applied-ai-018 commited on
Commit
a878579
·
verified ·
1 Parent(s): a615498

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/tensorboard/events.out.tfevents.1713955089.peacock-3.29161.0 +3 -0
  2. ckpts/universal/global_step80/zero/14.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step80/zero/18.attention.dense.weight/exp_avg.pt +3 -0
  4. ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  5. ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  6. ckpts/universal/global_step80/zero/5.attention.dense.weight/exp_avg.pt +3 -0
  7. venv/lib/python3.10/site-packages/pandas/tests/dtypes/__init__.py +0 -0
  8. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_boxplot_method.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc +0 -0
  15. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_hist_method.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_misc.cpython-310.pyc +0 -0
  17. venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_series.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py +0 -0
  19. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_legend.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_subplots.cpython-310.pyc +0 -0
  25. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_hist_box_by.cpython-310.pyc +0 -0
  26. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame.py +0 -0
  27. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_color.py +670 -0
  28. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_groupby.py +72 -0
  29. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_legend.py +272 -0
  30. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_subplots.py +752 -0
  31. venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_hist_box_by.py +342 -0
  32. venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py +0 -0
  36. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/__init__.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_arithmetic.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_constructors.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_contains.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_formats.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_interval.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_overlaps.cpython-310.pyc +0 -0
  43. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py +192 -0
  44. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py +51 -0
  45. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py +73 -0
  46. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py +11 -0
  47. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py +87 -0
  48. venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py +67 -0
  49. venv/lib/python3.10/site-packages/pandas/tests/scalar/timedelta/__init__.py +0 -0
  50. venv/lib/python3.10/site-packages/pandas/tests/scalar/timedelta/__pycache__/__init__.cpython-310.pyc +0 -0
ckpts/tensorboard/events.out.tfevents.1713955089.peacock-3.29161.0 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ab325104bd88dc3a9fe1b7c137dd6f0fbb2b3e02ce835ed0186cc75dd680052e
3
+ size 216569
ckpts/universal/global_step80/zero/14.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:822c165438324adc02ec40f3f376cc6330a501cb17f3b5aa9fc6d434730cb67b
3
+ size 33555627
ckpts/universal/global_step80/zero/18.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8f91eede38a4e639ccfe2330bec2e8478fe9a6f5da7a7d3792a2164596e67cb
3
+ size 16778396
ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a226f98e93c6dc8d51dca1aefd53c9920fe55740e13d5a6652d34c3db83bca96
3
+ size 33555627
ckpts/universal/global_step80/zero/26.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:492cc30afeb946f8219e4d5e0dbb2419daf574050c9bfa6b018e97d4a9499e76
3
+ size 33555533
ckpts/universal/global_step80/zero/5.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c169d1bef4ba4303a79edffa5be71e6867f0a000a87ff40add4279b6d9a53d8
3
+ size 16778396
venv/lib/python3.10/site-packages/pandas/tests/dtypes/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/common.cpython-310.pyc ADDED
Binary file (14.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/conftest.cpython-310.pyc ADDED
Binary file (1.33 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_backend.cpython-310.pyc ADDED
Binary file (3.52 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_boxplot_method.cpython-310.pyc ADDED
Binary file (27.1 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_common.cpython-310.pyc ADDED
Binary file (2.36 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_datetimelike.cpython-310.pyc ADDED
Binary file (58.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_groupby.cpython-310.pyc ADDED
Binary file (6.94 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_hist_method.cpython-310.pyc ADDED
Binary file (32.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_misc.cpython-310.pyc ADDED
Binary file (23.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/__pycache__/test_series.cpython-310.pyc ADDED
Binary file (36.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (195 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame.cpython-310.pyc ADDED
Binary file (89.5 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_color.cpython-310.pyc ADDED
Binary file (31.9 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_groupby.cpython-310.pyc ADDED
Binary file (1.96 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_legend.cpython-310.pyc ADDED
Binary file (8.67 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_frame_subplots.cpython-310.pyc ADDED
Binary file (23.8 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/__pycache__/test_hist_box_by.cpython-310.pyc ADDED
Binary file (8.81 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame.py ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_color.py ADDED
@@ -0,0 +1,670 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Test cases for DataFrame.plot """
2
+ import re
3
+
4
+ import numpy as np
5
+ import pytest
6
+
7
+ import pandas as pd
8
+ from pandas import DataFrame
9
+ import pandas._testing as tm
10
+ from pandas.tests.plotting.common import (
11
+ _check_colors,
12
+ _check_plot_works,
13
+ _unpack_cycler,
14
+ )
15
+ from pandas.util.version import Version
16
+
17
+ mpl = pytest.importorskip("matplotlib")
18
+ plt = pytest.importorskip("matplotlib.pyplot")
19
+ cm = pytest.importorskip("matplotlib.cm")
20
+
21
+
22
+ def _check_colors_box(bp, box_c, whiskers_c, medians_c, caps_c="k", fliers_c=None):
23
+ if fliers_c is None:
24
+ fliers_c = "k"
25
+ _check_colors(bp["boxes"], linecolors=[box_c] * len(bp["boxes"]))
26
+ _check_colors(bp["whiskers"], linecolors=[whiskers_c] * len(bp["whiskers"]))
27
+ _check_colors(bp["medians"], linecolors=[medians_c] * len(bp["medians"]))
28
+ _check_colors(bp["fliers"], linecolors=[fliers_c] * len(bp["fliers"]))
29
+ _check_colors(bp["caps"], linecolors=[caps_c] * len(bp["caps"]))
30
+
31
+
32
+ class TestDataFrameColor:
33
+ @pytest.mark.parametrize(
34
+ "color", ["C0", "C1", "C2", "C3", "C4", "C5", "C6", "C7", "C8", "C9"]
35
+ )
36
+ def test_mpl2_color_cycle_str(self, color):
37
+ # GH 15516
38
+ df = DataFrame(
39
+ np.random.default_rng(2).standard_normal((10, 3)), columns=["a", "b", "c"]
40
+ )
41
+ _check_plot_works(df.plot, color=color)
42
+
43
+ def test_color_single_series_list(self):
44
+ # GH 3486
45
+ df = DataFrame({"A": [1, 2, 3]})
46
+ _check_plot_works(df.plot, color=["red"])
47
+
48
+ @pytest.mark.parametrize("color", [(1, 0, 0), (1, 0, 0, 0.5)])
49
+ def test_rgb_tuple_color(self, color):
50
+ # GH 16695
51
+ df = DataFrame({"x": [1, 2], "y": [3, 4]})
52
+ _check_plot_works(df.plot, x="x", y="y", color=color)
53
+
54
+ def test_color_empty_string(self):
55
+ df = DataFrame(np.random.default_rng(2).standard_normal((10, 2)))
56
+ with pytest.raises(ValueError, match="Invalid color argument:"):
57
+ df.plot(color="")
58
+
59
+ def test_color_and_style_arguments(self):
60
+ df = DataFrame({"x": [1, 2], "y": [3, 4]})
61
+ # passing both 'color' and 'style' arguments should be allowed
62
+ # if there is no color symbol in the style strings:
63
+ ax = df.plot(color=["red", "black"], style=["-", "--"])
64
+ # check that the linestyles are correctly set:
65
+ linestyle = [line.get_linestyle() for line in ax.lines]
66
+ assert linestyle == ["-", "--"]
67
+ # check that the colors are correctly set:
68
+ color = [line.get_color() for line in ax.lines]
69
+ assert color == ["red", "black"]
70
+ # passing both 'color' and 'style' arguments should not be allowed
71
+ # if there is a color symbol in the style strings:
72
+ msg = (
73
+ "Cannot pass 'style' string with a color symbol and 'color' keyword "
74
+ "argument. Please use one or the other or pass 'style' without a color "
75
+ "symbol"
76
+ )
77
+ with pytest.raises(ValueError, match=msg):
78
+ df.plot(color=["red", "black"], style=["k-", "r--"])
79
+
80
+ @pytest.mark.parametrize(
81
+ "color, expected",
82
+ [
83
+ ("green", ["green"] * 4),
84
+ (["yellow", "red", "green", "blue"], ["yellow", "red", "green", "blue"]),
85
+ ],
86
+ )
87
+ def test_color_and_marker(self, color, expected):
88
+ # GH 21003
89
+ df = DataFrame(np.random.default_rng(2).random((7, 4)))
90
+ ax = df.plot(color=color, style="d--")
91
+ # check colors
92
+ result = [i.get_color() for i in ax.lines]
93
+ assert result == expected
94
+ # check markers and linestyles
95
+ assert all(i.get_linestyle() == "--" for i in ax.lines)
96
+ assert all(i.get_marker() == "d" for i in ax.lines)
97
+
98
+ def test_bar_colors(self):
99
+ default_colors = _unpack_cycler(plt.rcParams)
100
+
101
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
102
+ ax = df.plot.bar()
103
+ _check_colors(ax.patches[::5], facecolors=default_colors[:5])
104
+
105
+ def test_bar_colors_custom(self):
106
+ custom_colors = "rgcby"
107
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
108
+ ax = df.plot.bar(color=custom_colors)
109
+ _check_colors(ax.patches[::5], facecolors=custom_colors)
110
+
111
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
112
+ def test_bar_colors_cmap(self, colormap):
113
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
114
+
115
+ ax = df.plot.bar(colormap=colormap)
116
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
117
+ _check_colors(ax.patches[::5], facecolors=rgba_colors)
118
+
119
+ def test_bar_colors_single_col(self):
120
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
121
+ ax = df.loc[:, [0]].plot.bar(color="DodgerBlue")
122
+ _check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
123
+
124
+ def test_bar_colors_green(self):
125
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
126
+ ax = df.plot(kind="bar", color="green")
127
+ _check_colors(ax.patches[::5], facecolors=["green"] * 5)
128
+
129
+ def test_bar_user_colors(self):
130
+ df = DataFrame(
131
+ {"A": range(4), "B": range(1, 5), "color": ["red", "blue", "blue", "red"]}
132
+ )
133
+ # This should *only* work when `y` is specified, else
134
+ # we use one color per column
135
+ ax = df.plot.bar(y="A", color=df["color"])
136
+ result = [p.get_facecolor() for p in ax.patches]
137
+ expected = [
138
+ (1.0, 0.0, 0.0, 1.0),
139
+ (0.0, 0.0, 1.0, 1.0),
140
+ (0.0, 0.0, 1.0, 1.0),
141
+ (1.0, 0.0, 0.0, 1.0),
142
+ ]
143
+ assert result == expected
144
+
145
+ def test_if_scatterplot_colorbar_affects_xaxis_visibility(self):
146
+ # addressing issue #10611, to ensure colobar does not
147
+ # interfere with x-axis label and ticklabels with
148
+ # ipython inline backend.
149
+ random_array = np.random.default_rng(2).random((10, 3))
150
+ df = DataFrame(random_array, columns=["A label", "B label", "C label"])
151
+
152
+ ax1 = df.plot.scatter(x="A label", y="B label")
153
+ ax2 = df.plot.scatter(x="A label", y="B label", c="C label")
154
+
155
+ vis1 = [vis.get_visible() for vis in ax1.xaxis.get_minorticklabels()]
156
+ vis2 = [vis.get_visible() for vis in ax2.xaxis.get_minorticklabels()]
157
+ assert vis1 == vis2
158
+
159
+ vis1 = [vis.get_visible() for vis in ax1.xaxis.get_majorticklabels()]
160
+ vis2 = [vis.get_visible() for vis in ax2.xaxis.get_majorticklabels()]
161
+ assert vis1 == vis2
162
+
163
+ assert (
164
+ ax1.xaxis.get_label().get_visible() == ax2.xaxis.get_label().get_visible()
165
+ )
166
+
167
+ def test_if_hexbin_xaxis_label_is_visible(self):
168
+ # addressing issue #10678, to ensure colobar does not
169
+ # interfere with x-axis label and ticklabels with
170
+ # ipython inline backend.
