Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/3.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/3.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg.pt +3 -0
- lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug-internal.log +182 -0
- lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/config.yaml +43 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log +34 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/requirements.txt +155 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-summary.json +1 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug-internal.log +183 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/run-yqqf3gci.wandb +0 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/config.yaml +44 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log +38 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-metadata.json +850 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug-internal.log +196 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug.log +29 -0
- lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/run-fi4sos5j.wandb +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py +65 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py +144 -0
- venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +1504 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__init__.py +112 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py +218 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py +718 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py +1427 -0
- venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py +1099 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__init__.py +70 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/configuration_gptsan_japanese.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py +156 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py +181 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py +1343 -0
- venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py +526 -0
ckpts/universal/global_step20/zero/3.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:46198f0d490fa17143187016e15d158ca84efcafea46ccfe5d91dda8e0b26bc3
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/3.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ebfd91f176c4b8ce9b3795525983e33255e9a04480e63b4692d12b3abe0b7778
|
3 |
+
size 33555627
|
ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d6053a8dab8d5ed81b669e5569809ede3910dc2e615fcac85c2ca1957c4fc95
|
3 |
+
size 9372
|
ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8082119865df759836867ddbfaf9152547cca6f03ddd4c61a268bd14aac036fc
|
3 |
+
size 9387
|
ckpts/universal/global_step20/zero/5.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7b67fa3a6d4f6079276d7d1aa7b8d931aea9838af0667abaf36483cc4eceafc8
|
3 |
+
size 9293
|
ckpts/universal/global_step20/zero/9.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c7f9c4024e79471049640a1bc60425b091f525f1479a331ede254245f08d3b3d
|
3 |
+
size 50332828
|
lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.0
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.2.1
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.0
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 11}}
|
lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug-internal.log
ADDED
@@ -0,0 +1,182 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-22 18:59:44,431 INFO StreamThr :4100 [internal.py:wandb_internal():85] W&B internal server running at pid: 4100, started at: 2024-05-22 18:59:44.429193
|
2 |
+
2024-05-22 18:59:44,436 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-22 18:59:44,437 INFO WriterThread:4100 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/run-8sj20j0r.wandb
|
4 |
+
2024-05-22 18:59:44,439 DEBUG SenderThread:4100 [sender.py:send():378] send: header
|
5 |
+
2024-05-22 18:59:44,442 DEBUG SenderThread:4100 [sender.py:send():378] send: run
|
6 |
+
2024-05-22 18:59:44,700 INFO SenderThread:4100 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files
|
7 |
+
2024-05-22 18:59:44,701 INFO SenderThread:4100 [sender.py:_start_run_threads():1123] run started: 8sj20j0r with start time 1716404384.42905
|
8 |
+
2024-05-22 18:59:44,705 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-22 18:59:44,705 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-22 18:59:44,826 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-22 18:59:44,828 DEBUG HandlerThread:4100 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-22 18:59:44,829 DEBUG HandlerThread:4100 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-22 18:59:44,829 INFO HandlerThread:4100 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-22 18:59:44,829 INFO SystemMonitor:4100 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-22 18:59:44,829 INFO HandlerThread:4100 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-22 18:59:44,836 INFO SystemMonitor:4100 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-22 18:59:44,836 INFO SystemMonitor:4100 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-22 18:59:44,842 INFO SystemMonitor:4100 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-22 18:59:44,842 INFO SystemMonitor:4100 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-22 18:59:44,922 DEBUG HandlerThread:4100 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-22 18:59:44,926 DEBUG HandlerThread:4100 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-22 18:59:44,937 ERROR HandlerThread:4100 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-22 18:59:44,937 DEBUG HandlerThread:4100 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-22 18:59:44,937 DEBUG HandlerThread:4100 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-22 18:59:44,937 DEBUG HandlerThread:4100 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-22T18:59:44.922176', 'startedAt': '2024-05-22T18:59:44.408977', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step4000', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2347.7606062500004, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3321.773, 'min': 800.0, 'max': 3400.0}, {'current': 3321.767, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3299.997, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3300.871, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.6415901184082}}, 'memory': {'total': 1007.4379997253418}}
|
31 |
+
2024-05-22 18:59:44,937 INFO HandlerThread:4100 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-22 18:59:44,937 INFO HandlerThread:4100 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-22 18:59:44,942 INFO HandlerThread:4100 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-22 18:59:44,948 DEBUG SenderThread:4100 [sender.py:send():378] send: files
|
35 |
+
2024-05-22 18:59:44,948 INFO SenderThread:4100 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-22 18:59:45,131 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-22 18:59:45,131 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-22 18:59:45,132 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-22 18:59:45,133 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-22 18:59:45,252 DEBUG SenderThread:4100 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-22 18:59:45,539 INFO wandb-upload_0:4100 [upload_job.py:push():130] Uploaded file /tmp/tmp2xnq2_a6wandb/qzh7qybp-wandb-metadata.json
|
42 |
+
2024-05-22 18:59:45,703 INFO Thread-12 :4100 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log
|
43 |
+
2024-05-22 18:59:45,703 INFO Thread-12 :4100 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/requirements.txt
|
44 |
+
2024-05-22 18:59:45,703 INFO Thread-12 :4100 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-metadata.json
|
45 |
+
2024-05-22 18:59:47,703 INFO Thread-12 :4100 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log
|
46 |
+
2024-05-22 18:59:50,258 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-22 18:59:55,628 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: status_report
|
48 |
+
2024-05-22 18:59:55,711 INFO Thread-12 :4100 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log
|
49 |
+
2024-05-22 18:59:55,920 DEBUG SenderThread:4100 [sender.py:send():378] send: exit
|
50 |
+
2024-05-22 18:59:55,920 INFO SenderThread:4100 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-22 18:59:55,920 INFO SenderThread:4100 [sender.py:send_exit():587] handling runtime: 11
|
52 |
+
2024-05-22 18:59:55,922 INFO SenderThread:4100 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-22 18:59:55,922 INFO SenderThread:4100 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-22 18:59:55,922 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-22 18:59:55,922 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-22 18:59:55,922 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-22 18:59:55,922 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-22 18:59:55,923 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-22 18:59:55,923 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-22 18:59:55,923 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-22 18:59:55,923 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-22 18:59:55,923 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-22 18:59:55,923 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-22 18:59:55,923 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-22 18:59:55,923 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-22 18:59:55,923 INFO HandlerThread:4100 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-22 18:59:55,923 DEBUG SystemMonitor:4100 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-22 18:59:55,923 DEBUG SystemMonitor:4100 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-22 18:59:55,923 DEBUG SystemMonitor:4100 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-22 18:59:55,924 INFO HandlerThread:4100 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-22 18:59:55,924 INFO HandlerThread:4100 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-22 18:59:55,924 INFO HandlerThread:4100 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-22 18:59:55,924 INFO HandlerThread:4100 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-22 18:59:55,924 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-22 18:59:55,924 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-22 18:59:55,925 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-22 18:59:55,925 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
78 |
+
2024-05-22 18:59:55,925 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 3
|
79 |
+
2024-05-22 18:59:55,925 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
80 |
+
2024-05-22 18:59:55,925 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 3
|
81 |
+
2024-05-22 18:59:55,925 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 4
|
82 |
+
2024-05-22 18:59:55,925 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
83 |
+
2024-05-22 18:59:55,925 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 4
|
84 |
+
2024-05-22 18:59:55,925 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
85 |
+
2024-05-22 18:59:55,925 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 4
|
86 |
+
2024-05-22 18:59:55,925 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 5
|
87 |
+
2024-05-22 18:59:55,925 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
88 |
+
2024-05-22 18:59:55,925 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 5
|
89 |
+
2024-05-22 18:59:55,925 DEBUG SenderThread:4100 [sender.py:send():378] send: summary
|
90 |
+
2024-05-22 18:59:55,929 INFO SenderThread:4100 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
91 |
+
2024-05-22 18:59:55,929 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
92 |
+
2024-05-22 18:59:55,929 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 5
|
93 |
+
2024-05-22 18:59:55,929 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 6
|
94 |
+
2024-05-22 18:59:55,929 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
95 |
+
2024-05-22 18:59:55,929 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 6
|
96 |
+
2024-05-22 18:59:55,929 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
97 |
+
2024-05-22 18:59:55,930 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 6
|
98 |
+
2024-05-22 18:59:55,934 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: status_report
|
99 |
+
2024-05-22 18:59:56,072 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 7
|
100 |
+
2024-05-22 18:59:56,072 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
101 |
+
2024-05-22 18:59:56,072 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 7
|
102 |
+
2024-05-22 18:59:56,072 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
103 |
+
2024-05-22 18:59:56,072 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 7
|
104 |
+
2024-05-22 18:59:56,712 INFO Thread-12 :4100 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/config.yaml
|
105 |
+
2024-05-22 18:59:56,712 INFO Thread-12 :4100 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-summary.json
|
106 |
+
2024-05-22 18:59:56,920 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: poll_exit
|
107 |
+
2024-05-22 18:59:57,280 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 8
|
108 |
+
2024-05-22 18:59:57,281 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: poll_exit
|
109 |
+
2024-05-22 18:59:57,281 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
110 |
+
2024-05-22 18:59:57,281 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 8
|
111 |
+
2024-05-22 18:59:57,281 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
112 |
+
2024-05-22 18:59:57,281 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 8
|
113 |
+
2024-05-22 18:59:57,281 INFO SenderThread:4100 [job_builder.py:build():432] Attempting to build job artifact
|
114 |
+
2024-05-22 18:59:57,282 INFO SenderThread:4100 [job_builder.py:_get_source_type():576] no source found
|
115 |
+
2024-05-22 18:59:57,282 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 9
|
116 |
+
2024-05-22 18:59:57,282 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
117 |
+
2024-05-22 18:59:57,282 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 9
|
118 |
+
2024-05-22 18:59:57,282 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
119 |
+
2024-05-22 18:59:57,282 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 9
|
120 |
+
2024-05-22 18:59:57,282 INFO SenderThread:4100 [dir_watcher.py:finish():358] shutting down directory watcher
|
121 |
+
2024-05-22 18:59:57,713 INFO SenderThread:4100 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log
|
122 |
+
2024-05-22 18:59:57,714 INFO SenderThread:4100 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files
|
123 |
+
2024-05-22 18:59:57,714 INFO SenderThread:4100 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/config.yaml config.yaml
|
124 |
+
2024-05-22 18:59:57,714 INFO SenderThread:4100 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log output.log
|
125 |
+
2024-05-22 18:59:57,717 INFO SenderThread:4100 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/requirements.txt requirements.txt
|
126 |
+
2024-05-22 18:59:57,717 INFO SenderThread:4100 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-metadata.json wandb-metadata.json
|
127 |
+
2024-05-22 18:59:57,717 INFO SenderThread:4100 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-summary.json wandb-summary.json
|
128 |
+
2024-05-22 18:59:57,717 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 10
|
129 |
+
2024-05-22 18:59:57,717 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
130 |
+
2024-05-22 18:59:57,717 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 10
|
131 |
+
2024-05-22 18:59:57,719 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
132 |
+
2024-05-22 18:59:57,719 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 10
|
133 |
+
2024-05-22 18:59:57,719 INFO SenderThread:4100 [file_pusher.py:finish():169] shutting down file pusher
|
134 |
+
2024-05-22 18:59:57,921 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: poll_exit
|
135 |
+
2024-05-22 18:59:57,921 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: poll_exit
|
136 |
+
2024-05-22 18:59:57,955 INFO wandb-upload_0:4100 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/config.yaml
|
137 |
+
2024-05-22 18:59:58,393 INFO wandb-upload_1:4100 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/output.log
|
138 |
+
2024-05-22 18:59:58,444 INFO wandb-upload_3:4100 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/wandb-summary.json
|
139 |
+
2024-05-22 18:59:58,446 INFO wandb-upload_2:4100 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/files/requirements.txt
|
140 |
+
2024-05-22 18:59:58,646 INFO Thread-11 (_thread_body):4100 [sender.py:transition_state():613] send defer: 11
|
141 |
+
2024-05-22 18:59:58,646 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
142 |
+
2024-05-22 18:59:58,646 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 11
|
143 |
+
2024-05-22 18:59:58,646 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
144 |
+
2024-05-22 18:59:58,646 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 11
|
145 |
+
2024-05-22 18:59:58,646 INFO SenderThread:4100 [file_pusher.py:join():175] waiting for file pusher
|
146 |
+
2024-05-22 18:59:58,647 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 12
|
147 |
+
2024-05-22 18:59:58,647 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
148 |
+
2024-05-22 18:59:58,647 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 12
|
149 |
+
2024-05-22 18:59:58,647 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
150 |
+
2024-05-22 18:59:58,647 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 12
|
151 |
+
2024-05-22 18:59:58,647 INFO SenderThread:4100 [file_stream.py:finish():601] file stream finish called
|
152 |
+
2024-05-22 18:59:58,708 INFO SenderThread:4100 [file_stream.py:finish():605] file stream finish is done
|
153 |
+
2024-05-22 18:59:58,709 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 13
|
154 |
+
2024-05-22 18:59:58,709 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
155 |
+
2024-05-22 18:59:58,709 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 13
|
156 |
+
2024-05-22 18:59:58,709 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
157 |
+
2024-05-22 18:59:58,709 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 13
|
158 |
+
2024-05-22 18:59:58,709 INFO SenderThread:4100 [sender.py:transition_state():613] send defer: 14
|
159 |
+
2024-05-22 18:59:58,709 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: defer
|
160 |
+
2024-05-22 18:59:58,709 INFO HandlerThread:4100 [handler.py:handle_request_defer():184] handle defer: 14
|
161 |
+
2024-05-22 18:59:58,709 DEBUG SenderThread:4100 [sender.py:send():378] send: final
|
162 |
+
2024-05-22 18:59:58,709 DEBUG SenderThread:4100 [sender.py:send():378] send: footer
|
163 |
+
2024-05-22 18:59:58,709 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: defer
|
164 |
+
2024-05-22 18:59:58,709 INFO SenderThread:4100 [sender.py:send_request_defer():609] handle sender defer: 14
|
165 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: poll_exit
|
166 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: server_info
|
168 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: get_summary
|
169 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: sampled_history
|
170 |
+
2024-05-22 18:59:58,710 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: internal_messages
|
171 |
+
2024-05-22 18:59:58,711 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: poll_exit
|
172 |
+
2024-05-22 18:59:58,711 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: poll_exit
|
173 |
+
2024-05-22 18:59:58,711 DEBUG SenderThread:4100 [sender.py:send_request():405] send_request: server_info
|
174 |
+
2024-05-22 18:59:58,774 INFO MainThread:4100 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
175 |
+
2024-05-22 18:59:58,774 INFO MainThread:4100 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
176 |
+
2024-05-22 18:59:58,774 INFO MainThread:4100 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
177 |
+
2024-05-22 18:59:58,774 DEBUG HandlerThread:4100 [handler.py:handle_request():158] handle_request: shutdown
|
178 |
+
2024-05-22 18:59:58,774 INFO HandlerThread:4100 [handler.py:finish():882] shutting down handler
|
179 |
+
2024-05-22 18:59:59,711 INFO WriterThread:4100 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/run-8sj20j0r.wandb
|
180 |
+
2024-05-22 18:59:59,774 INFO SenderThread:4100 [sender.py:finish():1545] shutting down sender
|
181 |
+
2024-05-22 18:59:59,774 INFO SenderThread:4100 [file_pusher.py:finish():169] shutting down file pusher
|
182 |
+
2024-05-22 18:59:59,774 INFO SenderThread:4100 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Configure stats pid to 3945
|
3 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-22 18:59:44,423 WARNING MainThread:3945 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug.log
|
11 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240522_185944-8sj20j0r/logs/debug-internal.log
|
12 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-22 18:59:44,423 INFO MainThread:3945 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-22 18:59:44,424 INFO MainThread:3945 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-22 18:59:44,428 INFO MainThread:3945 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-22 18:59:44,428 INFO MainThread:3945 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-22 18:59:44,432 INFO MainThread:3945 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-22 18:59:44,442 INFO MainThread:3945 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-22 18:59:44,704 INFO MainThread:3945 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-22 18:59:44,820 INFO MainThread:3945 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-22 18:59:44,820 INFO MainThread:3945 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-22 18:59:45,132 INFO MainThread:3945 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-22 18:59:45,132 INFO MainThread:3945 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-22 18:59:45,132 INFO MainThread:3945 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-22 18:59:45,132 INFO MainThread:3945 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-22 18:59:45,134 INFO MainThread:3945 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-22 18:59:59,775 WARNING MsgRouterThr:3945 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/config.yaml
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.41.1
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1716468780
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 23
|
38 |
+
4: 3.10.12
|
39 |
+
5: 0.17.0
|
40 |
+
6: 4.41.1
|
41 |
+
8:
|
42 |
+
- 5
|
43 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-23:12:53:00,829 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-23:12:53:10,418 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'hellaswag', 'mrpc', 'openbookqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-23:12:53:10,422 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-23:12:53:10,423 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step100'}
|
6 |
+
2024-05-23:12:53:12,724 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
Traceback (most recent call last):
|
8 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
9 |
+
return _run_code(code, main_globals, None,
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
11 |
+
exec(code, run_globals)
|
12 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
13 |
+
cli_evaluate()
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
15 |
+
results = evaluator.simple_evaluate(
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
17 |
+
return fn(*args, **kwargs)
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
19 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
21 |
+
return cls(**args, **args2)
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 190, in __init__
|
23 |
+
self._get_config(
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 471, in _get_config
|
25 |
+
self._config = transformers.AutoConfig.from_pretrained(
|
26 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 934, in from_pretrained
|
27 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 632, in get_config_dict
|
29 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 689, in _get_config_dict
|
31 |
+
resolved_config_file = cached_file(
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 370, in cached_file
|
33 |
+
raise EnvironmentError(
|
34 |
+
OSError: /mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step100 does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step100/tree/main' for available files.
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/requirements.txt
ADDED
@@ -0,0 +1,155 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
DataProperty==1.0.1
|
2 |
+
GitPython==3.1.43
|
3 |
+
Jinja2==3.1.4
|
4 |
+
Markdown==3.6
|
5 |
+
MarkupSafe==2.1.5
|
6 |
+
Pillow-SIMD==7.0.0.post3
|
7 |
+
PyYAML==6.0
|
8 |
+
Werkzeug==3.0.3
|
9 |
+
absl-py==2.1.0
|
10 |
+
accelerate==0.30.1
|
11 |
+
aiohttp==3.9.5
|
12 |
+
aiosignal==1.3.1
|
13 |
+
async-timeout==4.0.3
|
14 |
+
attrs==23.2.0
|
15 |
+
av==9.2.0
|
16 |
+
cachetools==5.3.3
|
17 |
+
certifi==2024.2.2
|
18 |
+
cffi==1.15.1
|
19 |
+
cfgv==3.4.0
|
20 |
+
chardet==5.2.0
|
21 |
+
charset-normalizer==3.3.2
|
22 |
+
click==8.1.7
|
23 |
+
cmake==3.29.2
|
24 |
+
colorama==0.4.6
|
25 |
+
datasets==2.19.1
|
26 |
+
deepspeed==0.12.4+hpu.synapse.v1.15.1
|
27 |
+
dill==0.3.8
|
28 |
+
distlib==0.3.8
|
29 |
+
docker-pycreds==0.4.0
|
30 |
+
einops==0.8.0
|
31 |
+
evaluate==0.4.2
|
32 |
+
exceptiongroup==1.2.1
|
33 |
+
expecttest==0.2.1
|
34 |
+
filelock==3.14.0
|
35 |
+
frozenlist==1.4.1
|
36 |
+
fsspec==2024.3.1
|
37 |
+
gitdb==4.0.11
|
38 |
+
google-auth-oauthlib==0.4.6
|
39 |
+
google-auth==2.29.0
|
40 |
+
grpcio==1.63.0
|
41 |
+
habana-media-loader==1.15.1.15
|
42 |
+
habana-pyhlml==1.15.1.15
|
43 |
+
habana-torch-dataloader==1.15.1.15
|
44 |
+
habana-torch-plugin==1.15.1.15
|
45 |
+
habana_gpu_migration==1.15.1.15
|
46 |
+
habana_quantization_toolkit==1.15.1.15
|
47 |
+
hjson==3.1.0
|
48 |
+
huggingface-hub==0.23.1
|
49 |
+
identify==2.5.36
|
50 |
+
idna==3.7
|
51 |
+
iniconfig==2.0.0
|
52 |
+
joblib==1.4.2
|
53 |
+
jsonlines==4.0.0
|
54 |
+
lightning-habana==1.4.0
|
55 |
+
lightning-utilities==0.11.2
|
56 |
+
lightning==2.2.0.post0
|
57 |
+
lm_eval==0.4.2
|
58 |
+
lm_eval==0.4.2
|
59 |
+
lm_eval==0.4.2
|
60 |
+
lxml==5.2.2
|
61 |
+
mbstrdecoder==1.1.3
|
62 |
+
more-itertools==10.2.0
|
63 |
+
mpi4py==3.1.4
|
64 |
+
mpmath==1.3.0
|
65 |
+
multidict==6.0.5
|
66 |
+
multiprocess==0.70.16
|
67 |
+
networkx==3.3
|
68 |
+
ninja==1.11.1.1
|
69 |
+
nltk==3.8.1
|
70 |
+
nodeenv==1.8.0
|
71 |
+
numexpr==2.10.0
|
72 |
+
numpy==1.23.5
|
73 |
+
oauthlib==3.2.2
|
74 |
+
packaging==24.0
|
75 |
+
pandas==2.0.1
|
76 |
+
pathspec==0.12.1
|
77 |
+
pathvalidate==3.2.0
|
78 |
+
peft==0.11.1
|
79 |
+
perfetto==0.7.0
|
80 |
+
pillow==10.3.0
|
81 |
+
pip==22.0.2
|
82 |
+
pip==23.3.1
|
83 |
+
platformdirs==4.2.1
|
84 |
+
pluggy==1.5.0
|
85 |
+
portalocker==2.8.2
|
86 |
+
pre-commit==3.3.3
|
87 |
+
pretty-errors==1.2.25
|
88 |
+
protobuf==3.20.3
|
89 |
+
psutil==5.9.8
|
90 |
+
py-cpuinfo==9.0.0
|
91 |
+
pyarrow-hotfix==0.6
|
92 |
+
pyarrow==16.1.0
|
93 |
+
pyasn1==0.6.0
|
94 |
+
pyasn1_modules==0.4.0
|
95 |
+
pybind11==2.10.4
|
96 |
+
pycparser==2.22
|
97 |
+
pydantic==1.10.13
|
98 |
+
pynvml==8.0.4
|
99 |
+
pytablewriter==1.2.0
|
100 |
+
pytest==8.2.0
|
101 |
+
python-dateutil==2.9.0.post0
|
102 |
+
pytorch-lightning==2.2.4
|
103 |
+
pytz==2024.1
|
104 |
+
regex==2023.5.5
|
105 |
+
requests-oauthlib==2.0.0
|
106 |
+
requests==2.31.0
|
107 |
+
rouge_score==0.1.2
|
108 |
+
rsa==4.9
|
109 |
+
sacrebleu==2.4.2
|
110 |
+
safetensors==0.4.3
|
111 |
+
scikit-learn==1.5.0
|
112 |
+
scipy==1.13.1
|
113 |
+
sentencepiece==0.2.0
|
114 |
+
sentry-sdk==2.3.0
|
115 |
+
setproctitle==1.3.3
|
116 |
+
setuptools==59.6.0
|
117 |
+
setuptools==69.5.1
|
118 |
+
six==1.16.0
|
119 |
+
smmap==5.0.1
|
120 |
+
sqlitedict==2.1.0
|
121 |
+
symengine==0.11.0
|
122 |
+
sympy==1.12
|
123 |
+
tabledata==1.3.3
|
124 |
+
tabulate==0.9.0
|
125 |
+
tcolorpy==0.1.6
|
126 |
+
tdqm==0.0.1
|
127 |
+
tensorboard-data-server==0.6.1
|
128 |
+
tensorboard-plugin-wit==1.8.1
|
129 |
+
tensorboard==2.11.2
|
130 |
+
threadpoolctl==3.5.0
|
131 |
+
tokenizers==0.19.1
|
132 |
+
tomli==2.0.1
|
133 |
+
torch==2.2.0a0+git8964477
|
134 |
+
torch_tb_profiler==0.4.0
|
135 |
+
torchaudio==2.2.0+08901ad
|
136 |
+
torchdata==0.7.1+5e6f7b7
|
137 |
+
torchmetrics==1.4.0
|
138 |
+
torchtext==0.17.0+400da5c
|
139 |
+
torchvision==0.17.0+b2383d4
|
140 |
+
tqdm-multiprocess==0.0.11
|
141 |
+
tqdm==4.66.4
|
142 |
+
transformers==4.41.1
|
143 |
+
typepy==1.3.2
|
144 |
+
typing_extensions==4.11.0
|
145 |
+
tzdata==2024.1
|
146 |
+
urllib3==1.26.18
|
147 |
+
virtualenv==20.26.1
|
148 |
+
wandb==0.17.0
|
149 |
+
wheel==0.37.1
|
150 |
+
wheel==0.43.0
|
151 |
+
word2number==1.1
|
152 |
+
xxhash==3.4.1
|
153 |
+
yamllint==1.35.1
|
154 |
+
yarl==1.9.4
|
155 |
+
zstandard==0.22.0
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-23T12:53:00.613604",
|
5 |
+
"startedAt": "2024-05-23T12:53:00.074192",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step100",
|
13 |
+
"--tasks",
|
14 |
+
"hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=bharatgpt,group=trial_expt_2"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2327.20563125,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3399.997,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3400.0,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 211.58670043945312
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379348754883
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-summary.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"_wandb": {"runtime": 12}}
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug-internal.log
ADDED
@@ -0,0 +1,183 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 12:53:00,098 INFO StreamThr :804 [internal.py:wandb_internal():85] W&B internal server running at pid: 804, started at: 2024-05-23 12:53:00.094550
|
2 |
+
2024-05-23 12:53:00,100 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-23 12:53:00,103 INFO WriterThread:804 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/run-yqqf3gci.wandb
|
4 |
+
2024-05-23 12:53:00,105 DEBUG SenderThread:804 [sender.py:send():378] send: header
|
5 |
+
2024-05-23 12:53:00,107 DEBUG SenderThread:804 [sender.py:send():378] send: run
|
6 |
+
2024-05-23 12:53:00,399 INFO SenderThread:804 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files
|
7 |
+
2024-05-23 12:53:00,400 INFO SenderThread:804 [sender.py:_start_run_threads():1123] run started: yqqf3gci with start time 1716468780.094401
|
8 |
+
2024-05-23 12:53:00,406 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-23 12:53:00,406 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-23 12:53:00,519 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-23 12:53:00,522 DEBUG HandlerThread:804 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-23 12:53:00,522 DEBUG HandlerThread:804 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-23 12:53:00,522 INFO HandlerThread:804 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-23 12:53:00,522 INFO SystemMonitor:804 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-23 12:53:00,522 INFO HandlerThread:804 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-23 12:53:00,529 INFO SystemMonitor:804 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-23 12:53:00,529 INFO SystemMonitor:804 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-23 12:53:00,530 INFO SystemMonitor:804 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-23 12:53:00,532 INFO SystemMonitor:804 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-23 12:53:00,613 DEBUG HandlerThread:804 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-23 12:53:00,616 DEBUG HandlerThread:804 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-23 12:53:00,628 ERROR HandlerThread:804 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-23 12:53:00,628 DEBUG HandlerThread:804 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-23 12:53:00,628 DEBUG HandlerThread:804 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-23 12:53:00,628 DEBUG HandlerThread:804 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-23T12:53:00.613604', 'startedAt': '2024-05-23T12:53:00.074192', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/checkpoint/llamav2-3b//hf_ckpt//global_step100', '--tasks', 'hellaswag,arc_easy,openbookqa,winogrande,sst2,mrpc', '--batch_size', 'auto', '--wandb_args', 'project=bharatgpt,group=trial_expt_2'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2327.20563125, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3399.997, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.58670043945312}}, 'memory': {'total': 1007.4379348754883}}
|
31 |
+
2024-05-23 12:53:00,629 INFO HandlerThread:804 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-23 12:53:00,629 INFO HandlerThread:804 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-23 12:53:00,631 INFO HandlerThread:804 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-23 12:53:00,637 DEBUG SenderThread:804 [sender.py:send():378] send: files
|
35 |
+
2024-05-23 12:53:00,637 INFO SenderThread:804 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-23 12:53:00,822 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-23 12:53:00,823 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-23 12:53:00,823 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-23 12:53:00,824 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-23 12:53:00,970 DEBUG SenderThread:804 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-23 12:53:01,256 INFO wandb-upload_0:804 [upload_job.py:push():130] Uploaded file /tmp/tmpverirx0vwandb/s0a5dkg5-wandb-metadata.json
|
42 |
+
2024-05-23 12:53:01,403 INFO Thread-12 :804 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/requirements.txt
|
43 |
+
2024-05-23 12:53:01,403 INFO Thread-12 :804 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
|
44 |
+
2024-05-23 12:53:01,403 INFO Thread-12 :804 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-metadata.json
|
45 |
+
2024-05-23 12:53:03,403 INFO Thread-12 :804 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
|
46 |
+
2024-05-23 12:53:05,972 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-23 12:53:11,410 INFO Thread-12 :804 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
|
48 |
+
2024-05-23 12:53:11,424 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: status_report
|
49 |
+
2024-05-23 12:53:12,739 DEBUG SenderThread:804 [sender.py:send():378] send: exit
|
50 |
+
2024-05-23 12:53:12,739 INFO SenderThread:804 [sender.py:send_exit():585] handling exit code: 1
|
51 |
+
2024-05-23 12:53:12,739 INFO SenderThread:804 [sender.py:send_exit():587] handling runtime: 12
|
52 |
+
2024-05-23 12:53:12,740 INFO SenderThread:804 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
53 |
+
2024-05-23 12:53:12,740 INFO SenderThread:804 [sender.py:send_exit():593] send defer
|
54 |
+
2024-05-23 12:53:12,741 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
55 |
+
2024-05-23 12:53:12,741 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 0
|
56 |
+
2024-05-23 12:53:12,741 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
57 |
+
2024-05-23 12:53:12,741 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 0
|
58 |
+
2024-05-23 12:53:12,741 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 1
|
59 |
+
2024-05-23 12:53:12,741 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
60 |
+
2024-05-23 12:53:12,741 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 1
|
61 |
+
2024-05-23 12:53:12,741 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
62 |
+
2024-05-23 12:53:12,741 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 1
|
63 |
+
2024-05-23 12:53:12,741 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 2
|
64 |
+
2024-05-23 12:53:12,741 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
65 |
+
2024-05-23 12:53:12,741 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 2
|
66 |
+
2024-05-23 12:53:12,741 INFO HandlerThread:804 [system_monitor.py:finish():203] Stopping system monitor
|
67 |
+
2024-05-23 12:53:12,741 DEBUG SystemMonitor:804 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
68 |
+
2024-05-23 12:53:12,741 DEBUG SystemMonitor:804 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
69 |
+
2024-05-23 12:53:12,742 DEBUG SystemMonitor:804 [system_monitor.py:_start():183] Publishing last batch of metrics
|
70 |
+
2024-05-23 12:53:12,742 INFO HandlerThread:804 [interfaces.py:finish():200] Joined cpu monitor
|
71 |
+
2024-05-23 12:53:12,745 INFO HandlerThread:804 [interfaces.py:finish():200] Joined disk monitor
|
72 |
+
2024-05-23 12:53:12,745 INFO HandlerThread:804 [interfaces.py:finish():200] Joined memory monitor
|
73 |
+
2024-05-23 12:53:12,745 INFO HandlerThread:804 [interfaces.py:finish():200] Joined network monitor
|
74 |
+
2024-05-23 12:53:12,746 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
75 |
+
2024-05-23 12:53:12,746 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 2
|
76 |
+
2024-05-23 12:53:12,746 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 3
|
77 |
+
2024-05-23 12:53:12,746 DEBUG SenderThread:804 [sender.py:send():378] send: stats
|
78 |
+
2024-05-23 12:53:12,747 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
79 |
+
2024-05-23 12:53:12,747 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 3
|
80 |
+
2024-05-23 12:53:12,747 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
81 |
+
2024-05-23 12:53:12,747 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 3
|
82 |
+
2024-05-23 12:53:12,747 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 4
|
83 |
+
2024-05-23 12:53:12,747 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
84 |
+
2024-05-23 12:53:12,747 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 4
|
85 |
+
2024-05-23 12:53:12,747 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
86 |
+
2024-05-23 12:53:12,747 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 4
|
87 |
+
2024-05-23 12:53:12,747 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 5
|
88 |
+
2024-05-23 12:53:12,748 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
89 |
+
2024-05-23 12:53:12,748 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 5
|
90 |
+
2024-05-23 12:53:12,748 DEBUG SenderThread:804 [sender.py:send():378] send: summary
|
91 |
+
2024-05-23 12:53:12,748 INFO SenderThread:804 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
92 |
+
2024-05-23 12:53:12,749 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-23 12:53:12,749 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 5
|
94 |
+
2024-05-23 12:53:12,749 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 6
|
95 |
+
2024-05-23 12:53:12,749 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-23 12:53:12,749 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 6
|
97 |
+
2024-05-23 12:53:12,749 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-23 12:53:12,749 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 6
|
99 |
+
2024-05-23 12:53:12,754 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: status_report
|
100 |
+
2024-05-23 12:53:12,838 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 7
|
101 |
+
2024-05-23 12:53:12,838 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
102 |
+
2024-05-23 12:53:12,838 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 7
|
103 |
+
2024-05-23 12:53:12,839 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
104 |
+
2024-05-23 12:53:12,839 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 7
|
105 |
+
2024-05-23 12:53:13,413 INFO Thread-12 :804 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/config.yaml
|
106 |
+
2024-05-23 12:53:13,413 INFO Thread-12 :804 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-summary.json
|
107 |
+
2024-05-23 12:53:13,739 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: poll_exit
|
108 |
+
2024-05-23 12:53:14,996 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 8
|
109 |
+
2024-05-23 12:53:14,996 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: poll_exit
|
110 |
+
2024-05-23 12:53:14,997 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
111 |
+
2024-05-23 12:53:14,997 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 8
|
112 |
+
2024-05-23 12:53:14,997 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
113 |
+
2024-05-23 12:53:14,997 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 8
|
114 |
+
2024-05-23 12:53:14,997 INFO SenderThread:804 [job_builder.py:build():432] Attempting to build job artifact
|
115 |
+
2024-05-23 12:53:14,997 INFO SenderThread:804 [job_builder.py:_get_source_type():576] no source found
|
116 |
+
2024-05-23 12:53:14,998 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 9
|
117 |
+
2024-05-23 12:53:14,998 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
118 |
+
2024-05-23 12:53:14,998 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 9
|
119 |
+
2024-05-23 12:53:14,998 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
120 |
+
2024-05-23 12:53:14,998 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 9
|
121 |
+
2024-05-23 12:53:14,998 INFO SenderThread:804 [dir_watcher.py:finish():358] shutting down directory watcher
|
122 |
+
2024-05-23 12:53:15,415 INFO SenderThread:804 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
|
123 |
+
2024-05-23 12:53:15,415 INFO SenderThread:804 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files
|
124 |
+
2024-05-23 12:53:15,415 INFO SenderThread:804 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/config.yaml config.yaml
|
125 |
+
2024-05-23 12:53:15,416 INFO SenderThread:804 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log output.log
|
126 |
+
2024-05-23 12:53:15,418 INFO SenderThread:804 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/requirements.txt requirements.txt
|
127 |
+
2024-05-23 12:53:15,418 INFO SenderThread:804 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-metadata.json wandb-metadata.json
|
128 |
+
2024-05-23 12:53:15,418 INFO SenderThread:804 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-summary.json wandb-summary.json
|
129 |
+
2024-05-23 12:53:15,419 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 10
|
130 |
+
2024-05-23 12:53:15,419 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
131 |
+
2024-05-23 12:53:15,419 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 10
|
132 |
+
2024-05-23 12:53:15,419 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
133 |
+
2024-05-23 12:53:15,419 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 10
|
134 |
+
2024-05-23 12:53:15,419 INFO SenderThread:804 [file_pusher.py:finish():169] shutting down file pusher
|
135 |
+
2024-05-23 12:53:15,662 INFO wandb-upload_0:804 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/config.yaml
|
136 |
+
2024-05-23 12:53:15,739 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: poll_exit
|
137 |
+
2024-05-23 12:53:15,740 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: poll_exit
|
138 |
+
2024-05-23 12:53:15,986 INFO wandb-upload_3:804 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/wandb-summary.json
|
139 |
+
2024-05-23 12:53:16,023 INFO wandb-upload_1:804 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/output.log
|
140 |
+
2024-05-23 12:53:16,031 INFO wandb-upload_2:804 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/files/requirements.txt
|
141 |
+
2024-05-23 12:53:16,232 INFO Thread-11 (_thread_body):804 [sender.py:transition_state():613] send defer: 11
|
142 |
+
2024-05-23 12:53:16,232 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
143 |
+
2024-05-23 12:53:16,232 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 11
|
144 |
+
2024-05-23 12:53:16,232 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
145 |
+
2024-05-23 12:53:16,232 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 11
|
146 |
+
2024-05-23 12:53:16,232 INFO SenderThread:804 [file_pusher.py:join():175] waiting for file pusher
|
147 |
+
2024-05-23 12:53:16,232 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 12
|
148 |
+
2024-05-23 12:53:16,233 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
149 |
+
2024-05-23 12:53:16,233 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 12
|
150 |
+
2024-05-23 12:53:16,233 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
151 |
+
2024-05-23 12:53:16,233 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 12
|
152 |
+
2024-05-23 12:53:16,233 INFO SenderThread:804 [file_stream.py:finish():601] file stream finish called
|
153 |
+
2024-05-23 12:53:16,443 INFO SenderThread:804 [file_stream.py:finish():605] file stream finish is done
|
154 |
+
2024-05-23 12:53:16,443 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 13
|
155 |
+
2024-05-23 12:53:16,443 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
156 |
+
2024-05-23 12:53:16,443 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 13
|
157 |
+
2024-05-23 12:53:16,443 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
158 |
+
2024-05-23 12:53:16,443 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 13
|
159 |
+
2024-05-23 12:53:16,443 INFO SenderThread:804 [sender.py:transition_state():613] send defer: 14
|
160 |
+
2024-05-23 12:53:16,443 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: defer
|
161 |
+
2024-05-23 12:53:16,443 INFO HandlerThread:804 [handler.py:handle_request_defer():184] handle defer: 14
|
162 |
+
2024-05-23 12:53:16,444 DEBUG SenderThread:804 [sender.py:send():378] send: final
|
163 |
+
2024-05-23 12:53:16,444 DEBUG SenderThread:804 [sender.py:send():378] send: footer
|
164 |
+
2024-05-23 12:53:16,444 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: defer
|
165 |
+
2024-05-23 12:53:16,444 INFO SenderThread:804 [sender.py:send_request_defer():609] handle sender defer: 14
|
166 |
+
2024-05-23 12:53:16,444 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: poll_exit
|
167 |
+
2024-05-23 12:53:16,444 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: poll_exit
|
168 |
+
2024-05-23 12:53:16,445 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: poll_exit
|
169 |
+
2024-05-23 12:53:16,445 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: server_info
|
170 |
+
2024-05-23 12:53:16,445 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: get_summary
|
171 |
+
2024-05-23 12:53:16,445 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: sampled_history
|
172 |
+
2024-05-23 12:53:16,445 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: internal_messages
|
173 |
+
2024-05-23 12:53:16,445 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: poll_exit
|
174 |
+
2024-05-23 12:53:16,446 DEBUG SenderThread:804 [sender.py:send_request():405] send_request: server_info
|
175 |
+
2024-05-23 12:53:16,507 INFO MainThread:804 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
176 |
+
2024-05-23 12:53:16,507 INFO MainThread:804 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
177 |
+
2024-05-23 12:53:16,507 INFO MainThread:804 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
178 |
+
2024-05-23 12:53:16,508 DEBUG HandlerThread:804 [handler.py:handle_request():158] handle_request: shutdown
|
179 |
+
2024-05-23 12:53:16,508 INFO HandlerThread:804 [handler.py:finish():882] shutting down handler
|
180 |
+
2024-05-23 12:53:17,445 INFO WriterThread:804 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/run-yqqf3gci.wandb
|
181 |
+
2024-05-23 12:53:17,507 INFO SenderThread:804 [sender.py:finish():1545] shutting down sender
|
182 |
+
2024-05-23 12:53:17,507 INFO SenderThread:804 [file_pusher.py:finish():169] shutting down file pusher
|
183 |
+
2024-05-23 12:53:17,507 INFO SenderThread:804 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Configure stats pid to 648
|
3 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-23 12:53:00,089 WARNING MainThread:648 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug.log
|
11 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/logs/debug-internal.log
|
12 |
+
2024-05-23 12:53:00,089 INFO MainThread:648 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-23 12:53:00,090 INFO MainThread:648 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-23 12:53:00,090 INFO MainThread:648 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-23 12:53:00,090 INFO MainThread:648 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-23 12:53:00,093 INFO MainThread:648 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-23 12:53:00,094 INFO MainThread:648 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-23 12:53:00,097 INFO MainThread:648 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-23 12:53:00,107 INFO MainThread:648 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-23 12:53:00,405 INFO MainThread:648 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-23 12:53:00,513 INFO MainThread:648 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-23 12:53:00,513 INFO MainThread:648 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-23 12:53:00,824 INFO MainThread:648 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-23 12:53:00,824 INFO MainThread:648 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-23 12:53:00,824 INFO MainThread:648 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-23 12:53:00,824 INFO MainThread:648 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-23 12:53:00,826 INFO MainThread:648 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-23 12:53:17,509 WARNING MsgRouterThr:648 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240523_125300-yqqf3gci/run-yqqf3gci.wandb
ADDED
Binary file (11.2 kB). View file
|
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/config.yaml
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
wandb_version: 1
|
2 |
+
|
3 |
+
_wandb:
|
4 |
+
desc: null
|
5 |
+
value:
|
6 |
+
python_version: 3.10.12
|
7 |
+
cli_version: 0.17.0
|
8 |
+
framework: huggingface
|
9 |
+
huggingface_version: 4.36.2
|
10 |
+
is_jupyter_run: false
|
11 |
+
is_kaggle_kernel: false
|
12 |
+
start_time: 1717052687
|
13 |
+
t:
|
14 |
+
1:
|
15 |
+
- 1
|
16 |
+
- 5
|
17 |
+
- 11
|
18 |
+
- 49
|
19 |
+
- 51
|
20 |
+
- 53
|
21 |
+
- 55
|
22 |
+
- 71
|
23 |
+
- 98
|
24 |
+
- 100
|
25 |
+
2:
|
26 |
+
- 1
|
27 |
+
- 5
|
28 |
+
- 11
|
29 |
+
- 49
|
30 |
+
- 51
|
31 |
+
- 53
|
32 |
+
- 55
|
33 |
+
- 71
|
34 |
+
- 98
|
35 |
+
- 100
|
36 |
+
3:
|
37 |
+
- 13
|
38 |
+
- 23
|
39 |
+
4: 3.10.12
|
40 |
+
5: 0.17.0
|
41 |
+
6: 4.36.2
|
42 |
+
8:
|
43 |
+
- 5
|
44 |
+
13: linux-x86_64
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
2024-05-30:07:04:48,090 INFO [__main__.py:251] Verbosity set to INFO
|
3 |
+
2024-05-30:07:04:57,969 INFO [__main__.py:335] Selected Tasks: ['arc_easy', 'boolq', 'copa', 'mrpc', 'piqa', 'sst2', 'winogrande']
|
4 |
+
2024-05-30:07:04:57,971 INFO [evaluator.py:131] Setting random seed to 0 | Setting numpy seed to 1234 | Setting torch manual seed to 1234
|
5 |
+
2024-05-30:07:04:57,971 INFO [evaluator.py:177] Initializing hf model, with arguments: {'pretrained': '/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000', 'tokenizer': '/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/'}
|
6 |
+
2024-05-30:07:05:00,271 INFO [huggingface.py:164] Using device 'cuda'
|
7 |
+
/usr/local/lib/python3.10/dist-packages/habana_frameworks/torch/gpu_migration/torch/cuda/memory.py:36: UserWarning: No need to call empty_cache on HPU. It manages the memory internally in an effcient way.
|
8 |
+
warnings.warn(
|
9 |
+
Traceback (most recent call last):
|
10 |
+
File "/usr/lib/python3.10/runpy.py", line 196, in _run_module_as_main
|
11 |
+
return _run_code(code, main_globals, None,
|
12 |
+
File "/usr/lib/python3.10/runpy.py", line 86, in _run_code
|
13 |
+
exec(code, run_globals)
|
14 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 417, in <module>
|
15 |
+
cli_evaluate()
|
16 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/__main__.py", line 341, in cli_evaluate
|
17 |
+
results = evaluator.simple_evaluate(
|
18 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/utils.py", line 288, in _wrapper
|
19 |
+
return fn(*args, **kwargs)
|
20 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/evaluator.py", line 180, in simple_evaluate
|
21 |
+
lm = lm_eval.api.registry.get_model(model).create_from_arg_string(
|
22 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/api/model.py", line 134, in create_from_arg_string
|
23 |
+
return cls(**args, **args2)
|
24 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 237, in __init__
|
25 |
+
self._create_tokenizer(
|
26 |
+
File "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/lm_eval/models/huggingface.py", line 630, in _create_tokenizer
|
27 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(
|
28 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/tokenization_auto.py", line 752, in from_pretrained
|
29 |
+
config = AutoConfig.from_pretrained(
|
30 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/models/auto/configuration_auto.py", line 1082, in from_pretrained
|
31 |
+
config_dict, unused_kwargs = PretrainedConfig.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
32 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 644, in get_config_dict
|
33 |
+
config_dict, kwargs = cls._get_config_dict(pretrained_model_name_or_path, **kwargs)
|
34 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/configuration_utils.py", line 699, in _get_config_dict
|
35 |
+
resolved_config_file = cached_file(
|
36 |
+
File "/usr/local/lib/python3.10/dist-packages/transformers/utils/hub.py", line 360, in cached_file
|
37 |
+
raise EnvironmentError(
|
38 |
+
OSError: /mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/ does not appear to have a file named config.json. Checkout 'https://huggingface.co//mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k//main' for available files.
