=obs0, output_act=obs1)
|
510 |
+
# we set the input_obs_or_fq_ctr for the arguments of op1 to based on qconfig.input_act,
|
511 |
+
# and set output_obs_or_fq_ctr based on qconfig.output_act
|
512 |
+
# this also requires we extend the structure of QConfig to support more fine
|
513 |
+
# grained configurations
|
514 |
+
target_dtype_info: Dict[str, Any] = (
|
515 |
+
_get_target_activation_dtype_for_node(
|
516 |
+
node,
|
517 |
+
qconfig,
|
518 |
+
qhandler,
|
519 |
+
named_modules,
|
520 |
+
backend_config,
|
521 |
+
cache_for_no_tensor_check,
|
522 |
+
)
|
523 |
+
)
|
524 |
+
node.meta["target_dtype_info"] = target_dtype_info
|
525 |
+
|
526 |
+
def _get_target_activation_dtype_for_node(
|
527 |
+
node: Node,
|
528 |
+
qconfig: QConfigAny,
|
529 |
+
qhandler: Optional[QuantizeHandler],
|
530 |
+
named_modules: Dict[str, torch.nn.Module],
|
531 |
+
backend_config: BackendConfig,
|
532 |
+
cache_for_no_tensor_check: Dict[Node, bool],
|
533 |
+
) -> Dict[str, Any]:
|
534 |
+
"""
|
535 |
+
For each op attribute in the op's input activation, output activation,
|
536 |
+
weight, bias - returns the settings of dtype and is_dynamic we expect
|
537 |
+
for the `quantize` call in the reference model representation, or None
|
538 |
+
if there is no `quantize` call needed.
|
539 |
+
|
540 |
+
For example, if we have a node corresponding to `op0` in
|
541 |
+
|
542 |
+
x0 -> op0 -> x1
|
543 |
+
|
544 |
+
And we want a reference quantized representation to be
|
545 |
+
|
546 |
+
x0 -> quant_static -> dequant -> op0 -> quant_dynamic -> dequant -> x1
|
547 |
+
|
548 |
+
Then this function will return
|
549 |
+
|
550 |
+
{
|
551 |
+
"input_act_obs_or_fq_ctr": MinMaxObserver.with_args(dtype=torch.quint8, is_dynamic=False),
|
552 |
+
"output_act_obs_or_fq_ctr": MinMaxObserver.with_args(dtype=torch.quint8, is_dynamic=False),
|
553 |
+
}
|
554 |
+
|
555 |
+
TODO(future PR, if needed): explicitly spell out the non-Tensor
|
556 |
+
dtypes.
|
557 |
+
"""
|
558 |
+
args_have_no_tensors = \
|
559 |
+
all_node_args_have_no_tensors(
|
560 |
+
node, named_modules, cache_for_no_tensor_check)
|
561 |
+
if args_have_no_tensors:
|
562 |
+
return {
|
563 |
+
"input_act_obs_or_fq_ctr": None,
|
564 |
+
"output_act_obs_or_fq_ctr": None,
|
565 |
+
}
|
566 |
+
# get qconfig to determine the eventual dtype of this node
|
567 |
+
if qconfig is not None:
|
568 |
+
act_dtype, weight_dtype, input_act_is_dynamic = \
|
569 |
+
get_qconfig_dtypes(qconfig)
|
570 |
+
|
571 |
+
# Currently `QConfig` only has one `activation` field.
|
572 |
+
# For static quantization, it is reused for both input
|
573 |
+
# and output activation. For dynamic quantization, this
|
574 |
+
# field is currently only used for the input activation,
|
575 |
+
# with the output activation being in fp32.
|
576 |
+
# In the future this may change as we add more fields
|
577 |
+
# to the `QConfig` object.
|
578 |
+
output_act_dtype = act_dtype \
|
579 |
+
if (not input_act_is_dynamic) else torch.float
|
580 |
+
|
581 |
+
bias_dtype = torch.float16 \
|
582 |
+
if (
|
583 |
+
act_dtype == torch.float16
|
584 |
+
and weight_dtype == torch.float16
|
585 |
+
and (not input_act_is_dynamic)
|
586 |
+
) else torch.float
|
587 |
+
|
588 |
+
is_general_tensor_value_op = \
|
589 |
+
(qhandler is not None and qhandler.is_general_tensor_value_op())
|
590 |
+
|
591 |
+
_is_standalone_module = (
|
592 |
+
qhandler is not None and qhandler.is_standalone_module()
|
593 |
+
)
|
594 |
+
|
595 |
+
weight_index = None
|
596 |
+
if isinstance(node, Node) and node.op == "call_function" and \
|
597 |
+
node.target in backend_config._pattern_complex_format_to_config:
|
598 |
+
weight_index = backend_config._pattern_complex_format_to_config[node.target]._input_type_to_index.get("weight")
|
599 |
+
|
600 |
+
bias_index = None
|
601 |
+
if isinstance(node, Node) and node.op == "call_function" and \
|
602 |
+
node.target in backend_config._pattern_complex_format_to_config:
|
603 |
+
bias_index = backend_config._pattern_complex_format_to_config[node.target]._input_type_to_index.get("bias")
|
604 |
+
|
605 |
+
return {
|
606 |
+
"input_act_obs_or_fq_ctr": qconfig.activation,
|
607 |
+
"weight_obs_or_fq_ctr": qconfig.weight,
|
608 |
+
"bias_obs_or_fq_ctr": PlaceholderObserver.with_args(dtype=bias_dtype),
|
609 |
+
"weight_index": weight_index,
|
610 |
+
"bias_index": bias_index,
|
611 |
+
"output_act_obs_or_fq_ctr": qconfig.activation,
|
612 |
+
"reuse_input_obs_or_fq": _is_reuse_input_qconfig(qconfig),
|
613 |
+
"input_output_share_observers": is_general_tensor_value_op,
|
614 |
+
"_is_standalone_module": _is_standalone_module,
|
615 |
+
}
|
616 |
+
return copy.copy(_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO)
|
617 |
+
|
618 |
+
def _get_output_act_obs_or_fq(
|
619 |
+
arg: Node,
|
620 |
+
named_modules: Dict[str, torch.nn.Module],
|
621 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
622 |
+
is_qat: bool,
|
623 |
+
) -> ObserverOrFakeQuantize:
|
624 |
+
""" Get the constructor for observer or fake quant object for
|
625 |
+
the argument in the original graph as the output of previous node,
|
626 |
+
skipping inserted observers
|
627 |
+
|
628 |
+
We are assuming that the observers are inserted correctly, and the dtype for
|
629 |
+
argument in quantized graph will match what is specified by the qconfig
|
630 |
+
"""
|
631 |
+
assert isinstance(arg, Node)
|
632 |
+
if "quantization_annotation" in arg.meta:
|
633 |
+
return _create_obs_or_fq_from_qspec(arg.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat)
|
634 |
+
|
635 |
+
# Custom module LSTM output is a tuple that we broke down into the internal nodes in order
|
636 |
+
# to insert DeQuantStubs (see `_insert_dequant_stubs_for_custom_module_lstm_output`).
|
637 |
+
# Since we modified the graph in this case, we must trace back from the args through
|
638 |
+
# the specific nodes we added in order to reach the original LSTM node. Otherwise, we would
|
639 |
+
# not be able to accurately detect whether this node is a consumer of custom module LSTM.
|
640 |
+
custom_module_lstm_node = _maybe_get_custom_module_lstm_from_node_arg(arg, named_modules)
|
641 |
+
output_act_obs_or_fq_ctr = None
|
642 |
+
if custom_module_lstm_node is not None:
|
643 |
+
output_act_obs_or_fq_ctr = custom_module_lstm_node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
|
644 |
+
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
|
645 |
+
elif _is_activation_post_process_node(arg, named_modules):
|
646 |
+
observed_arg = arg.args[0]
|
647 |
+
assert isinstance(observed_arg, Node), "Currently we only support observing Node"
|
648 |
+
if "quantization_annotation" in observed_arg.meta:
|
649 |
+
output_act_obs_or_fq = \
|
650 |
+
_create_obs_or_fq_from_qspec(
|
651 |
+
observed_arg.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat)
|
652 |
+
else:
|
653 |
+
assert "target_dtype_info" in observed_arg.meta
|
654 |
+
output_act_obs_or_fq_ctr = observed_arg.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
|
655 |
+
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
|
656 |
+
else:
|
657 |
+
if "target_dtype_info" in arg.meta:
|
658 |
+
output_act_obs_or_fq_ctr = \
|
659 |
+
arg.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
|
660 |
+
else:
|
661 |
+
output_act_obs_or_fq_ctr = _DEFAULT_FP32_OBS_OR_FQ_CTR
|
662 |
+
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
|
663 |
+
|
664 |
+
return output_act_obs_or_fq
|
665 |
+
|
666 |
+
def _get_arg_target_dtype_as_output(
|
667 |
+
arg: Node,
|
668 |
+
named_modules: Dict[str, torch.nn.Module],
|
669 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
670 |
+
is_qat: bool,
|
671 |
+
) -> Optional[torch.dtype]:
|
672 |
+
arg_as_output_act_obs_or_fq = _get_output_act_obs_or_fq(arg, named_modules, obs_or_fq_map, is_qat)
|
673 |
+
arg_as_output_target_dtype, _ = _get_dtype_and_is_dynamic(arg_as_output_act_obs_or_fq)
|
674 |
+
return arg_as_output_target_dtype
|
675 |
+
|
676 |
+
def _get_arg_as_input_act_obs_or_fq(
|
677 |
+
arg: Node,
|
678 |
+
node: Node,
|
679 |
+
named_modules: Dict[str, torch.nn.Module],
|
680 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
681 |
+
is_qat: bool,
|
682 |
+
) -> Optional[ObserverOrFakeQuantize]:
|
683 |
+
""" Get the observer or fake quant constructor for the Argument `arg`, as input
|
684 |
+
to Node `node`
|
685 |
+
"""
|
686 |
+
assert isinstance(arg, Node)
|
687 |
+
# "input_qspec_map" is the more general design we'll use for pt2e path
|
688 |
+
# it is a map from input argument node to observer or fake quant constructor, for example
|
689 |
+
# for the following graph:
|
690 |
+
# x -> conv -> output
|
691 |
+
#
|
692 |
+
# we may annotate conv node like the following:
|
693 |
+
# conv.meta[...] = QuantizationAnnotation("input_qspec_map": {x: MinMaxObserver.with_args(dtype=torch.qint8)}, ...)
|
694 |
+
#
|
695 |
+
if "quantization_annotation" in node.meta:
|
696 |
+
input_qspec_map = node.meta["quantization_annotation"].input_qspec_map
|
697 |
+
input_arg_qspec = _get_qspec_for_arg(arg, input_qspec_map, named_modules)
|
698 |
+
if input_arg_qspec is None:
|
699 |
+
input_arg_obs_or_fq = _DEFAULT_FP32_OBS_OR_FQ_CTR()
|
700 |
+
else:
|
701 |
+
input_arg_obs_or_fq = _create_obs_or_fq_from_qspec(input_arg_qspec, obs_or_fq_map, is_qat)
|
702 |
+
return input_arg_obs_or_fq
|
703 |
+
|
704 |
+
# we can remove the following path in the future if fx graph mode quantization is
|
705 |
+
# no longer used
|
706 |
+
is_weight = node_arg_is_weight(node, arg)
|
707 |
+
is_bias = node_arg_is_bias(node, arg)
|
708 |
+
is_activation = not is_weight and not is_bias
|
709 |
+
obs_or_fq_ctr = None
|
710 |
+
if is_activation:
|
711 |
+
obs_or_fq_ctr = node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
|
712 |
+
elif is_weight:
|
713 |
+
if node.target not in NON_QUANTIZABLE_WEIGHT_OPS:
|
714 |
+
obs_or_fq_ctr = node.meta["target_dtype_info"].get("weight_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
|
715 |
+
else:
|
716 |
+
obs_or_fq_ctr = node.meta["target_dtype_info"].get("bias_obs_or_fq_ctr", _DEFAULT_FP32_OBS_OR_FQ_CTR)
|
717 |
+
return obs_or_fq_ctr() if obs_or_fq_ctr else None
|
718 |
+
|
719 |
+
def _maybe_insert_input_observer_for_arg_or_kwarg(
|
720 |
+
node: Union[Node, Any],
|
721 |
+
arg: Argument,
|
722 |
+
qconfig: QConfigAny,
|
723 |
+
model: torch.nn.Module,
|
724 |
+
named_modules: Dict[str, torch.nn.Module],
|
725 |
+
graph: Graph,
|
726 |
+
qhandler: Optional[QuantizeHandler],
|
727 |
+
prepare_custom_config: PrepareCustomConfig,
|
728 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
729 |
+
is_qat: bool,
|
730 |
+
backend_config: Optional[BackendConfig] = None,
|
731 |
+
) -> Argument:
|
732 |
+
"""
|
733 |
+
Given a `node` and an `arg`, inserts an input observer between
|
734 |
+
`node` and `arg` if necessary.
|
735 |
+
"""
|
736 |
+
# for ops such as torch.cat([x0, x1]),
|
737 |
+
# traverse through the list
|
738 |
+
if isinstance(arg, (list, tuple)):
|
739 |
+
new_arg_to_return = []
|
740 |
+
for inner_arg in arg:
|
741 |
+
new_inner_arg = _maybe_insert_input_observer_for_arg_or_kwarg(
|
742 |
+
node, inner_arg, qconfig, model, named_modules,
|
743 |
+
graph,
|
744 |
+
qhandler,
|
745 |
+
prepare_custom_config,
|
746 |
+
obs_or_fq_map,
|
747 |
+
is_qat,
|
748 |
+
backend_config)
|
749 |
+
new_arg_to_return.append(new_inner_arg)
|
750 |
+
return type(arg)(new_arg_to_return)
|
751 |
+
|
752 |
+
if not isinstance(arg, Node):
|
753 |
+
return arg
|
754 |
+
assert isinstance(arg, Node)
|
755 |
+
# default (no observer)
|
756 |
+
new_arg = arg
|
757 |
+
|
758 |
+
is_standalone_module = qhandler is not None and qhandler.is_standalone_module()
|
759 |
+
# TODO: move this to a separate function
|
760 |
+
if not is_standalone_module:
|
761 |
+
# Note: qconfig can be None in this branch this we are getting act/fq from
|
762 |
+
# node.meta now
|
763 |
+
# regular flow for most nodes, except standalone modules
|
764 |
+
|
765 |
+
if "quantization_annotation" in node.meta:
|
766 |
+
reuse_input_obs_or_fq = node.meta["quantization_annotation"]._reuse_input_obs_or_fq
|
767 |
+
else:
|
768 |
+
assert "target_dtype_info" in node.meta
|
769 |
+
# TODO: we are assuming "target_dtype_info" exists here, maybe
|
770 |
+
# a default value also need to be provided here
|
771 |
+
target_dtype_info = node.meta["target_dtype_info"]
|
772 |
+
# for nodes that doesn't have `reuse_input_obs_or_fq` configured,
|
773 |
+
# we'll default to False, this makes configuring this field optional for users
|
774 |
+
reuse_input_obs_or_fq = target_dtype_info.get("reuse_input_obs_or_fq", False)
|
775 |
+
arg_as_input_act_obs_or_fq = _get_arg_as_input_act_obs_or_fq(arg, node, named_modules, obs_or_fq_map, is_qat)
|
776 |
+
arg_as_input_target_dtype, arg_as_input_target_is_dynamic = _get_dtype_and_is_dynamic(arg_as_input_act_obs_or_fq)
|
777 |
+
|
778 |
+
arg_as_output_act_obs_or_fq = _get_output_act_obs_or_fq(arg, named_modules, obs_or_fq_map, is_qat)
|
779 |
+
arg_as_output_target_dtype, arg_as_output_target_is_dynamic = _get_dtype_and_is_dynamic(arg_as_output_act_obs_or_fq)
|
780 |
+
|
781 |
+
|
782 |
+
needs_obs_or_fq = _needs_obs_or_fq(
|
783 |
+
arg_as_output_target_dtype,
|
784 |
+
arg_as_output_target_is_dynamic,
|
785 |
+
arg_as_input_target_dtype,
|
786 |
+
arg_as_input_target_is_dynamic,
|
787 |
+
reuse_input_obs_or_fq,
|
788 |
+
is_zeroth_arg=len(node.args) > 0 and arg is node.args[0],
|
789 |
+
)
|
790 |
+
|
791 |
+
else:
|
792 |
+
assert qconfig is not None
|
793 |
+
# custom flow for standalone modules
|
794 |
+
_, _, sm_prepare_custom_config, _ = \
|
795 |
+
_get_standalone_module_configs(
|
796 |
+
node, named_modules, prepare_custom_config, qconfig, backend_config)
|
797 |
+
sm_input_quantized_idxs = sm_prepare_custom_config.input_quantized_indexes
|
798 |
+
|
799 |
+
# for args, this is set to the index of the current arg
|
800 |
+
# for kwargs, this is left at None
|
801 |
+
cur_input_idx = None
|
802 |
+
for arg_idx, arg_to_check in enumerate(node.args):
|
803 |
+
if arg_to_check is arg:
|
804 |
+
cur_input_idx = arg_idx
|
805 |
+
break
|
806 |
+
|
807 |
+
if cur_input_idx is None:
|
808 |
+
needs_obs_or_fq = False
|
809 |
+
else:
|
810 |
+
arg_as_output_target_dtype = _get_arg_target_dtype_as_output(arg, named_modules, obs_or_fq_map, is_qat)
|
811 |
+
arg_as_input_target_dtype = torch.quint8 if cur_input_idx in sm_input_quantized_idxs \
|
812 |
+
else torch.float
|
813 |
+
needs_obs_or_fq = (
|
814 |
+
(arg_as_output_target_dtype != arg_as_input_target_dtype) and
|
815 |
+
(arg_as_input_target_dtype != torch.float)
|
816 |
+
)
|
817 |
+
|
818 |
+
act_post_process_ctr = qconfig.activation
|
819 |
+
arg_as_input_act_obs_or_fq = act_post_process_ctr() if act_post_process_ctr else None
|
820 |
+
|
821 |
+
if needs_obs_or_fq:
|
822 |
+
|
823 |
+
existing_obs_node = None
|
824 |
+
|
825 |
+
# Before using the new observer, check if an observer
|
826 |
+
# of the correct type already exists. If it does, use it.
|
827 |
+
# This prevents duplicate observer insertions if a node is
|
828 |
+
# used by multiple nodes.
|
829 |
+
# TODO: this is looking into how the value is used in the future
|
830 |
+
# we should remove this
|
831 |
+
# removing this means we insert one observer for each use, even if they
|
832 |
+
# have the same dtype, we can have an extra pass that removes the extra observers
|
833 |
+
for maybe_obs_node in arg.users.keys():
|
834 |
+
if maybe_obs_node.op == 'call_module':
|
835 |
+
maybe_obs_mod = named_modules[maybe_obs_node.target] # type: ignore[index]
|
836 |
+
if (
|
837 |
+
type(maybe_obs_mod) == type(arg_as_input_act_obs_or_fq) and
|
838 |
+
maybe_obs_mod.dtype == arg_as_input_target_dtype # type: ignore[possibly-undefined]
|
839 |
+
):
|
840 |
+
arg_as_input_act_obs_or_fq = maybe_obs_mod # type: ignore[assignment]
|
841 |
+
existing_obs_node = maybe_obs_node
|
842 |
+
break
|
843 |
+
|
844 |
+
assert arg_as_input_act_obs_or_fq is not None
|
845 |
+
obs_or_fq_map[(arg, node)] = arg_as_input_act_obs_or_fq
|
846 |
+
if existing_obs_node is None:
|
847 |
+
new_obs_node = _insert_obs_or_fq(
|
848 |
+
arg, arg_as_input_act_obs_or_fq, model, named_modules, graph)
|
849 |
+
# override this arg to be the observed arg
|
850 |
+
new_arg = new_obs_node
|
851 |
+
else:
|
852 |
+
new_arg = existing_obs_node
|
853 |
+
|
854 |
+
return new_arg
|
855 |
+
|
856 |
+
|
857 |
+
def _maybe_insert_input_observers_for_node(
|
858 |
+
node: Node,
|
859 |
+
qconfig: QConfigAny,
|
860 |
+
model: torch.nn.Module,
|
861 |
+
named_modules: Dict[str, torch.nn.Module],
|
862 |
+
graph: Graph,
|
863 |
+
qhandler: Optional[QuantizeHandler],
|
864 |
+
prepare_custom_config: PrepareCustomConfig,
|
865 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
866 |
+
is_qat: bool,
|
867 |
+
backend_config: Optional[BackendConfig] = None
|
868 |
+
) -> None:
|
869 |
+
"""
|
870 |
+
If needed, inserts observers to the input args and kwargs of `node`.