171
+ random_array = np.random.default_rng(2).random((10, 3))
172
+ df = DataFrame(random_array, columns=["A label", "B label", "C label"])
173
+
174
+ ax = df.plot.hexbin("A label", "B label", gridsize=12)
175
+ assert all(vis.get_visible() for vis in ax.xaxis.get_minorticklabels())
176
+ assert all(vis.get_visible() for vis in ax.xaxis.get_majorticklabels())
177
+ assert ax.xaxis.get_label().get_visible()
178
+
179
+ def test_if_scatterplot_colorbars_are_next_to_parent_axes(self):
180
+ random_array = np.random.default_rng(2).random((10, 3))
181
+ df = DataFrame(random_array, columns=["A label", "B label", "C label"])
182
+
183
+ fig, axes = plt.subplots(1, 2)
184
+ df.plot.scatter("A label", "B label", c="C label", ax=axes[0])
185
+ df.plot.scatter("A label", "B label", c="C label", ax=axes[1])
186
+ plt.tight_layout()
187
+
188
+ points = np.array([ax.get_position().get_points() for ax in fig.axes])
189
+ axes_x_coords = points[:, :, 0]
190
+ parent_distance = axes_x_coords[1, :] - axes_x_coords[0, :]
191
+ colorbar_distance = axes_x_coords[3, :] - axes_x_coords[2, :]
192
+ assert np.isclose(parent_distance, colorbar_distance, atol=1e-7).all()
193
+
194
+ @pytest.mark.parametrize("cmap", [None, "Greys"])
195
+ def test_scatter_with_c_column_name_with_colors(self, cmap):
196
+ # https://github.com/pandas-dev/pandas/issues/34316
197
+
198
+ df = DataFrame(
199
+ [[5.1, 3.5], [4.9, 3.0], [7.0, 3.2], [6.4, 3.2], [5.9, 3.0]],
200
+ columns=["length", "width"],
201
+ )
202
+ df["species"] = ["r", "r", "g", "g", "b"]
203
+ if cmap is not None:
204
+ with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
205
+ ax = df.plot.scatter(x=0, y=1, cmap=cmap, c="species")
206
+ else:
207
+ ax = df.plot.scatter(x=0, y=1, c="species", cmap=cmap)
208
+ assert ax.collections[0].colorbar is None
209
+
210
+ def test_scatter_colors(self):
211
+ df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
212
+ with pytest.raises(TypeError, match="Specify exactly one of `c` and `color`"):
213
+ df.plot.scatter(x="a", y="b", c="c", color="green")
214
+
215
+ def test_scatter_colors_not_raising_warnings(self):
216
+ # GH-53908. Do not raise UserWarning: No data for colormapping
217
+ # provided via 'c'. Parameters 'cmap' will be ignored
218
+ df = DataFrame({"x": [1, 2, 3], "y": [1, 2, 3]})
219
+ with tm.assert_produces_warning(None):
220
+ df.plot.scatter(x="x", y="y", c="b")
221
+
222
+ def test_scatter_colors_default(self):
223
+ df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
224
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
225
+
226
+ ax = df.plot.scatter(x="a", y="b", c="c")
227
+ tm.assert_numpy_array_equal(
228
+ ax.collections[0].get_facecolor()[0],
229
+ np.array(mpl.colors.ColorConverter.to_rgba(default_colors[0])),
230
+ )
231
+
232
+ def test_scatter_colors_white(self):
233
+ df = DataFrame({"a": [1, 2, 3], "b": [1, 2, 3], "c": [1, 2, 3]})
234
+ ax = df.plot.scatter(x="a", y="b", color="white")
235
+ tm.assert_numpy_array_equal(
236
+ ax.collections[0].get_facecolor()[0],
237
+ np.array([1, 1, 1, 1], dtype=np.float64),
238
+ )
239
+
240
+ def test_scatter_colorbar_different_cmap(self):
241
+ # GH 33389
242
+ df = DataFrame({"x": [1, 2, 3], "y": [1, 3, 2], "c": [1, 2, 3]})
243
+ df["x2"] = df["x"] + 1
244
+
245
+ _, ax = plt.subplots()
246
+ df.plot("x", "y", c="c", kind="scatter", cmap="cividis", ax=ax)
247
+ df.plot("x2", "y", c="c", kind="scatter", cmap="magma", ax=ax)
248
+
249
+ assert ax.collections[0].cmap.name == "cividis"
250
+ assert ax.collections[1].cmap.name == "magma"
251
+
252
+ def test_line_colors(self):
253
+ custom_colors = "rgcby"
254
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
255
+
256
+ ax = df.plot(color=custom_colors)
257
+ _check_colors(ax.get_lines(), linecolors=custom_colors)
258
+
259
+ plt.close("all")
260
+
261
+ ax2 = df.plot(color=custom_colors)
262
+ lines2 = ax2.get_lines()
263
+
264
+ for l1, l2 in zip(ax.get_lines(), lines2):
265
+ assert l1.get_color() == l2.get_color()
266
+
267
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
268
+ def test_line_colors_cmap(self, colormap):
269
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
270
+ ax = df.plot(colormap=colormap)
271
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
272
+ _check_colors(ax.get_lines(), linecolors=rgba_colors)
273
+
274
+ def test_line_colors_single_col(self):
275
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
276
+ # make color a list if plotting one column frame
277
+ # handles cases like df.plot(color='DodgerBlue')
278
+ ax = df.loc[:, [0]].plot(color="DodgerBlue")
279
+ _check_colors(ax.lines, linecolors=["DodgerBlue"])
280
+
281
+ def test_line_colors_single_color(self):
282
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
283
+ ax = df.plot(color="red")
284
+ _check_colors(ax.get_lines(), linecolors=["red"] * 5)
285
+
286
+ def test_line_colors_hex(self):
287
+ # GH 10299
288
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
289
+ custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
290
+ ax = df.plot(color=custom_colors)
291
+ _check_colors(ax.get_lines(), linecolors=custom_colors)
292
+
293
+ def test_dont_modify_colors(self):
294
+ colors = ["r", "g", "b"]
295
+ DataFrame(np.random.default_rng(2).random((10, 2))).plot(color=colors)
296
+ assert len(colors) == 3
297
+
298
+ def test_line_colors_and_styles_subplots(self):
299
+ # GH 9894
300
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
301
+
302
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
303
+
304
+ axes = df.plot(subplots=True)
305
+ for ax, c in zip(axes, list(default_colors)):
306
+ _check_colors(ax.get_lines(), linecolors=[c])
307
+
308
+ @pytest.mark.parametrize("color", ["k", "green"])
309
+ def test_line_colors_and_styles_subplots_single_color_str(self, color):
310
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
311
+ axes = df.plot(subplots=True, color=color)
312
+ for ax in axes:
313
+ _check_colors(ax.get_lines(), linecolors=[color])
314
+
315
+ @pytest.mark.parametrize("color", ["rgcby", list("rgcby")])
316
+ def test_line_colors_and_styles_subplots_custom_colors(self, color):
317
+ # GH 9894
318
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
319
+ axes = df.plot(color=color, subplots=True)
320
+ for ax, c in zip(axes, list(color)):
321
+ _check_colors(ax.get_lines(), linecolors=[c])
322
+
323
+ def test_line_colors_and_styles_subplots_colormap_hex(self):
324
+ # GH 9894
325
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
326
+ # GH 10299
327
+ custom_colors = ["#FF0000", "#0000FF", "#FFFF00", "#000000", "#FFFFFF"]
328
+ axes = df.plot(color=custom_colors, subplots=True)
329
+ for ax, c in zip(axes, list(custom_colors)):
330
+ _check_colors(ax.get_lines(), linecolors=[c])
331
+
332
+ @pytest.mark.parametrize("cmap", ["jet", cm.jet])
333
+ def test_line_colors_and_styles_subplots_colormap_subplot(self, cmap):
334
+ # GH 9894
335
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
336
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
337
+ axes = df.plot(colormap=cmap, subplots=True)
338
+ for ax, c in zip(axes, rgba_colors):
339
+ _check_colors(ax.get_lines(), linecolors=[c])
340
+
341
+ def test_line_colors_and_styles_subplots_single_col(self):
342
+ # GH 9894
343
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
344
+ # make color a list if plotting one column frame
345
+ # handles cases like df.plot(color='DodgerBlue')
346
+ axes = df.loc[:, [0]].plot(color="DodgerBlue", subplots=True)
347
+ _check_colors(axes[0].lines, linecolors=["DodgerBlue"])
348
+
349
+ def test_line_colors_and_styles_subplots_single_char(self):
350
+ # GH 9894
351
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
352
+ # single character style
353
+ axes = df.plot(style="r", subplots=True)
354
+ for ax in axes:
355
+ _check_colors(ax.get_lines(), linecolors=["r"])
356
+
357
+ def test_line_colors_and_styles_subplots_list_styles(self):
358
+ # GH 9894
359
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
360
+ # list of styles
361
+ styles = list("rgcby")
362
+ axes = df.plot(style=styles, subplots=True)
363
+ for ax, c in zip(axes, styles):
364
+ _check_colors(ax.get_lines(), linecolors=[c])
365
+
366
+ def test_area_colors(self):
367
+ from matplotlib.collections import PolyCollection
368
+
369
+ custom_colors = "rgcby"
370
+ df = DataFrame(np.random.default_rng(2).random((5, 5)))
371
+
372
+ ax = df.plot.area(color=custom_colors)
373
+ _check_colors(ax.get_lines(), linecolors=custom_colors)
374
+ poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
375
+ _check_colors(poly, facecolors=custom_colors)
376
+
377
+ handles, _ = ax.get_legend_handles_labels()
378
+ _check_colors(handles, facecolors=custom_colors)
379
+
380
+ for h in handles:
381
+ assert h.get_alpha() is None
382
+
383
+ def test_area_colors_poly(self):
384
+ from matplotlib import cm
385
+ from matplotlib.collections import PolyCollection
386
+
387
+ df = DataFrame(np.random.default_rng(2).random((5, 5)))
388
+ ax = df.plot.area(colormap="jet")
389
+ jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
390
+ _check_colors(ax.get_lines(), linecolors=jet_colors)
391
+ poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
392
+ _check_colors(poly, facecolors=jet_colors)
393
+
394
+ handles, _ = ax.get_legend_handles_labels()
395
+ _check_colors(handles, facecolors=jet_colors)
396
+ for h in handles:
397
+ assert h.get_alpha() is None
398
+
399
+ def test_area_colors_stacked_false(self):
400
+ from matplotlib import cm
401
+ from matplotlib.collections import PolyCollection
402
+
403
+ df = DataFrame(np.random.default_rng(2).random((5, 5)))
404
+ jet_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
405
+ # When stacked=False, alpha is set to 0.5
406
+ ax = df.plot.area(colormap=cm.jet, stacked=False)
407
+ _check_colors(ax.get_lines(), linecolors=jet_colors)
408
+ poly = [o for o in ax.get_children() if isinstance(o, PolyCollection)]
409
+ jet_with_alpha = [(c[0], c[1], c[2], 0.5) for c in jet_colors]
410
+ _check_colors(poly, facecolors=jet_with_alpha)
411
+
412
+ handles, _ = ax.get_legend_handles_labels()
413
+ linecolors = jet_with_alpha
414
+ _check_colors(handles[: len(jet_colors)], linecolors=linecolors)
415
+ for h in handles:
416
+ assert h.get_alpha() == 0.5
417
+
418
+ def test_hist_colors(self):
419
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
420
+
421
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
422
+ ax = df.plot.hist()
423
+ _check_colors(ax.patches[::10], facecolors=default_colors[:5])
424
+
425
+ def test_hist_colors_single_custom(self):
426
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
427
+ custom_colors = "rgcby"
428
+ ax = df.plot.hist(color=custom_colors)
429
+ _check_colors(ax.patches[::10], facecolors=custom_colors)
430
+
431
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
432
+ def test_hist_colors_cmap(self, colormap):
433
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
434
+ ax = df.plot.hist(colormap=colormap)
435
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, 5)]
436
+ _check_colors(ax.patches[::10], facecolors=rgba_colors)
437
+
438
+ def test_hist_colors_single_col(self):
439
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
440
+ ax = df.loc[:, [0]].plot.hist(color="DodgerBlue")
441
+ _check_colors([ax.patches[0]], facecolors=["DodgerBlue"])
442
+
443
+ def test_hist_colors_single_color(self):
444
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
445
+ ax = df.plot(kind="hist", color="green")
446
+ _check_colors(ax.patches[::10], facecolors=["green"] * 5)
447
+
448
+ def test_kde_colors(self):
449
+ pytest.importorskip("scipy")
450
+ custom_colors = "rgcby"
451
+ df = DataFrame(np.random.default_rng(2).random((5, 5)))
452
+
453
+ ax = df.plot.kde(color=custom_colors)
454
+ _check_colors(ax.get_lines(), linecolors=custom_colors)
455
+
456
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
457
+ def test_kde_colors_cmap(self, colormap):
458
+ pytest.importorskip("scipy")
459
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
460
+ ax = df.plot.kde(colormap=colormap)
461
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
462
+ _check_colors(ax.get_lines(), linecolors=rgba_colors)
463
+
464
+ def test_kde_colors_and_styles_subplots(self):
465
+ pytest.importorskip("scipy")
466
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
467
+
468
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
469
+
470
+ axes = df.plot(kind="kde", subplots=True)
471
+ for ax, c in zip(axes, list(default_colors)):
472
+ _check_colors(ax.get_lines(), linecolors=[c])
473
+
474
+ @pytest.mark.parametrize("colormap", ["k", "red"])
475
+ def test_kde_colors_and_styles_subplots_single_col_str(self, colormap):
476
+ pytest.importorskip("scipy")
477
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
478
+ axes = df.plot(kind="kde", color=colormap, subplots=True)
479
+ for ax in axes:
480
+ _check_colors(ax.get_lines(), linecolors=[colormap])
481
+
482
+ def test_kde_colors_and_styles_subplots_custom_color(self):
483
+ pytest.importorskip("scipy")
484
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
485
+ custom_colors = "rgcby"
486
+ axes = df.plot(kind="kde", color=custom_colors, subplots=True)
487
+ for ax, c in zip(axes, list(custom_colors)):
488
+ _check_colors(ax.get_lines(), linecolors=[c])
489
+
490
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
491
+ def test_kde_colors_and_styles_subplots_cmap(self, colormap):
492
+ pytest.importorskip("scipy")
493
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
494
+ rgba_colors = [cm.jet(n) for n in np.linspace(0, 1, len(df))]
495
+ axes = df.plot(kind="kde", colormap=colormap, subplots=True)
496
+ for ax, c in zip(axes, rgba_colors):
497
+ _check_colors(ax.get_lines(), linecolors=[c])
498
+
499
+ def test_kde_colors_and_styles_subplots_single_col(self):
500
+ pytest.importorskip("scipy")
501
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
502
+ # make color a list if plotting one column frame
503
+ # handles cases like df.plot(color='DodgerBlue')
504
+ axes = df.loc[:, [0]].plot(kind="kde", color="DodgerBlue", subplots=True)
505
+ _check_colors(axes[0].lines, linecolors=["DodgerBlue"])
506
+
507
+ def test_kde_colors_and_styles_subplots_single_char(self):
508
+ pytest.importorskip("scipy")
509
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
510
+ # list of styles
511
+ # single character style
512
+ axes = df.plot(kind="kde", style="r", subplots=True)
513
+ for ax in axes:
514
+ _check_colors(ax.get_lines(), linecolors=["r"])
515
+
516
+ def test_kde_colors_and_styles_subplots_list(self):
517
+ pytest.importorskip("scipy")
518
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
519
+ # list of styles
520
+ styles = list("rgcby")
521
+ axes = df.plot(kind="kde", style=styles, subplots=True)
522
+ for ax, c in zip(axes, styles):
523
+ _check_colors(ax.get_lines(), linecolors=[c])
524
+
525
+ def test_boxplot_colors(self):
526
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
527
+
528
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
529
+ bp = df.plot.box(return_type="dict")
530
+ _check_colors_box(
531
+ bp,
532
+ default_colors[0],
533
+ default_colors[0],
534
+ default_colors[2],
535
+ default_colors[0],
536
+ )
537
+
538
+ def test_boxplot_colors_dict_colors(self):
539
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
540
+ dict_colors = {
541
+ "boxes": "#572923",
542
+ "whiskers": "#982042",
543
+ "medians": "#804823",
544
+ "caps": "#123456",
545
+ }
546
+ bp = df.plot.box(color=dict_colors, sym="r+", return_type="dict")
547
+ _check_colors_box(
548
+ bp,
549
+ dict_colors["boxes"],
550
+ dict_colors["whiskers"],
551
+ dict_colors["medians"],
552
+ dict_colors["caps"],
553
+ "r",
554
+ )
555
+
556
+ def test_boxplot_colors_default_color(self):
557
+ default_colors = _unpack_cycler(mpl.pyplot.rcParams)
558
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
559
+ # partial colors
560
+ dict_colors = {"whiskers": "c", "medians": "m"}
561
+ bp = df.plot.box(color=dict_colors, return_type="dict")
562
+ _check_colors_box(bp, default_colors[0], "c", "m", default_colors[0])
563
+
564
+ @pytest.mark.parametrize("colormap", ["jet", cm.jet])
565
+ def test_boxplot_colors_cmap(self, colormap):
566
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
567
+ bp = df.plot.box(colormap=colormap, return_type="dict")
568
+ jet_colors = [cm.jet(n) for n in np.linspace(0, 1, 3)]
569
+ _check_colors_box(
570
+ bp, jet_colors[0], jet_colors[0], jet_colors[2], jet_colors[0]
571
+ )
572
+
573
+ def test_boxplot_colors_single(self):
574
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
575
+ # string color is applied to all artists except fliers
576
+ bp = df.plot.box(color="DodgerBlue", return_type="dict")
577
+ _check_colors_box(bp, "DodgerBlue", "DodgerBlue", "DodgerBlue", "DodgerBlue")
578
+
579
+ def test_boxplot_colors_tuple(self):
580
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
581
+ # tuple is also applied to all artists except fliers
582
+ bp = df.plot.box(color=(0, 1, 0), sym="#123456", return_type="dict")
583
+ _check_colors_box(bp, (0, 1, 0), (0, 1, 0), (0, 1, 0), (0, 1, 0), "#123456")
584
+
585
+ def test_boxplot_colors_invalid(self):
586
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
587
+ msg = re.escape(
588
+ "color dict contains invalid key 'xxxx'. The key must be either "
589
+ "['boxes', 'whiskers', 'medians', 'caps']"
590
+ )
591
+ with pytest.raises(ValueError, match=msg):
592
+ # Color contains invalid key results in ValueError
593
+ df.plot.box(color={"boxes": "red", "xxxx": "blue"})
594
+
595
+ def test_default_color_cycle(self):
596
+ import cycler
597
+
598
+ colors = list("rgbk")
599
+ plt.rcParams["axes.prop_cycle"] = cycler.cycler("color", colors)
600
+
601
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 3)))
602
+ ax = df.plot()
603
+
604
+ expected = _unpack_cycler(plt.rcParams)[:3]
605
+ _check_colors(ax.get_lines(), linecolors=expected)
606
+
607
+ def test_no_color_bar(self):
608
+ df = DataFrame(
609
+ {
610
+ "A": np.random.default_rng(2).uniform(size=20),
611
+ "B": np.random.default_rng(2).uniform(size=20),
612
+ "C": np.arange(20) + np.random.default_rng(2).uniform(size=20),
613
+ }
614
+ )
615
+ ax = df.plot.hexbin(x="A", y="B", colorbar=None)
616
+ assert ax.collections[0].colorbar is None
617
+
618
+ def test_mixing_cmap_and_colormap_raises(self):
619
+ df = DataFrame(
620
+ {
621
+ "A": np.random.default_rng(2).uniform(size=20),
622
+ "B": np.random.default_rng(2).uniform(size=20),
623
+ "C": np.arange(20) + np.random.default_rng(2).uniform(size=20),
624
+ }
625
+ )
626
+ msg = "Only specify one of `cmap` and `colormap`"
627
+ with pytest.raises(TypeError, match=msg):
628
+ df.plot.hexbin(x="A", y="B", cmap="YlGn", colormap="BuGn")
629
+
630
+ def test_passed_bar_colors(self):
631
+ color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
632
+ colormap = mpl.colors.ListedColormap(color_tuples)
633
+ barplot = DataFrame([[1, 2, 3]]).plot(kind="bar", cmap=colormap)
634
+ assert color_tuples == [c.get_facecolor() for c in barplot.patches]
635
+
636
+ def test_rcParams_bar_colors(self):
637
+ color_tuples = [(0.9, 0, 0, 1), (0, 0.9, 0, 1), (0, 0, 0.9, 1)]
638
+ with mpl.rc_context(rc={"axes.prop_cycle": mpl.cycler("color", color_tuples)}):
639
+ barplot = DataFrame([[1, 2, 3]]).plot(kind="bar")
640
+ assert color_tuples == [c.get_facecolor() for c in barplot.patches]
641
+
642
+ def test_colors_of_columns_with_same_name(self):
643
+ # ISSUE 11136 -> https://github.com/pandas-dev/pandas/issues/11136
644
+ # Creating a DataFrame with duplicate column labels and testing colors of them.