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-metadata.json
ADDED
@@ -0,0 +1,850 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"os": "Linux-5.15.0-92-generic-x86_64-with-glibc2.35",
|
3 |
+
"python": "3.10.12",
|
4 |
+
"heartbeatAt": "2024-05-30T07:04:47.890522",
|
5 |
+
"startedAt": "2024-05-30T07:04:47.365134",
|
6 |
+
"docker": null,
|
7 |
+
"cuda": null,
|
8 |
+
"args": [
|
9 |
+
"--model",
|
10 |
+
"hf",
|
11 |
+
"--model_args",
|
12 |
+
"pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/",
|
13 |
+
"--tasks",
|
14 |
+
"winogrande,sst2,mrpc,arc_easy,copa,piqa,boolq",
|
15 |
+
"--batch_size",
|
16 |
+
"auto",
|
17 |
+
"--wandb_args",
|
18 |
+
"project=english-eval,group=exp2,name=global_step70000"
|
19 |
+
],
|
20 |
+
"state": "running",
|
21 |
+
"program": "-m lm_eval.__main__",
|
22 |
+
"codePathLocal": null,
|
23 |
+
"git": {
|
24 |
+
"remote": "https://github.com/EleutherAI/lm-evaluation-harness",
|
25 |
+
"commit": null
|
26 |
+
},
|
27 |
+
"email": null,
|
28 |
+
"root": "/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness",
|
29 |
+
"host": "peacock-evaluation-debug-35-worker-0",
|
30 |
+
"username": "root",
|
31 |
+
"executable": "/usr/bin/python3",
|
32 |
+
"cpu_count": 80,
|
33 |
+
"cpu_count_logical": 160,
|
34 |
+
"cpu_freq": {
|
35 |
+
"current": 2327.4101375,
|
36 |
+
"min": 800.0,
|
37 |
+
"max": 3400.0
|
38 |
+
},
|
39 |
+
"cpu_freq_per_core": [
|
40 |
+
{
|
41 |
+
"current": 3399.997,
|
42 |
+
"min": 800.0,
|
43 |
+
"max": 3400.0
|
44 |
+
},
|
45 |
+
{
|
46 |
+
"current": 3400.0,
|
47 |
+
"min": 800.0,
|
48 |
+
"max": 3400.0
|
49 |
+
},
|
50 |
+
{
|
51 |
+
"current": 2300.0,
|
52 |
+
"min": 800.0,
|
53 |
+
"max": 3400.0
|
54 |
+
},
|
55 |
+
{
|
56 |
+
"current": 2300.0,
|
57 |
+
"min": 800.0,
|
58 |
+
"max": 3400.0
|
59 |
+
},
|
60 |
+
{
|
61 |
+
"current": 2300.0,
|
62 |
+
"min": 800.0,
|
63 |
+
"max": 3400.0
|
64 |
+
},
|
65 |
+
{
|
66 |
+
"current": 2300.0,
|
67 |
+
"min": 800.0,
|
68 |
+
"max": 3400.0
|
69 |
+
},
|
70 |
+
{
|
71 |
+
"current": 2300.0,
|
72 |
+
"min": 800.0,
|
73 |
+
"max": 3400.0
|
74 |
+
},
|
75 |
+
{
|
76 |
+
"current": 2300.0,
|
77 |
+
"min": 800.0,
|
78 |
+
"max": 3400.0
|
79 |
+
},
|
80 |
+
{
|
81 |
+
"current": 2300.0,
|
82 |
+
"min": 800.0,
|
83 |
+
"max": 3400.0
|
84 |
+
},
|
85 |
+
{
|
86 |
+
"current": 2300.0,
|
87 |
+
"min": 800.0,
|
88 |
+
"max": 3400.0
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"current": 2300.0,
|
92 |
+
"min": 800.0,
|
93 |
+
"max": 3400.0
|
94 |
+
},
|
95 |
+
{
|
96 |
+
"current": 2300.0,
|
97 |
+
"min": 800.0,
|
98 |
+
"max": 3400.0
|
99 |
+
},
|
100 |
+
{
|
101 |
+
"current": 2300.0,
|
102 |
+
"min": 800.0,
|
103 |
+
"max": 3400.0
|
104 |
+
},
|
105 |
+
{
|
106 |
+
"current": 2300.0,
|
107 |
+
"min": 800.0,
|
108 |
+
"max": 3400.0
|
109 |
+
},
|
110 |
+
{
|
111 |
+
"current": 2300.0,
|
112 |
+
"min": 800.0,
|
113 |
+
"max": 3400.0
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"current": 2300.0,
|
117 |
+
"min": 800.0,
|
118 |
+
"max": 3400.0
|
119 |
+
},
|
120 |
+
{
|
121 |
+
"current": 2300.0,
|
122 |
+
"min": 800.0,
|
123 |
+
"max": 3400.0
|
124 |
+
},
|
125 |
+
{
|
126 |
+
"current": 2300.0,
|
127 |
+
"min": 800.0,
|
128 |
+
"max": 3400.0
|
129 |
+
},
|
130 |
+
{
|
131 |
+
"current": 2300.0,
|
132 |
+
"min": 800.0,
|
133 |
+
"max": 3400.0
|
134 |
+
},
|
135 |
+
{
|
136 |
+
"current": 2300.0,
|
137 |
+
"min": 800.0,
|
138 |
+
"max": 3400.0
|
139 |
+
},
|
140 |
+
{
|
141 |
+
"current": 2300.0,
|
142 |
+
"min": 800.0,
|
143 |
+
"max": 3400.0
|
144 |
+
},
|
145 |
+
{
|
146 |
+
"current": 2300.0,
|
147 |
+
"min": 800.0,
|
148 |
+
"max": 3400.0
|
149 |
+
},
|
150 |
+
{
|
151 |
+
"current": 2300.0,
|
152 |
+
"min": 800.0,
|
153 |
+
"max": 3400.0
|
154 |
+
},
|
155 |
+
{
|
156 |
+
"current": 2300.0,
|
157 |
+
"min": 800.0,
|
158 |
+
"max": 3400.0
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"current": 2300.0,
|
162 |
+
"min": 800.0,
|
163 |
+
"max": 3400.0
|
164 |
+
},
|
165 |
+
{
|
166 |
+
"current": 2300.0,
|
167 |
+
"min": 800.0,
|
168 |
+
"max": 3400.0
|
169 |
+
},
|
170 |
+
{
|
171 |
+
"current": 2300.0,
|
172 |
+
"min": 800.0,
|
173 |
+
"max": 3400.0
|
174 |
+
},
|
175 |
+
{
|
176 |
+
"current": 2300.0,
|
177 |
+
"min": 800.0,
|
178 |
+
"max": 3400.0
|
179 |
+
},
|
180 |
+
{
|
181 |
+
"current": 2300.0,
|
182 |
+
"min": 800.0,
|
183 |
+
"max": 3400.0
|
184 |
+
},
|
185 |
+
{
|
186 |
+
"current": 2300.0,
|
187 |
+
"min": 800.0,
|
188 |
+
"max": 3400.0
|
189 |
+
},
|
190 |
+
{
|
191 |
+
"current": 2300.0,
|
192 |
+
"min": 800.0,
|
193 |
+
"max": 3400.0
|
194 |
+
},
|
195 |
+
{
|
196 |
+
"current": 2300.0,
|
197 |
+
"min": 800.0,
|
198 |
+
"max": 3400.0
|
199 |
+
},
|
200 |
+
{
|
201 |
+
"current": 2300.0,
|
202 |
+
"min": 800.0,
|
203 |
+
"max": 3400.0
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"current": 2300.0,
|
207 |
+
"min": 800.0,
|
208 |
+
"max": 3400.0
|
209 |
+
},
|
210 |
+
{
|
211 |
+
"current": 2300.0,
|
212 |
+
"min": 800.0,
|
213 |
+
"max": 3400.0
|
214 |
+
},
|
215 |
+
{
|
216 |
+
"current": 2300.0,
|
217 |
+
"min": 800.0,
|
218 |
+
"max": 3400.0
|
219 |
+
},
|
220 |
+
{
|
221 |
+
"current": 2300.0,
|
222 |
+
"min": 800.0,
|
223 |
+
"max": 3400.0
|
224 |
+
},
|
225 |
+
{
|
226 |
+
"current": 2300.0,
|
227 |
+
"min": 800.0,
|
228 |
+
"max": 3400.0
|
229 |
+
},
|
230 |
+
{
|
231 |
+
"current": 2300.0,
|
232 |
+
"min": 800.0,
|
233 |
+
"max": 3400.0
|
234 |
+
},
|
235 |
+
{
|
236 |
+
"current": 2300.0,
|
237 |
+
"min": 800.0,
|
238 |
+
"max": 3400.0
|
239 |
+
},
|
240 |
+
{
|
241 |
+
"current": 3399.997,
|
242 |
+
"min": 800.0,
|
243 |
+
"max": 3400.0
|
244 |
+
},
|
245 |
+
{
|
246 |
+
"current": 2300.0,
|
247 |
+
"min": 800.0,
|
248 |
+
"max": 3400.0
|
249 |
+
},
|
250 |
+
{
|
251 |
+
"current": 2300.0,
|
252 |
+
"min": 800.0,
|
253 |
+
"max": 3400.0
|
254 |
+
},
|
255 |
+
{
|
256 |
+
"current": 2300.0,
|
257 |
+
"min": 800.0,
|
258 |
+
"max": 3400.0
|
259 |
+
},
|
260 |
+
{
|
261 |
+
"current": 2300.0,
|
262 |
+
"min": 800.0,
|
263 |
+
"max": 3400.0
|
264 |
+
},
|
265 |
+
{
|
266 |
+
"current": 2300.0,
|
267 |
+
"min": 800.0,
|
268 |
+
"max": 3400.0
|
269 |
+
},
|
270 |
+
{
|
271 |
+
"current": 2300.0,
|
272 |
+
"min": 800.0,
|
273 |
+
"max": 3400.0
|
274 |
+
},
|
275 |
+
{
|
276 |
+
"current": 2300.0,
|
277 |
+
"min": 800.0,
|
278 |
+
"max": 3400.0
|
279 |
+
},
|
280 |
+
{
|
281 |
+
"current": 2300.0,
|
282 |
+
"min": 800.0,
|
283 |
+
"max": 3400.0
|
284 |
+
},
|
285 |
+
{
|
286 |
+
"current": 2300.0,
|
287 |
+
"min": 800.0,
|
288 |
+
"max": 3400.0
|
289 |
+
},
|
290 |
+
{
|
291 |
+
"current": 2300.0,
|
292 |
+
"min": 800.0,
|
293 |
+
"max": 3400.0
|
294 |
+
},
|
295 |
+
{
|
296 |
+
"current": 2300.0,
|
297 |
+
"min": 800.0,
|
298 |
+
"max": 3400.0
|
299 |
+
},
|
300 |
+
{
|
301 |
+
"current": 2300.0,
|
302 |
+
"min": 800.0,
|
303 |
+
"max": 3400.0
|
304 |
+
},
|
305 |
+
{
|
306 |
+
"current": 2300.0,
|
307 |
+
"min": 800.0,
|
308 |
+
"max": 3400.0
|
309 |
+
},
|
310 |
+
{
|
311 |
+
"current": 2300.0,
|
312 |
+
"min": 800.0,
|
313 |
+
"max": 3400.0
|
314 |
+
},
|
315 |
+
{
|
316 |
+
"current": 2300.0,
|
317 |
+
"min": 800.0,
|
318 |
+
"max": 3400.0
|
319 |
+
},
|
320 |
+
{
|
321 |
+
"current": 2300.0,
|
322 |
+
"min": 800.0,
|
323 |
+
"max": 3400.0
|
324 |
+
},
|
325 |
+
{
|
326 |
+
"current": 2300.0,
|
327 |
+
"min": 800.0,
|
328 |
+
"max": 3400.0
|
329 |
+
},
|
330 |
+
{
|
331 |
+
"current": 2300.0,
|
332 |
+
"min": 800.0,
|
333 |
+
"max": 3400.0
|
334 |
+
},
|
335 |
+
{
|
336 |
+
"current": 2300.0,
|
337 |
+
"min": 800.0,
|
338 |
+
"max": 3400.0
|
339 |
+
},
|
340 |
+
{
|
341 |
+
"current": 2300.0,
|
342 |
+
"min": 800.0,
|
343 |
+
"max": 3400.0
|
344 |
+
},
|
345 |
+
{
|
346 |
+
"current": 2300.0,
|
347 |
+
"min": 800.0,
|
348 |
+
"max": 3400.0
|
349 |
+
},
|
350 |
+
{
|
351 |
+
"current": 2300.0,
|
352 |
+
"min": 800.0,
|
353 |
+
"max": 3400.0
|
354 |
+
},
|
355 |
+
{
|
356 |
+
"current": 2300.0,
|
357 |
+
"min": 800.0,
|
358 |
+
"max": 3400.0
|
359 |
+
},
|
360 |
+
{
|
361 |
+
"current": 2300.0,
|
362 |
+
"min": 800.0,
|
363 |
+
"max": 3400.0
|
364 |
+
},
|
365 |
+
{
|
366 |
+
"current": 2300.0,
|
367 |
+
"min": 800.0,
|
368 |
+
"max": 3400.0
|
369 |
+
},
|
370 |
+
{
|
371 |
+
"current": 2300.0,
|
372 |
+
"min": 800.0,
|
373 |
+
"max": 3400.0
|
374 |
+
},
|
375 |
+
{
|
376 |
+
"current": 2300.0,
|
377 |
+
"min": 800.0,
|
378 |
+
"max": 3400.0
|
379 |
+
},
|
380 |
+
{
|
381 |
+
"current": 2300.0,
|
382 |
+
"min": 800.0,
|
383 |
+
"max": 3400.0
|
384 |
+
},
|
385 |
+
{
|
386 |
+
"current": 2300.0,
|
387 |
+
"min": 800.0,
|
388 |
+
"max": 3400.0
|
389 |
+
},
|
390 |
+
{
|
391 |
+
"current": 2300.0,
|
392 |
+
"min": 800.0,
|
393 |
+
"max": 3400.0
|
394 |
+
},
|
395 |
+
{
|
396 |
+
"current": 2300.0,
|
397 |
+
"min": 800.0,
|
398 |
+
"max": 3400.0
|
399 |
+
},
|
400 |
+
{
|
401 |
+
"current": 2300.0,
|
402 |
+
"min": 800.0,
|
403 |
+
"max": 3400.0
|
404 |
+
},
|
405 |
+
{
|
406 |
+
"current": 2300.0,
|
407 |
+
"min": 800.0,
|
408 |
+
"max": 3400.0
|
409 |
+
},
|
410 |
+
{
|
411 |
+
"current": 2300.0,
|
412 |
+
"min": 800.0,
|
413 |
+
"max": 3400.0
|
414 |
+
},
|
415 |
+
{
|
416 |
+
"current": 2300.0,
|
417 |
+
"min": 800.0,
|
418 |
+
"max": 3400.0
|
419 |
+
},
|
420 |
+
{
|
421 |
+
"current": 2300.0,
|
422 |
+
"min": 800.0,
|
423 |
+
"max": 3400.0
|
424 |
+
},
|
425 |
+
{
|
426 |
+
"current": 2300.0,
|
427 |
+
"min": 800.0,
|
428 |
+
"max": 3400.0
|
429 |
+
},
|
430 |
+
{
|
431 |
+
"current": 2300.0,
|
432 |
+
"min": 800.0,
|
433 |
+
"max": 3400.0
|
434 |
+
},
|
435 |
+
{
|
436 |
+
"current": 2300.0,
|
437 |
+
"min": 800.0,
|
438 |
+
"max": 3400.0
|
439 |
+
},
|
440 |
+
{
|
441 |
+
"current": 3400.0,
|
442 |
+
"min": 800.0,
|
443 |
+
"max": 3400.0
|
444 |
+
},
|
445 |
+
{
|
446 |
+
"current": 2300.0,
|
447 |
+
"min": 800.0,
|
448 |
+
"max": 3400.0
|
449 |
+
},
|
450 |
+
{
|
451 |
+
"current": 2300.0,
|
452 |
+
"min": 800.0,
|
453 |
+
"max": 3400.0
|
454 |
+
},
|
455 |
+
{
|
456 |
+
"current": 2300.0,
|
457 |
+
"min": 800.0,
|
458 |
+
"max": 3400.0
|
459 |
+
},
|
460 |
+
{
|
461 |
+
"current": 2300.0,
|
462 |
+
"min": 800.0,
|
463 |
+
"max": 3400.0
|
464 |
+
},
|
465 |
+
{
|
466 |
+
"current": 2300.0,
|
467 |
+
"min": 800.0,
|
468 |
+
"max": 3400.0
|
469 |
+
},
|
470 |
+
{
|
471 |
+
"current": 2300.0,
|
472 |
+
"min": 800.0,
|
473 |
+
"max": 3400.0
|
474 |
+
},
|
475 |
+
{
|
476 |
+
"current": 2300.0,
|
477 |
+
"min": 800.0,
|
478 |
+
"max": 3400.0
|
479 |
+
},
|
480 |
+
{
|
481 |
+
"current": 2300.0,
|
482 |
+
"min": 800.0,
|
483 |
+
"max": 3400.0
|
484 |
+
},
|
485 |
+
{
|
486 |
+
"current": 2300.0,
|
487 |
+
"min": 800.0,
|
488 |
+
"max": 3400.0
|
489 |
+
},
|
490 |
+
{
|
491 |
+
"current": 2300.0,
|
492 |
+
"min": 800.0,
|
493 |
+
"max": 3400.0
|
494 |
+
},
|
495 |
+
{
|
496 |
+
"current": 2300.0,
|
497 |
+
"min": 800.0,
|
498 |
+
"max": 3400.0
|
499 |
+
},
|
500 |
+
{
|
501 |
+
"current": 2300.0,
|
502 |
+
"min": 800.0,
|
503 |
+
"max": 3400.0
|
504 |
+
},
|
505 |
+
{
|
506 |
+
"current": 2300.0,
|
507 |
+
"min": 800.0,
|
508 |
+
"max": 3400.0
|
509 |
+
},
|
510 |
+
{
|
511 |
+
"current": 2300.0,
|
512 |
+
"min": 800.0,
|
513 |
+
"max": 3400.0
|
514 |
+
},
|
515 |
+
{
|
516 |
+
"current": 2300.0,
|
517 |
+
"min": 800.0,
|
518 |
+
"max": 3400.0
|
519 |
+
},
|
520 |
+
{
|
521 |
+
"current": 2300.0,
|
522 |
+
"min": 800.0,
|
523 |
+
"max": 3400.0
|
524 |
+
},
|
525 |
+
{
|
526 |
+
"current": 2300.0,
|
527 |
+
"min": 800.0,
|
528 |
+
"max": 3400.0
|
529 |
+
},
|
530 |
+
{
|
531 |
+
"current": 2300.0,
|
532 |
+
"min": 800.0,
|
533 |
+
"max": 3400.0
|
534 |
+
},
|
535 |
+
{
|
536 |
+
"current": 2300.0,
|
537 |
+
"min": 800.0,
|
538 |
+
"max": 3400.0
|
539 |
+
},
|
540 |
+
{
|
541 |
+
"current": 2300.0,
|
542 |
+
"min": 800.0,
|
543 |
+
"max": 3400.0
|
544 |
+
},
|
545 |
+
{
|
546 |
+
"current": 2300.0,
|
547 |
+
"min": 800.0,
|
548 |
+
"max": 3400.0
|
549 |
+
},
|
550 |
+
{
|
551 |
+
"current": 2300.0,
|
552 |
+
"min": 800.0,
|
553 |
+
"max": 3400.0
|
554 |
+
},
|
555 |
+
{
|
556 |
+
"current": 2300.0,
|
557 |
+
"min": 800.0,
|
558 |
+
"max": 3400.0
|
559 |
+
},
|
560 |
+
{
|
561 |
+
"current": 2300.0,
|
562 |
+
"min": 800.0,
|
563 |
+
"max": 3400.0
|
564 |
+
},
|
565 |
+
{
|
566 |
+
"current": 2300.0,
|
567 |
+
"min": 800.0,
|
568 |
+
"max": 3400.0
|
569 |
+
},
|
570 |
+
{
|
571 |
+
"current": 2300.0,
|
572 |
+
"min": 800.0,
|
573 |
+
"max": 3400.0
|
574 |
+
},
|
575 |
+
{
|
576 |
+
"current": 2300.0,
|
577 |
+
"min": 800.0,
|
578 |
+
"max": 3400.0
|
579 |
+
},
|
580 |
+
{
|
581 |
+
"current": 2300.0,
|
582 |
+
"min": 800.0,
|
583 |
+
"max": 3400.0
|
584 |
+
},
|
585 |
+
{
|
586 |
+
"current": 2300.0,
|
587 |
+
"min": 800.0,
|
588 |
+
"max": 3400.0
|
589 |
+
},
|
590 |
+
{
|
591 |
+
"current": 2300.0,
|
592 |
+
"min": 800.0,
|
593 |
+
"max": 3400.0
|
594 |
+
},
|
595 |
+
{
|
596 |
+
"current": 2300.0,
|
597 |
+
"min": 800.0,
|
598 |
+
"max": 3400.0
|
599 |
+
},
|
600 |
+
{
|
601 |
+
"current": 2300.0,
|
602 |
+
"min": 800.0,
|
603 |
+
"max": 3400.0
|
604 |
+
},
|
605 |
+
{
|
606 |
+
"current": 2300.0,
|
607 |
+
"min": 800.0,
|
608 |
+
"max": 3400.0
|
609 |
+
},
|
610 |
+
{
|
611 |
+
"current": 2300.0,
|
612 |
+
"min": 800.0,
|
613 |
+
"max": 3400.0
|
614 |
+
},
|
615 |
+
{
|
616 |
+
"current": 2300.0,
|
617 |
+
"min": 800.0,
|
618 |
+
"max": 3400.0
|
619 |
+
},
|
620 |
+
{
|
621 |
+
"current": 2300.0,
|
622 |
+
"min": 800.0,
|
623 |
+
"max": 3400.0
|
624 |
+
},
|
625 |
+
{
|
626 |
+
"current": 2300.0,
|
627 |
+
"min": 800.0,
|
628 |
+
"max": 3400.0
|
629 |
+
},
|
630 |
+
{
|
631 |
+
"current": 2300.0,
|
632 |
+
"min": 800.0,
|
633 |
+
"max": 3400.0
|
634 |
+
},
|
635 |
+
{
|
636 |
+
"current": 2300.0,
|
637 |
+
"min": 800.0,
|
638 |
+
"max": 3400.0
|
639 |
+
},
|
640 |
+
{
|
641 |
+
"current": 2300.0,
|
642 |
+
"min": 800.0,
|
643 |
+
"max": 3400.0
|
644 |
+
},
|
645 |
+
{
|
646 |
+
"current": 2300.0,
|
647 |
+
"min": 800.0,
|
648 |
+
"max": 3400.0
|
649 |
+
},
|
650 |
+
{
|
651 |
+
"current": 2300.0,
|
652 |
+
"min": 800.0,
|
653 |
+
"max": 3400.0
|
654 |
+
},
|
655 |
+
{
|
656 |
+
"current": 2300.0,
|
657 |
+
"min": 800.0,
|
658 |
+
"max": 3400.0
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"current": 2300.0,
|
662 |
+
"min": 800.0,
|
663 |
+
"max": 3400.0
|
664 |
+
},
|
665 |
+
{
|
666 |
+
"current": 2300.0,
|
667 |
+
"min": 800.0,
|
668 |
+
"max": 3400.0
|
669 |
+
},
|
670 |
+
{
|
671 |
+
"current": 2300.0,
|
672 |
+
"min": 800.0,
|
673 |
+
"max": 3400.0
|
674 |
+
},
|
675 |
+
{
|
676 |
+
"current": 2300.0,
|
677 |
+
"min": 800.0,
|
678 |
+
"max": 3400.0
|
679 |
+
},
|
680 |
+
{
|
681 |
+
"current": 2300.0,
|
682 |
+
"min": 800.0,
|
683 |
+
"max": 3400.0
|
684 |
+
},
|
685 |
+
{
|
686 |
+
"current": 2300.0,
|
687 |
+
"min": 800.0,
|
688 |
+
"max": 3400.0
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"current": 2300.0,
|
692 |
+
"min": 800.0,
|
693 |
+
"max": 3400.0
|
694 |
+
},
|
695 |
+
{
|
696 |
+
"current": 2300.0,
|
697 |
+
"min": 800.0,
|
698 |
+
"max": 3400.0
|
699 |
+
},
|
700 |
+
{
|
701 |
+
"current": 2300.0,
|
702 |
+
"min": 800.0,
|
703 |
+
"max": 3400.0
|
704 |
+
},
|
705 |
+
{
|
706 |
+
"current": 2300.0,
|
707 |
+
"min": 800.0,
|
708 |
+
"max": 3400.0
|
709 |
+
},
|
710 |
+
{
|
711 |
+
"current": 2300.0,
|
712 |
+
"min": 800.0,
|
713 |
+
"max": 3400.0
|
714 |
+
},
|
715 |
+
{
|
716 |
+
"current": 2300.0,
|
717 |
+
"min": 800.0,
|
718 |
+
"max": 3400.0
|
719 |
+
},
|
720 |
+
{
|
721 |
+
"current": 2300.0,
|
722 |
+
"min": 800.0,
|
723 |
+
"max": 3400.0
|
724 |
+
},
|
725 |
+
{
|
726 |
+
"current": 2300.0,
|
727 |
+
"min": 800.0,
|
728 |
+
"max": 3400.0
|
729 |
+
},
|
730 |
+
{
|
731 |
+
"current": 2300.0,
|
732 |
+
"min": 800.0,
|
733 |
+
"max": 3400.0
|
734 |
+
},
|
735 |
+
{
|
736 |
+
"current": 2300.0,
|
737 |
+
"min": 800.0,
|
738 |
+
"max": 3400.0
|
739 |
+
},
|
740 |
+
{
|
741 |
+
"current": 2300.0,
|
742 |
+
"min": 800.0,
|
743 |
+
"max": 3400.0
|
744 |
+
},
|
745 |
+
{
|
746 |
+
"current": 2300.0,
|
747 |
+
"min": 800.0,
|
748 |
+
"max": 3400.0
|
749 |
+
},
|
750 |
+
{
|
751 |
+
"current": 2300.0,
|
752 |
+
"min": 800.0,
|
753 |
+
"max": 3400.0
|
754 |
+
},
|
755 |
+
{
|
756 |
+
"current": 2300.0,
|
757 |
+
"min": 800.0,
|
758 |
+
"max": 3400.0
|
759 |
+
},
|
760 |
+
{
|
761 |
+
"current": 2300.0,
|
762 |
+
"min": 800.0,
|
763 |
+
"max": 3400.0
|
764 |
+
},
|
765 |
+
{
|
766 |
+
"current": 2300.0,
|
767 |
+
"min": 800.0,
|
768 |
+
"max": 3400.0
|
769 |
+
},
|
770 |
+
{
|
771 |
+
"current": 2300.0,
|
772 |
+
"min": 800.0,
|
773 |
+
"max": 3400.0
|
774 |
+
},
|
775 |
+
{
|
776 |
+
"current": 2300.0,
|
777 |
+
"min": 800.0,
|
778 |
+
"max": 3400.0
|
779 |
+
},
|
780 |
+
{
|
781 |
+
"current": 2300.0,
|
782 |
+
"min": 800.0,
|
783 |
+
"max": 3400.0
|
784 |
+
},
|
785 |
+
{
|
786 |
+
"current": 2300.0,
|
787 |
+
"min": 800.0,
|
788 |
+
"max": 3400.0
|
789 |
+
},
|
790 |
+
{
|
791 |
+
"current": 2300.0,
|
792 |
+
"min": 800.0,
|
793 |
+
"max": 3400.0
|
794 |
+
},
|
795 |
+
{
|
796 |
+
"current": 2300.0,
|
797 |
+
"min": 800.0,
|
798 |
+
"max": 3400.0
|
799 |
+
},
|
800 |
+
{
|
801 |
+
"current": 2300.0,
|
802 |
+
"min": 800.0,
|
803 |
+
"max": 3400.0
|
804 |
+
},
|
805 |
+
{
|
806 |
+
"current": 2300.0,
|
807 |
+
"min": 800.0,
|
808 |
+
"max": 3400.0
|
809 |
+
},
|
810 |
+
{
|
811 |
+
"current": 2300.0,
|
812 |
+
"min": 800.0,
|
813 |
+
"max": 3400.0
|
814 |
+
},
|
815 |
+
{
|
816 |
+
"current": 2300.0,
|
817 |
+
"min": 800.0,
|
818 |
+
"max": 3400.0
|
819 |
+
},
|
820 |
+
{
|
821 |
+
"current": 2300.0,
|
822 |
+
"min": 800.0,
|
823 |
+
"max": 3400.0
|
824 |
+
},
|
825 |
+
{
|
826 |
+
"current": 2300.0,
|
827 |
+
"min": 800.0,
|
828 |
+
"max": 3400.0
|
829 |
+
},
|
830 |
+
{
|
831 |
+
"current": 2300.0,
|
832 |
+
"min": 800.0,
|
833 |
+
"max": 3400.0
|
834 |
+
},
|
835 |
+
{
|
836 |
+
"current": 2300.0,
|
837 |
+
"min": 800.0,
|
838 |
+
"max": 3400.0
|
839 |
+
}
|
840 |
+
],
|
841 |
+
"disk": {
|
842 |
+
"/": {
|
843 |
+
"total": 877.6341285705566,
|
844 |
+
"used": 211.89148712158203
|
845 |
+
}
|
846 |
+
},
|
847 |
+
"memory": {
|
848 |
+
"total": 1007.4379920959473
|
849 |
+
}
|
850 |
+
}
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug-internal.log
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-30 07:04:47,387 INFO StreamThr :900 [internal.py:wandb_internal():85] W&B internal server running at pid: 900, started at: 2024-05-30 07:04:47.385483
|
2 |
+
2024-05-30 07:04:47,391 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status
|
3 |
+
2024-05-30 07:04:47,392 INFO WriterThread:900 [datastore.py:open_for_write():87] open: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/run-fi4sos5j.wandb
|
4 |
+
2024-05-30 07:04:47,395 DEBUG SenderThread:900 [sender.py:send():378] send: header
|
5 |
+
2024-05-30 07:04:47,399 DEBUG SenderThread:900 [sender.py:send():378] send: run
|
6 |
+
2024-05-30 07:04:47,689 INFO SenderThread:900 [dir_watcher.py:__init__():211] watching files in: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files
|
7 |
+
2024-05-30 07:04:47,689 INFO SenderThread:900 [sender.py:_start_run_threads():1123] run started: fi4sos5j with start time 1717052687.38595
|
8 |
+
2024-05-30 07:04:47,695 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: check_version
|
9 |
+
2024-05-30 07:04:47,696 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: check_version
|
10 |
+
2024-05-30 07:04:47,815 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: run_start
|
11 |
+
2024-05-30 07:04:47,817 DEBUG HandlerThread:900 [system_info.py:__init__():26] System info init
|
12 |
+
2024-05-30 07:04:47,817 DEBUG HandlerThread:900 [system_info.py:__init__():41] System info init done
|
13 |
+
2024-05-30 07:04:47,817 INFO HandlerThread:900 [system_monitor.py:start():194] Starting system monitor
|
14 |
+
2024-05-30 07:04:47,818 INFO SystemMonitor:900 [system_monitor.py:_start():158] Starting system asset monitoring threads
|
15 |
+
2024-05-30 07:04:47,818 INFO HandlerThread:900 [system_monitor.py:probe():214] Collecting system info
|
16 |
+
2024-05-30 07:04:47,824 INFO SystemMonitor:900 [interfaces.py:start():188] Started cpu monitoring
|
17 |
+
2024-05-30 07:04:47,825 INFO SystemMonitor:900 [interfaces.py:start():188] Started disk monitoring
|
18 |
+
2024-05-30 07:04:47,828 INFO SystemMonitor:900 [interfaces.py:start():188] Started memory monitoring
|
19 |
+
2024-05-30 07:04:47,828 INFO SystemMonitor:900 [interfaces.py:start():188] Started network monitoring
|
20 |
+
2024-05-30 07:04:47,890 DEBUG HandlerThread:900 [system_info.py:probe():150] Probing system
|
21 |
+
2024-05-30 07:04:47,893 DEBUG HandlerThread:900 [system_info.py:_probe_git():135] Probing git
|
22 |
+
2024-05-30 07:04:47,903 ERROR HandlerThread:900 [gitlib.py:root():92] git root error: Cmd('git') failed due to: exit code(128)
|
23 |
+
cmdline: git rev-parse --show-toplevel
|
24 |
+
stderr: 'fatal: detected dubious ownership in repository at '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
25 |
+
To add an exception for this directory, call:
|
26 |
+
|
27 |
+
git config --global --add safe.directory /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness'
|
28 |
+
2024-05-30 07:04:47,903 DEBUG HandlerThread:900 [system_info.py:_probe_git():143] Probing git done
|
29 |
+
2024-05-30 07:04:47,903 DEBUG HandlerThread:900 [system_info.py:probe():198] Probing system done
|
30 |
+
2024-05-30 07:04:47,903 DEBUG HandlerThread:900 [system_monitor.py:probe():223] {'os': 'Linux-5.15.0-92-generic-x86_64-with-glibc2.35', 'python': '3.10.12', 'heartbeatAt': '2024-05-30T07:04:47.890522', 'startedAt': '2024-05-30T07:04:47.365134', 'docker': None, 'cuda': None, 'args': ('--model', 'hf', '--model_args', 'pretrained=/mnt/weka/peacock/experiments/llama/eval/checkpoint-english/llamav2-3b/hf/global_step70000,tokenizer=/mnt/weka/peacock/tokenization/trained-tokenizer/enhiben_50k/', '--tasks', 'winogrande,sst2,mrpc,arc_easy,copa,piqa,boolq', '--batch_size', 'auto', '--wandb_args', 'project=english-eval,group=exp2,name=global_step70000'), 'state': 'running', 'program': '-m lm_eval.__main__', 'codePathLocal': None, 'git': {'remote': 'https://github.com/EleutherAI/lm-evaluation-harness', 'commit': None}, 'email': None, 'root': '/mnt/weka/peacock/idc/cronscript/lm-evaluation-harness', 'host': 'peacock-evaluation-debug-35-worker-0', 'username': 'root', 'executable': '/usr/bin/python3', 'cpu_count': 80, 'cpu_count_logical': 160, 'cpu_freq': {'current': 2327.4101375, 'min': 800.0, 'max': 3400.0}, 'cpu_freq_per_core': [{'current': 3399.997, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3399.997, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 3400.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}, {'current': 2300.0, 'min': 800.0, 'max': 3400.0}], 'disk': {'/': {'total': 877.6341285705566, 'used': 211.89148712158203}}, 'memory': {'total': 1007.4379920959473}}
|
31 |
+
2024-05-30 07:04:47,903 INFO HandlerThread:900 [system_monitor.py:probe():224] Finished collecting system info
|
32 |
+
2024-05-30 07:04:47,903 INFO HandlerThread:900 [system_monitor.py:probe():227] Publishing system info
|
33 |
+
2024-05-30 07:04:47,906 INFO HandlerThread:900 [system_monitor.py:probe():229] Finished publishing system info
|
34 |
+
2024-05-30 07:04:47,913 DEBUG SenderThread:900 [sender.py:send():378] send: files
|
35 |
+
2024-05-30 07:04:47,913 INFO SenderThread:900 [sender.py:_save_file():1389] saving file wandb-metadata.json with policy now
|
36 |
+
2024-05-30 07:04:48,084 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: python_packages
|
37 |
+
2024-05-30 07:04:48,084 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: python_packages
|
38 |
+
2024-05-30 07:04:48,085 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: stop_status
|
39 |
+
2024-05-30 07:04:48,090 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: stop_status
|
40 |
+
2024-05-30 07:04:48,246 DEBUG SenderThread:900 [sender.py:send():378] send: telemetry
|
41 |
+
2024-05-30 07:04:48,551 INFO wandb-upload_0:900 [upload_job.py:push():130] Uploaded file /tmp/tmpg7_ujvdqwandb/75nr9en3-wandb-metadata.json
|
42 |
+
2024-05-30 07:04:48,692 INFO Thread-12 :900 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
43 |
+
2024-05-30 07:04:48,692 INFO Thread-12 :900 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-metadata.json
|
44 |
+
2024-05-30 07:04:48,692 INFO Thread-12 :900 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/requirements.txt
|
45 |
+
2024-05-30 07:04:50,691 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
46 |
+
2024-05-30 07:04:53,250 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
47 |
+
2024-05-30 07:04:58,696 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
48 |
+
2024-05-30 07:04:58,972 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
49 |
+
2024-05-30 07:05:02,714 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
50 |
+
2024-05-30 07:05:03,086 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: stop_status
|
51 |
+
2024-05-30 07:05:03,086 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: stop_status
|
52 |
+
2024-05-30 07:05:04,190 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
53 |
+
2024-05-30 07:05:09,190 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
54 |
+
2024-05-30 07:05:14,191 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
55 |
+
2024-05-30 07:05:18,086 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: stop_status
|
56 |
+
2024-05-30 07:05:18,087 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: stop_status
|
57 |
+
2024-05-30 07:05:19,247 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
58 |
+
2024-05-30 07:05:19,759 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/config.yaml
|
59 |
+
2024-05-30 07:05:25,032 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
60 |
+
2024-05-30 07:05:26,573 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
61 |
+
2024-05-30 07:05:26,962 DEBUG SenderThread:900 [sender.py:send():378] send: exit
|
62 |
+
2024-05-30 07:05:26,962 INFO SenderThread:900 [sender.py:send_exit():585] handling exit code: 1
|
63 |
+
2024-05-30 07:05:26,962 INFO SenderThread:900 [sender.py:send_exit():587] handling runtime: 39
|
64 |
+
2024-05-30 07:05:26,963 INFO SenderThread:900 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
65 |
+
2024-05-30 07:05:26,963 INFO SenderThread:900 [sender.py:send_exit():593] send defer
|
66 |
+
2024-05-30 07:05:26,964 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
67 |
+
2024-05-30 07:05:26,964 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 0
|
68 |
+
2024-05-30 07:05:26,964 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
69 |
+
2024-05-30 07:05:26,964 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 0
|
70 |
+
2024-05-30 07:05:26,964 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 1
|
71 |
+
2024-05-30 07:05:26,964 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
72 |
+
2024-05-30 07:05:26,964 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 1
|
73 |
+
2024-05-30 07:05:26,964 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
74 |
+
2024-05-30 07:05:26,964 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 1
|
75 |
+
2024-05-30 07:05:26,964 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 2
|
76 |
+
2024-05-30 07:05:26,964 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
77 |
+
2024-05-30 07:05:26,964 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 2
|
78 |
+
2024-05-30 07:05:26,964 INFO HandlerThread:900 [system_monitor.py:finish():203] Stopping system monitor
|
79 |
+
2024-05-30 07:05:26,964 DEBUG SystemMonitor:900 [system_monitor.py:_start():172] Starting system metrics aggregation loop
|
80 |
+
2024-05-30 07:05:26,964 DEBUG SystemMonitor:900 [system_monitor.py:_start():179] Finished system metrics aggregation loop
|
81 |
+
2024-05-30 07:05:26,964 DEBUG SystemMonitor:900 [system_monitor.py:_start():183] Publishing last batch of metrics
|
82 |
+
2024-05-30 07:05:26,967 INFO HandlerThread:900 [interfaces.py:finish():200] Joined cpu monitor
|
83 |
+
2024-05-30 07:05:26,968 INFO HandlerThread:900 [interfaces.py:finish():200] Joined disk monitor
|
84 |
+
2024-05-30 07:05:26,968 INFO HandlerThread:900 [interfaces.py:finish():200] Joined memory monitor
|
85 |
+
2024-05-30 07:05:26,968 INFO HandlerThread:900 [interfaces.py:finish():200] Joined network monitor
|
86 |
+
2024-05-30 07:05:26,968 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
87 |
+
2024-05-30 07:05:26,968 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 2
|
88 |
+
2024-05-30 07:05:26,968 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 3
|
89 |
+
2024-05-30 07:05:26,968 DEBUG SenderThread:900 [sender.py:send():378] send: stats
|
90 |
+
2024-05-30 07:05:26,969 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
91 |
+
2024-05-30 07:05:26,969 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 3
|
92 |
+
2024-05-30 07:05:26,970 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
93 |
+
2024-05-30 07:05:26,970 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 3
|
94 |
+
2024-05-30 07:05:26,970 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 4
|
95 |
+
2024-05-30 07:05:26,970 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
96 |
+
2024-05-30 07:05:26,970 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 4
|
97 |
+
2024-05-30 07:05:26,970 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
98 |
+
2024-05-30 07:05:26,970 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 4
|
99 |
+
2024-05-30 07:05:26,970 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 5
|
100 |
+
2024-05-30 07:05:26,970 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
101 |
+
2024-05-30 07:05:26,970 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 5
|
102 |
+
2024-05-30 07:05:26,970 DEBUG SenderThread:900 [sender.py:send():378] send: summary
|
103 |
+
2024-05-30 07:05:26,971 INFO SenderThread:900 [sender.py:_save_file():1389] saving file wandb-summary.json with policy end
|
104 |
+
2024-05-30 07:05:26,971 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
105 |
+
2024-05-30 07:05:26,971 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 5
|
106 |
+
2024-05-30 07:05:26,971 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 6
|
107 |
+
2024-05-30 07:05:26,971 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
108 |
+
2024-05-30 07:05:26,971 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 6
|
109 |
+
2024-05-30 07:05:26,971 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
110 |
+
2024-05-30 07:05:26,971 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 6
|
111 |
+
2024-05-30 07:05:26,971 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 7
|
112 |
+
2024-05-30 07:05:26,972 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: status_report
|
113 |
+
2024-05-30 07:05:26,972 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
114 |
+
2024-05-30 07:05:26,972 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 7
|
115 |
+
2024-05-30 07:05:26,972 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
116 |
+
2024-05-30 07:05:26,972 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 7
|
117 |
+
2024-05-30 07:05:27,574 INFO Thread-12 :900 [dir_watcher.py:_on_file_created():271] file/dir created: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-summary.json
|
118 |
+
2024-05-30 07:05:27,962 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: poll_exit
|
119 |
+
2024-05-30 07:05:28,582 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 8
|
120 |
+
2024-05-30 07:05:28,582 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: poll_exit
|
121 |
+
2024-05-30 07:05:28,582 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
122 |
+
2024-05-30 07:05:28,582 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 8
|
123 |
+
2024-05-30 07:05:28,582 INFO Thread-12 :900 [dir_watcher.py:_on_file_modified():288] file/dir modified: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
124 |
+
2024-05-30 07:05:28,582 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
125 |
+
2024-05-30 07:05:28,583 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 8
|
126 |
+
2024-05-30 07:05:28,583 INFO SenderThread:900 [job_builder.py:build():432] Attempting to build job artifact
|
127 |
+
2024-05-30 07:05:28,583 INFO SenderThread:900 [job_builder.py:_get_source_type():576] no source found
|
128 |
+
2024-05-30 07:05:28,583 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 9
|
129 |
+
2024-05-30 07:05:28,583 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
130 |
+
2024-05-30 07:05:28,583 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 9
|
131 |
+
2024-05-30 07:05:28,584 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
132 |
+
2024-05-30 07:05:28,584 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 9
|
133 |
+
2024-05-30 07:05:28,584 INFO SenderThread:900 [dir_watcher.py:finish():358] shutting down directory watcher
|
134 |
+
2024-05-30 07:05:28,962 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: poll_exit
|
135 |
+
2024-05-30 07:05:29,583 INFO SenderThread:900 [dir_watcher.py:finish():388] scan: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files
|
136 |
+
2024-05-30 07:05:29,584 INFO SenderThread:900 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-summary.json wandb-summary.json
|
137 |
+
2024-05-30 07:05:29,584 INFO SenderThread:900 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log output.log
|
138 |
+
2024-05-30 07:05:29,586 INFO SenderThread:900 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/config.yaml config.yaml
|
139 |
+
2024-05-30 07:05:29,586 INFO SenderThread:900 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/requirements.txt requirements.txt
|
140 |
+
2024-05-30 07:05:29,586 INFO SenderThread:900 [dir_watcher.py:finish():402] scan save: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-metadata.json wandb-metadata.json
|
141 |
+
2024-05-30 07:05:29,587 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 10
|
142 |
+
2024-05-30 07:05:29,587 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: poll_exit
|
143 |
+
2024-05-30 07:05:29,587 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
144 |
+
2024-05-30 07:05:29,587 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 10
|
145 |
+
2024-05-30 07:05:29,587 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
146 |
+
2024-05-30 07:05:29,587 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 10
|
147 |
+
2024-05-30 07:05:29,587 INFO SenderThread:900 [file_pusher.py:finish():169] shutting down file pusher
|
148 |
+
2024-05-30 07:05:29,833 INFO wandb-upload_0:900 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/wandb-summary.json
|
149 |
+
2024-05-30 07:05:29,963 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: poll_exit
|
150 |
+
2024-05-30 07:05:29,963 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: poll_exit
|
151 |
+
2024-05-30 07:05:30,198 INFO wandb-upload_1:900 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/output.log
|
152 |
+
2024-05-30 07:05:30,241 INFO wandb-upload_3:900 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/requirements.txt
|
153 |
+
2024-05-30 07:05:30,267 INFO wandb-upload_2:900 [upload_job.py:push():130] Uploaded file /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/files/config.yaml
|
154 |
+
2024-05-30 07:05:30,467 INFO Thread-11 (_thread_body):900 [sender.py:transition_state():613] send defer: 11
|
155 |
+
2024-05-30 07:05:30,467 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
156 |
+
2024-05-30 07:05:30,467 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 11
|
157 |
+
2024-05-30 07:05:30,467 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
158 |
+
2024-05-30 07:05:30,467 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 11
|
159 |
+
2024-05-30 07:05:30,467 INFO SenderThread:900 [file_pusher.py:join():175] waiting for file pusher
|
160 |
+
2024-05-30 07:05:30,468 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 12
|
161 |
+
2024-05-30 07:05:30,468 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
162 |
+
2024-05-30 07:05:30,468 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 12
|
163 |
+
2024-05-30 07:05:30,468 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
164 |
+
2024-05-30 07:05:30,468 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 12
|
165 |
+
2024-05-30 07:05:30,468 INFO SenderThread:900 [file_stream.py:finish():601] file stream finish called
|
166 |
+
2024-05-30 07:05:30,524 INFO SenderThread:900 [file_stream.py:finish():605] file stream finish is done
|
167 |
+
2024-05-30 07:05:30,524 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 13
|
168 |
+
2024-05-30 07:05:30,524 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
169 |
+
2024-05-30 07:05:30,524 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 13
|
170 |
+
2024-05-30 07:05:30,525 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
171 |
+
2024-05-30 07:05:30,525 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 13
|
172 |
+
2024-05-30 07:05:30,525 INFO SenderThread:900 [sender.py:transition_state():613] send defer: 14
|
173 |
+
2024-05-30 07:05:30,525 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: defer
|
174 |
+
2024-05-30 07:05:30,525 INFO HandlerThread:900 [handler.py:handle_request_defer():184] handle defer: 14
|
175 |
+
2024-05-30 07:05:30,525 DEBUG SenderThread:900 [sender.py:send():378] send: final
|
176 |
+
2024-05-30 07:05:30,525 DEBUG SenderThread:900 [sender.py:send():378] send: footer
|
177 |
+
2024-05-30 07:05:30,525 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: defer
|
178 |
+
2024-05-30 07:05:30,525 INFO SenderThread:900 [sender.py:send_request_defer():609] handle sender defer: 14
|
179 |
+
2024-05-30 07:05:30,525 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: poll_exit
|
180 |
+
2024-05-30 07:05:30,526 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: poll_exit
|
181 |
+
2024-05-30 07:05:30,526 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: poll_exit
|
182 |
+
2024-05-30 07:05:30,526 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: server_info
|
183 |
+
2024-05-30 07:05:30,526 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: get_summary
|
184 |
+
2024-05-30 07:05:30,526 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: sampled_history
|
185 |
+
2024-05-30 07:05:30,526 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: internal_messages
|
186 |
+
2024-05-30 07:05:30,527 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: poll_exit
|
187 |
+
2024-05-30 07:05:30,527 DEBUG SenderThread:900 [sender.py:send_request():405] send_request: server_info
|
188 |
+
2024-05-30 07:05:30,577 INFO MainThread:900 [wandb_run.py:_footer_history_summary_info():3994] rendering history
|
189 |
+
2024-05-30 07:05:30,577 INFO MainThread:900 [wandb_run.py:_footer_history_summary_info():4026] rendering summary
|
190 |
+
2024-05-30 07:05:30,577 INFO MainThread:900 [wandb_run.py:_footer_sync_info():3953] logging synced files
|
191 |
+
2024-05-30 07:05:30,578 DEBUG HandlerThread:900 [handler.py:handle_request():158] handle_request: shutdown
|
192 |
+
2024-05-30 07:05:30,578 INFO HandlerThread:900 [handler.py:finish():882] shutting down handler
|
193 |
+
2024-05-30 07:05:31,527 INFO WriterThread:900 [datastore.py:close():296] close: /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/run-fi4sos5j.wandb
|
194 |
+
2024-05-30 07:05:31,577 INFO SenderThread:900 [sender.py:finish():1545] shutting down sender
|
195 |
+
2024-05-30 07:05:31,577 INFO SenderThread:900 [file_pusher.py:finish():169] shutting down file pusher
|
196 |
+
2024-05-30 07:05:31,577 INFO SenderThread:900 [file_pusher.py:join():175] waiting for file pusher
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug.log
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
2024-05-30 07:04:47,379 INFO MainThread:744 [wandb_setup.py:_flush():76] Current SDK version is 0.17.0
|
2 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Configure stats pid to 744
|
3 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from /root/.config/wandb/settings
|
4 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/settings
|
5 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Loading settings from environment variables: {}
|
6 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Applying setup settings: {'_disable_service': False}
|
7 |
+
2024-05-30 07:04:47,380 WARNING MainThread:744 [wandb_setup.py:_flush():76] Could not find program at -m lm_eval.__main__
|
8 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Inferring run settings from compute environment: {'program_relpath': None, 'program': '-m lm_eval.__main__'}
|
9 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_setup.py:_flush():76] Applying login settings: {}
|
10 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:_log_setup():520] Logging user logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug.log
|
11 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:_log_setup():521] Logging internal logs to /mnt/weka/peacock/idc/cronscript/lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/logs/debug-internal.log
|
12 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:init():560] calling init triggers
|
13 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:init():567] wandb.init called with sweep_config: {}
|
14 |
+
config: {}
|
15 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:init():610] starting backend
|
16 |
+
2024-05-30 07:04:47,380 INFO MainThread:744 [wandb_init.py:init():614] setting up manager
|
17 |
+
2024-05-30 07:04:47,384 INFO MainThread:744 [backend.py:_multiprocessing_setup():105] multiprocessing start_methods=fork,spawn,forkserver, using: spawn
|
18 |
+
2024-05-30 07:04:47,385 INFO MainThread:744 [wandb_init.py:init():622] backend started and connected
|
19 |
+
2024-05-30 07:04:47,389 INFO MainThread:744 [wandb_init.py:init():711] updated telemetry
|
20 |
+
2024-05-30 07:04:47,398 INFO MainThread:744 [wandb_init.py:init():744] communicating run to backend with 90.0 second timeout
|
21 |
+
2024-05-30 07:04:47,695 INFO MainThread:744 [wandb_run.py:_on_init():2396] communicating current version
|
22 |
+
2024-05-30 07:04:47,809 INFO MainThread:744 [wandb_run.py:_on_init():2405] got version response
|
23 |
+
2024-05-30 07:04:47,809 INFO MainThread:744 [wandb_init.py:init():795] starting run threads in backend
|
24 |
+
2024-05-30 07:04:48,086 INFO MainThread:744 [wandb_run.py:_console_start():2374] atexit reg
|
25 |
+
2024-05-30 07:04:48,086 INFO MainThread:744 [wandb_run.py:_redirect():2229] redirect: wrap_raw
|
26 |
+
2024-05-30 07:04:48,086 INFO MainThread:744 [wandb_run.py:_redirect():2294] Wrapping output streams.
|
27 |
+
2024-05-30 07:04:48,086 INFO MainThread:744 [wandb_run.py:_redirect():2319] Redirects installed.
|
28 |
+
2024-05-30 07:04:48,087 INFO MainThread:744 [wandb_init.py:init():838] run started, returning control to user process
|
29 |
+
2024-05-30 07:05:31,579 WARNING MsgRouterThr:744 [router.py:message_loop():77] message_loop has been closed
|
lm-evaluation-harness/wandb/run-20240530_070447-fi4sos5j/run-fi4sos5j.wandb
ADDED
Binary file (12 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__init__.py
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_torch_available,
|
21 |
+
)
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {
|
25 |
+
"configuration_gpt_bigcode": ["GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTBigCodeConfig"],
|
26 |
+
}
|
27 |
+
|
28 |
+
try:
|
29 |
+
if not is_torch_available():
|
30 |
+
raise OptionalDependencyNotAvailable()
|
31 |
+
except OptionalDependencyNotAvailable:
|
32 |
+
pass
|
33 |
+
else:
|
34 |
+
_import_structure["modeling_gpt_bigcode"] = [
|
35 |
+
"GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
36 |
+
"GPTBigCodeForSequenceClassification",
|
37 |
+
"GPTBigCodeForTokenClassification",
|
38 |
+
"GPTBigCodeForCausalLM",
|
39 |
+
"GPTBigCodeModel",
|
40 |
+
"GPTBigCodePreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig
|
45 |
+
|
46 |
+
try:
|
47 |
+
if not is_torch_available():
|
48 |
+
raise OptionalDependencyNotAvailable()
|
49 |
+
except OptionalDependencyNotAvailable:
|
50 |
+
pass
|
51 |
+
else:
|
52 |
+
from .modeling_gpt_bigcode import (
|
53 |
+
GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
54 |
+
GPTBigCodeForCausalLM,
|
55 |
+
GPTBigCodeForSequenceClassification,
|
56 |
+
GPTBigCodeForTokenClassification,
|
57 |
+
GPTBigCodeModel,
|
58 |
+
GPTBigCodePreTrainedModel,
|
59 |
+
)
|
60 |
+
|
61 |
+
|
62 |
+
else:
|
63 |
+
import sys
|
64 |
+
|
65 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.07 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/configuration_gpt_bigcode.cpython-310.pyc
ADDED
Binary file (5.52 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/__pycache__/modeling_gpt_bigcode.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/configuration_gpt_bigcode.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The BigCode team and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPTBigCode configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class GPTBigCodeConfig(PretrainedConfig):
|
28 |
+
"""
|
29 |
+
This is the configuration class to store the configuration of a [`GPTBigCodeModel`]. It is used to instantiate a
|
30 |
+
GPTBigCode model according to the specified arguments, defining the model architecture. Instantiating a
|
31 |
+
configuration with the defaults will yield a similar configuration to that of the GPTBigCode
|
32 |
+
[gpt_bigcode](https://huggingface.co/gpt_bigcode) architecture.
|
33 |
+
|
34 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
35 |
+
documentation from [`PretrainedConfig`] for more information.
|
36 |
+
|
37 |
+
|
38 |
+
Args:
|
39 |
+
vocab_size (`int`, *optional*, defaults to 50257):
|
40 |
+
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the
|
41 |
+
`inputs_ids` passed when calling [`GPTBigCodeModel`].
|
42 |
+
n_positions (`int`, *optional*, defaults to 1024):
|
43 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
44 |
+
just in case (e.g., 512 or 1024 or 2048).
|
45 |
+
n_embd (`int`, *optional*, defaults to 768):
|
46 |
+
Dimensionality of the embeddings and hidden states.
|
47 |
+
n_layer (`int`, *optional*, defaults to 12):
|
48 |
+
Number of hidden layers in the Transformer encoder.
|
49 |
+
n_head (`int`, *optional*, defaults to 12):
|
50 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
51 |
+
n_inner (`int`, *optional*, defaults to None):
|
52 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
53 |
+
activation_function (`str`, *optional*, defaults to `"gelu_pytorch_tanh"`):
|
54 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new",
|
55 |
+
"gelu_pytorch_tanh"]`.
|
56 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
embd_pdrop (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout ratio for the embeddings.
|
60 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
61 |
+
The dropout ratio for the attention.
|
62 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
63 |
+
The epsilon to use in the layer normalization layers.
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
scale_attn_weights (`bool`, *optional*, defaults to `True`):
|
67 |
+
Scale attention weights by dividing by sqrt(hidden_size)..
|
68 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
69 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
70 |
+
attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to call the fused softmax in float32.
|
72 |
+
scale_attention_softmax_in_fp32 (`bool`, *optional*, defaults to `True`):
|
73 |
+
Whether to scale the attention softmax in float32.
|
74 |
+
attention_type (`bool`, *optional*, defaults to `True`):
|
75 |
+
Whether to use Multi-Query Attion (`True`) or Multi-Head Attention (`False`).
|
76 |
+
Example:
|
77 |
+
|
78 |
+
```python
|
79 |
+
>>> from transformers import GPTBigCodeConfig, GPTBigCodeModel
|
80 |
+
|
81 |
+
>>> # Initializing a GPTBigCode configuration
|
82 |
+
>>> configuration = GPTBigCodeConfig()
|
83 |
+
|
84 |
+
>>> # Initializing a model (with random weights) from the configuration
|
85 |
+
>>> model = GPTBigCodeModel(configuration)
|
86 |
+
|
87 |
+
>>> # Accessing the model configuration
|
88 |
+
>>> configuration = model.config
|
89 |
+
```"""
|
90 |
+
|
91 |
+
model_type = "gpt_bigcode"
|
92 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
93 |
+
attribute_map = {
|
94 |
+
"hidden_size": "n_embd",
|
95 |
+
"max_position_embeddings": "n_positions",
|
96 |
+
"num_attention_heads": "n_head",
|
97 |
+
"num_hidden_layers": "n_layer",
|
98 |
+
}
|
99 |
+
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
vocab_size=50257,
|
103 |
+
n_positions=1024,
|
104 |
+
n_embd=768,
|
105 |
+
n_layer=12,
|
106 |
+
n_head=12,
|
107 |
+
n_inner=None,
|
108 |
+
activation_function="gelu_pytorch_tanh",
|
109 |
+
resid_pdrop=0.1,
|
110 |
+
embd_pdrop=0.1,
|
111 |
+
attn_pdrop=0.1,
|
112 |
+
layer_norm_epsilon=1e-5,
|
113 |
+
initializer_range=0.02,
|
114 |
+
scale_attn_weights=True,
|
115 |
+
use_cache=True,
|
116 |
+
bos_token_id=50256,
|
117 |
+
eos_token_id=50256,
|
118 |
+
attention_softmax_in_fp32=True,
|
119 |
+
scale_attention_softmax_in_fp32=True,
|
120 |
+
multi_query=True,
|
121 |
+
**kwargs,
|
122 |
+
):
|
123 |
+
self.vocab_size = vocab_size
|
124 |
+
self.n_positions = n_positions
|
125 |
+
self.n_embd = n_embd
|
126 |
+
self.n_layer = n_layer
|
127 |
+
self.n_head = n_head
|
128 |
+
self.n_inner = n_inner
|
129 |
+
self.activation_function = activation_function
|
130 |
+
self.resid_pdrop = resid_pdrop
|
131 |
+
self.embd_pdrop = embd_pdrop
|
132 |
+
self.attn_pdrop = attn_pdrop
|
133 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
134 |
+
self.initializer_range = initializer_range
|
135 |
+
self.scale_attn_weights = scale_attn_weights
|
136 |
+
self.use_cache = use_cache
|
137 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
138 |
+
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
139 |
+
self.multi_query = multi_query
|
140 |
+
|
141 |
+
self.bos_token_id = bos_token_id
|
142 |
+
self.eos_token_id = eos_token_id
|
143 |
+
|
144 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py
ADDED
@@ -0,0 +1,1504 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The Bigcode team and HuggingFace Inc. team.