|
871 |
+
Note: modifies `node` inplace.
|
872 |
+
|
873 |
+
For example, if cur_node needs an observer after prev_node, we change from
|
874 |
+
|
875 |
+
prev_node -> cur_node
|
876 |
+
|
877 |
+
To
|
878 |
+
|
879 |
+
prev_node -> obs -> cur_node
|
880 |
+
|
881 |
+
Note: backend_config only needed for standalone_module node
|
882 |
+
"""
|
883 |
+
# Look through every input arg. If that arg's target dtype does not
|
884 |
+
# match the current node's target dtype, insert an observer.
|
885 |
+
new_args = []
|
886 |
+
for arg in node.args:
|
887 |
+
new_arg = _maybe_insert_input_observer_for_arg_or_kwarg(
|
888 |
+
node, arg, qconfig, model, named_modules, graph,
|
889 |
+
qhandler,
|
890 |
+
prepare_custom_config,
|
891 |
+
obs_or_fq_map,
|
892 |
+
is_qat,
|
893 |
+
backend_config)
|
894 |
+
new_args.append(new_arg)
|
895 |
+
|
896 |
+
new_kwargs = {}
|
897 |
+
for k, kwarg in node.kwargs.items():
|
898 |
+
new_kwarg = _maybe_insert_input_observer_for_arg_or_kwarg(
|
899 |
+
node, kwarg, qconfig, model, named_modules, graph,
|
900 |
+
qhandler,
|
901 |
+
prepare_custom_config,
|
902 |
+
obs_or_fq_map,
|
903 |
+
is_qat,
|
904 |
+
backend_config)
|
905 |
+
new_kwargs[k] = new_kwarg
|
906 |
+
|
907 |
+
# assign the new args and kwargs to the node, inplace
|
908 |
+
node.args = tuple(new_args)
|
909 |
+
node.kwargs = new_kwargs
|
910 |
+
|
911 |
+
def _maybe_insert_input_equalization_observers_for_node(
|
912 |
+
node: Node,
|
913 |
+
equalization_qconfig: Any,
|
914 |
+
model: torch.nn.Module,
|
915 |
+
named_modules: Dict[str, torch.nn.Module],
|
916 |
+
graph: Graph,
|
917 |
+
is_branch: bool,
|
918 |
+
) -> None:
|
919 |
+
"""
|
920 |
+
If `node` needs to be equalized, find the input/weight observers it needs in
|
921 |
+
`equalization_qconfig`, creates them, and inserts it into `graph`.
|
922 |
+
|
923 |
+
If `node` does not need an equalization observer, returns None.
|
924 |
+
"""
|
925 |
+
if equalization_qconfig is None or not node_supports_equalization(node, named_modules):
|
926 |
+
return
|
927 |
+
|
928 |
+
if is_branch:
|
929 |
+
warnings.warn(
|
930 |
+
f"Cannot equalize {node} because it is part of a branch."
|
931 |
+
)
|
932 |
+
return
|
933 |
+
|
934 |
+
new_args = []
|
935 |
+
for arg in node.args:
|
936 |
+
if not isinstance(arg, Node) or node_arg_is_bias(node, arg):
|
937 |
+
new_args.append(arg)
|
938 |
+
continue
|
939 |
+
|
940 |
+
is_weight = node_arg_is_weight(node, arg)
|
941 |
+
|
942 |
+
act_eq_process_ctr = equalization_qconfig.weight if is_weight else \
|
943 |
+
equalization_qconfig.input_activation
|
944 |
+
|
945 |
+
new_eq_obs_mod = act_eq_process_ctr()
|
946 |
+
new_eq_obs_node = _insert_obs_or_fq(
|
947 |
+
arg, new_eq_obs_mod, model, named_modules, graph)
|
948 |
+
|
949 |
+
new_args.append(new_eq_obs_node)
|
950 |
+
|
951 |
+
# assign the new args and kwargs to the node, inplace
|
952 |
+
node.args = tuple(new_args)
|
953 |
+
|
954 |
+
def _maybe_insert_output_observer_for_node(
|
955 |
+
node: Node,
|
956 |
+
model: torch.nn.Module,
|
957 |
+
named_modules: Dict[str, torch.nn.Module],
|
958 |
+
graph: Graph,
|
959 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
960 |
+
is_qat: bool,
|
961 |
+
) -> Optional[Node]:
|
962 |
+
"""
|
963 |
+
If `node` needs an output observer, creates it, inserts it into `graph`
|
964 |
+
and returns it.
|
965 |
+
|
966 |
+
If `node` does not need an output observer, returns None.
|
967 |
+
|
968 |
+
Note: inserting dynamic quantization ops for output is not supported in fx graph mode
|
969 |
+
quantization code path right now
|
970 |
+
"""
|
971 |
+
assert node.op != 'output', 'observer insertion for outputs is handled elsewhere'
|
972 |
+
|
973 |
+
is_standalone_module = False
|
974 |
+
if "quantization_annotation" in node.meta:
|
975 |
+
output_act_obs_or_fq = _create_obs_or_fq_from_qspec(
|
976 |
+
node.meta["quantization_annotation"].output_qspec, obs_or_fq_map, is_qat
|
977 |
+
)
|
978 |
+
else:
|
979 |
+
assert "target_dtype_info" in node.meta
|
980 |
+
is_standalone_module = node.meta["target_dtype_info"].get("_is_standalone_module", False)
|
981 |
+
output_act_obs_or_fq_ctr = node.meta["target_dtype_info"].get("output_act_obs_or_fq_ctr")
|
982 |
+
output_act_obs_or_fq = output_act_obs_or_fq_ctr() if output_act_obs_or_fq_ctr else None
|
983 |
+
target_dtype, target_is_dynamic = _get_dtype_and_is_dynamic(output_act_obs_or_fq)
|
984 |
+
# uncomment after we support reuse_input_obs_or_fq properly by having separate
|
985 |
+
# implemntations for this key instead of reusing the input_output_share_observers
|
986 |
+
# code
|
987 |
+
# reuse_input_obs_or_fq = node.meta["target_dtype_info"].get("reuse_input_obs_or_fq", False)
|
988 |
+
# for now we set this to False since reuse_input_obs_or_fq for
|
989 |
+
# the output of a node is implementation in the same code path as observer sharing,
|
990 |
+
# we should refactor this part to make it clearer in the future
|
991 |
+
# and we would be able to read this from config directly
|
992 |
+
reuse_input_obs_or_fq = False
|
993 |
+
|
994 |
+
# Note: prev_output_dtype = torch.float and prev_output_is_dynamic=False
|
995 |
+
# because the prev_output is the output of an fp32 op, althought technically
|
996 |
+
# we should get the dtype of the output from node.meta["val"] in the future
|
997 |
+
# if we deprecate fx graph mode quantization
|
998 |
+
needs_obs_or_fq = _needs_obs_or_fq(torch.float, False, target_dtype, target_is_dynamic, reuse_input_obs_or_fq)
|
999 |
+
# currently the activation in QConfig(activation=...,) is for both input
|
1000 |
+
# and output, and when the activation is configured to be dynamic quantization
|
1001 |
+
# e.g. PlaceholderObserver(dtype=torch.quint8, is_dynamic=True, ...), it means
|
1002 |
+
# the input should by dynamically quantized, but output should not be quantized
|
1003 |
+
#
|
1004 |
+
# there is no way we can specify different observer/fq for input and output
|
1005 |
+
# activation through QConfig today, this limitation is lifted in the
|
1006 |
+
# quantizer/annotation API in pytorch 2.0 export quantization code path,
|
1007 |
+
# but since this code is reused, annotating output to be dynamically quantized
|
1008 |
+
# would not work either for that.
|
1009 |
+
# we can change QConfig to support input/output activation if we want
|
1010 |
+
# to remove the following check, or if we can deprecate fx graph mode quantization
|
1011 |
+
if target_is_dynamic:
|
1012 |
+
needs_obs_or_fq = False
|
1013 |
+
|
1014 |
+
# we never insert observers to output of standalone module, we assume
|
1015 |
+
# if needed, they are inserted inside the standalone module
|
1016 |
+
needs_obs_or_fq = needs_obs_or_fq and \
|
1017 |
+
(not is_standalone_module)
|
1018 |
+
|
1019 |
+
if needs_obs_or_fq:
|
1020 |
+
obs_or_fq_map[node] = output_act_obs_or_fq
|
1021 |
+
return _insert_obs_or_fq(node, output_act_obs_or_fq, model, named_modules, graph)
|
1022 |
+
else:
|
1023 |
+
return None
|
1024 |
+
|
1025 |
+
def _maybe_insert_observers_before_graph_output(
|
1026 |
+
graph_output_node: Node,
|
1027 |
+
model: torch.nn.Module,
|
1028 |
+
named_modules: Dict[str, torch.nn.Module],
|
1029 |
+
graph: Graph,
|
1030 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize],
|
1031 |
+
is_qat: bool,
|
1032 |
+
) -> None:
|
1033 |
+
"""
|
1034 |
+
If the output needs to be quantized and there are any nodes
|
1035 |
+
in the output which are not already observed, inserts observers
|
1036 |
+
for those nodes.
|
1037 |
+
"""
|
1038 |
+
|
1039 |
+
def _recursive_maybe_replace_node_with_obs(
|
1040 |
+
maybe_node: Argument,
|
1041 |
+
model: torch.nn.Module,
|
1042 |
+
named_modules: Dict[str, torch.nn.Module],
|
1043 |
+
graph: Graph,
|
1044 |
+
) -> Argument:
|
1045 |
+
"""
|
1046 |
+
Navigate an arbitrary data structure of lists, tuples, dicts.
|
1047 |
+
For each container type, recurse on all inputs. Once any Node
|
1048 |
+
is found, insert an observer if needed and do not recurse further.
|
1049 |
+
|
1050 |
+
For example, given a structure of
|
1051 |
+
|
1052 |
+
{'foo1': [[bar1]], 'foo2': {'foo3': [[[bar3]]]}}
|
1053 |
+
|
1054 |
+
we recurse down to bar1 and bar3, observe them if necessary,
|
1055 |
+
and if we inserted an observer then replace the original node
|
1056 |
+
with its observer.
|
1057 |
+
|
1058 |
+
Returns the data structure with all nodes needing observation being
|
1059 |
+
replaced by their observers.
|
1060 |
+
"""
|
1061 |
+
if isinstance(maybe_node, Node):
|
1062 |
+
# check dtype of this node
|
1063 |
+
arg_as_output_target_dtype = _get_arg_target_dtype_as_output(maybe_node, named_modules, obs_or_fq_map, is_qat)
|
1064 |
+
observer_mod = None
|
1065 |
+
arg_as_input_target_dtype = torch.float
|
1066 |
+
if "target_dtype_info" in maybe_node.meta:
|
1067 |
+
observer_cls = maybe_node.meta["target_dtype_info"].get("input_act_obs_or_fq_ctr", None)
|
1068 |
+
if observer_cls is not None:
|
1069 |
+
observer_mod = observer_cls()
|
1070 |
+
arg_as_input_target_dtype = observer_mod.dtype
|
1071 |
+
# TODO: this does not handle dynamic quantization yet
|
1072 |
+
need_obs = (
|
1073 |
+
arg_as_output_target_dtype != arg_as_input_target_dtype and
|
1074 |
+
arg_as_input_target_dtype != torch.float
|
1075 |
+
)
|
1076 |
+
if need_obs:
|
1077 |
+
assert observer_mod is not None
|
1078 |
+
# insert observer
|
1079 |
+
observer_node = _insert_obs_or_fq(
|
1080 |
+
maybe_node, observer_mod, model, named_modules, graph)
|
1081 |
+
return observer_node
|
1082 |
+
else:
|
1083 |
+
return maybe_node
|
1084 |
+
elif isinstance(maybe_node, (list, tuple)):
|
1085 |
+
results = []
|
1086 |
+
for inner_node in maybe_node:
|
1087 |
+
results.append(_recursive_maybe_replace_node_with_obs(
|
1088 |
+
inner_node, model, named_modules, graph))
|
1089 |
+
if isinstance(maybe_node, list):
|
1090 |
+
return results
|
1091 |
+
else:
|
1092 |
+
return tuple(results)
|
1093 |
+
elif isinstance(maybe_node, dict):
|
1094 |
+
results_dict = {}
|
1095 |
+
for k, inner_v in maybe_node.items():
|
1096 |
+
results_dict[k] = _recursive_maybe_replace_node_with_obs(
|
1097 |
+
inner_v, model, named_modules, graph)
|
1098 |
+
return results_dict
|
1099 |
+
elif maybe_node is None:
|
1100 |
+
return None
|
1101 |
+
else:
|
1102 |
+
raise Exception("Unhandled type for returned node:", maybe_node)
|
1103 |
+
|
1104 |
+
new_args = []
|
1105 |
+
for old_arg in graph_output_node.args:
|
1106 |
+
new_args.append(
|
1107 |
+
_recursive_maybe_replace_node_with_obs(
|
1108 |
+
old_arg, model, named_modules, graph))
|
1109 |
+
|
1110 |
+
graph_output_node.args = tuple(new_args) # type: ignore[assignment]
|
1111 |
+
|
1112 |
+
|
1113 |
+
def _maybe_propagate_dtype_for_node(
|
1114 |
+
node: Node,
|
1115 |
+
target_dtype: Union[torch.dtype, type],
|
1116 |
+
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
|
1117 |
+
) -> None:
|
1118 |
+
"""
|
1119 |
+
Assigns `target_dtype` to `node`, setting `is_dynamic` to False. If `node`
|
1120 |
+
is a general tensor shape op, also call this function recursively on
|
1121 |
+
the first argument, to propagate the dtype to the caller.
|
1122 |
+
"""
|
1123 |
+
node.meta["target_dtype_info"]["input_act_obs_or_fq_ctr"] = None
|
1124 |
+
node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"] = None
|
1125 |
+
# if this is a copy node, propagate to first arg
|
1126 |
+
root_node, _, pattern, qhandler, qconfig = node_name_to_match_result_with_qconfig.get(
|
1127 |
+
node.name, (None, None, None, None, None))
|
1128 |
+
# TODO: probably need to remove `is_general_tensor_value_op`
|
1129 |
+
if qhandler is not None and qhandler.is_general_tensor_value_op():
|
1130 |
+
prev_node = node.args[0]
|
1131 |
+
if isinstance(prev_node, Node):
|
1132 |
+
_maybe_propagate_dtype_for_node(
|
1133 |
+
prev_node, target_dtype, node_name_to_match_result_with_qconfig)
|
1134 |
+
|
1135 |
+
def propagate_dtypes_for_known_nodes(
|
1136 |
+
graph: Graph,
|
1137 |
+
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
|
1138 |
+
) -> None:
|
1139 |
+
"""
|
1140 |
+
Currently we assume that inputs to the graph are either `torch.float` or
|
1141 |
+
`torch.quint8`, which is not always correct. For ops such as
|
1142 |
+
`x.masked_fill(mask, value)`, we know that the dtype of `mask` is a
|
1143 |
+
`BoolTensor`. Propagate this information throughout the graph.
|
1144 |
+
|
1145 |
+
Note: not all dtypes in the graph will be correct after this pass, but a
|
1146 |
+
higher percentage of them will be correct. Hopefully in the future we can
|
1147 |
+
replace this with a better way to reason about dtypes of tensors.
|
1148 |
+
"""
|
1149 |
+
for node in graph.nodes:
|
1150 |
+
non_observable_arg_dict = get_non_observable_arg_indexes_and_types(node)
|
1151 |
+
|
1152 |
+
for arg_type in non_observable_arg_dict:
|
1153 |
+
non_observable_indices = non_observable_arg_dict[arg_type](node)
|
1154 |
+
|
1155 |
+
for index in non_observable_indices:
|
1156 |
+
arg = node.args[index]
|
1157 |
+
|
1158 |
+
# when an argument is a tuple, it does not show up as another node so we need to go through
|
1159 |
+
# all elements of the tuple manually
|
1160 |
+
if isinstance(arg, (tuple, list)):
|
1161 |
+
arg_list = list(arg)
|
1162 |
+
else:
|
1163 |
+
arg_list = [arg]
|
1164 |
+
|
1165 |
+
for cur_arg in arg_list:
|
1166 |
+
# hard coded arguments show up but aren't `Node` typed and do not need dtype propagated
|
1167 |
+
if isinstance(cur_arg, torch.fx.node.Node):
|
1168 |
+
_maybe_propagate_dtype_for_node(
|
1169 |
+
cur_arg, arg_type, node_name_to_match_result_with_qconfig)
|
1170 |
+
|
1171 |
+
def _maybe_make_input_output_share_observers(
|
1172 |
+
node: Node,
|
1173 |
+
model: torch.nn.Module,
|
1174 |
+
named_modules: Dict[str, torch.nn.Module],
|
1175 |
+
) -> bool:
|
1176 |
+
"""
|
1177 |
+
Ensures that we share an observer
|
1178 |
+
for all input arguments as well as the output argument. In detail, given
|
1179 |
+
a graph of
|
1180 |
+
|
1181 |
+
x0 -> obs0 -> op -> x2
|
1182 |
+
/
|
1183 |
+
x1 -> obs1 /
|
1184 |
+
|
1185 |
+
where node obs0 points to observer instance observer0,
|
1186 |
+
obs1 points to observer1 and obs2 points to observer2, we make nodes obs1
|
1187 |
+
and ob2 point to observer0.
