diff --git "a/venv/lib/python3.10/site-packages/transformers/models/conditional_detr/modeling_conditional_detr.py" "b/venv/lib/python3.10/site-packages/transformers/models/conditional_detr/modeling_conditional_detr.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/transformers/models/conditional_detr/modeling_conditional_detr.py" @@ -0,0 +1,2759 @@ +# coding=utf-8 +# Copyright 2022 Microsoft Research Asia and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch Conditional DETR model.""" + + +import math +from dataclasses import dataclass +from typing import Dict, List, Optional, Tuple, Union + +import torch +from torch import Tensor, nn + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithCrossAttentions, Seq2SeqModelOutput +from ...modeling_utils import PreTrainedModel +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_accelerate_available, + is_scipy_available, + is_timm_available, + is_vision_available, + logging, + replace_return_docstrings, + requires_backends, +) +from ...utils.backbone_utils import load_backbone +from .configuration_conditional_detr import ConditionalDetrConfig + + +if is_accelerate_available(): + from accelerate import PartialState + from accelerate.utils import reduce + +if is_scipy_available(): + from scipy.optimize import linear_sum_assignment + +if is_timm_available(): + from timm import create_model + +if is_vision_available(): + from ...image_transforms import center_to_corners_format + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "ConditionalDetrConfig" +_CHECKPOINT_FOR_DOC = "microsoft/conditional-detr-resnet-50" + + +from ..deprecated._archive_maps import CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +class ConditionalDetrDecoderOutput(BaseModelOutputWithCrossAttentions): + """ + Base class for outputs of the Conditional DETR decoder. This class adds one attribute to + BaseModelOutputWithCrossAttentions, namely an optional stack of intermediate decoder activations, i.e. the output + of each decoder layer, each of them gone through a layernorm. This is useful when training the model with auxiliary + decoding losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the model. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` and `config.add_cross_attention=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, num_queries, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + reference_points: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +class ConditionalDetrModelOutput(Seq2SeqModelOutput): + """ + Base class for outputs of the Conditional DETR encoder-decoder model. This class adds one attribute to + Seq2SeqModelOutput, namely an optional stack of intermediate decoder activations, i.e. the output of each decoder + layer, each of them gone through a layernorm. This is useful when training the model with auxiliary decoding + losses. + + Args: + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + intermediate_hidden_states (`torch.FloatTensor` of shape `(config.decoder_layers, batch_size, sequence_length, hidden_size)`, *optional*, returned when `config.auxiliary_loss=True`): + Intermediate decoder activations, i.e. the output of each decoder layer, each of them gone through a + layernorm. + """ + + intermediate_hidden_states: Optional[torch.FloatTensor] = None + reference_points: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +# Copied from transformers.models.detr.modeling_detr.DetrObjectDetectionOutput with Detr->ConditionalDetr +class ConditionalDetrObjectDetectionOutput(ModelOutput): + """ + Output type of [`ConditionalDetrForObjectDetection`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the + unnormalized bounding boxes. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxilary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +@dataclass +# Copied from transformers.models.detr.modeling_detr.DetrSegmentationOutput with Detr->ConditionalDetr +class ConditionalDetrSegmentationOutput(ModelOutput): + """ + Output type of [`ConditionalDetrForSegmentation`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` are provided)): + Total loss as a linear combination of a negative log-likehood (cross-entropy) for class prediction and a + bounding box loss. The latter is defined as a linear combination of the L1 loss and the generalized + scale-invariant IoU loss. + loss_dict (`Dict`, *optional*): + A dictionary containing the individual losses. Useful for logging. + logits (`torch.FloatTensor` of shape `(batch_size, num_queries, num_classes + 1)`): + Classification logits (including no-object) for all queries. + pred_boxes (`torch.FloatTensor` of shape `(batch_size, num_queries, 4)`): + Normalized boxes coordinates for all queries, represented as (center_x, center_y, width, height). These + values are normalized in [0, 1], relative to the size of each individual image in the batch (disregarding + possible padding). You can use [`~ConditionalDetrImageProcessor.post_process_object_detection`] to retrieve the + unnormalized bounding boxes. + pred_masks (`torch.FloatTensor` of shape `(batch_size, num_queries, height/4, width/4)`): + Segmentation masks logits for all queries. See also + [`~ConditionalDetrImageProcessor.post_process_semantic_segmentation`] or + [`~ConditionalDetrImageProcessor.post_process_instance_segmentation`] + [`~ConditionalDetrImageProcessor.post_process_panoptic_segmentation`] to evaluate semantic, instance and panoptic + segmentation masks respectively. + auxiliary_outputs (`list[Dict]`, *optional*): + Optional, only returned when auxiliary losses are activated (i.e. `config.auxiliary_loss` is set to `True`) + and labels are provided. It is a list of dictionaries containing the two above keys (`logits` and + `pred_boxes`) for each decoder layer. + last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the decoder of the model. + decoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the decoder at the output of each + layer plus the initial embedding outputs. + decoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + cross_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the decoder's cross-attention layer, after the attention softmax, + used to compute the weighted average in the cross-attention heads. + encoder_last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder of the model. + encoder_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the encoder at the output of each + layer plus the initial embedding outputs. + encoder_attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights of the encoder, after the attention softmax, used to compute the + weighted average in the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + loss_dict: Optional[Dict] = None + logits: torch.FloatTensor = None + pred_boxes: torch.FloatTensor = None + pred_masks: torch.FloatTensor = None + auxiliary_outputs: Optional[List[Dict]] = None + last_hidden_state: Optional[torch.FloatTensor] = None + decoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + decoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + cross_attentions: Optional[Tuple[torch.FloatTensor]] = None + encoder_last_hidden_state: Optional[torch.FloatTensor] = None + encoder_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + encoder_attentions: Optional[Tuple[torch.FloatTensor]] = None + + +# Copied from transformers.models.detr.modeling_detr.DetrFrozenBatchNorm2d with Detr->ConditionalDetr +class ConditionalDetrFrozenBatchNorm2d(nn.Module): + """ + BatchNorm2d where the batch statistics and the affine parameters are fixed. + + Copy-paste from torchvision.misc.ops with added eps before rqsrt, without which any other models than + torchvision.models.resnet[18,34,50,101] produce nans. + """ + + def __init__(self, n): + super().__init__() + self.register_buffer("weight", torch.ones(n)) + self.register_buffer("bias", torch.zeros(n)) + self.register_buffer("running_mean", torch.zeros(n)) + self.register_buffer("running_var", torch.ones(n)) + + def _load_from_state_dict( + self, state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ): + num_batches_tracked_key = prefix + "num_batches_tracked" + if num_batches_tracked_key in state_dict: + del state_dict[num_batches_tracked_key] + + super()._load_from_state_dict( + state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs + ) + + def forward(self, x): + # move reshapes to the beginning + # to make it user-friendly + weight = self.weight.reshape(1, -1, 1, 1) + bias = self.bias.reshape(1, -1, 1, 1) + running_var = self.running_var.reshape(1, -1, 1, 1) + running_mean = self.running_mean.reshape(1, -1, 1, 1) + epsilon = 1e-5 + scale = weight * (running_var + epsilon).rsqrt() + bias = bias - running_mean * scale + return x * scale + bias + + +# Copied from transformers.models.detr.modeling_detr.replace_batch_norm with Detr->ConditionalDetr +def replace_batch_norm(model): + r""" + Recursively replace all `torch.nn.BatchNorm2d` with `ConditionalDetrFrozenBatchNorm2d`. + + Args: + model (torch.nn.Module): + input model + """ + for name, module in model.named_children(): + if isinstance(module, nn.BatchNorm2d): + new_module = ConditionalDetrFrozenBatchNorm2d(module.num_features) + + if not module.weight.device == torch.device("meta"): + new_module.weight.data.copy_(module.weight) + new_module.bias.data.copy_(module.bias) + new_module.running_mean.data.copy_(module.running_mean) + new_module.running_var.data.copy_(module.running_var) + + model._modules[name] = new_module + + if len(list(module.children())) > 0: + replace_batch_norm(module) + + +# Copied from transformers.models.detr.modeling_detr.DetrConvEncoder +class ConditionalDetrConvEncoder(nn.Module): + """ + Convolutional backbone, using either the AutoBackbone API or one from the timm library. + + nn.BatchNorm2d layers are replaced by DetrFrozenBatchNorm2d as defined above. + + """ + + def __init__(self, config): + super().