Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/1.word_embeddings.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/6.attention.query_key_value.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__init__.py +8 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/bdf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/dop853_coefficients.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/ivp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/lsoda.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/radau.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/rk.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/base.py +290 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/bdf.py +479 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/common.py +440 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/dop853_coefficients.py +193 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/ivp.py +748 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/lsoda.py +224 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/radau.py +574 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/rk.py +601 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_ivp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_rk.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_ivp.py +1135 -0
- venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_rk.py +37 -0
- venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_bvp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_integrate.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_odeint_jac.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/__init__.py +129 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_ckdtree.pyi +214 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_distance_pybind.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_distance_wrap.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_geometric_slerp.py +240 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_hausdorff.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_kdtree.py +920 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_plotutils.py +270 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_procrustes.py +132 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_qhull.pyi +213 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_spherical_voronoi.py +341 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_voronoi.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/_voronoi.pyi +4 -0
- venv/lib/python3.10/site-packages/scipy/spatial/ckdtree.py +27 -0
- venv/lib/python3.10/site-packages/scipy/spatial/distance.py +2993 -0
- venv/lib/python3.10/site-packages/scipy/spatial/distance.pyi +211 -0
- venv/lib/python3.10/site-packages/scipy/spatial/kdtree.py +26 -0
- venv/lib/python3.10/site-packages/scipy/spatial/qhull.py +25 -0
- venv/lib/python3.10/site-packages/scipy/spatial/qhull_src/COPYING.txt +38 -0
- venv/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/1.word_embeddings.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c26fa72452f81276635a61227ef3a65c6c432ce6d6abff91652b240eb0601c7
|
3 |
+
size 415237325
|
ckpts/universal/global_step40/zero/6.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ce25be7492d38d2401e256ae8089ef032633f16bfa045b27e9a74b1a60828331
|
3 |
+
size 50332828
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__init__.py
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Suite of ODE solvers implemented in Python."""
|
2 |
+
from .ivp import solve_ivp
|
3 |
+
from .rk import RK23, RK45, DOP853
|
4 |
+
from .radau import Radau
|
5 |
+
from .bdf import BDF
|
6 |
+
from .lsoda import LSODA
|
7 |
+
from .common import OdeSolution
|
8 |
+
from .base import DenseOutput, OdeSolver
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (551 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/base.cpython-310.pyc
ADDED
Binary file (10.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/bdf.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/common.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/dop853_coefficients.cpython-310.pyc
ADDED
Binary file (4.93 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/ivp.cpython-310.pyc
ADDED
Binary file (29.3 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/lsoda.cpython-310.pyc
ADDED
Binary file (8.51 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/radau.cpython-310.pyc
ADDED
Binary file (16.2 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/__pycache__/rk.cpython-310.pyc
ADDED
Binary file (22 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/base.py
ADDED
@@ -0,0 +1,290 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
|
4 |
+
def check_arguments(fun, y0, support_complex):
|
5 |
+
"""Helper function for checking arguments common to all solvers."""
|
6 |
+
y0 = np.asarray(y0)
|
7 |
+
if np.issubdtype(y0.dtype, np.complexfloating):
|
8 |
+
if not support_complex:
|
9 |
+
raise ValueError("`y0` is complex, but the chosen solver does "
|
10 |
+
"not support integration in a complex domain.")
|
11 |
+
dtype = complex
|
12 |
+
else:
|
13 |
+
dtype = float
|
14 |
+
y0 = y0.astype(dtype, copy=False)
|
15 |
+
|
16 |
+
if y0.ndim != 1:
|
17 |
+
raise ValueError("`y0` must be 1-dimensional.")
|
18 |
+
|
19 |
+
if not np.isfinite(y0).all():
|
20 |
+
raise ValueError("All components of the initial state `y0` must be finite.")
|
21 |
+
|
22 |
+
def fun_wrapped(t, y):
|
23 |
+
return np.asarray(fun(t, y), dtype=dtype)
|
24 |
+
|
25 |
+
return fun_wrapped, y0
|
26 |
+
|
27 |
+
|
28 |
+
class OdeSolver:
|
29 |
+
"""Base class for ODE solvers.
|
30 |
+
|
31 |
+
In order to implement a new solver you need to follow the guidelines:
|
32 |
+
|
33 |
+
1. A constructor must accept parameters presented in the base class
|
34 |
+
(listed below) along with any other parameters specific to a solver.
|
35 |
+
2. A constructor must accept arbitrary extraneous arguments
|
36 |
+
``**extraneous``, but warn that these arguments are irrelevant
|
37 |
+
using `common.warn_extraneous` function. Do not pass these
|
38 |
+
arguments to the base class.
|
39 |
+
3. A solver must implement a private method `_step_impl(self)` which
|
40 |
+
propagates a solver one step further. It must return tuple
|
41 |
+
``(success, message)``, where ``success`` is a boolean indicating
|
42 |
+
whether a step was successful, and ``message`` is a string
|
43 |
+
containing description of a failure if a step failed or None
|
44 |
+
otherwise.
|
45 |
+
4. A solver must implement a private method `_dense_output_impl(self)`,
|
46 |
+
which returns a `DenseOutput` object covering the last successful
|
47 |
+
step.
|
48 |
+
5. A solver must have attributes listed below in Attributes section.
|
49 |
+
Note that ``t_old`` and ``step_size`` are updated automatically.
|
50 |
+
6. Use `fun(self, t, y)` method for the system rhs evaluation, this
|
51 |
+
way the number of function evaluations (`nfev`) will be tracked
|
52 |
+
automatically.
|
53 |
+
7. For convenience, a base class provides `fun_single(self, t, y)` and
|
54 |
+
`fun_vectorized(self, t, y)` for evaluating the rhs in
|
55 |
+
non-vectorized and vectorized fashions respectively (regardless of
|
56 |
+
how `fun` from the constructor is implemented). These calls don't
|
57 |
+
increment `nfev`.
|
58 |
+
8. If a solver uses a Jacobian matrix and LU decompositions, it should
|
59 |
+
track the number of Jacobian evaluations (`njev`) and the number of
|
60 |
+
LU decompositions (`nlu`).
|
61 |
+
9. By convention, the function evaluations used to compute a finite
|
62 |
+
difference approximation of the Jacobian should not be counted in
|
63 |
+
`nfev`, thus use `fun_single(self, t, y)` or
|
64 |
+
`fun_vectorized(self, t, y)` when computing a finite difference
|
65 |
+
approximation of the Jacobian.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
fun : callable
|
70 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
71 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
72 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
|
73 |
+
return an array of the same shape as ``y``. See `vectorized` for more
|
74 |
+
information.
|
75 |
+
t0 : float
|
76 |
+
Initial time.
|
77 |
+
y0 : array_like, shape (n,)
|
78 |
+
Initial state.
|
79 |
+
t_bound : float
|
80 |
+
Boundary time --- the integration won't continue beyond it. It also
|
81 |
+
determines the direction of the integration.
|
82 |
+
vectorized : bool
|
83 |
+
Whether `fun` can be called in a vectorized fashion. Default is False.
|
84 |
+
|
85 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
86 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
87 |
+
|
88 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
89 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
90 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
91 |
+
the returned array is the time derivative of the state corresponding
|
92 |
+
with a column of ``y``).
|
93 |
+
|
94 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
95 |
+
approximation of the Jacobian by methods 'Radau' and 'BDF', but
|
96 |
+
will result in slower execution for other methods. It can also
|
97 |
+
result in slower overall execution for 'Radau' and 'BDF' in some
|
98 |
+
circumstances (e.g. small ``len(y0)``).
|
99 |
+
support_complex : bool, optional
|
100 |
+
Whether integration in a complex domain should be supported.
|
101 |
+
Generally determined by a derived solver class capabilities.
|
102 |
+
Default is False.
|
103 |
+
|
104 |
+
Attributes
|
105 |
+
----------
|
106 |
+
n : int
|
107 |
+
Number of equations.
|
108 |
+
status : string
|
109 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
110 |
+
t_bound : float
|
111 |
+
Boundary time.
|
112 |
+
direction : float
|
113 |
+
Integration direction: +1 or -1.
|
114 |
+
t : float
|
115 |
+
Current time.
|
116 |
+
y : ndarray
|
117 |
+
Current state.
|
118 |
+
t_old : float
|
119 |
+
Previous time. None if no steps were made yet.
|
120 |
+
step_size : float
|
121 |
+
Size of the last successful step. None if no steps were made yet.
|
122 |
+
nfev : int
|
123 |
+
Number of the system's rhs evaluations.
|
124 |
+
njev : int
|
125 |
+
Number of the Jacobian evaluations.
|
126 |
+
nlu : int
|
127 |
+
Number of LU decompositions.
|
128 |
+
"""
|
129 |
+
TOO_SMALL_STEP = "Required step size is less than spacing between numbers."
|
130 |
+
|
131 |
+
def __init__(self, fun, t0, y0, t_bound, vectorized,
|
132 |
+
support_complex=False):
|
133 |
+
self.t_old = None
|
134 |
+
self.t = t0
|
135 |
+
self._fun, self.y = check_arguments(fun, y0, support_complex)
|
136 |
+
self.t_bound = t_bound
|
137 |
+
self.vectorized = vectorized
|
138 |
+
|
139 |
+
if vectorized:
|
140 |
+
def fun_single(t, y):
|
141 |
+
return self._fun(t, y[:, None]).ravel()
|
142 |
+
fun_vectorized = self._fun
|
143 |
+
else:
|
144 |
+
fun_single = self._fun
|
145 |
+
|
146 |
+
def fun_vectorized(t, y):
|
147 |
+
f = np.empty_like(y)
|
148 |
+
for i, yi in enumerate(y.T):
|
149 |
+
f[:, i] = self._fun(t, yi)
|
150 |
+
return f
|
151 |
+
|
152 |
+
def fun(t, y):
|
153 |
+
self.nfev += 1
|
154 |
+
return self.fun_single(t, y)
|
155 |
+
|
156 |
+
self.fun = fun
|
157 |
+
self.fun_single = fun_single
|
158 |
+
self.fun_vectorized = fun_vectorized
|
159 |
+
|
160 |
+
self.direction = np.sign(t_bound - t0) if t_bound != t0 else 1
|
161 |
+
self.n = self.y.size
|
162 |
+
self.status = 'running'
|
163 |
+
|
164 |
+
self.nfev = 0
|
165 |
+
self.njev = 0
|
166 |
+
self.nlu = 0
|
167 |
+
|
168 |
+
@property
|
169 |
+
def step_size(self):
|
170 |
+
if self.t_old is None:
|
171 |
+
return None
|
172 |
+
else:
|
173 |
+
return np.abs(self.t - self.t_old)
|
174 |
+
|
175 |
+
def step(self):
|
176 |
+
"""Perform one integration step.
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
message : string or None
|
181 |
+
Report from the solver. Typically a reason for a failure if
|
182 |
+
`self.status` is 'failed' after the step was taken or None
|
183 |
+
otherwise.
|
184 |
+
"""
|
185 |
+
if self.status != 'running':
|
186 |
+
raise RuntimeError("Attempt to step on a failed or finished "
|
187 |
+
"solver.")
|
188 |
+
|
189 |
+
if self.n == 0 or self.t == self.t_bound:
|
190 |
+
# Handle corner cases of empty solver or no integration.
|
191 |
+
self.t_old = self.t
|
192 |
+
self.t = self.t_bound
|
193 |
+
message = None
|
194 |
+
self.status = 'finished'
|
195 |
+
else:
|
196 |
+
t = self.t
|
197 |
+
success, message = self._step_impl()
|
198 |
+
|
199 |
+
if not success:
|
200 |
+
self.status = 'failed'
|
201 |
+
else:
|
202 |
+
self.t_old = t
|
203 |
+
if self.direction * (self.t - self.t_bound) >= 0:
|
204 |
+
self.status = 'finished'
|
205 |
+
|
206 |
+
return message
|
207 |
+
|
208 |
+
def dense_output(self):
|
209 |
+
"""Compute a local interpolant over the last successful step.
|
210 |
+
|
211 |
+
Returns
|
212 |
+
-------
|
213 |
+
sol : `DenseOutput`
|
214 |
+
Local interpolant over the last successful step.
|
215 |
+
"""
|
216 |
+
if self.t_old is None:
|
217 |
+
raise RuntimeError("Dense output is available after a successful "
|
218 |
+
"step was made.")
|
219 |
+
|
220 |
+
if self.n == 0 or self.t == self.t_old:
|
221 |
+
# Handle corner cases of empty solver and no integration.
|
222 |
+
return ConstantDenseOutput(self.t_old, self.t, self.y)
|
223 |
+
else:
|
224 |
+
return self._dense_output_impl()
|
225 |
+
|
226 |
+
def _step_impl(self):
|
227 |
+
raise NotImplementedError
|
228 |
+
|
229 |
+
def _dense_output_impl(self):
|
230 |
+
raise NotImplementedError
|
231 |
+
|
232 |
+
|
233 |
+
class DenseOutput:
|
234 |
+
"""Base class for local interpolant over step made by an ODE solver.
|
235 |
+
|
236 |
+
It interpolates between `t_min` and `t_max` (see Attributes below).
|
237 |
+
Evaluation outside this interval is not forbidden, but the accuracy is not
|
238 |
+
guaranteed.
|
239 |
+
|
240 |
+
Attributes
|
241 |
+
----------
|
242 |
+
t_min, t_max : float
|
243 |
+
Time range of the interpolation.