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
"""PyTorch GPTBigCode model."""
|
15 |
+
import math
|
16 |
+
from typing import List, Optional, Tuple, Union
|
17 |
+
|
18 |
+
import torch
|
19 |
+
import torch.nn.functional as F
|
20 |
+
import torch.utils.checkpoint
|
21 |
+
from torch import nn
|
22 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_attn_mask_utils import AttentionMaskConverter
|
26 |
+
from ...modeling_outputs import (
|
27 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
28 |
+
CausalLMOutputWithCrossAttentions,
|
29 |
+
SequenceClassifierOutputWithPast,
|
30 |
+
TokenClassifierOutput,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...pytorch_utils import is_torch_greater_or_equal_than_2_2
|
34 |
+
from ...utils import (
|
35 |
+
add_code_sample_docstrings,
|
36 |
+
add_start_docstrings,
|
37 |
+
add_start_docstrings_to_model_forward,
|
38 |
+
is_flash_attn_2_available,
|
39 |
+
is_flash_attn_greater_or_equal_2_10,
|
40 |
+
logging,
|
41 |
+
)
|
42 |
+
from .configuration_gpt_bigcode import GPTBigCodeConfig
|
43 |
+
|
44 |
+
|
45 |
+
if is_flash_attn_2_available():
|
46 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
47 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
48 |
+
|
49 |
+
|
50 |
+
logger = logging.get_logger(__name__)
|
51 |
+
|
52 |
+
_CHECKPOINT_FOR_DOC = "bigcode/gpt_bigcode-santacoder"
|
53 |
+
_CONFIG_FOR_DOC = "GPTBigCodeConfig"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
# Fused kernels
|
60 |
+
# Use separate functions for each case because conditionals prevent kernel fusion.
|
61 |
+
# TODO: Could have better fused kernels depending on scaling, dropout and head mask.
|
62 |
+
# Is it doable without writing 32 functions?
|
63 |
+
@torch.jit.script
|
64 |
+
def upcast_masked_softmax(
|
65 |
+
x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor, scale: float, softmax_dtype: torch.dtype
|
66 |
+
):
|
67 |
+
input_dtype = x.dtype
|
68 |
+
x = x.to(softmax_dtype) * scale
|
69 |
+
x = torch.where(mask, x, mask_value)
|
70 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
@torch.jit.script
|
75 |
+
def upcast_softmax(x: torch.Tensor, scale: float, softmax_dtype: torch.dtype):
|
76 |
+
input_dtype = x.dtype
|
77 |
+
x = x.to(softmax_dtype) * scale
|
78 |
+
x = torch.nn.functional.softmax(x, dim=-1).to(input_dtype)
|
79 |
+
return x
|
80 |
+
|
81 |
+
|
82 |
+
@torch.jit.script
|
83 |
+
def masked_softmax(x: torch.Tensor, mask: torch.Tensor, mask_value: torch.Tensor):
|
84 |
+
x = torch.where(mask, x, mask_value)
|
85 |
+
x = torch.nn.functional.softmax(x, dim=-1)
|
86 |
+
return x
|
87 |
+
|
88 |
+
|
89 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
90 |
+
def _get_unpad_data(attention_mask):
|
91 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
92 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
93 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
94 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
95 |
+
return (
|
96 |
+
indices,
|
97 |
+
cu_seqlens,
|
98 |
+
max_seqlen_in_batch,
|
99 |
+
)
|
100 |
+
|
101 |
+
|
102 |
+
class GPTBigCodeAttention(nn.Module):
|
103 |
+
def __init__(self, config, is_cross_attention=False, layer_idx=None):
|
104 |
+
super().__init__()
|
105 |
+
self.config = config
|
106 |
+
|
107 |
+
self.mask_value = None
|
108 |
+
self.multi_query = config.multi_query
|
109 |
+
self.embed_dim = config.hidden_size
|
110 |
+
self.num_heads = config.num_attention_heads
|
111 |
+
self.head_dim = self.embed_dim // self.num_heads
|
112 |
+
self.kv_heads = 1 if self.multi_query else self.num_heads
|
113 |
+
self.kv_dim = self.kv_heads * self.head_dim
|
114 |
+
self.split_size = self.embed_dim
|
115 |
+
self.is_causal = True
|
116 |
+
|
117 |
+
if self.head_dim * self.num_heads != self.embed_dim:
|
118 |
+
raise ValueError(
|
119 |
+
f"`embed_dim` must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
|
120 |
+
f" {self.num_heads})."
|
121 |
+
)
|
122 |
+
|
123 |
+
self.scale_attn_weights = config.scale_attn_weights
|
124 |
+
self.is_cross_attention = is_cross_attention
|
125 |
+
|
126 |
+
self.layer_idx = layer_idx
|
127 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
128 |
+
self.scale_attention_softmax_in_fp32 = (
|
129 |
+
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
130 |
+
)
|
131 |
+
self.attn_pdrop = config.attn_pdrop
|
132 |
+
|
133 |
+
if self.is_cross_attention:
|
134 |
+
if self.multi_query:
|
135 |
+
raise NotImplementedError("Multi-Query Attention not supported for cross_attention")
|
136 |
+
|
137 |
+
self.c_attn = nn.Linear(self.embed_dim, 2 * self.embed_dim)
|
138 |
+
self.q_attn = nn.Linear(self.embed_dim, self.embed_dim)
|
139 |
+
else:
|
140 |
+
self.c_attn = nn.Linear(self.embed_dim, self.embed_dim + 2 * self.kv_dim)
|
141 |
+
|
142 |
+
self.c_proj = nn.Linear(self.embed_dim, self.embed_dim)
|
143 |
+
|
144 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
145 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
146 |
+
|
147 |
+
def _get_mask_value(self, device, dtype):
|
148 |
+
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
|
149 |
+
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
|
150 |
+
self.mask_value = torch.full([], torch.finfo(dtype).min, dtype=dtype, device=device)
|
151 |
+
return self.mask_value
|
152 |
+
|
153 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
154 |
+
dtype = query.dtype
|
155 |
+
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
156 |
+
upcast = dtype != softmax_dtype
|
157 |
+
|
158 |
+
unscale = self.layer_idx + 1 if self.scale_attention_softmax_in_fp32 and upcast else 1
|
159 |
+
scale_factor = unscale**-1
|
160 |
+
if self.scale_attn_weights:
|
161 |
+
scale_factor /= self.head_dim**0.5
|
162 |
+
|
163 |
+
# MQA models: (batch_size, query_length, num_heads * head_dim)
|
164 |
+
# MHA models: (batch_size, num_heads, query_length, head_dim)
|
165 |
+
query_shape = query.shape
|
166 |
+
batch_size = query_shape[0]
|
167 |
+
key_length = key.size(-1)
|
168 |
+
if self.multi_query:
|
169 |
+
# (batch_size, query_length, num_heads, head_dim) x (batch_size, head_dim, key_length)
|
170 |
+
# -> (batch_size, query_length, num_heads, key_length)
|
171 |
+
query_length = query_shape[1]
|
172 |
+
attn_shape = (batch_size, query_length, self.num_heads, key_length)
|
173 |
+
attn_view = (batch_size, query_length * self.num_heads, key_length)
|
174 |
+
# No copy needed for MQA 2, or when layer_past is provided.
|
175 |
+
query = query.reshape(batch_size, query_length * self.num_heads, self.head_dim)
|
176 |
+
else:
|
177 |
+
# (batch_size, num_heads, query_length, head_dim) x (batch_size, num_heads, head_dim, key_length)
|
178 |
+
# -> (batch_size, num_heads, query_length, key_length)
|
179 |
+
query_length = query_shape[2]
|
180 |
+
attn_shape = (batch_size, self.num_heads, query_length, key_length)
|
181 |
+
attn_view = (batch_size * self.num_heads, query_length, key_length)
|
182 |
+
# Always copies
|
183 |
+
query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
184 |
+
# No copy when layer_past is provided.
|
185 |
+
key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
|
186 |
+
|
187 |
+
attn_weights = torch.empty(attn_view, device=query.device, dtype=query.dtype)
|
188 |
+
if query.device.type == "cpu":
|
189 |
+
# This is needed because of a bug in pytorch https://github.com/pytorch/pytorch/issues/80588.
|
190 |
+
# The bug was fixed in https://github.com/pytorch/pytorch/pull/96086,
|
191 |
+
# but the fix has not been released as of pytorch version 2.0.0.
|
192 |
+
attn_weights = torch.zeros_like(attn_weights)
|
193 |
+
beta = 1
|
194 |
+
else:
|
195 |
+
beta = 0
|
196 |
+
attn_weights = torch.baddbmm(attn_weights, query, key, beta=beta, alpha=scale_factor).view(attn_shape)
|
197 |
+
|
198 |
+
if upcast:
|
199 |
+
# Use a fused kernel to prevent a large overhead from casting and scaling.
|
200 |
+
# Sub-optimal when the key length is not a multiple of 8.
|
201 |
+
if attention_mask is None:
|
202 |
+
attn_weights = upcast_softmax(attn_weights, unscale, softmax_dtype)
|
203 |
+
else:
|
204 |
+
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
205 |
+
attn_weights = upcast_masked_softmax(attn_weights, attention_mask, mask_value, unscale, softmax_dtype)
|
206 |
+
else:
|
207 |
+
if attention_mask is not None:
|
208 |
+
mask_value = self._get_mask_value(attn_weights.device, softmax_dtype)
|
209 |
+
|
210 |
+
# The fused kernel is very slow when the key length is not a multiple of 8, so we skip fusion.
|
211 |
+
attn_weights = torch.where(attention_mask, attn_weights, mask_value)
|
212 |
+
|
213 |
+
attn_weights = torch.nn.functional.softmax(attn_weights, dim=-1)
|
214 |
+
|
215 |
+
attn_weights = self.attn_dropout(attn_weights)
|
216 |
+
|
217 |
+
# Mask heads if we want to
|
218 |
+
if head_mask is not None:
|
219 |
+
if self.multi_query:
|
220 |
+
head_mask = head_mask.transpose(1, 2)
|
221 |
+
attn_weights = attn_weights * head_mask
|
222 |
+
|
223 |
+
if self.multi_query:
|
224 |
+
attn_output = torch.bmm(attn_weights.view(attn_view), value).view(query_shape)
|
225 |
+
else:
|
226 |
+
attn_output = torch.matmul(attn_weights, value)
|
227 |
+
|
228 |
+
return attn_output, attn_weights
|
229 |
+
|
230 |
+
def forward(
|
231 |
+
self,
|
232 |
+
hidden_states: torch.Tensor,
|
233 |
+
layer_past: Optional[torch.Tensor] = None,
|
234 |
+
attention_mask: Optional[torch.Tensor] = None,
|
235 |
+
head_mask: Optional[torch.Tensor] = None,
|
236 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
237 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
238 |
+
use_cache: Optional[bool] = False,
|
239 |
+
output_attentions: Optional[bool] = False,
|
240 |
+
) -> Union[
|
241 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
242 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
243 |
+
]:
|
244 |
+
if encoder_hidden_states is not None:
|
245 |
+
if not hasattr(self, "q_attn") or not self.is_cross_attention:
|
246 |
+
raise ValueError(
|
247 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
248 |
+
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
|
249 |
+
)
|
250 |
+
|
251 |
+
query = self.q_attn(hidden_states)
|
252 |
+
key_value = self.c_attn(encoder_hidden_states)
|
253 |
+
attention_mask = encoder_attention_mask
|
254 |
+
elif self.multi_query:
|
255 |
+
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
|
256 |
+
else:
|
257 |
+
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
258 |
+
# i.e., the memory layout is not the same as GPT2.
|
259 |
+
# This makes the concatenation with past_key_value more efficient.
|
260 |
+
query, key_value = (
|
261 |
+
self.c_attn(hidden_states)
|
262 |
+
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
263 |
+
.transpose(1, 2)
|
264 |
+
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
265 |
+
)
|
266 |
+
|
267 |
+
if layer_past is not None:
|
268 |
+
key_value = torch.cat((layer_past, key_value), dim=-2)
|
269 |
+
present = key_value if use_cache else None
|
270 |
+
|
271 |
+
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
|
272 |
+
|
273 |
+
attn_output, attn_weights = self._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
|
274 |
+
|
275 |
+
if not self.multi_query:
|
276 |
+
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
|
277 |
+
attn_output = self.c_proj(attn_output)
|
278 |
+
attn_output = self.resid_dropout(attn_output)
|
279 |
+
|
280 |
+
outputs = (attn_output, present)
|
281 |
+
if output_attentions:
|
282 |
+
if self.multi_query:
|
283 |
+
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
284 |
+
attn_weights = attn_weights.transpose(1, 2)
|
285 |
+
outputs += (attn_weights,)
|
286 |
+
|
287 |
+
return outputs # a, present, (attentions)
|
288 |
+
|
289 |
+
|
290 |
+
class GPTBigCodeFlashAttention2(GPTBigCodeAttention):
|
291 |
+
"""
|
292 |
+
GPTBigCode flash attention module. This module inherits from `GPTBigCodeAttention` as the weights of the module
|
293 |
+
stays untouched. The only required change would be on the forward pass where it needs to correctly call the public
|
294 |
+
API of flash attention and deal with padding tokens in case the input contains any of them.
|
295 |
+
"""
|
296 |
+
|
297 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
|
298 |
+
def __init__(self, *args, **kwargs):
|
299 |
+
super().__init__(*args, **kwargs)
|
300 |
+
|
301 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
302 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
303 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
304 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
305 |
+
|
306 |
+
def forward(
|
307 |
+
self,
|
308 |
+
hidden_states: torch.Tensor,
|
309 |
+
layer_past: Optional[torch.Tensor] = None,
|
310 |
+
attention_mask: Optional[torch.Tensor] = None,
|
311 |
+
head_mask: Optional[torch.Tensor] = None,
|
312 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
313 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
314 |
+
use_cache: Optional[bool] = False,
|
315 |
+
output_attentions: Optional[bool] = False,
|
316 |
+
) -> Union[
|
317 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
318 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
319 |
+
]:
|
320 |
+
if encoder_hidden_states is not None:
|
321 |
+
if not hasattr(self, "q_attn") or not self.is_cross_attention:
|
322 |
+
raise ValueError(
|
323 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
324 |
+
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
|
325 |
+
)
|
326 |
+
|
327 |
+
query = self.q_attn(hidden_states)
|
328 |
+
key_value = self.c_attn(encoder_hidden_states)
|
329 |
+
attention_mask = encoder_attention_mask
|
330 |
+
elif self.multi_query:
|
331 |
+
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
|
332 |
+
else:
|
333 |
+
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
334 |
+
# i.e., the memory layout is not the same as GPT2.
|
335 |
+
# This makes the concatenation with past_key_value more efficient.
|
336 |
+
query, key_value = (
|
337 |
+
self.c_attn(hidden_states)
|
338 |
+
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
339 |
+
.transpose(1, 2)
|
340 |
+
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
341 |
+
)
|
342 |
+
|
343 |
+
if layer_past is not None:
|
344 |
+
key_value = torch.cat((layer_past, key_value), dim=-2)
|
345 |
+
present = key_value if use_cache else None
|
346 |
+
|
347 |
+
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
|
348 |
+
|
349 |
+
# Flash attention requires the input to have the shape
|
350 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
351 |
+
if self.multi_query:
|
352 |
+
batch_size, query_length, _ = query.shape
|
353 |
+
query = query.reshape(batch_size, query_length, self.num_heads, self.head_dim)
|
354 |
+
key = key.unsqueeze(2)
|
355 |
+
value = value.unsqueeze(2)
|
356 |
+
else:
|
357 |
+
query_length = query.shape[2]
|
358 |
+
batch_size, _, tgt, _ = key.shape
|
359 |
+
query = query.transpose(1, 2).reshape(batch_size, query_length, self.num_heads, self.head_dim)
|
360 |
+
key = key.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
|
361 |
+
value = value.transpose(1, 2).reshape(batch_size, tgt, self.num_heads, self.head_dim)
|
362 |
+
|
363 |
+
attn_dropout = self.attn_pdrop if self.training else 0.0
|
364 |
+
|
365 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
366 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
367 |
+
# cast them back in float16 just to be sure everything works as expected.
|
368 |
+
input_dtype = query.dtype
|
369 |
+
if input_dtype == torch.float32:
|
370 |
+
if torch.is_autocast_enabled():
|
371 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
372 |
+
# Handle the case where the model is quantized
|
373 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
374 |
+
target_dtype = self.config._pre_quantization_dtype
|
375 |
+
else:
|
376 |
+
target_dtype = self.c_attn.weight.dtype
|
377 |
+
|
378 |
+
logger.warning_once(
|
379 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
380 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
381 |
+
f" {target_dtype}."
|
382 |
+
)
|
383 |
+
query = query.to(target_dtype)
|
384 |
+
key = key.to(target_dtype)
|
385 |
+
value = value.to(target_dtype)
|
386 |
+
|
387 |
+
attn_output = self._flash_attention_forward(
|
388 |
+
query, key, value, attention_mask, query_length, dropout=attn_dropout
|
389 |
+
)
|
390 |
+
|
391 |
+
attn_weights_reshaped = attn_output.reshape(batch_size, query_length, self.num_heads * self.head_dim)
|
392 |
+
attn_output = self.c_proj(attn_weights_reshaped)
|
393 |
+
attn_output = self.resid_dropout(attn_output)
|
394 |
+
|
395 |
+
outputs = (attn_output, present)
|
396 |
+
|
397 |
+
if output_attentions:
|
398 |
+
if self.multi_query:
|
399 |
+
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
400 |
+
attn_weights_reshaped = attn_weights_reshaped.transpose(1, 2)
|
401 |
+
else:
|
402 |
+
attn_weights_reshaped = None
|
403 |
+
|
404 |
+
outputs += (attn_weights_reshaped,)
|
405 |
+
|
406 |
+
return outputs # a, present, (attentions)
|
407 |
+
|
408 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
409 |
+
def _flash_attention_forward(
|
410 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
411 |
+
):
|
412 |
+
"""
|
413 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
414 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
415 |
+
|
416 |
+
Args:
|
417 |
+
query_states (`torch.Tensor`):
|
418 |
+
Input query states to be passed to Flash Attention API
|
419 |
+
key_states (`torch.Tensor`):
|
420 |
+
Input key states to be passed to Flash Attention API
|
421 |
+
value_states (`torch.Tensor`):
|
422 |
+
Input value states to be passed to Flash Attention API
|
423 |
+
attention_mask (`torch.Tensor`):
|
424 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
425 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
426 |
+
dropout (`float`):
|
427 |
+
Attention dropout
|
428 |
+
softmax_scale (`float`, *optional*):
|
429 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
430 |
+
"""
|
431 |
+
if not self._flash_attn_uses_top_left_mask:
|
432 |
+
causal = self.is_causal
|
433 |
+
else:
|
434 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
435 |
+
causal = self.is_causal and query_length != 1
|
436 |
+
|
437 |
+
# Contains at least one padding token in the sequence
|
438 |
+
if attention_mask is not None:
|
439 |
+
batch_size = query_states.shape[0]
|
440 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
441 |
+
query_states, key_states, value_states, attention_mask, query_length
|
442 |
+
)
|
443 |
+
|
444 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
445 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
446 |
+
|
447 |
+
attn_output_unpad = flash_attn_varlen_func(
|
448 |
+
query_states,
|
449 |
+
key_states,
|
450 |
+
value_states,
|
451 |
+
cu_seqlens_q=cu_seqlens_q,
|
452 |
+
cu_seqlens_k=cu_seqlens_k,
|
453 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
454 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
455 |
+
dropout_p=dropout,
|
456 |
+
softmax_scale=softmax_scale,
|
457 |
+
causal=causal,
|
458 |
+
)
|
459 |
+
|
460 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
461 |
+
else:
|
462 |
+
attn_output = flash_attn_func(
|
463 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
464 |
+
)
|
465 |
+
|
466 |
+
return attn_output
|
467 |
+
|
468 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input
|
469 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
470 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
471 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
472 |
+
|
473 |
+
key_layer = index_first_axis(
|
474 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
475 |
+
)
|
476 |
+
value_layer = index_first_axis(
|
477 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
478 |
+
)
|
479 |
+
if query_length == kv_seq_len:
|
480 |
+
query_layer = index_first_axis(
|
481 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k
|
482 |
+
)
|
483 |
+
cu_seqlens_q = cu_seqlens_k
|
484 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
485 |
+
indices_q = indices_k
|
486 |
+
elif query_length == 1:
|
487 |
+
max_seqlen_in_batch_q = 1
|
488 |
+
cu_seqlens_q = torch.arange(
|
489 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
490 |
+
) # There is a memcpy here, that is very bad.
|
491 |
+
indices_q = cu_seqlens_q[:-1]
|
492 |
+
query_layer = query_layer.squeeze(1)
|
493 |
+
else:
|
494 |
+
# The -q_len: slice assumes left padding.
|
495 |
+
attention_mask = attention_mask[:, -query_length:]
|
496 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
497 |
+
|
498 |
+
return (
|
499 |
+
query_layer,
|
500 |
+
key_layer,
|
501 |
+
value_layer,
|
502 |
+
indices_q,
|
503 |
+
(cu_seqlens_q, cu_seqlens_k),
|
504 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
505 |
+
)
|
506 |
+
|
507 |
+
|
508 |
+
class GPTBigCodeSdpaAttention(GPTBigCodeAttention):
|
509 |
+
def _attn(self, query, key, value, attention_mask=None, head_mask=None):
|
510 |
+
if head_mask is not None:
|
511 |
+
# The super dispatch is done in the forward.
|
512 |
+
raise ValueError(
|
513 |
+
"PyTorch SDPA does not support head_mask. Please open an issue in Transformers repository."
|
514 |
+
)
|
515 |
+
|
516 |
+
scale = None
|
517 |
+
if not self.scale_attn_weights:
|
518 |
+
scale = 1
|
519 |
+
|
520 |
+
# MQA models: (batch_size, query_length, num_heads * head_dim)
|
521 |
+
# MHA models: (batch_size, num_heads, query_length, head_dim)
|
522 |
+
query_shape = query.shape
|
523 |
+
batch_size = query_shape[0]
|
524 |
+
key.shape[-2]
|
525 |
+
|
526 |
+
if self.multi_query:
|
527 |
+
query_length = query_shape[1]
|
528 |
+
|
529 |
+
# SDPA requires the dimension [..., sequence_length, head_dim].
|
530 |
+
query = query.view(batch_size, query_length, self.num_heads, self.head_dim).transpose(1, 2)
|
531 |
+
|
532 |
+
# Without these unsqueeze, SDPA complains as the query and key/value have a different number of dimensions.
|
533 |
+
key = key.unsqueeze(1)
|
534 |
+
value = value.unsqueeze(1)
|
535 |
+
|
536 |
+
# Although these expand are not numerically useful, PyTorch can not dispatch to memory-efficient backend
|
537 |
+
# and flash attention backend (No available kernel. Aborting execution.) from the shapes
|
538 |
+
# query = [batch_size, num_heads, query_length, head_dim]
|
539 |
+
# key = [batch_size, 1, past_length, head_dim]
|
540 |
+
# value = [batch_size, 1, past_length, head_dim]
|
541 |
+
#
|
542 |
+
# torch==2.1.2 is bugged with non-contiguous inputs with custom attn_mask (https://github.com/pytorch/pytorch/issues/112577), hence the check.
|
543 |
+
if is_torch_greater_or_equal_than_2_2:
|
544 |
+
key = key.expand(-1, self.num_heads, -1, -1)
|
545 |
+
value = value.expand(-1, self.num_heads, -1, -1)
|
546 |
+
else:
|
547 |
+
query_length = query_shape[-1]
|
548 |
+
|
549 |
+
# See the comment above.
|
550 |
+
if query.device.type == "cuda" and attention_mask is not None:
|
551 |
+
query = query.contiguous()
|
552 |
+
key = key.contiguous()
|
553 |
+
value = value.contiguous()
|
554 |
+
|
555 |
+
sdpa_result = torch.nn.functional.scaled_dot_product_attention(
|
556 |
+
query,
|
557 |
+
key,
|
558 |
+
value,
|
559 |
+
attn_mask=attention_mask,
|
560 |
+
dropout_p=self.attn_pdrop if self.training else 0.0,
|
561 |
+
# The query_length > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case query_length == 1.
|
562 |
+
is_causal=self.is_causal and attention_mask is None and query_length > 1,
|
563 |
+
scale=scale,
|
564 |
+
)
|
565 |
+
|
566 |
+
if self.multi_query:
|
567 |
+
# (batch_size, num_heads, seq_len, head_dim) --> (batch_size, seq_len, num_heads, head_dim)
|
568 |
+
sdpa_result = sdpa_result.transpose(1, 2)
|
569 |
+
|
570 |
+
# Reshape is kind of expensive here, as it does a memory copy,
|
571 |
+
# but I did not manage to make away without it (logits do not match when using view)
|
572 |
+
# (batch_size, seq_len, num_heads, head_dim) --> (batch_size, seq_len, num_heads * head_dim)
|
573 |
+
sdpa_result = sdpa_result.reshape(query_shape)
|
574 |
+
|
575 |
+
return sdpa_result, None
|
576 |
+
|
577 |
+
def forward(
|
578 |
+
self,
|
579 |
+
hidden_states: torch.Tensor,
|
580 |
+
layer_past: Optional[torch.Tensor] = None,
|
581 |
+
attention_mask: Optional[torch.Tensor] = None,
|
582 |
+
head_mask: Optional[torch.Tensor] = None,
|
583 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
584 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
585 |
+
use_cache: Optional[bool] = False,
|
586 |
+
output_attentions: Optional[bool] = False,
|
587 |
+
) -> Union[
|
588 |
+
Tuple[torch.Tensor, Optional[torch.Tensor]],
|
589 |
+
Tuple[torch.Tensor, Optional[torch.Tensor], Tuple[torch.Tensor, ...]],
|
590 |
+
]:
|
591 |
+
if encoder_hidden_states is not None:
|
592 |
+
if not hasattr(self, "q_attn") or not self.is_cross_attention:
|
593 |
+
raise ValueError(
|
594 |
+
"If class is used as cross attention, the weights `q_attn` have to be defined. "
|
595 |
+
"Please make sure to instantiate class with `GPTBigCodeAttention(..., is_cross_attention=True)`."
|
596 |
+
)
|
597 |
+
|
598 |
+
query = self.q_attn(hidden_states)
|
599 |
+
key_value = self.c_attn(encoder_hidden_states)
|
600 |
+
attention_mask = encoder_attention_mask
|
601 |
+
elif self.multi_query:
|
602 |
+
query, key_value = self.c_attn(hidden_states).split((self.embed_dim, 2 * self.kv_dim), dim=2)
|
603 |
+
else:
|
604 |
+
# Note: We split as (self.num_heads, 3, self.head_dim) instead of (3, self.num_heads, self.head_dim),
|
605 |
+
# i.e., the memory layout is not the same as GPT2.
|
606 |
+
# This makes the concatenation with past_key_value more efficient.
|
607 |
+
query, key_value = (
|
608 |
+
self.c_attn(hidden_states)
|
609 |
+
.view(*hidden_states.shape[:2], self.num_heads, 3 * self.head_dim)
|
610 |
+
.transpose(1, 2)
|
611 |
+
.split((self.head_dim, 2 * self.head_dim), dim=3)
|
612 |
+
)
|
613 |
+
|
614 |
+
if layer_past is not None:
|
615 |
+
key_value = torch.cat((layer_past, key_value), dim=-2)
|
616 |
+
present = key_value if use_cache else None
|
617 |
+
|
618 |
+
key, value = key_value.split((self.head_dim, self.head_dim), dim=-1)
|
619 |
+
|
620 |
+
if not output_attentions and head_mask is None:
|
621 |
+
# Difference with the original implementation: there is no need to transpose the key here,
|
622 |
+
# as SDPA expects seq_length to be at index -2 for the key as well
|
623 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
624 |
+
else:
|
625 |
+
# TODO: Improve this warning with e.g. `model.config._attn_implementation = "manual"` once this is implemented.
|
626 |
+
logger.warning_once(
|
627 |
+
"GPTBigCodeModel is using GPTBigCodeSdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True` and `head_mask` not None."
|
628 |
+
' Falling back to the manual attention implementation, but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
|
629 |
+
)
|
630 |
+
attn_output, attn_weights = super()._attn(query, key.transpose(-1, -2), value, attention_mask, head_mask)
|
631 |
+
|
632 |
+
if not self.multi_query:
|
633 |
+
attn_output = attn_output.transpose(1, 2).reshape(hidden_states.shape)
|
634 |
+
attn_output = self.c_proj(attn_output)
|
635 |
+
attn_output = self.resid_dropout(attn_output)
|
636 |
+
|
637 |
+
outputs = (attn_output, present)
|
638 |
+
if output_attentions:
|
639 |
+
if self.multi_query:
|
640 |
+
# Transpose to return weights in the usual format (batch_size, num_heads, query_length, key_length)
|
641 |
+
attn_weights = attn_weights.transpose(1, 2)
|
642 |
+
outputs += (attn_weights,)
|
643 |
+
|
644 |
+
return outputs
|
645 |
+
|
646 |
+
|
647 |
+
class GPTBigCodeMLP(nn.Module):
|
648 |
+
def __init__(self, intermediate_size, config):
|
649 |
+
super().__init__()
|
650 |
+
embed_dim = config.hidden_size
|
651 |
+
self.c_fc = nn.Linear(embed_dim, intermediate_size)
|
652 |
+
self.c_proj = nn.Linear(intermediate_size, embed_dim)
|
653 |
+
self.act = ACT2FN[config.activation_function]
|
654 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
655 |
+
|
656 |
+
# Copied from transformers.models.gpt2.modeling_gpt2.GPT2MLP.forward
|
657 |
+
def forward(self, hidden_states: Optional[Tuple[torch.FloatTensor]]) -> torch.FloatTensor:
|
658 |
+
hidden_states = self.c_fc(hidden_states)
|
659 |
+
hidden_states = self.act(hidden_states)
|
660 |
+
hidden_states = self.c_proj(hidden_states)
|
661 |
+
hidden_states = self.dropout(hidden_states)
|
662 |
+
return hidden_states
|
663 |
+
|
664 |
+
|
665 |
+
GPTBIGCODE_ATTENTION_CLASSES = {
|
666 |
+
"eager": GPTBigCodeAttention,
|
667 |
+
"flash_attention_2": GPTBigCodeFlashAttention2,
|
668 |
+
"sdpa": GPTBigCodeSdpaAttention,
|
669 |
+
}
|
670 |
+
|
671 |
+
|
672 |
+
class GPTBigCodeBlock(nn.Module):
|
673 |
+
def __init__(self, config, layer_idx=None):
|
674 |
+
super().__init__()
|
675 |
+
hidden_size = config.hidden_size
|
676 |
+
self.inner_dim = config.n_inner if config.n_inner is not None else 4 * hidden_size
|
677 |
+
|
678 |
+
self.ln_1 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
679 |
+
|
680 |
+
self.attn = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx)
|
681 |
+
|
682 |
+
self.ln_2 = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
683 |
+
|
684 |
+
if config.add_cross_attention:
|
685 |
+
if config.multi_query:
|
686 |
+
raise NotImplementedError("Cross-attention not implemented for MQA")
|
687 |
+
|
688 |
+
self.crossattention = GPTBIGCODE_ATTENTION_CLASSES[config._attn_implementation](
|
689 |
+
config, is_cross_attention=True, layer_idx=layer_idx
|
690 |
+
)
|
691 |
+
|
692 |
+
self.ln_cross_attn = nn.LayerNorm(hidden_size, eps=config.layer_norm_epsilon)
|
693 |
+
|
694 |
+
self.mlp = GPTBigCodeMLP(self.inner_dim, config)
|
695 |
+
|
696 |
+
def forward(
|
697 |
+
self,
|
698 |
+
hidden_states: Optional[Tuple[torch.Tensor]],
|
699 |
+
layer_past: Optional[torch.Tensor] = None,
|
700 |
+
attention_mask: Optional[torch.Tensor] = None,
|
701 |
+
head_mask: Optional[torch.Tensor] = None,
|
702 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
703 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
704 |
+
use_cache: Optional[bool] = False,
|
705 |
+
output_attentions: Optional[bool] = False,
|
706 |
+
) -> Union[
|
707 |
+
Tuple[torch.Tensor], Tuple[torch.Tensor, torch.Tensor], Tuple[torch.Tensor, torch.Tensor, torch.Tensor]
|
708 |
+
]:
|
709 |
+
residual = hidden_states
|
710 |
+
hidden_states = self.ln_1(hidden_states)
|
711 |
+
attn_outputs = self.attn(
|
712 |
+
hidden_states,
|
713 |
+
layer_past=layer_past,
|
714 |
+
attention_mask=attention_mask,
|
715 |
+
head_mask=head_mask,
|
716 |
+
use_cache=use_cache,
|
717 |
+
output_attentions=output_attentions,
|
718 |
+
)
|
719 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
720 |
+
outputs = attn_outputs[1:]
|
721 |
+
# residual connection
|
722 |
+
hidden_states = attn_output + residual
|
723 |
+
|
724 |
+
if encoder_hidden_states is not None:
|
725 |
+
# add one self-attention block for cross-attention
|
726 |
+
if not hasattr(self, "crossattention"):
|
727 |
+
raise ValueError(
|
728 |
+
f"If `encoder_hidden_states` are passed, {self} has to be instantiated with "
|
729 |
+
"cross-attention layers by setting `config.add_cross_attention=True`"
|
730 |
+
)
|
731 |
+
residual = hidden_states
|
732 |
+
hidden_states = self.ln_cross_attn(hidden_states)
|
733 |
+
cross_attn_outputs = self.crossattention(
|
734 |
+
hidden_states,
|
735 |
+
attention_mask=attention_mask,
|
736 |
+
head_mask=head_mask,
|
737 |
+
encoder_hidden_states=encoder_hidden_states,
|
738 |
+
encoder_attention_mask=encoder_attention_mask,
|
739 |
+
output_attentions=output_attentions,
|
740 |
+
)
|
741 |
+
attn_output = cross_attn_outputs[0]
|
742 |
+
# residual connection
|
743 |
+
hidden_states = residual + attn_output
|
744 |
+
outputs = outputs + cross_attn_outputs[2:] # add cross attentions if we output attention weights
|
745 |
+
|
746 |
+
residual = hidden_states
|
747 |
+
hidden_states = self.ln_2(hidden_states)
|
748 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
749 |
+
# residual connection
|
750 |
+
hidden_states = residual + feed_forward_hidden_states
|
751 |
+
|
752 |
+
if use_cache:
|
753 |
+
outputs = (hidden_states,) + outputs
|
754 |
+
else:
|
755 |
+
outputs = (hidden_states,) + outputs[1:]
|
756 |
+
|
757 |
+
return outputs # hidden_states, present, (attentions, cross_attentions)
|
758 |
+
|
759 |
+
|
760 |
+
class GPTBigCodePreTrainedModel(PreTrainedModel):
|
761 |
+
"""
|
762 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
763 |
+
models.
|
764 |
+
"""
|
765 |
+
|
766 |
+
config_class = GPTBigCodeConfig
|
767 |
+
base_model_prefix = "transformer"
|
768 |
+
supports_gradient_checkpointing = True
|
769 |
+
_no_split_modules = ["GPTBigCodeBlock"]
|
770 |
+
_skip_keys_device_placement = "past_key_values"
|
771 |
+
_supports_flash_attn_2 = True
|
772 |
+
_supports_sdpa = True
|
773 |
+
|
774 |
+
def __init__(self, *inputs, **kwargs):
|
775 |
+
super().__init__(*inputs, **kwargs)
|
776 |
+
|
777 |
+
def _init_weights(self, module):
|
778 |
+
"""Initialize the weights."""
|
779 |
+
if isinstance(module, (GPTBigCodeMLP, GPTBigCodeAttention)):
|
780 |
+
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
|
781 |
+
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
|
782 |
+
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
|
783 |
+
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
|
784 |
+
#
|
785 |
+
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
|
786 |
+
module.c_proj.weight.data.normal_(
|
787 |
+
mean=0.0, std=(self.config.initializer_range / math.sqrt(2 * self.config.n_layer))
|
788 |
+
)
|
789 |
+
module.c_proj._is_hf_initialized = True
|
790 |
+
elif isinstance(module, nn.Linear):
|
791 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
792 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
793 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
794 |
+
if module.bias is not None:
|
795 |
+
module.bias.data.zero_()
|
796 |
+
elif isinstance(module, nn.Embedding):
|
797 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
798 |
+
if module.padding_idx is not None:
|
799 |
+
module.weight.data[module.padding_idx].zero_()
|
800 |
+
elif isinstance(module, nn.LayerNorm):
|
801 |
+
module.bias.data.zero_()
|
802 |
+
module.weight.data.fill_(1.0)
|
803 |
+
|
804 |
+
|
805 |
+
GPT_BIGCODE_START_DOCSTRING = r"""
|
806 |
+
|
807 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
808 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
809 |
+
etc.)
|
810 |
+
|
811 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
812 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
813 |
+
and behavior.
|
814 |
+
|
815 |
+
Parameters:
|
816 |
+
config ([`GPTBigCodeConfig`]): Model configuration class with all the parameters of the model.
|
817 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
818 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
819 |
+
"""
|
820 |
+
|
821 |
+
GPT_BIGCODE_INPUTS_DOCSTRING = r"""
|
822 |
+
Args:
|
823 |
+
input_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`):
|
824 |
+
`input_ids_length` = `sequence_length` if `past_key_values` is `None` else
|
825 |
+
`past_key_values[0][0].shape[-2]` (`sequence_length` of input past key value states). Indices of input
|
826 |
+
sequence tokens in the vocabulary.
|
827 |
+
|
828 |
+
If `past_key_values` is used, only `input_ids` that do not have their past calculated should be passed as
|
829 |
+
`input_ids`.
|
830 |
+
|
831 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
832 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
833 |
+
|
834 |
+
[What are input IDs?](../glossary#input-ids)
|
835 |
+
past_key_values (`Tuple[torch.Tensor]` of length `config.n_layers`):
|
836 |
+
Contains precomputed hidden-states (key and values in the attention blocks) as computed by the model (see
|
837 |
+
`past_key_values` output below). Can be used to speed up sequential decoding. The `input_ids` which have
|
838 |
+
their past given to this model should not be passed as `input_ids` as they have already been computed.
|
839 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
840 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
841 |
+
|
842 |
+
- 1 for tokens that are **not masked**,
|
843 |
+
- 0 for tokens that are **masked**.
|
844 |
+
|
845 |
+
If `past_key_values` is used, `attention_mask` needs to contain the masking strategy that was used for
|
846 |
+
`past_key_values`. In other words, the `attention_mask` always has to have the length:
|
847 |
+
`len(past_key_values) + len(input_ids)`
|
848 |
+
|
849 |
+
[What are attention masks?](../glossary#attention-mask)
|
850 |
+
token_type_ids (`torch.Tensor` of shape `(batch_size, input_ids_length)`, *optional*):
|
851 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
852 |
+
1]`:
|
853 |
+
|
854 |
+
- 0 corresponds to a *sentence A* token,
|
855 |
+
- 1 corresponds to a *sentence B* token.
|
856 |
+
|
857 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
858 |
+
position_ids (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
859 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
860 |
+
config.max_position_embeddings - 1]`.
|
861 |
+
|
862 |
+
[What are position IDs?](../glossary#position-ids)
|
863 |
+
head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
864 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
865 |
+
|
866 |
+
- 1 indicates the head is **not masked**,
|
867 |
+
- 0 indicates the head is **masked**.
|
868 |
+
|
869 |
+
inputs_embeds (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
870 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
871 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
872 |
+
model's internal embedding lookup matrix.
|
873 |
+
|
874 |
+
If `past_key_values` is used, optionally only the last `inputs_embeds` have to be input (see
|
875 |
+
`past_key_values`).
|
876 |
+
use_cache (`bool`, *optional*):
|
877 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
878 |
+
`past_key_values`).
|
879 |
+
output_attentions (`bool`, *optional*):
|
880 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
881 |
+
tensors for more detail.
|
882 |
+
output_hidden_states (`bool`, *optional*):
|
883 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
884 |
+
more detail.
|
885 |
+
return_dict (`bool`, *optional*):
|
886 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
887 |
+
"""
|
888 |
+
|
889 |
+
|
890 |
+
@add_start_docstrings(
|
891 |
+
"The bare GPT_BIGCODE Model transformer outputting raw hidden-states without any specific head on top.",
|
892 |
+
GPT_BIGCODE_START_DOCSTRING,
|
893 |
+
)
|
894 |
+
class GPTBigCodeModel(GPTBigCodePreTrainedModel):
|
895 |
+
def __init__(self, config):
|
896 |
+
super().__init__(config)
|
897 |
+
self.multi_query = config.multi_query
|
898 |
+
self.embed_dim = config.hidden_size
|
899 |
+
|
900 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
901 |
+
self.wpe = nn.Embedding(config.max_position_embeddings, self.embed_dim)
|
902 |
+
|
903 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
904 |
+
self.h = nn.ModuleList([GPTBigCodeBlock(config, layer_idx=i) for i in range(config.num_hidden_layers)])
|
905 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
906 |
+
|
907 |
+
max_positions = config.max_position_embeddings
|
908 |
+
self.register_buffer(
|
909 |
+
"bias", torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)), persistent=False
|
910 |
+
)
|
911 |
+
|
912 |
+
self.gradient_checkpointing = False
|
913 |
+
|
914 |
+
self._use_sdpa = config._attn_implementation == "sdpa"
|
915 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
916 |
+
|
917 |
+
# Initialize weights and apply final processing
|
918 |
+
self.post_init()
|
919 |
+
|
920 |
+
def get_input_embeddings(self):
|
921 |
+
return self.wte
|
922 |
+
|
923 |
+
def set_input_embeddings(self, new_embeddings):
|
924 |
+
self.wte = new_embeddings
|
925 |
+
|
926 |
+
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
927 |
+
@add_code_sample_docstrings(
|
928 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
929 |
+
output_type=BaseModelOutputWithPastAndCrossAttentions,
|
930 |
+
config_class=_CONFIG_FOR_DOC,
|
931 |
+
)
|
932 |
+
def forward(
|
933 |
+
self,
|
934 |
+
input_ids: Optional[torch.Tensor] = None,
|
935 |
+
past_key_values: Optional[List[torch.Tensor]] = None,
|
936 |
+
attention_mask: Optional[torch.Tensor] = None,
|
937 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
938 |
+
position_ids: Optional[torch.Tensor] = None,
|
939 |
+
head_mask: Optional[torch.Tensor] = None,
|
940 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
941 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
942 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
943 |
+
use_cache: Optional[bool] = None,
|
944 |
+
output_attentions: Optional[bool] = None,
|
945 |
+
output_hidden_states: Optional[bool] = None,
|
946 |
+
return_dict: Optional[bool] = None,
|
947 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
948 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
949 |
+
output_hidden_states = (
|
950 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
951 |
+
)
|
952 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
953 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
954 |
+
|
955 |
+
if input_ids is not None and inputs_embeds is not None:
|
956 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
957 |
+
elif input_ids is not None:
|
958 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
959 |
+
input_shape = input_ids.size()
|
960 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
961 |
+
batch_size = input_ids.shape[0]
|
962 |
+
elif inputs_embeds is not None:
|
963 |
+
input_shape = inputs_embeds.size()[:-1]
|
964 |
+
batch_size = inputs_embeds.shape[0]
|
965 |
+
else:
|
966 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
967 |
+
|
968 |
+
if batch_size <= 0:
|
969 |
+
raise ValueError("batch_size has to be defined and > 0")
|
970 |
+
|
971 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
972 |
+
|
973 |
+
if token_type_ids is not None:
|
974 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
975 |
+
|
976 |
+
if past_key_values is None:
|
977 |
+
past_length = 0
|
978 |
+
past_key_values = tuple([None] * len(self.h))
|
979 |
+
else:
|
980 |
+
past_length = past_key_values[0].size(-2)
|
981 |
+
|
982 |
+
if attention_mask is not None and len(attention_mask.shape) == 2 and position_ids is None:
|
983 |
+
# create position_ids on the fly for batch generation
|
984 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
985 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
986 |
+
if past_length > 0:
|
987 |
+
position_ids = position_ids[:, past_length : input_shape[-1] + past_length :]
|
988 |
+
elif position_ids is None:
|
989 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
990 |
+
position_ids = position_ids.unsqueeze(0)
|
991 |
+
|
992 |
+
# Self-attention mask.
|
993 |
+
query_length = input_shape[-1]
|
994 |
+
key_length = past_length + query_length
|
995 |
+
self_attention_mask = self.bias[None, key_length - query_length : key_length, :key_length]
|
996 |
+
|
997 |
+
if self._use_flash_attention_2:
|
998 |
+
# 2d mask is passed through the layers
|
999 |
+
attention_mask = attention_mask.bool() if (attention_mask is not None and 0 in attention_mask) else None
|
1000 |
+
encoder_attention_mask = (
|
1001 |
+
encoder_attention_mask.bool()
|
1002 |
+
if (encoder_attention_mask is not None and 0 in encoder_attention_mask)
|
1003 |
+
else None
|
1004 |
+
)
|
1005 |
+
else:
|
1006 |
+
# 4d mask is passed through the layers
|
1007 |
+
if attention_mask is not None:
|
1008 |
+
self_attention_mask = self_attention_mask * attention_mask.view(batch_size, 1, -1).to(
|
1009 |
+
dtype=torch.bool, device=self_attention_mask.device
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
# MQA models: (batch_size, query_length, n_heads, key_length)
|
1013 |
+
# MHA models: (batch_size, n_heads, query_length, key_length)
|
1014 |
+
self_attention_mask = self_attention_mask.unsqueeze(2 if self.multi_query else 1)
|
1015 |
+
|
1016 |
+
if self._use_sdpa and head_mask is None and not output_attentions:
|
1017 |
+
# SDPA with a custom mask is much faster in fp16/fp32 dtype rather than bool. Cast here to floating point instead of at every layer.
|
1018 |
+
dtype = self.wte.weight.dtype
|
1019 |
+
min_dtype = torch.finfo(dtype).min
|
1020 |
+
self_attention_mask = torch.where(
|
1021 |
+
self_attention_mask,
|
1022 |
+
torch.full([], 0.0, dtype=dtype, device=self_attention_mask.device),
|
1023 |
+
torch.full([], min_dtype, dtype=dtype, device=self_attention_mask.device),
|
1024 |
+
)
|
1025 |
+
|
1026 |
+
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
1027 |
+
# the manual implementation that requires a 4D causal mask in all cases.
|
1028 |
+
if self.multi_query:
|
1029 |
+
# gpt_bigcode using MQA has the bad taste to use a causal mask with shape
|
1030 |
+
# [batch_size, target_length, 1, source_length], not compatible with SDPA, hence this transpose.
|
1031 |
+
self_attention_mask = self_attention_mask.transpose(1, 2)
|
1032 |
+
|
1033 |
+
if query_length > 1 and attention_mask is not None and attention_mask.device.type == "cuda":
|
1034 |
+
# From PyTorch 2.1 onwards, F.scaled_dot_product_attention with the memory-efficient attention backend
|
1035 |
+
# produces nans if sequences are completely unattended in the attention mask. Details: https://github.com/pytorch/pytorch/issues/110213
|
1036 |
+
self_attention_mask = AttentionMaskConverter._unmask_unattended(
|
1037 |
+
self_attention_mask, min_dtype=min_dtype
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
attention_mask = self_attention_mask
|
1041 |
+
|
1042 |
+
# If a 2D or 3D attention mask is provided for the cross-attention
|
1043 |
+
# we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
|
1044 |
+
if (
|
1045 |
+
self.config.add_cross_attention
|
1046 |
+
and encoder_hidden_states is not None
|
1047 |
+
and encoder_attention_mask is not None
|
1048 |
+
):
|
1049 |
+
if encoder_attention_mask.dim() == 2:
|
1050 |
+
encoder_attention_mask.unsqueeze(1)
|
1051 |
+
assert encoder_attention_mask.dim() == 3
|
1052 |
+
encoder_attention_mask = encoder_attention_mask.bool().unsqueeze(2 if self.multi_query else 1)
|
1053 |
+
else:
|
1054 |
+
encoder_attention_mask = None
|
1055 |
+
|
1056 |
+
# Prepare head mask if needed
|
1057 |
+
# 1.0 in head_mask indicate we keep the head
|
1058 |
+
# attention_probs has shape bsz x n_heads x N x N
|
1059 |
+
# head_mask has shape n_layer x batch x n_heads x N x N
|
1060 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
1061 |
+
|
1062 |
+
if inputs_embeds is None:
|
1063 |
+
inputs_embeds = self.wte(input_ids)
|
1064 |
+
position_embeds = self.wpe(position_ids)
|
1065 |
+
hidden_states = inputs_embeds + position_embeds
|
1066 |
+
|
1067 |
+
if token_type_ids is not None:
|
1068 |
+
token_type_embeds = self.wte(token_type_ids)
|
1069 |
+
hidden_states = hidden_states + token_type_embeds
|
1070 |
+
|
1071 |
+
hidden_states = self.drop(hidden_states)
|
1072 |
+
|
1073 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
1074 |
+
|
1075 |
+
presents = [] if use_cache else None
|
1076 |
+
all_self_attentions = () if output_attentions else None
|
1077 |
+
all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
|
1078 |
+
all_hidden_states = () if output_hidden_states else None
|
1079 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
1080 |
+
if output_hidden_states:
|
1081 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1082 |
+
|
1083 |
+
if self.gradient_checkpointing and self.training:
|
1084 |
+
outputs = self._gradient_checkpointing_func(
|
1085 |
+
block.__call__,
|
1086 |
+
hidden_states,
|
1087 |
+
None,
|
1088 |
+
attention_mask,
|
1089 |
+
head_mask[i],
|
1090 |
+
encoder_hidden_states,
|
1091 |
+
encoder_attention_mask,
|
1092 |
+
use_cache,
|
1093 |
+
output_attentions,
|
1094 |
+
)
|
1095 |
+
else:
|
1096 |
+
outputs = block(
|
1097 |
+
hidden_states,
|
1098 |
+
layer_past=layer_past,
|
1099 |
+
attention_mask=attention_mask,
|
1100 |
+
head_mask=head_mask[i],
|
1101 |
+
encoder_hidden_states=encoder_hidden_states,
|
1102 |
+
encoder_attention_mask=encoder_attention_mask,
|
1103 |
+
use_cache=use_cache,
|
1104 |
+
output_attentions=output_attentions,
|
1105 |
+
)
|
1106 |
+
|
1107 |
+
hidden_states = outputs[0]
|
1108 |
+
if use_cache:
|
1109 |
+
presents.append(outputs[1])
|
1110 |
+
|
1111 |
+
if output_attentions:
|
1112 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
1113 |
+
if self.config.add_cross_attention:
|
1114 |
+
all_cross_attentions = all_cross_attentions + (outputs[3 if use_cache else 2],)
|
1115 |
+
|
1116 |
+
hidden_states = self.ln_f(hidden_states)
|
1117 |
+
|
1118 |
+
hidden_states = hidden_states.view(output_shape)
|
1119 |
+
# Add last hidden state
|
1120 |
+
if output_hidden_states:
|
1121 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1122 |
+
|
1123 |
+
if not return_dict:
|
1124 |
+
return tuple(
|
1125 |
+
v
|
1126 |
+
for v in [hidden_states, presents, all_hidden_states, all_self_attentions, all_cross_attentions]
|
1127 |
+
if v is not None
|
1128 |
+
)
|
1129 |
+
|
1130 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1131 |
+
last_hidden_state=hidden_states,
|
1132 |
+
past_key_values=presents,
|
1133 |
+
hidden_states=all_hidden_states,
|
1134 |
+
attentions=all_self_attentions,
|
1135 |
+
cross_attentions=all_cross_attentions,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
|
1139 |
+
@add_start_docstrings(
|
1140 |
+
"""
|
1141 |
+
The GPT_BIGCODE Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
1142 |
+
embeddings).
|
1143 |
+
""",
|
1144 |
+
GPT_BIGCODE_START_DOCSTRING,
|
1145 |
+
)
|
1146 |
+
class GPTBigCodeForCausalLM(GPTBigCodePreTrainedModel):
|
1147 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1148 |
+
|
1149 |
+
def __init__(self, config):
|
1150 |
+
super().__init__(config)
|
1151 |
+
self.transformer = GPTBigCodeModel(config)
|
1152 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
1153 |
+
|
1154 |
+
# Initialize weights and apply final processing
|
1155 |
+
self.post_init()
|
1156 |
+
|
1157 |
+
def get_output_embeddings(self):
|
1158 |
+
return self.lm_head
|
1159 |
+
|
1160 |
+
def set_output_embeddings(self, new_embeddings):
|
1161 |
+
self.lm_head = new_embeddings
|
1162 |
+
|
1163 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1164 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1165 |
+
# Omit tokens covered by past_key_values
|
1166 |
+
if past_key_values:
|
1167 |
+
if self.config.multi_query:
|
1168 |
+
past_length = past_key_values[0].shape[1]
|
1169 |
+
else:
|
1170 |
+
past_length = past_key_values[0].shape[2]
|
1171 |
+
|
1172 |
+
# Some generation methods already pass only the last input ID
|
1173 |
+
if input_ids.shape[1] > past_length:
|
1174 |
+
remove_prefix_length = past_length
|
1175 |
+
else:
|
1176 |
+
# Default to old behavior: keep only final ID
|
1177 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1178 |
+
|
1179 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1180 |
+
if token_type_ids is not None:
|
1181 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1182 |
+
|
1183 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1184 |
+
position_ids = kwargs.get("position_ids", None)
|
1185 |
+
|
1186 |
+
if attention_mask is not None and position_ids is None:
|
1187 |
+
# create position_ids on the fly for batch generation
|
1188 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1189 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1190 |
+
if past_key_values:
|
1191 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1192 |
+
else:
|
1193 |
+
position_ids = None
|
1194 |
+
|
1195 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1196 |
+
if inputs_embeds is not None and past_key_values is None:
|
1197 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1198 |
+
else:
|
1199 |
+
model_inputs = {"input_ids": input_ids}
|
1200 |
+
|
1201 |
+
model_inputs.update(
|
1202 |
+
{
|
1203 |
+
"past_key_values": past_key_values,
|
1204 |
+
"use_cache": kwargs.get("use_cache"),
|
1205 |
+
"position_ids": position_ids,
|
1206 |
+
"attention_mask": attention_mask,
|
1207 |
+
"token_type_ids": token_type_ids,
|
1208 |
+
}
|
1209 |
+
)
|
1210 |
+
return model_inputs
|
1211 |
+
|
1212 |
+
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
1213 |
+
@add_code_sample_docstrings(
|
1214 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1215 |
+
output_type=CausalLMOutputWithCrossAttentions,
|
1216 |
+
config_class=_CONFIG_FOR_DOC,
|
1217 |
+
)
|
1218 |
+
def forward(
|
1219 |
+
self,
|
1220 |
+
input_ids: Optional[torch.Tensor] = None,
|
1221 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1222 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1223 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1224 |
+
position_ids: Optional[torch.Tensor] = None,
|
1225 |
+
head_mask: Optional[torch.Tensor] = None,
|
1226 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1227 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1228 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1229 |
+
labels: Optional[torch.Tensor] = None,
|
1230 |
+
use_cache: Optional[bool] = None,
|
1231 |
+
output_attentions: Optional[bool] = None,
|
1232 |
+
output_hidden_states: Optional[bool] = None,
|
1233 |
+
return_dict: Optional[bool] = None,
|
1234 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1235 |
+
r"""
|
1236 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1237 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1238 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1239 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1240 |
+
"""
|
1241 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1242 |
+
|
1243 |
+
transformer_outputs = self.transformer(
|
1244 |
+
input_ids,
|
1245 |
+
past_key_values=past_key_values,
|
1246 |
+
attention_mask=attention_mask,
|
1247 |
+
token_type_ids=token_type_ids,
|
1248 |
+
position_ids=position_ids,
|
1249 |
+
head_mask=head_mask,
|
1250 |
+
inputs_embeds=inputs_embeds,
|
1251 |
+
encoder_hidden_states=encoder_hidden_states,
|
1252 |
+
encoder_attention_mask=encoder_attention_mask,
|
1253 |
+
use_cache=use_cache,
|
1254 |
+
output_attentions=output_attentions,
|
1255 |
+
output_hidden_states=output_hidden_states,
|
1256 |
+
return_dict=return_dict,
|
1257 |
+
)
|
1258 |
+
hidden_states = transformer_outputs[0]
|
1259 |
+
|
1260 |
+
lm_logits = self.lm_head(hidden_states)
|
1261 |
+
|
1262 |
+
loss = None
|
1263 |
+
if labels is not None:
|
1264 |
+
# Shift so that tokens < n predict n
|
1265 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1266 |
+
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
|
1267 |
+
# Flatten the tokens
|
1268 |
+
loss_fct = CrossEntropyLoss()
|
1269 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1270 |
+
|
1271 |
+
if not return_dict:
|
1272 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1273 |
+
return ((loss,) + output) if loss is not None else output
|
1274 |
+
|
1275 |
+
return CausalLMOutputWithCrossAttentions(
|
1276 |
+
loss=loss,
|
1277 |
+
logits=lm_logits,
|
1278 |
+
past_key_values=transformer_outputs.past_key_values,
|
1279 |
+
hidden_states=transformer_outputs.hidden_states,
|
1280 |
+
attentions=transformer_outputs.attentions,
|
1281 |
+
cross_attentions=transformer_outputs.cross_attentions,
|
1282 |
+
)
|
1283 |
+
|
1284 |
+
@staticmethod
|
1285 |
+
def _reorder_cache(
|
1286 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1287 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1288 |
+
"""
|
1289 |
+
This function is used to re-order the `past_key_values` cache if [`~PreTrainedModel.beam_search`] or
|
1290 |
+
[`~PreTrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1291 |
+
beam_idx at every generation step.