__init__() + + self.config = config + + if config.use_timm_backbone: + requires_backends(self, ["timm"]) + kwargs = {} + if config.dilation: + kwargs["output_stride"] = 16 + backbone = create_model( + config.backbone, + pretrained=config.use_pretrained_backbone, + features_only=True, + out_indices=(1, 2, 3, 4), + in_chans=config.num_channels, + **kwargs, + ) + else: + backbone = load_backbone(config) + + # replace batch norm by frozen batch norm + with torch.no_grad(): + replace_batch_norm(backbone) + self.model = backbone + self.intermediate_channel_sizes = ( + self.model.feature_info.channels() if config.use_timm_backbone else self.model.channels + ) + + backbone_model_type = config.backbone if config.use_timm_backbone else config.backbone_config.model_type + if "resnet" in backbone_model_type: + for name, parameter in self.model.named_parameters(): + if config.use_timm_backbone: + if "layer2" not in name and "layer3" not in name and "layer4" not in name: + parameter.requires_grad_(False) + else: + if "stage.1" not in name and "stage.2" not in name and "stage.3" not in name: + parameter.requires_grad_(False) + + def forward(self, pixel_values: torch.Tensor, pixel_mask: torch.Tensor): + # send pixel_values through the model to get list of feature maps + features = self.model(pixel_values) if self.config.use_timm_backbone else self.model(pixel_values).feature_maps + + out = [] + for feature_map in features: + # downsample pixel_mask to match shape of corresponding feature_map + mask = nn.functional.interpolate(pixel_mask[None].float(), size=feature_map.shape[-2:]).to(torch.bool)[0] + out.append((feature_map, mask)) + return out + + +# Copied from transformers.models.detr.modeling_detr.DetrConvModel with Detr->ConditionalDetr +class ConditionalDetrConvModel(nn.Module): + """ + This module adds 2D position embeddings to all intermediate feature maps of the convolutional encoder. + """ + + def __init__(self, conv_encoder, position_embedding): + super().__init__() + self.conv_encoder = conv_encoder + self.position_embedding = position_embedding + + def forward(self, pixel_values, pixel_mask): + # send pixel_values and pixel_mask through backbone to get list of (feature_map, pixel_mask) tuples + out = self.conv_encoder(pixel_values, pixel_mask) + pos = [] + for feature_map, mask in out: + # position encoding + pos.append(self.position_embedding(feature_map, mask).to(feature_map.dtype)) + + return out, pos + + +class ConditionalDetrSinePositionEmbedding(nn.Module): + """ + This is a more standard version of the position embedding, very similar to the one used by the Attention is all you + need paper, generalized to work on images. + """ + + def __init__(self, embedding_dim=64, temperature=10000, normalize=False, scale=None): + super().__init__() + self.embedding_dim = embedding_dim + self.temperature = temperature + self.normalize = normalize + if scale is not None and normalize is False: + raise ValueError("normalize should be True if scale is passed") + if scale is None: + scale = 2 * math.pi + self.scale = scale + + def forward(self, pixel_values, pixel_mask): + if pixel_mask is None: + raise ValueError("No pixel mask provided") + y_embed = pixel_mask.cumsum(1, dtype=torch.float32) + x_embed = pixel_mask.cumsum(2, dtype=torch.float32) + if self.normalize: + y_embed = y_embed / (y_embed[:, -1:, :] + 1e-6) * self.scale + x_embed = x_embed / (x_embed[:, :, -1:] + 1e-6) * self.scale + + dim_t = torch.arange(self.embedding_dim, dtype=torch.int64, device=pixel_values.device).float() + dim_t = self.temperature ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / self.embedding_dim) + + pos_x = x_embed[:, :, :, None] / dim_t + pos_y = y_embed[:, :, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos_y = torch.stack((pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) + pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) + return pos + + +# Copied from transformers.models.detr.modeling_detr.DetrLearnedPositionEmbedding with Detr->ConditionalDetr +class ConditionalDetrLearnedPositionEmbedding(nn.Module): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, embedding_dim=256): + super().__init__() + self.row_embeddings = nn.Embedding(50, embedding_dim) + self.column_embeddings = nn.Embedding(50, embedding_dim) + + def forward(self, pixel_values, pixel_mask=None): + height, width = pixel_values.shape[-2:] + width_values = torch.arange(width, device=pixel_values.device) + height_values = torch.arange(height, device=pixel_values.device) + x_emb = self.column_embeddings(width_values) + y_emb = self.row_embeddings(height_values) + pos = torch.cat([x_emb.unsqueeze(0).repeat(height, 1, 1), y_emb.unsqueeze(1).repeat(1, width, 1)], dim=-1) + pos = pos.permute(2, 0, 1) + pos = pos.unsqueeze(0) + pos = pos.repeat(pixel_values.shape[0], 1, 1, 1) + return pos + + +# Copied from transformers.models.detr.modeling_detr.build_position_encoding with Detr->ConditionalDetr +def build_position_encoding(config): + n_steps = config.d_model // 2 + if config.position_embedding_type == "sine": + # TODO find a better way of exposing other arguments + position_embedding = ConditionalDetrSinePositionEmbedding(n_steps, normalize=True) + elif config.position_embedding_type == "learned": + position_embedding = ConditionalDetrLearnedPositionEmbedding(n_steps) + else: + raise ValueError(f"Not supported {config.position_embedding_type}") + + return position_embedding + + +# function to generate sine positional embedding for 2d coordinates +def gen_sine_position_embeddings(pos_tensor, d_model): + scale = 2 * math.pi + dim = d_model // 2 + dim_t = torch.arange(dim, dtype=torch.float32, device=pos_tensor.device) + dim_t = 10000 ** (2 * torch.div(dim_t, 2, rounding_mode="floor") / dim) + x_embed = pos_tensor[:, :, 0] * scale + y_embed = pos_tensor[:, :, 1] * scale + pos_x = x_embed[:, :, None] / dim_t + pos_y = y_embed[:, :, None] / dim_t + pos_x = torch.stack((pos_x[:, :, 0::2].sin(), pos_x[:, :, 1::2].cos()), dim=3).flatten(2) + pos_y = torch.stack((pos_y[:, :, 0::2].sin(), pos_y[:, :, 1::2].cos()), dim=3).flatten(2) + pos = torch.cat((pos_y, pos_x), dim=2) + return pos + + +def inverse_sigmoid(x, eps=1e-5): + x = x.clamp(min=0, max=1) + x1 = x.clamp(min=eps) + x2 = (1 - x).clamp(min=eps) + return torch.log(x1 / x2) + + +# Copied from transformers.models.detr.modeling_detr.DetrAttention +class DetrAttention(nn.Module): + """ + Multi-headed attention from 'Attention Is All You Need' paper. + + Here, we add position embeddings to the queries and keys (as explained in the DETR paper). + """ + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def with_pos_embed(self, tensor: torch.Tensor, object_queries: Optional[Tensor], **kwargs): + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + return tensor if object_queries is None else tensor + object_queries + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + key_value_states: Optional[torch.Tensor] = None, + spatial_position_embeddings: Optional[torch.Tensor] = None, + output_attentions: bool = False, + **kwargs, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + position_embeddings = kwargs.pop("position_ebmeddings", None) + key_value_position_embeddings = kwargs.pop("key_value_position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if key_value_position_embeddings is not None and spatial_position_embeddings is not None: + raise ValueError( + "Cannot specify both key_value_position_embeddings and spatial_position_embeddings. Please use just spatial_position_embeddings" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + if key_value_position_embeddings is not None: + logger.warning_once( + "key_value_position_embeddings has been deprecated and will be removed in v4.34. Please use spatial_position_embeddings instead" + ) + spatial_position_embeddings = key_value_position_embeddings + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size, target_len, embed_dim = hidden_states.size() + + # add position embeddings to the hidden states before projecting to queries and keys + if object_queries is not None: + hidden_states_original = hidden_states + hidden_states = self.with_pos_embed(hidden_states, object_queries) + + # add key-value position embeddings to the key value states + if spatial_position_embeddings is not None: + key_value_states_original = key_value_states + key_value_states = self.with_pos_embed(key_value_states, spatial_position_embeddings) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, batch_size) + value_states = self._shape(self.v_proj(key_value_states_original), -1, batch_size) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, batch_size) + value_states = self._shape(self.v_proj(hidden_states_original), -1, batch_size) + + proj_shape = (batch_size * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, target_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*proj_shape) + + source_len = key_states.size(1) + + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, target_len, source_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" + f" {attention_mask.size()}" + ) + attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask + attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (batch_size * self.num_heads, target_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, target_len, embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +class ConditionalDetrAttention(nn.Module): + """ + Cross-Attention used in Conditional DETR 'Conditional DETR for Fast Training Convergence' paper. + + The key q_proj, k_proj, v_proj are defined outside the attention. This attention allows the dim of q, k to be + different to v. + """ + + def __init__( + self, + embed_dim: int, + out_dim: int, + num_heads: int, + dropout: float = 0.0, + bias: bool = True, + ): + super().