applied-ai-018 commited on
Commit
a761cc1
·
verified ·
1 Parent(s): 86a9718

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/fp32.pt +3 -0
  6. venv/lib/python3.10/site-packages/torch/utils/__pycache__/__init__.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_content_store.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_python_dispatch.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_pytree.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_traceback.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_typing_utils.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/torch/utils/__pycache__/_zip.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/torch/utils/__pycache__/bundled_inputs.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/torch/utils/__pycache__/checkpoint.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/torch/utils/__pycache__/collect_env.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/torch/utils/__pycache__/dlpack.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/torch/utils/__pycache__/flop_counter.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/torch/utils/__pycache__/model_zoo.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/torch/utils/__pycache__/show_pickle.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/torch/utils/_sympy/__init__.py +0 -0
  21. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/__init__.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/functions.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/interp.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/reference.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/singleton_int.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/solve.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/value_ranges.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/torch/utils/_sympy/functions.py +353 -0
  29. venv/lib/python3.10/site-packages/torch/utils/_sympy/interp.py +118 -0
  30. venv/lib/python3.10/site-packages/torch/utils/_sympy/reference.py +214 -0
  31. venv/lib/python3.10/site-packages/torch/utils/_sympy/singleton_int.py +94 -0
  32. venv/lib/python3.10/site-packages/torch/utils/_sympy/solve.py +175 -0
  33. venv/lib/python3.10/site-packages/torch/utils/_sympy/value_ranges.py +782 -0
  34. venv/lib/python3.10/site-packages/torch/utils/backcompat/__init__.py +21 -0
  35. venv/lib/python3.10/site-packages/torch/utils/backcompat/__pycache__/__init__.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/torch/utils/benchmark/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__init__.py +0 -0
  38. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/__init__.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/blas_compare_setup.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/compare.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/fuzzer.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/op_benchmark.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/simple_timeit.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/spectral_ops_fuzz_test.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/blas_compare_setup.py +221 -0
  46. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/compare.py +98 -0
  47. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/fuzzer.py +85 -0
  48. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/op_benchmark.py +103 -0
  49. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/simple_timeit.py +25 -0
  50. venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/spectral_ops_fuzz_test.py +113 -0
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:255b1e73d291ef09187bd33a97bef7e0a99d45a78d2c50ef8c5373492ef112a0
3
+ size 33555612
ckpts/universal/global_step120/zero/5.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d91b7c85c573039abde02e42940f67d909e777dcd2921634e46998eb5e35ed25
3
+ size 33555533
ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:abe02cc8d63470ba51c596e8fabac7b894dedb01b303de7bace6acb43d8b93b7
3
+ size 9372
ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a15e7453f2541b71d2984e7da86894f6e2cae3c37cd00dd4bb072e0e142bc7cc
3
+ size 9387
ckpts/universal/global_step120/zero/6.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:43c4bbc0928e7a01beda5b136cfc1ce0227c43088b057671a39987f7ee304358
3
+ size 9293
venv/lib/python3.10/site-packages/torch/utils/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.17 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_content_store.cpython-310.pyc ADDED
Binary file (6.12 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_python_dispatch.cpython-310.pyc ADDED
Binary file (18 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_pytree.cpython-310.pyc ADDED
Binary file (44.9 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_traceback.cpython-310.pyc ADDED
Binary file (5.91 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_typing_utils.cpython-310.pyc ADDED
Binary file (540 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/_zip.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/bundled_inputs.cpython-310.pyc ADDED
Binary file (17.1 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/checkpoint.cpython-310.pyc ADDED
Binary file (43.4 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/collect_env.cpython-310.pyc ADDED
Binary file (15.4 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/dlpack.cpython-310.pyc ADDED
Binary file (3.86 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/flop_counter.cpython-310.pyc ADDED
Binary file (15.6 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/model_zoo.cpython-310.pyc ADDED
Binary file (263 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/__pycache__/show_pickle.cpython-310.pyc ADDED
Binary file (5.08 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (186 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/functions.cpython-310.pyc ADDED
Binary file (9.69 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/interp.cpython-310.pyc ADDED
Binary file (3 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/reference.cpython-310.pyc ADDED
Binary file (6.58 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/singleton_int.cpython-310.pyc ADDED
Binary file (2.82 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/solve.cpython-310.pyc ADDED
Binary file (2.88 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/__pycache__/value_ranges.cpython-310.pyc ADDED
Binary file (23.3 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/_sympy/functions.py ADDED
@@ -0,0 +1,353 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sympy
2
+ from sympy import S
3
+ from sympy.core.logic import fuzzy_and, fuzzy_not, fuzzy_or
4
+
5
+ __all__ = [
6
+ "FloorDiv", "ModularIndexing", "CleanDiv", "CeilDiv", "Pow", "TrueDiv",
7
+ "LShift", "RShift", "IsNonOverlappingAndDenseIndicator", "Round", "RoundDecimal",
8
+ ]
9
+
10
+
11
+ def fuzzy_eq(x, y):
12
+ if None in (x, y):
13
+ return None
14
+ return x == y
15
+
16
+
17
+ class FloorDiv(sympy.Function):
18
+ """
19
+ We maintain this so that:
20
+ 1. We can use divisibility guards to simplify FloorDiv(a, b) to a / b.
21
+ 2. Printing out the expression is nicer (compared to say, representing a//b as (a - a % b) / b)
22
+ """
23
+ nargs = (2,)
24
+ precedence = 50 # precedence of mul # noqa: F811
25
+
26
+ # Default return type for SymPy assumptions.
27
+ # https://docs.sympy.org/latest/guides/assumptions.html#implementing-assumptions-handlers
28
+ is_real = True
29
+
30
+ @property
31
+ def base(self):
32
+ return self.args[0]
33
+
34
+ @property
35
+ def divisor(self):
36
+ return self.args[1]
37
+
38
+ def _sympystr(self, printer):
39
+ base = printer.parenthesize(self.base, self.precedence)
40
+ divisor = printer.parenthesize(self.divisor, self.precedence)
41
+ return f"({base}//{divisor})"
42
+
43
+ # SymPy assumptions based on argument types.
44
+ def _eval_is_real(self):
45
+ return fuzzy_or([self.base.is_real, self.divisor.is_real])
46
+
47
+ def _eval_is_integer(self):
48
+ return fuzzy_and([self.base.is_integer, self.divisor.is_integer])
49
+
50
+ # Automatic evaluation.
51
+ # https://docs.sympy.org/latest/guides/custom-functions.html#best-practices-for-eval
52
+ @classmethod
53
+ def eval(cls, base, divisor):
54
+ def check_supported_type(x):
55
+ if (x.is_integer is False and x.is_real is False and x.is_complex) or x.is_Boolean:
56
+ raise TypeError(
57
+ f"unsupported operand type(s) for //: "
58
+ f"'{type(base).__name__}' and '{type(divisor).__name__}'"
59
+ f", expected integer or real")
60
+
61
+ check_supported_type(base)
62
+ check_supported_type(divisor)
63
+
64
+ # We don't provide the same error message as in Python because SymPy
65
+ # makes it difficult to check the types.
66
+ if divisor.is_zero:
67
+ raise ZeroDivisionError("division by zero")
68
+
69
+ if base.is_zero:
70
+ return sympy.S.Zero
71
+ if base.is_integer and divisor == 1:
72
+ return base
73
+ if base.is_real and divisor == 1:
74
+ return sympy.floor(base)
75
+ if base.is_integer and divisor == -1:
76
+ return sympy.Mul(base, -1)
77
+ if isinstance(base, sympy.Integer) and isinstance(divisor, sympy.Integer):
78
+ return base // divisor
79
+ if isinstance(base, (sympy.Integer, sympy.Float)) and isinstance(divisor, (sympy.Integer, sympy.Float)):
80
+ return sympy.floor(base / divisor)
81
+ if isinstance(base, FloorDiv):
82
+ return FloorDiv(base.args[0], base.args[1] * divisor)
83
+ if isinstance(divisor, sympy.Rational) and divisor.p == 1:
84
+ return sympy.floor(base * divisor.q)
85
+
86
+ if isinstance(base, sympy.Add):
87
+ for a in base.args:
88
+ gcd = sympy.gcd(a, divisor)
89
+ if gcd == divisor:
90
+ return FloorDiv(base - a, divisor) + a / gcd
91
+
92
+ try:
93
+ gcd = sympy.gcd(base, divisor)
94
+ if gcd != 1:
95
+ return FloorDiv(
96
+ sympy.simplify(base / gcd), sympy.simplify(divisor / gcd)
97
+ )
98
+ except sympy.PolynomialError:
99
+ pass # https://github.com/pytorch/pytorch/issues/108276
100
+
101
+
102
+ class ModularIndexing(sympy.Function):
103
+ """
104
+ ModularIndexing(a, b, c) => (a // b) % c where % is the C modulus
105
+ """
106
+
107
+ nargs = (3,)
108
+ is_integer = True
109
+
110
+ @classmethod
111
+ def eval(cls, base, divisor, modulus):
112
+ if base == 0 or modulus == 1:
113
+ return sympy.Integer(0)
114
+
115
+ if (
116
+ isinstance(base, sympy.Integer)
117
+ and isinstance(divisor, sympy.Integer)
118
+ and isinstance(modulus, sympy.Integer)
119
+ ):
120
+ return (base // divisor) % modulus
121
+
122
+ try:
123
+ if divisor != 1:
124
+ gcd = sympy.gcd(base, divisor)
125
+ if gcd != 1:
126
+ return ModularIndexing(
127
+ sympy.simplify(base / gcd), sympy.simplify(divisor / gcd), modulus
128
+ )
129
+ except sympy.PolynomialError:
130
+ pass # https://github.com/pytorch/pytorch/issues/108276
131
+
132
+ if isinstance(base, sympy.Add):
133
+ new_terms = []
134
+ all_positive = True
135
+ for term in base.args:
136
+ if sympy.gcd(term, modulus * divisor) != modulus * divisor:
137
+ if (isinstance(term, sympy.Integer) and term < 0) or (
138
+ isinstance(term, sympy.Mul)
139
+ and isinstance(term.args[0], sympy.Integer)
140
+ and term.args[0] < 0
141
+ ):
142
+ # workaround for https://github.com/openai/triton/issues/619,
143
+ # if there are negative terms, // produces wrong result
144
+ # TODO if https://github.com/openai/triton/issues/619 is fixed
145
+ # this optimization would become valid
146
+ all_positive = False
147
+ break
148
+ else:
149
+ new_terms.append(term)
150
+
151
+ if len(new_terms) != len(base.args) and all_positive:
152
+ return ModularIndexing(sum(new_terms), divisor, modulus)
153
+
154
+ if isinstance(base, FloorDiv):
155
+ return ModularIndexing(base.args[0], base.args[1] * divisor, modulus)
156
+
157
+ def _eval_is_nonnegative(self):
158
+ p, q = self.args[:2]
159
+ return fuzzy_eq(p.is_nonnegative, q.is_nonnegative) # type: ignore[attr-defined]
160
+
161
+ def _eval_is_positive(self):
162
+ p, q = self.args[:2]
163
+ return fuzzy_eq(p.is_positive, q.is_positive) # type: ignore[attr-defined]
164
+
165
+
166
+ class Where(sympy.Function):
167
+ """
168
+ Good ol' ternary operator
169
+ """
170
+
171
+ nargs = (3,)
172
+
173
+ @classmethod
174
+ def eval(cls, c, p, q):
175
+ if c == sympy.true:
176
+ return p
177
+ elif c == sympy.false:
178
+ return q
179
+
180
+ class Mod(sympy.Function):
181
+ """
182
+ We maintain this so that we avoid SymPy correctness issues, such as:
183
+ https://github.com/sympy/sympy/issues/25146
184
+ """
185
+
186
+ nargs = (2,)
187
+
188
+ @classmethod
189
+ def eval(cls, p, q):
190
+ # This was adapted from: sympy/core/mod.py
191
+
192
+ if q.is_zero:
193
+ raise ZeroDivisionError("Modulo by zero")
194
+ # If either of them is NaN or infinite.
195
+ if p is S.NaN or q is S.NaN or p.is_finite is False or q.is_finite is False:
196
+ return S.NaN
197
+ # Three cases:
198
+ # 1. p == 0
199
+ # 2. p is either q or -q
200
+ # 3. p is integer and q == 1
201
+ if p is S.Zero or p in (q, -q) or (p.is_integer and q == 1):
202
+ return S.Zero
203
+
204
+ # Evaluate if they are both literals.
205
+ if q.is_Number and p.is_Number:
206
+ return p % q
207
+
208
+ # If q == 2, it's a matter of whether p is odd or even.
209
+ if q.is_Number and q == 2:
210
+ if p.is_even:
211
+ return S.Zero
212
+ if p.is_odd:
213
+ return S.One
214
+
215
+ # If p is a multiple of q.