|
1292 |
+
"""
|
1293 |
+
return tuple(layer_past.index_select(0, beam_idx.to(layer_past.device)) for layer_past in past_key_values)
|
1294 |
+
|
1295 |
+
|
1296 |
+
@add_start_docstrings(
|
1297 |
+
"""
|
1298 |
+
The GPTBigCode Model transformer with a sequence classification head on top (linear layer).
|
1299 |
+
|
1300 |
+
[`GPTBigCodeForSequenceClassification`] uses the last token in order to do the classification, as other causal
|
1301 |
+
models (e.g. GPT-1) do.
|
1302 |
+
|
1303 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1304 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1305 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1306 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1307 |
+
each row of the batch).
|
1308 |
+
""",
|
1309 |
+
GPT_BIGCODE_START_DOCSTRING,
|
1310 |
+
)
|
1311 |
+
class GPTBigCodeForSequenceClassification(GPTBigCodePreTrainedModel):
|
1312 |
+
def __init__(self, config):
|
1313 |
+
super().__init__(config)
|
1314 |
+
self.num_labels = config.num_labels
|
1315 |
+
self.transformer = GPTBigCodeModel(config)
|
1316 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1317 |
+
|
1318 |
+
# Initialize weights and apply final processing
|
1319 |
+
self.post_init()
|
1320 |
+
|
1321 |
+
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
1322 |
+
def forward(
|
1323 |
+
self,
|
1324 |
+
input_ids: Optional[torch.Tensor] = None,
|
1325 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1326 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1327 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1328 |
+
position_ids: Optional[torch.Tensor] = None,
|
1329 |
+
head_mask: Optional[torch.Tensor] = None,
|
1330 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1331 |
+
labels: Optional[torch.Tensor] = None,
|
1332 |
+
use_cache: Optional[bool] = None,
|
1333 |
+
output_attentions: Optional[bool] = None,
|
1334 |
+
output_hidden_states: Optional[bool] = None,
|
1335 |
+
return_dict: Optional[bool] = None,
|
1336 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1337 |
+
r"""
|
1338 |
+
labels (`torch.Tensor` of shape `(batch_size,)`, *optional*):
|
1339 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1340 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1341 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1342 |
+
"""
|
1343 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1344 |
+
|
1345 |
+
transformer_outputs = self.transformer(
|
1346 |
+
input_ids,
|
1347 |
+
past_key_values=past_key_values,
|
1348 |
+
attention_mask=attention_mask,
|
1349 |
+
token_type_ids=token_type_ids,
|
1350 |
+
position_ids=position_ids,
|
1351 |
+
head_mask=head_mask,
|
1352 |
+
inputs_embeds=inputs_embeds,
|
1353 |
+
use_cache=use_cache,
|
1354 |
+
output_attentions=output_attentions,
|
1355 |
+
output_hidden_states=output_hidden_states,
|
1356 |
+
return_dict=return_dict,
|
1357 |
+
)
|
1358 |
+
hidden_states = transformer_outputs[0]
|
1359 |
+
logits = self.score(hidden_states)
|
1360 |
+
|
1361 |
+
if input_ids is not None:
|
1362 |
+
batch_size, sequence_length = input_ids.shape[:2]
|
1363 |
+
else:
|
1364 |
+
batch_size, sequence_length = inputs_embeds.shape[:2]
|
1365 |
+
|
1366 |
+
assert (
|
1367 |
+
self.config.pad_token_id is not None or batch_size == 1
|
1368 |
+
), "Cannot handle batch sizes > 1 if no padding token is defined."
|
1369 |
+
if self.config.pad_token_id is None:
|
1370 |
+
sequence_lengths = -1
|
1371 |
+
else:
|
1372 |
+
if input_ids is not None:
|
1373 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1374 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1375 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1376 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1377 |
+
else:
|
1378 |
+
sequence_lengths = -1
|
1379 |
+
logger.warning(
|
1380 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1381 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1382 |
+
)
|
1383 |
+
|
1384 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1385 |
+
|
1386 |
+
loss = None
|
1387 |
+
if labels is not None:
|
1388 |
+
labels = labels.to(logits.device)
|
1389 |
+
|
1390 |
+
if self.config.problem_type is None:
|
1391 |
+
if self.num_labels == 1:
|
1392 |
+
self.config.problem_type = "regression"
|
1393 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1394 |
+
self.config.problem_type = "single_label_classification"
|
1395 |
+
else:
|
1396 |
+
self.config.problem_type = "multi_label_classification"
|
1397 |
+
|
1398 |
+
if self.config.problem_type == "regression":
|
1399 |
+
loss_fct = MSELoss()
|
1400 |
+
if self.num_labels == 1:
|
1401 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1402 |
+
else:
|
1403 |
+
loss = loss_fct(pooled_logits, labels)
|
1404 |
+
elif self.config.problem_type == "single_label_classification":
|
1405 |
+
loss_fct = CrossEntropyLoss()
|
1406 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1407 |
+
elif self.config.problem_type == "multi_label_classification":
|
1408 |
+
loss_fct = BCEWithLogitsLoss()
|
1409 |
+
loss = loss_fct(pooled_logits, labels)
|
1410 |
+
if not return_dict:
|
1411 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1412 |
+
return ((loss,) + output) if loss is not None else output
|
1413 |
+
|
1414 |
+
return SequenceClassifierOutputWithPast(
|
1415 |
+
loss=loss,
|
1416 |
+
logits=pooled_logits,
|
1417 |
+
past_key_values=transformer_outputs.past_key_values,
|
1418 |
+
hidden_states=transformer_outputs.hidden_states,
|
1419 |
+
attentions=transformer_outputs.attentions,
|
1420 |
+
)
|
1421 |
+
|
1422 |
+
|
1423 |
+
@add_start_docstrings(
|
1424 |
+
"""
|
1425 |
+
GPT_BIGCODE Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g.
|
1426 |
+
for Named-Entity-Recognition (NER) tasks.
|
1427 |
+
""",
|
1428 |
+
GPT_BIGCODE_START_DOCSTRING,
|
1429 |
+
)
|
1430 |
+
class GPTBigCodeForTokenClassification(GPTBigCodePreTrainedModel):
|
1431 |
+
def __init__(self, config):
|
1432 |
+
super().__init__(config)
|
1433 |
+
self.num_labels = config.num_labels
|
1434 |
+
|
1435 |
+
self.transformer = GPTBigCodeModel(config)
|
1436 |
+
if hasattr(config, "classifier_dropout") and config.classifier_dropout is not None:
|
1437 |
+
classifier_dropout = config.classifier_dropout
|
1438 |
+
elif hasattr(config, "hidden_dropout") and config.hidden_dropout is not None:
|
1439 |
+
classifier_dropout = config.hidden_dropout
|
1440 |
+
else:
|
1441 |
+
classifier_dropout = 0.1
|
1442 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
1443 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
1444 |
+
|
1445 |
+
# Initialize weights and apply final processing
|
1446 |
+
self.post_init()
|
1447 |
+
|
1448 |
+
@add_start_docstrings_to_model_forward(GPT_BIGCODE_INPUTS_DOCSTRING)
|
1449 |
+
def forward(
|
1450 |
+
self,
|
1451 |
+
input_ids: Optional[torch.Tensor] = None,
|
1452 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1453 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1454 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1455 |
+
position_ids: Optional[torch.Tensor] = None,
|
1456 |
+
head_mask: Optional[torch.Tensor] = None,
|
1457 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1458 |
+
labels: Optional[torch.Tensor] = None,
|
1459 |
+
use_cache: Optional[bool] = None,
|
1460 |
+
output_attentions: Optional[bool] = None,
|
1461 |
+
output_hidden_states: Optional[bool] = None,
|
1462 |
+
return_dict: Optional[bool] = None,
|
1463 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
1464 |
+
r"""
|
1465 |
+
labels (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1466 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1467 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1468 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1469 |
+
"""
|
1470 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1471 |
+
|
1472 |
+
transformer_outputs = self.transformer(
|
1473 |
+
input_ids,
|
1474 |
+
past_key_values=past_key_values,
|
1475 |
+
attention_mask=attention_mask,
|
1476 |
+
token_type_ids=token_type_ids,
|
1477 |
+
position_ids=position_ids,
|
1478 |
+
head_mask=head_mask,
|
1479 |
+
inputs_embeds=inputs_embeds,
|
1480 |
+
use_cache=use_cache,
|
1481 |
+
output_attentions=output_attentions,
|
1482 |
+
output_hidden_states=output_hidden_states,
|
1483 |
+
return_dict=return_dict,
|
1484 |
+
)
|
1485 |
+
|
1486 |
+
hidden_states = transformer_outputs[0]
|
1487 |
+
hidden_states = self.dropout(hidden_states)
|
1488 |
+
logits = self.classifier(hidden_states)
|
1489 |
+
|
1490 |
+
loss = None
|
1491 |
+
if labels is not None:
|
1492 |
+
loss_fct = CrossEntropyLoss()
|
1493 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1).to(logits.device))
|
1494 |
+
|
1495 |
+
if not return_dict:
|
1496 |
+
output = (logits,) + transformer_outputs[2:]
|
1497 |
+
return ((loss,) + output) if loss is not None else output
|
1498 |
+
|
1499 |
+
return TokenClassifierOutput(
|
1500 |
+
loss=loss,
|
1501 |
+
logits=logits,
|
1502 |
+
hidden_states=transformer_outputs.hidden_states,
|
1503 |
+
attentions=transformer_outputs.attentions,
|
1504 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__init__.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {"configuration_gptj": ["GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTJConfig", "GPTJOnnxConfig"]}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_gptj"] = [
|
34 |
+
"GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"GPTJForCausalLM",
|
36 |
+
"GPTJForQuestionAnswering",
|
37 |
+
"GPTJForSequenceClassification",
|
38 |
+
"GPTJModel",
|
39 |
+
"GPTJPreTrainedModel",
|
40 |
+
]
|
41 |
+
|
42 |
+
try:
|
43 |
+
if not is_tf_available():
|
44 |
+
raise OptionalDependencyNotAvailable()
|
45 |
+
except OptionalDependencyNotAvailable:
|
46 |
+
pass
|
47 |
+
else:
|
48 |
+
_import_structure["modeling_tf_gptj"] = [
|
49 |
+
"TFGPTJForCausalLM",
|
50 |
+
"TFGPTJForQuestionAnswering",
|
51 |
+
"TFGPTJForSequenceClassification",
|
52 |
+
"TFGPTJModel",
|
53 |
+
"TFGPTJPreTrainedModel",
|
54 |
+
]
|
55 |
+
|
56 |
+
try:
|
57 |
+
if not is_flax_available():
|
58 |
+
raise OptionalDependencyNotAvailable()
|
59 |
+
except OptionalDependencyNotAvailable:
|
60 |
+
pass
|
61 |
+
else:
|
62 |
+
_import_structure["modeling_flax_gptj"] = [
|
63 |
+
"FlaxGPTJForCausalLM",
|
64 |
+
"FlaxGPTJModel",
|
65 |
+
"FlaxGPTJPreTrainedModel",
|
66 |
+
]
|
67 |
+
|
68 |
+
|
69 |
+
if TYPE_CHECKING:
|
70 |
+
from .configuration_gptj import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTJConfig, GPTJOnnxConfig
|
71 |
+
|
72 |
+
try:
|
73 |
+
if not is_torch_available():
|
74 |
+
raise OptionalDependencyNotAvailable()
|
75 |
+
except OptionalDependencyNotAvailable:
|
76 |
+
pass
|
77 |
+
else:
|
78 |
+
from .modeling_gptj import (
|
79 |
+
GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST,
|
80 |
+
GPTJForCausalLM,
|
81 |
+
GPTJForQuestionAnswering,
|
82 |
+
GPTJForSequenceClassification,
|
83 |
+
GPTJModel,
|
84 |
+
GPTJPreTrainedModel,
|
85 |
+
)
|
86 |
+
|
87 |
+
try:
|
88 |
+
if not is_tf_available():
|
89 |
+
raise OptionalDependencyNotAvailable()
|
90 |
+
except OptionalDependencyNotAvailable:
|
91 |
+
pass
|
92 |
+
else:
|
93 |
+
from .modeling_tf_gptj import (
|
94 |
+
TFGPTJForCausalLM,
|
95 |
+
TFGPTJForQuestionAnswering,
|
96 |
+
TFGPTJForSequenceClassification,
|
97 |
+
TFGPTJModel,
|
98 |
+
TFGPTJPreTrainedModel,
|
99 |
+
)
|
100 |
+
|
101 |
+
try:
|
102 |
+
if not is_flax_available():
|
103 |
+
raise OptionalDependencyNotAvailable()
|
104 |
+
except OptionalDependencyNotAvailable:
|
105 |
+
pass
|
106 |
+
else:
|
107 |
+
from .modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel, FlaxGPTJPreTrainedModel
|
108 |
+
|
109 |
+
else:
|
110 |
+
import sys
|
111 |
+
|
112 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.58 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/configuration_gptj.cpython-310.pyc
ADDED
Binary file (7.66 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_flax_gptj.cpython-310.pyc
ADDED
Binary file (21 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_gptj.cpython-310.pyc
ADDED
Binary file (38.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptj/__pycache__/modeling_tf_gptj.cpython-310.pyc
ADDED
Binary file (33.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptj/configuration_gptj.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPT-J model configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Any, List, Mapping, Optional
|
18 |
+
|
19 |
+
from ... import PreTrainedTokenizer, TensorType, is_torch_available
|
20 |
+
from ...configuration_utils import PretrainedConfig
|
21 |
+
from ...onnx import OnnxConfigWithPast, PatchingSpec
|
22 |
+
from ...utils import logging
|
23 |
+
|
24 |
+
|
25 |
+
logger = logging.get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
from ..deprecated._archive_maps import GPTJ_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
29 |
+
|
30 |
+
|
31 |
+
class GPTJConfig(PretrainedConfig):
|
32 |
+
r"""
|
33 |
+
This is the configuration class to store the configuration of a [`GPTJModel`]. It is used to instantiate a GPT-J
|
34 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
35 |
+
defaults will yield a similar configuration to that of the GPT-J
|
36 |
+
[EleutherAI/gpt-j-6B](https://huggingface.co/EleutherAI/gpt-j-6B) architecture. Configuration objects inherit from
|
37 |
+
[`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`]
|
38 |
+
for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 50400):
|
42 |
+
Vocabulary size of the GPT-J model. Defines the number of different tokens that can be represented by the
|
43 |
+
`inputs_ids` passed when calling [`GPTJModel`].
|
44 |
+
n_positions (`int`, *optional*, defaults to 2048):
|
45 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
46 |
+
just in case (e.g., 512 or 1024 or 2048).
|
47 |
+
n_embd (`int`, *optional*, defaults to 4096):
|
48 |
+
Dimensionality of the embeddings and hidden states.
|
49 |
+
n_layer (`int`, *optional*, defaults to 28):
|
50 |
+
Number of hidden layers in the Transformer encoder.
|
51 |
+
n_head (`int`, *optional*, defaults to 16):
|
52 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
53 |
+
rotary_dim (`int`, *optional*, defaults to 64):
|
54 |
+
Number of dimensions in the embedding that Rotary Position Embedding is applied to.
|
55 |
+
n_inner (`int`, *optional*, defaults to None):
|
56 |
+
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd
|
57 |
+
activation_function (`str`, *optional*, defaults to `"gelu_new"`):
|
58 |
+
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`.
|
59 |
+
resid_pdrop (`float`, *optional*, defaults to 0.1):
|
60 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
61 |
+
embd_pdrop (`int`, *optional*, defaults to 0.1):
|
62 |
+
The dropout ratio for the embeddings.
|
63 |
+
attn_pdrop (`float`, *optional*, defaults to 0.1):
|
64 |
+
The dropout ratio for the attention.
|
65 |
+
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5):
|
66 |
+
The epsilon to use in the layer normalization layers.
|
67 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
68 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
69 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
70 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
71 |
+
|
72 |
+
Example:
|
73 |
+
|
74 |
+
```python
|
75 |
+
>>> from transformers import GPTJModel, GPTJConfig
|
76 |
+
|
77 |
+
>>> # Initializing a GPT-J 6B configuration
|
78 |
+
>>> configuration = GPTJConfig()
|
79 |
+
|
80 |
+
>>> # Initializing a model from the configuration
|
81 |
+
>>> model = GPTJModel(configuration)
|
82 |
+
|
83 |
+
>>> # Accessing the model configuration
|
84 |
+
>>> configuration = model.config
|
85 |
+
```"""
|
86 |
+
|
87 |
+
model_type = "gptj"
|
88 |
+
attribute_map = {
|
89 |
+
"max_position_embeddings": "n_positions",
|
90 |
+
"hidden_size": "n_embd",
|
91 |
+
"num_attention_heads": "n_head",
|
92 |
+
"num_hidden_layers": "n_layer",
|
93 |
+
}
|
94 |
+
|
95 |
+
def __init__(
|
96 |
+
self,
|
97 |
+
vocab_size=50400,
|
98 |
+
n_positions=2048,
|
99 |
+
n_embd=4096,
|
100 |
+
n_layer=28,
|
101 |
+
n_head=16,
|
102 |
+
rotary_dim=64,
|
103 |
+
n_inner=None,
|
104 |
+
activation_function="gelu_new",
|
105 |
+
resid_pdrop=0.0,
|
106 |
+
embd_pdrop=0.0,
|
107 |
+
attn_pdrop=0.0,
|
108 |
+
layer_norm_epsilon=1e-5,
|
109 |
+
initializer_range=0.02,
|
110 |
+
use_cache=True,
|
111 |
+
bos_token_id=50256,
|
112 |
+
eos_token_id=50256,
|
113 |
+
tie_word_embeddings=False,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
self.vocab_size = vocab_size
|
117 |
+
self.n_positions = n_positions
|
118 |
+
self.n_embd = n_embd
|
119 |
+
self.n_layer = n_layer
|
120 |
+
self.n_head = n_head
|
121 |
+
self.n_inner = n_inner
|
122 |
+
self.rotary_dim = rotary_dim
|
123 |
+
self.activation_function = activation_function
|
124 |
+
self.resid_pdrop = resid_pdrop
|
125 |
+
self.embd_pdrop = embd_pdrop
|
126 |
+
self.attn_pdrop = attn_pdrop
|
127 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.use_cache = use_cache
|
130 |
+
|
131 |
+
self.bos_token_id = bos_token_id
|
132 |
+
self.eos_token_id = eos_token_id
|
133 |
+
|
134 |
+
super().__init__(
|
135 |
+
bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs
|
136 |
+
)
|
137 |
+
|
138 |
+
|
139 |
+
# Copied from transformers.models.gpt2.configuration_gpt2.GPT2OnnxConfig
|
140 |
+
class GPTJOnnxConfig(OnnxConfigWithPast):
|
141 |
+
def __init__(
|
142 |
+
self,
|
143 |
+
config: PretrainedConfig,
|
144 |
+
task: str = "default",
|
145 |
+
patching_specs: List[PatchingSpec] = None,
|
146 |
+
use_past: bool = False,
|
147 |
+
):
|
148 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
149 |
+
if not getattr(self._config, "pad_token_id", None):
|
150 |
+
# TODO: how to do that better?
|
151 |
+
self._config.pad_token_id = 0
|
152 |
+
|
153 |
+
@property
|
154 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
155 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
156 |
+
if self.use_past:
|
157 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs")
|
158 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
159 |
+
else:
|
160 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
161 |
+
|
162 |
+
return common_inputs
|
163 |
+
|
164 |
+
@property
|
165 |
+
def num_layers(self) -> int:
|
166 |
+
return self._config.n_layer
|
167 |
+
|
168 |
+
@property
|
169 |
+
def num_attention_heads(self) -> int:
|
170 |
+
return self._config.n_head
|
171 |
+
|
172 |
+
def generate_dummy_inputs(
|
173 |
+
self,
|
174 |
+
tokenizer: PreTrainedTokenizer,
|
175 |
+
batch_size: int = -1,
|
176 |
+
seq_length: int = -1,
|
177 |
+
is_pair: bool = False,
|
178 |
+
framework: Optional[TensorType] = None,
|
179 |
+
) -> Mapping[str, Any]:
|
180 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
181 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
182 |
+
)
|
183 |
+
|
184 |
+
# We need to order the input in the way they appears in the forward()
|
185 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
186 |
+
|
187 |
+
# Need to add the past_keys
|
188 |
+
if self.use_past:
|
189 |
+
if not is_torch_available():
|
190 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
191 |
+
else:
|
192 |
+
import torch
|
193 |
+
|
194 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
195 |
+
# Not using the same length for past_key_values
|
196 |
+
past_key_values_length = seqlen + 2
|
197 |
+
past_shape = (
|
198 |
+
batch,
|
199 |
+
self.num_attention_heads,
|
200 |
+
past_key_values_length,
|
201 |
+
self._config.hidden_size // self.num_attention_heads,
|
202 |
+
)
|
203 |
+
ordered_inputs["past_key_values"] = [
|
204 |
+
(torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(self.num_layers)
|
205 |
+
]
|
206 |
+
|
207 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
208 |
+
if self.use_past:
|
209 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
210 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
211 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
212 |
+
)
|
213 |
+
|
214 |
+
return ordered_inputs
|
215 |
+
|
216 |
+
@property
|
217 |
+
def default_onnx_opset(self) -> int:
|
218 |
+
return 13
|
venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_flax_gptj.py
ADDED
@@ -0,0 +1,718 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
from functools import partial
|
17 |
+
from typing import Optional, Tuple
|
18 |
+
|
19 |
+
import flax.linen as nn
|
20 |
+
import jax
|
21 |
+
import jax.numpy as jnp
|
22 |
+
import numpy as np
|
23 |
+
from flax.core.frozen_dict import FrozenDict, freeze, unfreeze
|
24 |
+
from flax.linen import combine_masks, make_causal_mask
|
25 |
+
from flax.linen.attention import dot_product_attention_weights
|
26 |
+
from flax.traverse_util import flatten_dict, unflatten_dict
|
27 |
+
from jax import lax
|
28 |
+
|
29 |
+
from ...modeling_flax_outputs import FlaxBaseModelOutput, FlaxCausalLMOutput
|
30 |
+
from ...modeling_flax_utils import ACT2FN, FlaxPreTrainedModel, append_call_sample_docstring
|
31 |
+
from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging
|
32 |
+
from .configuration_gptj import GPTJConfig
|
33 |
+
|
34 |
+
|
35 |
+
logger = logging.get_logger(__name__)
|
36 |
+
|
37 |
+
_CHECKPOINT_FOR_DOC = "gptj"
|
38 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
39 |
+
|
40 |
+
|
41 |
+
GPTJ_START_DOCSTRING = r"""
|
42 |
+
|
43 |
+
This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
44 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
45 |
+
etc.)
|
46 |
+
|
47 |
+
This model is also a Flax Linen
|
48 |
+
[flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a
|
49 |
+
regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
|
50 |
+
|
51 |
+
Finally, this model supports inherent JAX features such as:
|
52 |
+
|
53 |
+
- [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit)
|
54 |
+
- [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation)
|
55 |
+
- [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap)
|
56 |
+
- [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap)
|
57 |
+
|
58 |
+
Parameters:
|
59 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
60 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
61 |
+
configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights.
|
62 |
+
dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`):
|
63 |
+
The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and
|
64 |
+
`jax.numpy.bfloat16` (on TPUs).
|
65 |
+
|
66 |
+
This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If
|
67 |
+
specified all the computation will be performed with the given `dtype`.
|
68 |
+
|
69 |
+
**Note that this only specifies the dtype of the computation and does not influence the dtype of model
|
70 |
+
parameters.**
|
71 |
+
|
72 |
+
If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and
|
73 |
+
[`~FlaxPreTrainedModel.to_bf16`].
|
74 |
+
"""
|
75 |
+
|
76 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
77 |
+
Args:
|
78 |
+
input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`):
|
79 |
+
`input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary.
|
80 |
+
|
81 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
82 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
83 |
+
|
84 |
+
[What are input IDs?](../glossary#input-ids)
|
85 |
+
attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
86 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
87 |
+
|
88 |
+
- 1 for tokens that are **not masked**,
|
89 |
+
- 0 for tokens that are **masked**.
|
90 |
+
|
91 |
+
[What are attention masks?](../glossary#attention-mask)
|
92 |
+
position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*):
|
93 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
94 |
+
config.max_position_embeddings - 1]`.
|
95 |
+
past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`):
|
96 |
+
Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast
|
97 |
+
auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*.
|
98 |
+
output_attentions (`bool`, *optional*):
|
99 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
100 |
+
tensors for more detail.
|
101 |
+
output_hidden_states (`bool`, *optional*):
|
102 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
103 |
+
more detail.
|
104 |
+
return_dict (`bool`, *optional*):
|
105 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
106 |
+
"""
|
107 |
+
|
108 |
+
|
109 |
+
def create_sinusoidal_positions(num_pos, dim):
|
110 |
+
inv_freq = 1.0 / (10000 ** (np.arange(0, dim, 2) / dim))
|
111 |
+
sinusoid_inp = np.einsum("i , j -> i j", np.arange(num_pos), inv_freq).astype("float32")
|
112 |
+
sin, cos = np.sin(sinusoid_inp), np.cos(sinusoid_inp)
|
113 |
+
|
114 |
+
sentinel = dim // 2 + dim % 2
|
115 |
+
out = np.zeros((num_pos, dim))
|
116 |
+
out[:, 0:sentinel] = sin
|
117 |
+
out[:, sentinel:] = cos
|
118 |
+
|
119 |
+
return jnp.array(out)
|
120 |
+
|
121 |
+
|
122 |
+
def rotate_every_two(tensor):
|
123 |
+
rotate_half_tensor = jnp.stack((-tensor[:, :, :, 1::2], tensor[:, :, :, ::2]), axis=-1)
|
124 |
+
rotate_half_tensor = rotate_half_tensor.reshape(rotate_half_tensor.shape[:-2] + (-1,))
|
125 |
+
return rotate_half_tensor
|
126 |
+
|
127 |
+
|
128 |
+
def apply_rotary_pos_emb(tensor, sincos):
|
129 |
+
sin_pos, cos_pos = sincos
|
130 |
+
sin_pos = sin_pos[:, :, None, :].repeat(2, 3)
|
131 |
+
cos_pos = cos_pos[:, :, None, :].repeat(2, 3)
|
132 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
133 |
+
|
134 |
+
|
135 |
+
class FlaxGPTJAttention(nn.Module):
|
136 |
+
config: GPTJConfig
|
137 |
+
dtype: jnp.dtype = jnp.float32
|
138 |
+
causal: bool = True
|
139 |
+
is_cross_attention: bool = False
|
140 |
+
|
141 |
+
def setup(self):
|
142 |
+
config = self.config
|
143 |
+
self.embed_dim = config.hidden_size
|
144 |
+
self.num_heads = config.num_attention_heads
|
145 |
+
self.head_dim = self.embed_dim // self.num_heads
|
146 |
+
|
147 |
+
self.rotary_dim = config.rotary_dim
|
148 |
+
|
149 |
+
dense = partial(
|
150 |
+
nn.Dense,
|
151 |
+
self.embed_dim,
|
152 |
+
use_bias=False,
|
153 |
+
dtype=self.dtype,
|
154 |
+
kernel_init=jax.nn.initializers.normal(self.config.initializer_range),
|
155 |
+
)
|
156 |
+
|
157 |
+
self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense()
|
158 |
+
self.out_proj = dense()
|
159 |
+
|
160 |
+
self.resid_dropout = nn.Dropout(rate=config.resid_pdrop)
|
161 |
+
|
162 |
+
self.causal_mask = make_causal_mask(jnp.ones((1, config.max_position_embeddings), dtype="bool"), dtype="bool")
|
163 |
+
|
164 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
165 |
+
self.embed_positions = create_sinusoidal_positions(config.max_position_embeddings, pos_embd_dim)
|
166 |
+
|
167 |
+
def _split_heads(self, hidden_states):
|
168 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim))
|
169 |
+
|
170 |
+
def _merge_heads(self, hidden_states):
|
171 |
+
return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,))
|
172 |
+
|
173 |
+
@nn.compact
|
174 |
+
def _concatenate_to_cache(self, key, value, query, attention_mask):
|
175 |
+
"""
|
176 |
+
This function takes projected key, value states from a single input token and concatenates the states to cached
|
177 |
+
states from previous steps. This function is slighly adapted from the official Flax repository:
|
178 |
+
https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252
|
179 |
+
"""
|
180 |
+
# detect if we're initializing by absence of existing cache data.
|
181 |
+
is_initialized = self.has_variable("cache", "cached_key")
|
182 |
+
cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype)
|
183 |
+
cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype)
|
184 |
+
cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32))
|
185 |
+
|
186 |
+
if is_initialized:
|
187 |
+
*batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape
|
188 |
+
# update key, value caches with our new 1d spatial slices
|
189 |
+
cur_index = cache_index.value
|
190 |
+
indices = (0,) * len(batch_dims) + (cur_index, 0, 0)
|
191 |
+
key = lax.dynamic_update_slice(cached_key.value, key, indices)
|
192 |
+
value = lax.dynamic_update_slice(cached_value.value, value, indices)
|
193 |
+
cached_key.value = key
|
194 |
+
cached_value.value = value
|
195 |
+
num_updated_cache_vectors = query.shape[1]
|
196 |
+
cache_index.value = cache_index.value + num_updated_cache_vectors
|
197 |
+
# causal mask for cached decoder self-attention: our single query position should only attend to those key
|
198 |
+
# positions that have already been generated and cached, not the remaining zero elements.
|
199 |
+
pad_mask = jnp.broadcast_to(
|
200 |
+
jnp.arange(max_length) < cur_index + num_updated_cache_vectors,
|
201 |
+
tuple(batch_dims) + (1, num_updated_cache_vectors, max_length),
|
202 |
+
)
|
203 |
+
attention_mask = combine_masks(pad_mask, attention_mask)
|
204 |
+
return key, value, attention_mask
|
205 |
+
|
206 |
+
def __call__(
|
207 |
+
self,
|
208 |
+
hidden_states,
|
209 |
+
attention_mask,
|
210 |
+
position_ids,
|
211 |
+
deterministic: bool = True,
|
212 |
+
init_cache: bool = False,
|
213 |
+
output_attentions: bool = False,
|
214 |
+
):
|
215 |
+
query = self.q_proj(hidden_states)
|
216 |
+
key = self.k_proj(hidden_states)
|
217 |
+
value = self.v_proj(hidden_states)
|
218 |
+
|
219 |
+
query = self._split_heads(query)
|
220 |
+
key = self._split_heads(key)
|
221 |
+
value = self._split_heads(value)
|
222 |
+
|
223 |
+
sincos = jnp.take(self.embed_positions, position_ids, axis=0)
|
224 |
+
sincos = jnp.split(sincos, 2, axis=-1)
|
225 |
+
if self.rotary_dim is not None:
|
226 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
227 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
228 |
+
|
229 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
230 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
231 |
+
|
232 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
233 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
234 |
+
|
235 |
+
key = jnp.concatenate([k_rot, k_pass], axis=-1)
|
236 |
+
query = jnp.concatenate([q_rot, q_pass], axis=-1)
|
237 |
+
else:
|
238 |
+
key = apply_rotary_pos_emb(key, sincos)
|
239 |
+
query = apply_rotary_pos_emb(query, sincos)
|
240 |
+
|
241 |
+
query_length, key_length = query.shape[1], key.shape[1]
|
242 |
+
|
243 |
+
if self.has_variable("cache", "cached_key"):
|
244 |
+
mask_shift = self.variables["cache"]["cache_index"]
|
245 |
+
max_decoder_length = self.variables["cache"]["cached_key"].shape[1]
|
246 |
+
causal_mask = lax.dynamic_slice(
|
247 |
+
self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length)
|
248 |
+
)
|
249 |
+
else:
|
250 |
+
causal_mask = self.causal_mask[:, :, :query_length, :key_length]
|
251 |
+
|
252 |
+
batch_size = hidden_states.shape[0]
|
253 |
+
causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:])
|
254 |
+
|
255 |
+
attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape)
|
256 |
+
attention_mask = combine_masks(attention_mask, causal_mask)
|
257 |
+
|
258 |
+
dropout_rng = None
|
259 |
+
if not deterministic and self.config.attn_pdrop > 0.0:
|
260 |
+
dropout_rng = self.make_rng("dropout")
|
261 |
+
|
262 |
+
# During fast autoregressive decoding, we feed one position at a time,
|
263 |
+
# and cache the keys and values step by step.
|
264 |
+
if self.has_variable("cache", "cached_key") or init_cache:
|
265 |
+
key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask)
|
266 |
+
|
267 |
+
# transform boolean mask into float mask
|
268 |
+
attention_bias = lax.select(
|
269 |
+
attention_mask > 0,
|
270 |
+
jnp.full(attention_mask.shape, 0.0).astype(self.dtype),
|
271 |
+
jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype),
|
272 |
+
)
|
273 |
+
|
274 |
+
# usual dot product attention
|
275 |
+
attn_weights = dot_product_attention_weights(
|
276 |
+
query,
|
277 |
+
key,
|
278 |
+
bias=attention_bias,
|
279 |
+
dropout_rng=dropout_rng,
|
280 |
+
dropout_rate=self.config.attn_pdrop,
|
281 |
+
deterministic=deterministic,
|
282 |
+
dtype=self.dtype,
|
283 |
+
precision=None,
|
284 |
+
)
|
285 |
+
|
286 |
+
attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value)
|
287 |
+
attn_output = self._merge_heads(attn_output)
|
288 |
+
attn_output = self.out_proj(attn_output)
|
289 |
+
attn_output = self.resid_dropout(attn_output, deterministic=deterministic)
|
290 |
+
|
291 |
+
outputs = (attn_output, attn_weights) if output_attentions else (attn_output,)
|
292 |
+
return outputs
|
293 |
+
|
294 |
+
|
295 |
+
class FlaxGPTJMLP(nn.Module):
|
296 |
+
config: GPTJConfig
|
297 |
+
intermediate_size: int
|
298 |
+
dtype: jnp.dtype = jnp.float32
|
299 |
+
|
300 |
+
def setup(self):
|
301 |
+
embed_dim = self.config.hidden_size
|
302 |
+
kernel_init = jax.nn.initializers.normal(self.config.initializer_range)
|
303 |
+
|
304 |
+
self.fc_in = nn.Dense(self.intermediate_size, dtype=self.dtype, kernel_init=kernel_init)
|
305 |
+
self.fc_out = nn.Dense(embed_dim, dtype=self.dtype, kernel_init=kernel_init)
|
306 |
+
|
307 |
+
self.act = ACT2FN[self.config.activation_function]
|
308 |
+
self.dropout = nn.Dropout(rate=self.config.resid_pdrop)
|
309 |
+
|
310 |
+
def __call__(self, hidden_states, deterministic: bool = True):
|
311 |
+
hidden_states = self.fc_in(hidden_states)
|
312 |
+
hidden_states = self.act(hidden_states)
|
313 |
+
hidden_states = self.fc_out(hidden_states)
|
314 |
+
hidden_states = self.dropout(hidden_states, deterministic=deterministic)
|
315 |
+
return hidden_states
|
316 |
+
|
317 |
+
|
318 |
+
class FlaxGPTJBlock(nn.Module):
|
319 |
+
config: GPTJConfig
|
320 |
+
dtype: jnp.dtype = jnp.float32
|
321 |
+
|
322 |
+
def setup(self):
|
323 |
+
hidden_size = self.config.hidden_size
|
324 |
+
inner_dim = self.config.n_inner if self.config.n_inner is not None else 4 * hidden_size
|
325 |
+
|
326 |
+
self.ln_1 = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
327 |
+
self.attn = FlaxGPTJAttention(self.config, dtype=self.dtype)
|
328 |
+
|
329 |
+
self.mlp = FlaxGPTJMLP(self.config, inner_dim, dtype=self.dtype)
|
330 |
+
|
331 |
+
def __call__(
|
332 |
+
self,
|
333 |
+
hidden_states,
|
334 |
+
attention_mask=None,
|
335 |
+
position_ids=None,
|
336 |
+
deterministic: bool = True,
|
337 |
+
init_cache: bool = False,
|
338 |
+
output_attentions: bool = False,
|
339 |
+
):
|
340 |
+
residual = hidden_states
|
341 |
+
hidden_states = self.ln_1(hidden_states)
|
342 |
+
attn_outputs = self.attn(
|
343 |
+
hidden_states,
|
344 |
+
attention_mask=attention_mask,
|
345 |
+
position_ids=position_ids,
|
346 |
+
deterministic=deterministic,
|
347 |
+
init_cache=init_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
)
|
350 |
+
attn_output = attn_outputs[0]
|
351 |
+
|
352 |
+
feed_forward_hidden_states = self.mlp(hidden_states, deterministic=deterministic)
|
353 |
+
# residual connection
|
354 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
355 |
+
|
356 |
+
return (hidden_states,) + attn_outputs[1:]
|
357 |
+
|
358 |
+
|
359 |
+
class FlaxGPTJPreTrainedModel(FlaxPreTrainedModel):
|
360 |
+
"""
|
361 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
362 |
+
models.
|
363 |
+
"""
|
364 |
+
|
365 |
+
config_class = GPTJConfig
|
366 |
+
base_model_prefix = "transformer"
|
367 |
+
module_class: nn.Module = None
|
368 |
+
|
369 |
+
def __init__(
|
370 |
+
self,
|
371 |
+
config: GPTJConfig,
|
372 |
+
input_shape: Tuple = (1, 1),
|
373 |
+
seed: int = 0,
|
374 |
+
dtype: jnp.dtype = jnp.float32,
|
375 |
+
_do_init: bool = True,
|
376 |
+
**kwargs,
|
377 |
+
):
|
378 |
+
module = self.module_class(config=config, dtype=dtype, **kwargs)
|
379 |
+
super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init)
|
380 |
+
|
381 |
+
def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict:
|
382 |
+
# init input tensors
|
383 |
+
input_ids = jnp.zeros(input_shape, dtype="i4")
|
384 |
+
attention_mask = jnp.ones_like(input_ids)
|
385 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_shape)
|
386 |
+
params_rng, dropout_rng = jax.random.split(rng)
|
387 |
+
rngs = {"params": params_rng, "dropout": dropout_rng}
|
388 |
+
|
389 |
+
if self.config.add_cross_attention:
|
390 |
+
encoder_hidden_states = jnp.zeros(input_shape + (self.config.n_embd,))
|
391 |
+
encoder_attention_mask = attention_mask
|
392 |
+
module_init_outputs = self.module.init(
|
393 |
+
rngs,
|
394 |
+
input_ids,
|
395 |
+
attention_mask,
|
396 |
+
position_ids,
|
397 |
+
encoder_hidden_states,
|
398 |
+
encoder_attention_mask,
|
399 |
+
return_dict=False,
|
400 |
+
)
|
401 |
+
else:
|
402 |
+
module_init_outputs = self.module.init(rngs, input_ids, attention_mask, position_ids, return_dict=False)
|
403 |
+
|
404 |
+
random_params = module_init_outputs["params"]
|
405 |
+
|
406 |
+
if params is not None:
|
407 |
+
random_params = flatten_dict(unfreeze(random_params))
|
408 |
+
params = flatten_dict(unfreeze(params))
|
409 |
+
for missing_key in self._missing_keys:
|
410 |
+
params[missing_key] = random_params[missing_key]
|
411 |
+
self._missing_keys = set()
|
412 |
+
return freeze(unflatten_dict(params))
|
413 |
+
else:
|
414 |
+
return random_params
|
415 |
+
|
416 |
+
def init_cache(self, batch_size, max_length):
|
417 |
+
r"""
|
418 |
+
Args:
|
419 |
+
batch_size (`int`):
|
420 |
+
batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache.
|
421 |
+
max_length (`int`):
|
422 |
+
maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized
|
423 |
+
cache.
|
424 |
+
"""
|
425 |
+
# init input variables to retrieve cache
|
426 |
+
input_ids = jnp.ones((batch_size, max_length))
|
427 |
+
attention_mask = jnp.ones_like(input_ids)
|
428 |
+
position_ids = jnp.broadcast_to(jnp.arange(jnp.atleast_2d(input_ids).shape[-1]), input_ids.shape)
|
429 |
+
|
430 |
+
init_variables = self.module.init(
|
431 |
+
jax.random.PRNGKey(0), input_ids, attention_mask, position_ids, return_dict=False, init_cache=True
|
432 |
+
)
|
433 |
+
return init_variables["cache"]
|
434 |
+
|
435 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
436 |
+
def __call__(
|
437 |
+
self,
|
438 |
+
input_ids,
|
439 |
+
attention_mask=None,
|
440 |
+
position_ids=None,
|
441 |
+
params: dict = None,
|
442 |
+
past_key_values: dict = None,
|
443 |
+
dropout_rng: jax.random.PRNGKey = None,
|
444 |
+
train: bool = False,
|
445 |
+
output_attentions: Optional[bool] = None,
|
446 |
+
output_hidden_states: Optional[bool] = None,
|
447 |
+
return_dict: Optional[bool] = None,
|
448 |
+
):
|
449 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
450 |
+
output_hidden_states = (
|
451 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
452 |
+
)
|
453 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
454 |
+
|
455 |
+
batch_size, sequence_length = input_ids.shape
|
456 |
+
|
457 |
+
if position_ids is None:
|
458 |
+
if past_key_values is not None:
|
459 |
+
raise ValueError("Make sure to provide `position_ids` when passing `past_key_values`.")
|
460 |
+
|
461 |
+
position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length))
|
462 |
+
|
463 |
+
if attention_mask is None:
|
464 |
+
attention_mask = jnp.ones((batch_size, sequence_length))
|
465 |
+
|
466 |
+
# Handle any PRNG if needed
|
467 |
+
rngs = {}
|
468 |
+
if dropout_rng is not None:
|
469 |
+
rngs["dropout"] = dropout_rng
|
470 |
+
|
471 |
+
inputs = {"params": params or self.params}
|
472 |
+
|
473 |
+
# if past_key_values are passed then cache is already initialized a private flag init_cache has to be passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be changed by FlaxGPTJAttention module
|
474 |
+
if past_key_values:
|
475 |
+
inputs["cache"] = past_key_values
|
476 |
+
mutable = ["cache"]
|
477 |
+
else:
|
478 |
+
mutable = False
|
479 |
+
|
480 |
+
outputs = self.module.apply(
|
481 |
+
inputs,
|
482 |
+
jnp.array(input_ids, dtype="i4"),
|
483 |
+
jnp.array(attention_mask, dtype="i4"),
|
484 |
+
jnp.array(position_ids, dtype="i4"),
|
485 |
+
not train,
|
486 |
+
False,
|
487 |
+
output_attentions,
|
488 |
+
output_hidden_states,
|
489 |
+
return_dict,
|
490 |
+
rngs=rngs,
|
491 |
+
mutable=mutable,
|
492 |
+
)
|
493 |
+
|
494 |
+
# add updated cache to model output
|
495 |
+
if past_key_values is not None and return_dict:
|
496 |
+
outputs, past_key_values = outputs
|
497 |
+
outputs["past_key_values"] = unfreeze(past_key_values["cache"])
|
498 |
+
return outputs
|
499 |
+
elif past_key_values is not None and not return_dict:
|
500 |
+
outputs, past_key_values = outputs
|
501 |
+
outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:]
|
502 |
+
|
503 |
+
return outputs
|
504 |
+
|
505 |
+
|
506 |
+
class FlaxGPTJBlockCollection(nn.Module):
|
507 |
+
config: GPTJConfig
|
508 |
+
dtype: jnp.dtype = jnp.float32
|
509 |
+
|
510 |
+
def setup(self):
|
511 |
+
self.blocks = [
|
512 |
+
FlaxGPTJBlock(self.config, name=str(i), dtype=self.dtype) for i in range(self.config.num_hidden_layers)
|
513 |
+
]
|
514 |
+
|
515 |
+
def __call__(
|
516 |
+
self,
|
517 |
+
hidden_states,
|
518 |
+
attention_mask=None,
|
519 |
+
position_ids=None,
|
520 |
+
deterministic: bool = True,
|
521 |
+
init_cache: bool = False,
|
522 |
+
output_attentions: bool = False,
|
523 |
+
output_hidden_states: bool = False,
|
524 |
+
return_dict: bool = True,
|
525 |
+
):
|
526 |
+
all_attentions = () if output_attentions else None
|
527 |
+
all_hidden_states = () if output_hidden_states else None
|
528 |
+
|
529 |
+
for block in self.blocks:
|
530 |
+
if output_hidden_states:
|
531 |
+
all_hidden_states += (hidden_states,)
|
532 |
+
|
533 |
+
layer_outputs = block(
|
534 |
+
hidden_states,
|
535 |
+
attention_mask,
|
536 |
+
position_ids=position_ids,
|
537 |
+
deterministic=deterministic,
|
538 |
+
init_cache=init_cache,
|
539 |
+
output_attentions=output_attentions,
|
540 |
+
)
|
541 |
+
hidden_states = layer_outputs[0]
|
542 |
+
|
543 |
+
if output_attentions:
|
544 |
+
all_attentions += (layer_outputs[1],)
|
545 |
+
|
546 |
+
# this contains possible `None` values - `FlaxGPTJModule` will filter them out
|
547 |
+
outputs = (hidden_states, all_hidden_states, all_attentions)
|
548 |
+
|
549 |
+
return outputs
|
550 |
+
|
551 |
+
|
552 |
+
class FlaxGPTJModule(nn.Module):
|
553 |
+
config: GPTJConfig
|
554 |
+
dtype: jnp.dtype = jnp.float32
|
555 |
+
|
556 |
+
def setup(self):
|
557 |
+
self.embed_dim = self.config.hidden_size
|
558 |
+
|
559 |
+
self.wte = nn.Embed(
|
560 |
+
self.config.vocab_size,
|
561 |
+
self.config.hidden_size,
|
562 |
+
embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
563 |
+
)
|
564 |
+
self.dropout = nn.Dropout(rate=self.config.embd_pdrop)
|
565 |
+
self.h = FlaxGPTJBlockCollection(self.config, dtype=self.dtype)
|
566 |
+
self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype)
|
567 |
+
|
568 |
+
def __call__(
|
569 |
+
self,
|
570 |
+
input_ids,
|
571 |
+
attention_mask,
|
572 |
+
position_ids,
|
573 |
+
deterministic=True,
|
574 |
+
init_cache: bool = False,
|
575 |
+
output_attentions: bool = False,
|
576 |
+
output_hidden_states: bool = False,
|
577 |
+
return_dict: bool = True,
|
578 |
+
):
|
579 |
+
input_embeds = self.wte(input_ids.astype("i4"))
|
580 |
+
|
581 |
+
hidden_states = self.dropout(input_embeds, deterministic=deterministic)
|
582 |
+
|
583 |
+
outputs = self.h(
|
584 |
+
hidden_states,
|
585 |
+
attention_mask,
|
586 |
+
position_ids=position_ids,
|
587 |
+
deterministic=deterministic,
|
588 |
+
init_cache=init_cache,
|
589 |
+
output_attentions=output_attentions,
|
590 |
+
output_hidden_states=output_hidden_states,
|
591 |
+
return_dict=return_dict,
|
592 |
+
)
|
593 |
+
|
594 |
+
hidden_states = outputs[0]
|
595 |
+
hidden_states = self.ln_f(hidden_states)
|
596 |
+
|
597 |
+
if output_hidden_states:
|
598 |
+
all_hidden_states = outputs[1] + (hidden_states,)
|
599 |
+
outputs = (hidden_states, all_hidden_states) + outputs[2:]
|
600 |
+
else:
|
601 |
+
outputs = (hidden_states,) + outputs[1:]
|
602 |
+
|
603 |
+
if not return_dict:
|
604 |
+
return tuple(v for v in outputs if v is not None)
|
605 |
+
|
606 |
+
return FlaxBaseModelOutput(
|
607 |
+
last_hidden_state=hidden_states,
|
608 |
+
hidden_states=outputs[1],
|
609 |
+
attentions=outputs[-1],
|
610 |
+
)
|
611 |
+
|
612 |
+
|
613 |
+
@add_start_docstrings(
|
614 |
+
"The bare GPTJ Model transformer outputting raw hidden-states without any specific head on top.",
|
615 |
+
GPTJ_START_DOCSTRING,
|
616 |
+
)
|
617 |
+
class FlaxGPTJModel(FlaxGPTJPreTrainedModel):
|
618 |
+
module_class = FlaxGPTJModule
|
619 |
+
|
620 |
+
|
621 |
+
append_call_sample_docstring(
|
622 |
+
FlaxGPTJModel,
|
623 |
+
_CHECKPOINT_FOR_DOC,
|
624 |
+
FlaxCausalLMOutput,
|
625 |
+
_CONFIG_FOR_DOC,
|
626 |
+
)
|
627 |
+
|
628 |
+
|
629 |
+
class FlaxGPTJForCausalLMModule(nn.Module):
|
630 |
+
config: GPTJConfig
|
631 |
+
dtype: jnp.dtype = jnp.float32
|
632 |
+
|
633 |
+
def setup(self):
|
634 |
+
self.transformer = FlaxGPTJModule(self.config, dtype=self.dtype)
|
635 |
+
self.lm_head = nn.Dense(
|
636 |
+
self.config.vocab_size,
|
637 |
+
dtype=self.dtype,
|
638 |
+
kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range),
|
639 |
+
)
|
640 |
+
|
641 |
+
def __call__(
|
642 |
+
self,
|
643 |
+
input_ids,
|
644 |
+
attention_mask,
|
645 |
+
position_ids,
|
646 |
+
deterministic: bool = True,
|
647 |
+
init_cache: bool = False,
|
648 |
+
output_attentions: bool = False,
|
649 |
+
output_hidden_states: bool = False,
|
650 |
+
return_dict: bool = True,
|
651 |
+
):
|
652 |
+
outputs = self.transformer(
|
653 |
+
input_ids,
|
654 |
+
attention_mask,
|
655 |
+
position_ids,
|
656 |
+
deterministic=deterministic,
|
657 |
+
init_cache=init_cache,
|
658 |
+
output_attentions=output_attentions,
|
659 |
+
output_hidden_states=output_hidden_states,
|
660 |
+
return_dict=return_dict,
|
661 |
+
)
|
662 |
+
|
663 |
+
hidden_states = outputs[0]
|
664 |
+
|
665 |
+
if self.config.tie_word_embeddings:
|
666 |
+
shared_kernel = self.transformer.variables["params"]["wte"]["embedding"].T
|
667 |
+
lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states)
|
668 |
+
else:
|
669 |
+
lm_logits = self.lm_head(hidden_states)
|
670 |
+
|
671 |
+
if not return_dict:
|
672 |
+
return (lm_logits,) + outputs[1:]
|
673 |
+
|
674 |
+
return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions)
|
675 |
+
|
676 |
+
|
677 |
+
@add_start_docstrings(
|
678 |
+
"""
|
679 |
+
The GPTJ Model transformer with a language modeling head on top.
|
680 |
+
""",
|
681 |
+
GPTJ_START_DOCSTRING,
|
682 |
+
)
|
683 |
+
class FlaxGPTJForCausalLM(FlaxGPTJPreTrainedModel):
|
684 |
+
module_class = FlaxGPTJForCausalLMModule
|
685 |
+
|
686 |
+
def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None):
|
687 |
+
# initializing the cache
|
688 |
+
batch_size, seq_length = input_ids.shape
|
689 |
+
|
690 |
+
past_key_values = self.init_cache(batch_size, max_length)
|
691 |
+
# Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length.
|
692 |
+
# But since GPTJ uses a causal mask, those positions are masked anyways.
|
693 |
+
# Thus we can create a single static attention_mask here, which is more efficient for compilation
|
694 |
+
extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4")
|
695 |
+
if attention_mask is not None:
|
696 |
+
position_ids = attention_mask.cumsum(axis=-1) - 1
|
697 |
+
extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0))
|
698 |
+
else:
|
699 |
+
position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length))
|
700 |
+
|
701 |
+
return {
|
702 |
+
"past_key_values": past_key_values,
|
703 |
+
"attention_mask": extended_attention_mask,
|
704 |
+
"position_ids": position_ids,
|
705 |
+
}
|
706 |
+
|
707 |
+
def update_inputs_for_generation(self, model_outputs, model_kwargs):
|
708 |
+
model_kwargs["past_key_values"] = model_outputs.past_key_values
|
709 |
+
model_kwargs["position_ids"] = model_kwargs["position_ids"][:, -1:] + 1
|
710 |
+
return model_kwargs
|
711 |
+
|
712 |
+
|
713 |
+
append_call_sample_docstring(
|
714 |
+
FlaxGPTJForCausalLM,
|
715 |
+
_CHECKPOINT_FOR_DOC,
|
716 |
+
FlaxCausalLMOutput,
|
717 |
+
_CONFIG_FOR_DOC,
|
718 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_gptj.py
ADDED
@@ -0,0 +1,1427 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2021 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPT-J model."""
