diff --git a/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..fa0939e76cdd59d13b683ecd2e2ffcdae9213a1b --- /dev/null +++ b/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:02802b1d7f7e3e8e3a211c7169fccc29b0c5ab71d9c178ef9186358256014ae6 +size 16778396 diff --git a/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..c73e5154837d19fc32301ed5a96ef281678cf245 --- /dev/null +++ b/ckpts/universal/global_step40/zero/14.attention.dense.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:c22050463f188311e0f48919d64be9c774ef4e3fe86f9878025f734fe38e83ab +size 16778411 diff --git a/ckpts/universal/global_step40/zero/14.attention.dense.weight/fp32.pt b/ckpts/universal/global_step40/zero/14.attention.dense.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..89c6875047c295fbac5922ac6f748309984362ed --- /dev/null +++ b/ckpts/universal/global_step40/zero/14.attention.dense.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bcc344e77e04b92d1bbd4ebd54e03c06edcbb964e1a62dc6f58225ce0e3f39ee +size 16778317 diff --git a/ckpts/universal/global_step40/zero/14.mlp.dense_h_to_4h.weight/exp_avg_sq.pt b/ckpts/universal/global_step40/zero/14.mlp.dense_h_to_4h.weight/exp_avg_sq.pt new file mode 100644 index 0000000000000000000000000000000000000000..5b105e2f2d4be045be2a6044812230e5061211a7 --- /dev/null +++ b/ckpts/universal/global_step40/zero/14.mlp.dense_h_to_4h.weight/exp_avg_sq.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6185adf346244d4cb5de77d168ae74aed16f8d046c739d0256d69ee4337dac3f +size 33555627 diff --git a/ckpts/universal/global_step40/zero/20.post_attention_layernorm.weight/exp_avg.pt b/ckpts/universal/global_step40/zero/20.post_attention_layernorm.weight/exp_avg.pt new file mode 100644 index 0000000000000000000000000000000000000000..6348af0e08eb4c78ff68dbe1d02d1a30d42710aa --- /dev/null +++ b/ckpts/universal/global_step40/zero/20.post_attention_layernorm.weight/exp_avg.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fdddc3d8ef6b0f345abb8801d0d5af1a315077892052a6d98b34c09979624f5b +size 9372 diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__init__.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..649a15888cccd070b3d4ca9a600457c6ad59d4d3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/__init__.py @@ -0,0 +1,52 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +from .config import config_command_parser +from .config_args import default_config_file, load_config_from_file # noqa: F401 +from .default import default_command_parser +from .update import update_command_parser + + +def get_config_parser(subparsers=None): + parent_parser = argparse.ArgumentParser(add_help=False, allow_abbrev=False) + # The main config parser + config_parser = config_command_parser(subparsers) + # The subparser to add commands to + subcommands = config_parser.add_subparsers(title="subcommands", dest="subcommand") + + # Then add other parsers with the parent parser + default_command_parser(subcommands, parents=[parent_parser]) + update_command_parser(subcommands, parents=[parent_parser]) + + return config_parser + + +def main(): + config_parser = get_config_parser() + args = config_parser.parse_args() + + if not hasattr(args, "func"): + config_parser.print_help() + exit(1) + + # Run + args.func(args) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bb619e49f6f091cafecfff1d3bdfa7e1aebe75e7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/cluster.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/cluster.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ac6df2a579e0e38b0d1967a74e8d1e864a7ab7a5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/cluster.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6af7cda0eb6fcf42ce236e359c27e8d7602942af Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_args.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_args.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3c79b7112618b6b440877e5431a1155a5a34159f Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_args.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_utils.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_utils.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..feb473f63197573d97627f4f99911314e7d461d7 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/config_utils.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/default.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/default.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0be3cd387229204653012f654317939b369f104f Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/default.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/sagemaker.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/sagemaker.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c70f54dc400d271d18342d4ebe51ed9ed7cf63ca Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/sagemaker.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/update.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/update.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7fb6b71bbd21be062aed6013735e36b8d108865c Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/commands/config/__pycache__/update.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/cluster.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/cluster.py new file mode 100644 index 0000000000000000000000000000000000000000..4d8821b0660932a946dc238151b2c6599de625d1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/cluster.py @@ -0,0 +1,705 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os + +from ...utils import ( + ComputeEnvironment, + DistributedType, + is_deepspeed_available, + is_mlu_available, + is_mps_available, + is_npu_available, + is_transformers_available, + is_xpu_available, +) +from ...utils.constants import ( + DEEPSPEED_MULTINODE_LAUNCHERS, + FSDP_AUTO_WRAP_POLICY, + FSDP_BACKWARD_PREFETCH, + FSDP_SHARDING_STRATEGY, + FSDP_STATE_DICT_TYPE, + TORCH_DYNAMO_MODES, +) +from .config_args import ClusterConfig +from .config_utils import ( + DYNAMO_BACKENDS, + _ask_field, + _ask_options, + _convert_distributed_mode, + _convert_dynamo_backend, + _convert_mixed_precision, + _convert_yes_no_to_bool, +) + + +def get_cluster_input(): + distributed_type = _ask_options( + "Which type of machine are you using?", + ["No distributed training", "multi-CPU", "multi-XPU", "multi-GPU", "multi-NPU", "multi-MLU", "TPU"], + _convert_distributed_mode, + ) + + machine_rank = 0 + num_machines = 1 + num_processes = 1 + gpu_ids = None + main_process_ip = None + main_process_port = None + rdzv_backend = "static" + same_network = True + debug = False + + if distributed_type in [ + DistributedType.MULTI_GPU, + DistributedType.MULTI_MLU, + DistributedType.MULTI_NPU, + DistributedType.MULTI_XPU, + DistributedType.MULTI_CPU, + ]: + num_machines = _ask_field( + "How many different machines will you use (use more than 1 for multi-node training)? [1]: ", + int, + default=1, + ) + if num_machines > 1: + machine_rank = _ask_options( + "What is the rank of this machine?", + list(range(num_machines)), + int, + ) + main_process_ip = _ask_field( + "What is the IP address of the machine that will host the main process? ", + ) + main_process_port = _ask_field( + "What is the port you will use to communicate with the main process? ", + int, + ) + same_network = _ask_field( + "Are all the machines on the same local network? Answer `no` if nodes are on the cloud and/or on different network hosts [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + if not same_network: + rdzv_backend = _ask_field( + "What rendezvous backend will you use? ('static', 'c10d', ...): ", default="static" + ) + debug = _ask_field( + "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + if distributed_type == DistributedType.NO: + use_cpu = _ask_field( + "Do you want to run your training on CPU only (even if a GPU / Apple Silicon / Ascend NPU device is available)? [yes/NO]:", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + elif distributed_type == DistributedType.MULTI_CPU: + use_cpu = True + else: + use_cpu = False + + ipex_config = {} + mpirun_config = {} + if use_cpu: + ipex_config["ipex"] = _ask_field( + "Do you want to use Intel PyTorch Extension (IPEX) to speed up training on CPU? [yes/NO]:", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if distributed_type == DistributedType.MULTI_CPU: + use_mpirun = _ask_field( + "Do you want accelerate to launch mpirun? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_mpirun: + mpirun_hostfile = _ask_field( + "Please enter the path to the hostfile to use with mpirun [~/hostfile]: ", + str, + default="~/hostfile", + ) + mpirun_config["mpirun_hostfile"] = os.path.expanduser(mpirun_hostfile.strip()) + mpirun_config["mpirun_ccl"] = _ask_field("Enter the number of oneCCL worker threads [1]: ", default=1) + if ( + not use_cpu + and is_xpu_available() + and distributed_type + not in [DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU, DistributedType.XLA] + ): + ipex_config["use_xpu"] = _ask_field( + "Do you want to use XPU plugin to speed up training on XPU? [yes/NO]:", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + dynamo_config = {} + use_dynamo = _ask_field( + "Do you wish to optimize your script with torch dynamo?[yes/NO]:", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_dynamo: + prefix = "dynamo_" + dynamo_config[prefix + "backend"] = _ask_options( + "Which dynamo backend would you like to use?", + [x.lower() for x in DYNAMO_BACKENDS], + _convert_dynamo_backend, + default=2, + ) + use_custom_options = _ask_field( + "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + if use_custom_options: + dynamo_config[prefix + "mode"] = _ask_options( + "Which mode do you want to use?", + TORCH_DYNAMO_MODES, + lambda x: TORCH_DYNAMO_MODES[int(x)], + default=0, + ) + dynamo_config[prefix + "use_fullgraph"] = _ask_field( + "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + dynamo_config[prefix + "use_dynamic"] = _ask_field( + "Do you want to enable dynamic shape tracing? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + use_mps = not use_cpu and is_mps_available() + deepspeed_config = {} + if ( + distributed_type + in [ + DistributedType.MULTI_GPU, + DistributedType.MULTI_XPU, + DistributedType.MULTI_NPU, + DistributedType.MULTI_MLU, + DistributedType.NO, + ] + and not use_mps + ): + use_deepspeed = _ask_field( + "Do you want to use DeepSpeed? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_deepspeed: + distributed_type = DistributedType.DEEPSPEED + assert ( + is_deepspeed_available() + ), "DeepSpeed is not installed => run `pip3 install deepspeed` or build it from source" + + if distributed_type == DistributedType.DEEPSPEED: + use_deepspeed_config = _ask_field( + "Do you want to specify a json file to a DeepSpeed config? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_deepspeed_config: + deepspeed_config["deepspeed_config_file"] = _ask_field( + "Please enter the path to the json DeepSpeed config file: ", + str, + default="none", + ) + else: + deepspeed_config["zero_stage"] = _ask_options( + "What should be your DeepSpeed's ZeRO optimization stage?", + [0, 1, 2, 3], + int, + default=2, + ) + + deepspeed_devices = ["none", "cpu", "nvme"] + if deepspeed_config["zero_stage"] >= 2: + deepspeed_config["offload_optimizer_device"] = _ask_options( + "Where to offload optimizer states?", deepspeed_devices, lambda x: deepspeed_devices[int(x)] + ) + deepspeed_config["offload_param_device"] = _ask_options( + "Where to offload parameters?", deepspeed_devices, lambda x: deepspeed_devices[int(x)] + ) + if deepspeed_config["offload_param_device"] == "nvme": + deepspeed_config["offload_param_nvme_path"] = _ask_field( + "Nvme Path to offload parameters?", + str, + default="/nvme", + ) + if deepspeed_config["offload_optimizer_device"] == "nvme": + deepspeed_config["offload_optimizer_nvme_path"] = _ask_field( + "Nvme Path to offload optimizer states?", + str, + default="/nvme", + ) + deepspeed_config["gradient_accumulation_steps"] = _ask_field( + "How many gradient accumulation steps you're passing in your script? [1]: ", + int, + default=1, + ) + use_gradient_clipping = _ask_field( + "Do you want to use gradient clipping? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_gradient_clipping: + deepspeed_config["gradient_clipping"] = _ask_field( + "What is the gradient clipping value? [1.0]: ", + float, + default=1.0, + ) + if deepspeed_config["zero_stage"] == 3: + deepspeed_config["zero3_save_16bit_model"] = _ask_field( + "Do you want to save 16-bit model weights when using ZeRO Stage-3? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + deepspeed_config["zero3_init_flag"] = _ask_field( + "Do you want to enable `deepspeed.zero.Init` when using ZeRO Stage-3 for constructing massive models? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if deepspeed_config["zero3_init_flag"]: + if not is_transformers_available(): + raise Exception( + "When `zero3_init_flag` is set, it requires Transformers to be installed. " + "Please run `pip3 install transformers`." + ) + + if num_machines > 1: + launcher_query = "Which Type of launcher do you want to use?" + deepspeed_config["deepspeed_multinode_launcher"] = _ask_options( + launcher_query, + DEEPSPEED_MULTINODE_LAUNCHERS, + lambda x: DEEPSPEED_MULTINODE_LAUNCHERS[int(x)], + ) + + if deepspeed_config["deepspeed_multinode_launcher"] != DEEPSPEED_MULTINODE_LAUNCHERS[1]: + deepspeed_config["deepspeed_hostfile"] = _ask_field( + "DeepSpeed configures multi-node compute resources with hostfile. " + "Each row is of the format `hostname slots=[num_gpus]`, e.g., `localhost slots=2`; " + "for more information please refer official [documentation]" + "(https://www.deepspeed.ai/getting-started/#resource-configuration-multi-node). " + "Please specify the location of hostfile: ", + str, + ) + + is_exclusion_filter = _ask_field( + "Do you want to specify exclusion filter string? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if is_exclusion_filter: + deepspeed_config["deepspeed_exclusion_filter"] = _ask_field( + "DeepSpeed exclusion filter string: ", + str, + ) + + is_inclusion_filter = _ask_field( + "Do you want to specify inclusion filter string? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if is_inclusion_filter: + deepspeed_config["deepspeed_inclusion_filter"] = _ask_field( + "DeepSpeed inclusion filter string: ", + str, + ) + + fsdp_config = {} + if distributed_type in [ + DistributedType.MULTI_GPU, + DistributedType.MULTI_NPU, + DistributedType.MULTI_MLU, + DistributedType.MULTI_XPU, + ]: + use_fsdp = _ask_field( + "Do you want to use FullyShardedDataParallel? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_fsdp: + distributed_type = DistributedType.FSDP + if distributed_type == DistributedType.FSDP: + sharding_strategy_query = "What should be your sharding strategy?" + fsdp_config["fsdp_sharding_strategy"] = _ask_options( + sharding_strategy_query, + FSDP_SHARDING_STRATEGY, + lambda x: FSDP_SHARDING_STRATEGY[int(x)], + ) + fsdp_config["fsdp_offload_params"] = _ask_field( + "Do you want to offload parameters and gradients to CPU? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + fsdp_wrap_query = "What should be your auto wrap policy?" + fsdp_config["fsdp_auto_wrap_policy"] = _ask_options( + fsdp_wrap_query, + FSDP_AUTO_WRAP_POLICY, + lambda x: FSDP_AUTO_WRAP_POLICY[int(x)], + ) + if fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[0]: + use_no_split_modules = _ask_field( + "Do you want to use the model's `_no_split_modules` to wrap. Only applicable for 🤗 Transformers [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if not use_no_split_modules: + fsdp_config["fsdp_transformer_layer_cls_to_wrap"] = _ask_field( + "Specify the comma-separated list of transformer layer class names (case-sensitive) to wrap ,e.g, :" + "`BertLayer`, `GPTJBlock`, `T5Block`, `BertLayer,BertEmbeddings,BertSelfOutput` ...? : ", + str, + ) + elif fsdp_config["fsdp_auto_wrap_policy"] == FSDP_AUTO_WRAP_POLICY[1]: + fsdp_config["fsdp_min_num_params"] = _ask_field( + "What should be your FSDP's minimum number of parameters for Default Auto Wrapping Policy? [1e8]: ", + int, + default=100000000, + ) + fsdp_backward_prefetch_query = "What should be your FSDP's backward prefetch policy?" + fsdp_config["fsdp_backward_prefetch"] = _ask_options( + fsdp_backward_prefetch_query, + FSDP_BACKWARD_PREFETCH, + lambda x: FSDP_BACKWARD_PREFETCH[int(x)], + ) + fsdp_state_dict_type_query = "What should be your FSDP's state dict type?" + fsdp_config["fsdp_state_dict_type"] = _ask_options( + fsdp_state_dict_type_query, + FSDP_STATE_DICT_TYPE, + lambda x: FSDP_STATE_DICT_TYPE[int(x)], + default=2, + ) + fsdp_config["fsdp_forward_prefetch"] = _ask_field( + "Do you want to enable FSDP's forward prefetch policy? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + fsdp_config["fsdp_use_orig_params"] = _ask_field( + "Do you want to enable FSDP's `use_orig_params` feature? [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + fsdp_config["fsdp_cpu_ram_efficient_loading"] = _ask_field( + "Do you want to enable CPU RAM efficient model loading? Only applicable for 🤗 Transformers models. [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + if fsdp_config["fsdp_cpu_ram_efficient_loading"]: + fsdp_config["fsdp_sync_module_states"] = True + else: + fsdp_config["fsdp_sync_module_states"] = _ask_field( + "Do you want each individually wrapped FSDP unit to broadcast module parameters from rank 0 at the start? [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + + megatron_lm_config = {} + if distributed_type in [DistributedType.MULTI_GPU]: + use_megatron_lm = _ask_field( + "Do you want to use Megatron-LM ? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_megatron_lm: + distributed_type = DistributedType.MEGATRON_LM + if distributed_type == DistributedType.MEGATRON_LM: + prefix = "megatron_lm_" + megatron_lm_config[prefix + "tp_degree"] = _ask_field( + "What is the Tensor Parallelism degree/size? [1]:", + int, + default=1, + error_message="Please enter an integer.", + ) + if megatron_lm_config[prefix + "tp_degree"] > 1: + megatron_lm_config[prefix + "sequence_parallelism"] = _ask_field( + "Do you want to enable Sequence Parallelism? [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + + megatron_lm_config[prefix + "pp_degree"] = _ask_field( + "What is the Pipeline Parallelism degree/size? [1]:", + int, + default=1, + error_message="Please enter an integer.", + ) + if megatron_lm_config[prefix + "pp_degree"] > 1: + megatron_lm_config[prefix + "num_micro_batches"] = _ask_field( + "What is the number of micro-batches? [1]:", + int, + default=1, + error_message="Please enter an integer.", + ) + + megatron_lm_config[prefix + "recompute_activations"] = _ask_field( + "Do you want to enable selective activation recomputation? [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + + megatron_lm_config[prefix + "use_distributed_optimizer"] = _ask_field( + "Do you want to use distributed optimizer " + "which shards optimizer state and gradients across data parallel ranks? [YES/no]: ", + _convert_yes_no_to_bool, + default=True, + error_message="Please enter yes or no.", + ) + + megatron_lm_config[prefix + "gradient_clipping"] = _ask_field( + "What is the gradient clipping value based on global L2 Norm (0 to disable)? [1.0]: ", + float, + default=1.0, + ) + # TPU specific defaults + tpu_commands = None + tpu_command_file = None + tpu_downcast_bf16 = "no" + tpu_env = [] + tpu_name = None + tpu_vm = None + tpu_zone = None + tpu_use_sudo = False + tpu_use_cluster = False + + if distributed_type in [ + DistributedType.MULTI_CPU, + DistributedType.MULTI_XPU, + DistributedType.MULTI_GPU, + DistributedType.MULTI_MLU, + DistributedType.MULTI_NPU, + DistributedType.XLA, + ]: + machine_type = str(distributed_type).split(".")[1].replace("MULTI_", "") + if machine_type == "TPU": + machine_type += " cores" + elif machine_type == "CPU": + machine_type = "processes" + else: + machine_type += "(s)" + num_processes = _ask_field( + f"How many {machine_type} should be used for distributed training? [1]:", + int, + default=1, + error_message="Please enter an integer.", + ) + elif distributed_type in [DistributedType.FSDP, DistributedType.DEEPSPEED, DistributedType.MEGATRON_LM]: + num_processes = _ask_field( + "How many GPU(s) should be used for distributed training? [1]:", + int, + default=1, + error_message="Please enter an integer.", + ) + else: + num_processes = 1 + + if (distributed_type == DistributedType.MULTI_GPU) and (num_machines == 1) and (num_processes == 1): + raise ValueError( + f"Specified distributed type {distributed_type} but only using 1 GPU on a single machine. Please select `No distributed training` for the type of machine you are using." + ) + + if ( + distributed_type + in [ + DistributedType.MULTI_GPU, + DistributedType.MULTI_MLU, + DistributedType.MULTI_NPU, + DistributedType.MULTI_XPU, + DistributedType.NO, + ] + and not use_cpu + and not use_mps + ): + if is_npu_available(): + machine_type = "NPU(s)" + elif is_mlu_available(): + machine_type = "MLU(s)" + else: + machine_type = "GPU(s)" + gpu_ids = _ask_field( + f"What {machine_type} (by id) should be used for training on this machine as a comma-seperated list? [all]:", + default="all", + ) + + # CPU affinity is only supported on NVIDIA hardware for now + enable_cpu_affinity = False + if distributed_type == (DistributedType.NO, DistributedType.MULTI_GPU) and not use_cpu and not use_mps: + enable_cpu_affinity = _ask_field( + "Would you like to enable numa efficiency? (Currently only supported on NVIDIA hardware). [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + if distributed_type == DistributedType.XLA: + mixed_precision = "no" + main_training_function = _ask_field( + "What is the name of the function in your script that should be launched in all parallel scripts? [main]: ", + default="main", + ) + tpu_use_cluster = _ask_field( + "Are you using a TPU cluster? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if tpu_use_cluster: + tpu_name = _ask_field( + "What is the name of your TPU cluster? ", + default=None, + error_message="Please enter the name of your TPU cluster.", + ) + tpu_zone = _ask_field( + "What is the zone of your TPU cluster? ", + default=None, + error_message="Please enter the zone of your TPU cluster.", + ) + tpu_use_sudo = _ask_field( + "To run a python script in a TPU pod, should `sudo` be used? [yes/NO]: ", + default=False, + error_message="Please enter yes or no.", + ) + run_commands = _ask_field( + "Do you have code you wish to run on startup in each pod? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if run_commands: + use_command_file = _ask_field( + "Is this code located in a bash script? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_command_file: + tpu_command_file = _ask_field( + "What is the path to your bash script? ", + default=None, + error_message="Please enter the path to your bash script.", + ) + tpu_command_file = os.path.abspath(tpu_command_file) + else: + print("Please enter each command seperately you wish to run on startup in each pod.") + tpu_commands = [] + another_command = True + while another_command: + tpu_commands.append( + _ask_field( + "Please enter a single command to be ran ", + default=None, + error_message="Please enter the commands you wish to run on startup in each pod as a single string.", + ) + ) + another_command = _ask_field( + "Do you wish to add another command? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + tpu_vm = _ask_field( + "If not using an instance group, what are the names of the Compute VM instances to be used, seperated by a comma: ", + default="", + ).split(",") + tpu_env = _ask_field( + "What environment variables do you wish to set in each pod, seperated by a comma: ", + default="", + ).split(",") + + else: + main_training_function = "main" + if distributed_type == DistributedType.DEEPSPEED and use_deepspeed_config: + mixed_precision = None + else: + mixed_precision = _ask_options( + "Do you wish to use FP16 or BF16 (mixed precision)?", + ["no", "fp16", "bf16", "fp8"], + _convert_mixed_precision, + ) + + if use_dynamo and mixed_precision == "no" and not use_cpu: + print( + "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." + ) + + if distributed_type == DistributedType.XLA and mixed_precision == "bf16": + tpu_downcast_bf16 = _ask_field( + "Should `torch.float` be cast as `bfloat16` and `torch.double` remain `float32` on TPUs?", default="no" + ) + + return ClusterConfig( + compute_environment=ComputeEnvironment.LOCAL_MACHINE, + distributed_type=distributed_type, + num_processes=num_processes, + gpu_ids=gpu_ids, + mixed_precision=mixed_precision, + downcast_bf16=tpu_downcast_bf16, + machine_rank=machine_rank, + num_machines=num_machines, + main_process_ip=main_process_ip, + main_process_port=main_process_port, + main_training_function=main_training_function, + deepspeed_config=deepspeed_config, + fsdp_config=fsdp_config, + megatron_lm_config=megatron_lm_config, + ipex_config=ipex_config, + mpirun_config=mpirun_config, + use_cpu=use_cpu, + rdzv_backend=rdzv_backend, + same_network=same_network, + commands=tpu_commands, + command_file=tpu_command_file, + tpu_env=tpu_env, + tpu_name=tpu_name, + tpu_vm=tpu_vm, + tpu_zone=tpu_zone, + tpu_use_sudo=tpu_use_sudo, + tpu_use_cluster=tpu_use_cluster, + dynamo_config=dynamo_config, + debug=debug, + enable_cpu_affinity=enable_cpu_affinity, + ) diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/config.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/config.py new file mode 100644 index 0000000000000000000000000000000000000000..72414f2abe62d76bd5133f4b0ed99bf34133f6f6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/config.py @@ -0,0 +1,89 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse +import os + +from accelerate.utils import ComputeEnvironment + +from .cluster import get_cluster_input +from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 +from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 +from .sagemaker import get_sagemaker_input + + +description = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" + + +def get_user_input(): + compute_environment = _ask_options( + "In which compute environment are you running?", + ["This machine", "AWS (Amazon SageMaker)"], + _convert_compute_environment, + ) + if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: + config = get_sagemaker_input() + else: + config = get_cluster_input() + return config + + +def config_command_parser(subparsers=None): + if subparsers is not None: + parser = subparsers.add_parser("config", description=description) + else: + parser = argparse.ArgumentParser("Accelerate config command", description=description) + + parser.add_argument( + "--config_file", + default=None, + help=( + "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " + "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " + "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " + "with 'huggingface'." + ), + ) + + if subparsers is not None: + parser.set_defaults(func=config_command) + return parser + + +def config_command(args): + config = get_user_input() + if args.config_file is not None: + config_file = args.config_file + else: + if not os.path.isdir(cache_dir): + os.makedirs(cache_dir) + config_file = default_yaml_config_file + + if config_file.endswith(".json"): + config.to_json_file(config_file) + else: + config.to_yaml_file(config_file) + print(f"accelerate configuration saved at {config_file}") + + +def main(): + parser = config_command_parser() + args = parser.parse_args() + config_command(args) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/config_args.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/config_args.py new file mode 100644 index 0000000000000000000000000000000000000000..c50f1c34a42d354903a80b506290958807a7b7c0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/config_args.py @@ -0,0 +1,243 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import json +import os +from dataclasses import dataclass +from enum import Enum +from typing import List, Optional, Union + +import yaml + +from ...utils import ComputeEnvironment, DistributedType, SageMakerDistributedType +from ...utils.constants import SAGEMAKER_PYTHON_VERSION, SAGEMAKER_PYTORCH_VERSION, SAGEMAKER_TRANSFORMERS_VERSION + + +hf_cache_home = os.path.expanduser( + os.environ.get("HF_HOME", os.path.join(os.environ.get("XDG_CACHE_HOME", "~/.cache"), "huggingface")) +) +cache_dir = os.path.join(hf_cache_home, "accelerate") +default_json_config_file = os.path.join(cache_dir, "default_config.yaml") +default_yaml_config_file = os.path.join(cache_dir, "default_config.yaml") + +# For backward compatibility: the default config is the json one if it's the only existing file. +if os.path.isfile(default_yaml_config_file) or not os.path.isfile(default_json_config_file): + default_config_file = default_yaml_config_file +else: + default_config_file = default_json_config_file + + +def load_config_from_file(config_file): + if config_file is not None: + if not os.path.isfile(config_file): + raise FileNotFoundError( + f"The passed configuration file `{config_file}` does not exist. " + "Please pass an existing file to `accelerate launch`, or use the default one " + "created through `accelerate config` and run `accelerate launch` " + "without the `--config_file` argument." + ) + else: + config_file = default_config_file + with open(config_file, encoding="utf-8") as f: + if config_file.endswith(".json"): + if ( + json.load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) + == ComputeEnvironment.LOCAL_MACHINE + ): + config_class = ClusterConfig + else: + config_class = SageMakerConfig + return config_class.from_json_file(json_file=config_file) + else: + if ( + yaml.safe_load(f).get("compute_environment", ComputeEnvironment.LOCAL_MACHINE) + == ComputeEnvironment.LOCAL_MACHINE + ): + config_class = ClusterConfig + else: + config_class = SageMakerConfig + return config_class.from_yaml_file(yaml_file=config_file) + + +@dataclass +class BaseConfig: + compute_environment: ComputeEnvironment + distributed_type: Union[DistributedType, SageMakerDistributedType] + mixed_precision: str + use_cpu: bool + debug: bool + + def to_dict(self): + result = self.__dict__ + # For serialization, it's best to convert Enums to strings (or their underlying value type). + for key, value in result.items(): + if isinstance(value, Enum): + result[key] = value.value + if isinstance(value, dict) and not bool(value): + result[key] = None + result = {k: v for k, v in result.items() if v is not None} + return result + + @classmethod + def from_json_file(cls, json_file=None): + json_file = default_json_config_file if json_file is None else json_file + with open(json_file, encoding="utf-8") as f: + config_dict = json.load(f) + if "compute_environment" not in config_dict: + config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE + if "mixed_precision" not in config_dict: + config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None + if "fp16" in config_dict: # Convert the config to the new format. + del config_dict["fp16"] + if "dynamo_backend" in config_dict: # Convert the config to the new format. + dynamo_backend = config_dict.pop("dynamo_backend") + config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend} + if "use_cpu" not in config_dict: + config_dict["use_cpu"] = False + if "debug" not in config_dict: + config_dict["debug"] = False + if "enable_cpu_affinity" not in config_dict: + config_dict["enable_cpu_affinity"] = False + extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) + if len(extra_keys) > 0: + raise ValueError( + f"The config file at {json_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" + " version or fix (and potentially remove) these keys from your config file." + ) + + return cls(**config_dict) + + def to_json_file(self, json_file): + with open(json_file, "w", encoding="utf-8") as f: + content = json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" + f.write(content) + + @classmethod + def from_yaml_file(cls, yaml_file=None): + yaml_file = default_yaml_config_file if yaml_file is None else yaml_file + with open(yaml_file, encoding="utf-8") as f: + config_dict = yaml.safe_load(f) + if "compute_environment" not in config_dict: + config_dict["compute_environment"] = ComputeEnvironment.LOCAL_MACHINE + if "mixed_precision" not in config_dict: + config_dict["mixed_precision"] = "fp16" if ("fp16" in config_dict and config_dict["fp16"]) else None + if isinstance(config_dict["mixed_precision"], bool) and not config_dict["mixed_precision"]: + config_dict["mixed_precision"] = "no" + if "fp16" in config_dict: # Convert the config to the new format. + del config_dict["fp16"] + if "dynamo_backend" in config_dict: # Convert the config to the new format. + dynamo_backend = config_dict.pop("dynamo_backend") + config_dict["dynamo_config"] = {} if dynamo_backend == "NO" else {"dynamo_backend": dynamo_backend} + if "use_cpu" not in config_dict: + config_dict["use_cpu"] = False + if "debug" not in config_dict: + config_dict["debug"] = False + if "enable_cpu_affinity" not in config_dict: + config_dict["enable_cpu_affinity"] = False + extra_keys = sorted(set(config_dict.keys()) - set(cls.__dataclass_fields__.keys())) + if len(extra_keys) > 0: + raise ValueError( + f"The config file at {yaml_file} had unknown keys ({extra_keys}), please try upgrading your `accelerate`" + " version or fix (and potentially remove) these keys from your config file." + ) + return cls(**config_dict) + + def to_yaml_file(self, yaml_file): + with open(yaml_file, "w", encoding="utf-8") as f: + yaml.safe_dump(self.to_dict(), f) + + def __post_init__(self): + if isinstance(self.compute_environment, str): + self.compute_environment = ComputeEnvironment(self.compute_environment) + if isinstance(self.distributed_type, str): + if self.compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: + self.distributed_type = SageMakerDistributedType(self.distributed_type) + else: + self.distributed_type = DistributedType(self.distributed_type) + if getattr(self, "dynamo_config", None) is None: + self.dynamo_config = {} + + +@dataclass +class ClusterConfig(BaseConfig): + num_processes: int + machine_rank: int = 0 + num_machines: int = 1 + gpu_ids: Optional[str] = None + main_process_ip: Optional[str] = None + main_process_port: Optional[int] = None + rdzv_backend: Optional[str] = "static" + same_network: Optional[bool] = False + main_training_function: str = "main" + enable_cpu_affinity: bool = False + + # args for deepspeed_plugin + deepspeed_config: dict = None + # args for fsdp + fsdp_config: dict = None + # args for megatron_lm + megatron_lm_config: dict = None + # args for ipex + ipex_config: dict = None + # args for mpirun + mpirun_config: dict = None + # args for TPU + downcast_bf16: bool = False + + # args for TPU pods + tpu_name: str = None + tpu_zone: str = None + tpu_use_cluster: bool = False + tpu_use_sudo: bool = False + command_file: str = None + commands: List[str] = None + tpu_vm: List[str] = None + tpu_env: List[str] = None + + # args for dynamo + dynamo_config: dict = None + + def __post_init__(self): + if self.deepspeed_config is None: + self.deepspeed_config = {} + if self.fsdp_config is None: + self.fsdp_config = {} + if self.megatron_lm_config is None: + self.megatron_lm_config = {} + if self.ipex_config is None: + self.ipex_config = {} + if self.mpirun_config is None: + self.mpirun_config = {} + return super().__post_init__() + + +@dataclass +class SageMakerConfig(BaseConfig): + ec2_instance_type: str + iam_role_name: str + image_uri: Optional[str] = None + profile: Optional[str] = None + region: str = "us-east-1" + num_machines: int = 1 + gpu_ids: str = "all" + base_job_name: str = f"accelerate-sagemaker-{num_machines}" + pytorch_version: str = SAGEMAKER_PYTORCH_VERSION + transformers_version: str = SAGEMAKER_TRANSFORMERS_VERSION + py_version: str = SAGEMAKER_PYTHON_VERSION + sagemaker_inputs_file: str = None + sagemaker_metrics_file: str = None + additional_args: dict = None + dynamo_config: dict = None diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/config_utils.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/config_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..091da5b03c771bccefc2cd21b047536fbc07bcbf --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/config_utils.py @@ -0,0 +1,101 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +from ...utils.dataclasses import ( + ComputeEnvironment, + DistributedType, + DynamoBackend, + PrecisionType, + SageMakerDistributedType, +) +from ..menu import BulletMenu + + +DYNAMO_BACKENDS = [ + "EAGER", + "AOT_EAGER", + "INDUCTOR", + "AOT_TS_NVFUSER", + "NVPRIMS_NVFUSER", + "CUDAGRAPHS", + "OFI", + "FX2TRT", + "ONNXRT", + "TENSORRT", + "IPEX", + "TVM", +] + + +def _ask_field(input_text, convert_value=None, default=None, error_message=None): + ask_again = True + while ask_again: + result = input(input_text) + try: + if default is not None and len(result) == 0: + return default + return convert_value(result) if convert_value is not None else result + except Exception: + if error_message is not None: + print(error_message) + + +def _ask_options(input_text, options=[], convert_value=None, default=0): + menu = BulletMenu(input_text, options) + result = menu.run(default_choice=default) + return convert_value(result) if convert_value is not None else result + + +def _convert_compute_environment(value): + value = int(value) + return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value]) + + +def _convert_distributed_mode(value): + value = int(value) + return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "MULTI_MLU", "XLA"][value]) + + +def _convert_dynamo_backend(value): + value = int(value) + return DynamoBackend(DYNAMO_BACKENDS[value]).value + + +def _convert_mixed_precision(value): + value = int(value) + return PrecisionType(["no", "fp16", "bf16", "fp8"][value]) + + +def _convert_sagemaker_distributed_mode(value): + value = int(value) + return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value]) + + +def _convert_yes_no_to_bool(value): + return {"yes": True, "no": False}[value.lower()] + + +class SubcommandHelpFormatter(argparse.RawDescriptionHelpFormatter): + """ + A custom formatter that will remove the usage line from the help message for subcommands. + """ + + def _format_usage(self, usage, actions, groups, prefix): + usage = super()._format_usage(usage, actions, groups, prefix) + usage = usage.replace(" [] ", "") + return usage diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/default.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/default.py new file mode 100644 index 0000000000000000000000000000000000000000..e33331b98e6c8eacbaf8e9710b40e2ca6fc88b3d --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/default.py @@ -0,0 +1,133 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from pathlib import Path + +import torch + +from ...utils import is_mlu_available, is_npu_available, is_xpu_available +from .config_args import ClusterConfig, default_json_config_file +from .config_utils import SubcommandHelpFormatter + + +description = "Create a default config file for Accelerate with only a few flags set." + + +def write_basic_config(mixed_precision="no", save_location: str = default_json_config_file, use_xpu: bool = False): + """ + Creates and saves a basic cluster config to be used on a local machine with potentially multiple GPUs. Will also + set CPU if it is a CPU-only machine. + + Args: + mixed_precision (`str`, *optional*, defaults to "no"): + Mixed Precision to use. Should be one of "no", "fp16", or "bf16" + save_location (`str`, *optional*, defaults to `default_json_config_file`): + Optional custom save location. Should be passed to `--config_file` when using `accelerate launch`. Default + location is inside the huggingface cache folder (`~/.cache/huggingface`) but can be overriden by setting + the `HF_HOME` environmental variable, followed by `accelerate/default_config.yaml`. + use_xpu (`bool`, *optional*, defaults to `False`): + Whether to use XPU if available. + """ + path = Path(save_location) + path.parent.mkdir(parents=True, exist_ok=True) + if path.exists(): + print( + f"Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`." + ) + return False + mixed_precision = mixed_precision.lower() + if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: + raise ValueError( + f"`mixed_precision` should be one of 'no', 'fp16', 'bf16', or 'fp8'. Received {mixed_precision}" + ) + config = { + "compute_environment": "LOCAL_MACHINE", + "mixed_precision": mixed_precision, + } + if is_mlu_available(): + num_mlus = torch.mlu.device_count() + config["num_processes"] = num_mlus + config["use_cpu"] = False + if num_mlus > 1: + config["distributed_type"] = "MULTI_MLU" + else: + config["distributed_type"] = "NO" + elif torch.cuda.is_available(): + num_gpus = torch.cuda.device_count() + config["num_processes"] = num_gpus + config["use_cpu"] = False + if num_gpus > 1: + config["distributed_type"] = "MULTI_GPU" + else: + config["distributed_type"] = "NO" + elif is_xpu_available() and use_xpu: + num_xpus = torch.xpu.device_count() + config["num_processes"] = num_xpus + config["use_cpu"] = False + if num_xpus > 1: + config["distributed_type"] = "MULTI_XPU" + else: + config["distributed_type"] = "NO" + elif is_npu_available(): + num_npus = torch.npu.device_count() + config["num_processes"] = num_npus + config["use_cpu"] = False + if num_npus > 1: + config["distributed_type"] = "MULTI_NPU" + else: + config["distributed_type"] = "NO" + else: + num_xpus = 0 + config["use_cpu"] = True + config["num_processes"] = 1 + config["distributed_type"] = "NO" + config["debug"] = False + config = ClusterConfig(**config) + config.to_json_file(path) + return path + + +def default_command_parser(parser, parents): + parser = parser.add_parser("default", parents=parents, help=description, formatter_class=SubcommandHelpFormatter) + parser.add_argument( + "--config_file", + default=default_json_config_file, + help=( + "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " + "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " + "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " + "with 'huggingface'." + ), + dest="save_location", + ) + + parser.add_argument( + "--mixed_precision", + choices=["no", "fp16", "bf16"], + type=str, + help="Whether or not to use mixed precision training. " + "Choose between FP16 and BF16 (bfloat16) training. " + "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.", + default="no", + ) + parser.set_defaults(func=default_config_command) + return parser + + +def default_config_command(args): + config_file = write_basic_config(args.mixed_precision, args.save_location) + if config_file: + print(f"accelerate configuration saved at {config_file}") diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py new file mode 100644 index 0000000000000000000000000000000000000000..1e3491fee0ad28df82683a89d128bbc097053c2f --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/sagemaker.py @@ -0,0 +1,267 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import json +import os + +from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES +from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType +from ...utils.imports import is_boto3_available +from .config_args import SageMakerConfig +from .config_utils import ( + DYNAMO_BACKENDS, + _ask_field, + _ask_options, + _convert_dynamo_backend, + _convert_mixed_precision, + _convert_sagemaker_distributed_mode, + _convert_yes_no_to_bool, +) + + +if is_boto3_available(): + import boto3 # noqa: F401 + + +def _create_iam_role_for_sagemaker(role_name): + iam_client = boto3.client("iam") + + sagemaker_trust_policy = { + "Version": "2012-10-17", + "Statement": [ + {"Effect": "Allow", "Principal": {"Service": "sagemaker.amazonaws.com"}, "Action": "sts:AssumeRole"} + ], + } + try: + # create the role, associated with the chosen trust policy + iam_client.create_role( + RoleName=role_name, AssumeRolePolicyDocument=json.dumps(sagemaker_trust_policy, indent=2) + ) + policy_document = { + "Version": "2012-10-17", + "Statement": [ + { + "Effect": "Allow", + "Action": [ + "sagemaker:*", + "ecr:GetDownloadUrlForLayer", + "ecr:BatchGetImage", + "ecr:BatchCheckLayerAvailability", + "ecr:GetAuthorizationToken", + "cloudwatch:PutMetricData", + "cloudwatch:GetMetricData", + "cloudwatch:GetMetricStatistics", + "cloudwatch:ListMetrics", + "logs:CreateLogGroup", + "logs:CreateLogStream", + "logs:DescribeLogStreams", + "logs:PutLogEvents", + "logs:GetLogEvents", + "s3:CreateBucket", + "s3:ListBucket", + "s3:GetBucketLocation", + "s3:GetObject", + "s3:PutObject", + ], + "Resource": "*", + } + ], + } + # attach policy to role + iam_client.put_role_policy( + RoleName=role_name, + PolicyName=f"{role_name}_policy_permission", + PolicyDocument=json.dumps(policy_document, indent=2), + ) + except iam_client.exceptions.EntityAlreadyExistsException: + print(f"role {role_name} already exists. Using existing one") + + +def _get_iam_role_arn(role_name): + iam_client = boto3.client("iam") + return iam_client.get_role(RoleName=role_name)["Role"]["Arn"] + + +def get_sagemaker_input(): + credentials_configuration = _ask_options( + "How do you want to authorize?", + ["AWS Profile", "Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) "], + int, + ) + aws_profile = None + if credentials_configuration == 0: + aws_profile = _ask_field("Enter your AWS Profile name: [default] ", default="default") + os.environ["AWS_PROFILE"] = aws_profile + else: + print( + "Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with," + "`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`" + ) + aws_access_key_id = _ask_field("AWS Access Key ID: ") + os.environ["AWS_ACCESS_KEY_ID"] = aws_access_key_id + + aws_secret_access_key = _ask_field("AWS Secret Access Key: ") + os.environ["AWS_SECRET_ACCESS_KEY"] = aws_secret_access_key + + aws_region = _ask_field("Enter your AWS Region: [us-east-1]", default="us-east-1") + os.environ["AWS_DEFAULT_REGION"] = aws_region + + role_management = _ask_options( + "Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?", + ["Provide IAM Role name", "Create new IAM role using credentials"], + int, + ) + if role_management == 0: + iam_role_name = _ask_field("Enter your IAM role name: ") + else: + iam_role_name = "accelerate_sagemaker_execution_role" + print(f'Accelerate will create an iam role "{iam_role_name}" using the provided credentials') + _create_iam_role_for_sagemaker(iam_role_name) + + is_custom_docker_image = _ask_field( + "Do you want to use custom Docker image? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + docker_image = None + if is_custom_docker_image: + docker_image = _ask_field("Enter your Docker image: ", lambda x: str(x).lower()) + + is_sagemaker_inputs_enabled = _ask_field( + "Do you want to provide SageMaker input channels with data locations? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + sagemaker_inputs_file = None + if is_sagemaker_inputs_enabled: + sagemaker_inputs_file = _ask_field( + "Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): ", + lambda x: str(x).lower(), + ) + + is_sagemaker_metrics_enabled = _ask_field( + "Do you want to enable SageMaker metrics? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + sagemaker_metrics_file = None + if is_sagemaker_metrics_enabled: + sagemaker_metrics_file = _ask_field( + "Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): ", + lambda x: str(x).lower(), + ) + + distributed_type = _ask_options( + "What is the distributed mode?", + ["No distributed training", "Data parallelism"], + _convert_sagemaker_distributed_mode, + ) + dynamo_config = {} + use_dynamo = _ask_field( + "Do you wish to optimize your script with torch dynamo?[yes/NO]:", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + if use_dynamo: + prefix = "dynamo_" + dynamo_config[prefix + "backend"] = _ask_options( + "Which dynamo backend would you like to use?", + [x.lower() for x in DYNAMO_BACKENDS], + _convert_dynamo_backend, + default=2, + ) + use_custom_options = _ask_field( + "Do you want to customize the defaults sent to torch.compile? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + if use_custom_options: + dynamo_config[prefix + "mode"] = _ask_options( + "Which mode do you want to use?", + TORCH_DYNAMO_MODES, + lambda x: TORCH_DYNAMO_MODES[int(x)], + default="default", + ) + dynamo_config[prefix + "use_fullgraph"] = _ask_field( + "Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + dynamo_config[prefix + "use_dynamic"] = _ask_field( + "Do you want to enable dynamic shape tracing? [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + ec2_instance_query = "Which EC2 instance type you want to use for your training?" + if distributed_type != SageMakerDistributedType.NO: + ec2_instance_type = _ask_options( + ec2_instance_query, SAGEMAKER_PARALLEL_EC2_INSTANCES, lambda x: SAGEMAKER_PARALLEL_EC2_INSTANCES[int(x)] + ) + else: + ec2_instance_query += "? [ml.p3.2xlarge]:" + ec2_instance_type = _ask_field(ec2_instance_query, lambda x: str(x).lower(), default="ml.p3.2xlarge") + + debug = False + if distributed_type != SageMakerDistributedType.NO: + debug = _ask_field( + "Should distributed operations be checked while running for errors? This can avoid timeout issues but will be slower. [yes/NO]: ", + _convert_yes_no_to_bool, + default=False, + error_message="Please enter yes or no.", + ) + + num_machines = 1 + if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): + num_machines = _ask_field( + "How many machines do you want use? [1]: ", + int, + default=1, + ) + + mixed_precision = _ask_options( + "Do you wish to use FP16 or BF16 (mixed precision)?", + ["no", "fp16", "bf16", "fp8"], + _convert_mixed_precision, + ) + + if use_dynamo and mixed_precision == "no": + print( + "Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts." + ) + + return SageMakerConfig( + image_uri=docker_image, + compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER, + distributed_type=distributed_type, + use_cpu=False, + dynamo_config=dynamo_config, + ec2_instance_type=ec2_instance_type, + profile=aws_profile, + region=aws_region, + iam_role_name=iam_role_name, + mixed_precision=mixed_precision, + num_machines=num_machines, + sagemaker_inputs_file=sagemaker_inputs_file, + sagemaker_metrics_file=sagemaker_metrics_file, + debug=debug, + ) diff --git a/venv/lib/python3.10/site-packages/accelerate/commands/config/update.py b/venv/lib/python3.10/site-packages/accelerate/commands/config/update.py new file mode 100644 index 0000000000000000000000000000000000000000..5f025594b04ada3e3a78687befc5c1bc1d236adf --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/commands/config/update.py @@ -0,0 +1,63 @@ +#!