__init__() + self.embed_dim = embed_dim + self.out_dim = out_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + if self.head_dim * num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" + f" {num_heads})." + ) + # head dimension of values + self.v_head_dim = out_dim // num_heads + if self.v_head_dim * num_heads != self.out_dim: + raise ValueError( + f"out_dim must be divisible by num_heads (got `out_dim`: {self.out_dim} and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + + self.out_proj = nn.Linear(out_dim, out_dim, bias=bias) + + def _qk_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def _v_shape(self, tensor: torch.Tensor, seq_len: int, batch_size: int): + return tensor.view(batch_size, seq_len, self.num_heads, self.v_head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + key_states: Optional[torch.Tensor] = None, + value_states: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + batch_size, target_len, _ = hidden_states.size() + + # get query proj + query_states = hidden_states * self.scaling + # get key, value proj + key_states = self._qk_shape(key_states, -1, batch_size) + value_states = self._v_shape(value_states, -1, batch_size) + + proj_shape = (batch_size * self.num_heads, -1, self.head_dim) + v_proj_shape = (batch_size * self.num_heads, -1, self.v_head_dim) + query_states = self._qk_shape(query_states, target_len, batch_size).view(*proj_shape) + key_states = key_states.view(*proj_shape) + value_states = value_states.view(*v_proj_shape) + + source_len = key_states.size(1) + + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (batch_size * self.num_heads, target_len, source_len): + raise ValueError( + f"Attention weights should be of size {(batch_size * self.num_heads, target_len, source_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (batch_size, 1, target_len, source_len): + raise ValueError( + f"Attention mask should be of size {(batch_size, 1, target_len, source_len)}, but is" + f" {attention_mask.size()}" + ) + attn_weights = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attention_mask + attn_weights = attn_weights.view(batch_size * self.num_heads, target_len, source_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(batch_size, self.num_heads, target_len, source_len) + attn_weights = attn_weights_reshaped.view(batch_size * self.num_heads, target_len, source_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (batch_size * self.num_heads, target_len, self.v_head_dim): + raise ValueError( + f"`attn_output` should be of size {(batch_size, self.num_heads, target_len, self.v_head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(batch_size, self.num_heads, target_len, self.v_head_dim) + attn_output = attn_output.transpose(1, 2) + attn_output = attn_output.reshape(batch_size, target_len, self.out_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped + + +# Copied from transformers.models.detr.modeling_detr.DetrEncoderLayer with DetrEncoderLayer->ConditionalDetrEncoderLayer,DetrConfig->ConditionalDetrConfig +class ConditionalDetrEncoderLayer(nn.Module): + def __init__(self, config: ConditionalDetrConfig): + super().__init__() + self.embed_dim = config.d_model + self.self_attn = DetrAttention( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + object_queries: torch.Tensor = None, + output_attentions: bool = False, + **kwargs, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): + Object queries (also called content embeddings), to be added to the hidden states. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + residual = hidden_states + hidden_states, attn_weights = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + if self.training: + if torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any(): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class ConditionalDetrDecoderLayer(nn.Module): + def __init__(self, config: ConditionalDetrConfig): + super().__init__() + self.embed_dim = config.d_model + + d_model = config.d_model + # Decoder Self-Attention projections + self.sa_qcontent_proj = nn.Linear(d_model, d_model) + self.sa_qpos_proj = nn.Linear(d_model, d_model) + self.sa_kcontent_proj = nn.Linear(d_model, d_model) + self.sa_kpos_proj = nn.Linear(d_model, d_model) + self.sa_v_proj = nn.Linear(d_model, d_model) + + self.self_attn = ConditionalDetrAttention( + embed_dim=self.embed_dim, + out_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + + # Decoder Cross-Attention projections + self.ca_qcontent_proj = nn.Linear(d_model, d_model) + self.ca_qpos_proj = nn.Linear(d_model, d_model) + self.ca_kcontent_proj = nn.Linear(d_model, d_model) + self.ca_kpos_proj = nn.Linear(d_model, d_model) + self.ca_v_proj = nn.Linear(d_model, d_model) + self.ca_qpos_sine_proj = nn.Linear(d_model, d_model) + + self.encoder_attn = ConditionalDetrAttention( + self.embed_dim * 2, self.embed_dim, config.decoder_attention_heads, dropout=config.attention_dropout + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + self.nhead = config.decoder_attention_heads + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + object_queries: Optional[torch.Tensor] = None, + query_position_embeddings: Optional[torch.Tensor] = None, + query_sine_embed: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = False, + is_first: Optional[bool] = False, + **kwargs, + ): + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(seq_len, batch, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + object_queries (`torch.FloatTensor`, *optional*): + object_queries that are added to the queries and keys + in the cross-attention layer. + query_position_embeddings (`torch.FloatTensor`, *optional*): + object_queries that are added to the queries and keys + in the self-attention layer. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(seq_len, batch, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, target_len, source_len)` where padding elements are indicated by very large negative + values. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + residual = hidden_states + + # ========== Begin of Self-Attention ============= + # Apply projections here + # shape: num_queries x batch_size x 256 + q_content = self.sa_qcontent_proj( + hidden_states + ) # target is the input of the first decoder layer. zero by default. + q_pos = self.sa_qpos_proj(query_position_embeddings) + k_content = self.sa_kcontent_proj(hidden_states) + k_pos = self.sa_kpos_proj(query_position_embeddings) + v = self.sa_v_proj(hidden_states) + + _, num_queries, n_model = q_content.shape + + q = q_content + q_pos + k = k_content + k_pos + hidden_states, self_attn_weights = self.self_attn( + hidden_states=q, + attention_mask=attention_mask, + key_states=k, + value_states=v, + output_attentions=output_attentions, + ) + # ============ End of Self-Attention ============= + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # ========== Begin of Cross-Attention ============= + # Apply projections here + # shape: num_queries x batch_size x 256 + q_content = self.ca_qcontent_proj(hidden_states) + k_content = self.ca_kcontent_proj(encoder_hidden_states) + v = self.ca_v_proj(encoder_hidden_states) + + batch_size, num_queries, n_model = q_content.shape + _, source_len, _ = k_content.shape + + k_pos = self.ca_kpos_proj(object_queries) + + # For the first decoder layer, we concatenate the positional embedding predicted from + # the object query (the positional embedding) into the original query (key) in DETR. + if is_first: + q_pos = self.ca_qpos_proj(query_position_embeddings) + q = q_content + q_pos + k = k_content + k_pos + else: + q = q_content + k = k_content + + q = q.view(batch_size, num_queries, self.nhead, n_model // self.nhead) + query_sine_embed = self.ca_qpos_sine_proj(query_sine_embed) + query_sine_embed = query_sine_embed.view(batch_size, num_queries, self.nhead, n_model // self.nhead) + q = torch.cat([q, query_sine_embed], dim=3).view(batch_size, num_queries, n_model * 2) + k = k.view(batch_size, source_len, self.nhead, n_model // self.nhead) + k_pos = k_pos.view(batch_size, source_len, self.nhead, n_model // self.nhead) + k = torch.cat([k, k_pos], dim=3).view(batch_size, source_len, n_model * 2) + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=q, + attention_mask=encoder_attention_mask, + key_states=k, + value_states=v, + output_attentions=output_attentions, + ) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # ============ End of Cross-Attention ============= + + # Fully Connected + residual = hidden_states + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + hidden_states = self.final_layer_norm(hidden_states) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.detr.modeling_detr.DetrClassificationHead with Detr->ConditionalDetr +class ConditionalDetrClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, input_dim: int, inner_dim: int, num_classes: int, pooler_dropout: float): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor): + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with DetrMLPPredictionHead->MLP +class MLP(nn.Module): + """ + Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, + height and width of a bounding box w.r.t. an image. + + Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py + + """ + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# Copied from transformers.models.detr.modeling_detr.DetrPreTrainedModel with Detr->ConditionalDetr +class ConditionalDetrPreTrainedModel(PreTrainedModel): + config_class = ConditionalDetrConfig + base_model_prefix = "model" + main_input_name = "pixel_values" + _no_split_modules = [r"ConditionalDetrConvEncoder", r"ConditionalDetrEncoderLayer", r"ConditionalDetrDecoderLayer"] + + def _init_weights(self, module): + std = self.config.init_std + xavier_std = self.config.init_xavier_std + + if isinstance(module, ConditionalDetrMHAttentionMap): + nn.init.zeros_(module.k_linear.bias) + nn.init.zeros_(module.q_linear.bias) + nn.init.xavier_uniform_(module.k_linear.weight, gain=xavier_std) + nn.init.xavier_uniform_(module.q_linear.weight, gain=xavier_std) + elif isinstance(module, ConditionalDetrLearnedPositionEmbedding): + nn.init.uniform_(module.row_embeddings.weight) + nn.init.uniform_(module.column_embeddings.weight) + if isinstance(module, (nn.Linear, nn.Conv2d, nn.BatchNorm2d)): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + +CONDITIONAL_DETR_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`ConditionalDetrConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +CONDITIONAL_DETR_INPUTS_DOCSTRING = r""" + Args: + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): + Pixel values. Padding will be ignored by default should you provide it. + + Pixel values can be obtained using [`AutoImageProcessor`]. See [`ConditionalDetrImageProcessor.