|
244 |
+
"""
|
245 |
+
def __init__(self, t_old, t):
|
246 |
+
self.t_old = t_old
|
247 |
+
self.t = t
|
248 |
+
self.t_min = min(t, t_old)
|
249 |
+
self.t_max = max(t, t_old)
|
250 |
+
|
251 |
+
def __call__(self, t):
|
252 |
+
"""Evaluate the interpolant.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
t : float or array_like with shape (n_points,)
|
257 |
+
Points to evaluate the solution at.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
y : ndarray, shape (n,) or (n, n_points)
|
262 |
+
Computed values. Shape depends on whether `t` was a scalar or a
|
263 |
+
1-D array.
|
264 |
+
"""
|
265 |
+
t = np.asarray(t)
|
266 |
+
if t.ndim > 1:
|
267 |
+
raise ValueError("`t` must be a float or a 1-D array.")
|
268 |
+
return self._call_impl(t)
|
269 |
+
|
270 |
+
def _call_impl(self, t):
|
271 |
+
raise NotImplementedError
|
272 |
+
|
273 |
+
|
274 |
+
class ConstantDenseOutput(DenseOutput):
|
275 |
+
"""Constant value interpolator.
|
276 |
+
|
277 |
+
This class used for degenerate integration cases: equal integration limits
|
278 |
+
or a system with 0 equations.
|
279 |
+
"""
|
280 |
+
def __init__(self, t_old, t, value):
|
281 |
+
super().__init__(t_old, t)
|
282 |
+
self.value = value
|
283 |
+
|
284 |
+
def _call_impl(self, t):
|
285 |
+
if t.ndim == 0:
|
286 |
+
return self.value
|
287 |
+
else:
|
288 |
+
ret = np.empty((self.value.shape[0], t.shape[0]))
|
289 |
+
ret[:] = self.value[:, None]
|
290 |
+
return ret
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/bdf.py
ADDED
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.linalg import lu_factor, lu_solve
|
3 |
+
from scipy.sparse import issparse, csc_matrix, eye
|
4 |
+
from scipy.sparse.linalg import splu
|
5 |
+
from scipy.optimize._numdiff import group_columns
|
6 |
+
from .common import (validate_max_step, validate_tol, select_initial_step,
|
7 |
+
norm, EPS, num_jac, validate_first_step,
|
8 |
+
warn_extraneous)
|
9 |
+
from .base import OdeSolver, DenseOutput
|
10 |
+
|
11 |
+
|
12 |
+
MAX_ORDER = 5
|
13 |
+
NEWTON_MAXITER = 4
|
14 |
+
MIN_FACTOR = 0.2
|
15 |
+
MAX_FACTOR = 10
|
16 |
+
|
17 |
+
|
18 |
+
def compute_R(order, factor):
|
19 |
+
"""Compute the matrix for changing the differences array."""
|
20 |
+
I = np.arange(1, order + 1)[:, None]
|
21 |
+
J = np.arange(1, order + 1)
|
22 |
+
M = np.zeros((order + 1, order + 1))
|
23 |
+
M[1:, 1:] = (I - 1 - factor * J) / I
|
24 |
+
M[0] = 1
|
25 |
+
return np.cumprod(M, axis=0)
|
26 |
+
|
27 |
+
|
28 |
+
def change_D(D, order, factor):
|
29 |
+
"""Change differences array in-place when step size is changed."""
|
30 |
+
R = compute_R(order, factor)
|
31 |
+
U = compute_R(order, 1)
|
32 |
+
RU = R.dot(U)
|
33 |
+
D[:order + 1] = np.dot(RU.T, D[:order + 1])
|
34 |
+
|
35 |
+
|
36 |
+
def solve_bdf_system(fun, t_new, y_predict, c, psi, LU, solve_lu, scale, tol):
|
37 |
+
"""Solve the algebraic system resulting from BDF method."""
|
38 |
+
d = 0
|
39 |
+
y = y_predict.copy()
|
40 |
+
dy_norm_old = None
|
41 |
+
converged = False
|
42 |
+
for k in range(NEWTON_MAXITER):
|
43 |
+
f = fun(t_new, y)
|
44 |
+
if not np.all(np.isfinite(f)):
|
45 |
+
break
|
46 |
+
|
47 |
+
dy = solve_lu(LU, c * f - psi - d)
|
48 |
+
dy_norm = norm(dy / scale)
|
49 |
+
|
50 |
+
if dy_norm_old is None:
|
51 |
+
rate = None
|
52 |
+
else:
|
53 |
+
rate = dy_norm / dy_norm_old
|
54 |
+
|
55 |
+
if (rate is not None and (rate >= 1 or
|
56 |
+
rate ** (NEWTON_MAXITER - k) / (1 - rate) * dy_norm > tol)):
|
57 |
+
break
|
58 |
+
|
59 |
+
y += dy
|
60 |
+
d += dy
|
61 |
+
|
62 |
+
if (dy_norm == 0 or
|
63 |
+
rate is not None and rate / (1 - rate) * dy_norm < tol):
|
64 |
+
converged = True
|
65 |
+
break
|
66 |
+
|
67 |
+
dy_norm_old = dy_norm
|
68 |
+
|
69 |
+
return converged, k + 1, y, d
|
70 |
+
|
71 |
+
|
72 |
+
class BDF(OdeSolver):
|
73 |
+
"""Implicit method based on backward-differentiation formulas.
|
74 |
+
|
75 |
+
This is a variable order method with the order varying automatically from
|
76 |
+
1 to 5. The general framework of the BDF algorithm is described in [1]_.
|
77 |
+
This class implements a quasi-constant step size as explained in [2]_.
|
78 |
+
The error estimation strategy for the constant-step BDF is derived in [3]_.
|
79 |
+
An accuracy enhancement using modified formulas (NDF) [2]_ is also implemented.
|
80 |
+
|
81 |
+
Can be applied in the complex domain.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
fun : callable
|
86 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
87 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
88 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
|
89 |
+
return an array of the same shape as ``y``. See `vectorized` for more
|
90 |
+
information.
|
91 |
+
t0 : float
|
92 |
+
Initial time.
|
93 |
+
y0 : array_like, shape (n,)
|
94 |
+
Initial state.
|
95 |
+
t_bound : float
|
96 |
+
Boundary time - the integration won't continue beyond it. It also
|
97 |
+
determines the direction of the integration.
|
98 |
+
first_step : float or None, optional
|
99 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
100 |
+
should choose.
|
101 |
+
max_step : float, optional
|
102 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
103 |
+
bounded and determined solely by the solver.
|
104 |
+
rtol, atol : float and array_like, optional
|
105 |
+
Relative and absolute tolerances. The solver keeps the local error
|
106 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
107 |
+
relative accuracy (number of correct digits), while `atol` controls
|
108 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
109 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
110 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
111 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
112 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
113 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
114 |
+
than `atol`. If components of y have different scales, it might be
|
115 |
+
beneficial to set different `atol` values for different components by
|
116 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
117 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
118 |
+
jac : {None, array_like, sparse_matrix, callable}, optional
|
119 |
+
Jacobian matrix of the right-hand side of the system with respect to y,
|
120 |
+
required by this method. The Jacobian matrix has shape (n, n) and its
|
121 |
+
element (i, j) is equal to ``d f_i / d y_j``.
|
122 |
+
There are three ways to define the Jacobian:
|
123 |
+
|
124 |
+
* If array_like or sparse_matrix, the Jacobian is assumed to
|
125 |
+
be constant.
|
126 |
+
* If callable, the Jacobian is assumed to depend on both
|
127 |
+
t and y; it will be called as ``jac(t, y)`` as necessary.
|
128 |
+
For the 'Radau' and 'BDF' methods, the return value might be a
|
129 |
+
sparse matrix.
|
130 |
+
* If None (default), the Jacobian will be approximated by
|
131 |
+
finite differences.
|
132 |
+
|
133 |
+
It is generally recommended to provide the Jacobian rather than
|
134 |
+
relying on a finite-difference approximation.
|
135 |
+
jac_sparsity : {None, array_like, sparse matrix}, optional
|
136 |
+
Defines a sparsity structure of the Jacobian matrix for a
|
137 |
+
finite-difference approximation. Its shape must be (n, n). This argument
|
138 |
+
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
|
139 |
+
elements in *each* row, providing the sparsity structure will greatly
|
140 |
+
speed up the computations [4]_. A zero entry means that a corresponding
|
141 |
+
element in the Jacobian is always zero. If None (default), the Jacobian
|
142 |
+
is assumed to be dense.
|
143 |
+
vectorized : bool, optional
|
144 |
+
Whether `fun` can be called in a vectorized fashion. Default is False.
|
145 |
+
|
146 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
147 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
148 |
+
|
149 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
150 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
151 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
152 |
+
the returned array is the time derivative of the state corresponding
|
153 |
+
with a column of ``y``).
|
154 |
+
|
155 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
156 |
+
approximation of the Jacobian by this method, but may result in slower
|
157 |
+
execution overall in some circumstances (e.g. small ``len(y0)``).
|
158 |
+
|
159 |
+
Attributes
|
160 |
+
----------
|
161 |
+
n : int
|
162 |
+
Number of equations.
|
163 |
+
status : string
|
164 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
165 |
+
t_bound : float
|
166 |
+
Boundary time.
|
167 |
+
direction : float
|
168 |
+
Integration direction: +1 or -1.
|
169 |
+
t : float
|
170 |
+
Current time.
|
171 |
+
y : ndarray
|
172 |
+
Current state.
|
173 |
+
t_old : float
|
174 |
+
Previous time. None if no steps were made yet.
|
175 |
+
step_size : float
|
176 |
+
Size of the last successful step. None if no steps were made yet.
|
177 |
+
nfev : int
|
178 |
+
Number of evaluations of the right-hand side.
|
179 |
+
njev : int
|
180 |
+
Number of evaluations of the Jacobian.
|
181 |
+
nlu : int
|
182 |
+
Number of LU decompositions.
|
183 |
+
|
184 |
+
References
|
185 |
+
----------
|
186 |
+
.. [1] G. D. Byrne, A. C. Hindmarsh, "A Polyalgorithm for the Numerical
|
187 |
+
Solution of Ordinary Differential Equations", ACM Transactions on
|
188 |
+
Mathematical Software, Vol. 1, No. 1, pp. 71-96, March 1975.
|
189 |
+
.. [2] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
|
190 |
+
COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
|
191 |
+
.. [3] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations I:
|
192 |
+
Nonstiff Problems", Sec. III.2.
|
193 |
+
.. [4] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
|
194 |
+
sparse Jacobian matrices", Journal of the Institute of Mathematics
|
195 |
+
and its Applications, 13, pp. 117-120, 1974.
|
196 |
+
"""
|
197 |
+
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
|
198 |
+
rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
|
199 |
+
vectorized=False, first_step=None, **extraneous):
|
200 |
+
warn_extraneous(extraneous)
|
201 |
+
super().__init__(fun, t0, y0, t_bound, vectorized,
|
202 |
+
support_complex=True)
|
203 |
+
self.max_step = validate_max_step(max_step)
|
204 |
+
self.rtol, self.atol = validate_tol(rtol, atol, self.n)
|
205 |
+
f = self.fun(self.t, self.y)
|
206 |
+
if first_step is None:
|
207 |
+
self.h_abs = select_initial_step(self.fun, self.t, self.y, f,
|
208 |
+
self.direction, 1,
|
209 |
+
self.rtol, self.atol)
|
210 |
+
else:
|
211 |
+
self.h_abs = validate_first_step(first_step, t0, t_bound)
|
212 |
+
self.h_abs_old = None
|
213 |
+
self.error_norm_old = None
|
214 |
+
|
215 |
+
self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
|
216 |
+
|
217 |
+
self.jac_factor = None
|
218 |
+
self.jac, self.J = self._validate_jac(jac, jac_sparsity)
|
219 |
+
if issparse(self.J):
|
220 |
+
def lu(A):
|
221 |
+
self.nlu += 1
|
222 |
+
return splu(A)
|
223 |
+
|
224 |
+
def solve_lu(LU, b):
|
225 |
+
return LU.solve(b)
|
226 |
+
|
227 |
+
I = eye(self.n, format='csc', dtype=self.y.dtype)
|
228 |
+
else:
|
229 |
+
def lu(A):
|
230 |
+
self.nlu += 1
|
231 |
+
return lu_factor(A, overwrite_a=True)
|
232 |
+
|
233 |
+
def solve_lu(LU, b):
|
234 |
+
return lu_solve(LU, b, overwrite_b=True)
|
235 |
+
|
236 |
+
I = np.identity(self.n, dtype=self.y.dtype)
|
237 |
+
|
238 |
+
self.lu = lu
|
239 |
+
self.solve_lu = solve_lu
|
240 |
+
self.I = I
|
241 |
+
|
242 |
+
kappa = np.array([0, -0.1850, -1/9, -0.0823, -0.0415, 0])
|
243 |
+
self.gamma = np.hstack((0, np.cumsum(1 / np.arange(1, MAX_ORDER + 1))))
|
244 |
+
self.alpha = (1 - kappa) * self.gamma
|
245 |
+
self.error_const = kappa * self.gamma + 1 / np.arange(1, MAX_ORDER + 2)
|
246 |
+
|
247 |
+
D = np.empty((MAX_ORDER + 3, self.n), dtype=self.y.dtype)
|
248 |
+
D[0] = self.y
|
249 |
+
D[1] = f * self.h_abs * self.direction
|
250 |
+
self.D = D
|
251 |
+
|
252 |
+
self.order = 1
|
253 |
+
self.n_equal_steps = 0
|
254 |
+
self.LU = None
|
255 |
+
|
256 |
+
def _validate_jac(self, jac, sparsity):
|
257 |
+
t0 = self.t
|
258 |
+
y0 = self.y
|
259 |
+
|
260 |
+
if jac is None:
|
261 |
+
if sparsity is not None:
|
262 |
+
if issparse(sparsity):
|
263 |
+
sparsity = csc_matrix(sparsity)
|
264 |
+
groups = group_columns(sparsity)
|
265 |
+
sparsity = (sparsity, groups)
|
266 |
+
|
267 |
+
def jac_wrapped(t, y):
|
268 |
+
self.njev += 1
|
269 |
+
f = self.fun_single(t, y)
|
270 |
+
J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
|
271 |
+
self.atol, self.jac_factor,
|
272 |
+
sparsity)
|
273 |
+
return J
|
274 |
+
J = jac_wrapped(t0, y0)
|
275 |
+
elif callable(jac):
|
276 |
+
J = jac(t0, y0)
|
277 |
+
self.njev += 1
|
278 |
+
if issparse(J):
|
279 |
+
J = csc_matrix(J, dtype=y0.dtype)
|
280 |
+
|
281 |
+
def jac_wrapped(t, y):
|
282 |
+
self.njev += 1
|
283 |
+
return csc_matrix(jac(t, y), dtype=y0.dtype)
|
284 |
+
else:
|
285 |
+
J = np.asarray(J, dtype=y0.dtype)
|
286 |
+
|
287 |
+
def jac_wrapped(t, y):
|
288 |
+
self.njev += 1
|
289 |
+
return np.asarray(jac(t, y), dtype=y0.dtype)
|
290 |
+
|
291 |
+
if J.shape != (self.n, self.n):
|
292 |
+
raise ValueError("`jac` is expected to have shape {}, but "
|
293 |
+
"actually has {}."