216
+ r = p / q
217
+ if r.is_integer:
218
+ return S.Zero
219
+
220
+ # If p < q and its ratio is positive, then:
221
+ # - floor(p / q) = 0
222
+ # - p % q = p - floor(p / q) * q = p
223
+ less = p < q
224
+ if less.is_Boolean and bool(less) and r.is_positive:
225
+ return p
226
+
227
+ def _eval_is_integer(self):
228
+ p, q = self.args
229
+ return fuzzy_and([p.is_integer, q.is_integer, fuzzy_not(q.is_zero)]) # type: ignore[attr-defined]
230
+
231
+ def _eval_is_nonnegative(self):
232
+ return True if self.args[1].is_positive else None # type: ignore[attr-defined]
233
+
234
+ def _eval_is_nonpositive(self):
235
+ return True if self.args[1].is_negative else None # type: ignore[attr-defined]
236
+
237
+
238
+ class CleanDiv(FloorDiv):
239
+ """
240
+ Div where we can assume no rounding.
241
+ This is to enable future optimizations.
242
+ """
243
+
244
+ pass
245
+
246
+
247
+ class CeilDiv(sympy.Function):
248
+ """
249
+ Div used in indexing that rounds up.
250
+ """
251
+
252
+ is_integer = True
253
+
254
+ def __new__(cls, base, divisor):
255
+ if sympy.gcd(base, divisor) == divisor:
256
+ return CleanDiv(base, divisor)
257
+ else:
258
+ return FloorDiv(base + (divisor - 1), divisor)
259
+
260
+
261
+ class LShift(sympy.Function):
262
+ @classmethod
263
+ def eval(cls, base, shift):
264
+ if shift < 0:
265
+ raise ValueError('negative shift count')
266
+ return base * 2 ** shift
267
+
268
+
269
+ class RShift(sympy.Function):
270
+ @classmethod
271
+ def eval(cls, base, shift):
272
+ if shift < 0:
273
+ raise ValueError('negative shift count')
274
+ return base // 2 ** shift
275
+
276
+ # Overloaded to be compatible with regular Python.
277
+ # https://github.com/pytorch/pytorch/issues/90900
278
+ class Pow(sympy.Function):
279
+ @classmethod
280
+ def eval(cls, base, exp):
281
+ if exp.is_zero:
282
+ return sympy.Integer(1)
283
+ elif base.is_zero and exp < 0:
284
+ raise ZeroDivisionError(f"{base} cannot be raised to a negative power")
285
+ else:
286
+ return base ** exp
287
+
288
+ # Overloaded to be compatible with regular Python.
289
+ # https://github.com/pytorch/pytorch/issues/90900
290
+ class TrueDiv(sympy.Function):
291
+ @classmethod
292
+ def eval(cls, base, divisor):
293
+ if divisor.is_zero:
294
+ raise ZeroDivisionError("division by zero")
295
+ else:
296
+ return base / divisor
297
+
298
+
299
+ # TODO: As an indicator, this != 0 implies == 1 (and vice versa).
300
+ # Because we do not have the ability to guard on the stride permutation
301
+ # at the moment, it is hard to make further inferences when this is true,
302
+ # as although we know the tensor is contiguous in *some* layout, we don't
303
+ # know which one (however, you could, for example, make the inference that
304
+ # reshaping this to a 1D tensor can be guard-free.)
305
+ class IsNonOverlappingAndDenseIndicator(sympy.Function):
306
+ is_integer = True
307
+
308
+ @classmethod
309
+ def eval(cls, *args):
310
+ assert len(args) % 2 == 0
311
+ dim = len(args) // 2
312
+ # TODO: it is possible to make progress evaluating this guard
313
+ # even if not all of the inputs are known. For example, a 2D
314
+ # tensor with non-0/1 sizes but strides (0, 1) is definitely
315
+ # false, because we know its numel > 1 but it's broadcasted
316
+ # in dim 0.
317
+ if all(isinstance(a, sympy.Integer) for a in args):
318
+ # sym_node imported in torch.__init__. Local import to avoid an import cycle
319
+ from torch.fx.experimental.symbolic_shapes import eval_is_non_overlapping_and_dense
320
+
321
+ size_args = args[0:dim]
322
+ stride_args = args[dim:]
323
+ return eval_is_non_overlapping_and_dense(
324
+ [int(a) for a in size_args],
325
+ [int(a) for a in stride_args]
326
+ )
327
+ return None
328
+
329
+
330
+ class Round(sympy.Function):
331
+ is_integer = True
332
+
333
+ @classmethod
334
+ def eval(cls, number):
335
+ if number.is_integer:
336
+ return number
337
+ elif isinstance(number, sympy.Number):
338
+ return sympy.Integer(round(float(number)))
339
+
340
+ def __int__(self):
341
+ # This will only ever be called when computing size hints. At that point, self.args[0] should be a number and
342
+ # no longer an expression. If it were, the float call would fail and the caller would handle this further.
343
+ return round(float(self.args[0])) # type: ignore[arg-type]
344
+
345
+
346
+ class RoundDecimal(sympy.Function):
347
+ @classmethod
348
+ def eval(cls, number, ndigits):
349
+ if number.is_integer and ndigits >= 0:
350
+ return number
351
+ elif isinstance(number, sympy.Number) and isinstance(ndigits, sympy.Integer):
352
+ value_type, output_type = (int, sympy.Integer) if isinstance(number, sympy.Integer) else (float, sympy.Float)
353
+ return output_type(round(value_type(number), int(ndigits)))
venv/lib/python3.10/site-packages/torch/utils/_sympy/interp.py ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ This is a simple interpreter for Sympy expressions that dispatches to
3
+ classes following the torch._inductor.virtualized calling convention.
4
+ For directness, the interpreter takes the handler directly rather than
5
+ consulting the TLS. It does not use most of the methods on the full
6
+ handler; only those with corresponding Sympy expressions. To see an example
7
+ of a full handler, see torch.utils._sympy.value_ranges.ValueRangeAnalysis.
8
+ """
9
+
10
+ import functools
11
+ from typing import Any, Dict, Union
12
+
13
+ import sympy
14
+ from sympy.logic.boolalg import Boolean as SympyBoolean, BooleanAtom
15
+
16
+ import torch
17
+ from .functions import (
18
+ CleanDiv,
19
+ FloorDiv,
20
+ IsNonOverlappingAndDenseIndicator,
21
+ Mod,
22
+ ModularIndexing,
23
+ Pow,
24
+ Round,
25
+ RoundDecimal,
26
+ TrueDiv,
27
+ Where,
28
+ )
29
+
30
+
31
+ # TODO: Dedupe this with SYMPY_INTERP
32
+
33
+
34
+ @functools.lru_cache(None)
35
+ def handlers():
36
+ # TODO add CeilDiv (it doesn't appear in the index_expr)
37
+
38
+ # TODO default to some decompositions if the interpreter doesn't have them
39
+ # like decomposing ModularIndexing or implementing Le(a,b) as Ge(b, a)
40
+
41
+ HANDLERS = {
42
+ sympy.Or: "or_",
43
+ sympy.And: "and_",
44
+ sympy.Eq: "eq",
45
+ sympy.Ne: "ne",
46
+ sympy.Lt: "lt",
47
+ sympy.Gt: "gt",
48
+ sympy.Le: "le",
49
+ sympy.Ge: "ge",
50
+ sympy.Not: "not_",
51
+ TrueDiv: "truediv",
52
+ FloorDiv: "floordiv",
53
+ CleanDiv: "div",
54
+ Where: "where",
55
+ sympy.Add: "add",
56
+ sympy.Mul: "mul",
57
+ Pow: "pow",
58
+ sympy.Pow: "pow",
59
+ Mod: "mod",
60
+ sympy.Mod: "mod",
61
+ sympy.Abs: "abs",
62
+ sympy.log: "log",
63
+ sympy.exp: "exp",
64
+ sympy.floor: "floor",
65
+ sympy.ceiling: "ceil",
66
+ sympy.Min: "minimum",
67
+ sympy.Max: "maximum",
68
+ ModularIndexing: "modular_indexing",
69
+ sympy.functions.elementary.piecewise.ExprCondPair: "expr_cond_pair",
70
+ sympy.Piecewise: "piecewise",
71
+ IsNonOverlappingAndDenseIndicator: "is_non_overlapping_and_dense_indicator",
72
+ Round: "round",
73
+ RoundDecimal: "round",
74
+ }
75
+ for name in ["cos", "sin", "tan", "sinh", "cosh", "tanh", "asin", "acos", "atan"]:
76
+ HANDLERS[getattr(sympy, name)] = name
77
+
78
+ return HANDLERS
79
+
80
+
81
+ ASSOCIATIVE_OPS = {"minimum", "maximum", "mul", "add", "and_", "or_"}
82
+
83
+
84
+ def sympy_interp(
85
+ analysis, env: Dict[sympy.Symbol, Any], expr: Union[sympy.Expr, SympyBoolean]
86
+ ):
87
+ # Handle base cases
88
+ dtype = None
89
+ if isinstance(expr, BooleanAtom):
90
+ dtype = torch.bool
91
+ elif isinstance(expr, sympy.Integer):
92
+ dtype = torch.int64
93
+ elif isinstance(expr, sympy.Number):
94
+ dtype = torch.double
95
+
96
+ if dtype is not None:
97
+ return analysis.constant(expr, dtype)
98
+ elif isinstance(expr, sympy.Symbol):
99
+ return env[expr]
100
+
101
+ # Special cases
102
+ if isinstance(expr, sympy.Pow) and isinstance(
103
+ expr.args[1], sympy.core.numbers.Half
104
+ ):
105
+ return analysis.sqrt(sympy_interp(analysis, env, expr.args[0]))
106
+
107
+ # Recursive case
108
+ args = [sympy_interp(analysis, env, arg) for arg in expr.args] # type: ignore[arg-type]
109
+ handler_name = handlers()[expr.func]
110
+ handler = getattr(analysis, handler_name)
111
+ if handler_name in ASSOCIATIVE_OPS:
112
+ assert len(args) > 1
113
+ acc = handler(args[0], args[1])
114
+ for i in range(2, len(args)):
115
+ acc = handler(acc, args[i])
116
+ return acc
117
+ else:
118
+ return handler(*args)
venv/lib/python3.10/site-packages/torch/utils/_sympy/reference.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+
3
+ import sympy
4
+
5
+ import torch
6
+
7
+
8
+ # The sympy interpretation of operators. It will also sometimes work with
9
+ # plain int/float, but if you do certain operations you will get out a
10
+ # sympy.Basic in the end. If you want the Python/FX traceable interpretation,
11
+ # check PythonReferenceAnalysis.