/usr/bin/env python + +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from pathlib import Path + +from .config_args import default_config_file, load_config_from_file +from .config_utils import SubcommandHelpFormatter + + +description = "Update an existing config file with the latest defaults while maintaining the old configuration." + + +def update_config(args): + """ + Update an existing config file with the latest defaults while maintaining the old configuration. + """ + config_file = args.config_file + if config_file is None and Path(default_config_file).exists(): + config_file = default_config_file + elif not Path(config_file).exists(): + raise ValueError(f"The passed config file located at {config_file} doesn't exist.") + config = load_config_from_file(config_file) + + if config_file.endswith(".json"): + config.to_json_file(config_file) + else: + config.to_yaml_file(config_file) + return config_file + + +def update_command_parser(parser, parents): + parser = parser.add_parser("update", parents=parents, help=description, formatter_class=SubcommandHelpFormatter) + parser.add_argument( + "--config_file", + default=None, + help=( + "The path to the config file to update. Will default to a file named default_config.yaml in the cache " + "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " + "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " + "with 'huggingface'." + ), + ) + + parser.set_defaults(func=update_config_command) + return parser + + +def update_config_command(args): + config_file = update_config(args) + print(f"Sucessfully updated the configuration file at {config_file}.") diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/__init__.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bd5f6f15da98737459dcf7ab05b68e87be9a384d --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/__init__.py @@ -0,0 +1,50 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from .testing import ( + DEFAULT_LAUNCH_COMMAND, + are_the_same_tensors, + assert_exception, + device_count, + execute_subprocess_async, + get_launch_command, + memory_allocated_func, + path_in_accelerate_package, + require_bnb, + require_cpu, + require_cuda, + require_huggingface_suite, + require_mlu, + require_mps, + require_multi_device, + require_multi_gpu, + require_multi_xpu, + require_non_cpu, + require_non_torch_xla, + require_non_xpu, + require_npu, + require_pippy, + require_single_device, + require_single_gpu, + require_single_xpu, + require_torch_min_version, + require_tpu, + require_xpu, + skip, + slow, + torch_device, +) +from .training import RegressionDataset, RegressionModel, RegressionModel4XPU + + +from .scripts import test_script, test_sync, test_ops # isort: skip diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a136e1caeee33ab1aa83a417c07f8cc54f7718a2 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/examples.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/examples.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..fab37efb095fdb21277a6208857c93cff724c184 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/examples.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/testing.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/testing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..da700dc54ac9fa6e180ed6349aa62cb71ffd766a Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/testing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/training.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/training.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..67be8c1cf5486ea861b97b1d94fb9c5c0b4ebde1 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/__pycache__/training.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/examples.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/examples.py new file mode 100644 index 0000000000000000000000000000000000000000..ed41d38c9092385ba9730472aa10b5208f48c67b --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/examples.py @@ -0,0 +1,146 @@ +#!/usr/bin/env python + +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +A collection of utilities for comparing `examples/complete_*_example.py` scripts with the capabilities inside of each +`examples/by_feature` example. `compare_against_test` is the main function that should be used when testing, while the +others are used to either get the code that matters, or to preprocess them (such as stripping comments) +""" + +import os +from typing import List + + +def get_function_contents_by_name(lines: List[str], name: str): + """ + Extracts a function from `lines` of segmented source code with the name `name`. + + Args: + lines (`List[str]`): + Source code of a script seperated by line. + name (`str`): + The name of the function to extract. Should be either `training_function` or `main` + """ + if name != "training_function" and name != "main": + raise ValueError(f"Incorrect function name passed: {name}, choose either 'main' or 'training_function'") + good_lines, found_start = [], False + for line in lines: + if not found_start and f"def {name}" in line: + found_start = True + good_lines.append(line) + continue + if found_start: + if name == "training_function" and "def main" in line: + return good_lines + if name == "main" and "if __name__" in line: + return good_lines + good_lines.append(line) + + +def clean_lines(lines: List[str]): + """ + Filters `lines` and removes any entries that start with a comment ('#') or is just a newline ('\n') + + Args: + lines (`List[str]`): + Source code of a script seperated by line. + """ + return [line for line in lines if not line.lstrip().startswith("#") and line != "\n"] + + +def compare_against_test(base_filename: str, feature_filename: str, parser_only: bool, secondary_filename: str = None): + """ + Tests whether the additional code inside of `feature_filename` was implemented in `base_filename`. This should be + used when testing to see if `complete_*_.py` examples have all of the implementations from each of the + `examples/by_feature/*` scripts. + + It utilizes `nlp_example.py` to extract out all of the repeated training code, so that only the new additional code + is examined and checked. If something *other* than `nlp_example.py` should be used, such as `cv_example.py` for the + `complete_cv_example.py` script, it should be passed in for the `secondary_filename` parameter. + + Args: + base_filename (`str` or `os.PathLike`): + The filepath of a single "complete" example script to test, such as `examples/complete_cv_example.py` + feature_filename (`str` or `os.PathLike`): + The filepath of a single feature example script. The contents of this script are checked to see if they + exist in `base_filename` + parser_only (`bool`): + Whether to compare only the `main()` sections in both files, or to compare the contents of + `training_loop()` + secondary_filename (`str`, *optional*): + A potential secondary filepath that should be included in the check. This function extracts the base + functionalities off of "examples/nlp_example.py", so if `base_filename` is a script other than + `complete_nlp_example.py`, the template script should be included here. Such as `examples/cv_example.py` + """ + with open(base_filename) as f: + base_file_contents = f.readlines() + with open(os.path.abspath(os.path.join("examples", "nlp_example.py"))) as f: + full_file_contents = f.readlines() + with open(feature_filename) as f: + feature_file_contents = f.readlines() + if secondary_filename is not None: + with open(secondary_filename) as f: + secondary_file_contents = f.readlines() + + # This is our base, we remove all the code from here in our `full_filename` and `feature_filename` to find the new content + if parser_only: + base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "main")) + full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "main")) + feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "main")) + if secondary_filename is not None: + secondary_file_func = clean_lines(get_function_contents_by_name(secondary_file_contents, "main")) + else: + base_file_func = clean_lines(get_function_contents_by_name(base_file_contents, "training_function")) + full_file_func = clean_lines(get_function_contents_by_name(full_file_contents, "training_function")) + feature_file_func = clean_lines(get_function_contents_by_name(feature_file_contents, "training_function")) + if secondary_filename is not None: + secondary_file_func = clean_lines( + get_function_contents_by_name(secondary_file_contents, "training_function") + ) + + _dl_line = "train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size)\n" + + # Specific code in our script that differs from the full version, aka what is new + new_feature_code = [] + passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement + it = iter(feature_file_func) + for i in range(len(feature_file_func) - 1): + if i not in passed_idxs: + line = next(it) + if (line not in full_file_func) and (line.lstrip() != _dl_line): + if "TESTING_MOCKED_DATALOADERS" not in line: + new_feature_code.append(line) + passed_idxs.append(i) + else: + # Skip over the `config['num_epochs'] = 2` statement + _ = next(it) + + # Extract out just the new parts from the full_file_training_func + new_full_example_parts = [] + passed_idxs = [] # We keep track of the idxs just in case it's a repeated statement + for i, line in enumerate(base_file_func): + if i not in passed_idxs: + if (line not in full_file_func) and (line.lstrip() != _dl_line): + if "TESTING_MOCKED_DATALOADERS" not in line: + new_full_example_parts.append(line) + passed_idxs.append(i) + + # Finally, get the overall diff + diff_from_example = [line for line in new_feature_code if line not in new_full_example_parts] + if secondary_filename is not None: + diff_from_two = [line for line in full_file_contents if line not in secondary_file_func] + diff_from_example = [line for line in diff_from_example if line not in diff_from_two] + + return diff_from_example diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__init__.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c9cbe26c257b515f657c05e1996d517e69613972 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__init__.py @@ -0,0 +1,13 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..41be3ef50e064a199b2e87bcd82a1b5bb872cca6 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_cli.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_cli.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9d1469859542757e06d9156c5b9e610e92dd0109 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_cli.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_distributed_data_loop.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_distributed_data_loop.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab4790a90460ce263c7cc7d2ec1dd302636274a5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_distributed_data_loop.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_notebook.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_notebook.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..cd0fc04dcbf2e5038e8896f0d6afdd8d7219485b Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_notebook.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_ops.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_ops.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3fcd87e24c0c89138fb293027bf5b91783517534 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_ops.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_script.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_script.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..daac1ca5710ce4bcb599197f01773ef1928650e0 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_script.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_sync.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_sync.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3d64ef5f77dd6e7ef154336bac9cc91d9d9ed819 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/__pycache__/test_sync.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__init__.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..c9cbe26c257b515f657c05e1996d517e69613972 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__init__.py @@ -0,0 +1,13 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d834db5d974da656af44110048d4b137e3624cd4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_checkpointing.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_checkpointing.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f0596e9195fdc3d375792f0e4e15513fcc8dac1b Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_checkpointing.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_metrics.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_metrics.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8708480ffcd3d9c7d8e48a969e97721d9c9c3ba9 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_metrics.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_peak_memory_usage.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_peak_memory_usage.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..86f7da831a76b25dbb84a4e42c6f8c7ecaac5726 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_peak_memory_usage.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_performance.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_performance.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..272ba2440fb3303c2dc834fd328e8dd53209709a Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_performance.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_pippy.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_pippy.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4b9de22bfad0eb83580e5fc3bc7c0de076528f67 Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_pippy.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_zero3_integration.cpython-310.pyc b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_zero3_integration.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7cf4ab2544707b8b4bb123cae58131a77f0ae7ad Binary files /dev/null and b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/__pycache__/test_zero3_integration.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_checkpointing.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_checkpointing.py new file mode 100644 index 0000000000000000000000000000000000000000..41c77c7ec5e6e2475a795efdb54702600eac0282 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_checkpointing.py @@ -0,0 +1,268 @@ +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import json +import os + +import evaluate +import torch +from datasets import load_dataset +from torch.optim import AdamW +from torch.utils.data import DataLoader +from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed + +from accelerate import Accelerator, DistributedType +from accelerate.utils.deepspeed import DummyOptim, DummyScheduler + + +MAX_GPU_BATCH_SIZE = 16 +EVAL_BATCH_SIZE = 32 + + +def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"): + """ + Creates a set of `DataLoader`s for the `glue` dataset. + + Args: + accelerator (`Accelerator`): + An `Accelerator` object + batch_size (`int`, *optional*): + The batch size for the train and validation DataLoaders. + model_name (`str`, *optional*): + """ + tokenizer = AutoTokenizer.from_pretrained(model_name) + datasets = load_dataset("glue", "mrpc") + + def tokenize_function(examples): + # max_length=None => use the model max length (it's actually the default) + outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) + return outputs + + # Apply the method we just defined to all the examples in all the splits of the dataset + tokenized_datasets = datasets.map( + tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False + ) + + # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the + # transformers library + tokenized_datasets = tokenized_datasets.rename_column("label", "labels") + + def collate_fn(examples): + # On TPU it's best to pad everything to the same length or training will be very slow. + if accelerator.distributed_type == DistributedType.XLA: + return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") + return tokenizer.pad(examples, padding="longest", return_tensors="pt") + + # Instantiate dataloaders. + train_dataloader = DataLoader( + tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size + ) + eval_dataloader = DataLoader( + tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE + ) + + return train_dataloader, eval_dataloader + + +def evaluation_loop(accelerator, model, eval_dataloader, metric): + model.eval() + samples_seen = 0 + for step, batch in enumerate(eval_dataloader): + # We could avoid this line since we set the accelerator with `device_placement=True`. + batch.to(accelerator.device) + with torch.no_grad(): + outputs = model(**batch) + predictions = outputs.logits.argmax(dim=-1) + # It is slightly faster to call this once, than multiple times + predictions, references = accelerator.gather( + (predictions, batch["labels"]) + ) # If we are in a multiprocess environment, the last batch has duplicates + if accelerator.use_distributed: + if step == len(eval_dataloader) - 1: + predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] + references = references[: len(eval_dataloader.dataset) - samples_seen] + else: + samples_seen += references.shape[0] + metric.add_batch( + predictions=predictions, + references=references, + ) + + eval_metric = metric.compute() + return eval_metric["accuracy"] + + +def training_function(config, args): + # Initialize accelerator + accelerator = Accelerator() + + # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs + lr = config["lr"] + num_epochs = int(config["num_epochs"]) + seed = int(config["seed"]) + batch_size = int(config["batch_size"]) + model_name = args.model_name_or_path + + set_seed(seed) + train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name) + + # Instantiate the model (we build the model here so that the seed also control new weights initialization) + model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) + + # Instantiate optimizer + optimizer_cls = ( + AdamW + if accelerator.state.deepspeed_plugin is None + or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config + else DummyOptim + ) + optimizer = optimizer_cls(params=model.parameters(), lr=lr) + + if accelerator.state.deepspeed_plugin is not None: + gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ + "gradient_accumulation_steps" + ] + else: + gradient_accumulation_steps = 1 + max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps + + # Instantiate scheduler + if ( + accelerator.state.deepspeed_plugin is None + or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config + ): + lr_scheduler = get_linear_schedule_with_warmup( + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=max_training_steps, + ) + else: + lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) + + # Prepare everything + # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the + # prepare method. + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler + ) + + # We need to keep track of how many total steps we have iterated over + overall_step = 0 + # We also need to keep track of the stating epoch so files are named properly + starting_epoch = 0 + metric = evaluate.load("glue", "mrpc") + ending_epoch = num_epochs + + if args.partial_train_epoch is not None: + ending_epoch = args.partial_train_epoch + + if args.resume_from_checkpoint: + accelerator.load_state(args.resume_from_checkpoint) + epoch_string = args.resume_from_checkpoint.split("epoch_")[1] + state_epoch_num = "" + for char in epoch_string: + if char.isdigit(): + state_epoch_num += char + else: + break + starting_epoch = int(state_epoch_num) + 1 + accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) + accelerator.print("resumed checkpoint performance:", accuracy) + accelerator.print("resumed checkpoint's scheduler's lr:", lr_scheduler.get_lr()[0]) + accelerator.print("resumed optimizers's lr:", optimizer.param_groups[0]["lr"]) + with open(os.path.join(args.output_dir, f"state_{starting_epoch - 1}.json")) as f: + resumed_state = json.load(f) + assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" + assert ( + resumed_state["lr"] == lr_scheduler.get_lr()[0] + ), "Scheduler learning rate mismatch, loading from checkpoint failed" + assert ( + resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] + ), "Optimizer learning rate mismatch, loading from checkpoint failed" + assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" + return + + # Now we train the model + state = {} + for epoch in range(starting_epoch, ending_epoch): + model.train() + for step, batch in enumerate(train_dataloader): + outputs = model(**batch) + loss = outputs.loss + loss = loss / gradient_accumulation_steps + accelerator.backward(loss) + if step % gradient_accumulation_steps == 0: + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + overall_step += 1 + output_dir = f"epoch_{epoch}" + output_dir = os.path.join(args.output_dir, output_dir) + accelerator.save_state(output_dir) + accuracy = evaluation_loop(accelerator, model, eval_dataloader, metric) + state["accuracy"] = accuracy + state["lr"] = lr_scheduler.get_lr()[0] + state["optimizer_lr"] = optimizer.param_groups[0]["lr"] + state["epoch"] = epoch + state["step"] = overall_step + accelerator.print(f"epoch {epoch}:", state) + + accelerator.wait_for_everyone() + if accelerator.is_main_process: + with open(os.path.join(args.output_dir, f"state_{epoch}.json"), "w") as f: + json.dump(state, f) + + +def main(): + parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") + parser.add_argument( + "--model_name_or_path", + type=str, + default="bert-base-cased", + help="Path to pretrained model or model identifier from huggingface.co/models.", + required=False, + ) + parser.add_argument( + "--output_dir", + type=str, + default=".", + help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", + ) + parser.add_argument( + "--resume_from_checkpoint", + type=str, + default=None, + help="If the training should continue from a checkpoint folder.", + ) + parser.add_argument( + "--partial_train_epoch", + type=int, + default=None, + help="If passed, the training will stop after this number of epochs.", + ) + parser.add_argument( + "--num_epochs", + type=int, + default=2, + help="Number of train epochs.", + ) + args = parser.parse_args() + config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} + + training_function(config, args) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_metrics.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_metrics.py new file mode 100644 index 0000000000000000000000000000000000000000..9ac13aba6266f31f1e0f9eb41b961fc2933d00ab --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_metrics.py @@ -0,0 +1,306 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import logging +import math +import os +from copy import deepcopy + +import datasets +import evaluate +import torch +import transformers +from datasets import load_dataset +from torch.utils.data import DataLoader, IterableDataset +from transformers import AutoModelForSequenceClassification, AutoTokenizer + +from accelerate import Accelerator, DataLoaderConfiguration, DistributedType +from accelerate.data_loader import DataLoaderDispatcher +from accelerate.test_utils import RegressionDataset, RegressionModel, torch_device +from accelerate.utils import is_torch_xla_available, set_seed + + +os.environ["TRANSFORMERS_NO_ADVISORY_WARNINGS"] = "true" + + +class ListHandler(logging.Handler): + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + self.logs = [] + + def emit(self, record): + self.logs.append(record) + + +def get_basic_setup(accelerator, num_samples=82, batch_size=16): + "Returns everything needed to perform basic training" + set_seed(42) + model = RegressionModel() + ddp_model = deepcopy(model) + dset = RegressionDataset(length=num_samples) + dataloader = DataLoader(dset, batch_size=batch_size) + model.to(accelerator.device) + ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader) + return model, ddp_model, dataloader + + +def get_dataloader(accelerator: Accelerator, use_longest=False): + tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/mrpc-bert-base-cased") + dataset = load_dataset("glue", "mrpc", split="validation") + + def tokenize_function(examples): + outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) + return outputs + + with accelerator.main_process_first(): + tokenized_datasets = dataset.map( + tokenize_function, + batched=True, + remove_columns=["idx", "sentence1", "sentence2"], + ) + + tokenized_datasets = tokenized_datasets.rename_column("label", "labels") + + def collate_fn(examples): + if use_longest: + return tokenizer.pad(examples, padding="longest", return_tensors="pt") + return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") + + return DataLoader(tokenized_datasets, shuffle=False, collate_fn=collate_fn, batch_size=16) + + +def get_mrpc_setup(dispatch_batches, split_batches): + dataloader_config = DataLoaderConfiguration(dispatch_batches=dispatch_batches, split_batches=split_batches) + accelerator = Accelerator(dataloader_config=dataloader_config) + dataloader = get_dataloader(accelerator, not dispatch_batches) + model = AutoModelForSequenceClassification.from_pretrained( + "hf-internal-testing/mrpc-bert-base-cased", return_dict=True + ) + ddp_model, ddp_dataloader = accelerator.prepare(model, dataloader) + return { + "ddp": [ddp_model, ddp_dataloader, torch_device], + "no": [model, dataloader, accelerator.device], + }, accelerator + + +def generate_predictions(model, dataloader, accelerator): + logits_and_targets = [] + for batch in dataloader: + input, target = batch.values() + with torch.no_grad(): + logit = model(input) + logit, target = accelerator.gather_for_metrics((logit, target)) + logits_and_targets.append((logit, target)) + logits, targs = [], [] + for logit, targ in logits_and_targets: + logits.append(logit) + targs.append(targ) + logits, targs = torch.cat(logits), torch.cat(targs) + return logits, targs + + +def test_torch_metrics( + accelerator: Accelerator, num_samples=82, dispatch_batches=False, split_batches=False, batch_size=16 +): + _, ddp_model, dataloader = get_basic_setup(accelerator, num_samples, batch_size) + logits, _ = generate_predictions(ddp_model, dataloader, accelerator) + assert ( + len(logits) == num_samples + ), f"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(logits)}" + + +def test_mrpc(dispatch_batches: bool = False, split_batches: bool = False): + metric = evaluate.load("glue", "mrpc") + setup, accelerator = get_mrpc_setup(dispatch_batches, split_batches) + # First do baseline + model, dataloader, device = setup["no"] + model.to(device) + model.eval() + for batch in dataloader: + batch.to(device) + with torch.inference_mode(): + outputs = model(**batch) + preds = outputs.logits.argmax(dim=-1) + metric.add_batch(predictions=preds, references=batch["labels"]) + baseline = metric.compute() + + # Then do distributed + model, dataloader, device = setup["ddp"] + model.eval() + for batch in dataloader: + with torch.inference_mode(): + outputs = model(**batch) + preds = outputs.logits.argmax(dim=-1) + references = batch["labels"] + preds, references = accelerator.gather_for_metrics((preds, references)) + metric.add_batch(predictions=preds, references=references) + distributed = metric.compute() + + for key in "accuracy f1".split(): + assert math.isclose( + baseline[key], distributed[key] + ), f"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" + + +def test_gather_for_metrics_with_non_tensor_objects_iterable_dataset(): + class DummyIterableDataset(IterableDataset): + def __init__(self, data): + self.data = data + + def __len__(self): + return len(self.data) + + def __iter__(self): + yield from self.data + + iterable_dataset = DummyIterableDataset([n for n in range(30)]) + dataloader = DataLoader(iterable_dataset, batch_size=4) + accelerator = Accelerator() + prepared_dataloader = accelerator.prepare(dataloader) + + if accelerator.is_main_process: + logger = logging.root.manager.loggerDict["accelerate.accelerator"] + list_handler = ListHandler() + logger.addHandler(list_handler) + + batches_for_metrics = [] + for batch in prepared_dataloader: + batches_for_metrics.append(accelerator.gather_for_metrics(batch)) + + assert torch.cat(batches_for_metrics).size(0) == 30 + + if accelerator.is_main_process: + assert len(list_handler.logs) == 0 + logger.removeHandler(list_handler) + + +def test_gather_for_metrics_with_iterable_dataset(): + class DummyIterableDataset(IterableDataset): + def __init__(self, data): + self.data = data + + def __len__(self): + return len(self.data) + + def __iter__(self): + yield from self.data + + iterable_dataset = DummyIterableDataset(torch.as_tensor(range(30))) + dataloader = DataLoader(iterable_dataset, batch_size=4) + + accelerator = Accelerator() + prepared_dataloader = accelerator.prepare(dataloader) + + assert isinstance(prepared_dataloader, DataLoaderDispatcher) + + if accelerator.is_main_process: + logger = logging.root.manager.loggerDict["accelerate.accelerator"] + list_handler = ListHandler() + logger.addHandler(list_handler) + + batches_for_metrics = [] + for batch in prepared_dataloader: + batches_for_metrics.append(accelerator.gather_for_metrics(batch)) + + assert torch.cat(batches_for_metrics).size(0) == 30 + + if accelerator.is_main_process: + assert len(list_handler.logs) == 0 + + logger.removeHandler(list_handler) + + +def test_gather_for_metrics_drop_last(): + accelerator = Accelerator() + per_device_batch_size = 5 + num_items = (10 * accelerator.num_processes) + 1 + dataloader = DataLoader(range(num_items), batch_size=per_device_batch_size, drop_last=True) + dataloader = accelerator.prepare(dataloader) + + iterator = iter(dataloader) + next(iterator) # Skip first batch tensor([0, 1, 2, 3, 4], device='cuda:0') + batch = next(iterator) + gathered_items = accelerator.gather_for_metrics(batch) + + # Should return a full set of complete batches from each GPU + num_expected_items = per_device_batch_size * accelerator.num_processes + assert gathered_items.size(0) == ( + num_expected_items + ), f"Expected number of items: {num_expected_items}, Actual: {gathered_items.size(0)}" + + +def main(): + dataloader_config = DataLoaderConfiguration(split_batches=False, dispatch_batches=False) + accelerator = Accelerator(dataloader_config=dataloader_config) + if accelerator.is_local_main_process: + datasets.utils.logging.set_verbosity_warning() + transformers.utils.logging.set_verbosity_warning() + else: + datasets.utils.logging.set_verbosity_error() + transformers.utils.logging.set_verbosity_error() + # TorchXLA does not support batch dispatching. 'put_on_device' is always False for + # TorchXLA, which can cause a value error in 'prepare_data_loader' function. + dispatch_batches_options = [False] if accelerator.state.distributed_type == DistributedType.XLA else [True, False] + + # Temporarily close this test for TorchXLA due to the 'Cannot set version_counter for + # inference tensor' error in inference mode. Reopen it after TorchXLA fixes this bug. + # These are a bit slower so they should only be ran on the GPU or TPU + if accelerator.device.type != "cpu" and not is_torch_xla_available(): + if accelerator.is_local_main_process: + print("**Testing gather_for_metrics**") + for split_batches in [True, False]: + for dispatch_batches in dispatch_batches_options: + if accelerator.is_local_main_process: + print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`") + test_mrpc(dispatch_batches, split_batches) + accelerator.state._reset_state() + print("test_gather_for_metrics_with_iterable_dataset") + test_gather_for_metrics_with_iterable_dataset() + print("test gather_for_metrics_with_non_tensor_objects_iterable_dataset") + test_gather_for_metrics_with_non_tensor_objects_iterable_dataset() + + # MpDeviceLoader in TorchXLA is an asynchronous loader that preloads several batches into cache. + # This can cause the 'end_of_dataloader' of DataLoaderStateMixin to be set earlier than intended. + # Skip this test when TorchXLA is enabled. + if accelerator.state.distributed_type != DistributedType.XLA: + if accelerator.is_local_main_process: + print("**Test torch metrics**") + for split_batches in [True, False]: + for dispatch_batches in dispatch_batches_options: + dataloader_config = DataLoaderConfiguration( + split_batches=split_batches, dispatch_batches=dispatch_batches + ) + accelerator = Accelerator(dataloader_config=dataloader_config) + if accelerator.is_local_main_process: + print(f"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99") + test_torch_metrics(accelerator, 99) + accelerator.state._reset_state() + if accelerator.is_local_main_process: + print("**Test last batch is not dropped when perfectly divisible**") + accelerator = Accelerator() + test_torch_metrics(accelerator, 512) + accelerator.state._reset_state() + if accelerator.is_local_main_process: + print("**Test that `drop_last` is taken into account**") + test_gather_for_metrics_drop_last() + accelerator.state._reset_state() + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py new file mode 100644 index 0000000000000000000000000000000000000000..aeb55f6c87d7831ed5d7f370a4b9d7810777bd3e --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_peak_memory_usage.py @@ -0,0 +1,282 @@ +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import gc +import json +import os + +import torch +from datasets import load_dataset +from torch.optim import AdamW +from torch.utils.data import DataLoader +from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed + +from accelerate import Accelerator, DistributedType +from accelerate.utils import is_mlu_available, is_npu_available, is_xpu_available +from accelerate.utils.deepspeed import DummyOptim, DummyScheduler + + +MAX_GPU_BATCH_SIZE = 16 +EVAL_BATCH_SIZE = 32 + + +# Converting Bytes to Megabytes +def b2mb(x): + return int(x / 2**20) + + +# This context manager is used to track the peak memory usage of the process +class TorchTracemalloc: + def __enter__(self): + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero + self.begin = torch.cuda.memory_allocated() + elif is_mlu_available(): + torch.mlu.empty_cache() + torch.mlu.reset_max_memory_allocated() # reset the peak gauge to zero + self.begin = torch.mlu.memory_allocated() + elif is_npu_available(): + torch.npu.empty_cache() + torch.npu.reset_max_memory_allocated() # reset the peak gauge to zero + self.begin = torch.npu.memory_allocated() + elif is_xpu_available(): + torch.xpu.empty_cache() + torch.xpu.reset_max_memory_allocated() # reset the peak gauge to zero + self.begin = torch.xpu.memory_allocated() + return self + + def __exit__(self, *exc): + gc.collect() + if torch.cuda.is_available(): + torch.cuda.empty_cache() + self.end = torch.cuda.memory_allocated() + self.peak = torch.cuda.max_memory_allocated() + elif is_mlu_available(): + torch.mlu.empty_cache() + torch.mlu.memory_allocated() # reset the peak gauge to zero + self.begin = torch.mlu.max_memory_allocated() + elif is_npu_available(): + torch.npu.empty_cache() + self.end = torch.npu.memory_allocated() + self.peak = torch.npu.max_memory_allocated() + elif is_xpu_available(): + torch.xpu.empty_cache() + self.end = torch.xpu.memory_allocated() + self.peak = torch.xpu.max_memory_allocated() + self.used = b2mb(self.end - self.begin) + self.peaked = b2mb(self.peak - self.begin) + # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") + + +def get_dataloaders( + accelerator: Accelerator, + batch_size: int = 16, + model_name: str = "bert-base-cased", + n_train: int = 320, + n_val: int = 160, +): + """ + Creates a set of `DataLoader`s for the `glue` dataset. + + Args: + accelerator (`Accelerator`): + An `Accelerator` object + batch_size (`int`, *optional*): + The batch size for the train and validation DataLoaders. + model_name (`str`, *optional*): + The name of the model to use. + n_train (`int`, *optional*): + The number of training examples to use. + n_val (`int`, *optional*): + The number of validation examples to use. + """ + tokenizer = AutoTokenizer.from_pretrained(model_name) + datasets = load_dataset( + "glue", "mrpc", split={"train": f"train[:{n_train}]", "validation": f"validation[:{n_val}]"} + ) + + def tokenize_function(examples): + # max_length=None => use the model max length (it's actually the default) + outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) + return outputs + + # Apply the method we just defined to all the examples in all the splits of the dataset + tokenized_datasets = datasets.map( + tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False + ) + + # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the + # transformers library + tokenized_datasets = tokenized_datasets.rename_column("label", "labels") + + def collate_fn(examples): + # On TPU it's best to pad everything to the same length or training will be very slow. + if accelerator.distributed_type == DistributedType.XLA: + return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") + return tokenizer.pad(examples, padding="longest", return_tensors="pt") + + # Instantiate dataloaders. + train_dataloader = DataLoader( + tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size + ) + eval_dataloader = DataLoader( + tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE + ) + + return train_dataloader, eval_dataloader + + +def training_function(config, args): + # Initialize accelerator + accelerator = Accelerator() + + # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs + lr = config["lr"] + num_epochs = int(config["num_epochs"]) + seed = int(config["seed"]) + batch_size = int(config["batch_size"]) + model_name = args.model_name_or_path + + set_seed(seed) + train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name, args.n_train, args.n_val) + + # Instantiate the model (we build the model here so that the seed also control new weights initialization) + model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) + + # Instantiate optimizer + optimizer_cls = ( + AdamW + if accelerator.state.deepspeed_plugin is None + or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config + else DummyOptim + ) + optimizer = optimizer_cls(params=model.parameters(), lr=lr) + + if accelerator.state.deepspeed_plugin is not None: + gradient_accumulation_steps = accelerator.state.deepspeed_plugin.deepspeed_config[ + "gradient_accumulation_steps" + ] + else: + gradient_accumulation_steps = 1 + max_training_steps = (len(train_dataloader) * num_epochs) // gradient_accumulation_steps + + # Instantiate scheduler + if ( + accelerator.state.deepspeed_plugin is None + or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config + ): + lr_scheduler = get_linear_schedule_with_warmup( + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=max_training_steps, + ) + else: + lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) + + # Prepare everything + # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the + # prepare method. + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler + ) + + # We need to keep track of how many total steps we have iterated over + overall_step = 0 + # We also need to keep track of the stating epoch so files are named properly + starting_epoch = 0 + + # Now we train the model + train_total_peak_memory = {} + for epoch in range(starting_epoch, num_epochs): + with TorchTracemalloc() as tracemalloc: + model.train() + for step, batch in enumerate(train_dataloader): + outputs = model(**batch) + loss = outputs.loss + loss = loss / gradient_accumulation_steps + accelerator.backward(loss) + if step % gradient_accumulation_steps == 0: + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + overall_step += 1 + + # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage + accelerator.print(f"Memory before entering the train : {b2mb(tracemalloc.begin)}") + accelerator.print(f"Memory consumed at the end of the train (end-begin): {tracemalloc.used}") + accelerator.print(f"Peak Memory consumed during the train (max-begin): {tracemalloc.peaked}") + accelerator.print( + f"Total Peak Memory consumed during the train (max): {tracemalloc.peaked + b2mb(tracemalloc.begin)}" + ) + train_total_peak_memory[f"epoch-{epoch}"] = tracemalloc.peaked + b2mb(tracemalloc.begin) + if args.peak_memory_upper_bound is not None: + assert ( + train_total_peak_memory[f"epoch-{epoch}"] <= args.peak_memory_upper_bound + ), "Peak memory usage exceeded the upper bound" + + accelerator.wait_for_everyone() + if accelerator.is_main_process: + with open(os.path.join(args.output_dir, "peak_memory_utilization.json"), "w") as f: + json.dump(train_total_peak_memory, f) + + +def main(): + parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") + parser.add_argument( + "--model_name_or_path", + type=str, + default="bert-base-cased", + help="Path to pretrained model or model identifier from huggingface.co/models.", + required=False, + ) + parser.add_argument( + "--output_dir", + type=str, + default=".", + help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", + ) + parser.add_argument( + "--peak_memory_upper_bound", + type=float, + default=None, + help="The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.", + ) + parser.add_argument( + "--n_train", + type=int, + default=320, + help="Number of training examples to use.", + ) + parser.add_argument( + "--n_val", + type=int, + default=160, + help="Number of validation examples to use.", + ) + parser.add_argument( + "--num_epochs", + type=int, + default=1, + help="Number of train epochs.", + ) + args = parser.parse_args() + config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} + training_function(config, args) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_performance.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_performance.py new file mode 100644 index 0000000000000000000000000000000000000000..7051859aa74bbac5b15e4465395b8177e3dd1d27 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_performance.py @@ -0,0 +1,243 @@ +# Copyright 2022 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse +import json +import os + +import evaluate +import torch +from datasets import load_dataset +from torch.optim import AdamW +from torch.utils.data import DataLoader +from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed + +from accelerate import Accelerator, DistributedType +from accelerate.utils.deepspeed import DummyOptim, DummyScheduler + + +MAX_GPU_BATCH_SIZE = 16 +EVAL_BATCH_SIZE = 32 + + +def get_dataloaders(accelerator: Accelerator, batch_size: int = 16, model_name: str = "bert-base-cased"): + """ + Creates a set of `DataLoader`s for the `glue` dataset. + + Args: + accelerator (`Accelerator`): + An `Accelerator` object + batch_size (`int`, *optional*): + The batch size for the train and validation DataLoaders. + model_name (`str`, *optional*): + """ + tokenizer = AutoTokenizer.from_pretrained(model_name) + datasets = load_dataset("glue", "mrpc") + + def tokenize_function(examples): + # max_length=None => use the model max length (it's actually the default) + outputs = tokenizer(examples["sentence1"], examples["sentence2"], truncation=True, max_length=None) + return outputs + + # Apply the method we just defined to all the examples in all the splits of the dataset + tokenized_datasets = datasets.map( + tokenize_function, batched=True, remove_columns=["idx", "sentence1", "sentence2"], load_from_cache_file=False + ) + + # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the + # transformers library + tokenized_datasets = tokenized_datasets.rename_column("label", "labels") + + def collate_fn(examples): + # On TPU it's best to pad everything to the same length or training will be very slow. + if accelerator.distributed_type == DistributedType.XLA: + return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") + return tokenizer.pad(examples, padding="longest", return_tensors="pt") + + # Instantiate dataloaders. + train_dataloader = DataLoader( + tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=batch_size + ) + eval_dataloader = DataLoader( + tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=EVAL_BATCH_SIZE + ) + + return train_dataloader, eval_dataloader + + +def training_function(config, args): + # Initialize accelerator + accelerator = Accelerator() + + # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs + lr = config["lr"] + num_epochs = int(config["num_epochs"]) + seed = int(config["seed"]) + batch_size = int(config["batch_size"]) + model_name = args.model_name_or_path + + set_seed(seed) + train_dataloader, eval_dataloader = get_dataloaders(accelerator, batch_size, model_name) + + # Instantiate the model (we build the model here so that the seed also control new weights initialization) + model = AutoModelForSequenceClassification.from_pretrained(model_name, return_dict=True) + + # Instantiate optimizer + optimizer_cls = ( + AdamW + if accelerator.state.deepspeed_plugin is None + or "optimizer" not in accelerator.state.deepspeed_plugin.deepspeed_config + else DummyOptim + ) + optimizer = optimizer_cls(params=model.parameters(), lr=lr) + + max_training_steps = len(train_dataloader) * num_epochs + + # Instantiate scheduler + linear_decay_scheduler = False + if ( + accelerator.state.deepspeed_plugin is None + or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config + ): + lr_scheduler = get_linear_schedule_with_warmup( + optimizer=optimizer, + num_warmup_steps=0, + num_training_steps=max_training_steps, + ) + linear_decay_scheduler = True + else: + lr_scheduler = DummyScheduler(optimizer, total_num_steps=max_training_steps, warmup_num_steps=0) + + # Prepare everything + # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the + # prepare method. + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare( + model, optimizer, train_dataloader, eval_dataloader, lr_scheduler + ) + + # We also need to keep track of the stating epoch so files are named properly + starting_epoch = 0 + + # Now we train the model + metric = evaluate.load("glue", "mrpc") + best_performance = 0 + performance_metric = {} + expected_lr_after_first_optim_step = lr * ( + 1 - 1 / (max_training_steps / accelerator.num_processes / accelerator.gradient_accumulation_steps) + ) + lr_scheduler_check_completed = False + for epoch in range(starting_epoch, num_epochs): + model.train() + for step, batch in enumerate(train_dataloader): + with accelerator.accumulate(model): + outputs = model(**batch) + loss = outputs.loss + accelerator.backward(loss) + optimizer.step() + lr_scheduler.step() + optimizer.zero_grad() + + # assert the learning rate after first optimizer step + if ( + accelerator.sync_gradients + and not lr_scheduler_check_completed + and linear_decay_scheduler + and accelerator.state.mixed_precision == "no" + ): + assert ( + lr_scheduler.get_last_lr()[0] == expected_lr_after_first_optim_step + ), f"Wrong lr found at second step, expected {expected_lr_after_first_optim_step}, got {lr_scheduler.get_last_lr()[0]}" + lr_scheduler_check_completed = True + + model.eval() + samples_seen = 0 + for step, batch in enumerate(eval_dataloader): + # We could avoid this line since we set the accelerator with `device_placement=True`. + batch.to(accelerator.device) + with torch.no_grad(): + outputs = model(**batch) + predictions = outputs.logits.argmax(dim=-1) + # It is slightly faster to call this once, than multiple times + predictions, references = accelerator.gather( + (predictions, batch["labels"]) + ) # If we are in a multiprocess environment, the last batch has duplicates + if accelerator.use_distributed: + if step == len(eval_dataloader) - 1: + predictions = predictions[: len(eval_dataloader.dataset) - samples_seen] + references = references[: len(eval_dataloader.dataset) - samples_seen] + else: + samples_seen += references.shape[0] + metric.add_batch( + predictions=predictions, + references=references, + ) + + eval_metric = metric.compute() + # Use accelerator.print to print only on the main process. + accelerator.print(f"epoch {epoch}:", eval_metric) + performance_metric[f"epoch-{epoch}"] = eval_metric["accuracy"] + + if best_performance < eval_metric["accuracy"]: + best_performance = eval_metric["accuracy"] + + # check that the LR is 0 + if linear_decay_scheduler and accelerator.state.mixed_precision == "no": + assert ( + lr_scheduler.get_last_lr()[0] == 0 + ), f"Wrong lr found at last step, expected 0, got {lr_scheduler.get_last_lr()[0]}" + + if args.performance_lower_bound is not None: + assert ( + args.performance_lower_bound <= best_performance + ), f"Best performance metric {best_performance} is lower than the lower bound {args.performance_lower_bound}" + + accelerator.wait_for_everyone() + if accelerator.is_main_process: + with open(os.path.join(args.output_dir, "all_results.json"), "w") as f: + json.dump(performance_metric, f) + + +def main(): + parser = argparse.ArgumentParser(description="Simple example of training script tracking peak GPU memory usage.") + parser.add_argument( + "--model_name_or_path", + type=str, + default="bert-base-cased", + help="Path to pretrained model or model identifier from huggingface.co/models.", + required=False, + ) + parser.add_argument( + "--output_dir", + type=str, + default=".", + help="Optional save directory where all checkpoint folders will be stored. Default is the current working directory.", + ) + parser.add_argument( + "--performance_lower_bound", + type=float, + default=None, + help="Optional lower bound for the performance metric. If set, the training will throw error when the performance metric drops below this value.", + ) + parser.add_argument( + "--num_epochs", + type=int, + default=3, + help="Number of train epochs.", + ) + args = parser.parse_args() + config = {"lr": 2e-5, "num_epochs": args.num_epochs, "seed": 42, "batch_size": 16} + training_function(config, args) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_pippy.