|
294 |
+
.format((self.n, self.n), J.shape))
|
295 |
+
else:
|
296 |
+
if issparse(jac):
|
297 |
+
J = csc_matrix(jac, dtype=y0.dtype)
|
298 |
+
else:
|
299 |
+
J = np.asarray(jac, dtype=y0.dtype)
|
300 |
+
|
301 |
+
if J.shape != (self.n, self.n):
|
302 |
+
raise ValueError("`jac` is expected to have shape {}, but "
|
303 |
+
"actually has {}."
|
304 |
+
.format((self.n, self.n), J.shape))
|
305 |
+
jac_wrapped = None
|
306 |
+
|
307 |
+
return jac_wrapped, J
|
308 |
+
|
309 |
+
def _step_impl(self):
|
310 |
+
t = self.t
|
311 |
+
D = self.D
|
312 |
+
|
313 |
+
max_step = self.max_step
|
314 |
+
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
|
315 |
+
if self.h_abs > max_step:
|
316 |
+
h_abs = max_step
|
317 |
+
change_D(D, self.order, max_step / self.h_abs)
|
318 |
+
self.n_equal_steps = 0
|
319 |
+
elif self.h_abs < min_step:
|
320 |
+
h_abs = min_step
|
321 |
+
change_D(D, self.order, min_step / self.h_abs)
|
322 |
+
self.n_equal_steps = 0
|
323 |
+
else:
|
324 |
+
h_abs = self.h_abs
|
325 |
+
|
326 |
+
atol = self.atol
|
327 |
+
rtol = self.rtol
|
328 |
+
order = self.order
|
329 |
+
|
330 |
+
alpha = self.alpha
|
331 |
+
gamma = self.gamma
|
332 |
+
error_const = self.error_const
|
333 |
+
|
334 |
+
J = self.J
|
335 |
+
LU = self.LU
|
336 |
+
current_jac = self.jac is None
|
337 |
+
|
338 |
+
step_accepted = False
|
339 |
+
while not step_accepted:
|
340 |
+
if h_abs < min_step:
|
341 |
+
return False, self.TOO_SMALL_STEP
|
342 |
+
|
343 |
+
h = h_abs * self.direction
|
344 |
+
t_new = t + h
|
345 |
+
|
346 |
+
if self.direction * (t_new - self.t_bound) > 0:
|
347 |
+
t_new = self.t_bound
|
348 |
+
change_D(D, order, np.abs(t_new - t) / h_abs)
|
349 |
+
self.n_equal_steps = 0
|
350 |
+
LU = None
|
351 |
+
|
352 |
+
h = t_new - t
|
353 |
+
h_abs = np.abs(h)
|
354 |
+
|
355 |
+
y_predict = np.sum(D[:order + 1], axis=0)
|
356 |
+
|
357 |
+
scale = atol + rtol * np.abs(y_predict)
|
358 |
+
psi = np.dot(D[1: order + 1].T, gamma[1: order + 1]) / alpha[order]
|
359 |
+
|
360 |
+
converged = False
|
361 |
+
c = h / alpha[order]
|
362 |
+
while not converged:
|
363 |
+
if LU is None:
|
364 |
+
LU = self.lu(self.I - c * J)
|
365 |
+
|
366 |
+
converged, n_iter, y_new, d = solve_bdf_system(
|
367 |
+
self.fun, t_new, y_predict, c, psi, LU, self.solve_lu,
|
368 |
+
scale, self.newton_tol)
|
369 |
+
|
370 |
+
if not converged:
|
371 |
+
if current_jac:
|
372 |
+
break
|
373 |
+
J = self.jac(t_new, y_predict)
|
374 |
+
LU = None
|
375 |
+
current_jac = True
|
376 |
+
|
377 |
+
if not converged:
|
378 |
+
factor = 0.5
|
379 |
+
h_abs *= factor
|
380 |
+
change_D(D, order, factor)
|
381 |
+
self.n_equal_steps = 0
|
382 |
+
LU = None
|
383 |
+
continue
|
384 |
+
|
385 |
+
safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
|
386 |
+
+ n_iter)
|
387 |
+
|
388 |
+
scale = atol + rtol * np.abs(y_new)
|
389 |
+
error = error_const[order] * d
|
390 |
+
error_norm = norm(error / scale)
|
391 |
+
|
392 |
+
if error_norm > 1:
|
393 |
+
factor = max(MIN_FACTOR,
|
394 |
+
safety * error_norm ** (-1 / (order + 1)))
|
395 |
+
h_abs *= factor
|
396 |
+
change_D(D, order, factor)
|
397 |
+
self.n_equal_steps = 0
|
398 |
+
# As we didn't have problems with convergence, we don't
|
399 |
+
# reset LU here.
|
400 |
+
else:
|
401 |
+
step_accepted = True
|
402 |
+
|
403 |
+
self.n_equal_steps += 1
|
404 |
+
|
405 |
+
self.t = t_new
|
406 |
+
self.y = y_new
|
407 |
+
|
408 |
+
self.h_abs = h_abs
|
409 |
+
self.J = J
|
410 |
+
self.LU = LU
|
411 |
+
|
412 |
+
# Update differences. The principal relation here is
|
413 |
+
# D^{j + 1} y_n = D^{j} y_n - D^{j} y_{n - 1}. Keep in mind that D
|
414 |
+
# contained difference for previous interpolating polynomial and
|
415 |
+
# d = D^{k + 1} y_n. Thus this elegant code follows.
|
416 |
+
D[order + 2] = d - D[order + 1]
|
417 |
+
D[order + 1] = d
|
418 |
+
for i in reversed(range(order + 1)):
|
419 |
+
D[i] += D[i + 1]
|
420 |
+
|
421 |
+
if self.n_equal_steps < order + 1:
|
422 |
+
return True, None
|
423 |
+
|
424 |
+
if order > 1:
|
425 |
+
error_m = error_const[order - 1] * D[order]
|
426 |
+
error_m_norm = norm(error_m / scale)
|
427 |
+
else:
|
428 |
+
error_m_norm = np.inf
|
429 |
+
|
430 |
+
if order < MAX_ORDER:
|
431 |
+
error_p = error_const[order + 1] * D[order + 2]
|
432 |
+
error_p_norm = norm(error_p / scale)
|
433 |
+
else:
|
434 |
+
error_p_norm = np.inf
|
435 |
+
|
436 |
+
error_norms = np.array([error_m_norm, error_norm, error_p_norm])
|
437 |
+
with np.errstate(divide='ignore'):
|
438 |
+
factors = error_norms ** (-1 / np.arange(order, order + 3))
|
439 |
+
|
440 |
+
delta_order = np.argmax(factors) - 1
|
441 |
+
order += delta_order
|
442 |
+
self.order = order
|
443 |
+
|
444 |
+
factor = min(MAX_FACTOR, safety * np.max(factors))
|
445 |
+
self.h_abs *= factor
|
446 |
+
change_D(D, order, factor)
|
447 |
+
self.n_equal_steps = 0
|
448 |
+
self.LU = None
|
449 |
+
|
450 |
+
return True, None
|
451 |
+
|
452 |
+
def _dense_output_impl(self):
|
453 |
+
return BdfDenseOutput(self.t_old, self.t, self.h_abs * self.direction,
|
454 |
+
self.order, self.D[:self.order + 1].copy())
|
455 |
+
|
456 |
+
|
457 |
+
class BdfDenseOutput(DenseOutput):
|
458 |
+
def __init__(self, t_old, t, h, order, D):
|
459 |
+
super().__init__(t_old, t)
|
460 |
+
self.order = order
|
461 |
+
self.t_shift = self.t - h * np.arange(self.order)
|
462 |
+
self.denom = h * (1 + np.arange(self.order))
|
463 |
+
self.D = D
|
464 |
+
|
465 |
+
def _call_impl(self, t):
|
466 |
+
if t.ndim == 0:
|
467 |
+
x = (t - self.t_shift) / self.denom
|
468 |
+
p = np.cumprod(x)
|
469 |
+
else:
|
470 |
+
x = (t - self.t_shift[:, None]) / self.denom[:, None]
|
471 |
+
p = np.cumprod(x, axis=0)
|
472 |
+
|
473 |
+
y = np.dot(self.D[1:].T, p)
|
474 |
+
if y.ndim == 1:
|
475 |
+
y += self.D[0]
|
476 |
+
else:
|
477 |
+
y += self.D[0, :, None]
|
478 |
+
|
479 |
+
return y
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/common.py
ADDED
@@ -0,0 +1,440 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import groupby
|
2 |
+
from warnings import warn
|
3 |
+
import numpy as np
|
4 |
+
from scipy.sparse import find, coo_matrix
|
5 |
+
|
6 |
+
|
7 |
+
EPS = np.finfo(float).eps
|
8 |
+
|
9 |
+
|
10 |
+
def validate_first_step(first_step, t0, t_bound):
|
11 |
+
"""Assert that first_step is valid and return it."""
|
12 |
+
if first_step <= 0:
|
13 |
+
raise ValueError("`first_step` must be positive.")
|
14 |
+
if first_step > np.abs(t_bound - t0):
|
15 |
+
raise ValueError("`first_step` exceeds bounds.")
|
16 |
+
return first_step
|
17 |
+
|
18 |
+
|
19 |
+
def validate_max_step(max_step):
|
20 |
+
"""Assert that max_Step is valid and return it."""
|
21 |
+
if max_step <= 0:
|
22 |
+
raise ValueError("`max_step` must be positive.")
|
23 |
+
return max_step
|
24 |
+
|
25 |
+
|
26 |
+
def warn_extraneous(extraneous):
|
27 |
+
"""Display a warning for extraneous keyword arguments.
|
28 |
+
|
29 |
+
The initializer of each solver class is expected to collect keyword
|
30 |
+
arguments that it doesn't understand and warn about them. This function
|
31 |
+
prints a warning for each key in the supplied dictionary.
|
32 |
+
|
33 |
+
Parameters
|
34 |
+
----------
|
35 |
+
extraneous : dict
|
36 |
+
Extraneous keyword arguments
|
37 |
+
"""
|
38 |
+
if extraneous:
|
39 |
+
warn("The following arguments have no effect for a chosen solver: {}."
|
40 |
+
.format(", ".join(f"`{x}`" for x in extraneous)),
|
41 |
+
stacklevel=3)
|
42 |
+
|
43 |
+
|
44 |
+
def validate_tol(rtol, atol, n):
|
45 |
+
"""Validate tolerance values."""
|
46 |
+
|
47 |
+
if np.any(rtol < 100 * EPS):
|
48 |
+
warn("At least one element of `rtol` is too small. "
|
49 |
+
f"Setting `rtol = np.maximum(rtol, {100 * EPS})`.",
|
50 |
+
stacklevel=3)
|
51 |
+
rtol = np.maximum(rtol, 100 * EPS)
|
52 |
+
|
53 |
+
atol = np.asarray(atol)
|
54 |
+
if atol.ndim > 0 and atol.shape != (n,):
|
55 |
+
raise ValueError("`atol` has wrong shape.")
|
56 |
+
|
57 |
+
if np.any(atol < 0):
|
58 |
+
raise ValueError("`atol` must be positive.")
|
59 |
+
|
60 |
+
return rtol, atol
|
61 |
+
|
62 |
+
|
63 |
+
def norm(x):
|
64 |
+
"""Compute RMS norm."""
|
65 |
+
return np.linalg.norm(x) / x.size ** 0.5
|
66 |
+
|
67 |
+
|
68 |
+
def select_initial_step(fun, t0, y0, f0, direction, order, rtol, atol):
|
69 |
+
"""Empirically select a good initial step.