12
+ # NB: For magic methods this needs to use normal magic methods
13
+ # so that test_magic_methods works
14
+ class ReferenceAnalysis:
15
+ @staticmethod
16
+ def constant(c, dtype):
17
+ return sympy.sympify(c)
18
+
19
+ @staticmethod
20
+ def or_(a, b):
21
+ return a | b
22
+
23
+ @staticmethod
24
+ def and_(a, b):
25
+ return a & b
26
+
27
+ @staticmethod
28
+ def eq(a, b):
29
+ if isinstance(a, sympy.Expr) or isinstance(b, sympy.Expr):
30
+ return sympy.Eq(a, b)
31
+ return a == b
32
+
33
+ @classmethod
34
+ def ne(cls, a, b):
35
+ return cls.not_(cls.eq(a, b))
36
+
37
+ @staticmethod
38
+ def lt(a, b):
39
+ return a < b
40
+
41
+ @staticmethod
42
+ def gt(a, b):
43
+ return a > b
44
+
45
+ @staticmethod
46
+ def le(a, b):
47
+ return a <= b
48
+
49
+ @staticmethod
50
+ def ge(a, b):
51
+ return a >= b
52
+
53
+ @staticmethod
54
+ def not_(a):
55
+ assert not isinstance(a, bool)
56
+ return ~a
57
+
58
+ @staticmethod
59
+ def reciprocal(x):
60
+ return 1 / x
61
+
62
+ @staticmethod
63
+ def square(x):
64
+ return x * x
65
+
66
+ @staticmethod
67
+ def mod(x, y):
68
+ return x % y
69
+
70
+ @staticmethod
71
+ def abs(x):
72
+ return abs(x)
73
+
74
+ @staticmethod
75
+ def neg(x):
76
+ return -x
77
+
78
+ @staticmethod
79
+ def truediv(a, b):
80
+ return a / b
81
+
82
+ @staticmethod
83
+ def div(a, b):
84
+ return ReferenceAnalysis.truediv(a, b)
85
+
86
+ @staticmethod
87
+ def floordiv(a, b):
88
+ if b == 0:
89
+ return sympy.nan if a == 0 else sympy.zoo
90
+ return a // b
91
+
92
+ @staticmethod
93
+ def truncdiv(a, b):
94
+ result = a / b
95
+ if result.is_finite:
96
+ result = sympy.Integer(result)
97
+
98
+ return result
99
+
100
+ @staticmethod
101
+ def add(a, b):
102
+ return a + b
103
+
104
+ @staticmethod
105
+ def mul(a, b):
106
+ return a * b
107
+
108
+ @staticmethod
109
+ def sub(a, b):
110
+ return a - b
111
+
112
+ @staticmethod
113
+ def exp(x):
114
+ return sympy.exp(x)
115
+
116
+ @staticmethod
117
+ def log(x):
118
+ return sympy.log(x)
119
+
120
+ @staticmethod
121
+ def sqrt(x):
122
+ return sympy.sqrt(x)
123
+
124
+ @staticmethod
125
+ def pow(a, b):
126
+ return a**b
127
+
128
+ @staticmethod
129
+ def minimum(a, b):
130
+ # Poorman's version of upcasting in Sympy
131
+ # This won't do for sympy.Expr as the casting does nothing for those
132
+ if a.is_Float or not a.is_finite or b.is_Float or not b.is_finite:
133
+ result_type = sympy.Float
134
+ else:
135
+ assert a.is_Integer
136
+ assert b.is_Integer
137
+ result_type = sympy.Integer
138
+ return sympy.Min(result_type(a), result_type(b))
139
+
140
+ @staticmethod
141
+ def maximum(a, b):
142
+ # Poorman's version of upcasting in Sympy
143
+ # This won't do for sympy.Expr as the casting does nothing for those
144
+ if a.is_Float or not a.is_finite or b.is_Float or not b.is_finite:
145
+ result_type = sympy.Float
146
+ else:
147
+ assert a.is_Integer
148
+ assert b.is_Integer
149
+ result_type = sympy.Integer
150
+ return sympy.Max(result_type(a), result_type(b))
151
+
152
+ @staticmethod
153
+ def floor(x):
154
+ return sympy.floor(x)
155
+
156
+ @staticmethod
157
+ def ceil(x):
158
+ return sympy.ceiling(x)
159
+
160
+
161
+ # Unlike ReferenceAnalysis, does NOT sympyify, instead, works with plain
162
+ # Python types and is FX traceable. Inheritance here is purely for code
163
+ # sharing (TODO: considering splitting out a BaseReferenceAnalysis).
164
+ class PythonReferenceAnalysis(ReferenceAnalysis):
165
+ @staticmethod
166
+ def constant(c, dtype):
167
+ if dtype is torch.int64:
168
+ return int(c)
169
+ elif dtype is torch.double:
170
+ return float(c)
171
+ elif dtype is torch.bool:
172
+ return bool(c)
173
+ else:
174
+ raise AssertionError(f"unrecognized dtype {dtype}")
175
+
176
+ @staticmethod
177
+ def not_(a):
178
+ return torch.sym_not(a)
179
+
180
+ @staticmethod
181
+ def floordiv(a, b):
182
+ return a // b
183
+
184
+ @staticmethod
185
+ def truncdiv(a, b):
186
+ return a / b
187
+
188
+ @staticmethod
189
+ def exp(x):
190
+ raise AssertionError("exp is not valid shape sympy expr")
191
+
192
+ @staticmethod
193
+ def log(x):
194
+ raise AssertionError("log is not valid shape sympy expr")
195
+
196
+ @staticmethod
197
+ def sqrt(x):
198
+ return torch._sym_sqrt(x) # type: ignore[attr-defined]
199
+
200
+ @staticmethod
201
+ def minimum(a, b):
202
+ return torch.sym_min(a, b)
203
+
204
+ @staticmethod
205
+ def maximum(a, b):
206
+ return torch.sym_max(a, b)
207
+
208
+ @staticmethod
209
+ def floor(x):
210
+ return math.floor(x)
211
+
212
+ @staticmethod
213
+ def ceil(x):
214
+ return math.ceil(x)
venv/lib/python3.10/site-packages/torch/utils/_sympy/singleton_int.py ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import sympy
2
+ from sympy.multipledispatch import dispatch
3
+
4
+ __all__ = ["SingletonInt"]
5
+
6
+
7
+ class SingletonInt(sympy.AtomicExpr):
8
+ # This is probably not super important unless we are in multiple dispatch
9
+ # situations with other more exotic Expr types.
10
+ _op_priority = 99999
11
+
12
+ def __new__(cls, *args, coeff=None, **kwargs):
13
+ instance = super().__new__(cls, *args, **kwargs)
14
+ return instance
15
+
16
+ # The semantics of this class should match that of NestedIntSymNodeImpl in
17
+ # c10/core/NestedIntSymNodeImpl.h
18
+ def __init__(self, val, *, coeff=1):
19
+ self._val = val
20
+ self._coeff = coeff
21
+ super().__init__()
22
+
23
+ # See NOTE [ Inequalities with nested int ]
24
+ def _eval_Eq(self, other):
25
+ if (
26
+ isinstance(other, SingletonInt)
27
+ and other._val == self._val
28
+ and self._coeff == other._coeff
29
+ ):
30
+ return sympy.true
31
+ else:
32
+ return sympy.false
33
+
34
+ # This is necessary so that calling expr.free_symbols on exprs that contain
35
+ # this Singleton does not error
36
+ @property
37
+ def free_symbols(self):
38
+ return set()
39
+
40
+ def __mul__(self, other):
41
+ if isinstance(other, SingletonInt):
42
+ raise ValueError(
43
+ "SingletonInt cannot be multiplied by another SingletonInt"
44
+ )
45
+ return SingletonInt(self._val, coeff=self._coeff * other)
46
+
47
+ def __rmul__(self, other):
48
+ if isinstance(other, SingletonInt):
49
+ raise ValueError(
50
+ "SingletonInt cannot be multiplied by another SingletonInt"
51
+ )
52
+ return SingletonInt(self._val, coeff=self._coeff * other)
53
+
54
+ # Make sure we promptly raise an error instead of falling back to building
55
+ # an expression tree. There are probably more ops, how can we be exhaustive?
56
+ def __add__(self, other):
57
+ raise NotImplementedError("NYI")
58
+
59
+ def __sub__(self, other):
60
+ raise NotImplementedError("NYI")
61
+
62
+ def __truediv__(self, other):
63
+ raise NotImplementedError("NYI")
64
+
65
+ def __floordiv__(self, other):
66
+ raise NotImplementedError("NYI")
67
+
68
+ def __mod__(self, other):
69
+ raise NotImplementedError("NYI")
70
+
71
+
72
+ # See NOTE [ Inequalities with nested int ]
73
+ @dispatch(sympy.Integer, SingletonInt)
74
+ def _eval_is_ge(a, b):
75
+ if a < 2:
76
+ return sympy.false
77
+ raise ValueError("Symbolic SingletonInt: Relation is indeterminate")
78
+
79
+
80
+ @dispatch(SingletonInt, sympy.Integer) # type: ignore[no-redef]
81
+ def _eval_is_ge(a, b): # noqa: F811
82
+ if b <= 2:
83
+ return sympy.true
84
+ raise ValueError("Symbolic SingletonInt: Relation is indeterminate")
85
+
86
+
87
+ @dispatch(SingletonInt, SingletonInt) # type: ignore[no-redef]
88
+ def _eval_is_ge(a, b): # noqa: F811
89
+ if a._val == b._val:
90
+ if a._coeff >= b._coeff:
91
+ return sympy.true
92
+ else:
93
+ return sympy.false
94
+ raise ValueError("Symbolic SingletonInt: Relation is indeterminate")
venv/lib/python3.10/site-packages/torch/utils/_sympy/solve.py ADDED
@@ -0,0 +1,175 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+
3
+ from typing import Dict, Optional, Tuple, Type
4
+
5
+ import sympy
6
+
7
+ from torch.utils._sympy.functions import FloorDiv
8
+
9
+ log = logging.getLogger(__name__)
10
+
11
+ _MIRROR_REL_OP: Dict[Type[sympy.Basic], Type[sympy.Rel]] = {
12
+ sympy.Eq: sympy.Eq,
13
+ sympy.Ne: sympy.Ne,
14
+ sympy.Ge: sympy.Le,
15
+ sympy.Gt: sympy.Lt,
16
+ sympy.Le: sympy.Ge,
17
+ sympy.Lt: sympy.Gt,
18
+ }
19
+
20
+ INEQUALITY_TYPES = (sympy.Gt, sympy.Ge, sympy.Lt, sympy.Le)
21
+
22
+
23
+ def mirror_rel_op(type: Type) -> Optional[Type[sympy.Rel]]:
24
+ return _MIRROR_REL_OP.get(type, None)
25
+
26
+
27
+ # Tries to simplify 'expr', so as to leave only 'thing' in the left-hand side.
28
+ #
29
+ # Returns a tuple of:
30
+ # 1. The simplified expression
31
+ # 2. The expression on the right-hand side
32
+ #
33
+ # Returns 'None' if it can't reach a state where the only thing in the left
34
+ # hand side is 'thing'.
35
+ #
36
+ # 'trials': number of times 'try_solve' will try to isolate 'thing' to the
37
+ # left-hand side.
38
+ #
39
+ # 'floordiv_inequality': flag to enable conversion of 'FloorDiv' into
40
+ # inequalities.
41
+ def try_solve(
42
+ expr: sympy.Basic,
43
+ thing: sympy.Basic,
44
+ trials: int = 5,
45
+ floordiv_inequality: bool = True,
46
+ ) -> Optional[Tuple[sympy.Rel, sympy.Basic]]:
47
+ mirror = mirror_rel_op(type(expr))
48
+
49
+ # Ignore unsupported expressions:
50
+ # - Those that are not relational operations
51
+ # - Those that don't have a mirror (just avoiding unexpected classes)
52
+ if not isinstance(expr, sympy.Rel) or mirror is None:
53
+ log.debug("expression with unsupported type: %s", type(expr))
54
+ return None
55
+
56
+ lhs_has_thing = expr.lhs.has(thing)
57
+ rhs_has_thing = expr.rhs.has(thing)
58
+
59
+ # Give up when 'thing' appears on both sides of the relational expression.
60
+ # That is because, as is, we assume the thing we are trying to isolate is
61
+ # only on the right-hand side.
62
+ if lhs_has_thing and rhs_has_thing:
63
+ log.debug("thing (%s) found in both sides of expression: %s", thing, expr)
64
+ return None
65
+
66
+ # Try considering both LHS and RHS by mirroring the original expression:
67
+ # a < b ==> b > a
68
+ expressions = []
69
+
70
+ # Add each version of 'expr' if 'thing' is in its left-hand side.
71
+ if lhs_has_thing:
72
+ expressions.append(expr)
73
+ if rhs_has_thing:
74
+ expressions.append(mirror(expr.rhs, expr.lhs))
75
+
76
+ for e in expressions:
77
+ if e is None:
78
+ continue
79
+
80
+ assert isinstance(e, sympy.Rel)
81
+
82
+ for _ in range(trials):
83
+ trial = _try_isolate_lhs(e, thing, floordiv_inequality=floordiv_inequality)
84
+ # Stop if there was no change in this trial.
85
+ if trial == e:
86
+ break
87
+ e = trial # type: ignore[assignment]
88
+
89
+ # Return if we were able to isolate 'thing' on the left-hand side.
90
+ if isinstance(e, sympy.Rel) and e.lhs == thing:
91
+ return e, e.rhs
92
+
93
+ return None
94
+
95
+
96
+ def _try_isolate_lhs(
97
+ expr: sympy.Basic, thing: sympy.Basic, floordiv_inequality: bool
98
+ ) -> sympy.Basic:
99
+ e = expr
100
+ op = type(expr)
101
+
102
+ if isinstance(e, sympy.Rel):
103
+ # Move any constants in the left-hand side to the right-hand side.
104
+ lhs_not_thing = (
105
+ sum([a for a in e.lhs.args if not a.has(thing)])
106
+ if isinstance(e.lhs, sympy.Add)
107
+ else 0
108
+ )
109
+ e = op(expr.lhs - lhs_not_thing, expr.rhs - lhs_not_thing) # type: ignore[attr-defined]
110
+
111
+ # Divide both sides by the factors that don't contain thing.
112
+ if isinstance(e, sympy.Rel) and isinstance(e.lhs, sympy.Mul):
113
+ lhs, rhs = e.args
114
+ other = sympy.Mul(*[a for a in lhs.args if not a.has(thing)])
115
+
116
+ # If we can't tell whether 'other' is negative or positive, we do nothing.
117
+ # That is because we don't know whether we have mirror the operation or not.
118
+ if not (isinstance(e, INEQUALITY_TYPES) and other.is_negative is None):
119
+ # Divide both sides by 'other'.
120
+ lhs = lhs / other
121
+ rhs = rhs / other
122
+
123
+ # If 'e' is an inequality and 'other' is negative, we have to
124
+ # mirror the expression.