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_pippy.py new file mode 100644 index 0000000000000000000000000000000000000000..f589365649d56fd690b4f4104a8838f885183527 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_pippy.py @@ -0,0 +1,129 @@ +# Copyright 2024 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch +from torchvision.models import resnet34 +from transformers import ( + BertConfig, + BertForMaskedLM, + GPT2Config, + GPT2ForSequenceClassification, + T5Config, + T5ForConditionalGeneration, +) + +from accelerate import PartialState +from accelerate.inference import prepare_pippy +from accelerate.utils import DistributedType, send_to_device, set_seed + + +model_to_config = { + "t5": (T5ForConditionalGeneration, T5Config, 1024), + "bert": (BertForMaskedLM, BertConfig, 512), + "gpt2": (GPT2ForSequenceClassification, GPT2Config, 1024), +} + + +def get_model_and_data_for_text(model_name, device, num_processes: int = 2): + initializer, config, seq_len = model_to_config[model_name] + config_args = {} + # Eventually needed for batch inference tests on gpt-2 when bs != 1 + # if model_name == "gpt2": + # config_args["pad_token_id"] = 0 + model_config = config(**config_args) + model = initializer(model_config) + return model, torch.randint( + low=0, + high=model_config.vocab_size, + size=(num_processes, seq_len), + device=device, + dtype=torch.int64, + requires_grad=False, + ) + + +def test_gpt2(batch_size: int = 2): + set_seed(42) + state = PartialState() + model, inputs = get_model_and_data_for_text("gpt2", "cpu", batch_size) + model = prepare_pippy(model, example_args=(inputs,), no_split_module_classes=model._no_split_modules) + # For inference args need to be a tuple + inputs = inputs.to("cuda") + with torch.no_grad(): + output = model(inputs) + # Zach: Check that we just grab the real outputs we need at the end + if not state.is_last_process: + assert output is None, "Output was not generated on just the last process!" + else: + assert output is not None, "Output was not generated in the last process!" + + +def test_t5(batch_size: int = 2): + set_seed(42) + state = PartialState() + model, inputs = get_model_and_data_for_text("t5", "cpu", batch_size) + example_inputs = {"input_ids": inputs, "decoder_input_ids": inputs} + model = prepare_pippy( + model, + no_split_module_classes=model._no_split_modules, + example_kwargs=example_inputs, + ) + # For inference args need to be a tuple + inputs = send_to_device(example_inputs, "cuda:0") + with torch.no_grad(): + output = model(*inputs.values()) + # Zach: Check that we just grab the real outputs we need at the end + if not state.is_last_process: + assert output is None, "Output was not generated on just the last process!" + else: + assert output is not None, "Output was not generated in the last process!" + + +def test_resnet(batch_size: int = 2): + set_seed(42) + state = PartialState() + model = resnet34() + input_tensor = torch.rand(batch_size, 3, 224, 224) + model = prepare_pippy( + model, + example_args=(input_tensor,), + ) + inputs = send_to_device(input_tensor, "cuda:0") + with torch.no_grad(): + output = model(inputs) + # Zach: Check that we just grab the real outputs we need at the end + if not state.is_last_process: + assert output is None, "Output was not generated on just the last process!" + else: + assert output is not None, "Output was not generated in the last process!" + + +if __name__ == "__main__": + state = PartialState() + state.print("Testing pippy integration...") + if state.distributed_type == DistributedType.MULTI_GPU: + state.print("Testing GPT2...") + test_gpt2() + # Issue: When modifying the tokenizer for batch GPT2 inference, there's an issue + # due to references + # NameError: cannot access free variable 'chunk_args_list' where it is not associated with a value in enclosing scope + # test_gpt2(3) + state.print("Testing T5...") + test_t5() + test_t5(1) + test_t5(3) + state.print("Testing CV model...") + test_resnet() + test_resnet(3) + else: + print("Less than two GPUs found, not running tests!") diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_zero3_integration.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_zero3_integration.py new file mode 100644 index 0000000000000000000000000000000000000000..67e78a7d37c0b82113e1cdbb3e76987b24c8494f --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/external_deps/test_zero3_integration.py @@ -0,0 +1,52 @@ +# Copyright 2024 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch.distributed + +from accelerate.test_utils import require_huggingface_suite +from accelerate.utils import is_transformers_available + + +if is_transformers_available(): + from transformers import AutoModel, TrainingArguments + + +GPT2_TINY = "sshleifer/tiny-gpt2" + + +@require_huggingface_suite +def init_torch_dist_then_launch_deepspeed(): + torch.distributed.init_process_group(backend="nccl") + deepspeed_config = { + "zero_optimization": { + "stage": 3, + }, + "train_batch_size": "auto", + "train_micro_batch_size_per_gpu": "auto", + } + train_args = TrainingArguments( + output_dir="./", + deepspeed=deepspeed_config, + ) + model = AutoModel.from_pretrained(GPT2_TINY) + assert train_args is not None + assert model is not None + + +def main(): + init_torch_dist_then_launch_deepspeed() + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_cli.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_cli.py new file mode 100644 index 0000000000000000000000000000000000000000..c85828cd49624372ae1866082e5580c60f8c9293 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_cli.py @@ -0,0 +1,26 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import torch + + +def main(): + if torch.cuda.is_available(): + num_gpus = torch.cuda.device_count() + else: + num_gpus = 0 + print(f"Successfully ran on {num_gpus} GPUs") + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_distributed_data_loop.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_distributed_data_loop.py new file mode 100644 index 0000000000000000000000000000000000000000..17d577c58ac2e0bea6e63c54b464eef483de12a8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_distributed_data_loop.py @@ -0,0 +1,238 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import warnings +from typing import List +from unittest.mock import Mock + +import torch +from torch.utils.data import DataLoader, IterableDataset, TensorDataset + +from accelerate.accelerator import Accelerator, DataLoaderConfiguration +from accelerate.utils.dataclasses import DistributedType + + +class DummyIterableDataset(IterableDataset): + def __init__(self, data): + self.data = data + + def __iter__(self): + yield from self.data + + +def create_accelerator(even_batches=True): + dataloader_config = DataLoaderConfiguration(even_batches=even_batches) + accelerator = Accelerator(dataloader_config=dataloader_config) + assert accelerator.num_processes == 2, "this script expects that two GPUs are available" + return accelerator + + +def create_dataloader(accelerator: Accelerator, dataset_size: int, batch_size: int, iterable: bool = False): + """ + Create a simple DataLoader to use during the test cases + """ + if iterable: + dataset = DummyIterableDataset(torch.as_tensor(range(dataset_size))) + else: + dataset = TensorDataset(torch.as_tensor(range(dataset_size))) + + dl = DataLoader(dataset, batch_size=batch_size) + dl = accelerator.prepare(dl) + + return dl + + +def verify_dataloader_batch_sizes( + accelerator: Accelerator, + dataset_size: int, + batch_size: int, + process_0_expected_batch_sizes: List[int], + process_1_expected_batch_sizes: List[int], +): + """ + A helper function for verifying the batch sizes coming from a prepared dataloader in each process + """ + dl = create_dataloader(accelerator=accelerator, dataset_size=dataset_size, batch_size=batch_size) + + batch_sizes = [len(batch[0]) for batch in dl] + + if accelerator.process_index == 0: + assert batch_sizes == process_0_expected_batch_sizes + elif accelerator.process_index == 1: + assert batch_sizes == process_1_expected_batch_sizes + + +def test_default_ensures_even_batch_sizes(): + accelerator = create_accelerator() + + # without padding, we would expect a different number of batches + verify_dataloader_batch_sizes( + accelerator, + dataset_size=3, + batch_size=1, + process_0_expected_batch_sizes=[1, 1], + process_1_expected_batch_sizes=[1, 1], + ) + + # without padding, we would expect the same number of batches, but different sizes + verify_dataloader_batch_sizes( + accelerator, + dataset_size=7, + batch_size=2, + process_0_expected_batch_sizes=[2, 2], + process_1_expected_batch_sizes=[2, 2], + ) + + +def test_can_disable_even_batches(): + accelerator = create_accelerator(even_batches=False) + + verify_dataloader_batch_sizes( + accelerator, + dataset_size=3, + batch_size=1, + process_0_expected_batch_sizes=[1, 1], + process_1_expected_batch_sizes=[1], + ) + + verify_dataloader_batch_sizes( + accelerator, + dataset_size=7, + batch_size=2, + process_0_expected_batch_sizes=[2, 2], + process_1_expected_batch_sizes=[2, 1], + ) + + +def test_can_join_uneven_inputs(): + accelerator = create_accelerator(even_batches=False) + + model = torch.nn.Linear(1, 1) + ddp_model = accelerator.prepare(model) + + dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) + + batch_idxs = [] + with accelerator.join_uneven_inputs([ddp_model]): + for batch_idx, batch in enumerate(dl): + output = ddp_model(batch[0].float()) + loss = output.sum() + loss.backward() + batch_idxs.append(batch_idx) + + accelerator.wait_for_everyone() + + if accelerator.process_index == 0: + assert batch_idxs == [0, 1] + elif accelerator.process_index == 1: + assert batch_idxs == [0] + + +def test_join_raises_warning_for_non_ddp_distributed(accelerator): + with warnings.catch_warnings(record=True) as w: + with accelerator.join_uneven_inputs([Mock()]): + pass + + assert issubclass(w[-1].category, UserWarning) + assert "only supported for multi-GPU" in str(w[-1].message) + + +def test_join_can_override_even_batches(): + default_even_batches = True + overridden_even_batches = False + accelerator = create_accelerator(even_batches=default_even_batches) + model = torch.nn.Linear(1, 1) + ddp_model = accelerator.prepare(model) + train_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) + valid_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) + + with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): + train_dl_overridden_value = train_dl.batch_sampler.even_batches + valid_dl_overridden_value = valid_dl.batch_sampler.even_batches + + assert train_dl_overridden_value == overridden_even_batches + assert valid_dl_overridden_value == overridden_even_batches + assert train_dl.batch_sampler.even_batches == default_even_batches + assert valid_dl.batch_sampler.even_batches == default_even_batches + + +def test_join_can_override_for_mixed_type_dataloaders(): + default_even_batches = True + overridden_even_batches = False + accelerator = create_accelerator(even_batches=default_even_batches) + model = torch.nn.Linear(1, 1) + ddp_model = accelerator.prepare(model) + create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) + batch_dl = create_dataloader(accelerator, dataset_size=3, batch_size=1) + + with warnings.catch_warnings(): + warnings.filterwarnings("ignore") + try: + with accelerator.join_uneven_inputs([ddp_model], even_batches=overridden_even_batches): + batch_dl_overridden_value = batch_dl.batch_sampler.even_batches + except AttributeError: + # ensure attribute error is not raised when processing iterable dl + raise AssertionError + + assert batch_dl_overridden_value == overridden_even_batches + assert batch_dl.batch_sampler.even_batches == default_even_batches + + +def test_join_raises_warning_for_iterable_when_overriding_even_batches(): + accelerator = create_accelerator() + model = torch.nn.Linear(1, 1) + ddp_model = accelerator.prepare(model) + create_dataloader(accelerator, dataset_size=3, batch_size=1, iterable=True) + + with warnings.catch_warnings(record=True) as w: + with accelerator.join_uneven_inputs([ddp_model], even_batches=False): + pass + + assert issubclass(w[-1].category, UserWarning) + assert "only supported for map-style datasets" in str(w[-1].message) + + +def main(): + accelerator = create_accelerator() + + accelerator.print("Test that even_batches variable ensures uniform batches across processes") + test_default_ensures_even_batch_sizes() + + accelerator.print("Run tests with even_batches disabled") + test_can_disable_even_batches() + + accelerator.print("Test joining uneven inputs") + test_can_join_uneven_inputs() + + accelerator.print("Test overriding even_batches when joining uneven inputs") + test_join_can_override_even_batches() + + accelerator.print("Test overriding even_batches for mixed dataloader types") + test_join_can_override_for_mixed_type_dataloaders() + + accelerator.print("Test overriding even_batches raises a warning for iterable dataloaders") + test_join_raises_warning_for_iterable_when_overriding_even_batches() + + accelerator.print("Test join with non DDP distributed raises warning") + original_state = accelerator.state.distributed_type + accelerator.state.distributed_type = DistributedType.FSDP + test_join_raises_warning_for_non_ddp_distributed(accelerator) + accelerator.state.distributed_type = original_state + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_notebook.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_notebook.py new file mode 100644 index 0000000000000000000000000000000000000000..f0c073ac3eae5a86c351a5f8232b84bcdfb920a8 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_notebook.py @@ -0,0 +1,56 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Test file to ensure that in general certain situational setups for notebooks work. +""" + +import os + +from pytest import raises + +from accelerate import PartialState, notebook_launcher +from accelerate.test_utils import require_bnb +from accelerate.utils import is_bnb_available + + +def basic_function(): + # Just prints the PartialState + print(f"PartialState:\n{PartialState()}") + + +NUM_PROCESSES = int(os.environ.get("ACCELERATE_NUM_PROCESSES", 1)) + + +def test_can_initialize(): + notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES) + + +@require_bnb +def test_problematic_imports(): + with raises(RuntimeError, match="Please keep these imports"): + import bitsandbytes as bnb # noqa: F401 + + notebook_launcher(basic_function, (), num_processes=NUM_PROCESSES) + + +def main(): + print("Test basic notebook can be ran") + test_can_initialize() + if is_bnb_available(): + print("Test problematic imports (bnb)") + test_problematic_imports() + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_ops.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_ops.py new file mode 100644 index 0000000000000000000000000000000000000000..1b18780fa70fdc2b8f579f07910c8682437459d5 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_ops.py @@ -0,0 +1,179 @@ +#!/usr/bin/env python + +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import torch + +from accelerate import PartialState +from accelerate.test_utils.testing import assert_exception +from accelerate.utils.dataclasses import DistributedType +from accelerate.utils.operations import ( + DistributedOperationException, + broadcast, + copy_tensor_to_devices, + gather, + gather_object, + pad_across_processes, + reduce, +) + + +def create_tensor(state): + return (torch.arange(state.num_processes) + 1.0 + (state.num_processes * state.process_index)).to(state.device) + + +def test_gather(state): + tensor = create_tensor(state) + gathered_tensor = gather(tensor) + assert gathered_tensor.tolist() == list(range(1, state.num_processes**2 + 1)) + + +def test_gather_object(state): + # Gather objects in TorchXLA is not supported. + if state.distributed_type == DistributedType.XLA: + return + obj = [state.process_index] + gathered_obj = gather_object(obj) + assert len(gathered_obj) == state.num_processes, f"{gathered_obj}, {len(gathered_obj)} != {state.num_processes}" + assert gathered_obj == list(range(state.num_processes)), f"{gathered_obj} != {list(range(state.num_processes))}" + + +def test_gather_non_contigous(state): + # Skip this test because the 'is_contiguous' function of XLA tensor always returns True. + if state.distributed_type == DistributedType.XLA: + return + # Create a non-contiguous tensor + tensor = torch.arange(12).view(4, 3).t().to(state.device) + assert not tensor.is_contiguous() + # Shouldn't error out + _ = gather(tensor) + + +def test_broadcast(state): + tensor = create_tensor(state) + broadcasted_tensor = broadcast(tensor) + assert broadcasted_tensor.shape == torch.Size([state.num_processes]) + assert broadcasted_tensor.tolist() == list(range(1, state.num_processes + 1)) + + +def test_pad_across_processes(state): + # We need to pad the tensor with one more element if we are the main process + # to ensure that we can pad + if state.is_main_process: + tensor = torch.arange(state.num_processes + 1).to(state.device) + else: + tensor = torch.arange(state.num_processes).to(state.device) + padded_tensor = pad_across_processes(tensor) + assert padded_tensor.shape == torch.Size([state.num_processes + 1]) + if not state.is_main_process: + assert padded_tensor.tolist() == list(range(0, state.num_processes)) + [0] + + +def test_reduce_sum(state): + # For now runs on only two processes + if state.num_processes != 2: + return + tensor = create_tensor(state) + reduced_tensor = reduce(tensor, "sum") + truth_tensor = torch.tensor([4.0, 6]).to(state.device) + assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" + + +def test_reduce_mean(state): + # For now runs on only two processes + if state.num_processes != 2: + return + tensor = create_tensor(state) + reduced_tensor = reduce(tensor, "mean") + truth_tensor = torch.tensor([2.0, 3]).to(state.device) + assert torch.allclose(reduced_tensor, truth_tensor), f"{reduced_tensor} != {truth_tensor}" + + +def test_op_checker(state): + # Must be in a distributed state, and gathering is currently not supported in TorchXLA. + if state.distributed_type in [DistributedType.NO, DistributedType.XLA]: + return + state.debug = True + # `pad_across_processes` + if state.process_index == 0: + data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} + else: + data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4, 5]]]).to(state.device)} + + with assert_exception(DistributedOperationException): + pad_across_processes(data, dim=0) + + # `reduce` + if state.process_index == 0: + data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} + else: + data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} + + with assert_exception(DistributedOperationException): + reduce(data) + + # `broadcast` + if state.process_index == 0: + data = {"tensor": torch.tensor([[0.0, 1, 2, 3, 4]]).to(state.device)} + else: + data = {"tensor": torch.tensor([[[0.0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]]).to(state.device)} + + with assert_exception(DistributedOperationException): + broadcast(data) + + state.debug = False + + +def test_copy_tensor_to_devices(state): + if state.distributed_type not in [DistributedType.MULTI_GPU, DistributedType.XLA]: + return + if state.is_main_process: + tensor = torch.tensor([1, 2, 3], dtype=torch.int).to(state.device) + else: + tensor = None + tensor = copy_tensor_to_devices(tensor) + assert torch.allclose(tensor, torch.tensor([1, 2, 3], dtype=torch.int, device=state.device)) + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +def main(): + state = PartialState() + state.print(f"State: {state}") + state.print("testing gather") + test_gather(state) + state.print("testing gather_object") + test_gather_object(state) + state.print("testing gather non-contigous") + test_gather_non_contigous(state) + state.print("testing broadcast") + test_broadcast(state) + state.print("testing pad_across_processes") + test_pad_across_processes(state) + state.print("testing reduce_sum") + test_reduce_sum(state) + state.print("testing reduce_mean") + test_reduce_mean(state) + state.print("testing op_checker") + test_op_checker(state) + state.print("testing sending tensors across devices") + test_copy_tensor_to_devices(state) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_script.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_script.py new file mode 100644 index 0000000000000000000000000000000000000000..a982612e4463eb807f272b7a65093ac23008861a --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_script.py @@ -0,0 +1,802 @@ +#!/usr/bin/env python + +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import contextlib +import io +import math +import time +from copy import deepcopy +from pathlib import Path + +import numpy as np +import torch +from torch.utils.data import DataLoader, Dataset + +from accelerate import Accelerator +from accelerate.data_loader import SeedableRandomSampler, prepare_data_loader +from accelerate.state import AcceleratorState +from accelerate.test_utils import RegressionDataset, are_the_same_tensors +from accelerate.utils import ( + DataLoaderConfiguration, + DistributedType, + gather, + is_bf16_available, + is_datasets_available, + is_ipex_available, + is_mlu_available, + is_npu_available, + is_xpu_available, + set_seed, + synchronize_rng_states, +) + + +# TODO: remove RegressionModel4XPU once ccl support empty buffer in broadcasting. +if is_xpu_available(): + from accelerate.test_utils import RegressionModel4XPU as RegressionModel +else: + from accelerate.test_utils import RegressionModel + + +def generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler=False): + "Creates a dataloader that can also use the `SeedableRandomSampler`" + if use_seedable_sampler: + # The SeedableRandomSampler is needed during distributed setups + # for full reproducability across processes with the `DataLoader` + sampler = SeedableRandomSampler( + generator=generator, + data_source=train_set, + num_samples=len(train_set), + ) + return DataLoader(train_set, batch_size=batch_size, sampler=sampler) + else: + return DataLoader(train_set, batch_size=batch_size, shuffle=True, generator=generator) + + +def print_main(state): + print(f"Printing from the main process {state.process_index}") + + +def print_local_main(state): + print(f"Printing from the local main process {state.local_process_index}") + + +def print_last(state): + print(f"Printing from the last process {state.process_index}") + + +def print_on(state, process_idx): + print(f"Printing from process {process_idx}: {state.process_index}") + + +def process_execution_check(): + accelerator = Accelerator() + num_processes = accelerator.num_processes + # Test main_process_first context manager + path = Path("check_main_process_first.txt") + with accelerator.main_process_first(): + if accelerator.is_main_process: + time.sleep(0.1) # ensure main process takes longest + with open(path, "a+") as f: + f.write("Currently in the main process\n") + else: + with open(path, "a+") as f: + f.write("Now on another process\n") + accelerator.wait_for_everyone() + + if accelerator.is_main_process: + with open(path) as f: + text = "".join(f.readlines()) + try: + assert text.startswith("Currently in the main process\n"), "Main process was not first" + if num_processes > 1: + assert text.endswith("Now on another process\n"), "Main process was not first" + assert ( + text.count("Now on another process\n") == accelerator.num_processes - 1 + ), f"Only wrote to file {text.count('Now on another process') + 1} times, not {accelerator.num_processes}" + except AssertionError: + path.unlink() + raise + + if accelerator.is_main_process and path.exists(): + path.unlink() + accelerator.wait_for_everyone() + # Test the decorators + f = io.StringIO() + with contextlib.redirect_stdout(f): + accelerator.on_main_process(print_main)(accelerator.state) + result = f.getvalue().rstrip() + if accelerator.is_main_process: + assert result == "Printing from the main process 0", f"{result} != Printing from the main process 0" + else: + assert f.getvalue().rstrip() == "", f'{result} != ""' + f.truncate(0) + f.seek(0) + + with contextlib.redirect_stdout(f): + accelerator.on_local_main_process(print_local_main)(accelerator.state) + if accelerator.is_local_main_process: + assert f.getvalue().rstrip() == "Printing from the local main process 0" + else: + assert f.getvalue().rstrip() == "" + f.truncate(0) + f.seek(0) + + with contextlib.redirect_stdout(f): + accelerator.on_last_process(print_last)(accelerator.state) + if accelerator.is_last_process: + assert f.getvalue().rstrip() == f"Printing from the last process {accelerator.state.num_processes - 1}" + else: + assert f.getvalue().rstrip() == "" + f.truncate(0) + f.seek(0) + + for process_idx in range(num_processes): + with contextlib.redirect_stdout(f): + accelerator.on_process(print_on, process_index=process_idx)(accelerator.state, process_idx) + if accelerator.process_index == process_idx: + assert f.getvalue().rstrip() == f"Printing from process {process_idx}: {accelerator.process_index}" + else: + assert f.getvalue().rstrip() == "" + f.truncate(0) + f.seek(0) + + +def init_state_check(): + # Test we can instantiate this twice in a row. + state = AcceleratorState() + if state.local_process_index == 0: + print("Testing, testing. 1, 2, 3.") + print(state) + + +def rng_sync_check(): + state = AcceleratorState() + synchronize_rng_states(["torch"]) + assert are_the_same_tensors(torch.get_rng_state()), "RNG states improperly synchronized on CPU." + if state.distributed_type == DistributedType.MULTI_GPU: + synchronize_rng_states(["cuda"]) + assert are_the_same_tensors(torch.cuda.get_rng_state()), "RNG states improperly synchronized on GPU." + elif state.distributed_type == DistributedType.MULTI_XPU: + synchronize_rng_states(["xpu"]) + assert are_the_same_tensors(torch.xpu.get_rng_state()), "RNG states improperly synchronized on XPU." + generator = torch.Generator() + synchronize_rng_states(["generator"], generator=generator) + assert are_the_same_tensors(generator.get_state()), "RNG states improperly synchronized in generator." + + if state.local_process_index == 0: + print("All rng are properly synched.") + + +def dl_preparation_check(): + state = AcceleratorState() + length = 32 * state.num_processes + + dl = DataLoader(range(length), batch_size=8) + dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result) + + print(state.process_index, result, type(dl)) + assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." + + dl = DataLoader(range(length), batch_size=8) + dl = prepare_data_loader( + dl, + state.device, + state.num_processes, + state.process_index, + put_on_device=True, + split_batches=True, + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result) + assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." + + if state.process_index == 0: + print("Non-shuffled dataloader passing.") + + dl = DataLoader(range(length), batch_size=8, shuffle=True) + dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index, put_on_device=True) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result).tolist() + result.sort() + assert result == list(range(length)), "Wrong shuffled dataloader result." + + dl = DataLoader(range(length), batch_size=8, shuffle=True) + dl = prepare_data_loader( + dl, + state.device, + state.num_processes, + state.process_index, + put_on_device=True, + split_batches=True, + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result).tolist() + result.sort() + assert result == list(range(length)), "Wrong shuffled dataloader result." + + if state.local_process_index == 0: + print("Shuffled dataloader passing.") + + +def central_dl_preparation_check(): + state = AcceleratorState() + length = 32 * state.num_processes + + dl = DataLoader(range(length), batch_size=8) + dl = prepare_data_loader( + dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result) + assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." + + dl = DataLoader(range(length), batch_size=8) + dl = prepare_data_loader( + dl, + state.device, + state.num_processes, + state.process_index, + put_on_device=True, + split_batches=True, + dispatch_batches=True, + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result) + assert torch.equal(result.cpu(), torch.arange(0, length).long()), "Wrong non-shuffled dataloader result." + + if state.process_index == 0: + print("Non-shuffled central dataloader passing.") + + dl = DataLoader(range(length), batch_size=8, shuffle=True) + dl = prepare_data_loader( + dl, state.device, state.num_processes, state.process_index, put_on_device=True, dispatch_batches=True + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result).tolist() + result.sort() + assert result == list(range(length)), "Wrong shuffled dataloader result." + + dl = DataLoader(range(length), batch_size=8, shuffle=True) + dl = prepare_data_loader( + dl, + state.device, + state.num_processes, + state.process_index, + put_on_device=True, + split_batches=True, + dispatch_batches=True, + ) + result = [] + for batch in dl: + result.append(gather(batch)) + result = torch.cat(result).tolist() + result.sort() + assert result == list(range(length)), "Wrong shuffled dataloader result." + + if state.local_process_index == 0: + print("Shuffled central dataloader passing.") + + +def custom_sampler_check(): + state = AcceleratorState() + + class CustomDataset(Dataset): + def __init__(self, data): + self.data = data + + def __len__(self): + return len(self.data) + + def __getitem__(self, index): + return self.data[index] + + class CustomBatchSampler: + def __init__(self, dataset_length: int, batch_size: int, shuffle: bool = True): + self.batch_size = batch_size + self.data_index = np.arange(dataset_length) + self.shuffle = shuffle + + def __iter__(self): + num_batches = len(self) + if self.shuffle: + index = np.random.permutation(self.data_index) + else: + index = self.data_index + output = np.array_split(index, num_batches) + yield from output + + def __len__(self): + return math.ceil(len(self.data_index) / self.batch_size) + + dataset = CustomDataset(range(32 * state.num_processes)) + sampler = CustomBatchSampler(len(dataset), batch_size=8) + dl = DataLoader(dataset, batch_sampler=sampler) + dl = prepare_data_loader(dl, state.device, state.num_processes, state.process_index) + # We need just ensure that `dl.batch_sampler` (or `dl.batch_sampler.batch_sampler` is indeed the old batch sampler + if hasattr(dl.batch_sampler, "batch_sampler"): + assert isinstance( + dl.batch_sampler.batch_sampler, CustomBatchSampler + ), "Custom sampler was changed after calling `prepare_data_loader`" + else: + assert isinstance( + dl.batch_sampler, CustomBatchSampler + ), "Custom sampler was changed after calling `prepare_data_loader`" + + +def check_seedable_sampler(): + # Set seed + set_seed(42) + train_set = RegressionDataset(length=10, seed=42) + train_dl = DataLoader(train_set, batch_size=2, shuffle=True) + + config = DataLoaderConfiguration(use_seedable_sampler=True) + accelerator = Accelerator(dataloader_config=config) + train_dl = accelerator.prepare(train_dl) + original_items = [] + for _ in range(3): + for batch in train_dl: + original_items.append(batch["x"]) + original_items = torch.cat(original_items) + + # Set seed again and the epoch + set_seed(42) + train_dl.set_epoch(0) + new_items = [] + for _ in range(3): + for batch in train_dl: + new_items.append(batch["x"]) + new_items = torch.cat(new_items) + assert torch.allclose(original_items, new_items), "Did not obtain the same items with the same seed and epoch." + + +def check_seedable_sampler_in_batch_sampler_shard(): + set_seed(42) + + config = DataLoaderConfiguration(use_seedable_sampler=True) + accelerator = Accelerator(dataloader_config=config) + assert accelerator.num_processes > 1, "This test requires more than one process." + + dataloader = DataLoader(list(range(10)), batch_size=1, shuffle=True) + prepared_data_loader = prepare_data_loader( + dataloader=dataloader, + use_seedable_sampler=True, + ) + + target_sampler = prepared_data_loader.batch_sampler.batch_sampler.sampler + assert isinstance( + target_sampler, SeedableRandomSampler + ), "Sampler in BatchSamplerShard is not SeedableRandomSampler." + + +def mock_training(length, batch_size, generator, use_seedable_sampler=False): + set_seed(42) + generator.manual_seed(42) + train_set = RegressionDataset(length=length, seed=42) + + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + for epoch in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + loss.backward() + optimizer.step() + return train_set, model + + +def training_check(use_seedable_sampler=False): + state = AcceleratorState() + generator = torch.Generator() + batch_size = 8 + length = batch_size * 4 * state.num_processes + + train_set, old_model = mock_training(length, batch_size * state.num_processes, generator, use_seedable_sampler) + assert are_the_same_tensors(old_model.a), "Did not obtain the same model on both processes." + assert are_the_same_tensors(old_model.b), "Did not obtain the same model on both processes." + + accelerator = Accelerator() + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." + + accelerator.print("Training yielded the same results on one CPU or distributed setup with no batch split.") + + dataloader_config = DataLoaderConfiguration(split_batches=True, use_seedable_sampler=use_seedable_sampler) + accelerator = Accelerator(dataloader_config=dataloader_config) + train_dl = generate_baseline_dataloader( + train_set, generator, batch_size * state.num_processes, use_seedable_sampler + ) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." + + accelerator.print("Training yielded the same results on one CPU or distributes setup with batch split.") + + if torch.cuda.is_available() or is_npu_available() or is_mlu_available(): + # Mostly a test that FP16 doesn't crash as the operation inside the model is not converted to FP16 + print("FP16 training check.") + AcceleratorState._reset_state() + dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) + accelerator = Accelerator(mixed_precision="fp16", dataloader_config=dataloader_config) + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." + + if torch.cuda.is_available(): + # Mostly a test that model.forward will have autocast when running unwrap_model(model, keep_fp32_wrapper=True) + print("Keep fp32 wrapper check.") + AcceleratorState._reset_state() + accelerator = Accelerator(mixed_precision="fp16") + + model = torch.nn.Linear(2, 4) + model = accelerator.prepare(model) + model_with_fp32_wrapper = accelerator.unwrap_model(model, keep_fp32_wrapper=True) + + # Run forward with fp16 as input. + # When the model is with mixed precision wrapper, no error will be raised. + input_tensor = torch.Tensor([1, 2]).to(dtype=torch.float16, device=accelerator.device) + output = model_with_fp32_wrapper(input_tensor) + + # BF16 support is only for CPU + TPU, and some GPU + if is_bf16_available(): + # Mostly a test that BF16 doesn't crash as the operation inside the model is not converted to BF16 + print("BF16 training check.") + AcceleratorState._reset_state() + dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) + accelerator = Accelerator(mixed_precision="bf16", dataloader_config=dataloader_config) + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." + + # IPEX support is only for CPU + if is_ipex_available(): + print("ipex BF16 training check.") + AcceleratorState._reset_state() + dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) + accelerator = Accelerator(mixed_precision="bf16", cpu=True, dataloader_config=dataloader_config) + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on CPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on CPU or distributed training." + + # XPU support is only for XPU + if is_xpu_available(): + print("xpu BF16 training check.") + AcceleratorState._reset_state() + dataloader_config = DataLoaderConfiguration(use_seedable_sampler=use_seedable_sampler) + accelerator = Accelerator(mixed_precision="bf16", cpu=False, dataloader_config=dataloader_config) + train_dl = generate_baseline_dataloader(train_set, generator, batch_size, use_seedable_sampler) + model = RegressionModel() + optimizer = torch.optim.SGD(model.parameters(), lr=0.1) + + train_dl, model, optimizer = accelerator.prepare(train_dl, model, optimizer) + set_seed(42) + generator.manual_seed(42) + for _ in range(3): + for batch in train_dl: + model.zero_grad() + output = model(batch["x"]) + loss = torch.nn.functional.mse_loss(output, batch["y"]) + accelerator.backward(loss) + optimizer.step() + + model = accelerator.unwrap_model(model).cpu() + assert torch.allclose(old_model.a, model.a), "Did not obtain the same model on XPU or distributed training." + assert torch.allclose(old_model.b, model.b), "Did not obtain the same model on XPU or distributed training." + + +def test_split_between_processes_dataset(datasets_Dataset): + state = AcceleratorState() + data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes)]) + with state.split_between_processes(data, apply_padding=False) as results: + assert ( + len(results) == 2 + ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" + + data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) + with state.split_between_processes(data, apply_padding=False) as results: + if state.is_last_process: + assert ( + len(results) == 1 + ), f"Last process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" + else: + assert ( + len(results) == 2 + ), f"One of the intermediate processes did not receive two items. Process index: {state.process_index}; Length: {len(results)}" + + data = datasets_Dataset.from_list([dict(k=v) for v in range(2 * state.num_processes - 1)]) + with state.split_between_processes(data, apply_padding=True) as results: + if state.num_processes == 1: + assert ( + len(results) == 1 + ), f"Single process did not receive a single item. Process index: {state.process_index}; Length: {len(results)}" + else: + assert ( + len(results) == 2 + ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" + + state.wait_for_everyone() + + +def test_split_between_processes_list(): + state = AcceleratorState() + data = list(range(0, 2 * state.num_processes)) + with state.split_between_processes(data) as results: + assert ( + len(results) == 2 + ), f"Each process did not have two items. Process index: {state.process_index}; Length: {len(results)}" + + data = list(range(0, (3 * state.num_processes) - 1)) + with state.split_between_processes(data, apply_padding=True) as results: + if state.is_last_process: + # Test that the last process gets the extra item(s) + num_samples_per_device = math.ceil(len(data) / state.num_processes) + assert ( + len(results) == num_samples_per_device + ), f"Last process did not get the extra item(s). Process index: {state.process_index}; Length: {len(results)}" + state.wait_for_everyone() + + +def test_split_between_processes_nested_dict(): + state = AcceleratorState() + a = [1, 2, 3, 4, 5, 6, 7, 8] + b = ["a", "b", "c", "d", "e", "f", "g", "h"] + c = torch.tensor([1, 2, 3, 4, 5, 6, 7, 8]) + if state.num_processes in (1, 2, 4): + data = {"a": a, "b": b, "c": c} + data_copy = deepcopy(data) + with state.split_between_processes(data) as results: + if state.process_index == 0: + assert results["a"] == data_copy["a"][: 8 // state.num_processes] + elif state.num_processes == 2: + assert results["a"] == data_copy["a"][4:] + elif state.process_index == 3: + # We return a list each time + assert results["a"] == data_copy["a"][-2:], f'Expected: {data_copy["a"][-2]}, Actual: {results["a"]}' + if state.process_index == 0: + assert results["b"] == data_copy["b"][: 8 // state.num_processes] + elif state.num_processes == 2: + assert results["b"] == data_copy["b"][4:] + elif state.process_index == 3: + assert results["b"] == data_copy["b"][-2:] + if state.process_index == 0: + assert torch.allclose( + results["c"], data_copy["c"][: 8 // state.num_processes] + ), f"Did not obtain expected values on process 0, expected `{data['c'][:8 // state.num_processes]}`, received: {results['c']}" + elif state.num_processes == 2: + assert torch.allclose( + results["c"], data_copy["c"][4:] + ), f"Did not obtain expected values on process 2, expected `{data['c'][4:]}`, received: {results['c']}" + elif state.process_index == 3: + assert torch.allclose( + results["c"], data_copy["c"][-2:] + ), f"Did not obtain expected values on process 4, expected `{data['c'][-2:]}`, received: {results['c']}" + + state.wait_for_everyone() + + +def test_split_between_processes_tensor(): + state = AcceleratorState() + if state.num_processes > 1: + data = torch.tensor([[0, 1, 2, 3], [4, 5, 6, 7]]).to(state.device) + with state.split_between_processes(data) as results: + if state.process_index == 0: + assert torch.allclose(results, torch.tensor([0, 1, 2, 3]).to(state.device)) + else: + assert torch.allclose(results, torch.tensor([4, 5, 6, 7]).to(state.device)) + state.wait_for_everyone() + + +def test_trigger(): + accelerator = Accelerator() + # should start with being false + assert accelerator.check_trigger() is False + + # set a breakpoint on the main process + if accelerator.is_main_process: + accelerator.set_trigger() + + # check it's been activated across all processes + # calls `all_reduce` and triggers a sync + assert accelerator.check_trigger() is True + + # check it's been reset after the sync + assert accelerator.check_trigger() is False + + +def test_reinstantiated_state(): + import pytest + + AcceleratorState._reset_state() + simple_model = torch.nn.Linear(1, 1) + # First define an accelerator + accelerator = Accelerator() + # Then call `reset_state`, breaking the state existing in the accelerator + AcceleratorState._reset_state() + # Now try and prepare a simple model, should raise the custom error early + with pytest.raises(AttributeError) as cm: + accelerator.prepare(simple_model) + assert "`AcceleratorState` object has no attribute" in str(cm.value.args[0]) + assert "This happens if `AcceleratorState._reset_state()`" in str(cm.value.args[0]) + + +def main(): + accelerator = Accelerator() + state = accelerator.state + if state.local_process_index == 0: + print("**Initialization**") + init_state_check() + state.wait_for_everyone() + + if state.distributed_type == DistributedType.MULTI_GPU: + num_processes_per_node = torch.cuda.device_count() + else: + num_processes_per_node = state.num_processes + + # We only run this test on non-multinode + if num_processes_per_node == state.num_processes: + if state.process_index == 0: + print("\n**Test process execution**") + process_execution_check() + + if state.process_index == 0: + print("\n**Test split between processes as a list**") + test_split_between_processes_list() + + if state.process_index == 0: + print("\n**Test split between processes as a dict**") + test_split_between_processes_nested_dict() + + if state.process_index == 0: + print("\n**Test split between processes as a tensor**") + test_split_between_processes_tensor() + + if state.process_index == 0: + print("\n**Test split between processes as a datasets.Dataset**") + if is_datasets_available(): + from datasets import Dataset as datasets_Dataset + + test_split_between_processes_dataset(datasets_Dataset) + else: + print("Skipped because Hugging Face datasets is not available") + + if state.local_process_index == 0: + print("\n**Test random number generator synchronization**") + rng_sync_check() + + if state.local_process_index == 0: + print("\n**DataLoader integration test**") + dl_preparation_check() + if state.distributed_type != DistributedType.XLA: + central_dl_preparation_check() + custom_sampler_check() + check_seedable_sampler() + + if state.num_processes > 1: + check_seedable_sampler_in_batch_sampler_shard() + + # Trainings are not exactly the same in DeepSpeed and CPU mode + if state.distributed_type == DistributedType.DEEPSPEED: + return + + if state.local_process_index == 0: + print("\n**Training integration test**") + training_check(use_seedable_sampler=False) + training_check(use_seedable_sampler=True) + + if state.local_process_index == 0: + print("\n**Breakpoint trigger test**") + test_trigger() + + if state.local_process_index == 0: + print("\n**Test reinstantiated state**") + test_reinstantiated_state() + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_sync.