|
16 |
+
|
17 |
+
import warnings
|
18 |
+
from typing import Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.fx
|
22 |
+
import torch.nn.functional as F
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutputWithPast,
|
30 |
+
CausalLMOutputWithPast,
|
31 |
+
QuestionAnsweringModelOutput,
|
32 |
+
SequenceClassifierOutputWithPast,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_code_sample_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
is_flash_attn_2_available,
|
40 |
+
is_flash_attn_greater_or_equal_2_10,
|
41 |
+
is_torch_fx_proxy,
|
42 |
+
logging,
|
43 |
+
)
|
44 |
+
from ...utils.model_parallel_utils import assert_device_map, get_device_map
|
45 |
+
from .configuration_gptj import GPTJConfig
|
46 |
+
|
47 |
+
|
48 |
+
if is_flash_attn_2_available():
|
49 |
+
from flash_attn import flash_attn_func, flash_attn_varlen_func
|
50 |
+
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/tiny-random-gptj"
|
56 |
+
_REAL_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
57 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
58 |
+
|
59 |
+
|
60 |
+
from ..deprecated._archive_maps import GPTJ_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
61 |
+
|
62 |
+
|
63 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
64 |
+
def _get_unpad_data(attention_mask):
|
65 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
66 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
67 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
68 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
69 |
+
return (
|
70 |
+
indices,
|
71 |
+
cu_seqlens,
|
72 |
+
max_seqlen_in_batch,
|
73 |
+
)
|
74 |
+
|
75 |
+
|
76 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> torch.Tensor:
|
77 |
+
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64) / dim))
|
78 |
+
sinusoid_inp = torch.einsum("i , j -> i j", torch.arange(num_pos, dtype=torch.int64).float(), inv_freq).float()
|
79 |
+
return torch.cat((torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)), dim=1)
|
80 |
+
|
81 |
+
|
82 |
+
@torch.fx.wrap
|
83 |
+
def get_embed_positions(embed_positions, position_ids):
|
84 |
+
return embed_positions.to(position_ids.device).repeat(position_ids.shape[0], 1, 1)
|
85 |
+
|
86 |
+
|
87 |
+
def rotate_every_two(x: torch.Tensor) -> torch.Tensor:
|
88 |
+
x1 = x[:, :, :, ::2]
|
89 |
+
x2 = x[:, :, :, 1::2]
|
90 |
+
x = torch.stack((-x2, x1), dim=-1)
|
91 |
+
return x.flatten(-2) # in einsum notation: rearrange(x, '... d j -> ... (d j)')
|
92 |
+
|
93 |
+
|
94 |
+
def apply_rotary_pos_emb(tensor: torch.Tensor, sin: torch.Tensor, cos: torch.Tensor) -> torch.Tensor:
|
95 |
+
sin = torch.repeat_interleave(sin[:, :, None, :], 2, 3)
|
96 |
+
cos = torch.repeat_interleave(cos[:, :, None, :], 2, 3)
|
97 |
+
return (tensor * cos) + (rotate_every_two(tensor) * sin)
|
98 |
+
|
99 |
+
|
100 |
+
class GPTJAttention(nn.Module):
|
101 |
+
def __init__(self, config):
|
102 |
+
super().__init__()
|
103 |
+
self.config = config
|
104 |
+
max_positions = config.max_position_embeddings
|
105 |
+
self.register_buffer(
|
106 |
+
"bias",
|
107 |
+
torch.tril(torch.ones((max_positions, max_positions), dtype=torch.bool)).view(
|
108 |
+
1, 1, max_positions, max_positions
|
109 |
+
),
|
110 |
+
persistent=False,
|
111 |
+
)
|
112 |
+
self.register_buffer("masked_bias", torch.tensor(-1e9), persistent=False)
|
113 |
+
|
114 |
+
self.attn_dropout = nn.Dropout(config.attn_pdrop)
|
115 |
+
self.resid_dropout = nn.Dropout(config.resid_pdrop)
|
116 |
+
|
117 |
+
self.is_causal = True
|
118 |
+
|
119 |
+
self.embed_dim = config.hidden_size
|
120 |
+
self.num_attention_heads = config.num_attention_heads
|
121 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
122 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
123 |
+
raise ValueError(
|
124 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
125 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
126 |
+
)
|
127 |
+
self.scale_attn = torch.sqrt(torch.tensor(self.head_dim, dtype=torch.float32)).to(torch.get_default_dtype())
|
128 |
+
|
129 |
+
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
130 |
+
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
131 |
+
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
132 |
+
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False)
|
133 |
+
self.rotary_dim = config.rotary_dim
|
134 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
135 |
+
self.embed_positions = create_sinusoidal_positions(max_positions, pos_embd_dim)
|
136 |
+
|
137 |
+
def _split_heads(self, tensor, num_attention_heads, attn_head_size, rotary):
|
138 |
+
"""
|
139 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
140 |
+
"""
|
141 |
+
new_shape = tensor.size()[:-1] + (num_attention_heads, attn_head_size)
|
142 |
+
tensor = tensor.view(new_shape)
|
143 |
+
if rotary:
|
144 |
+
return tensor
|
145 |
+
if len(tensor.shape) == 5:
|
146 |
+
return tensor.permute(0, 1, 3, 2, 4) # (batch, blocks, head, block_length, head_features)
|
147 |
+
elif len(tensor.shape) == 4:
|
148 |
+
return tensor.permute(0, 2, 1, 3) # (batch, head, seq_length, head_features)
|
149 |
+
else:
|
150 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
151 |
+
|
152 |
+
def _merge_heads(self, tensor, num_attention_heads, attn_head_size):
|
153 |
+
"""
|
154 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
155 |
+
"""
|
156 |
+
if len(tensor.shape) == 5:
|
157 |
+
tensor = tensor.permute(0, 1, 3, 2, 4).contiguous()
|
158 |
+
elif len(tensor.shape) == 4:
|
159 |
+
tensor = tensor.permute(0, 2, 1, 3).contiguous()
|
160 |
+
else:
|
161 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(tensor.shape)}")
|
162 |
+
new_shape = tensor.size()[:-2] + (num_attention_heads * attn_head_size,)
|
163 |
+
return tensor.view(new_shape)
|
164 |
+
|
165 |
+
def _attn(
|
166 |
+
self,
|
167 |
+
query,
|
168 |
+
key,
|
169 |
+
value,
|
170 |
+
attention_mask=None,
|
171 |
+
head_mask=None,
|
172 |
+
):
|
173 |
+
# compute causal mask from causal mask buffer
|
174 |
+
query_length, key_length = query.size(-2), key.size(-2)
|
175 |
+
causal_mask = self.bias[:, :, key_length - query_length : key_length, :key_length]
|
176 |
+
|
177 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
178 |
+
query = query.to(torch.float32)
|
179 |
+
key = key.to(torch.float32)
|
180 |
+
|
181 |
+
attn_weights = torch.matmul(query, key.transpose(-1, -2))
|
182 |
+
|
183 |
+
mask_value = torch.finfo(attn_weights.dtype).min
|
184 |
+
# Need to be a tensor, otherwise we get error: `RuntimeError: expected scalar type float but found double`.
|
185 |
+
# Need to be on the same device, otherwise `RuntimeError: ..., x and y to be on the same device`
|
186 |
+
mask_value = torch.tensor(mask_value, dtype=attn_weights.dtype).to(attn_weights.device)
|
187 |
+
attn_weights = torch.where(causal_mask, attn_weights, mask_value)
|
188 |
+
|
189 |
+
attn_weights = attn_weights / self.scale_attn
|
190 |
+
|
191 |
+
if attention_mask is not None:
|
192 |
+
# Apply the attention mask
|
193 |
+
attn_weights = attn_weights + attention_mask
|
194 |
+
|
195 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
196 |
+
attn_weights = attn_weights.to(value.dtype)
|
197 |
+
attn_weights = self.attn_dropout(attn_weights)
|
198 |
+
|
199 |
+
# Mask heads if we want to
|
200 |
+
if head_mask is not None:
|
201 |
+
attn_weights = attn_weights * head_mask
|
202 |
+
|
203 |
+
attn_output = torch.matmul(attn_weights, value)
|
204 |
+
|
205 |
+
return attn_output, attn_weights
|
206 |
+
|
207 |
+
def _get_embed_positions(self, position_ids):
|
208 |
+
embed_positions = self.embed_positions
|
209 |
+
if embed_positions.device != position_ids.device:
|
210 |
+
embed_positions = embed_positions.to(position_ids.device)
|
211 |
+
self.embed_positions = embed_positions
|
212 |
+
return embed_positions.repeat(position_ids.shape[0], 1, 1)
|
213 |
+
|
214 |
+
def forward(
|
215 |
+
self,
|
216 |
+
hidden_states: torch.FloatTensor,
|
217 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
218 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
219 |
+
position_ids: Optional[torch.LongTensor] = None,
|
220 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
221 |
+
use_cache: Optional[bool] = False,
|
222 |
+
output_attentions: Optional[bool] = False,
|
223 |
+
) -> Union[
|
224 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
225 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
226 |
+
]:
|
227 |
+
query = self.q_proj(hidden_states)
|
228 |
+
key = self.k_proj(hidden_states)
|
229 |
+
value = self.v_proj(hidden_states)
|
230 |
+
|
231 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
232 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
233 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
234 |
+
|
235 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
236 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
237 |
+
# every time in the torch.fx case
|
238 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
239 |
+
else:
|
240 |
+
embed_positions = self._get_embed_positions(position_ids)
|
241 |
+
|
242 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
243 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
244 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
245 |
+
|
246 |
+
if self.rotary_dim is not None:
|
247 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
248 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
249 |
+
|
250 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
251 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
252 |
+
|
253 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
254 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
255 |
+
|
256 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
257 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
258 |
+
else:
|
259 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
260 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
261 |
+
|
262 |
+
key = key.permute(0, 2, 1, 3)
|
263 |
+
query = query.permute(0, 2, 1, 3)
|
264 |
+
|
265 |
+
if layer_past is not None:
|
266 |
+
past_key = layer_past[0]
|
267 |
+
past_value = layer_past[1]
|
268 |
+
key = torch.cat((past_key, key), dim=-2)
|
269 |
+
value = torch.cat((past_value, value), dim=-2)
|
270 |
+
|
271 |
+
if use_cache is True:
|
272 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
273 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
274 |
+
present = (key.to(hidden_states.dtype), value)
|
275 |
+
else:
|
276 |
+
present = None
|
277 |
+
|
278 |
+
# compute self-attention: V x Softmax(QK^T)
|
279 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
280 |
+
|
281 |
+
attn_output = self._merge_heads(attn_output, self.num_attention_heads, self.head_dim)
|
282 |
+
attn_output = self.out_proj(attn_output)
|
283 |
+
attn_output = self.resid_dropout(attn_output)
|
284 |
+
|
285 |
+
outputs = (attn_output, present)
|
286 |
+
if output_attentions:
|
287 |
+
outputs += (attn_weights,)
|
288 |
+
|
289 |
+
return outputs # a, present, (attentions)
|
290 |
+
|
291 |
+
|
292 |
+
class GPTJFlashAttention2(GPTJAttention):
|
293 |
+
"""
|
294 |
+
GPTJ flash attention module. This module inherits from `GPTJAttention` as the weights of the module stays
|
295 |
+
untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
|
296 |
+
flash attention and deal with padding tokens in case the input contains any of them.
|
297 |
+
"""
|
298 |
+
|
299 |
+
def __init__(self, *args, **kwargs):
|
300 |
+
super().__init__(*args, **kwargs)
|
301 |
+
|
302 |
+
# TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
|
303 |
+
# flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
|
304 |
+
# Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
|
305 |
+
self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
|
306 |
+
|
307 |
+
def forward(
|
308 |
+
self,
|
309 |
+
hidden_states: torch.FloatTensor,
|
310 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
311 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
312 |
+
position_ids: Optional[torch.LongTensor] = None,
|
313 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
314 |
+
use_cache: Optional[bool] = False,
|
315 |
+
output_attentions: Optional[bool] = False,
|
316 |
+
) -> Union[
|
317 |
+
Tuple[torch.Tensor, Tuple[torch.Tensor]],
|
318 |
+
Optional[Tuple[torch.Tensor, Tuple[torch.Tensor], Tuple[torch.Tensor, ...]]],
|
319 |
+
]:
|
320 |
+
query = self.q_proj(hidden_states)
|
321 |
+
key = self.k_proj(hidden_states)
|
322 |
+
value = self.v_proj(hidden_states)
|
323 |
+
|
324 |
+
query = self._split_heads(query, self.num_attention_heads, self.head_dim, True)
|
325 |
+
key = self._split_heads(key, self.num_attention_heads, self.head_dim, True)
|
326 |
+
value = self._split_heads(value, self.num_attention_heads, self.head_dim, False)
|
327 |
+
|
328 |
+
if is_torch_fx_proxy(position_ids) or torch.jit.is_tracing():
|
329 |
+
# The logic to conditionally copy to GPU could not be traced, so we do this
|
330 |
+
# every time in the torch.fx case
|
331 |
+
embed_positions = get_embed_positions(self.embed_positions, position_ids)
|
332 |
+
else:
|
333 |
+
embed_positions = self._get_embed_positions(position_ids)
|
334 |
+
|
335 |
+
repeated_position_ids = position_ids.unsqueeze(-1).repeat(1, 1, embed_positions.shape[-1])
|
336 |
+
sincos = torch.gather(embed_positions, 1, repeated_position_ids)
|
337 |
+
sin, cos = torch.split(sincos, sincos.shape[-1] // 2, dim=-1)
|
338 |
+
|
339 |
+
if self.rotary_dim is not None:
|
340 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
341 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
342 |
+
|
343 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
344 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
345 |
+
|
346 |
+
k_rot = apply_rotary_pos_emb(k_rot, sin, cos)
|
347 |
+
q_rot = apply_rotary_pos_emb(q_rot, sin, cos)
|
348 |
+
|
349 |
+
key = torch.cat([k_rot, k_pass], dim=-1)
|
350 |
+
query = torch.cat([q_rot, q_pass], dim=-1)
|
351 |
+
else:
|
352 |
+
key = apply_rotary_pos_emb(key, sin, cos)
|
353 |
+
query = apply_rotary_pos_emb(query, sin, cos)
|
354 |
+
|
355 |
+
# tanspose to have the desired shape
|
356 |
+
# before transpose: batch_size x seq_length x num_attention_heads x head_dim
|
357 |
+
# after transpose: batch_size x num_attention_heads x seq_length x head_dim
|
358 |
+
key = key.permute(0, 2, 1, 3)
|
359 |
+
query = query.permute(0, 2, 1, 3)
|
360 |
+
# value: batch_size x num_attention_heads x seq_length x head_dim
|
361 |
+
|
362 |
+
if layer_past is not None:
|
363 |
+
past_key = layer_past[0]
|
364 |
+
past_value = layer_past[1]
|
365 |
+
key = torch.cat((past_key, key), dim=-2)
|
366 |
+
value = torch.cat((past_value, value), dim=-2)
|
367 |
+
|
368 |
+
if use_cache is True:
|
369 |
+
# Note that this cast is quite ugly, but is not implemented before ROPE as the original codebase keeps the key in float32 all along the computation.
|
370 |
+
# Reference: https://github.com/kingoflolz/mesh-transformer-jax/blob/f8315e3003033b23f21d78361b288953064e0e76/mesh_transformer/layers.py#L128
|
371 |
+
present = (key.to(hidden_states.dtype), value)
|
372 |
+
else:
|
373 |
+
present = None
|
374 |
+
|
375 |
+
# The Flash attention requires the input to have the shape
|
376 |
+
# batch_size x seq_length x head_dim x hidden_dim
|
377 |
+
# therefore we need to keep the original shape for query and key, and reshape value
|
378 |
+
# to have the correct shape.
|
379 |
+
key = key.permute(0, 2, 1, 3).contiguous()
|
380 |
+
query = query.permute(0, 2, 1, 3).contiguous()
|
381 |
+
value = value.permute(0, 2, 1, 3).contiguous()
|
382 |
+
|
383 |
+
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
384 |
+
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
385 |
+
# cast them back in the correct dtype just to be sure everything works as expected.
|
386 |
+
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
387 |
+
# in fp32. (LlamaRMSNorm handles it correctly)
|
388 |
+
|
389 |
+
input_dtype = query.dtype
|
390 |
+
if input_dtype == torch.float32:
|
391 |
+
if torch.is_autocast_enabled():
|
392 |
+
target_dtype = torch.get_autocast_gpu_dtype()
|
393 |
+
# Handle the case where the model is quantized
|
394 |
+
elif hasattr(self.config, "_pre_quantization_dtype"):
|
395 |
+
target_dtype = self.config._pre_quantization_dtype
|
396 |
+
else:
|
397 |
+
target_dtype = self.q_proj.weight.dtype
|
398 |
+
|
399 |
+
logger.warning_once(
|
400 |
+
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
401 |
+
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
402 |
+
f" {target_dtype}."
|
403 |
+
)
|
404 |
+
|
405 |
+
query = query.to(target_dtype)
|
406 |
+
key = key.to(target_dtype)
|
407 |
+
value = value.to(target_dtype)
|
408 |
+
|
409 |
+
attention_dropout = self.config.attn_pdrop if self.training else 0.0 # attn_pdrop in gptj
|
410 |
+
|
411 |
+
query_length = query.shape[1]
|
412 |
+
|
413 |
+
# Compute attention
|
414 |
+
attn_weights = self._flash_attention_forward(
|
415 |
+
query,
|
416 |
+
key,
|
417 |
+
value,
|
418 |
+
attention_mask,
|
419 |
+
query_length,
|
420 |
+
dropout=attention_dropout,
|
421 |
+
)
|
422 |
+
|
423 |
+
# Reshape outputs
|
424 |
+
attn_output = attn_weights.reshape(
|
425 |
+
attn_weights.shape[0], attn_weights.shape[1], attn_weights.shape[2] * attn_weights.shape[3]
|
426 |
+
)
|
427 |
+
attn_output = self.out_proj(attn_output)
|
428 |
+
attn_output = self.resid_dropout(attn_output)
|
429 |
+
|
430 |
+
outputs = (attn_output, present)
|
431 |
+
if output_attentions:
|
432 |
+
outputs += (attn_weights,)
|
433 |
+
|
434 |
+
return outputs
|
435 |
+
|
436 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward
|
437 |
+
def _flash_attention_forward(
|
438 |
+
self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None
|
439 |
+
):
|
440 |
+
"""
|
441 |
+
Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
|
442 |
+
first unpad the input, then computes the attention scores and pad the final attention scores.
|
443 |
+
|
444 |
+
Args:
|
445 |
+
query_states (`torch.Tensor`):
|
446 |
+
Input query states to be passed to Flash Attention API
|
447 |
+
key_states (`torch.Tensor`):
|
448 |
+
Input key states to be passed to Flash Attention API
|
449 |
+
value_states (`torch.Tensor`):
|
450 |
+
Input value states to be passed to Flash Attention API
|
451 |
+
attention_mask (`torch.Tensor`):
|
452 |
+
The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
|
453 |
+
position of padding tokens and 1 for the position of non-padding tokens.
|
454 |
+
dropout (`float`):
|
455 |
+
Attention dropout
|
456 |
+
softmax_scale (`float`, *optional*):
|
457 |
+
The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
|
458 |
+
"""
|
459 |
+
if not self._flash_attn_uses_top_left_mask:
|
460 |
+
causal = self.is_causal
|
461 |
+
else:
|
462 |
+
# TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
|
463 |
+
causal = self.is_causal and query_length != 1
|
464 |
+
|
465 |
+
# Contains at least one padding token in the sequence
|
466 |
+
if attention_mask is not None:
|
467 |
+
batch_size = query_states.shape[0]
|
468 |
+
query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
|
469 |
+
query_states, key_states, value_states, attention_mask, query_length
|
470 |
+
)
|
471 |
+
|
472 |
+
cu_seqlens_q, cu_seqlens_k = cu_seq_lens
|
473 |
+
max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
|
474 |
+
|
475 |
+
attn_output_unpad = flash_attn_varlen_func(
|
476 |
+
query_states,
|
477 |
+
key_states,
|
478 |
+
value_states,
|
479 |
+
cu_seqlens_q=cu_seqlens_q,
|
480 |
+
cu_seqlens_k=cu_seqlens_k,
|
481 |
+
max_seqlen_q=max_seqlen_in_batch_q,
|
482 |
+
max_seqlen_k=max_seqlen_in_batch_k,
|
483 |
+
dropout_p=dropout,
|
484 |
+
softmax_scale=softmax_scale,
|
485 |
+
causal=causal,
|
486 |
+
)
|
487 |
+
|
488 |
+
attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
|
489 |
+
else:
|
490 |
+
attn_output = flash_attn_func(
|
491 |
+
query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal
|
492 |
+
)
|
493 |
+
|
494 |
+
return attn_output
|
495 |
+
|
496 |
+
# Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input with num_heads->num_attention_heads
|
497 |
+
def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
|
498 |
+
indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
|
499 |
+
batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
|
500 |
+
|
501 |
+
key_layer = index_first_axis(
|
502 |
+
key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
503 |
+
)
|
504 |
+
value_layer = index_first_axis(
|
505 |
+
value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k
|
506 |
+
)
|
507 |
+
if query_length == kv_seq_len:
|
508 |
+
query_layer = index_first_axis(
|
509 |
+
query_layer.reshape(batch_size * kv_seq_len, self.num_attention_heads, head_dim), indices_k
|
510 |
+
)
|
511 |
+
cu_seqlens_q = cu_seqlens_k
|
512 |
+
max_seqlen_in_batch_q = max_seqlen_in_batch_k
|
513 |
+
indices_q = indices_k
|
514 |
+
elif query_length == 1:
|
515 |
+
max_seqlen_in_batch_q = 1
|
516 |
+
cu_seqlens_q = torch.arange(
|
517 |
+
batch_size + 1, dtype=torch.int32, device=query_layer.device
|
518 |
+
) # There is a memcpy here, that is very bad.
|
519 |
+
indices_q = cu_seqlens_q[:-1]
|
520 |
+
query_layer = query_layer.squeeze(1)
|
521 |
+
else:
|
522 |
+
# The -q_len: slice assumes left padding.
|
523 |
+
attention_mask = attention_mask[:, -query_length:]
|
524 |
+
query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
|
525 |
+
|
526 |
+
return (
|
527 |
+
query_layer,
|
528 |
+
key_layer,
|
529 |
+
value_layer,
|
530 |
+
indices_q,
|
531 |
+
(cu_seqlens_q, cu_seqlens_k),
|
532 |
+
(max_seqlen_in_batch_q, max_seqlen_in_batch_k),
|
533 |
+
)
|
534 |
+
|
535 |
+
|
536 |
+
GPTJ_ATTENTION_CLASSES = {
|
537 |
+
"eager": GPTJAttention,
|
538 |
+
"flash_attention_2": GPTJFlashAttention2,
|
539 |
+
}
|
540 |
+
|
541 |
+
|
542 |
+
class GPTJMLP(nn.Module):
|
543 |
+
def __init__(self, intermediate_size, config): # in MLP: intermediate_size= 4 * embed_dim
|
544 |
+
super().__init__()
|
545 |
+
embed_dim = config.n_embd
|
546 |
+
|
547 |
+
self.fc_in = nn.Linear(embed_dim, intermediate_size)
|
548 |
+
self.fc_out = nn.Linear(intermediate_size, embed_dim)
|
549 |
+
|
550 |
+
self.act = ACT2FN[config.activation_function]
|
551 |
+
self.dropout = nn.Dropout(config.resid_pdrop)
|
552 |
+
|
553 |
+
def forward(self, hidden_states: Optional[torch.FloatTensor]) -> torch.FloatTensor:
|
554 |
+
hidden_states = self.fc_in(hidden_states)
|
555 |
+
hidden_states = self.act(hidden_states)
|
556 |
+
hidden_states = self.fc_out(hidden_states)
|
557 |
+
hidden_states = self.dropout(hidden_states)
|
558 |
+
return hidden_states
|
559 |
+
|
560 |
+
|
561 |
+
class GPTJBlock(nn.Module):
|
562 |
+
def __init__(self, config):
|
563 |
+
super().__init__()
|
564 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
565 |
+
self.ln_1 = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
|
566 |
+
self.attn = GPTJ_ATTENTION_CLASSES[config._attn_implementation](config)
|
567 |
+
self.mlp = GPTJMLP(inner_dim, config)
|
568 |
+
|
569 |
+
def forward(
|
570 |
+
self,
|
571 |
+
hidden_states: Optional[torch.FloatTensor],
|
572 |
+
layer_past: Optional[Tuple[torch.Tensor]] = None,
|
573 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
574 |
+
position_ids: Optional[torch.LongTensor] = None,
|
575 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
576 |
+
use_cache: Optional[bool] = False,
|
577 |
+
output_attentions: Optional[bool] = False,
|
578 |
+
) -> Union[Tuple[torch.Tensor], Optional[Tuple[torch.Tensor, Tuple[torch.FloatTensor, ...]]]]:
|
579 |
+
residual = hidden_states
|
580 |
+
hidden_states = self.ln_1(hidden_states)
|
581 |
+
attn_outputs = self.attn(
|
582 |
+
hidden_states=hidden_states,
|
583 |
+
layer_past=layer_past,
|
584 |
+
attention_mask=attention_mask,
|
585 |
+
position_ids=position_ids,
|
586 |
+
head_mask=head_mask,
|
587 |
+
use_cache=use_cache,
|
588 |
+
output_attentions=output_attentions,
|
589 |
+
)
|
590 |
+
attn_output = attn_outputs[0] # output_attn: a, present, (attentions)
|
591 |
+
outputs = attn_outputs[1:]
|
592 |
+
|
593 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
594 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
595 |
+
|
596 |
+
if use_cache:
|
597 |
+
outputs = (hidden_states,) + outputs
|
598 |
+
else:
|
599 |
+
outputs = (hidden_states,) + outputs[1:]
|
600 |
+
|
601 |
+
return outputs # hidden_states, present, (attentions)
|
602 |
+
|
603 |
+
|
604 |
+
class GPTJPreTrainedModel(PreTrainedModel):
|
605 |
+
"""
|
606 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
607 |
+
models.
|
608 |
+
"""
|
609 |
+
|
610 |
+
config_class = GPTJConfig
|
611 |
+
base_model_prefix = "transformer"
|
612 |
+
is_parallelizable = True
|
613 |
+
supports_gradient_checkpointing = True
|
614 |
+
_no_split_modules = ["GPTJBlock"]
|
615 |
+
_skip_keys_device_placement = "past_key_values"
|
616 |
+
_supports_flash_attn_2 = True
|
617 |
+
|
618 |
+
def __init__(self, *inputs, **kwargs):
|
619 |
+
super().__init__(*inputs, **kwargs)
|
620 |
+
|
621 |
+
def _init_weights(self, module):
|
622 |
+
"""Initialize the weights."""
|
623 |
+
if isinstance(module, (nn.Linear,)):
|
624 |
+
# Slightly different from Mesh Transformer JAX which uses truncated_normal for initialization
|
625 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
626 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
627 |
+
if module.bias is not None:
|
628 |
+
module.bias.data.zero_()
|
629 |
+
elif isinstance(module, nn.Embedding):
|
630 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
631 |
+
if module.padding_idx is not None:
|
632 |
+
module.weight.data[module.padding_idx].zero_()
|
633 |
+
elif isinstance(module, nn.LayerNorm):
|
634 |
+
module.bias.data.zero_()
|
635 |
+
module.weight.data.fill_(1.0)
|
636 |
+
|
637 |
+
|
638 |
+
GPTJ_START_DOCSTRING = r"""
|
639 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
640 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
641 |
+
behavior.
|
642 |
+
|
643 |
+
Parameters:
|
644 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
645 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
646 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
647 |
+
"""
|
648 |
+
|
649 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
650 |
+
Args:
|
651 |
+
input_ids (`torch.LongTensor` of shape `({0})`):
|
652 |
+
Indices of input sequence tokens in the vocabulary.
|
653 |
+
|
654 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
655 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
656 |
+
|
657 |
+
[What are input IDs?](../glossary#input-ids)
|
658 |
+
attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*):
|
659 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
660 |
+
|
661 |
+
- 1 for tokens that are **not masked**,
|
662 |
+
- 0 for tokens that are **masked**.
|
663 |
+
|
664 |
+
[What are attention masks?](../glossary#attention-mask)
|
665 |
+
token_type_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
666 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
667 |
+
1]`:
|
668 |
+
|
669 |
+
- 0 corresponds to a *sentence A* token,
|
670 |
+
- 1 corresponds to a *sentence B* token.
|
671 |
+
|
672 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
673 |
+
position_ids (`torch.LongTensor` of shape `({0})`, *optional*):
|
674 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
675 |
+
config.n_positions - 1]`.
|
676 |
+
|
677 |
+
[What are position IDs?](../glossary#position-ids)
|
678 |
+
head_mask (`torch.FloatTensor` of shape `(num_attention_heads,)` or `(n_layer, num_attention_heads)`, *optional*):
|
679 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
680 |
+
|
681 |
+
- 1 indicates the head is **not masked**,
|
682 |
+
- 0 indicates the head is **masked**.
|
683 |
+
|
684 |
+
inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_dim)`, *optional*):
|
685 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
686 |
+
is useful if you want more control over how to convert *input_ids* indices into associated vectors than the
|
687 |
+
model's internal embedding lookup matrix.
|
688 |
+
output_attentions (`bool`, *optional*):
|
689 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
690 |
+
tensors for more detail.
|
691 |
+
output_hidden_states (`bool`, *optional*):
|
692 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
693 |
+
more detail.
|
694 |
+
return_dict (`bool`, *optional*):
|
695 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
696 |
+
"""
|
697 |
+
|
698 |
+
PARALLELIZE_DOCSTRING = r"""
|
699 |
+
This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute
|
700 |
+
attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks
|
701 |
+
across all devices.
|
702 |
+
|
703 |
+
Args:
|
704 |
+
device_map (`Dict[int, list]`, optional, defaults to None):
|
705 |
+
A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always
|
706 |
+
automatically mapped to the first device (for esoteric reasons). That means that the first device should
|
707 |
+
have fewer attention modules mapped to it than other devices. For reference, the GPT-J models have the
|
708 |
+
following number of attention modules:
|
709 |
+
|
710 |
+
- gpt-j-6B: 28
|
711 |
+
|
712 |
+
Example:
|
713 |
+
|
714 |
+
```python
|
715 |
+
# Here is an example of a device map on a machine with 4 GPUs using gpt-j-6B, which has a total of 28 attention modules:
|
716 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
717 |
+
device_map = {
|
718 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
719 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
720 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
721 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
722 |
+
}
|
723 |
+
model.parallelize(device_map)
|
724 |
+
```
|
725 |
+
"""
|
726 |
+
|
727 |
+
DEPARALLELIZE_DOCSTRING = r"""
|
728 |
+
Moves the model to CPU from a model parallel state.
|
729 |
+
|
730 |
+
Example:
|
731 |
+
|
732 |
+
```python
|
733 |
+
# On a 4 GPU machine with gpt-j-6B:
|
734 |
+
model = GPTJForCausalLM.from_pretrained("EleutherAI/gpt-j-6B")
|
735 |
+
device_map = {
|
736 |
+
0: [0, 1, 2, 3, 4, 5, 6],
|
737 |
+
1: [7, 8, 9, 10, 11, 12, 13],
|
738 |
+
2: [14, 15, 16, 17, 18, 19, 20],
|
739 |
+
3: [21, 22, 23, 24, 25, 26, 27],
|
740 |
+
}
|
741 |
+
model.parallelize(device_map) # Splits the model across several devices
|
742 |
+
model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache()
|
743 |
+
```
|
744 |
+
"""
|
745 |
+
|
746 |
+
|
747 |
+
@add_start_docstrings(
|
748 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
749 |
+
GPTJ_START_DOCSTRING,
|
750 |
+
)
|
751 |
+
class GPTJModel(GPTJPreTrainedModel):
|
752 |
+
def __init__(self, config):
|
753 |
+
super().__init__(config)
|
754 |
+
|
755 |
+
self.embed_dim = config.n_embd
|
756 |
+
self.vocab_size = config.vocab_size
|
757 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
758 |
+
self.drop = nn.Dropout(config.embd_pdrop)
|
759 |
+
self.h = nn.ModuleList([GPTJBlock(config) for _ in range(config.n_layer)])
|
760 |
+
self.ln_f = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_epsilon)
|
761 |
+
|
762 |
+
# Model parallel
|
763 |
+
self.model_parallel = False
|
764 |
+
self.device_map = None
|
765 |
+
self.gradient_checkpointing = False
|
766 |
+
|
767 |
+
# Initialize weights and apply final processing
|
768 |
+
self.post_init()
|
769 |
+
|
770 |
+
self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
|
771 |
+
|
772 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
773 |
+
def parallelize(self, device_map=None):
|
774 |
+
warnings.warn(
|
775 |
+
"`GPTJModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your"
|
776 |
+
" model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
777 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'h.0': 0, 'h.1': 1,"
|
778 |
+
" ...}",
|
779 |
+
FutureWarning,
|
780 |
+
)
|
781 |
+
# Check validity of device_map
|
782 |
+
self.device_map = (
|
783 |
+
get_device_map(len(self.h), range(torch.cuda.device_count())) if device_map is None else device_map
|
784 |
+
)
|
785 |
+
assert_device_map(self.device_map, len(self.h))
|
786 |
+
self.model_parallel = True
|
787 |
+
self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys()))
|
788 |
+
self.last_device = "cuda:" + str(max(self.device_map.keys()))
|
789 |
+
self.wte = self.wte.to(self.first_device)
|
790 |
+
# Load onto devices
|
791 |
+
for k, v in self.device_map.items():
|
792 |
+
for block in v:
|
793 |
+
cuda_device = "cuda:" + str(k)
|
794 |
+
self.h[block] = self.h[block].to(cuda_device)
|
795 |
+
# ln_f to last
|
796 |
+
self.ln_f = self.ln_f.to(self.last_device)
|
797 |
+
|
798 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
799 |
+
def deparallelize(self):
|
800 |
+
warnings.warn(
|
801 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
802 |
+
FutureWarning,
|
803 |
+
)
|
804 |
+
self.model_parallel = False
|
805 |
+
self.device_map = None
|
806 |
+
self.first_device = "cpu"
|
807 |
+
self.last_device = "cpu"
|
808 |
+
self.wte = self.wte.to("cpu")
|
809 |
+
for index in range(len(self.h)):
|
810 |
+
self.h[index] = self.h[index].to("cpu")
|
811 |
+
self.ln_f = self.ln_f.to("cpu")
|
812 |
+
torch.cuda.empty_cache()
|
813 |
+
|
814 |
+
def get_input_embeddings(self):
|
815 |
+
return self.wte
|
816 |
+
|
817 |
+
def set_input_embeddings(self, new_embeddings):
|
818 |
+
self.wte = new_embeddings
|
819 |
+
|
820 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
821 |
+
@add_code_sample_docstrings(
|
822 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
823 |
+
output_type=BaseModelOutputWithPast,
|
824 |
+
config_class=_CONFIG_FOR_DOC,
|
825 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
826 |
+
)
|
827 |
+
def forward(
|
828 |
+
self,
|
829 |
+
input_ids: Optional[torch.LongTensor] = None,
|
830 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
831 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
832 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
833 |
+
position_ids: Optional[torch.LongTensor] = None,
|
834 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
835 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
836 |
+
use_cache: Optional[bool] = None,
|
837 |
+
output_attentions: Optional[bool] = None,
|
838 |
+
output_hidden_states: Optional[bool] = None,
|
839 |
+
return_dict: Optional[bool] = None,
|
840 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
841 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
842 |
+
output_hidden_states = (
|
843 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
844 |
+
)
|
845 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
846 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
847 |
+
|
848 |
+
if input_ids is not None and inputs_embeds is not None:
|
849 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
850 |
+
elif input_ids is not None:
|
851 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
852 |
+
input_shape = input_ids.size()
|
853 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
854 |
+
batch_size = input_ids.shape[0]
|
855 |
+
elif inputs_embeds is not None:
|
856 |
+
input_shape = inputs_embeds.size()[:-1]
|
857 |
+
batch_size = inputs_embeds.shape[0]
|
858 |
+
else:
|
859 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
860 |
+
|
861 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
862 |
+
|
863 |
+
if token_type_ids is not None:
|
864 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
865 |
+
|
866 |
+
if past_key_values is None:
|
867 |
+
past_length = 0
|
868 |
+
past_key_values = tuple([None] * len(self.h))
|
869 |
+
else:
|
870 |
+
past_length = past_key_values[0][0].size(-2)
|
871 |
+
|
872 |
+
if position_ids is None:
|
873 |
+
position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device)
|
874 |
+
position_ids = position_ids.unsqueeze(0)
|
875 |
+
|
876 |
+
if not self._use_flash_attention_2:
|
877 |
+
# Attention mask.
|
878 |
+
if attention_mask is not None:
|
879 |
+
if batch_size <= 0:
|
880 |
+
raise ValueError("batch_size has to be defined and > 0")
|
881 |
+
attention_mask = attention_mask.view(batch_size, -1)
|
882 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
883 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
884 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
885 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
886 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
887 |
+
attention_mask = attention_mask[:, None, None, :]
|
888 |
+
|
889 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
890 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
891 |
+
# positions we want to attend and the dtype's smallest value for masked positions.
|
892 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
893 |
+
# effectively the same as removing these entirely.
|
894 |
+
attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility
|
895 |
+
attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min
|
896 |
+
|
897 |
+
# Prepare head mask if needed
|
898 |
+
# 1.0 in head_mask indicate we keep the head
|
899 |
+
# attention_probs has shape bsz x num_attention_heads x N x N
|
900 |
+
# head_mask has shape n_layer x batch x num_attention_heads x N x N
|
901 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layer)
|
902 |
+
|
903 |
+
if inputs_embeds is None:
|
904 |
+
inputs_embeds = self.wte(input_ids)
|
905 |
+
|
906 |
+
hidden_states = inputs_embeds
|
907 |
+
|
908 |
+
if token_type_ids is not None:
|
909 |
+
token_type_embeds = self.wte(token_type_ids)
|
910 |
+
hidden_states = hidden_states + token_type_embeds
|
911 |
+
|
912 |
+
hidden_states = self.drop(hidden_states)
|
913 |
+
|
914 |
+
output_shape = (-1,) + input_shape[1:] + (hidden_states.size(-1),)
|
915 |
+
|
916 |
+
if self.gradient_checkpointing and self.training:
|
917 |
+
if use_cache:
|
918 |
+
logger.warning_once(
|
919 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
920 |
+
)
|
921 |
+
use_cache = False
|
922 |
+
|
923 |
+
presents = () if use_cache else None
|
924 |
+
all_self_attentions = () if output_attentions else None
|
925 |
+
all_hidden_states = () if output_hidden_states else None
|
926 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
927 |
+
# Model parallel
|
928 |
+
if self.model_parallel:
|
929 |
+
torch.cuda.set_device(hidden_states.device)
|
930 |
+
# Ensure layer_past is on same device as hidden_states (might not be correct)
|
931 |
+
if layer_past is not None:
|
932 |
+
layer_past = tuple(past_state.to(hidden_states.device) for past_state in layer_past)
|
933 |
+
# Ensure that attention_mask is always on the same device as hidden_states
|
934 |
+
if attention_mask is not None:
|
935 |
+
attention_mask = attention_mask.to(hidden_states.device)
|
936 |
+
if isinstance(head_mask, torch.Tensor):
|
937 |
+
head_mask = head_mask.to(hidden_states.device)
|
938 |
+
if output_hidden_states:
|
939 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
940 |
+
|
941 |
+
if self.gradient_checkpointing and self.training:
|
942 |
+
outputs = self._gradient_checkpointing_func(
|
943 |
+
block.__call__,
|
944 |
+
hidden_states,
|
945 |
+
None,
|
946 |
+
attention_mask,
|
947 |
+
position_ids,
|
948 |
+
head_mask[i],
|
949 |
+
use_cache,
|
950 |
+
output_attentions,
|
951 |
+
)
|
952 |
+
else:
|
953 |
+
outputs = block(
|
954 |
+
hidden_states=hidden_states,
|
955 |
+
layer_past=layer_past,
|
956 |
+
attention_mask=attention_mask,
|
957 |
+
position_ids=position_ids,
|
958 |
+
head_mask=head_mask[i],
|
959 |
+
use_cache=use_cache,
|
960 |
+
output_attentions=output_attentions,
|
961 |
+
)
|
962 |
+
|
963 |
+
hidden_states = outputs[0]
|
964 |
+
if use_cache is True:
|
965 |
+
presents = presents + (outputs[1],)
|
966 |
+
|
967 |
+
if output_attentions:
|
968 |
+
all_self_attentions = all_self_attentions + (outputs[2 if use_cache else 1],)
|
969 |
+
|
970 |
+
# Model Parallel: If it's the last layer for that device, put things on the next device
|
971 |
+
if self.model_parallel:
|
972 |
+
for k, v in self.device_map.items():
|
973 |
+
if i == v[-1] and "cuda:" + str(k) != self.last_device:
|
974 |
+
hidden_states = hidden_states.to("cuda:" + str(k + 1))
|
975 |
+
|
976 |
+
hidden_states = self.ln_f(hidden_states)
|
977 |
+
|
978 |
+
hidden_states = hidden_states.view(output_shape)
|
979 |
+
# Add last hidden state
|
980 |
+
if output_hidden_states:
|
981 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
982 |
+
|
983 |
+
if not return_dict:
|
984 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)
|
985 |
+
|
986 |
+
return BaseModelOutputWithPast(
|
987 |
+
last_hidden_state=hidden_states,
|
988 |
+
past_key_values=presents,
|
989 |
+
hidden_states=all_hidden_states,
|
990 |
+
attentions=all_self_attentions,
|
991 |
+
)
|
992 |
+
|
993 |
+
|
994 |
+
@add_start_docstrings(
|
995 |
+
"""
|
996 |
+
The GPT-J Model transformer with a language modeling head on top.
|
997 |
+
""",
|
998 |
+
GPTJ_START_DOCSTRING,
|
999 |
+
)
|
1000 |
+
class GPTJForCausalLM(GPTJPreTrainedModel):
|
1001 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1002 |
+
|
1003 |
+
def __init__(self, config):
|
1004 |
+
super().__init__(config)
|
1005 |
+
self.transformer = GPTJModel(config)
|
1006 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
|
1007 |
+
|
1008 |
+
# Model parallel
|
1009 |
+
self.model_parallel = False
|
1010 |
+
self.device_map = None
|
1011 |
+
|
1012 |
+
# Initialize weights and apply final processing
|
1013 |
+
self.post_init()
|
1014 |
+
|
1015 |
+
@add_start_docstrings(PARALLELIZE_DOCSTRING)
|
1016 |
+
def parallelize(self, device_map=None):
|
1017 |
+
warnings.warn(
|
1018 |
+
"`GPTJForCausalLM.parallelize` is deprecated and will be removed in v5 of Transformers, you should load"
|
1019 |
+
" your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own"
|
1020 |
+
" `device_map` but it needs to be a dictionary module_name to device, so for instance {'transformer.h.0':"
|
1021 |
+
" 0, 'transformer.h.1': 1, ...}",
|
1022 |
+
FutureWarning,
|
1023 |
+
)
|
1024 |
+
self.device_map = (
|
1025 |
+
get_device_map(len(self.transformer.h), range(torch.cuda.device_count()))
|
1026 |
+
if device_map is None
|
1027 |
+
else device_map
|
1028 |
+
)
|
1029 |
+
assert_device_map(self.device_map, len(self.transformer.h))
|
1030 |
+
self.transformer.parallelize(self.device_map)
|
1031 |
+
self.lm_head = self.lm_head.to(self.transformer.first_device)
|
1032 |
+
self.model_parallel = True
|
1033 |
+
|
1034 |
+
@add_start_docstrings(DEPARALLELIZE_DOCSTRING)
|
1035 |
+
def deparallelize(self):
|
1036 |
+
warnings.warn(
|
1037 |
+
"Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.",
|
1038 |
+
FutureWarning,
|
1039 |
+
)
|
1040 |
+
self.transformer.deparallelize()
|
1041 |
+
self.transformer = self.transformer.to("cpu")
|
1042 |
+
self.lm_head = self.lm_head.to("cpu")
|
1043 |
+
self.model_parallel = False
|
1044 |
+
torch.cuda.empty_cache()
|
1045 |
+
|
1046 |
+
def get_output_embeddings(self):
|
1047 |
+
return self.lm_head
|
1048 |
+
|
1049 |
+
def set_output_embeddings(self, new_embeddings):
|
1050 |
+
self.lm_head = new_embeddings
|
1051 |
+
|
1052 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs):
|
1053 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
1054 |
+
# Omit tokens covered by past_key_values
|
1055 |
+
if past_key_values:
|
1056 |
+
past_length = past_key_values[0][0].shape[2]
|
1057 |
+
|
1058 |
+
# Some generation methods already pass only the last input ID
|
1059 |
+
if input_ids.shape[1] > past_length:
|
1060 |
+
remove_prefix_length = past_length
|
1061 |
+
else:
|
1062 |
+
# Default to old behavior: keep only final ID
|
1063 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1064 |
+
|
1065 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1066 |
+
if token_type_ids is not None:
|
1067 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
1068 |
+
|
1069 |
+
attention_mask = kwargs.get("attention_mask", None)
|
1070 |
+
position_ids = kwargs.get("position_ids", None)
|
1071 |
+
|
1072 |
+
if attention_mask is not None and position_ids is None:
|
1073 |
+
# create position_ids on the fly for batch generation
|
1074 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1075 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1076 |
+
if past_key_values:
|
1077 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1078 |
+
|
1079 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1080 |
+
if inputs_embeds is not None and past_key_values is None:
|
1081 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1082 |
+
else:
|
1083 |
+
model_inputs = {"input_ids": input_ids}
|
1084 |
+
|
1085 |
+
model_inputs.update(
|
1086 |
+
{
|
1087 |
+
"past_key_values": past_key_values,
|
1088 |
+
"use_cache": kwargs.get("use_cache"),
|
1089 |
+
"position_ids": position_ids,
|
1090 |
+
"attention_mask": attention_mask,
|
1091 |
+
"token_type_ids": token_type_ids,
|
1092 |
+
}
|
1093 |
+
)
|
1094 |
+
|
1095 |
+
return model_inputs
|
1096 |
+
|
1097 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1098 |
+
@add_code_sample_docstrings(
|
1099 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1100 |
+
output_type=CausalLMOutputWithPast,
|
1101 |
+
config_class=_CONFIG_FOR_DOC,
|
1102 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1103 |
+
)
|
1104 |
+
def forward(
|
1105 |
+
self,
|
1106 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1107 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1108 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1109 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1110 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1111 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1112 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1113 |
+
labels: Optional[torch.LongTensor] = None,
|
1114 |
+
use_cache: Optional[bool] = None,
|
1115 |
+
output_attentions: Optional[bool] = None,
|
1116 |
+
output_hidden_states: Optional[bool] = None,
|
1117 |
+
return_dict: Optional[bool] = None,
|
1118 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1119 |
+
r"""
|
1120 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1121 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
1122 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
1123 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
1124 |
+
"""
|
1125 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1126 |
+
|
1127 |
+
transformer_outputs = self.transformer(
|
1128 |
+
input_ids,
|
1129 |
+
past_key_values=past_key_values,
|
1130 |
+
attention_mask=attention_mask,
|
1131 |
+
token_type_ids=token_type_ids,
|
1132 |
+
position_ids=position_ids,
|
1133 |
+
head_mask=head_mask,
|
1134 |
+
inputs_embeds=inputs_embeds,
|
1135 |
+
use_cache=use_cache,
|
1136 |
+
output_attentions=output_attentions,
|
1137 |
+
output_hidden_states=output_hidden_states,
|
1138 |
+
return_dict=return_dict,
|
1139 |
+
)
|
1140 |
+
hidden_states = transformer_outputs[0]
|
1141 |
+
|
1142 |
+
# Set device for model parallelism
|
1143 |
+
if self.model_parallel:
|
1144 |
+
torch.cuda.set_device(self.transformer.first_device)
|
1145 |
+
hidden_states = hidden_states.to(self.lm_head.weight.device)
|
1146 |
+
|
1147 |
+
# make sure sampling in fp16 works correctly and
|
1148 |
+
# compute loss in fp32 to match with mesh-tf version
|
1149 |
+
# https://github.com/EleutherAI/gpt-neo/blob/89ce74164da2fb16179106f54e2269b5da8db333/models/gpt2/gpt2.py#L179
|
1150 |
+
lm_logits = self.lm_head(hidden_states).to(torch.float32)
|
1151 |
+
|
1152 |
+
loss = None
|
1153 |
+
if labels is not None:
|
1154 |
+
# move labels to correct device to enable model parallelism
|
1155 |
+
labels = labels.to(lm_logits.device)
|
1156 |
+
# Shift so that tokens < n predict n
|
1157 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
1158 |
+
shift_labels = labels[..., 1:].contiguous()
|
1159 |
+
# Flatten the tokens
|
1160 |
+
loss_fct = CrossEntropyLoss()
|
1161 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
1162 |
+
|
1163 |
+
loss = loss.to(hidden_states.dtype)
|
1164 |
+
|
1165 |
+
if not return_dict:
|
1166 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
1167 |
+
return ((loss,) + output) if loss is not None else output
|
1168 |
+
|
1169 |
+
return CausalLMOutputWithPast(
|
1170 |
+
loss=loss,
|
1171 |
+
logits=lm_logits,
|
1172 |
+
past_key_values=transformer_outputs.past_key_values,
|
1173 |
+
hidden_states=transformer_outputs.hidden_states,
|
1174 |
+
attentions=transformer_outputs.attentions,
|
1175 |
+
)
|
1176 |
+
|
1177 |
+
@staticmethod
|
1178 |
+
def _reorder_cache(
|
1179 |
+
past_key_values: Tuple[Tuple[torch.Tensor]], beam_idx: torch.Tensor
|
1180 |
+
) -> Tuple[Tuple[torch.Tensor]]:
|
1181 |
+
"""
|
1182 |
+
This function is used to re-order the `past_key_values` cache if [`~PretrainedModel.beam_search`] or
|
1183 |
+
[`~PretrainedModel.beam_sample`] is called. This is required to match `past_key_values` with the correct
|
1184 |
+
beam_idx at every generation step.
|
1185 |
+
"""
|
1186 |
+
return tuple(
|
1187 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past)
|
1188 |
+
for layer_past in past_key_values
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
|
1192 |
+
@add_start_docstrings(
|
1193 |
+
"""
|
1194 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
1195 |
+
|
1196 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
1197 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
1198 |
+
|
1199 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
1200 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
1201 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
1202 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
1203 |
+
each row of the batch).
|
1204 |
+
""",
|
1205 |
+
GPTJ_START_DOCSTRING,
|
1206 |
+
)
|
1207 |
+
class GPTJForSequenceClassification(GPTJPreTrainedModel):
|
1208 |
+
def __init__(self, config):
|
1209 |
+
super().__init__(config)
|
1210 |
+
self.num_labels = config.num_labels
|
1211 |
+
self.transformer = GPTJModel(config)
|
1212 |
+
self.score = nn.Linear(config.n_embd, self.num_labels, bias=False)
|
1213 |
+
|
1214 |
+
# Model parallel
|
1215 |
+
self.model_parallel = False
|
1216 |
+
self.device_map = None
|
1217 |
+
|
1218 |
+
# Initialize weights and apply final processing
|
1219 |
+
self.post_init()
|
1220 |
+
|
1221 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1222 |
+
@add_code_sample_docstrings(
|
1223 |
+
checkpoint="ydshieh/tiny-random-gptj-for-sequence-classification",
|
1224 |
+
output_type=SequenceClassifierOutputWithPast,
|
1225 |
+
config_class=_CONFIG_FOR_DOC,
|
1226 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1227 |
+
)
|
1228 |
+
def forward(
|
1229 |
+
self,
|
1230 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1231 |
+
past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None,
|
1232 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1233 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1234 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1235 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1236 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1237 |
+
labels: Optional[torch.LongTensor] = None,
|
1238 |
+
use_cache: Optional[bool] = None,
|
1239 |
+
output_attentions: Optional[bool] = None,
|
1240 |
+
output_hidden_states: Optional[bool] = None,
|
1241 |
+
return_dict: Optional[bool] = None,
|
1242 |
+
) -> Union[Tuple, SequenceClassifierOutputWithPast]:
|
1243 |
+
r"""
|
1244 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1245 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1246 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
1247 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1248 |
+
"""
|
1249 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1250 |
+
|
1251 |
+
transformer_outputs = self.transformer(
|
1252 |
+
input_ids,
|
1253 |
+
past_key_values=past_key_values,
|
1254 |
+
attention_mask=attention_mask,
|
1255 |
+
token_type_ids=token_type_ids,
|
1256 |
+
position_ids=position_ids,
|
1257 |
+
head_mask=head_mask,
|
1258 |
+
inputs_embeds=inputs_embeds,
|
1259 |
+
use_cache=use_cache,
|
1260 |
+
output_attentions=output_attentions,
|
1261 |
+
output_hidden_states=output_hidden_states,
|
1262 |
+
return_dict=return_dict,
|
1263 |
+
)
|
1264 |
+
hidden_states = transformer_outputs[0]
|
1265 |
+
logits = self.score(hidden_states)
|
1266 |
+
|
1267 |
+
if input_ids is not None:
|
1268 |
+
batch_size = input_ids.shape[0]
|
1269 |
+
else:
|
1270 |
+
batch_size = inputs_embeds.shape[0]
|
1271 |
+
|
1272 |
+
if self.config.pad_token_id is None and batch_size != 1:
|
1273 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
1274 |
+
if self.config.pad_token_id is None:
|
1275 |
+
sequence_lengths = -1
|
1276 |
+
else:
|
1277 |
+
if input_ids is not None:
|
1278 |
+
# if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
|
1279 |
+
sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
|
1280 |
+
sequence_lengths = sequence_lengths % input_ids.shape[-1]
|
1281 |
+
sequence_lengths = sequence_lengths.to(logits.device)
|
1282 |
+
else:
|
1283 |
+
sequence_lengths = -1
|
1284 |
+
logger.warning(
|
1285 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
1286 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
1287 |
+
)
|
1288 |
+
|
1289 |
+
pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
|
1290 |
+
|
1291 |
+
loss = None
|
1292 |
+
if labels is not None:
|
1293 |
+
labels = labels.to(pooled_logits.device)
|
1294 |
+
if self.config.problem_type is None:
|
1295 |
+
if self.num_labels == 1:
|
1296 |
+
self.config.problem_type = "regression"
|
1297 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1298 |
+
self.config.problem_type = "single_label_classification"
|
1299 |
+
else:
|
1300 |
+
self.config.problem_type = "multi_label_classification"
|
1301 |
+
|
1302 |
+
if self.config.problem_type == "regression":
|
1303 |
+
loss_fct = MSELoss()
|
1304 |
+
if self.num_labels == 1:
|
1305 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
1306 |
+
else:
|
1307 |
+
loss = loss_fct(pooled_logits, labels)
|
1308 |
+
elif self.config.problem_type == "single_label_classification":
|
1309 |
+
loss_fct = CrossEntropyLoss()
|
1310 |
+
loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
|
1311 |
+
elif self.config.problem_type == "multi_label_classification":
|
1312 |
+
loss_fct = BCEWithLogitsLoss()
|
1313 |
+
loss = loss_fct(pooled_logits, labels)
|
1314 |
+
if not return_dict:
|
1315 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
1316 |
+
return ((loss,) + output) if loss is not None else output
|
1317 |
+
|
1318 |
+
return SequenceClassifierOutputWithPast(
|
1319 |
+
loss=loss,
|
1320 |
+
logits=pooled_logits,
|
1321 |
+
past_key_values=transformer_outputs.past_key_values,
|
1322 |
+
hidden_states=transformer_outputs.hidden_states,
|
1323 |
+
attentions=transformer_outputs.attentions,
|
1324 |
+
)
|
1325 |
+
|
1326 |
+
|
1327 |
+
@add_start_docstrings(
|
1328 |
+
"""
|
1329 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1330 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1331 |
+
""",
|
1332 |
+
GPTJ_START_DOCSTRING,
|
1333 |
+
)
|
1334 |
+
class GPTJForQuestionAnswering(GPTJPreTrainedModel):
|
1335 |
+
def __init__(self, config):
|
1336 |
+
super().__init__(config)
|
1337 |
+
self.num_labels = config.num_labels
|
1338 |
+
self.transformer = GPTJModel(config)
|
1339 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1340 |
+
|
1341 |
+
# Model parallel
|
1342 |
+
self.model_parallel = False
|
1343 |
+
self.device_map = None
|
1344 |
+
|
1345 |
+
# Initialize weights and apply final processing
|
1346 |
+
self.post_init()
|
1347 |
+
|
1348 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1349 |
+
@add_code_sample_docstrings(
|
1350 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1351 |
+
output_type=QuestionAnsweringModelOutput,
|
1352 |
+
config_class=_CONFIG_FOR_DOC,
|
1353 |
+
real_checkpoint=_REAL_CHECKPOINT_FOR_DOC,
|
1354 |
+
)
|
1355 |
+
def forward(
|
1356 |
+
self,
|
1357 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1358 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1359 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
1360 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1361 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1362 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1363 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1364 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1365 |
+
output_attentions: Optional[bool] = None,
|
1366 |
+
output_hidden_states: Optional[bool] = None,
|
1367 |
+
return_dict: Optional[bool] = None,
|
1368 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
1369 |
+
r"""
|
1370 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1371 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1372 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1373 |
+
are not taken into account for computing the loss.