|
1188 |
+
Returns: whether the operation succeeded or not
|
1189 |
+
"""
|
1190 |
+
first_arg = None
|
1191 |
+
# find the first non-Tensor arg
|
1192 |
+
for i in range(len(node.args)):
|
1193 |
+
if isinstance(node.args[i], (Node, list, tuple)):
|
1194 |
+
first_arg = node.args[i]
|
1195 |
+
break
|
1196 |
+
|
1197 |
+
# if there is no non-Tensor arg, return directly
|
1198 |
+
if first_arg is None:
|
1199 |
+
return False
|
1200 |
+
|
1201 |
+
if isinstance(first_arg, (list, tuple)):
|
1202 |
+
first_arg_arg = first_arg[0]
|
1203 |
+
elif isinstance(first_arg, Node):
|
1204 |
+
first_arg_arg = first_arg
|
1205 |
+
else:
|
1206 |
+
return False
|
1207 |
+
|
1208 |
+
# if we have a graph such as
|
1209 |
+
# observed_node -> non_observed_node -> cat
|
1210 |
+
# we need to navigate up to the first observer
|
1211 |
+
iteration_guard = 0
|
1212 |
+
while not _is_activation_post_process_node(first_arg_arg, named_modules):
|
1213 |
+
if not isinstance(first_arg_arg, Node):
|
1214 |
+
return False
|
1215 |
+
# did not find an activation_post_process for the op
|
1216 |
+
if first_arg_arg.op == "placeholder":
|
1217 |
+
return False
|
1218 |
+
# trace back the args until we found the first Tensor/Node
|
1219 |
+
trace_back_node = None
|
1220 |
+
for i in range(len(first_arg_arg.args)):
|
1221 |
+
trace_back_node = first_arg_arg.args[i]
|
1222 |
+
if isinstance(trace_back_node, Node):
|
1223 |
+
break
|
1224 |
+
if trace_back_node is None:
|
1225 |
+
return False
|
1226 |
+
first_arg_arg = trace_back_node
|
1227 |
+
|
1228 |
+
iteration_guard += 1
|
1229 |
+
if iteration_guard > 10000:
|
1230 |
+
raise AssertionError('Unable to find observer of previous node')
|
1231 |
+
|
1232 |
+
assert isinstance(first_arg_arg, Node)
|
1233 |
+
target_to_use = first_arg_arg.target
|
1234 |
+
assert isinstance(target_to_use, str)
|
1235 |
+
obs_mod_to_use = named_modules[target_to_use]
|
1236 |
+
|
1237 |
+
if isinstance(first_arg, (list, tuple)):
|
1238 |
+
# set all other input observer nodes to use that module
|
1239 |
+
for input_idx, input_arg in enumerate(first_arg):
|
1240 |
+
if input_idx == 0:
|
1241 |
+
continue
|
1242 |
+
iteration_guard = 0
|
1243 |
+
while not _is_activation_post_process_node(input_arg, named_modules):
|
1244 |
+
# failed to trace back since no input arg for the current node
|
1245 |
+
if len(input_arg.args) < 1:
|
1246 |
+
return False
|
1247 |
+
input_arg = input_arg.args[0]
|
1248 |
+
iteration_guard += 1
|
1249 |
+
if iteration_guard > 10000:
|
1250 |
+
raise AssertionError('Unable to find observer of previous node')
|
1251 |
+
|
1252 |
+
parent_name, name = _parent_name(input_arg.target)
|
1253 |
+
setattr(named_modules[parent_name], name, obs_mod_to_use)
|
1254 |
+
|
1255 |
+
# set the output observer node to use that module
|
1256 |
+
for output_obs_node in node.users.keys():
|
1257 |
+
assert _is_activation_post_process_node(output_obs_node, named_modules)
|
1258 |
+
parent_name, name = _parent_name(output_obs_node.target)
|
1259 |
+
setattr(named_modules[parent_name], name, obs_mod_to_use)
|
1260 |
+
|
1261 |
+
# TODO(future PR): delete the orphaned observer modules
|
1262 |
+
return True
|
1263 |
+
|
1264 |
+
def _remove_output_observer(
|
1265 |
+
node: Node,
|
1266 |
+
model: torch.nn.Module,
|
1267 |
+
named_modules: Dict[str, torch.nn.Module]):
|
1268 |
+
items = list(node.users.items())
|
1269 |
+
for output_obs_node, _ in items:
|
1270 |
+
assert _is_activation_post_process_node(output_obs_node, named_modules)
|
1271 |
+
output_obs_node.replace_all_uses_with(node)
|
1272 |
+
model.graph.erase_node(output_obs_node) # type: ignore[union-attr, operator]
|
1273 |
+
|
1274 |
+
def _swap_custom_module_to_observed(
|
1275 |
+
node: Node,
|
1276 |
+
qconfig: QConfigAny,
|
1277 |
+
named_modules: Dict[str, torch.nn.Module],
|
1278 |
+
prepare_custom_config: PrepareCustomConfig):
|
1279 |
+
custom_module = named_modules[node.target] # type: ignore[index]
|
1280 |
+
custom_module_class_mapping = prepare_custom_config.float_to_observed_mapping
|
1281 |
+
observed_custom_module_class = \
|
1282 |
+
get_swapped_custom_module_class(
|
1283 |
+
custom_module, custom_module_class_mapping, qconfig)
|
1284 |
+
observed_custom_module = \
|
1285 |
+
observed_custom_module_class.from_float(custom_module)
|
1286 |
+
parent_name, name = _parent_name(node.target)
|
1287 |
+
setattr(named_modules[parent_name], name, observed_custom_module)
|
1288 |
+
|
1289 |
+
def insert_observers_for_model(
|
1290 |
+
model: GraphModule,
|
1291 |
+
node_name_to_match_result_with_qconfig: Dict[str, _MatchResultWithQConfig],
|
1292 |
+
node_name_to_qconfig: Dict[str, QConfigAny],
|
1293 |
+
prepare_custom_config: PrepareCustomConfig,
|
1294 |
+
equalization_config_map: Dict[str, Any],
|
1295 |
+
backend_config: BackendConfig,
|
1296 |
+
observed_node_names: Set[str],
|
1297 |
+
is_qat: bool,
|
1298 |
+
) -> Optional[Node]:
|
1299 |
+
"""
|
1300 |
+
Inserts observers, using the following high level algorithm:
|
1301 |
+
|
1302 |
+
For each node in the graph:
|
1303 |
+
1. determine the target dtype of this node in the quantized graph, and save
|
1304 |
+
it for future steps
|
1305 |
+
2. determine the target dtype or all args and kwargs of this node
|
1306 |
+
3. if any arg or kwarg's target dtype does not match the current node's
|
1307 |
+
dtype, insert an observer
|
1308 |
+
4. if the current node needs an output observer, insert it
|
1309 |
+
|
1310 |
+
For example:
|
1311 |
+
|
1312 |
+
- starting graph:
|
1313 |
+
x0 -> linear -> x1
|
1314 |
+
|
1315 |
+
- observed graph after processing x0:
|
1316 |
+
x0(fp32)
|
1317 |
+
|
1318 |
+
- observed graph after processing linear:
|
1319 |
+
x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8)
|
1320 |
+
|
1321 |
+
- observed graph after processing x1:
|
1322 |
+
x0(fp32) -> x0_obs0(int8) -> linear(int8) -> linear_obs0(int8) -> x1
|
1323 |
+
|
1324 |
+
After a node is processed, the naive observer placement is guaranteed to be
|
1325 |
+
complete for that node and all of its predecessors. There can be future
|
1326 |
+
passes which optimize the graph by deduplicating observers, etc.
|
1327 |
+
"""
|
1328 |
+
|
1329 |
+
# node.meta["target_dtype_info"] stores the target dtype information
|
1330 |
+
# that's derived from qconfig for the Node, for example, if we have
|
1331 |
+
# a conv2d node that has a qconfig
|
1332 |
+
# qconfig = QConfig(activation=..., weight=...)
|
1333 |
+
# # information for input and bias node omitted
|
1334 |
+
# # for getattr node
|
1335 |
+
# # weight = getattr(self, 'weight')
|
1336 |
+
# weight.meta["target_dtype_info"] = {
|
1337 |
+
# 'output_act_obs_or_fq_ctr': qconfig.weight,
|
1338 |
+
# }
|
1339 |
+
# # for conv2d node
|
1340 |
+
# # conv2d = call_function[target=torch.nn.functional.conv2d](
|
1341 |
+
# # args=(input, weight, bias))
|
1342 |
+
# conv2d.meta["target_dtype_info"] = {
|
1343 |
+
# 'input_act_obs_or_fq_ctr': qconfig.activation
|
1344 |
+
# 'weight_obs_or_fq_ctr': qconfig.weight,
|
1345 |
+
# 'bias_obs_or_fq_ctr': PlaceholderObserver.with_args(dtype=torch.float32),
|
1346 |
+
# 'output_act_obs_or_fq_ctr': qconfig.activation,
|
1347 |
+
# }
|
1348 |
+
#
|
1349 |
+
cache_for_no_tensor_check: Dict[Node, bool] = {}
|
1350 |
+
|
1351 |
+
# first, populate the dtype map based only on qconfig and qhandler
|
1352 |
+
# this assumes:
|
1353 |
+
# graph inputs are fp32 by default, and int8 where overriden
|
1354 |
+
# other nodes output dtype is specified by the qconfig
|
1355 |
+
named_modules = dict(model.named_modules(remove_duplicate=False))
|
1356 |
+
|
1357 |
+
input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
|
1358 |
+
output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
|
1359 |
+
processed_nodes: Set[Node] = set()
|
1360 |
+
# initialize target_dtype_info
|
1361 |
+
for node in model.graph.nodes:
|
1362 |
+
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_FP32_QCONFIG_FOR_TARGET_DTYPE_INFO)
|
1363 |
+
|
1364 |
+
inputs_seen_counter = 0
|
1365 |
+
outputs_seen_counter = 0
|
1366 |
+
placeholder_node_to_input_index: Dict[Node, int] = {}
|
1367 |
+
# TODO: we probably don't need this counter since each graph will only have
|
1368 |
+
# one output node?
|
1369 |
+
output_node_to_output_index: Dict[Node, int] = {}
|
1370 |
+
for node in model.graph.nodes:
|
1371 |
+
if node.op == "placeholder":
|
1372 |
+
placeholder_node_to_input_index[node] = inputs_seen_counter
|
1373 |
+
inputs_seen_counter += 1
|
1374 |
+
if node.op == "output":
|
1375 |
+
output_node_to_output_index[node] = outputs_seen_counter
|
1376 |
+
outputs_seen_counter += 1
|
1377 |
+
|
1378 |
+
# Step 1, set the observer or fake quantize module constructor for each node in the
|
1379 |
+
# matched_node_pattern
|
1380 |
+
|
1381 |
+
for match_res_with_qconfig in node_name_to_match_result_with_qconfig.values():
|
1382 |
+
last_node, matched_node_pattern, pattern, qhandler, qconfig = match_res_with_qconfig
|
1383 |
+
assert qhandler is not None
|
1384 |
+
_set_target_dtype_info_for_matched_node_pattern(
|
1385 |
+
matched_node_pattern,
|
1386 |
+
last_node,
|
1387 |
+
qconfig,
|
1388 |
+
qhandler,
|
1389 |
+
backend_config,
|
1390 |
+
named_modules,
|
1391 |
+
cache_for_no_tensor_check,
|
1392 |
+
processed_nodes
|
1393 |
+
)
|
1394 |
+
|
1395 |
+
# Step 2. Special cases for some operators, we might be able to remove them
|
1396 |
+
# in the future if we know dtype information of each node better
|
1397 |
+
|
1398 |
+
# Step 2.1. some settings are not based on patterns, we need to process each node
|
1399 |
+
# instead
|
1400 |
+
for node in model.graph.nodes:
|
1401 |
+
if node.op == "placeholder" and placeholder_node_to_input_index[node] in input_quantized_idxs:
|
1402 |
+
# users are not supposed to call calculate_qparams on PlaceholderObserver, and
|
1403 |
+
# this is OK because we are using this as a way to encode the dtypes of input
|
1404 |
+
# tensor, we won't actually insert these observers in the graph and won't
|
1405 |
+
# actually call calculate_qparams
|
1406 |
+
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO)
|
1407 |
+
elif node.op in ("call_module", "call_method", "call_function"):
|
1408 |
+
args_have_no_tensors = \
|
1409 |
+
all_node_args_have_no_tensors(
|
1410 |
+
node, named_modules, cache_for_no_tensor_check)
|
1411 |
+
if args_have_no_tensors:
|
1412 |
+
node.meta["target_dtype_info"] = {
|
1413 |
+
"input_act_obs_or_fq_ctr": None,
|
1414 |
+
"output_act_obs_or_fq_ctr": None,
|
1415 |
+
}
|
1416 |
+
elif node.op == "output" and output_node_to_output_index[node] in output_quantized_idxs:
|
1417 |
+
# TODO(future PR): update the output_quantized_idxs API to match
|
1418 |
+
# arbitrary data structures. There is always a single output, and
|
1419 |
+
# that output can have arbitrary nesting of values. List[int] is
|
1420 |
+
# not the right data type for this.
|
1421 |
+
|
1422 |
+
# TODO(future PR): support more dtypes in model outputs, if necessary
|
1423 |
+
node.meta["target_dtype_info"] = copy.copy(_DEFAULT_QUINT8_QCONFIG_FOR_TARGET_DTYPE_INFO)
|
1424 |
+
|
1425 |
+
# Step 2.2, for nodes with known input dtypes, propagate them throughout the
|
1426 |
+
# graph. For example, if there is a call such as
|
1427 |
+
# x1 = x0.masked_fill(mask, 1)
|
1428 |
+
# we propagate the type of mask to be torch.bool
|
1429 |
+
propagate_dtypes_for_known_nodes(model.graph, node_name_to_match_result_with_qconfig)
|
1430 |
+
|
1431 |
+
# Step 3, check if the requested target_dtype_info is supported by backend or not
|
1432 |
+
# if not, we'll reset the target_dtye_info to use the default (float Tensor)
|
1433 |
+
|
1434 |
+
# reset the counters and set of processed_nodes
|
1435 |
+
processed_nodes: Set[Node] = set()
|
1436 |
+
for match_res_with_qconfig in node_name_to_match_result_with_qconfig.values():
|
1437 |
+
last_node, matched_node_pattern, pattern, qhandler, qconfig = match_res_with_qconfig
|
1438 |
+
is_supported_by_backend = _is_pattern_dtype_config_and_qconfig_supported_by_backend(
|
1439 |
+
pattern, matched_node_pattern, qconfig, backend_config)
|
1440 |
+
assert qhandler is not None
|
1441 |
+
|
1442 |
+
# get output_act_dtype so that we don't also reset the special typed nodes
|
1443 |
+
# TODO: we might want to handle these more uniformly with the default path
|
1444 |
+
# this can be improved if we can use node.meta["val"]
|
1445 |
+
output_act_or_fq_ctr = node.meta["target_dtype_info"]["output_act_obs_or_fq_ctr"]
|
1446 |
+
output_act_or_fq = output_act_or_fq_ctr() if output_act_or_fq_ctr else None
|
1447 |
+
output_act_dtype, _ = _get_dtype_and_is_dynamic(output_act_or_fq)
|
1448 |
+
if not is_supported_by_backend and output_act_dtype not in [None, int, float, torch.bool]:
|
1449 |
+
# restore target_dtype_info to default if it is not supported by backend
|
1450 |
+
_set_target_dtype_info_for_matched_node_pattern(
|
1451 |
+
matched_node_pattern,
|
1452 |
+
last_node,
|
1453 |
+
torch.ao.quantization.qconfig._default_fp32_placeholder_qconfig,
|
1454 |
+
None,
|
1455 |
+
backend_config,
|
1456 |
+
named_modules,
|
1457 |
+
cache_for_no_tensor_check,
|
1458 |
+
processed_nodes
|
1459 |
+
)
|
1460 |
+
|
1461 |
+
# After this point, the current node and all of its arguments
|
1462 |
+
# have a target_dtype_info assigned. Now, we insert observers for inputs
|
1463 |
+
# of this node (if needed for this node), and the output of this node
|
1464 |
+
# (if needed for this node).
|
1465 |
+
|
1466 |
+
# Since we are mutating the graph as we go, we iterate over the original
|
1467 |
+
# nodes before observer insertion, instead of model.graph.nodes.
|
1468 |
+
nodes_before_observation = list(model.graph.nodes)
|
1469 |
+
|
1470 |
+
# Avoid duplicates custom module swaps for multiple nodes with same target.
|
1471 |
+
custom_module_names_already_swapped: Set[str] = set()
|
1472 |
+
|
1473 |
+
# TODO: reuse placeholder_node_to_input_index and output_node_to_output_index
|
1474 |
+
# reset inputs/outputs counters
|
1475 |
+
inputs_seen_counter = 0
|
1476 |
+
outputs_seen_counter = 0
|
1477 |
+
results_node = None
|
1478 |
+
obs_or_fq_map: Dict[EdgeOrNode, ObserverOrFakeQuantize] = {}
|
1479 |
+
|
1480 |
+
# TODO: change this to insert obs/fq by pattern instead of by node
|
1481 |
+
for node in nodes_before_observation:
|
1482 |
+
|
1483 |
+
if node.op == 'placeholder':
|
1484 |
+
# if a graph input is in fp32, it does not need observation
|
1485 |
+
# if a graph input is in int8, we assume the observation happens
|
1486 |
+
# outside of the graph, and no additional observation is needed
|
1487 |
+
pass
|
1488 |
+
|
1489 |
+
elif node.op in ('call_module', 'call_method', 'call_function', 'output'):
|
1490 |
+
# check for matches
|
1491 |
+
last_node, matched_node_pattern, pattern, qhandler, qconfig = (
|
1492 |
+
node_name_to_match_result_with_qconfig.get(node.name, (None, None, None, None, None)) # type: ignore[assignment]
|
1493 |
+
)
|
1494 |
+
equalization_qconfig = equalization_config_map.get(node.name, None)
|
1495 |
+
|
1496 |
+
this_node_dtype_info = node.meta["target_dtype_info"]
|
1497 |
+
if "val" in node.meta:
|
1498 |
+
output_is_a_tensor = (
|
1499 |
+
this_node_dtype_info is not None and
|
1500 |
+
isinstance(node.meta["val"], FakeTensor)
|
1501 |
+
)
|
1502 |
+
else:
|
1503 |
+
output_is_a_tensor = this_node_dtype_info is not None
|
1504 |
+
|
1505 |
+
skip_inserting_observers = (
|
1506 |
+
(qconfig is None) or
|
1507 |
+
not output_is_a_tensor
|
1508 |
+
) and (
|
1509 |
+
not node.op == 'output'
|
1510 |
+
)
|
1511 |
+
|
1512 |
+
# TODO: take a closer look to see if we can remove this check
|
1513 |
+
# right now it is here because of `observed_node_names`, we are using
|
1514 |
+
# it as an indicator for swapping the modules to reference modules in
|
1515 |
+
# convert
|
1516 |
+
is_supported_by_backend = _is_pattern_dtype_config_and_qconfig_supported_by_backend(
|
1517 |
+
pattern, matched_node_pattern, qconfig, backend_config)
|
1518 |
+
|
1519 |
+
if not skip_inserting_observers and is_supported_by_backend:
|
1520 |
+
named_modules = dict(model.named_modules(remove_duplicate=False))
|
1521 |
+
if node.op != 'output':
|
1522 |
+
assert matched_node_pattern is not None
|
1523 |
+
# add matched nodes to the observed node name set
|
1524 |
+
_add_matched_node_name_to_set(matched_node_pattern, observed_node_names)