125
+ if isinstance(e, INEQUALITY_TYPES) and other.is_negative:
126
+ op = mirror_rel_op(op) # type: ignore[assignment]
127
+
128
+ assert op is not None
129
+ e = op(lhs, rhs)
130
+
131
+ ################################################################################
132
+ # left-hand side is FloorDiv
133
+ ################################################################################
134
+ #
135
+ # Given the expression: a // b op c
136
+ # where 'op' is a relational operation, these rules only work if:
137
+ # - b > 0
138
+ # - c is an integer
139
+ if (
140
+ floordiv_inequality
141
+ and isinstance(e, sympy.Rel)
142
+ and isinstance(e.lhs, FloorDiv)
143
+ and e.lhs.divisor.is_positive
144
+ and e.rhs.is_integer
145
+ ):
146
+ # a // b == expr
147
+ # => a >= (b * expr) and a < (b * (expr + 1))
148
+ if isinstance(expr, sympy.Eq):
149
+ numerator, denominator = e.lhs.args
150
+ return sympy.And(
151
+ sympy.Ge(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
152
+ sympy.Lt(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
153
+ )
154
+ # a // b != expr
155
+ # => a < (b * expr) or a >= (b * (expr + 1))
156
+ if isinstance(expr, sympy.Ne):
157
+ numerator, denominator = e.lhs.args
158
+ return sympy.Or(
159
+ sympy.Lt(numerator, (e.rhs * denominator)), # type: ignore[arg-type]
160
+ sympy.Ge(numerator, ((e.rhs + 1) * denominator)), # type: ignore[arg-type]
161
+ )
162
+ # The transformations below only work if b is positive.
163
+ # Note: we only have this information for constants.
164
+ # a // b > expr => a >= b * (expr + 1)
165
+ # a // b >= expr => a >= b * expr
166
+ if isinstance(expr, (sympy.Gt, sympy.Ge)):
167
+ quotient = e.rhs if isinstance(expr, sympy.Ge) else (e.rhs + 1) # type: ignore[arg-type]
168
+ return sympy.Ge(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
169
+ # a // b < expr => a < b * expr
170
+ # a // b <= expr => a < b * (expr + 1)
171
+ if isinstance(expr, (sympy.Lt, sympy.Le)):
172
+ quotient = e.rhs if isinstance(expr, sympy.Lt) else (e.rhs + 1) # type: ignore[arg-type]
173
+ return sympy.Lt(e.lhs.args[0], (quotient * e.lhs.args[1])) # type: ignore[arg-type]
174
+
175
+ return e
venv/lib/python3.10/site-packages/torch/utils/_sympy/value_ranges.py ADDED
@@ -0,0 +1,782 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from __future__ import annotations
2
+
3
+ import dataclasses
4
+ import itertools
5
+ import sympy
6
+ from sympy.logic.boolalg import BooleanAtom, Boolean as SympyBoolean
7
+ import operator
8
+ import math
9
+ import logging
10
+ import torch
11
+ from typing import Dict, Optional, SupportsFloat, TypeVar, Generic, Union, overload, Callable, TYPE_CHECKING
12
+ from typing_extensions import TypeGuard
13
+
14
+ from torch._prims_common import dtype_to_type
15
+ from .interp import sympy_interp
16
+ from .functions import Round, RoundDecimal
17
+
18
+ log = logging.getLogger(__name__)
19
+
20
+ __all__ = ["ValueRanges", "ValueRangeAnalysis", "bound_sympy"]
21
+
22
+ _T = TypeVar('_T', sympy.Expr, SympyBoolean)
23
+
24
+ class ValueRangeError(RuntimeError):
25
+ pass
26
+
27
+
28
+ # Like sympify, but supports less stuff, and also ensures that direct
29
+ # sympy expressions don't have free variables
30
+ def simple_sympify(e):
31
+ if isinstance(e, bool):
32
+ return sympy.true if e else sympy.false
33
+ elif isinstance(e, int):
34
+ return sympy.Integer(e)
35
+ elif isinstance(e, float):
36
+ # infinity is special; we use it to bracket integers as well
37
+ if math.isinf(e):
38
+ return sympy.oo if e > 0 else -sympy.oo
39
+ return sympy.Float(e)
40
+ elif isinstance(e, sympy.Expr):
41
+ assert e.is_number, e
42
+ # NaNs can occur when doing things like 0 * sympy.oo, but it is better
43
+ # if the operator notices this and takes care of it, because sometimes
44
+ # the NaN is inappropriate (for example, for ints, the [-oo, oo] range
45
+ # should go to zero when multiplied with [0, 0])
46
+ assert e != sympy.nan
47
+ return e
48
+ elif isinstance(e, BooleanAtom):
49
+ return e
50
+ else:
51
+ raise AssertionError(f"not simple sympy type {type(e)}: {e}")
52
+
53
+
54
+ # Sympy atomics only. Unlike <=, it also works on Sympy bools.
55
+ def sympy_generic_le(lower, upper):
56
+ if isinstance(lower, sympy.Expr):
57
+ assert isinstance(upper, sympy.Expr)
58
+ return lower <= upper
59
+ else:
60
+ # only negative condition is True > False
61
+ assert isinstance(lower, SympyBoolean) and isinstance(upper, SympyBoolean)
62
+ return not (lower and not upper)
63
+
64
+
65
+ def vr_is_bool(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[SympyBoolean]]:
66
+ return vr.is_bool
67
+
68
+
69
+ def vr_is_expr(vr: ValueRanges[_T]) -> TypeGuard[ValueRanges[sympy.Expr]]:
70
+ return not vr.is_bool
71
+
72
+
73
+ ExprIn = Union[int, float, sympy.Expr]
74
+ BoolIn = Union[bool, SympyBoolean]
75
+ AllIn = Union[ExprIn, BoolIn]
76
+ ExprFn = Callable[[sympy.Expr], sympy.Expr]
77
+ ExprFn2 = Callable[[sympy.Expr, sympy.Expr], sympy.Expr]
78
+ BoolFn = Callable[[SympyBoolean], SympyBoolean]
79
+ BoolFn2 = Callable[[SympyBoolean, SympyBoolean], SympyBoolean]
80
+ AllFn = Union[ExprFn, BoolFn]
81
+ AllFn2 = Union[ExprFn2, BoolFn2]
82
+
83
+
84
+ @dataclasses.dataclass(frozen=True)
85
+ class ValueRanges(Generic[_T]):
86
+ if TYPE_CHECKING:
87
+ # ruff doesn't understand circular references but mypy does
88
+ ExprVR = ValueRanges[sympy.Expr] # noqa: F821
89
+ BoolVR = ValueRanges[SympyBoolean] # noqa: F821
90
+ AllVR = Union[ExprVR, BoolVR]
91
+
92
+ # Although the type signature here suggests you can pass any
93
+ # sympy expression, in practice the analysis here only works
94
+ # with constant sympy expressions
95
+ lower: _T
96
+ upper: _T
97
+ is_bool: bool
98
+
99
+ @overload
100
+ def __init__(self: ValueRanges[sympy.Expr], lower: ExprIn, upper: ExprIn) -> None:
101
+ ...
102
+
103
+ @overload
104
+ def __init__(self: ValueRanges[SympyBoolean], lower: BoolIn, upper: BoolIn) -> None:
105
+ ...
106
+
107
+ def __init__(self, lower: AllIn, upper: AllIn) -> None:
108
+ lower = simple_sympify(lower)
109
+ upper = simple_sympify(upper)
110
+ # TODO: when the bounds have free variables, this may be
111
+ # nontrivial to actually verify
112
+ if not sympy_generic_le(lower, upper):
113
+ raise ValueRangeError(f"Invalid ranges [{lower}:{upper}]")
114
+ # Because this is a frozen class
115
+ object.__setattr__(self, "lower", lower)
116
+ object.__setattr__(self, "upper", upper)
117
+ object.__setattr__(self, "is_bool", isinstance(lower, SympyBoolean))
118
+ assert isinstance(upper, SympyBoolean) == self.is_bool
119
+
120
+ def boolify(self) -> ValueRanges[SympyBoolean]:
121
+ if vr_is_bool(self):
122
+ return self
123
+ elif self == ValueRanges.unknown():
124
+ return ValueRanges.unknown_bool()
125
+ else:
126
+ raise AssertionError(f"not bool like {self}")
127
+
128
+ def __contains__(self, x: AllIn) -> bool:
129
+ x = simple_sympify(x)
130
+ return sympy_generic_le(self.lower, x) and sympy_generic_le(x, self.upper)
131
+
132
+ def issubset(self, other):
133
+ return sympy_generic_le(other.lower, self.lower) and sympy_generic_le(self.upper, other.upper)
134
+
135
+ def tighten(self, other) -> ValueRanges:
136
+ """Given two ValueRanges, returns their intersection"""
137
+ return self & other
138
+
139
+ # Intersection
140
+ @overload
141
+ def __and__(self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]) -> ValueRanges[sympy.Expr]:
142
+ ...
143
+
144
+ @overload
145
+ def __and__(self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]) -> ValueRanges[SympyBoolean]:
146
+ ...
147
+
148
+ def __and__(self: AllVR, other: AllVR) -> AllVR:
149
+ if other == ValueRanges.unknown():
150
+ return self
151
+ if self == ValueRanges.unknown():
152
+ return other
153
+ assert self.is_bool == other.is_bool, (self, other)
154
+ if self.is_bool:
155
+ return ValueRanges(sympy.Or(self.lower, other.lower), sympy.And(self.upper, other.upper))
156
+ else:
157
+ return ValueRanges(sympy.Max(self.lower, other.lower), sympy.Min(self.upper, other.upper))
158
+
159
+ # Union
160
+ @overload
161
+ def __or__(self: ValueRanges[sympy.Expr], other: ValueRanges[sympy.Expr]) -> ValueRanges[sympy.Expr]:
162
+ ...
163
+
164
+ @overload
165
+ def __or__(self: ValueRanges[SympyBoolean], other: ValueRanges[SympyBoolean]) -> ValueRanges[SympyBoolean]:
166
+ ...
167
+
168
+ def __or__(self: AllVR, other: AllVR) -> AllVR:
169
+ if ValueRanges.unknown() in (self, other):
170
+ return ValueRanges.unknown()
171
+ assert self.is_bool == other.is_bool, (self, other)
172
+ if self.is_bool:
173
+ return ValueRanges(sympy.And(self.lower, other.lower), sympy.Or(self.upper, other.upper))
174
+ else:
175
+ return ValueRanges(sympy.Min(self.lower, other.lower), sympy.Max(self.upper, other.upper))
176
+
177
+ def is_singleton(self) -> bool:
178
+ return self.lower == self.upper
179
+
180
+ # TODO: this doesn't work with bools but arguably it should
181
+ @staticmethod
182
+ def unknown() -> ValueRanges[sympy.Expr]:
183
+ return ValueRanges(-sympy.oo, sympy.oo)
184
+
185
+ @staticmethod
186
+ def unknown_bool() -> ValueRanges[SympyBoolean]:
187
+ return ValueRanges(sympy.false, sympy.true)
188
+
189
+ @overload
190
+ @staticmethod
191
+ # work around the fact that bool and int overlap
192
+ def wrap(arg: Union[ExprIn, ExprVR]) -> ExprVR: # type: ignore[overload-overlap]
193
+ ...
194
+
195
+ @overload
196
+ @staticmethod
197
+ def wrap(arg: Union[BoolIn, BoolVR]) -> BoolVR:
198
+ ...
199
+
200
+ @staticmethod
201
+ def wrap(arg: Union[AllIn, AllVR]) -> AllVR:
202
+ if isinstance(arg, ValueRanges):
203
+ return arg
204
+ # arg is either ExprIn or BoolIn, but we don't know it here
205
+ return ValueRanges(arg, arg) # type: ignore[arg-type]
206
+
207
+ @staticmethod
208
+ def increasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
209
+ """Increasing: x <= y => f(x) <= f(y)."""
210
+ x = ValueRanges.wrap(x)
211
+ return ValueRanges(fn(x.lower), fn(x.upper))
212
+
213
+ @overload
214
+ @staticmethod
215
+ def decreasing_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
216
+ ...
217
+
218
+ @overload
219
+ @staticmethod
220
+ def decreasing_map(x: Union[BoolIn, BoolVR], fn: BoolFn) -> BoolVR:
221
+ ...
222
+
223
+ @staticmethod
224
+ def decreasing_map(x: Union[AllIn, AllVR], fn: AllFn) -> AllVR:
225
+ """Decreasing: x <= y => f(x) >= f(y)."""
226
+ x = ValueRanges.wrap(x)
227
+ # consistently either Expr or Bool, but we don't know it here
228
+ return ValueRanges(fn(x.upper), fn(x.lower)) # type: ignore[arg-type]
229
+
230
+ @staticmethod
231
+ def monotone_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
232
+ """It's increasing or decreasing."""