|
1374 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1375 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1376 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1377 |
+
are not taken into account for computing the loss.
|
1378 |
+
"""
|
1379 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1380 |
+
|
1381 |
+
outputs = self.transformer(
|
1382 |
+
input_ids,
|
1383 |
+
attention_mask=attention_mask,
|
1384 |
+
token_type_ids=token_type_ids,
|
1385 |
+
position_ids=position_ids,
|
1386 |
+
head_mask=head_mask,
|
1387 |
+
inputs_embeds=inputs_embeds,
|
1388 |
+
output_attentions=output_attentions,
|
1389 |
+
output_hidden_states=output_hidden_states,
|
1390 |
+
return_dict=return_dict,
|
1391 |
+
)
|
1392 |
+
|
1393 |
+
sequence_output = outputs[0]
|
1394 |
+
|
1395 |
+
logits = self.qa_outputs(sequence_output)
|
1396 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1397 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1398 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1399 |
+
|
1400 |
+
total_loss = None
|
1401 |
+
if start_positions is not None and end_positions is not None:
|
1402 |
+
# If we are on multi-GPU, split add a dimension
|
1403 |
+
if len(start_positions.size()) > 1:
|
1404 |
+
start_positions = start_positions.squeeze(-1).to(start_logits.device)
|
1405 |
+
if len(end_positions.size()) > 1:
|
1406 |
+
end_positions = end_positions.squeeze(-1).to(end_logits.device)
|
1407 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1408 |
+
ignored_index = start_logits.size(1)
|
1409 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1410 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1411 |
+
|
1412 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1413 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1414 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1415 |
+
total_loss = (start_loss + end_loss) / 2
|
1416 |
+
|
1417 |
+
if not return_dict:
|
1418 |
+
output = (start_logits, end_logits) + outputs[2:]
|
1419 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1420 |
+
|
1421 |
+
return QuestionAnsweringModelOutput(
|
1422 |
+
loss=total_loss,
|
1423 |
+
start_logits=start_logits,
|
1424 |
+
end_logits=end_logits,
|
1425 |
+
hidden_states=outputs.hidden_states,
|
1426 |
+
attentions=outputs.attentions,
|
1427 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/gptj/modeling_tf_gptj.py
ADDED
@@ -0,0 +1,1099 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The EleutherAI and HuggingFace Teams. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" TF 2.0 GPT-J model."""
|
16 |
+
|
17 |
+
from __future__ import annotations
|
18 |
+
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import tensorflow as tf
|
23 |
+
|
24 |
+
from ...activations_tf import get_tf_activation
|
25 |
+
from ...file_utils import (
|
26 |
+
add_code_sample_docstrings,
|
27 |
+
add_start_docstrings,
|
28 |
+
add_start_docstrings_to_model_forward,
|
29 |
+
)
|
30 |
+
from ...modeling_tf_outputs import (
|
31 |
+
TFBaseModelOutputWithPast,
|
32 |
+
TFCausalLMOutputWithPast,
|
33 |
+
TFQuestionAnsweringModelOutput,
|
34 |
+
TFSequenceClassifierOutputWithPast,
|
35 |
+
)
|
36 |
+
from ...modeling_tf_utils import (
|
37 |
+
TFCausalLanguageModelingLoss,
|
38 |
+
TFModelInputType,
|
39 |
+
TFPreTrainedModel,
|
40 |
+
TFQuestionAnsweringLoss,
|
41 |
+
TFSequenceClassificationLoss,
|
42 |
+
TFSharedEmbeddings,
|
43 |
+
get_initializer,
|
44 |
+
keras,
|
45 |
+
keras_serializable,
|
46 |
+
unpack_inputs,
|
47 |
+
)
|
48 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
49 |
+
from ...utils import logging
|
50 |
+
from .configuration_gptj import GPTJConfig
|
51 |
+
|
52 |
+
|
53 |
+
logger = logging.get_logger(__name__)
|
54 |
+
|
55 |
+
_CHECKPOINT_FOR_DOC = "EleutherAI/gpt-j-6B"
|
56 |
+
_CONFIG_FOR_DOC = "GPTJConfig"
|
57 |
+
|
58 |
+
|
59 |
+
def create_sinusoidal_positions(num_pos: int, dim: int) -> tf.Tensor:
|
60 |
+
inv_freq = tf.cast(1.0 / (10000 ** (tf.range(0, dim, 2) / dim)), tf.float32)
|
61 |
+
sinusoid_inp = tf.cast(tf.einsum("i , j -> i j", tf.range(num_pos, dtype=tf.float32), inv_freq), tf.float32)
|
62 |
+
sin, cos = tf.sin(sinusoid_inp), tf.cos(sinusoid_inp)
|
63 |
+
out = tf.concat((sin, cos), axis=1)
|
64 |
+
return out
|
65 |
+
|
66 |
+
|
67 |
+
def rotate_every_two(x: tf.Tensor) -> tf.Tensor:
|
68 |
+
rotate_half_tensor = tf.stack((-x[:, :, :, 1::2], x[:, :, :, ::2]), axis=-1)
|
69 |
+
new_shape = shape_list(rotate_half_tensor)[:-2] + [tf.math.reduce_prod(shape_list(rotate_half_tensor)[-2:])]
|
70 |
+
rotate_half_tensor = tf.reshape(rotate_half_tensor, new_shape)
|
71 |
+
return rotate_half_tensor
|
72 |
+
|
73 |
+
|
74 |
+
def apply_rotary_pos_emb(tensor: tf.Tensor, sincos: tf.Tensor) -> tf.Tensor:
|
75 |
+
sin_pos, cos_pos = sincos
|
76 |
+
sin_pos = tf.repeat(sin_pos[:, :, None, :], 2, 3)
|
77 |
+
cos_pos = tf.repeat(cos_pos[:, :, None, :], 2, 3)
|
78 |
+
return (tensor * cos_pos) + (rotate_every_two(tensor) * sin_pos)
|
79 |
+
|
80 |
+
|
81 |
+
class TFGPTJAttention(keras.layers.Layer):
|
82 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
83 |
+
super().__init__(**kwargs)
|
84 |
+
|
85 |
+
self.embed_dim = config.hidden_size
|
86 |
+
self.num_attention_heads = config.num_attention_heads
|
87 |
+
self.head_dim = self.embed_dim // self.num_attention_heads
|
88 |
+
if self.head_dim * self.num_attention_heads != self.embed_dim:
|
89 |
+
raise ValueError(
|
90 |
+
f"embed_dim must be divisible by num_attention_heads (got `embed_dim`: {self.embed_dim} and"
|
91 |
+
f" `num_attention_heads`: {self.num_attention_heads})."
|
92 |
+
)
|
93 |
+
self.scale_attn = self.head_dim**0.5
|
94 |
+
self.rotary_dim = config.rotary_dim
|
95 |
+
|
96 |
+
self.attn_dropout = keras.layers.Dropout(config.attn_pdrop)
|
97 |
+
self.resid_dropout = keras.layers.Dropout(config.resid_pdrop)
|
98 |
+
|
99 |
+
self.q_proj = keras.layers.Dense(
|
100 |
+
self.embed_dim,
|
101 |
+
use_bias=False,
|
102 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
103 |
+
name="q_proj",
|
104 |
+
)
|
105 |
+
self.k_proj = keras.layers.Dense(
|
106 |
+
self.embed_dim,
|
107 |
+
use_bias=False,
|
108 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
109 |
+
name="k_proj",
|
110 |
+
)
|
111 |
+
self.v_proj = keras.layers.Dense(
|
112 |
+
self.embed_dim,
|
113 |
+
use_bias=False,
|
114 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
115 |
+
name="v_proj",
|
116 |
+
)
|
117 |
+
self.out_proj = keras.layers.Dense(
|
118 |
+
self.embed_dim,
|
119 |
+
use_bias=False,
|
120 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
121 |
+
name="out_proj",
|
122 |
+
)
|
123 |
+
|
124 |
+
self.max_positions = config.max_position_embeddings
|
125 |
+
self.lower_triangle_mask = tf.reshape(
|
126 |
+
tf.cast(tf.experimental.numpy.tril(tf.ones((self.max_positions, self.max_positions))), tf.int8),
|
127 |
+
(1, 1, self.max_positions, self.max_positions),
|
128 |
+
)
|
129 |
+
pos_embd_dim = self.rotary_dim or self.embed_dim
|
130 |
+
self.embed_positions = create_sinusoidal_positions(self.max_positions, pos_embd_dim)
|
131 |
+
|
132 |
+
def get_causal_mask(self, key_length, query_length) -> tf.Tensor:
|
133 |
+
return tf.cast(self.lower_triangle_mask[:, :, key_length - query_length : key_length, :key_length], tf.bool)
|
134 |
+
|
135 |
+
@staticmethod
|
136 |
+
def get_masked_bias(dtype: tf.DType) -> tf.Tensor:
|
137 |
+
return tf.cast(tf.constant(-1e9), dtype)
|
138 |
+
|
139 |
+
def _split_heads(self, hidden_states: tf.Tensor, rotary: bool) -> tf.Tensor:
|
140 |
+
"""
|
141 |
+
Splits hidden dim into attn_head_size and num_attention_heads
|
142 |
+
"""
|
143 |
+
new_shape = shape_list(hidden_states)[:-1] + [self.num_attention_heads, self.head_dim]
|
144 |
+
hidden_states = tf.reshape(hidden_states, new_shape)
|
145 |
+
if rotary:
|
146 |
+
return hidden_states
|
147 |
+
if len(shape_list(hidden_states)) == 4:
|
148 |
+
return tf.transpose(hidden_states, (0, 2, 1, 3)) # (batch, head, seq_length, head_features)
|
149 |
+
if len(shape_list(hidden_states)) == 5:
|
150 |
+
return tf.transpose(hidden_states, (0, 1, 3, 2, 4)) # (batch, blocks, head, block_length, head_features)
|
151 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
152 |
+
|
153 |
+
def _merge_heads(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
154 |
+
"""
|
155 |
+
Merges attn_head_size dim and num_attn_heads dim into hidden dim
|
156 |
+
"""
|
157 |
+
if len(shape_list(hidden_states)) == 4:
|
158 |
+
hidden_states = tf.transpose(hidden_states, (0, 2, 1, 3))
|
159 |
+
elif len(shape_list(hidden_states)) == 5:
|
160 |
+
hidden_states = tf.transpose(hidden_states, (0, 1, 3, 2, 4))
|
161 |
+
else:
|
162 |
+
raise ValueError(f"Input tensor rank should be one of [4, 5], but is: {len(shape_list(hidden_states))}")
|
163 |
+
new_shape = shape_list(hidden_states)[:-2] + [self.num_attention_heads * self.head_dim]
|
164 |
+
return tf.reshape(hidden_states, new_shape)
|
165 |
+
|
166 |
+
def _attn(
|
167 |
+
self,
|
168 |
+
query: tf.Tensor,
|
169 |
+
key: tf.Tensor,
|
170 |
+
value: tf.Tensor,
|
171 |
+
attention_mask: tf.Tensor | None = None,
|
172 |
+
head_mask: tf.Tensor | None = None,
|
173 |
+
) -> Tuple[tf.Tensor, tf.Tensor]:
|
174 |
+
# compute causal mask from causal mask buffer
|
175 |
+
query_length, key_length = shape_list(query)[-2], shape_list(key)[-2]
|
176 |
+
causal_mask = self.get_causal_mask(key_length, query_length)
|
177 |
+
|
178 |
+
# Keep the attention weights computation in fp32 to avoid overflow issues
|
179 |
+
query = tf.cast(query, tf.float32)
|
180 |
+
key = tf.cast(key, tf.float32)
|
181 |
+
|
182 |
+
attn_weights = tf.matmul(query, key, transpose_b=True)
|
183 |
+
attn_weights = tf.where(causal_mask, attn_weights, self.get_masked_bias(attn_weights.dtype))
|
184 |
+
|
185 |
+
attn_weights = attn_weights / self.scale_attn
|
186 |
+
|
187 |
+
if attention_mask is not None:
|
188 |
+
# Apply the attention mask
|
189 |
+
attn_weights = attn_weights + attention_mask
|
190 |
+
|
191 |
+
attn_weights = stable_softmax(attn_weights, axis=-1)
|
192 |
+
attn_weights = tf.cast(attn_weights, value.dtype)
|
193 |
+
attn_weights = self.attn_dropout(attn_weights)
|
194 |
+
|
195 |
+
# Mask heads if we want to
|
196 |
+
if head_mask is not None:
|
197 |
+
attn_weights = attn_weights * head_mask
|
198 |
+
|
199 |
+
attn_output = tf.matmul(attn_weights, value)
|
200 |
+
|
201 |
+
return attn_output, attn_weights
|
202 |
+
|
203 |
+
def call(
|
204 |
+
self,
|
205 |
+
hidden_states: tf.Tensor,
|
206 |
+
layer_past: Optional[Tuple[tf.Tensor, tf.Tensor]] = None,
|
207 |
+
attention_mask: tf.Tensor | None = None,
|
208 |
+
position_ids: tf.Tensor | None = None,
|
209 |
+
head_mask: tf.Tensor | None = None,
|
210 |
+
use_cache: bool = False,
|
211 |
+
output_attentions: bool = False,
|
212 |
+
):
|
213 |
+
query = self.q_proj(hidden_states)
|
214 |
+
key = self.k_proj(hidden_states)
|
215 |
+
value = self.v_proj(hidden_states)
|
216 |
+
|
217 |
+
query = self._split_heads(query, True)
|
218 |
+
key = self._split_heads(key, True)
|
219 |
+
value = self._split_heads(value, False)
|
220 |
+
|
221 |
+
sincos = tf.cast(tf.gather(self.embed_positions, position_ids, axis=0), hidden_states.dtype)
|
222 |
+
sincos = tf.split(sincos, 2, axis=-1)
|
223 |
+
if self.rotary_dim is not None:
|
224 |
+
k_rot = key[:, :, :, : self.rotary_dim]
|
225 |
+
k_pass = key[:, :, :, self.rotary_dim :]
|
226 |
+
|
227 |
+
q_rot = query[:, :, :, : self.rotary_dim]
|
228 |
+
q_pass = query[:, :, :, self.rotary_dim :]
|
229 |
+
|
230 |
+
k_rot = apply_rotary_pos_emb(k_rot, sincos)
|
231 |
+
q_rot = apply_rotary_pos_emb(q_rot, sincos)
|
232 |
+
|
233 |
+
key = tf.concat((k_rot, k_pass), axis=-1)
|
234 |
+
query = tf.concat((q_rot, q_pass), axis=-1)
|
235 |
+
else:
|
236 |
+
key = apply_rotary_pos_emb(key, sincos)
|
237 |
+
query = apply_rotary_pos_emb(query, sincos)
|
238 |
+
|
239 |
+
key = tf.transpose(key, (0, 2, 1, 3))
|
240 |
+
query = tf.transpose(query, (0, 2, 1, 3))
|
241 |
+
|
242 |
+
if layer_past is not None:
|
243 |
+
past_key = layer_past[0]
|
244 |
+
past_value = layer_past[1]
|
245 |
+
key = tf.concat((past_key, key), axis=-2)
|
246 |
+
value = tf.concat((past_value, value), axis=-2)
|
247 |
+
|
248 |
+
if use_cache is True:
|
249 |
+
present = (key, value)
|
250 |
+
else:
|
251 |
+
present = None
|
252 |
+
|
253 |
+
# compute self-attention: V x Softmax(QK^T)
|
254 |
+
attn_output, attn_weights = self._attn(query, key, value, attention_mask, head_mask)
|
255 |
+
|
256 |
+
attn_output = self._merge_heads(attn_output)
|
257 |
+
attn_output = self.out_proj(attn_output)
|
258 |
+
attn_output = self.resid_dropout(attn_output)
|
259 |
+
|
260 |
+
outputs = (attn_output, present)
|
261 |
+
if output_attentions:
|
262 |
+
outputs += (attn_weights,)
|
263 |
+
|
264 |
+
return outputs # a, present, (attentions)
|
265 |
+
|
266 |
+
def build(self, input_shape=None):
|
267 |
+
if self.built:
|
268 |
+
return
|
269 |
+
self.built = True
|
270 |
+
if getattr(self, "q_proj", None) is not None:
|
271 |
+
with tf.name_scope(self.q_proj.name):
|
272 |
+
self.q_proj.build([None, None, self.embed_dim])
|
273 |
+
if getattr(self, "k_proj", None) is not None:
|
274 |
+
with tf.name_scope(self.k_proj.name):
|
275 |
+
self.k_proj.build([None, None, self.embed_dim])
|
276 |
+
if getattr(self, "v_proj", None) is not None:
|
277 |
+
with tf.name_scope(self.v_proj.name):
|
278 |
+
self.v_proj.build([None, None, self.embed_dim])
|
279 |
+
if getattr(self, "out_proj", None) is not None:
|
280 |
+
with tf.name_scope(self.out_proj.name):
|
281 |
+
self.out_proj.build([None, None, self.embed_dim])
|
282 |
+
|
283 |
+
|
284 |
+
class TFGPTJMLP(keras.layers.Layer):
|
285 |
+
def __init__(self, intermediate_size: int, config: GPTJConfig, **kwargs):
|
286 |
+
super().__init__(**kwargs)
|
287 |
+
embed_dim = config.n_embd
|
288 |
+
|
289 |
+
self.fc_in = keras.layers.Dense(
|
290 |
+
intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="fc_in"
|
291 |
+
)
|
292 |
+
self.fc_out = keras.layers.Dense(
|
293 |
+
embed_dim, kernel_initializer=get_initializer(config.initializer_range), name="fc_out"
|
294 |
+
)
|
295 |
+
|
296 |
+
self.act = get_tf_activation(config.activation_function)
|
297 |
+
self.dropout = keras.layers.Dropout(config.embd_pdrop)
|
298 |
+
self.embed_dim = config.n_embd
|
299 |
+
self.intermediate_size = intermediate_size
|
300 |
+
|
301 |
+
def call(self, hidden_states: tf.Tensor) -> tf.Tensor:
|
302 |
+
hidden_states = self.fc_in(hidden_states)
|
303 |
+
hidden_states = self.act(hidden_states)
|
304 |
+
hidden_states = self.fc_out(hidden_states)
|
305 |
+
hidden_states = self.dropout(hidden_states)
|
306 |
+
return hidden_states
|
307 |
+
|
308 |
+
def build(self, input_shape=None):
|
309 |
+
if self.built:
|
310 |
+
return
|
311 |
+
self.built = True
|
312 |
+
if getattr(self, "fc_in", None) is not None:
|
313 |
+
with tf.name_scope(self.fc_in.name):
|
314 |
+
self.fc_in.build([None, None, self.embed_dim])
|
315 |
+
if getattr(self, "fc_out", None) is not None:
|
316 |
+
with tf.name_scope(self.fc_out.name):
|
317 |
+
self.fc_out.build([None, None, self.intermediate_size])
|
318 |
+
|
319 |
+
|
320 |
+
class TFGPTJBlock(keras.layers.Layer):
|
321 |
+
def __init__(self, config: GPTJConfig, **kwargs):
|
322 |
+
super().__init__(**kwargs)
|
323 |
+
inner_dim = config.n_inner if config.n_inner is not None else 4 * config.n_embd
|
324 |
+
self.ln_1 = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_1")
|
325 |
+
self.attn = TFGPTJAttention(config, name="attn")
|
326 |
+
self.mlp = TFGPTJMLP(inner_dim, config, name="mlp")
|
327 |
+
self.config = config
|
328 |
+
|
329 |
+
def call(
|
330 |
+
self,
|
331 |
+
hidden_states: tf.Tensor,
|
332 |
+
layer_past: tf.Tensor | None = None,
|
333 |
+
attention_mask: tf.Tensor | None = None,
|
334 |
+
position_ids: tf.Tensor | None = None,
|
335 |
+
head_mask: tf.Tensor | None = None,
|
336 |
+
use_cache: bool = False,
|
337 |
+
output_attentions: bool = False,
|
338 |
+
):
|
339 |
+
residual = hidden_states
|
340 |
+
hidden_states = self.ln_1(hidden_states)
|
341 |
+
attn_outputs = self.attn(
|
342 |
+
hidden_states=hidden_states,
|
343 |
+
layer_past=layer_past,
|
344 |
+
attention_mask=attention_mask,
|
345 |
+
position_ids=position_ids,
|
346 |
+
head_mask=head_mask,
|
347 |
+
use_cache=use_cache,
|
348 |
+
output_attentions=output_attentions,
|
349 |
+
) # attn_outputs: attn_output, present, (attentions)
|
350 |
+
attn_output = attn_outputs[0]
|
351 |
+
outputs = attn_outputs[1:]
|
352 |
+
|
353 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
354 |
+
hidden_states = attn_output + feed_forward_hidden_states + residual
|
355 |
+
|
356 |
+
if use_cache:
|
357 |
+
outputs = (hidden_states,) + outputs
|
358 |
+
else:
|
359 |
+
outputs = (hidden_states,) + outputs[1:]
|
360 |
+
return outputs # hidden_states, present, (attentions)
|
361 |
+
|
362 |
+
def build(self, input_shape=None):
|
363 |
+
if self.built:
|
364 |
+
return
|
365 |
+
self.built = True
|
366 |
+
if getattr(self, "ln_1", None) is not None:
|
367 |
+
with tf.name_scope(self.ln_1.name):
|
368 |
+
self.ln_1.build([None, None, self.config.n_embd])
|
369 |
+
if getattr(self, "attn", None) is not None:
|
370 |
+
with tf.name_scope(self.attn.name):
|
371 |
+
self.attn.build(None)
|
372 |
+
if getattr(self, "mlp", None) is not None:
|
373 |
+
with tf.name_scope(self.mlp.name):
|
374 |
+
self.mlp.build(None)
|
375 |
+
|
376 |
+
|
377 |
+
@keras_serializable
|
378 |
+
class TFGPTJMainLayer(keras.layers.Layer):
|
379 |
+
config_class = GPTJConfig
|
380 |
+
|
381 |
+
def __init__(self, config: GPTJConfig, *inputs, **kwargs):
|
382 |
+
super().__init__(*inputs, **kwargs)
|
383 |
+
|
384 |
+
self.config = config
|
385 |
+
self.output_attentions = config.output_attentions
|
386 |
+
self.output_hidden_states = config.output_hidden_states
|
387 |
+
self.use_cache = config.use_cache
|
388 |
+
self.return_dict = config.use_return_dict
|
389 |
+
|
390 |
+
self.num_hidden_layers = config.n_layer
|
391 |
+
self.n_embd = config.n_embd
|
392 |
+
self.n_positions = config.n_positions
|
393 |
+
self.initializer_range = config.initializer_range
|
394 |
+
|
395 |
+
self.wte = TFSharedEmbeddings(
|
396 |
+
config.vocab_size, config.hidden_size, initializer_range=config.initializer_range, name="wte"
|
397 |
+
)
|
398 |
+
self.drop = keras.layers.Dropout(config.embd_pdrop)
|
399 |
+
self.h = [TFGPTJBlock(config, name=f"h_._{i}") for i in range(config.n_layer)]
|
400 |
+
self.ln_f = keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name="ln_f")
|
401 |
+
self.embed_dim = config.n_embd
|
402 |
+
|
403 |
+
def get_input_embeddings(self):
|
404 |
+
return self.wte
|
405 |
+
|
406 |
+
def set_input_embeddings(self, value: tf.Tensor):
|
407 |
+
self.wte.weight = value
|
408 |
+
self.wte.vocab_size = shape_list(value)[0]
|
409 |
+
|
410 |
+
def _prune_heads(self, heads_to_prune):
|
411 |
+
"""
|
412 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
|
413 |
+
"""
|
414 |
+
raise NotImplementedError
|
415 |
+
|
416 |
+
@unpack_inputs
|
417 |
+
def call(
|
418 |
+
self,
|
419 |
+
input_ids=None,
|
420 |
+
past_key_values=None,
|
421 |
+
attention_mask=None,
|
422 |
+
token_type_ids=None,
|
423 |
+
position_ids=None,
|
424 |
+
head_mask=None,
|
425 |
+
inputs_embeds=None,
|
426 |
+
use_cache=None,
|
427 |
+
output_attentions=None,
|
428 |
+
output_hidden_states=None,
|
429 |
+
return_dict=None,
|
430 |
+
training=False,
|
431 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
432 |
+
if input_ids is not None and inputs_embeds is not None:
|
433 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
434 |
+
elif input_ids is not None:
|
435 |
+
input_shape = shape_list(input_ids)
|
436 |
+
input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
|
437 |
+
elif inputs_embeds is not None:
|
438 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
439 |
+
else:
|
440 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
441 |
+
|
442 |
+
if past_key_values is None:
|
443 |
+
past_length = 0
|
444 |
+
past_key_values = [None] * len(self.h)
|
445 |
+
else:
|
446 |
+
past_length = shape_list(past_key_values[0][0])[-2]
|
447 |
+
|
448 |
+
if position_ids is None:
|
449 |
+
position_ids = tf.expand_dims(tf.range(past_length, input_shape[-1] + past_length), axis=0)
|
450 |
+
|
451 |
+
if attention_mask is not None:
|
452 |
+
# We create a 3D attention mask from a 2D tensor mask.
|
453 |
+
# Sizes are [batch_size, 1, 1, to_seq_length]
|
454 |
+
# So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
|
455 |
+
# this attention mask is more simple than the triangular masking of causal attention
|
456 |
+
# used in OpenAI GPT, we just need to prepare the broadcast dimension here.
|
457 |
+
attention_mask_shape = shape_list(attention_mask)
|
458 |
+
attention_mask = tf.reshape(attention_mask, (attention_mask_shape[0], 1, 1, attention_mask_shape[1]))
|
459 |
+
|
460 |
+
# Since attention_mask is 1.0 for positions we want to attend and 0.0 for
|
461 |
+
# masked positions, this operation will create a tensor which is 0.0 for
|
462 |
+
# positions we want to attend and -10000.0 for masked positions.
|
463 |
+
# Since we are adding it to the raw scores before the softmax, this is
|
464 |
+
# effectively the same as removing these entirely.
|
465 |
+
one_cst = tf.constant(1.0)
|
466 |
+
attention_mask = tf.cast(attention_mask, dtype=one_cst.dtype)
|
467 |
+
attention_mask = tf.multiply(tf.subtract(one_cst, attention_mask), tf.constant(-10000.0))
|
468 |
+
|
469 |
+
# Prepare head mask if needed
|
470 |
+
# 1.0 in head_mask indicate we keep the head
|
471 |
+
# attention_probs has shape bsz x n_heads x N x N
|
472 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
473 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
474 |
+
if head_mask is not None:
|
475 |
+
raise NotImplementedError
|
476 |
+
else:
|
477 |
+
head_mask = [None] * self.num_hidden_layers
|
478 |
+
# head_mask = tf.constant([0] * self.num_hidden_layers)
|
479 |
+
|
480 |
+
position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
|
481 |
+
|
482 |
+
if inputs_embeds is None:
|
483 |
+
check_embeddings_within_bounds(input_ids, self.wte.vocab_size)
|
484 |
+
inputs_embeds = self.wte(input_ids, mode="embedding")
|
485 |
+
|
486 |
+
if token_type_ids is not None:
|
487 |
+
token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
|
488 |
+
token_type_embeds = self.wte(token_type_ids, mode="embedding")
|
489 |
+
else:
|
490 |
+
token_type_embeds = tf.constant(0.0)
|
491 |
+
|
492 |
+
token_type_embeds = tf.cast(token_type_embeds, dtype=inputs_embeds.dtype)
|
493 |
+
hidden_states = inputs_embeds + token_type_embeds
|
494 |
+
hidden_states = self.drop(hidden_states, training=training)
|
495 |
+
|
496 |
+
output_shape = input_shape + [shape_list(hidden_states)[-1]]
|
497 |
+
|
498 |
+
presents = () if use_cache else None
|
499 |
+
all_attentions = () if output_attentions else None
|
500 |
+
all_hidden_states = () if output_hidden_states else None
|
501 |
+
for i, (block, layer_past) in enumerate(zip(self.h, past_key_values)):
|
502 |
+
if output_hidden_states:
|
503 |
+
all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)
|
504 |
+
|
505 |
+
outputs = block(
|
506 |
+
hidden_states=hidden_states,
|
507 |
+
layer_past=layer_past,
|
508 |
+
attention_mask=attention_mask,
|
509 |
+
position_ids=position_ids,
|
510 |
+
head_mask=head_mask[i],
|
511 |
+
use_cache=use_cache,
|
512 |
+
output_attentions=output_attentions,
|
513 |
+
training=training,
|
514 |
+
)
|
515 |
+
|
516 |
+
hidden_states = outputs[0]
|
517 |
+
if use_cache:
|
518 |
+
presents = presents + (outputs[1],)
|
519 |
+
|
520 |
+
if output_attentions:
|
521 |
+
all_attentions = all_attentions + (outputs[2 if use_cache else 1],)
|
522 |
+
|
523 |
+
hidden_states = self.ln_f(hidden_states)
|
524 |
+
|
525 |
+
hidden_states = tf.reshape(hidden_states, output_shape)
|
526 |
+
# Add last hidden state
|
527 |
+
if output_hidden_states:
|
528 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
529 |
+
|
530 |
+
if output_attentions:
|
531 |
+
# let the number of heads free (-1) so we can extract attention even after head pruning
|
532 |
+
attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
|
533 |
+
all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
|
534 |
+
|
535 |
+
if not return_dict:
|
536 |
+
return tuple(v for v in [hidden_states, presents, all_hidden_states, all_attentions] if v is not None)
|
537 |
+
|
538 |
+
return TFBaseModelOutputWithPast(
|
539 |
+
last_hidden_state=hidden_states,
|
540 |
+
past_key_values=presents,
|
541 |
+
hidden_states=all_hidden_states,
|
542 |
+
attentions=all_attentions,
|
543 |
+
)
|
544 |
+
|
545 |
+
def build(self, input_shape=None):
|
546 |
+
if self.built:
|
547 |
+
return
|
548 |
+
self.built = True
|
549 |
+
if getattr(self, "wte", None) is not None:
|
550 |
+
with tf.name_scope(self.wte.name):
|
551 |
+
self.wte.build(None)
|
552 |
+
if getattr(self, "ln_f", None) is not None:
|
553 |
+
with tf.name_scope(self.ln_f.name):
|
554 |
+
self.ln_f.build([None, None, self.embed_dim])
|
555 |
+
if getattr(self, "h", None) is not None:
|
556 |
+
for layer in self.h:
|
557 |
+
with tf.name_scope(layer.name):
|
558 |
+
layer.build(None)
|
559 |
+
|
560 |
+
|
561 |
+
class TFGPTJPreTrainedModel(TFPreTrainedModel):
|
562 |
+
"""
|
563 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
564 |
+
models.
|
565 |
+
"""
|
566 |
+
|
567 |
+
config_class = GPTJConfig
|
568 |
+
base_model_prefix = "transformer"
|
569 |
+
# names with a '.' represents the authorized unexpected/missing layers when a TF model is loaded from a PT model
|
570 |
+
_keys_to_ignore_on_load_unexpected = [r"h.\d+.attn.bias"]
|
571 |
+
|
572 |
+
|
573 |
+
GPTJ_START_DOCSTRING = r"""
|
574 |
+
|
575 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
576 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
577 |
+
etc.)
|
578 |
+
|
579 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
580 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
581 |
+
behavior.
|
582 |
+
|
583 |
+
<Tip>
|
584 |
+
|
585 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
586 |
+
|
587 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
588 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
589 |
+
|
590 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
591 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
592 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
593 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
594 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
595 |
+
positional argument:
|
596 |
+
|
597 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
598 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
599 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
600 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
601 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
602 |
+
|
603 |
+
Note that when creating models and layers with
|
604 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
605 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
606 |
+
|
607 |
+
</Tip>
|
608 |
+
|
609 |
+
Parameters:
|
610 |
+
config ([`GPTJConfig`]): Model configuration class with all the parameters of the model.
|
611 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
612 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
613 |
+
"""
|
614 |
+
|
615 |
+
GPTJ_INPUTS_DOCSTRING = r"""
|
616 |
+
Args:
|
617 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, input_ids_length)`):
|
618 |
+
`input_ids_length` = `sequence_length` if `past` is `None` else `past[0].shape[-2]` (`sequence_length` of
|
619 |
+
input past key value states). Indices of input sequence tokens in the vocabulary.
|
620 |
+
|
621 |
+
If `past` is used, only input IDs that do not have their past calculated should be passed as `input_ids`.
|
622 |
+
|
623 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
624 |
+
[`PreTrainedTokenizer.encode`] for details.
|
625 |
+
|
626 |
+
[What are input IDs?](../glossary#input-ids)
|
627 |
+
past_key_values (`List[tf.Tensor]` of length `config.n_layers`):
|
628 |
+
Contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model (see
|
629 |
+
`past` output below). Can be used to speed up sequential decoding. The token ids which have their past
|
630 |
+
given to this model should not be passed as input ids as they have already been computed.
|
631 |
+
attention_mask (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
632 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
633 |
+
|
634 |
+
- 1 for tokens that are **not masked**,
|
635 |
+
- 0 for tokens that are **masked**.
|
636 |
+
|
637 |
+
[What are attention masks?](../glossary#attention-mask)
|
638 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
639 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
640 |
+
1]`:
|
641 |
+
|
642 |
+
- 0 corresponds to a *sentence A* token,
|
643 |
+
- 1 corresponds to a *sentence B* token.
|
644 |
+
|
645 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
646 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
647 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
648 |
+
config.max_position_embeddings - 1]`.
|
649 |
+
|
650 |
+
[What are position IDs?](../glossary#position-ids)
|
651 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
652 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
653 |
+
|
654 |
+
- 1 indicates the head is **not masked**,
|
655 |
+
- 0 indicates the head is **masked**.
|
656 |
+
|
657 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
658 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
659 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
660 |
+
model's internal embedding lookup matrix.
|
661 |
+
output_attentions (`bool`, *optional*):
|
662 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
663 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
664 |
+
config will be used instead.
|
665 |
+
output_hidden_states (`bool`, *optional*):
|
666 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
667 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
668 |
+
used instead.
|
669 |
+
return_dict (`bool`, *optional*):
|
670 |
+
Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple. This argument can be used
|
671 |
+
in eager mode, in graph mode the value will always be set to True.
|
672 |
+
training (`bool`, *optional*, defaults to `False`):
|
673 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
674 |
+
behaviors between training and evaluation).
|
675 |
+
"""
|
676 |
+
|
677 |
+
|
678 |
+
@add_start_docstrings(
|
679 |
+
"The bare GPT-J Model transformer outputting raw hidden-states without any specific head on top.",
|
680 |
+
GPTJ_START_DOCSTRING,
|
681 |
+
)
|
682 |
+
class TFGPTJModel(TFGPTJPreTrainedModel):
|
683 |
+
def __init__(self, config, *inputs, **kwargs):
|
684 |
+
super().__init__(config, *inputs, **kwargs)
|
685 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
686 |
+
|
687 |
+
@unpack_inputs
|
688 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING)
|
689 |
+
@add_code_sample_docstrings(
|
690 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
691 |
+
output_type=TFBaseModelOutputWithPast,
|
692 |
+
config_class=_CONFIG_FOR_DOC,
|
693 |
+
)
|
694 |
+
def call(
|
695 |
+
self,
|
696 |
+
input_ids: TFModelInputType | None = None,
|
697 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
698 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
699 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
700 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
701 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
702 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
703 |
+
use_cache: Optional[bool] = None,
|
704 |
+
output_attentions: Optional[bool] = None,
|
705 |
+
output_hidden_states: Optional[bool] = None,
|
706 |
+
return_dict: Optional[bool] = None,
|
707 |
+
training: Optional[bool] = False,
|
708 |
+
) -> Union[TFBaseModelOutputWithPast, Tuple[tf.Tensor]]:
|
709 |
+
r"""
|
710 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
711 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
712 |
+
`past`). Set to `False` during training, `True` during generation
|
713 |
+
"""
|
714 |
+
|
715 |
+
outputs = self.transformer(
|
716 |
+
input_ids=input_ids,
|
717 |
+
past_key_values=past_key_values,
|
718 |
+
attention_mask=attention_mask,
|
719 |
+
token_type_ids=token_type_ids,
|
720 |
+
position_ids=position_ids,
|
721 |
+
head_mask=head_mask,
|
722 |
+
inputs_embeds=inputs_embeds,
|
723 |
+
use_cache=use_cache,
|
724 |
+
output_attentions=output_attentions,
|
725 |
+
output_hidden_states=output_hidden_states,
|
726 |
+
return_dict=return_dict,
|
727 |
+
training=training,
|
728 |
+
)
|
729 |
+
|
730 |
+
return outputs
|
731 |
+
|
732 |
+
def build(self, input_shape=None):
|
733 |
+
if self.built:
|
734 |
+
return
|
735 |
+
self.built = True
|
736 |
+
if getattr(self, "transformer", None) is not None:
|
737 |
+
with tf.name_scope(self.transformer.name):
|
738 |
+
self.transformer.build(None)
|
739 |
+
|
740 |
+
|
741 |
+
@add_start_docstrings(
|
742 |
+
"""
|
743 |
+
The GPT-J Model transformer with a language modeling head on top.
|
744 |
+
""",
|
745 |
+
GPTJ_START_DOCSTRING,
|
746 |
+
)
|
747 |
+
class TFGPTJForCausalLM(TFGPTJPreTrainedModel, TFCausalLanguageModelingLoss):
|
748 |
+
def __init__(self, config, *inputs, **kwargs):
|
749 |
+
super().__init__(config, *inputs, **kwargs)
|
750 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
751 |
+
self.lm_head = keras.layers.Dense(
|
752 |
+
config.vocab_size, kernel_initializer=get_initializer(config.initializer_range), name="lm_head"
|
753 |
+
)
|
754 |
+
self.config = config
|
755 |
+
|
756 |
+
def get_output_embeddings(self):
|
757 |
+
return self.lm_head
|
758 |
+
|
759 |
+
def set_output_embeddings(self, new_embeddings):
|
760 |
+
self.lm_head = new_embeddings
|
761 |
+
|
762 |
+
def prepare_inputs_for_generation(self, inputs, past_key_values=None, use_cache=None, **kwargs):
|
763 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
764 |
+
# only last token for inputs_ids if past is defined in kwargs
|
765 |
+
if past_key_values:
|
766 |
+
inputs = tf.expand_dims(inputs[:, -1], -1)
|
767 |
+
if token_type_ids is not None:
|
768 |
+
token_type_ids = tf.expand_dims(token_type_ids[:, -1], -1)
|
769 |
+
|
770 |
+
position_ids = kwargs.get("position_ids", None)
|
771 |
+
attention_mask = kwargs.get("attention_mask", None)
|
772 |
+
|
773 |
+
if attention_mask is not None and position_ids is None:
|
774 |
+
position_ids = tf.math.cumsum(attention_mask, axis=-1, exclusive=True)
|
775 |
+
if past_key_values:
|
776 |
+
position_ids = tf.expand_dims(position_ids[:, -1], -1)
|
777 |
+
|
778 |
+
return {
|
779 |
+
"input_ids": inputs,
|
780 |
+
"attention_mask": attention_mask,
|
781 |
+
"position_ids": position_ids,
|
782 |
+
"past_key_values": past_key_values,
|
783 |
+
"use_cache": use_cache,
|
784 |
+
"token_type_ids": token_type_ids,
|
785 |
+
}
|
786 |
+
|
787 |
+
@unpack_inputs
|
788 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
789 |
+
@add_code_sample_docstrings(
|
790 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
791 |
+
output_type=TFCausalLMOutputWithPast,
|
792 |
+
config_class=_CONFIG_FOR_DOC,
|
793 |
+
)
|
794 |
+
def call(
|
795 |
+
self,
|
796 |
+
input_ids: TFModelInputType | None = None,
|
797 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
798 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
799 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
800 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
801 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
802 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
803 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
804 |
+
use_cache: Optional[bool] = None,
|
805 |
+
output_attentions: Optional[bool] = None,
|
806 |
+
output_hidden_states: Optional[bool] = None,
|
807 |
+
return_dict: Optional[bool] = None,
|
808 |
+
training: Optional[bool] = False,
|
809 |
+
) -> Union[TFCausalLMOutputWithPast, Tuple[tf.Tensor]]:
|
810 |
+
r"""
|
811 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
812 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
813 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
814 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
815 |
+
"""
|
816 |
+
|
817 |
+
transformer_outputs = self.transformer(
|
818 |
+
input_ids=input_ids,
|
819 |
+
past_key_values=past_key_values,
|
820 |
+
attention_mask=attention_mask,
|
821 |
+
token_type_ids=token_type_ids,
|
822 |
+
position_ids=position_ids,
|
823 |
+
head_mask=head_mask,
|
824 |
+
inputs_embeds=inputs_embeds,
|
825 |
+
use_cache=use_cache,
|
826 |
+
output_attentions=output_attentions,
|
827 |
+
output_hidden_states=output_hidden_states,
|
828 |
+
return_dict=return_dict,
|
829 |
+
training=training,
|
830 |
+
)
|
831 |
+
hidden_states = transformer_outputs[0]
|
832 |
+
lm_logits = self.lm_head(hidden_states)
|
833 |
+
|
834 |
+
loss = None
|
835 |
+
if labels is not None:
|
836 |
+
# shift labels to the left and cut last logit token
|
837 |
+
shifted_logits = lm_logits[:, :-1]
|
838 |
+
labels = labels[:, 1:]
|
839 |
+
loss = self.hf_compute_loss(labels, shifted_logits)
|
840 |
+
|
841 |
+
if not return_dict:
|
842 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
843 |
+
return ((loss,) + output) if loss is not None else output
|
844 |
+
|
845 |
+
return TFCausalLMOutputWithPast(
|
846 |
+
loss=loss,
|
847 |
+
logits=lm_logits,
|
848 |
+
past_key_values=transformer_outputs.past_key_values,
|
849 |
+
hidden_states=transformer_outputs.hidden_states,
|
850 |
+
attentions=transformer_outputs.attentions,
|
851 |
+
)
|
852 |
+
|
853 |
+
def build(self, input_shape=None):
|
854 |
+
if self.built:
|
855 |
+
return
|
856 |
+
self.built = True
|
857 |
+
if getattr(self, "transformer", None) is not None:
|
858 |
+
with tf.name_scope(self.transformer.name):
|
859 |
+
self.transformer.build(None)
|
860 |
+
if getattr(self, "lm_head", None) is not None:
|
861 |
+
with tf.name_scope(self.lm_head.name):
|
862 |
+
self.lm_head.build([None, None, self.config.n_embd])
|
863 |
+
|
864 |
+
|
865 |
+
@add_start_docstrings(
|
866 |
+
"""
|
867 |
+
The GPT-J Model transformer with a sequence classification head on top (linear layer).
|
868 |
+
|
869 |
+
[`GPTJForSequenceClassification`] uses the last token in order to do the classification, as other causal models
|
870 |
+
(e.g. GPT, GPT-2, GPT-Neo) do.
|
871 |
+
|
872 |
+
Since it does classification on the last token, it requires to know the position of the last token. If a
|
873 |
+
`pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
|
874 |
+
no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
|
875 |
+
padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
|
876 |
+
each row of the batch).
|
877 |
+
""",
|
878 |
+
GPTJ_START_DOCSTRING,
|
879 |
+
)
|
880 |
+
class TFGPTJForSequenceClassification(TFGPTJPreTrainedModel, TFSequenceClassificationLoss):
|
881 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
882 |
+
|
883 |
+
def __init__(self, config, *inputs, **kwargs):
|
884 |
+
super().__init__(config, *inputs, **kwargs)
|
885 |
+
self.num_labels = config.num_labels
|
886 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
887 |
+
self.score = keras.layers.Dense(
|
888 |
+
self.num_labels,
|
889 |
+
use_bias=False,
|
890 |
+
kernel_initializer=get_initializer(config.initializer_range),
|
891 |
+
name="score",
|
892 |
+
)
|
893 |
+
self.config = config
|
894 |
+
|
895 |
+
@unpack_inputs
|
896 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
897 |
+
@add_code_sample_docstrings(
|
898 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
899 |
+
output_type=TFSequenceClassifierOutputWithPast,
|
900 |
+
config_class=_CONFIG_FOR_DOC,
|
901 |
+
)
|
902 |
+
def call(
|
903 |
+
self,
|
904 |
+
input_ids: TFModelInputType | None = None,
|
905 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
906 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
907 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
908 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
909 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
910 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
911 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
912 |
+
use_cache: Optional[bool] = None,
|
913 |
+
output_attentions: Optional[bool] = None,
|
914 |
+
output_hidden_states: Optional[bool] = None,
|
915 |
+
return_dict: Optional[bool] = None,
|
916 |
+
training: Optional[bool] = False,
|
917 |
+
) -> Union[TFSequenceClassifierOutputWithPast, Tuple[tf.Tensor]]:
|
918 |
+
r"""
|
919 |
+
labels (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
920 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
921 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
922 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
923 |
+
"""
|
924 |
+
|
925 |
+
transformer_outputs = self.transformer(
|
926 |
+
input_ids=input_ids,
|
927 |
+
past_key_values=past_key_values,
|
928 |
+
attention_mask=attention_mask,
|
929 |
+
token_type_ids=token_type_ids,
|
930 |
+
position_ids=position_ids,
|
931 |
+
head_mask=head_mask,
|
932 |
+
inputs_embeds=inputs_embeds,
|
933 |
+
use_cache=use_cache,
|
934 |
+
output_attentions=output_attentions,
|
935 |
+
output_hidden_states=output_hidden_states,
|
936 |
+
return_dict=return_dict,
|
937 |
+
training=training,
|
938 |
+
)
|
939 |
+
hidden_states = transformer_outputs[0]
|
940 |
+
logits = self.score(hidden_states)
|
941 |
+
logits_shape = shape_list(logits)
|
942 |
+
in_logits = None
|
943 |
+
if self.config.pad_token_id is None:
|
944 |
+
sequence_lengths = -1
|
945 |
+
else:
|
946 |
+
if input_ids is not None:
|
947 |
+
sequence_lengths = (
|
948 |
+
tf.argmax(tf.cast(tf.math.equal(input_ids, self.config.pad_token_id), input_ids.dtype), axis=-1)
|
949 |
+
- 1
|
950 |
+
)
|
951 |
+
sequence_lengths = tf.where(
|
952 |
+
sequence_lengths >= 0,
|
953 |
+
sequence_lengths,
|
954 |
+
tf.cast(shape_list(input_ids[-1]), sequence_lengths.dtype) - 1,
|
955 |
+
)
|
956 |
+
in_logits = tf.gather(logits, sequence_lengths, batch_dims=1, axis=1)
|
957 |
+
else:
|
958 |
+
sequence_lengths = -1
|
959 |
+
logger.warning(
|
960 |
+
f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be "
|
961 |
+
"unexpected if using padding tokens in conjunction with `inputs_embeds.`"
|
962 |
+
)
|
963 |
+
loss = None
|
964 |
+
|
965 |
+
if labels is not None:
|
966 |
+
if self.config.pad_token_id is None and logits_shape[0] != 1:
|
967 |
+
raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
|
968 |
+
|
969 |
+
if not tf.is_tensor(sequence_lengths):
|
970 |
+
in_logits = logits[0 : logits_shape[0], sequence_lengths]
|
971 |
+
|
972 |
+
loss = self.hf_compute_loss(tf.reshape(labels, [-1]), tf.reshape(in_logits, [-1, self.num_labels]))
|
973 |
+
pooled_logits = in_logits if in_logits is not None else logits
|
974 |
+
|
975 |
+
if not return_dict:
|
976 |
+
output = (pooled_logits,) + transformer_outputs[1:]
|
977 |
+
return ((loss,) + output) if loss is not None else output
|
978 |
+
|
979 |
+
return TFSequenceClassifierOutputWithPast(
|
980 |
+
loss=loss,
|
981 |
+
logits=pooled_logits,
|
982 |
+
past_key_values=transformer_outputs.past_key_values,
|
983 |
+
hidden_states=transformer_outputs.hidden_states,
|
984 |
+
attentions=transformer_outputs.attentions,
|
985 |
+
)
|
986 |
+
|
987 |
+
def build(self, input_shape=None):
|
988 |
+
if self.built:
|
989 |
+
return
|
990 |
+
self.built = True
|
991 |
+
if getattr(self, "transformer", None) is not None:
|
992 |
+
with tf.name_scope(self.transformer.name):
|
993 |
+
self.transformer.build(None)
|
994 |
+
if getattr(self, "score", None) is not None:
|
995 |
+
with tf.name_scope(self.score.name):
|
996 |
+
self.score.build([None, None, self.config.n_embd])
|
997 |
+
|
998 |
+
|
999 |
+
@add_start_docstrings(
|
1000 |
+
"""
|
1001 |
+
The GPT-J Model transformer with a span classification head on top for extractive question-answering tasks like
|
1002 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1003 |
+
""",
|
1004 |
+
GPTJ_START_DOCSTRING,
|
1005 |
+
)
|
1006 |
+
class TFGPTJForQuestionAnswering(TFGPTJPreTrainedModel, TFQuestionAnsweringLoss):
|
1007 |
+
_keys_to_ignore_on_load_missing = [r"h.\d+.attn.masked_bias", r"h.\d+.attn.bias", r"lm_head.weight"]
|
1008 |
+
|
1009 |
+
def __init__(self, config, *inputs, **kwargs):
|
1010 |
+
super().__init__(config, *inputs, **kwargs)
|
1011 |
+
self.num_labels = config.num_labels
|
1012 |
+
self.transformer = TFGPTJMainLayer(config, name="transformer")
|
1013 |
+
self.qa_outputs = keras.layers.Dense(
|
1014 |
+
self.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
1015 |
+
)
|
1016 |
+
self.config = config
|
1017 |
+
|
1018 |
+
@unpack_inputs
|
1019 |
+
@add_start_docstrings_to_model_forward(GPTJ_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1020 |
+
@add_code_sample_docstrings(
|
1021 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1022 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1023 |
+
config_class=_CONFIG_FOR_DOC,
|
1024 |
+
)
|
1025 |
+
def call(
|
1026 |
+
self,
|
1027 |
+
input_ids: TFModelInputType | None = None,
|
1028 |
+
past_key_values: Optional[Tuple[Tuple[Union[np.ndarray, tf.Tensor]]]] = None,
|
1029 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1030 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1031 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1032 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1033 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1034 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1035 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1036 |
+
output_attentions: Optional[bool] = None,
|
1037 |
+
output_hidden_states: Optional[bool] = None,
|
1038 |
+
return_dict: Optional[bool] = None,
|
1039 |
+
training: Optional[bool] = False,
|
1040 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1041 |
+
r"""
|
1042 |
+
start_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1043 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1044 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1045 |
+
are not taken into account for computing the loss.
|
1046 |
+
end_positions (`np.ndarray` or `tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1047 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1048 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1049 |
+
are not taken into account for computing the loss.
|
1050 |
+
"""
|
1051 |
+
|
1052 |
+
transformer_outputs = self.transformer(
|
1053 |
+
input_ids=input_ids,
|
1054 |
+
past_key_values=past_key_values,
|
1055 |
+
attention_mask=attention_mask,
|
1056 |
+
token_type_ids=token_type_ids,
|
1057 |
+
position_ids=position_ids,
|
1058 |
+
head_mask=head_mask,
|
1059 |
+
inputs_embeds=inputs_embeds,
|
1060 |
+
output_attentions=output_attentions,
|
1061 |
+
output_hidden_states=output_hidden_states,
|
1062 |
+
return_dict=return_dict,
|
1063 |
+
training=training,
|
1064 |
+
)
|
1065 |
+
sequence_output = transformer_outputs[0]
|
1066 |
+
|
1067 |
+
logits = self.qa_outputs(sequence_output)
|
1068 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1069 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1070 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1071 |
+
|
1072 |
+
loss = None
|
1073 |
+
if start_positions is not None and end_positions is not None:
|
1074 |
+
labels = {"start_position": start_positions}
|
1075 |
+
labels["end_position"] = end_positions
|
1076 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1077 |
+
|
1078 |
+
if not return_dict:
|
1079 |
+
output = (start_logits, end_logits) + transformer_outputs[2:]
|
1080 |
+
return ((loss,) + output) if loss is not None else output
|
1081 |
+
|
1082 |
+
return TFQuestionAnsweringModelOutput(
|
1083 |
+
loss=loss,
|
1084 |
+
start_logits=start_logits,
|
1085 |
+
end_logits=end_logits,
|
1086 |
+
hidden_states=transformer_outputs.hidden_states,
|
1087 |
+
attentions=transformer_outputs.attentions,
|
1088 |
+
)
|
1089 |
+
|
1090 |
+
def build(self, input_shape=None):
|
1091 |
+
if self.built:
|
1092 |
+
return
|
1093 |
+
self.built = True
|
1094 |
+
if getattr(self, "transformer", None) is not None:
|
1095 |
+
with tf.name_scope(self.transformer.name):
|
1096 |
+
self.transformer.build(None)
|
1097 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1098 |
+
with tf.name_scope(self.qa_outputs.name):
|
1099 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__init__.py
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_flax_available,
|
21 |
+
is_tf_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_gptsan_japanese": ["GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP", "GPTSanJapaneseConfig"],
|
28 |
+
"tokenization_gptsan_japanese": ["GPTSanJapaneseTokenizer"],
|
29 |
+
}
|
30 |
+
|
31 |
+
try:
|
32 |
+
if not is_torch_available():
|
33 |
+
raise OptionalDependencyNotAvailable()
|
34 |
+
except OptionalDependencyNotAvailable:
|
35 |
+
pass
|
36 |
+
else:
|
37 |
+
_import_structure["modeling_gptsan_japanese"] = [
|
38 |
+
"GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
39 |
+
"GPTSanJapaneseForConditionalGeneration",
|
40 |
+
"GPTSanJapaneseModel",
|
41 |
+
"GPTSanJapanesePreTrainedModel",
|
42 |
+
]
|
43 |
+
_import_structure["tokenization_gptsan_japanese"] = [
|
44 |
+
"GPTSanJapaneseTokenizer",
|
45 |
+
]
|
46 |
+
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_gptsan_japanese import GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTSanJapaneseConfig
|
50 |
+
from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_torch_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
from .modeling_gptsan_japanese import (
|
59 |
+
GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
60 |
+
GPTSanJapaneseForConditionalGeneration,
|
61 |
+
GPTSanJapaneseModel,
|
62 |
+
GPTSanJapanesePreTrainedModel,
|
63 |
+
)
|
64 |
+
from .tokenization_gptsan_japanese import GPTSanJapaneseTokenizer
|
65 |
+
|
66 |
+
|
67 |
+
else:
|
68 |
+
import sys
|
69 |
+
|
70 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.18 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/configuration_gptsan_japanese.cpython-310.pyc
ADDED
Binary file (6.17 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/convert_gptsan_tf_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.84 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/modeling_gptsan_japanese.cpython-310.pyc
ADDED
Binary file (45.4 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/__pycache__/tokenization_gptsan_japanese.cpython-310.pyc
ADDED
Binary file (20.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/configuration_gptsan_japanese.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023, HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" GPTSAN-japanese model configuration"""
|
16 |
+
from ...configuration_utils import PretrainedConfig
|
17 |
+
from ...utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
from ..deprecated._archive_maps import GPTSAN_JAPANESE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
24 |
+
|
25 |
+
|
26 |
+
class GPTSanJapaneseConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`GPTSanJapaneseModel`]. It is used to instantiate
|
29 |
+
a GPTSANJapanese model according to the specified arguments, defining the model architecture. Instantiating a
|
30 |
+
configuration with the defaults will yield a similar configuration to that of the GPTSANJapanese
|
31 |
+
[Tanrei/GPTSAN-japanese](https://huggingface.co/Tanrei/GPTSAN-japanese) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
Arguments:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 36000):
|
38 |
+
Vocabulary size of the GPTSANJapanese model. Defines the number of different tokens that can be represented
|
39 |
+
by the `inputs_ids` passed when calling [`GPTSanJapaneseModel`].