__call__`] + for details. + + pixel_mask (`torch.LongTensor` of shape `(batch_size, height, width)`, *optional*): + Mask to avoid performing attention on padding pixel values. Mask values selected in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + decoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, num_queries)`, *optional*): + Not used by default. Can be used to mask object queries. + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing the flattened feature map (output of the backbone + projection layer), you + can choose to directly pass a flattened representation of an image. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`, *optional*): + Optionally, instead of initializing the queries with a tensor of zeros, you can choose to directly pass an + embedded representation. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +# Copied from transformers.models.detr.modeling_detr.DetrEncoder with Detr->ConditionalDetr,DETR->ConditionalDETR +class ConditionalDetrEncoder(ConditionalDetrPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`ConditionalDetrEncoderLayer`]. + + The encoder updates the flattened feature map through multiple self-attention layers. + + Small tweak for ConditionalDETR: + + - object_queries are added to the forward pass. + + Args: + config: ConditionalDetrConfig + """ + + def __init__(self, config: ConditionalDetrConfig): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + self.layers = nn.ModuleList([ConditionalDetrEncoderLayer(config) for _ in range(config.encoder_layers)]) + + # in the original ConditionalDETR, no layernorm is used at the end of the encoder, as "normalize_before" is set to False by default + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + object_queries=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Flattened feature map (output of the backbone + projection layer) that is passed to the encoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding pixel features. Mask values selected in `[0, 1]`: + + - 1 for pixel features that are real (i.e. **not masked**), + - 0 for pixel features that are padding (i.e. **masked**). + + [What are attention masks?](../glossary#attention-mask) + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Object queries that are added to the queries in each self-attention layer. + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + hidden_states = inputs_embeds + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + # we add object_queries as extra input to the encoder_layer + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + object_queries=object_queries, + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class ConditionalDetrDecoder(ConditionalDetrPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`ConditionalDetrDecoderLayer`]. + + The decoder updates the query embeddings through multiple self-attention and cross-attention layers. + + Some small tweaks for Conditional DETR: + + - object_queries and query_position_embeddings are added to the forward pass. + - if self.config.auxiliary_loss is set to True, also returns a stack of activations from all decoding layers. + + Args: + config: ConditionalDetrConfig + """ + + def __init__(self, config: ConditionalDetrConfig): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + + self.layers = nn.ModuleList([ConditionalDetrDecoderLayer(config) for _ in range(config.decoder_layers)]) + # in Conditional DETR, the decoder uses layernorm after the last decoder layer output + self.layernorm = nn.LayerNorm(config.d_model) + d_model = config.d_model + self.gradient_checkpointing = False + + # query_scale is the FFN applied on f to generate transformation T + self.query_scale = MLP(d_model, d_model, d_model, 2) + self.ref_point_head = MLP(d_model, d_model, 2, 2) + for layer_id in range(config.decoder_layers - 1): + self.layers[layer_id + 1].ca_qpos_proj = None + + # Initialize weights and apply final processing + self.post_init() + + def forward( + self, + inputs_embeds=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + object_queries=None, + query_position_embeddings=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + **kwargs, + ): + r""" + Args: + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + The query embeddings that are passed into the decoder. + + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on certain queries. Mask values selected in `[0, 1]`: + + - 1 for queries that are **not masked**, + - 0 for queries that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding pixel_values of the encoder. Mask values selected + in `[0, 1]`: + + - 1 for pixels that are real (i.e. **not masked**), + - 0 for pixels that are padding (i.e. **masked**). + + object_queries (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Position embeddings that are added to the queries and keys in each cross-attention layer. + query_position_embeddings (`torch.FloatTensor` of shape `(batch_size, num_queries, hidden_size)`): + , *optional*): Position embeddings that are added to the queries and keys in each self-attention layer. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + position_embeddings = kwargs.pop("position_embeddings", None) + + if kwargs: + raise ValueError(f"Unexpected arguments {kwargs.keys()}") + + if position_embeddings is not None and object_queries is not None: + raise ValueError( + "Cannot specify both position_embeddings and object_queries. Please use just object_queries" + ) + + if position_embeddings is not None: + logger.warning_once( + "position_embeddings has been deprecated and will be removed in v4.34. Please use object_queries instead" + ) + object_queries = position_embeddings + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if inputs_embeds is not None: + hidden_states = inputs_embeds + input_shape = inputs_embeds.size()[:-1] + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [batch_size, seq_len] -> [batch_size, 1, target_seq_len, source_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # optional intermediate hidden states + intermediate = () if self.config.auxiliary_loss else None + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + reference_points_before_sigmoid = self.ref_point_head( + query_position_embeddings + ) # [num_queries, batch_size, 2] + reference_points = reference_points_before_sigmoid.sigmoid().transpose(0, 1) + obj_center = reference_points[..., :2].transpose(0, 1) + # get sine embedding for the query vector + query_sine_embed_before_transformation = gen_sine_position_embeddings(obj_center, self.config.d_model) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + if idx == 0: + pos_transformation = 1 + else: + pos_transformation = self.query_scale(hidden_states) + # apply transformation + query_sine_embed = query_sine_embed_before_transformation * pos_transformation + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + None, + object_queries, + query_position_embeddings, + query_sine_embed, + encoder_hidden_states, + encoder_attention_mask, + None, + None, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + query_sine_embed=query_sine_embed, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + is_first=(idx == 0), + ) + + hidden_states = layer_outputs[0] + + if self.config.auxiliary_loss: + hidden_states = self.layernorm(hidden_states) + intermediate += (hidden_states,) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # finally, apply layernorm + hidden_states = self.layernorm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + # stack intermediate decoder activations + if self.config.auxiliary_loss: + intermediate = torch.stack(intermediate) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + all_hidden_states, + all_self_attns, + all_cross_attentions, + intermediate, + reference_points, + ] + if v is not None + ) + return ConditionalDetrDecoderOutput( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + intermediate_hidden_states=intermediate, + reference_points=reference_points, + ) + + +@add_start_docstrings( + """ + The bare Conditional DETR Model (consisting of a backbone and encoder-decoder Transformer) outputting raw + hidden-states without any specific head on top. + """, + CONDITIONAL_DETR_START_DOCSTRING, +) +class ConditionalDetrModel(ConditionalDetrPreTrainedModel): + def __init__(self, config: ConditionalDetrConfig): + super().