645
+ df = DataFrame({"b": [0, 1, 0], "a": [1, 2, 3]})
646
+ df1 = DataFrame({"a": [2, 4, 6]})
647
+ df_concat = pd.concat([df, df1], axis=1)
648
+ result = df_concat.plot()
649
+ legend = result.get_legend()
650
+ if Version(mpl.__version__) < Version("3.7"):
651
+ handles = legend.legendHandles
652
+ else:
653
+ handles = legend.legend_handles
654
+ for legend, line in zip(handles, result.lines):
655
+ assert legend.get_color() == line.get_color()
656
+
657
+ def test_invalid_colormap(self):
658
+ df = DataFrame(
659
+ np.random.default_rng(2).standard_normal((3, 2)), columns=["A", "B"]
660
+ )
661
+ msg = "(is not a valid value)|(is not a known colormap)"
662
+ with pytest.raises((ValueError, KeyError), match=msg):
663
+ df.plot(colormap="invalid_colormap")
664
+
665
+ def test_dataframe_none_color(self):
666
+ # GH51953
667
+ df = DataFrame([[1, 2, 3]])
668
+ ax = df.plot(color=None)
669
+ expected = _unpack_cycler(mpl.pyplot.rcParams)[:3]
670
+ _check_colors(ax.get_lines(), linecolors=expected)
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_groupby.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Test cases for DataFrame.plot """
2
+
3
+ import pytest
4
+
5
+ from pandas import DataFrame
6
+ from pandas.tests.plotting.common import _check_visible
7
+
8
+ pytest.importorskip("matplotlib")
9
+
10
+
11
+ class TestDataFramePlotsGroupby:
12
+ def _assert_ytickslabels_visibility(self, axes, expected):
13
+ for ax, exp in zip(axes, expected):
14
+ _check_visible(ax.get_yticklabels(), visible=exp)
15
+
16
+ def _assert_xtickslabels_visibility(self, axes, expected):
17
+ for ax, exp in zip(axes, expected):
18
+ _check_visible(ax.get_xticklabels(), visible=exp)
19
+
20
+ @pytest.mark.parametrize(
21
+ "kwargs, expected",
22
+ [
23
+ # behavior without keyword
24
+ ({}, [True, False, True, False]),
25
+ # set sharey=True should be identical
26
+ ({"sharey": True}, [True, False, True, False]),
27
+ # sharey=False, all yticklabels should be visible
28
+ ({"sharey": False}, [True, True, True, True]),
29
+ ],
30
+ )
31
+ def test_groupby_boxplot_sharey(self, kwargs, expected):
32
+ # https://github.com/pandas-dev/pandas/issues/20968
33
+ # sharey can now be switched check whether the right
34
+ # pair of axes is turned on or off
35
+ df = DataFrame(
36
+ {
37
+ "a": [-1.43, -0.15, -3.70, -1.43, -0.14],
38
+ "b": [0.56, 0.84, 0.29, 0.56, 0.85],
39
+ "c": [0, 1, 2, 3, 1],
40
+ },
41
+ index=[0, 1, 2, 3, 4],
42
+ )
43
+ axes = df.groupby("c").boxplot(**kwargs)
44
+ self._assert_ytickslabels_visibility(axes, expected)
45
+
46
+ @pytest.mark.parametrize(
47
+ "kwargs, expected",
48
+ [
49
+ # behavior without keyword
50
+ ({}, [True, True, True, True]),
51
+ # set sharex=False should be identical
52
+ ({"sharex": False}, [True, True, True, True]),
53
+ # sharex=True, xticklabels should be visible
54
+ # only for bottom plots
55
+ ({"sharex": True}, [False, False, True, True]),
56
+ ],
57
+ )
58
+ def test_groupby_boxplot_sharex(self, kwargs, expected):
59
+ # https://github.com/pandas-dev/pandas/issues/20968
60
+ # sharex can now be switched check whether the right
61
+ # pair of axes is turned on or off
62
+
63
+ df = DataFrame(
64
+ {
65
+ "a": [-1.43, -0.15, -3.70, -1.43, -0.14],
66
+ "b": [0.56, 0.84, 0.29, 0.56, 0.85],
67
+ "c": [0, 1, 2, 3, 1],
68
+ },
69
+ index=[0, 1, 2, 3, 4],
70
+ )
71
+ axes = df.groupby("c").boxplot(**kwargs)
72
+ self._assert_xtickslabels_visibility(axes, expected)
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_legend.py ADDED
@@ -0,0 +1,272 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ import pandas.util._test_decorators as td
5
+
6
+ from pandas import (
7
+ DataFrame,
8
+ date_range,
9
+ )
10
+ from pandas.tests.plotting.common import (
11
+ _check_legend_labels,
12
+ _check_legend_marker,
13
+ _check_text_labels,
14
+ )
15
+ from pandas.util.version import Version
16
+
17
+ mpl = pytest.importorskip("matplotlib")
18
+
19
+
20
+ class TestFrameLegend:
21
+ @pytest.mark.xfail(
22
+ reason=(
23
+ "Open bug in matplotlib "
24
+ "https://github.com/matplotlib/matplotlib/issues/11357"
25
+ )
26
+ )
27
+ def test_mixed_yerr(self):
28
+ # https://github.com/pandas-dev/pandas/issues/39522
29
+ from matplotlib.collections import LineCollection
30
+ from matplotlib.lines import Line2D
31
+
32
+ df = DataFrame([{"x": 1, "a": 1, "b": 1}, {"x": 2, "a": 2, "b": 3}])
33
+
34
+ ax = df.plot("x", "a", c="orange", yerr=0.1, label="orange")
35
+ df.plot("x", "b", c="blue", yerr=None, ax=ax, label="blue")
36
+
37
+ legend = ax.get_legend()
38
+ if Version(mpl.__version__) < Version("3.7"):
39
+ result_handles = legend.legendHandles
40
+ else:
41
+ result_handles = legend.legend_handles
42
+
43
+ assert isinstance(result_handles[0], LineCollection)
44
+ assert isinstance(result_handles[1], Line2D)
45
+
46
+ def test_legend_false(self):
47
+ # https://github.com/pandas-dev/pandas/issues/40044
48
+ df = DataFrame({"a": [1, 1], "b": [2, 3]})
49
+ df2 = DataFrame({"d": [2.5, 2.5]})
50
+
51
+ ax = df.plot(legend=True, color={"a": "blue", "b": "green"}, secondary_y="b")
52
+ df2.plot(legend=True, color={"d": "red"}, ax=ax)
53
+ legend = ax.get_legend()
54
+ if Version(mpl.__version__) < Version("3.7"):
55
+ handles = legend.legendHandles
56
+ else:
57
+ handles = legend.legend_handles
58
+ result = [handle.get_color() for handle in handles]
59
+ expected = ["blue", "green", "red"]
60
+ assert result == expected
61
+
62
+ @pytest.mark.parametrize("kind", ["line", "bar", "barh", "kde", "area", "hist"])
63
+ def test_df_legend_labels(self, kind):
64
+ pytest.importorskip("scipy")
65
+ df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
66
+ df2 = DataFrame(
67
+ np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"]
68
+ )
69
+ df3 = DataFrame(
70
+ np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"]
71
+ )
72
+ df4 = DataFrame(
73
+ np.random.default_rng(2).random((3, 3)), columns=["j", "k", "l"]
74
+ )
75
+
76
+ ax = df.plot(kind=kind, legend=True)
77
+ _check_legend_labels(ax, labels=df.columns)
78
+
79
+ ax = df2.plot(kind=kind, legend=False, ax=ax)
80
+ _check_legend_labels(ax, labels=df.columns)
81
+
82
+ ax = df3.plot(kind=kind, legend=True, ax=ax)
83
+ _check_legend_labels(ax, labels=df.columns.union(df3.columns))
84
+
85
+ ax = df4.plot(kind=kind, legend="reverse", ax=ax)
86
+ expected = list(df.columns.union(df3.columns)) + list(reversed(df4.columns))
87
+ _check_legend_labels(ax, labels=expected)
88
+
89
+ def test_df_legend_labels_secondary_y(self):
90
+ pytest.importorskip("scipy")
91
+ df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
92
+ df2 = DataFrame(
93
+ np.random.default_rng(2).random((3, 3)), columns=["d", "e", "f"]
94
+ )
95
+ df3 = DataFrame(
96
+ np.random.default_rng(2).random((3, 3)), columns=["g", "h", "i"]
97
+ )
98
+ # Secondary Y
99
+ ax = df.plot(legend=True, secondary_y="b")
100
+ _check_legend_labels(ax, labels=["a", "b (right)", "c"])
101
+ ax = df2.plot(legend=False, ax=ax)
102
+ _check_legend_labels(ax, labels=["a", "b (right)", "c"])
103
+ ax = df3.plot(kind="bar", legend=True, secondary_y="h", ax=ax)
104
+ _check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h (right)", "i"])
105
+
106
+ def test_df_legend_labels_time_series(self):
107
+ # Time Series
108
+ pytest.importorskip("scipy")
109
+ ind = date_range("1/1/2014", periods=3)
110
+ df = DataFrame(
111
+ np.random.default_rng(2).standard_normal((3, 3)),
112
+ columns=["a", "b", "c"],
113
+ index=ind,
114
+ )
115
+ df2 = DataFrame(
116
+ np.random.default_rng(2).standard_normal((3, 3)),
117
+ columns=["d", "e", "f"],
118
+ index=ind,
119
+ )
120
+ df3 = DataFrame(
121
+ np.random.default_rng(2).standard_normal((3, 3)),
122
+ columns=["g", "h", "i"],
123
+ index=ind,
124
+ )
125
+ ax = df.plot(legend=True, secondary_y="b")
126
+ _check_legend_labels(ax, labels=["a", "b (right)", "c"])
127
+ ax = df2.plot(legend=False, ax=ax)
128
+ _check_legend_labels(ax, labels=["a", "b (right)", "c"])
129
+ ax = df3.plot(legend=True, ax=ax)
130
+ _check_legend_labels(ax, labels=["a", "b (right)", "c", "g", "h", "i"])
131
+
132
+ def test_df_legend_labels_time_series_scatter(self):
133
+ # Time Series
134
+ pytest.importorskip("scipy")
135
+ ind = date_range("1/1/2014", periods=3)
136
+ df = DataFrame(
137
+ np.random.default_rng(2).standard_normal((3, 3)),
138
+ columns=["a", "b", "c"],
139
+ index=ind,
140
+ )
141
+ df2 = DataFrame(
142
+ np.random.default_rng(2).standard_normal((3, 3)),
143
+ columns=["d", "e", "f"],
144
+ index=ind,
145
+ )
146
+ df3 = DataFrame(
147
+ np.random.default_rng(2).standard_normal((3, 3)),
148
+ columns=["g", "h", "i"],
149
+ index=ind,
150
+ )
151
+ # scatter
152
+ ax = df.plot.scatter(x="a", y="b", label="data1")
153
+ _check_legend_labels(ax, labels=["data1"])
154
+ ax = df2.plot.scatter(x="d", y="e", legend=False, label="data2", ax=ax)
155
+ _check_legend_labels(ax, labels=["data1"])
156
+ ax = df3.plot.scatter(x="g", y="h", label="data3", ax=ax)
157
+ _check_legend_labels(ax, labels=["data1", "data3"])
158
+
159
+ def test_df_legend_labels_time_series_no_mutate(self):
160
+ pytest.importorskip("scipy")
161
+ ind = date_range("1/1/2014", periods=3)
162
+ df = DataFrame(
163
+ np.random.default_rng(2).standard_normal((3, 3)),
164
+ columns=["a", "b", "c"],
165
+ index=ind,
166
+ )
167
+ # ensure label args pass through and
168
+ # index name does not mutate
169
+ # column names don't mutate
170
+ df5 = df.set_index("a")
171
+ ax = df5.plot(y="b")
172
+ _check_legend_labels(ax, labels=["b"])
173
+ ax = df5.plot(y="b", label="LABEL_b")
174
+ _check_legend_labels(ax, labels=["LABEL_b"])
175
+ _check_text_labels(ax.xaxis.get_label(), "a")
176
+ ax = df5.plot(y="c", label="LABEL_c", ax=ax)
177
+ _check_legend_labels(ax, labels=["LABEL_b", "LABEL_c"])
178
+ assert df5.columns.tolist() == ["b", "c"]
179
+
180
+ def test_missing_marker_multi_plots_on_same_ax(self):
181
+ # GH 18222
182
+ df = DataFrame(data=[[1, 1, 1, 1], [2, 2, 4, 8]], columns=["x", "r", "g", "b"])
183
+ _, ax = mpl.pyplot.subplots(nrows=1, ncols=3)
184
+ # Left plot
185
+ df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[0])
186
+ df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[0])
187
+ df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[0])
188
+ _check_legend_labels(ax[0], labels=["r", "g", "b"])
189
+ _check_legend_marker(ax[0], expected_markers=["o", "x", "o"])
190
+ # Center plot
191
+ df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[1])
192
+ df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[1])
193
+ df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[1])
194
+ _check_legend_labels(ax[1], labels=["b", "r", "g"])
195
+ _check_legend_marker(ax[1], expected_markers=["o", "o", "x"])
196
+ # Right plot
197
+ df.plot(x="x", y="g", linewidth=1, marker="x", color="g", ax=ax[2])
198
+ df.plot(x="x", y="b", linewidth=1, marker="o", color="b", ax=ax[2])
199
+ df.plot(x="x", y="r", linewidth=0, marker="o", color="r", ax=ax[2])
200
+ _check_legend_labels(ax[2], labels=["g", "b", "r"])
201
+ _check_legend_marker(ax[2], expected_markers=["x", "o", "o"])
202
+
203
+ def test_legend_name(self):
204