|
40 |
+
max_position_embeddings (`int`, *optional*, defaults to 1280):
|
41 |
+
The maximum sequence length that this model might ever be used with. Defaults set this to 1280.
|
42 |
+
d_model (`int`, *optional*, defaults to 1024):
|
43 |
+
Size of the encoder layers and the pooler layer.
|
44 |
+
d_ff (`int`, *optional*, defaults to 8192):
|
45 |
+
Size of the intermediate feed forward layer in each `SwitchTransformersBlock`.
|
46 |
+
d_ext (`int`, *optional*, defaults to 4096):
|
47 |
+
Size of the intermediate feed forward layer in each Extra-layers.
|
48 |
+
d_spout (`int`, *optional*, defaults to 128):
|
49 |
+
Size of the `spout` vector.
|
50 |
+
num_switch_layers (`int`, *optional*, defaults to 10):
|
51 |
+
Number of layers in the Switch Transformer layer.
|
52 |
+
num_ext_layers (`int`, *optional*, defaults to 0):
|
53 |
+
Number of layers in the Extra-layers.
|
54 |
+
num_heads (`int`, *optional*, defaults to 16):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
num_experts (`int`, *optional*, defaults to 16):
|
57 |
+
Number of experts for each SwitchTransformer layer.
|
58 |
+
expert_capacity (`int`, *optional*, defaults to 128):
|
59 |
+
Number of tokens that can be stored in each expert. If set to 1, the model will behave like a regular
|
60 |
+
Transformer.
|
61 |
+
dropout_rate (`float`, *optional*, defaults to 0.0):
|
62 |
+
The ratio for all dropout layers.
|
63 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-5):
|
64 |
+
The epsilon used by the layer normalization layers.
|
65 |
+
router_bias (`bool`, *optional*, defaults to `False`):
|
66 |
+
Whether to add a bias to the router.
|
67 |
+
router_jitter_noise (`float`, *optional*, defaults to 0.0):
|
68 |
+
Amount of noise to add to the router. Set it to 0.0 during prediction or set small value (usually 1e-2)
|
69 |
+
during training.
|
70 |
+
router_dtype (`str`, *optional*, default to `"float32"`):
|
71 |
+
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
|
72 |
+
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
|
73 |
+
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
|
74 |
+
Whether to ignore padding tokens when routing.
|
75 |
+
output_hidden_states (`bool`, *optional*, default to `False`):
|
76 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
77 |
+
more detail.
|
78 |
+
output_attentions (`bool`, *optional*, defaults to `False`):
|
79 |
+
Whether or not to return the attentions tensors of all attention layers.
|
80 |
+
initializer_factor (`float`, *optional*, defaults to 0.002):
|
81 |
+
A factor for initializing all weight matrices.
|
82 |
+
output_router_logits (`bool`, *optional*, default to `False`):
|
83 |
+
Whether or not to return the router logits of all experts.
|
84 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
85 |
+
Whether or not the model should return the last key/values attentions (not used by all models)
|
86 |
+
"""
|
87 |
+
|
88 |
+
model_type = "gptsan-japanese"
|
89 |
+
keys_to_ignore_at_inference = [
|
90 |
+
"past_key_values",
|
91 |
+
]
|
92 |
+
attribute_map = {
|
93 |
+
"hidden_size": "d_model",
|
94 |
+
"num_attention_heads": "num_heads",
|
95 |
+
"num_hidden_layers": "num_layers",
|
96 |
+
}
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
vocab_size=36000,
|
101 |
+
max_position_embeddings=1280,
|
102 |
+
d_model=1024,
|
103 |
+
d_ff=8192,
|
104 |
+
d_ext=4096,
|
105 |
+
d_spout=128,
|
106 |
+
num_switch_layers=10,
|
107 |
+
num_ext_layers=0,
|
108 |
+
num_heads=16,
|
109 |
+
num_experts=16,
|
110 |
+
expert_capacity=128,
|
111 |
+
dropout_rate=0.0,
|
112 |
+
layer_norm_epsilon=1e-5,
|
113 |
+
router_bias=False,
|
114 |
+
router_jitter_noise=0.0,
|
115 |
+
router_dtype="float32",
|
116 |
+
router_ignore_padding_tokens=False,
|
117 |
+
output_hidden_states=False,
|
118 |
+
output_attentions=False,
|
119 |
+
initializer_factor=0.002,
|
120 |
+
output_router_logits=False,
|
121 |
+
use_cache=True,
|
122 |
+
separator_token_id=35998,
|
123 |
+
pad_token_id=35995,
|
124 |
+
eos_token_id=35999,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
self.vocab_size = vocab_size
|
128 |
+
self.max_position_embeddings = max_position_embeddings
|
129 |
+
self.d_model = d_model
|
130 |
+
self.d_ff = d_ff
|
131 |
+
self.d_ext = d_ext
|
132 |
+
self.d_spout = d_spout
|
133 |
+
self.num_switch_layers = num_switch_layers
|
134 |
+
self.num_ext_layers = num_ext_layers
|
135 |
+
self.num_layers = num_switch_layers + num_ext_layers
|
136 |
+
self.num_heads = num_heads
|
137 |
+
self.num_experts = num_experts
|
138 |
+
self.expert_capacity = expert_capacity
|
139 |
+
self.dropout_rate = dropout_rate
|
140 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
141 |
+
self.router_bias = router_bias
|
142 |
+
self.router_jitter_noise = router_jitter_noise
|
143 |
+
self.router_dtype = router_dtype
|
144 |
+
self.router_ignore_padding_tokens = router_ignore_padding_tokens
|
145 |
+
self.output_hidden_states = output_hidden_states
|
146 |
+
self.output_attentions = output_attentions
|
147 |
+
self.initializer_factor = initializer_factor
|
148 |
+
self.output_router_logits = output_router_logits
|
149 |
+
self.use_cache = use_cache
|
150 |
+
|
151 |
+
super().__init__(
|
152 |
+
separator_token_id=separator_token_id,
|
153 |
+
pad_token_id=pad_token_id,
|
154 |
+
eos_token_id=eos_token_id,
|
155 |
+
**kwargs,
|
156 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/convert_gptsan_tf_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
"""Convert GPTSANJapanese checkpoints from the original repository to pytorch model."""
|
17 |
+
|
18 |
+
import argparse
|
19 |
+
import json
|
20 |
+
import os
|
21 |
+
from collections import OrderedDict
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import tensorflow as tf
|
25 |
+
import torch
|
26 |
+
|
27 |
+
|
28 |
+
def convert_tf_gptsan_to_pt(args):
|
29 |
+
parameter_file = os.path.join(args.tf_model_dir, "parameters.json")
|
30 |
+
params = json.loads(open(parameter_file).read())
|
31 |
+
if not params:
|
32 |
+
raise ValueError(
|
33 |
+
f"It seems that the json file at {parameter_file} is empty. Make sure you have a correct json file."
|
34 |
+
)
|
35 |
+
if not args.output.endswith(".pt"):
|
36 |
+
args.output = args.output + ".pt"
|
37 |
+
new_state = OrderedDict()
|
38 |
+
with tf.device("/CPU:0"):
|
39 |
+
reader = tf.train.load_checkpoint(args.tf_model_dir)
|
40 |
+
shapes = reader.get_variable_to_shape_map()
|
41 |
+
for key_name in shapes.keys():
|
42 |
+
vnp = reader.get_tensor(key_name).astype(np.float16)
|
43 |
+
if key_name.endswith("/adam_m") or key_name.endswith("/adam_v"):
|
44 |
+
continue
|
45 |
+
if key_name.startswith("pasts/"):
|
46 |
+
if key_name.startswith("pasts/mlp"):
|
47 |
+
player = int(key_name[9])
|
48 |
+
elif key_name.startswith("pasts/out"):
|
49 |
+
player = 8
|
50 |
+
name = "model.sqout.%d.weight" % (player * 2) # enter to nn.Sequencial with Tanh, so 2 at a time
|
51 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
52 |
+
new_state[name] = torch.tensor(state)
|
53 |
+
elif key_name.startswith("model/moe"):
|
54 |
+
player = int(key_name[9:].split("/")[0])
|
55 |
+
if key_name.endswith("/switch_gating/kernel"):
|
56 |
+
name = "model.blocks.%d.feed_forward.mlp.router.classifier.weight" % player
|
57 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
58 |
+
new_state[name] = torch.tensor(state)
|
59 |
+
elif key_name.endswith("/softmlp/kernel"):
|
60 |
+
name = "model.blocks.%d.feed_forward.soft_bypass_mlp.weight" % player
|
61 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
62 |
+
new_state[name] = torch.tensor(state)
|
63 |
+
elif key_name.endswith("/wo/kernel") or key_name.endswith("/wi/kernel"):
|
64 |
+
nlayer = key_name[-9:-7]
|
65 |
+
for i in range(16):
|
66 |
+
name = "model.blocks.%d.feed_forward.mlp.experts.expert_%d.%s.weight" % (player, i, nlayer)
|
67 |
+
state = (
|
68 |
+
vnp[i].transpose([1, 0]).copy()
|
69 |
+
) # In Mesh-Tensorflow, it is one array, so it is divided
|
70 |
+
new_state[name] = torch.tensor(state)
|
71 |
+
elif key_name.startswith("model/mlp"):
|
72 |
+
player = int(key_name[9:].split("/")[0])
|
73 |
+
if key_name.endswith("/p1/kernel"):
|
74 |
+
name = "model.blocks.%d.feed_forward.mlp.wi.weight" % player
|
75 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
76 |
+
new_state[name] = torch.tensor(state)
|
77 |
+
elif key_name.endswith("/p1/bias"):
|
78 |
+
name = "model.blocks.%d.feed_forward.mlp.wi.bias" % player
|
79 |
+
state = vnp.copy() # same because it is one dimensional
|
80 |
+
new_state[name] = torch.tensor(state)
|
81 |
+
elif key_name.endswith("/p2/kernel"):
|
82 |
+
name = "model.blocks.%d.feed_forward.mlp.wo.weight" % player
|
83 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
84 |
+
new_state[name] = torch.tensor(state)
|
85 |
+
elif key_name.endswith("/p2/bias"):
|
86 |
+
name = "model.blocks.%d.feed_forward.mlp.wo.bias" % player
|
87 |
+
state = vnp.copy() # same because it is one dimensional
|
88 |
+
new_state[name] = torch.tensor(state)
|
89 |
+
elif key_name.startswith("model/ln"):
|
90 |
+
player = int(key_name[8:].split("/")[0])
|
91 |
+
if key_name.endswith("/b"):
|
92 |
+
name = "model.blocks.%d.feed_forward.norm.bias" % player
|
93 |
+
state = vnp.copy() # same because it is one dimensional
|
94 |
+
new_state[name] = torch.tensor(state)
|
95 |
+
elif key_name.endswith("/g"):
|
96 |
+
name = "model.blocks.%d.feed_forward.norm.weight" % player
|
97 |
+
state = vnp.copy() # same because it is one dimensional
|
98 |
+
new_state[name] = torch.tensor(state)
|
99 |
+
elif key_name.startswith("model/att"):
|
100 |
+
player = int(key_name[9:].split("/")[0])
|
101 |
+
if key_name.endswith("/qkv/kernel"):
|
102 |
+
state = vnp.copy() # Compute same dimension as Mesh-tensorflow using einsum
|
103 |
+
state_q = state[:, 0, :, :]
|
104 |
+
state_k = state[:, 1, :, :]
|
105 |
+
state_v = state[:, 2, :, :]
|
106 |
+
state_q = (
|
107 |
+
state_q.reshape([state_q.shape[0], state_q.shape[1] * state_q.shape[2]])
|
108 |
+
.transpose([1, 0])
|
109 |
+
.copy()
|
110 |
+
) # Mesh-Tensorflow is a diagonal matrix
|
111 |
+
state_k = (
|
112 |
+
state_k.reshape([state_k.shape[0], state_k.shape[1] * state_k.shape[2]])
|
113 |
+
.transpose([1, 0])
|
114 |
+
.copy()
|
115 |
+
) # Mesh-Tensorflow is a diagonal matrix
|
116 |
+
state_v = (
|
117 |
+
state_v.reshape([state_v.shape[0], state_v.shape[1] * state_v.shape[2]])
|
118 |
+
.transpose([1, 0])
|
119 |
+
.copy()
|
120 |
+
) # Mesh-Tensorflow is a diagonal matrix
|
121 |
+
name = "model.blocks.%d.self_attn.self_attn.q_proj.weight" % player
|
122 |
+
new_state[name] = torch.tensor(state_q)
|
123 |
+
name = "model.blocks.%d.self_attn.self_attn.k_proj.weight" % player
|
124 |
+
new_state[name] = torch.tensor(state_k)
|
125 |
+
name = "model.blocks.%d.self_attn.self_attn.v_proj.weight" % player
|
126 |
+
new_state[name] = torch.tensor(state_v)
|
127 |
+
elif key_name.endswith("/o/kernel"):
|
128 |
+
name = "model.blocks.%d.self_attn.self_attn.out_proj.weight" % player
|
129 |
+
state = (
|
130 |
+
vnp.reshape([vnp.shape[0] * vnp.shape[1], vnp.shape[2]]).transpose([1, 0]).copy()
|
131 |
+
) # Mesh-Tensorflow is a diagonal matrix
|
132 |
+
new_state[name] = torch.tensor(state)
|
133 |
+
elif key_name.startswith("model/an"):
|
134 |
+
player = int(key_name[8:].split("/")[0])
|
135 |
+
if key_name.endswith("/b"):
|
136 |
+
name = "model.blocks.%d.self_attn.norm.bias" % player
|
137 |
+
state = vnp.copy() # same because it is one dimensional
|
138 |
+
new_state[name] = torch.tensor(state)
|
139 |
+
elif key_name.endswith("/g"):
|
140 |
+
name = "model.blocks.%d.self_attn.norm.weight" % player
|
141 |
+
state = vnp.copy() # same because it is one dimensional
|
142 |
+
new_state[name] = torch.tensor(state)
|
143 |
+
elif (
|
144 |
+
key_name.startswith("model/wte")
|
145 |
+
or key_name.startswith("model/wpe")
|
146 |
+
or key_name.startswith("model/ete")
|
147 |
+
):
|
148 |
+
nlayer = {"wte": "embed_tokens", "wpe": "position_embeddings", "ete": "extra_position_embeddings"}[
|
149 |
+
key_name[-3:]
|
150 |
+
]
|
151 |
+
name = "model.%s.weight" % nlayer
|
152 |
+
state = vnp.copy() # same in embedded
|
153 |
+
new_state[name] = torch.tensor(state)
|
154 |
+
if key_name.startswith("model/wte"):
|
155 |
+
name = "lm_head.weight"
|
156 |
+
state = vnp.copy() # same in embedded
|
157 |
+
new_state[name] = torch.tensor(state)
|
158 |
+
elif key_name.startswith("model/wob"):
|
159 |
+
name = "final_logits_bias"
|
160 |
+
state = vnp.copy() # same in embedded
|
161 |
+
state = state.reshape((1, -1))
|
162 |
+
new_state[name] = torch.tensor(state)
|
163 |
+
elif key_name == "model/dense/kernel":
|
164 |
+
name = "model.last_project.weight"
|
165 |
+
state = vnp.transpose([1, 0]).copy() # Mesh-Tensorflow is a diagonal matrix
|
166 |
+
new_state[name] = torch.tensor(state)
|
167 |
+
elif key_name == "model/dense_1/bias":
|
168 |
+
name = "model.last_project.bias"
|
169 |
+
state = vnp.copy() # same because it is one dimensional
|
170 |
+
new_state[name] = torch.tensor(state)
|
171 |
+
torch.save(new_state, args.output)
|
172 |
+
|
173 |
+
|
174 |
+
if __name__ == "__main__":
|
175 |
+
parser = argparse.ArgumentParser(
|
176 |
+
description="model converter.", formatter_class=argparse.ArgumentDefaultsHelpFormatter
|
177 |
+
)
|
178 |
+
parser.add_argument("--tf_model_dir", metavar="PATH", type=str, required=True, help="import model")
|
179 |
+
parser.add_argument("--output", metavar="PATH", type=str, required=True, help="output model")
|
180 |
+
args = parser.parse_args()
|
181 |
+
convert_tf_gptsan_to_pt(args)
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/modeling_gptsan_japanese.py
ADDED
@@ -0,0 +1,1343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Toshiyuki Sakamoto(tanreinama) and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch GPTSANJapanese model."""
|
16 |
+
|
17 |
+
|
18 |
+
import copy
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
|
24 |
+
from ...activations import ACT2FN
|
25 |
+
from ...modeling_outputs import MoECausalLMOutputWithPast, MoEModelOutputWithPastAndCrossAttentions
|
26 |
+
from ...modeling_utils import PreTrainedModel
|
27 |
+
from ...utils import (
|
28 |
+
DUMMY_INPUTS,
|
29 |
+
DUMMY_MASK,
|
30 |
+
add_start_docstrings,
|
31 |
+
add_start_docstrings_to_model_forward,
|
32 |
+
is_torch_fx_proxy,
|
33 |
+
logging,
|
34 |
+
)
|
35 |
+
from .configuration_gptsan_japanese import GPTSanJapaneseConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "GPTSanJapaneseConfig"
|
41 |
+
_CHECKPOINT_FOR_DOC = "Tanrei/GPTSAN-japanese"
|
42 |
+
|
43 |
+
####################################################
|
44 |
+
# This dict contains ids and associated url
|
45 |
+
# for the pretrained weights provided with the models
|
46 |
+
####################################################
|
47 |
+
|
48 |
+
from ..deprecated._archive_maps import GPTSAN_JAPANESE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
49 |
+
|
50 |
+
|
51 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.router_z_loss_func
|
52 |
+
def router_z_loss_func(router_logits: torch.Tensor) -> float:
|
53 |
+
r"""
|
54 |
+
Compute the router z-loss implemented in PyTorch.
|
55 |
+
|
56 |
+
The router z-loss was introduced in [Designing Effective Sparse Expert Models](https://arxiv.org/abs/2202.08906).
|
57 |
+
It encourages router logits to remain small in an effort to improve stability.
|
58 |
+
|
59 |
+
Args:
|
60 |
+
router_logits (`float`):
|
61 |
+
Input logits of shape [batch_size, sequence_length, num_experts]
|
62 |
+
|
63 |
+
Returns:
|
64 |
+
Scalar router z-loss.
|
65 |
+
"""
|
66 |
+
num_groups, tokens_per_group, _ = router_logits.shape
|
67 |
+
log_z = torch.logsumexp(router_logits, dim=-1)
|
68 |
+
z_loss = log_z**2
|
69 |
+
return torch.sum(z_loss) / (num_groups * tokens_per_group)
|
70 |
+
|
71 |
+
|
72 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.load_balancing_loss_func
|
73 |
+
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
|
74 |
+
r"""
|
75 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
76 |
+
|
77 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
78 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
79 |
+
experts is too unbalanced.
|
80 |
+
|
81 |
+
Args:
|
82 |
+
router_probs (`torch.Tensor`):
|
83 |
+
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts].
|
84 |
+
expert_indices (`torch.Tensor`):
|
85 |
+
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token.
|
86 |
+
|
87 |
+
Returns:
|
88 |
+
The auxiliary loss.
|
89 |
+
"""
|
90 |
+
num_experts = router_probs.shape[-1]
|
91 |
+
|
92 |
+
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
93 |
+
if expert_indices.dtype != torch.int64:
|
94 |
+
expert_indices = expert_indices.to(torch.int64)
|
95 |
+
|
96 |
+
if len(expert_indices.shape) == 2:
|
97 |
+
expert_indices = expert_indices.unsqueeze(2)
|
98 |
+
|
99 |
+
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
|
100 |
+
|
101 |
+
# For a given token, determine if it was routed to a given expert.
|
102 |
+
expert_mask = torch.max(expert_mask, axis=-2).values
|
103 |
+
|
104 |
+
# cast to float32 otherwise mean will fail
|
105 |
+
expert_mask = expert_mask.to(torch.float32)
|
106 |
+
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
107 |
+
|
108 |
+
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2)
|
109 |
+
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
|
110 |
+
|
111 |
+
|
112 |
+
class GPTSanJapaneseDenseActDense(nn.Module):
|
113 |
+
"""
|
114 |
+
FFN Layer for Switch Transformer and Extra layers
|
115 |
+
|
116 |
+
GPTSAN can mix Switch Transformer layers and normal Transformer layers This class is used as Expert in Switch
|
117 |
+
Transformer layers and as FFN in regular Transformer layers. RELU is used in the Switch Transformer layer, and
|
118 |
+
Swish is used in the normal Transformer layer, so there is a choice of which is used in the argument.
|
119 |
+
|
120 |
+
"""
|
121 |
+
|
122 |
+
def __init__(self, config: GPTSanJapaneseConfig, ext_layer=False):
|
123 |
+
super().__init__()
|
124 |
+
d_inter = config.d_ext if ext_layer else config.d_ff
|
125 |
+
self.wi = nn.Linear(config.d_model, d_inter, bias=ext_layer)
|
126 |
+
self.wo = nn.Linear(d_inter, config.d_model, bias=ext_layer)
|
127 |
+
self.dropout = nn.Identity() if ext_layer else nn.Dropout(config.dropout_rate)
|
128 |
+
self.act = ACT2FN["swish" if ext_layer else "relu"]
|
129 |
+
|
130 |
+
def forward(self, hidden_states):
|
131 |
+
r"""
|
132 |
+
Args:
|
133 |
+
hidden_states (`torch.Tensor`) :
|
134 |
+
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
|
135 |
+
Returns:
|
136 |
+
torch.Tensor[num_groups, tokens_per_group, hidden_dim]
|
137 |
+
|
138 |
+
"""
|
139 |
+
hidden_states = self.wi(hidden_states)
|
140 |
+
hidden_states = self.act(hidden_states)
|
141 |
+
hidden_states = self.dropout(hidden_states)
|
142 |
+
hidden_states = self.wo(hidden_states)
|
143 |
+
return hidden_states
|
144 |
+
|
145 |
+
|
146 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersTop1Router with SwitchTransformers->GPTSanJapanese
|
147 |
+
class GPTSanJapaneseTop1Router(nn.Module):
|
148 |
+
"""
|
149 |
+
Router using tokens choose top-1 experts assignment.
|
150 |
+
|
151 |
+
This router uses the same mechanism as in Switch Transformer (https://arxiv.org/abs/2101.03961) and V-MoE
|
152 |
+
(https://arxiv.org/abs/2106.05974): tokens choose their top experts. Items are sorted by router_probs and then
|
153 |
+
routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee that each
|
154 |
+
token is processed by an expert**, or that each expert receives at least one token.
|
155 |
+
|
156 |
+
"""
|
157 |
+
|
158 |
+
def __init__(self, config: GPTSanJapaneseConfig):
|
159 |
+
super().__init__()
|
160 |
+
self.num_experts = config.num_experts
|
161 |
+
self.expert_capacity = config.expert_capacity
|
162 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
|
163 |
+
self.jitter_noise = config.router_jitter_noise
|
164 |
+
self.ignore_padding_tokens = config.router_ignore_padding_tokens
|
165 |
+
self.dtype = getattr(torch, config.router_dtype)
|
166 |
+
|
167 |
+
def _compute_router_probabilities(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
|
168 |
+
r"""
|
169 |
+
Computes router probabilities from input hidden states.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
hidden_states (`torch.Tensor`):
|
173 |
+
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
|
174 |
+
Returns:
|
175 |
+
router_probabilities (`torch.Tensor`):
|
176 |
+
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
|
177 |
+
token and expert. Used for routing tokens to experts.
|
178 |
+
router_logits (`torch.Tensor`):
|
179 |
+
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
|
180 |
+
This is used later for computing router z-loss.
|
181 |
+
"""
|
182 |
+
# float32 is used to ensure stability. See the discussion of "selective precision" in
|
183 |
+
# https://arxiv.org/abs/2101.03961.
|
184 |
+
# We also store the previous dtype to cast back the output to the previous dtype
|
185 |
+
self.input_dtype = hidden_states.dtype
|
186 |
+
hidden_states = hidden_states.to(self.dtype)
|
187 |
+
|
188 |
+
if self.training and self.jitter_noise > 0:
|
189 |
+
# Multiply the token inputs by the uniform distribution - adding some noise
|
190 |
+
hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.jitter_noise, 1.0 + self.jitter_noise)
|
191 |
+
|
192 |
+
# Shape: [num_groups, tokens_per_group, num_experts]
|
193 |
+
self._cast_classifier()
|
194 |
+
router_logits = self.classifier(hidden_states)
|
195 |
+
|
196 |
+
# Apply Softmax and cast back to the original `dtype`
|
197 |
+
router_probabilities = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(self.input_dtype)
|
198 |
+
return router_probabilities, router_logits
|
199 |
+
|
200 |
+
def _cast_classifier(self):
|
201 |
+
r"""
|
202 |
+
`bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an
|
203 |
+
instance of the `Linear8bitLt` class by checking special attributes.
|
204 |
+
"""
|
205 |
+
if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")):
|
206 |
+
self.classifier = self.classifier.to(self.dtype)
|
207 |
+
|
208 |
+
def forward(self, hidden_states: torch.Tensor) -> Tuple:
|
209 |
+
r"""
|
210 |
+
Generic forward function for every Router class. Each Router expects to have the same input hidden states
|
211 |
+
(`hidden_states`) corresponding to the hidden states for each token, the `expert_capacity` corresponding to the
|
212 |
+
number of tokens the Router will send to each expert, some Routers can send up to few tokens to each expert.
|
213 |
+
|
214 |
+
Each Router works as the following: it expects the hidden states for each token, gets the `router_probs` and
|
215 |
+
`router_logits` from the `router_weights`. This will assign for each token, the raw probability to be assigned
|
216 |
+
to an expert. Then each Router class will have to define its own `_compute_routing_instructions`.
|
217 |
+
|
218 |
+
Args:
|
219 |
+
hidden_states (`torch.Tensor`) :
|
220 |
+
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
|
221 |
+
Returns:
|
222 |
+
Tuple[`torch.Tensor`, `torch.Tensor`, `torch.Tensor`] Tuple containing the expert index, the router probs
|
223 |
+
and the router logits. The router probabilities and logits are required to compute the loss.
|
224 |
+
"""
|
225 |
+
router_probs, router_logits = self._compute_router_probabilities(hidden_states)
|
226 |
+
|
227 |
+
expert_index = torch.argmax(router_probs, dim=-1)
|
228 |
+
expert_index = torch.nn.functional.one_hot(expert_index, num_classes=self.num_experts)
|
229 |
+
|
230 |
+
# Mask tokens outside expert capacity. Sum over each sequence
|
231 |
+
token_priority = torch.cumsum(expert_index, dim=-2)
|
232 |
+
# mask if the token routed to to the expert will overflow
|
233 |
+
expert_capacity_mask = token_priority <= self.expert_capacity
|
234 |
+
expert_index = expert_index * expert_capacity_mask
|
235 |
+
|
236 |
+
router_probs = torch.max(router_probs, dim=-1).values.unsqueeze(-1)
|
237 |
+
return expert_index, router_probs, router_logits
|
238 |
+
|
239 |
+
|
240 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersSparseMLP with SwitchTransformers->GPTSanJapanese
|
241 |
+
class GPTSanJapaneseSparseMLP(nn.Module):
|
242 |
+
r"""
|
243 |
+
Implementation of the Switch Transformers Sparse MLP module.
|
244 |
+
"""
|
245 |
+
|
246 |
+
def __init__(self, config: GPTSanJapaneseConfig, expert_class: nn.Module = GPTSanJapaneseDenseActDense):
|
247 |
+
super().__init__()
|
248 |
+
# Step 1: Get the correct router according to its class
|
249 |
+
self.router = GPTSanJapaneseTop1Router(config)
|
250 |
+
|
251 |
+
# Step 2: Get the experts
|
252 |
+
self.experts = nn.ModuleDict()
|
253 |
+
for idx in range(config.num_experts):
|
254 |
+
self.experts[f"expert_{idx}"] = expert_class(config)
|
255 |
+
|
256 |
+
def forward(self, hidden_states):
|
257 |
+
r"""
|
258 |
+
Hold on, this will be slightly tricky to understand In the correct order, a MoE layer does the following:
|
259 |
+
|
260 |
+
1- Gets the `router_mask` from the router. The shape of the mask is `(batch_size, sequence_length, num_expert)`
|
261 |
+
and corresponds to the argmax of the `router_probs`. The probabilities are needed in the computation of the
|
262 |
+
hidden states : they are broadcasted to the hidden states values (can be interpreted as a scaling factor).
|
263 |
+
|
264 |
+
2- Dispatch the tokens to its associated experts. We do a classic for loop over the experts and assign for each
|
265 |
+
expert the corresponding hidden states.
|
266 |
+
|
267 |
+
"""
|
268 |
+
# Step 1: Get the router_mask from the router as wel as the probabilities
|
269 |
+
router_mask, router_probs, router_logits = self.router(hidden_states)
|
270 |
+
expert_index = torch.argmax(router_mask, dim=-1)
|
271 |
+
|
272 |
+
# The routers introduced might not always map all the tokens, to a router, which means that some hidden states
|
273 |
+
# can be unchanged from one layer to another. That is why the hidden states are cloned before updating only the seleced ones.
|
274 |
+
|
275 |
+
next_states = hidden_states.clone()
|
276 |
+
for idx, expert in enumerate(self.experts.values()):
|
277 |
+
token_indices = router_mask[:, :, idx].bool()
|
278 |
+
next_states[token_indices] = expert(hidden_states[token_indices]).to(next_states.dtype)
|
279 |
+
|
280 |
+
hidden_states = router_probs * next_states
|
281 |
+
return hidden_states, (router_logits, expert_index)
|
282 |
+
|
283 |
+
|
284 |
+
class GPTSanJapaneseLayerSparseFF(nn.Module):
|
285 |
+
r"""
|
286 |
+
Switch Transformers Feed Forward layer module. This is a wrapper around the Mixture of Experts module.
|
287 |
+
|
288 |
+
Parameters:
|
289 |
+
config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model.
|
290 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
291 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
292 |
+
"""
|
293 |
+
|
294 |
+
def __init__(self, config: GPTSanJapaneseConfig):
|
295 |
+
super().__init__()
|
296 |
+
self.mlp = GPTSanJapaneseSparseMLP(config)
|
297 |
+
self.soft_bypass_mlp = nn.Linear(config.d_model, config.d_model, bias=False)
|
298 |
+
self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
299 |
+
|
300 |
+
def forward(self, hidden_states, output_router_logits):
|
301 |
+
r"""
|
302 |
+
Args:
|
303 |
+
hidden_states (`torch.Tensor`) :
|
304 |
+
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
|
305 |
+
output_router_logits (`bool`) :
|
306 |
+
output experts router output.
|
307 |
+
Returns:
|
308 |
+
torch.Tensor[num_groups, tokens_per_group, hidden_dim]
|
309 |
+
|
310 |
+
"""
|
311 |
+
forwarded_states, router_tuple = self.mlp(hidden_states)
|
312 |
+
forwarded_states += torch.tanh(self.soft_bypass_mlp(hidden_states))
|
313 |
+
output = hidden_states + self.norm(forwarded_states)
|
314 |
+
|
315 |
+
if output_router_logits and router_tuple is not None:
|
316 |
+
return output, router_tuple
|
317 |
+
else:
|
318 |
+
return output
|
319 |
+
|
320 |
+
|
321 |
+
class GPTSanJapaneseLayerDenseFF(nn.Module):
|
322 |
+
r"""
|
323 |
+
Extra Transformers Feed Forward layer module.
|
324 |
+
|
325 |
+
Parameters:
|
326 |
+
config : ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model.
|
327 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
328 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
329 |
+
"""
|
330 |
+
|
331 |
+
def __init__(self, config: GPTSanJapaneseConfig):
|
332 |
+
super().__init__()
|
333 |
+
# Check if it is a sparse layer, if not then it is a dense layer
|
334 |
+
self.mlp = GPTSanJapaneseDenseActDense(config, ext_layer=True)
|
335 |
+
self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
336 |
+
|
337 |
+
def forward(self, hidden_states):
|
338 |
+
r"""
|
339 |
+
Args:
|
340 |
+
hidden_states (`torch.Tensor`) :
|
341 |
+
[num_groups, tokens_per_group, hidden_dim] inputs to send to experts.
|
342 |
+
Returns:
|
343 |
+
torch.Tensor[num_groups, tokens_per_group, hidden_dim]
|
344 |
+
|
345 |
+
"""
|
346 |
+
forwarded_states = self.mlp(hidden_states)
|
347 |
+
output = hidden_states + self.norm(forwarded_states)
|
348 |
+
return output
|
349 |
+
|
350 |
+
|
351 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->GPTSanJapanese
|
352 |
+
class GPTSanJapaneseAttention(nn.Module):
|
353 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
354 |
+
|
355 |
+
def __init__(
|
356 |
+
self,
|
357 |
+
embed_dim: int,
|
358 |
+
num_heads: int,
|
359 |
+
dropout: float = 0.0,
|
360 |
+
is_decoder: bool = False,
|
361 |
+
bias: bool = True,
|
362 |
+
is_causal: bool = False,
|
363 |
+
config: Optional[GPTSanJapaneseConfig] = None,
|
364 |
+
):
|
365 |
+
super().__init__()
|
366 |
+
self.embed_dim = embed_dim
|
367 |
+
self.num_heads = num_heads
|
368 |
+
self.dropout = dropout
|
369 |
+
self.head_dim = embed_dim // num_heads
|
370 |
+
self.config = config
|
371 |
+
|
372 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
373 |
+
raise ValueError(
|
374 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
375 |
+
f" and `num_heads`: {num_heads})."
|
376 |
+
)
|
377 |
+
self.scaling = self.head_dim**-0.5
|
378 |
+
self.is_decoder = is_decoder
|
379 |
+
self.is_causal = is_causal
|
380 |
+
|
381 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
382 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
383 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
384 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
385 |
+
|
386 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
387 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
388 |
+
|
389 |
+
def forward(
|
390 |
+
self,
|
391 |
+
hidden_states: torch.Tensor,
|
392 |
+
key_value_states: Optional[torch.Tensor] = None,
|
393 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
394 |
+
attention_mask: Optional[torch.Tensor] = None,
|
395 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
396 |
+
output_attentions: bool = False,
|
397 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
398 |
+
"""Input shape: Batch x Time x Channel"""
|
399 |
+
|
400 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
401 |
+
# for the decoder
|
402 |
+
is_cross_attention = key_value_states is not None
|
403 |
+
|
404 |
+
bsz, tgt_len, _ = hidden_states.size()
|
405 |
+
|
406 |
+
# get query proj
|
407 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
408 |
+
# get key, value proj
|
409 |
+
# `past_key_value[0].shape[2] == key_value_states.shape[1]`
|
410 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
411 |
+
# the provided `key_value_states` to support prefix tuning
|
412 |
+
if (
|
413 |
+
is_cross_attention
|
414 |
+
and past_key_value is not None
|
415 |
+
and past_key_value[0].shape[2] == key_value_states.shape[1]
|
416 |
+
):
|
417 |
+
# reuse k,v, cross_attentions
|
418 |
+
key_states = past_key_value[0]
|
419 |
+
value_states = past_key_value[1]
|
420 |
+
elif is_cross_attention:
|
421 |
+
# cross_attentions
|
422 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
423 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
424 |
+
elif past_key_value is not None:
|
425 |
+
# reuse k, v, self_attention
|
426 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
427 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
428 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
429 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
430 |
+
else:
|
431 |
+
# self_attention
|
432 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
433 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
434 |
+
|
435 |
+
if self.is_decoder:
|
436 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
437 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
438 |
+
# key/value_states (first "if" case)
|
439 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
440 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
441 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
442 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
443 |
+
past_key_value = (key_states, value_states)
|
444 |
+
|
445 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
446 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
447 |
+
key_states = key_states.reshape(*proj_shape)
|
448 |
+
value_states = value_states.reshape(*proj_shape)
|
449 |
+
|
450 |
+
src_len = key_states.size(1)
|
451 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
452 |
+
|
453 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
454 |
+
raise ValueError(
|
455 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
456 |
+
f" {attn_weights.size()}"
|
457 |
+
)
|
458 |
+
|
459 |
+
if attention_mask is not None:
|
460 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
461 |
+
raise ValueError(
|
462 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
463 |
+
)
|
464 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
465 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
466 |
+
|
467 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
468 |
+
|
469 |
+
if layer_head_mask is not None:
|
470 |
+
if layer_head_mask.size() != (self.num_heads,):
|
471 |
+
raise ValueError(
|
472 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
473 |
+
f" {layer_head_mask.size()}"
|
474 |
+
)
|
475 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
476 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
477 |
+
|
478 |
+
if output_attentions:
|
479 |
+
# this operation is a bit awkward, but it's required to
|
480 |
+
# make sure that attn_weights keeps its gradient.
|
481 |
+
# In order to do so, attn_weights have to be reshaped
|
482 |
+
# twice and have to be reused in the following
|
483 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
484 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
485 |
+
else:
|
486 |
+
attn_weights_reshaped = None
|
487 |
+
|
488 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
489 |
+
|
490 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
491 |
+
|
492 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
493 |
+
raise ValueError(
|
494 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
495 |
+
f" {attn_output.size()}"
|
496 |
+
)
|
497 |
+
|
498 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
499 |
+
attn_output = attn_output.transpose(1, 2)
|
500 |
+
|
501 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
502 |
+
# partitioned across GPUs when using tensor-parallelism.
|
503 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
504 |
+
|
505 |
+
attn_output = self.out_proj(attn_output)
|
506 |
+
|
507 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
508 |
+
|
509 |
+
|
510 |
+
class GPTSanJapaneseLayerSelfAttention(nn.Module):
|
511 |
+
"""
|
512 |
+
Self Attention and Normalization Unit
|
513 |
+
"""
|
514 |
+
|
515 |
+
def __init__(self, config, has_relative_attention_bias=False):
|
516 |
+
super().__init__()
|
517 |
+
self.self_attn = GPTSanJapaneseAttention(
|
518 |
+
embed_dim=config.d_model,
|
519 |
+
num_heads=config.num_heads,
|
520 |
+
is_decoder=True,
|
521 |
+
bias=has_relative_attention_bias,
|
522 |
+
)
|
523 |
+
self.norm = nn.LayerNorm(config.d_model, eps=config.layer_norm_epsilon)
|
524 |
+
|
525 |
+
def forward(
|
526 |
+
self,
|
527 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
528 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
529 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
530 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
531 |
+
use_cache: Optional[bool] = False,
|
532 |
+
output_attentions: Optional[bool] = False,
|
533 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
534 |
+
r"""
|
535 |
+
Self-attention and normalize block.
|
536 |
+
|
537 |
+
Args:
|
538 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
539 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
540 |
+
if the model is configured as a decoder.
|
541 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
542 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
|
543 |
+
decoding. If `past_key_values` are used, the user can optionally input only the last
|
544 |
+
`decoder_input_ids` (those that don't have their past key value states given to this model) of shape
|
545 |
+
`(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
546 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
547 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
548 |
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
549 |
+
|
550 |
+
- 1 for tokens that are **not masked**,
|
551 |
+
- 0 for tokens that are **masked**.
|
552 |
+
|
553 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
554 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
555 |
+
|
556 |
+
- 1 indicates the head is **not masked**,
|
557 |
+
- 0 indicates the head is **masked**.
|
558 |
+
|
559 |
+
use_cache (`bool`, *optional*):
|
560 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
561 |
+
(see `past_key_values`).
|
562 |
+
output_attentions (`bool`, *optional*):
|
563 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
564 |
+
returned tensors for more detail.
|
565 |
+
Returns:
|
566 |
+
Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...]
|
567 |
+
"""
|
568 |
+
# Self Attention
|
569 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
570 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
571 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
572 |
+
atten_out = self.self_attn(
|
573 |
+
hidden_states=hidden_states,
|
574 |
+
past_key_value=self_attn_past_key_value,
|
575 |
+
attention_mask=(1 - attention_mask) * torch.finfo(hidden_states.dtype).min,
|
576 |
+
layer_head_mask=head_mask,
|
577 |
+
output_attentions=output_attentions,
|
578 |
+
)
|
579 |
+
if output_attentions:
|
580 |
+
attn_weights = (atten_out[1],)
|
581 |
+
else:
|
582 |
+
attn_weights = ()
|
583 |
+
|
584 |
+
attention_output = atten_out[0]
|
585 |
+
|
586 |
+
hidden = hidden_states + self.norm(attention_output)
|
587 |
+
|
588 |
+
if use_cache:
|
589 |
+
outputs = (hidden, atten_out[2]) # hidden, present, (attentions)
|
590 |
+
else:
|
591 |
+
outputs = (hidden,) # hidden, (attentions)
|
592 |
+
|
593 |
+
return outputs + attn_weights
|
594 |
+
|
595 |
+
|
596 |
+
class GPTSanJapaneseBlock(nn.Module):
|
597 |
+
"""
|
598 |
+
Self Attention and FFN Unit
|
599 |
+
"""
|
600 |
+
|
601 |
+
def __init__(self, config, ext_layer=False):
|
602 |
+
super().__init__()
|
603 |
+
self.self_attn = GPTSanJapaneseLayerSelfAttention(config)
|
604 |
+
self.feed_forward = GPTSanJapaneseLayerDenseFF(config) if ext_layer else GPTSanJapaneseLayerSparseFF(config)
|
605 |
+
|
606 |
+
def forward(
|
607 |
+
self,
|
608 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]],
|
609 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
610 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
611 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
612 |
+
use_cache: Optional[bool] = False,
|
613 |
+
output_attentions: Optional[bool] = False,
|
614 |
+
output_router_tuple: Optional[bool] = False,
|
615 |
+
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]], ...]:
|
616 |
+
r"""
|
617 |
+
GPTSAN transformer block.
|
618 |
+
|
619 |
+
Args:
|
620 |
+
hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
621 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
622 |
+
if the model is configured as a decoder.
|
623 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
624 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up
|
625 |
+
decoding. If `past_key_values` are used, the user can optionally input only the last
|
626 |
+
`decoder_input_ids` (those that don't have their past key value states given to this model) of shape
|
627 |
+
`(batch_size, 1)` instead of all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
628 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
629 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
630 |
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
631 |
+
|
632 |
+
- 1 for tokens that are **not masked**,
|
633 |
+
- 0 for tokens that are **masked**.
|
634 |
+
|
635 |
+
head_mask (`numpy.ndarray` of shape `({0})`, `optional):
|
636 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
637 |
+
|
638 |
+
- 1 indicates the head is **not masked**,
|
639 |
+
- 0 indicates the head is **masked**.
|
640 |
+
|
641 |
+
use_cache (`bool`, *optional*):
|
642 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
643 |
+
(see `past_key_values`).
|
644 |
+
output_attentions (`bool`) :
|
645 |
+
output attention probabirities.
|
646 |
+
output_router_tuple:
|
647 |
+
output experts router logits and expert id.
|
648 |
+
Returns:
|
649 |
+
Tuple[torch.Tensor[num_groups, tokens_per_group, hidden_dim],...]
|
650 |
+
"""
|
651 |
+
atten_out = self.self_attn(
|
652 |
+
hidden_states=hidden_states,
|
653 |
+
past_key_value=past_key_value,
|
654 |
+
attention_mask=attention_mask,
|
655 |
+
head_mask=head_mask,
|
656 |
+
use_cache=use_cache,
|
657 |
+
output_attentions=output_attentions,
|
658 |
+
)
|
659 |
+
attention_output = atten_out[0]
|
660 |
+
|
661 |
+
if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF):
|
662 |
+
sparse_out = self.feed_forward(attention_output, output_router_tuple)
|
663 |
+
if output_router_tuple:
|
664 |
+
hidden, router_tuple = sparse_out
|
665 |
+
else:
|
666 |
+
hidden = sparse_out
|
667 |
+
else:
|
668 |
+
hidden = self.feed_forward(attention_output)
|
669 |
+
|
670 |
+
outputs = (hidden,) + atten_out[1:]
|
671 |
+
|
672 |
+
if isinstance(self.feed_forward, GPTSanJapaneseLayerSparseFF) and output_router_tuple:
|
673 |
+
outputs += (router_tuple,)
|
674 |
+
|
675 |
+
return outputs
|
676 |
+
|
677 |
+
|
678 |
+
class GPTSanJapanesePreTrainedModel(PreTrainedModel):
|
679 |
+
"""
|
680 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
681 |
+
models.
|
682 |
+
"""
|
683 |
+
|
684 |
+
config_class = GPTSanJapaneseConfig
|
685 |
+
base_model_prefix = "gptsan_japanese"
|
686 |
+
supports_gradient_checkpointing = False
|
687 |
+
_no_split_modules = ["GPTSanJapaneseBlock"]
|
688 |
+
_skip_keys_device_placement = "past_key_values"
|
689 |
+
|
690 |
+
@property
|
691 |
+
def dummy_inputs(self):
|
692 |
+
input_ids = torch.tensor(DUMMY_INPUTS)
|
693 |
+
input_mask = torch.tensor(DUMMY_MASK)
|
694 |
+
dummy_inputs = {
|
695 |
+
"input_ids": input_ids,
|
696 |
+
"attention_mask": input_mask,
|
697 |
+
}
|
698 |
+
return dummy_inputs
|
699 |
+
|
700 |
+
def _init_weights(self, module):
|
701 |
+
"""Initialize the weights"""
|
702 |
+
factor = self.config.initializer_factor # Used for testing weights initialization
|
703 |
+
if isinstance(module, nn.LayerNorm):
|
704 |
+
module.weight.data.fill_(factor * 1.0)
|
705 |
+
module.bias.data.zero_()
|
706 |
+
elif isinstance(module, nn.Linear):
|
707 |
+
module.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
708 |
+
if hasattr(module, "bias") and module.bias is not None:
|
709 |
+
module.bias.data.zero_()
|
710 |
+
elif isinstance(module, nn.Embedding):
|
711 |
+
module.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
712 |
+
elif isinstance(module, GPTSanJapaneseModel):
|
713 |
+
# Mesh TensorFlow embeddings initialization
|
714 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
715 |
+
module.embed_tokens.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
716 |
+
module.position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
717 |
+
if hasattr(module, "extra_position_embeddings") and module.extra_position_embeddings is not None:
|
718 |
+
module.extra_position_embeddings.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
719 |
+
elif isinstance(module, (GPTSanJapaneseModel, GPTSanJapaneseForConditionalGeneration)):
|
720 |
+
# Mesh TensorFlow embeddings initialization
|
721 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624
|
722 |
+
module.final_logits_bias.data.normal_(mean=0.0, std=factor * 1.0)
|
723 |
+
if hasattr(module, "lm_head") and not self.config.tie_word_embeddings:
|
724 |
+
module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0)
|
725 |
+
elif isinstance(module, GPTSanJapaneseDenseActDense):
|
726 |
+
# Mesh TensorFlow FF initialization
|
727 |
+
# See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56
|
728 |
+
# and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89
|
729 |
+
module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5))
|
730 |
+
if hasattr(module.wi, "bias") and module.wi.bias is not None:
|
731 |
+
module.wi.bias.data.zero_()
|
732 |
+
module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5))
|
733 |
+
if hasattr(module.wo, "bias") and module.wo.bias is not None:
|
734 |
+
module.wo.bias.data.zero_()
|
735 |
+
elif isinstance(module, GPTSanJapaneseAttention):
|
736 |
+
# Multi-headed attention
|
737 |
+
d_model = self.config.d_model
|
738 |
+
key_value_proj_dim = self.config.d_model
|
739 |
+
n_heads = self.config.num_heads
|
740 |
+
module.k_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
741 |
+
module.v_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
742 |
+
module.q_proj.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5))
|
743 |
+
module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5))
|
744 |
+
elif isinstance(module, GPTSanJapaneseSparseMLP):
|
745 |
+
# Mesh TensorFlow attention initialization to avoid scaling before softmax
|
746 |
+
# See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136
|
747 |
+
d_model = self.config.d_model
|
748 |
+
key_value_proj_dim = self.config.d_model
|
749 |
+
n_heads = self.config.num_heads
|
750 |
+
module.router.classifier.weight.data.normal_(mean=0.0, std=factor * 1)
|
751 |
+
for idx in range(self.config.num_experts):
|
752 |
+
module.experts[f"expert_{idx}"].wi.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
753 |
+
module.experts[f"expert_{idx}"].wo.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5))
|
754 |
+
|
755 |
+
# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel._shift_right
|
756 |
+
def _shift_right(self, input_ids):
|
757 |
+
decoder_start_token_id = self.config.decoder_start_token_id
|
758 |
+
pad_token_id = self.config.pad_token_id
|
759 |
+
|
760 |
+
if decoder_start_token_id is None:
|
761 |
+
raise ValueError(
|
762 |
+
"self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. "
|
763 |
+
"See T5 docs for more information."
|
764 |
+
)
|
765 |
+
|
766 |
+
# shift inputs to the right
|
767 |
+
if is_torch_fx_proxy(input_ids):
|
768 |
+
# Item assignment is not supported natively for proxies.
|
769 |
+
shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id)
|
770 |
+
shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1)
|
771 |
+
else:
|
772 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
773 |
+
shifted_input_ids[..., 1:] = input_ids[..., :-1].clone()
|
774 |
+
shifted_input_ids[..., 0] = decoder_start_token_id
|
775 |
+
|
776 |
+
if pad_token_id is None:
|
777 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
778 |
+
# replace possible -100 values in labels by `pad_token_id`
|
779 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
780 |
+
|
781 |
+
return shifted_input_ids
|
782 |
+
|
783 |
+
|
784 |
+
GPTSAN_JAPANESE_START_DOCSTRING = r"""
|
785 |
+
|
786 |
+
The [GPTSAN-japanese](https://github.com/tanreinama/GPTSAN) model was proposed in General-purpose Swich transformer
|
787 |
+
based Japanese language model
|
788 |
+
|
789 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
790 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
791 |
+
and behavior.
|
792 |
+
|
793 |
+
Parameters:
|
794 |
+
config ([`GPTSanJapaneseConfig`]): Model configuration class with all the parameters of the model.
|
795 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
796 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
797 |
+
"""
|
798 |
+
|
799 |
+
GPTSAN_JAPANESE_INPUTS_DOCSTRING = r"""
|
800 |
+
Args:
|
801 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
802 |
+
Indices of input sequence tokens in the vocabulary. GPTSAN-japanese is a model that generates sentence
|
803 |
+
continuations or predicts tokens at mask positions. Special tokens required for inputs to the model are
|
804 |
+
automatically appended.
|
805 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
806 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
807 |
+
|
808 |
+
- 1 for tokens that are **not masked**,
|
809 |
+
- 0 for tokens that are **masked**.
|
810 |
+
|
811 |
+
[What are attention masks?](../glossary#attention-mask)
|
812 |
+
token_type_ids (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
813 |
+
An input that masks the Prefix part in the Prefix-LM input. Mask values selected in `[0, 1]`:
|
814 |
+
|
815 |
+
- 1 for tokens that are **prefix** input,
|
816 |
+
- 0 for tokens that are **not-prefix** input.
|
817 |
+
spout (`torch.Tensor` of shape `(batch_size, config.d_spout)`):
|
818 |
+
This vector is transformed through an 8-layer FFN and can be used instead of `past_key_values`.
|
819 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
|
820 |
+
Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
|
821 |
+
|
822 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
823 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
824 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
825 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
826 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
827 |
+
use_cache (`bool`, *optional*):
|
828 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
829 |
+
`past_key_values`).
|
830 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
831 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
832 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
833 |
+
model's internal embedding lookup matrix.
|
834 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
835 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
836 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
837 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
838 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
839 |
+
output_attentions (`bool`, *optional*):
|
840 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
841 |
+
tensors for more detail.
|
842 |
+
output_hidden_states (`bool`, *optional*):
|
843 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
844 |
+
more detail.
|
845 |
+
return_dict (`bool`, *optional*):
|
846 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
847 |
+
router_logits (`tuple(torch.FloatTensor)`, *optional*, returned when `output_router_logits=True` is passed or when `config.add_router_probs=True`):
|
848 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, sequence_length, num_experts)`.
|
849 |
+
Router logits of the decoder model, useful to compute the auxiliary loss for Mixture of Experts models.