|
1525 |
+
|
1526 |
+
# This is currently only used for equalization.
|
1527 |
+
# Checks if the current node is in a branch in which the two
|
1528 |
+
# first layers are both being quantized.
|
1529 |
+
#
|
1530 |
+
# ex. conv2
|
1531 |
+
# /
|
1532 |
+
# x -> conv1
|
1533 |
+
#
|
1534 |
+
# If this is the case, we will not apply equalization to the
|
1535 |
+
# initial two layers.
|
1536 |
+
is_quantized_branch = False
|
1537 |
+
if (
|
1538 |
+
len(node.args) > 0 and
|
1539 |
+
isinstance(node.args[0], Node) and
|
1540 |
+
len(node.args[0].users) > 1
|
1541 |
+
):
|
1542 |
+
for user in node.args[0].users:
|
1543 |
+
# Checks if there exists another user being quantized
|
1544 |
+
is_user_quantized = (
|
1545 |
+
node_name_to_qconfig.get(user.name, None) is not None or
|
1546 |
+
(user.op == 'call_module' and isinstance(named_modules[str(user.target)], ObserverBase))
|
1547 |
+
)
|
1548 |
+
if user != node and is_user_quantized:
|
1549 |
+
is_quantized_branch = True
|
1550 |
+
|
1551 |
+
pattern_to_root_node_getter = get_fusion_pattern_to_root_node_getter(backend_config)
|
1552 |
+
root_node_getter = pattern_to_root_node_getter.get(pattern, _default_root_node_getter)
|
1553 |
+
root_node = root_node_getter(matched_node_pattern)
|
1554 |
+
is_input_node_of_the_pattern = node is root_node
|
1555 |
+
if is_input_node_of_the_pattern:
|
1556 |
+
# this modifies node inplace
|
1557 |
+
_maybe_insert_input_observers_for_node(
|
1558 |
+
node, qconfig, model, named_modules, model.graph,
|
1559 |
+
qhandler,
|
1560 |
+
prepare_custom_config,
|
1561 |
+
obs_or_fq_map,
|
1562 |
+
is_qat,
|
1563 |
+
backend_config)
|
1564 |
+
|
1565 |
+
# insert equalization input observers if needed
|
1566 |
+
_maybe_insert_input_equalization_observers_for_node(
|
1567 |
+
node, equalization_qconfig, model, named_modules, model.graph,
|
1568 |
+
is_quantized_branch)
|
1569 |
+
|
1570 |
+
is_last_node_of_pattern = node is last_node
|
1571 |
+
input_output_share_observers = node.meta["target_dtype_info"].get("input_output_share_observers", False)
|
1572 |
+
reuse_input_obs_or_fq = node.meta["target_dtype_info"].get("reuse_input_obs_or_fq", False)
|
1573 |
+
|
1574 |
+
if is_last_node_of_pattern:
|
1575 |
+
if _is_custom_module_lstm(node, named_modules, qconfig, qhandler):
|
1576 |
+
# Currently custom module outputs are assumed to be already quantized,
|
1577 |
+
# so we need to insert a DeQuantStub after the output. For custom module
|
1578 |
+
# LSTM specifically, the outputs are also a nested tuple, so we must first
|
1579 |
+
# break down the tuple to insert DeQuantStubs after the internal nodes.
|
1580 |
+
|
1581 |
+
# TODO: This currently diverges from how custom modules are handled today,
|
1582 |
+
# where we insert observers after the output instead of DeQuantStubs, and
|
1583 |
+
# replace these observers with "dequantize" nodes during convert. Conceptually,
|
1584 |
+
# these output observers are the same as DeQuantStubs. In the future, we
|
1585 |
+
# should resolve this inconsistency by inserting DeQuantStubs for all custom
|
1586 |
+
# modules, not just for LSTM.
|
1587 |
+
_insert_dequant_stubs_for_custom_module_lstm_output(node, model, named_modules, model.graph)
|
1588 |
+
if node.target not in custom_module_names_already_swapped:
|
1589 |
+
custom_module_names_already_swapped.add(node.target)
|
1590 |
+
_swap_custom_module_to_observed(node, qconfig, named_modules, prepare_custom_config)
|
1591 |
+
else:
|
1592 |
+
# this returns the new observer node if it was needed
|
1593 |
+
maybe_output_obs_node = _maybe_insert_output_observer_for_node(
|
1594 |
+
node, model, named_modules, model.graph, obs_or_fq_map, is_qat)
|
1595 |
+
|
1596 |
+
if maybe_output_obs_node is not None:
|
1597 |
+
# Update users of original node to use the output observer
|
1598 |
+
# instead. For example, change
|
1599 |
+
#
|
1600 |
+
# next_node
|
1601 |
+
# /
|
1602 |
+
# cur_node -> obs
|
1603 |
+
#
|
1604 |
+
# to
|
1605 |
+
#
|
1606 |
+
# next_node
|
1607 |
+
# /
|
1608 |
+
# cur_node -> obs
|
1609 |
+
#
|
1610 |
+
# We need to save orig users before updating uses because
|
1611 |
+
# the list of users will change as we update uses
|
1612 |
+
orig_users = list(node.users.keys())
|
1613 |
+
for user_node in orig_users:
|
1614 |
+
if user_node is maybe_output_obs_node:
|
1615 |
+
continue
|
1616 |
+
user_node.replace_input_with(node, maybe_output_obs_node)
|
1617 |
+
|
1618 |
+
_is_observer_in_same_graph_ = _is_observer_in_same_graph(
|
1619 |
+
node, named_modules, obs_or_fq_map, is_qat)
|
1620 |
+
|
1621 |
+
# for ops whose inputs and outputs share observer/fqs, we modify the graph
|
1622 |
+
# to make all inputs and outputs use the first input's
|
1623 |
+
# observer/fq
|
1624 |
+
if (input_output_share_observers and _is_observer_in_same_graph_) or \
|
1625 |
+
reuse_input_obs_or_fq:
|
1626 |
+
if not _maybe_make_input_output_share_observers(node, model, named_modules):
|
1627 |
+
_remove_output_observer(node, model, named_modules)
|
1628 |
+
|
1629 |
+
if qhandler is not None and qhandler.is_custom_module():
|
1630 |
+
if node.target not in custom_module_names_already_swapped:
|
1631 |
+
custom_module_names_already_swapped.add(node.target)
|
1632 |
+
_swap_custom_module_to_observed(node, qconfig, named_modules, prepare_custom_config)
|
1633 |
+
|
1634 |
+
else: # output
|
1635 |
+
_maybe_insert_observers_before_graph_output(node, model, named_modules, model.graph, obs_or_fq_map, is_qat)
|
1636 |
+
|
1637 |
+
#
|
1638 |
+
# After this point, the current node has input and output observers
|
1639 |
+
# that it needs for itself inserted.
|
1640 |
+
#
|
1641 |
+
|
1642 |
+
# increment the counters, so future inputs and outputs are assigned
|
1643 |
+
# correct dtypes
|
1644 |
+
if node.op == 'placeholder':
|
1645 |
+
inputs_seen_counter += 1
|
1646 |
+
elif node.op == 'output':
|
1647 |
+
outputs_seen_counter += 1
|
1648 |
+
results_node = node
|
1649 |
+
|
1650 |
+
return results_node
|
1651 |
+
|
1652 |
+
def _run_prepare_fx_on_standalone_modules(
|
1653 |
+
model: torch.nn.Module,
|
1654 |
+
is_qat: bool,
|
1655 |
+
named_modules: Dict[str, torch.nn.Module],
|
1656 |
+
node_name_to_match_result_with_qconfig: Any,
|
1657 |
+
prepare_custom_config: PrepareCustomConfig,
|
1658 |
+
backend_config: BackendConfig,
|
1659 |
+
) -> None:
|
1660 |
+
"""
|
1661 |
+
Runs prepare_fx on each standalone module. Note: this does
|
1662 |
+
not modify the graph, it just replaces the unobserved modules with
|
1663 |
+
their observed versions.
|
1664 |
+
"""
|
1665 |
+
for (root_node, _, pattern, qhandler, qconfig) in node_name_to_match_result_with_qconfig.values():
|
1666 |
+
if qhandler is None:
|
1667 |
+
continue
|
1668 |
+
elif not qhandler.is_standalone_module():
|
1669 |
+
continue
|
1670 |
+
|
1671 |
+
sm_qconfig_mapping, sm_example_inputs, sm_prepare_custom_config, \
|
1672 |
+
sm_backend_config = _get_standalone_module_configs(
|
1673 |
+
root_node, named_modules, prepare_custom_config, qconfig, backend_config)
|
1674 |
+
|
1675 |
+
standalone_module = named_modules[root_node.target]
|
1676 |
+
prepare = \
|
1677 |
+
torch.ao.quantization.quantize_fx._prepare_standalone_module_fx # type: ignore[attr-defined]
|
1678 |
+
observed_standalone_module = \
|
1679 |
+
prepare(
|
1680 |
+
standalone_module,
|
1681 |
+
sm_qconfig_mapping,
|
1682 |
+
is_qat,
|
1683 |
+
example_inputs=sm_example_inputs,
|
1684 |
+
prepare_custom_config=sm_prepare_custom_config,
|
1685 |
+
backend_config=sm_backend_config)
|
1686 |
+
parent_name, name = _parent_name(root_node.target)
|
1687 |
+
setattr(named_modules[parent_name], name, observed_standalone_module)
|
1688 |
+
named_modules[root_node.target] = observed_standalone_module
|
1689 |
+
|
1690 |
+
def _save_state(
|
1691 |
+
observed: GraphModule,
|
1692 |
+
node_name_to_qconfig: Dict[str, QConfigAny],
|
1693 |
+
node_name_to_scope: Dict[str, Tuple[str, type]],
|
1694 |
+
prepare_custom_config: PrepareCustomConfig,
|
1695 |
+
equalization_node_name_to_qconfig: Dict[str, Any],
|
1696 |
+
qconfig_mapping: QConfigMapping,
|
1697 |
+
is_qat: bool,
|
1698 |
+
observed_node_names: Set[str],
|
1699 |
+
) -> None:
|
1700 |
+
observed.meta["_observed_graph_module_attrs"] = (
|
1701 |
+
ObservedGraphModuleAttrs(
|
1702 |
+
node_name_to_qconfig=node_name_to_qconfig,
|
1703 |
+
node_name_to_scope=node_name_to_scope,
|
1704 |
+
prepare_custom_config=prepare_custom_config,
|
1705 |
+
equalization_node_name_to_qconfig=equalization_node_name_to_qconfig,
|
1706 |
+
qconfig_mapping=qconfig_mapping,
|
1707 |
+
is_qat=is_qat,
|
1708 |
+
observed_node_names=observed_node_names,
|
1709 |
+
)
|
1710 |
+
)
|
1711 |
+
|
1712 |
+
def prepare(
|
1713 |
+
model: GraphModule,
|
1714 |
+
qconfig_mapping: Union[QConfigMapping, Dict[str, Any]],
|
1715 |
+
is_qat: bool,
|
1716 |
+
node_name_to_scope: Dict[str, Tuple[str, type]],
|
1717 |
+
example_inputs: Tuple[Any, ...],
|
1718 |
+
prepare_custom_config: Union[PrepareCustomConfig, Dict[str, Any], None] = None,
|
1719 |
+
_equalization_config: Union[QConfigMapping, Dict[str, Any], None] = None,
|
1720 |
+
backend_config: Union[BackendConfig, Dict[str, Any], None] = None,
|
1721 |
+
is_standalone_module: bool = False) -> GraphModule:
|
1722 |
+
""" standalone_module means it a submodule that is not inlined in
|
1723 |
+
parent module, and will be quantized separately as one unit.
|
1724 |
+
|
1725 |
+
How the standalone module is observed is specified by `input_quantized_idxs` and
|
1726 |
+
`output_quantized_idxs` in the prepare_custom_config for the standalone module
|
1727 |
+
Args:
|
1728 |
+
node_name_to_scope: mapping from node name to the scope of the module which contains the node.
|
1729 |
+
The scope is a tuple of fully qualified path of the module and the type of the module
|
1730 |
+
Returns:
|
1731 |
+
model(GraphModule): prepared standalone module
|
1732 |
+
attributes related to standalone module
|
1733 |
+
in model.meta["_observed_graph_module_attrs"]:
|
1734 |
+
is_observed_standalone_module (bool): boolean value that shows whether the
|
1735 |
+
current model is a observed standalone module or not
|
1736 |
+
standalone_module_input_quantized_idxs(List[Int]): a list of
|
1737 |
+
indexes for the graph input that is expected to be quantized,
|
1738 |
+
same as input_quantized_idxs configuration provided
|
1739 |
+
for the standalone module
|
1740 |
+
standalone_module_output_quantized_idxs(List[Int]): a list of
|
1741 |
+
indexs for the graph output that is quantized
|
1742 |
+
same as input_quantized_idxs configuration provided
|
1743 |
+
for the standalone module
|
1744 |
+
"""
|
1745 |
+
if prepare_custom_config is None:
|
1746 |
+
prepare_custom_config = PrepareCustomConfig()
|
1747 |
+
if _equalization_config is None:
|
1748 |
+
_equalization_config = QConfigMapping()
|
1749 |
+
|
1750 |
+
if isinstance(qconfig_mapping, Dict):
|
1751 |
+
warnings.warn(
|
1752 |
+
"Passing a QConfig dictionary to prepare is deprecated and will not be supported "
|
1753 |
+
"in a future version. Please pass in a QConfigMapping instead.")
|
1754 |
+
qconfig_mapping = QConfigMapping.from_dict(qconfig_mapping)
|
1755 |
+
|
1756 |
+
if isinstance(_equalization_config, Dict):
|
1757 |
+
warnings.warn(
|
1758 |
+
"Passing a QConfig dictionary to prepare for equalization is deprecated and will not "
|
1759 |
+
"be supported in a future version. Please pass in a QConfigMapping instead.")
|
1760 |
+
_equalization_config = QConfigMapping.from_dict(_equalization_config)
|
1761 |
+
|
1762 |
+
if isinstance(prepare_custom_config, Dict):
|
1763 |
+
warnings.warn(
|
1764 |
+
"Passing a prepare_custom_config_dict to prepare is deprecated and will not be supported "
|
1765 |
+
"in a future version. Please pass in a PrepareCustomConfig instead.")
|
1766 |
+
prepare_custom_config = PrepareCustomConfig.from_dict(prepare_custom_config)
|
1767 |
+
|
1768 |
+
if isinstance(backend_config, Dict):
|
1769 |
+
warnings.warn(
|
1770 |
+
"Passing a backend_config_dict to prepare is deprecated and will not be supported "
|
1771 |
+
"in a future version. Please pass in a BackendConfig instead.")
|
1772 |
+
backend_config = BackendConfig.from_dict(backend_config)
|
1773 |
+
|
1774 |
+
assert isinstance(qconfig_mapping, QConfigMapping)
|
1775 |
+
assert isinstance(_equalization_config, QConfigMapping)
|
1776 |
+
qconfig_mapping = copy.deepcopy(qconfig_mapping)
|
1777 |
+
_equalization_config = copy.deepcopy(_equalization_config)
|
1778 |
+
|
1779 |
+
# mapping from a tuple of nodes in reverse order to uninitialized
|
1780 |
+
# QuantizeHandler subclass. For example,
|
1781 |
+
# {
|
1782 |
+
# # match a single node
|
1783 |
+
# (<class 'torch.nn.modules.conv.Conv3d'>:
|
1784 |
+
# <class 'torch.ao.quantization.fx.quantize.ConvRelu'>),
|
1785 |
+
# # match multiple nodes in reverse order
|
1786 |
+
# ((<function relu at 0x7f766a7360d0>, <built-in function add>):
|
1787 |
+
# <class 'torch.ao.quantization.fx.quantize.Add'>),
|
1788 |
+
# }
|
1789 |
+
|
1790 |
+
pattern_to_quantize_handler: Dict[Pattern, QuantizeHandler] = {}
|
1791 |
+
if backend_config is None:
|
1792 |
+
backend_config = get_native_backend_config()
|
1793 |
+
pattern_to_quantize_handler = _get_pattern_to_quantize_handlers(backend_config)
|
1794 |
+
pattern_to_quantize_handler = _sorted_patterns_dict(pattern_to_quantize_handler)
|
1795 |
+
|
1796 |
+
root_node_getter_mapping = \
|
1797 |
+
get_fusion_pattern_to_root_node_getter(backend_config)
|
1798 |
+
|
1799 |
+
_update_qconfig_for_fusion(model, qconfig_mapping)
|
1800 |
+
_update_qconfig_for_fusion(model, _equalization_config)
|
1801 |
+
flattened_qconfig_dict = _get_flattened_qconfig_dict(qconfig_mapping)
|
1802 |
+
# TODO: support regex as well
|
1803 |
+
propagate_qconfig_(model, flattened_qconfig_dict, prepare_custom_config.to_dict())
|
1804 |
+
|
1805 |
+
if is_qat:
|
1806 |
+
module_to_qat_module = get_module_to_qat_module(backend_config)
|
1807 |
+
_qat_swap_modules(model, module_to_qat_module)
|
1808 |
+
_update_qconfig_for_qat(qconfig_mapping, backend_config)
|
1809 |
+
|
1810 |
+
# mapping from fully qualified module name to module instance
|
1811 |
+
# for example,
|
1812 |
+
# {
|
1813 |
+
# '': Model(...),
|
1814 |
+
# 'linear': Linear(...),
|
1815 |
+
# 'linear.weight_fake_quant': PerChannelMinMaxObserver(...),
|
1816 |
+
# }
|
1817 |
+
named_modules = dict(model.named_modules(remove_duplicate=False))
|
1818 |
+
|
1819 |
+
# fill node_name_to_qconfig, a map from node name to qconfig, used in _find_matches
|
1820 |
+
equalization_node_name_to_qconfig = _generate_node_name_to_qconfig(
|
1821 |
+
model, named_modules, model.graph, _equalization_config, node_name_to_scope)
|
1822 |
+
node_name_to_qconfig = _generate_node_name_to_qconfig(model, named_modules, model.graph, qconfig_mapping, node_name_to_scope)
|
1823 |
+
|
1824 |
+
# match the patterns that will get quantized
|
1825 |
+
standalone_module_names = list(prepare_custom_config.standalone_module_names.keys())
|
1826 |
+
standalone_module_classes = list(prepare_custom_config.standalone_module_classes.keys())
|
1827 |
+
|
1828 |
+
custom_module_classes = get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping)
|
1829 |
+
matches_without_qconfig = _find_matches(
|
1830 |
+
model.graph, named_modules, pattern_to_quantize_handler, root_node_getter_mapping,
|
1831 |
+
standalone_module_names, standalone_module_classes, custom_module_classes)
|
1832 |
+
|
1833 |
+
# map qconfig instances to matches
|
1834 |
+
node_name_to_match_result_with_qconfig = {}
|
1835 |
+
for node_name, match_without_qconfig in matches_without_qconfig.items():
|
1836 |
+
match_with_qconfig = (*match_without_qconfig, node_name_to_qconfig[node_name])
|
1837 |
+
node_name_to_match_result_with_qconfig[node_name] = match_with_qconfig
|
1838 |
+
|
1839 |
+
_run_prepare_fx_on_standalone_modules(
|
1840 |
+
model, is_qat, named_modules, node_name_to_match_result_with_qconfig, prepare_custom_config, backend_config)
|
1841 |
+
|
1842 |
+
# record names for the set of observed node, so that in convert step
|
1843 |
+
# we know whether we need to convert a floating point module to reference
|
1844 |
+
# quantized module or not
|
1845 |
+
observed_node_names: Set[str] = set()
|
1846 |
+
|
1847 |
+
result_node = insert_observers_for_model(
|
1848 |
+
model,
|
1849 |
+
node_name_to_match_result_with_qconfig,
|
1850 |
+
node_name_to_qconfig,
|
1851 |
+
prepare_custom_config,
|
1852 |
+
equalization_node_name_to_qconfig,
|
1853 |
+
backend_config,
|
1854 |
+
observed_node_names,
|
1855 |
+
is_qat,
|
1856 |
+
)
|
1857 |
+
model = GraphModule(model, model.graph)
|
1858 |
+
|
1859 |
+
_save_state(model, node_name_to_qconfig, node_name_to_scope,
|
1860 |
+
prepare_custom_config, equalization_node_name_to_qconfig,
|
1861 |
+
qconfig_mapping, is_qat, observed_node_names)
|
1862 |
+
|
1863 |
+
if is_standalone_module:
|
1864 |
+
assert result_node is not None
|
1865 |
+
assert isinstance(result_node.args[0], Node), \
|
1866 |
+
"standalone module only supports returning simple value currently"\
|
1867 |
+
"(not tuple, dict etc.)"