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_sync.py new file mode 100644 index 0000000000000000000000000000000000000000..bd458bcab8aaa42409a7c1234a4afffb087e8a7c --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/scripts/test_sync.py @@ -0,0 +1,392 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from copy import deepcopy + +import torch +import torch.nn.functional as F +from torch.optim import AdamW +from torch.optim.lr_scheduler import LambdaLR +from torch.utils.data import DataLoader + +from accelerate.accelerator import Accelerator, GradientAccumulationPlugin +from accelerate.state import GradientState +from accelerate.test_utils import RegressionDataset, RegressionModel +from accelerate.utils import DistributedType, set_seed + + +def check_model_parameters(model_a, model_b, did_step, iteration, **kwargs): + for param, grad_param in zip(model_a.parameters(), model_b.parameters()): + if not param.requires_grad: + continue + if not did_step: + # Grads should not be in sync + assert ( + torch.allclose(param.grad, grad_param.grad, **kwargs) is False + ), f"Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})" + else: + # Grads should be in sync + assert ( + torch.allclose(param.grad, grad_param.grad, **kwargs) is True + ), f"Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})" + + +def step_model(model, input, target, accelerator, do_backward=True): + model.train() + output = model(input) + loss = F.mse_loss(output, target.to(output.device)) + if not do_backward: + loss /= accelerator.gradient_accumulation_steps + loss.backward() + else: + accelerator.backward(loss) + + +def get_training_setup(accelerator, sched=False): + "Returns everything needed to perform basic training" + set_seed(42) + model = RegressionModel() + ddp_model = deepcopy(model) + dset = RegressionDataset(length=80) + dataloader = DataLoader(dset, batch_size=16) + model.to(accelerator.device) + if sched: + opt = AdamW(params=model.parameters(), lr=1e-3) + ddp_opt = AdamW(params=ddp_model.parameters(), lr=1e-3) + sched = LambdaLR(opt, lr_lambda=lambda epoch: epoch**0.65) + ddp_sched = LambdaLR(ddp_opt, lr_lambda=lambda epoch: epoch**0.65) + # Make a copy of `model` + if sched: + ddp_model, ddp_opt, ddp_sched, dataloader = accelerator.prepare(ddp_model, ddp_opt, ddp_sched, dataloader) + else: + ddp_model, dataloader = accelerator.prepare(ddp_model, dataloader) + if sched: + return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) + return model, ddp_model, dataloader + + +def test_noop_sync(accelerator): + # Test when on a single CPU or GPU that the context manager does nothing + model, ddp_model, dataloader = get_training_setup(accelerator) + # Use a single batch + ddp_input, ddp_target = next(iter(dataloader)).values() + for iteration in range(3): + # Gather the distributed inputs and targs for the base model + input, target = accelerator.gather((ddp_input, ddp_target)) + input, target = input.to(accelerator.device), target.to(accelerator.device) + # Perform our initial ground truth step in non "DDP" + step_model(model, input, target, accelerator) + # Do "gradient accumulation" (noop) + if iteration % 2 == 0: + # Accumulate grads locally + with accelerator.no_sync(ddp_model): + step_model(ddp_model, ddp_input, ddp_target, accelerator) + else: + # Sync grads + step_model(ddp_model, ddp_input, ddp_target, accelerator) + + # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync + check_model_parameters(model, ddp_model, True, iteration) + for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): + if not param.requires_grad: + continue + assert torch.allclose( + param.grad, ddp_param.grad + ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" + + # Shuffle ddp_input on each iteration + torch.manual_seed(1337 + iteration) + ddp_input = ddp_input[torch.randperm(len(ddp_input))] + + +def test_distributed_sync(accelerator): + # Test on distributed setup that context manager behaves properly + model, ddp_model, dataloader = get_training_setup(accelerator) + # Use a single batch + ddp_input, ddp_target = next(iter(dataloader)).values() + for iteration in range(3): + # Gather the distributed inputs and targs for the base model + input, target = accelerator.gather((ddp_input, ddp_target)) + input, target = input.to(accelerator.device), target.to(accelerator.device) + # Perform our initial ground truth step in non "DDP" + step_model(model, input, target, accelerator) + # Do "gradient accumulation" (noop) + if iteration % 2 == 0: + # Accumulate grads locally + with accelerator.no_sync(ddp_model): + step_model(ddp_model, ddp_input, ddp_target, accelerator) + else: + # Sync grads + step_model(ddp_model, ddp_input, ddp_target, accelerator) + + # DDP model and model should only be in sync when not (iteration % 2 == 0) + for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): + if not param.requires_grad: + continue + if iteration % 2 == 0: + # Grads should not be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is False + ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" + else: + # Grads should be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is True + ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" + + # Shuffle ddp_input on each iteration + torch.manual_seed(1337 + iteration) + ddp_input = ddp_input[torch.randperm(len(ddp_input))] + + +def test_distributed_sync_multiple_fwd(accelerator): + # Test on distributed setup that context manager behaves properly when used with multiple forwards followed by multiple backwards + model, ddp_model, dataloader = get_training_setup(accelerator) + # Do multiple forwards + losses = [] + num_iterations = 3 + for iteration in range(num_iterations): + ddp_input, ddp_target = next(iter(dataloader)).values() + + # Gather the distributed inputs and targs for the base model + input, target = accelerator.gather((ddp_input, ddp_target)) + input, target = input.to(accelerator.device), target.to(accelerator.device) + + # Perform our initial ground truth step in non "DDP" + step_model(model, input, target, accelerator) + + # Accumulate grads locally + with accelerator.no_sync(ddp_model): + ddp_output = ddp_model(ddp_input) + loss = F.mse_loss(ddp_output, ddp_target.to(ddp_output.device)) + losses.append(loss) + + # Do multiple backwards and sync only at the last backward + for iteration in range(num_iterations): + loss = losses[iteration] + + if iteration < num_iterations - 1: + # Accumulate grads locally + accelerator.backward(loss) + + # DDP model and model should only be in sync after last backward + for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): + if not param.requires_grad: + continue + # Grads should not be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is False + ), f"Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" + + else: + # Sync grads if last backward + with accelerator.trigger_sync_in_backward(ddp_model): + accelerator.backward(loss) + + # DDP model and model should only be in sync after last backward + for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): + if not param.requires_grad: + continue + # Grads should be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is True + ), f"Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" + + +def test_gradient_accumulation(split_batches=False, dispatch_batches=False, sync_each_batch=False): + gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2, sync_each_batch=sync_each_batch) + accelerator = Accelerator( + split_batches=split_batches, + dispatch_batches=dispatch_batches, + gradient_accumulation_plugin=gradient_accumulation_plugin, + ) + # Test that context manager behaves properly + model, ddp_model, dataloader = get_training_setup(accelerator) + for iteration, batch in enumerate(dataloader): + ddp_input, ddp_target = batch.values() + # Gather the distributed inputs and targs for the base model + input, target = accelerator.gather((ddp_input, ddp_target)) + input, target = input.to(accelerator.device), target.to(accelerator.device) + # Perform our initial ground truth step in non "DDP" + step_model(model, input, target, accelerator, False) + # Do "gradient accumulation" (noop) + with accelerator.accumulate(ddp_model): + step_model(ddp_model, ddp_input, ddp_target, accelerator) + + # DDP model and model should only be in sync when not (iteration % 2 == 0) + for param, ddp_param in zip(model.parameters(), ddp_model.parameters()): + if not param.requires_grad: + continue + if ((iteration + 1) % 2 == 0) or (iteration == len(dataloader) - 1) or sync_each_batch: + # Grads should be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is True + ), f"Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})" + else: + # Grads should not be in sync + assert ( + torch.allclose(param.grad, ddp_param.grad) is False + ), f"Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})" + + # Shuffle ddp_input on each iteration + torch.manual_seed(1337 + iteration) + ddp_input = ddp_input[torch.randperm(len(ddp_input))] + GradientState._reset_state() + + +def test_gradient_accumulation_with_opt_and_scheduler( + split_batches=False, dispatch_batches=False, sync_each_batch=False +): + gradient_accumulation_plugin = GradientAccumulationPlugin(num_steps=2, sync_each_batch=sync_each_batch) + accelerator = Accelerator( + split_batches=split_batches, + dispatch_batches=dispatch_batches, + gradient_accumulation_plugin=gradient_accumulation_plugin, + ) + # Test that context manager behaves properly + model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched = get_training_setup(accelerator, True) + for iteration, batch in enumerate(dataloader): + ddp_input, ddp_target = batch.values() + # Gather the distributed inputs and targs for the base model + input, target = accelerator.gather((ddp_input, ddp_target)) + input, target = input.to(accelerator.device), target.to(accelerator.device) + # Perform our initial ground truth step in non "DDP" + model.train() + ddp_model.train() + step_model(model, input, target, accelerator, False) + opt.step() + + if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch: + if split_batches: + sched.step() + else: + for _ in range(accelerator.num_processes): + sched.step() + + # Perform gradient accumulation under wrapper + with accelerator.accumulate(ddp_model): + step_model(ddp_model, ddp_input, ddp_target, accelerator) + ddp_opt.step() + ddp_sched.step() + + # Learning rates should be the same + assert ( + opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] + ), f'Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]["lr"]}\nDDP opt: {ddp_opt.param_groups[0]["lr"]}\n' + did_step = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch + if accelerator.num_processes > 1: + check_model_parameters( + model, + ddp_model, + did_step, + iteration, + rtol=1e-3, # somehow needs a relative tolerance + ) + + if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(dataloader)) or sync_each_batch: + opt.zero_grad() # needs to be guarded by logic as to when we should zero grads + ddp_opt.zero_grad() + + # Shuffle ddp_input on each iteration + torch.manual_seed(1337 + iteration) + GradientState._reset_state() + + +def test_dataloader_break(): + accelerator = Accelerator() + + first_dset = RegressionDataset(length=80) + first_dataloader = DataLoader(first_dset, batch_size=16) + second_dset = RegressionDataset(length=96) + second_dataloader = DataLoader(second_dset, batch_size=16) + first_dataloader, second_dataloader = accelerator.prepare(first_dataloader, second_dataloader) + assert accelerator.gradient_state.active_dataloader is None + for iteration, _ in enumerate(first_dataloader): + assert id(accelerator.gradient_state.active_dataloader) == id(first_dataloader) + if iteration < len(first_dataloader) - 1: + assert not accelerator.gradient_state.end_of_dataloader + if iteration == 1: + for batch_num, _ in enumerate(second_dataloader): + assert id(accelerator.gradient_state.active_dataloader) == id(second_dataloader) + if batch_num < len(second_dataloader) - 1: + assert not accelerator.gradient_state.end_of_dataloader + else: + assert accelerator.gradient_state.end_of_dataloader + else: + assert accelerator.gradient_state.end_of_dataloader + assert accelerator.gradient_state.active_dataloader is None + + +def main(): + accelerator = Accelerator() + state = accelerator.state + if state.local_process_index == 0: + print("**Test `accumulate` gradient accumulation with dataloader break**") + if state.distributed_type != DistributedType.XLA: + test_dataloader_break() + if state.distributed_type == DistributedType.NO: + if state.local_process_index == 0: + print("**Test NOOP `no_sync` context manager**") + test_noop_sync(accelerator) + if state.distributed_type in ( + DistributedType.MULTI_GPU, + DistributedType.MULTI_NPU, + DistributedType.MULTI_MLU, + DistributedType.MULTI_CPU, + ): + if state.local_process_index == 0: + print("**Test Distributed `no_sync` context manager**") + test_distributed_sync(accelerator) + if state.local_process_index == 0: + print("**Test Distributed `no_sync` context manager with multiple forwards**") + test_distributed_sync_multiple_fwd(accelerator) + if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU): + for split_batch in [True, False]: + for dispatch_batches in [True, False]: + for sync_each_batch in [True, False]: + if state.local_process_index == 0: + print( + "**Test `accumulate` gradient accumulation, ", + f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}` and `sync_each_batch={sync_each_batch}`**", + ) + test_gradient_accumulation(split_batch, dispatch_batches, sync_each_batch) + + # Currently will break on torch 2.0 +, need to investigate why + if state.local_process_index == 0: + print( + "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", + "`split_batches=False`, `dispatch_batches=False`, `sync_each_batch=False`**", + ) + test_gradient_accumulation_with_opt_and_scheduler() + if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_NPU, DistributedType.MULTI_MLU): + for split_batch in [True, False]: + for dispatch_batches in [True, False]: + for sync_each_batch in [True, False]: + if not split_batch and not dispatch_batches and not sync_each_batch: + continue + if state.local_process_index == 0: + print( + "**Test `accumulate` gradient accumulation with optimizer and scheduler, ", + f"`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}` and `sync_each_batch={sync_each_batch}`**", + ) + test_gradient_accumulation_with_opt_and_scheduler(split_batch, dispatch_batches, sync_each_batch) + + +def _mp_fn(index): + # For xla_spawn (TPUs) + main() + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/testing.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/testing.py new file mode 100644 index 0000000000000000000000000000000000000000..179fff4808a1c36fcdc8026a617a4cad549bd796 --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/testing.py @@ -0,0 +1,605 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import asyncio +import inspect +import os +import shutil +import subprocess +import sys +import tempfile +import unittest +from contextlib import contextmanager +from functools import partial +from pathlib import Path +from typing import List, Union +from unittest import mock + +import torch + +import accelerate + +from ..state import AcceleratorState, PartialState +from ..utils import ( + gather, + is_bnb_available, + is_clearml_available, + is_comet_ml_available, + is_cuda_available, + is_datasets_available, + is_deepspeed_available, + is_dvclive_available, + is_mlu_available, + is_mps_available, + is_npu_available, + is_pandas_available, + is_pippy_available, + is_tensorboard_available, + is_timm_available, + is_torch_version, + is_torch_xla_available, + is_transformers_available, + is_wandb_available, + is_xpu_available, + str_to_bool, +) + + +def get_backend(): + if is_torch_xla_available(): + return "xla", torch.cuda.device_count(), torch.cuda.memory_allocated + elif is_cuda_available(): + return "cuda", torch.cuda.device_count(), torch.cuda.memory_allocated + elif is_mps_available(): + return "mps", 1, torch.mps.current_allocated_memory() + elif is_mlu_available(): + return "mlu", torch.mlu.device_count(), torch.mlu.memory_allocated + elif is_npu_available(): + return "npu", torch.npu.device_count(), torch.npu.memory_allocated + elif is_xpu_available(): + return "xpu", torch.xpu.device_count(), torch.xpu.memory_allocated + else: + return "cpu", 1, 0 + + +torch_device, device_count, memory_allocated_func = get_backend() + + +def get_launch_command(**kwargs) -> list: + """ + Wraps around `kwargs` to help simplify launching from `subprocess`. + + Example: + ```python + # returns ['accelerate', 'launch', '--num_processes=2', '--device_count=2'] + get_launch_command(num_processes=2, device_count=2) + ``` + """ + command = ["accelerate", "launch"] + for k, v in kwargs.items(): + if isinstance(v, bool) and v: + command.append(f"--{k}") + elif v is not None: + command.append(f"--{k}={v}") + return command + + +DEFAULT_LAUNCH_COMMAND = get_launch_command(num_processes=device_count) + + +def parse_flag_from_env(key, default=False): + try: + value = os.environ[key] + except KeyError: + # KEY isn't set, default to `default`. + _value = default + else: + # KEY is set, convert it to True or False. + try: + _value = str_to_bool(value) + except ValueError: + # More values are supported, but let's keep the message simple. + raise ValueError(f"If set, {key} must be yes or no.") + return _value + + +_run_slow_tests = parse_flag_from_env("RUN_SLOW", default=False) + + +def skip(test_case): + "Decorator that skips a test unconditionally" + return unittest.skip("Test was skipped")(test_case) + + +def slow(test_case): + """ + Decorator marking a test as slow. Slow tests are skipped by default. Set the RUN_SLOW environment variable to a + truthy value to run them. + """ + return unittest.skipUnless(_run_slow_tests, "test is slow")(test_case) + + +def require_cpu(test_case): + """ + Decorator marking a test that must be only ran on the CPU. These tests are skipped when a GPU is available. + """ + return unittest.skipUnless(torch_device == "cpu", "test requires only a CPU")(test_case) + + +def require_non_cpu(test_case): + """ + Decorator marking a test that requires a hardware accelerator backend. These tests are skipped when there are no + hardware accelerator available. + """ + return unittest.skipUnless(torch_device != "cpu", "test requires a GPU")(test_case) + + +def require_cuda(test_case): + """ + Decorator marking a test that requires CUDA. These tests are skipped when there are no GPU available or when + TorchXLA is available. + """ + return unittest.skipUnless(is_cuda_available() and not is_torch_xla_available(), "test requires a GPU")(test_case) + + +def require_xpu(test_case): + """ + Decorator marking a test that requires XPU. These tests are skipped when there are no XPU available. + """ + return unittest.skipUnless(is_xpu_available(), "test requires a XPU")(test_case) + + +def require_non_xpu(test_case): + """ + Decorator marking a test that should be skipped for XPU. + """ + return unittest.skipUnless(torch_device != "xpu", "test requires a non-XPU")(test_case) + + +def require_mlu(test_case): + """ + Decorator marking a test that requires MLU. These tests are skipped when there are no MLU available. + """ + return unittest.skipUnless(is_mlu_available(), "test require a MLU")(test_case) + + +def require_npu(test_case): + """ + Decorator marking a test that requires NPU. These tests are skipped when there are no NPU available. + """ + return unittest.skipUnless(is_npu_available(), "test require a NPU")(test_case) + + +def require_mps(test_case): + """ + Decorator marking a test that requires MPS backend. These tests are skipped when torch doesn't support `mps` + backend. + """ + return unittest.skipUnless(is_mps_available(), "test requires a `mps` backend support in `torch`")(test_case) + + +def require_huggingface_suite(test_case): + """ + Decorator marking a test that requires transformers and datasets. These tests are skipped when they are not. + """ + return unittest.skipUnless( + is_transformers_available() and is_datasets_available(), + "test requires the Hugging Face suite", + )(test_case) + + +def require_transformers(test_case): + """ + Decorator marking a test that requires transformers. These tests are skipped when they are not. + """ + return unittest.skipUnless(is_transformers_available(), "test requires the transformers library")(test_case) + + +def require_timm(test_case): + """ + Decorator marking a test that requires transformers. These tests are skipped when they are not. + """ + return unittest.skipUnless(is_timm_available(), "test requires the timm library")(test_case) + + +def require_bnb(test_case): + """ + Decorator marking a test that requires bitsandbytes. These tests are skipped when they are not. + """ + return unittest.skipUnless(is_bnb_available(), "test requires the bitsandbytes library")(test_case) + + +def require_tpu(test_case): + """ + Decorator marking a test that requires TPUs. These tests are skipped when there are no TPUs available. + """ + return unittest.skipUnless(is_torch_xla_available(check_is_tpu=True), "test requires TPU")(test_case) + + +def require_non_torch_xla(test_case): + """ + Decorator marking a test as requiring an environment without TorchXLA. These tests are skipped when TorchXLA is + available. + """ + return unittest.skipUnless(not is_torch_xla_available(), "test requires an env without TorchXLA")(test_case) + + +def require_single_device(test_case): + """ + Decorator marking a test that requires a single device. These tests are skipped when there is no hardware + accelerator available or number of devices is more than one. + """ + return unittest.skipUnless(torch_device != "cpu" and device_count == 1, "test requires a hardware accelerator")( + test_case + ) + + +def require_single_gpu(test_case): + """ + Decorator marking a test that requires CUDA on a single GPU. These tests are skipped when there are no GPU + available or number of GPUs is more than one. + """ + return unittest.skipUnless(torch.cuda.device_count() == 1, "test requires a GPU")(test_case) + + +def require_single_xpu(test_case): + """ + Decorator marking a test that requires CUDA on a single XPU. These tests are skipped when there are no XPU + available or number of xPUs is more than one. + """ + return unittest.skipUnless(torch.xpu.device_count() == 1, "test requires a XPU")(test_case) + + +def require_multi_device(test_case): + """ + Decorator marking a test that requires a multi-device setup. These tests are skipped on a machine without multiple + devices. + """ + return unittest.skipUnless(device_count > 1, "test requires multiple hardware accelerators")(test_case) + + +def require_multi_gpu(test_case): + """ + Decorator marking a test that requires a multi-GPU setup. These tests are skipped on a machine without multiple + GPUs. + """ + return unittest.skipUnless(torch.cuda.device_count() > 1, "test requires multiple GPUs")(test_case) + + +def require_multi_xpu(test_case): + """ + Decorator marking a test that requires a multi-XPU setup. These tests are skipped on a machine without multiple + XPUs. + """ + return unittest.skipUnless(torch.xpu.device_count() > 1, "test requires multiple XPUs")(test_case) + + +def require_deepspeed(test_case): + """ + Decorator marking a test that requires DeepSpeed installed. These tests are skipped when DeepSpeed isn't installed + """ + return unittest.skipUnless(is_deepspeed_available(), "test requires DeepSpeed")(test_case) + + +def require_fsdp(test_case): + """ + Decorator marking a test that requires FSDP installed. These tests are skipped when FSDP isn't installed + """ + return unittest.skipUnless(is_torch_version(">=", "1.12.0"), "test requires torch version >= 1.12.0")(test_case) + + +def require_torch_min_version(test_case=None, version=None): + """ + Decorator marking that a test requires a particular torch version to be tested. These tests are skipped when an + installed torch version is less than the required one. + """ + if test_case is None: + return partial(require_torch_min_version, version=version) + return unittest.skipUnless(is_torch_version(">=", version), f"test requires torch version >= {version}")(test_case) + + +def require_tensorboard(test_case): + """ + Decorator marking a test that requires tensorboard installed. These tests are skipped when tensorboard isn't + installed + """ + return unittest.skipUnless(is_tensorboard_available(), "test requires Tensorboard")(test_case) + + +def require_wandb(test_case): + """ + Decorator marking a test that requires wandb installed. These tests are skipped when wandb isn't installed + """ + return unittest.skipUnless(is_wandb_available(), "test requires wandb")(test_case) + + +def require_comet_ml(test_case): + """ + Decorator marking a test that requires comet_ml installed. These tests are skipped when comet_ml isn't installed + """ + return unittest.skipUnless(is_comet_ml_available(), "test requires comet_ml")(test_case) + + +def require_clearml(test_case): + """ + Decorator marking a test that requires clearml installed. These tests are skipped when clearml isn't installed + """ + return unittest.skipUnless(is_clearml_available(), "test requires clearml")(test_case) + + +def require_dvclive(test_case): + """ + Decorator marking a test that requires dvclive installed. These tests are skipped when dvclive isn't installed + """ + return unittest.skipUnless(is_dvclive_available(), "test requires dvclive")(test_case) + + +def require_pandas(test_case): + """ + Decorator marking a test that requires pandas installed. These tests are skipped when pandas isn't installed + """ + return unittest.skipUnless(is_pandas_available(), "test requires pandas")(test_case) + + +def require_pippy(test_case): + """ + Decorator marking a test that requires pippy installed. These tests are skipped when pippy isn't installed + """ + return unittest.skipUnless(is_pippy_available(), "test requires pippy")(test_case) + + +_atleast_one_tracker_available = ( + any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() +) + + +def require_trackers(test_case): + """ + Decorator marking that a test requires at least one tracking library installed. These tests are skipped when none + are installed + """ + return unittest.skipUnless( + _atleast_one_tracker_available, + "test requires at least one tracker to be available and for `comet_ml` to not be installed", + )(test_case) + + +class TempDirTestCase(unittest.TestCase): + """ + A TestCase class that keeps a single `tempfile.TemporaryDirectory` open for the duration of the class, wipes its + data at the start of a test, and then destroyes it at the end of the TestCase. + + Useful for when a class or API requires a single constant folder throughout it's use, such as Weights and Biases + + The temporary directory location will be stored in `self.tmpdir` + """ + + clear_on_setup = True + + @classmethod + def setUpClass(cls): + "Creates a `tempfile.TemporaryDirectory` and stores it in `cls.tmpdir`" + cls.tmpdir = Path(tempfile.mkdtemp()) + + @classmethod + def tearDownClass(cls): + "Remove `cls.tmpdir` after test suite has finished" + if os.path.exists(cls.tmpdir): + shutil.rmtree(cls.tmpdir) + + def setUp(self): + "Destroy all contents in `self.tmpdir`, but not `self.tmpdir`" + if self.clear_on_setup: + for path in self.tmpdir.glob("**/*"): + if path.is_file(): + path.unlink() + elif path.is_dir(): + shutil.rmtree(path) + + +class AccelerateTestCase(unittest.TestCase): + """ + A TestCase class that will reset the accelerator state at the end of every test. Every test that checks or utilizes + the `AcceleratorState` class should inherit from this to avoid silent failures due to state being shared between + tests. + """ + + def tearDown(self): + super().tearDown() + # Reset the state of the AcceleratorState singleton. + AcceleratorState._reset_state() + PartialState._reset_state() + + +class MockingTestCase(unittest.TestCase): + """ + A TestCase class designed to dynamically add various mockers that should be used in every test, mimicking the + behavior of a class-wide mock when defining one normally will not do. + + Useful when a mock requires specific information available only initialized after `TestCase.setUpClass`, such as + setting an environment variable with that information. + + The `add_mocks` function should be ran at the end of a `TestCase`'s `setUp` function, after a call to + `super().setUp()` such as: + ```python + def setUp(self): + super().setUp() + mocks = mock.patch.dict(os.environ, {"SOME_ENV_VAR", "SOME_VALUE"}) + self.add_mocks(mocks) + ``` + """ + + def add_mocks(self, mocks: Union[mock.Mock, List[mock.Mock]]): + """ + Add custom mocks for tests that should be repeated on each test. Should be called during + `MockingTestCase.setUp`, after `super().setUp()`. + + Args: + mocks (`mock.Mock` or list of `mock.Mock`): + Mocks that should be added to the `TestCase` after `TestCase.setUpClass` has been run + """ + self.mocks = mocks if isinstance(mocks, (tuple, list)) else [mocks] + for m in self.mocks: + m.start() + self.addCleanup(m.stop) + + +def are_the_same_tensors(tensor): + state = AcceleratorState() + tensor = tensor[None].clone().to(state.device) + tensors = gather(tensor).cpu() + tensor = tensor[0].cpu() + for i in range(tensors.shape[0]): + if not torch.equal(tensors[i], tensor): + return False + return True + + +class _RunOutput: + def __init__(self, returncode, stdout, stderr): + self.returncode = returncode + self.stdout = stdout + self.stderr = stderr + + +async def _read_stream(stream, callback): + while True: + line = await stream.readline() + if line: + callback(line) + else: + break + + +async def _stream_subprocess(cmd, env=None, stdin=None, timeout=None, quiet=False, echo=False) -> _RunOutput: + if echo: + print("\nRunning: ", " ".join(cmd)) + + p = await asyncio.create_subprocess_exec( + cmd[0], + *cmd[1:], + stdin=stdin, + stdout=asyncio.subprocess.PIPE, + stderr=asyncio.subprocess.PIPE, + env=env, + ) + + # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe + # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait + # + # If it starts hanging, will need to switch to the following code. The problem is that no data + # will be seen until it's done and if it hangs for example there will be no debug info. + # out, err = await p.communicate() + # return _RunOutput(p.returncode, out, err) + + out = [] + err = [] + + def tee(line, sink, pipe, label=""): + line = line.decode("utf-8").rstrip() + sink.append(line) + if not quiet: + print(label, line, file=pipe) + + # XXX: the timeout doesn't seem to make any difference here + await asyncio.wait( + [ + asyncio.create_task(_read_stream(p.stdout, lambda l: tee(l, out, sys.stdout, label="stdout:"))), + asyncio.create_task(_read_stream(p.stderr, lambda l: tee(l, err, sys.stderr, label="stderr:"))), + ], + timeout=timeout, + ) + return _RunOutput(await p.wait(), out, err) + + +def execute_subprocess_async(cmd: list, env=None, stdin=None, timeout=180, quiet=False, echo=True) -> _RunOutput: + # Cast every path in `cmd` to a string + for i, c in enumerate(cmd): + if isinstance(c, Path): + cmd[i] = str(c) + loop = asyncio.get_event_loop() + result = loop.run_until_complete( + _stream_subprocess(cmd, env=env, stdin=stdin, timeout=timeout, quiet=quiet, echo=echo) + ) + + cmd_str = " ".join(cmd) + if result.returncode > 0: + stderr = "\n".join(result.stderr) + raise RuntimeError( + f"'{cmd_str}' failed with returncode {result.returncode}\n\n" + f"The combined stderr from workers follows:\n{stderr}" + ) + + return result + + +class SubprocessCallException(Exception): + pass + + +def run_command(command: List[str], return_stdout=False, env=None): + """ + Runs `command` with `subprocess.check_output` and will potentially return the `stdout`. Will also properly capture + if an error occured while running `command` + """ + # Cast every path in `command` to a string + for i, c in enumerate(command): + if isinstance(c, Path): + command[i] = str(c) + if env is None: + env = os.environ.copy() + try: + output = subprocess.check_output(command, stderr=subprocess.STDOUT, env=env) + if return_stdout: + if hasattr(output, "decode"): + output = output.decode("utf-8") + return output + except subprocess.CalledProcessError as e: + raise SubprocessCallException( + f"Command `{' '.join(command)}` failed with the following error:\n\n{e.output.decode()}" + ) from e + + +def path_in_accelerate_package(*components: str) -> Path: + """ + Get a path within the `accelerate` package's directory. + + Args: + *components: Components of the path to join after the package directory. + + Returns: + `Path`: The path to the requested file or directory. + """ + + accelerate_package_dir = Path(inspect.getfile(accelerate)).parent + return accelerate_package_dir.joinpath(*components) + + +@contextmanager +def assert_exception(exception_class: Exception, msg: str = None) -> bool: + """ + Context manager to assert that the right `Exception` class was raised. + + If `msg` is provided, will check that the message is contained in the raised exception. + """ + was_ran = False + try: + yield + was_ran = True + except Exception as e: + assert isinstance(e, exception_class), f"Expected exception of type {exception_class} but got {type(e)}" + if msg is not None: + assert msg in str(e), f"Expected message '{msg}' to be in exception but got '{str(e)}'" + if was_ran: + raise AssertionError(f"Expected exception of type {exception_class} but ran without issue.") diff --git a/venv/lib/python3.10/site-packages/accelerate/test_utils/training.py b/venv/lib/python3.10/site-packages/accelerate/test_utils/training.py new file mode 100644 index 0000000000000000000000000000000000000000..d89cfd3c71546871d00cb9c2a5cd07494c46cbfe --- /dev/null +++ b/venv/lib/python3.10/site-packages/accelerate/test_utils/training.py @@ -0,0 +1,101 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy as np +import torch +from torch.utils.data import DataLoader + +from accelerate.utils.dataclasses import DistributedType + + +class RegressionDataset: + def __init__(self, a=2, b=3, length=64, seed=None): + rng = np.random.default_rng(seed) + self.length = length + self.x = rng.normal(size=(length,)).astype(np.float32) + self.y = a * self.x + b + rng.normal(scale=0.1, size=(length,)).astype(np.float32) + + def __len__(self): + return self.length + + def __getitem__(self, i): + return {"x": self.x[i], "y": self.y[i]} + + +class RegressionModel4XPU(torch.nn.Module): + def __init__(self, a=0, b=0, double_output=False): + super().__init__() + self.a = torch.nn.Parameter(torch.tensor([2, 3]).float()) + self.b = torch.nn.Parameter(torch.tensor([2, 3]).float()) + self.first_batch = True + + def forward(self, x=None): + if self.first_batch: + print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") + self.first_batch = False + return x * self.a[0] + self.b[0] + + +class RegressionModel(torch.nn.Module): + def __init__(self, a=0, b=0, double_output=False): + super().__init__() + self.a = torch.nn.Parameter(torch.tensor(a).float()) + self.b = torch.nn.Parameter(torch.tensor(b).float()) + self.first_batch = True + + def forward(self, x=None): + if self.first_batch: + print(f"Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}") + self.first_batch = False + return x * self.a + self.b + + +def mocked_dataloaders(accelerator, batch_size: int = 16): + from datasets import load_dataset + from transformers import AutoTokenizer + + tokenizer = AutoTokenizer.from_pretrained("bert-base-cased") + data_files = {"train": "tests/test_samples/MRPC/train.csv", "validation": "tests/test_samples/MRPC/dev.csv"} + datasets = load_dataset("csv", data_files=data_files) + label_list = datasets["train"].unique("label") + + label_to_id = {v: i for i, v in enumerate(label_list)} + + def tokenize_function(examples): + # max_length=None => use the model max length (it's actually the default) + outputs = tokenizer( + examples["sentence1"], examples["sentence2"], truncation=True, max_length=None, padding="max_length" + ) + if "label" in examples: + outputs["labels"] = [label_to_id[l] for l in examples["label"]] + return outputs + + # Apply the method we just defined to all the examples in all the splits of the dataset + tokenized_datasets = datasets.map( + tokenize_function, + batched=True, + remove_columns=["sentence1", "sentence2", "label"], + ) + + def collate_fn(examples): + # On TPU it's best to pad everything to the same length or training will be very slow. + if accelerator.distributed_type == DistributedType.XLA: + return tokenizer.pad(examples, padding="max_length", max_length=128, return_tensors="pt") + return tokenizer.pad(examples, padding="longest", return_tensors="pt") + + # Instantiate dataloaders. + train_dataloader = DataLoader(tokenized_datasets["train"], shuffle=True, collate_fn=collate_fn, batch_size=2) + eval_dataloader = DataLoader(tokenized_datasets["validation"], shuffle=False, collate_fn=collate_fn, batch_size=1) + + return train_dataloader, eval_dataloader diff --git a/venv/lib/python3.10/site-packages/charset_normalizer-3.3.2.dist-info/LICENSE b/venv/lib/python3.10/site-packages/charset_normalizer-3.3.2.dist-info/LICENSE new file mode 100644 index 0000000000000000000000000000000000000000..ad82355b802d542e8443dc78b937fa36fdcc0ace --- /dev/null +++ b/venv/lib/python3.10/site-packages/charset_normalizer-3.3.2.dist-info/LICENSE @@ -0,0 +1,21 @@ +MIT License + +Copyright (c) 2019 TAHRI Ahmed R. + +Permission is hereby granted, free of charge, to any person obtaining a copy +of this software and associated documentation files (the "Software"), to deal +in the Software without restriction, including without limitation the rights +to use, copy, modify, merge, publish, distribute, sublicense, and/or sell +copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all +copies or substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR +IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, +FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE +AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER +LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, +OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE +SOFTWARE. \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/INSTALLER b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/LICENSE.txt b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/LICENSE.txt new file mode 100644 index 0000000000000000000000000000000000000000..d226599fd2ec2f3353ffb0c434cd8be1b570ac95 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/LICENSE.txt @@ -0,0 +1,971 @@ +Copyright (c) 2005-2023, NumPy Developers. +All rights reserved. + +Redistribution and use in source and binary forms, with or without +modification, are permitted provided that the following conditions are +met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + + * Neither the name of the NumPy Developers nor the names of any + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + +THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +---- + +The NumPy repository and source distributions bundle several libraries that are +compatibly licensed. We list these here. + +Name: lapack-lite +Files: numpy/linalg/lapack_lite/* +License: BSD-3-Clause + For details, see numpy/linalg/lapack_lite/LICENSE.txt + +Name: tempita +Files: tools/npy_tempita/* +License: MIT + For details, see tools/npy_tempita/license.txt + +Name: dragon4 +Files: numpy/core/src/multiarray/dragon4.c +License: MIT + For license text, see numpy/core/src/multiarray/dragon4.c + +Name: libdivide +Files: numpy/core/include/numpy/libdivide/* +License: Zlib + For license text, see numpy/core/include/numpy/libdivide/LICENSE.txt + + +Note that the following files are vendored in the repository and sdist but not +installed in built numpy packages: + +Name: Meson +Files: vendored-meson/meson/* +License: Apache 2.0 + For license text, see vendored-meson/meson/COPYING + +Name: spin +Files: .spin/cmds.py +License: BSD-3 + For license text, see .spin/LICENSE + +---- + +This binary distribution of NumPy also bundles the following software: + + +Name: OpenBLAS +Files: numpy.libs/libopenblas*.so +Description: bundled as a dynamically linked library +Availability: https://github.com/OpenMathLib/OpenBLAS/ +License: BSD-3-Clause + Copyright (c) 2011-2014, The OpenBLAS Project + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + 3. Neither the name of the OpenBLAS project nor the names of + its contributors may be used to endorse or promote products + derived from this software without specific prior written + permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE + USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +Name: LAPACK +Files: numpy.libs/libopenblas*.so +Description: bundled in OpenBLAS +Availability: https://github.com/OpenMathLib/OpenBLAS/ +License: BSD-3-Clause-Attribution + Copyright (c) 1992-2013 The University of Tennessee and The University + of Tennessee Research Foundation. All rights + reserved. + Copyright (c) 2000-2013 The University of California Berkeley. All + rights reserved. + Copyright (c) 2006-2013 The University of Colorado Denver. All rights + reserved. + + $COPYRIGHT$ + + Additional copyrights may follow + + $HEADER$ + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer listed + in this license in the documentation and/or other materials + provided with the distribution. + + - Neither the name of the copyright holders nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + The copyright holders provide no reassurances that the source code + provided does not infringe any patent, copyright, or any other + intellectual property rights of third parties. The copyright holders + disclaim any liability to any recipient for claims brought against + recipient by any third party for infringement of that parties + intellectual property rights. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + +Name: GCC runtime library +Files: numpy.libs/libgfortran*.so +Description: dynamically linked to files compiled with gcc +Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran +License: GPL-3.0-with-GCC-exception + Copyright (C) 2002-2017 Free Software Foundation, Inc. + + Libgfortran is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3, or (at your option) + any later version. + + Libgfortran is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + Under Section 7 of GPL version 3, you are granted additional + permissions described in the GCC Runtime Library Exception, version + 3.1, as published by the Free Software Foundation. + + You should have received a copy of the GNU General Public License and + a copy of the GCC Runtime Library Exception along with this program; + see the files COPYING3 and COPYING.RUNTIME respectively. If not, see + . + +---- + +Full text of license texts referred to above follows (that they are +listed below does not necessarily imply the conditions apply to the +present binary release): + +---- + +GCC RUNTIME LIBRARY EXCEPTION + +Version 3.1, 31 March 2009 + +Copyright (C) 2009 Free Software Foundation, Inc. + +Everyone is permitted to copy and distribute verbatim copies of this +license document, but changing it is not allowed. + +This GCC Runtime Library Exception ("Exception") is an additional +permission under section 7 of the GNU General Public License, version +3 ("GPLv3"). It applies to a given file (the "Runtime Library") that +bears a notice placed by the copyright holder of the file stating that +the file is governed by GPLv3 along with this Exception. + +When you use GCC to compile a program, GCC may combine portions of +certain GCC header files and runtime libraries with the compiled +program. The purpose of this Exception is to allow compilation of +non-GPL (including proprietary) programs to use, in this way, the +header files and runtime libraries covered by this Exception. + +0. Definitions. + +A file is an "Independent Module" if it either requires the Runtime +Library for execution after a Compilation Process, or makes use of an +interface provided by the Runtime Library, but is not otherwise based +on the Runtime Library. + +"GCC" means a version of the GNU Compiler Collection, with or without +modifications, governed by version 3 (or a specified later version) of +the GNU General Public License (GPL) with the option of using any +subsequent versions published by the FSF. + +"GPL-compatible Software" is software whose conditions of propagation, +modification and use would permit combination with GCC in accord with +the license of GCC. + +"Target Code" refers to output from any compiler for a real or virtual +target processor architecture, in executable form or suitable for +input to an assembler, loader, linker and/or execution +phase. Notwithstanding that, Target Code does not include data in any +format that is used as a compiler intermediate representation, or used +for producing a compiler intermediate representation. + +The "Compilation Process" transforms code entirely represented in +non-intermediate languages designed for human-written code, and/or in +Java Virtual Machine byte code, into Target Code. Thus, for example, +use of source code generators and preprocessors need not be considered +part of the Compilation Process, since the Compilation Process can be +understood as starting with the output of the generators or +preprocessors. + +A Compilation Process is "Eligible" if it is done using GCC, alone or +with other GPL-compatible software, or if it is done without using any +work based on GCC. For example, using non-GPL-compatible Software to +optimize any GCC intermediate representations would not qualify as an +Eligible Compilation Process. + +1. Grant of Additional Permission. + +You have permission to propagate a work of Target Code formed by +combining the Runtime Library with Independent Modules, even if such +propagation would otherwise violate the terms of GPLv3, provided that +all Target Code was generated by Eligible Compilation Processes. You +may then convey such a combination under terms of your choice, +consistent with the licensing of the Independent Modules. + +2. No Weakening of GCC Copyleft. + +The availability of this Exception does not imply any general +presumption that third-party software is unaffected by the copyleft +requirements of the license of GCC. + +---- + + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for +software and other kinds of works. + + The licenses for most software and other practical works are designed +to take away your freedom to share and change the works. By contrast, +the GNU General Public License is intended to guarantee your freedom to +share and change all versions of a program--to make sure it remains free +software for all its users. We, the Free Software Foundation, use the +GNU General Public License for most of our software; it applies also to +any other work released this way by its authors. You can apply it to +your programs, too. + + When we speak of free software, we are referring to freedom, not +price. Our General Public Licenses are designed to make sure that you +have the freedom to distribute copies of free software (and charge for +them if you wish), that you receive source code or can get it if you +want it, that you can change the software or use pieces of it in new +free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you +these rights or asking you to surrender the rights. Therefore, you have +certain responsibilities if you distribute copies of the software, or if +you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether +gratis or for a fee, you must pass on to the recipients the same +freedoms that you received. You must make sure that they, too, receive +or can get the source code. And you must show them these terms so they +know their rights. + + Developers that use the GNU GPL protect your rights with two steps: +(1) assert copyright on the software, and (2) offer you this License +giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains +that there is no warranty for this free software. For both users' and +authors' sake, the GPL requires that modified versions be marked as +changed, so that their problems will not be attributed erroneously to +authors of previous versions. + + Some devices are designed to deny users access to install or run +modified versions of the software inside them, although the manufacturer +can do so. This is fundamentally incompatible with the aim of +protecting users' freedom to change the software. The systematic +pattern of such abuse occurs in the area of products for individuals to +use, which is precisely where it is most unacceptable. Therefore, we +have designed this version of the GPL to prohibit the practice for those +products. If such problems arise substantially in other domains, we +stand ready to extend this provision to those domains in future versions +of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. +States should not allow patents to restrict development and use of +software on general-purpose computers, but in those that do, we wish to +avoid the special danger that patents applied to a free program could +make it effectively proprietary. To prevent this, the GPL assures that +patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and +modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of +works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this +License. Each licensee is addressed as "you". "Licensees" and +"recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work +in a fashion requiring copyright permission, other than the making of an +exact copy. The resulting work is called a "modified version" of the +earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based +on the Program. + + To "propagate" a work means to do anything with it that, without +permission, would make you directly or secondarily liable for +infringement under applicable copyright law, except executing it on a +computer or modifying a private copy. Propagation includes copying, +distribution (with or without modification), making available to the +public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other +parties to make or receive copies. Mere interaction with a user through +a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" +to the extent that it includes a convenient and prominently visible +feature that (1) displays an appropriate copyright notice, and (2) +tells the user that there is no warranty for the work (except to the +extent that warranties are provided), that licensees may convey the +work under this License, and how to view a copy of this License. If +the interface presents a list of user commands or options, such as a +menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work +for making modifications to it. "Object code" means any non-source +form of a work. + + A "Standard Interface" means an interface that either is an official +standard defined by a recognized standards body, or, in the case of +interfaces specified for a particular programming language, one that +is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other +than the work as a whole, that (a) is included in the normal form of +packaging a Major Component, but which is not part of that Major +Component, and (b) serves only to enable use of the work with that +Major Component, or to implement a Standard Interface for which an +implementation is available to the public in source code form. A +"Major Component", in this context, means a major essential component +(kernel, window system, and so on) of the specific operating system +(if any) on which the executable work runs, or a compiler used to +produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all +the source code needed to generate, install, and (for an executable +work) run the object code and to modify the work, including scripts to +control those activities. However, it does not include the work's +System Libraries, or general-purpose tools or generally available free +programs which are used unmodified in performing those activities but +which are not part of the work. For example, Corresponding Source +includes interface definition files associated with source files for +the work, and the source code for shared libraries and dynamically +linked subprograms that the work is specifically designed to require, +such as by intimate data communication or control flow between those +subprograms and other parts of the work. + + The Corresponding Source need not include anything that users +can regenerate automatically from other parts of the Corresponding +Source. + + The Corresponding Source for a work in source code form is that +same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of +copyright on the Program, and are irrevocable provided the stated +conditions are met. This License explicitly affirms your unlimited +permission to run the unmodified Program. The output from running a +covered work is covered by this License only if the output, given its +content, constitutes a covered work. This License acknowledges your +rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not +convey, without conditions so long as your license otherwise remains +in force. You may convey covered works to others for the sole purpose +of having them make modifications exclusively for you, or provide you +with facilities for running those works, provided that you comply with +the terms of this License in conveying all material for which you do +not control copyright. Those thus making or running the covered works +for you must do so exclusively on your behalf, under your direction +and control, on terms that prohibit them from making any copies of +your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under +the conditions stated below. Sublicensing is not allowed; section 10 +makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological +measure under any applicable law fulfilling obligations under article +11 of the WIPO copyright treaty adopted on 20 December 1996, or +similar laws prohibiting or restricting circumvention of such +measures. + + When you convey a covered work, you waive any legal power to forbid +circumvention of technological measures to the extent such circumvention +is effected by exercising rights under this License with respect to +the covered work, and you disclaim any intention to limit operation or +modification of the work as a means of enforcing, against the work's +users, your or third parties' legal rights to forbid circumvention of +technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you +receive it, in any medium, provided that you conspicuously and +appropriately publish on each copy an appropriate copyright notice; +keep intact all notices stating that this License and any +non-permissive terms added in accord with section 7 apply to the code; +keep intact all notices of the absence of any warranty; and give all +recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, +and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to +produce it from the Program, in the form of source code under the +terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent +works, which are not by their nature extensions of the covered work, +and which are not combined with it such as to form a larger program, +in or on a volume of a storage or distribution medium, is called an +"aggregate" if the compilation and its resulting copyright are not +used to limit the access or legal rights of the compilation's users +beyond what the individual works permit. Inclusion of a covered work +in an aggregate does not cause this License to apply to the other +parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms +of sections 4 and 5, provided that you also convey the +machine-readable Corresponding Source under the terms of this License, +in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded +from the Corresponding Source as a System Library, need not be +included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any +tangible personal property which is normally used for personal, family, +or household purposes, or (2) anything designed or sold for incorporation +into a dwelling. In determining whether a product is a consumer product, +doubtful cases shall be resolved in favor of coverage. For a particular +product received by a particular user, "normally used" refers to a +typical or common use of that class of product, regardless of the status +of the particular user or of the way in which the particular user +actually uses, or expects or is expected to use, the product. A product +is a consumer product regardless of whether the product has substantial +commercial, industrial or non-consumer uses, unless such uses represent +the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, +procedures, authorization keys, or other information required to install +and execute modified versions of a covered work in that User Product from +a modified version of its Corresponding Source. The information must +suffice to ensure that the continued functioning of the modified object +code is in no case prevented or interfered with solely because +modification has been made. + + If you convey an object code work under this section in, or with, or +specifically for use in, a User Product, and the conveying occurs as +part of a transaction in which the right of possession and use of the +User Product is transferred to the recipient in perpetuity or for a +fixed term (regardless of how the transaction is characterized), the +Corresponding Source conveyed under this section must be accompanied +by the Installation Information. But this requirement does not apply +if neither you nor any third party retains the ability to install +modified object code on the User Product (for example, the work has +been installed in ROM). + + The