|
850 |
+
"""
|
851 |
+
|
852 |
+
|
853 |
+
@add_start_docstrings(
|
854 |
+
"The bare GPTSAN-japanese Model transformer outputting raw hidden-states without any specific head on top.",
|
855 |
+
GPTSAN_JAPANESE_START_DOCSTRING,
|
856 |
+
)
|
857 |
+
class GPTSanJapaneseModel(GPTSanJapanesePreTrainedModel):
|
858 |
+
def __init__(self, config: GPTSanJapaneseConfig):
|
859 |
+
super().__init__(config)
|
860 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)
|
861 |
+
self.config = copy.deepcopy(config)
|
862 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model)
|
863 |
+
self.last_project = nn.Linear(config.d_model, config.d_model, bias=True)
|
864 |
+
self.act = ACT2FN["swish"]
|
865 |
+
|
866 |
+
self.blocks = torch.nn.ModuleList([])
|
867 |
+
for _ in range(config.num_switch_layers):
|
868 |
+
self.blocks.append(GPTSanJapaneseBlock(config))
|
869 |
+
for _ in range(config.num_ext_layers):
|
870 |
+
self.blocks.append(GPTSanJapaneseBlock(config, ext_layer=True))
|
871 |
+
|
872 |
+
if config.num_ext_layers > 0:
|
873 |
+
self.extra_position_embeddings = nn.Embedding(config.max_position_embeddings, config.d_model)
|
874 |
+
|
875 |
+
if config.d_spout:
|
876 |
+
spouts = []
|
877 |
+
for _ in range(8):
|
878 |
+
spouts.append(nn.Linear(config.d_spout, config.d_spout, bias=False))
|
879 |
+
spouts.append(nn.Tanh())
|
880 |
+
spouts.append(nn.Linear(config.d_spout, config.num_layers * 2 * config.d_model, bias=False))
|
881 |
+
self.spout = nn.Sequential(*spouts)
|
882 |
+
|
883 |
+
self.post_init()
|
884 |
+
|
885 |
+
def get_input_embeddings(self):
|
886 |
+
return self.embed_tokens
|
887 |
+
|
888 |
+
def set_input_embeddings(self, new_embeddings):
|
889 |
+
self.embed_tokens = new_embeddings
|
890 |
+
|
891 |
+
@add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING)
|
892 |
+
def forward(
|
893 |
+
self,
|
894 |
+
input_ids: Optional[torch.LongTensor] = None,
|
895 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
896 |
+
token_type_ids: Optional[torch.FloatTensor] = None,
|
897 |
+
spout: Optional[torch.FloatTensor] = None,
|
898 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
899 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
900 |
+
use_cache: Optional[bool] = False,
|
901 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
902 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
903 |
+
output_attentions: Optional[bool] = None,
|
904 |
+
output_hidden_states: Optional[bool] = None,
|
905 |
+
return_dict: Optional[bool] = None,
|
906 |
+
output_router_logits: Optional[bool] = None,
|
907 |
+
num_precontext: Optional[torch.LongTensor] = None,
|
908 |
+
) -> Union[MoEModelOutputWithPastAndCrossAttentions, Tuple[torch.FloatTensor]]:
|
909 |
+
r"""
|
910 |
+
num_precontext (`torch.LongTensor` of shape `(batch_size,1)`):
|
911 |
+
length of `hybrid` input tokens in the input. Tokens up to this length refer to both front and back like
|
912 |
+
BERT, tokens after that refer only to front like GPT. see also:
|
913 |
+
https://github.com/tanreinama/GPTSAN/blob/main/report/model.md
|
914 |
+
|
915 |
+
Returns:
|
916 |
+
`MoEModelOutputWithPastAndCrossAttentions` or `tuple` if `return_dict` returns
|
917 |
+
MoEModelOutputWithPastAndCrossAttentions insted of tuple
|
918 |
+
"""
|
919 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
920 |
+
device = self.position_embeddings.weight.device
|
921 |
+
if input_ids is None:
|
922 |
+
input_ids = torch.zeros([1, 1]).int().to(device) # dummy for input_ids was None
|
923 |
+
num_pasts_contexts = 0
|
924 |
+
num_batch = input_ids.shape[0]
|
925 |
+
pasts_or_spout_value = None
|
926 |
+
if past_key_values is not None:
|
927 |
+
num_pasts_contexts = past_key_values[0][0].shape[2]
|
928 |
+
elif self.config.d_spout and spout is not None:
|
929 |
+
# `spout` is a special input vector specific to GPTSAN
|
930 |
+
# This controls the output by projecting embedded information such as the class of sentences during learning.
|
931 |
+
# It should passed instead of the first past_key_value.
|
932 |
+
# See the original GPTSAN repository for details
|
933 |
+
num_pasts_contexts += 1
|
934 |
+
|
935 |
+
# If there is an attention_mask, increase first one for spout
|
936 |
+
if self.config.d_spout and spout is not None and attention_mask is not None:
|
937 |
+
attention_mask_with_spout = torch.ones(num_batch, attention_mask.shape[1] + 1, device=device)
|
938 |
+
attention_mask_with_spout[:, 1:] -= 1 - attention_mask # 1st token should be spout
|
939 |
+
attention_mask = attention_mask_with_spout # update attention_mask
|
940 |
+
|
941 |
+
if num_precontext is not None:
|
942 |
+
# `num_precontext` is the number of tokens that refer to each other in prefix-lm
|
943 |
+
# created per batch, so dimension of num_precontext should be [batch, 1]
|
944 |
+
if not (
|
945 |
+
len(num_precontext.shape) == 2 and num_precontext.shape[1] == 1
|
946 |
+
): # num_precontext Should be [batch,1]
|
947 |
+
raise ValueError("num_precontext should be [batch, 1] size.")
|
948 |
+
num_precontext = torch.reshape(num_precontext, [-1])
|
949 |
+
else:
|
950 |
+
num_precontext = torch.zeros([num_batch]).int().to(device)
|
951 |
+
|
952 |
+
num_input_contexts = input_ids.shape[1]
|
953 |
+
num_output_contexts = num_input_contexts + num_pasts_contexts
|
954 |
+
|
955 |
+
hidden_states = self.embed_tokens(input_ids)
|
956 |
+
|
957 |
+
if past_key_values is not None:
|
958 |
+
pasts_or_spout_value = past_key_values
|
959 |
+
elif self.config.d_spout and spout is not None:
|
960 |
+
# Make vector from `spout` of GPTSAN to the same shape as past_key_values
|
961 |
+
pasts_or_spout_value = self.spout(spout) # projecting `spout` vector
|
962 |
+
pasts_or_spout_value = torch.reshape(
|
963 |
+
pasts_or_spout_value,
|
964 |
+
[
|
965 |
+
num_batch,
|
966 |
+
self.config.num_layers,
|
967 |
+
2,
|
968 |
+
self.config.num_heads,
|
969 |
+
num_pasts_contexts,
|
970 |
+
self.config.d_model // self.config.num_heads,
|
971 |
+
],
|
972 |
+
)
|
973 |
+
pasts_or_spout_value = torch.split(pasts_or_spout_value, [1] * self.config.num_layers, dim=1)
|
974 |
+
# make same shape as past_key_values
|
975 |
+
pasts_or_spout_value = tuple(
|
976 |
+
tuple([b.squeeze(1) for b in torch.split(a.squeeze(1), [1, 1], dim=1)]) for a in pasts_or_spout_value
|
977 |
+
)
|
978 |
+
else:
|
979 |
+
pasts_or_spout_value = [None] * self.config.num_layers
|
980 |
+
|
981 |
+
# Token position considering spout and pasts
|
982 |
+
token_position = torch.arange(num_input_contexts).to(device) + num_pasts_contexts
|
983 |
+
|
984 |
+
if attention_mask is None:
|
985 |
+
attention_mask = torch.ones(num_batch, num_input_contexts, device=device)
|
986 |
+
|
987 |
+
# positions for get position_embeddings
|
988 |
+
gather_position = (
|
989 |
+
(
|
990 |
+
torch.zeros((num_batch, self.config.d_model, num_input_contexts)).to(device)
|
991 |
+
+ token_position.unsqueeze(0)
|
992 |
+
)
|
993 |
+
.transpose(1, 2)
|
994 |
+
.long()
|
995 |
+
)
|
996 |
+
# When padding with padding_side="left", zeros line up on the left side of attention_mask, so position_embeddings is shifted accordingly
|
997 |
+
gather_position -= (1 - attention_mask).argmin(dim=-1).unsqueeze(1).unsqueeze(2)
|
998 |
+
gather_position = torch.clip(gather_position, num_pasts_contexts, self.config.max_position_embeddings - 1)
|
999 |
+
|
1000 |
+
# attention_mask is applied per batch
|
1001 |
+
for i in range(num_batch):
|
1002 |
+
hidden_states[i] += torch.gather(self.position_embeddings.weight, dim=0, index=gather_position[i])
|
1003 |
+
|
1004 |
+
# Create a mask to be used when making the prefix Input length of Prefix-LM variable
|
1005 |
+
causal_mask = (
|
1006 |
+
torch.tril(torch.ones((num_output_contexts, num_output_contexts), dtype=torch.uint8))
|
1007 |
+
.view(1, 1, num_output_contexts, num_output_contexts)
|
1008 |
+
.to(device)
|
1009 |
+
)
|
1010 |
+
prefix_lm_mask = causal_mask[:, :, -num_input_contexts:, :]
|
1011 |
+
if token_type_ids is not None:
|
1012 |
+
token_type_ids = token_type_ids.unsqueeze(1).unsqueeze(2)
|
1013 |
+
prefix_lm_mask = ((prefix_lm_mask + token_type_ids) > 0).float()
|
1014 |
+
# Marge prefix_lm_mask and attention_mask
|
1015 |
+
extended_attention_mask = prefix_lm_mask * attention_mask.unsqueeze(1).unsqueeze(2)
|
1016 |
+
|
1017 |
+
# Prepare head mask if needed
|
1018 |
+
if head_mask is not None:
|
1019 |
+
head_mask = self.get_head_mask(
|
1020 |
+
head_mask, self.config.num_switch_layers + self.config.num_ext_layers
|
1021 |
+
) # n_layer x batch x n_heads x N x N
|
1022 |
+
|
1023 |
+
# outputs
|
1024 |
+
present_key_value_states = () if self.config.use_cache or use_cache else None
|
1025 |
+
all_hidden_states = () if self.config.output_hidden_states or output_hidden_states else None
|
1026 |
+
all_attentions = () if self.config.output_attentions or output_attentions else None
|
1027 |
+
all_router_probs = () if self.config.output_router_logits or output_router_logits else None
|
1028 |
+
|
1029 |
+
for layer, past in enumerate(pasts_or_spout_value):
|
1030 |
+
if layer == self.config.num_switch_layers:
|
1031 |
+
if self.config.num_ext_layers > 0:
|
1032 |
+
# extra_position_embeddings are extra position embeddings that are only created when extending the model with code from the original GPTSAN repository. Not used in the default model.
|
1033 |
+
# However, it is created when you create an additional layer and partially train only that location.
|
1034 |
+
# Therefore, convert_gptsan_tf_checkpoint_to_pytorch.py is used when converting and loading models created in the original GPTSAN repository.
|
1035 |
+
for i in range(num_batch):
|
1036 |
+
hidden_states[i] += torch.gather(
|
1037 |
+
self.extra_position_embeddings.weight, dim=0, index=gather_position[i]
|
1038 |
+
)
|
1039 |
+
|
1040 |
+
output_router_tuple = (
|
1041 |
+
self.config.output_router_logits or output_router_logits
|
1042 |
+
) and layer < self.config.num_switch_layers
|
1043 |
+
block_output = self.blocks[layer](
|
1044 |
+
hidden_states=hidden_states,
|
1045 |
+
past_key_value=past,
|
1046 |
+
attention_mask=extended_attention_mask,
|
1047 |
+
head_mask=head_mask,
|
1048 |
+
use_cache=self.config.use_cache or use_cache,
|
1049 |
+
output_attentions=self.config.output_attentions or output_attentions,
|
1050 |
+
output_router_tuple=output_router_tuple,
|
1051 |
+
)
|
1052 |
+
|
1053 |
+
outpos = 0
|
1054 |
+
hidden_states = block_output[outpos]
|
1055 |
+
if self.config.output_hidden_states or output_hidden_states:
|
1056 |
+
all_hidden_states += (hidden_states,)
|
1057 |
+
if self.config.use_cache or use_cache:
|
1058 |
+
outpos += 1
|
1059 |
+
present = block_output[outpos]
|
1060 |
+
present_key_value_states += (present,)
|
1061 |
+
if self.config.output_attentions or output_attentions:
|
1062 |
+
outpos += 1
|
1063 |
+
attention_probs = block_output[outpos]
|
1064 |
+
all_attentions += (attention_probs,)
|
1065 |
+
if output_router_tuple:
|
1066 |
+
outpos += 1
|
1067 |
+
router_tuple = block_output[outpos]
|
1068 |
+
all_router_probs.append(router_tuple[0])
|
1069 |
+
|
1070 |
+
hidden_states = self.last_project(hidden_states)
|
1071 |
+
hidden_states = self.act(hidden_states)
|
1072 |
+
|
1073 |
+
if self.config.output_hidden_states or output_hidden_states:
|
1074 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
1075 |
+
|
1076 |
+
if not return_dict:
|
1077 |
+
return tuple(
|
1078 |
+
v
|
1079 |
+
for v in [
|
1080 |
+
hidden_states,
|
1081 |
+
present_key_value_states,
|
1082 |
+
all_hidden_states,
|
1083 |
+
all_attentions,
|
1084 |
+
all_router_probs,
|
1085 |
+
]
|
1086 |
+
if v is not None
|
1087 |
+
)
|
1088 |
+
|
1089 |
+
return MoEModelOutputWithPastAndCrossAttentions(
|
1090 |
+
last_hidden_state=hidden_states,
|
1091 |
+
past_key_values=present_key_value_states,
|
1092 |
+
hidden_states=all_hidden_states,
|
1093 |
+
attentions=all_attentions,
|
1094 |
+
router_probs=all_router_probs,
|
1095 |
+
)
|
1096 |
+
|
1097 |
+
|
1098 |
+
@add_start_docstrings(
|
1099 |
+
"The bare GPTSAN-japanese Model with a language modeling head.",
|
1100 |
+
GPTSAN_JAPANESE_START_DOCSTRING,
|
1101 |
+
)
|
1102 |
+
class GPTSanJapaneseForConditionalGeneration(GPTSanJapanesePreTrainedModel):
|
1103 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1104 |
+
|
1105 |
+
def __init__(self, config: GPTSanJapaneseConfig):
|
1106 |
+
super().__init__(config)
|
1107 |
+
self.model = GPTSanJapaneseModel(config)
|
1108 |
+
self.register_buffer("final_logits_bias", torch.zeros([1, config.vocab_size]))
|
1109 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1110 |
+
if not self.config.torchscript:
|
1111 |
+
self.lm_head.weight = self.model.embed_tokens.weight
|
1112 |
+
|
1113 |
+
@add_start_docstrings_to_model_forward(GPTSAN_JAPANESE_INPUTS_DOCSTRING)
|
1114 |
+
def forward(
|
1115 |
+
self,
|
1116 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1117 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
1118 |
+
token_type_ids: Optional[torch.FloatTensor] = None,
|
1119 |
+
spout: Optional[torch.FloatTensor] = None,
|
1120 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1121 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
1122 |
+
use_cache: Optional[bool] = False,
|
1123 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1124 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1125 |
+
output_attentions: Optional[bool] = None,
|
1126 |
+
output_hidden_states: Optional[bool] = None,
|
1127 |
+
return_dict: Optional[bool] = None,
|
1128 |
+
output_router_logits: Optional[bool] = None,
|
1129 |
+
labels: Optional[torch.LongTensor] = None,
|
1130 |
+
) -> Union[Tuple[torch.FloatTensor], MoECausalLMOutputWithPast]:
|
1131 |
+
r"""
|
1132 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1133 |
+
Labels for computing the sequence classification loss. Indices should be in `[-100, 0, ...,
|
1134 |
+
config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for
|
1135 |
+
labels in `[0, ..., config.vocab_size]`
|
1136 |
+
|
1137 |
+
Returns:
|
1138 |
+
`MoECausalLMOutputWithPast` or `tuple` if `return_dict` returns MoECausalLMOutputWithPast insted of tuple
|
1139 |
+
|
1140 |
+
Example:
|
1141 |
+
|
1142 |
+
Text Generation with regular LM Model
|
1143 |
+
```python
|
1144 |
+
>>> from transformers import AutoModel, AutoTokenizer, trainer_utils
|
1145 |
+
|
1146 |
+
>>> device = "cuda"
|
1147 |
+
>>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
|
1148 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
1149 |
+
>>> x_token = tokenizer("織田信長は、", return_tensors="pt")
|
1150 |
+
>>> trainer_utils.set_seed(30)
|
1151 |
+
>>> input_ids = x_token.input_ids.to(device)
|
1152 |
+
>>> gen_token = model.generate(input_ids, max_new_tokens=50)
|
1153 |
+
>>> tokenizer.decode(gen_token[0])
|
1154 |
+
"織田信長は、政治・軍事の中枢まで掌握した政治家であり、日本史上類を見ない驚異的な軍事侵攻を続け..."
|
1155 |
+
```
|
1156 |
+
|
1157 |
+
Text Generation with Prefix-LM Model
|
1158 |
+
```python
|
1159 |
+
>>> from transformers import AutoModel, AutoTokenizer, trainer_utils
|
1160 |
+
|
1161 |
+
>>> device = "cuda"
|
1162 |
+
>>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
|
1163 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
1164 |
+
>>> x_token = tokenizer("", prefix_text="織田信長は、", return_tensors="pt")
|
1165 |
+
>>> trainer_utils.set_seed(30)
|
1166 |
+
>>> input_ids = x_token.input_ids.to(device)
|
1167 |
+
>>> token_type_ids = x_token.token_type_ids.to(device)
|
1168 |
+
>>> gen_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50)
|
1169 |
+
>>> tokenizer.decode(gen_token[0])
|
1170 |
+
"織田信長は、政治・外交で数々の戦果を上げるが、1568年からは、いわゆる本能寺の変で細川晴元に暗殺される..."
|
1171 |
+
```
|
1172 |
+
|
1173 |
+
Simultaneously Text Generation And Masked Language Model
|
1174 |
+
```python
|
1175 |
+
>>> from transformers import AutoModel, AutoTokenizer, trainer_utils
|
1176 |
+
|
1177 |
+
>>> device = "cuda"
|
1178 |
+
>>> model = AutoModel.from_pretrained("Tanrei/GPTSAN-japanese").to(device)
|
1179 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
1180 |
+
>>> masked_sentence = "武田信玄は、<|inputmask|>時代ファンならぜひ押さえ<|inputmask|>きたい名将の一人。"
|
1181 |
+
>>> x_token = tokenizer("", prefix_text=masked_sentence, return_tensors="pt")
|
1182 |
+
>>> trainer_utils.set_seed(30)
|
1183 |
+
>>> input_ids = x_token.input_ids.to(device)
|
1184 |
+
>>> token_type_ids = x_token.token_type_ids.to(device)
|
1185 |
+
>>> out_lm_token = model.generate(input_ids, token_type_ids=token_type_ids, max_new_tokens=50)
|
1186 |
+
>>> out_mlm_token = model(input_ids, token_type_ids=token_type_ids).logits.argmax(axis=-1)
|
1187 |
+
>>> tokenizer.decode(out_mlm_token[0])
|
1188 |
+
"武田信玄は、戦国時代ファンならぜひ押さえておきたい名将の一人。"
|
1189 |
+
|
1190 |
+
>>> tokenizer.decode(out_lm_token[0][input_ids.shape[1] :])
|
1191 |
+
"武田氏の三代に渡った武田家のひとり\n甲斐市に住む、日本史上最大の戦国大名。..."
|
1192 |
+
```"""
|
1193 |
+
SEG_TOKEN = self.config.separator_token_id
|
1194 |
+
use_cache = use_cache or self.config.use_cache
|
1195 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1196 |
+
model_return_dict = True
|
1197 |
+
num_precontext = None
|
1198 |
+
if input_ids is not None:
|
1199 |
+
num_batch = input_ids.shape[0]
|
1200 |
+
num_precontext = torch.zeros([num_batch]).int().to(input_ids.device)
|
1201 |
+
where_separators = torch.where(input_ids == SEG_TOKEN)
|
1202 |
+
num_precontext[where_separators[0]] += where_separators[1]
|
1203 |
+
num_precontext = num_precontext.unsqueeze(1)
|
1204 |
+
|
1205 |
+
outputs = self.model(
|
1206 |
+
input_ids,
|
1207 |
+
attention_mask,
|
1208 |
+
token_type_ids,
|
1209 |
+
spout,
|
1210 |
+
past_key_values,
|
1211 |
+
head_mask,
|
1212 |
+
use_cache,
|
1213 |
+
inputs_embeds,
|
1214 |
+
decoder_inputs_embeds,
|
1215 |
+
output_attentions,
|
1216 |
+
output_hidden_states,
|
1217 |
+
model_return_dict,
|
1218 |
+
output_router_logits,
|
1219 |
+
num_precontext,
|
1220 |
+
)
|
1221 |
+
|
1222 |
+
lm_logits = self.lm_head(outputs[0])
|
1223 |
+
if lm_logits.shape[-1] == self.final_logits_bias.shape[-1]:
|
1224 |
+
lm_logits = lm_logits + self.final_logits_bias
|
1225 |
+
|
1226 |
+
loss = None
|
1227 |
+
z_loss = None
|
1228 |
+
router_probs = None
|
1229 |
+
aux_loss = None
|
1230 |
+
if labels is not None:
|
1231 |
+
# move labels to correct device to enable model parallelism
|
1232 |
+
labels = labels.to(lm_logits.device)
|
1233 |
+
|
1234 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=-100)
|
1235 |
+
|
1236 |
+
if output_router_logits:
|
1237 |
+
# Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder
|
1238 |
+
router_logits, expert_indexes = self._unpack_router_logits(outputs.router_probs)
|
1239 |
+
z_loss = router_z_loss_func(router_logits)
|
1240 |
+
router_probs = nn.Softmax(dim=-1)(router_logits)
|
1241 |
+
aux_loss = load_balancing_loss_func(router_probs, expert_indexes)
|
1242 |
+
|
1243 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1244 |
+
|
1245 |
+
if not return_dict:
|
1246 |
+
return tuple(
|
1247 |
+
v
|
1248 |
+
for v in [
|
1249 |
+
loss,
|
1250 |
+
lm_logits,
|
1251 |
+
outputs.past_key_values,
|
1252 |
+
outputs.hidden_states,
|
1253 |
+
outputs.router_probs,
|
1254 |
+
z_loss,
|
1255 |
+
aux_loss,
|
1256 |
+
]
|
1257 |
+
if v is not None
|
1258 |
+
)
|
1259 |
+
|
1260 |
+
return MoECausalLMOutputWithPast(
|
1261 |
+
loss=loss,
|
1262 |
+
logits=lm_logits,
|
1263 |
+
past_key_values=outputs.past_key_values,
|
1264 |
+
hidden_states=outputs.hidden_states,
|
1265 |
+
attentions=outputs.attentions,
|
1266 |
+
router_logits=outputs.router_probs,
|
1267 |
+
z_loss=z_loss,
|
1268 |
+
aux_loss=aux_loss,
|
1269 |
+
)
|
1270 |
+
|
1271 |
+
def prepare_inputs_for_generation(
|
1272 |
+
self,
|
1273 |
+
input_ids: torch.LongTensor,
|
1274 |
+
attention_mask: torch.FloatTensor,
|
1275 |
+
token_type_ids: Optional[torch.FloatTensor] = None,
|
1276 |
+
spout: Optional[Union[List, torch.FloatTensor]] = None,
|
1277 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1278 |
+
**kwargs,
|
1279 |
+
):
|
1280 |
+
if isinstance(spout, list):
|
1281 |
+
spout = torch.tensor(spout).float()
|
1282 |
+
if input_ids is not None:
|
1283 |
+
spout = spout.to(input_ids.device)
|
1284 |
+
if past_key_values is not None:
|
1285 |
+
return {
|
1286 |
+
"input_ids": input_ids[:, -1:] if input_ids is not None else None,
|
1287 |
+
"attention_mask": attention_mask,
|
1288 |
+
"token_type_ids": token_type_ids[:, -1:] if token_type_ids is not None else None,
|
1289 |
+
"spout": spout,
|
1290 |
+
"past_key_values": past_key_values,
|
1291 |
+
}
|
1292 |
+
return {
|
1293 |
+
"input_ids": input_ids,
|
1294 |
+
"attention_mask": attention_mask,
|
1295 |
+
"token_type_ids": token_type_ids,
|
1296 |
+
"spout": spout,
|
1297 |
+
"past_key_values": None,
|
1298 |
+
}
|
1299 |
+
|
1300 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.prepare_decoder_input_ids_from_labels with SwitchTransformers->GPTSanJapanese
|
1301 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1302 |
+
return self._shift_right(labels)
|
1303 |
+
|
1304 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration.resize_token_embeddings with MBart->GPTSanJapanese
|
1305 |
+
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
|
1306 |
+
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1307 |
+
self._resize_final_logits_bias(new_embeddings.weight.shape[0])
|
1308 |
+
return new_embeddings
|
1309 |
+
|
1310 |
+
# Copied from transformers.models.mbart.modeling_mbart.MBartForConditionalGeneration._resize_final_logits_bias with MBart->GPTSanJapanese
|
1311 |
+
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
1312 |
+
old_num_tokens = self.final_logits_bias.shape[-1]
|
1313 |
+
if new_num_tokens <= old_num_tokens:
|
1314 |
+
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
1315 |
+
else:
|
1316 |
+
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
1317 |
+
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
1318 |
+
self.register_buffer("final_logits_bias", new_bias)
|
1319 |
+
|
1320 |
+
def get_input_embeddings(self):
|
1321 |
+
return self.model.get_input_embeddings()
|
1322 |
+
|
1323 |
+
def set_input_embeddings(self, new_embeddings):
|
1324 |
+
self.model.set_input_embeddings(new_embeddings)
|
1325 |
+
|
1326 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.set_output_embeddings with SwitchTransformers->GPTSanJapanese
|
1327 |
+
def set_output_embeddings(self, new_embeddings):
|
1328 |
+
self.lm_head = new_embeddings
|
1329 |
+
|
1330 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration.get_output_embeddings with SwitchTransformers->GPTSanJapanese
|
1331 |
+
def get_output_embeddings(self):
|
1332 |
+
return self.lm_head
|
1333 |
+
|
1334 |
+
# Copied from transformers.models.switch_transformers.modeling_switch_transformers.SwitchTransformersForConditionalGeneration._unpack_router_logits with SwitchTransformers->GPTSanJapanese
|
1335 |
+
def _unpack_router_logits(self, router_outputs):
|
1336 |
+
total_router_logits = []
|
1337 |
+
total_expert_indexes = []
|
1338 |
+
for router_output in router_outputs:
|
1339 |
+
if len(router_output[0].shape) > 1:
|
1340 |
+
router_logits, expert_indexes = router_output
|
1341 |
+
total_router_logits.append(router_logits)
|
1342 |
+
total_expert_indexes.append(expert_indexes)
|
1343 |
+
return torch.cat(total_router_logits, dim=1), torch.cat(total_expert_indexes, dim=1)
|
venv/lib/python3.10/site-packages/transformers/models/gptsan_japanese/tokenization_gptsan_japanese.py
ADDED
@@ -0,0 +1,526 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for GPTSANJapanese."""
|
16 |
+
import collections
|
17 |
+
import json
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...tokenization_utils_base import (
|
26 |
+
BatchEncoding,
|
27 |
+
PreTokenizedInput,
|
28 |
+
PreTokenizedInputPair,
|
29 |
+
TextInput,
|
30 |
+
TextInputPair,
|
31 |
+
TruncationStrategy,
|
32 |
+
)
|
33 |
+
from ...utils import PaddingStrategy, logging
|
34 |
+
|
35 |
+
|
36 |
+
logger = logging.get_logger(__name__)
|
37 |
+
|
38 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "emoji_file": "emoji.json"}
|
39 |
+
|
40 |
+
|
41 |
+
def load_vocab_and_emoji(vocab_file, emoji_file):
|
42 |
+
"""Loads a vocabulary file and emoji file into a dictionary."""
|
43 |
+
with open(emoji_file, "r", encoding="utf-8") as f:
|
44 |
+
emoji = json.loads(f.read())
|
45 |
+
|
46 |
+
vocab = collections.OrderedDict()
|
47 |
+
raw_vocab = collections.OrderedDict()
|
48 |
+
ids_to_tokens = collections.OrderedDict()
|
49 |
+
with open(vocab_file, "r", encoding="utf-8") as f:
|
50 |
+
token = f.readlines()
|
51 |
+
token = [[t.rstrip("\n")] if (t == ",\n" or "," not in t) else t.rstrip("\n").split(",") for t in token]
|
52 |
+
for idx, b in enumerate(token):
|
53 |
+
ids_to_tokens[idx] = b
|
54 |
+
raw_vocab[",".join(b)] = idx
|
55 |
+
for wd in b:
|
56 |
+
vocab[wd] = idx
|
57 |
+
|
58 |
+
return vocab, raw_vocab, ids_to_tokens, emoji
|
59 |
+
|
60 |
+
|
61 |
+
class GPTSanJapaneseTokenizer(PreTrainedTokenizer):
|
62 |
+
"""
|
63 |
+
This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications
|
64 |
+
- Decoding byte0~byte255 tokens correctly
|
65 |
+
- Added bagofword token handling
|
66 |
+
- Return token_type_ids for Prefix-LM model
|
67 |
+
The bagofword token represents a repetition of the previous token and is converted to 3 consecutive tokens when
|
68 |
+
decoding In addition, the original Japanese special Sub-Word-Encoding has been released in this repository
|
69 |
+
(https://github.com/tanreinama/Japanese-BPEEncoder_V2). The token_type_ids is a mask indicating the prefix input
|
70 |
+
position of the Prefix-LM model. To specify a prefix position, specify a prefix input for prefix_text, or specify a
|
71 |
+
sentence of the prefix part and the part after it as a text pair of batch input.
|
72 |
+
|
73 |
+
Example:
|
74 |
+
|
75 |
+
```python
|
76 |
+
>>> from transformers import GPTSanJapaneseTokenizer
|
77 |
+
|
78 |
+
>>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
79 |
+
>>> # You can confirm both 慶応 and 慶應 are encoded to 17750
|
80 |
+
>>> tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"]
|
81 |
+
[35993, 35998, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281]
|
82 |
+
|
83 |
+
>>> # Both 慶応 and 慶應 are decoded to 慶応
|
84 |
+
>>> tokenizer.decode(tokenizer("吾輩は猫である🐯。実は慶応(慶應)大学出身")["input_ids"])
|
85 |
+
'吾輩は猫である🐯。実は慶応(慶応)大学出身'
|
86 |
+
```
|
87 |
+
|
88 |
+
Example for Prefix-LM:
|
89 |
+
|
90 |
+
```python
|
91 |
+
>>> from transformers import GPTSanJapaneseTokenizer
|
92 |
+
|
93 |
+
>>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
94 |
+
>>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["input_ids"]
|
95 |
+
[35993, 34347, 31459, 30647, 31448, 25, 30659, 35729, 35676, 35998, 32417, 30647, 17750, 35589, 17750, 35590, 321, 1281]
|
96 |
+
|
97 |
+
>>> # Mask for Prefix-LM inputs
|
98 |
+
>>> tokenizer("実は慶応(慶應)大学出身", prefix_text="吾輩は猫である🐯。")["token_type_ids"]
|
99 |
+
[1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
100 |
+
```
|
101 |
+
|
102 |
+
Example for batch encode:
|
103 |
+
|
104 |
+
```python
|
105 |
+
>>> from transformers import GPTSanJapaneseTokenizer
|
106 |
+
|
107 |
+
>>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
108 |
+
>>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["input_ids"]
|
109 |
+
[[35993, 35998, 8640, 25948, 35993, 35998, 30647, 35675, 35999, 35999], [35993, 35998, 10382, 9868, 35993, 35998, 30646, 9459, 30646, 35675]]
|
110 |
+
|
111 |
+
>>> # Mask for Prefix-LM inputs
|
112 |
+
>>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["token_type_ids"]
|
113 |
+
[[1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]]
|
114 |
+
|
115 |
+
>>> # Mask for padding
|
116 |
+
>>> tokenizer([["武田信玄", "は、"], ["織田信長", "の配下の、"]], padding=True)["attention_mask"]
|
117 |
+
[[1, 1, 1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]
|
118 |
+
```
|
119 |
+
|
120 |
+
Args:
|
121 |
+
vocab_file (`str`):
|
122 |
+
File containing the vocabulary.
|
123 |
+
emoji_file (`str`):
|
124 |
+
File containing the emoji.
|
125 |
+
unk_token (`str`, *optional*, defaults to `"<|nottoken|>"`):
|
126 |
+
The token used for unknown charactor
|
127 |
+
pad_token (`str`, *optional*, defaults to `"<|separator|>"`):
|
128 |
+
The token used for padding
|
129 |
+
bos_token (`str`, *optional*, defaults to `"<|startoftext|>"`):
|
130 |
+
The beginning of sequence token.
|
131 |
+
eos_token (`str`, *optional*, defaults to `"<|endoftext|>"`):
|
132 |
+
The end of sequence token.
|
133 |
+
sep_token (`str`, *optional*, defaults to `"<|segmenter|>"`):
|
134 |
+
A special token to separate token to prefix part and general input part.
|
135 |
+
do_clean_text (`bool`, *optional*, defaults to `False`):
|
136 |
+
Whether or not to clean text for URL, EMAIL, TEL, Japanese DATE and Japanese PRICE.
|
137 |
+
"""
|
138 |
+
|
139 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
140 |
+
model_input_names = ["input_ids", "attention_mask", "token_type_ids"]
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
vocab_file,
|
145 |
+
emoji_file,
|
146 |
+
unk_token="<|nottoken|>",
|
147 |
+
pad_token="<|separator|>",
|
148 |
+
bos_token="<|startoftext|>",
|
149 |
+
eos_token="<|endoftext|>",
|
150 |
+
sep_token="<|segmenter|>",
|
151 |
+
do_clean_text=False,
|
152 |
+
**kwargs,
|
153 |
+
):
|
154 |
+
if not os.path.isfile(vocab_file):
|
155 |
+
raise ValueError(
|
156 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained"
|
157 |
+
" model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
158 |
+
)
|
159 |
+
if not os.path.isfile(emoji_file):
|
160 |
+
raise ValueError(
|
161 |
+
f"Can't find a emoji file at path '{emoji_file}'. To load the emoji information from a Google"
|
162 |
+
" pretrained model use `tokenizer = GPTSanJapaneseTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
163 |
+
)
|
164 |
+
self.do_clean_text = do_clean_text
|
165 |
+
self.vocab, self.raw_vocab, self.ids_to_tokens, self.emoji = load_vocab_and_emoji(vocab_file, emoji_file)
|
166 |
+
self.subword_tokenizer = SubWordJapaneseTokenizer(
|
167 |
+
vocab=self.vocab, ids_to_tokens=self.ids_to_tokens, emoji=self.emoji
|
168 |
+
)
|
169 |
+
|
170 |
+
super().__init__(
|
171 |
+
unk_token=unk_token,
|
172 |
+
pad_token=pad_token,
|
173 |
+
bos_token=bos_token,
|
174 |
+
eos_token=eos_token,
|
175 |
+
sep_token=sep_token,
|
176 |
+
do_clean_text=do_clean_text,
|
177 |
+
**kwargs,
|
178 |
+
)
|
179 |
+
|
180 |
+
@property
|
181 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.vocab_size
|
182 |
+
def vocab_size(self):
|
183 |
+
# self.vocab contains support for character fluctuation unique to Japanese, and has a large number of vocab
|
184 |
+
return len(self.raw_vocab)
|
185 |
+
|
186 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.get_vocab
|
187 |
+
def get_vocab(self):
|
188 |
+
return dict(self.raw_vocab, **self.added_tokens_encoder)
|
189 |
+
|
190 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._tokenize
|
191 |
+
def _tokenize(self, text):
|
192 |
+
return self.subword_tokenizer.tokenize(text, clean=self.do_clean_text)
|
193 |
+
|
194 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_token_to_id
|
195 |
+
def _convert_token_to_id(self, token):
|
196 |
+
"""Converts a token (str) in an id using the vocab."""
|
197 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
198 |
+
|
199 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer._convert_id_to_token
|
200 |
+
def _convert_id_to_token(self, index):
|
201 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
202 |
+
return self.subword_tokenizer.convert_id_to_token(index)
|
203 |
+
|
204 |
+
def convert_tokens_to_string(self, tokens):
|
205 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
206 |
+
words = []
|
207 |
+
byte_tokens = []
|
208 |
+
for word in tokens:
|
209 |
+
if word[:6] == "<|byte" and word[-2:] == "|>":
|
210 |
+
byte_tokens.append(int(word[6:-2]))
|
211 |
+
else:
|
212 |
+
if len(byte_tokens) > 0:
|
213 |
+
words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
|
214 |
+
byte_tokens = []
|
215 |
+
if word[:7] == "<|emoji" and word[-2:] == "|>":
|
216 |
+
words.append(self.emoji["emoji_inv"][word])
|
217 |
+
elif word == "<SP>":
|
218 |
+
words.append(" ")
|
219 |
+
elif word == "<BR>":
|
220 |
+
words.append("\n")
|
221 |
+
elif word == "<TAB>":
|
222 |
+
words.append("\t")
|
223 |
+
elif word == "<BLOCK>":
|
224 |
+
words.append("▀")
|
225 |
+
elif word == "<KIGOU>":
|
226 |
+
words.append("ǀ")
|
227 |
+
elif word == "<U2000U2BFF>":
|
228 |
+
words.append("‖")
|
229 |
+
elif word == "<|bagoftoken|>":
|
230 |
+
if len(words) > 0:
|
231 |
+
words.append(words[-1])
|
232 |
+
words.append(words[-1])
|
233 |
+
words.append(words[-1])
|
234 |
+
elif word.startswith("<|") and word.endswith("|>"):
|
235 |
+
words.append("")
|
236 |
+
else:
|
237 |
+
words.append(word)
|
238 |
+
if len(byte_tokens) > 0:
|
239 |
+
words.append(bytearray(byte_tokens).decode("utf-8", errors="replace"))
|
240 |
+
text = "".join(words)
|
241 |
+
return text
|
242 |
+
|
243 |
+
@property
|
244 |
+
def default_chat_template(self):
|
245 |
+
"""
|
246 |
+
A simple chat template that adds standard BOS, SEP and EOS tokens between messages while discarding role
|
247 |
+
information.
|
248 |
+
"""
|
249 |
+
logger.warning_once(
|
250 |
+
"\nNo chat template is defined for this tokenizer - using the default template "
|
251 |
+
f"for the {self.__class__.__name__} class. If the default is not appropriate for "
|
252 |
+
"your model, please set `tokenizer.chat_template` to an appropriate template. "
|
253 |
+
"See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n"
|
254 |
+
)
|
255 |
+
return (
|
256 |
+
"{% for message in messages %}"
|
257 |
+
"{% if not loop.first %}{{ bos_token}}{% endif %}"
|
258 |
+
"{{ sep_token }}{{ message.content }} {{ eos_token }}"
|
259 |
+
"{% endfor %}"
|
260 |
+
)
|
261 |
+
|
262 |
+
# Copied from tokenization_gpt_neox_japanese.GPTNeoXJapaneseTokenizer.save_vocabulary
|
263 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
264 |
+
index = 0
|
265 |
+
if os.path.isdir(save_directory):
|
266 |
+
vocab_file = os.path.join(
|
267 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
268 |
+
)
|
269 |
+
emoji_file = os.path.join(
|
270 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["emoji_file"]
|
271 |
+
)
|
272 |
+
else:
|
273 |
+
vocab_file = (
|
274 |
+
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["vocab_file"]
|
275 |
+
)
|
276 |
+
emoji_file = (
|
277 |
+
(filename_prefix + "-" if filename_prefix else "") + save_directory + VOCAB_FILES_NAMES["emoji_file"]
|
278 |
+
)
|
279 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
280 |
+
for token_index, token in self.ids_to_tokens.items():
|
281 |
+
if index != token_index:
|
282 |
+
logger.warning(
|
283 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
284 |
+
" Please check that the vocabulary is not corrupted!"
|
285 |
+
)
|
286 |
+
index = token_index
|
287 |
+
writer.write(",".join(token) + "\n")
|
288 |
+
index += 1
|
289 |
+
with open(emoji_file, "w", encoding="utf-8") as writer:
|
290 |
+
json.dump(self.emoji, writer)
|
291 |
+
return vocab_file, emoji_file
|
292 |
+
|
293 |
+
def create_token_type_ids_from_sequences(
|
294 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
295 |
+
) -> List[int]:
|
296 |
+
# docstyle-ignore
|
297 |
+
"""
|
298 |
+
The tokenizer returns token_type_ids as separators between the Prefix part and the rest.
|
299 |
+
token_type_ids is 1 for the Prefix part and 0 for the rest of the token.
|
300 |
+
|
301 |
+
Example:
|
302 |
+
```python
|
303 |
+
>>> from transformers import GPTSanJapaneseTokenizer
|
304 |
+
|
305 |
+
>>> tokenizer = GPTSanJapaneseTokenizer.from_pretrained("Tanrei/GPTSAN-japanese")
|
306 |
+
>>> x_token = tokenizer("アイウエ")
|
307 |
+
>>> # input_ids: | SOT | SEG | ア | イ | ウ | エ |
|
308 |
+
>>> # token_type_ids: | 1 | 0 | 0 | 0 | 0 | 0 |
|
309 |
+
|
310 |
+
>>> x_token = tokenizer("", prefix_text="アイウエ")
|
311 |
+
>>> # input_ids: | SOT | ア | イ | ウ | エ | SEG |
|
312 |
+
>>> # token_type_ids: | 1 | 1 | 1 | 1 | 1 | 0 |
|
313 |
+
|
314 |
+
>>> x_token = tokenizer("ウエ", prefix_text="アイ")
|
315 |
+
>>> # input_ids: | SOT | ア | イ | SEG | ウ | エ |
|
316 |
+
>>> # token_type_ids: | 1 | 1 | 1 | 0 | 0 | 0 |
|
317 |
+
```"""
|
318 |
+
prefix_len = 0
|
319 |
+
if self.sep_token in self.vocab:
|
320 |
+
segid = self.vocab[self.sep_token]
|
321 |
+
if segid in token_ids_0:
|
322 |
+
prefix_len = token_ids_0.index(segid)
|
323 |
+
if token_ids_1 is None:
|
324 |
+
total_len = len(token_ids_0)
|
325 |
+
else:
|
326 |
+
total_len = len(token_ids_0 + token_ids_1)
|
327 |
+
return prefix_len * [1] + (total_len - prefix_len) * [0]
|
328 |
+
|
329 |
+
def prepare_for_tokenization(self, text, prefix_text=None, add_sep_token=None, **kwargs):
|
330 |
+
# GPTSAN inserts extra SEP tokens in Prefix-LM in addition to SOT for text generation.
|
331 |
+
# SOT at the beginning of the text, and SEP at the separator between the Prefix part and the rest.
|
332 |
+
if add_sep_token is None:
|
333 |
+
add_sep_token = self.sep_token not in text # If insert un-prefix position explicitly
|
334 |
+
prepared = self.bos_token if self.bos_token in self.vocab else ""
|
335 |
+
prepared += prefix_text if prefix_text is not None else ""
|
336 |
+
if add_sep_token:
|
337 |
+
prepared += self.sep_token if self.sep_token in self.vocab else ""
|
338 |
+
prepared += text
|
339 |
+
return (prepared, kwargs)
|
340 |
+
|
341 |
+
def _batch_encode_plus(
|
342 |
+
self,
|
343 |
+
batch_text_or_text_pairs: Union[
|
344 |
+
List[TextInput], List[TextInputPair], List[PreTokenizedInput], List[PreTokenizedInputPair]
|
345 |
+
],
|
346 |
+
add_special_tokens: bool = True,
|
347 |
+
padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD,
|
348 |
+
truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE,
|
349 |
+
max_length: Optional[int] = None,
|
350 |
+
stride: int = 0,
|
351 |
+
is_split_into_words: bool = False,
|
352 |
+
pad_to_multiple_of: Optional[int] = None,
|
353 |
+
return_tensors: Optional[str] = None,
|
354 |
+
return_token_type_ids: Optional[bool] = None,
|
355 |
+
return_attention_mask: Optional[bool] = None,
|
356 |
+
return_overflowing_tokens: bool = False,
|
357 |
+
return_special_tokens_mask: bool = False,
|
358 |
+
return_offsets_mapping: bool = False,
|
359 |
+
return_length: bool = False,
|
360 |
+
verbose: bool = True,
|
361 |
+
) -> BatchEncoding:
|
362 |
+
# This tokenizer converts input text pairs into Prefix input and subsequent input
|
363 |
+
if isinstance(batch_text_or_text_pairs[0], tuple) or isinstance(tuple(batch_text_or_text_pairs[0]), list):
|
364 |
+
# As a single text with an explicit un-prefix position
|
365 |
+
batch_prefix_texts = []
|
366 |
+
for pref, txt in batch_text_or_text_pairs:
|
367 |
+
batch_prefix_texts.append(pref + self.sep_token + txt)
|
368 |
+
batch_text_or_text_pairs = batch_prefix_texts
|
369 |
+
|
370 |
+
return super()._batch_encode_plus(
|
371 |
+
batch_text_or_text_pairs,
|
372 |
+
add_special_tokens,
|
373 |
+
padding_strategy,
|
374 |
+
truncation_strategy,
|
375 |
+
max_length,
|
376 |
+
stride,
|
377 |
+
is_split_into_words,
|
378 |
+
pad_to_multiple_of,
|
379 |
+
return_tensors,
|
380 |
+
return_token_type_ids,
|
381 |
+
return_attention_mask,
|
382 |
+
return_overflowing_tokens,
|
383 |
+
return_special_tokens_mask,
|
384 |
+
return_offsets_mapping,
|
385 |
+
return_length,
|
386 |
+
verbose,
|
387 |
+
)
|
388 |
+
|
389 |
+
|
390 |
+
class SubWordJapaneseTokenizer(object):
|
391 |
+
"""
|
392 |
+
This tokenizer is based on GPTNeoXJapaneseTokenizer and has the following modifications
|
393 |
+
- Decoding byte0~byte255 tokens correctly
|
394 |
+
- Added bagofword token handling
|
395 |
+
|
396 |
+
https://github.com/tanreinama/Japanese-BPEEncoder_V2 This tokenizer class is under MIT Lisence according to the
|
397 |
+
original repository.
|
398 |
+
|
399 |
+
MIT License
|
400 |
+
|
401 |
+
Copyright (c) 2020 tanreinama
|
402 |
+
|
403 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated
|
404 |
+
documentation files (the "Software"), to deal in the Software without restriction, including without limitation the
|
405 |
+
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
|
406 |
+
permit persons to whom the Software is furnished to do so, subject to the following conditions:
|
407 |
+
|
408 |
+
The above copyright notice and this permission notice shall be included in all copies or substantial portions of
|
409 |
+
the Software.
|
410 |
+
|
411 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO
|
412 |
+
THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
413 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
|
414 |
+
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
415 |
+
SOFTWARE.
|
416 |
+
"""
|
417 |
+
|
418 |
+
# Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__init__
|
419 |
+
def __init__(self, vocab, ids_to_tokens, emoji):
|
420 |
+
self.vocab = vocab # same as swe
|
421 |
+
self.ids_to_tokens = ids_to_tokens # same as bpe
|
422 |
+
self.emoji = emoji
|
423 |
+
self.maxlen = np.max([len(w) for w in self.vocab.keys()])
|
424 |
+
self.content_repatter1 = re.compile(r"(https?|ftp)(:\/\/[-_\.!~*\'()a-zA-Z0-9;\/?:\@&=\+$,%#]+)")
|
425 |
+
self.content_repatter2 = re.compile(r"[A-Za-z0-9\._+]*@[\-_0-9A-Za-z]+(\.[A-Za-z]+)*")
|
426 |
+
self.content_repatter3 = re.compile(r"[\(]{0,1}[0-9]{2,4}[\)\-\(]{0,1}[0-9]{2,4}[\)\-]{0,1}[0-9]{3,4}")
|
427 |
+
self.content_repatter4 = re.compile(
|
428 |
+
r"([12]\d{3}[/\-年])*(0?[1-9]|1[0-2])[/\-月]((0?[1-9]|[12][0-9]|3[01])日?)*(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
|
429 |
+
)
|
430 |
+
self.content_repatter5 = re.compile(
|
431 |
+
r"(明治|大正|昭和|平成|令和|㍾|㍽|㍼|㍻|\u32ff)\d{1,2}年(0?[1-9]|1[0-2])月(0?[1-9]|[12][0-9]|3[01])日(\d{1,2}|:|\d{1,2}時|\d{1,2}分|\(日\)|\(月\)|\(火\)|\(水\)|\(木\)|\(金\)|\(土\)|㈰|㈪|㈫|㈬|㈭|㈮|㈯)*"
|
432 |
+
)
|
433 |
+
self.content_repatter6 = re.compile(
|
434 |
+
r"((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*億)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*万)*((0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*千)*(0|[1-9]\d*|[1-9]\d{0,2}(,\d{3})+)*(千円|万円|千万円|円|千ドル|万ドル|千万ドル|ドル|千ユーロ|万ユーロ|千万ユーロ|ユーロ)+(\(税込\)|\(税抜\)|\+tax)*"
|
435 |
+
)
|
436 |
+
keisen = "─━│┃┄┅┆┇┈┉┊┋┌┍┎┏┐┑┒┓└┕┖┗┘┙┚┛├┝┞┟┠┡┢┣┤┥┦┧┨┩┪┫┬┭┮┯┰┱┲┳┴┵┶┷┸┹┺┻┼┽┾┿╀╁╂╃╄╅╆╇╈╉╊╋╌╍╎╏═║╒╓╔╕╖╗╘╙╚╛╜╝╞╟╠╡╢╣╤╥╦╧╨╩╪╫╬╭╮╯╰╱╲╳╴╵╶╷╸╹╺╻╼╽╾╿"
|
437 |
+
blocks = "▀▁▂▃▄▅▆▇█▉▊▋▌▍▎▏▐░▒▓▔▕▖▗▘▙▚▛▜▝▞▟"
|
438 |
+
self.content_trans1 = str.maketrans({k: "<BLOCK>" for k in keisen + blocks})
|
439 |
+
|
440 |
+
# Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.__len__
|
441 |
+
def __len__(self):
|
442 |
+
return len(self.ids_to_tokens)
|
443 |
+
|
444 |
+
# Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.clean_text
|
445 |
+
def clean_text(self, content):
|
446 |
+
content = self.content_repatter1.sub("<URL>", content)
|
447 |
+
content = self.content_repatter2.sub("<EMAIL>", content)
|
448 |
+
content = self.content_repatter3.sub("<TEL>", content)
|
449 |
+
content = self.content_repatter4.sub("<DATE>", content)
|
450 |
+
content = self.content_repatter5.sub("<DATE>", content)
|
451 |
+
content = self.content_repatter6.sub("<PRICE>", content)
|
452 |
+
content = content.translate(self.content_trans1)
|
453 |
+
while "<BLOCK><BLOCK>" in content:
|
454 |
+
content = content.replace("<BLOCK><BLOCK>", "<BLOCK>")
|
455 |
+
return content
|
456 |
+
|
457 |
+
# Copied from tokenization_gpt_neox_japanese.SubWordJapaneseTokenizer.tokenize
|
458 |
+
def tokenize(self, text, clean=False):
|
459 |
+
text = text.replace(" ", "<SP>")
|
460 |
+
text = text.replace(" ", "<SP>")
|
461 |
+
text = text.replace("\r\n", "<BR>")
|
462 |
+
text = text.replace("\n", "<BR>")
|
463 |
+
text = text.replace("\r", "<BR>")
|
464 |
+
text = text.replace("\t", "<TAB>")
|
465 |
+
text = text.replace("—", "ー")
|
466 |
+
text = text.replace("−", "ー")
|
467 |
+
for k, v in self.emoji["emoji"].items():
|
468 |
+
if k in text:
|
469 |
+
text = text.replace(k, v)
|
470 |
+
if clean:
|
471 |
+
text = self.clean_text(text)
|
472 |
+
|
473 |
+
def check_simbol(x):
|
474 |
+
e = x.encode()
|
475 |
+
if len(x) == 1 and len(e) == 2:
|
476 |
+
c = (int(e[0]) << 8) + int(e[1])
|
477 |
+
if (
|
478 |
+
(c >= 0xC2A1 and c <= 0xC2BF)
|
479 |
+
or (c >= 0xC780 and c <= 0xC783)
|
480 |
+
or (c >= 0xCAB9 and c <= 0xCBBF)
|
481 |
+
or (c >= 0xCC80 and c <= 0xCDA2)
|
482 |
+
):
|
483 |
+
return True
|
484 |
+
return False
|
485 |
+
|
486 |
+
def checku2e(x):
|
487 |
+
e = x.encode()
|
488 |
+
if len(x) == 1 and len(e) == 3:
|
489 |
+
c = (int(e[0]) << 16) + (int(e[1]) << 8) + int(e[2])
|
490 |
+
if c >= 0xE28080 and c <= 0xE2B07F:
|
491 |
+
return True
|
492 |
+
return False
|
493 |
+
|
494 |
+
pos = 0
|
495 |
+
result = []
|
496 |
+
while pos < len(text):
|
497 |
+
end = min(len(text), pos + self.maxlen + 1) if text[pos] == "<" else pos + 3
|
498 |
+
candidates = [] # (token_id, token, pos)
|
499 |
+
for e in range(end, pos, -1):
|
500 |
+
wd = text[pos:e]
|
501 |
+
if wd in self.vocab:
|
502 |
+
if wd[0] == "<" and len(wd) > 2:
|
503 |
+
candidates = [(self.vocab[wd], wd, e)]
|
504 |
+
break
|
505 |
+
else:
|
506 |
+
candidates.append((self.vocab[wd], wd, e))
|
507 |
+
if len(candidates) > 0:
|
508 |
+
# the smallest token_id is adopted
|
509 |
+
_, wd, e = sorted(candidates, key=lambda x: x[0])[0]
|
510 |
+
result.append(wd)
|
511 |
+
pos = e
|
512 |
+
else:
|
513 |
+
end = pos + 1
|
514 |
+
wd = text[pos:end]
|
515 |
+
if check_simbol(wd):
|
516 |
+
result.append("<KIGOU>")
|
517 |
+
elif checku2e(wd):
|
518 |
+
result.append("<U2000U2BFF>")
|
519 |
+
else:
|
520 |
+
for i in wd.encode("utf-8"):
|
521 |
+
result.append("<|byte%d|>" % i)
|
522 |
+
pos = end
|
523 |
+
return result
|
524 |
+
|
525 |
+
def convert_id_to_token(self, index):
|
526 |
+
return self.ids_to_tokens[index][0]
|