+ multi = DataFrame(
205
+ np.random.default_rng(2).standard_normal((4, 4)),
206
+ columns=[np.array(["a", "a", "b", "b"]), np.array(["x", "y", "x", "y"])],
207
+ )
208
+ multi.columns.names = ["group", "individual"]
209
+
210
+ ax = multi.plot()
211
+ leg_title = ax.legend_.get_title()
212
+ _check_text_labels(leg_title, "group,individual")
213
+
214
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
215
+ ax = df.plot(legend=True, ax=ax)
216
+ leg_title = ax.legend_.get_title()
217
+ _check_text_labels(leg_title, "group,individual")
218
+
219
+ df.columns.name = "new"
220
+ ax = df.plot(legend=False, ax=ax)
221
+ leg_title = ax.legend_.get_title()
222
+ _check_text_labels(leg_title, "group,individual")
223
+
224
+ ax = df.plot(legend=True, ax=ax)
225
+ leg_title = ax.legend_.get_title()
226
+ _check_text_labels(leg_title, "new")
227
+
228
+ @pytest.mark.parametrize(
229
+ "kind",
230
+ [
231
+ "line",
232
+ "bar",
233
+ "barh",
234
+ pytest.param("kde", marks=td.skip_if_no("scipy")),
235
+ "area",
236
+ "hist",
237
+ ],
238
+ )
239
+ def test_no_legend(self, kind):
240
+ df = DataFrame(np.random.default_rng(2).random((3, 3)), columns=["a", "b", "c"])
241
+ ax = df.plot(kind=kind, legend=False)
242
+ _check_legend_labels(ax, visible=False)
243
+
244
+ def test_missing_markers_legend(self):
245
+ # 14958
246
+ df = DataFrame(
247
+ np.random.default_rng(2).standard_normal((8, 3)), columns=["A", "B", "C"]
248
+ )
249
+ ax = df.plot(y=["A"], marker="x", linestyle="solid")
250
+ df.plot(y=["B"], marker="o", linestyle="dotted", ax=ax)
251
+ df.plot(y=["C"], marker="<", linestyle="dotted", ax=ax)
252
+
253
+ _check_legend_labels(ax, labels=["A", "B", "C"])
254
+ _check_legend_marker(ax, expected_markers=["x", "o", "<"])
255
+
256
+ def test_missing_markers_legend_using_style(self):
257
+ # 14563
258
+ df = DataFrame(
259
+ {
260
+ "A": [1, 2, 3, 4, 5, 6],
261
+ "B": [2, 4, 1, 3, 2, 4],
262
+ "C": [3, 3, 2, 6, 4, 2],
263
+ "X": [1, 2, 3, 4, 5, 6],
264
+ }
265
+ )
266
+
267
+ _, ax = mpl.pyplot.subplots()
268
+ for kind in "ABC":
269
+ df.plot("X", kind, label=kind, ax=ax, style=".")
270
+
271
+ _check_legend_labels(ax, labels=["A", "B", "C"])
272
+ _check_legend_marker(ax, expected_markers=[".", ".", "."])
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_frame_subplots.py ADDED
@@ -0,0 +1,752 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """ Test cases for DataFrame.plot """
2
+
3
+ import string
4
+
5
+ import numpy as np
6
+ import pytest
7
+
8
+ from pandas.compat import is_platform_linux
9
+ from pandas.compat.numpy import np_version_gte1p24
10
+
11
+ import pandas as pd
12
+ from pandas import (
13
+ DataFrame,
14
+ Series,
15
+ date_range,
16
+ )
17
+ import pandas._testing as tm
18
+ from pandas.tests.plotting.common import (
19
+ _check_axes_shape,
20
+ _check_box_return_type,
21
+ _check_legend_labels,
22
+ _check_ticks_props,
23
+ _check_visible,
24
+ _flatten_visible,
25
+ )
26
+
27
+ from pandas.io.formats.printing import pprint_thing
28
+
29
+ mpl = pytest.importorskip("matplotlib")
30
+ plt = pytest.importorskip("matplotlib.pyplot")
31
+
32
+
33
+ class TestDataFramePlotsSubplots:
34
+ @pytest.mark.slow
35
+ @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
36
+ def test_subplots(self, kind):
37
+ df = DataFrame(
38
+ np.random.default_rng(2).random((10, 3)),
39
+ index=list(string.ascii_letters[:10]),
40
+ )
41
+
42
+ axes = df.plot(kind=kind, subplots=True, sharex=True, legend=True)
43
+ _check_axes_shape(axes, axes_num=3, layout=(3, 1))
44
+ assert axes.shape == (3,)
45
+
46
+ for ax, column in zip(axes, df.columns):
47
+ _check_legend_labels(ax, labels=[pprint_thing(column)])
48
+
49
+ for ax in axes[:-2]:
50
+ _check_visible(ax.xaxis) # xaxis must be visible for grid
51
+ _check_visible(ax.get_xticklabels(), visible=False)
52
+ if kind != "bar":
53
+ # change https://github.com/pandas-dev/pandas/issues/26714
54
+ _check_visible(ax.get_xticklabels(minor=True), visible=False)
55
+ _check_visible(ax.xaxis.get_label(), visible=False)
56
+ _check_visible(ax.get_yticklabels())
57
+
58
+ _check_visible(axes[-1].xaxis)
59
+ _check_visible(axes[-1].get_xticklabels())
60
+ _check_visible(axes[-1].get_xticklabels(minor=True))
61
+ _check_visible(axes[-1].xaxis.get_label())
62
+ _check_visible(axes[-1].get_yticklabels())
63
+
64
+ @pytest.mark.slow
65
+ @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
66
+ def test_subplots_no_share_x(self, kind):
67
+ df = DataFrame(
68
+ np.random.default_rng(2).random((10, 3)),
69
+ index=list(string.ascii_letters[:10]),
70
+ )
71
+ axes = df.plot(kind=kind, subplots=True, sharex=False)
72
+ for ax in axes:
73
+ _check_visible(ax.xaxis)
74
+ _check_visible(ax.get_xticklabels())
75
+ _check_visible(ax.get_xticklabels(minor=True))
76
+ _check_visible(ax.xaxis.get_label())
77
+ _check_visible(ax.get_yticklabels())
78
+
79
+ @pytest.mark.slow
80
+ @pytest.mark.parametrize("kind", ["bar", "barh", "line", "area"])
81
+ def test_subplots_no_legend(self, kind):
82
+ df = DataFrame(
83
+ np.random.default_rng(2).random((10, 3)),
84
+ index=list(string.ascii_letters[:10]),
85
+ )
86
+ axes = df.plot(kind=kind, subplots=True, legend=False)
87
+ for ax in axes:
88
+ assert ax.get_legend() is None
89
+
90
+ @pytest.mark.parametrize("kind", ["line", "area"])
91
+ def test_subplots_timeseries(self, kind):
92
+ idx = date_range(start="2014-07-01", freq="ME", periods=10)
93
+ df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
94
+
95
+ axes = df.plot(kind=kind, subplots=True, sharex=True)
96
+ _check_axes_shape(axes, axes_num=3, layout=(3, 1))
97
+
98
+ for ax in axes[:-2]:
99
+ # GH 7801
100
+ _check_visible(ax.xaxis) # xaxis must be visible for grid
101
+ _check_visible(ax.get_xticklabels(), visible=False)
102
+ _check_visible(ax.get_xticklabels(minor=True), visible=False)
103
+ _check_visible(ax.xaxis.get_label(), visible=False)
104
+ _check_visible(ax.get_yticklabels())
105
+
106
+ _check_visible(axes[-1].xaxis)
107
+ _check_visible(axes[-1].get_xticklabels())
108
+ _check_visible(axes[-1].get_xticklabels(minor=True))
109
+ _check_visible(axes[-1].xaxis.get_label())
110
+ _check_visible(axes[-1].get_yticklabels())
111
+ _check_ticks_props(axes, xrot=0)
112
+
113
+ @pytest.mark.parametrize("kind", ["line", "area"])
114
+ def test_subplots_timeseries_rot(self, kind):
115
+ idx = date_range(start="2014-07-01", freq="ME", periods=10)
116
+ df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
117
+ axes = df.plot(kind=kind, subplots=True, sharex=False, rot=45, fontsize=7)
118
+ for ax in axes:
119
+ _check_visible(ax.xaxis)
120
+ _check_visible(ax.get_xticklabels())
121
+ _check_visible(ax.get_xticklabels(minor=True))
122
+ _check_visible(ax.xaxis.get_label())
123
+ _check_visible(ax.get_yticklabels())
124
+ _check_ticks_props(ax, xlabelsize=7, xrot=45, ylabelsize=7)
125
+
126
+ @pytest.mark.parametrize(
127
+ "col", ["numeric", "timedelta", "datetime_no_tz", "datetime_all_tz"]
128
+ )
129
+ def test_subplots_timeseries_y_axis(self, col):
130
+ # GH16953
131
+ data = {
132
+ "numeric": np.array([1, 2, 5]),
133
+ "timedelta": [
134
+ pd.Timedelta(-10, unit="s"),
135
+ pd.Timedelta(10, unit="m"),
136
+ pd.Timedelta(10, unit="h"),
137
+ ],
138
+ "datetime_no_tz": [
139
+ pd.to_datetime("2017-08-01 00:00:00"),
140
+ pd.to_datetime("2017-08-01 02:00:00"),
141
+ pd.to_datetime("2017-08-02 00:00:00"),
142
+ ],
143
+ "datetime_all_tz": [
144
+ pd.to_datetime("2017-08-01 00:00:00", utc=True),
145
+ pd.to_datetime("2017-08-01 02:00:00", utc=True),
146
+ pd.to_datetime("2017-08-02 00:00:00", utc=True),
147
+ ],
148
+ "text": ["This", "should", "fail"],
149
+ }
150
+ testdata = DataFrame(data)
151
+
152
+ ax = testdata.plot(y=col)
153
+ result = ax.get_lines()[0].get_data()[1]
154
+ expected = testdata[col].values
155
+ assert (result == expected).all()
156
+
157
+ def test_subplots_timeseries_y_text_error(self):
158
+ # GH16953
159
+ data = {
160
+ "numeric": np.array([1, 2, 5]),
161
+ "text": ["This", "should", "fail"],
162
+ }
163
+ testdata = DataFrame(data)
164
+ msg = "no numeric data to plot"
165
+ with pytest.raises(TypeError, match=msg):
166
+ testdata.plot(y="text")
167
+
168
+ @pytest.mark.xfail(reason="not support for period, categorical, datetime_mixed_tz")
169
+ def test_subplots_timeseries_y_axis_not_supported(self):
170
+ """
171
+ This test will fail for:
172
+ period:
173
+ since period isn't yet implemented in ``select_dtypes``
174
+ and because it will need a custom value converter +
175
+ tick formatter (as was done for x-axis plots)
176
+
177
+ categorical:
178
+ because it will need a custom value converter +
179
+ tick formatter (also doesn't work for x-axis, as of now)
180
+
181
+ datetime_mixed_tz:
182
+ because of the way how pandas handles ``Series`` of
183
+ ``datetime`` objects with different timezone,
184
+ generally converting ``datetime`` objects in a tz-aware
185
+ form could help with this problem
186
+ """
187
+ data = {
188
+ "numeric": np.array([1, 2, 5]),
189
+ "period": [
190
+ pd.Period("2017-08-01 00:00:00", freq="H"),
191
+ pd.Period("2017-08-01 02:00", freq="H"),
192
+ pd.Period("2017-08-02 00:00:00", freq="H"),
193
+ ],
194
+ "categorical": pd.Categorical(
195
+ ["c", "b", "a"], categories=["a", "b", "c"], ordered=False
196
+ ),
197
+ "datetime_mixed_tz": [
198
+ pd.to_datetime("2017-08-01 00:00:00", utc=True),
199
+ pd.to_datetime("2017-08-01 02:00:00"),
200
+ pd.to_datetime("2017-08-02 00:00:00"),
201
+ ],
202
+ }
203
+ testdata = DataFrame(data)
204
+ ax_period = testdata.plot(x="numeric", y="period")
205
+ assert (
206
+ ax_period.get_lines()[0].get_data()[1] == testdata["period"].values
207
+ ).all()
208
+ ax_categorical = testdata.plot(x="numeric", y="categorical")
209
+ assert (
210
+ ax_categorical.get_lines()[0].get_data()[1]
211
+ == testdata["categorical"].values
212
+ ).all()
213
+ ax_datetime_mixed_tz = testdata.plot(x="numeric", y="datetime_mixed_tz")
214
+ assert (
215
+ ax_datetime_mixed_tz.get_lines()[0].get_data()[1]
216
+ == testdata["datetime_mixed_tz"].values
217
+ ).all()
218
+
219
+ @pytest.mark.parametrize(
220
+ "layout, exp_layout",
221
+ [
222
+ [(2, 2), (2, 2)],
223
+ [(-1, 2), (2, 2)],
224
+ [(2, -1), (2, 2)],
225
+ [(1, 4), (1, 4)],
226
+ [(-1, 4), (1, 4)],
227
+ [(4, -1), (4, 1)],
228
+ ],
229
+ )
230
+ def test_subplots_layout_multi_column(self, layout, exp_layout):
231
+ # GH 6667
232
+ df = DataFrame(
233
+ np.random.default_rng(2).random((10, 3)),
234
+ index=list(string.ascii_letters[:10]),
235
+ )
236
+
237
+ axes = df.plot(subplots=True, layout=layout)
238
+ _check_axes_shape(axes, axes_num=3, layout=exp_layout)
239
+ assert axes.shape == exp_layout
240
+
241
+ def test_subplots_layout_multi_column_error(self):
242
+ # GH 6667
243
+ df = DataFrame(
244
+ np.random.default_rng(2).random((10, 3)),
245
+ index=list(string.ascii_letters[:10]),
246
+ )
247
+ msg = "Layout of 1x1 must be larger than required size 3"
248
+
249
+ with pytest.raises(ValueError, match=msg):
250
+ df.plot(subplots=True, layout=(1, 1))
251
+
252
+ msg = "At least one dimension of layout must be positive"
253
+ with pytest.raises(ValueError, match=msg):