|
1868 |
+
# these inputs are observed in parent
|
1869 |
+
# converting List[int] to Tensor since module attribute is
|
1870 |
+
# Union[Tensor, Module]
|
1871 |
+
input_quantized_idxs: List[int] = prepare_custom_config.input_quantized_indexes
|
1872 |
+
output_quantized_idxs: List[int] = prepare_custom_config.output_quantized_indexes
|
1873 |
+
observed_graph_module_attrs = model.meta["_observed_graph_module_attrs"]
|
1874 |
+
# inplace modification
|
1875 |
+
observed_graph_module_attrs.is_observed_standalone_module = True
|
1876 |
+
observed_graph_module_attrs.standalone_module_input_quantized_idxs = \
|
1877 |
+
input_quantized_idxs
|
1878 |
+
observed_graph_module_attrs.standalone_module_output_quantized_idxs = \
|
1879 |
+
output_quantized_idxs
|
1880 |
+
return model
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/qconfig_mapping_utils.py
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import re
|
3 |
+
from collections import defaultdict, OrderedDict
|
4 |
+
from typing import Callable, Any, Dict, Tuple, Set, List, Union
|
5 |
+
from torch.ao.quantization import QConfig
|
6 |
+
from torch.ao.quantization.qconfig import _add_module_to_qconfig_obs_ctr, QConfigAny, qconfig_equals
|
7 |
+
from torch.ao.quantization.observer import (
|
8 |
+
_is_activation_post_process,
|
9 |
+
)
|
10 |
+
from torch.ao.quantization.backend_config import (
|
11 |
+
BackendConfig,
|
12 |
+
DTypeConfig,
|
13 |
+
)
|
14 |
+
from torch.ao.quantization.backend_config.utils import (
|
15 |
+
get_module_to_qat_module,
|
16 |
+
)
|
17 |
+
|
18 |
+
from torch.fx import (
|
19 |
+
GraphModule,
|
20 |
+
)
|
21 |
+
from torch.fx.graph import (
|
22 |
+
Graph,
|
23 |
+
)
|
24 |
+
from torch.ao.nn.intrinsic import _FusedModule
|
25 |
+
|
26 |
+
from ..utils import (
|
27 |
+
_parent_name,
|
28 |
+
get_qconfig_dtypes,
|
29 |
+
)
|
30 |
+
from ..qconfig_mapping import (
|
31 |
+
_OBJECT_TYPE_DICT_KEY,
|
32 |
+
_MODULE_NAME_DICT_KEY,
|
33 |
+
_MODULE_NAME_REGEX_DICT_KEY,
|
34 |
+
QConfigMapping,
|
35 |
+
)
|
36 |
+
|
37 |
+
__all__: List[str] = []
|
38 |
+
|
39 |
+
|
40 |
+
|
41 |
+
def _maybe_adjust_qconfig_for_module_name_object_type_order(
|
42 |
+
qconfig_mapping: QConfigMapping,
|
43 |
+
cur_module_path: str,
|
44 |
+
cur_object_type: Callable,
|
45 |
+
cur_object_type_idx: int,
|
46 |
+
fallback_qconfig: QConfigAny,
|
47 |
+
) -> QConfigAny:
|
48 |
+
for (module_name, object_type, index), qconfig in qconfig_mapping.module_name_object_type_order_qconfigs.items():
|
49 |
+
if (
|
50 |
+
(module_name == cur_module_path) and
|
51 |
+
(object_type == cur_object_type) and
|
52 |
+
(index == cur_object_type_idx)
|
53 |
+
):
|
54 |
+
return qconfig
|
55 |
+
return fallback_qconfig
|
56 |
+
|
57 |
+
|
58 |
+
def _update_qconfig_for_fusion(model: GraphModule, qconfig_mapping: QConfigMapping):
|
59 |
+
"""
|
60 |
+
Update the QConfigMapping to account for fused modules such as LinearReLU.
|
61 |
+
This assumes the QConfigMapping's attributes have already been converted to OrderedDicts.
|
62 |
+
"""
|
63 |
+
object_type_dict = qconfig_mapping.object_type_qconfigs
|
64 |
+
if len(object_type_dict) == 0:
|
65 |
+
return qconfig_mapping
|
66 |
+
|
67 |
+
modules = dict(model.named_modules())
|
68 |
+
|
69 |
+
for node in model.graph.nodes:
|
70 |
+
if node.op == 'call_module' and node.target in modules:
|
71 |
+
maybe_fused_module = modules[str(node.target)]
|
72 |
+
if not isinstance(maybe_fused_module, _FusedModule):
|
73 |
+
continue
|
74 |
+
|
75 |
+
ops = list(maybe_fused_module._modules.values())
|
76 |
+
fused_qconfig = object_type_dict.get(type(ops[0]), None)
|
77 |
+
|
78 |
+
# Raise an error if the modules in the fused module have
|
79 |
+
# different qconfigs specified in the qconfig_dict
|
80 |
+
# TODO: currently it only works for modules,
|
81 |
+
# need to make this work for torch.nn.functional.relu
|
82 |
+
# TODO: currently it only works for object_type configurations,
|
83 |
+
# ideally it should work for different types of configurations,
|
84 |
+
# maybe we want to redesign this part
|
85 |
+
for op in ops[1:]:
|
86 |
+
if not qconfig_equals(object_type_dict.get(type(op), None), fused_qconfig):
|
87 |
+
raise LookupError(
|
88 |
+
"During fusion, we need to specify the same " +
|
89 |
+
f"qconfigs for all module types in {type(maybe_fused_module)} " +
|
90 |
+
f"offending type: {type(op)}")
|
91 |
+
|
92 |
+
if fused_qconfig is not None:
|
93 |
+
object_type_dict[type(maybe_fused_module)] = fused_qconfig
|
94 |
+
|
95 |
+
def _generate_node_name_to_qconfig(
|
96 |
+
root: torch.nn.Module,
|
97 |
+
modules: Dict[str, torch.nn.Module],
|
98 |
+
input_graph: Graph,
|
99 |
+
qconfig_mapping: QConfigMapping,
|
100 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]) -> Dict[str, QConfigAny]:
|
101 |
+
global_qconfig = qconfig_mapping.global_qconfig
|
102 |
+
node_name_to_qconfig = {}
|
103 |
+
|
104 |
+
# example:
|
105 |
+
#
|
106 |
+
# {'foo.bar': {F.linear: 0, F.conv2d: 1, ...}, ...}
|
107 |
+
#
|
108 |
+
# meaning in submodule 'foo.bar', we have seen 0 F.linear and
|
109 |
+
# 1 F.conv2d invocations so far.
|
110 |
+
submodule_to_object_type_to_cur_idx: Dict[str, Dict[Callable, int]] = \
|
111 |
+
defaultdict(lambda: defaultdict(int))
|
112 |
+
for node in input_graph.nodes:
|
113 |
+
qconfig = None
|
114 |
+
if node.op == "get_attr":
|
115 |
+
module_name, _ = _parent_name(node.target)
|
116 |
+
qconfig = _maybe_adjust_qconfig_for_module_type_or_name(
|
117 |
+
qconfig_mapping, type(modules[module_name]), module_name, global_qconfig)
|
118 |
+
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(qconfig, modules.get(node.target, None))
|
119 |
+
elif node.op == "call_function":
|
120 |
+
# precedence: module_name_qconfig
|
121 |
+
# > function_qconfig > global_qconfig
|
122 |
+
# module_name takes precedence over function qconfig
|
123 |
+
function_qconfig = _get_object_type_qconfig(
|
124 |
+
qconfig_mapping, node.target, global_qconfig)
|
125 |
+
module_path, module_type = node_name_to_scope[node.name]
|
126 |
+
qconfig = _maybe_adjust_qconfig_for_module_type_or_name(
|
127 |
+
qconfig_mapping, module_type, module_path, function_qconfig)
|
128 |
+
|
129 |
+
cur_object_type_idx = \
|
130 |
+
submodule_to_object_type_to_cur_idx[module_path][node.target]
|
131 |
+
submodule_to_object_type_to_cur_idx[module_path][node.target] += 1
|
132 |
+
qconfig = _maybe_adjust_qconfig_for_module_name_object_type_order(
|
133 |
+
qconfig_mapping, module_path, node.target, cur_object_type_idx, qconfig)
|
134 |
+
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(qconfig, modules.get(node.target, None))
|
135 |
+
|
136 |
+
elif node.op == "call_method":
|
137 |
+
module_path, module_type = node_name_to_scope[node.name]
|
138 |
+
# first use node.target (string) to get the qconfig
|
139 |
+
# this is to support configs like
|
140 |
+
# "object_type": [("reshape", qconfig)]
|
141 |
+
qconfig = _maybe_adjust_qconfig_for_module_type_or_name(
|
142 |
+
qconfig_mapping, node.target, module_path, global_qconfig)
|
143 |
+
# if there is no special config for the method, we'll fall back to the
|
144 |
+
# config for the module that contains the call_method node
|
145 |
+
qconfig = _maybe_adjust_qconfig_for_module_type_or_name(
|
146 |
+
qconfig_mapping, module_type, module_path, qconfig)
|
147 |
+
# currently call_method does not support modifying qconfig
|
148 |
+
# by order, we can add this later if it is needed.
|
149 |
+
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(qconfig, modules.get(node.target, None))
|
150 |
+
|
151 |
+
elif node.op == 'call_module':
|
152 |
+
# if the node is an observer, just continue - don't add it to the qconfig_map
|
153 |
+
if _is_activation_post_process(modules[node.target]):
|
154 |
+
continue
|
155 |
+
qconfig = _maybe_adjust_qconfig_for_module_type_or_name(
|
156 |
+
qconfig_mapping, type(modules[node.target]), node.target, global_qconfig)
|
157 |
+
|
158 |
+
module_path, module_type = node_name_to_scope[node.name]
|
159 |
+
# Note: for call_module, the module_path is the current module's name.
|
160 |
+
# to meaningfully count invocations, we need to count them in the parent
|
161 |
+
# module.
|
162 |
+
parent_name, _ = _parent_name(module_path)
|
163 |
+
cur_object_type_idx = \
|
164 |
+
submodule_to_object_type_to_cur_idx[parent_name][module_type]
|
165 |
+
submodule_to_object_type_to_cur_idx[parent_name][module_type] += 1
|
166 |
+
qconfig = _maybe_adjust_qconfig_for_module_name_object_type_order(
|
167 |
+
qconfig_mapping, parent_name, module_type, cur_object_type_idx,
|
168 |
+
qconfig)
|
169 |
+
qconfig_with_device_check = _add_module_to_qconfig_obs_ctr(qconfig, modules.get(node.target, None))
|
170 |
+
|
171 |
+
# regex is not supported eager mode propagate_qconfig_, we'll
|
172 |
+
# need to set the qconfig explicitly here in case regex
|
173 |
+
# is used
|
174 |
+
modules[node.target].qconfig = qconfig_with_device_check
|
175 |
+
else:
|
176 |
+
qconfig_with_device_check = None
|
177 |
+
|
178 |
+
node_name_to_qconfig[node.name] = qconfig_with_device_check
|
179 |
+
return node_name_to_qconfig
|
180 |
+
|
181 |
+
|
182 |
+
def _check_is_valid_config_dict(config_dict: Any, allowed_keys: Set[str], dict_name: str) -> None:
|
183 |
+
r""" Checks if the given config_dict has the correct keys
|
184 |
+
|
185 |
+
Args:
|
186 |
+
`config_dict`: dictionary whose keys we want to check
|
187 |
+
"""
|
188 |
+
|
189 |
+
for k in config_dict.keys():
|
190 |
+
if k not in allowed_keys:
|
191 |
+
raise ValueError(
|
192 |
+
'Expected ' + dict_name + ' to have the following keys: ' +
|
193 |
+
str(allowed_keys) + '. But found \'' + k +
|
194 |
+
'\' instead.')
|
195 |
+
|
196 |
+
|
197 |
+
def _compare_prepare_convert_qconfig_mappings(
|
198 |
+
prepare_qconfig_mapping: QConfigMapping,
|
199 |
+
convert_qconfig_mapping: QConfigMapping):
|
200 |
+
r""" Compare the qconfig_mapping passed in convert to the one from prepare and check the values
|
201 |
+
|
202 |
+
Args:
|
203 |
+
`prepare_qconfig_mapping`: configuration for prepare quantization step
|
204 |
+
`convert_qconfig_mapping`: configuration for convert quantization step
|
205 |
+
"""
|
206 |
+
assert qconfig_equals(prepare_qconfig_mapping.global_qconfig, convert_qconfig_mapping.global_qconfig), \
|
207 |
+
"Expected global qconfigs to be the same in the prepare and convert quantization configs"
|
208 |
+
prepare_dicts: List[OrderedDict] = [
|
209 |
+
prepare_qconfig_mapping.object_type_qconfigs,
|
210 |
+
prepare_qconfig_mapping.module_name_qconfigs,
|
211 |
+
prepare_qconfig_mapping.module_name_regex_qconfigs,
|
212 |
+
]
|
213 |
+
convert_dicts: List[OrderedDict] = [
|
214 |
+
convert_qconfig_mapping.object_type_qconfigs,
|
215 |
+
convert_qconfig_mapping.module_name_qconfigs,
|
216 |
+
convert_qconfig_mapping.module_name_regex_qconfigs,
|
217 |
+
]
|
218 |
+
dict_names = [_OBJECT_TYPE_DICT_KEY, _MODULE_NAME_DICT_KEY, _MODULE_NAME_REGEX_DICT_KEY]
|
219 |
+
for i in range(len(prepare_dicts)):
|
220 |
+
for name in prepare_dicts[i].keys():
|
221 |
+
assert name in convert_dicts[i], f"Missing key {dict_names[i]} {name} in convert QConfigMapping \
|
222 |
+
when it was present in prepare"
|
223 |
+
assert convert_dicts[i][name] is None \
|
224 |
+
or qconfig_equals(prepare_dicts[i][name], convert_dicts[i][name]), \
|
225 |
+
f"Expected convert QConfigMapping to have the same qconfig as prepare for key {dict_names[i]} {name}; \
|
226 |
+
prepare: {prepare_dicts[i][name]}; convert: {convert_dicts[i][name]}"
|
227 |
+
|
228 |
+
def _is_qconfig_supported_by_dtype_configs(qconfig: QConfig, dtype_configs: List[DTypeConfig]):
|
229 |
+
for dtype_config in dtype_configs:
|
230 |
+
is_dynamic = dtype_config.is_dynamic
|
231 |
+
if is_dynamic is None:
|
232 |
+
is_dynamic = False
|
233 |
+
input_dtype = dtype_config.input_dtype or torch.float
|
234 |
+
weight_dtype = dtype_config.weight_dtype or torch.float
|
235 |
+
bias_dtype = dtype_config.bias_dtype or torch.float
|
236 |
+
output_dtype = dtype_config.output_dtype or torch.float
|
237 |
+
qconfig_activation_dtype, qconfig_weight_dtype, qconfig_input_act_is_dynamic = \
|
238 |
+
get_qconfig_dtypes(qconfig)
|
239 |
+
qconfig_bias_dtype = torch.float16 \
|
240 |
+
if (
|
241 |
+
qconfig_activation_dtype == torch.float16
|
242 |
+
and qconfig_weight_dtype == torch.float16
|
243 |
+
and not is_dynamic
|
244 |
+
) else torch.float
|
245 |
+
|
246 |
+
if is_dynamic:
|
247 |
+
is_match = qconfig_input_act_is_dynamic and \
|
248 |
+
input_dtype == qconfig_activation_dtype and \
|
249 |
+
output_dtype == torch.float and \
|
250 |
+
weight_dtype == qconfig_weight_dtype
|
251 |
+
else:
|
252 |
+
is_match = input_dtype == qconfig_activation_dtype and \
|
253 |
+
output_dtype == qconfig_activation_dtype and \
|
254 |
+
weight_dtype == qconfig_weight_dtype and \
|
255 |
+
bias_dtype == qconfig_bias_dtype
|
256 |
+
if is_match:
|
257 |
+
return True
|
258 |
+
return False
|
259 |
+
|
260 |
+
def _get_object_type_qconfig(
|
261 |
+
qconfig_mapping: QConfigMapping,
|
262 |
+
object_type: Union[Callable, str],
|
263 |
+
fallback_qconfig: QConfigAny) -> QConfigAny:
|
264 |
+
return qconfig_mapping.object_type_qconfigs.get(object_type, fallback_qconfig)
|
265 |
+
|
266 |
+
|
267 |
+
def _get_module_name_regex_qconfig(qconfig_mapping, module_name, fallback_qconfig):
|
268 |
+
for regex_pattern, qconfig in qconfig_mapping.module_name_regex_qconfigs.items():
|
269 |
+
if re.match(regex_pattern, module_name):
|
270 |
+
# first match wins
|
271 |
+
return qconfig
|
272 |
+
return fallback_qconfig
|
273 |
+
|
274 |
+
|
275 |
+
def _get_module_name_qconfig(qconfig_mapping, module_name, fallback_qconfig):
|
276 |
+
if module_name == '':
|
277 |
+
# module name qconfig not found
|
278 |
+
return fallback_qconfig
|
279 |
+
if module_name in qconfig_mapping.module_name_qconfigs:
|
280 |
+
return qconfig_mapping.module_name_qconfigs[module_name]
|
281 |
+
else:
|
282 |
+
parent, _ = _parent_name(module_name)
|
283 |
+
return _get_module_name_qconfig(qconfig_mapping, parent, fallback_qconfig)
|
284 |
+
|
285 |
+
|
286 |
+
def _maybe_adjust_qconfig_for_module_type_or_name(qconfig_mapping, module_type, module_name, global_qconfig):
|
287 |
+
# get qconfig for module_name,
|
288 |
+
# fallback to module_name_regex_qconfig, module_type_qconfig,
|
289 |
+
# global_qconfig if necessary
|
290 |
+
module_type_qconfig = _get_object_type_qconfig(
|
291 |
+
qconfig_mapping, module_type, global_qconfig)
|
292 |
+
module_name_regex_qconfig = _get_module_name_regex_qconfig(
|
293 |
+
qconfig_mapping, module_name, module_type_qconfig)
|
294 |
+
module_name_qconfig = _get_module_name_qconfig(
|
295 |
+
qconfig_mapping, module_name, module_name_regex_qconfig)
|
296 |
+
return module_name_qconfig
|
297 |
+
|
298 |
+
|
299 |
+
def _get_flattened_qconfig_dict(qconfig_mapping: QConfigMapping) -> Dict[Union[Callable, str], QConfigAny]:
|
300 |
+
""" flatten the global, object_type and module_name qconfig
|
301 |
+
to the same qconfig_dict so that it can be used by
|
302 |
+
propagate_qconfig_ function.