__init__(config) + + # Create backbone + positional encoding + backbone = ConditionalDetrConvEncoder(config) + object_queries = build_position_encoding(config) + self.backbone = ConditionalDetrConvModel(backbone, object_queries) + + # Create projection layer + self.input_projection = nn.Conv2d(backbone.intermediate_channel_sizes[-1], config.d_model, kernel_size=1) + + self.query_position_embeddings = nn.Embedding(config.num_queries, config.d_model) + + self.encoder = ConditionalDetrEncoder(config) + self.decoder = ConditionalDetrDecoder(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def freeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(False) + + def unfreeze_backbone(self): + for name, param in self.backbone.conv_encoder.model.named_parameters(): + param.requires_grad_(True) + + @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ConditionalDetrModelOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrModelOutput]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoModel + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") + >>> model = AutoModel.from_pretrained("microsoft/conditional-detr-resnet-50") + + >>> # prepare image for the model + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + + >>> # the last hidden states are the final query embeddings of the Transformer decoder + >>> # these are of shape (batch_size, num_queries, hidden_size) + >>> last_hidden_states = outputs.last_hidden_state + >>> list(last_hidden_states.shape) + [1, 300, 256] + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, num_channels, height, width = pixel_values.shape + device = pixel_values.device + + if pixel_mask is None: + pixel_mask = torch.ones(((batch_size, height, width)), device=device) + + # First, sent pixel_values + pixel_mask through Backbone to obtain the features + # pixel_values should be of shape (batch_size, num_channels, height, width) + # pixel_mask should be of shape (batch_size, height, width) + features, object_queries_list = self.backbone(pixel_values, pixel_mask) + + # get final feature map and downsampled mask + feature_map, mask = features[-1] + + if mask is None: + raise ValueError("Backbone does not return downsampled pixel mask") + + # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + projected_feature_map = self.input_projection(feature_map) + + # Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC + # In other words, turn their shape into (batch_size, sequence_length, hidden_size) + flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) + object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) + + flattened_mask = mask.flatten(1) + + # Fourth, sent flattened_features + flattened_mask + object_queries through encoder + # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) + # flattened_mask is a Tensor of shape (batch_size, heigth*width) + if encoder_outputs is None: + encoder_outputs = self.encoder( + inputs_embeds=flattened_features, + attention_mask=flattened_mask, + object_queries=object_queries, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) + query_position_embeddings = self.query_position_embeddings.weight.unsqueeze(0).repeat(batch_size, 1, 1) + queries = torch.zeros_like(query_position_embeddings) + + # decoder outputs consists of (dec_features, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + inputs_embeds=queries, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=flattened_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return ConditionalDetrModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + intermediate_hidden_states=decoder_outputs.intermediate_hidden_states, + reference_points=decoder_outputs.reference_points, + ) + + +@add_start_docstrings( + """ + CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with object detection heads on + top, for tasks such as COCO detection. + """, + CONDITIONAL_DETR_START_DOCSTRING, +) +class ConditionalDetrForObjectDetection(ConditionalDetrPreTrainedModel): + def __init__(self, config: ConditionalDetrConfig): + super().__init__(config) + + # CONDITIONAL DETR encoder-decoder model + self.model = ConditionalDetrModel(config) + + # Object detection heads + self.class_labels_classifier = nn.Linear( + config.d_model, config.num_labels + ) # We add one for the "no object" class + self.bbox_predictor = ConditionalDetrMLPPredictionHead( + input_dim=config.d_model, hidden_dim=config.d_model, output_dim=4, num_layers=3 + ) + + # Initialize weights and apply final processing + self.post_init() + + # taken from https://github.com/Atten4Vis/conditionalDETR/blob/master/models/conditional_detr.py + @torch.jit.unused + def _set_aux_loss(self, outputs_class, outputs_coord): + # this is a workaround to make torchscript happy, as torchscript + # doesn't support dictionary with non-homogeneous values, such + # as a dict having both a Tensor and a list. + return [{"logits": a, "pred_boxes": b} for a, b in zip(outputs_class[:-1], outputs_coord[:-1])] + + @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ConditionalDetrObjectDetectionOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[List[dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrObjectDetectionOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss. List of dicts, each dictionary containing at least the + following 2 keys: 'class_labels' and 'boxes' (the class labels and bounding boxes of an image in the batch + respectively). The class labels themselves should be a `torch.LongTensor` of len `(number of bounding boxes + in the image,)` and the boxes a `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)`. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoImageProcessor, AutoModelForObjectDetection + >>> from PIL import Image + >>> import requests + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") + >>> model = AutoModelForObjectDetection.from_pretrained("microsoft/conditional-detr-resnet-50") + + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> outputs = model(**inputs) + + >>> # convert outputs (bounding boxes and class logits) to Pascal VOC format (xmin, ymin, xmax, ymax) + >>> target_sizes = torch.tensor([image.size[::-1]]) + >>> results = image_processor.post_process_object_detection(outputs, threshold=0.5, target_sizes=target_sizes)[ + ... 0 + ... ] + >>> for score, label, box in zip(results["scores"], results["labels"], results["boxes"]): + ... box = [round(i, 2) for i in box.tolist()] + ... print( + ... f"Detected {model.config.id2label[label.item()]} with confidence " + ... f"{round(score.item(), 3)} at location {box}" + ... ) + Detected remote with confidence 0.833 at location [38.31, 72.1, 177.63, 118.45] + Detected cat with confidence 0.831 at location [9.2, 51.38, 321.13, 469.0] + Detected cat with confidence 0.804 at location [340.3, 16.85, 642.93, 370.95] + Detected remote with confidence 0.683 at location [334.48, 73.49, 366.37, 190.01] + Detected couch with confidence 0.535 at location [0.52, 1.19, 640.35, 475.1] + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # First, sent images through CONDITIONAL_DETR base model to obtain encoder + decoder outputs + outputs = self.model( + pixel_values, + pixel_mask=pixel_mask, + decoder_attention_mask=decoder_attention_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + # class logits + predicted bounding boxes + logits = self.class_labels_classifier(sequence_output) + + reference = outputs.reference_points if return_dict else outputs[-1] + reference_before_sigmoid = inverse_sigmoid(reference).transpose(0, 1) + outputs_coords = [] + hs = sequence_output + tmp = self.bbox_predictor(hs) + tmp[..., :2] += reference_before_sigmoid + pred_boxes = tmp.sigmoid() + # pred_boxes = self.bbox_predictor(sequence_output).sigmoid() + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = ConditionalDetrHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality"] + criterion = ConditionalDetrLoss( + matcher=matcher, + num_classes=self.config.num_labels, + focal_alpha=self.config.focal_alpha, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + if self.config.auxiliary_loss: + intermediate = outputs.intermediate_hidden_states if return_dict else outputs[4] + outputs_class = self.class_labels_classifier(intermediate) + + for lvl in range(intermediate.shape[0]): + tmp = self.bbox_predictor(intermediate[lvl]) + tmp[..., :2] += reference_before_sigmoid + outputs_coord = tmp.sigmoid() + outputs_coords.append(outputs_coord) + outputs_coord = torch.stack(outputs_coords) + + auxiliary_outputs = self._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": self.config.cls_loss_coefficient, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes) + auxiliary_outputs + outputs + else: + output = (logits, pred_boxes) + outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return ConditionalDetrObjectDetectionOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=outputs.last_hidden_state, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + CONDITIONAL_DETR Model (consisting of a backbone and encoder-decoder Transformer) with a segmentation head on top, + for tasks such as COCO panoptic. + + """, + CONDITIONAL_DETR_START_DOCSTRING, +) +class ConditionalDetrForSegmentation(ConditionalDetrPreTrainedModel): + def __init__(self, config: ConditionalDetrConfig): + super().__init__(config) + + # object detection model + self.conditional_detr = ConditionalDetrForObjectDetection(config) + + # segmentation head + hidden_size, number_of_heads = config.d_model, config.encoder_attention_heads + intermediate_channel_sizes = self.conditional_detr.model.backbone.conv_encoder.intermediate_channel_sizes + + self.mask_head = ConditionalDetrMaskHeadSmallConv( + hidden_size + number_of_heads, intermediate_channel_sizes[::-1][-3:], hidden_size + ) + + self.bbox_attention = ConditionalDetrMHAttentionMap( + hidden_size, hidden_size, number_of_heads, dropout=0.0, std=config.init_xavier_std + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(CONDITIONAL_DETR_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=ConditionalDetrSegmentationOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + pixel_values: torch.FloatTensor, + pixel_mask: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.FloatTensor] = None, + encoder_outputs: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[List[dict]] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], ConditionalDetrSegmentationOutput]: + r""" + labels (`List[Dict]` of len `(batch_size,)`, *optional*): + Labels for computing the bipartite matching loss, DICE/F-1 loss and Focal loss. List of dicts, each + dictionary containing at least the following 3 keys: 'class_labels', 'boxes' and 'masks' (the class labels, + bounding boxes and segmentation masks of an image in the batch respectively). The class labels themselves + should be a `torch.LongTensor` of len `(number of bounding boxes in the image,)`, the boxes a + `torch.FloatTensor` of shape `(number of bounding boxes in the image, 4)` and the masks a + `torch.FloatTensor` of shape `(number of bounding boxes in the image, height, width)`. + + Returns: + + Examples: + + ```python + >>> import io + >>> import requests + >>> from PIL import Image + >>> import torch + >>> import numpy + + >>> from transformers import ( + ... AutoImageProcessor, + ... ConditionalDetrConfig, + ... ConditionalDetrForSegmentation, + ... ) + >>> from transformers.image_transforms import rgb_to_id + + >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> image_processor = AutoImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50") + + >>> # randomly initialize all weights of the model + >>> config = ConditionalDetrConfig() + >>> model = ConditionalDetrForSegmentation(config) + + >>> # prepare image for the model + >>> inputs = image_processor(images=image, return_tensors="pt") + + >>> # forward pass + >>> outputs = model(**inputs) + + >>> # Use the `post_process_panoptic_segmentation` method of the `image_processor` to retrieve post-processed panoptic segmentation maps + >>> # Segmentation results are returned as a list of dictionaries + >>> result = image_processor.post_process_panoptic_segmentation(outputs, target_sizes=[(300, 500)]) + >>> # A tensor of shape (height, width) where each value denotes a segment id, filled with -1 if no segment is found + >>> panoptic_seg = result[0]["segmentation"] + >>> # Get prediction score and segment_id to class_id mapping of each segment + >>> panoptic_segments_info = result[0]["segments_info"] + ```""" + + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, num_channels, height, width = pixel_values.shape + device = pixel_values.device + + if pixel_mask is None: + pixel_mask = torch.ones((batch_size, height, width), device=device) + + # First, get list of feature maps and object_queries + features, object_queries_list = self.conditional_detr.model.backbone(pixel_values, pixel_mask=pixel_mask) + + # Second, apply 1x1 convolution to reduce the channel dimension to d_model (256 by default) + feature_map, mask = features[-1] + batch_size, num_channels, height, width = feature_map.shape + projected_feature_map = self.conditional_detr.model.input_projection(feature_map) + + # Third, flatten the feature map + object_queries of shape NxCxHxW to NxCxHW, and permute it to NxHWxC + # In other words, turn their shape into (batch_size, sequence_length, hidden_size) + flattened_features = projected_feature_map.flatten(2).permute(0, 2, 1) + object_queries = object_queries_list[-1].flatten(2).permute(0, 2, 1) + + flattened_mask = mask.flatten(1) + + # Fourth, sent flattened_features + flattened_mask + object_queries through encoder + # flattened_features is a Tensor of shape (batch_size, heigth*width, hidden_size) + # flattened_mask is a Tensor of shape (batch_size, heigth*width) + if encoder_outputs is None: + encoder_outputs = self.conditional_detr.model.encoder( + inputs_embeds=flattened_features, + attention_mask=flattened_mask, + object_queries=object_queries, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # Fifth, sent query embeddings + object_queries through the decoder (which is conditioned on the encoder output) + query_position_embeddings = self.conditional_detr.model.query_position_embeddings.weight.unsqueeze(0).repeat( + batch_size, 1, 1 + ) + queries = torch.zeros_like(query_position_embeddings) + + # decoder outputs consists of (dec_features, dec_hidden, dec_attn) + decoder_outputs = self.conditional_detr.model.decoder( + inputs_embeds=queries, + attention_mask=None, + object_queries=object_queries, + query_position_embeddings=query_position_embeddings, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=flattened_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + # Sixth, compute logits, pred_boxes and pred_masks + logits = self.conditional_detr.class_labels_classifier(sequence_output) + pred_boxes = self.conditional_detr.bbox_predictor(sequence_output).sigmoid() + + memory = encoder_outputs[0].permute(0, 2, 1).view(batch_size, self.config.d_model, height, width) + mask = flattened_mask.view(batch_size, height, width) + + # FIXME h_boxes takes the last one computed, keep this in mind + # important: we need to reverse the mask, since in the original implementation the mask works reversed + # bbox_mask is of shape (batch_size, num_queries, number_of_attention_heads in bbox_attention, height/32, width/32) + bbox_mask = self.bbox_attention(sequence_output, memory, mask=~mask) + + seg_masks = self.mask_head(projected_feature_map, bbox_mask, [features[2][0], features[1][0], features[0][0]]) + + pred_masks = seg_masks.view( + batch_size, self.conditional_detr.config.num_queries, seg_masks.shape[-2], seg_masks.shape[-1] + ) + + loss, loss_dict, auxiliary_outputs = None, None, None + if labels is not None: + # First: create the matcher + matcher = ConditionalDetrHungarianMatcher( + class_cost=self.config.class_cost, bbox_cost=self.config.bbox_cost, giou_cost=self.config.giou_cost + ) + # Second: create the criterion + losses = ["labels", "boxes", "cardinality", "masks"] + criterion = ConditionalDetrLoss( + matcher=matcher, + num_classes=self.config.num_labels, + focal_alpha=self.config.focal_alpha, + losses=losses, + ) + criterion.to(self.device) + # Third: compute the losses, based on outputs and labels + outputs_loss = {} + outputs_loss["logits"] = logits + outputs_loss["pred_boxes"] = pred_boxes + outputs_loss["pred_masks"] = pred_masks + if self.config.auxiliary_loss: + intermediate = decoder_outputs.intermediate_hidden_states if return_dict else decoder_outputs[-1] + outputs_class = self.conditional_detr.class_labels_classifier(intermediate) + outputs_coord = self.conditional_detr.bbox_predictor(intermediate).sigmoid() + auxiliary_outputs = self.conditional_detr._set_aux_loss(outputs_class, outputs_coord) + outputs_loss["auxiliary_outputs"] = auxiliary_outputs + + loss_dict = criterion(outputs_loss, labels) + # Fourth: compute total loss, as a weighted sum of the various losses + weight_dict = {"loss_ce": 1, "loss_bbox": self.config.bbox_loss_coefficient} + weight_dict["loss_giou"] = self.config.giou_loss_coefficient + weight_dict["loss_mask"] = self.config.mask_loss_coefficient + weight_dict["loss_dice"] = self.config.dice_loss_coefficient + if self.config.auxiliary_loss: + aux_weight_dict = {} + for i in range(self.config.decoder_layers - 1): + aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) + weight_dict.update(aux_weight_dict) + loss = sum(loss_dict[k] * weight_dict[k] for k in loss_dict.keys() if k in weight_dict) + + if not return_dict: + if auxiliary_outputs is not None: + output = (logits, pred_boxes, pred_masks) + auxiliary_outputs + decoder_outputs + encoder_outputs + else: + output = (logits, pred_boxes, pred_masks) + decoder_outputs + encoder_outputs + return ((loss, loss_dict) + output) if loss is not None else output + + return ConditionalDetrSegmentationOutput( + loss=loss, + loss_dict=loss_dict, + logits=logits, + pred_boxes=pred_boxes, + pred_masks=pred_masks, + auxiliary_outputs=auxiliary_outputs, + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +def _expand(tensor, length: int): + return tensor.unsqueeze(1).repeat(1, int(length), 1, 1, 1).flatten(0, 1) + + +# Copied from transformers.models.detr.modeling_detr.DetrMaskHeadSmallConv with Detr->ConditionalDetr +class ConditionalDetrMaskHeadSmallConv(nn.Module): + """ + Simple convolutional head, using group norm. Upsampling is done using a FPN approach + """ + + def __init__(self, dim, fpn_dims, context_dim): + super().__init__() + + if dim % 8 != 0: + raise ValueError( + "The hidden_size + number of attention heads must be divisible by 8 as the number of groups in" + " GroupNorm is set to 8" + ) + + inter_dims = [dim, context_dim // 2, context_dim // 4, context_dim // 8, context_dim // 16, context_dim // 64] + + self.lay1 = nn.Conv2d(dim, dim, 3, padding=1) + self.gn1 = nn.GroupNorm(8, dim) + self.lay2 = nn.Conv2d(dim, inter_dims[1], 3, padding=1) + self.gn2 = nn.GroupNorm(min(8, inter_dims[1]), inter_dims[1]) + self.lay3 = nn.Conv2d(inter_dims[1], inter_dims[2], 3, padding=1) + self.gn3 = nn.GroupNorm(min(8, inter_dims[2]), inter_dims[2]) + self.lay4 = nn.Conv2d(inter_dims[2], inter_dims[3], 3, padding=1) + self.gn4 = nn.GroupNorm(min(8, inter_dims[3]), inter_dims[3]) + self.lay5 = nn.Conv2d(inter_dims[3], inter_dims[4], 3, padding=1) + self.gn5 = nn.GroupNorm(min(8, inter_dims[4]), inter_dims[4]) + self.out_lay = nn.Conv2d(inter_dims[4], 1, 3, padding=1) + + self.dim = dim + + self.adapter1 = nn.Conv2d(fpn_dims[0], inter_dims[1], 1) + self.adapter2 = nn.Conv2d(fpn_dims[1], inter_dims[2], 1) + self.adapter3 = nn.Conv2d(fpn_dims[2], inter_dims[3], 1) + + for m in self.modules(): + if isinstance(m, nn.Conv2d): + nn.init.kaiming_uniform_(m.weight, a=1) + nn.init.constant_(m.bias, 0) + + def forward(self, x: Tensor, bbox_mask: Tensor, fpns: List[Tensor]): + # here we concatenate x, the projected feature map, of shape (batch_size, d_model, heigth/32, width/32) with + # the bbox_mask = the attention maps of shape (batch_size, n_queries, n_heads, height/32, width/32). + # We expand the projected feature map to match the number of heads. + x = torch.cat([_expand(x, bbox_mask.shape[1]), bbox_mask.flatten(0, 1)], 1) + + x = self.lay1(x) + x = self.gn1(x) + x = nn.functional.relu(x) + x = self.lay2(x) + x = self.gn2(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter1(fpns[0]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay3(x) + x = self.gn3(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter2(fpns[1]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay4(x) + x = self.gn4(x) + x = nn.functional.relu(x) + + cur_fpn = self.adapter3(fpns[2]) + if cur_fpn.size(0) != x.size(0): + cur_fpn = _expand(cur_fpn, x.size(0) // cur_fpn.size(0)) + x = cur_fpn + nn.functional.interpolate(x, size=cur_fpn.shape[-2:], mode="nearest") + x = self.lay5(x) + x = self.gn5(x) + x = nn.functional.relu(x) + + x = self.out_lay(x) + return x + + +# Copied from transformers.models.detr.modeling_detr.DetrMHAttentionMap with Detr->ConditionalDetr +class ConditionalDetrMHAttentionMap(nn.Module): + """This is a 2D attention module, which only returns the attention softmax (no multiplication by value)""" + + def __init__(self, query_dim, hidden_dim, num_heads, dropout=0.0, bias=True, std=None): + super().