254
+ df.plot(subplots=True, layout=(-1, -1))
255
+
256
+ @pytest.mark.parametrize(
257
+ "kwargs, expected_axes_num, expected_layout, expected_shape",
258
+ [
259
+ ({}, 1, (1, 1), (1,)),
260
+ ({"layout": (3, 3)}, 1, (3, 3), (3, 3)),
261
+ ],
262
+ )
263
+ def test_subplots_layout_single_column(
264
+ self, kwargs, expected_axes_num, expected_layout, expected_shape
265
+ ):
266
+ # GH 6667
267
+ df = DataFrame(
268
+ np.random.default_rng(2).random((10, 1)),
269
+ index=list(string.ascii_letters[:10]),
270
+ )
271
+ axes = df.plot(subplots=True, **kwargs)
272
+ _check_axes_shape(
273
+ axes,
274
+ axes_num=expected_axes_num,
275
+ layout=expected_layout,
276
+ )
277
+ assert axes.shape == expected_shape
278
+
279
+ @pytest.mark.slow
280
+ @pytest.mark.parametrize("idx", [range(5), date_range("1/1/2000", periods=5)])
281
+ def test_subplots_warnings(self, idx):
282
+ # GH 9464
283
+ with tm.assert_produces_warning(None):
284
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 4)), index=idx)
285
+ df.plot(subplots=True, layout=(3, 2))
286
+
287
+ def test_subplots_multiple_axes(self):
288
+ # GH 5353, 6970, GH 7069
289
+ fig, axes = mpl.pyplot.subplots(2, 3)
290
+ df = DataFrame(
291
+ np.random.default_rng(2).random((10, 3)),
292
+ index=list(string.ascii_letters[:10]),
293
+ )
294
+
295
+ returned = df.plot(subplots=True, ax=axes[0], sharex=False, sharey=False)
296
+ _check_axes_shape(returned, axes_num=3, layout=(1, 3))
297
+ assert returned.shape == (3,)
298
+ assert returned[0].figure is fig
299
+ # draw on second row
300
+ returned = df.plot(subplots=True, ax=axes[1], sharex=False, sharey=False)
301
+ _check_axes_shape(returned, axes_num=3, layout=(1, 3))
302
+ assert returned.shape == (3,)
303
+ assert returned[0].figure is fig
304
+ _check_axes_shape(axes, axes_num=6, layout=(2, 3))
305
+
306
+ def test_subplots_multiple_axes_error(self):
307
+ # GH 5353, 6970, GH 7069
308
+ df = DataFrame(
309
+ np.random.default_rng(2).random((10, 3)),
310
+ index=list(string.ascii_letters[:10]),
311
+ )
312
+ msg = "The number of passed axes must be 3, the same as the output plot"
313
+ _, axes = mpl.pyplot.subplots(2, 3)
314
+
315
+ with pytest.raises(ValueError, match=msg):
316
+ # pass different number of axes from required
317
+ df.plot(subplots=True, ax=axes)
318
+
319
+ @pytest.mark.parametrize(
320
+ "layout, exp_layout",
321
+ [
322
+ [(2, 1), (2, 2)],
323
+ [(2, -1), (2, 2)],
324
+ [(-1, 2), (2, 2)],
325
+ ],
326
+ )
327
+ def test_subplots_multiple_axes_2_dim(self, layout, exp_layout):
328
+ # GH 5353, 6970, GH 7069
329
+ # pass 2-dim axes and invalid layout
330
+ # invalid lauout should not affect to input and return value
331
+ # (show warning is tested in
332
+ # TestDataFrameGroupByPlots.test_grouped_box_multiple_axes
333
+ _, axes = mpl.pyplot.subplots(2, 2)
334
+ df = DataFrame(
335
+ np.random.default_rng(2).random((10, 4)),
336
+ index=list(string.ascii_letters[:10]),
337
+ )
338
+ with tm.assert_produces_warning(UserWarning):
339
+ returned = df.plot(
340
+ subplots=True, ax=axes, layout=layout, sharex=False, sharey=False
341
+ )
342
+ _check_axes_shape(returned, axes_num=4, layout=exp_layout)
343
+ assert returned.shape == (4,)
344
+
345
+ def test_subplots_multiple_axes_single_col(self):
346
+ # GH 5353, 6970, GH 7069
347
+ # single column
348
+ _, axes = mpl.pyplot.subplots(1, 1)
349
+ df = DataFrame(
350
+ np.random.default_rng(2).random((10, 1)),
351
+ index=list(string.ascii_letters[:10]),
352
+ )
353
+
354
+ axes = df.plot(subplots=True, ax=[axes], sharex=False, sharey=False)
355
+ _check_axes_shape(axes, axes_num=1, layout=(1, 1))
356
+ assert axes.shape == (1,)
357
+
358
+ def test_subplots_ts_share_axes(self):
359
+ # GH 3964
360
+ _, axes = mpl.pyplot.subplots(3, 3, sharex=True, sharey=True)
361
+ mpl.pyplot.subplots_adjust(left=0.05, right=0.95, hspace=0.3, wspace=0.3)
362
+ df = DataFrame(
363
+ np.random.default_rng(2).standard_normal((10, 9)),
364
+ index=date_range(start="2014-07-01", freq="ME", periods=10),
365
+ )
366
+ for i, ax in enumerate(axes.ravel()):
367
+ df[i].plot(ax=ax, fontsize=5)
368
+
369
+ # Rows other than bottom should not be visible
370
+ for ax in axes[0:-1].ravel():
371
+ _check_visible(ax.get_xticklabels(), visible=False)
372
+
373
+ # Bottom row should be visible
374
+ for ax in axes[-1].ravel():
375
+ _check_visible(ax.get_xticklabels(), visible=True)
376
+
377
+ # First column should be visible
378
+ for ax in axes[[0, 1, 2], [0]].ravel():
379
+ _check_visible(ax.get_yticklabels(), visible=True)
380
+
381
+ # Other columns should not be visible
382
+ for ax in axes[[0, 1, 2], [1]].ravel():
383
+ _check_visible(ax.get_yticklabels(), visible=False)
384
+ for ax in axes[[0, 1, 2], [2]].ravel():
385
+ _check_visible(ax.get_yticklabels(), visible=False)
386
+
387
+ def test_subplots_sharex_axes_existing_axes(self):
388
+ # GH 9158
389
+ d = {"A": [1.0, 2.0, 3.0, 4.0], "B": [4.0, 3.0, 2.0, 1.0], "C": [5, 1, 3, 4]}
390
+ df = DataFrame(d, index=date_range("2014 10 11", "2014 10 14"))
391
+
392
+ axes = df[["A", "B"]].plot(subplots=True)
393
+ df["C"].plot(ax=axes[0], secondary_y=True)
394
+
395
+ _check_visible(axes[0].get_xticklabels(), visible=False)
396
+ _check_visible(axes[1].get_xticklabels(), visible=True)
397
+ for ax in axes.ravel():
398
+ _check_visible(ax.get_yticklabels(), visible=True)
399
+
400
+ def test_subplots_dup_columns(self):
401
+ # GH 10962
402
+ df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
403
+ axes = df.plot(subplots=True)
404
+ for ax in axes:
405
+ _check_legend_labels(ax, labels=["a"])
406
+ assert len(ax.lines) == 1
407
+
408
+ def test_subplots_dup_columns_secondary_y(self):
409
+ # GH 10962
410
+ df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
411
+ axes = df.plot(subplots=True, secondary_y="a")
412
+ for ax in axes:
413
+ # (right) is only attached when subplots=False
414
+ _check_legend_labels(ax, labels=["a"])
415
+ assert len(ax.lines) == 1
416
+
417
+ def test_subplots_dup_columns_secondary_y_no_subplot(self):
418
+ # GH 10962
419
+ df = DataFrame(np.random.default_rng(2).random((5, 5)), columns=list("aaaaa"))
420
+ ax = df.plot(secondary_y="a")
421
+ _check_legend_labels(ax, labels=["a (right)"] * 5)
422
+ assert len(ax.lines) == 0
423
+ assert len(ax.right_ax.lines) == 5
424
+
425
+ @pytest.mark.xfail(
426
+ np_version_gte1p24 and is_platform_linux(),
427
+ reason="Weird rounding problems",
428
+ strict=False,
429
+ )
430
+ def test_bar_log_no_subplots(self):
431
+ # GH3254, GH3298 matplotlib/matplotlib#1882, #1892
432
+ # regressions in 1.2.1
433
+ expected = np.array([0.1, 1.0, 10.0, 100])
434
+
435
+ # no subplots
436
+ df = DataFrame({"A": [3] * 5, "B": list(range(1, 6))}, index=range(5))
437
+ ax = df.plot.bar(grid=True, log=True)
438
+ tm.assert_numpy_array_equal(ax.yaxis.get_ticklocs(), expected)
439
+
440
+ @pytest.mark.xfail(
441
+ np_version_gte1p24 and is_platform_linux(),
442
+ reason="Weird rounding problems",
443
+ strict=False,
444
+ )
445
+ def test_bar_log_subplots(self):
446
+ expected = np.array([0.1, 1.0, 10.0, 100.0, 1000.0, 1e4])
447
+
448
+ ax = DataFrame([Series([200, 300]), Series([300, 500])]).plot.bar(
449
+ log=True, subplots=True
450
+ )
451
+
452
+ tm.assert_numpy_array_equal(ax[0].yaxis.get_ticklocs(), expected)
453
+ tm.assert_numpy_array_equal(ax[1].yaxis.get_ticklocs(), expected)
454
+
455
+ def test_boxplot_subplots_return_type_default(self, hist_df):
456
+ df = hist_df
457
+
458
+ # normal style: return_type=None
459
+ result = df.plot.box(subplots=True)
460
+ assert isinstance(result, Series)
461
+ _check_box_return_type(
462
+ result, None, expected_keys=["height", "weight", "category"]
463
+ )
464
+
465
+ @pytest.mark.parametrize("rt", ["dict", "axes", "both"])
466
+ def test_boxplot_subplots_return_type(self, hist_df, rt):
467
+ df = hist_df
468
+ returned = df.plot.box(return_type=rt, subplots=True)
469
+ _check_box_return_type(
470
+ returned,
471
+ rt,
472
+ expected_keys=["height", "weight", "category"],
473
+ check_ax_title=False,
474
+ )
475
+
476
+ def test_df_subplots_patterns_minorticks(self):
477
+ # GH 10657
478
+ df = DataFrame(
479
+ np.random.default_rng(2).standard_normal((10, 2)),
480
+ index=date_range("1/1/2000", periods=10),
481
+ columns=list("AB"),
482
+ )
483
+
484
+ # shared subplots
485
+ _, axes = plt.subplots(2, 1, sharex=True)
486
+ axes = df.plot(subplots=True, ax=axes)
487
+ for ax in axes:
488
+ assert len(ax.lines) == 1
489
+ _check_visible(ax.get_yticklabels(), visible=True)
490
+ # xaxis of 1st ax must be hidden
491
+ _check_visible(axes[0].get_xticklabels(), visible=False)
492
+ _check_visible(axes[0].get_xticklabels(minor=True), visible=False)
493
+ _check_visible(axes[1].get_xticklabels(), visible=True)
494
+ _check_visible(axes[1].get_xticklabels(minor=True), visible=True)
495
+
496
+ def test_df_subplots_patterns_minorticks_1st_ax_hidden(self):
497
+ # GH 10657
498
+ df = DataFrame(
499
+ np.random.default_rng(2).standard_normal((10, 2)),
500
+ index=date_range("1/1/2000", periods=10),
501
+ columns=list("AB"),
502
+ )
503
+ _, axes = plt.subplots(2, 1)
504
+ with tm.assert_produces_warning(UserWarning):
505
+ axes = df.plot(subplots=True, ax=axes, sharex=True)
506
+ for ax in axes:
507
+ assert len(ax.lines) == 1
508
+ _check_visible(ax.get_yticklabels(), visible=True)
509
+ # xaxis of 1st ax must be hidden
510
+ _check_visible(axes[0].get_xticklabels(), visible=False)
511
+ _check_visible(axes[0].get_xticklabels(minor=True), visible=False)
512
+ _check_visible(axes[1].get_xticklabels(), visible=True)
513
+ _check_visible(axes[1].get_xticklabels(minor=True), visible=True)
514
+
515
+ def test_df_subplots_patterns_minorticks_not_shared(self):
516
+ # GH 10657
517
+ df = DataFrame(
518
+ np.random.default_rng(2).standard_normal((10, 2)),
519
+ index=date_range("1/1/2000", periods=10),
520
+ columns=list("AB"),
521
+ )
522
+ # not shared
523
+ _, axes = plt.subplots(2, 1)
524
+ axes = df.plot(subplots=True, ax=axes)
525
+ for ax in axes:
526
+ assert len(ax.lines) == 1
527
+ _check_visible(ax.get_yticklabels(), visible=True)
528
+ _check_visible(ax.get_xticklabels(), visible=True)
529
+ _check_visible(ax.get_xticklabels(minor=True), visible=True)
530
+
531
+ def test_subplots_sharex_false(self):
532
+ # test when sharex is set to False, two plots should have different
533
+ # labels, GH 25160
534
+ df = DataFrame(np.random.default_rng(2).random((10, 2)))
535
+ df.iloc[5:, 1] = np.nan
536
+ df.iloc[:5, 0] = np.nan
537
+
538
+ _, axs = mpl.pyplot.subplots(2, 1)
539
+ df.plot.line(ax=axs, subplots=True, sharex=False)
540
+
541
+ expected_ax1 = np.arange(4.5, 10, 0.5)
542
+ expected_ax2 = np.arange(-0.5, 5, 0.5)
543
+
544
+ tm.assert_numpy_array_equal(axs[0].get_xticks(), expected_ax1)
545
+ tm.assert_numpy_array_equal(axs[1].get_xticks(), expected_ax2)
546
+
547
+ def test_subplots_constrained_layout(self):
548
+ # GH 25261
549
+ idx = date_range(start="now", periods=10)
550
+ df = DataFrame(np.random.default_rng(2).random((10, 3)), index=idx)
551
+ kwargs = {}
552
+ if hasattr(mpl.pyplot.Figure, "get_constrained_layout"):
553
+ kwargs["constrained_layout"] = True