233
+ x = ValueRanges.wrap(x)
234
+ l = fn(x.lower)
235
+ u = fn(x.upper)
236
+ return ValueRanges(min(l, u), max(l, u))
237
+
238
+ @staticmethod
239
+ def convex_min_zero_map(x: Union[ExprIn, ExprVR], fn: ExprFn) -> ExprVR:
240
+ """Fn is convex and has a minimum at 0."""
241
+ x = ValueRanges.wrap(x)
242
+ if 0 in x:
243
+ return ValueRanges(0, max(fn(x.lower), fn(x.upper)))
244
+ else:
245
+ return ValueRanges.monotone_map(x, fn)
246
+
247
+ @overload
248
+ @staticmethod
249
+ def coordinatewise_increasing_map(x: Union[ExprIn, ExprVR], y: Union[ExprIn, ExprVR], fn: ExprFn2) -> ExprVR:
250
+ ...
251
+
252
+ @overload
253
+ @staticmethod
254
+ def coordinatewise_increasing_map(x: Union[BoolIn, BoolVR], y: Union[BoolIn, BoolVR], fn: BoolFn2) -> BoolVR:
255
+ ...
256
+
257
+ @staticmethod
258
+ def coordinatewise_increasing_map(x: Union[AllIn, AllVR], y: Union[AllIn, AllVR], fn: AllFn2) -> AllVR:
259
+ """
260
+ It's increasing on each coordinate.
261
+
262
+ Mathematically:
263
+ For every 1 <= i <= n and x_i <= y_i we have that
264
+ f(x1, .., xn) <= f(x1, , yi, ..., xn)
265
+ """
266
+ x, y = ValueRanges.wrap(x), ValueRanges.wrap(y)
267
+ return ValueRanges(
268
+ fn(x.lower, y.lower), # type: ignore[arg-type]
269
+ fn(x.upper, y.upper), # type: ignore[arg-type]
270
+ )
271
+
272
+ @classmethod
273
+ def coordinatewise_monotone_map(cls, x, y, fn):
274
+ """It's increasing or decreasing on each coordinate."""
275
+ x, y = cls.wrap(x), cls.wrap(y)
276
+ products = [
277
+ fn(a, b)
278
+ for a, b in itertools.product([x.lower, x.upper], [y.lower, y.upper])
279
+ ]
280
+ return ValueRanges(min(products), max(products))
281
+
282
+ class SymPyValueRangeAnalysis:
283
+ """
284
+ It gives bounds on a SymPy operator given bounds on its arguments
285
+ See the function `bound_sympy` for a function that applies this logic to a full SymPy expression
286
+ """
287
+
288
+ @staticmethod
289
+ def constant(value, dtype):
290
+ # NB: value is NOT a sympy expression, it's a constant!
291
+ is_python = isinstance(value, (int, float, bool))
292
+ assert is_python or isinstance(value, (BooleanAtom, sympy.Integer, sympy.Number))
293
+
294
+ # using nan makes subsequent computation throw, and for the purposes of optimization
295
+ # returning -math.inf - math.inf is equivalent to giving up
296
+ if isinstance(value, SupportsFloat) and math.isnan(value):
297
+ return ValueRanges.unknown()
298
+
299
+ if is_python:
300
+ type_ = dtype_to_type(dtype)
301
+ value = type_(value)
302
+ else:
303
+ # We do a type check on a best-effort basis
304
+ # We don't want to force a cast to sympy.Float if the value is Rational to avoid losing precision
305
+ if dtype == torch.bool:
306
+ assert isinstance(value, BooleanAtom)
307
+ elif dtype.is_floating_point:
308
+ assert not value.is_finite or value.is_real
309
+ else:
310
+ # dtype is intXX
311
+ assert value.is_integer
312
+
313
+ return ValueRanges.wrap(value)
314
+
315
+ @staticmethod
316
+ def not_(a):
317
+ a = ValueRanges.wrap(a)
318
+ a = a.boolify()
319
+ assert a.is_bool
320
+ return ValueRanges.decreasing_map(a, sympy.Not)
321
+
322
+ @staticmethod
323
+ def or_(a, b):
324
+ return ValueRanges.coordinatewise_increasing_map(a, b, sympy.Or)
325
+
326
+ @staticmethod
327
+ def and_(a, b):
328
+ return ValueRanges.coordinatewise_increasing_map(a, b, sympy.And)
329
+
330
+ @staticmethod
331
+ def eq(a, b):
332
+ a = ValueRanges.wrap(a)
333
+ b = ValueRanges.wrap(b)
334
+ if a.is_singleton() and b.is_singleton() and a.lower == b.lower:
335
+ return ValueRanges.wrap(sympy.true)
336
+ elif a.lower > b.upper or b.lower > a.upper: # ranges disjoint
337
+ return ValueRanges.wrap(sympy.false)
338
+ return ValueRanges(sympy.false, sympy.true)
339
+
340
+ @classmethod
341
+ def ne(cls, a, b):
342
+ return cls.not_(cls.eq(a, b))
343
+
344
+ @classmethod
345
+ def lt(cls, a, b):
346
+ a = ValueRanges.wrap(a)
347
+ b = ValueRanges.wrap(b)
348
+ assert a.is_bool == b.is_bool
349
+ if a.is_bool:
350
+ return cls.and_(cls.not_(a), b)
351
+ else:
352
+ if a.upper < b.lower:
353
+ return ValueRanges.wrap(sympy.true)
354
+ elif a.lower >= b.upper:
355
+ return ValueRanges.wrap(sympy.false)
356
+ return ValueRanges(sympy.false, sympy.true)
357
+
358
+ @classmethod
359
+ def gt(cls, a, b):
360
+ return cls.lt(b, a)
361
+
362
+ @classmethod
363
+ def le(cls, a, b):
364
+ return cls.not_(cls.gt(a, b))
365
+
366
+ @classmethod
367
+ def ge(cls, a, b):
368
+ return cls.not_(cls.lt(a, b))
369
+
370
+ @staticmethod
371
+ def add(a, b):
372
+ return ValueRanges.coordinatewise_increasing_map(a, b, operator.add)
373
+
374
+ @classmethod
375
+ def mul(cls, a, b):
376
+ a = ValueRanges.wrap(a)
377
+ b = ValueRanges.wrap(b)
378
+
379
+ assert a.is_bool == b.is_bool
380
+ if a.is_bool:
381
+ return cls.and_(a, b)
382
+
383
+ def safe_mul(a, b):
384
+ # Make unknown() * wrap(0) == wrap(0)
385
+ if a == 0:
386
+ return a
387
+ elif b == 0:
388
+ return b
389
+ else:
390
+ return a * b
391
+
392
+ return ValueRanges.coordinatewise_monotone_map(a, b, safe_mul)
393
+
394
+ @classmethod
395
+ def div(cls, a, b):
396
+ return cls.truediv(a, b)
397
+
398
+ @staticmethod
399
+ def truediv(a, b):
400
+ a = ValueRanges.wrap(a)
401
+ b = ValueRanges.wrap(b)
402
+ if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
403
+ return ValueRanges.unknown()
404
+ else:
405
+ return ValueRanges.coordinatewise_monotone_map(a, b, operator.truediv)
406
+
407
+ @staticmethod
408
+ def floordiv(a, b):
409
+ a = ValueRanges.wrap(a)
410
+ b = ValueRanges.wrap(b)
411
+ if 0 in b or ((-sympy.oo in a or sympy.oo in a) and (-sympy.oo in b or sympy.oo in b)):
412
+ return ValueRanges.unknown()
413
+ else:
414
+ return ValueRanges.coordinatewise_monotone_map(a, b, operator.floordiv)
415
+
416
+ @staticmethod
417
+ def mod(x, y):
418
+ x = ValueRanges.wrap(x)
419
+ y = ValueRanges.wrap(y)
420
+ if x.is_singleton() and y.is_singleton() and y.lower != 0:
421
+ return ValueRanges.wrap(x.lower % y.lower)
422
+ if y.lower <= 0:
423
+ return ValueRanges.unknown()
424
+ return ValueRanges(0, y.upper)
425
+
426
+ @classmethod
427
+ def modular_indexing(cls, a, b, c):
428
+ return cls.mod(cls.floordiv(a, b), c)
429
+
430
+ @classmethod
431
+ def is_non_overlapping_and_dense_indicator(cls, *args):
432
+ return ValueRanges.unknown()
433
+
434
+ @classmethod
435
+ def pow(cls, a, b):
436
+ def is_integer(val):
437
+ return isinstance(val, int) or (
438
+ hasattr(val, "is_integer") and val.is_integer
439
+ )
440
+
441
+ a = ValueRanges.wrap(a)
442
+ b = ValueRanges.wrap(b)
443
+ # Not implemented yet. It's a bit tricky
444
+ # If you want to implement it, compute the partial derivatives of a ** b
445
+ # and check the ranges where the function is increasing / decreasing
446
+ # Another non-tight way of doing this is defaulting to doing noting that for a > 0, a ** b == exp(b * log(a))
447
+ # If this second option is implemented, by carefult about the types and possible infinities here and there.
448
+ if not b.is_singleton():
449
+ return ValueRanges.unknown()
450
+
451
+ b = b.lower
452
+ if a.is_singleton():
453
+ a = a.lower
454
+ r = a ** b
455
+ if not r.is_finite:
456
+ return ValueRanges.unknown()
457
+ return ValueRanges.wrap(r)
458
+
459
+ if b == 0:
460
+ if not a.lower.is_finite:
461
+ return ValueRanges.unknown()
462
+ type_ = sympy.Float if a.lower.is_real else sympy.Integer
463
+ return ValueRanges.wrap(type_(1))
464
+
465
+ if b < 0:
466
+ a = cls.reciprocal(a)
467
+ b = -b
468
+
469
+ if a == ValueRanges.unknown():
470
+ return ValueRanges.unknown()
471
+
472
+ # Here b > 0
473
+ if not is_integer(b):
474
+ # If the base is positive, then we're good, otherwise nothing's defined
475
+ if a.lower >= 0:
476
+ return ValueRanges.increasing_map(a, lambda x: x ** b)
477
+ else:
478
+ return ValueRanges.unknown()
479
+ else:
480
+ # b > 0 integer
481
+ if b % 2 == 0:
482
+ # x^n where n is even
483
+ return ValueRanges.convex_min_zero_map(a, lambda x: x ** b)
484
+ else:
485
+ # x^n where n is odd
486
+ return ValueRanges.increasing_map(a, lambda x: x ** b)
487
+
488
+ @staticmethod
489
+ def reciprocal(x):
490
+ """ Needed as it's used in pow, but it won't appear on a SymPy expression """
491
+ x = ValueRanges.wrap(x)
492
+ if 0 in x:
493
+ return ValueRanges.unknown()
494
+ else:
495
+ return ValueRanges.decreasing_map(x, lambda y: 1 / y)
496
+
497
+ @staticmethod
498
+ def abs(x):
499
+ return ValueRanges.convex_min_zero_map(x, abs)
500
+
501
+ @staticmethod
502
+ def exp(x):
503
+ return ValueRanges.increasing_map(x, sympy.functions.elementary.exponential.exp)
504
+
505
+ @staticmethod
506
+ def log(x):
507
+ x = ValueRanges.wrap(x)
508
+ if x.lower <= 0:
509
+ return ValueRanges.unknown()
510
+ return ValueRanges.increasing_map(x, sympy.log)
511
+
512
+ @classmethod
513
+ def minimum(cls, a, b):
514
+ return cls.min_or_max(a, b, sympy.Min)
515
+
516
+ @classmethod
517
+ def maximum(cls, a, b):
518
+ return cls.min_or_max(a, b, sympy.Max)
519
+
520
+ @staticmethod
521
+ def min_or_max(a, b, fn):
522
+ a = ValueRanges.wrap(a)
523
+ b = ValueRanges.wrap(b)
524
+
525
+ # Performs upcasting first
526
+ def fn_(x: sympy.Expr, y: sympy.Expr) -> sympy.Expr:
527
+ # Poorman's version of upcasting in Sympy
528
+ # Inf is not a float...
529
+ if x.is_Integer and y.is_Integer:
530
+ result_type = sympy.Integer
531
+ elif x.is_rational and y.is_rational:
532
+ result_type = sympy.Rational
533
+ else:
534
+ assert x.is_real or not x.is_finite or y.is_real or not y.is_finite
535
+ result_type = sympy.Float
536
+ return fn(result_type(x), result_type(y))
537
+
538
+ return ValueRanges.coordinatewise_increasing_map(a, b, fn_)
539
+
540
+ @classmethod
541
+ def floor(cls, x):
542
+ return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.floor)
543
+
544
+ @classmethod
545
+ def ceil(cls, x):
546
+ return ValueRanges.increasing_map(x, sympy.functions.elementary.integers.ceiling)
547
+
548
+ @classmethod
549
+ def round(cls, number, ndigits=None):
550
+ if ndigits is None:
551
+ fn = Round
552
+ else:
553
+ assert ndigits.is_singleton()
554
+ ndigits = ndigits.lower
555
+ # We can't use functools.partial here since sympy doesn't support keyword arguments, but we have to bind
556
+ # the second parameter.