__init__() + self.num_heads = num_heads + self.hidden_dim = hidden_dim + self.dropout = nn.Dropout(dropout) + + self.q_linear = nn.Linear(query_dim, hidden_dim, bias=bias) + self.k_linear = nn.Linear(query_dim, hidden_dim, bias=bias) + + self.normalize_fact = float(hidden_dim / self.num_heads) ** -0.5 + + def forward(self, q, k, mask: Optional[Tensor] = None): + q = self.q_linear(q) + k = nn.functional.conv2d(k, self.k_linear.weight.unsqueeze(-1).unsqueeze(-1), self.k_linear.bias) + queries_per_head = q.view(q.shape[0], q.shape[1], self.num_heads, self.hidden_dim // self.num_heads) + keys_per_head = k.view(k.shape[0], self.num_heads, self.hidden_dim // self.num_heads, k.shape[-2], k.shape[-1]) + weights = torch.einsum("bqnc,bnchw->bqnhw", queries_per_head * self.normalize_fact, keys_per_head) + + if mask is not None: + weights.masked_fill_(mask.unsqueeze(1).unsqueeze(1), torch.finfo(weights.dtype).min) + weights = nn.functional.softmax(weights.flatten(2), dim=-1).view(weights.size()) + weights = self.dropout(weights) + return weights + + +# Copied from transformers.models.detr.modeling_detr.dice_loss +def dice_loss(inputs, targets, num_boxes): + """ + Compute the DICE loss, similar to generalized IOU for masks + + Args: + inputs: A float tensor of arbitrary shape. + The predictions for each example. + targets: A float tensor with the same shape as inputs. Stores the binary + classification label for each element in inputs (0 for the negative class and 1 for the positive + class). + """ + inputs = inputs.sigmoid() + inputs = inputs.flatten(1) + numerator = 2 * (inputs * targets).sum(1) + denominator = inputs.sum(-1) + targets.sum(-1) + loss = 1 - (numerator + 1) / (denominator + 1) + return loss.sum() / num_boxes + + +# Copied from transformers.models.detr.modeling_detr.sigmoid_focal_loss +def sigmoid_focal_loss(inputs, targets, num_boxes, alpha: float = 0.25, gamma: float = 2): + """ + Loss used in RetinaNet for dense detection: https://arxiv.org/abs/1708.02002. + + Args: + inputs (`torch.FloatTensor` of arbitrary shape): + The predictions for each example. + targets (`torch.FloatTensor` with the same shape as `inputs`) + A tensor storing the binary classification label for each element in the `inputs` (0 for the negative class + and 1 for the positive class). + alpha (`float`, *optional*, defaults to `0.25`): + Optional weighting factor in the range (0,1) to balance positive vs. negative examples. + gamma (`int`, *optional*, defaults to `2`): + Exponent of the modulating factor (1 - p_t) to balance easy vs hard examples. + + Returns: + Loss tensor + """ + prob = inputs.sigmoid() + ce_loss = nn.functional.binary_cross_entropy_with_logits(inputs, targets, reduction="none") + # add modulating factor + p_t = prob * targets + (1 - prob) * (1 - targets) + loss = ce_loss * ((1 - p_t) ** gamma) + + if alpha >= 0: + alpha_t = alpha * targets + (1 - alpha) * (1 - targets) + loss = alpha_t * loss + + return loss.mean(1).sum() / num_boxes + + +class ConditionalDetrLoss(nn.Module): + """ + This class computes the losses for ConditionalDetrForObjectDetection/ConditionalDetrForSegmentation. The process + happens in two steps: 1) we compute hungarian assignment between ground truth boxes and the outputs of the model 2) + we supervise each pair of matched ground-truth / prediction (supervise class and box). + + Args: + matcher (`ConditionalDetrHungarianMatcher`): + Module able to compute a matching between targets and proposals. + num_classes (`int`): + Number of object categories, omitting the special no-object category. + focal_alpha (`float`): + Alpha parameter in focal loss. + losses (`List[str]`): + List of all the losses to be applied. See `get_loss` for a list of all available losses. + """ + + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.__init__ + def __init__(self, matcher, num_classes, focal_alpha, losses): + super().__init__() + self.matcher = matcher + self.num_classes = num_classes + self.focal_alpha = focal_alpha + self.losses = losses + + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_labels + def loss_labels(self, outputs, targets, indices, num_boxes): + """ + Classification loss (Binary focal loss) targets dicts must contain the key "class_labels" containing a tensor + of dim [nb_target_boxes] + """ + if "logits" not in outputs: + raise KeyError("No logits were found in the outputs") + source_logits = outputs["logits"] + + idx = self._get_source_permutation_idx(indices) + target_classes_o = torch.cat([t["class_labels"][J] for t, (_, J) in zip(targets, indices)]) + target_classes = torch.full( + source_logits.shape[:2], self.num_classes, dtype=torch.int64, device=source_logits.device + ) + target_classes[idx] = target_classes_o + + target_classes_onehot = torch.zeros( + [source_logits.shape[0], source_logits.shape[1], source_logits.shape[2] + 1], + dtype=source_logits.dtype, + layout=source_logits.layout, + device=source_logits.device, + ) + target_classes_onehot.scatter_(2, target_classes.unsqueeze(-1), 1) + + target_classes_onehot = target_classes_onehot[:, :, :-1] + loss_ce = ( + sigmoid_focal_loss(source_logits, target_classes_onehot, num_boxes, alpha=self.focal_alpha, gamma=2) + * source_logits.shape[1] + ) + losses = {"loss_ce": loss_ce} + + return losses + + @torch.no_grad() + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_cardinality + def loss_cardinality(self, outputs, targets, indices, num_boxes): + """ + Compute the cardinality error, i.e. the absolute error in the number of predicted non-empty boxes. + + This is not really a loss, it is intended for logging purposes only. It doesn't propagate gradients. + """ + logits = outputs["logits"] + device = logits.device + target_lengths = torch.as_tensor([len(v["class_labels"]) for v in targets], device=device) + # Count the number of predictions that are NOT "no-object" (which is the last class) + card_pred = (logits.argmax(-1) != logits.shape[-1] - 1).sum(1) + card_err = nn.functional.l1_loss(card_pred.float(), target_lengths.float()) + losses = {"cardinality_error": card_err} + return losses + + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss.loss_boxes + def loss_boxes(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the bounding boxes, the L1 regression loss and the GIoU loss. + + Targets dicts must contain the key "boxes" containing a tensor of dim [nb_target_boxes, 4]. The target boxes + are expected in format (center_x, center_y, w, h), normalized by the image size. + """ + if "pred_boxes" not in outputs: + raise KeyError("No predicted boxes found in outputs") + idx = self._get_source_permutation_idx(indices) + source_boxes = outputs["pred_boxes"][idx] + target_boxes = torch.cat([t["boxes"][i] for t, (_, i) in zip(targets, indices)], dim=0) + + loss_bbox = nn.functional.l1_loss(source_boxes, target_boxes, reduction="none") + + losses = {} + losses["loss_bbox"] = loss_bbox.sum() / num_boxes + + loss_giou = 1 - torch.diag( + generalized_box_iou(center_to_corners_format(source_boxes), center_to_corners_format(target_boxes)) + ) + losses["loss_giou"] = loss_giou.sum() / num_boxes + return losses + + # Copied from transformers.models.detr.modeling_detr.DetrLoss.loss_masks + def loss_masks(self, outputs, targets, indices, num_boxes): + """ + Compute the losses related to the masks: the focal loss and the dice loss. + + Targets dicts must contain the key "masks" containing a tensor of dim [nb_target_boxes, h, w]. + """ + if "pred_masks" not in outputs: + raise KeyError("No predicted masks found in outputs") + + source_idx = self._get_source_permutation_idx(indices) + target_idx = self._get_target_permutation_idx(indices) + source_masks = outputs["pred_masks"] + source_masks = source_masks[source_idx] + masks = [t["masks"] for t in targets] + # TODO use valid to mask invalid areas due to padding in loss + target_masks, valid = nested_tensor_from_tensor_list(masks).decompose() + target_masks = target_masks.to(source_masks) + target_masks = target_masks[target_idx] + + # upsample predictions to the target size + source_masks = nn.functional.interpolate( + source_masks[:, None], size=target_masks.shape[-2:], mode="bilinear", align_corners=False + ) + source_masks = source_masks[:, 0].flatten(1) + + target_masks = target_masks.flatten(1) + target_masks = target_masks.view(source_masks.shape) + losses = { + "loss_mask": sigmoid_focal_loss(source_masks, target_masks, num_boxes), + "loss_dice": dice_loss(source_masks, target_masks, num_boxes), + } + return losses + + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_source_permutation_idx + def _get_source_permutation_idx(self, indices): + # permute predictions following indices + batch_idx = torch.cat([torch.full_like(source, i) for i, (source, _) in enumerate(indices)]) + source_idx = torch.cat([source for (source, _) in indices]) + return batch_idx, source_idx + + # Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrLoss._get_target_permutation_idx + def _get_target_permutation_idx(self, indices): + # permute targets following indices + batch_idx = torch.cat([torch.full_like(target, i) for i, (_, target) in enumerate(indices)]) + target_idx = torch.cat([target for (_, target) in indices]) + return batch_idx, target_idx + + # Copied from transformers.models.detr.modeling_detr.DetrLoss.get_loss + def get_loss(self, loss, outputs, targets, indices, num_boxes): + loss_map = { + "labels": self.loss_labels, + "cardinality": self.loss_cardinality, + "boxes": self.loss_boxes, + "masks": self.loss_masks, + } + if loss not in loss_map: + raise ValueError(f"Loss {loss} not supported") + return loss_map[loss](outputs, targets, indices, num_boxes) + + # Copied from transformers.models.detr.modeling_detr.DetrLoss.forward + def forward(self, outputs, targets): + """ + This performs the loss computation. + + Args: + outputs (`dict`, *optional*): + Dictionary of tensors, see the output specification of the model for the format. + targets (`List[dict]`, *optional*): + List of dicts, such that `len(targets) == batch_size`. The expected keys in each dict depends on the + losses applied, see each loss' doc. + """ + outputs_without_aux = {k: v for k, v in outputs.items() if k != "auxiliary_outputs"} + + # Retrieve the matching between the outputs of the last