554
+ _, axes = mpl.pyplot.subplots(2, **kwargs)
555
+ with tm.assert_produces_warning(None):
556
+ df.plot(ax=axes[0])
557
+ with tm.ensure_clean(return_filelike=True) as path:
558
+ mpl.pyplot.savefig(path)
559
+
560
+ @pytest.mark.parametrize(
561
+ "index_name, old_label, new_label",
562
+ [
563
+ (None, "", "new"),
564
+ ("old", "old", "new"),
565
+ (None, "", ""),
566
+ (None, "", 1),
567
+ (None, "", [1, 2]),
568
+ ],
569
+ )
570
+ @pytest.mark.parametrize("kind", ["line", "area", "bar"])
571
+ def test_xlabel_ylabel_dataframe_subplots(
572
+ self, kind, index_name, old_label, new_label
573
+ ):
574
+ # GH 9093
575
+ df = DataFrame([[1, 2], [2, 5]], columns=["Type A", "Type B"])
576
+ df.index.name = index_name
577
+
578
+ # default is the ylabel is not shown and xlabel is index name
579
+ axes = df.plot(kind=kind, subplots=True)
580
+ assert all(ax.get_ylabel() == "" for ax in axes)
581
+ assert all(ax.get_xlabel() == old_label for ax in axes)
582
+
583
+ # old xlabel will be overridden and assigned ylabel will be used as ylabel
584
+ axes = df.plot(kind=kind, ylabel=new_label, xlabel=new_label, subplots=True)
585
+ assert all(ax.get_ylabel() == str(new_label) for ax in axes)
586
+ assert all(ax.get_xlabel() == str(new_label) for ax in axes)
587
+
588
+ @pytest.mark.parametrize(
589
+ "kwargs",
590
+ [
591
+ # stacked center
592
+ {"kind": "bar", "stacked": True},
593
+ {"kind": "bar", "stacked": True, "width": 0.9},
594
+ {"kind": "barh", "stacked": True},
595
+ {"kind": "barh", "stacked": True, "width": 0.9},
596
+ # center
597
+ {"kind": "bar", "stacked": False},
598
+ {"kind": "bar", "stacked": False, "width": 0.9},
599
+ {"kind": "barh", "stacked": False},
600
+ {"kind": "barh", "stacked": False, "width": 0.9},
601
+ # subplots center
602
+ {"kind": "bar", "subplots": True},
603
+ {"kind": "bar", "subplots": True, "width": 0.9},
604
+ {"kind": "barh", "subplots": True},
605
+ {"kind": "barh", "subplots": True, "width": 0.9},
606
+ # align edge
607
+ {"kind": "bar", "stacked": True, "align": "edge"},
608
+ {"kind": "bar", "stacked": True, "width": 0.9, "align": "edge"},
609
+ {"kind": "barh", "stacked": True, "align": "edge"},
610
+ {"kind": "barh", "stacked": True, "width": 0.9, "align": "edge"},
611
+ {"kind": "bar", "stacked": False, "align": "edge"},
612
+ {"kind": "bar", "stacked": False, "width": 0.9, "align": "edge"},
613
+ {"kind": "barh", "stacked": False, "align": "edge"},
614
+ {"kind": "barh", "stacked": False, "width": 0.9, "align": "edge"},
615
+ {"kind": "bar", "subplots": True, "align": "edge"},
616
+ {"kind": "bar", "subplots": True, "width": 0.9, "align": "edge"},
617
+ {"kind": "barh", "subplots": True, "align": "edge"},
618
+ {"kind": "barh", "subplots": True, "width": 0.9, "align": "edge"},
619
+ ],
620
+ )
621
+ def test_bar_align_multiple_columns(self, kwargs):
622
+ # GH2157
623
+ df = DataFrame({"A": [3] * 5, "B": list(range(5))}, index=range(5))
624
+ self._check_bar_alignment(df, **kwargs)
625
+
626
+ @pytest.mark.parametrize(
627
+ "kwargs",
628
+ [
629
+ {"kind": "bar", "stacked": False},
630
+ {"kind": "bar", "stacked": True},
631
+ {"kind": "barh", "stacked": False},
632
+ {"kind": "barh", "stacked": True},
633
+ {"kind": "bar", "subplots": True},
634
+ {"kind": "barh", "subplots": True},
635
+ ],
636
+ )
637
+ def test_bar_align_single_column(self, kwargs):
638
+ df = DataFrame(np.random.default_rng(2).standard_normal(5))
639
+ self._check_bar_alignment(df, **kwargs)
640
+
641
+ @pytest.mark.parametrize(
642
+ "kwargs",
643
+ [
644
+ {"kind": "bar", "stacked": False},
645
+ {"kind": "bar", "stacked": True},
646
+ {"kind": "barh", "stacked": False},
647
+ {"kind": "barh", "stacked": True},
648
+ {"kind": "bar", "subplots": True},
649
+ {"kind": "barh", "subplots": True},
650
+ ],
651
+ )
652
+ def test_bar_barwidth_position(self, kwargs):
653
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
654
+ self._check_bar_alignment(df, width=0.9, position=0.2, **kwargs)
655
+
656
+ @pytest.mark.parametrize("w", [1, 1.0])
657
+ def test_bar_barwidth_position_int(self, w):
658
+ # GH 12979
659
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
660
+ ax = df.plot.bar(stacked=True, width=w)
661
+ ticks = ax.xaxis.get_ticklocs()
662
+ tm.assert_numpy_array_equal(ticks, np.array([0, 1, 2, 3, 4]))
663
+ assert ax.get_xlim() == (-0.75, 4.75)
664
+ # check left-edge of bars
665
+ assert ax.patches[0].get_x() == -0.5
666
+ assert ax.patches[-1].get_x() == 3.5
667
+
668
+ @pytest.mark.parametrize(
669
+ "kind, kwargs",
670
+ [
671
+ ["bar", {"stacked": True}],
672
+ ["barh", {"stacked": False}],
673
+ ["barh", {"stacked": True}],
674
+ ["bar", {"subplots": True}],
675
+ ["barh", {"subplots": True}],
676
+ ],
677
+ )
678
+ def test_bar_barwidth_position_int_width_1(self, kind, kwargs):
679
+ # GH 12979
680
+ df = DataFrame(np.random.default_rng(2).standard_normal((5, 5)))
681
+ self._check_bar_alignment(df, kind=kind, width=1, **kwargs)
682
+
683
+ def _check_bar_alignment(
684
+ self,
685
+ df,
686
+ kind="bar",
687
+ stacked=False,
688
+ subplots=False,
689
+ align="center",
690
+ width=0.5,
691
+ position=0.5,
692
+ ):
693
+ axes = df.plot(
694
+ kind=kind,
695
+ stacked=stacked,
696
+ subplots=subplots,
697
+ align=align,
698
+ width=width,
699
+ position=position,
700
+ grid=True,
701
+ )
702
+
703
+ axes = _flatten_visible(axes)
704
+
705
+ for ax in axes:
706
+ if kind == "bar":
707
+ axis = ax.xaxis
708
+ ax_min, ax_max = ax.get_xlim()
709
+ min_edge = min(p.get_x() for p in ax.patches)
710
+ max_edge = max(p.get_x() + p.get_width() for p in ax.patches)
711
+ elif kind == "barh":
712
+ axis = ax.yaxis
713
+ ax_min, ax_max = ax.get_ylim()
714
+ min_edge = min(p.get_y() for p in ax.patches)
715
+ max_edge = max(p.get_y() + p.get_height() for p in ax.patches)
716
+ else:
717
+ raise ValueError
718
+
719
+ # GH 7498
720
+ # compare margins between lim and bar edges
721
+ tm.assert_almost_equal(ax_min, min_edge - 0.25)
722
+ tm.assert_almost_equal(ax_max, max_edge + 0.25)
723
+
724
+ p = ax.patches[0]
725
+ if kind == "bar" and (stacked is True or subplots is True):
726
+ edge = p.get_x()
727
+ center = edge + p.get_width() * position
728
+ elif kind == "bar" and stacked is False:
729
+ center = p.get_x() + p.get_width() * len(df.columns) * position
730
+ edge = p.get_x()
731
+ elif kind == "barh" and (stacked is True or subplots is True):
732
+ center = p.get_y() + p.get_height() * position
733
+ edge = p.get_y()
734
+ elif kind == "barh" and stacked is False:
735
+ center = p.get_y() + p.get_height() * len(df.columns) * position
736
+ edge = p.get_y()
737
+ else:
738
+ raise ValueError
739
+
740
+ # Check the ticks locates on integer
741
+ assert (axis.get_ticklocs() == np.arange(len(df))).all()
742
+
743
+ if align == "center":
744
+ # Check whether the bar locates on center
745
+ tm.assert_almost_equal(axis.get_ticklocs()[0], center)
746
+ elif align == "edge":
747
+ # Check whether the bar's edge starts from the tick
748
+ tm.assert_almost_equal(axis.get_ticklocs()[0], edge)
749
+ else:
750
+ raise ValueError
751
+
752
+ return axes
venv/lib/python3.10/site-packages/pandas/tests/plotting/frame/test_hist_box_by.py ADDED
@@ -0,0 +1,342 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import re
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import DataFrame
7
+ import pandas._testing as tm
8
+ from pandas.tests.plotting.common import (
9
+ _check_axes_shape,
10
+ _check_plot_works,
11
+ get_x_axis,
12
+ get_y_axis,
13
+ )
14
+
15
+ pytest.importorskip("matplotlib")
16
+
17
+
18
+ @pytest.fixture
19
+ def hist_df():
20
+ df = DataFrame(
21
+ np.random.default_rng(2).standard_normal((30, 2)), columns=["A", "B"]
22
+ )
23
+ df["C"] = np.random.default_rng(2).choice(["a", "b", "c"], 30)
24
+ df["D"] = np.random.default_rng(2).choice(["a", "b", "c"], 30)
25
+ return df
26
+
27
+
28
+ class TestHistWithBy:
29
+ @pytest.mark.slow
30
+ @pytest.mark.parametrize(
31
+ "by, column, titles, legends",
32
+ [
33
+ ("C", "A", ["a", "b", "c"], [["A"]] * 3),
34
+ ("C", ["A", "B"], ["a", "b", "c"], [["A", "B"]] * 3),
35
+ ("C", None, ["a", "b", "c"], [["A", "B"]] * 3),
36
+ (
37
+ ["C", "D"],
38
+ "A",
39
+ [
40
+ "(a, a)",
41
+ "(b, b)",
42
+ "(c, c)",
43
+ ],
44
+ [["A"]] * 3,
45
+ ),
46
+ (
47
+ ["C", "D"],
48
+ ["A", "B"],
49
+ [
50
+ "(a, a)",
51
+ "(b, b)",
52
+ "(c, c)",
53
+ ],
54
+ [["A", "B"]] * 3,
55
+ ),
56
+ (
57
+ ["C", "D"],
58
+ None,
59
+ [
60
+ "(a, a)",
61
+ "(b, b)",
62
+ "(c, c)",
63
+ ],
64
+ [["A", "B"]] * 3,
65
+ ),
66
+ ],
67
+ )
68
+ def test_hist_plot_by_argument(self, by, column, titles, legends, hist_df):
69
+ # GH 15079
70
+ axes = _check_plot_works(
71
+ hist_df.plot.hist, column=column, by=by, default_axes=True
72
+ )
73
+ result_titles = [ax.get_title() for ax in axes]
74
+ result_legends = [
75
+ [legend.get_text() for legend in ax.get_legend().texts] for ax in axes
76
+ ]
77
+
78
+ assert result_legends == legends
79
+ assert result_titles == titles
80
+
81
+ @pytest.mark.parametrize(
82
+ "by, column, titles, legends",
83
+ [
84
+ (0, "A", ["a", "b", "c"], [["A"]] * 3),
85
+ (0, None, ["a", "b", "c"], [["A", "B"]] * 3),
86
+ (
87
+ [0, "D"],
88
+ "A",
89
+ [
90
+ "(a, a)",
91
+ "(b, b)",
92
+ "(c, c)",
93
+ ],
94
+ [["A"]] * 3,
95
+ ),
96
+ ],
97
+ )
98
+ def test_hist_plot_by_0(self, by, column, titles, legends, hist_df):
99
+ # GH 15079
100
+ df = hist_df.copy()
101
+ df = df.rename(columns={"C": 0})
102
+
103
+ axes = _check_plot_works(df.plot.hist, default_axes=True, column=column, by=by)
104
+ result_titles = [ax.get_title() for ax in axes]
105
+ result_legends = [
106
+ [legend.get_text() for legend in ax.get_legend().texts] for ax in axes
107
+ ]
108
+
109
+ assert result_legends == legends
110
+ assert result_titles == titles
111
+
112
+ @pytest.mark.parametrize(
113
+ "by, column",
114
+ [
115
+ ([], ["A"]),
116
+ ([], ["A", "B"]),
117
+ ((), None),
118
+ ((), ["A", "B"]),
119
+ ],
120
+ )
121
+ def test_hist_plot_empty_list_string_tuple_by(self, by, column, hist_df):
122
+ # GH 15079
123
+ msg = "No group keys passed"
124
+ with pytest.raises(ValueError, match=msg):
125
+ _check_plot_works(
126
+ hist_df.plot.hist, default_axes=True, column=column, by=by
127
+ )
128
+
129
+ @pytest.mark.slow
130
+ @pytest.mark.parametrize(
131
+ "by, column, layout, axes_num",
132
+ [
133
+ (["C"], "A", (2, 2), 3),
134
+ ("C", "A", (2, 2), 3),
135
+ (["C"], ["A"], (1, 3), 3),
136
+ ("C", None, (3, 1), 3),
137
+ ("C", ["A", "B"], (3, 1), 3),
138
+ (["C", "D"], "A", (9, 1), 3),
139
+ (["C", "D"], "A", (3, 3), 3),
140
+ (["C", "D"], ["A"], (5, 2), 3),
141
+ (["C", "D"], ["A", "B"], (9, 1), 3),
142
+ (["C", "D"], None, (9, 1), 3),
143
+ (["C", "D"], ["A", "B"], (5, 2), 3),
144
+ ],
145
+ )
146
+ def test_hist_plot_layout_with_by(self, by, column, layout, axes_num, hist_df):
147
+ # GH 15079
148
+ # _check_plot_works adds an ax so catch warning. see GH #13188
149
+ with tm.assert_produces_warning(UserWarning, check_stacklevel=False):
150
+ axes = _check_plot_works(
151
+ hist_df.plot.hist, column=column, by=by, layout=layout
152
+ )
153
+ _check_axes_shape(axes, axes_num=axes_num, layout=layout)