requirement to provide Installation Information does not include a +requirement to continue to provide support service, warranty, or updates +for a work that has been modified or installed by the recipient, or for +the User Product in which it has been modified or installed. Access to a +network may be denied when the modification itself materially and +adversely affects the operation of the network or violates the rules and +protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, +in accord with this section must be in a format that is publicly +documented (and with an implementation available to the public in +source code form), and must require no special password or key for +unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this +License by making exceptions from one or more of its conditions. +Additional permissions that are applicable to the entire Program shall +be treated as though they were included in this License, to the extent +that they are valid under applicable law. If additional permissions +apply only to part of the Program, that part may be used separately +under those permissions, but the entire Program remains governed by +this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option +remove any additional permissions from that copy, or from any part of +it. (Additional permissions may be written to require their own +removal in certain cases when you modify the work.) You may place +additional permissions on material, added by you to a covered work, +for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you +add to a covered work, you may (if authorized by the copyright holders of +that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further +restrictions" within the meaning of section 10. If the Program as you +received it, or any part of it, contains a notice stating that it is +governed by this License along with a term that is a further +restriction, you may remove that term. If a license document contains +a further restriction but permits relicensing or conveying under this +License, you may add to a covered work material governed by the terms +of that license document, provided that the further restriction does +not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you +must place, in the relevant source files, a statement of the +additional terms that apply to those files, or a notice indicating +where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the +form of a separately written license, or stated as exceptions; +the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly +provided under this License. Any attempt otherwise to propagate or +modify it is void, and will automatically terminate your rights under +this License (including any patent licenses granted under the third +paragraph of section 11). + + However, if you cease all violation of this License, then your +license from a particular copyright holder is reinstated (a) +provisionally, unless and until the copyright holder explicitly and +finally terminates your license, and (b) permanently, if the copyright +holder fails to notify you of the violation by some reasonable means +prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is +reinstated permanently if the copyright holder notifies you of the +violation by some reasonable means, this is the first time you have +received notice of violation of this License (for any work) from that +copyright holder, and you cure the violation prior to 30 days after +your receipt of the notice. + + Termination of your rights under this section does not terminate the +licenses of parties who have received copies or rights from you under +this License. If your rights have been terminated and not permanently +reinstated, you do not qualify to receive new licenses for the same +material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or +run a copy of the Program. Ancillary propagation of a covered work +occurring solely as a consequence of using peer-to-peer transmission +to receive a copy likewise does not require acceptance. However, +nothing other than this License grants you permission to propagate or +modify any covered work. These actions infringe copyright if you do +not accept this License. Therefore, by modifying or propagating a +covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically +receives a license from the original licensors, to run, modify and +propagate that work, subject to this License. You are not responsible +for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an +organization, or substantially all assets of one, or subdividing an +organization, or merging organizations. If propagation of a covered +work results from an entity transaction, each party to that +transaction who receives a copy of the work also receives whatever +licenses to the work the party's predecessor in interest had or could +give under the previous paragraph, plus a right to possession of the +Corresponding Source of the work from the predecessor in interest, if +the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the +rights granted or affirmed under this License. For example, you may +not impose a license fee, royalty, or other charge for exercise of +rights granted under this License, and you may not initiate litigation +(including a cross-claim or counterclaim in a lawsuit) alleging that +any patent claim is infringed by making, using, selling, offering for +sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this +License of the Program or a work on which the Program is based. The +work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims +owned or controlled by the contributor, whether already acquired or +hereafter acquired, that would be infringed by some manner, permitted +by this License, of making, using, or selling its contributor version, +but do not include claims that would be infringed only as a +consequence of further modification of the contributor version. For +purposes of this definition, "control" includes the right to grant +patent sublicenses in a manner consistent with the requirements of +this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free +patent license under the contributor's essential patent claims, to +make, use, sell, offer for sale, import and otherwise run, modify and +propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express +agreement or commitment, however denominated, not to enforce a patent +(such as an express permission to practice a patent or covenant not to +sue for patent infringement). To "grant" such a patent license to a +party means to make such an agreement or commitment not to enforce a +patent against the party. + + If you convey a covered work, knowingly relying on a patent license, +and the Corresponding Source of the work is not available for anyone +to copy, free of charge and under the terms of this License, through a +publicly available network server or other readily accessible means, +then you must either (1) cause the Corresponding Source to be so +available, or (2) arrange to deprive yourself of the benefit of the +patent license for this particular work, or (3) arrange, in a manner +consistent with the requirements of this License, to extend the patent +license to downstream recipients. "Knowingly relying" means you have +actual knowledge that, but for the patent license, your conveying the +covered work in a country, or your recipient's use of the covered work +in a country, would infringe one or more identifiable patents in that +country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or +arrangement, you convey, or propagate by procuring conveyance of, a +covered work, and grant a patent license to some of the parties +receiving the covered work authorizing them to use, propagate, modify +or convey a specific copy of the covered work, then the patent license +you grant is automatically extended to all recipients of the covered +work and works based on it. + + A patent license is "discriminatory" if it does not include within +the scope of its coverage, prohibits the exercise of, or is +conditioned on the non-exercise of one or more of the rights that are +specifically granted under this License. You may not convey a covered +work if you are a party to an arrangement with a third party that is +in the business of distributing software, under which you make payment +to the third party based on the extent of your activity of conveying +the work, and under which the third party grants, to any of the +parties who would receive the covered work from you, a discriminatory +patent license (a) in connection with copies of the covered work +conveyed by you (or copies made from those copies), or (b) primarily +for and in connection with specific products or compilations that +contain the covered work, unless you entered into that arrangement, +or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting +any implied license or other defenses to infringement that may +otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or +otherwise) that contradict the conditions of this License, they do not +excuse you from the conditions of this License. If you cannot convey a +covered work so as to satisfy simultaneously your obligations under this +License and any other pertinent obligations, then as a consequence you may +not convey it at all. For example, if you agree to terms that obligate you +to collect a royalty for further conveying from those to whom you convey +the Program, the only way you could satisfy both those terms and this +License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have +permission to link or combine any covered work with a work licensed +under version 3 of the GNU Affero General Public License into a single +combined work, and to convey the resulting work. The terms of this +License will continue to apply to the part which is the covered work, +but the special requirements of the GNU Affero General Public License, +section 13, concerning interaction through a network will apply to the +combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of +the GNU General Public License from time to time. Such new versions will +be similar in spirit to the present version, but may differ in detail to +address new problems or concerns. + + Each version is given a distinguishing version number. If the +Program specifies that a certain numbered version of the GNU General +Public License "or any later version" applies to it, you have the +option of following the terms and conditions either of that numbered +version or of any later version published by the Free Software +Foundation. If the Program does not specify a version number of the +GNU General Public License, you may choose any version ever published +by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future +versions of the GNU General Public License can be used, that proxy's +public statement of acceptance of a version permanently authorizes you +to choose that version for the Program. + + Later license versions may give you additional or different +permissions. However, no additional obligations are imposed on any +author or copyright holder as a result of your choosing to follow a +later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY +APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT +HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY +OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, +THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR +PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM +IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF +ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING +WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS +THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY +GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE +USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF +DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD +PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), +EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF +SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided +above cannot be given local legal effect according to their terms, +reviewing courts shall apply local law that most closely approximates +an absolute waiver of all civil liability in connection with the +Program, unless a warranty or assumption of liability accompanies a +copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest +possible use to the public, the best way to achieve this is to make it +free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest +to attach them to the start of each source file to most effectively +state the exclusion of warranty; and each file should have at least +the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + +Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short +notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + +The hypothetical commands `show w' and `show c' should show the appropriate +parts of the General Public License. Of course, your program's commands +might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, +if any, to sign a "copyright disclaimer" for the program, if necessary. +For more information on this, and how to apply and follow the GNU GPL, see +. + + The GNU General Public License does not permit incorporating your program +into proprietary programs. If your program is a subroutine library, you +may consider it more useful to permit linking proprietary applications with +the library. If this is what you want to do, use the GNU Lesser General +Public License instead of this License. But first, please read +. + +Name: libquadmath +Files: numpy.libs/libquadmath*.so +Description: dynamically linked to files compiled with gcc +Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libquadmath +License: LGPL-2.1-or-later + + GCC Quad-Precision Math Library + Copyright (C) 2010-2019 Free Software Foundation, Inc. + Written by Francois-Xavier Coudert + + This file is part of the libquadmath library. + Libquadmath is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + Libquadmath is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/METADATA b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..8246dc4ed3bfc5e7ea1f402d2aff1b74ca62e16f --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/METADATA @@ -0,0 +1,1092 @@ +Metadata-Version: 2.1 +Name: numpy +Version: 1.26.4 +Summary: Fundamental package for array computing in Python +Home-page: https://numpy.org +Author: Travis E. Oliphant et al. +Maintainer-Email: NumPy Developers +License: Copyright (c) 2005-2023, NumPy Developers. + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + * Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + * Redistributions in binary form must reproduce the above + copyright notice, this list of conditions and the following + disclaimer in the documentation and/or other materials provided + with the distribution. + + * Neither the name of the NumPy Developers nor the names of any + contributors may be used to endorse or promote products derived + from this software without specific prior written permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + ---- + + The NumPy repository and source distributions bundle several libraries that are + compatibly licensed. We list these here. + + Name: lapack-lite + Files: numpy/linalg/lapack_lite/* + License: BSD-3-Clause + For details, see numpy/linalg/lapack_lite/LICENSE.txt + + Name: tempita + Files: tools/npy_tempita/* + License: MIT + For details, see tools/npy_tempita/license.txt + + Name: dragon4 + Files: numpy/core/src/multiarray/dragon4.c + License: MIT + For license text, see numpy/core/src/multiarray/dragon4.c + + Name: libdivide + Files: numpy/core/include/numpy/libdivide/* + License: Zlib + For license text, see numpy/core/include/numpy/libdivide/LICENSE.txt + + + Note that the following files are vendored in the repository and sdist but not + installed in built numpy packages: + + Name: Meson + Files: vendored-meson/meson/* + License: Apache 2.0 + For license text, see vendored-meson/meson/COPYING + + Name: spin + Files: .spin/cmds.py + License: BSD-3 + For license text, see .spin/LICENSE + + ---- + + This binary distribution of NumPy also bundles the following software: + + + Name: OpenBLAS + Files: numpy.libs/libopenblas*.so + Description: bundled as a dynamically linked library + Availability: https://github.com/OpenMathLib/OpenBLAS/ + License: BSD-3-Clause + Copyright (c) 2011-2014, The OpenBLAS Project + All rights reserved. + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + 1. Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + 2. Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer in + the documentation and/or other materials provided with the + distribution. + 3. Neither the name of the OpenBLAS project nor the names of + its contributors may be used to endorse or promote products + derived from this software without specific prior written + permission. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" + AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE + IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE + ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE + LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL + DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR + SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER + CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, + OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE + USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + Name: LAPACK + Files: numpy.libs/libopenblas*.so + Description: bundled in OpenBLAS + Availability: https://github.com/OpenMathLib/OpenBLAS/ + License: BSD-3-Clause-Attribution + Copyright (c) 1992-2013 The University of Tennessee and The University + of Tennessee Research Foundation. All rights + reserved. + Copyright (c) 2000-2013 The University of California Berkeley. All + rights reserved. + Copyright (c) 2006-2013 The University of Colorado Denver. All rights + reserved. + + $COPYRIGHT$ + + Additional copyrights may follow + + $HEADER$ + + Redistribution and use in source and binary forms, with or without + modification, are permitted provided that the following conditions are + met: + + - Redistributions of source code must retain the above copyright + notice, this list of conditions and the following disclaimer. + + - Redistributions in binary form must reproduce the above copyright + notice, this list of conditions and the following disclaimer listed + in this license in the documentation and/or other materials + provided with the distribution. + + - Neither the name of the copyright holders nor the names of its + contributors may be used to endorse or promote products derived from + this software without specific prior written permission. + + The copyright holders provide no reassurances that the source code + provided does not infringe any patent, copyright, or any other + intellectual property rights of third parties. The copyright holders + disclaim any liability to any recipient for claims brought against + recipient by any third party for infringement of that parties + intellectual property rights. + + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + + + Name: GCC runtime library + Files: numpy.libs/libgfortran*.so + Description: dynamically linked to files compiled with gcc + Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libgfortran + License: GPL-3.0-with-GCC-exception + Copyright (C) 2002-2017 Free Software Foundation, Inc. + + Libgfortran is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 3, or (at your option) + any later version. + + Libgfortran is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + Under Section 7 of GPL version 3, you are granted additional + permissions described in the GCC Runtime Library Exception, version + 3.1, as published by the Free Software Foundation. + + You should have received a copy of the GNU General Public License and + a copy of the GCC Runtime Library Exception along with this program; + see the files COPYING3 and COPYING.RUNTIME respectively. If not, see + . + + ---- + + Full text of license texts referred to above follows (that they are + listed below does not necessarily imply the conditions apply to the + present binary release): + + ---- + + GCC RUNTIME LIBRARY EXCEPTION + + Version 3.1, 31 March 2009 + + Copyright (C) 2009 Free Software Foundation, Inc. + + Everyone is permitted to copy and distribute verbatim copies of this + license document, but changing it is not allowed. + + This GCC Runtime Library Exception ("Exception") is an additional + permission under section 7 of the GNU General Public License, version + 3 ("GPLv3"). It applies to a given file (the "Runtime Library") that + bears a notice placed by the copyright holder of the file stating that + the file is governed by GPLv3 along with this Exception. + + When you use GCC to compile a program, GCC may combine portions of + certain GCC header files and runtime libraries with the compiled + program. The purpose of this Exception is to allow compilation of + non-GPL (including proprietary) programs to use, in this way, the + header files and runtime libraries covered by this Exception. + + 0. Definitions. + + A file is an "Independent Module" if it either requires the Runtime + Library for execution after a Compilation Process, or makes use of an + interface provided by the Runtime Library, but is not otherwise based + on the Runtime Library. + + "GCC" means a version of the GNU Compiler Collection, with or without + modifications, governed by version 3 (or a specified later version) of + the GNU General Public License (GPL) with the option of using any + subsequent versions published by the FSF. + + "GPL-compatible Software" is software whose conditions of propagation, + modification and use would permit combination with GCC in accord with + the license of GCC. + + "Target Code" refers to output from any compiler for a real or virtual + target processor architecture, in executable form or suitable for + input to an assembler, loader, linker and/or execution + phase. Notwithstanding that, Target Code does not include data in any + format that is used as a compiler intermediate representation, or used + for producing a compiler intermediate representation. + + The "Compilation Process" transforms code entirely represented in + non-intermediate languages designed for human-written code, and/or in + Java Virtual Machine byte code, into Target Code. Thus, for example, + use of source code generators and preprocessors need not be considered + part of the Compilation Process, since the Compilation Process can be + understood as starting with the output of the generators or + preprocessors. + + A Compilation Process is "Eligible" if it is done using GCC, alone or + with other GPL-compatible software, or if it is done without using any + work based on GCC. For example, using non-GPL-compatible Software to + optimize any GCC intermediate representations would not qualify as an + Eligible Compilation Process. + + 1. Grant of Additional Permission. + + You have permission to propagate a work of Target Code formed by + combining the Runtime Library with Independent Modules, even if such + propagation would otherwise violate the terms of GPLv3, provided that + all Target Code was generated by Eligible Compilation Processes. You + may then convey such a combination under terms of your choice, + consistent with the licensing of the Independent Modules. + + 2. No Weakening of GCC Copyleft. + + The availability of this Exception does not imply any general + presumption that third-party software is unaffected by the copyleft + requirements of the license of GCC. + + ---- + + GNU GENERAL PUBLIC LICENSE + Version 3, 29 June 2007 + + Copyright (C) 2007 Free Software Foundation, Inc. + Everyone is permitted to copy and distribute verbatim copies + of this license document, but changing it is not allowed. + + Preamble + + The GNU General Public License is a free, copyleft license for + software and other kinds of works. + + The licenses for most software and other practical works are designed + to take away your freedom to share and change the works. By contrast, + the GNU General Public License is intended to guarantee your freedom to + share and change all versions of a program--to make sure it remains free + software for all its users. We, the Free Software Foundation, use the + GNU General Public License for most of our software; it applies also to + any other work released this way by its authors. You can apply it to + your programs, too. + + When we speak of free software, we are referring to freedom, not + price. Our General Public Licenses are designed to make sure that you + have the freedom to distribute copies of free software (and charge for + them if you wish), that you receive source code or can get it if you + want it, that you can change the software or use pieces of it in new + free programs, and that you know you can do these things. + + To protect your rights, we need to prevent others from denying you + these rights or asking you to surrender the rights. Therefore, you have + certain responsibilities if you distribute copies of the software, or if + you modify it: responsibilities to respect the freedom of others. + + For example, if you distribute copies of such a program, whether + gratis or for a fee, you must pass on to the recipients the same + freedoms that you received. You must make sure that they, too, receive + or can get the source code. And you must show them these terms so they + know their rights. + + Developers that use the GNU GPL protect your rights with two steps: + (1) assert copyright on the software, and (2) offer you this License + giving you legal permission to copy, distribute and/or modify it. + + For the developers' and authors' protection, the GPL clearly explains + that there is no warranty for this free software. For both users' and + authors' sake, the GPL requires that modified versions be marked as + changed, so that their problems will not be attributed erroneously to + authors of previous versions. + + Some devices are designed to deny users access to install or run + modified versions of the software inside them, although the manufacturer + can do so. This is fundamentally incompatible with the aim of + protecting users' freedom to change the software. The systematic + pattern of such abuse occurs in the area of products for individuals to + use, which is precisely where it is most unacceptable. Therefore, we + have designed this version of the GPL to prohibit the practice for those + products. If such problems arise substantially in other domains, we + stand ready to extend this provision to those domains in future versions + of the GPL, as needed to protect the freedom of users. + + Finally, every program is threatened constantly by software patents. + States should not allow patents to restrict development and use of + software on general-purpose computers, but in those that do, we wish to + avoid the special danger that patents applied to a free program could + make it effectively proprietary. To prevent this, the GPL assures that + patents cannot be used to render the program non-free. + + The precise terms and conditions for copying, distribution and + modification follow. + + TERMS AND CONDITIONS + + 0. Definitions. + + "This License" refers to version 3 of the GNU General Public License. + + "Copyright" also means copyright-like laws that apply to other kinds of + works, such as semiconductor masks. + + "The Program" refers to any copyrightable work licensed under this + License. Each licensee is addressed as "you". "Licensees" and + "recipients" may be individuals or organizations. + + To "modify" a work means to copy from or adapt all or part of the work + in a fashion requiring copyright permission, other than the making of an + exact copy. The resulting work is called a "modified version" of the + earlier work or a work "based on" the earlier work. + + A "covered work" means either the unmodified Program or a work based + on the Program. + + To "propagate" a work means to do anything with it that, without + permission, would make you directly or secondarily liable for + infringement under applicable copyright law, except executing it on a + computer or modifying a private copy. Propagation includes copying, + distribution (with or without modification), making available to the + public, and in some countries other activities as well. + + To "convey" a work means any kind of propagation that enables other + parties to make or receive copies. Mere interaction with a user through + a computer network, with no transfer of a copy, is not conveying. + + An interactive user interface displays "Appropriate Legal Notices" + to the extent that it includes a convenient and prominently visible + feature that (1) displays an appropriate copyright notice, and (2) + tells the user that there is no warranty for the work (except to the + extent that warranties are provided), that licensees may convey the + work under this License, and how to view a copy of this License. If + the interface presents a list of user commands or options, such as a + menu, a prominent item in the list meets this criterion. + + 1. Source Code. + + The "source code" for a work means the preferred form of the work + for making modifications to it. "Object code" means any non-source + form of a work. + + A "Standard Interface" means an interface that either is an official + standard defined by a recognized standards body, or, in the case of + interfaces specified for a particular programming language, one that + is widely used among developers working in that language. + + The "System Libraries" of an executable work include anything, other + than the work as a whole, that (a) is included in the normal form of + packaging a Major Component, but which is not part of that Major + Component, and (b) serves only to enable use of the work with that + Major Component, or to implement a Standard Interface for which an + implementation is available to the public in source code form. A + "Major Component", in this context, means a major essential component + (kernel, window system, and so on) of the specific operating system + (if any) on which the executable work runs, or a compiler used to + produce the work, or an object code interpreter used to run it. + + The "Corresponding Source" for a work in object code form means all + the source code needed to generate, install, and (for an executable + work) run the object code and to modify the work, including scripts to + control those activities. However, it does not include the work's + System Libraries, or general-purpose tools or generally available free + programs which are used unmodified in performing those activities but + which are not part of the work. For example, Corresponding Source + includes interface definition files associated with source files for + the work, and the source code for shared libraries and dynamically + linked subprograms that the work is specifically designed to require, + such as by intimate data communication or control flow between those + subprograms and other parts of the work. + + The Corresponding Source need not include anything that users + can regenerate automatically from other parts of the Corresponding + Source. + + The Corresponding Source for a work in source code form is that + same work. + + 2. Basic Permissions. + + All rights granted under this License are granted for the term of + copyright on the Program, and are irrevocable provided the stated + conditions are met. This License explicitly affirms your unlimited + permission to run the unmodified Program. The output from running a + covered work is covered by this License only if the output, given its + content, constitutes a covered work. This License acknowledges your + rights of fair use or other equivalent, as provided by copyright law. + + You may make, run and propagate covered works that you do not + convey, without conditions so long as your license otherwise remains + in force. You may convey covered works to others for the sole purpose + of having them make modifications exclusively for you, or provide you + with facilities for running those works, provided that you comply with + the terms of this License in conveying all material for which you do + not control copyright. Those thus making or running the covered works + for you must do so exclusively on your behalf, under your direction + and control, on terms that prohibit them from making any copies of + your copyrighted material outside their relationship with you. + + Conveying under any other circumstances is permitted solely under + the conditions stated below. Sublicensing is not allowed; section 10 + makes it unnecessary. + + 3. Protecting Users' Legal Rights From Anti-Circumvention Law. + + No covered work shall be deemed part of an effective technological + measure under any applicable law fulfilling obligations under article + 11 of the WIPO copyright treaty adopted on 20 December 1996, or + similar laws prohibiting or restricting circumvention of such + measures. + + When you convey a covered work, you waive any legal power to forbid + circumvention of technological measures to the extent such circumvention + is effected by exercising rights under this License with respect to + the covered work, and you disclaim any intention to limit operation or + modification of the work as a means of enforcing, against the work's + users, your or third parties' legal rights to forbid circumvention of + technological measures. + + 4. Conveying Verbatim Copies. + + You may convey verbatim copies of the Program's source code as you + receive it, in any medium, provided that you conspicuously and + appropriately publish on each copy an appropriate copyright notice; + keep intact all notices stating that this License and any + non-permissive terms added in accord with section 7 apply to the code; + keep intact all notices of the absence of any warranty; and give all + recipients a copy of this License along with the Program. + + You may charge any price or no price for each copy that you convey, + and you may offer support or warranty protection for a fee. + + 5. Conveying Modified Source Versions. + + You may convey a work based on the Program, or the modifications to + produce it from the Program, in the form of source code under the + terms of section 4, provided that you also meet all of these conditions: + + a) The work must carry prominent notices stating that you modified + it, and giving a relevant date. + + b) The work must carry prominent notices stating that it is + released under this License and any conditions added under section + 7. This requirement modifies the requirement in section 4 to + "keep intact all notices". + + c) You must license the entire work, as a whole, under this + License to anyone who comes into possession of a copy. This + License will therefore apply, along with any applicable section 7 + additional terms, to the whole of the work, and all its parts, + regardless of how they are packaged. This License gives no + permission to license the work in any other way, but it does not + invalidate such permission if you have separately received it. + + d) If the work has interactive user interfaces, each must display + Appropriate Legal Notices; however, if the Program has interactive + interfaces that do not display Appropriate Legal Notices, your + work need not make them do so. + + A compilation of a covered work with other separate and independent + works, which are not by their nature extensions of the covered work, + and which are not combined with it such as to form a larger program, + in or on a volume of a storage or distribution medium, is called an + "aggregate" if the compilation and its resulting copyright are not + used to limit the access or legal rights of the compilation's users + beyond what the individual works permit. Inclusion of a covered work + in an aggregate does not cause this License to apply to the other + parts of the aggregate. + + 6. Conveying Non-Source Forms. + + You may convey a covered work in object code form under the terms + of sections 4 and 5, provided that you also convey the + machine-readable Corresponding Source under the terms of this License, + in one of these ways: + + a) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by the + Corresponding Source fixed on a durable physical medium + customarily used for software interchange. + + b) Convey the object code in, or embodied in, a physical product + (including a physical distribution medium), accompanied by a + written offer, valid for at least three years and valid for as + long as you offer spare parts or customer support for that product + model, to give anyone who possesses the object code either (1) a + copy of the Corresponding Source for all the software in the + product that is covered by this License, on a durable physical + medium customarily used for software interchange, for a price no + more than your reasonable cost of physically performing this + conveying of source, or (2) access to copy the + Corresponding Source from a network server at no charge. + + c) Convey individual copies of the object code with a copy of the + written offer to provide the Corresponding Source. This + alternative is allowed only occasionally and noncommercially, and + only if you received the object code with such an offer, in accord + with subsection 6b. + + d) Convey the object code by offering access from a designated + place (gratis or for a charge), and offer equivalent access to the + Corresponding Source in the same way through the same place at no + further charge. You need not require recipients to copy the + Corresponding Source along with the object code. If the place to + copy the object code is a network server, the Corresponding Source + may be on a different server (operated by you or a third party) + that supports equivalent copying facilities, provided you maintain + clear directions next to the object code saying where to find the + Corresponding Source. Regardless of what server hosts the + Corresponding Source, you remain obligated to ensure that it is + available for as long as needed to satisfy these requirements. + + e) Convey the object code using peer-to-peer transmission, provided + you inform other peers where the object code and Corresponding + Source of the work are being offered to the general public at no + charge under subsection 6d. + + A separable portion of the object code, whose source code is excluded + from the Corresponding Source as a System Library, need not be + included in conveying the object code work. + + A "User Product" is either (1) a "consumer product", which means any + tangible personal property which is normally used for personal, family, + or household purposes, or (2) anything designed or sold for incorporation + into a dwelling. In determining whether a product is a consumer product, + doubtful cases shall be resolved in favor of coverage. For a particular + product received by a particular user, "normally used" refers to a + typical or common use of that class of product, regardless of the status + of the particular user or of the way in which the particular user + actually uses, or expects or is expected to use, the product. A product + is a consumer product regardless of whether the product has substantial + commercial, industrial or non-consumer uses, unless such uses represent + the only significant mode of use of the product. + + "Installation Information" for a User Product means any methods, + procedures, authorization keys, or other information required to install + and execute modified versions of a covered work in that User Product from + a modified version of its Corresponding Source. The information must + suffice to ensure that the continued functioning of the modified object + code is in no case prevented or interfered with solely because + modification has been made. + + If you convey an object code work under this section in, or with, or + specifically for use in, a User Product, and the conveying occurs as + part of a transaction in which the right of possession and use of the + User Product is transferred to the recipient in perpetuity or for a + fixed term (regardless of how the transaction is characterized), the + Corresponding Source conveyed under this section must be accompanied + by the Installation Information. But this requirement does not apply + if neither you nor any third party retains the ability to install + modified object code on the User Product (for example, the work has + been installed in ROM). + + The requirement to provide Installation Information does not include a + requirement to continue to provide support service, warranty, or updates + for a work that has been modified or installed by the recipient, or for + the User Product in which it has been modified or installed. Access to a + network may be denied when the modification itself materially and + adversely affects the operation of the network or violates the rules and + protocols for communication across the network. + + Corresponding Source conveyed, and Installation Information provided, + in accord with this section must be in a format that is publicly + documented (and with an implementation available to the public in + source code form), and must require no special password or key for + unpacking, reading or copying. + + 7. Additional Terms. + + "Additional permissions" are terms that supplement the terms of this + License by making exceptions from one or more of its conditions. + Additional permissions that are applicable to the entire Program shall + be treated as though they were included in this License, to the extent + that they are valid under applicable law. If additional permissions + apply only to part of the Program, that part may be used separately + under those permissions, but the entire Program remains governed by + this License without regard to the additional permissions. + + When you convey a copy of a covered work, you may at your option + remove any additional permissions from that copy, or from any part of + it. (Additional permissions may be written to require their own + removal in certain cases when you modify the work.) You may place + additional permissions on material, added by you to a covered work, + for which you have or can give appropriate copyright permission. + + Notwithstanding any other provision of this License, for material you + add to a covered work, you may (if authorized by the copyright holders of + that material) supplement the terms of this License with terms: + + a) Disclaiming warranty or limiting liability differently from the + terms of sections 15 and 16 of this License; or + + b) Requiring preservation of specified reasonable legal notices or + author attributions in that material or in the Appropriate Legal + Notices displayed by works containing it; or + + c) Prohibiting misrepresentation of the origin of that material, or + requiring that modified versions of such material be marked in + reasonable ways as different from the original version; or + + d) Limiting the use for publicity purposes of names of licensors or + authors of the material; or + + e) Declining to grant rights under trademark law for use of some + trade names, trademarks, or service marks; or + + f) Requiring indemnification of licensors and authors of that + material by anyone who conveys the material (or modified versions of + it) with contractual assumptions of liability to the recipient, for + any liability that these contractual assumptions directly impose on + those licensors and authors. + + All other non-permissive additional terms are considered "further + restrictions" within the meaning of section 10. If the Program as you + received it, or any part of it, contains a notice stating that it is + governed by this License along with a term that is a further + restriction, you may remove that term. If a license document contains + a further restriction but permits relicensing or conveying under this + License, you may add to a covered work material governed by the terms + of that license document, provided that the further restriction does + not survive such relicensing or conveying. + + If you add terms to a covered work in accord with this section, you + must place, in the relevant source files, a statement of the + additional terms that apply to those files, or a notice indicating + where to find the applicable terms. + + Additional terms, permissive or non-permissive, may be stated in the + form of a separately written license, or stated as exceptions; + the above requirements apply either way. + + 8. Termination. + + You may not propagate or modify a covered work except as expressly + provided under this License. Any attempt otherwise to propagate or + modify it is void, and will automatically terminate your rights under + this License (including any patent licenses granted under the third + paragraph of section 11). + + However, if you cease all violation of this License, then your + license from a particular copyright holder is reinstated (a) + provisionally, unless and until the copyright holder explicitly and + finally terminates your license, and (b) permanently, if the copyright + holder fails to notify you of the violation by some reasonable means + prior to 60 days after the cessation. + + Moreover, your license from a particular copyright holder is + reinstated permanently if the copyright holder notifies you of the + violation by some reasonable means, this is the first time you have + received notice of violation of this License (for any work) from that + copyright holder, and you cure the violation prior to 30 days after + your receipt of the notice. + + Termination of your rights under this section does not terminate the + licenses of parties who have received copies or rights from you under + this License. If your rights have been terminated and not permanently + reinstated, you do not qualify to receive new licenses for the same + material under section 10. + + 9. Acceptance Not Required for Having Copies. + + You are not required to accept this License in order to receive or + run a copy of the Program. Ancillary propagation of a covered work + occurring solely as a consequence of using peer-to-peer transmission + to receive a copy likewise does not require acceptance. However, + nothing other than this License grants you permission to propagate or + modify any covered work. These actions infringe copyright if you do + not accept this License. Therefore, by modifying or propagating a + covered work, you indicate your acceptance of this License to do so. + + 10. Automatic Licensing of Downstream Recipients. + + Each time you convey a covered work, the recipient automatically + receives a license from the original licensors, to run, modify and + propagate that work, subject to this License. You are not responsible + for enforcing compliance by third parties with this License. + + An "entity transaction" is a transaction transferring control of an + organization, or substantially all assets of one, or subdividing an + organization, or merging organizations. If propagation of a covered + work results from an entity transaction, each party to that + transaction who receives a copy of the work also receives whatever + licenses to the work the party's predecessor in interest had or could + give under the previous paragraph, plus a right to possession of the + Corresponding Source of the work from the predecessor in interest, if + the predecessor has it or can get it with reasonable efforts. + + You may not impose any further restrictions on the exercise of the + rights granted or affirmed under this License. For example, you may + not impose a license fee, royalty, or other charge for exercise of + rights granted under this License, and you may not initiate litigation + (including a cross-claim or counterclaim in a lawsuit) alleging that + any patent claim is infringed by making, using, selling, offering for + sale, or importing the Program or any portion of it. + + 11. Patents. + + A "contributor" is a copyright holder who authorizes use under this + License of the Program or a work on which the Program is based. The + work thus licensed is called the contributor's "contributor version". + + A contributor's "essential patent claims" are all patent claims + owned or controlled by the contributor, whether already acquired or + hereafter acquired, that would be infringed by some manner, permitted + by this License, of making, using, or selling its contributor version, + but do not include claims that would be infringed only as a + consequence of further modification of the contributor version. For + purposes of this definition, "control" includes the right to grant + patent sublicenses in a manner consistent with the requirements of + this License. + + Each contributor grants you a non-exclusive, worldwide, royalty-free + patent license under the contributor's essential patent claims, to + make, use, sell, offer for sale, import and otherwise run, modify and + propagate the contents of its contributor version. + + In the following three paragraphs, a "patent license" is any express + agreement or commitment, however denominated, not to enforce a patent + (such as an express permission to practice a patent or covenant not to + sue for patent infringement). To "grant" such a patent license to a + party means to make such an agreement or commitment not to enforce a + patent against the party. + + If you convey a covered work, knowingly relying on a patent license, + and the Corresponding Source of the work is not available for anyone + to copy, free of charge and under the terms of this License, through a + publicly available network server or other readily accessible means, + then you must either (1) cause the Corresponding Source to be so + available, or (2) arrange to deprive yourself of the benefit of the + patent license for this particular work, or (3) arrange, in a manner + consistent with the requirements of this License, to extend the patent + license to downstream recipients. "Knowingly relying" means you have + actual knowledge that, but for the patent license, your conveying the + covered work in a country, or your recipient's use of the covered work + in a country, would infringe one or more identifiable patents in that + country that you have reason to believe are valid. + + If, pursuant to or in connection with a single transaction or + arrangement, you convey, or