|
70 |
+
|
71 |
+
The algorithm is described in [1]_.
|
72 |
+
|
73 |
+
Parameters
|
74 |
+
----------
|
75 |
+
fun : callable
|
76 |
+
Right-hand side of the system.
|
77 |
+
t0 : float
|
78 |
+
Initial value of the independent variable.
|
79 |
+
y0 : ndarray, shape (n,)
|
80 |
+
Initial value of the dependent variable.
|
81 |
+
f0 : ndarray, shape (n,)
|
82 |
+
Initial value of the derivative, i.e., ``fun(t0, y0)``.
|
83 |
+
direction : float
|
84 |
+
Integration direction.
|
85 |
+
order : float
|
86 |
+
Error estimator order. It means that the error controlled by the
|
87 |
+
algorithm is proportional to ``step_size ** (order + 1)`.
|
88 |
+
rtol : float
|
89 |
+
Desired relative tolerance.
|
90 |
+
atol : float
|
91 |
+
Desired absolute tolerance.
|
92 |
+
|
93 |
+
Returns
|
94 |
+
-------
|
95 |
+
h_abs : float
|
96 |
+
Absolute value of the suggested initial step.
|
97 |
+
|
98 |
+
References
|
99 |
+
----------
|
100 |
+
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
|
101 |
+
Equations I: Nonstiff Problems", Sec. II.4.
|
102 |
+
"""
|
103 |
+
if y0.size == 0:
|
104 |
+
return np.inf
|
105 |
+
|
106 |
+
scale = atol + np.abs(y0) * rtol
|
107 |
+
d0 = norm(y0 / scale)
|
108 |
+
d1 = norm(f0 / scale)
|
109 |
+
if d0 < 1e-5 or d1 < 1e-5:
|
110 |
+
h0 = 1e-6
|
111 |
+
else:
|
112 |
+
h0 = 0.01 * d0 / d1
|
113 |
+
|
114 |
+
y1 = y0 + h0 * direction * f0
|
115 |
+
f1 = fun(t0 + h0 * direction, y1)
|
116 |
+
d2 = norm((f1 - f0) / scale) / h0
|
117 |
+
|
118 |
+
if d1 <= 1e-15 and d2 <= 1e-15:
|
119 |
+
h1 = max(1e-6, h0 * 1e-3)
|
120 |
+
else:
|
121 |
+
h1 = (0.01 / max(d1, d2)) ** (1 / (order + 1))
|
122 |
+
|
123 |
+
return min(100 * h0, h1)
|
124 |
+
|
125 |
+
|
126 |
+
class OdeSolution:
|
127 |
+
"""Continuous ODE solution.
|
128 |
+
|
129 |
+
It is organized as a collection of `DenseOutput` objects which represent
|
130 |
+
local interpolants. It provides an algorithm to select a right interpolant
|
131 |
+
for each given point.
|
132 |
+
|
133 |
+
The interpolants cover the range between `t_min` and `t_max` (see
|
134 |
+
Attributes below). Evaluation outside this interval is not forbidden, but
|
135 |
+
the accuracy is not guaranteed.
|
136 |
+
|
137 |
+
When evaluating at a breakpoint (one of the values in `ts`) a segment with
|
138 |
+
the lower index is selected.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
ts : array_like, shape (n_segments + 1,)
|
143 |
+
Time instants between which local interpolants are defined. Must
|
144 |
+
be strictly increasing or decreasing (zero segment with two points is
|
145 |
+
also allowed).
|
146 |
+
interpolants : list of DenseOutput with n_segments elements
|
147 |
+
Local interpolants. An i-th interpolant is assumed to be defined
|
148 |
+
between ``ts[i]`` and ``ts[i + 1]``.
|
149 |
+
alt_segment : boolean
|
150 |
+
Requests the alternative interpolant segment selection scheme. At each
|
151 |
+
solver integration point, two interpolant segments are available. The
|
152 |
+
default (False) and alternative (True) behaviours select the segment
|
153 |
+
for which the requested time corresponded to ``t`` and ``t_old``,
|
154 |
+
respectively. This functionality is only relevant for testing the
|
155 |
+
interpolants' accuracy: different integrators use different
|
156 |
+
construction strategies.
|
157 |
+
|
158 |
+
Attributes
|
159 |
+
----------
|
160 |
+
t_min, t_max : float
|
161 |
+
Time range of the interpolation.
|
162 |
+
"""
|
163 |
+
def __init__(self, ts, interpolants, alt_segment=False):
|
164 |
+
ts = np.asarray(ts)
|
165 |
+
d = np.diff(ts)
|
166 |
+
# The first case covers integration on zero segment.
|
167 |
+
if not ((ts.size == 2 and ts[0] == ts[-1])
|
168 |
+
or np.all(d > 0) or np.all(d < 0)):
|
169 |
+
raise ValueError("`ts` must be strictly increasing or decreasing.")
|
170 |
+
|
171 |
+
self.n_segments = len(interpolants)
|
172 |
+
if ts.shape != (self.n_segments + 1,):
|
173 |
+
raise ValueError("Numbers of time stamps and interpolants "
|
174 |
+
"don't match.")
|
175 |
+
|
176 |
+
self.ts = ts
|
177 |
+
self.interpolants = interpolants
|
178 |
+
if ts[-1] >= ts[0]:
|
179 |
+
self.t_min = ts[0]
|
180 |
+
self.t_max = ts[-1]
|
181 |
+
self.ascending = True
|
182 |
+
self.side = "right" if alt_segment else "left"
|
183 |
+
self.ts_sorted = ts
|
184 |
+
else:
|
185 |
+
self.t_min = ts[-1]
|
186 |
+
self.t_max = ts[0]
|
187 |
+
self.ascending = False
|
188 |
+
self.side = "left" if alt_segment else "right"
|
189 |
+
self.ts_sorted = ts[::-1]
|
190 |
+
|
191 |
+
def _call_single(self, t):
|
192 |
+
# Here we preserve a certain symmetry that when t is in self.ts,
|
193 |
+
# if alt_segment=False, then we prioritize a segment with a lower
|
194 |
+
# index.
|
195 |
+
ind = np.searchsorted(self.ts_sorted, t, side=self.side)
|
196 |
+
|
197 |
+
segment = min(max(ind - 1, 0), self.n_segments - 1)
|
198 |
+
if not self.ascending:
|
199 |
+
segment = self.n_segments - 1 - segment
|
200 |
+
|
201 |
+
return self.interpolants[segment](t)
|
202 |
+
|
203 |
+
def __call__(self, t):
|
204 |
+
"""Evaluate the solution.
|
205 |
+
|
206 |
+
Parameters
|
207 |
+
----------
|
208 |
+
t : float or array_like with shape (n_points,)
|
209 |
+
Points to evaluate at.
|
210 |
+
|
211 |
+
Returns
|
212 |
+
-------
|
213 |
+
y : ndarray, shape (n_states,) or (n_states, n_points)
|
214 |
+
Computed values. Shape depends on whether `t` is a scalar or a
|
215 |
+
1-D array.
|
216 |
+
"""
|
217 |
+
t = np.asarray(t)
|
218 |
+
|
219 |
+
if t.ndim == 0:
|
220 |
+
return self._call_single(t)
|
221 |
+
|
222 |
+
order = np.argsort(t)
|
223 |
+
reverse = np.empty_like(order)
|
224 |
+
reverse[order] = np.arange(order.shape[0])
|
225 |
+
t_sorted = t[order]
|
226 |
+
|
227 |
+
# See comment in self._call_single.
|
228 |
+
segments = np.searchsorted(self.ts_sorted, t_sorted, side=self.side)
|
229 |
+
segments -= 1
|
230 |
+
segments[segments < 0] = 0
|
231 |
+
segments[segments > self.n_segments - 1] = self.n_segments - 1
|
232 |
+
if not self.ascending:
|
233 |
+
segments = self.n_segments - 1 - segments
|
234 |
+
|
235 |
+
ys = []
|
236 |
+
group_start = 0
|
237 |
+
for segment, group in groupby(segments):
|
238 |
+
group_end = group_start + len(list(group))
|
239 |
+
y = self.interpolants[segment](t_sorted[group_start:group_end])
|
240 |
+
ys.append(y)
|
241 |
+
group_start = group_end
|
242 |
+
|
243 |
+
ys = np.hstack(ys)
|
244 |
+
ys = ys[:, reverse]
|
245 |
+
|
246 |
+
return ys
|
247 |
+
|
248 |
+
|
249 |
+
NUM_JAC_DIFF_REJECT = EPS ** 0.875
|
250 |
+
NUM_JAC_DIFF_SMALL = EPS ** 0.75
|
251 |
+
NUM_JAC_DIFF_BIG = EPS ** 0.25
|
252 |
+
NUM_JAC_MIN_FACTOR = 1e3 * EPS
|
253 |
+
NUM_JAC_FACTOR_INCREASE = 10
|
254 |
+
NUM_JAC_FACTOR_DECREASE = 0.1
|
255 |
+
|
256 |
+
|
257 |
+
def num_jac(fun, t, y, f, threshold, factor, sparsity=None):
|
258 |
+
"""Finite differences Jacobian approximation tailored for ODE solvers.
|
259 |
+
|
260 |
+
This function computes finite difference approximation to the Jacobian
|
261 |
+
matrix of `fun` with respect to `y` using forward differences.
|
262 |
+
The Jacobian matrix has shape (n, n) and its element (i, j) is equal to
|
263 |
+
``d f_i / d y_j``.
|
264 |
+
|
265 |
+
A special feature of this function is the ability to correct the step
|
266 |
+
size from iteration to iteration. The main idea is to keep the finite
|
267 |
+
difference significantly separated from its round-off error which
|
268 |
+
approximately equals ``EPS * np.abs(f)``. It reduces a possibility of a
|
269 |
+
huge error and assures that the estimated derivative are reasonably close
|
270 |
+
to the true values (i.e., the finite difference approximation is at least
|
271 |
+
qualitatively reflects the structure of the true Jacobian).
|
272 |
+
|
273 |
+
Parameters
|
274 |
+
----------
|
275 |
+
fun : callable
|
276 |
+
Right-hand side of the system implemented in a vectorized fashion.
|
277 |
+
t : float
|
278 |
+
Current time.
|
279 |
+
y : ndarray, shape (n,)
|
280 |
+
Current state.
|
281 |
+
f : ndarray, shape (n,)
|
282 |
+
Value of the right hand side at (t, y).
|
283 |
+
threshold : float
|
284 |
+
Threshold for `y` value used for computing the step size as
|
285 |
+
``factor * np.maximum(np.abs(y), threshold)``. Typically, the value of
|
286 |
+
absolute tolerance (atol) for a solver should be passed as `threshold`.
|
287 |
+
factor : ndarray with shape (n,) or None
|
288 |
+
Factor to use for computing the step size. Pass None for the very
|
289 |
+
evaluation, then use the value returned from this function.
|
290 |
+
sparsity : tuple (structure, groups) or None
|
291 |
+
Sparsity structure of the Jacobian, `structure` must be csc_matrix.
|
292 |
+
|
293 |
+
Returns
|
294 |
+
-------
|
295 |
+
J : ndarray or csc_matrix, shape (n, n)
|
296 |
+
Jacobian matrix.
|
297 |
+
factor : ndarray, shape (n,)
|
298 |
+
Suggested `factor` for the next evaluation.
|
299 |
+
"""
|
300 |
+
y = np.asarray(y)
|
301 |
+
n = y.shape[0]
|
302 |
+
if n == 0:
|
303 |
+
return np.empty((0, 0)), factor
|
304 |
+
|
305 |
+
if factor is None:
|
306 |
+
factor = np.full(n, EPS ** 0.5)
|
307 |
+
else:
|
308 |
+
factor = factor.copy()
|
309 |
+
|
310 |
+
# Direct the step as ODE dictates, hoping that such a step won't lead to
|
311 |
+
# a problematic region. For complex ODEs it makes sense to use the real
|
312 |
+
# part of f as we use steps along real axis.
|
313 |
+
f_sign = 2 * (np.real(f) >= 0).astype(float) - 1
|
314 |
+
y_scale = f_sign * np.maximum(threshold, np.abs(y))