|
303 |
+
"module_name_regex" is ignored for now since it's not supported
|
304 |
+
in propagate_qconfig_, but it can be fixed later.
|
305 |
+
|
306 |
+
For example:
|
307 |
+
Input: {
|
308 |
+
"": qconfig,
|
309 |
+
"object_type": [
|
310 |
+
(torch.add, qconfig)
|
311 |
+
],
|
312 |
+
"module_name": [
|
313 |
+
("conv", qconfig)
|
314 |
+
]
|
315 |
+
}
|
316 |
+
|
317 |
+
Output: {
|
318 |
+
"": qconfig,
|
319 |
+
torch.add: qconfig,
|
320 |
+
"conv": qconfig
|
321 |
+
}
|
322 |
+
"""
|
323 |
+
flattened: Dict[Union[Callable, str], QConfigAny] = {"": qconfig_mapping.global_qconfig}
|
324 |
+
for obj, qconfig in qconfig_mapping.object_type_qconfigs.items():
|
325 |
+
flattened[obj] = qconfig
|
326 |
+
for obj, qconfig in qconfig_mapping.module_name_qconfigs.items():
|
327 |
+
flattened[obj] = qconfig
|
328 |
+
return flattened
|
329 |
+
|
330 |
+
|
331 |
+
def _update_qconfig_for_qat(
|
332 |
+
qconfig_mapping: QConfigMapping,
|
333 |
+
backend_config: BackendConfig):
|
334 |
+
"""
|
335 |
+
Update the qconfig_mapping to account for module swaps during QAT.
|
336 |
+
During QAT we perform a module swap on the nn.Module types to the corresponding nn.qat.modules types.
|
337 |
+
"""
|
338 |
+
module_to_qat_module_class = get_module_to_qat_module(backend_config)
|
339 |
+
object_type_dict = qconfig_mapping.object_type_qconfigs
|
340 |
+
new_object_type_dict = object_type_dict.copy()
|
341 |
+
for k, v in new_object_type_dict.items():
|
342 |
+
if k in module_to_qat_module_class:
|
343 |
+
object_type_dict[module_to_qat_module_class[k]] = v
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/tracer.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch.fx._symbolic_trace import Tracer
|
3 |
+
from torch.fx.proxy import Scope
|
4 |
+
from torch.ao.nn.intrinsic import _FusedModule
|
5 |
+
from typing import List, Callable
|
6 |
+
|
7 |
+
__all__ = [
|
8 |
+
"QuantizationTracer",
|
9 |
+
]
|
10 |
+
|
11 |
+
class ScopeContextManager(torch.fx.proxy.ScopeContextManager):
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
scope: Scope,
|
15 |
+
current_module: torch.nn.Module,
|
16 |
+
current_module_path: str
|
17 |
+
):
|
18 |
+
super().__init__(scope, Scope(current_module_path, type(current_module)))
|
19 |
+
|
20 |
+
|
21 |
+
class QuantizationTracer(Tracer):
|
22 |
+
def __init__(
|
23 |
+
self, skipped_module_names: List[str], skipped_module_classes: List[Callable]
|
24 |
+
):
|
25 |
+
super().__init__()
|
26 |
+
self.skipped_module_names = skipped_module_names
|
27 |
+
self.skipped_module_classes = skipped_module_classes
|
28 |
+
# NB: initialized the module_type of top level module to None
|
29 |
+
# we are assuming people won't configure the model with the type of top level
|
30 |
+
# module here, since people can use "" for global config
|
31 |
+
# We can change this if there is a use case that configures
|
32 |
+
# qconfig using top level module type
|
33 |
+
self.scope = Scope("", None)
|
34 |
+
self.record_stack_traces = True
|
35 |
+
|
36 |
+
def is_leaf_module(self, m: torch.nn.Module, module_qualified_name: str) -> bool:
|
37 |
+
return (
|
38 |
+
(
|
39 |
+
(m.__module__.startswith("torch.nn") or m.__module__.startswith("torch.ao.nn"))
|
40 |
+
and not isinstance(m, torch.nn.Sequential)
|
41 |
+
)
|
42 |
+
or module_qualified_name in self.skipped_module_names
|
43 |
+
or type(m) in self.skipped_module_classes
|
44 |
+
or isinstance(m, _FusedModule)
|
45 |
+
)
|
venv/lib/python3.10/site-packages/torch/ao/quantization/fx/utils.py
ADDED
@@ -0,0 +1,885 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.ao.quantization import (
|
5 |
+
QConfigAny,
|
6 |
+
QuantType,
|
7 |
+
)
|
8 |
+
from torch.ao.quantization.backend_config import (
|
9 |
+
DTypeWithConstraints,
|
10 |
+
)
|
11 |
+
from torch.ao.quantization.fake_quantize import (
|
12 |
+
FakeQuantizeBase,
|
13 |
+
FixedQParamsFakeQuantize,
|
14 |
+
)
|
15 |
+
from torch.ao.quantization.observer import (
|
16 |
+
FixedQParamsObserver,
|
17 |
+
ObserverBase,
|
18 |
+
)
|
19 |
+
from torch.ao.quantization.qconfig import (
|
20 |
+
float16_static_qconfig,
|
21 |
+
float16_dynamic_qconfig,
|
22 |
+
qconfig_equals,
|
23 |
+
)
|
24 |
+
from torch.ao.quantization.stubs import DeQuantStub
|
25 |
+
from torch.ao.quantization.utils import (
|
26 |
+
activation_is_statically_quantized,
|
27 |
+
)
|
28 |
+
from torch.ao.quantization.observer import _is_activation_post_process
|
29 |
+
from torch.ao.quantization.qconfig_mapping import QConfigMapping
|
30 |
+
|
31 |
+
from torch.fx import GraphModule, map_arg
|
32 |
+
|
33 |
+
from torch.fx.graph import (
|
34 |
+
Graph,
|
35 |
+
Node,
|
36 |
+
)
|
37 |
+
from .custom_config import PrepareCustomConfig
|
38 |
+
# importing the lib so that the quantized_decomposed ops are registered
|
39 |
+
from ._decomposed import quantized_decomposed_lib # noqa: F401
|
40 |
+
|
41 |
+
from typing import Callable, Optional, List, Dict, Any, Set, Tuple, Union, Type
|
42 |
+
from dataclasses import dataclass
|
43 |
+
from collections import namedtuple
|
44 |
+
import operator
|
45 |
+
import warnings
|
46 |
+
|
47 |
+
# TODO: revisit this list. Many helper methods shouldn't be public
|
48 |
+
__all__ = [
|
49 |
+
"all_node_args_except_first",
|
50 |
+
"all_node_args_have_no_tensors",
|
51 |
+
"assert_and_get_unique_device",
|
52 |
+
"collect_producer_nodes",
|
53 |
+
"create_getattr_from_value",
|
54 |
+
"create_node_from_old_node_preserve_meta",
|
55 |
+
"EMPTY_ARG_DICT",
|
56 |
+
"get_custom_module_class_keys",
|
57 |
+
"get_linear_prepack_op_for_dtype",
|
58 |
+
"get_new_attr_name_with_prefix",
|
59 |
+
"get_non_observable_arg_indexes_and_types",
|
60 |
+
"get_qconv_prepack_op",
|
61 |
+
"get_skipped_module_name_and_classes",
|
62 |
+
"graph_module_from_producer_nodes",
|
63 |
+
"maybe_get_next_module",
|
64 |
+
"NodeInfo",
|
65 |
+
"node_arg_is_bias",
|
66 |
+
"node_arg_is_weight",
|
67 |
+
"NON_OBSERVABLE_ARG_DICT",
|
68 |
+
"NON_QUANTIZABLE_WEIGHT_OPS",
|
69 |
+
"return_arg_list",
|
70 |
+
"ObservedGraphModuleAttrs",
|
71 |
+
]
|
72 |
+
|
73 |
+
NON_QUANTIZABLE_WEIGHT_OPS = {torch.nn.functional.layer_norm, torch.nn.functional.group_norm, torch.nn.functional.instance_norm}
|
74 |
+
|
75 |
+
@dataclass
|
76 |
+
class ObservedGraphModuleAttrs:
|
77 |
+
node_name_to_qconfig: Dict[str, QConfigAny]
|
78 |
+
node_name_to_scope: Dict[str, Tuple[str, type]]
|
79 |
+
prepare_custom_config: PrepareCustomConfig
|
80 |
+
equalization_node_name_to_qconfig: Dict[str, Any]
|
81 |
+
qconfig_mapping: QConfigMapping
|
82 |
+
is_qat: bool
|
83 |
+
observed_node_names: Set[str]
|
84 |
+
is_observed_standalone_module: bool = False
|
85 |
+
standalone_module_input_quantized_idxs: Optional[List[int]] = None
|
86 |
+
standalone_module_output_quantized_idxs: Optional[List[int]] = None
|
87 |
+
|
88 |
+
def node_arg_is_weight(node: Node, arg: Any) -> bool:
|
89 |
+
"""Returns if node arg is weight"""
|
90 |
+
weight_index = None
|
91 |
+
if "target_dtype_info" in node.meta:
|
92 |
+
weight_index = node.meta["target_dtype_info"].get("weight_index", None)
|
93 |
+
if weight_index is not None and weight_index < len(node.args) and node.args[weight_index] is arg:
|
94 |
+
return True
|
95 |
+
return node.kwargs.get("weight") is arg
|
96 |
+
|
97 |
+
def node_arg_is_bias(node: Node, arg: Any) -> bool:
|
98 |
+
"""Returns if node arg is bias"""
|
99 |
+
bias_index = None
|
100 |
+
if "target_dtype_info" in node.meta:
|
101 |
+
bias_index = node.meta["target_dtype_info"].get("bias_index", None)
|
102 |
+
if bias_index is not None and bias_index < len(node.args) and node.args[bias_index] is arg:
|
103 |
+
return True
|
104 |
+
return node.kwargs.get("bias") is arg
|
105 |
+
|
106 |
+
def get_custom_module_class_keys(custom_module_mapping: Dict[QuantType, Dict[Type, Type]]) -> List[Any]:
|
107 |
+
r""" Get all the unique custom module keys in the custom config dict
|
108 |
+
e.g.
|
109 |
+
Input:
|
110 |
+
{
|
111 |
+
QuantType.STATIC: {
|
112 |
+
CustomModule1: ObservedCustomModule
|
113 |
+
},
|
114 |
+
QuantType.DYNAMIC: {
|
115 |
+
CustomModule2: DynamicObservedCustomModule
|
116 |
+
},
|
117 |
+
QuantType.WEIGHT_ONLY: {
|
118 |
+
CustomModule3: WeightOnlyObservedCustomModule
|
119 |
+
},
|
120 |
+
}
|
121 |
+
|
122 |
+
Output:
|
123 |
+
# extract the keys across all inner STATIC, DYNAMIC, and WEIGHT_ONLY dicts
|
124 |
+
[CustomModule1, CustomModule2, CustomModule3]
|
125 |
+
"""
|
126 |
+
# using set to dedup
|
127 |
+
float_custom_module_classes : Set[Any] = set()
|
128 |
+
for quant_mode in [QuantType.STATIC, QuantType.DYNAMIC, QuantType.WEIGHT_ONLY]:
|
129 |
+
quant_mode_custom_module_config = custom_module_mapping.get(quant_mode, {})
|
130 |
+
quant_mode_custom_module_classes = set(quant_mode_custom_module_config.keys())
|
131 |
+
float_custom_module_classes |= quant_mode_custom_module_classes
|
132 |
+
return list(float_custom_module_classes)
|
133 |
+
|
134 |
+
def get_linear_prepack_op_for_dtype(dtype):
|
135 |
+
if dtype == torch.float16:
|
136 |
+
return torch.ops.quantized.linear_prepack_fp16
|
137 |
+
elif dtype == torch.qint8:
|
138 |
+
return torch.ops.quantized.linear_prepack
|
139 |
+
else:
|
140 |
+
raise Exception("can't get linear prepack op for dtype:", dtype)
|
141 |
+
|
142 |
+
def get_qconv_prepack_op(conv_op: Callable) -> Callable:
|
143 |
+
prepack_ops = {
|
144 |
+
torch.nn.functional.conv1d: torch.ops.quantized.conv1d_prepack,
|
145 |
+
torch.nn.functional.conv2d: torch.ops.quantized.conv2d_prepack,
|
146 |
+
torch.nn.functional.conv3d: torch.ops.quantized.conv3d_prepack,
|
147 |
+
torch.nn.functional.conv_transpose1d: torch.ops.quantized.conv_transpose1d_prepack,
|
148 |
+
torch.nn.functional.conv_transpose2d: torch.ops.quantized.conv_transpose2d_prepack,
|
149 |
+
torch.nn.functional.conv_transpose3d: torch.ops.quantized.conv_transpose3d_prepack,
|
150 |
+
}
|
151 |
+
prepack_op = prepack_ops.get(conv_op, None)
|
152 |
+
assert prepack_op, f"Didn't find prepack op for {conv_op}"
|
153 |
+
return prepack_op
|
154 |
+
|
155 |
+
# Returns a function that can get a new attribute name for module with given
|
156 |
+
# prefix, for example,
|
157 |
+
# >> get_new_observer_name = get_new_attr_name_with_prefix('_observer')
|
158 |
+
# >> new_name = get_new_observer_name(module)
|
159 |
+
# new_name will be an unused attribute name on module, e.g. `_observer_1`
|
160 |
+
def get_new_attr_name_with_prefix(prefix: str) -> Callable:
|
161 |
+
prefix = prefix.replace(".", "_")
|
162 |
+
|
163 |
+
def get_new_attr_name(module: torch.nn.Module):
|
164 |
+
def get_attr_name(i: int):
|
165 |
+
return prefix + str(i)
|
166 |
+
i = 0
|
167 |
+
attr_name = get_attr_name(i)
|
168 |
+
while hasattr(module, attr_name):
|
169 |
+
i += 1
|
170 |
+
attr_name = get_attr_name(i)
|
171 |
+
return attr_name
|
172 |
+
return get_new_attr_name
|
173 |
+
|
174 |
+
def collect_producer_nodes(node: Node) -> Optional[List[Node]]:
|
175 |
+
r''' Starting from a target node, trace back until we hit inpu or
|
176 |
+
getattr node. This is used to extract the chain of operators
|
177 |
+
starting from getattr to the target node, for example
|
178 |
+
def forward(self, x):
|
179 |
+
observed = self.observer(self.weight)
|
180 |
+
return F.linear(x, observed)
|
181 |
+
collect_producer_nodes(observed) will either return a list of nodes that
|
182 |
+
produces the observed node or None if we can't extract a self contained
|
183 |
+
graph without free variables(inputs of the forward function).
|
184 |
+
'''
|
185 |
+
nodes = [node]
|
186 |
+
frontier = [node]
|
187 |
+
while frontier:
|
188 |
+
node = frontier.pop()
|
189 |
+
all_args = list(node.args) + list(node.kwargs.values())
|
190 |
+
for arg in all_args:
|
191 |
+
if not isinstance(arg, Node):
|
192 |
+
continue
|
193 |
+
if arg.op == 'placeholder':
|
194 |
+
# hit input, can't fold in this case
|
195 |
+
return None
|
196 |
+
nodes.append(arg)
|
197 |
+
if not (arg.op == 'call_function' and arg.target == getattr):
|
198 |
+
frontier.append(arg)
|
199 |
+
return nodes
|
200 |
+
|
201 |
+
def graph_module_from_producer_nodes(
|
202 |
+
root: GraphModule, producer_nodes: List[Node]) -> GraphModule:
|
203 |
+
r''' Construct a graph module from extracted producer nodes
|
204 |
+
from `collect_producer_nodes` function
|
205 |
+
Args:
|
206 |
+
root: the root module for the original graph
|
207 |
+
producer_nodes: a list of nodes we use to construct the graph
|
208 |
+
Return:
|
209 |
+
A graph module constructed from the producer nodes
|
210 |
+
'''
|
211 |
+
assert len(producer_nodes) > 0, 'list of producer nodes can not be empty'
|
212 |
+
# since we traced back from node to getattr
|
213 |
+
producer_nodes.reverse()
|
214 |
+
graph = Graph()
|
215 |
+
env: Dict[Any, Any] = {}
|
216 |
+
|
217 |
+
def load_arg(a):
|
218 |
+
return map_arg(a, lambda node: env[node])
|
219 |
+
for producer_node in producer_nodes:
|
220 |
+
env[producer_node] = graph.node_copy(producer_node, load_arg)
|
221 |
+
graph.output(load_arg(producer_nodes[-1]))
|
222 |
+
graph_module = GraphModule(root, graph)
|
223 |
+
return graph_module
|
224 |
+
|
225 |
+
def assert_and_get_unique_device(module: torch.nn.Module) -> Any:
|
226 |
+
"""
|
227 |
+
Returns the unique device for a module, or None if no device is found.