propagate by procuring conveyance of, a + covered work, and grant a patent license to some of the parties + receiving the covered work authorizing them to use, propagate, modify + or convey a specific copy of the covered work, then the patent license + you grant is automatically extended to all recipients of the covered + work and works based on it. + + A patent license is "discriminatory" if it does not include within + the scope of its coverage, prohibits the exercise of, or is + conditioned on the non-exercise of one or more of the rights that are + specifically granted under this License. You may not convey a covered + work if you are a party to an arrangement with a third party that is + in the business of distributing software, under which you make payment + to the third party based on the extent of your activity of conveying + the work, and under which the third party grants, to any of the + parties who would receive the covered work from you, a discriminatory + patent license (a) in connection with copies of the covered work + conveyed by you (or copies made from those copies), or (b) primarily + for and in connection with specific products or compilations that + contain the covered work, unless you entered into that arrangement, + or that patent license was granted, prior to 28 March 2007. + + Nothing in this License shall be construed as excluding or limiting + any implied license or other defenses to infringement that may + otherwise be available to you under applicable patent law. + + 12. No Surrender of Others' Freedom. + + If conditions are imposed on you (whether by court order, agreement or + otherwise) that contradict the conditions of this License, they do not + excuse you from the conditions of this License. If you cannot convey a + covered work so as to satisfy simultaneously your obligations under this + License and any other pertinent obligations, then as a consequence you may + not convey it at all. For example, if you agree to terms that obligate you + to collect a royalty for further conveying from those to whom you convey + the Program, the only way you could satisfy both those terms and this + License would be to refrain entirely from conveying the Program. + + 13. Use with the GNU Affero General Public License. + + Notwithstanding any other provision of this License, you have + permission to link or combine any covered work with a work licensed + under version 3 of the GNU Affero General Public License into a single + combined work, and to convey the resulting work. The terms of this + License will continue to apply to the part which is the covered work, + but the special requirements of the GNU Affero General Public License, + section 13, concerning interaction through a network will apply to the + combination as such. + + 14. Revised Versions of this License. + + The Free Software Foundation may publish revised and/or new versions of + the GNU General Public License from time to time. Such new versions will + be similar in spirit to the present version, but may differ in detail to + address new problems or concerns. + + Each version is given a distinguishing version number. If the + Program specifies that a certain numbered version of the GNU General + Public License "or any later version" applies to it, you have the + option of following the terms and conditions either of that numbered + version or of any later version published by the Free Software + Foundation. If the Program does not specify a version number of the + GNU General Public License, you may choose any version ever published + by the Free Software Foundation. + + If the Program specifies that a proxy can decide which future + versions of the GNU General Public License can be used, that proxy's + public statement of acceptance of a version permanently authorizes you + to choose that version for the Program. + + Later license versions may give you additional or different + permissions. However, no additional obligations are imposed on any + author or copyright holder as a result of your choosing to follow a + later version. + + 15. Disclaimer of Warranty. + + THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY + APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT + HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY + OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, + THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR + PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM + IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF + ALL NECESSARY SERVICING, REPAIR OR CORRECTION. + + 16. Limitation of Liability. + + IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING + WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS + THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY + GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE + USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF + DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD + PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), + EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF + SUCH DAMAGES. + + 17. Interpretation of Sections 15 and 16. + + If the disclaimer of warranty and limitation of liability provided + above cannot be given local legal effect according to their terms, + reviewing courts shall apply local law that most closely approximates + an absolute waiver of all civil liability in connection with the + Program, unless a warranty or assumption of liability accompanies a + copy of the Program in return for a fee. + + END OF TERMS AND CONDITIONS + + How to Apply These Terms to Your New Programs + + If you develop a new program, and you want it to be of the greatest + possible use to the public, the best way to achieve this is to make it + free software which everyone can redistribute and change under these terms. + + To do so, attach the following notices to the program. It is safest + to attach them to the start of each source file to most effectively + state the exclusion of warranty; and each file should have at least + the "copyright" line and a pointer to where the full notice is found. + + + Copyright (C) + + This program is free software: you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation, either version 3 of the License, or + (at your option) any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program. If not, see . + + Also add information on how to contact you by electronic and paper mail. + + If the program does terminal interaction, make it output a short + notice like this when it starts in an interactive mode: + + Copyright (C) + This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. + This is free software, and you are welcome to redistribute it + under certain conditions; type `show c' for details. + + The hypothetical commands `show w' and `show c' should show the appropriate + parts of the General Public License. Of course, your program's commands + might be different; for a GUI interface, you would use an "about box". + + You should also get your employer (if you work as a programmer) or school, + if any, to sign a "copyright disclaimer" for the program, if necessary. + For more information on this, and how to apply and follow the GNU GPL, see + . + + The GNU General Public License does not permit incorporating your program + into proprietary programs. If your program is a subroutine library, you + may consider it more useful to permit linking proprietary applications with + the library. If this is what you want to do, use the GNU Lesser General + Public License instead of this License. But first, please read + . + + Name: libquadmath + Files: numpy.libs/libquadmath*.so + Description: dynamically linked to files compiled with gcc + Availability: https://gcc.gnu.org/git/?p=gcc.git;a=tree;f=libquadmath + License: LGPL-2.1-or-later + + GCC Quad-Precision Math Library + Copyright (C) 2010-2019 Free Software Foundation, Inc. + Written by Francois-Xavier Coudert + + This file is part of the libquadmath library. + Libquadmath is free software; you can redistribute it and/or + modify it under the terms of the GNU Library General Public + License as published by the Free Software Foundation; either + version 2.1 of the License, or (at your option) any later version. + + Libquadmath is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU + Lesser General Public License for more details. + https://www.gnu.org/licenses/old-licenses/lgpl-2.1.html +Classifier: Development Status :: 5 - Production/Stable +Classifier: Intended Audience :: Science/Research +Classifier: Intended Audience :: Developers +Classifier: License :: OSI Approved :: BSD License +Classifier: Programming Language :: C +Classifier: Programming Language :: Python +Classifier: Programming Language :: Python :: 3 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Classifier: Programming Language :: Python :: 3.12 +Classifier: Programming Language :: Python :: 3 :: Only +Classifier: Programming Language :: Python :: Implementation :: CPython +Classifier: Topic :: Software Development +Classifier: Topic :: Scientific/Engineering +Classifier: Typing :: Typed +Classifier: Operating System :: Microsoft :: Windows +Classifier: Operating System :: POSIX +Classifier: Operating System :: Unix +Classifier: Operating System :: MacOS +Project-URL: Homepage, https://numpy.org +Project-URL: Documentation, https://numpy.org/doc/ +Project-URL: Source, https://github.com/numpy/numpy +Project-URL: Download, https://pypi.org/project/numpy/#files +Project-URL: Tracker, https://github.com/numpy/numpy/issues +Project-URL: Release notes, https://numpy.org/doc/stable/release +Requires-Python: >=3.9 +Description-Content-Type: text/markdown + +

+ +


+ + +[![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)]( +https://numfocus.org) +[![PyPI Downloads](https://img.shields.io/pypi/dm/numpy.svg?label=PyPI%20downloads)]( +https://pypi.org/project/numpy/) +[![Conda Downloads](https://img.shields.io/conda/dn/conda-forge/numpy.svg?label=Conda%20downloads)]( +https://anaconda.org/conda-forge/numpy) +[![Stack Overflow](https://img.shields.io/badge/stackoverflow-Ask%20questions-blue.svg)]( +https://stackoverflow.com/questions/tagged/numpy) +[![Nature Paper](https://img.shields.io/badge/DOI-10.1038%2Fs41592--019--0686--2-blue)]( +https://doi.org/10.1038/s41586-020-2649-2) +[![OpenSSF Scorecard](https://api.securityscorecards.dev/projects/github.com/numpy/numpy/badge)](https://api.securityscorecards.dev/projects/github.com/numpy/numpy) + + +NumPy is the fundamental package for scientific computing with Python. + +- **Website:** https://www.numpy.org +- **Documentation:** https://numpy.org/doc +- **Mailing list:** https://mail.python.org/mailman/listinfo/numpy-discussion +- **Source code:** https://github.com/numpy/numpy +- **Contributing:** https://www.numpy.org/devdocs/dev/index.html +- **Bug reports:** https://github.com/numpy/numpy/issues +- **Report a security vulnerability:** https://tidelift.com/docs/security + +It provides: + +- a powerful N-dimensional array object +- sophisticated (broadcasting) functions +- tools for integrating C/C++ and Fortran code +- useful linear algebra, Fourier transform, and random number capabilities + +Testing: + +NumPy requires `pytest` and `hypothesis`. Tests can then be run after installation with: + + python -c "import numpy, sys; sys.exit(numpy.test() is False)" + +Code of Conduct +---------------------- + +NumPy is a community-driven open source project developed by a diverse group of +[contributors](https://numpy.org/teams/). The NumPy leadership has made a strong +commitment to creating an open, inclusive, and positive community. Please read the +[NumPy Code of Conduct](https://numpy.org/code-of-conduct/) for guidance on how to interact +with others in a way that makes our community thrive. + +Call for Contributions +---------------------- + +The NumPy project welcomes your expertise and enthusiasm! + +Small improvements or fixes are always appreciated. If you are considering larger contributions +to the source code, please contact us through the [mailing +list](https://mail.python.org/mailman/listinfo/numpy-discussion) first. + +Writing code isn’t the only way to contribute to NumPy. You can also: +- review pull requests +- help us stay on top of new and old issues +- develop tutorials, presentations, and other educational materials +- maintain and improve [our website](https://github.com/numpy/numpy.org) +- develop graphic design for our brand assets and promotional materials +- translate website content +- help with outreach and onboard new contributors +- write grant proposals and help with other fundraising efforts + +For more information about the ways you can contribute to NumPy, visit [our website](https://numpy.org/contribute/). +If you’re unsure where to start or how your skills fit in, reach out! You can +ask on the mailing list or here, on GitHub, by opening a new issue or leaving a +comment on a relevant issue that is already open. + +Our preferred channels of communication are all public, but if you’d like to +speak to us in private first, contact our community coordinators at +numpy-team@googlegroups.com or on Slack (write numpy-team@googlegroups.com for +an invitation). + +We also have a biweekly community call, details of which are announced on the +mailing list. You are very welcome to join. + +If you are new to contributing to open source, [this +guide](https://opensource.guide/how-to-contribute/) helps explain why, what, +and how to successfully get involved. diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/RECORD b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..b2637b6ad76cc4672419ec77ebcca2442e0fcf68 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/RECORD @@ -0,0 +1,1406 @@ +../../../bin/f2py,sha256=A7JSg0D2f5fqV_hHocXvdv35zpSaDwT_dC1OL7U0iME,245 +numpy-1.26.4.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +numpy-1.26.4.dist-info/LICENSE.txt,sha256=EQewyDHpGNTx28KKMxkMdyFe8njUpMQAlXIIh3DUM0o,47721 +numpy-1.26.4.dist-info/METADATA,sha256=sJc0p_7UToS0yBYZNM5TLf8ed57Ggi1BVkTRF_Y4EHA,61041 +numpy-1.26.4.dist-info/RECORD,, +numpy-1.26.4.dist-info/WHEEL,sha256=sZM_NeUMz2G4fDenMf11eikcCxcLaQWiYRmjwQBavQs,137 +numpy-1.26.4.dist-info/entry_points.txt,sha256=zddyYJuUw9Uud7LeLfynXk62_ry0lGihDwCIgugBdZM,144 +numpy.libs/libgfortran-040039e1.so.5.0.0,sha256=FK-zEpsai1C8QKOwggx_EVLqm8EBIaqxUpQ_cFdHKIY,2686065 +numpy.libs/libopenblas64_p-r0-0cf96a72.3.23.dev.so,sha256=klTQhU3XYV4R3ijXca5AiHjKgSOnrCBPIeTMejdswuU,35123345 +numpy.libs/libquadmath-96973f99.so.0.0.0,sha256=k0wi3tDn0WnE1GeIdslgUa3z2UVF2pYvYLQWWbB12js,247609 +numpy/__config__.py,sha256=Q3bOwRWKFIXHUMLE9Y0f4dfmGx72-IFbQvjmVTRaT_w,4902 +numpy/__init__.cython-30.pxd,sha256=yk2a3etxRNlBgj5uLfIho2RYDYDzhRW8oagAG-wzbPI,36690 +numpy/__init__.pxd,sha256=Pa0VYRSeQRSFepQ6ROgZrNtGY5TzBXIddWsMHtK0OkM,35066 +numpy/__init__.py,sha256=Is0VNfoU10729FfMoUn_3ICHX0YL4xO4-JUnP3i8QC4,17005 +numpy/__init__.pyi,sha256=9kK465XL9oS_X3fJLv0Na29NEYnWvtdMhXPtrnF_cG8,154080 +numpy/__pycache__/__config__.cpython-310.pyc,, +numpy/__pycache__/__init__.cpython-310.pyc,, +numpy/__pycache__/_distributor_init.cpython-310.pyc,, +numpy/__pycache__/_globals.cpython-310.pyc,, +numpy/__pycache__/_pytesttester.cpython-310.pyc,, +numpy/__pycache__/conftest.cpython-310.pyc,, +numpy/__pycache__/ctypeslib.cpython-310.pyc,, +numpy/__pycache__/dtypes.cpython-310.pyc,, +numpy/__pycache__/exceptions.cpython-310.pyc,, +numpy/__pycache__/matlib.cpython-310.pyc,, +numpy/__pycache__/version.cpython-310.pyc,, +numpy/_core/__init__.py,sha256=C8_7wbHqUkB35JouY_XKsas1KLpRZ7JHWuZ7VGOPVpU,136 +numpy/_core/__init__.pyi,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/_core/__pycache__/__init__.cpython-310.pyc,, +numpy/_core/__pycache__/_dtype.cpython-310.pyc,, +numpy/_core/__pycache__/_dtype_ctypes.cpython-310.pyc,, +numpy/_core/__pycache__/_internal.cpython-310.pyc,, +numpy/_core/__pycache__/_multiarray_umath.cpython-310.pyc,, +numpy/_core/__pycache__/multiarray.cpython-310.pyc,, +numpy/_core/__pycache__/umath.cpython-310.pyc,, +numpy/_core/_dtype.py,sha256=vE16-yiwUSYsAIbq7FlEY1GbXZAp8wjADDxJg3eBX-U,126 +numpy/_core/_dtype_ctypes.py,sha256=i5EhoWPUhu4kla3Xu4ZvXF1lVLPiI6Zg4h6o8jaiamo,147 +numpy/_core/_internal.py,sha256=g5ugmqDgUhSlie5-onOctcm4p0gcMHSIRLHVYtFTk1M,135 +numpy/_core/_multiarray_umath.py,sha256=VPtoT2uHnyU3rKL0G27CgmNmB1WRHM0mtc7Y9L85C3U,159 +numpy/_core/multiarray.py,sha256=kZxC_7P3Jwz1RApzQU2QGmqSq4MAEvKmaJEYnAsbSOs,138 +numpy/_core/umath.py,sha256=YcV0cdbGcem6D5P3yX7cR9HGYBrT8VMoAgCBzGwPhgg,123 +numpy/_distributor_init.py,sha256=IKy2THwmu5UgBjtVbwbD9H-Ap8uaUJoPJ2btQ4Jatdo,407 +numpy/_globals.py,sha256=neEdcfLZoHLwber_1Xyrn26LcXy0MrSta03Ze7aKa6g,3094 +numpy/_pyinstaller/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/_pyinstaller/__pycache__/__init__.cpython-310.pyc,, +numpy/_pyinstaller/__pycache__/hook-numpy.cpython-310.pyc,, +numpy/_pyinstaller/__pycache__/pyinstaller-smoke.cpython-310.pyc,, +numpy/_pyinstaller/__pycache__/test_pyinstaller.cpython-310.pyc,, +numpy/_pyinstaller/hook-numpy.py,sha256=PUQ-mNWje6bFALB-mLVFRPkvbM4JpLXunB6sjBbTy5g,1409 +numpy/_pyinstaller/pyinstaller-smoke.py,sha256=6iL-eHMQaG3rxnS5EgcvrCqElm9aKL07Cjr1FZJSXls,1143 +numpy/_pyinstaller/test_pyinstaller.py,sha256=8K-7QxmfoXCG0NwR0bhIgCNrDjGlrTzWnrR1sR8btgU,1135 +numpy/_pytesttester.py,sha256=lQUTvKVz6kT8b4yiMV-uW-vG9KSv9UzqAmxaEMezTd8,6731 +numpy/_pytesttester.pyi,sha256=OtyXSiuSy8o_78w3QNQRjMLpvvNyEdC0aMsx6T-vRxU,489 +numpy/_typing/__init__.py,sha256=6w9E9V9VaT7vTM-veua8XcySv50Je5qSPJzK9HTocIg,7003 +numpy/_typing/__pycache__/__init__.cpython-310.pyc,, +numpy/_typing/__pycache__/_add_docstring.cpython-310.pyc,, +numpy/_typing/__pycache__/_array_like.cpython-310.pyc,, +numpy/_typing/__pycache__/_char_codes.cpython-310.pyc,, +numpy/_typing/__pycache__/_dtype_like.cpython-310.pyc,, +numpy/_typing/__pycache__/_extended_precision.cpython-310.pyc,, +numpy/_typing/__pycache__/_nbit.cpython-310.pyc,, +numpy/_typing/__pycache__/_nested_sequence.cpython-310.pyc,, +numpy/_typing/__pycache__/_scalars.cpython-310.pyc,, +numpy/_typing/__pycache__/_shape.cpython-310.pyc,, +numpy/_typing/__pycache__/setup.cpython-310.pyc,, +numpy/_typing/_add_docstring.py,sha256=xQhQX372aN_m3XN95CneMxOST2FdPcovR-MXM-9ep58,3922 +numpy/_typing/_array_like.py,sha256=L4gnx2KWG8yYcouz5b9boJIkkFNtOJV6QjcnGCrbnRY,4298 +numpy/_typing/_callable.pyi,sha256=Mf57BwohRn9ye6ixJqjNEnK0gKqnVPE9Gy8vK-6_zxo,11121 +numpy/_typing/_char_codes.py,sha256=LR51O5AUBDbCmJvlMoxyUvsfvb1p7WHrexgtTGtuWTc,5916 +numpy/_typing/_dtype_like.py,sha256=21Uxy0UgIawGM82xjDF_ifMq-nP-Bkhn_LpiK_HvWC4,5661 +numpy/_typing/_extended_precision.py,sha256=dGios-1k-QBGew7YFzONZTzVWxz-aYAaqlccl2_h5Bo,777 +numpy/_typing/_nbit.py,sha256=-EQOShHpB3r30b4RVEcruQRTcTaFAZwtqCJ4BsvpEzA,345 +numpy/_typing/_nested_sequence.py,sha256=5eNaVZAV9tZQLFWHYOuVs336JjoiaWxyZQ7cMKb6m1I,2566 +numpy/_typing/_scalars.py,sha256=eVP8PjlcTIlY7v0fRI3tFXPogWtpLJZ8nFvRRrLjDqs,980 +numpy/_typing/_shape.py,sha256=JPy7jJMkISGFTnkgiEifYM-4xTcjb7JMRkLIIjZLw08,211 +numpy/_typing/_ufunc.pyi,sha256=e74LtOP9e8kkRhvrIJ_RXz9Ua_L43Pd9IixwNwermnM,12638 +numpy/_typing/setup.py,sha256=SE0Q6HPqDjWUfceA4yXgkII8y3z7EiSF0Z-MNwOIyG4,337 +numpy/_utils/__init__.py,sha256=Hhetwsi3eTBe8HdWbG51zXmcrX1DiPLxkYSrslMLYcc,723 +numpy/_utils/__pycache__/__init__.cpython-310.pyc,, +numpy/_utils/__pycache__/_convertions.cpython-310.pyc,, +numpy/_utils/__pycache__/_inspect.cpython-310.pyc,, +numpy/_utils/__pycache__/_pep440.cpython-310.pyc,, +numpy/_utils/_convertions.py,sha256=0xMxdeLOziDmHsRM_8luEh4S-kQdMoMg6GxNDDas69k,329 +numpy/_utils/_inspect.py,sha256=8Ma7QBRwfSWKeK1ShJpFNc7CDhE6fkIE_wr1FxrG1A8,7447 +numpy/_utils/_pep440.py,sha256=Vr7B3QsijR5p6h8YAz2LjNGUyzHUJ5gZ4v26NpZAKDc,14069 +numpy/array_api/__init__.py,sha256=XtttWbDf6Yh0_m4zp-L_us4HKnV3oGwdlB6n-01Q9M8,10375 +numpy/array_api/__pycache__/__init__.cpython-310.pyc,, +numpy/array_api/__pycache__/_array_object.cpython-310.pyc,, +numpy/array_api/__pycache__/_constants.cpython-310.pyc,, +numpy/array_api/__pycache__/_creation_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_data_type_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_dtypes.cpython-310.pyc,, +numpy/array_api/__pycache__/_elementwise_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_indexing_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_manipulation_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_searching_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_set_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_sorting_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_statistical_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/_typing.cpython-310.pyc,, +numpy/array_api/__pycache__/_utility_functions.cpython-310.pyc,, +numpy/array_api/__pycache__/linalg.cpython-310.pyc,, +numpy/array_api/__pycache__/setup.cpython-310.pyc,, +numpy/array_api/_array_object.py,sha256=rfCBzE6vUjk4HElQGTVwe6Tw2vxiUx7tmBpQEmm1iBk,43794 +numpy/array_api/_constants.py,sha256=AYayN2jf1Dp5rXZ7WPBdUhtPBo_JMCi-pD9oW5zmFkI,87 +numpy/array_api/_creation_functions.py,sha256=6SqHdzZqHOJFEyWFtqnj6KIKRivrGXxROlgnez_3Mt0,10050 +numpy/array_api/_data_type_functions.py,sha256=P57FOsNdXahNUriVtdldonbvBQrrZkVzxZbcqkR_8AA,6288 +numpy/array_api/_dtypes.py,sha256=kDU1NLvEQN-W2HPmJ2wGPx8jiNkFbrvTCD1T1RT8Pwo,4823 +numpy/array_api/_elementwise_functions.py,sha256=0kGuDX3Ur_Qp6tBMBWTO7LPUxzXNGAlA2SSJhdAp4DU,25992 +numpy/array_api/_indexing_functions.py,sha256=d-gzqzyvR45FQerRYJrbBzCWFnDsZWSI9pggA5QWRO4,715 +numpy/array_api/_manipulation_functions.py,sha256=qCoW5B5FXcFOWKPU9D9MXHdMeXIuzvnHUUvprNlwfjc,3317 +numpy/array_api/_searching_functions.py,sha256=mGZiqheYXGWiDK9rqXFiDKX0_B0mJ1OjdA-9FC2o5lA,1715 +numpy/array_api/_set_functions.py,sha256=ULpfK1zznW9joX1DXSiP0R3ahcDB_po7mZlpsRqi7Fs,2948 +numpy/array_api/_sorting_functions.py,sha256=7pszlxNN7-DNqEZlonGLFQrlXPP7evVA8jN31NShg00,2031 +numpy/array_api/_statistical_functions.py,sha256=HspfYteZWSa3InMs10KZz-sk3ZuW6teX6fNdo829T84,3584 +numpy/array_api/_typing.py,sha256=uKidRp6nYxgHnEPaqXXZsDDZ6tw1LshpbwLvy-09eeM,1347 +numpy/array_api/_utility_functions.py,sha256=HwycylbPAgRVz4nZvjvwqN3mQnJbqKA-NRMaAvIP-CE,824 +numpy/array_api/linalg.py,sha256=QPpG2tG1pZgzjrtTjjOu2GDu3cI6UpSsLrsG_o1jXYk,18411 +numpy/array_api/setup.py,sha256=Wx6qD7GU_APiqKolYPO0OHv4eHGYrjPZmDAgjWhOEhM,341 +numpy/array_api/tests/__init__.py,sha256=t_2GZ3lKcsu4ec4GMKPUDYaeMUJyDquBlQAcPgj7kFE,282 +numpy/array_api/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_array_object.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_creation_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_data_type_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_elementwise_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_indexing_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_manipulation_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_set_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_sorting_functions.cpython-310.pyc,, +numpy/array_api/tests/__pycache__/test_validation.cpython-310.pyc,, +numpy/array_api/tests/test_array_object.py,sha256=FQoAxP4CLDiv6iih8KKUDSLuYM6dtnDcB1f0pMHw4-M,17035 +numpy/array_api/tests/test_creation_functions.py,sha256=s3A1COWmXIAJdhzd8v7VtL-jbiSspskTqwYy0BTpmpw,5023 +numpy/array_api/tests/test_data_type_functions.py,sha256=qc8ktRlVXWC3PKhxPVWI_UF9f1zZtpmzHjdCtf3e16E,1018 +numpy/array_api/tests/test_elementwise_functions.py,sha256=CTj4LLwtusI51HkpzD0JPohP1ffNxogAVFz8WLuWFzM,3800 +numpy/array_api/tests/test_indexing_functions.py,sha256=AbuBGyEufEAf24b7fy8JQhdJtGPdP9XEIxPTJAfAFFo,627 +numpy/array_api/tests/test_manipulation_functions.py,sha256=wce25dSJjubrGhFxmiatzR_IpmNYp9ICJ9PZBBnZTOQ,1087 +numpy/array_api/tests/test_set_functions.py,sha256=D016G7v3ko49bND5sVERP8IqQXZiwr-2yrKbBPJ-oqg,546 +numpy/array_api/tests/test_sorting_functions.py,sha256=INPiYnuGBcsmWtYqdTTX3ENHmM4iUx4zs9KdwDaSmdA,602 +numpy/array_api/tests/test_validation.py,sha256=QUG9yWC3QhkPxNhbQeakwBbl-0Rr0iTuZ41_0sfVIGU,676 +numpy/compat/__init__.py,sha256=iAHrmsZWzouOMSyD9bdSE0APWMlRpqW92MQgF8y6x3E,448 +numpy/compat/__pycache__/__init__.cpython-310.pyc,, +numpy/compat/__pycache__/py3k.cpython-310.pyc,, +numpy/compat/__pycache__/setup.cpython-310.pyc,, +numpy/compat/py3k.py,sha256=Je74CVk_7qI_qX7pLbYcuQJsxlMq1poGIfRIrH99kZQ,3833 +numpy/compat/setup.py,sha256=36X1kF0C_NVROXfJ7w3SQeBm5AIDBuJbM5qT7cvSDgU,335 +numpy/compat/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/compat/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/compat/tests/__pycache__/test_compat.cpython-310.pyc,, +numpy/compat/tests/test_compat.py,sha256=YqV67pSN8nXPbXaEdjhmyaoVetNyFupVv57OMEgCwKA,579 +numpy/conftest.py,sha256=HZyWo_wJyrbgnyXxI8t05WOg_IrzNAMnEV7O8koHous,4623 +numpy/core/__init__.py,sha256=CNsO-Ab4ywM2Wz3AbqWOH3ig1q5Bno9PsUMrCv-HNS4,5780 +numpy/core/__init__.pyi,sha256=xtd9OFYza-ZG3jyEJrlzRPT-SkVoB_qYmVCe6FxRks0,126 +numpy/core/__pycache__/__init__.cpython-310.pyc,, +numpy/core/__pycache__/_add_newdocs.cpython-310.pyc,, +numpy/core/__pycache__/_add_newdocs_scalars.cpython-310.pyc,, +numpy/core/__pycache__/_asarray.cpython-310.pyc,, +numpy/core/__pycache__/_dtype.cpython-310.pyc,, +numpy/core/__pycache__/_dtype_ctypes.cpython-310.pyc,, +numpy/core/__pycache__/_exceptions.cpython-310.pyc,, +numpy/core/__pycache__/_internal.cpython-310.pyc,, +numpy/core/__pycache__/_machar.cpython-310.pyc,, +numpy/core/__pycache__/_methods.cpython-310.pyc,, +numpy/core/__pycache__/_string_helpers.cpython-310.pyc,, +numpy/core/__pycache__/_type_aliases.cpython-310.pyc,, +numpy/core/__pycache__/_ufunc_config.cpython-310.pyc,, +numpy/core/__pycache__/arrayprint.cpython-310.pyc,, +numpy/core/__pycache__/cversions.cpython-310.pyc,, +numpy/core/__pycache__/defchararray.cpython-310.pyc,, +numpy/core/__pycache__/einsumfunc.cpython-310.pyc,, +numpy/core/__pycache__/fromnumeric.cpython-310.pyc,, +numpy/core/__pycache__/function_base.cpython-310.pyc,, +numpy/core/__pycache__/getlimits.cpython-310.pyc,, +numpy/core/__pycache__/memmap.cpython-310.pyc,, +numpy/core/__pycache__/multiarray.cpython-310.pyc,, +numpy/core/__pycache__/numeric.cpython-310.pyc,, +numpy/core/__pycache__/numerictypes.cpython-310.pyc,, +numpy/core/__pycache__/overrides.cpython-310.pyc,, +numpy/core/__pycache__/records.cpython-310.pyc,, +numpy/core/__pycache__/shape_base.cpython-310.pyc,, +numpy/core/__pycache__/umath.cpython-310.pyc,, +numpy/core/__pycache__/umath_tests.cpython-310.pyc,, +numpy/core/_add_newdocs.py,sha256=39JFaeDPN2OQlSwfpY6_Jq9fO5vML8ZMF8J4ZTx_nrs,208972 +numpy/core/_add_newdocs_scalars.py,sha256=PF9v8POcSNH6ELYltkx9e07DWgMmft6NJy9zER3Jk44,12106 +numpy/core/_asarray.py,sha256=P2ddlZAsg1iGleRRfoQv_aKs2N7AGwpo5K4ZQv4Ujlk,3884 +numpy/core/_asarray.pyi,sha256=gNNxUVhToNU_F1QpgeEvUYddpUFN-AKP0QWa4gqcTGw,1086 +numpy/core/_dtype.py,sha256=SihUz41pHRB3Q2LiYYkug6LgMBKh6VV89MOpLxnXQdo,10606 +numpy/core/_dtype_ctypes.py,sha256=Vug4i7xKhznK2tdIjmn4ebclClpaCJwSZUlvEoYl0Eg,3673 +numpy/core/_exceptions.py,sha256=dZWKqfdLRvJvbAEG_fof_8ikEKxjakADMty1kLC_l_M,5379 +numpy/core/_internal.py,sha256=f9kNDuT-FGxF1EtVOVIxXWnH9gM9n-J5V2zwHMv4HEk,28348 +numpy/core/_internal.pyi,sha256=_mCTOX6Su8D4R9fV4HNeohPJx7515B-WOlv4uq6mry8,1032 +numpy/core/_machar.py,sha256=G3a3TXu8VDW_1EMxKKLnGMbvUShEIUEve3ealBlJJ3E,11565 +numpy/core/_methods.py,sha256=m31p0WjcFUGckbJiHnCpSaIQGqv-Lq5niIYkdd33YMo,8613 +numpy/core/_multiarray_tests.cpython-310-x86_64-linux-gnu.so,sha256=DeRvVJb8JhcVcq3CAMpUrF7kcD_EzZ9hc-OOsu4hwgs,175912 +numpy/core/_multiarray_umath.cpython-310-x86_64-linux-gnu.so,sha256=_l7-McVTJrByyPsjmiJYGSEYJstFzTx07QrwAw5w86E,7426841 +numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so,sha256=fSsrco1Kut3UaGZZ5f-w9gOw6iil4v5es4h0jjsgM0c,16856 +numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so,sha256=JhmDykdI9J_hx_swy42UxeFjFGDF-MEj6u3jKL32770,59768 +numpy/core/_simd.cpython-310-x86_64-linux-gnu.so,sha256=sslr7CDjx6Wfj3izDn_VFC0BXkLyy9JyI8PoYsU-QRM,3527040 +numpy/core/_string_helpers.py,sha256=-fQM8z5s8_yX440PmgNEH3SUjEoXMPpPSysZwWZNbuo,2852 +numpy/core/_struct_ufunc_tests.cpython-310-x86_64-linux-gnu.so,sha256=CSlDZ5gi01I5v-N7jHvSfRLyOJSR9JMcIV2cIq5InGo,16960 +numpy/core/_type_aliases.py,sha256=qV6AZlsUWHMWTydmZya73xuBkKXiUKq_WXLj7q2CbZ0,7534 +numpy/core/_type_aliases.pyi,sha256=lguMSqMwvqAFHuRtm8YZSdKbikVz985BdKo_lo7GQCg,404 +numpy/core/_ufunc_config.py,sha256=-Twpe8dnd45ccXH-w-B9nvU8yCOd1E0e3Wpsts3g_bQ,13944 +numpy/core/_ufunc_config.pyi,sha256=-615enOVQMBhVx7Pln7DY_s4H6JjSgSnBy89YkpvuLg,1066 +numpy/core/_umath_tests.cpython-310-x86_64-linux-gnu.so,sha256=G_1pjqWX0wE-CBY1CeWdfvaHNGEfOREmgJkzFTNYX9Q,42272 +numpy/core/arrayprint.py,sha256=ySZj4TZFFVCa5yhMmJKFYQYhuQTabZTRBb1YoiCD-ac,63608 +numpy/core/arrayprint.pyi,sha256=21pOWjTSfJOBaKgOOPzRox1ERb3c9ydufqL0b11_P_Q,4428 +numpy/core/cversions.py,sha256=H_iNIpx9-hY1cQNxqjT2d_5SXZhJbMo_caq4_q6LB7I,347 +numpy/core/defchararray.py,sha256=G1LExk-dMeVTYRhtYgcCZEsHk5tkawk7giXcK4Q5KVM,73617 +numpy/core/defchararray.pyi,sha256=ib3aWFcM7F4KooU57mWUNi4GlosNjdfgrLKBVSIKDvU,9216 +numpy/core/einsumfunc.py,sha256=TrL6t79F0H0AQH0y5Cj7Tq0_pzk4fVFi-4q4jJmujYQ,51868 +numpy/core/einsumfunc.pyi,sha256=IJZNdHHG_soig8XvCbXZl43gMr3MMKl9dckTYWecqLs,4860 +numpy/core/fromnumeric.py,sha256=YMtxOBg51VMem39AHXFs-4_vOb1p48ei7njXdYTRJ_Q,128821 +numpy/core/fromnumeric.pyi,sha256=KATMFeFxUJ8YNRaC-jd_dTOt3opz2ng6lHgke5u5COk,23726 +numpy/core/function_base.py,sha256=tHg1qSHTz1eO_wHXNFRt3Q40uqVtPT2eyQdrWbIi4wQ,19836 +numpy/core/function_base.pyi,sha256=3ZYad3cdaGwNEyP8VwK97IYMqk2PDoVjpjQzhIYHjk0,4725 +numpy/core/getlimits.py,sha256=AopcTZDCUXMPcEKIZE1botc3mEhmLb2p1_ejlq1CLqY,25865 +numpy/core/getlimits.pyi,sha256=qeIXUEtognTHr_T-tv-VcZI7n8Z2VzAyIpIgKXzsLkc,82 +numpy/core/include/numpy/__multiarray_api.c,sha256=nPRzTez_Wy3YXy3zZNJNPMspAzxbLOdohqhXwouwMLM,12116 +numpy/core/include/numpy/__multiarray_api.h,sha256=ZM--FKMhIaSQS39cPW0hj5dx8ngNMmbcy6SbgXZBd8U,61450 +numpy/core/include/numpy/__ufunc_api.c,sha256=670Gcz-vhkF4taBDmktCpFRBrZ9CHJnPRx7ag7Z6HsI,1714 +numpy/core/include/numpy/__ufunc_api.h,sha256=0MBOl7dgO3ldqdDi-SdciEOuqGv1UNsmk7mp7tEy4AY,12456 +numpy/core/include/numpy/_dtype_api.h,sha256=4veCexGvx9KNWMIUuEUAVOfcsei9GqugohDY5ud16pA,16697 +numpy/core/include/numpy/_neighborhood_iterator_imp.h,sha256=s-Hw_l5WRwKtYvsiIghF0bg-mA_CgWnzFFOYVFJ-q4k,1857 +numpy/core/include/numpy/_numpyconfig.h,sha256=o0fV_jb-wgVtRxnVIWvUttiZafyrWYFm2ab9Uixz1Cw,855 +numpy/core/include/numpy/arrayobject.h,sha256=-BlWQ7kfVbzCqzHn0qaeMe0_08AbwliuG98XWG57lT8,282 +numpy/core/include/numpy/arrayscalars.h,sha256=C3vDRndZTZRbppiDyV5jp8sV3dRKsrwBIZcNlh9gSTA,3944 +numpy/core/include/numpy/experimental_dtype_api.h,sha256=tlehD5r_pYhHbGzIrUea6vtOgf6IQ8Txblnhx7455h8,15532 +numpy/core/include/numpy/halffloat.h,sha256=TRZfXgipa-dFppX2uNgkrjrPli-1BfJtadWjAembJ4s,1959 +numpy/core/include/numpy/ndarrayobject.h,sha256=PhY4NjRZDoU5Zbc8MW0swPEm81hwgWZ63gAU93bLVVI,10183 +numpy/core/include/numpy/ndarraytypes.h,sha256=EjWXv-J8C5JET4AlIbJRdctycL7-dyJZcnoWgnlCPc8,68009 +numpy/core/include/numpy/noprefix.h,sha256=d83l1QpCCVqMV2k29NMkL3Ld1qNjiC6hzOPWZAivEjQ,6830 +numpy/core/include/numpy/npy_1_7_deprecated_api.h,sha256=y0MJ8Qw7Bkt4H_4VxIzHzpkw5JqAdj5ECgtn08fZFrI,4327 +numpy/core/include/numpy/npy_3kcompat.h,sha256=SvN9yRA3i02O4JFMXxZz0Uq_vJ5ZpvC-pC2sfF56A5I,15883 +numpy/core/include/numpy/npy_common.h,sha256=apWBsCJeP8P5T0exgzhFcGohbASsUF8vtFdS2jc1VfU,37746 +numpy/core/include/numpy/npy_cpu.h,sha256=pcVRtj-Y6120C5kWB1VAiAjZoxkTPDEg0gGm5IAt3jM,4629 +numpy/core/include/numpy/npy_endian.h,sha256=we7X9fPeWzNpo_YTh09MPGDwdE0Rw_WDM4c9y4nBj5I,2786 +numpy/core/include/numpy/npy_interrupt.h,sha256=DQZIxi6FycLXD8drdHn2SSmLoRhIpo6osvPv13vowUA,1948 +numpy/core/include/numpy/npy_math.h,sha256=SbKRoc7O3gVuDl7HOZjk424O049I0zn-7i9GwBwNmmk,18945 +numpy/core/include/numpy/npy_no_deprecated_api.h,sha256=0yZrJcQEJ6MCHJInQk5TP9_qZ4t7EfBuoLOJ34IlJd4,678 +numpy/core/include/numpy/npy_os.h,sha256=hlQsg_7-RkvS3s8OM8KXy99xxyJbCm-W1AYVcdnO1cw,1256 +numpy/core/include/numpy/numpyconfig.h,sha256=Nr59kE3cXmen6y0UymIBaU7F1BSIuPwgKZ4gdV5Q5JU,5308 +numpy/core/include/numpy/old_defines.h,sha256=xuYQDDlMywu0Zsqm57hkgGwLsOFx6IvxzN2eiNF-gJY,6405 +numpy/core/include/numpy/random/LICENSE.txt,sha256=-8U59H0M-DvGE3gID7hz1cFGMBJsrL_nVANcOSbapew,1018 +numpy/core/include/numpy/random/bitgen.h,sha256=49AwKOR552r-NkhuSOF1usb_URiMSRMvD22JF5pKIng,488 +numpy/core/include/numpy/random/distributions.h,sha256=W5tOyETd0m1W0GdaZ5dJP8fKlBtsTpG23V2Zlmrlqpg,9861 +numpy/core/include/numpy/random/libdivide.h,sha256=ew9MNhPQd1LsCZiWiFmj9IZ7yOnA3HKOXffDeR9X1jw,80138 +numpy/core/include/numpy/ufuncobject.h,sha256=Xmnny_ulZo9VwxkfkXF-1HCTKDavIp9PV_H7XWhi0Z8,12070 +numpy/core/include/numpy/utils.h,sha256=wMNomSH3Dfj0q78PrjLVtFtN-FPo7UJ4o0ifCUO-6Es,1185 +numpy/core/lib/libnpymath.a,sha256=mb8EluEp8SLpEeCTQJ0VshL-CqeZfWxSbS5ItM-9POc,93960 +numpy/core/lib/npy-pkg-config/mlib.ini,sha256=_LsWV1eStNqwhdiYPa2538GL46dnfVwT4MrI1zbsoFw,147 +numpy/core/lib/npy-pkg-config/npymath.ini,sha256=kamUNrYKAmXqQa8BcNv7D5sLqHh6bnChM0_5rZCsTfY,360 +numpy/core/memmap.py,sha256=yWBJLeVClHsD8BYusnf9bdqypOMPrj3_zoO_lQ2zVMc,11771 +numpy/core/memmap.pyi,sha256=sxIQ7T5hPLG-RBNndAc8JPvrsKEX1amBSH2HGg48Obo,55 +numpy/core/multiarray.py,sha256=zXaWf_DSkFEWjUQqVRCGeevwsI6kjQ3x6_MUwA1Y8fk,56097 +numpy/core/multiarray.pyi,sha256=_0X4W90U5ZiKt2n-9OscK-pcQyV6oGK-8jwGy5k1qxA,24768 +numpy/core/numeric.py,sha256=DgajaCDXiiQR-zuW_rrx_QhApSsa5k5FONK3Uk9mfTs,77014 +numpy/core/numeric.pyi,sha256=oVQkI4ABayFl_ZzCiGH4DxfYASL-3aETi-3B93THnEQ,14315 +numpy/core/numerictypes.py,sha256=qIf9v1OpNjjVQzXnKpD-3V01y5Bj9huw5F-U5Wa4glc,18098 +numpy/core/numerictypes.pyi,sha256=dEqtq9MLrGaqqeAF1sdXBgnEwDWOzlK02A6MTg1PS5g,3267 +numpy/core/overrides.py,sha256=YUZFS8RCBvOJ27sH-jDRcyMjOCn9VigMyuQY4J21JBI,7093 +numpy/core/records.py,sha256=4mpIjUp2XtZxY5cD2S8mgfn8GCzQGGrrkqLBqAJwM-Q,37533 +numpy/core/records.pyi,sha256=uYwE6cAoGKgN6U4ryfGZx_3m-3sY006jytjWLrDRRy0,5692 +numpy/core/shape_base.py,sha256=RPMKxA7_FCAgg_CruExl0LehnczSTFaxA6hrcfrUzns,29743 +numpy/core/shape_base.pyi,sha256=Ilb4joJmbjkIZLzKww7NJeaxg2FP3AfFib3HtfOsrC0,2774 +numpy/core/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/core/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/core/tests/__pycache__/_locales.cpython-310.pyc,, +numpy/core/tests/__pycache__/test__exceptions.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_abc.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_api.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_argparse.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_array_coercion.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_array_interface.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_arraymethod.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_arrayprint.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_casting_floatingpoint_errors.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_casting_unittests.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_conversion_utils.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_cpu_dispatcher.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_cpu_features.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_custom_dtypes.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_cython.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_datetime.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_defchararray.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_deprecations.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_dlpack.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_dtype.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_einsum.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_errstate.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_extint128.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_function_base.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_getlimits.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_half.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_hashtable.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_indexerrors.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_indexing.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_item_selection.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_limited_api.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_longdouble.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_machar.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_mem_overlap.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_mem_policy.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_memmap.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_multiarray.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_nditer.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_nep50_promotions.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_numeric.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_numerictypes.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_numpy_2_0_compat.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_overrides.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_print.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_protocols.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_records.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalar_ctors.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalar_methods.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalarbuffer.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalarinherit.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalarmath.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_scalarprint.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_shape_base.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_simd.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_simd_module.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_strings.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_ufunc.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_umath.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_umath_accuracy.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_umath_complex.cpython-310.pyc,, +numpy/core/tests/__pycache__/test_unicode.cpython-310.pyc,, +numpy/core/tests/_locales.py,sha256=S4x5soqF0oxpBYOE8J9Iky72O9J25IiZ8349m93pWC4,2206 +numpy/core/tests/data/astype_copy.pkl,sha256=lWSzCcvzRB_wpuRGj92spGIw-rNPFcd9hwJaRVvfWdk,716 +numpy/core/tests/data/generate_umath_validation_data.cpp,sha256=fyhQPNhIX9hzjeXujn6mhi1MVc133zELSV_hlSQ7BQU,5842 +numpy/core/tests/data/numpy_2_0_array.pkl,sha256=Vh02tdyCypa8Nb4QzdVhnDAiXEO2WQrcwcvOdDDFF5w,718 +numpy/core/tests/data/recarray_from_file.fits,sha256=NA0kliz31FlLnYxv3ppzeruONqNYkuEvts5wzXEeIc4,8640 +numpy/core/tests/data/umath-validation-set-README.txt,sha256=pxWwOaGGahaRd-AlAidDfocLyrAiDp0whf5hC7hYwqM,967 +numpy/core/tests/data/umath-validation-set-arccos.csv,sha256=W_aL99bjzVjlVyd5omfDUORag8jHzx6uctedPVZgOHQ,61365 +numpy/core/tests/data/umath-validation-set-arccosh.csv,sha256=Uko_d0kDXr1YlN-6Ii-fQQxUvbXAhRfC7Un4gJ23GJk,61365 +numpy/core/tests/data/umath-validation-set-arcsin.csv,sha256=15Aenze4WD2a2dF2aOBXpv9B7u3wwAeUVJdEm4TjOkQ,61339 +numpy/core/tests/data/umath-validation-set-arcsinh.csv,sha256=uDwx4PStpfV21IaPF8pmzQpul6i72g7zDwlfcynWaVQ,60289 +numpy/core/tests/data/umath-validation-set-arctan.csv,sha256=mw5tYze_BMs6ugGEZfg5mcXoInGYdn7fvSCYSUi9Bqw,60305 +numpy/core/tests/data/umath-validation-set-arctanh.csv,sha256=95l4Uu5RmZajljabfqlv5U34RVrifCMhhkop6iLeNBo,61339 +numpy/core/tests/data/umath-validation-set-cbrt.csv,sha256=v855MTZih-fZp_GuEDst2qaIsxU4a7vlAbeIJy2xKpc,60846 +numpy/core/tests/data/umath-validation-set-cos.csv,sha256=0PNnDqKkokZ7ERVDgbes8KNZc-ISJrZUlVZc5LkW18E,59122 +numpy/core/tests/data/umath-validation-set-cosh.csv,sha256=FGCNeUSUTAeASsb_j18iRSsCxXLxmzF-_C7tq1elVrQ,60869 +numpy/core/tests/data/umath-validation-set-exp.csv,sha256=BKg1_cyrKD2GXYMX_EB0DnXua8DI2O1KWODXf_BRhrk,17491 +numpy/core/tests/data/umath-validation-set-exp2.csv,sha256=f1b05MRXPOXihC9M-yi52udKBzVXalhbTuIcqoDAk-g,58624 +numpy/core/tests/data/umath-validation-set-expm1.csv,sha256=_ghc1xiUECNsBGrKCFUAy2lvu01_lkpeYJN0zDtCYWk,60299 +numpy/core/tests/data/umath-validation-set-log.csv,sha256=z9ej1ykKUoMRqYMUIJENWXbYi_A_x_RKs7K_GuXZJus,11692 +numpy/core/tests/data/umath-validation-set-log10.csv,sha256=RJgpruL16FVPgUT3-3xW4eppS_tn6o5yEW79KnITn48,68922 +numpy/core/tests/data/umath-validation-set-log1p.csv,sha256=IZZI-hi55HGCOvBat3vSBVha_8Nt-5alf2fqz6QeTG0,60303 +numpy/core/tests/data/umath-validation-set-log2.csv,sha256=HL2rOCsrEi378rNrbsXHPqlWlEGkXQq8R4e63YeTksU,68917 +numpy/core/tests/data/umath-validation-set-sin.csv,sha256=8PUjnQ_YfmxFb42XJrvpvmkeSpEOlEXSmNvIK4VgfAM,58611 +numpy/core/tests/data/umath-validation-set-sinh.csv,sha256=CYiibE8aX7MQnBatl__5k_PWc_9vHUifwS-sFZzzKk0,60293 +numpy/core/tests/data/umath-validation-set-tan.csv,sha256=Oq7gxMvblRVBrQ23kMxc8iT0bHnCWKg9EE4ZqzbJbOA,60299 +numpy/core/tests/data/umath-validation-set-tanh.csv,sha256=iolZF_MOyWRgYSa-SsD4df5mnyFK18zrICI740SWoTc,60299 +numpy/core/tests/examples/cython/__pycache__/setup.cpython-310.pyc,, +numpy/core/tests/examples/cython/checks.pyx,sha256=rKAhPSGHJ9oPK9Q_85YoUQyRTftEP1jcYOR5lSPB6oQ,662 +numpy/core/tests/examples/cython/meson.build,sha256=Qk4Q6OkpZ0xsLUkcGQVVrYkzb0ozoyL6YlSZ8_5tH1I,1088 +numpy/core/tests/examples/cython/setup.py,sha256=aAR-TvQabUabnCzuB6UdWdmRXaaPfIG7MzTIfMF-0tk,496 +numpy/core/tests/examples/limited_api/__pycache__/setup.cpython-310.pyc,, +numpy/core/tests/examples/limited_api/limited_api.c,sha256=mncE8TjjXmYpkwli433G0jB2zGQO_5NqWmGKdzRJZug,344 +numpy/core/tests/examples/limited_api/setup.py,sha256=p2w7F1ardi_GRXSrnNIR8W1oeH_pgmw_1P2wS0A2I6M,435 +numpy/core/tests/test__exceptions.py,sha256=QqxQSLXboPXEVwHz-TyE2JeIl_TC-rPugzfo25nbcns,2846 +numpy/core/tests/test_abc.py,sha256=FfgYA_HjYAi8XWGK_oOh6Zw86chB_KG_XoW_7ZlFp4c,2220 +numpy/core/tests/test_api.py,sha256=UMc7SvczAQ5ngHxE-NoXVvNpVzYRrn8oMwFNta1yMS0,22995 +numpy/core/tests/test_argparse.py,sha256=C0zBbwQ9xzzymXe_hHpWnnWQPwOi2ZdQB78gBAgJHvU,1969 +numpy/core/tests/test_array_coercion.py,sha256=zY4Pjlt4QZ0w71WxWGLHcrPnnhEF51yXYVLg5HMIy5c,34379 +numpy/core/tests/test_array_interface.py,sha256=8tGgj1Nzi76H_WF5GULkxqWL7Yu_Xf0lvTJZOwOBKsI,7774 +numpy/core/tests/test_arraymethod.py,sha256=VpjDYTmoMDTZcY7CsGzinBh0R_OICuwOykWCbmCRQZU,3244 +numpy/core/tests/test_arrayprint.py,sha256=cKaIoD9ZvsjJH0PHwZyOxmcRcBt1kN1WfFneqVqs0b8,40462 +numpy/core/tests/test_casting_floatingpoint_errors.py,sha256=W3Fgk0oKtXFv684fEZ7POwj6DHTYK0Jj_oGRLZ8UdyA,5063 +numpy/core/tests/test_casting_unittests.py,sha256=9-vkR0oXczQz8ED8DxGVPmalC8IZXe2jKgOCMGr8hIg,34298 +numpy/core/tests/test_conversion_utils.py,sha256=jNhbNNI-T8qtQnsIMEax7KFN30kjh0ICntLMwTyxJ5Q,6559 +numpy/core/tests/test_cpu_dispatcher.py,sha256=v_SlhUpENuoe7QYXizzYITLGXa7WfZ7jqcqmbSBg7JU,1542 +numpy/core/tests/test_cpu_features.py,sha256=mieGx7dxXFiyTYatbcCCjIjR67Un2hVcbJx4GEf2yFo,14892 +numpy/core/tests/test_custom_dtypes.py,sha256=JogRmttDLwfQ3PTbewEnGLKco9zV2Nu3yIfrMeCsx_I,9401 +numpy/core/tests/test_cython.py,sha256=t5-h4XSIFNLyw_9BIAQDYl8_80t_pH0SCfEa1Vf_3aI,3755 +numpy/core/tests/test_datetime.py,sha256=2vAGbrCQmsrWNXCVXOMZqUGZn2c-cQT-eZ1wTprYbcM,116211 +numpy/core/tests/test_defchararray.py,sha256=F88HUkByEP4H6cJ_ITvIe0a_T1BH2JOdRysMCu1XIn0,24997 +numpy/core/tests/test_deprecations.py,sha256=w2lhHb-W8hh7RoE_0Ftg8thpG86jvbFAJgior22DY2Q,31076 +numpy/core/tests/test_dlpack.py,sha256=cDlwFmTombb2rDeB8RHEAJ4eVMUiDbw8Oz5Jo1NQwk0,3522 +numpy/core/tests/test_dtype.py,sha256=J09pJF59v7UO6iNuJFISKP2DLPgdkQ_df5OAMDRLikU,75702 +numpy/core/tests/test_einsum.py,sha256=QzQAPIC-IjTV3Dxz97hBnvLBCmF8kpsBTBckThhgRjQ,53712 +numpy/core/tests/test_errstate.py,sha256=U3GT9I058jkF725mx4GdWUr9RoceCkGDV7Go79VA4wY,2219 +numpy/core/tests/test_extint128.py,sha256=gCZfAwPOb-F1TLsEEeDI0amQYwHk-60-OXi0ccZrrZ8,5643 +numpy/core/tests/test_function_base.py,sha256=Ibs6-WXZE5hsRx4VCnX-cZOWYKU-5PFXjouwAQzgnqQ,15595 +numpy/core/tests/test_getlimits.py,sha256=apdxr0zKkxaVHIUpLrqAvO39q54JKN14sV4xSbK2Ifs,6718 +numpy/core/tests/test_half.py,sha256=VYPyap9GYOWZuphsfFofcIRl-oa5Ufrtv83OTp6azdU,24593 +numpy/core/tests/test_hashtable.py,sha256=ZV8HL8NkDnoQZfnje7BP0fyIp4fSFqjKsQc40PaTggc,1011 +numpy/core/tests/test_indexerrors.py,sha256=kN9xLl6FVTzmI7fumn_cuZ3k0omXnTetgtCnPY44cvw,5130 +numpy/core/tests/test_indexing.py,sha256=x0ojWuhOwWD5MZuiJ9Ncim3CgkwI-GldWxrSCmjmFJM,54314 +numpy/core/tests/test_item_selection.py,sha256=kI30kiX8mIrZYPn0jw3lGGw1ruZF4PpE9zw-aai9EPA,6458 +numpy/core/tests/test_limited_api.py,sha256=5yO0nGmCKZ9b3S66QP7vY-HIgAoyOtHZmp8mvzKuOHI,1172 +numpy/core/tests/test_longdouble.py,sha256=jO8YMm_Hsz-XPKbmv6iMcOdHgTlIFkKTwAtxpy3Q1pE,13905 +numpy/core/tests/test_machar.py,sha256=_5_TDUVtAJvJI5jBfEFKpCZtAfKCsCFt7tXlWSkWzzc,1067 +numpy/core/tests/test_mem_overlap.py,sha256=QJ0unWD_LOoAGAo4ra0IvYenj56IYUtiz1fEJEmTY9Q,29086 +numpy/core/tests/test_mem_policy.py,sha256=CXa10FQw2Qj6MqJuaC8Fm4slsoipKFjCIpYF6c5IIAU,16801 +numpy/core/tests/test_memmap.py,sha256=tZ5lJs_4ZFsJmg392ZQ33fX0m8tdfZ8ZtY9Lq41LNtk,7477 +numpy/core/tests/test_multiarray.py,sha256=GPv4IJR9dijNG-icUsQsX2tBD2RdP3EhUehY4cxvVQU,380106 +numpy/core/tests/test_nditer.py,sha256=nVQ00aNxPHqf4ZcFs3e9AVDK64TCqlO0TzfocTAACZQ,130818 +numpy/core/tests/test_nep50_promotions.py,sha256=2TwtFvj1LBpYTtdR6NFe1RAAGXIJltLqwpA1vhQCVY4,8840 +numpy/core/tests/test_numeric.py,sha256=ZGNW5NKgShEjZC_TcPOtTuRaTM_GbuM21u82D205UPs,137294 +numpy/core/tests/test_numerictypes.py,sha256=f_xMjZJnyDwlc6XCrd71b6x1_6dAWOv-kZ3-NEq37hU,21687 +numpy/core/tests/test_numpy_2_0_compat.py,sha256=kVCTAXska7Xi5w_TYduWhid0nlCqI6Nvmt-gDnYsuKI,1630 +numpy/core/tests/test_overrides.py,sha256=t0gOZOzu7pevE58HA-npFYJqnInHR-LLBklnzKJWHqo,26080 +numpy/core/tests/test_print.py,sha256=ErZAWd88b0ygSEoYpd0BL2tFjkerMtn1vZ7dWvaNqTc,6837 +numpy/core/tests/test_protocols.py,sha256=fEXE9K9s22oiVWkX92BY-g00-uXCK-HxjZhZxxYAKFc,1168 +numpy/core/tests/test_records.py,sha256=pluit5x6jkWoPEIrHXM13L3xZuuSSiaxoXFsOdkakCU,20269 +numpy/core/tests/test_regression.py,sha256=SJo9cPTVr2SNjhgtW7boUMyNQlXxygsZ5g0oyqC8Eks,91595 +numpy/core/tests/test_scalar_ctors.py,sha256=qDIZV-tBukwAxNDhUmGtH3CemDXlS3xd_q3L52touuA,6115 +numpy/core/tests/test_scalar_methods.py,sha256=Uj-zU0zzzKAjMBdpkzsWZ3nSFj5gJkUlqi_euhOYdnU,7541 +numpy/core/tests/test_scalarbuffer.py,sha256=FSL94hriWX1_uV6Z33wB3ZXUrpmmX2-x87kNjIxUeBk,5580 +numpy/core/tests/test_scalarinherit.py,sha256=fMInDGKsiH3IS_2ejZtIcmJZ0Ry8c7kVsHx7wp5XDoM,2368 +numpy/core/tests/test_scalarmath.py,sha256=XZj_m2I2TLktJdFD1SWj2XtV8hT26VIxasDz3cAFvgA,43247 +numpy/core/tests/test_scalarprint.py,sha256=1599W5X0tjGhBnSQjalXkg6AY8eHXnr6PMqs4vYZQqs,18771 +numpy/core/tests/test_shape_base.py,sha256=D9haeuUVx3x3pOLmFQ9vUz7iU4T2bFTsPoI8HgSncFU,29723 +numpy/core/tests/test_simd.py,sha256=-L1UhIn9Eu_euLwaSU7bPRfYpWWOTb43qovoJS7Ws7w,48696 +numpy/core/tests/test_simd_module.py,sha256=OSpYhH_3QDxItyQcaW6SjXW57k2m-weRwpYOnJjCqN0,3902 +numpy/core/tests/test_strings.py,sha256=A9t1B65lFrYRLXgDJSg3mMDAe_hypIPcTMVOdAYIbU0,3835 +numpy/core/tests/test_ufunc.py,sha256=5pS2x3LACHn8GogYYad8LRAjByK7Gg9xTD9ik3d0Fm0,124907 +numpy/core/tests/test_umath.py,sha256=huHpclJqkO32k7BTflRHj8nImzg3p6yyryeS9LyHKWU,186482 +numpy/core/tests/test_umath_accuracy.py,sha256=mFcVdzXhhD9mqhzLDJVZsWfCHbjbFQ6XeEl5G8l-PTc,3897 +numpy/core/tests/test_umath_complex.py,sha256=WvZZZWeijo52RiOfx-G83bxzQOp_IJ3i9fEnUDVukLQ,23247 +numpy/core/tests/test_unicode.py,sha256=hUXIwMmoq89y_KXWzuXVyQaXvRwGjfY4TvKJsCbygEI,12775 +numpy/core/umath.py,sha256=JbT_SxnZ_3MEmjOI9UtX3CcAzX5Q-4RDlnnhDAEJ5Vo,2040 +numpy/core/umath_tests.py,sha256=TIzaDfrEHHgSc2J5kxFEibq8MOPhwSuyOZOUBsZNVSM,389 +numpy/ctypeslib.py,sha256=Po4XCWfxhwFQ1Q8x8DeayGiMCJLxREaCDkVyeladxBU,17247 +numpy/ctypeslib.pyi,sha256=A9te473aRO920iDVuyKypeVIQp-ueZK6EiI-qLSwJNg,7972 +numpy/distutils/__init__.py,sha256=BU1C21439HRo7yH1SsN9me6WCDPpOwRQ37ZpNwDMqCw,2074 +numpy/distutils/__init__.pyi,sha256=D8LRE6BNOmuBGO-oakJGnjT9UJTk9zSR5rxMfZzlX64,119 +numpy/distutils/__pycache__/__init__.cpython-310.pyc,, +numpy/distutils/__pycache__/_shell_utils.cpython-310.pyc,, +numpy/distutils/__pycache__/armccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/ccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/ccompiler_opt.cpython-310.pyc,, +numpy/distutils/__pycache__/conv_template.cpython-310.pyc,, +numpy/distutils/__pycache__/conv_template.cpython-310.pyc,sha256=xQspcWcISFYp-FhQdD5w9zCFa7QXMx1HO-rcwuaiGKw,8269 +numpy/distutils/__pycache__/core.cpython-310.pyc,, +numpy/distutils/__pycache__/cpuinfo.cpython-310.pyc,, +numpy/distutils/__pycache__/exec_command.cpython-310.pyc,, +numpy/distutils/__pycache__/extension.cpython-310.pyc,, +numpy/distutils/__pycache__/from_template.cpython-310.pyc,, +numpy/distutils/__pycache__/fujitsuccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/intelccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/lib2def.cpython-310.pyc,, +numpy/distutils/__pycache__/line_endings.cpython-310.pyc,, +numpy/distutils/__pycache__/log.cpython-310.pyc,, +numpy/distutils/__pycache__/mingw32ccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/misc_util.cpython-310.pyc,, +numpy/distutils/__pycache__/msvc9compiler.cpython-310.pyc,, +numpy/distutils/__pycache__/msvccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/npy_pkg_config.cpython-310.pyc,, +numpy/distutils/__pycache__/numpy_distribution.cpython-310.pyc,, +numpy/distutils/__pycache__/pathccompiler.cpython-310.pyc,, +numpy/distutils/__pycache__/setup.cpython-310.pyc,, +numpy/distutils/__pycache__/system_info.cpython-310.pyc,, +numpy/distutils/__pycache__/unixccompiler.cpython-310.pyc,, +numpy/distutils/_shell_utils.py,sha256=kMLOIoimB7PdFRgoVxCIyCFsIl1pP3d0hkm_s3E9XdA,2613 +numpy/distutils/armccompiler.py,sha256=8qUaYh8QHOJlz7MNvkuJNyYdCOCivuW0pbmf_2OPZu0,962 +numpy/distutils/ccompiler.py,sha256=6I-zQBLJCyZUZaYdmK23pmucM8MAn2OsvyzEdghPpW0,28618 +numpy/distutils/ccompiler_opt.py,sha256=diDOkSKj_j0xY08kP7-NoQsefxJgsN5clEirqXlavGY,100390 +numpy/distutils/checks/cpu_asimd.c,sha256=nXUsTLrSlhRL-UzDM8zMqn1uqJnR7TRlJi3Ixqw539w,818 +numpy/distutils/checks/cpu_asimddp.c,sha256=E4b9zT1IdSfGR2ACZJiQoR-BqaeDtzFqRNW8lBOXAaY,432 +numpy/distutils/checks/cpu_asimdfhm.c,sha256=6tXINVEpmA-lYRSbL6CrBu2ejNFmd9WONFGgg-JFXZE,529 +numpy/distutils/checks/cpu_asimdhp.c,sha256=SfwrEEA_091tmyI4vN3BNLs7ypUnrF_VbTg6gPl-ocs,379 +numpy/distutils/checks/cpu_avx.c,sha256=LuZW8o93VZZi7cYEP30dvKWTm7Mw1TLmCt5UaXDxCJg,779 +numpy/distutils/checks/cpu_avx2.c,sha256=jlDlea393op0JOiMJgmmPyKmyAXztLcObPOp9F9FaS0,749 +numpy/distutils/checks/cpu_avx512_clx.c,sha256=P-YHjj2XE4SithBkPwDgShOxGWnVSNUXg72h8O3kpbs,842 +numpy/distutils/checks/cpu_avx512_cnl.c,sha256=f_c2Z0xwAKTJeK3RYMIp1dgXYV8QyeOxUgKkMht4qko,948 +numpy/distutils/checks/cpu_avx512_icl.c,sha256=isI35-gm7Hqn2Qink5hP1XHWlh52a5vwKhEdW_CRviE,1004 +numpy/distutils/checks/cpu_avx512_knl.c,sha256=PVTkczTpHlXbTc7IQKlCFU9Cq4VGG-_JhVnT0_n-t1A,959 +numpy/distutils/checks/cpu_avx512_knm.c,sha256=eszPGr3XC9Js7mQUB0gFxlrNjQwfucQFz_UwFyNLjes,1132 +numpy/distutils/checks/cpu_avx512_skx.c,sha256=59VD8ebEJJHLlbY-4dakZV34bmq_lr9mBKz8BAcsdYc,1010 +numpy/distutils/checks/cpu_avx512_spr.c,sha256=i8DpADB8ZhIucKc8lt9JfYbQANRvR67u59oQf5winvg,904 +numpy/distutils/checks/cpu_avx512cd.c,sha256=Qfh5FJUv9ZWd_P5zxkvYYIkvqsPptgaDuKkeX_F8vyA,759 +numpy/distutils/checks/cpu_avx512f.c,sha256=d97NRcbJhqpvURnw7zyG0TOuEijKXvU0g4qOTWHbwxY,755 +numpy/distutils/checks/cpu_f16c.c,sha256=nzZzpUc8AfTtw-INR3KOxcjx9pyzVUM8OhsrdH2dO_w,868 +numpy/distutils/checks/cpu_fma3.c,sha256=YN6IDwuZALJHVVmpQ2tj-14HI_PcxH_giV8-XjzlmkU,817 +numpy/distutils/checks/cpu_fma4.c,sha256=qKdgTNNFg-n8vSB1Txco60HBLCcOi1aH23gZOX7yKqs,301 +numpy/distutils/checks/cpu_neon.c,sha256=Y0SjuVLzh3upcbY47igHjmKgjHbXxbvzncwB7acfjxw,600 +numpy/distutils/checks/cpu_neon_fp16.c,sha256=E7YOGyYP41u1sqiCHpCGGqjmo7Cs6yUkmJ46K7LZloc,251 +numpy/distutils/checks/cpu_neon_vfpv4.c,sha256=qFY1C_fQYz7M_a_8j0KTdn7vaE3NNVmWY2JGArDGM3w,609 +numpy/distutils/checks/cpu_popcnt.c,sha256=vRcXHVw2j1F9I_07eIZ_xzDX3fd3mqgiQXL1w3pULJk,1049 +numpy/distutils/checks/cpu_sse.c,sha256=6MHITtC76UpSR9uh0SiURpnkpPkLzT5tbrcXT4xBFxo,686 +numpy/distutils/checks/cpu_sse2.c,sha256=yUZzdjDtBS-vYlhfP-pEzj3m0UPmgZs-hA99TZAEACU,697 +numpy/distutils/checks/cpu_sse3.c,sha256=j5XRHumUuccgN9XPZyjWUUqkq8Nu8XCSWmvUhmJTJ08,689 +numpy/distutils/checks/cpu_sse41.c,sha256=y_k81P-1b-Hx8OeRVDE9V1O9JakS0zPvlFKJ3VbSmEw,675 +numpy/distutils/checks/cpu_sse42.c,sha256=3PXucdI2mII-txO7zFN99TlVveT_QUAETTGvRk-_hYw,692 +numpy/distutils/checks/cpu_ssse3.c,sha256=X6VWxIXMRpdSCBsHPXvot3yTZ4d5yK9Bi1ScQP3WC-Q,705 +numpy/distutils/checks/cpu_vsx.c,sha256=FVmR4iliKjcihzMCwloR1F2JYwSZK9P4f_hvIRLHSDQ,478 +numpy/distutils/checks/cpu_vsx2.c,sha256=yESs25Rt5ztb5-stuYbu3TbiyJKmllMpMLu01GOAHqE,263 +numpy/distutils/checks/cpu_vsx3.c,sha256=omC50tbEZNigsKMFPtE3zGRlIS2VuDTm3vZ9TBZWo4U,250 +numpy/distutils/checks/cpu_vsx4.c,sha256=ngezA1KuINqJkLAcMrZJR7bM0IeA25U6I-a5aISGXJo,305 +numpy/distutils/checks/cpu_vx.c,sha256=OpLU6jIfwvGJR4JPVVZLlUfvo7oAZ0YvsjafM2qtPlk,461 +numpy/distutils/checks/cpu_vxe.c,sha256=rYW_nKwXnlB0b8xCrJEr4TmvrEvS-NToxwyqqOHV8Bk,788 +numpy/distutils/checks/cpu_vxe2.c,sha256=Hv4wO23kwC2G6lqqercq4NE4K0nrvBxR7RIzr5HTXCc,624 +numpy/distutils/checks/cpu_xop.c,sha256=7uabsGeqvmVJQvuSEjs8-Sm8kpmvl6uZ9YHMF5h2opQ,234 +numpy/distutils/checks/extra_avx512bw_mask.c,sha256=pVPOhcu80yJVnIhOcHHXOlZ2proJ1MUf0XgccqhPoNk,636 +numpy/distutils/checks/extra_avx512dq_mask.c,sha256=nMfIvepISGFDexPrMYl5LWtdmt6Uy9TKPzF4BVayw2I,504 +numpy/distutils/checks/extra_avx512f_reduce.c,sha256=_NfbtfSAkm_A67umjR1oEb9yRnBL5EnTA76fvQIuNVk,1595 +numpy/distutils/checks/extra_vsx3_half_double.c,sha256=shHvIQZfR0o-sNefOt49BOh4WCmA0BpJvj4b7F9UdvQ,354 +numpy/distutils/checks/extra_vsx4_mma.c,sha256=GiQGZ9-6wYTgH42bJgSlXhWcTIrkjh5xv4uymj6rglk,499 +numpy/distutils/checks/extra_vsx_asm.c,sha256=BngiMVS9nyr22z6zMrOrHLeCloe_5luXhf5T5mYucgI,945 +numpy/distutils/checks/test_flags.c,sha256=uAIbhfAhyGe4nTdK_mZmoCefj9P0TGHNF9AUv_Cdx5A,16 +numpy/distutils/command/__init__.py,sha256=fW49zUB3syMFsKpf1oRBO0h8tmnTwRP3zUPrsB0R22M,1032 +numpy/distutils/command/__pycache__/__init__.cpython-310.pyc,, +numpy/distutils/command/__pycache__/autodist.cpython-310.pyc,, +numpy/distutils/command/__pycache__/bdist_rpm.