|
315 |
+
h = (y + factor * y_scale) - y
|
316 |
+
|
317 |
+
# Make sure that the step is not 0 to start with. Not likely it will be
|
318 |
+
# executed often.
|
319 |
+
for i in np.nonzero(h == 0)[0]:
|
320 |
+
while h[i] == 0:
|
321 |
+
factor[i] *= 10
|
322 |
+
h[i] = (y[i] + factor[i] * y_scale[i]) - y[i]
|
323 |
+
|
324 |
+
if sparsity is None:
|
325 |
+
return _dense_num_jac(fun, t, y, f, h, factor, y_scale)
|
326 |
+
else:
|
327 |
+
structure, groups = sparsity
|
328 |
+
return _sparse_num_jac(fun, t, y, f, h, factor, y_scale,
|
329 |
+
structure, groups)
|
330 |
+
|
331 |
+
|
332 |
+
def _dense_num_jac(fun, t, y, f, h, factor, y_scale):
|
333 |
+
n = y.shape[0]
|
334 |
+
h_vecs = np.diag(h)
|
335 |
+
f_new = fun(t, y[:, None] + h_vecs)
|
336 |
+
diff = f_new - f[:, None]
|
337 |
+
max_ind = np.argmax(np.abs(diff), axis=0)
|
338 |
+
r = np.arange(n)
|
339 |
+
max_diff = np.abs(diff[max_ind, r])
|
340 |
+
scale = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r]))
|
341 |
+
|
342 |
+
diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale
|
343 |
+
if np.any(diff_too_small):
|
344 |
+
ind, = np.nonzero(diff_too_small)
|
345 |
+
new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind]
|
346 |
+
h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind]
|
347 |
+
h_vecs[ind, ind] = h_new
|
348 |
+
f_new = fun(t, y[:, None] + h_vecs[:, ind])
|
349 |
+
diff_new = f_new - f[:, None]
|
350 |
+
max_ind = np.argmax(np.abs(diff_new), axis=0)
|
351 |
+
r = np.arange(ind.shape[0])
|
352 |
+
max_diff_new = np.abs(diff_new[max_ind, r])
|
353 |
+
scale_new = np.maximum(np.abs(f[max_ind]), np.abs(f_new[max_ind, r]))
|
354 |
+
|
355 |
+
update = max_diff[ind] * scale_new < max_diff_new * scale[ind]
|
356 |
+
if np.any(update):
|
357 |
+
update, = np.nonzero(update)
|
358 |
+
update_ind = ind[update]
|
359 |
+
factor[update_ind] = new_factor[update]
|
360 |
+
h[update_ind] = h_new[update]
|
361 |
+
diff[:, update_ind] = diff_new[:, update]
|
362 |
+
scale[update_ind] = scale_new[update]
|
363 |
+
max_diff[update_ind] = max_diff_new[update]
|
364 |
+
|
365 |
+
diff /= h
|
366 |
+
|
367 |
+
factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE
|
368 |
+
factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE
|
369 |
+
factor = np.maximum(factor, NUM_JAC_MIN_FACTOR)
|
370 |
+
|
371 |
+
return diff, factor
|
372 |
+
|
373 |
+
|
374 |
+
def _sparse_num_jac(fun, t, y, f, h, factor, y_scale, structure, groups):
|
375 |
+
n = y.shape[0]
|
376 |
+
n_groups = np.max(groups) + 1
|
377 |
+
h_vecs = np.empty((n_groups, n))
|
378 |
+
for group in range(n_groups):
|
379 |
+
e = np.equal(group, groups)
|
380 |
+
h_vecs[group] = h * e
|
381 |
+
h_vecs = h_vecs.T
|
382 |
+
|
383 |
+
f_new = fun(t, y[:, None] + h_vecs)
|
384 |
+
df = f_new - f[:, None]
|
385 |
+
|
386 |
+
i, j, _ = find(structure)
|
387 |
+
diff = coo_matrix((df[i, groups[j]], (i, j)), shape=(n, n)).tocsc()
|
388 |
+
max_ind = np.array(abs(diff).argmax(axis=0)).ravel()
|
389 |
+
r = np.arange(n)
|
390 |
+
max_diff = np.asarray(np.abs(diff[max_ind, r])).ravel()
|
391 |
+
scale = np.maximum(np.abs(f[max_ind]),
|
392 |
+
np.abs(f_new[max_ind, groups[r]]))
|
393 |
+
|
394 |
+
diff_too_small = max_diff < NUM_JAC_DIFF_REJECT * scale
|
395 |
+
if np.any(diff_too_small):
|
396 |
+
ind, = np.nonzero(diff_too_small)
|
397 |
+
new_factor = NUM_JAC_FACTOR_INCREASE * factor[ind]
|
398 |
+
h_new = (y[ind] + new_factor * y_scale[ind]) - y[ind]
|
399 |
+
h_new_all = np.zeros(n)
|
400 |
+
h_new_all[ind] = h_new
|
401 |
+
|
402 |
+
groups_unique = np.unique(groups[ind])
|
403 |
+
groups_map = np.empty(n_groups, dtype=int)
|
404 |
+
h_vecs = np.empty((groups_unique.shape[0], n))
|
405 |
+
for k, group in enumerate(groups_unique):
|
406 |
+
e = np.equal(group, groups)
|
407 |
+
h_vecs[k] = h_new_all * e
|
408 |
+
groups_map[group] = k
|
409 |
+
h_vecs = h_vecs.T
|
410 |
+
|
411 |
+
f_new = fun(t, y[:, None] + h_vecs)
|
412 |
+
df = f_new - f[:, None]
|
413 |
+
i, j, _ = find(structure[:, ind])
|
414 |
+
diff_new = coo_matrix((df[i, groups_map[groups[ind[j]]]],
|
415 |
+
(i, j)), shape=(n, ind.shape[0])).tocsc()
|
416 |
+
|
417 |
+
max_ind_new = np.array(abs(diff_new).argmax(axis=0)).ravel()
|
418 |
+
r = np.arange(ind.shape[0])
|
419 |
+
max_diff_new = np.asarray(np.abs(diff_new[max_ind_new, r])).ravel()
|
420 |
+
scale_new = np.maximum(
|
421 |
+
np.abs(f[max_ind_new]),
|
422 |
+
np.abs(f_new[max_ind_new, groups_map[groups[ind]]]))
|
423 |
+
|
424 |
+
update = max_diff[ind] * scale_new < max_diff_new * scale[ind]
|
425 |
+
if np.any(update):
|
426 |
+
update, = np.nonzero(update)
|
427 |
+
update_ind = ind[update]
|
428 |
+
factor[update_ind] = new_factor[update]
|
429 |
+
h[update_ind] = h_new[update]
|
430 |
+
diff[:, update_ind] = diff_new[:, update]
|
431 |
+
scale[update_ind] = scale_new[update]
|
432 |
+
max_diff[update_ind] = max_diff_new[update]
|
433 |
+
|
434 |
+
diff.data /= np.repeat(h, np.diff(diff.indptr))
|
435 |
+
|
436 |
+
factor[max_diff < NUM_JAC_DIFF_SMALL * scale] *= NUM_JAC_FACTOR_INCREASE
|
437 |
+
factor[max_diff > NUM_JAC_DIFF_BIG * scale] *= NUM_JAC_FACTOR_DECREASE
|
438 |
+
factor = np.maximum(factor, NUM_JAC_MIN_FACTOR)
|
439 |
+
|
440 |
+
return diff, factor
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/dop853_coefficients.py
ADDED
@@ -0,0 +1,193 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
N_STAGES = 12
|
4 |
+
N_STAGES_EXTENDED = 16
|
5 |
+
INTERPOLATOR_POWER = 7
|
6 |
+
|
7 |
+
C = np.array([0.0,
|
8 |
+
0.526001519587677318785587544488e-01,
|
9 |
+
0.789002279381515978178381316732e-01,
|
10 |
+
0.118350341907227396726757197510,
|
11 |
+
0.281649658092772603273242802490,
|
12 |
+
0.333333333333333333333333333333,
|
13 |
+
0.25,
|
14 |
+
0.307692307692307692307692307692,
|
15 |
+
0.651282051282051282051282051282,
|
16 |
+
0.6,
|
17 |
+
0.857142857142857142857142857142,
|
18 |
+
1.0,
|
19 |
+
1.0,
|
20 |
+
0.1,
|
21 |
+
0.2,
|
22 |
+
0.777777777777777777777777777778])
|
23 |
+
|
24 |
+
A = np.zeros((N_STAGES_EXTENDED, N_STAGES_EXTENDED))
|
25 |
+
A[1, 0] = 5.26001519587677318785587544488e-2
|
26 |
+
|
27 |
+
A[2, 0] = 1.97250569845378994544595329183e-2
|
28 |
+
A[2, 1] = 5.91751709536136983633785987549e-2
|
29 |
+
|
30 |
+
A[3, 0] = 2.95875854768068491816892993775e-2
|
31 |
+
A[3, 2] = 8.87627564304205475450678981324e-2
|
32 |
+
|
33 |
+
A[4, 0] = 2.41365134159266685502369798665e-1
|
34 |
+
A[4, 2] = -8.84549479328286085344864962717e-1
|
35 |
+
A[4, 3] = 9.24834003261792003115737966543e-1
|
36 |
+
|
37 |
+
A[5, 0] = 3.7037037037037037037037037037e-2
|
38 |
+
A[5, 3] = 1.70828608729473871279604482173e-1
|
39 |
+
A[5, 4] = 1.25467687566822425016691814123e-1
|
40 |
+
|
41 |
+
A[6, 0] = 3.7109375e-2
|
42 |
+
A[6, 3] = 1.70252211019544039314978060272e-1
|
43 |
+
A[6, 4] = 6.02165389804559606850219397283e-2
|
44 |
+
A[6, 5] = -1.7578125e-2
|
45 |
+
|
46 |
+
A[7, 0] = 3.70920001185047927108779319836e-2
|
47 |
+
A[7, 3] = 1.70383925712239993810214054705e-1
|
48 |
+
A[7, 4] = 1.07262030446373284651809199168e-1
|
49 |
+
A[7, 5] = -1.53194377486244017527936158236e-2
|
50 |
+
A[7, 6] = 8.27378916381402288758473766002e-3
|
51 |
+
|
52 |
+
A[8, 0] = 6.24110958716075717114429577812e-1
|
53 |
+
A[8, 3] = -3.36089262944694129406857109825
|
54 |
+
A[8, 4] = -8.68219346841726006818189891453e-1
|
55 |
+
A[8, 5] = 2.75920996994467083049415600797e1
|
56 |
+
A[8, 6] = 2.01540675504778934086186788979e1
|
57 |
+
A[8, 7] = -4.34898841810699588477366255144e1
|
58 |
+
|
59 |
+
A[9, 0] = 4.77662536438264365890433908527e-1
|
60 |
+
A[9, 3] = -2.48811461997166764192642586468
|
61 |
+
A[9, 4] = -5.90290826836842996371446475743e-1
|
62 |
+
A[9, 5] = 2.12300514481811942347288949897e1
|
63 |
+
A[9, 6] = 1.52792336328824235832596922938e1
|
64 |
+
A[9, 7] = -3.32882109689848629194453265587e1
|
65 |
+
A[9, 8] = -2.03312017085086261358222928593e-2
|
66 |
+
|
67 |
+
A[10, 0] = -9.3714243008598732571704021658e-1
|
68 |
+
A[10, 3] = 5.18637242884406370830023853209
|
69 |
+
A[10, 4] = 1.09143734899672957818500254654
|
70 |
+
A[10, 5] = -8.14978701074692612513997267357
|
71 |
+
A[10, 6] = -1.85200656599969598641566180701e1
|
72 |
+
A[10, 7] = 2.27394870993505042818970056734e1
|
73 |
+
A[10, 8] = 2.49360555267965238987089396762
|
74 |
+
A[10, 9] = -3.0467644718982195003823669022
|
75 |
+
|
76 |
+
A[11, 0] = 2.27331014751653820792359768449
|
77 |
+
A[11, 3] = -1.05344954667372501984066689879e1
|
78 |
+
A[11, 4] = -2.00087205822486249909675718444
|
79 |
+
A[11, 5] = -1.79589318631187989172765950534e1
|
80 |
+
A[11, 6] = 2.79488845294199600508499808837e1
|
81 |
+
A[11, 7] = -2.85899827713502369474065508674
|
82 |
+
A[11, 8] = -8.87285693353062954433549289258
|
83 |
+
A[11, 9] = 1.23605671757943030647266201528e1
|
84 |
+
A[11, 10] = 6.43392746015763530355970484046e-1
|
85 |
+
|
86 |
+
A[12, 0] = 5.42937341165687622380535766363e-2
|
87 |
+
A[12, 5] = 4.45031289275240888144113950566
|
88 |
+
A[12, 6] = 1.89151789931450038304281599044
|
89 |
+
A[12, 7] = -5.8012039600105847814672114227
|
90 |
+
A[12, 8] = 3.1116436695781989440891606237e-1
|
91 |
+
A[12, 9] = -1.52160949662516078556178806805e-1
|
92 |
+
A[12, 10] = 2.01365400804030348374776537501e-1
|
93 |
+
A[12, 11] = 4.47106157277725905176885569043e-2
|
94 |
+
|
95 |
+
A[13, 0] = 5.61675022830479523392909219681e-2
|
96 |
+
A[13, 6] = 2.53500210216624811088794765333e-1
|
97 |
+
A[13, 7] = -2.46239037470802489917441475441e-1
|
98 |
+
A[13, 8] = -1.24191423263816360469010140626e-1
|
99 |
+
A[13, 9] = 1.5329179827876569731206322685e-1
|
100 |
+
A[13, 10] = 8.20105229563468988491666602057e-3
|
101 |
+
A[13, 11] = 7.56789766054569976138603589584e-3
|
102 |
+
A[13, 12] = -8.298e-3
|
103 |
+
|
104 |
+
A[14, 0] = 3.18346481635021405060768473261e-2
|
105 |
+
A[14, 5] = 2.83009096723667755288322961402e-2
|
106 |
+
A[14, 6] = 5.35419883074385676223797384372e-2
|
107 |
+
A[14, 7] = -5.49237485713909884646569340306e-2
|
108 |
+
A[14, 10] = -1.08347328697249322858509316994e-4
|
109 |
+
A[14, 11] = 3.82571090835658412954920192323e-4
|
110 |
+
A[14, 12] = -3.40465008687404560802977114492e-4
|
111 |
+
A[14, 13] = 1.41312443674632500278074618366e-1
|
112 |
+
|
113 |
+
A[15, 0] = -4.28896301583791923408573538692e-1
|
114 |
+
A[15, 5] = -4.69762141536116384314449447206
|
115 |
+
A[15, 6] = 7.68342119606259904184240953878
|
116 |
+
A[15, 7] = 4.06898981839711007970213554331
|
117 |
+
A[15, 8] = 3.56727187455281109270669543021e-1
|
118 |
+
A[15, 12] = -1.39902416515901462129418009734e-3
|
119 |
+
A[15, 13] = 2.9475147891527723389556272149
|
120 |
+
A[15, 14] = -9.15095847217987001081870187138
|
121 |
+
|
122 |
+
|
123 |
+
B = A[N_STAGES, :N_STAGES]
|
124 |
+
|
125 |
+
E3 = np.zeros(N_STAGES + 1)
|
126 |
+
E3[:-1] = B.copy()
|
127 |
+
E3[0] -= 0.244094488188976377952755905512
|
128 |
+
E3[8] -= 0.733846688281611857341361741547
|
129 |
+
E3[11] -= 0.220588235294117647058823529412e-1
|
130 |
+
|
131 |
+
E5 = np.zeros(N_STAGES + 1)