|
228 |
+
Throws an error if multiple devices are detected.
|
229 |
+
"""
|
230 |
+
devices = {p.device for p in module.parameters()} | \
|
231 |
+
{p.device for p in module.buffers()}
|
232 |
+
"""
|
233 |
+
As a temp workaround for AIMP HHC publish we added CPU check.remove it later. T163614564
|
234 |
+
"""
|
235 |
+
if {torch.device("cpu"), torch.device("meta")} == devices:
|
236 |
+
warnings.warn("Both 'meta' and 'cpu' are present in the list of devices. Module can have one device. We Select 'cpu'.")
|
237 |
+
devices = {torch.device("cpu")}
|
238 |
+
""
|
239 |
+
assert len(devices) <= 1, (
|
240 |
+
"prepare only works with cpu or single-device CUDA modules, "
|
241 |
+
f"but got devices {devices}"
|
242 |
+
)
|
243 |
+
device = next(iter(devices)) if len(devices) > 0 else None
|
244 |
+
return device
|
245 |
+
|
246 |
+
def create_getattr_from_value(module: torch.nn.Module, graph: Graph, prefix: str, value: Any) -> Node:
|
247 |
+
"""
|
248 |
+
Given a value of any type, creates a getattr node corresponding to the value and
|
249 |
+
registers the value as a buffer to the module.
|
250 |
+
"""
|
251 |
+
get_new_attr_name = get_new_attr_name_with_prefix(prefix)
|
252 |
+
attr_name = get_new_attr_name(module)
|
253 |
+
device = assert_and_get_unique_device(module)
|
254 |
+
new_value = value.clone().detach() if isinstance(value, torch.Tensor) \
|
255 |
+
else torch.tensor(value, device=device)
|
256 |
+
module.register_buffer(attr_name, new_value)
|
257 |
+
# Create get_attr with value
|
258 |
+
attr_node = graph.create_node("get_attr", attr_name)
|
259 |
+
return attr_node
|
260 |
+
|
261 |
+
def all_node_args_have_no_tensors(node: Node, modules: Dict[str, torch.nn.Module], cache: Dict[Node, bool]) -> bool:
|
262 |
+
"""
|
263 |
+
If we know for sure that all of this node's args have no
|
264 |
+
tensors (are primitives), return True. If we either
|
265 |
+
find a tensor or are not sure, return False. Note: this
|
266 |
+
function is not exact.
|
267 |
+
"""
|
268 |
+
if cache and node in cache:
|
269 |
+
return cache[node]
|
270 |
+
|
271 |
+
result = False # will be overwritten
|
272 |
+
if not isinstance(node, Node):
|
273 |
+
result = True
|
274 |
+
elif node.op == 'placeholder':
|
275 |
+
result = False
|
276 |
+
elif node.op == 'call_module':
|
277 |
+
assert isinstance(node.target, str)
|
278 |
+
if _is_activation_post_process(modules[node.target]):
|
279 |
+
result = all_node_args_have_no_tensors(node.args[0], modules, cache) # type: ignore[arg-type]
|
280 |
+
elif node.op == 'call_module':
|
281 |
+
result = False
|
282 |
+
elif node.op == 'call_function' and node.target is operator.getitem:
|
283 |
+
result = all_node_args_have_no_tensors(node.args[0], modules, cache) # type: ignore[arg-type]
|
284 |
+
elif node.op == 'get_attr':
|
285 |
+
result = False
|
286 |
+
elif node.target is getattr and node.args[1] in ['ndim', 'shape']:
|
287 |
+
# x1 = x0.ndim
|
288 |
+
result = True
|
289 |
+
elif node.op == 'call_method' and node.target == 'size':
|
290 |
+
# x1 = x0.size(0)
|
291 |
+
result = True
|
292 |
+
else:
|
293 |
+
found_one_tensor = False
|
294 |
+
for arg in node.args:
|
295 |
+
if isinstance(arg, list):
|
296 |
+
for list_el in arg:
|
297 |
+
if isinstance(list_el, Node):
|
298 |
+
this_list_el_args_have_no_tensors = \
|
299 |
+
all_node_args_have_no_tensors(list_el, modules, cache)
|
300 |
+
found_one_tensor = found_one_tensor or \
|
301 |
+
(not this_list_el_args_have_no_tensors)
|
302 |
+
# If found_one_tensor is True, there is no point in
|
303 |
+
# recursing further as the end result will always
|
304 |
+
# be True.
|
305 |
+
# TODO(future PR): remove this entire function and
|
306 |
+
# change to dtype inference without recursion.
|
307 |
+
if found_one_tensor:
|
308 |
+
result = not found_one_tensor
|
309 |
+
if cache:
|
310 |
+
cache[node] = result
|
311 |
+
return result
|
312 |
+
elif isinstance(arg, int):
|
313 |
+
pass
|
314 |
+
else:
|
315 |
+
if isinstance(arg, Node):
|
316 |
+
this_arg_args_have_no_tensors = all_node_args_have_no_tensors(arg, modules, cache)
|
317 |
+
found_one_tensor = found_one_tensor or \
|
318 |
+
(not this_arg_args_have_no_tensors)
|
319 |
+
# If found_one_tensor is True, there is no point in
|
320 |
+
# recursing further as the end result will always
|
321 |
+
# be True.
|
322 |
+
# TODO(future PR): remove this entire function and
|
323 |
+
# change to dtype inference without recursion.
|
324 |
+
if found_one_tensor:
|
325 |
+
result = not found_one_tensor
|
326 |
+
if cache:
|
327 |
+
cache[node] = result
|
328 |
+
return result
|
329 |
+
else:
|
330 |
+
found_one_tensor = True
|
331 |
+
result = not found_one_tensor
|
332 |
+
if cache:
|
333 |
+
cache[node] = result
|
334 |
+
return result
|
335 |
+
|
336 |
+
def all_node_args_except_first(node: Node) -> List[int]:
|
337 |
+
"""
|
338 |
+
Returns all node arg indices after first
|
339 |
+
"""
|
340 |
+
return list(range(1, len(node.args)))
|
341 |
+
|
342 |
+
def return_arg_list(arg_indices: List[int]) -> Callable[[Node], List[int]]:
|
343 |
+
"""
|
344 |
+
Constructs a function that takes a node as arg and returns the arg_indices
|
345 |
+
that are valid for node.args
|
346 |
+
"""
|
347 |
+
def arg_indices_func(node: Node) -> List[int]:
|
348 |
+
return [i for i in arg_indices if i < len(node.args)]
|
349 |
+
return arg_indices_func
|
350 |
+
|
351 |
+
NodeInfo = namedtuple("NodeInfo", "op target")
|
352 |
+
|
353 |
+
# this dict identifies which indices of a node are non tensors
|
354 |
+
# so that they can be propagated correctly since inserting observers
|
355 |
+
# for them would cause errors
|
356 |
+
|
357 |
+
NON_OBSERVABLE_ARG_DICT: Dict[NodeInfo, Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]] = {
|
358 |
+
NodeInfo("call_method", "masked_fill") : {
|
359 |
+
torch.bool: return_arg_list([1]),
|
360 |
+
float: return_arg_list([2])
|
361 |
+
},
|
362 |
+
NodeInfo("call_method", "permute") : {
|
363 |
+
int: all_node_args_except_first
|
364 |
+
},
|
365 |
+
NodeInfo("call_method", "repeat") : {
|
366 |
+
int: all_node_args_except_first
|
367 |
+
},
|
368 |
+
NodeInfo("call_method", "reshape") : {
|
369 |
+
int: all_node_args_except_first
|
370 |
+
},
|
371 |
+
NodeInfo("call_method", "size") : {
|
372 |
+
int: return_arg_list([1])
|
373 |
+
},
|
374 |
+
NodeInfo("call_method", "transpose") : {
|
375 |
+
int: all_node_args_except_first
|
376 |
+
},
|
377 |
+
NodeInfo("call_method", torch.transpose) : {
|
378 |
+
int: all_node_args_except_first
|
379 |
+
},
|
380 |
+
NodeInfo("call_method", "unsqueeze") : {
|
381 |
+
int: return_arg_list([1])
|
382 |
+
},
|
383 |
+
NodeInfo("call_method", "unsqueeze_") : {
|
384 |
+
int: return_arg_list([1])
|
385 |
+
},
|
386 |
+
NodeInfo("call_method", torch.unsqueeze) : {
|
387 |
+
int: return_arg_list([1])
|
388 |
+
},
|
389 |
+
NodeInfo("call_method", "view") : {
|
390 |
+
int: all_node_args_except_first
|
391 |
+
},
|
392 |
+
}
|
393 |
+
|
394 |
+
EMPTY_ARG_DICT: Dict[Union[type, torch.dtype], Callable[[Node], List[int]]] = {}
|
395 |
+
|
396 |
+
def get_non_observable_arg_indexes_and_types(node: Node) -> Dict[Union[type, torch.dtype], Callable[[Node], List[int]]]:
|
397 |
+
"""
|
398 |
+
Returns a dict with of non float tensor types as keys and values which correspond to a
|
399 |
+
function to retrieve the list (which takes the node as an argument)
|
400 |
+
"""
|
401 |
+
info = NodeInfo(node.op, node.target)
|
402 |
+
|
403 |
+
return NON_OBSERVABLE_ARG_DICT.get(info, EMPTY_ARG_DICT)
|
404 |
+
|
405 |
+
def maybe_get_next_module(
|
406 |
+
node: Node,
|
407 |
+
modules: Dict[str, nn.Module],
|
408 |
+
target_module_type: Optional[Type[nn.Module]] = None,
|
409 |
+
target_functional_type: Any = None,
|
410 |
+
) -> Optional[Node]:
|
411 |
+
""" Gets the next module that matches what is needed in
|
412 |
+
is_target_module_type if it exists
|
413 |
+
|
414 |
+
Args:
|
415 |
+
node: The node whose users we want to look at
|
416 |
+
target_module_type: Module type that we want to check
|
417 |
+
target_functional_type: Functional type that we want to check
|
418 |
+
"""
|
419 |
+
|
420 |
+
for user in node.users.keys():
|
421 |
+
if user.op == 'call_module' and target_module_type is not None and \
|
422 |
+
isinstance(modules[str(user.target)], target_module_type):
|
423 |
+
return user
|
424 |
+
elif (user.op == 'call_function' and target_functional_type is not None and
|
425 |
+
user.target == target_functional_type):
|
426 |
+
return user
|
427 |
+
|
428 |
+
return None
|
429 |
+
|
430 |
+
def create_node_from_old_node_preserve_meta(
|
431 |
+
quantized_graph: Graph,
|
432 |
+
create_node_args: Tuple[Any, ...],
|
433 |
+
old_node: Node,
|
434 |
+
) -> Node:
|
435 |
+
"""
|
436 |
+
Creates `new_node` and copies the necessary metadata to it from `old_node`.
|
437 |
+
"""
|
438 |
+
new_node = quantized_graph.create_node(*create_node_args)
|
439 |
+
new_node.stack_trace = old_node.stack_trace
|
440 |
+
return new_node
|
441 |
+
|
442 |
+
def get_skipped_module_name_and_classes(
|
443 |
+
prepare_custom_config: PrepareCustomConfig,
|
444 |
+
is_standalone_module: bool) -> Tuple[List[str], List[Type[Any]]]:
|
445 |
+
skipped_module_names = copy.copy(prepare_custom_config.non_traceable_module_names)
|
446 |
+
skipped_module_classes = copy.copy(prepare_custom_config.non_traceable_module_classes)
|
447 |
+
if not is_standalone_module:
|
448 |
+
# standalone module and custom module config are applied in top level module
|
449 |
+
skipped_module_names += list(prepare_custom_config.standalone_module_names.keys())
|
450 |
+
skipped_module_classes += list(prepare_custom_config.standalone_module_classes.keys())
|
451 |
+
skipped_module_classes += get_custom_module_class_keys(prepare_custom_config.float_to_observed_mapping)
|
452 |
+
|
453 |
+
return skipped_module_names, skipped_module_classes
|
454 |
+
|
455 |
+
def _is_custom_module_lstm(
|
456 |
+
node: Node,
|
457 |
+
named_modules: Dict[str, torch.nn.Module],
|
458 |
+
qconfig: QConfigAny = None,
|
459 |
+
# QuantizeHandler, but we cannot include the type here due to circular imports
|
460 |
+
qhandler: Optional[Any] = None,
|
461 |
+
) -> bool:
|
462 |
+
"""
|
463 |
+
Return whether this refers to the custom module LSTM flow.
|
464 |
+
"""
|
465 |
+
mod = _get_module(node, named_modules)
|
466 |
+
if qconfig is not None and qhandler is not None:
|
467 |
+
assert isinstance(qhandler, torch.ao.quantization.fx.quantize_handler.QuantizeHandler) # type: ignore[attr-defined]
|
468 |
+
return isinstance(mod, torch.nn.LSTM) and \
|
469 |
+
activation_is_statically_quantized(qconfig) and \
|
470 |
+
qhandler.is_custom_module()
|
471 |
+
else:
|
472 |
+
return isinstance(mod, torch.ao.nn.quantizable.LSTM)
|
473 |
+
|
474 |
+
def _is_custom_module_mha(
|
475 |
+
node: Node,
|
476 |
+
named_modules: Dict[str, torch.nn.Module],
|
477 |
+
qconfig: QConfigAny = None,
|
478 |
+
# QuantizeHandler, but we cannot include the type here due to circular imports
|
479 |
+
qhandler: Optional[Any] = None,
|
480 |
+
) -> bool:
|
481 |
+
"""
|
482 |
+
Return whether this refers to the custom module MultiheadAttention flow.
|
483 |
+
"""
|
484 |
+
mod = _get_module(node, named_modules)
|
485 |
+
if qconfig is not None and qhandler is not None:
|
486 |
+
assert isinstance(qhandler, torch.ao.quantization.fx.quantize_handler.QuantizeHandler) # type: ignore[attr-defined]
|
487 |
+
return isinstance(mod, torch.nn.MultiheadAttention) and \
|
488 |
+
activation_is_statically_quantized(qconfig) and \
|
489 |
+
qhandler.is_custom_module()
|
490 |
+
else:
|
491 |
+
return isinstance(mod, torch.ao.nn.quantizable.MultiheadAttention)
|
492 |
+
|
493 |
+
def _get_module(node: Node, named_modules: Dict[str, torch.nn.Module]) -> Optional[torch.nn.Module]:
|
494 |
+
"""
|
495 |
+
If `node` refers to a call_module node, return the module, else None.
|
496 |
+
"""
|
497 |
+
if node.op == "call_module" and str(node.target) in named_modules:
|
498 |
+
return named_modules[str(node.target)]
|
499 |
+
else:
|
500 |
+
return None
|
501 |
+
|
502 |
+
def _insert_dequant_stub(
|
503 |
+
node: Node,
|
504 |
+
model: torch.nn.Module,
|
505 |
+
named_modules: Dict[str, torch.nn.Module],
|
506 |
+
graph: Graph,
|
507 |
+
) -> Node:
|
508 |
+
"""
|
509 |
+
Attach a `DeQuantStub` to the model and create a node that calls this
|
510 |
+
`DeQuantStub` on the output of `node`, similar to how observers are inserted.
|
511 |
+
"""
|
512 |
+
prefix = "dequant_stub_"
|
513 |
+
get_new_dequant_stub_name = get_new_attr_name_with_prefix(prefix)
|
514 |
+
dequant_stub_name = get_new_dequant_stub_name(model)
|
515 |
+
dequant_stub = DeQuantStub()
|
516 |
+
setattr(model, dequant_stub_name, dequant_stub)
|
517 |
+
named_modules[dequant_stub_name] = dequant_stub
|
518 |
+
with graph.inserting_after(node):
|
519 |
+
return graph.call_module(dequant_stub_name, (node,))
|
520 |
+
|
521 |
+
def _insert_dequant_stubs_for_custom_module_lstm_output(
|
522 |
+
node: Node,
|
523 |
+
model: torch.nn.Module,
|
524 |
+
named_modules: Dict[str, torch.nn.Module],
|
525 |
+
graph: Graph,
|
526 |
+
) -> Node:
|
527 |
+
"""
|
528 |
+
Insert DeQuantStubs after each internal output node of custom module LSTM.
|
529 |
+
|
530 |
+
Custom module LSTM outputs are nested tuples of the structure (output, (hidden0, hidden1)),
|
531 |
+
Since we cannot dequantize a tuple as a whole, we must first break down the tuple into its
|
532 |
+
components through `getitem`. This function transforms the graph as follows:
|
533 |
+
|
534 |
+
(1) Split the LSTM node into (output, (hidden0, hidden1))
|
535 |
+
(2) Insert a DeQuantStub after each internal node
|
536 |
+
(3) Recombine the DeQuantStubs into the same structure as before
|
537 |
+
(4) Reroute all consumers of the original LSTM node and its sub-nodes
|
538 |
+
(e.g. lstm[0])
|
539 |
+
|
540 |
+
Before:
|
541 |
+
lstm_output
|
542 |
+
|
|
543 |
+
v
|
544 |
+
original_user(s)
|
545 |
+
After:
|
546 |
+
lstm_output
|
547 |
+
/ \\
|
548 |
+
/ (getitem) \\
|
549 |
+
/ \\
|
550 |
+
v v
|
551 |
+
output hidden
|
552 |
+
| / \\
|
553 |
+
(DeQuantStub) (getitem)
|
554 |
+
| / \\
|
555 |
+
v v v
|
556 |
+
output_dq hidden0 hidden1
|
557 |
+
| | |
|
558 |
+
| (DeQuantStub) (DeQuantStub)
|
559 |
+
| | |
|
560 |
+
| v v
|
561 |
+
| hidden0_dq hidden1_dq
|
562 |
+
| \\ /
|
563 |
+
| (tuple)
|
564 |
+
| \\ /
|
565 |
+
| v v
|
566 |
+
| hidden_dq
|
567 |
+
\\ /
|
568 |
+
\\ (tuple) /
|
569 |
+
v v
|
570 |
+
lstm_output_dq
|
571 |
+
|
|
572 |
+
v
|
573 |
+
original_user(s)
|
574 |
+
|
575 |
+
For step (4), reroute all users of the original LSTM node(s) as follows:
|
576 |
+
lstm_output -> lstm_output_dq
|
577 |
+
lstm_output[0] -> output_dq
|
578 |
+
lstm_output[1] -> hidden_dq
|
579 |
+
lstm_output[1][0] -> hidden0_dq
|
580 |
+
lstm_output[1][1] -> hidden1_dq
|
581 |
+
|
582 |
+
Return the node `lstm_output_dq`.