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build_clib.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build_ext.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build_py.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build_scripts.cpython-310.pyc,, +numpy/distutils/command/__pycache__/build_src.cpython-310.pyc,, +numpy/distutils/command/__pycache__/config.cpython-310.pyc,, +numpy/distutils/command/__pycache__/config_compiler.cpython-310.pyc,, +numpy/distutils/command/__pycache__/develop.cpython-310.pyc,, +numpy/distutils/command/__pycache__/egg_info.cpython-310.pyc,, +numpy/distutils/command/__pycache__/install.cpython-310.pyc,, +numpy/distutils/command/__pycache__/install_clib.cpython-310.pyc,, +numpy/distutils/command/__pycache__/install_data.cpython-310.pyc,, +numpy/distutils/command/__pycache__/install_headers.cpython-310.pyc,, +numpy/distutils/command/__pycache__/sdist.cpython-310.pyc,, +numpy/distutils/command/autodist.py,sha256=8KWwr5mnjX20UpY4ITRDx-PreApyh9M7B92IwsEtTsQ,3718 +numpy/distutils/command/bdist_rpm.py,sha256=-tkZupIJr_jLqeX7xbRhE8-COXHRI0GoRpAKchVte54,709 +numpy/distutils/command/build.py,sha256=aj1SUGsDUTxs4Tch2ALLcPnuAVhaPjEPIZIobzMajm0,2613 +numpy/distutils/command/build_clib.py,sha256=TCuZDpRd8ZPZH6SRwIZcWZC3aoGc18Rll6FYcawS6qY,19317 +numpy/distutils/command/build_ext.py,sha256=UcyG8KKyrd5v1s6qDdKEkzwLwmoMlfHA893Lj-OOgl0,32983 +numpy/distutils/command/build_py.py,sha256=XiLZ2d_tmCE8uG5VAU5OK2zlzQayBfeY4l8FFEltbig,1144 +numpy/distutils/command/build_scripts.py,sha256=P2ytmZb3UpwfmbMXkFB2iMQk15tNUCynzMATllmp-Gs,1665 +numpy/distutils/command/build_src.py,sha256=sxsnfc8KBsnsSvI-8sKIKNo2KA2uvrrvW0WYZCqyjyk,31178 +numpy/distutils/command/config.py,sha256=SdN-Cxvwx3AD5k-Xx_VyS2WWpVGmflnYGiTIyruj_xM,20670 +numpy/distutils/command/config_compiler.py,sha256=Cp9RTpW72gg8XC_3-9dCTlLYr352pBfBRZA8YBWvOoY,4369 +numpy/distutils/command/develop.py,sha256=9SbbnFnVbSJVZxTFoV9pwlOcM1D30GnOWm2QonQDvHI,575 +numpy/distutils/command/egg_info.py,sha256=i-Zk4sftK5cMQVQ2jqSxTMpVI-gYyXN16-p5TvmjURc,921 +numpy/distutils/command/install.py,sha256=nkW2fl7OABcE3sUcoNM7iONkF64CBESdVlRjTLg3hVA,3073 +numpy/distutils/command/install_clib.py,sha256=1xv0_lPVu3g16GgICjjlh7T8zQ6PSlevCuq8Bocx5YM,1399 +numpy/distutils/command/install_data.py,sha256=Y59EBG61MWP_5C8XJvSCVfzYpMNVNVcH_Z6c0qgr9KA,848 +numpy/distutils/command/install_headers.py,sha256=tVpOGqkmh8AA_tam0K0SeCd4kvZj3UqSOjWKm6Kz4jY,919 +numpy/distutils/command/sdist.py,sha256=8Tsju1RwXNbPyQcjv8GRMFveFQqYlbNdSZh2X1OV-VU,733 +numpy/distutils/conv_template.py,sha256=F-4vkkfAjCb-fN79WYrXX3BMHMoiQO-W2u09q12OPuI,9536 +numpy/distutils/core.py,sha256=C-_z7rODE_12olz0dwtlKqwfaSLXEV3kZ1CyDJMsQh8,8200 +numpy/distutils/cpuinfo.py,sha256=XuNhsx_-tyrui_AOgn10yfZ9p4YBM68vW2_bGmKj07I,22639 +numpy/distutils/exec_command.py,sha256=0EGasX7tM47Q0k8yJA1q-BvIcjV_1UAC-zDmen-j6Lg,10283 +numpy/distutils/extension.py,sha256=YgeB8e2fVc2l_1etuRBv0P8c1NULOz4SaudHgsVBc30,3568 +numpy/distutils/fcompiler/__init__.py,sha256=DqfaiKGVagOFuL0v3VZxZZkRnWWvly0_lYHuLjaZTBo,40625 +numpy/distutils/fcompiler/__pycache__/__init__.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/absoft.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/arm.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/compaq.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/environment.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/fujitsu.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/g95.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/gnu.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/hpux.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/ibm.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/intel.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/lahey.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/mips.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/nag.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/none.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/nv.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/pathf95.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/pg.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/sun.cpython-310.pyc,, +numpy/distutils/fcompiler/__pycache__/vast.cpython-310.pyc,, +numpy/distutils/fcompiler/absoft.py,sha256=yPUHBNZHOr_gxnte16I_X85o1iL9FI4RLHjG9JOuyYU,5516 +numpy/distutils/fcompiler/arm.py,sha256=MCri346qo1bYwjlm32xHRyRl-bAINTlfVIubN6HDz68,2090 +numpy/distutils/fcompiler/compaq.py,sha256=sjU2GKHJGuChtRb_MhnouMqvkIOQflmowFE6ErCWZhE,3903 +numpy/distutils/fcompiler/environment.py,sha256=DOD2FtKDk6O9k6U0h9UKWQ-65wU8z1tSPn3gUlRwCso,3080 +numpy/distutils/fcompiler/fujitsu.py,sha256=yK3wdHoF5qq25UcnIM6FzTXsJGJxdfKa_f__t04Ne7M,1333 +numpy/distutils/fcompiler/g95.py,sha256=FH4uww6re50OUT_BfdoWSLCDUqk8LvmQ2_j5RhF5nLQ,1330 +numpy/distutils/fcompiler/gnu.py,sha256=ag8v_pp-fYpDPKJsVmNaFwN621b1MFQAxew0T1KdE_Y,20502 +numpy/distutils/fcompiler/hpux.py,sha256=gloUjWGo7MgJmukorDq7ZxDnnUKXx-C6AQfryQshVM4,1353 +numpy/distutils/fcompiler/ibm.py,sha256=Ts2PXg2ocrXtX9eguvcHeQ4JB2ktpd5isXtRTpU9F5Y,3534 +numpy/distutils/fcompiler/intel.py,sha256=XYF0GLVhJWjS8noEx4TJ704Eqt-JGBolRZEOkwgNItE,6570 +numpy/distutils/fcompiler/lahey.py,sha256=U63KMfN8zDAd_jnvMkS2N-dvP4UiSRB9Ces290qLNXw,1327 +numpy/distutils/fcompiler/mips.py,sha256=LAwT0DY5yqlYh20hNMYR1-OKu8A9GNw-TbUfI8pvglM,1714 +numpy/distutils/fcompiler/nag.py,sha256=9pQCMUlwjRVHGKwZxvwd4bW5p-9v7VXcflELEImHg1g,2777 +numpy/distutils/fcompiler/none.py,sha256=6RX2X-mV1HuhJZnVfQmDmLVhIUWseIT4P5wf3rdLq9Y,758 +numpy/distutils/fcompiler/nv.py,sha256=LGBQY417zibQ-fnPis5rNtP_I1Qk9OlhEFOnPvmwXHI,1560 +numpy/distutils/fcompiler/pathf95.py,sha256=MiHVar6-beUEYVEpqXORIX4f8G29I47D36kreltdfoQ,1061 +numpy/distutils/fcompiler/pg.py,sha256=NOB1stzrjvQMZS7bIPTgWTcAFe3cjNveA5-SztUZqD0,3568 +numpy/distutils/fcompiler/sun.py,sha256=mfS3RTj9uYT6K9Ikp8RjmsEPIWAtUTzMhX9sGjEyF6I,1577 +numpy/distutils/fcompiler/vast.py,sha256=Xuxa4sNraUPcQmt45SogAfN0kDHFb6C73uNZNmX3RBE,1667 +numpy/distutils/from_template.py,sha256=hpoFQortsLZdMSr_fJILzXzrIwFlZoFjsDSo6jNtvWs,7913 +numpy/distutils/fujitsuccompiler.py,sha256=JDuUUE-GyPahkNnDZLWNHyAmJ2lJPCnLuIUFfHkjMzA,834 +numpy/distutils/intelccompiler.py,sha256=N_pvWjlLORdlH34cs97oU4LBNr_s9r5ddsmme7XEvs4,4234 +numpy/distutils/lib2def.py,sha256=-3rDf9FXsDik3-Qpp-A6N_cYZKTlmVjVi4Jzyo-pSlY,3630 +numpy/distutils/line_endings.py,sha256=a8ZZECrPRffsbs0UygeR47_fOUlZppnx-QPssrIXtB0,2032 +numpy/distutils/log.py,sha256=m8caNBwPhIG7YTnD9iq9jjc6_yJOeU9FHuau2CSulds,2879 +numpy/distutils/mingw/gfortran_vs2003_hack.c,sha256=cbsN3Lk9Hkwzr9c-yOP2xEBg1_ml1X7nwAMDWxGjzc8,77 +numpy/distutils/mingw32ccompiler.py,sha256=4G8t_6plw7xqoF0icDaWGNSBgbyDaHQn3GB5l9gikEA,22067 +numpy/distutils/misc_util.py,sha256=2MxXE4rex_wSUhpLuwxOFeeor-WxZLjisVvXWycNaq4,89359 +numpy/distutils/msvc9compiler.py,sha256=FCtP7g34AVuMIaqQlH8AV1ZBdIUXbk5G7eBeeTSr1zE,2192 +numpy/distutils/msvccompiler.py,sha256=ILookUifVJF9tAtPJoVCqZ673m5od6MVKuAHuA3Rcfk,2647 +numpy/distutils/npy_pkg_config.py,sha256=fIFyWLTqRySO3hn-0i0FNdHeblRN_hDv-wc68-sa3hQ,12972 +numpy/distutils/numpy_distribution.py,sha256=10Urolg1aDAG0EHYfcvObzOgqRV0ARh2GhDklEg4vS0,634 +numpy/distutils/pathccompiler.py,sha256=KnJEA5H4cXg7SLrMjwWtidD24VSvOdu72d17votiY9E,713 +numpy/distutils/setup.py,sha256=l9ke_Bws431UdBfysaq7ZeGtZ8dix76oh9Huq5qqbkU,634 +numpy/distutils/system_info.py,sha256=SCk1ku0HnZNwConQBJN8FVidbeKVnrMxUyNWUVx73pY,114022 +numpy/distutils/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/distutils/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_build_ext.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_ccompiler_opt.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_ccompiler_opt_conf.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_exec_command.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_fcompiler.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_fcompiler_gnu.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_fcompiler_intel.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_fcompiler_nagfor.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_from_template.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_log.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_mingw32ccompiler.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_misc_util.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_npy_pkg_config.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_shell_utils.cpython-310.pyc,, +numpy/distutils/tests/__pycache__/test_system_info.cpython-310.pyc,, +numpy/distutils/tests/test_build_ext.py,sha256=RNrEi-YMTGQG5YDi5GWL8iJRkk_bQHBQKcqp43TdJco,2769 +numpy/distutils/tests/test_ccompiler_opt.py,sha256=N3pN-9gxPY1KvvMEjoXr7kLxTGN8aQOr8qo5gmlrm90,28778 +numpy/distutils/tests/test_ccompiler_opt_conf.py,sha256=maXytv39amuojbQIieIGIXMV4Cv-s0fsPMZeFEh9XyY,6347 +numpy/distutils/tests/test_exec_command.py,sha256=BK-hHfIIrkCep-jNmS5_Cwq5oESvsvX3V_0XDAkT1Ok,7395 +numpy/distutils/tests/test_fcompiler.py,sha256=mJXezTXDUbduhCwVGAfABHpEARWhnj8hLW9EOU3rn84,1277 +numpy/distutils/tests/test_fcompiler_gnu.py,sha256=nmfaFCVzbViIOQ2-MjgXt-bN8Uj674hCgiwr5Iol-_U,2136 +numpy/distutils/tests/test_fcompiler_intel.py,sha256=mxkfFD2rNfg8nn1pp_413S0uCdYXydPWBcz9ilgGkA0,1058 +numpy/distutils/tests/test_fcompiler_nagfor.py,sha256=CKEjik7YVfSJGL4abuctkmlkIUhAhv-x2aUcXiTR9b0,1102 +numpy/distutils/tests/test_from_template.py,sha256=SDYoe0XUpAayyEQDq7ZhrvEEz7U9upJDLYzhcdoVifc,1103 +numpy/distutils/tests/test_log.py,sha256=0tSM4q-00CjbMIRb9QOJzI4A7GHUiRGOG1SOOLz8dnM,868 +numpy/distutils/tests/test_mingw32ccompiler.py,sha256=rMC8-IyBOiuZVfAoklV_KnD9qVeB_hFVvb5dStxfk08,1609 +numpy/distutils/tests/test_misc_util.py,sha256=Qs96vTr8GZSyVCWuamzcNlVMRa15vt0Y-T2yZSUm_QA,3218 +numpy/distutils/tests/test_npy_pkg_config.py,sha256=apGrmViPcXoPCEOgDthJgL13C9N0qQMs392QjZDxJd4,2557 +numpy/distutils/tests/test_shell_utils.py,sha256=UKU_t5oIa_kVMv89Ys9KN6Z_Fy5beqPDUsDAWPmcoR8,2114 +numpy/distutils/tests/test_system_info.py,sha256=wMV7bH5oB0luLDR2tunHrLaUxsD_-sIhLnNpj1blQPs,11405 +numpy/distutils/unixccompiler.py,sha256=fN4-LH6JJp44SLE7JkdG2kKQlK4LC8zuUpVC-RtmJ-U,5426 +numpy/doc/__init__.py,sha256=OYmE-F6x0CD05PCDY2MiW1HLlwB6i9vhDpk-a3r4lHY,508 +numpy/doc/__pycache__/__init__.cpython-310.pyc,, +numpy/doc/__pycache__/constants.cpython-310.pyc,, +numpy/doc/__pycache__/ufuncs.cpython-310.pyc,, +numpy/doc/constants.py,sha256=PlXoj7b4A8Aa9nADbg83uzTBRJaX8dvJmEdbn4FDPPo,9155 +numpy/doc/ufuncs.py,sha256=i1alLg19mNyCFZ2LYSOZGm--RsRN1x63U_UYU-N3x60,5357 +numpy/dtypes.py,sha256=BuBztrPQRasUmVZhXr2_NgJujdUTNhNwd59pZZHk3lA,2229 +numpy/dtypes.pyi,sha256=tIHniAYP7ALg2iT7NgSXO67jvE-zRlDod3MazEmD4M8,1315 +numpy/exceptions.py,sha256=7j7tv8cwXGZYgldyMisGmnAxAl2s4YU0vexME81yYlA,7339 +numpy/exceptions.pyi,sha256=KsZqWNvyPUEXUGR9EhZCUQF2f9EVSpBRlJUlGqRT02k,600 +numpy/f2py/__init__.py,sha256=m-ty_WiJZ4GVfV5--kJ3MFJaLXestz5Eo-4H0FPscK4,5565 +numpy/f2py/__init__.pyi,sha256=eA7uYXZr0p0aaz5rBW-EypLx9RchrvqDYtSnkEJQsYw,1087 +numpy/f2py/__main__.py,sha256=6i2jVH2fPriV1aocTY_dUFvWK18qa-zjpnISA-OpF3w,130 +numpy/f2py/__pycache__/__init__.cpython-310.pyc,, +numpy/f2py/__pycache__/__main__.cpython-310.pyc,, +numpy/f2py/__pycache__/__version__.cpython-310.pyc,, +numpy/f2py/__pycache__/_isocbind.cpython-310.pyc,, +numpy/f2py/__pycache__/_src_pyf.cpython-310.pyc,, +numpy/f2py/__pycache__/auxfuncs.cpython-310.pyc,, +numpy/f2py/__pycache__/capi_maps.cpython-310.pyc,, +numpy/f2py/__pycache__/cb_rules.cpython-310.pyc,, +numpy/f2py/__pycache__/cfuncs.cpython-310.pyc,, +numpy/f2py/__pycache__/common_rules.cpython-310.pyc,, +numpy/f2py/__pycache__/crackfortran.cpython-310.pyc,, +numpy/f2py/__pycache__/diagnose.cpython-310.pyc,, +numpy/f2py/__pycache__/f2py2e.cpython-310.pyc,, +numpy/f2py/__pycache__/f90mod_rules.cpython-310.pyc,, +numpy/f2py/__pycache__/func2subr.cpython-310.pyc,, +numpy/f2py/__pycache__/rules.cpython-310.pyc,, +numpy/f2py/__pycache__/setup.cpython-310.pyc,, +numpy/f2py/__pycache__/symbolic.cpython-310.pyc,, +numpy/f2py/__pycache__/use_rules.cpython-310.pyc,, +numpy/f2py/__version__.py,sha256=7HHdjR82FCBmftwMRyrlhcEj-8mGQb6oCH-wlUPH4Nw,34 +numpy/f2py/_backends/__init__.py,sha256=7_bA7c_xDpLc4_8vPfH32-Lxn9fcUTgjQ25srdvwvAM,299 +numpy/f2py/_backends/__pycache__/__init__.cpython-310.pyc,, +numpy/f2py/_backends/__pycache__/_backend.cpython-310.pyc,, +numpy/f2py/_backends/__pycache__/_distutils.cpython-310.pyc,, +numpy/f2py/_backends/__pycache__/_meson.cpython-310.pyc,, +numpy/f2py/_backends/_backend.py,sha256=GKb9-UaFszT045vUgVukPs1n97iyyjqahrWKxLOKNYo,1187 +numpy/f2py/_backends/_distutils.py,sha256=pxh2YURFYYSykIOvBFwVvhoNX1oSk-c30IPPhzlko-0,2383 +numpy/f2py/_backends/_meson.py,sha256=gi-nbnPFDC38sumfAjg-Q5FPu6nNkyQXTjEuVf9W9Cc,6916 +numpy/f2py/_backends/meson.build.template,sha256=oTPNMAQzS4CJ_lfEzYv-oBeJTtQuThUYVN5R6ROWpNU,1579 +numpy/f2py/_isocbind.py,sha256=zaBgpfPNRmxVG3doUIlbZIiyB990MsXiwDabrSj9HnQ,2360 +numpy/f2py/_src_pyf.py,sha256=4t6TN4ZKWciC4f1z6fwaGrpIGhHKRiwHfcrNj4FIzCg,7654 +numpy/f2py/auxfuncs.py,sha256=dNs4b2KDIcG4M1hPBvD09-Vh7CDzlPIrFscOdvL3p1o,26539 +numpy/f2py/capi_maps.py,sha256=ENjYyeZ3CCJcLwJJgmKOSYrD1KPuhpwauXqeizdV55o,30563 +numpy/f2py/cb_rules.py,sha256=5TuHbJWGjsF6yVNzKuV2tAnwdLyhcWlmdsjYlDOZOv4,24992 +numpy/f2py/cfuncs.py,sha256=KJyW7mdjmFSmxssfeegGJs5NZyF3mZMgNvOxN9-vYHQ,51913 +numpy/f2py/common_rules.py,sha256=gHB76WypbkVmhaD_RWhy8Od4zDTgj8cbDOdUdIp6PIQ,5131 +numpy/f2py/crackfortran.py,sha256=ErLdkWP8MxeyW5vVPGXwyvrxZAwymlvIBC0th2rvK74,148553 +numpy/f2py/diagnose.py,sha256=0SRXBE2hJgKJN_Rf4Zn00oKXC_Tka3efPWM47zg6BoY,5197 +numpy/f2py/f2py2e.py,sha256=5t093ZQ4xs0_0UbyaYVd2yA2EVOaOAcuU29JI-IU2Ag,27717 +numpy/f2py/f90mod_rules.py,sha256=otm3_dmVIna0eBVHLu_693s3a_82lU3pqeqDacWI37s,9594 +numpy/f2py/func2subr.py,sha256=6d2R5awuHRT4xzgfUfwS7JHTqhhAieSXcENlssD_2c4,10298 +numpy/f2py/rules.py,sha256=B4FxSYEfZ_1j_z9GulQNZ1BNrPrUvlU3ybxwTkrIxjI,62727 +numpy/f2py/setup.cfg,sha256=Fpn4sjqTl5OT5sp8haqKIRnUcTPZNM6MIvUJBU7BIhg,48 +numpy/f2py/setup.py,sha256=MmAVspT8DDTqDuL8ZJhxK62g0lcso4vqI6QNQ9CsfoQ,2422 +numpy/f2py/src/fortranobject.c,sha256=g4BKDO1_9pCu6hithKXD2oH_Mt-HH1NTnP6leCqJrzc,46017 +numpy/f2py/src/fortranobject.h,sha256=neMKotYWbHvrhW9KXz4QzQ8fzPkiQXLHHjy82vLSeog,5835 +numpy/f2py/symbolic.py,sha256=jWBoAwECCxRdWczR9r7O6UERcYmH_GbdcAReNp7cmJY,53270 +numpy/f2py/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/f2py/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_abstract_interface.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_array_from_pyobj.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_assumed_shape.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_block_docstring.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_callback.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_character.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_common.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_compile_function.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_crackfortran.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_data.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_docs.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_f2cmap.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_f2py2e.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_isoc.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_kind.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_mixed.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_module_doc.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_parameter.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_pyf_src.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_quoted_character.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_return_character.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_return_complex.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_return_integer.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_return_logical.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_return_real.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_semicolon_split.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_size.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_string.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_symbolic.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/test_value_attrspec.cpython-310.pyc,, +numpy/f2py/tests/__pycache__/util.cpython-310.pyc,, +numpy/f2py/tests/src/abstract_interface/foo.f90,sha256=JFU2w98cB_XNwfrqNtI0yDTmpEdxYO_UEl2pgI_rnt8,658 +numpy/f2py/tests/src/abstract_interface/gh18403_mod.f90,sha256=gvQJIzNtvacWE0dhysxn30-iUeI65Hpq7DiE9oRauz8,105 +numpy/f2py/tests/src/array_from_pyobj/wrapmodule.c,sha256=Ff5wHYV9-OJnZuelfFWcjAibRvDkEIlbTVczTyv6TG8,7299 +numpy/f2py/tests/src/assumed_shape/.f2py_f2cmap,sha256=But9r9m4iL7EGq_haMW8IiQ4VivH0TgUozxX4pPvdpE,29 +numpy/f2py/tests/src/assumed_shape/foo_free.f90,sha256=oBwbGSlbr9MkFyhVO2aldjc01dr9GHrMrSiRQek8U64,460 +numpy/f2py/tests/src/assumed_shape/foo_mod.f90,sha256=rfzw3QdI-eaDSl-hslCgGpd5tHftJOVhXvb21Y9Gf6M,499 +numpy/f2py/tests/src/assumed_shape/foo_use.f90,sha256=rmT9k4jP9Ru1PLcGqepw9Jc6P9XNXM0axY7o4hi9lUw,269 +numpy/f2py/tests/src/assumed_shape/precision.f90,sha256=r08JeTVmTTExA-hYZ6HzaxVwBn1GMbPAuuwBhBDtJUk,130 +numpy/f2py/tests/src/block_docstring/foo.f,sha256=y7lPCPu7_Fhs_Tf2hfdpDQo1bhtvNSKRaZAOpM_l3dg,97 +numpy/f2py/tests/src/callback/foo.f,sha256=C1hjfpRCQWiOVVzIHqnsYcnLrqQcixrnHCn8hd9GhVk,1254 +numpy/f2py/tests/src/callback/gh17797.f90,sha256=_Nrl0a2HgUbtymGU0twaJ--7rMa1Uco2A3swbWvHoMo,148 +numpy/f2py/tests/src/callback/gh18335.f90,sha256=NraOyKIXyvv_Y-3xGnmTjtNjW2Znsnlk8AViI8zfovc,506 +numpy/f2py/tests/src/callback/gh25211.f,sha256=a2sxlQhtDVbYn8KOKHUYqwc-aCFt7sDPSnJsXFG35uI,179 +numpy/f2py/tests/src/callback/gh25211.pyf,sha256=FWxo0JWQlw519BpZV8PoYeI_FZ_K6C-3Wk6gLrfBPlw,447 +numpy/f2py/tests/src/cli/gh_22819.pyf,sha256=5rvOfCv-wSosB354LC9pExJmMoSHnbGZGl_rtA2fogA,142 +numpy/f2py/tests/src/cli/hi77.f,sha256=ttyI6vAP3qLnDqy82V04XmoqrXNM6uhMvvLri2p0dq0,71 +numpy/f2py/tests/src/cli/hiworld.f90,sha256=QWOLPrTxYQu1yrEtyQMbM0fE9M2RmXe7c185KnD5x3o,51 +numpy/f2py/tests/src/common/block.f,sha256=GQ0Pd-VMX3H3a-__f2SuosSdwNXHpBqoGnQDjf8aG9g,224 +numpy/f2py/tests/src/common/gh19161.f90,sha256=BUejyhqpNVfHZHQ-QC7o7ZSo7lQ6YHyX08lSmQqs6YM,193 +numpy/f2py/tests/src/crackfortran/accesstype.f90,sha256=-5Din7YlY1TU7tUHD2p-_DSTxGBpDsWYNeT9WOwGhno,208 +numpy/f2py/tests/src/crackfortran/data_common.f,sha256=ZSUAh3uhn9CCF-cYqK5TNmosBGPfsuHBIEfudgysun4,193 +numpy/f2py/tests/src/crackfortran/data_multiplier.f,sha256=jYrJKZWF_59JF9EMOSALUjn0UupWvp1teuGpcL5s1Sc,197 +numpy/f2py/tests/src/crackfortran/data_stmts.f90,sha256=19YO7OGj0IksyBlmMLZGRBQLjoE3erfkR4tFvhznvvE,693 +numpy/f2py/tests/src/crackfortran/data_with_comments.f,sha256=hoyXw330VHh8duMVmAQZjr1lgLVF4zFCIuEaUIrupv0,175 +numpy/f2py/tests/src/crackfortran/foo_deps.f90,sha256=CaH7mnWTG7FcnJe2vXN_0zDbMadw6NCqK-JJ2HmDjK8,128 +numpy/f2py/tests/src/crackfortran/gh15035.f,sha256=jJly1AzF5L9VxbVQ0vr-sf4LaUo4eQzJguhuemFxnvg,375 +numpy/f2py/tests/src/crackfortran/gh17859.f,sha256=7K5dtOXGuBDAENPNCt-tAGJqTfNKz5OsqVSk16_e7Es,340 +numpy/f2py/tests/src/crackfortran/gh22648.pyf,sha256=qZHPRNQljIeYNwbqPLxREnOrSdVV14f3fnaHqB1M7c0,241 +numpy/f2py/tests/src/crackfortran/gh23533.f,sha256=w3tr_KcY3s7oSWGDmjfMHv5h0RYVGUpyXquNdNFOJQg,126 +numpy/f2py/tests/src/crackfortran/gh23598.f90,sha256=41W6Ire-5wjJTTg6oAo7O1WZfd1Ug9vvNtNgHS5MhEU,101 +numpy/f2py/tests/src/crackfortran/gh23598Warn.f90,sha256=1v-hMCT_K7prhhamoM20nMU9zILam84Hr-imck_dYYk,205 +numpy/f2py/tests/src/crackfortran/gh23879.f90,sha256=LWDJTYR3t9h1IsrKC8dVXZlBfWX7clLeU006X6Ow8oI,332 +numpy/f2py/tests/src/crackfortran/gh2848.f90,sha256=gPNasx98SIf7Z9ibk_DHiGKCvl7ERtsfoGXiFDT7FbM,282 +numpy/f2py/tests/src/crackfortran/operators.f90,sha256=-Fc-qjW1wBr3Dkvdd5dMTrt0hnjnV-1AYo-NFWcwFSo,1184 +numpy/f2py/tests/src/crackfortran/privatemod.f90,sha256=7bubZGMIn7iD31wDkjF1TlXCUM7naCIK69M9d0e3y-U,174 +numpy/f2py/tests/src/crackfortran/publicmod.f90,sha256=Pnwyf56Qd6W3FUH-ZMgnXEYkb7gn18ptNTdwmGan0Jo,167 +numpy/f2py/tests/src/crackfortran/pubprivmod.f90,sha256=eYpJwBYLKGOxVbKgEqfny1znib-b7uYhxcRXIf7uwXg,165 +numpy/f2py/tests/src/crackfortran/unicode_comment.f90,sha256=aINLh6GlfTwFewxvDoqnMqwuCNb4XAqi5Nj5vXguXYs,98 +numpy/f2py/tests/src/f2cmap/.f2py_f2cmap,sha256=iUOtfHd3OuT1Rz2-yiSgt4uPKGvCt5AzQ1iygJt_yjg,82 +numpy/f2py/tests/src/f2cmap/isoFortranEnvMap.f90,sha256=iJCD8a8MUTmuPuedbcmxW54Nr4alYuLhksBe1sHS4K0,298 +numpy/f2py/tests/src/isocintrin/isoCtests.f90,sha256=jcw-fzrFh0w5U66uJYfeUW4gv94L5MnWQ_NpsV9y0oI,998 +numpy/f2py/tests/src/kind/foo.f90,sha256=zIHpw1KdkWbTzbXb73hPbCg4N2Htj3XL8DIwM7seXpo,347 +numpy/f2py/tests/src/mixed/foo.f,sha256=90zmbSHloY1XQYcPb8B5d9bv9mCZx8Z8AMTtgDwJDz8,85 +numpy/f2py/tests/src/mixed/foo_fixed.f90,sha256=pxKuPzxF3Kn5khyFq9ayCsQiolxB3SaNtcWaK5j6Rv4,179 +numpy/f2py/tests/src/mixed/foo_free.f90,sha256=fIQ71wrBc00JUAVUj_r3QF9SdeNniBiMw6Ly7CGgPWU,139 +numpy/f2py/tests/src/module_data/mod.mod,sha256=EkjrU7NTZrOH68yKrz6C_eyJMSFSxGgC2yMQT9Zscek,412 +numpy/f2py/tests/src/module_data/module_data_docstring.f90,sha256=tDZ3fUlazLL8ThJm3VwNGJ75QIlLcW70NnMFv-JA4W0,224 +numpy/f2py/tests/src/negative_bounds/issue_20853.f90,sha256=fdOPhRi7ipygwYCXcda7p_dlrws5Hd2GlpF9EZ-qnck,157 +numpy/f2py/tests/src/parameter/constant_both.f90,sha256=-bBf2eqHb-uFxgo6Q7iAtVUUQzrGFqzhHDNaxwSICfQ,1939 +numpy/f2py/tests/src/parameter/constant_compound.f90,sha256=re7pfzcuaquiOia53UT7qNNrTYu2euGKOF4IhoLmT6g,469 +numpy/f2py/tests/src/parameter/constant_integer.f90,sha256=nEmMLitKoSAG7gBBEQLWumogN-KS3DBZOAZJWcSDnFw,612 +numpy/f2py/tests/src/parameter/constant_non_compound.f90,sha256=IcxESVLKJUZ1k9uYKoSb8Hfm9-O_4rVnlkiUU2diy8Q,609 +numpy/f2py/tests/src/parameter/constant_real.f90,sha256=quNbDsM1Ts2rN4WtPO67S9Xi_8l2cXabWRO00CPQSSQ,610 +numpy/f2py/tests/src/quoted_character/foo.f,sha256=WjC9D9171fe2f7rkUAZUvik9bkIf9adByfRGzh6V0cM,482 +numpy/f2py/tests/src/regression/gh25337/data.f90,sha256=9Uz8CHB9i3_mjC3cTOmkTgPAF5tWSwYacG3MUrU-SY0,180 +numpy/f2py/tests/src/regression/gh25337/use_data.f90,sha256=WATiDGAoCKnGgMzm_iMgmfVU0UKOQlk5Fm0iXCmPAkE,179 +numpy/f2py/tests/src/regression/inout.f90,sha256=CpHpgMrf0bqA1W3Ozo3vInDz0RP904S7LkpdAH6ODck,277 +numpy/f2py/tests/src/return_character/foo77.f,sha256=WzDNF3d_hUDSSZjtxd3DtE-bSx1ilOMEviGyYHbcFgM,980 +numpy/f2py/tests/src/return_character/foo90.f90,sha256=ULcETDEt7gXHRzmsMhPsGG4o3lGrcx-FEFaJsPGFKyA,1248 +numpy/f2py/tests/src/return_complex/foo77.f,sha256=8ECRJkfX82oFvGWKbIrCvKjf5QQQClx4sSEvsbkB6A8,973 +numpy/f2py/tests/src/return_complex/foo90.f90,sha256=c1BnrtWwL2dkrTr7wvlEqNDg59SeNMo3gyJuGdRwcDw,1238 +numpy/f2py/tests/src/return_integer/foo77.f,sha256=_8k1evlzBwvgZ047ofpdcbwKdF8Bm3eQ7VYl2Y8b5kA,1178 +numpy/f2py/tests/src/return_integer/foo90.f90,sha256=bzxbYtofivGRYH35Ang9ScnbNsVERN8-6ub5-eI-LGQ,1531 +numpy/f2py/tests/src/return_logical/foo77.f,sha256=FxiF_X0HkyXHzJM2rLyTubZJu4JB-ObLnVqfZwAQFl8,1188 +numpy/f2py/tests/src/return_logical/foo90.f90,sha256=9KmCe7yJYpi4ftkKOM3BCDnPOdBPTbUNrKxY3p37O14,1531 +numpy/f2py/tests/src/return_real/foo77.f,sha256=ZTrzb6oDrIDPlrVWP3Bmtkbz3ffHaaSQoXkfTGtCuFE,933 +numpy/f2py/tests/src/return_real/foo90.f90,sha256=gZuH5lj2lG6gqHlH766KQ3J4-Ero-G4WpOOo2MG3ohU,1194 +numpy/f2py/tests/src/size/foo.f90,sha256=IlFAQazwBRr3zyT7v36-tV0-fXtB1d7WFp6S1JVMstg,815 +numpy/f2py/tests/src/string/char.f90,sha256=ihr_BH9lY7eXcQpHHDQhFoKcbu7VMOX5QP2Tlr7xlaM,618 +numpy/f2py/tests/src/string/fixed_string.f90,sha256=5n6IkuASFKgYICXY9foCVoqndfAY0AQZFEK8L8ARBGM,695 +numpy/f2py/tests/src/string/gh24008.f,sha256=UA8Pr-_yplfOFmc6m4v9ryFQ8W9OulaglulefkFWD68,217 +numpy/f2py/tests/src/string/gh24662.f90,sha256=-Tp9Kd1avvM7AIr8ZukFA9RVr-wusziAnE8AvG9QQI4,197 +numpy/f2py/tests/src/string/gh25286.f90,sha256=2EpxvC-0_dA58MBfGQcLyHzpZgKcMf_W9c73C_Mqnok,304 +numpy/f2py/tests/src/string/gh25286.pyf,sha256=GjgWKh1fHNdPGRiX5ek60i1XSeZsfFalydWqjISPVV8,381 +numpy/f2py/tests/src/string/gh25286_bc.pyf,sha256=6Y9zU66NfcGhTXlFOdFjCSMSwKXpq5ZfAe3FwpkAsm4,384 +numpy/f2py/tests/src/string/scalar_string.f90,sha256=ACxV2i6iPDk-a6L_Bs4jryVKYJMEGUTitEIYTjbJes4,176 +numpy/f2py/tests/src/string/string.f,sha256=shr3fLVZaa6SyUJFYIF1OZuhff8v5lCwsVNBU2B-3pk,248 +numpy/f2py/tests/src/value_attrspec/gh21665.f90,sha256=JC0FfVXsnB2lZHb-nGbySnxv_9VHAyD0mKaLDowczFU,190 +numpy/f2py/tests/test_abstract_interface.py,sha256=C8-ly0_TqkmpQNZmwPHwo2IV2MBH0jQEjAhpqHrg8Y4,832 +numpy/f2py/tests/test_array_from_pyobj.py,sha256=Txff89VUeEhWqUCRVybIqsqH4YQvpk4Uyjmh_XjyMi0,24049 +numpy/f2py/tests/test_assumed_shape.py,sha256=FeaqtrWyBf5uyArcmI0D2e_f763aSMpgU3QmdDXe-tA,1466 +numpy/f2py/tests/test_block_docstring.py,sha256=SEpuq73T9oVtHhRVilFf1xF7nb683d4-Kv7V0kfL4AA,564 +numpy/f2py/tests/test_callback.py,sha256=cReSlVjgnoT74wmtNn-oEIZiJUTfRX7ljjlqJi716IQ,6494 +numpy/f2py/tests/test_character.py,sha256=3ugjM1liymMRbY8wub1eiap-jdyNYVHxlNZBqNoRLe4,21868 +numpy/f2py/tests/test_common.py,sha256=m7TTSJt5zUZKJF-MQUeTtCyxW7YwRBSETINXGPFu8S4,896 +numpy/f2py/tests/test_compile_function.py,sha256=9d_FZ8P2wbIlQ2qPDRrsFqPb4nMH8tiWqYZN-P_shCs,4186 +numpy/f2py/tests/test_crackfortran.py,sha256=y1x3U-jlQWD5rmTXz1I2RlTz7LEfbI6qxCDkR5fzPwY,13441 +numpy/f2py/tests/test_data.py,sha256=HFcmPYbiveKa-swJ8x8XlRR9sM0ESB9FEN-txZnHTok,2876 +numpy/f2py/tests/test_docs.py,sha256=jqtuHE5ZjxP4D8Of3Fkzz36F8_0qKbeS040_m0ac4v4,1662 +numpy/f2py/tests/test_f2cmap.py,sha256=p-Sylbr3ctdKT3UQV9FzpCuYPH5U7Vyn8weXFAjiI9o,391 +numpy/f2py/tests/test_f2py2e.py,sha256=eoswH-daMEBlueoVpxXrDloahCpr0RLzHbr3zBHOsjk,25423 +numpy/f2py/tests/test_isoc.py,sha256=_nPTPxNEEagiKriZBeFNesOattIlHDzaNKmj35xxDBY,1406 +numpy/f2py/tests/test_kind.py,sha256=aOMQSBoD_dw49acKN25_abEvQBLI27DsnWIb9CNpSAE,1671 +numpy/f2py/tests/test_mixed.py,sha256=Ctuw-H7DxhPjSt7wZdJ2xffawIoEBCPWc5F7PSkY4HY,848 +numpy/f2py/tests/test_module_doc.py,sha256=sjCXWIKrqMD1NQ1DUAzgQqkjS5w9h9gvM_Lj29Rdcrg,863 +numpy/f2py/tests/test_parameter.py,sha256=ADI7EV_CM4ztICpqHqeq8LI-WdB6cX0ttatdRdjbsUA,3941 +numpy/f2py/tests/test_pyf_src.py,sha256=eD0bZu_GWfoCq--wWqEKRf-F2h5AwoTyO6GMA9wJPr4,1135 +numpy/f2py/tests/test_quoted_character.py,sha256=cpjMdrHwimnkoJkXd_W_FSlh43oWytY5VHySW9oskO4,454 +numpy/f2py/tests/test_regression.py,sha256=v_6RDQr6IcMmbCMElfzRSLPgZhHnH5l99uztrbJAzqE,2532 +numpy/f2py/tests/test_return_character.py,sha256=18HJtiRwQ7a_2mdPUonD5forKWZJEapD-Vi1DsbTjVs,1493 +numpy/f2py/tests/test_return_complex.py,sha256=BZIIqQ1abdiPLgVmu03_q37yCtND0ijxGSMhGz2Wf-o,2397 +numpy/f2py/tests/test_return_integer.py,sha256=t--9UsdLF9flLTQv7a0KTSVoBuoDtTnmOG2QIFPINVc,1758 +numpy/f2py/tests/test_return_logical.py,sha256=XCmp8E8I6BOeNYF59HjSFAdv1hM9WaDvl8UDS10_05o,2017 +numpy/f2py/tests/test_return_real.py,sha256=ATek5AM7dCCPeIvoMOQIt5yFNFzKrFb1Kno8B4M0rn4,3235 +numpy/f2py/tests/test_semicolon_split.py,sha256=_Mdsi84lES18pPjl9J-QsbGttV4tPFFjZvJvejNcqPc,1635 +numpy/f2py/tests/test_size.py,sha256=q6YqQvcyqdXJeWbGijTiCbxyEG3EkPcvT8AlAW6RCMo,1164 +numpy/f2py/tests/test_string.py,sha256=5xZOfdReoHnId0950XfmtfduPPfBbtMkzBoXMtygvMk,2962 +numpy/f2py/tests/test_symbolic.py,sha256=28quk2kTKfWhKe56n4vINJ8G9weKBfc7HysMlE9J3_g,18341 +numpy/f2py/tests/test_value_attrspec.py,sha256=rWwJBfE2qGzqilZZurJ-7ucNoJDICye6lLetQSLFees,323 +numpy/f2py/tests/util.py,sha256=bEhG699c4bLVPR2WR8fV67avgX6kH5I74SicGb7Z7T4,11167 +numpy/f2py/use_rules.py,sha256=3pTDOPur6gbPHPtwuMJPQvpnUMw39Law1KFSH0coB_0,3527 +numpy/fft/__init__.py,sha256=HqjmF6s_dh0Ri4UZzUDtOKbNUyfAfJAWew3e3EL_KUk,8175 +numpy/fft/__init__.pyi,sha256=vD9Xzz5r13caF4AVL87Y4U9KOj9ic25Vci_wb3dmgpk,550 +numpy/fft/__pycache__/__init__.cpython-310.pyc,, +numpy/fft/__pycache__/_pocketfft.cpython-310.pyc,, +numpy/fft/__pycache__/helper.cpython-310.pyc,, +numpy/fft/_pocketfft.py,sha256=Xkm8wcP4JyBNMbp0ZoHIWhNDlgliX24RzrDuo29uRks,52897 +numpy/fft/_pocketfft.pyi,sha256=S6-ylUuHbgm8vNbh7tLru6K2R5SJzE81BC_Sllm6QrQ,2371 +numpy/fft/_pocketfft_internal.cpython-310-x86_64-linux-gnu.so,sha256=XzaFDzxI6s8RqdHjtZV6NrK33T630h9owQF8-rT9AAY,97008 +numpy/fft/helper.py,sha256=aNj1AcLvtfoX26RiLOwcR-k2QSMuBZkGj2Fu0CeFPJs,6154 +numpy/fft/helper.pyi,sha256=NLTEjy2Gz1aAMDZwCgssIyUne0ubjJqukfYkpsL3gXM,1176 +numpy/fft/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/fft/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/fft/tests/__pycache__/test_helper.cpython-310.pyc,, +numpy/fft/tests/__pycache__/test_pocketfft.cpython-310.pyc,, +numpy/fft/tests/test_helper.py,sha256=whgeaQ8PzFf3B1wkbXobGZ5sF4WxPp4gf1UPUVZest8,6148 +numpy/fft/tests/test_pocketfft.py,sha256=RdeCCvUQmJYVvccOJwToobTKDg9yzUL06o9MkPmRfmI,12895 +numpy/lib/__init__.py,sha256=XMPNJkG_mQ__xuvbf0OcpotgMbA9owt10ZHYVnYHq8E,2713 +numpy/lib/__init__.pyi,sha256=y5ANokFm7EkrlNoHdeQm1FsUhLFxkYtLuanCbsWrGio,5596 +numpy/lib/__pycache__/__init__.cpython-310.pyc,, +numpy/lib/__pycache__/_datasource.cpython-310.pyc,, +numpy/lib/__pycache__/_iotools.cpython-310.pyc,, +numpy/lib/__pycache__/_version.cpython-310.pyc,, +numpy/lib/__pycache__/arraypad.cpython-310.pyc,, +numpy/lib/__pycache__/arraysetops.cpython-310.pyc,, +numpy/lib/__pycache__/arrayterator.cpython-310.pyc,, +numpy/lib/__pycache__/format.cpython-310.pyc,, +numpy/lib/__pycache__/function_base.cpython-310.pyc,, +numpy/lib/__pycache__/histograms.cpython-310.pyc,, +numpy/lib/__pycache__/index_tricks.cpython-310.pyc,, +numpy/lib/__pycache__/mixins.cpython-310.pyc,, +numpy/lib/__pycache__/nanfunctions.cpython-310.pyc,, +numpy/lib/__pycache__/npyio.cpython-310.pyc,, +numpy/lib/__pycache__/polynomial.cpython-310.pyc,, +numpy/lib/__pycache__/recfunctions.cpython-310.pyc,, +numpy/lib/__pycache__/scimath.cpython-310.pyc,, +numpy/lib/__pycache__/setup.cpython-310.pyc,, +numpy/lib/__pycache__/shape_base.cpython-310.pyc,, +numpy/lib/__pycache__/stride_tricks.cpython-310.pyc,, +numpy/lib/__pycache__/twodim_base.cpython-310.pyc,, +numpy/lib/__pycache__/type_check.cpython-310.pyc,, +numpy/lib/__pycache__/ufunclike.cpython-310.pyc,, +numpy/lib/__pycache__/user_array.cpython-310.pyc,, +numpy/lib/__pycache__/utils.cpython-310.pyc,, +numpy/lib/_datasource.py,sha256=CDF3im6IxdY3Mu6fwRQmkSEBmXS3kQVInQ4plXsoX9c,22631 +numpy/lib/_iotools.py,sha256=Yg9HCfPg4tbhbdgLPcxSMiZXq1xDprvJKLebLwhDszY,30868 +numpy/lib/_version.py,sha256=6vK7czNSB_KrWx2rZJzJ1pyOc73Q07hAgfLB5ItUCnU,4855 +numpy/lib/_version.pyi,sha256=B572hyWrUWG-TAAAXrNNAT4AgyUAmJ4lvgpwMkDzunk,633 +numpy/lib/arraypad.py,sha256=bKP7ZS9NYFYzqSk8OnpFLFrMsua4m_hcqFsi7cGkrJE,31803 +numpy/lib/arraypad.pyi,sha256=ADXphtAORYl3EqvE5qs_u32B_TALKSOtF43jOLmoxRw,1728 +numpy/lib/arraysetops.py,sha256=GJ2RhkzIJmIbwyG6h3LOFTPXg62kM9tcV1a-7tdbVuU,33655 +numpy/lib/arraysetops.pyi,sha256=6X-5l5Yss_9y10LYyIsDLbGX77vt7PtVLDqxOlSRPfY,8372 +numpy/lib/arrayterator.py,sha256=BQ97S00zvfURUZfes0GZo-5hydYNRuvwX1I1bLzeRik,7063 +numpy/lib/arrayterator.pyi,sha256=f7Pwp83_6DiMYmJGUsffncM-FRAynB1iYGvhmHM_SZE,1537 +numpy/lib/format.py,sha256=T8qJMyG2DDVjjYNNpUvBgfA9tCo23IS0w9byRB6twwQ,34769 +numpy/lib/format.pyi,sha256=YWBxC3GdsZ7SKBN8I7nMwWeVuFD1aT9d-VJ8zE4-P-o,748 +numpy/lib/function_base.py,sha256=IhhgfSmYJE-dHoUOMXHPiGYXso-NdXPpLXF9y0gEA6I,189172 +numpy/lib/function_base.pyi,sha256=KWaC5UOBANU4hiIoN2eptE4HYsm4vgp_8BMFV1Y3JX4,16585 +numpy/lib/histograms.py,sha256=xsj_qpaZoI2Bv1FBpY8mIMPJrYRiuIBszn_6kO7YFRA,37778 +numpy/lib/histograms.pyi,sha256=hNwR2xYWkgJCP-nfRGxc-EgHLTD3qm4zmWXthZLt08M,995 +numpy/lib/index_tricks.py,sha256=4PEvXk6VFTkttMViYBVC4yDhyOiKIon6JpIm0d_CmNg,31346 +numpy/lib/index_tricks.pyi,sha256=D2nkNXOB9Vea1PfMaTn94OGBGayjTaQ-bKMsjDmYpak,4251 +numpy/lib/mixins.py,sha256=y6_MzQuiNjv-1EFVROqv2y2cAJi5X4rQYzbZCyUyXgw,7071 +numpy/lib/mixins.pyi,sha256=h9N1kbZsUntF0zjOxPYeD_rCB2dMiG35TYYPl9ymkI4,3117 +numpy/lib/nanfunctions.py,sha256=6EjzydZlugIzfiENKtC4ycZ2Nckt8ZQg5v6D6tX1SiU,65775 +numpy/lib/nanfunctions.pyi,sha256=oPqAfCinmBL85Ji7ko4QlzAzLAK9nZL0t2_CllEbCEU,606 +numpy/lib/npyio.py,sha256=NUjtFvAmPdTjwJQ-ia-xbCr849M_M6NilP5IHfkKaRg,97316 +numpy/lib/npyio.pyi,sha256=SUFWJh90vWZCdd6GCSGbfYeXKlWut0XY_SHvZJc8yqY,9728 +numpy/lib/polynomial.py,sha256=6Aw3_2vdbh4urERQ6NaPhf9a_T1o1o6cjm3fb5Z3_YE,44133 +numpy/lib/polynomial.pyi,sha256=GerIpQnf5LdtFMOy9AxhOTqUyfn57k4MxqEYrfdckWE,6958 +numpy/lib/recfunctions.py,sha256=-90AbWWvVFOqVUPLh9K9NYdKUHYIgSEyg2Y35MnOVUA,59423 +numpy/lib/scimath.py,sha256=T4ITysZgqhY1J8IxyXCtioHjMTg2ci-4i3mr9TBF2UA,15037 +numpy/lib/scimath.pyi,sha256=E2roKJzMFwWSyhLu8UPUr54WOpxF8jp_pyXYBgsUSQ8,2883 +numpy/lib/setup.py,sha256=0K5NJKuvKvNEWp-EX7j0ODi3ZQQgIMHobzSFJq3G7yM,405 +numpy/lib/shape_base.py,sha256=AhCO9DEyysE-P-QJF9ryUtJ1ghU4_0mORhAJ59poObU,38947 +numpy/lib/shape_base.pyi,sha256=bGJhLA_RvUpVTiDFgCV-1rUjV8e1qCh0gK_3PLgXA_U,5341 +numpy/lib/stride_tricks.py,sha256=brY5b-0YQJuIH2CavfpIinMolyTUv5k9DUvLoZ-imis,17911 +numpy/lib/stride_tricks.pyi,sha256=0pQ4DP9l6g21q2Ajv6dJFRWMr9auPGTNV9BmZUbogPY,1747 +numpy/lib/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/lib/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test__datasource.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test__iotools.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test__version.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_arraypad.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_arraysetops.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_arrayterator.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_financial_expired.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_format.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_function_base.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_histograms.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_index_tricks.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_io.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_loadtxt.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_mixins.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_nanfunctions.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_packbits.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_polynomial.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_recfunctions.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_shape_base.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_stride_tricks.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_twodim_base.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_type_check.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_ufunclike.cpython-310.pyc,, +numpy/lib/tests/__pycache__/test_utils.cpython-310.pyc,, +numpy/lib/tests/data/py2-objarr.npy,sha256=F4cyUC-_TB9QSFLAo2c7c44rC6NUYIgrfGx9PqWPSKk,258 +numpy/lib/tests/data/py2-objarr.npz,sha256=xo13HBT0FbFZ2qvZz0LWGDb3SuQASSaXh7rKfVcJjx4,366 +numpy/lib/tests/data/py3-objarr.npy,sha256=pTTVh8ezp-lwAK3fkgvdKU8Arp5NMKznVD-M6Ex_uA0,341 +numpy/lib/tests/data/py3-objarr.npz,sha256=qQR0gS57e9ta16d_vCQjaaKM74gPdlwCPkp55P-qrdw,449 +numpy/lib/tests/data/python3.npy,sha256=X0ad3hAaLGXig9LtSHAo-BgOvLlFfPYMnZuVIxRmj-0,96 +numpy/lib/tests/data/win64python2.npy,sha256=agOcgHVYFJrV-nrRJDbGnUnF4ZTPYXuSeF-Mtg7GMpc,96 +numpy/lib/tests/test__datasource.py,sha256=65KXfUUvp8wXSqgQisuYlkhg-qHjBV5FXYetL8Ba-rc,10571 +numpy/lib/tests/test__iotools.py,sha256=HerCqvDE07JxjFQlWEfpZO7lC9z0Sbr3z20GSutoCPs,13743 +numpy/lib/tests/test__version.py,sha256=aO3YgkAohLsLzCNQ7vjIwdpFUMz0cPLbcuuxIkjuN74,1999 +numpy/lib/tests/test_arraypad.py,sha256=obohHbyM0gPYPUkd7iJSOSiDqyqtJsjDNtQX68NC4lM,54830 +numpy/lib/tests/test_arraysetops.py,sha256=5-T1MVhfIMivat8Z47GZw0ZaR811W_FskM1bAXnFyLU,35912 +numpy/lib/tests/test_arrayterator.py,sha256=AYs2SwV5ankgwnvKI9RSO1jZck118nu3SyZ4ngzZNso,1291 +numpy/lib/tests/test_financial_expired.py,sha256=yq5mqGMvqpkiiw9CuZhJgrYa7Squj1mXr_G-IvAFgwI,247 +numpy/lib/tests/test_format.py,sha256=xV0oi1eoRnVwAAhSOcPFQHQWF7TfsROtDYShQLPtdaA,41028 +numpy/lib/tests/test_function_base.py,sha256=DBKugIUEFTMP7g6iL1bk986E6ldCrcNdBCWOJbQla_Y,157830 +numpy/lib/tests/test_histograms.py,sha256=16_XJp-eFgsuM8B4mDQpQ4w_Ib29Hg0EPO-WFsdaFWA,32815 +numpy/lib/tests/test_index_tricks.py,sha256=Vjz25Y6H_ih0iEE2AG0kaxO9U8PwcXSrofzqnN4XBwI,20256 +numpy/lib/tests/test_io.py,sha256=3Tow1pucrQ7z7osNN4a2grBYUoBGNkQEhjmCjXT6Vag,107891 +numpy/lib/tests/test_loadtxt.py,sha256=gwcDJDJmLJRMLpg322yjQ1IzI505w9EqJoq4DmDPCdI,38560 +numpy/lib/tests/test_mixins.py,sha256=Wivwz3XBWsEozGzrzsyyvL3qAuE14t1BHk2LPm9Z9Zc,7030 +numpy/lib/tests/test_nanfunctions.py,sha256=01r_mmTCvKVdZuOGTEHNDZXrMS724us_jwZANzCd74A,47609 +numpy/lib/tests/test_packbits.py,sha256=OWGAd5g5GG0gl7WHqNfwkZ7G-2rrtLt2sI854PG4nnw,17546 +numpy/lib/tests/test_polynomial.py,sha256=URouxJpr8FQ5hiKybqhtOcLA7e-3hj4kWzjLBROByyA,11395 +numpy/lib/tests/test_recfunctions.py,sha256=6jzouPEQ7Uhtj8_-W5yTI6ymNp2nLgmdHzxdd74jVuM,44001 +numpy/lib/tests/test_regression.py,sha256=KzGFkhTcvEG97mymoOQ2hP2CEr2nPZou0Ztf4-WaXCs,8257 +numpy/lib/tests/test_shape_base.py,sha256=2iQCEFR6evVpF8woaenxUOzooHkfuMYkBaUj8ecyJ-E,26817 +numpy/lib/tests/test_stride_tricks.py,sha256=wprpWWH5eq07DY7rzG0WDv5fMtLxzRQz6fm6TZWlScQ,22849 +numpy/lib/tests/test_twodim_base.py,sha256=ll-72RhqCItIPB97nOWhH7H292h4nVIX_w1toKTPMUg,18841 +numpy/lib/tests/test_type_check.py,sha256=lxCH5aApWVYhhSoDQSLDTCHLVHuK2c-jBbnfnZUrOaA,15114 +numpy/lib/tests/test_ufunclike.py,sha256=4hSnXGlSC8HE-_pRRMzD8-HI4hGHqsAWu1pD0o2kPI0,2982 +numpy/lib/tests/test_utils.py,sha256=RVAxrzSFu6N3C4_jIgAlTDOWF_B7wr2v1Y20dX5upYM,6218 +numpy/lib/twodim_base.py,sha256=Mvzn_PyShIb9m7nJjJ4IetdxwmLYEsCPHvJoK7n2viU,32947 +numpy/lib/twodim_base.pyi,sha256=xFRcEVJdDj4mrXW_6iVP1lTMoJx4QJjYRD3o2_9f2eY,5370 +numpy/lib/type_check.py,sha256=_EOtB296nFYlNT7ztBYoC_yK9aycIb0KTmRjvzVdZNg,19954 +numpy/lib/type_check.pyi,sha256=LPvAvIxU-p5i_Qe-ic7hEvo4OTfSrNpplxMG7OAZe8Q,5571 +numpy/lib/ufunclike.py,sha256=_ceBGbGCMOd3u_h2UVzyaRK6ZY7ryoJ0GJB7zqcJG3w,6325 +numpy/lib/ufunclike.pyi,sha256=hLxcYfQprh1tTY_UO2QscA3Hd9Zd7cVGXIINZLhMFqY,1293 +numpy/lib/user_array.py,sha256=LE958--CMkBI2r3l1SQxmCHdCSw6HY6-RhWCnduzGA4,7721 +numpy/lib/utils.py,sha256=6NdleaELZiqARdj-ECZjxtwLf1bqklOcK43m9yoZefs,37804 +numpy/lib/utils.pyi,sha256=mVHVzWuc2-M3Oz60lFsbok0v8LH_HRHMjZpXwrtzF_c,2360 +numpy/linalg/__init__.py,sha256=mpdlEXWtTvpF7In776ONLwp6RIyo4U_GLPT1L1eIJnw,1813 +numpy/linalg/__init__.pyi,sha256=XBy4ocuypsRVflw_mbSTUhR4N5Roemu6w5SfeVwbkAc,620 +numpy/linalg/__pycache__/__init__.cpython-310.pyc,, +numpy/linalg/__pycache__/linalg.cpython-310.pyc,, +numpy/linalg/_umath_linalg.cpython-310-x86_64-linux-gnu.so,sha256=BYffhO2XUQkIZ6ShRB0sOUw5c1QgqjiLi_aYtyVfJL0,216793 +numpy/linalg/lapack_lite.cpython-310-x86_64-linux-gnu.so,sha256=zWHsImcTCxEkZbyF2rgrclRTDzz5E7poiDOwhOKaVRs,29849 +numpy/linalg/linalg.py,sha256=kDVK1GBxbUjlRgxXCoEfkRJm8yrNr1Iu7hMn2rKK8RE,90923 +numpy/linalg/linalg.pyi,sha256=zD9U5BUCB1uQggSxfZaTGX_uB2Hkp75sttGmZbCGgBI,7505 +numpy/linalg/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/linalg/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/linalg/tests/__pycache__/test_deprecations.cpython-310.pyc,, +numpy/linalg/tests/__pycache__/test_linalg.cpython-310.pyc,, +numpy/linalg/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/linalg/tests/test_deprecations.py,sha256=9p_SRmtxj2zc1doY9Ie3dyy5JzWy-tCQWFoajcAJUmM,640 +numpy/linalg/tests/test_linalg.py,sha256=rgvmK6Or70u8mN04puetL3FgSxZ8fJrOlI5ptTgCU5k,78085 +numpy/linalg/tests/test_regression.py,sha256=qbugUmrENybkEaM1GhfA01RXQUy8AkzalbrfzSIgUmM,5434 +numpy/ma/API_CHANGES.txt,sha256=F_4jW8X5cYBbzpcwteymkonTmvzgKKY2kGrHF1AtnrI,3405 +numpy/ma/LICENSE,sha256=BfO4g1GYjs-tEKvpLAxQ5YdcZFLVAJoAhMwpFVH_zKY,1593 +numpy/ma/README.rst,sha256=q-gCsZ4Cw_gUGGvEjog556sJUHIm8WTAwkFK5Qnz9XA,9872 +numpy/ma/__init__.py,sha256=dgP0WdnOpph28Fd6UiqoyDKhfrct0H6QWqbCcETsk6M,1404 +numpy/ma/__init__.pyi,sha256=ppCg_TS0POutNB3moJE4kBabWURnc0WGXyYPquXZxS4,6063 +numpy/ma/__pycache__/__init__.cpython-310.pyc,, +numpy/ma/__pycache__/core.cpython-310.pyc,, +numpy/ma/__pycache__/extras.cpython-310.pyc,, +numpy/ma/__pycache__/mrecords.cpython-310.pyc,, +numpy/ma/__pycache__/setup.cpython-310.pyc,, +numpy/ma/__pycache__/testutils.cpython-310.pyc,, +numpy/ma/__pycache__/timer_comparison.cpython-310.pyc,, +numpy/ma/core.py,sha256=4MglVRJtmQ9_iIVaQ2b-_Vmw1TjAhEsMJdtKOhyBFXQ,278213 +numpy/ma/core.pyi,sha256=YfgyuBuKxZ5v4I2JxZDvCLhnztOCRgzTeDg-JGTon_M,14305 +numpy/ma/extras.py,sha256=MC7QPS34PC4wxNbOp7pTy57dqF9B-L6L1KMI6rrfe2w,64383 +numpy/ma/extras.pyi,sha256=BBsiCZbaPpGCY506fkmqZdBkJNCXcglc3wcSBuAACNk,2646 +numpy/ma/mrecords.py,sha256=degd6dLaDEvEWNHmvSnUZXos1csIzaqjR_jAutm8JfI,27232 +numpy/ma/mrecords.pyi,sha256=r1a2I662ywnhGS6zvfcyK-9RHVvb4sHxiCx9Dhf5AE4,1934 +numpy/ma/setup.py,sha256=MqmMicr_xHkAGoG-T7NJ4YdUZIJLO4ZFp6AmEJDlyhw,418 +numpy/ma/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/ma/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_core.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_deprecations.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_extras.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_mrecords.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_old_ma.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/ma/tests/__pycache__/test_subclassing.cpython-310.pyc,, +numpy/ma/tests/test_core.py,sha256=xd5S3oa0jObo8jnsJk0-o46d-KNC3RtgNRKinJeY_kE,215100 +numpy/ma/tests/test_deprecations.py,sha256=nq_wFVt2EBHcT3AHxattfKXx2JDf1K5D-QBzUU0_15A,2566 +numpy/ma/tests/test_extras.py,sha256=lX4cbdGDEXaBHzA3q8hJxve4635XCJw4AP7FO7zhOfk,74858 +numpy/ma/tests/test_mrecords.py,sha256=PsJhUlABgdpSsPUeijonfyFNqz5AfNSGQTtJUte7yts,19890 +numpy/ma/tests/test_old_ma.py,sha256=h4BncexBcBigqvZMA6RjDjpHPurWtt99A7KTag2rmOs,32690 +numpy/ma/tests/test_regression.py,sha256=foMpI0luAvwkkRpAfPDV_810h1URISXDZhmaNhxb50k,3287 +numpy/ma/tests/test_subclassing.py,sha256=HeTIE_n1I8atwzF8tpvNtGHp-0dmM8PT8AS4IDWbcso,16967 +numpy/ma/testutils.py,sha256=RQw0RyS7hOSVTk4KrCGleq0VHlnDqzwwaLtuZbRE4_I,10235 +numpy/ma/timer_comparison.py,sha256=pIGSZG-qYYYlRWSTgzPlyCAINbGKhXrZrDZBBjiM080,15658 +numpy/matlib.py,sha256=-54vTuGIgeTMg9ZUmElRPZ4Hr-XZ-om9xLzAsSoTvnc,10465 +numpy/matrixlib/__init__.py,sha256=BHBpQKoQv4EjT0UpWBA-Ck4L5OsMqTI2IuY24p-ucXk,242 +numpy/matrixlib/__init__.pyi,sha256=-t3ZuvbzRuRwWfZOeN4xlNWdm7gQEprhUsWzu8MRvUE,252 +numpy/matrixlib/__pycache__/__init__.cpython-310.pyc,, +numpy/matrixlib/__pycache__/defmatrix.cpython-310.pyc,, +numpy/matrixlib/__pycache__/setup.cpython-310.pyc,, +numpy/matrixlib/defmatrix.py,sha256=JXdJGm1LayOOXfKpp7OVZfb0pzzP4Lwh45sTJrleALc,30656 +numpy/matrixlib/defmatrix.pyi,sha256=lmBMRahKcMOl2PHDo79J67VRAZOkI54BzfDaTLpE0LI,451 +numpy/matrixlib/setup.py,sha256=1r7JRkSM4HyVorgtjoKJGWLcOcPO3wmvivpeEsVtAEg,426 +numpy/matrixlib/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/matrixlib/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_defmatrix.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_interaction.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_masked_matrix.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_matrix_linalg.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_multiarray.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_numeric.cpython-310.pyc,, +numpy/matrixlib/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/matrixlib/tests/test_defmatrix.py,sha256=8E_-y7VD2vsq1y8CcI8km37pp5qcAtkciO16xqf2UIs,14982 +numpy/matrixlib/tests/test_interaction.py,sha256=PpjmgjEKighDXvt38labKE6L7f2jP74UEmp3JRb_iOY,11875 +numpy/matrixlib/tests/test_masked_matrix.py,sha256=7YO_LCO8DOhW3CuXJuxH93rnmttfvHnU7El-MBzxzFw,8932 +numpy/matrixlib/tests/test_matrix_linalg.py,sha256=ObbSUXU4R2pWajH__xAdizADrU2kBKDDCxkDV-oVBXc,2059 +numpy/matrixlib/tests/test_multiarray.py,sha256=jB3XCBmAtcqf-Wb9PwBW6uIykPpMPthuXLJ0giTKzZE,554 +numpy/matrixlib/tests/test_numeric.py,sha256=MP70qUwgshTtThKZaZDp7_6U-Z66NIV1geVhasGXejQ,441 +numpy/matrixlib/tests/test_regression.py,sha256=8sHDtO8Zi8p3a1eQKEWxtCmKrXmHoD3qxlIokg2AIAU,927 +numpy/polynomial/__init__.py,sha256=braLh6zP2QwuNKRKAaZGdC_qKWZ-tJlc3BN83LeuE_0,6781 +numpy/polynomial/__init__.pyi,sha256=W8szYtVUy0RUi83jmFLK58BN8CKVSoHA2CW7IcdUl1c,701 +numpy/polynomial/__pycache__/__init__.cpython-310.pyc,, +numpy/polynomial/__pycache__/_polybase.cpython-310.pyc,, +numpy/polynomial/__pycache__/chebyshev.cpython-310.pyc,, +numpy/polynomial/__pycache__/hermite.cpython-310.pyc,, +numpy/polynomial/__pycache__/hermite_e.cpython-310.pyc,, +numpy/polynomial/__pycache__/laguerre.cpython-310.pyc,, +numpy/polynomial/__pycache__/legendre.cpython-310.pyc,, +numpy/polynomial/__pycache__/polynomial.cpython-310.pyc,, +numpy/polynomial/__pycache__/polyutils.cpython-310.pyc,, +numpy/polynomial/__pycache__/setup.cpython-310.pyc,, +numpy/polynomial/_polybase.py,sha256=YEnnQwlTgbn3dyD89ueraUx5nxx3x_pH6K6mmyEmhi8,39271 +numpy/polynomial/_polybase.pyi,sha256=J7yU9PPZW4W8mkqAltDfnL4ZNwljuM-bDEj4DPTJZpY,2321 +numpy/polynomial/chebyshev.py,sha256=NZCKjIblcX99foqZyp51i0_r8p0r1VKVGZFmQ1__kEk,62796 +numpy/polynomial/chebyshev.pyi,sha256=035CNdOas4dnb6lFLzRiBrYT_VnWh2T1-A3ibm_HYkI,1387 +numpy/polynomial/hermite.py,sha256=t5CFM-qE4tszYJiQZ301VcMn7IM67y2rUZPFPtnVRAc,52514 +numpy/polynomial/hermite.pyi,sha256=hdsvTULow8bIjnATudf0i6brpLHV7vbOoHzaMvbjMy0,1217 +numpy/polynomial/hermite_e.py,sha256=jRR3f8Oth8poV2Ix8c0eLEQR3UZary-2RupOrEAEUMY,52642 +numpy/polynomial/hermite_e.pyi,sha256=zV7msb9v9rV0iv_rnD3SjP-TGyc6pd3maCqiPCj3PbA,1238 +numpy/polynomial/laguerre.py,sha256=mcVw0ckWVX-kzJ1QIhdcuuxzPjuFmA3plQLkloQMOYM,50858 +numpy/polynomial/laguerre.pyi,sha256=Gxc9SLISNKMWrKdsVJ9fKFFFwfxxZzfF-Yc-2r__z5M,1178 +numpy/polynomial/legendre.py,sha256=wjtgFajmKEbYkSUk3vWSCveMHDP6UymK28bNUk4Ov0s,51550 +numpy/polynomial/legendre.pyi,sha256=9dmANwkxf7EbOHV3XQBPoaDtc56cCkf75Wo7FG9Zfj4,1178 +numpy/polynomial/polynomial.py,sha256=XsaZPHmLGJFqpJs7rPvO5E0loWQ1L3YHLIUybVu4dU8,49112 +numpy/polynomial/polynomial.pyi,sha256=bOPRnub4xXxsUwNGeiQLTT4PCfN1ysSrf6LBZIcAN2Y,1132 +numpy/polynomial/polyutils.py,sha256=Xy5qjdrjnRaqSlClG1ROmwWccLkAPC7IcHaNJLvhCf4,23237 +numpy/polynomial/polyutils.pyi,sha256=cFAyZ9Xzuw8Huhn9FEz4bhyD00m2Dp-2DiUSyogJwSo,264 +numpy/polynomial/setup.py,sha256=dXQfzVUMP9OcB6iKv5yo1GLEwFB3gJ48phIgo4N-eM0,373 +numpy/polynomial/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/polynomial/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_chebyshev.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_classes.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_hermite.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_hermite_e.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_laguerre.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_legendre.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_polynomial.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_polyutils.