|
132 |
+
E5[0] = 0.1312004499419488073250102996e-1
|
133 |
+
E5[5] = -0.1225156446376204440720569753e+1
|
134 |
+
E5[6] = -0.4957589496572501915214079952
|
135 |
+
E5[7] = 0.1664377182454986536961530415e+1
|
136 |
+
E5[8] = -0.3503288487499736816886487290
|
137 |
+
E5[9] = 0.3341791187130174790297318841
|
138 |
+
E5[10] = 0.8192320648511571246570742613e-1
|
139 |
+
E5[11] = -0.2235530786388629525884427845e-1
|
140 |
+
|
141 |
+
# First 3 coefficients are computed separately.
|
142 |
+
D = np.zeros((INTERPOLATOR_POWER - 3, N_STAGES_EXTENDED))
|
143 |
+
D[0, 0] = -0.84289382761090128651353491142e+1
|
144 |
+
D[0, 5] = 0.56671495351937776962531783590
|
145 |
+
D[0, 6] = -0.30689499459498916912797304727e+1
|
146 |
+
D[0, 7] = 0.23846676565120698287728149680e+1
|
147 |
+
D[0, 8] = 0.21170345824450282767155149946e+1
|
148 |
+
D[0, 9] = -0.87139158377797299206789907490
|
149 |
+
D[0, 10] = 0.22404374302607882758541771650e+1
|
150 |
+
D[0, 11] = 0.63157877876946881815570249290
|
151 |
+
D[0, 12] = -0.88990336451333310820698117400e-1
|
152 |
+
D[0, 13] = 0.18148505520854727256656404962e+2
|
153 |
+
D[0, 14] = -0.91946323924783554000451984436e+1
|
154 |
+
D[0, 15] = -0.44360363875948939664310572000e+1
|
155 |
+
|
156 |
+
D[1, 0] = 0.10427508642579134603413151009e+2
|
157 |
+
D[1, 5] = 0.24228349177525818288430175319e+3
|
158 |
+
D[1, 6] = 0.16520045171727028198505394887e+3
|
159 |
+
D[1, 7] = -0.37454675472269020279518312152e+3
|
160 |
+
D[1, 8] = -0.22113666853125306036270938578e+2
|
161 |
+
D[1, 9] = 0.77334326684722638389603898808e+1
|
162 |
+
D[1, 10] = -0.30674084731089398182061213626e+2
|
163 |
+
D[1, 11] = -0.93321305264302278729567221706e+1
|
164 |
+
D[1, 12] = 0.15697238121770843886131091075e+2
|
165 |
+
D[1, 13] = -0.31139403219565177677282850411e+2
|
166 |
+
D[1, 14] = -0.93529243588444783865713862664e+1
|
167 |
+
D[1, 15] = 0.35816841486394083752465898540e+2
|
168 |
+
|
169 |
+
D[2, 0] = 0.19985053242002433820987653617e+2
|
170 |
+
D[2, 5] = -0.38703730874935176555105901742e+3
|
171 |
+
D[2, 6] = -0.18917813819516756882830838328e+3
|
172 |
+
D[2, 7] = 0.52780815920542364900561016686e+3
|
173 |
+
D[2, 8] = -0.11573902539959630126141871134e+2
|
174 |
+
D[2, 9] = 0.68812326946963000169666922661e+1
|
175 |
+
D[2, 10] = -0.10006050966910838403183860980e+1
|
176 |
+
D[2, 11] = 0.77771377980534432092869265740
|
177 |
+
D[2, 12] = -0.27782057523535084065932004339e+1
|
178 |
+
D[2, 13] = -0.60196695231264120758267380846e+2
|
179 |
+
D[2, 14] = 0.84320405506677161018159903784e+2
|
180 |
+
D[2, 15] = 0.11992291136182789328035130030e+2
|
181 |
+
|
182 |
+
D[3, 0] = -0.25693933462703749003312586129e+2
|
183 |
+
D[3, 5] = -0.15418974869023643374053993627e+3
|
184 |
+
D[3, 6] = -0.23152937917604549567536039109e+3
|
185 |
+
D[3, 7] = 0.35763911791061412378285349910e+3
|
186 |
+
D[3, 8] = 0.93405324183624310003907691704e+2
|
187 |
+
D[3, 9] = -0.37458323136451633156875139351e+2
|
188 |
+
D[3, 10] = 0.10409964950896230045147246184e+3
|
189 |
+
D[3, 11] = 0.29840293426660503123344363579e+2
|
190 |
+
D[3, 12] = -0.43533456590011143754432175058e+2
|
191 |
+
D[3, 13] = 0.96324553959188282948394950600e+2
|
192 |
+
D[3, 14] = -0.39177261675615439165231486172e+2
|
193 |
+
D[3, 15] = -0.14972683625798562581422125276e+3
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/ivp.py
ADDED
@@ -0,0 +1,748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import inspect
|
2 |
+
import numpy as np
|
3 |
+
from .bdf import BDF
|
4 |
+
from .radau import Radau
|
5 |
+
from .rk import RK23, RK45, DOP853
|
6 |
+
from .lsoda import LSODA
|
7 |
+
from scipy.optimize import OptimizeResult
|
8 |
+
from .common import EPS, OdeSolution
|
9 |
+
from .base import OdeSolver
|
10 |
+
|
11 |
+
|
12 |
+
METHODS = {'RK23': RK23,
|
13 |
+
'RK45': RK45,
|
14 |
+
'DOP853': DOP853,
|
15 |
+
'Radau': Radau,
|
16 |
+
'BDF': BDF,
|
17 |
+
'LSODA': LSODA}
|
18 |
+
|
19 |
+
|
20 |
+
MESSAGES = {0: "The solver successfully reached the end of the integration interval.",
|
21 |
+
1: "A termination event occurred."}
|
22 |
+
|
23 |
+
|
24 |
+
class OdeResult(OptimizeResult):
|
25 |
+
pass
|
26 |
+
|
27 |
+
|
28 |
+
def prepare_events(events):
|
29 |
+
"""Standardize event functions and extract attributes."""
|
30 |
+
if callable(events):
|
31 |
+
events = (events,)
|
32 |
+
|
33 |
+
max_events = np.empty(len(events))
|
34 |
+
direction = np.empty(len(events))
|
35 |
+
for i, event in enumerate(events):
|
36 |
+
terminal = getattr(event, 'terminal', None)
|
37 |
+
direction[i] = getattr(event, 'direction', 0)
|
38 |
+
|
39 |
+
message = ('The `terminal` attribute of each event '
|
40 |
+
'must be a boolean or positive integer.')
|
41 |
+
if terminal is None or terminal == 0:
|
42 |
+
max_events[i] = np.inf
|
43 |
+
elif int(terminal) == terminal and terminal > 0:
|
44 |
+
max_events[i] = terminal
|
45 |
+
else:
|
46 |
+
raise ValueError(message)
|
47 |
+
|
48 |
+
return events, max_events, direction
|
49 |
+
|
50 |
+
|
51 |
+
def solve_event_equation(event, sol, t_old, t):
|
52 |
+
"""Solve an equation corresponding to an ODE event.
|
53 |
+
|
54 |
+
The equation is ``event(t, y(t)) = 0``, here ``y(t)`` is known from an
|
55 |
+
ODE solver using some sort of interpolation. It is solved by
|
56 |
+
`scipy.optimize.brentq` with xtol=atol=4*EPS.
|
57 |
+
|
58 |
+
Parameters
|
59 |
+
----------
|
60 |
+
event : callable
|
61 |
+
Function ``event(t, y)``.
|
62 |
+
sol : callable
|
63 |
+
Function ``sol(t)`` which evaluates an ODE solution between `t_old`
|
64 |
+
and `t`.
|
65 |
+
t_old, t : float
|
66 |
+
Previous and new values of time. They will be used as a bracketing
|
67 |
+
interval.
|
68 |
+
|
69 |
+
Returns
|
70 |
+
-------
|
71 |
+
root : float
|
72 |
+
Found solution.
|
73 |
+
"""
|
74 |
+
from scipy.optimize import brentq
|
75 |
+
return brentq(lambda t: event(t, sol(t)), t_old, t,
|
76 |
+
xtol=4 * EPS, rtol=4 * EPS)
|
77 |
+
|
78 |
+
|
79 |
+
def handle_events(sol, events, active_events, event_count, max_events,
|
80 |
+
t_old, t):
|
81 |
+
"""Helper function to handle events.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
sol : DenseOutput
|
86 |
+
Function ``sol(t)`` which evaluates an ODE solution between `t_old`
|
87 |
+
and `t`.
|
88 |
+
events : list of callables, length n_events
|
89 |
+
Event functions with signatures ``event(t, y)``.
|
90 |
+
active_events : ndarray
|
91 |
+
Indices of events which occurred.
|
92 |
+
event_count : ndarray
|
93 |
+
Current number of occurrences for each event.
|
94 |
+
max_events : ndarray, shape (n_events,)
|
95 |
+
Number of occurrences allowed for each event before integration
|
96 |
+
termination is issued.
|
97 |
+
t_old, t : float
|
98 |
+
Previous and new values of time.
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
root_indices : ndarray
|
103 |
+
Indices of events which take zero between `t_old` and `t` and before
|
104 |
+
a possible termination.
|
105 |
+
roots : ndarray
|
106 |
+
Values of t at which events occurred.
|
107 |
+
terminate : bool
|
108 |
+
Whether a terminal event occurred.
|
109 |
+
"""
|
110 |
+
roots = [solve_event_equation(events[event_index], sol, t_old, t)
|
111 |
+
for event_index in active_events]
|
112 |
+
|
113 |
+
roots = np.asarray(roots)
|
114 |
+
|
115 |
+
if np.any(event_count[active_events] >= max_events[active_events]):
|
116 |
+
if t > t_old:
|
117 |
+
order = np.argsort(roots)
|
118 |
+
else:
|
119 |
+
order = np.argsort(-roots)
|
120 |
+
active_events = active_events[order]
|
121 |
+
roots = roots[order]
|
122 |
+
t = np.nonzero(event_count[active_events]
|
123 |
+
>= max_events[active_events])[0][0]
|
124 |
+
active_events = active_events[:t + 1]
|
125 |
+
roots = roots[:t + 1]
|
126 |
+
terminate = True
|
127 |
+
else:
|
128 |
+
terminate = False
|
129 |
+
|
130 |
+
return active_events, roots, terminate
|
131 |
+
|
132 |
+
|
133 |
+
def find_active_events(g, g_new, direction):
|
134 |
+
"""Find which event occurred during an integration step.
|
135 |
+
|
136 |
+
Parameters
|
137 |
+
----------
|
138 |
+
g, g_new : array_like, shape (n_events,)
|
139 |
+
Values of event functions at a current and next points.
|
140 |
+
direction : ndarray, shape (n_events,)
|
141 |
+
Event "direction" according to the definition in `solve_ivp`.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
active_events : ndarray
|
146 |
+
Indices of events which occurred during the step.
|
147 |
+
"""
|
148 |
+
g, g_new = np.asarray(g), np.asarray(g_new)
|
149 |
+
up = (g <= 0) & (g_new >= 0)
|
150 |
+
down = (g >= 0) & (g_new <= 0)
|
151 |
+
either = up | down
|
152 |
+
mask = (up & (direction > 0) |
|
153 |
+
down & (direction < 0) |
|
154 |
+
either & (direction == 0))
|
155 |
+
|
156 |
+
return np.nonzero(mask)[0]
|
157 |
+
|
158 |
+
|
159 |
+
def solve_ivp(fun, t_span, y0, method='RK45', t_eval=None, dense_output=False,
|
160 |
+
events=None, vectorized=False, args=None, **options):
|
161 |
+
"""Solve an initial value problem for a system of ODEs.
|
162 |
+
|
163 |
+
This function numerically integrates a system of ordinary differential
|
164 |
+
equations given an initial value::
|
165 |
+
|
166 |
+
dy / dt = f(t, y)
|
167 |
+
y(t0) = y0
|
168 |
+
|
169 |
+
Here t is a 1-D independent variable (time), y(t) is an
|
170 |
+
N-D vector-valued function (state), and an N-D
|
171 |
+
vector-valued function f(t, y) determines the differential equations.
|
172 |
+
The goal is to find y(t) approximately satisfying the differential
|
173 |
+
equations, given an initial value y(t0)=y0.
|
174 |
+
|
175 |
+
Some of the solvers support integration in the complex domain, but note
|
176 |
+
that for stiff ODE solvers, the right-hand side must be
|
177 |
+
complex-differentiable (satisfy Cauchy-Riemann equations [11]_).