|
583 |
+
"""
|
584 |
+
# (1) Split the LSTM node into (output, (hidden0, hidden1))
|
585 |
+
# (2) Insert a DeQuantStub after each internal node
|
586 |
+
with graph.inserting_after(node):
|
587 |
+
output = graph.call_function(operator.getitem, (node, 0))
|
588 |
+
output_dq = _insert_dequant_stub(output, model, named_modules, graph)
|
589 |
+
with graph.inserting_after(output_dq):
|
590 |
+
hidden = graph.call_function(operator.getitem, (node, 1))
|
591 |
+
with graph.inserting_after(hidden):
|
592 |
+
hidden0 = graph.call_function(operator.getitem, (hidden, 0))
|
593 |
+
hidden0_dq = _insert_dequant_stub(hidden0, model, named_modules, graph)
|
594 |
+
with graph.inserting_after(hidden0_dq):
|
595 |
+
hidden1 = graph.call_function(operator.getitem, (hidden, 1))
|
596 |
+
hidden1_dq = _insert_dequant_stub(hidden1, model, named_modules, graph)
|
597 |
+
|
598 |
+
# (3) Recombine the DeQuantStubs into the same structure as before
|
599 |
+
with graph.inserting_after(hidden1_dq):
|
600 |
+
hidden_dq = graph.call_function(tuple, ([hidden0_dq, hidden1_dq],))
|
601 |
+
with graph.inserting_after(hidden_dq):
|
602 |
+
lstm_output_dq = graph.call_function(tuple, ([output_dq, hidden_dq],))
|
603 |
+
|
604 |
+
# (4) Reroute all consumers of the original LSTM node and its sub-nodes
|
605 |
+
for user in list(node.users.keys()):
|
606 |
+
if user != output and user != hidden:
|
607 |
+
user.replace_input_with(node, lstm_output_dq)
|
608 |
+
# The getitem and tuple nodes we added here may interfere with reference quantized
|
609 |
+
# pattern matching, so we need to redirect the consumers of internal nodes to the
|
610 |
+
# corresponding nodes with DeQuantStubs (e.g. lstm_output_dq[0] -> output_dq) attached,
|
611 |
+
# in order to preserve reference patterns like "dequantize - consumer - quantize".
|
612 |
+
_reroute_tuple_getitem_pattern(graph)
|
613 |
+
return lstm_output_dq
|
614 |
+
|
615 |
+
def _maybe_get_custom_module_lstm_from_node_arg(
|
616 |
+
arg: Node,
|
617 |
+
named_modules: Dict[str, torch.nn.Module],
|
618 |
+
) -> Optional[Node]:
|
619 |
+
"""
|
620 |
+
Given an argument of a node, if the argument refers to the path through which the node
|
621 |
+
is a consumer of custom module LSTM, return the custom module LSTM node, or None otherwise.
|
622 |
+
|
623 |
+
This is used to determine whether a node is a consumer of custom module LSTM, and, if so,
|
624 |
+
skip inserting input observers for this node. This is because custom module LSTM produces
|
625 |
+
quantized outputs, so inserting an input observer for the consumer of custom module LSTM
|
626 |
+
would unnecessarily quantize the outputs again.
|
627 |
+
|
628 |
+
lstm -> consumer
|
629 |
+
|
630 |
+
In practice, however, custom module LSTM outputs a tuple (output, (hidden0, hidden1)) with
|
631 |
+
DeQuantStubs attached to each internal node (see `_insert_dequant_stubs_for_custom_module_lstm_output`).
|
632 |
+
This tuple can be consumed in one of four ways:
|
633 |
+
|
634 |
+
lstm -> getitem -> DeQuantStub -> consumer # consume lstm[0]
|
635 |
+
lstm -> getitem -> getitem -> DeQuantStub -> tuple -> consumer # consume lstm[1]
|
636 |
+
lstm -> getitem -> getitem -> DeQuantStub -> consumer # consume lstm[1][0] or lstm[1][1]
|
637 |
+
lstm -> getitem -> DeQuantStub -> tuple -> consumer # consume lstm
|
638 |
+
|
639 |
+
Thus, we must match against the above patterns instead of simply checking the parent node
|
640 |
+
to determine whether this node is a consumer of a custom module LSTM.
|
641 |
+
"""
|
642 |
+
def match_dq(a):
|
643 |
+
return isinstance(_get_module(a, named_modules), DeQuantStub)
|
644 |
+
|
645 |
+
def match_lstm(a):
|
646 |
+
return _is_custom_module_lstm(a, named_modules)
|
647 |
+
|
648 |
+
def match_getitem(a):
|
649 |
+
return a.op == "call_function" and a.target == operator.getitem
|
650 |
+
|
651 |
+
def match_tuple(a):
|
652 |
+
return a.op == "call_function" and a.target == tuple
|
653 |
+
|
654 |
+
def _match_pattern(match_pattern: List[Callable]) -> Optional[Node]:
|
655 |
+
"""
|
656 |
+
Traverse up the graph and match the args one by one.
|
657 |
+
If there is a match, return the last matched node, or None otherwise.
|
658 |
+
"""
|
659 |
+
a = arg
|
660 |
+
for i, match in enumerate(match_pattern):
|
661 |
+
if not match(a):
|
662 |
+
return None
|
663 |
+
# Match next arg, for tuple the arg is a tuple of a list, e.g. ([dq_1, other_node],)
|
664 |
+
if i < len(match_pattern) - 1:
|
665 |
+
if match == match_tuple:
|
666 |
+
a = a.args[0][0] # type: ignore[assignment,index]
|
667 |
+
else:
|
668 |
+
a = a.args[0] # type: ignore[assignment]
|
669 |
+
return a
|
670 |
+
|
671 |
+
all_match_patterns = [
|
672 |
+
[match_dq, match_getitem, match_lstm],
|
673 |
+
[match_tuple, match_dq, match_getitem, match_getitem, match_lstm],
|
674 |
+
[match_dq, match_getitem, match_getitem, match_lstm],
|
675 |
+
[match_tuple, match_dq, match_getitem, match_lstm],
|
676 |
+
]
|
677 |
+
|
678 |
+
for p in all_match_patterns:
|
679 |
+
matched_node = _match_pattern(p)
|
680 |
+
if matched_node is not None:
|
681 |
+
return matched_node
|
682 |
+
return None
|
683 |
+
|
684 |
+
def _reroute_tuple_getitem_pattern(graph: Graph):
|
685 |
+
"""
|
686 |
+
Search for patterns where N consecutive `tuple` call_function nodes are followed by
|
687 |
+
N consecutive `getitem` call_function nodes that are "reverses" of the `tuple` nodes.
|
688 |
+
If we find this pattern, reroute the consumers of the last `getitem` to skip these
|
689 |
+
N `tuple` and `getitem` nodes.
|
690 |
+
|
691 |
+
Before:
|
692 |
+
|
693 |
+
a b c
|
694 |
+
| \\ /
|
695 |
+
\\ tuple
|
696 |
+
\\ /
|
697 |
+
tuple
|
698 |
+
|
|
699 |
+
getitem(1)
|
700 |
+
|
|
701 |
+
getitem(0)
|
702 |
+
|
|
703 |
+
d
|
704 |
+
|
705 |
+
After:
|
706 |
+
|
707 |
+
b
|
708 |
+
|
|
709 |
+
d
|
710 |
+
"""
|
711 |
+
def find_patterns(
|
712 |
+
node: Node,
|
713 |
+
index_stack: List[int],
|
714 |
+
current_pattern: List[Node],
|
715 |
+
matched_patterns: List[List[Node]],
|
716 |
+
seen: Set[Tuple[Node, Tuple[int, ...]]]):
|
717 |
+
"""
|
718 |
+
Traverse the graph recursively to match for the N-tuple - N-getitem patterns,
|
719 |
+
starting at the given node.
|
720 |
+
|
721 |
+
We use a stack to keep track of the expected `getitem` indices, since these are
|
722 |
+
reversed from the `tuple` indices. In the above example, the stack after
|
723 |
+
(b -> tuple -> tuple) will be [0, 1], which will be popped by getitem(1) first
|
724 |
+
and then by getitem(0).
|
725 |
+
|
726 |
+
TODO: traverse upwards from the output and handle the case when tuple is not a
|
727 |
+
separate node, e.g. graph.call_function(operator.getitem, args=(a, (b, c)))
|
728 |
+
"""
|
729 |
+
if len(index_stack) == 0 and len(current_pattern) > 0:
|
730 |
+
matched_patterns.append(copy.copy(current_pattern))
|
731 |
+
current_pattern.clear()
|
732 |
+
|
733 |
+
# Avoid duplicating work
|
734 |
+
state = (node, tuple(index_stack))
|
735 |
+
if state in seen:
|
736 |
+
return
|
737 |
+
seen.add(state)
|
738 |
+
|
739 |
+
# Iterate through users of this node to find tuple/getitem nodes to match
|
740 |
+
for user in node.users:
|
741 |
+
if user.op == "call_function" and user.target == tuple:
|
742 |
+
for i, user_arg in enumerate(user.args[0]): # type: ignore[arg-type]
|
743 |
+
if user_arg == node:
|
744 |
+
index_stack.append(i)
|
745 |
+
current_pattern.append(user)
|
746 |
+
find_patterns(user, index_stack, current_pattern, matched_patterns, seen)
|
747 |
+
elif user.op == "call_function" and user.target == operator.getitem:
|
748 |
+
if len(index_stack) > 0:
|
749 |
+
if user.args[1] == index_stack[-1]:
|
750 |
+
index_stack.pop()
|
751 |
+
current_pattern.append(user)
|
752 |
+
find_patterns(user, index_stack, current_pattern, matched_patterns, seen)
|
753 |
+
return matched_patterns
|
754 |
+
|
755 |
+
# Collect all matched patterns
|
756 |
+
matched_patterns: List[List[Node]] = []
|
757 |
+
seen: Set[Tuple[Node, Tuple[int, ...]]] = set() # (node, index_stack)
|
758 |
+
for node in graph.nodes:
|
759 |
+
find_patterns(node, [], [], matched_patterns, seen)
|
760 |
+
|
761 |
+
# For each pattern, redirect all consumers of the last getitem node to the correct input
|
762 |
+
# of the first tuple node
|
763 |
+
for pattern in matched_patterns:
|
764 |
+
first_tuple = pattern[0]
|
765 |
+
last_getitem = pattern[-1]
|
766 |
+
assert first_tuple.op == "call_function" and first_tuple.target == tuple
|
767 |
+
assert last_getitem.op == "call_function" and last_getitem.target == operator.getitem
|
768 |
+
last_getitem_index = last_getitem.args[1]
|
769 |
+
new_input = first_tuple.args[0][last_getitem_index] # type: ignore[index]
|
770 |
+
for user in list(last_getitem.users.keys()):
|
771 |
+
user.replace_input_with(last_getitem, new_input)
|
772 |
+
|
773 |
+
def _get_observer_from_activation_post_process(
|
774 |
+
activation_post_process: Union[ObserverBase, FakeQuantizeBase],
|
775 |
+
) -> ObserverBase:
|
776 |
+
"""
|
777 |
+
If `activation_post_process` is an observer, return the observer.
|
778 |
+
If `activation_post_process` is a fake quantize, return the internal observer.
|
779 |
+
"""
|
780 |
+
if isinstance(activation_post_process, ObserverBase):
|
781 |
+
return activation_post_process
|
782 |
+
else:
|
783 |
+
assert isinstance(activation_post_process, FakeQuantizeBase)
|
784 |
+
return activation_post_process.activation_post_process # type: ignore[return-value]
|
785 |
+
|
786 |
+
def _qconfig_satisfies_dtype_config_constraints(
|
787 |
+
qconfig: QConfigAny,
|
788 |
+
dtype_with_constraints: DTypeWithConstraints,
|
789 |
+
is_activation: bool = True) -> bool:
|
790 |
+
"""
|
791 |
+
Return whether `qconfig` satisfies the following constraints from the backend,
|
792 |
+
specified through the activation and weight DTypeWithConstraints.
|
793 |
+
|
794 |
+
1. QConfig specified a quantization range that falls within the backend's, if any
|
795 |
+
2. QConfig specified a min scale value that is >= the backend's, if any
|
796 |
+
3. QConfig specified a FixedQParamsObserver or FixedQParamsFakeQuantize that has
|
797 |
+
scale and zero point that match the backend's, if any
|
798 |
+
|
799 |
+
If `is_activation` is True, we check `qconfig.activation`, else we check `qconfig.weight`.
|
800 |
+
If `qconfig` or `dtype_with_constraints.dtype` is None, or the dtypes do not match, return True.
|
801 |
+
"""
|
802 |
+
# TODO: log warnings only when the user enabled a debug flag
|
803 |
+
def _activation_post_process_satisfies_dtype_config_constraints(
|
804 |
+
activation_post_process: Union[ObserverBase, FakeQuantizeBase],
|
805 |
+
dtype_with_constraints: DTypeWithConstraints,
|
806 |
+
debug_string: str) -> bool:
|
807 |
+
observer = _get_observer_from_activation_post_process(activation_post_process)
|
808 |
+
app_quant_min = getattr(observer, "quant_min", None)
|
809 |
+
app_quant_max = getattr(observer, "quant_max", None)
|
810 |
+
# TODO: for now, just use the existing eps value as scale_min. In the future, we should
|
811 |
+
# resolve the differences between the two, either by renaming eps or some other way
|
812 |
+
app_scale_min = getattr(observer, "eps", None)
|
813 |
+
backend_quant_min = dtype_with_constraints.quant_min_lower_bound
|
814 |
+
backend_quant_max = dtype_with_constraints.quant_max_upper_bound
|
815 |
+
backend_scale_min = dtype_with_constraints.scale_min_lower_bound
|
816 |
+
backend_scale_exact_match = dtype_with_constraints.scale_exact_match
|
817 |
+
backend_zero_point_exact_match = dtype_with_constraints.zero_point_exact_match
|
818 |
+
# check quantization ranges
|
819 |
+
if backend_quant_min is not None and backend_quant_max is not None:
|
820 |
+
if app_quant_min is None or app_quant_max is None:
|
821 |
+
warnings.warn(f"QConfig {debug_string} must specify 'quant_min' and 'quant_max', ignoring {qconfig}")
|
822 |
+
return False
|
823 |
+
elif app_quant_min < backend_quant_min or app_quant_max > backend_quant_max:
|
824 |
+
warnings.warn(
|
825 |
+
f"QConfig {debug_string} quantization range must fall within the backend's:\n"
|
826 |
+
f"QConfig range = ({app_quant_min}, {app_quant_max}), "
|
827 |
+
f"BackendConfig range = ({backend_quant_min}, {backend_quant_max}), "
|
828 |
+
f"ignoring {qconfig}"
|
829 |
+
)
|
830 |
+
return False
|
831 |
+
# check scale min
|
832 |
+
if backend_scale_min is not None:
|
833 |
+
if app_scale_min is None:
|
834 |
+
warnings.warn(f"QConfig {debug_string} must specify 'eps', ignoring {qconfig}")
|
835 |
+
return False
|
836 |
+
if app_scale_min < backend_scale_min:
|
837 |
+
warnings.warn(
|
838 |
+
f"QConfig {debug_string} eps ({app_scale_min}) must be greater than or equal to "
|
839 |
+
f"the backend's min scale value ({backend_scale_min}), ignoring {qconfig}"
|
840 |
+
)
|
841 |
+
return False
|
842 |
+
# check fixed scale and zero point
|
843 |
+
if backend_scale_exact_match is not None and backend_zero_point_exact_match is not None:
|
844 |
+
# For tests only, accept the following qconfigs for now
|
845 |
+
# TODO: handle fp16 qconfigs properly
|
846 |
+
for accepted_qconfig in [float16_static_qconfig, float16_dynamic_qconfig]:
|
847 |
+
if qconfig_equals(qconfig, accepted_qconfig):
|
848 |
+
return True
|
849 |
+
suggestion_str = (
|
850 |
+
"Please use torch.ao.quantization.get_default_qconfig_mapping or "
|
851 |
+
"torch.ao.quantization.get_default_qat_qconfig_mapping. Example:\n"
|
852 |
+
" qconfig_mapping = get_default_qconfig_mapping(\"fbgemm\")\n"
|
853 |
+
" model = prepare_fx(model, qconfig_mapping, example_inputs)"
|
854 |
+
)
|
855 |
+
if not isinstance(activation_post_process, FixedQParamsObserver) and \
|
856 |
+
not isinstance(activation_post_process, FixedQParamsFakeQuantize):
|
857 |
+
warnings.warn(
|
858 |
+
f"QConfig must specify a FixedQParamsObserver or a FixedQParamsFakeQuantize "
|
859 |
+
f"for fixed qparams ops, ignoring {qconfig}.\n{suggestion_str}"
|
860 |
+
)
|
861 |
+
return False
|
862 |
+
if observer.scale != backend_scale_exact_match or observer.zero_point != backend_zero_point_exact_match:
|
863 |
+
warnings.warn(
|
864 |
+
f"QConfig fixed scale ({observer.scale}) and zero point ({observer.zero_point}) "
|
865 |
+
f"do not match the backend's ({backend_scale_exact_match} and {backend_zero_point_exact_match}), "
|
866 |
+
f"ignoring {qconfig}.\n{suggestion_str}"
|
867 |
+
)
|
868 |
+
return False
|
869 |
+
return True
|
870 |
+
|
871 |
+
if qconfig is None or dtype_with_constraints.dtype is None:
|
872 |
+
return True
|
873 |
+
|
874 |
+
activation_post_process_ctr = qconfig.activation if is_activation else qconfig.weight
|
875 |
+
debug_string = "activation" if is_activation else "weight"
|
876 |
+
satisfies_constraints = True
|
877 |
+
if activation_post_process_ctr is not None:
|
878 |
+
activation_post_process = activation_post_process_ctr()
|
879 |
+
assert _is_activation_post_process(activation_post_process)
|
880 |
+
# If dtypes don't match, don't check the activation_post_process and return True early
|
881 |
+
if activation_post_process.dtype != dtype_with_constraints.dtype:
|
882 |
+
return True
|
883 |
+
satisfies_constraints = _activation_post_process_satisfies_dtype_config_constraints(
|
884 |
+
activation_post_process, dtype_with_constraints, debug_string)
|
885 |
+
return satisfies_constraints
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/duplicate_dq_pass.cpython-310.pyc
ADDED
Binary file (2.42 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/export_utils.cpython-310.pyc
ADDED
Binary file (6.42 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/generate_numeric_debug_handle.cpython-310.pyc
ADDED
Binary file (698 Bytes). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/graph_utils.cpython-310.pyc
ADDED
Binary file (3.29 kB). View file
|
|
venv/lib/python3.10/site-packages/torch/ao/quantization/pt2e/__pycache__/port_metadata_pass.cpython-310.pyc
ADDED
Binary file (7.22 kB). View file
|
|