154
+
155
+ @pytest.mark.parametrize(
156
+ "msg, by, layout",
157
+ [
158
+ ("larger than required size", ["C", "D"], (1, 1)),
159
+ (re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
160
+ ("At least one dimension of layout must be positive", "C", (-1, -1)),
161
+ ],
162
+ )
163
+ def test_hist_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df):
164
+ # GH 15079, test if error is raised when invalid layout is given
165
+
166
+ with pytest.raises(ValueError, match=msg):
167
+ hist_df.plot.hist(column=["A", "B"], by=by, layout=layout)
168
+
169
+ @pytest.mark.slow
170
+ def test_axis_share_x_with_by(self, hist_df):
171
+ # GH 15079
172
+ ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharex=True)
173
+
174
+ # share x
175
+ assert get_x_axis(ax1).joined(ax1, ax2)
176
+ assert get_x_axis(ax2).joined(ax1, ax2)
177
+ assert get_x_axis(ax3).joined(ax1, ax3)
178
+ assert get_x_axis(ax3).joined(ax2, ax3)
179
+
180
+ # don't share y
181
+ assert not get_y_axis(ax1).joined(ax1, ax2)
182
+ assert not get_y_axis(ax2).joined(ax1, ax2)
183
+ assert not get_y_axis(ax3).joined(ax1, ax3)
184
+ assert not get_y_axis(ax3).joined(ax2, ax3)
185
+
186
+ @pytest.mark.slow
187
+ def test_axis_share_y_with_by(self, hist_df):
188
+ # GH 15079
189
+ ax1, ax2, ax3 = hist_df.plot.hist(column="A", by="C", sharey=True)
190
+
191
+ # share y
192
+ assert get_y_axis(ax1).joined(ax1, ax2)
193
+ assert get_y_axis(ax2).joined(ax1, ax2)
194
+ assert get_y_axis(ax3).joined(ax1, ax3)
195
+ assert get_y_axis(ax3).joined(ax2, ax3)
196
+
197
+ # don't share x
198
+ assert not get_x_axis(ax1).joined(ax1, ax2)
199
+ assert not get_x_axis(ax2).joined(ax1, ax2)
200
+ assert not get_x_axis(ax3).joined(ax1, ax3)
201
+ assert not get_x_axis(ax3).joined(ax2, ax3)
202
+
203
+ @pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
204
+ def test_figure_shape_hist_with_by(self, figsize, hist_df):
205
+ # GH 15079
206
+ axes = hist_df.plot.hist(column="A", by="C", figsize=figsize)
207
+ _check_axes_shape(axes, axes_num=3, figsize=figsize)
208
+
209
+
210
+ class TestBoxWithBy:
211
+ @pytest.mark.parametrize(
212
+ "by, column, titles, xticklabels",
213
+ [
214
+ ("C", "A", ["A"], [["a", "b", "c"]]),
215
+ (
216
+ ["C", "D"],
217
+ "A",
218
+ ["A"],
219
+ [
220
+ [
221
+ "(a, a)",
222
+ "(b, b)",
223
+ "(c, c)",
224
+ ]
225
+ ],
226
+ ),
227
+ ("C", ["A", "B"], ["A", "B"], [["a", "b", "c"]] * 2),
228
+ (
229
+ ["C", "D"],
230
+ ["A", "B"],
231
+ ["A", "B"],
232
+ [
233
+ [
234
+ "(a, a)",
235
+ "(b, b)",
236
+ "(c, c)",
237
+ ]
238
+ ]
239
+ * 2,
240
+ ),
241
+ (["C"], None, ["A", "B"], [["a", "b", "c"]] * 2),
242
+ ],
243
+ )
244
+ def test_box_plot_by_argument(self, by, column, titles, xticklabels, hist_df):
245
+ # GH 15079
246
+ axes = _check_plot_works(
247
+ hist_df.plot.box, default_axes=True, column=column, by=by
248
+ )
249
+ result_titles = [ax.get_title() for ax in axes]
250
+ result_xticklabels = [
251
+ [label.get_text() for label in ax.get_xticklabels()] for ax in axes
252
+ ]
253
+
254
+ assert result_xticklabels == xticklabels
255
+ assert result_titles == titles
256
+
257
+ @pytest.mark.parametrize(
258
+ "by, column, titles, xticklabels",
259
+ [
260
+ (0, "A", ["A"], [["a", "b", "c"]]),
261
+ (
262
+ [0, "D"],
263
+ "A",
264
+ ["A"],
265
+ [
266
+ [
267
+ "(a, a)",
268
+ "(b, b)",
269
+ "(c, c)",
270
+ ]
271
+ ],
272
+ ),
273
+ (0, None, ["A", "B"], [["a", "b", "c"]] * 2),
274
+ ],
275
+ )
276
+ def test_box_plot_by_0(self, by, column, titles, xticklabels, hist_df):
277
+ # GH 15079
278
+ df = hist_df.copy()
279
+ df = df.rename(columns={"C": 0})
280
+
281
+ axes = _check_plot_works(df.plot.box, default_axes=True, column=column, by=by)
282
+ result_titles = [ax.get_title() for ax in axes]
283
+ result_xticklabels = [
284
+ [label.get_text() for label in ax.get_xticklabels()] for ax in axes
285
+ ]
286
+
287
+ assert result_xticklabels == xticklabels
288
+ assert result_titles == titles
289
+
290
+ @pytest.mark.parametrize(
291
+ "by, column",
292
+ [
293
+ ([], ["A"]),
294
+ ((), "A"),
295
+ ([], None),
296
+ ((), ["A", "B"]),
297
+ ],
298
+ )
299
+ def test_box_plot_with_none_empty_list_by(self, by, column, hist_df):
300
+ # GH 15079
301
+ msg = "No group keys passed"
302
+ with pytest.raises(ValueError, match=msg):
303
+ _check_plot_works(hist_df.plot.box, default_axes=True, column=column, by=by)
304
+
305
+ @pytest.mark.slow
306
+ @pytest.mark.parametrize(
307
+ "by, column, layout, axes_num",
308
+ [
309
+ (["C"], "A", (1, 1), 1),
310
+ ("C", "A", (1, 1), 1),
311
+ ("C", None, (2, 1), 2),
312
+ ("C", ["A", "B"], (1, 2), 2),
313
+ (["C", "D"], "A", (1, 1), 1),
314
+ (["C", "D"], None, (1, 2), 2),
315
+ ],
316
+ )
317
+ def test_box_plot_layout_with_by(self, by, column, layout, axes_num, hist_df):
318
+ # GH 15079
319
+ axes = _check_plot_works(
320
+ hist_df.plot.box, default_axes=True, column=column, by=by, layout=layout
321
+ )
322
+ _check_axes_shape(axes, axes_num=axes_num, layout=layout)
323
+
324
+ @pytest.mark.parametrize(
325
+ "msg, by, layout",
326
+ [
327
+ ("larger than required size", ["C", "D"], (1, 1)),
328
+ (re.escape("Layout must be a tuple of (rows, columns)"), "C", (1,)),
329
+ ("At least one dimension of layout must be positive", "C", (-1, -1)),
330
+ ],
331
+ )
332
+ def test_box_plot_invalid_layout_with_by_raises(self, msg, by, layout, hist_df):
333
+ # GH 15079, test if error is raised when invalid layout is given
334
+
335
+ with pytest.raises(ValueError, match=msg):
336
+ hist_df.plot.box(column=["A", "B"], by=by, layout=layout)
337
+
338
+ @pytest.mark.parametrize("figsize", [(12, 8), (20, 10)])
339
+ def test_figure_shape_hist_with_by(self, figsize, hist_df):
340
+ # GH 15079
341
+ axes = hist_df.plot.box(column="A", by="C", figsize=figsize)
342
+ _check_axes_shape(axes, axes_num=1, figsize=figsize)
venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (187 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_na_scalar.cpython-310.pyc ADDED
Binary file (7.97 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/__pycache__/test_nat.cpython-310.pyc ADDED
Binary file (15.7 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (196 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_arithmetic.cpython-310.pyc ADDED
Binary file (5.75 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_constructors.cpython-310.pyc ADDED
Binary file (2.04 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_contains.cpython-310.pyc ADDED
Binary file (2.33 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_formats.cpython-310.pyc ADDED
Binary file (590 Bytes). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_interval.cpython-310.pyc ADDED
Binary file (2.49 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/__pycache__/test_overlaps.cpython-310.pyc ADDED
Binary file (2.63 kB). View file
 
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_arithmetic.py ADDED
@@ -0,0 +1,192 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from datetime import timedelta
2
+
3
+ import numpy as np
4
+ import pytest
5
+
6
+ from pandas import (
7
+ Interval,
8
+ Timedelta,
9
+ Timestamp,
10
+ )
11
+ import pandas._testing as tm
12
+
13
+
14
+ class TestIntervalArithmetic:
15
+ def test_interval_add(self, closed):
16
+ interval = Interval(0, 1, closed=closed)
17
+ expected = Interval(1, 2, closed=closed)
18
+
19
+ result = interval + 1
20
+ assert result == expected
21
+
22
+ result = 1 + interval
23
+ assert result == expected
24
+
25
+ result = interval
26
+ result += 1
27
+ assert result == expected
28
+
29
+ msg = r"unsupported operand type\(s\) for \+"
30
+ with pytest.raises(TypeError, match=msg):
31
+ interval + interval
32
+
33
+ with pytest.raises(TypeError, match=msg):
34
+ interval + "foo"
35
+
36
+ def test_interval_sub(self, closed):
37
+ interval = Interval(0, 1, closed=closed)
38
+ expected = Interval(-1, 0, closed=closed)
39
+
40
+ result = interval - 1
41
+ assert result == expected
42
+
43
+ result = interval
44
+ result -= 1
45
+ assert result == expected
46
+
47
+ msg = r"unsupported operand type\(s\) for -"
48
+ with pytest.raises(TypeError, match=msg):
49
+ interval - interval
50
+
51
+ with pytest.raises(TypeError, match=msg):
52
+ interval - "foo"
53
+
54
+ def test_interval_mult(self, closed):
55
+ interval = Interval(0, 1, closed=closed)
56
+ expected = Interval(0, 2, closed=closed)
57
+
58
+ result = interval * 2
59
+ assert result == expected
60
+
61
+ result = 2 * interval
62
+ assert result == expected
63
+
64
+ result = interval
65
+ result *= 2
66
+ assert result == expected
67
+
68
+ msg = r"unsupported operand type\(s\) for \*"
69
+ with pytest.raises(TypeError, match=msg):
70
+ interval * interval
71
+
72
+ msg = r"can\'t multiply sequence by non-int"
73
+ with pytest.raises(TypeError, match=msg):
74
+ interval * "foo"
75
+
76
+ def test_interval_div(self, closed):
77
+ interval = Interval(0, 1, closed=closed)
78
+ expected = Interval(0, 0.5, closed=closed)
79
+
80
+ result = interval / 2.0
81
+ assert result == expected
82
+
83
+ result = interval
84
+ result /= 2.0
85
+ assert result == expected
86
+
87
+ msg = r"unsupported operand type\(s\) for /"
88
+ with pytest.raises(TypeError, match=msg):
89
+ interval / interval
90
+
91
+ with pytest.raises(TypeError, match=msg):
92
+ interval / "foo"
93
+
94
+ def test_interval_floordiv(self, closed):
95
+ interval = Interval(1, 2, closed=closed)
96
+ expected = Interval(0, 1, closed=closed)
97
+
98
+ result = interval // 2
99
+ assert result == expected
100
+
101
+ result = interval
102
+ result //= 2
103
+ assert result == expected
104
+
105
+ msg = r"unsupported operand type\(s\) for //"
106
+ with pytest.raises(TypeError, match=msg):
107
+ interval // interval
108
+
109
+ with pytest.raises(TypeError, match=msg):
110
+ interval // "foo"
111
+
112
+ @pytest.mark.parametrize("method", ["__add__", "__sub__"])
113
+ @pytest.mark.parametrize(
114
+ "interval",
115
+ [
116
+ Interval(
117
+ Timestamp("2017-01-01 00:00:00"), Timestamp("2018-01-01 00:00:00")
118
+ ),
119
+ Interval(Timedelta(days=7), Timedelta(days=14)),
120
+ ],
121
+ )
122
+ @pytest.mark.parametrize(
123
+ "delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
124
+ )
125
+ def test_time_interval_add_subtract_timedelta(self, interval, delta, method):
126
+ # https://github.com/pandas-dev/pandas/issues/32023
127
+ result = getattr(interval, method)(delta)
128
+ left = getattr(interval.left, method)(delta)
129
+ right = getattr(interval.right, method)(delta)
130
+ expected = Interval(left, right)
131
+
132
+ assert result == expected
133
+
134
+ @pytest.mark.parametrize("interval", [Interval(1, 2), Interval(1.0, 2.0)])
135
+ @pytest.mark.parametrize(
136
+ "delta", [Timedelta(days=7), timedelta(7), np.timedelta64(7, "D")]
137
+ )
138
+ def test_numeric_interval_add_timedelta_raises(self, interval, delta):
139
+ # https://github.com/pandas-dev/pandas/issues/32023
140
+ msg = "|".join(
141
+ [
142
+ "unsupported operand",
143
+ "cannot use operands",
144
+ "Only numeric, Timestamp and Timedelta endpoints are allowed",
145
+ ]
146
+ )
147
+ with pytest.raises((TypeError, ValueError), match=msg):
148