|
178 |
+
To solve a problem in the complex domain, pass y0 with a complex data type.
|
179 |
+
Another option always available is to rewrite your problem for real and
|
180 |
+
imaginary parts separately.
|
181 |
+
|
182 |
+
Parameters
|
183 |
+
----------
|
184 |
+
fun : callable
|
185 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
186 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
187 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. Additional
|
188 |
+
arguments need to be passed if ``args`` is used (see documentation of
|
189 |
+
``args`` argument). ``fun`` must return an array of the same shape as
|
190 |
+
``y``. See `vectorized` for more information.
|
191 |
+
t_span : 2-member sequence
|
192 |
+
Interval of integration (t0, tf). The solver starts with t=t0 and
|
193 |
+
integrates until it reaches t=tf. Both t0 and tf must be floats
|
194 |
+
or values interpretable by the float conversion function.
|
195 |
+
y0 : array_like, shape (n,)
|
196 |
+
Initial state. For problems in the complex domain, pass `y0` with a
|
197 |
+
complex data type (even if the initial value is purely real).
|
198 |
+
method : string or `OdeSolver`, optional
|
199 |
+
Integration method to use:
|
200 |
+
|
201 |
+
* 'RK45' (default): Explicit Runge-Kutta method of order 5(4) [1]_.
|
202 |
+
The error is controlled assuming accuracy of the fourth-order
|
203 |
+
method, but steps are taken using the fifth-order accurate
|
204 |
+
formula (local extrapolation is done). A quartic interpolation
|
205 |
+
polynomial is used for the dense output [2]_. Can be applied in
|
206 |
+
the complex domain.
|
207 |
+
* 'RK23': Explicit Runge-Kutta method of order 3(2) [3]_. The error
|
208 |
+
is controlled assuming accuracy of the second-order method, but
|
209 |
+
steps are taken using the third-order accurate formula (local
|
210 |
+
extrapolation is done). A cubic Hermite polynomial is used for the
|
211 |
+
dense output. Can be applied in the complex domain.
|
212 |
+
* 'DOP853': Explicit Runge-Kutta method of order 8 [13]_.
|
213 |
+
Python implementation of the "DOP853" algorithm originally
|
214 |
+
written in Fortran [14]_. A 7-th order interpolation polynomial
|
215 |
+
accurate to 7-th order is used for the dense output.
|
216 |
+
Can be applied in the complex domain.
|
217 |
+
* 'Radau': Implicit Runge-Kutta method of the Radau IIA family of
|
218 |
+
order 5 [4]_. The error is controlled with a third-order accurate
|
219 |
+
embedded formula. A cubic polynomial which satisfies the
|
220 |
+
collocation conditions is used for the dense output.
|
221 |
+
* 'BDF': Implicit multi-step variable-order (1 to 5) method based
|
222 |
+
on a backward differentiation formula for the derivative
|
223 |
+
approximation [5]_. The implementation follows the one described
|
224 |
+
in [6]_. A quasi-constant step scheme is used and accuracy is
|
225 |
+
enhanced using the NDF modification. Can be applied in the
|
226 |
+
complex domain.
|
227 |
+
* 'LSODA': Adams/BDF method with automatic stiffness detection and
|
228 |
+
switching [7]_, [8]_. This is a wrapper of the Fortran solver
|
229 |
+
from ODEPACK.
|
230 |
+
|
231 |
+
Explicit Runge-Kutta methods ('RK23', 'RK45', 'DOP853') should be used
|
232 |
+
for non-stiff problems and implicit methods ('Radau', 'BDF') for
|
233 |
+
stiff problems [9]_. Among Runge-Kutta methods, 'DOP853' is recommended
|
234 |
+
for solving with high precision (low values of `rtol` and `atol`).
|
235 |
+
|
236 |
+
If not sure, first try to run 'RK45'. If it makes unusually many
|
237 |
+
iterations, diverges, or fails, your problem is likely to be stiff and
|
238 |
+
you should use 'Radau' or 'BDF'. 'LSODA' can also be a good universal
|
239 |
+
choice, but it might be somewhat less convenient to work with as it
|
240 |
+
wraps old Fortran code.
|
241 |
+
|
242 |
+
You can also pass an arbitrary class derived from `OdeSolver` which
|
243 |
+
implements the solver.
|
244 |
+
t_eval : array_like or None, optional
|
245 |
+
Times at which to store the computed solution, must be sorted and lie
|
246 |
+
within `t_span`. If None (default), use points selected by the solver.
|
247 |
+
dense_output : bool, optional
|
248 |
+
Whether to compute a continuous solution. Default is False.
|
249 |
+
events : callable, or list of callables, optional
|
250 |
+
Events to track. If None (default), no events will be tracked.
|
251 |
+
Each event occurs at the zeros of a continuous function of time and
|
252 |
+
state. Each function must have the signature ``event(t, y)`` where
|
253 |
+
additional argument have to be passed if ``args`` is used (see
|
254 |
+
documentation of ``args`` argument). Each function must return a
|
255 |
+
float. The solver will find an accurate value of `t` at which
|
256 |
+
``event(t, y(t)) = 0`` using a root-finding algorithm. By default,
|
257 |
+
all zeros will be found. The solver looks for a sign change over
|
258 |
+
each step, so if multiple zero crossings occur within one step,
|
259 |
+
events may be missed. Additionally each `event` function might
|
260 |
+
have the following attributes:
|
261 |
+
|
262 |
+
terminal: bool or int, optional
|
263 |
+
When boolean, whether to terminate integration if this event occurs.
|
264 |
+
When integral, termination occurs after the specified the number of
|
265 |
+
occurences of this event.
|
266 |
+
Implicitly False if not assigned.
|
267 |
+
direction: float, optional
|
268 |
+
Direction of a zero crossing. If `direction` is positive,
|
269 |
+
`event` will only trigger when going from negative to positive,
|
270 |
+
and vice versa if `direction` is negative. If 0, then either
|
271 |
+
direction will trigger event. Implicitly 0 if not assigned.
|
272 |
+
|
273 |
+
You can assign attributes like ``event.terminal = True`` to any
|
274 |
+
function in Python.
|
275 |
+
vectorized : bool, optional
|
276 |
+
Whether `fun` can be called in a vectorized fashion. Default is False.
|
277 |
+
|
278 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
279 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
280 |
+
|
281 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
282 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
283 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
284 |
+
the returned array is the time derivative of the state corresponding
|
285 |
+
with a column of ``y``).
|
286 |
+
|
287 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
288 |
+
approximation of the Jacobian by methods 'Radau' and 'BDF', but
|
289 |
+
will result in slower execution for other methods and for 'Radau' and
|
290 |
+
'BDF' in some circumstances (e.g. small ``len(y0)``).
|
291 |
+
args : tuple, optional
|
292 |
+
Additional arguments to pass to the user-defined functions. If given,
|
293 |
+
the additional arguments are passed to all user-defined functions.
|
294 |
+
So if, for example, `fun` has the signature ``fun(t, y, a, b, c)``,
|
295 |
+
then `jac` (if given) and any event functions must have the same
|
296 |
+
signature, and `args` must be a tuple of length 3.
|
297 |
+
**options
|
298 |
+
Options passed to a chosen solver. All options available for already
|
299 |
+
implemented solvers are listed below.
|
300 |
+
first_step : float or None, optional
|
301 |
+
Initial step size. Default is `None` which means that the algorithm
|
302 |
+
should choose.
|
303 |
+
max_step : float, optional
|
304 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
305 |
+
bounded and determined solely by the solver.
|
306 |
+
rtol, atol : float or array_like, optional
|
307 |
+
Relative and absolute tolerances. The solver keeps the local error
|
308 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
309 |
+
relative accuracy (number of correct digits), while `atol` controls
|
310 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
311 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
312 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
313 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
314 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
315 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
316 |
+
than `atol`. If components of y have different scales, it might be
|
317 |
+
beneficial to set different `atol` values for different components by
|
318 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
319 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
320 |
+
jac : array_like, sparse_matrix, callable or None, optional
|
321 |
+
Jacobian matrix of the right-hand side of the system with respect
|
322 |
+
to y, required by the 'Radau', 'BDF' and 'LSODA' method. The
|
323 |
+
Jacobian matrix has shape (n, n) and its element (i, j) is equal to
|
324 |
+
``d f_i / d y_j``. There are three ways to define the Jacobian:
|
325 |
+
|
326 |
+
* If array_like or sparse_matrix, the Jacobian is assumed to
|
327 |
+
be constant. Not supported by 'LSODA'.
|
328 |
+
* If callable, the Jacobian is assumed to depend on both
|
329 |
+
t and y; it will be called as ``jac(t, y)``, as necessary.
|
330 |
+
Additional arguments have to be passed if ``args`` is
|
331 |
+
used (see documentation of ``args`` argument).
|
332 |
+
For 'Radau' and 'BDF' methods, the return value might be a
|
333 |
+
sparse matrix.
|
334 |
+
* If None (default), the Jacobian will be approximated by
|
335 |
+
finite differences.
|
336 |
+
|
337 |
+
It is generally recommended to provide the Jacobian rather than
|
338 |
+
relying on a finite-difference approximation.
|
339 |
+
jac_sparsity : array_like, sparse matrix or None, optional
|
340 |
+
Defines a sparsity structure of the Jacobian matrix for a finite-
|
341 |
+
difference approximation. Its shape must be (n, n). This argument
|
342 |
+
is ignored if `jac` is not `None`. If the Jacobian has only few
|
343 |
+
non-zero elements in *each* row, providing the sparsity structure
|
344 |
+
will greatly speed up the computations [10]_. A zero entry means that
|
345 |
+
a corresponding element in the Jacobian is always zero. If None
|
346 |
+
(default), the Jacobian is assumed to be dense.
|
347 |
+
Not supported by 'LSODA', see `lband` and `uband` instead.
|
348 |
+
lband, uband : int or None, optional
|
349 |
+
Parameters defining the bandwidth of the Jacobian for the 'LSODA'
|
350 |
+
method, i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``.
|
351 |
+
Default is None. Setting these requires your jac routine to return the
|
352 |
+
Jacobian in the packed format: the returned array must have ``n``
|
353 |
+
columns and ``uband + lband + 1`` rows in which Jacobian diagonals are
|
354 |
+
written. Specifically ``jac_packed[uband + i - j , j] = jac[i, j]``.
|
355 |
+
The same format is used in `scipy.linalg.solve_banded` (check for an
|
356 |
+
illustration). These parameters can be also used with ``jac=None`` to
|
357 |
+
reduce the number of Jacobian elements estimated by finite differences.
|
358 |
+
min_step : float, optional
|
359 |
+
The minimum allowed step size for 'LSODA' method.
|
360 |
+
By default `min_step` is zero.
|
361 |
+
|
362 |
+
Returns
|
363 |
+
-------
|
364 |
+
Bunch object with the following fields defined:
|
365 |
+
t : ndarray, shape (n_points,)
|
366 |
+
Time points.
|
367 |
+
y : ndarray, shape (n, n_points)
|
368 |
+
Values of the solution at `t`.
|
369 |
+
sol : `OdeSolution` or None
|
370 |
+
Found solution as `OdeSolution` instance; None if `dense_output` was
|
371 |
+
set to False.
|
372 |
+
t_events : list of ndarray or None
|
373 |
+
Contains for each event type a list of arrays at which an event of
|
374 |
+
that type event was detected. None if `events` was None.
|
375 |
+
y_events : list of ndarray or None
|
376 |
+
For each value of `t_events`, the corresponding value of the solution.
|
377 |
+
None if `events` was None.
|
378 |
+
nfev : int
|
379 |
+
Number of evaluations of the right-hand side.
|
380 |
+
njev : int
|
381 |
+
Number of evaluations of the Jacobian.
|
382 |
+
nlu : int
|
383 |
+
Number of LU decompositions.
|
384 |
+
status : int
|
385 |
+
Reason for algorithm termination:
|
386 |
+
|
387 |
+
* -1: Integration step failed.
|
388 |
+
* 0: The solver successfully reached the end of `tspan`.
|
389 |
+
* 1: A termination event occurred.
|
390 |
+
|
391 |
+
message : string
|
392 |
+
Human-readable description of the termination reason.
|
393 |
+
success : bool
|
394 |
+
True if the solver reached the interval end or a termination event
|
395 |
+
occurred (``status >= 0``).
|
396 |
+
|
397 |
+
References
|
398 |
+
----------
|
399 |
+
.. [1] J. R. Dormand, P. J. Prince, "A family of embedded Runge-Kutta
|
400 |
+
formulae", Journal of Computational and Applied Mathematics, Vol. 6,
|
401 |
+
No. 1, pp. 19-26, 1980.
|
402 |
+
.. [2] L. W. Shampine, "Some Practical Runge-Kutta Formulas", Mathematics
|
403 |
+
of Computation,, Vol. 46, No. 173, pp. 135-150, 1986.
|
404 |
+
.. [3] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
|
405 |
+
Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
|
406 |
+
.. [4] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
|
407 |
+
Stiff and Differential-Algebraic Problems", Sec. IV.8.
|
408 |
+
.. [5] `Backward Differentiation Formula
|
409 |
+
<https://en.wikipedia.org/wiki/Backward_differentiation_formula>`_
|
410 |
+
on Wikipedia.
|
411 |
+
.. [6] L. F. Shampine, M. W. Reichelt, "THE MATLAB ODE SUITE", SIAM J. SCI.