557
+ fn = lambda number: RoundDecimal(number, ndigits) # type: ignore[misc, assignment] # noqa: E731
558
+
559
+ return ValueRanges.increasing_map(number, fn)
560
+
561
+ # It's used in some models on symints
562
+ @staticmethod
563
+ def sqrt(x):
564
+ x = ValueRanges.wrap(x)
565
+ if x.lower < 0:
566
+ return ValueRanges.unknown()
567
+ return ValueRanges.increasing_map(x, sympy.sqrt)
568
+
569
+ @staticmethod
570
+ def where(a, b, c):
571
+ b = ValueRanges.wrap(b)
572
+ c = ValueRanges.wrap(c)
573
+ a = a.boolify()
574
+ assert b.is_bool == c.is_bool
575
+ if b.is_bool:
576
+ return ValueRanges(sympy.And(b.lower, c.lower), sympy.Or(b.upper, c.upper))
577
+ else:
578
+ return ValueRanges(sympy.Min(b.lower, c.lower), sympy.Max(b.upper, c.upper))
579
+
580
+ # expr_cond_pair is used to represent a single (expr, condition) pair in piecewise.
581
+ # We just return the value range of the expression and its corresponding condition as a tuple
582
+ # and defer the analysis to piecewise
583
+ @staticmethod
584
+ def expr_cond_pair(a, b):
585
+ b = b.boolify()
586
+ return (a, b)
587
+
588
+ # piecewise function can be used to convert a SymBool to SymInt:
589
+ # int_expr = Piecewise((1, bool_expr), (0, True)), it evalutes to 1 when sym_bool is True and 0 otherwise.
590
+ #
591
+ # ranges is a sequence of (expr_range, condition_range) pairs. The range pair is constructed in expr_cond_pair.
592
+ # The ValueRange of Piecewise is just the union of all expr ranges whose condition expr can be True.
593
+ @staticmethod
594
+ def piecewise(*ranges):
595
+ init_range = None
596
+ for expr_range, cond_range in ranges:
597
+ if sympy.true in cond_range:
598
+ if init_range is None:
599
+ init_range = expr_range
600
+ else:
601
+ init_range = init_range | expr_range
602
+ return init_range
603
+
604
+ @staticmethod
605
+ def cos(x):
606
+ # TODO: We should tighten value ranges
607
+ # If input range span is pi + 2*pi*k, then output range is (-1, 1)
608
+ # otherwise the minimum of the value of the function on the extremes
609
+ return ValueRanges(-1.0, 1.0)
610
+
611
+ @staticmethod
612
+ def cosh(x):
613
+ x = ValueRanges.wrap(x)
614
+ if x.lower > 0:
615
+ return ValueRanges.increasing_map(x, sympy.cosh)
616
+ elif x.upper < 0:
617
+ return ValueRanges.decreasing_map(x, sympy.cosh)
618
+ return ValueRanges(0.0, sympy.oo)
619
+
620
+ @staticmethod
621
+ def sin(x):
622
+ # TODO: We should tighten value ranges
623
+ # See details on cos
624
+ return ValueRanges(-1.0, 1.0)
625
+
626
+ @staticmethod
627
+ def sinh(x):
628
+ return ValueRanges.increasing_map(x, sympy.sinh)
629
+
630
+ @staticmethod
631
+ def tan(x):
632
+ return ValueRanges(-sympy.oo, sympy.oo)
633
+
634
+ @staticmethod
635
+ def tanh(x):
636
+ return ValueRanges.increasing_map(x, sympy.tanh)
637
+
638
+ @staticmethod
639
+ def asin(x):
640
+ x = ValueRanges.wrap(x)
641
+ if -1 <= x.lower and x.upper <= 1:
642
+ return ValueRanges.increasing_map(x, sympy.asin)
643
+ return ValueRanges.unknown()
644
+
645
+ @staticmethod
646
+ def acos(x):
647
+ x = ValueRanges.wrap(x)
648
+ if -1 <= x.lower and x.upper <= 1:
649
+ return ValueRanges.decreasing_map(x, sympy.acos)
650
+ return ValueRanges.unknown()
651
+
652
+ @staticmethod
653
+ def atan(x):
654
+ return ValueRanges.increasing_map(x, sympy.atan)
655
+
656
+
657
+ class ValueRangeAnalysis(SymPyValueRangeAnalysis):
658
+ def __init__(self):
659
+ self.name = "ValueRangeAnalysis"
660
+ boolean_operators = (
661
+ "xor",
662
+ "logical_and",
663
+ "logical_or",
664
+ "logical_not",
665
+ )
666
+ for op in boolean_operators:
667
+ setattr(self, op, self.bool_handler)
668
+
669
+ @staticmethod
670
+ def bool_handler(*args, **kwargs):
671
+ # just assuming bools can have both values
672
+ return ValueRanges(sympy.false, sympy.true) # type: ignore[arg-type]
673
+
674
+ @staticmethod
675
+ def default_handler(*args, **kwargs):
676
+ # many ops are unlikely to show up in optimizable indexing compute,
677
+ # so we dont have full coverage
678
+ return ValueRanges.unknown()
679
+
680
+ def load(self, name: str, index: sympy.Expr):
681
+ return ValueRanges.unknown()
682
+
683
+ def store(self, name, index, value, mode=None):
684
+ return
685
+
686
+ def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
687
+ return ValueRanges.unknown()
688
+
689
+ def index_expr(self, index, dtype):
690
+ assert isinstance(index, ValueRanges)
691
+ return index
692
+
693
+ @staticmethod
694
+ def to_dtype(x, dtype: torch.dtype, src_dtype: Optional[torch.dtype] = None):
695
+ x = ValueRanges.wrap(x)
696
+
697
+ if dtype == torch.bool:
698
+ if x.is_singleton():
699
+ return ValueRanges.wrap(x.lower != 0)
700
+ elif 0 not in x:
701
+ return ValueRanges.wrap(sympy.true)
702
+ else:
703
+ return ValueRanges(sympy.false, sympy.true)
704
+
705
+ def cast(x, dtype):
706
+ # dtype is int or float
707
+ if dtype.is_floating_point:
708
+ return sympy.Float(x)
709
+ else:
710
+ try:
711
+ return sympy.Integer(x)
712
+ except TypeError:
713
+ # inf cannot be cast to Integer
714
+ return x
715
+
716
+ if x.is_bool:
717
+ if x.is_singleton():
718
+ val = 1 if x.lower else 0
719
+ return ValueRanges.wrap(cast(val, dtype))
720
+ else:
721
+ return ValueRanges(cast(0, dtype), cast(1, dtype))
722
+ else:
723
+ # int to float or float to int
724
+ return ValueRanges(cast(x.lower, dtype), cast(x.upper, dtype))
725
+
726
+ @staticmethod
727
+ def square(x):
728
+ return ValueRanges.convex_min_zero_map(x, lambda y: y * y)
729
+
730
+ @staticmethod
731
+ def neg(x):
732
+ return ValueRanges.decreasing_map(x, operator.neg)
733
+
734
+ @classmethod
735
+ def truncdiv(cls, a, b):
736
+ x = cls.truediv(a, b)
737
+ if x == ValueRanges.unknown():
738
+ return x
739
+
740
+ def trunc(x):
741
+ return sympy.Integer(x) if x.is_finite else x
742
+
743
+ return ValueRanges.increasing_map(x, trunc)
744
+
745
+ @classmethod
746
+ def sub(cls, a, b):
747
+ return cls.add(a, cls.neg(b))
748
+
749
+ def __getattr__(self, name):
750
+ log.debug("unhandled ValueRange op %s", name)
751
+ return self.default_handler
752
+
753
+
754
+ def bound_sympy(expr: sympy.Expr, ranges: Optional[Dict[sympy.Symbol, ValueRanges]] = None) -> ValueRanges:
755
+ if isinstance(expr, sympy.Number):
756
+ return ValueRanges.wrap(expr)
757
+
758
+ ranges = ranges or {}
759
+
760
+ # If there's a tracing context, augment available constrained ranges.
761
+ context = torch._guards.TracingContext.try_get()
762
+ if context and context.fake_mode.shape_env:
763
+ ranges = {**context.fake_mode.shape_env.var_to_range, **ranges}
764
+
765
+ unbounded_vars = expr.free_symbols - ranges.keys()
766
+ if unbounded_vars:
767
+ # Give some bounds to the free variables via their SymPy assumptions
768
+ # TODO A better way of doing this would be to assign them a range upon creation, as
769
+ # size variables can come with a lower bound of 2, as we specialise on 0 and 1
770
+ unbounded_ranges: Dict[sympy.Symbol, ValueRanges] = {}
771
+ for s in unbounded_vars:
772
+ assert s.is_integer # type: ignore[attr-defined]
773
+ if s.is_positive: # type: ignore[attr-defined]
774
+ lower = 1
775
+ elif s.is_nonnegative: # type: ignore[attr-defined]
776
+ lower = 0
777
+ else:
778
+ lower = -math.inf # type: ignore[assignment]
779
+ unbounded_ranges[s] = ValueRanges(lower, math.inf) # type: ignore[index]
780
+ ranges = {**ranges, **unbounded_ranges}
781
+
782
+ return sympy_interp(SymPyValueRangeAnalysis, ranges, expr)
venv/lib/python3.10/site-packages/torch/utils/backcompat/__init__.py ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from torch._C import _set_backcompat_broadcast_warn
2
+ from torch._C import _get_backcompat_broadcast_warn
3
+ from torch._C import _set_backcompat_keepdim_warn
4
+ from torch._C import _get_backcompat_keepdim_warn
5
+
6
+
7
+ class Warning:
8
+ def __init__(self, setter, getter):
9
+ self.setter = setter
10
+ self.getter = getter
11
+
12
+ def set_enabled(self, value):
13
+ self.setter(value)
14
+
15
+ def get_enabled(self):
16
+ return self.getter()
17
+
18
+ enabled = property(get_enabled, set_enabled)
19
+
20
+ broadcast_warning = Warning(_set_backcompat_broadcast_warn, _get_backcompat_broadcast_warn)
21
+ keepdim_warning = Warning(_set_backcompat_keepdim_warn, _get_backcompat_keepdim_warn)
venv/lib/python3.10/site-packages/torch/utils/backcompat/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.09 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (503 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (198 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/blas_compare_setup.cpython-310.pyc ADDED
Binary file (4.06 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/compare.cpython-310.pyc ADDED
Binary file (3.53 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/fuzzer.cpython-310.pyc ADDED
Binary file (2.79 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/op_benchmark.cpython-310.pyc ADDED
Binary file (4.08 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/simple_timeit.cpython-310.pyc ADDED
Binary file (892 Bytes). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/__pycache__/spectral_ops_fuzz_test.cpython-310.pyc ADDED
Binary file (4.49 kB). View file
 
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/blas_compare_setup.py ADDED
@@ -0,0 +1,221 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import collections
2
+ import os
3
+ import shutil
4
+ import subprocess
5
+
6
+ try:
7
+ # no type stub for conda command line interface
8
+ import conda.cli.python_api # type: ignore[import]
9
+ from conda.cli.python_api import Commands as conda_commands
10
+ except ImportError:
11
+ # blas_compare.py will fail to import these when it's inside a conda env,
12
+ # but that's fine as it only wants the constants.
13
+ pass
14
+
15
+
16
+ WORKING_ROOT = "/tmp/pytorch_blas_compare_environments"
17
+ MKL_2020_3 = "mkl_2020_3"
18
+ MKL_2020_0 = "mkl_2020_0"
19
+ OPEN_BLAS = "open_blas"
20
+ EIGEN = "eigen"
21
+
22
+
23
+ GENERIC_ENV_VARS = ("USE_CUDA=0", "USE_ROCM=0")
24
+ BASE_PKG_DEPS = (
25
+ "cmake",
26
+ "hypothesis",
27
+ "ninja",
28
+ "numpy",
29
+ "pyyaml",
30
+ "setuptools",
31
+ "typing_extensions",
32
+ )
33
+
34
+
35
+ SubEnvSpec = collections.namedtuple(
36
+ "SubEnvSpec", (
37
+ "generic_installs",
38
+ "special_installs",
39
+ "environment_variables",
40
+
41
+ # Validate install.