layer and the targets + indices = self.matcher(outputs_without_aux, targets) + + # Compute the average number of target boxes across all nodes, for normalization purposes + num_boxes = sum(len(t["class_labels"]) for t in targets) + num_boxes = torch.as_tensor([num_boxes], dtype=torch.float, device=next(iter(outputs.values())).device) + + world_size = 1 + if is_accelerate_available(): + if PartialState._shared_state != {}: + num_boxes = reduce(num_boxes) + world_size = PartialState().num_processes + num_boxes = torch.clamp(num_boxes / world_size, min=1).item() + + # Compute all the requested losses + losses = {} + for loss in self.losses: + losses.update(self.get_loss(loss, outputs, targets, indices, num_boxes)) + + # In case of auxiliary losses, we repeat this process with the output of each intermediate layer. + if "auxiliary_outputs" in outputs: + for i, auxiliary_outputs in enumerate(outputs["auxiliary_outputs"]): + indices = self.matcher(auxiliary_outputs, targets) + for loss in self.losses: + if loss == "masks": + # Intermediate masks losses are too costly to compute, we ignore them. + continue + l_dict = self.get_loss(loss, auxiliary_outputs, targets, indices, num_boxes) + l_dict = {k + f"_{i}": v for k, v in l_dict.items()} + losses.update(l_dict) + + return losses + + +# Copied from transformers.models.detr.modeling_detr.DetrMLPPredictionHead with Detr->ConditionalDetr +class ConditionalDetrMLPPredictionHead(nn.Module): + """ + Very simple multi-layer perceptron (MLP, also called FFN), used to predict the normalized center coordinates, + height and width of a bounding box w.r.t. an image. + + Copied from https://github.com/facebookresearch/detr/blob/master/models/detr.py + + """ + + def __init__(self, input_dim, hidden_dim, output_dim, num_layers): + super().__init__() + self.num_layers = num_layers + h = [hidden_dim] * (num_layers - 1) + self.layers = nn.ModuleList(nn.Linear(n, k) for n, k in zip([input_dim] + h, h + [output_dim])) + + def forward(self, x): + for i, layer in enumerate(self.layers): + x = nn.functional.relu(layer(x)) if i < self.num_layers - 1 else layer(x) + return x + + +# Copied from transformers.models.deformable_detr.modeling_deformable_detr.DeformableDetrHungarianMatcher with DeformableDetr->ConditionalDetr +class ConditionalDetrHungarianMatcher(nn.Module): + """ + This class computes an assignment between the targets and the predictions of the network. + + For efficiency reasons, the targets don't include the no_object. Because of this, in general, there are more + predictions than targets. In this case, we do a 1-to-1 matching of the best predictions, while the others are + un-matched (and thus treated as non-objects). + + Args: + class_cost: + The relative weight of the classification error in the matching cost. + bbox_cost: + The relative weight of the L1 error of the bounding box coordinates in the matching cost. + giou_cost: + The relative weight of the giou loss of the bounding box in the matching cost. + """ + + def __init__(self, class_cost: float = 1, bbox_cost: float = 1, giou_cost: float = 1): + super().__init__() + requires_backends(self, ["scipy"]) + + self.class_cost = class_cost + self.bbox_cost = bbox_cost + self.giou_cost = giou_cost + if class_cost == 0 and bbox_cost == 0 and giou_cost == 0: + raise ValueError("All costs of the Matcher can't be 0") + + @torch.no_grad() + def forward(self, outputs, targets): + """ + Args: + outputs (`dict`): + A dictionary that contains at least these entries: + * "logits": Tensor of dim [batch_size, num_queries, num_classes] with the classification logits + * "pred_boxes": Tensor of dim [batch_size, num_queries, 4] with the predicted box coordinates. + targets (`List[dict]`): + A list of targets (len(targets) = batch_size), where each target is a dict containing: + * "class_labels": Tensor of dim [num_target_boxes] (where num_target_boxes is the number of + ground-truth + objects in the target) containing the class labels + * "boxes": Tensor of dim [num_target_boxes, 4] containing the target box coordinates. + + Returns: + `List[Tuple]`: A list of size `batch_size`, containing tuples of (index_i, index_j) where: + - index_i is the indices of the selected predictions (in order) + - index_j is the indices of the corresponding selected targets (in order) + For each batch element, it holds: len(index_i) = len(index_j) = min(num_queries, num_target_boxes) + """ + batch_size, num_queries = outputs["logits"].shape[:2] + + # We flatten to compute the cost matrices in a batch + out_prob = outputs["logits"].flatten(0, 1).sigmoid() # [batch_size * num_queries, num_classes] + out_bbox = outputs["pred_boxes"].flatten(0, 1) # [batch_size * num_queries, 4] + + # Also concat the target labels and boxes + target_ids = torch.cat([v["class_labels"] for v in targets]) + target_bbox = torch.cat([v["boxes"] for v in targets]) + + # Compute the classification cost. + alpha = 0.25 + gamma = 2.0 + neg_cost_class = (1 - alpha) * (out_prob**gamma) * (-(1 - out_prob + 1e-8).log()) + pos_cost_class = alpha * ((1 - out_prob) ** gamma) * (-(out_prob + 1e-8).log()) + class_cost = pos_cost_class[:, target_ids] - neg_cost_class[:, target_ids] + + # Compute the L1 cost between boxes + bbox_cost = torch.cdist(out_bbox, target_bbox, p=1) + + # Compute the giou cost between boxes + giou_cost = -generalized_box_iou(center_to_corners_format(out_bbox), center_to_corners_format(target_bbox)) + + # Final cost matrix + cost_matrix = self.bbox_cost * bbox_cost + self.class_cost * class_cost + self.giou_cost * giou_cost + cost_matrix = cost_matrix.view(batch_size, num_queries, -1).cpu() + + sizes = [len(v["boxes"]) for v in targets] + indices = [linear_sum_assignment(c[i]) for i, c in enumerate(cost_matrix.split(sizes, -1))] + return [(torch.as_tensor(i, dtype=torch.int64), torch.as_tensor(j, dtype=torch.int64)) for i, j in indices] + + +# Copied from transformers.models.detr.modeling_detr._upcast +def _upcast(t: Tensor) -> Tensor: + # Protects from numerical overflows in multiplications by upcasting to the equivalent higher type + if t.is_floating_point(): + return t if t.dtype in (torch.float32, torch.float64) else t.float() + else: + return t if t.dtype in (torch.int32, torch.int64) else t.int() + + +# Copied from transformers.models.detr.modeling_detr.box_area +def box_area(boxes: Tensor) -> Tensor: + """ + Computes the area of a set of bounding boxes, which are specified by its (x1, y1, x2, y2) coordinates. + + Args: + boxes (`torch.FloatTensor` of shape `(number_of_boxes, 4)`): + Boxes for which the area will be computed. They are expected to be in (x1, y1, x2, y2) format with `0 <= x1 + < x2` and `0 <= y1 < y2`. + + Returns: + `torch.FloatTensor`: a tensor containing the area for each box. + """ + boxes = _upcast(boxes) + return (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) + + +# Copied from transformers.models.detr.modeling_detr.box_iou +def box_iou(boxes1, boxes2): + area1 = box_area(boxes1) + area2 = box_area(boxes2) + + left_top = torch.max(boxes1[:, None, :2], boxes2[:, :2]) # [N,M,2] + right_bottom = torch.min(boxes1[:, None, 2:], boxes2[:, 2:]) # [N,M,2] + + width_height = (right_bottom - left_top).clamp(min=0) # [N,M,2] + inter = width_height[:, :, 0] * width_height[:, :, 1] # [N,M] + + union = area1[:, None] + area2 - inter + + iou = inter / union + return iou, union + + +# Copied from transformers.models.detr.modeling_detr.generalized_box_iou +def generalized_box_iou(boxes1, boxes2): + """ + Generalized IoU from https://giou.stanford.edu/. The boxes should be in [x0, y0, x1, y1] (corner) format. + + Returns: + `torch.FloatTensor`: a [N, M] pairwise matrix, where N = len(boxes1) and M = len(boxes2) + """ + # degenerate boxes gives inf / nan results + # so do an early check + if not (boxes1[:, 2:] >= boxes1[:, :2]).all(): + raise ValueError(f"boxes1 must be in [x0, y0, x1, y1] (corner) format, but got {boxes1}") + if not (boxes2[:, 2:] >= boxes2[:, :2]).all(): + raise ValueError(f"boxes2 must be in [x0, y0, x1, y1] (corner) format, but got {boxes2}") + iou, union = box_iou(boxes1, boxes2) + + top_left = torch.min(boxes1[:, None, :2], boxes2[:, :2]) + bottom_right = torch.max(boxes1[:, None, 2:], boxes2[:, 2:]) + + width_height = (bottom_right - top_left).clamp(min=0) # [N,M,2] + area = width_height[:, :, 0] * width_height[:, :, 1] + + return iou - (area - union) / area + + +# Copied from transformers.models.detr.modeling_detr._max_by_axis +def _max_by_axis(the_list): + # type: (List[List[int]]) -> List[int] + maxes = the_list[0] + for sublist in the_list[1:]: + for index, item in enumerate(sublist): + maxes[index] = max(maxes[index], item) + return maxes + + +# Copied from transformers.models.detr.modeling_detr.NestedTensor +class NestedTensor(object): + def __init__(self, tensors, mask: Optional[Tensor]): + self.tensors = tensors + self.mask = mask + + def to(self, device): + cast_tensor = self.tensors.to(device) + mask = self.mask + if mask is not None: + cast_mask = mask.to(device) + else: + cast_mask = None + return NestedTensor(cast_tensor, cast_mask) + + def decompose(self): + return self.tensors, self.mask + + def __repr__(self): + return str(self.tensors) + + +# Copied from transformers.models.detr.modeling_detr.nested_tensor_from_tensor_list +def nested_tensor_from_tensor_list(tensor_list: List[Tensor]): + if tensor_list[0].ndim == 3: + max_size = _max_by_axis([list(img.shape) for img in tensor_list]) + batch_shape = [len(tensor_list)] + max_size + batch_size, num_channels, height, width = batch_shape + dtype = tensor_list[0].dtype + device = tensor_list[0].device + tensor = torch.zeros(batch_shape, dtype=dtype, device=device) + mask = torch.ones((batch_size, height, width), dtype=torch.bool, device=device) + for img, pad_img, m in zip(tensor_list, tensor, mask): + pad_img[: img.shape[0], : img.shape[1], : img.shape[2]].copy_(img) + m[: img.shape[1], : img.shape[2]] = False + else: + raise ValueError("Only 3-dimensional tensors are supported") + return NestedTensor(tensor, mask)