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_printing.cpython-310.pyc,, +numpy/polynomial/tests/__pycache__/test_symbol.cpython-310.pyc,, +numpy/polynomial/tests/test_chebyshev.py,sha256=6tMsFP1h7K8Zf72mNOta6Tv52_fVTlXknseuffj080c,20522 +numpy/polynomial/tests/test_classes.py,sha256=DFyY2IQBj3r2GZkvbRIeZO2EEY466xbuwc4PShAl4Sw,18331 +numpy/polynomial/tests/test_hermite.py,sha256=N9b2dx2UWPyja5v02dSoWYPnKvb6H-Ozgtrx-xjWz2k,18577 +numpy/polynomial/tests/test_hermite_e.py,sha256=_A3ohAWS4HXrQG06S8L47dImdZGTwYosCXnoyw7L45o,18911 +numpy/polynomial/tests/test_laguerre.py,sha256=BZOgs49VBXOFBepHopxuEDkIROHEvFBfWe4X73UZhn8,17511 +numpy/polynomial/tests/test_legendre.py,sha256=b_bblHs0F_BWw9ESuSq52ZsLKcQKFR5eqPf_SppWFqo,18673 +numpy/polynomial/tests/test_polynomial.py,sha256=4cuO8-5wdIxcz5CrucB5Ix7ySuMROokUF12F7ogQ_hc,20529 +numpy/polynomial/tests/test_polyutils.py,sha256=IxkbVfpcBqe5lOZluHFUPbLATLu1rwVg7ghLASpfYrY,3579 +numpy/polynomial/tests/test_printing.py,sha256=rfP4MaQbjGcO52faHmYrgsaarkm3Ndi3onwr6DDuapE,20525 +numpy/polynomial/tests/test_symbol.py,sha256=msTPv7B1niaKujU33kuZmdxJvLYvOjfl1oykmlL0dXo,5371 +numpy/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/random/LICENSE.md,sha256=EDFmtiuARDr7nrNIjgUuoGvgz_VmuQjxmeVh_eSa8Z8,3511 +numpy/random/__init__.pxd,sha256=9JbnX540aJNSothGs-7e23ozhilG6U8tINOUEp08M_k,431 +numpy/random/__init__.py,sha256=81Thnexg5umN5WZwD5TRyzNc2Yp-d14B6UC7NBgVKh8,7506 +numpy/random/__init__.pyi,sha256=RfW8mco48UaWDL1UC5ROv9vXiFZ9EGho62avhgEAHPc,2143 +numpy/random/__pycache__/__init__.cpython-310.pyc,, +numpy/random/__pycache__/_pickle.cpython-310.pyc,, +numpy/random/_bounded_integers.cpython-310-x86_64-linux-gnu.so,sha256=zACYhBZNDJi5rXbYmdgxjLJDbkyqoANLSLZge3Dvpa0,379216 +numpy/random/_bounded_integers.pxd,sha256=hcoucPH5hkFEM2nm12zYO-5O_Rt8RujEXT5YWuAzl1Q,1669 +numpy/random/_common.cpython-310-x86_64-linux-gnu.so,sha256=MaClzR2DAUNmBHlArlpsVGbr4NZRXS5eIxElj3SNFwY,276192 +numpy/random/_common.pxd,sha256=s2_IdIQ0MhNbogamulvXe-b93wbx882onmYkxqswwpo,4939 +numpy/random/_examples/cffi/__pycache__/extending.cpython-310.pyc,, +numpy/random/_examples/cffi/__pycache__/parse.cpython-310.pyc,, +numpy/random/_examples/cffi/extending.py,sha256=xSla3zWqxi6Hj48EvnYfD3WHfE189VvC4XsKu4_T_Iw,880 +numpy/random/_examples/cffi/parse.py,sha256=Bnb7t_6S_c5-3dZrQ-XX9EazOKhftUfcCejXXWyd1EU,1771 +numpy/random/_examples/cython/extending.pyx,sha256=4IE692pq1V53UhPZqQiQGcIHXDoNyqTx62x5a36puVg,2290 +numpy/random/_examples/cython/extending_distributions.pyx,sha256=oazFVWeemfE0eDzax7r7MMHNL1_Yofws2m-c_KT2Hbo,3870 +numpy/random/_examples/cython/meson.build,sha256=rXtugURMEo-ef4bPE1QIv4mzvWbeGjmcTdKCBvjxjtw,1443 +numpy/random/_examples/numba/__pycache__/extending.cpython-310.pyc,, +numpy/random/_examples/numba/__pycache__/extending_distributions.cpython-310.pyc,, +numpy/random/_examples/numba/extending.py,sha256=Ipyzel_h5iU_DMJ_vnXUgQC38uMDMn7adUpWSeEQLFE,1957 +numpy/random/_examples/numba/extending_distributions.py,sha256=Jnr9aWkHyIWygNbdae32GVURK-5T9BTGhuExRpvve98,2034 +numpy/random/_generator.cpython-310-x86_64-linux-gnu.so,sha256=YFpOzoKFPKyS6SDrmoptosTvc55vluPMG_Su1x_hTl8,976328 +numpy/random/_generator.pyi,sha256=zRvo_y6g0pWkE4fO1M9jLYUkxDfGdA6Enreb3U2AADM,22442 +numpy/random/_mt19937.cpython-310-x86_64-linux-gnu.so,sha256=0wvUt9mG_CmAC9WIxw0yIxQ5Mt3IAr3EbXIZf7wJbBE,120224 +numpy/random/_mt19937.pyi,sha256=_iZKaAmuKBQ4itSggfQvYYj_KjktcN4rt-YpE6bqFAM,724 +numpy/random/_pcg64.cpython-310-x86_64-linux-gnu.so,sha256=ZG1KBr34YGbShTmKifH2EGAddV-ad0slxzFtuexATqs,126400 +numpy/random/_pcg64.pyi,sha256=uxr5CbEJetN6lv9vBG21jlRhuzOK8SQnXrwqAQBxj_c,1091 +numpy/random/_philox.cpython-310-x86_64-linux-gnu.so,sha256=J4Bwk58gF6ftGukYM63WUlHm9w5yudN5ZOswvDg_awU,107384 +numpy/random/_philox.pyi,sha256=OKlaiIU-hj72Bp04zjNifwusOD_3-mYxIfvyuys8c_o,978 +numpy/random/_pickle.py,sha256=4NhdT-yk7C0m3tyZWmouYAs3ZGNPdPVNGfUIyuh8HDY,2318 +numpy/random/_sfc64.cpython-310-x86_64-linux-gnu.so,sha256=M57C1mIUFNGr30RKzEPM8qG2g6pB_t7sPcYLTD4nHfM,76712 +numpy/random/_sfc64.pyi,sha256=09afHTedVW-519493ZXtGcl-H-_zluj-B_yfEJG8MMs,709 +numpy/random/bit_generator.cpython-310-x86_64-linux-gnu.so,sha256=1O49cg-e7gVBVIUH3H_i8yPqSBzcM-N5Bv54vC6YGg0,246536 +numpy/random/bit_generator.pxd,sha256=lArpIXSgTwVnJMYc4XX0NGxegXq3h_QsUDK6qeZKbNc,1007 +numpy/random/bit_generator.pyi,sha256=aXv7a_hwa0nkjY8P2YENslwWp89UcFRn09woXh7Uoc0,3510 +numpy/random/c_distributions.pxd,sha256=7DE-mV3H_Dihk4OK4gMHHkyD4tPX1cAi4570zi5CI30,6344 +numpy/random/lib/libnpyrandom.a,sha256=xUcvOvieju5PThPQ8q0-uGJ5fjsCd5umnjIerIc85Sg,71926 +numpy/random/mtrand.cpython-310-x86_64-linux-gnu.so,sha256=uRfi8K2i7wCwzFCbdvFNi85IFeNkOr1YSBgDu7a1hf4,783752 +numpy/random/mtrand.pyi,sha256=3vAGOXsvyFFv0yZl34pVVPP7Dgt22COyfn4tUoi_hEQ,19753 +numpy/random/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/random/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_direct.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_extending.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_generator_mt19937.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_generator_mt19937_regressions.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_random.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_randomstate.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_randomstate_regression.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_regression.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_seed_sequence.cpython-310.pyc,, +numpy/random/tests/__pycache__/test_smoke.cpython-310.pyc,, +numpy/random/tests/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/random/tests/data/__pycache__/__init__.cpython-310.pyc,, +numpy/random/tests/data/mt19937-testset-1.csv,sha256=Xkef402AVB-eZgYQkVtoxERHkxffCA9Jyt_oMbtJGwY,15844 +numpy/random/tests/data/mt19937-testset-2.csv,sha256=nsBEQNnff-aFjHYK4thjvUK4xSXDSfv5aTbcE59pOkE,15825 +numpy/random/tests/data/pcg64-testset-1.csv,sha256=xB00DpknGUTTCxDr9L6aNo9Hs-sfzEMbUSS4t11TTfE,23839 +numpy/random/tests/data/pcg64-testset-2.csv,sha256=NTdzTKvG2U7_WyU_IoQUtMzU3kEvDH39CgnR6VzhTkw,23845 +numpy/random/tests/data/pcg64dxsm-testset-1.csv,sha256=vNSUT-gXS_oEw_awR3O30ziVO4seNPUv1UIZ01SfVnI,23833 +numpy/random/tests/data/pcg64dxsm-testset-2.csv,sha256=uylS8PU2AIKZ185OC04RBr_OePweGRtvn-dE4YN0yYA,23839 +numpy/random/tests/data/philox-testset-1.csv,sha256=SedRaIy5zFadmk71nKrGxCFZ6BwKz8g1A9-OZp3IkkY,23852 +numpy/random/tests/data/philox-testset-2.csv,sha256=dWECt-sbfvaSiK8-Ygp5AqyjoN5i26VEOrXqg01rk3g,23838 +numpy/random/tests/data/sfc64-testset-1.csv,sha256=iHs6iX6KR8bxGwKk-3tedAdMPz6ZW8slDSUECkAqC8Q,23840 +numpy/random/tests/data/sfc64-testset-2.csv,sha256=FIDIDFCaPZfWUSxsJMAe58hPNmMrU27kCd9FhCEYt_k,23833 +numpy/random/tests/test_direct.py,sha256=6vLpCyeKnAWFEZei7l2YihVLQ0rSewO1hJBWt7A5fyQ,17779 +numpy/random/tests/test_extending.py,sha256=S3Wrzu3di4uBhr-Pxnx5dOPvlBY0FRdZqVX6CC1IN6s,4038 +numpy/random/tests/test_generator_mt19937.py,sha256=35LBwV6TtWPnxhefutxTQmhLzAQ5Ee4YiY8ziDXM-eQ,115477 +numpy/random/tests/test_generator_mt19937_regressions.py,sha256=xGkdz76BMX1EK0QPfabVxpNx9qQ9OC-1ZStWOs6N_M8,6387 +numpy/random/tests/test_random.py,sha256=kEkQs3i7zcpm9MozIRIz1FIx5B6fmXk0QqX0l6l-u_Y,70087 +numpy/random/tests/test_randomstate.py,sha256=DxF7rMUSxaAlL4h1qC3onHcHR7T_6rKWPbr0nJH84nE,85031 +numpy/random/tests/test_randomstate_regression.py,sha256=VucYWIjA7sAquWsalvZMnfkmYLM1O6ysyWnLl931-lA,7917 +numpy/random/tests/test_regression.py,sha256=trntK51UvajOVELiluEO85l64CKSw5nvBSc5SqYyr9w,5439 +numpy/random/tests/test_seed_sequence.py,sha256=GNRJ4jyzrtfolOND3gUWamnbvK6-b_p1bBK_RIG0sfU,3311 +numpy/random/tests/test_smoke.py,sha256=jjNz0aEGD1_oQl9a9UWt6Mz_298alG7KryLT1pgHljw,28183 +numpy/testing/__init__.py,sha256=InpVKoDAzMKO_l_HNcatziW_u1k9_JZze__t2nybrL0,595 +numpy/testing/__init__.pyi,sha256=AhK5NuOpdD-JjIzXOlssE8_iSLyFAAHzyGV_w1BT7vA,1674 +numpy/testing/__pycache__/__init__.cpython-310.pyc,, +numpy/testing/__pycache__/overrides.cpython-310.pyc,, +numpy/testing/__pycache__/print_coercion_tables.cpython-310.pyc,, +numpy/testing/__pycache__/setup.cpython-310.pyc,, +numpy/testing/_private/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/testing/_private/__pycache__/__init__.cpython-310.pyc,, +numpy/testing/_private/__pycache__/extbuild.cpython-310.pyc,, +numpy/testing/_private/__pycache__/utils.cpython-310.pyc,, +numpy/testing/_private/extbuild.py,sha256=nG2dwP4nUmQS3e5eIRinxt0s_f4sxxA1YfohCg-navo,8017 +numpy/testing/_private/utils.py,sha256=3FrSTMi0OdpDODBDoncgiDQzdo5NKA6YVfQ3uKRSQnc,85242 +numpy/testing/_private/utils.pyi,sha256=MMNrvwEeSTYzZFWawSSzHnTFYG-cSAIiID-1FuJ1f8U,10123 +numpy/testing/overrides.py,sha256=u6fcKSBC8HIzMPWKAbdyowU71h2Fx2ekDQxpG5NhIr8,2123 +numpy/testing/print_coercion_tables.py,sha256=ndxOsS4XfrZ4UY_9nqRTCnxhkzgdqcuUHL8nezd7Op4,6180 +numpy/testing/setup.py,sha256=GPKAtTTBRsNW4kmR7NjP6mmBR_GTdpaTvkTm10_VcLg,709 +numpy/testing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/testing/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/testing/tests/__pycache__/test_utils.cpython-310.pyc,, +numpy/testing/tests/test_utils.py,sha256=IDOr-GXuNGlrsb-XzGSYUHXEqcGYJ78p60jOpBqyPM4,55740 +numpy/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/tests/__pycache__/test__all__.cpython-310.pyc,, +numpy/tests/__pycache__/test_ctypeslib.cpython-310.pyc,, +numpy/tests/__pycache__/test_lazyloading.cpython-310.pyc,, +numpy/tests/__pycache__/test_matlib.cpython-310.pyc,, +numpy/tests/__pycache__/test_numpy_config.cpython-310.pyc,, +numpy/tests/__pycache__/test_numpy_version.cpython-310.pyc,, +numpy/tests/__pycache__/test_public_api.cpython-310.pyc,, +numpy/tests/__pycache__/test_reloading.cpython-310.pyc,, +numpy/tests/__pycache__/test_scripts.cpython-310.pyc,, +numpy/tests/__pycache__/test_warnings.cpython-310.pyc,, +numpy/tests/test__all__.py,sha256=L3mCnYPTpzAgNfedVuq9g7xPWbc0c1Pot94k9jZ9NpI,221 +numpy/tests/test_ctypeslib.py,sha256=B06QKeFRgDIEbkEPBy_zYA1H5E2exuhTi7IDkzV8gfo,12257 +numpy/tests/test_lazyloading.py,sha256=YETrYiDLAqLX04K_u5_3NVxAfxDoeguxwkIRfz6qKcY,1162 +numpy/tests/test_matlib.py,sha256=gwhIXrJJo9DiecaGLCHLJBjhx2nVGl6yHq80AOUQSRM,1852 +numpy/tests/test_numpy_config.py,sha256=qHvepgi9oyAbQuZD06k7hpcCC2MYhdzcY6D1iQDPNMI,1241 +numpy/tests/test_numpy_version.py,sha256=A8cXFzp4k-p6J5zkOxlDfDvkoFMxDW2hpTFVXcaQRVo,1479 +numpy/tests/test_public_api.py,sha256=DTq7SO84uBjC2tKPoqX17xazc-SLkTAbQ2fLZwGM2jc,18170 +numpy/tests/test_reloading.py,sha256=QuVaPQulcNLg4Fl31Lw-O89L42KclYCK68n5GVy0PNQ,2354 +numpy/tests/test_scripts.py,sha256=jluCLfG94VM1cuX-5RcLFBli_yaJZpIvmVuMxRKRJrc,1645 +numpy/tests/test_warnings.py,sha256=ZEtXqHI1iyeVeLfVxDcMfN5qw67Ti2u54709hvBG4eY,2284 +numpy/typing/__init__.py,sha256=VoTILNDrUWvZx0LK9_97lBLQFKtSGmDt4QLOH8zYvlo,5234 +numpy/typing/__pycache__/__init__.cpython-310.pyc,, +numpy/typing/__pycache__/mypy_plugin.cpython-310.pyc,, +numpy/typing/__pycache__/setup.cpython-310.pyc,, +numpy/typing/mypy_plugin.py,sha256=24zVk4Ei3qH4Hc3SSz3v0XtIsycTo8HKoY6ilhB_7AQ,6376 +numpy/typing/setup.py,sha256=Cnz9q53w-vJNyE6vYxqYvQXx0pJbrG9quHyz9sqxfek,374 +numpy/typing/tests/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +numpy/typing/tests/__pycache__/__init__.cpython-310.pyc,, +numpy/typing/tests/__pycache__/test_isfile.cpython-310.pyc,, +numpy/typing/tests/__pycache__/test_runtime.cpython-310.pyc,, +numpy/typing/tests/__pycache__/test_typing.cpython-310.pyc,, +numpy/typing/tests/data/fail/arithmetic.pyi,sha256=4rY_ASCERAl8WCus1RakOe0Aw-8vvjilL29mgdD4lv0,3850 +numpy/typing/tests/data/fail/array_constructors.pyi,sha256=X9y_jUYS17WfYmXW5NwkVudyiR6ouUaAwEh0JRte42o,1089 +numpy/typing/tests/data/fail/array_like.pyi,sha256=OVAlEJZ5k8ZRKt0aGpZQwIjlUGpy0PzOOYqfI-IMqBQ,455 +numpy/typing/tests/data/fail/array_pad.pyi,sha256=57oK0Yp53rtKjjIrRFYLcxa-IfIGhtI-bEem7ggJKwI,132 +numpy/typing/tests/data/fail/arrayprint.pyi,sha256=-Fs9VnQfxyfak008Hq8kJWfB0snA6jGDXZz8ljQnwGE,549 +numpy/typing/tests/data/fail/arrayterator.pyi,sha256=FoU4ahHkJZ67dwWXer5FXLjjjesKKg-w2Jq1X1bHymA,480 +numpy/typing/tests/data/fail/bitwise_ops.pyi,sha256=GN9dVqk4_HFXn7zbRrHzJq_UGRFBccoYVUG1UuE7bXs,515 +numpy/typing/tests/data/fail/char.pyi,sha256=-vgN6EmfQ8VaA4SOZ5Ol9u4-Z7Q5I7G78LmaxZOuZ90,2615 +numpy/typing/tests/data/fail/chararray.pyi,sha256=jrNryZFpr8nxG2IHb9e0x3ranpvJpBy_RDex-WpT5rU,2296 +numpy/typing/tests/data/fail/comparisons.pyi,sha256=U4neWzwwtxG6QXsKlNGJuKXHBtwzYBQOa47_7SKF5Wg,888 +numpy/typing/tests/data/fail/constants.pyi,sha256=YSqNbXdhbdMmYbs7ntH0FCKbnm8IFeqsDlZBqcU43iw,286 +numpy/typing/tests/data/fail/datasource.pyi,sha256=PRT2hixR-mVxr2UILvHa99Dr54EF2h3snJXE-v3rWcc,395 +numpy/typing/tests/data/fail/dtype.pyi,sha256=OAGABqdXNB8gClJFEGMckoycuZcIasMaAlS2RkiKROI,334 +numpy/typing/tests/data/fail/einsumfunc.pyi,sha256=RS7GZqUCT_vEFJoyUx4gZlPO8GNFFNFWidxl-wLyRv0,539 +numpy/typing/tests/data/fail/false_positives.pyi,sha256=Q61qMsSsNCtmO0EMRxHj5Z7RYTyrELVpkzfJY5eK8Z0,366 +numpy/typing/tests/data/fail/flatiter.pyi,sha256=qLM4qm7gvJtEZ0rTHcyasUzoP5JbX4FREtqV3g1w6Lo,843 +numpy/typing/tests/data/fail/fromnumeric.pyi,sha256=FH2mjkgtCbA9soqlJRhYN7IIfRRrUL1i9mwqcbYKZSc,5591 +numpy/typing/tests/data/fail/histograms.pyi,sha256=yAPVt0rYTwtxnigoGT-u7hhKCE9iYxsXc24x2HGBrmA,367 +numpy/typing/tests/data/fail/index_tricks.pyi,sha256=moINir9iQoi6Q1ZuVg5BuSB9hSBtbg_uzv-Qm_lLYZk,509 +numpy/typing/tests/data/fail/lib_function_base.pyi,sha256=6y9T773CBLX-jUry1sCQGVuKVKM2wMuQ56Ni5V5j4Dw,2081 +numpy/typing/tests/data/fail/lib_polynomial.pyi,sha256=Ur7Y4iZX6WmoH5SDm0ePi8C8LPsuPs2Yr7g7P5O613g,899 +numpy/typing/tests/data/fail/lib_utils.pyi,sha256=VFpE6_DisvlDByyp1PiNPJEe5IcZp8cH0FlAJyoZipo,276 +numpy/typing/tests/data/fail/lib_version.pyi,sha256=7-ZJDZwDcB-wzpMN8TeYtZAgaqc7xnQ8Dnx2ISiX2Ts,158 +numpy/typing/tests/data/fail/linalg.pyi,sha256=yDd05aK1dI37RPt3pD2eJYo4dZFaT2yB1PEu3K0y9Tg,1322 +numpy/typing/tests/data/fail/memmap.pyi,sha256=HSTCQYNuW1Y6X1Woj361pN4rusSPs4oDCXywqk20yUo,159 +numpy/typing/tests/data/fail/modules.pyi,sha256=_ek4zKcdP-sIh_f-IDY0tP-RbLORKCSWelM9AOYxsyA,670 +numpy/typing/tests/data/fail/multiarray.pyi,sha256=XCdBxufNhR8ZtG8UMzk8nt9_NC5gJTKP9-xTqKO_K9I,1693 +numpy/typing/tests/data/fail/ndarray.pyi,sha256=YnjXy16RHs_esKelMjB07865CQ7gLyQnXhnitq5Kv5c,405 +numpy/typing/tests/data/fail/ndarray_misc.pyi,sha256=w-10xTDDWoff9Lq0dBO-jBeiBR-XjCz2qmes0dLx238,1372 +numpy/typing/tests/data/fail/nditer.pyi,sha256=w7emjnOxnf3NcvLktNLlke6Cuivn2gU3sVmGCfbG6rw,325 +numpy/typing/tests/data/fail/nested_sequence.pyi,sha256=em4GZwLDFE0QSxxg081wVwhh-Dmtkn8f7wThI0DiXVs,427 +numpy/typing/tests/data/fail/npyio.pyi,sha256=56QuHo9SvVR3Uhzl6gQZncCpX575Gy5wugjMICh20m0,620 +numpy/typing/tests/data/fail/numerictypes.pyi,sha256=fevH9x80CafYkiyBJ7LMLVl6GyTvQrZ34trBu6O8TtM,276 +numpy/typing/tests/data/fail/random.pyi,sha256=p5WsUGyOL-MGIeALh9Y0dVhYSRQLaUwMdjXc3G6C_7Q,2830 +numpy/typing/tests/data/fail/rec.pyi,sha256=Ws3TyesnoQjt7Q0wwtpShRDJmZCs2jjP17buFMomVGA,704 +numpy/typing/tests/data/fail/scalars.pyi,sha256=o91BwSfzPTczYVtbXsirqQUoUoYP1C_msGjc2GYsV04,2952 +numpy/typing/tests/data/fail/shape_base.pyi,sha256=Y_f4buHtX2Q2ZA4kaDTyR8LErlPXTzCB_-jBoScGh_Q,152 +numpy/typing/tests/data/fail/stride_tricks.pyi,sha256=IjA0Xrnx0lG3m07d1Hjbhtyo1Te5cXgjgr5fLUo4LYQ,315 +numpy/typing/tests/data/fail/testing.pyi,sha256=e7b5GKTWCtKGoB8z2a8edsW0Xjl1rMheALsvzEJjlCw,1370 +numpy/typing/tests/data/fail/twodim_base.pyi,sha256=ZqbRJfy5S_pW3fFLuomy4L5SBNqj6Nklexg9KDTo65c,899 +numpy/typing/tests/data/fail/type_check.pyi,sha256=CIyI0j0Buxv0QgCvNG2urjaKpoIZ-ZNawC2m6NzGlbo,379 +numpy/typing/tests/data/fail/ufunc_config.pyi,sha256=ukA0xwfJHLoGfoOIpWIN-91wj-DG8oaIjYbO72ymjg4,733 +numpy/typing/tests/data/fail/ufunclike.pyi,sha256=lbxjJyfARmt_QK1HxhxFxvwQTqCEZwJ9I53Wp8X3KIY,679 +numpy/typing/tests/data/fail/ufuncs.pyi,sha256=YaDTL7QLmGSUxE6JVMzpOlZTjHWrgbOo0UIlkX-6ZQk,1347 +numpy/typing/tests/data/fail/warnings_and_errors.pyi,sha256=PrbYDFI7IGN3Gf0OPBkVfefzQs4AXHwDQ495pvrX3RY,174 +numpy/typing/tests/data/misc/extended_precision.pyi,sha256=bS8bBeCFqjgtOiy-8_y39wfa7rwhdjLz2Vmo-RXAYD4,884 +numpy/typing/tests/data/mypy.ini,sha256=Ynv1VSx_kXTD2mFC3ZpgEFuCOg1F2VJXxPk0dxUnF2M,108 +numpy/typing/tests/data/pass/__pycache__/arithmetic.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/array_constructors.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/array_like.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/arrayprint.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/arrayterator.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/bitwise_ops.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/comparisons.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/dtype.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/einsumfunc.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/flatiter.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/fromnumeric.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/index_tricks.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/lib_utils.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/lib_version.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/literal.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/mod.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/modules.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/multiarray.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ndarray_conversion.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ndarray_misc.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ndarray_shape_manipulation.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/numeric.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/numerictypes.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/random.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/scalars.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/simple.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/simple_py3.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ufunc_config.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ufunclike.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/ufuncs.cpython-310.pyc,, +numpy/typing/tests/data/pass/__pycache__/warnings_and_errors.cpython-310.pyc,, +numpy/typing/tests/data/pass/arithmetic.py,sha256=2z3dmuysQQmiPz8x0bg8SOOKW62mVJn97uMa9T0L7Vk,7455 +numpy/typing/tests/data/pass/array_constructors.py,sha256=3GrhfBcmWX53pJHD0NvhXjwr2-uNKREbR1I9WCcZ7rI,2419 +numpy/typing/tests/data/pass/array_like.py,sha256=ce_IVubBd7J6FkSpJmD7qMlRLuwmiidhOqhYfZb16Wo,916 +numpy/typing/tests/data/pass/arrayprint.py,sha256=y_KkuLz1uM7pv53qfq7GQOuud4LoXE3apK1wtARdVyM,766 +numpy/typing/tests/data/pass/arrayterator.py,sha256=FqcpKdUQBQ0FazHFxr9MsLEZG-jnJVGKWZX2owRr4DQ,393 +numpy/typing/tests/data/pass/bitwise_ops.py,sha256=UnmxVr9HwI8ifdrutGm_u3EZU4iOOPQhrOku7hTaH0c,970 +numpy/typing/tests/data/pass/comparisons.py,sha256=nTE-fvraLK6xTZcP4uPV02wOShzYKWDaoapx35AeDOY,2992 +numpy/typing/tests/data/pass/dtype.py,sha256=MqDKC6Ywv6jNkWsR8rdLuabzHUco5w1OylDHEdxve_I,1069 +numpy/typing/tests/data/pass/einsumfunc.py,sha256=eXj5L5MWPtQHgrHPsJ36qqrmBHqct9UoujjJCvHnF1k,1370 +numpy/typing/tests/data/pass/flatiter.py,sha256=0BnbuLMBC7MQlprNZ0QhNSscfYwPhEhXOhWoyiRACWU,174 +numpy/typing/tests/data/pass/fromnumeric.py,sha256=Xd_nJVVDoONdztUX8ddgo7EXJ2FD8AX51MO_Yujnmog,3742 +numpy/typing/tests/data/pass/index_tricks.py,sha256=oaFD9vY01_RI5OkrXt-xTk1n_dd-SpuPp-eZ58XR3c8,1492 +numpy/typing/tests/data/pass/lib_utils.py,sha256=sDQCjHVGUwct0RQqAtH5_16y241siSY4bXKZRsuJ8xA,434 +numpy/typing/tests/data/pass/lib_version.py,sha256=HnuGOx7tQA_bcxFIJ3dRoMAR0fockxg4lGqQ4g7LGIw,299 +numpy/typing/tests/data/pass/literal.py,sha256=DLzdWHD6ttW4S0NEvGQbsH_UEJjhZyhvO4OXJjoyvZQ,1331 +numpy/typing/tests/data/pass/mod.py,sha256=HB9aK4_wGJbc44tomaoroNy0foIL5cI9KIjknvMTbkk,1578 +numpy/typing/tests/data/pass/modules.py,sha256=t0KJxYWbrWd7HbbgIDFb3LAhJBiNNb6QPjjFDAgC2mU,576 +numpy/typing/tests/data/pass/multiarray.py,sha256=MxHax6l94yqlTVZleAqG77ILEbW6wU5osPcHzxJ85ns,1331 +numpy/typing/tests/data/pass/ndarray_conversion.py,sha256=yPgzXG6paY1uF_z-QyHYrcmrZvhX7qtvTUh7ANLseCA,1626 +numpy/typing/tests/data/pass/ndarray_misc.py,sha256=z3mucbn9fLM1gxmbUhWlp2lcrOv4zFjqZFze0caE2EA,2715 +numpy/typing/tests/data/pass/ndarray_shape_manipulation.py,sha256=37eYwMNqMLwanIW9-63hrokacnSz2K_qtPUlkdpsTjo,640 +numpy/typing/tests/data/pass/numeric.py,sha256=SdnsD5zv0wm8T2hnIylyS14ig2McSz6rG9YslckbNQ4,1490 +numpy/typing/tests/data/pass/numerictypes.py,sha256=r0_s-a0-H2MdWIn4U4P6W9RQO0V1xrDusgodHNZeIYM,750 +numpy/typing/tests/data/pass/random.py,sha256=uJCnzlsOn9hr_G1TpHLdsweJI4EdhUSEQ4dxROPjqAs,61881 +numpy/typing/tests/data/pass/scalars.py,sha256=En0adCZAwEigZrzdQ0JQwDEmrS0b-DMd1vvjkFcvwo8,3479 +numpy/typing/tests/data/pass/simple.py,sha256=HmAfCOdZBWQF211YaZFrIGisMgu5FzTELApKny08n3Y,2676 +numpy/typing/tests/data/pass/simple_py3.py,sha256=HuLrc5aphThQkLjU2_19KgGFaXwKOfSzXe0p2xMm8ZI,96 +numpy/typing/tests/data/pass/ufunc_config.py,sha256=_M8v-QWAeT1-2MkfSeAbNl_ZwyPvYfPTsLl6c1X8d_w,1204 +numpy/typing/tests/data/pass/ufunclike.py,sha256=Gve6cJ2AT3TAwOjUOQQDIUnqsRCGYq70_tv_sgODiiA,1039 +numpy/typing/tests/data/pass/ufuncs.py,sha256=xGuKuqPetUTS4io5YDHaki5nbYRu-wC29SGU32tzVIg,462 +numpy/typing/tests/data/pass/warnings_and_errors.py,sha256=Pcg-QWfY4PAhTKyehae8q6LhtbUABxa2Ye63-3h1f4w,150 +numpy/typing/tests/data/reveal/arithmetic.pyi,sha256=Ndmi_IFAl8z28RHsYTbOouf-B5FH91x_9ky-JwsdXVg,19765 +numpy/typing/tests/data/reveal/array_constructors.pyi,sha256=DcT8Z2rEpqYfjXySBejk8cGOUidUmizZGE5ZEy7r14E,10600 +numpy/typing/tests/data/reveal/arraypad.pyi,sha256=Q1pcU4B3eRsw5jsv-S0MsEfNUbp_4aMdO_o3n0rtA2A,776 +numpy/typing/tests/data/reveal/arrayprint.pyi,sha256=YyzzkL-wj4Rs-fdo3brpoaWtb5g3yk4Vn2HKu5KRo4w,876 +numpy/typing/tests/data/reveal/arraysetops.pyi,sha256=ApCFQcZzQ08zV32SJ86Xyv_7jazl3XKMmJmULtNquJ8,4155 +numpy/typing/tests/data/reveal/arrayterator.pyi,sha256=TF_1eneHoT0v9HqS9dKc5Xiv3iY3E330GR1RNcJ7s2Q,1111 +numpy/typing/tests/data/reveal/bitwise_ops.pyi,sha256=nRkyUGrBB_Es7TKyDxS_s3u2dFgBfzjocInI9Ea-J10,3919 +numpy/typing/tests/data/reveal/char.pyi,sha256=M_iTa9Pn8F7jQ1k6RN9KvbhEn00g7UYJZ5PV57ikcZM,7289 +numpy/typing/tests/data/reveal/chararray.pyi,sha256=O0EfwnKc3W1Fnx1c7Yotb1O84kVMuqJLlMBXd2duvjI,6093 +numpy/typing/tests/data/reveal/comparisons.pyi,sha256=huaf-seaF5ndTqfoaBfPtMMkOYovq7ibJl5-CRoQW7s,7468 +numpy/typing/tests/data/reveal/constants.pyi,sha256=P9vFEMkPpJ5KeUnzqPOuyHlh3zAFl9lzB4WxyB2od7A,1949 +numpy/typing/tests/data/reveal/ctypeslib.pyi,sha256=-Pk2rLEGCzz3B_y8Mu10JSVA8gPFztl5fV1dspPzqig,4727 +numpy/typing/tests/data/reveal/datasource.pyi,sha256=e8wjn60tO5EdnkBF34JrZT5XvdyW7kRWD2abtgr6qUg,671 +numpy/typing/tests/data/reveal/dtype.pyi,sha256=TKrYyxMu5IGobs0SDTIRcPuWsZ5X7zMYB4pmUlTTJxA,2872 +numpy/typing/tests/data/reveal/einsumfunc.pyi,sha256=pbtSfzIWUJRkDpe2riHBlvFlNSC3CqVM-SbYtBgX9H0,2044 +numpy/typing/tests/data/reveal/emath.pyi,sha256=-muNpWOv_niIn-zS3gUnFO4qBZAouNlVGue2x1L5Ris,2423 +numpy/typing/tests/data/reveal/false_positives.pyi,sha256=AplTmZV7TS7nivU8vegbstMN5MdMv4U0JJdZ4IeeA5M,482 +numpy/typing/tests/data/reveal/fft.pyi,sha256=ReQ9qn5frvJEy-g0RWpUGlPBntUS1cFSIu6WfPotHzE,1749 +numpy/typing/tests/data/reveal/flatiter.pyi,sha256=e1OQsVxQpgyfqMNw2puUTATl-w3swvdknlctAiWxf_E,882 +numpy/typing/tests/data/reveal/fromnumeric.pyi,sha256=PNtGQR1VmGk_xNbd0eP7k7B2oNCMBz2XOJ17-_SdE5M,12101 +numpy/typing/tests/data/reveal/getlimits.pyi,sha256=nUGOMFpWj3pMgqLy6ZbR7A4G2q7iLIl5zEFBGf-Qcfw,1592 +numpy/typing/tests/data/reveal/histograms.pyi,sha256=MxKWoa7UoJRRLim53H6OoyYfz87P3_9YUXGYPTknGVQ,1303 +numpy/typing/tests/data/reveal/index_tricks.pyi,sha256=HpD7lU7hcyDoLdZbeqskPXnX7KYwPtll7uJKYUzrlE8,3177 +numpy/typing/tests/data/reveal/lib_function_base.pyi,sha256=eSiSZUlmPXqVPKknM7GcEv76BDgj0IJRu3FXcZXpmqc,8318 +numpy/typing/tests/data/reveal/lib_polynomial.pyi,sha256=TOzOdMPDqveDv3vDKSjtq6RRvN-j_s2J7aud2ySDAB0,5986 +numpy/typing/tests/data/reveal/lib_utils.pyi,sha256=_zj7WGYGYMFXAHLK-F11aeFfDvjRvFARUjoXhbXn8V0,1049 +numpy/typing/tests/data/reveal/lib_version.pyi,sha256=UCioUeykot8-nWL6goKxZnKZxtgB4lFEi9wdN_xyF1U,672 +numpy/typing/tests/data/reveal/linalg.pyi,sha256=LPaY-RyYL7Xt3djCgNaWEgI8beI9Eo_XnvOwi6Y7-eo,4877 +numpy/typing/tests/data/reveal/matrix.pyi,sha256=ciJXsn5v2O1IZ3VEn5Ilp8-40NTQokfrOOgVXMFsvLo,2922 +numpy/typing/tests/data/reveal/memmap.pyi,sha256=A5PovMzjRp2zslF1vw3TdTQjj4Y0dIEJ__HDBV_svGM,842 +numpy/typing/tests/data/reveal/mod.pyi,sha256=-CNWft2jQGSdrO8dYRgwbl7OhL3a78Zo60JVmiY-gQI,5666 +numpy/typing/tests/data/reveal/modules.pyi,sha256=0WPq7A-aqWkJsV-IA1_7dFNCcxBacj1AWExaXbXErG4,1958 +numpy/typing/tests/data/reveal/multiarray.pyi,sha256=6MvfNKihK-oN6QwG9HFNelgheo4lnL0FCrmIF_qxdoA,5326 +numpy/typing/tests/data/reveal/nbit_base_example.pyi,sha256=DRUMGatQvQXTuovKEMF4dzazIU6it6FU53LkOEo2vNo,657 +numpy/typing/tests/data/reveal/ndarray_conversion.pyi,sha256=BfjQD8U756l4gOfY0LD47HhDRxbq0yCFfEFKvbXs7Rs,1791 +numpy/typing/tests/data/reveal/ndarray_misc.pyi,sha256=0EN-a47Msn4pZgKVdD-GrXCCmt-oxjlov5rszchBmOI,7126 +numpy/typing/tests/data/reveal/ndarray_shape_manipulation.pyi,sha256=QDQ9g6l-e73pTJp-Dosiynb-okbqi91D4KirjhIjcv4,1233 +numpy/typing/tests/data/reveal/nditer.pyi,sha256=VFXnT75BgWSUpb-dD-q5cZkfeOqsk-x9cH626g9FWT4,2021 +numpy/typing/tests/data/reveal/nested_sequence.pyi,sha256=IQyRlXduk-ZEakOtoliMLCqNgGbeg0mzZf-a-a3Gq_0,734 +numpy/typing/tests/data/reveal/npyio.pyi,sha256=YXagt2J-1suu5WXZ_si5NuJf7sHj_7NlaSLqQkam1Po,4209 +numpy/typing/tests/data/reveal/numeric.pyi,sha256=aJKnav-X45tjSFfgGD4iCetwEFcJXdNgU7valktjiCg,6160 +numpy/typing/tests/data/reveal/numerictypes.pyi,sha256=-YQRhwjBjsFJHjpGCRqzafNnKDdsmbBHbmPwccP0pLI,2487 +numpy/typing/tests/data/reveal/random.pyi,sha256=s6T074ZIpGAUqHnA-yAlozTLvt7PNBjCBqd-nGMqWGg,104091 +numpy/typing/tests/data/reveal/rec.pyi,sha256=DbRVk6lc7-3qPe-7Q26tUWpdaH9B4UVoQSYrRGJUo1Q,3858 +numpy/typing/tests/data/reveal/scalars.pyi,sha256=Qn3B3rsqSN397Jh25xs4odt2pfCQtWkoJe-e0-oX8d4,4790 +numpy/typing/tests/data/reveal/shape_base.pyi,sha256=YjiVukrK6OOydvopOaOmeAIIa0YQ2hn9_I_-FyYkHVU,2427 +numpy/typing/tests/data/reveal/stride_tricks.pyi,sha256=EBZR8gSP385nhotwJ3GH9DOUD2q5nUEYbXfhLo5xrPo,1542 +numpy/typing/tests/data/reveal/testing.pyi,sha256=_WOAj_t5SWYiqN0KG26Mza8RvaD3WAa7rFUlgksjLms,8611 +numpy/typing/tests/data/reveal/twodim_base.pyi,sha256=ZdNVo2HIJcx8iF9PA-z5W3Bs0hWM2nlVdbhLuAQlljM,3132 +numpy/typing/tests/data/reveal/type_check.pyi,sha256=yZSp50TtvPqv_PN7zmVcNOVUTUXMNYFGcguMNj25E9Y,3044 +numpy/typing/tests/data/reveal/ufunc_config.pyi,sha256=buwSvat3SVFAFl5k8TL6Mgpi32o6hHZYZ2Lpn6AHdEU,1327 +numpy/typing/tests/data/reveal/ufunclike.pyi,sha256=V_gLcZVrTXJ21VkUMwA0HyxUgA1r6OzjsdJegaKL2GE,1329 +numpy/typing/tests/data/reveal/ufuncs.pyi,sha256=VnwYr5KT_FLKfc0wV7dtNz7bNtaC9VIQt-oz56Hb5EE,2798 +numpy/typing/tests/data/reveal/warnings_and_errors.pyi,sha256=ImMlPt2PQBtX8Qf1EZFmLjNWm8fPE6IWQ_deaq_-85s,538 +numpy/typing/tests/test_isfile.py,sha256=BhKZs4-LrhFUfKjcG0yelySjE6ZITMxGIBYWGDHMRb8,864 +numpy/typing/tests/test_runtime.py,sha256=2qu8JEliITnZCBJ_QJpohacj_OQ08o73ixS2w2ooNXI,3275 +numpy/typing/tests/test_typing.py,sha256=Da1ZOFjtPh_Mvb5whpI-okBJdgLOAfJtJNyG6leGFoQ,8743 +numpy/version.py,sha256=OTLnSh0NGfWyL8VrnIj0Ndt_KZOTl1Z-kD9Cf-jRMmY,216 diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/WHEEL b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..4e4c38ae320920b8f083b87f408214cdecd350d2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/WHEEL @@ -0,0 +1,6 @@ +Wheel-Version: 1.0 +Generator: meson +Root-Is-Purelib: false +Tag: cp310-cp310-manylinux_2_17_x86_64 +Tag: cp310-cp310-manylinux2014_x86_64 + diff --git a/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/entry_points.txt b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/entry_points.txt new file mode 100644 index 0000000000000000000000000000000000000000..450d8ef27b9d42527fde6aced068dd7e13f2c9a3 --- /dev/null +++ b/venv/lib/python3.10/site-packages/numpy-1.26.4.dist-info/entry_points.txt @@ -0,0 +1,9 @@ +[array_api] +numpy = numpy.array_api + +[pyinstaller40] +hook-dirs = numpy:_pyinstaller_hooks_dir + +[console_scripts] +f2py = numpy.f2py.f2py2e:main + diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__init__.py b/venv/lib/python3.10/site-packages/tcolorpy/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..18f72a164cab0d04260857f5c0942a29fe0676f1 --- /dev/null +++ b/venv/lib/python3.10/site-packages/tcolorpy/__init__.py @@ -0,0 +1,21 @@ +import platform + +from .__version__ import __author__, __copyright__, __email__, __license__, __version__ +from ._const import AnsiBGColor, AnsiFGColor, AnsiStyle +from ._truecolor import Color, RGBTuple, tcolor + + +if platform.system() == "Windows": + from ctypes import windll # type: ignore + + # https://docs.microsoft.com/en-us/windows/console/getstdhandle + STD_OUTPUT_HANDLE = -11 + + # https://docs.microsoft.com/en-us/windows/console/setconsolemode + ENABLE_PROCESSED_OUTPUT = 1 + ENABLE_VIRTUAL_TERMINAL_PROCESSING = 4 + + windll.kernel32.SetConsoleMode( + windll.kernel32.GetStdHandle(STD_OUTPUT_HANDLE), + ENABLE_PROCESSED_OUTPUT | ENABLE_VIRTUAL_TERMINAL_PROCESSING, + ) diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__main__.py b/venv/lib/python3.10/site-packages/tcolorpy/__main__.py new file mode 100644 index 0000000000000000000000000000000000000000..120445833c92c5db1e548b75e0a03cab8bc55528 --- /dev/null +++ b/venv/lib/python3.10/site-packages/tcolorpy/__main__.py @@ -0,0 +1,63 @@ +import argparse +import sys + +from ._const import AnsiBGColor, AnsiFGColor, AnsiStyle +from ._truecolor import tcolor + + +def parse_option() -> argparse.Namespace: + parser = argparse.ArgumentParser(formatter_class=argparse.RawDescriptionHelpFormatter) + + parser.add_argument("string", help="string to apply styles.") + parser.add_argument( + "-c", + "--color", + help="specify a color code (#XXXXXX) or a name. valid names are: {}".format( + ", ".join([style.name.lower() for style in list(AnsiFGColor)]) + ), + ) + parser.add_argument( + "-b", + "--bg-color", + help="specify a background color code (#XXXXXX) or a name. valid names are: {}".format( + ", ".join([style.name.lower() for style in list(AnsiBGColor)]) + ), + ) + parser.add_argument( + "-s", + "--styles", + help="specify a comma-separated style. valid values are: {}".format( + ", ".join([style.name.lower() for style in list(AnsiStyle)]) + ), + ) + parser.add_argument( + "--encode", + help="output a text encoded with the specified encoding", + ) + + return parser.parse_args() + + +def main() -> int: + ns = parse_option() + + styles = [] + if ns.styles: + styles = [style for style in ns.styles.split(",")] + + try: + ansi_string = tcolor(ns.string, color=ns.color, bg_color=ns.bg_color, styles=styles) + except ValueError as e: + print(f"{e.__class__.__name__}: {e}", file=sys.stderr) + return 1 + + if ns.encode: + ansi_string = ansi_string.encode(ns.encode) # type: ignore + + print(ansi_string) + + return 0 + + +if __name__ == "__main__": + sys.exit(main()) diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1a29feebf072c8a38713b9257e7cb7707b0651c3 Binary files /dev/null and b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__main__.cpython-310.pyc b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__main__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a0bdd78a5cdf6debcd91acba4316774fbd3ceb89 Binary files /dev/null and b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__main__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__version__.cpython-310.pyc b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__version__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a883278d019312d70563153ccb7eb40073e87549 Binary files /dev/null and b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/__version__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_const.cpython-310.pyc b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_const.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5c3d2db1479fcdfd9995acad005547d72a6390b4 Binary files /dev/null and b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_const.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_truecolor.cpython-310.pyc b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_truecolor.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56da0deb9f87339e3aa3426c92c0c922d74716b8 Binary files /dev/null and b/venv/lib/python3.10/site-packages/tcolorpy/__pycache__/_truecolor.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/tcolorpy/__version__.py b/venv/lib/python3.10/site-packages/tcolorpy/__version__.py new file mode 100644 index 0000000000000000000000000000000000000000..08ae245ee6a998269aa292760afb8829a30a486b --- /dev/null +++ b/venv/lib/python3.10/site-packages/tcolorpy/__version__.py @@ -0,0 +1,6 @@ +__author__ = "Tsuyoshi Hombashi" +__copyright__ = f"Copyright 2020, {__author__}" +__license__ = "MIT License" +__version__ = "0.1.4" +__maintainer__ = __author__ +__email__ = "tsuyoshi.hombashi@gmail.com" diff --git a/venv/lib/python3.10/site-packages/tcolorpy/_const.py b/venv/lib/python3.10/site-packages/tcolorpy/_const.py new file mode 100644 index 0000000000000000000000000000000000000000..ae5739db94f895c61befd93a6ec4d9dadb148436 --- /dev/null +++ b/venv/lib/python3.10/site-packages/tcolorpy/_const.py @@ -0,0 +1,70 @@ +from enum import Enum, unique + + +CSI = "\033[" +RESET = CSI + "0m" + + +@unique +class AnsiStyle(Enum): + BOLD = 1 + DIM = 2 + ITALIC = 3 + UNDERLINE = 4 + BLINK = 5 + INVERT = 7 + STRIKE = 9 + + +class AnsiFGColor(Enum): + BLACK = 30 + RED = 31 + GREEN = 32 + YELLOW = 33 + BLUE = 34 + MAGENTA = 35 + CYAN = 36 + WHITE = 37 + LIGHTBLACK = 90 + LIGHTRED = 91 + LIGHTGREEN = 92 + LIGHTYELLOW = 93 + LIGHTBLUE = 94 + LIGHTMAGENTA = 95 + LIGHTCYAN = 96 + LIGHTWHITE = 97 + LBLACK = 90 + LRED = 91 + LGREEN = 92 + LYELLOW = 93 + LBLUE = 94 + LMAGENTA = 95 + LCYAN = 96 + LWHITE = 97 + + +class AnsiBGColor(Enum): + BLACK = 40 + RED = 41 + GREEN = 42 + YELLOW = 43 + BLUE = 44 + MAGENTA = 45 + CYAN = 46 + WHITE = 47 + LIGHTBLACK = 100 + LIGHTRED = 101 + LIGHTGREEN = 102 + LIGHTYELLOW = 103 + LIGHTBLUE = 104 + LIGHTMAGENTA = 105 + LIGHTCYAN = 106 + LIGHTWHITE = 107 + LBLACK = 100 + LRED = 101 + LGREEN = 102 + LYELLOW = 103 + LBLUE = 104 + LMAGENTA = 105 + LCYAN = 106 + LWHITE = 107 diff --git a/venv/lib/python3.10/site-packages/tcolorpy/_truecolor.py b/venv/lib/python3.10/site-packages/tcolorpy/_truecolor.py new file mode 100644 index 0000000000000000000000000000000000000000..92e3369981c5239a39f7263b0a0242c9d017fcc6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/tcolorpy/_truecolor.py @@ -0,0 +1,249 @@ +import re +from collections import namedtuple +from colorsys import rgb_to_hsv +from enum import Enum +from typing import Any, List, Optional, Sequence, Tuple, Type, Union, cast # noqa + +from ._const import CSI, RESET, AnsiBGColor, AnsiFGColor, AnsiStyle + + +RGBTuple = Tuple[int, int, int] + +HSV = namedtuple("HSV", "hue saturation value") + +_regexp_color_code = re.compile( + "^#?(?P[0-9a-f]{2})(?P[0-9a-f]{2})(?P[0-9a-f]{2})$", re.IGNORECASE +) +_regexp_normalize = re.compile(r"[\s_-]") +name_to_rgb = { + "BLACK": (0, 0, 0), + "RED": (205, 49, 49), + "GREEN": (13, 188, 121), + "YELLOW": (229, 229, 16), + "BLUE": (36, 114, 200), + "MAGENTA": (188, 63, 188), + "CYAN": (17, 168, 205), + "WHITE": (229, 229, 229), + "LIGHTBLACK": (102, 102, 102), + "LIGHTRED": (241, 76, 76), + "LIGHTGREEN": (35, 209, 139), + "LIGHTYELLOW": (245, 245, 67), + "LIGHTBLUE": (59, 142, 234), + "LIGHTMAGENTA": (214, 112, 214), + "LIGHTCYAN": (41, 184, 219), + "LIGHTWHITE": (255, 255, 255), +} + + +def _normalize_name(name: str) -> str: + return _regexp_normalize.sub("", name).upper() + + +class Color: + def __init__(self, color: Union["Color", str, RGBTuple]) -> None: + self.__name = "" + self.__is_color_code_src = False + self.__hsv: Optional[HSV] = None + + if color is None: + raise TypeError("color must be one of Color/str/RGBTuple") + + if isinstance(color, str): + color = _normalize_name(color) + try: + self.__from_color_name(color) + except KeyError: + self.__from_color_code(color) + + return + + try: + # from a RGBTuple instance + self.red, self.green, self.blue = color # type: ignore + self.__validate_rgb_value(self.red) + self.__validate_rgb_value(self.green) + self.__validate_rgb_value(self.blue) + except TypeError: + # from a Color instance + self.__name = color.name # type: ignore + self.red, self.green, self.blue = color.red, color.green, color.blue # type: ignore + + def __eq__(self, other: Any) -> bool: + if not isinstance(other, Color): + return False + + if self.name and other.name: + return self.name == other.name + elif self.name or other.name: + return False + + if all([self.red == other.red, self.green == other.green, self.blue == other.blue]): + return True + + return False + + def __ne__(self, other: Any) -> bool: + if not isinstance(other, Color): + return True + + return not self.__eq__(other) + + def __repr__(self) -> str: + items = [f"code={self.color_code}, rgb=({self.red}, {self.green}, {self.blue})"] + + if self.__name: + items.append(f"name={self.__name}") + + return "Color({})".format(", ".join(items)) + + def __from_color_code(self, color_code: str) -> None: + match = _regexp_color_code.search(color_code) + if match is None: + raise ValueError(f"invalid color code found: {color_code}") + + self.__is_color_code_src = True + red, green, blue = match.group(1, 2, 3) + self.red = int(red, 16) + self.green = int(green, 16) + self.blue = int(blue, 16) + + def __from_color_name(self, name: str) -> None: + self.red, self.green, self.blue = name_to_rgb[name] + self.__name = name + + def __validate_rgb_value(self, n: int) -> None: + if not (0 <= n <= 255): + raise ValueError("value must be within 0-255") + + @property + def name(self) -> str: + return self.__name + + @property + def is_color_code_src(self) -> bool: + return self.__is_color_code_src + + @property + def color_code(self) -> str: + return f"#{self.red:02x}{self.green:02x}{self.blue:02x}" + + @property + def hsv(self) -> HSV: + if self.__hsv is None: + self.__hsv = HSV(*rgb_to_hsv(self.red / 255, self.green / 255, self.blue / 255)) + + return self.__hsv + + def calc_scaler(self) -> int: + return self.red + self.green + self.blue + + def calc_complementary(self) -> "Color": + rgb = (self.red, self.green, self.blue) + n = max(rgb) + min(rgb) + return Color((n - self.red, n - self.green, n - self.blue)) + + +def _normalize_enum(value: Any, enum_class: Type[Enum]) -> Any: + if isinstance(value, enum_class): + return value + + try: + return enum_class[_normalize_name(value)] + except AttributeError: + raise TypeError(f"value must be a {enum_class} or a str: actual={type(value)}") + except KeyError: + raise ValueError( + "invalid value found: expected={}, actual={}".format( + "/".join([item.name for item in enum_class]), value + ) + ) + + +def _ansi_escape(value: str) -> str: + return f"{CSI}{value}m" + + +def _to_ansi_style(style: Union[str, AnsiStyle]) -> str: + return _ansi_escape(f"{_normalize_enum(style, AnsiStyle).value}") + + +def _to_ansi_fg_truecolor(color: Color) -> str: + return _ansi_escape(f"38;2;{color.red};{color.green};{color.blue}") + + +def _to_ansi_bg_truecolor(color: Color) -> str: + return _ansi_escape(f"48;2;{color.red};{color.green};{color.blue}") + + +def _to_ansi_fg_color(color: AnsiFGColor) -> str: + return _ansi_escape(f"{color.value}") + + +def _to_ansi_bg_color(color: AnsiBGColor) -> str: + return _ansi_escape(f"{color.value}") + + +def _make_ansi_fg_truecolor(color: Union[Color, str, RGBTuple, AnsiFGColor, None]) -> str: + if isinstance(color, AnsiFGColor): + return _to_ansi_fg_color(color) + + if isinstance(color, Color): + if color.name: + return _to_ansi_fg_color(_normalize_enum(color.name, AnsiFGColor)) + + return _to_ansi_fg_truecolor(color) + + if isinstance(color, str): + try: + return _to_ansi_fg_color(_normalize_enum(color, AnsiFGColor)) + except ValueError: + c = Color(color) + elif isinstance(color, (tuple, list)): + c = Color(color) + else: + c = color # type: ignore + + return _to_ansi_fg_truecolor(c) if c else "" + + +def _make_ansi_bg_truecolor(color: Union[Color, str, RGBTuple, AnsiBGColor, None]) -> str: + if isinstance(color, AnsiBGColor): + return _to_ansi_bg_color(color) + + if isinstance(color, Color): + if color.name: + return _to_ansi_bg_color(_normalize_enum(color.name, AnsiBGColor)) + + return _to_ansi_bg_truecolor(color) + + if isinstance(color, str): + try: + return _to_ansi_bg_color(_normalize_enum(color, AnsiBGColor)) + except ValueError: + c = Color(color) + elif isinstance(color, (tuple, list)): + c = Color(color) + else: + c = color # type: ignore + + return _to_ansi_bg_truecolor(c) if c else "" + + +def tcolor( + string: str, + color: Union[Color, str, RGBTuple, AnsiFGColor, None] = None, + bg_color: Union[Color, str, RGBTuple, AnsiBGColor, None] = None, + styles: Optional[Sequence[Union[str, AnsiStyle]]] = None, +) -> str: + ansi_fg_color = _make_ansi_fg_truecolor(color) + ansi_bg_color = _make_ansi_bg_truecolor(bg_color) + + ansi_styles: List[str] = [] + if styles: + ansi_styles = [_to_ansi_style(style) for style in styles] + + reset = RESET + if not ansi_fg_color and not ansi_bg_color and not ansi_styles: + reset = "" + + return "".join(ansi_styles + [ansi_bg_color, ansi_fg_color, string, reset]) diff --git a/venv/lib/python3.10/site-packages/tcolorpy/py.typed b/venv/lib/python3.10/site-packages/tcolorpy/py.typed new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/INSTALLER b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/INSTALLER new file mode 100644 index 0000000000000000000000000000000000000000..a1b589e38a32041e49332e5e81c2d363dc418d68 --- /dev/null +++ b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/INSTALLER @@ -0,0 +1 @@ +pip diff --git a/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/METADATA b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/METADATA new file mode 100644 index 0000000000000000000000000000000000000000..3e4e2809775aad6f54e7c9ea2a4cb9b51fd78b27 --- /dev/null +++ b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/METADATA @@ -0,0 +1,35 @@ +Metadata-Version: 2.1 +Name: triton +Version: 2.3.0 +Summary: A language and compiler for custom Deep Learning operations +Home-page: https://github.com/openai/triton/ +Author: Philippe Tillet +Author-email: phil@openai.com +Keywords: Compiler,Deep Learning +Classifier: Development Status :: 4 - Beta +Classifier: Intended Audience :: Developers +Classifier: Topic :: Software Development :: Build Tools +Classifier: License :: OSI Approved :: MIT License +Classifier: Programming Language :: Python :: 3.7 +Classifier: Programming Language :: Python :: 3.8 +Classifier: Programming Language :: Python :: 3.9 +Classifier: Programming Language :: Python :: 3.10 +Classifier: Programming Language :: Python :: 3.11 +Requires-Dist: filelock +Provides-Extra: build +Requires-Dist: cmake >=3.20 ; extra == 'build' +Requires-Dist: lit ; extra == 'build' +Provides-Extra: tests +Requires-Dist: autopep8 ; extra == 'tests' +Requires-Dist: flake8 ; extra == 'tests' +Requires-Dist: isort ; extra == 'tests' +Requires-Dist: numpy ; extra == 'tests' +Requires-Dist: pytest ; extra == 'tests' +Requires-Dist: scipy >=1.7.1 ; extra == 'tests' +Requires-Dist: torch ; extra == 'tests' +Provides-Extra: tutorials +Requires-Dist: matplotlib ; extra == 'tutorials' +Requires-Dist: pandas ; extra == 'tutorials' +Requires-Dist: tabulate ; extra == 'tutorials' +Requires-Dist: torch ; extra == 'tutorials' + diff --git a/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/RECORD b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/RECORD new file mode 100644 index 0000000000000000000000000000000000000000..587fa6a4822802ed720bbb58b6397978f2498d6c --- /dev/null +++ b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/RECORD @@ -0,0 +1,97 @@ +triton-2.3.0.dist-info/INSTALLER,sha256=zuuue4knoyJ-UwPPXg8fezS7VCrXJQrAP7zeNuwvFQg,4 +triton-2.3.0.dist-info/METADATA,sha256=X7Hrombllw4vphg7r5oMD_XqWzOiCvUW8fVeHAcZoqU,1356 +triton-2.3.0.dist-info/RECORD,, +triton-2.3.0.dist-info/WHEEL,sha256=CzQQWV-lNyM92gr3iaBk8dvO35YDHRxgzkZ-dxumUIM,152 +triton-2.3.0.dist-info/top_level.txt,sha256=ARhLOkJAljg76TsEmSMHjBPsK7s8_Wl35owptkuBcLg,215 +triton/_C/libtriton.so,sha256=1cHVAy52BQW6VbvwpbPlT_0BFstSMRN_nUFlcKW7i2c,356418800 +triton/__init__.py,sha256=u1W7_xsCfGjZiL_QJcSIK7dWyKX1bJGLyFn-Lcc-lJ4,1250 +triton/__pycache__/__init__.cpython-310.pyc,, +triton/__pycache__/testing.cpython-310.pyc,, +triton/common/__init__.py,sha256=oif2rQjHnXXQpRzxm5vylRNQL2fQNhHvPo0XaO0z208,116 +triton/common/__pycache__/__init__.cpython-310.pyc,, +triton/common/__pycache__/backend.cpython-310.pyc,, +triton/common/__pycache__/build.cpython-310.pyc,, +triton/common/backend.py,sha256=VtiLWVUaCgsSvDqFfirqroeNjiiI8fbmrKbWruxzFCI,5414 +triton/common/build.py,sha256=TAn38HAtBrT4ykPUN87980jUbNH-Ajgho8oFrpXt29Y,4675 +triton/compiler/__init__.py,sha256=4g0l1zeqxnZJxa5kLE3idegnMzjHR4cbxyr-07RhCd8,277 +triton/compiler/__pycache__/__init__.cpython-310.pyc,, +triton/compiler/__pycache__/code_generator.cpython-310.pyc,, +triton/compiler/__pycache__/compiler.cpython-310.pyc,, +triton/compiler/__pycache__/errors.cpython-310.pyc,, +triton/compiler/__pycache__/make_launcher.cpython-310.pyc,, +triton/compiler/__pycache__/utils.cpython-310.pyc,, +triton/compiler/backends/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +triton/compiler/backends/__pycache__/__init__.cpython-310.pyc,, +triton/compiler/backends/__pycache__/cuda.cpython-310.pyc,, +triton/compiler/backends/cuda.py,sha256=S-ESfJfPisOSXZ3A3OiDUfFqjy19RvC8XBOU9cDVafM,9423 +triton/compiler/code_generator.py,sha256=pDTfAYIuuhfm2ZEraT8j6T7noFuqFwj0zqLJQ3xL7xA,53867 +triton/compiler/compiler.py,sha256=1Q6qF-KP4P12cF6dynzIRuhCFgQ14WdcxoxGjQ5XzHc,11094 +triton/compiler/errors.py,sha256=PiquMxHuHayRvdH3hMXSQlOnDswK3TGNWENB29YX_FU,1666 +triton/compiler/make_launcher.py,sha256=zdNyb-4DzyRp7_wdwfaHojCOjCnSlO3rirLEmN050k4,10118 +triton/compiler/utils.py,sha256=uIUSjjztBUA7TdQkaqfj9uX655fGKAitpQJDzk0rLGE,11949 +triton/language/__init__.py,sha256=Mqgkv832S-wdYMhTLEFLQ5-5Ms037E0yUji9KMEmD1c,3241 +triton/language/__pycache__/__init__.cpython-310.pyc,, +triton/language/__pycache__/core.cpython-310.pyc,, +triton/language/__pycache__/math.cpython-310.pyc,, +triton/language/__pycache__/random.cpython-310.pyc,, +triton/language/__pycache__/semantic.cpython-310.pyc,, +triton/language/__pycache__/standard.cpython-310.pyc,, +triton/language/core.py,sha256=Z-Xa_gQkuC5DXLCvuJlTpZcjpXhGp3mAdYqs3db4vQA,61915 +triton/language/extra/__init__.py,sha256=zyhlj6Mo9_KD7E5szGxI18Ko3b31E00-s1ybOM5KzkQ,39 +triton/language/extra/__pycache__/__init__.cpython-310.pyc,, +triton/language/extra/__pycache__/cuda.cpython-310.pyc,, +triton/language/extra/cuda.py,sha256=t3NYFMyfX6L1eC17zio8fKZj2rJ8GjkMD5sI0rc-YOU,560 +triton/language/math.py,sha256=oyoAeuEyjhQ9_2QLtEapITAWyZDBUqtIsFQUac3gLcY,62306 +triton/language/random.py,sha256=28hJYR1YNE8Hz8c8yCmKHb7YRRuhkZW5qJyD9yoJyws,6567 +triton/language/semantic.py,sha256=B-Wz-1tqktn62oM6CF5tz-IA8TDJG-3FvdeS0nxeHhE,68138 +triton/language/standard.py,sha256=HhLVz4G5XUnZPz4VoKzEH9b35w6a-SdjCF_jPV83pHM,10986 +triton/ops/__init__.py,sha256=NL5fhIJywJWOsSHMDA6JvjGhS7xA4-Z6CYIAQRy1FRU,313 +triton/ops/__pycache__/__init__.cpython-310.pyc,, +triton/ops/__pycache__/cross_entropy.cpython-310.pyc,, +triton/ops/__pycache__/flash_attention.cpython-310.pyc,, +triton/ops/__pycache__/matmul.cpython-310.pyc,, +triton/ops/__pycache__/matmul_perf_model.cpython-310.pyc,, +triton/ops/blocksparse/__init__.py,sha256=6YEVQNzipgQCpoO_7B8H7ckaSW2Idt1244s7IyLWAwc,100 +triton/ops/blocksparse/__pycache__/__init__.cpython-310.pyc,, +triton/ops/blocksparse/__pycache__/matmul.cpython-310.pyc,, +triton/ops/blocksparse/__pycache__/softmax.cpython-310.pyc,, +triton/ops/blocksparse/matmul.py,sha256=S29Wv0X47AUoCMfSw7A7-Lt6lUyGPzy63Q8pcD41O1w,15920 +triton/ops/blocksparse/softmax.py,sha256=2jfmu1Bn9XsM4PyBsSRaSi3-XK0bJABxwQ-XsTwo7fg,8243 +triton/ops/cross_entropy.py,sha256=Jr-iQ6oZQir8gh4WRmlPoh_CY4fM8x9c9dDsuavyFyQ,3451 +triton/ops/flash_attention.py,sha256=cwzNu7vlVnfS1J4dXiIrmDHLtfQBa-PIpsnn-OKmiH4,17945 +triton/ops/matmul.py,sha256=c37U9tqBnaUdt1OyFdGZwZpG3KR6IXNz0cveJIx-Uuc,8902 +triton/ops/matmul_perf_model.py,sha256=WoDhHVD0VwAISJ8ZqMJqmK0dpEMk4Xrxur4vwIJ9VWw,6543 +triton/runtime/__init__.py,sha256=Y4QxhfVrpiu8PtJFWR5DU1yj6RSxzwUbrpyCi2hCZNc,440 +triton/runtime/__pycache__/__init__.cpython-310.pyc,, +triton/runtime/__pycache__/autotuner.cpython-310.pyc,, +triton/runtime/__pycache__/cache.cpython-310.pyc,, +triton/runtime/__pycache__/driver.cpython-310.pyc,, +triton/runtime/__pycache__/errors.cpython-310.pyc,, +triton/runtime/__pycache__/interpreter.cpython-310.pyc,, +triton/runtime/__pycache__/jit.cpython-310.pyc,, +triton/runtime/autotuner.py,sha256=sWzpi-a0qPaspGaCyg3yVAsiy8QzEJ9bFtgJ3uM8zkg,13612 +triton/runtime/backends/cuda.c,sha256=XHNGYvyjAs-JLB_SeN0RDJYgFC2_wtmoR-BNIm-V3eA,22730 +triton/runtime/backends/hip.c,sha256=j3sgv1Qm9vZu-KVpXL4fH01eLtWSMQB7bHUay7jCmAE,4121 +triton/runtime/cache.py,sha256=0Pz5G_gE5ekFr0wBCkPzzYf50hsJm-CJNKWszqtgnd8,9408 +triton/runtime/driver.py,sha256=ULI__Mco_StXXjjjufM-kFc3Wo5_fc5416w719iDvwg,7713 +triton/runtime/errors.py,sha256=hjdNdL7xZRFyt7TUMbTBwEWe5yitLkMkWlPW-HCVLlI,543 +triton/runtime/interpreter.py,sha256=bg8De0KpKwoe3DKiLbZ9Fq4jBkf1mnRoKBSPb5MXs5s,21582 +triton/runtime/jit.py,sha256=PCujhbVzjaYeev_TLm5-ONetURlCJp1mB2x80NA5n0M,21992 +triton/testing.py,sha256=t6fAnZlikUJUMOrQCT0nn2PCPGHuDyhjON_VYUpQ48g,18258 +triton/third_party/cuda/bin/cuobjdump,sha256=M3aisp1Sv424T0BOqhn3rI92P0K-KEcBnB3qD1KQh64,540144 +triton/third_party/cuda/bin/nvdisasm,sha256=vxrhwuck1PI4_RQ2lidzhaIKqxLqPBB_1bh0nP2VSEs,50678760 +triton/third_party/cuda/bin/ptxas,sha256=641SCj3yUiIP_edDSDLDK6c7LHkSMF8IOrHVLxa7lwQ,29429360 +triton/third_party/cuda/include/cuda.h,sha256=J1YRiXq0IN6GG3ZLLk1T7oQsQtY2wFgES9LCG3Tte0g,932912 +triton/third_party/cuda/lib/libdevice.10.bc,sha256=XC-uN8huaMOjhgWpX1EtfRLV89uYYxC-R_VzBKpype4,473728 +triton/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0 +triton/tools/__pycache__/__init__.cpython-310.pyc,, +triton/tools/__pycache__/build_extern.cpython-310.pyc,, +triton/tools/__pycache__/compile.cpython-310.pyc,, +triton/tools/__pycache__/disasm.cpython-310.pyc,, +triton/tools/__pycache__/link.cpython-310.pyc,, +triton/tools/build_extern.py,sha256=9v5Lz1vwksR0xqY9_oT5KltuKVXls-O7GqebAfZauoc,14363 +triton/tools/compile.c,sha256=rjuAQ8b-2DTtbj29SgK1NxJI5BSU2P9ccp9wa5p8Iyc,2090 +triton/tools/compile.h,sha256=n9QKIFZTL4RSsiXtAxBP9XGSnxjyaevQQ9bBpwDsvAg,332 +triton/tools/compile.py,sha256=f-KTg8-qo9lbxJoj_1XoWrFkMX8HJGTgZRU_m2pNv2k,6523 +triton/tools/disasm.py,sha256=U58GRL7v14hu4-B_kWkciHaY9jVIkTKg7DtioH4LTHo,5080 +triton/tools/link.py,sha256=EODqTTEk8N4kjJkU099X--0dGwviFjJNiLcBxUUukhw,11824 diff --git a/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/WHEEL b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/WHEEL new file mode 100644 index 0000000000000000000000000000000000000000..9bb86cf30c63df9170e9af3dd246ce6f41270402 --- /dev/null +++ b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/WHEEL @@ -0,0 +1,6 @@ +Wheel-Version: 1.0 +Generator: bdist_wheel (0.43.0) +Root-Is-Purelib: false +Tag: cp310-cp310-manylinux_2_17_x86_64 +Tag: cp310-cp310-manylinux2014_x86_64 + diff --git a/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/top_level.txt b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/top_level.txt new file mode 100644 index 0000000000000000000000000000000000000000..9ad6b88069afd2be5fb84ec8faf4fb4d880e1982 --- /dev/null +++ b/venv/lib/python3.10/site-packages/triton-2.3.0.dist-info/top_level.txt @@ -0,0 +1,13 @@ +triton +triton/_C +triton/common +triton/compiler +triton/compiler/backends +triton/language +triton/language/extra +triton/ops +triton/ops/blocksparse +triton/runtime +triton/runtime/backends +triton/third_party +triton/tools