42
+ "expected_blas_symbols",
43
+ "expected_mkl_version",
44
+ ))
45
+
46
+
47
+ SUB_ENVS = {
48
+ MKL_2020_3: SubEnvSpec(
49
+ generic_installs=(),
50
+ special_installs=("intel", ("mkl=2020.3", "mkl-include=2020.3")),
51
+ environment_variables=("BLAS=MKL",) + GENERIC_ENV_VARS,
52
+ expected_blas_symbols=("mkl_blas_sgemm",),
53
+ expected_mkl_version="2020.0.3",
54
+ ),
55
+
56
+ MKL_2020_0: SubEnvSpec(
57
+ generic_installs=(),
58
+ special_installs=("intel", ("mkl=2020.0", "mkl-include=2020.0")),
59
+ environment_variables=("BLAS=MKL",) + GENERIC_ENV_VARS,
60
+ expected_blas_symbols=("mkl_blas_sgemm",),
61
+ expected_mkl_version="2020.0.0",
62
+ ),
63
+
64
+ OPEN_BLAS: SubEnvSpec(
65
+ generic_installs=("openblas",),
66
+ special_installs=(),
67
+ environment_variables=("BLAS=OpenBLAS",) + GENERIC_ENV_VARS,
68
+ expected_blas_symbols=("exec_blas",),
69
+ expected_mkl_version=None,
70
+ ),
71
+
72
+ # EIGEN: SubEnvSpec(
73
+ # generic_installs=(),
74
+ # special_installs=(),
75
+ # environment_variables=("BLAS=Eigen",) + GENERIC_ENV_VARS,
76
+ # expected_blas_symbols=(),
77
+ # ),
78
+ }
79
+
80
+
81
+ def conda_run(*args):
82
+ """Convenience method."""
83
+ stdout, stderr, retcode = conda.cli.python_api.run_command(*args)
84
+ if retcode:
85
+ raise OSError(f"conda error: {str(args)} retcode: {retcode}\n{stderr}")
86
+
87
+ return stdout
88
+
89
+
90
+ def main():
91
+ if os.path.exists(WORKING_ROOT):
92
+ print("Cleaning: removing old working root.")
93
+ shutil.rmtree(WORKING_ROOT)
94
+ os.makedirs(WORKING_ROOT)
95
+
96
+ git_root = subprocess.check_output(
97
+ "git rev-parse --show-toplevel",
98
+ shell=True,
99
+ cwd=os.path.dirname(os.path.realpath(__file__))
100
+ ).decode("utf-8").strip()
101
+
102
+ for env_name, env_spec in SUB_ENVS.items():
103
+ env_path = os.path.join(WORKING_ROOT, env_name)
104
+ print(f"Creating env: {env_name}: ({env_path})")
105
+ conda_run(
106
+ conda_commands.CREATE,
107
+ "--no-default-packages",
108
+ "--prefix", env_path,
109
+ "python=3",
110
+ )
111
+
112
+ print("Testing that env can be activated:")
113
+ base_source = subprocess.run(
114
+ f"source activate {env_path}",
115
+ shell=True,
116
+ capture_output=True,
117
+ check=False,
118
+ )
119
+ if base_source.returncode:
120
+ raise OSError(
121
+ "Failed to source base environment:\n"
122
+ f" stdout: {base_source.stdout.decode('utf-8')}\n"
123
+ f" stderr: {base_source.stderr.decode('utf-8')}"
124
+ )
125
+
126
+ print("Installing packages:")
127
+ conda_run(
128
+ conda_commands.INSTALL,
129
+ "--prefix", env_path,
130
+ *(BASE_PKG_DEPS + env_spec.generic_installs)
131
+ )
132
+
133
+ if env_spec.special_installs:
134
+ channel, channel_deps = env_spec.special_installs
135
+ print(f"Installing packages from channel: {channel}")
136
+ conda_run(
137
+ conda_commands.INSTALL,
138
+ "--prefix", env_path,
139
+ "-c", channel, *channel_deps
140
+ )
141
+
142
+ if env_spec.environment_variables:
143
+ print("Setting environment variables.")
144
+
145
+ # This does not appear to be possible using the python API.
146
+ env_set = subprocess.run(
147
+ f"source activate {env_path} && "
148
+ f"conda env config vars set {' '.join(env_spec.environment_variables)}",
149
+ shell=True,
150
+ capture_output=True,
151
+ check=False,
152
+ )
153
+ if env_set.returncode:
154
+ raise OSError(
155
+ "Failed to set environment variables:\n"
156
+ f" stdout: {env_set.stdout.decode('utf-8')}\n"
157
+ f" stderr: {env_set.stderr.decode('utf-8')}"
158
+ )
159
+
160
+ # Check that they were actually set correctly.
161
+ actual_env_vars = subprocess.run(
162
+ f"source activate {env_path} && env",
163
+ shell=True,
164
+ capture_output=True,
165
+ check=True,
166
+ ).stdout.decode("utf-8").strip().splitlines()
167
+ for e in env_spec.environment_variables:
168
+ assert e in actual_env_vars, f"{e} not in envs"
169
+
170
+ print(f"Building PyTorch for env: `{env_name}`")
171
+ # We have to re-run during each build to pick up the new
172
+ # build config settings.
173
+ build_run = subprocess.run(
174
+ f"source activate {env_path} && "
175
+ f"cd {git_root} && "
176
+ "python setup.py install --cmake",
177
+ shell=True,
178
+ capture_output=True,
179
+ check=True,
180
+ )
181
+
182
+ print("Checking configuration:")
183
+ check_run = subprocess.run(
184
+ # Shameless abuse of `python -c ...`
185
+ f"source activate {env_path} && "
186
+ "python -c \""
187
+ "import torch;"
188
+ "from torch.utils.benchmark import Timer;"
189
+ "print(torch.__config__.show());"
190
+ "setup = 'x=torch.ones((128, 128));y=torch.ones((128, 128))';"
191
+ "counts = Timer('torch.mm(x, y)', setup).collect_callgrind(collect_baseline=False);"
192
+ "stats = counts.as_standardized().stats(inclusive=True);"
193
+ "print(stats.filter(lambda l: 'blas' in l.lower()))\"",
194
+ shell=True,
195
+ capture_output=True,
196
+ check=False,
197
+ )
198
+ if check_run.returncode:
199
+ raise OSError(
200
+ "Failed to set environment variables:\n"
201
+ f" stdout: {check_run.stdout.decode('utf-8')}\n"
202
+ f" stderr: {check_run.stderr.decode('utf-8')}"
203
+ )
204
+ check_run_stdout = check_run.stdout.decode('utf-8')
205
+ print(check_run_stdout)
206
+
207
+ for e in env_spec.environment_variables:
208
+ if "BLAS" in e:
209
+ assert e in check_run_stdout, f"PyTorch build did not respect `BLAS=...`: {e}"
210
+
211
+ for s in env_spec.expected_blas_symbols:
212
+ assert s in check_run_stdout
213
+
214
+ if env_spec.expected_mkl_version is not None:
215
+ assert f"- Intel(R) Math Kernel Library Version {env_spec.expected_mkl_version}" in check_run_stdout
216
+
217
+ print(f"Build complete: {env_name}")
218
+
219
+
220
+ if __name__ == "__main__":
221
+ main()
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/compare.py ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Example of Timer and Compare APIs:
2
+
3
+ $ python -m examples.compare
4
+ """
5
+
6
+ import pickle
7
+ import sys
8
+ import time
9
+
10
+ import torch
11
+
12
+ import torch.utils.benchmark as benchmark_utils
13
+
14
+
15
+ class FauxTorch:
16
+ """Emulate different versions of pytorch.
17
+
18
+ In normal circumstances this would be done with multiple processes
19
+ writing serialized measurements, but this simplifies that model to
20
+ make the example clearer.
21
+ """
22
+ def __init__(self, real_torch, extra_ns_per_element):
23
+ self._real_torch = real_torch
24
+ self._extra_ns_per_element = extra_ns_per_element
25
+
26
+ def extra_overhead(self, result):
27
+ # time.sleep has a ~65 us overhead, so only fake a
28
+ # per-element overhead if numel is large enough.
29
+ numel = int(result.numel())
30
+ if numel > 5000:
31
+ time.sleep(numel * self._extra_ns_per_element * 1e-9)
32
+ return result
33
+
34
+ def add(self, *args, **kwargs):
35
+ return self.extra_overhead(self._real_torch.add(*args, **kwargs))
36
+
37
+ def mul(self, *args, **kwargs):
38
+ return self.extra_overhead(self._real_torch.mul(*args, **kwargs))
39
+
40
+ def cat(self, *args, **kwargs):
41
+ return self.extra_overhead(self._real_torch.cat(*args, **kwargs))
42
+
43
+ def matmul(self, *args, **kwargs):
44
+ return self.extra_overhead(self._real_torch.matmul(*args, **kwargs))
45
+
46
+
47
+ def main():
48
+ tasks = [
49
+ ("add", "add", "torch.add(x, y)"),
50
+ ("add", "add (extra +0)", "torch.add(x, y + zero)"),
51
+ ]
52
+
53
+ serialized_results = []
54
+ repeats = 2
55
+ timers = [
56
+ benchmark_utils.Timer(
57
+ stmt=stmt,
58
+ globals={
59
+ "torch": torch if branch == "master" else FauxTorch(torch, overhead_ns),
60
+ "x": torch.ones((size, 4)),
61
+ "y": torch.ones((1, 4)),
62
+ "zero": torch.zeros(()),
63
+ },
64
+ label=label,
65
+ sub_label=sub_label,
66
+ description=f"size: {size}",
67
+ env=branch,
68
+ num_threads=num_threads,
69
+ )
70
+ for branch, overhead_ns in [("master", None), ("my_branch", 1), ("severe_regression", 5)]
71
+ for label, sub_label, stmt in tasks
72
+ for size in [1, 10, 100, 1000, 10000, 50000]
73
+ for num_threads in [1, 4]
74
+ ]
75
+
76
+ for i, timer in enumerate(timers * repeats):
77
+ serialized_results.append(pickle.dumps(
78
+ timer.blocked_autorange(min_run_time=0.05)
79
+ ))
80
+ print(f"\r{i + 1} / {len(timers) * repeats}", end="")
81
+ sys.stdout.flush()
82
+ print()
83
+
84
+ comparison = benchmark_utils.Compare([
85
+ pickle.loads(i) for i in serialized_results
86
+ ])
87
+
88
+ print("== Unformatted " + "=" * 80 + "\n" + "/" * 95 + "\n")
89
+ comparison.print()
90
+
91
+ print("== Formatted " + "=" * 80 + "\n" + "/" * 93 + "\n")
92
+ comparison.trim_significant_figures()
93
+ comparison.colorize()
94
+ comparison.print()
95
+
96
+
97
+ if __name__ == "__main__":
98
+ main()
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/fuzzer.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Example of the Timer and Fuzzer APIs:
2
+
3
+ $ python -m examples.fuzzer
4
+ """
5
+
6
+ import sys
7
+
8
+ import torch.utils.benchmark as benchmark_utils
9
+
10
+
11
+ def main():
12
+ add_fuzzer = benchmark_utils.Fuzzer(
13
+ parameters=[
14
+ [
15
+ benchmark_utils.FuzzedParameter(
16
+ name=f"k{i}",
17
+ minval=16,
18
+ maxval=16 * 1024,
19
+ distribution="loguniform",
20
+ ) for i in range(3)
21
+ ],
22
+ benchmark_utils.FuzzedParameter(
23
+ name="d",
24
+ distribution={2: 0.6, 3: 0.4},
25
+ ),
26
+ ],
27
+ tensors=[
28
+ [
29
+ benchmark_utils.FuzzedTensor(
30
+ name=name,
31
+ size=("k0", "k1", "k2"),
32
+ dim_parameter="d",
33
+ probability_contiguous=0.75,
34
+ min_elements=64 * 1024,
35
+ max_elements=128 * 1024,
36
+ ) for name in ("x", "y")
37
+ ],
38
+ ],
39
+ seed=0,
40
+ )
41
+
42
+ n = 250
43
+ measurements = []
44
+ for i, (tensors, tensor_properties, _) in enumerate(add_fuzzer.take(n=n)):
45
+ x, x_order = tensors["x"], str(tensor_properties["x"]["order"])
46
+ y, y_order = tensors["y"], str(tensor_properties["y"]["order"])
47
+ shape = ", ".join(tuple(f'{i:>4}' for i in x.shape))
48
+
49
+ description = "".join([
50
+ f"{x.numel():>7} | {shape:<16} | ",
51
+ f"{'contiguous' if x.is_contiguous() else x_order:<12} | ",
52
+ f"{'contiguous' if y.is_contiguous() else y_order:<12} | ",
53
+ ])
54
+
55
+ timer = benchmark_utils.Timer(
56
+ stmt="x + y",
57
+ globals=tensors,
58
+ description=description,
59
+ )
60
+
61
+ measurements.append(timer.blocked_autorange(min_run_time=0.1))
62
+ measurements[-1].metadata = {"numel": x.numel()}
63
+ print(f"\r{i + 1} / {n}", end="")
64
+ sys.stdout.flush()
65
+ print()
66
+
67
+ # More string munging to make pretty output.