+ interval + delta
149
+
150
+ with pytest.raises((TypeError, ValueError), match=msg):
151
+ delta + interval
152
+
153
+ @pytest.mark.parametrize("klass", [timedelta, np.timedelta64, Timedelta])
154
+ def test_timedelta_add_timestamp_interval(self, klass):
155
+ delta = klass(0)
156
+ expected = Interval(Timestamp("2020-01-01"), Timestamp("2020-02-01"))
157
+
158
+ result = delta + expected
159
+ assert result == expected
160
+
161
+ result = expected + delta
162
+ assert result == expected
163
+
164
+
165
+ class TestIntervalComparisons:
166
+ def test_interval_equal(self):
167
+ assert Interval(0, 1) == Interval(0, 1, closed="right")
168
+ assert Interval(0, 1) != Interval(0, 1, closed="left")
169
+ assert Interval(0, 1) != 0
170
+
171
+ def test_interval_comparison(self):
172
+ msg = (
173
+ "'<' not supported between instances of "
174
+ "'pandas._libs.interval.Interval' and 'int'"
175
+ )
176
+ with pytest.raises(TypeError, match=msg):
177
+ Interval(0, 1) < 2
178
+
179
+ assert Interval(0, 1) < Interval(1, 2)
180
+ assert Interval(0, 1) < Interval(0, 2)
181
+ assert Interval(0, 1) < Interval(0.5, 1.5)
182
+ assert Interval(0, 1) <= Interval(0, 1)
183
+ assert Interval(0, 1) > Interval(-1, 2)
184
+ assert Interval(0, 1) >= Interval(0, 1)
185
+
186
+ def test_equality_comparison_broadcasts_over_array(self):
187
+ # https://github.com/pandas-dev/pandas/issues/35931
188
+ interval = Interval(0, 1)
189
+ arr = np.array([interval, interval])
190
+ result = interval == arr
191
+ expected = np.array([True, True])
192
+ tm.assert_numpy_array_equal(result, expected)
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_constructors.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Period,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ class TestIntervalConstructors:
11
+ @pytest.mark.parametrize(
12
+ "left, right",
13
+ [
14
+ ("a", "z"),
15
+ (("a", "b"), ("c", "d")),
16
+ (list("AB"), list("ab")),
17
+ (Interval(0, 1), Interval(1, 2)),
18
+ (Period("2018Q1", freq="Q"), Period("2018Q1", freq="Q")),
19
+ ],
20
+ )
21
+ def test_construct_errors(self, left, right):
22
+ # GH#23013
23
+ msg = "Only numeric, Timestamp and Timedelta endpoints are allowed"
24
+ with pytest.raises(ValueError, match=msg):
25
+ Interval(left, right)
26
+
27
+ def test_constructor_errors(self):
28
+ msg = "invalid option for 'closed': foo"
29
+ with pytest.raises(ValueError, match=msg):
30
+ Interval(0, 1, closed="foo")
31
+
32
+ msg = "left side of interval must be <= right side"
33
+ with pytest.raises(ValueError, match=msg):
34
+ Interval(1, 0)
35
+
36
+ @pytest.mark.parametrize(
37
+ "tz_left, tz_right", [(None, "UTC"), ("UTC", None), ("UTC", "US/Eastern")]
38
+ )
39
+ def test_constructor_errors_tz(self, tz_left, tz_right):
40
+ # GH#18538
41
+ left = Timestamp("2017-01-01", tz=tz_left)
42
+ right = Timestamp("2017-01-02", tz=tz_right)
43
+
44
+ if tz_left is None or tz_right is None:
45
+ error = TypeError
46
+ msg = "Cannot compare tz-naive and tz-aware timestamps"
47
+ else:
48
+ error = ValueError
49
+ msg = "left and right must have the same time zone"
50
+ with pytest.raises(error, match=msg):
51
+ Interval(left, right)
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_contains.py ADDED
@@ -0,0 +1,73 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Timedelta,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ class TestContains:
11
+ def test_contains(self):
12
+ interval = Interval(0, 1)
13
+ assert 0.5 in interval
14
+ assert 1 in interval
15
+ assert 0 not in interval
16
+
17
+ interval_both = Interval(0, 1, "both")
18
+ assert 0 in interval_both
19
+ assert 1 in interval_both
20
+
21
+ interval_neither = Interval(0, 1, closed="neither")
22
+ assert 0 not in interval_neither
23
+ assert 0.5 in interval_neither
24
+ assert 1 not in interval_neither
25
+
26
+ def test_contains_interval(self, inclusive_endpoints_fixture):
27
+ interval1 = Interval(0, 1, "both")
28
+ interval2 = Interval(0, 1, inclusive_endpoints_fixture)
29
+ assert interval1 in interval1
30
+ assert interval2 in interval2
31
+ assert interval2 in interval1
32
+ assert interval1 not in interval2 or inclusive_endpoints_fixture == "both"
33
+
34
+ def test_contains_infinite_length(self):
35
+ interval1 = Interval(0, 1, "both")
36
+ interval2 = Interval(float("-inf"), float("inf"), "neither")
37
+ assert interval1 in interval2
38
+ assert interval2 not in interval1
39
+
40
+ def test_contains_zero_length(self):
41
+ interval1 = Interval(0, 1, "both")
42
+ interval2 = Interval(-1, -1, "both")
43
+ interval3 = Interval(0.5, 0.5, "both")
44
+ assert interval2 not in interval1
45
+ assert interval3 in interval1
46
+ assert interval2 not in interval3 and interval3 not in interval2
47
+ assert interval1 not in interval2 and interval1 not in interval3
48
+
49
+ @pytest.mark.parametrize(
50
+ "type1",
51
+ [
52
+ (0, 1),
53
+ (Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
54
+ (Timedelta("0h"), Timedelta("1h")),
55
+ ],
56
+ )
57
+ @pytest.mark.parametrize(
58
+ "type2",
59
+ [
60
+ (0, 1),
61
+ (Timestamp(2000, 1, 1, 0), Timestamp(2000, 1, 1, 1)),
62
+ (Timedelta("0h"), Timedelta("1h")),
63
+ ],
64
+ )
65
+ def test_contains_mixed_types(self, type1, type2):
66
+ interval1 = Interval(*type1)
67
+ interval2 = Interval(*type2)
68
+ if type1 == type2:
69
+ assert interval1 in interval2
70
+ else:
71
+ msg = "^'<=' not supported between instances of"
72
+ with pytest.raises(TypeError, match=msg):
73
+ interval1 in interval2
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_formats.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from pandas import Interval
2
+
3
+
4
+ def test_interval_repr():
5
+ interval = Interval(0, 1)
6
+ assert repr(interval) == "Interval(0, 1, closed='right')"
7
+ assert str(interval) == "(0, 1]"
8
+
9
+ interval_left = Interval(0, 1, closed="left")
10
+ assert repr(interval_left) == "Interval(0, 1, closed='left')"
11
+ assert str(interval_left) == "[0, 1)"
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_interval.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import pytest
3
+
4
+ from pandas import (
5
+ Interval,
6
+ Timedelta,
7
+ Timestamp,
8
+ )
9
+
10
+
11
+ @pytest.fixture
12
+ def interval():
13
+ return Interval(0, 1)
14
+
15
+
16
+ class TestInterval:
17
+ def test_properties(self, interval):
18
+ assert interval.closed == "right"
19
+ assert interval.left == 0
20
+ assert interval.right == 1
21
+ assert interval.mid == 0.5
22
+
23
+ def test_hash(self, interval):
24
+ # should not raise
25
+ hash(interval)
26
+
27
+ @pytest.mark.parametrize(
28
+ "left, right, expected",
29
+ [
30
+ (0, 5, 5),
31
+ (-2, 5.5, 7.5),
32
+ (10, 10, 0),
33
+ (10, np.inf, np.inf),
34
+ (-np.inf, -5, np.inf),
35
+ (-np.inf, np.inf, np.inf),
36
+ (Timedelta("0 days"), Timedelta("5 days"), Timedelta("5 days")),
37
+ (Timedelta("10 days"), Timedelta("10 days"), Timedelta("0 days")),
38
+ (Timedelta("1h10min"), Timedelta("5h5min"), Timedelta("3h55min")),
39
+ (Timedelta("5s"), Timedelta("1h"), Timedelta("59min55s")),
40
+ ],
41
+ )
42
+ def test_length(self, left, right, expected):
43
+ # GH 18789
44
+ iv = Interval(left, right)
45
+ result = iv.length
46
+ assert result == expected
47
+
48
+ @pytest.mark.parametrize(
49
+ "left, right, expected",
50
+ [
51
+ ("2017-01-01", "2017-01-06", "5 days"),
52
+ ("2017-01-01", "2017-01-01 12:00:00", "12 hours"),
53
+ ("2017-01-01 12:00", "2017-01-01 12:00:00", "0 days"),
54
+ ("2017-01-01 12:01", "2017-01-05 17:31:00", "4 days 5 hours 30 min"),
55
+ ],
56
+ )
57
+ @pytest.mark.parametrize("tz", (None, "UTC", "CET", "US/Eastern"))
58
+ def test_length_timestamp(self, tz, left, right, expected):
59
+ # GH 18789
60
+ iv = Interval(Timestamp(left, tz=tz), Timestamp(right, tz=tz))
61
+ result = iv.length
62
+ expected = Timedelta(expected)
63
+ assert result == expected
64
+
65
+ @pytest.mark.parametrize(
66
+ "left, right",
67
+ [
68
+ (0, 1),
69
+ (Timedelta("0 days"), Timedelta("1 day")),
70
+ (Timestamp("2018-01-01"), Timestamp("2018-01-02")),
71
+ (
72
+ Timestamp("2018-01-01", tz="US/Eastern"),
73
+ Timestamp("2018-01-02", tz="US/Eastern"),
74
+ ),
75
+ ],
76
+ )
77
+ def test_is_empty(self, left, right, closed):
78
+ # GH27219
79
+ # non-empty always return False
80
+ iv = Interval(left, right, closed)
81
+ assert iv.is_empty is False
82
+
83
+ # same endpoint is empty except when closed='both' (contains one point)
84
+ iv = Interval(left, left, closed)
85
+ result = iv.is_empty
86
+ expected = closed != "both"
87
+ assert result is expected
venv/lib/python3.10/site-packages/pandas/tests/scalar/interval/test_overlaps.py ADDED
@@ -0,0 +1,67 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from pandas import (
4
+ Interval,
5
+ Timedelta,
6
+ Timestamp,
7
+ )
8
+
9
+
10
+ @pytest.fixture(
11
+ params=[
12
+ (Timedelta("0 days"), Timedelta("1 day")),
13
+ (Timestamp("2018-01-01"), Timedelta("1 day")),
14
+ (0, 1),
15
+ ],
16
+ ids=lambda x: type(x[0]).__name__,
17
+ )
18
+ def start_shift(request):
19
+ """
20
+ Fixture for generating intervals of types from a start value and a shift
21
+ value that can be added to start to generate an endpoint
22
+ """
23
+ return request.param
24
+
25
+
26
+ class TestOverlaps:
27
+ def test_overlaps_self(self, start_shift, closed):
28
+ start, shift = start_shift
29
+ interval = Interval(start, start + shift, closed)
30
+ assert interval.overlaps(interval)
31
+
32
+ def test_overlaps_nested(self, start_shift, closed, other_closed):
33
+ start, shift = start_shift
34
+ interval1 = Interval(start, start + 3 * shift, other_closed)
35
+ interval2 = Interval(start + shift, start + 2 * shift, closed)
36
+
37
+ # nested intervals should always overlap
38
+ assert interval1.overlaps(interval2)
39
+
40
+ def test_overlaps_disjoint(self, start_shift, closed, other_closed):
41
+ start, shift = start_shift
42
+ interval1 = Interval(start, start + shift, other_closed)
43
+ interval2 = Interval(start + 2 * shift, start + 3 * shift, closed)
44
+
45
+ # disjoint intervals should never overlap
46
+ assert not interval1.overlaps(interval2)
47
+
48
+ def test_overlaps_endpoint(self, start_shift, closed, other_closed):
49
+ start, shift = start_shift
50
+ interval1 = Interval(start, start + shift, other_closed)
51
+ interval2 = Interval(start + shift, start + 2 * shift, closed)
52
+
53
+ # overlap if shared endpoint is closed for both (overlap at a point)
54
+ result = interval1.overlaps(interval2)
55
+ expected = interval1.closed_right and interval2.closed_left
56
+ assert result == expected
57
+
58
+ @pytest.mark.parametrize(
59
+ "other",
60
+ [10, True, "foo", Timedelta("1 day"), Timestamp("2018-01-01")],
61
+ ids=lambda x: type(x).__name__,
62
+ )
63
+ def test_overlaps_invalid_type(self, other):
64
+ interval = Interval(0, 1)
65
+ msg = f"`other` must be an Interval, got {type(other).__name__}"
66
+ with pytest.raises(TypeError, match=msg):
67
+ interval.overlaps(other)
venv/lib/python3.10/site-packages/pandas/tests/scalar/timedelta/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/pandas/tests/scalar/timedelta/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (197 Bytes). View file