68
+ print(f"Average attempts per valid config: {1. / (1. - add_fuzzer.rejection_rate):.1f}")
69
+
70
+ def time_fn(m):
71
+ return m.median / m.metadata["numel"]
72
+ measurements.sort(key=time_fn)
73
+
74
+ template = f"{{:>6}}{' ' * 19}Size Shape{' ' * 13}X order Y order\n{'-' * 80}"
75
+ print(template.format("Best:"))
76
+ for m in measurements[:15]:
77
+ print(f"{time_fn(m) * 1e9:>4.1f} ns / element {m.description}")
78
+
79
+ print("\n" + template.format("Worst:"))
80
+ for m in measurements[-15:]:
81
+ print(f"{time_fn(m) * 1e9:>4.1f} ns / element {m.description}")
82
+
83
+
84
+ if __name__ == "__main__":
85
+ main()
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/op_benchmark.py ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Example use of Timer and op fuzzers to measure kernel performance.
2
+
3
+ $ python -m examples.op_benchmark
4
+ """
5
+
6
+ import numpy as np
7
+ import torch
8
+
9
+ from torch.utils.benchmark import Timer
10
+ from torch.utils.benchmark.op_fuzzers.binary import BinaryOpFuzzer
11
+ from torch.utils.benchmark.op_fuzzers.unary import UnaryOpFuzzer
12
+
13
+
14
+ _MEASURE_TIME = 1.0
15
+
16
+
17
+ def assert_dicts_equal(dict_0, dict_1):
18
+ """Builtin dict comparison will not compare numpy arrays.
19
+ e.g.
20
+ x = {"a": np.ones((2, 1))}
21
+ x == x # Raises ValueError
22
+ """
23
+ assert set(dict_0.keys()) == set(dict_0.keys())
24
+ assert all(np.all(v == dict_1[k]) for k, v in dict_0.items() if k != "dtype")
25
+
26
+
27
+ def run(n, stmt, fuzzer_cls):
28
+ float_iter = fuzzer_cls(seed=0, dtype=torch.float32).take(n)
29
+ int_iter = fuzzer_cls(seed=0, dtype=torch.int32).take(n)
30
+ raw_results = []
31
+ for i, (float_values, int_values) in enumerate(zip(float_iter, int_iter)):
32
+ float_tensors, float_tensor_params, float_params = float_values
33
+ int_tensors, int_tensor_params, int_params = int_values
34
+
35
+ # This benchmark assumes that the two fuzzers generate identically
36
+ # sized and strided Tensors, since the same seed is used.
37
+ assert_dicts_equal(float_params, int_params)
38
+ assert_dicts_equal(float_tensor_params["x"], int_tensor_params["x"])
39
+
40
+ float_measurement, int_measurement = (
41
+ Timer(
42
+ stmt,
43
+ globals=tensors,
44
+ ).blocked_autorange(min_run_time=_MEASURE_TIME)
45
+ for tensors in (float_tensors, int_tensors)
46
+ )
47
+
48
+ descriptions = []
49
+ for name in float_tensors:
50
+ shape_str = "(" + ", ".join([
51
+ f"2 ** {int(np.log2(i))}"
52
+ if 2 ** int(np.log2(i)) == i and i > 1
53
+ else str(i)
54
+ for i in float_tensors[name].shape
55
+ ]) + ")"
56
+ order = float_tensor_params[name]["order"]
57
+ order_str = ("" if all(order == np.arange(len(order))) else str(tuple(order)))
58
+ steps = float_tensor_params[name]["steps"]
59
+ steps_str = str(steps) if sum(steps) > len(steps) else ""
60
+ descriptions.append((name, shape_str, order_str, steps_str))
61
+ raw_results.append((float_measurement, int_measurement, descriptions))
62
+
63
+ print(f"\r{i + 1} / {n}", end="")
64
+ print()
65
+
66
+ parsed_results, name_len, shape_len, order_len, steps_len = [], 0, 0, 0, 0
67
+ for float_measurement, int_measurement, descriptions in raw_results:
68
+ t_float = float_measurement.median * 1e6
69
+ t_int = int_measurement.median * 1e6
70
+ rel_diff = abs(t_float - t_int) / (t_float + t_int) * 2
71
+ parsed_results.append((t_float, t_int, rel_diff, descriptions))
72
+ for name, shape, order, steps in descriptions:
73
+ name_len = max(name_len, len(name))
74
+ shape_len = max(shape_len, len(shape))
75
+ order_len = max(order_len, len(order))
76
+ steps_len = max(steps_len, len(steps))
77
+
78
+ parsed_results.sort(key=lambda x: x[2])
79
+
80
+ print(f"stmt: {stmt}")
81
+ print(f" diff faster{'':>17}{' ' * name_len} ", end="")
82
+ print(f"{'shape'.ljust(shape_len)}{'':>16}{'order'.ljust(order_len)}", end="")
83
+ print(f" steps\n{'-' * 100}")
84
+ for results, spacer in [(parsed_results[:10], "..."), (parsed_results[-10:], "")]:
85
+ for t_float, t_int, rel_diff, descriptions in results:
86
+ time_str = [f"{rel_diff * 100:>4.1f}% {'int' if t_int < t_float else 'float':<20}"]
87
+ time_str.extend(["".ljust(len(time_str[0])) for _ in descriptions[:-1]])
88
+ for t_str, (name, shape, order, steps) in zip(time_str, descriptions):
89
+ name = f"{name}:".ljust(name_len + 1)
90
+ shape = shape.ljust(shape_len + 10)
91
+ order = order.ljust(order_len)
92
+ print(f"{t_str} {name} {shape}| {order} | {steps}")
93
+ print(spacer)
94
+
95
+
96
+ def main():
97
+ run(n=100, stmt="torch.median(x, dim=0)", fuzzer_cls=UnaryOpFuzzer)
98
+ run(n=100, stmt="torch.square(x)", fuzzer_cls=UnaryOpFuzzer)
99
+ run(n=100, stmt="x + y", fuzzer_cls=BinaryOpFuzzer)
100
+
101
+
102
+ if __name__ == "__main__":
103
+ main()
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/simple_timeit.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Trivial use of Timer API:
2
+
3
+ $ python -m examples.simple_timeit
4
+ """
5
+
6
+ import torch
7
+
8
+ import torch.utils.benchmark as benchmark_utils
9
+
10
+
11
+ def main():
12
+ timer = benchmark_utils.Timer(
13
+ stmt="x + y",
14
+ globals={"x": torch.ones((4, 8)), "y": torch.ones((1, 8))},
15
+ label="Broadcasting add (4x8)",
16
+ )
17
+
18
+ for i in range(3):
19
+ print(f"Run: {i}\n{'-' * 40}")
20
+ print(f"timeit:\n{timer.timeit(10000)}\n")
21
+ print(f"autorange:\n{timer.blocked_autorange()}\n\n")
22
+
23
+
24
+ if __name__ == "__main__":
25
+ main()
venv/lib/python3.10/site-packages/torch/utils/benchmark/examples/spectral_ops_fuzz_test.py ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Microbenchmarks for the torch.fft module"""
2
+ from argparse import ArgumentParser
3
+ from collections import namedtuple
4
+ from collections.abc import Iterable
5
+
6
+ import torch
7
+ import torch.fft
8
+ from torch.utils import benchmark
9
+ from torch.utils.benchmark.op_fuzzers.spectral import SpectralOpFuzzer
10
+
11
+
12
+ def _dim_options(ndim):
13
+ if ndim == 1:
14
+ return [None]
15
+ elif ndim == 2:
16
+ return [0, 1, None]
17
+ elif ndim == 3:
18
+ return [0, 1, 2, (0, 1), (0, 2), None]
19
+ raise ValueError(f"Expected ndim in range 1-3, got {ndim}")
20
+
21
+
22
+ def run_benchmark(name: str, function: object, dtype: torch.dtype, seed: int, device: str, samples: int,
23
+ probability_regular: float):
24
+ cuda = device == 'cuda'
25
+ spectral_fuzzer = SpectralOpFuzzer(seed=seed, dtype=dtype, cuda=cuda,
26
+ probability_regular=probability_regular)
27
+ results = []
28
+ for tensors, tensor_params, params in spectral_fuzzer.take(samples):
29
+ shape = [params['k0'], params['k1'], params['k2']][:params['ndim']]
30
+ str_shape = ' x '.join([f"{s:<4}" for s in shape])
31
+ sub_label = f"{str_shape} {'' if tensor_params['x']['is_contiguous'] else '(discontiguous)'}"
32
+ for dim in _dim_options(params['ndim']):
33
+ for nthreads in (1, 4, 16) if not cuda else (1,):
34
+ measurement = benchmark.Timer(
35
+ stmt='func(x, dim=dim)',
36
+ globals={'func': function, 'x': tensors['x'], 'dim': dim},
37
+ label=f"{name}_{device}",
38
+ sub_label=sub_label,
39
+ description=f"dim={dim}",
40
+ num_threads=nthreads,
41
+ ).blocked_autorange(min_run_time=1)
42
+ measurement.metadata = {
43
+ 'name': name,
44
+ 'device': device,
45
+ 'dim': dim,
46
+ 'shape': shape,
47
+ }
48
+ measurement.metadata.update(tensor_params['x'])
49
+ results.append(measurement)
50
+ return results
51
+
52
+
53
+ Benchmark = namedtuple('Benchmark', ['name', 'function', 'dtype'])
54
+ BENCHMARKS = [
55
+ Benchmark('fft_real', torch.fft.fftn, torch.float32),
56
+ Benchmark('fft_complex', torch.fft.fftn, torch.complex64),
57
+ Benchmark('ifft', torch.fft.ifftn, torch.complex64),
58
+ Benchmark('rfft', torch.fft.rfftn, torch.float32),
59
+ Benchmark('irfft', torch.fft.irfftn, torch.complex64),
60
+ ]
61
+ BENCHMARK_MAP = {b.name: b for b in BENCHMARKS}
62
+ BENCHMARK_NAMES = [b.name for b in BENCHMARKS]
63
+ DEVICE_NAMES = ['cpu', 'cuda']
64
+
65
+ def _output_csv(file, results):
66
+ file.write('benchmark,device,num_threads,numel,shape,contiguous,dim,mean (us),median (us),iqr (us)\n')
67
+ for measurement in results:
68
+ metadata = measurement.metadata
69
+ device, dim, shape, name, numel, contiguous = (
70
+ metadata['device'], metadata['dim'], metadata['shape'],
71
+ metadata['name'], metadata['numel'], metadata['is_contiguous'])
72
+
73
+ if isinstance(dim, Iterable):
74
+ dim_str = '-'.join(str(d) for d in dim)
75
+ else:
76
+ dim_str = str(dim)
77
+ shape_str = 'x'.join(str(s) for s in shape)
78
+
79
+ print(name, device, measurement.task_spec.num_threads, numel, shape_str, contiguous, dim_str, # type: ignore[possibly-undefined]
80
+ measurement.mean * 1e6, measurement.median * 1e6, measurement.iqr * 1e6,
81
+ sep=',', file=file)
82
+
83
+
84
+ if __name__ == '__main__':
85
+ parser = ArgumentParser(description=__doc__)
86
+ parser.add_argument('--device', type=str, choices=DEVICE_NAMES, nargs='+', default=DEVICE_NAMES)
87
+ parser.add_argument('--bench', type=str, choices=BENCHMARK_NAMES, nargs='+', default=BENCHMARK_NAMES)
88
+ parser.add_argument('--seed', type=int, default=0)
89
+ parser.add_argument('--samples', type=int, default=10)
90
+ parser.add_argument('--probability-regular', '--probability_regular', type=float, default=1.0)
91
+ parser.add_argument('-o', '--output', type=str)
92
+ args = parser.parse_args()
93
+
94
+ num_benchmarks = len(args.device) * len(args.bench)
95
+ i = 0
96
+ results = []
97
+ for device in args.device:
98
+ for bench in (BENCHMARK_MAP[b] for b in args.bench):
99
+ results += run_benchmark(
100
+ name=bench.name, function=bench.function, dtype=bench.dtype,
101
+ seed=args.seed, device=device, samples=args.samples,
102
+ probability_regular=args.probability_regular)
103
+ i += 1
104
+ print(f'Completed {bench.name} benchmark on {device} ({i} of {num_benchmarks})')
105
+
106
+ if args.output is not None:
107
+ with open(args.output, 'w') as f:
108
+ _output_csv(f, results)
109
+
110
+ compare = benchmark.Compare(results)
111
+ compare.trim_significant_figures()
112
+ compare.colorize()
113
+ compare.print()