|
412 |
+
COMPUTE., Vol. 18, No. 1, pp. 1-22, January 1997.
|
413 |
+
.. [7] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
|
414 |
+
Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
|
415 |
+
pp. 55-64, 1983.
|
416 |
+
.. [8] L. Petzold, "Automatic selection of methods for solving stiff and
|
417 |
+
nonstiff systems of ordinary differential equations", SIAM Journal
|
418 |
+
on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
|
419 |
+
1983.
|
420 |
+
.. [9] `Stiff equation <https://en.wikipedia.org/wiki/Stiff_equation>`_ on
|
421 |
+
Wikipedia.
|
422 |
+
.. [10] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
|
423 |
+
sparse Jacobian matrices", Journal of the Institute of Mathematics
|
424 |
+
and its Applications, 13, pp. 117-120, 1974.
|
425 |
+
.. [11] `Cauchy-Riemann equations
|
426 |
+
<https://en.wikipedia.org/wiki/Cauchy-Riemann_equations>`_ on
|
427 |
+
Wikipedia.
|
428 |
+
.. [12] `Lotka-Volterra equations
|
429 |
+
<https://en.wikipedia.org/wiki/Lotka%E2%80%93Volterra_equations>`_
|
430 |
+
on Wikipedia.
|
431 |
+
.. [13] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
|
432 |
+
Equations I: Nonstiff Problems", Sec. II.
|
433 |
+
.. [14] `Page with original Fortran code of DOP853
|
434 |
+
<http://www.unige.ch/~hairer/software.html>`_.
|
435 |
+
|
436 |
+
Examples
|
437 |
+
--------
|
438 |
+
Basic exponential decay showing automatically chosen time points.
|
439 |
+
|
440 |
+
>>> import numpy as np
|
441 |
+
>>> from scipy.integrate import solve_ivp
|
442 |
+
>>> def exponential_decay(t, y): return -0.5 * y
|
443 |
+
>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8])
|
444 |
+
>>> print(sol.t)
|
445 |
+
[ 0. 0.11487653 1.26364188 3.06061781 4.81611105 6.57445806
|
446 |
+
8.33328988 10. ]
|
447 |
+
>>> print(sol.y)
|
448 |
+
[[2. 1.88836035 1.06327177 0.43319312 0.18017253 0.07483045
|
449 |
+
0.03107158 0.01350781]
|
450 |
+
[4. 3.7767207 2.12654355 0.86638624 0.36034507 0.14966091
|
451 |
+
0.06214316 0.02701561]
|
452 |
+
[8. 7.5534414 4.25308709 1.73277247 0.72069014 0.29932181
|
453 |
+
0.12428631 0.05403123]]
|
454 |
+
|
455 |
+
Specifying points where the solution is desired.
|
456 |
+
|
457 |
+
>>> sol = solve_ivp(exponential_decay, [0, 10], [2, 4, 8],
|
458 |
+
... t_eval=[0, 1, 2, 4, 10])
|
459 |
+
>>> print(sol.t)
|
460 |
+
[ 0 1 2 4 10]
|
461 |
+
>>> print(sol.y)
|
462 |
+
[[2. 1.21305369 0.73534021 0.27066736 0.01350938]
|
463 |
+
[4. 2.42610739 1.47068043 0.54133472 0.02701876]
|
464 |
+
[8. 4.85221478 2.94136085 1.08266944 0.05403753]]
|
465 |
+
|
466 |
+
Cannon fired upward with terminal event upon impact. The ``terminal`` and
|
467 |
+
``direction`` fields of an event are applied by monkey patching a function.
|
468 |
+
Here ``y[0]`` is position and ``y[1]`` is velocity. The projectile starts
|
469 |
+
at position 0 with velocity +10. Note that the integration never reaches
|
470 |
+
t=100 because the event is terminal.
|
471 |
+
|
472 |
+
>>> def upward_cannon(t, y): return [y[1], -0.5]
|
473 |
+
>>> def hit_ground(t, y): return y[0]
|
474 |
+
>>> hit_ground.terminal = True
|
475 |
+
>>> hit_ground.direction = -1
|
476 |
+
>>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10], events=hit_ground)
|
477 |
+
>>> print(sol.t_events)
|
478 |
+
[array([40.])]
|
479 |
+
>>> print(sol.t)
|
480 |
+
[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
|
481 |
+
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
|
482 |
+
|
483 |
+
Use `dense_output` and `events` to find position, which is 100, at the apex
|
484 |
+
of the cannonball's trajectory. Apex is not defined as terminal, so both
|
485 |
+
apex and hit_ground are found. There is no information at t=20, so the sol
|
486 |
+
attribute is used to evaluate the solution. The sol attribute is returned
|
487 |
+
by setting ``dense_output=True``. Alternatively, the `y_events` attribute
|
488 |
+
can be used to access the solution at the time of the event.
|
489 |
+
|
490 |
+
>>> def apex(t, y): return y[1]
|
491 |
+
>>> sol = solve_ivp(upward_cannon, [0, 100], [0, 10],
|
492 |
+
... events=(hit_ground, apex), dense_output=True)
|
493 |
+
>>> print(sol.t_events)
|
494 |
+
[array([40.]), array([20.])]
|
495 |
+
>>> print(sol.t)
|
496 |
+
[0.00000000e+00 9.99900010e-05 1.09989001e-03 1.10988901e-02
|
497 |
+
1.11088891e-01 1.11098890e+00 1.11099890e+01 4.00000000e+01]
|
498 |
+
>>> print(sol.sol(sol.t_events[1][0]))
|
499 |
+
[100. 0.]
|
500 |
+
>>> print(sol.y_events)
|
501 |
+
[array([[-5.68434189e-14, -1.00000000e+01]]),
|
502 |
+
array([[1.00000000e+02, 1.77635684e-15]])]
|
503 |
+
|
504 |
+
As an example of a system with additional parameters, we'll implement
|
505 |
+
the Lotka-Volterra equations [12]_.
|
506 |
+
|
507 |
+
>>> def lotkavolterra(t, z, a, b, c, d):
|
508 |
+
... x, y = z
|
509 |
+
... return [a*x - b*x*y, -c*y + d*x*y]
|
510 |
+
...
|
511 |
+
|
512 |
+
We pass in the parameter values a=1.5, b=1, c=3 and d=1 with the `args`
|
513 |
+
argument.
|
514 |
+
|
515 |
+
>>> sol = solve_ivp(lotkavolterra, [0, 15], [10, 5], args=(1.5, 1, 3, 1),
|
516 |
+
... dense_output=True)
|
517 |
+
|
518 |
+
Compute a dense solution and plot it.
|
519 |
+
|
520 |
+
>>> t = np.linspace(0, 15, 300)
|
521 |
+
>>> z = sol.sol(t)
|
522 |
+
>>> import matplotlib.pyplot as plt
|
523 |
+
>>> plt.plot(t, z.T)
|
524 |
+
>>> plt.xlabel('t')
|
525 |
+
>>> plt.legend(['x', 'y'], shadow=True)
|
526 |
+
>>> plt.title('Lotka-Volterra System')
|
527 |
+
>>> plt.show()
|
528 |
+
|
529 |
+
A couple examples of using solve_ivp to solve the differential
|
530 |
+
equation ``y' = Ay`` with complex matrix ``A``.
|
531 |
+
|
532 |
+
>>> A = np.array([[-0.25 + 0.14j, 0, 0.33 + 0.44j],
|
533 |
+
... [0.25 + 0.58j, -0.2 + 0.14j, 0],
|
534 |
+
... [0, 0.2 + 0.4j, -0.1 + 0.97j]])
|
535 |
+
|
536 |
+
Solving an IVP with ``A`` from above and ``y`` as 3x1 vector:
|
537 |
+
|
538 |
+
>>> def deriv_vec(t, y):
|
539 |
+
... return A @ y
|
540 |
+
>>> result = solve_ivp(deriv_vec, [0, 25],
|
541 |
+
... np.array([10 + 0j, 20 + 0j, 30 + 0j]),
|
542 |
+
... t_eval=np.linspace(0, 25, 101))
|
543 |
+
>>> print(result.y[:, 0])
|
544 |
+
[10.+0.j 20.+0.j 30.+0.j]
|
545 |
+
>>> print(result.y[:, -1])
|
546 |
+
[18.46291039+45.25653651j 10.01569306+36.23293216j
|
547 |
+
-4.98662741+80.07360388j]
|
548 |
+
|
549 |
+
Solving an IVP with ``A`` from above with ``y`` as 3x3 matrix :
|
550 |
+
|
551 |
+
>>> def deriv_mat(t, y):
|
552 |
+
... return (A @ y.reshape(3, 3)).flatten()
|
553 |
+
>>> y0 = np.array([[2 + 0j, 3 + 0j, 4 + 0j],
|
554 |
+
... [5 + 0j, 6 + 0j, 7 + 0j],
|
555 |
+
... [9 + 0j, 34 + 0j, 78 + 0j]])
|
556 |
+
|
557 |
+
>>> result = solve_ivp(deriv_mat, [0, 25], y0.flatten(),
|
558 |
+
... t_eval=np.linspace(0, 25, 101))
|
559 |
+
>>> print(result.y[:, 0].reshape(3, 3))
|
560 |
+
[[ 2.+0.j 3.+0.j 4.+0.j]
|
561 |
+
[ 5.+0.j 6.+0.j 7.+0.j]
|
562 |
+
[ 9.+0.j 34.+0.j 78.+0.j]]
|
563 |
+
>>> print(result.y[:, -1].reshape(3, 3))
|
564 |
+
[[ 5.67451179 +12.07938445j 17.2888073 +31.03278837j
|
565 |
+
37.83405768 +63.25138759j]
|
566 |
+
[ 3.39949503 +11.82123994j 21.32530996 +44.88668871j
|
567 |
+
53.17531184+103.80400411j]
|
568 |
+
[ -2.26105874 +22.19277664j -15.1255713 +70.19616341j
|
569 |
+
-38.34616845+153.29039931j]]
|
570 |
+
|
571 |
+
|
572 |
+
"""
|
573 |
+
if method not in METHODS and not (
|
574 |
+
inspect.isclass(method) and issubclass(method, OdeSolver)):
|
575 |
+
raise ValueError(f"`method` must be one of {METHODS} or OdeSolver class.")
|
576 |
+
|
577 |
+
t0, tf = map(float, t_span)
|
578 |
+
|
579 |
+
if args is not None:
|
580 |
+
# Wrap the user's fun (and jac, if given) in lambdas to hide the
|
581 |
+
# additional parameters. Pass in the original fun as a keyword
|
582 |
+
# argument to keep it in the scope of the lambda.
|
583 |
+
try:
|
584 |
+
_ = [*(args)]
|
585 |
+
except TypeError as exp:
|
586 |
+
suggestion_tuple = (
|
587 |
+
"Supplied 'args' cannot be unpacked. Please supply `args`"
|
588 |
+
f" as a tuple (e.g. `args=({args},)`)"
|
589 |
+
)
|
590 |
+
raise TypeError(suggestion_tuple) from exp
|
591 |
+
|
592 |
+
def fun(t, x, fun=fun):
|
593 |
+
return fun(t, x, *args)
|
594 |
+
jac = options.get('jac')
|
595 |
+
if callable(jac):
|
596 |
+
options['jac'] = lambda t, x: jac(t, x, *args)
|
597 |
+
|
598 |
+
if t_eval is not None:
|
599 |
+
t_eval = np.asarray(t_eval)
|
600 |
+
if t_eval.ndim != 1:
|
601 |
+
raise ValueError("`t_eval` must be 1-dimensional.")
|
602 |
+
|
603 |
+
if np.any(t_eval < min(t0, tf)) or np.any(t_eval > max(t0, tf)):
|
604 |
+
raise ValueError("Values in `t_eval` are not within `t_span`.")
|
605 |
+
|
606 |
+
d = np.diff(t_eval)
|
607 |
+
if tf > t0 and np.any(d <= 0) or tf < t0 and np.any(d >= 0):
|
608 |
+
raise ValueError("Values in `t_eval` are not properly sorted.")
|
609 |
+
|
610 |
+
if tf > t0:
|
611 |
+
t_eval_i = 0
|
612 |
+
else:
|
613 |
+
# Make order of t_eval decreasing to use np.searchsorted.
|
614 |
+
t_eval = t_eval[::-1]
|
615 |
+
# This will be an upper bound for slices.
|
616 |
+
t_eval_i = t_eval.shape[0]
|
617 |
+
|
618 |
+
if method in METHODS:
|
619 |
+
method = METHODS[method]
|
620 |
+
|
621 |
+
solver = method(fun, t0, y0, tf, vectorized=vectorized, **options)
|
622 |
+
|
623 |
+
if t_eval is None:
|
624 |
+
ts = [t0]
|
625 |
+
ys = [y0]
|
626 |
+
elif t_eval is not None and dense_output:
|
627 |
+
ts = []
|
628 |
+
ti = [t0]
|
629 |
+
ys = []
|
630 |
+
else:
|
631 |
+
ts = []
|
632 |
+
ys = []
|
633 |
+
|
634 |
+
interpolants = []
|
635 |
+
|
636 |
+
if events is not None:
|
637 |
+
events, max_events, event_dir = prepare_events(events)
|
638 |
+
event_count = np.zeros(len(events))
|
639 |
+
if args is not None:
|
640 |
+
# Wrap user functions in lambdas to hide the additional parameters.
|
641 |
+
# The original event function is passed as a keyword argument to the
|
642 |
+
# lambda to keep the original function in scope (i.e., avoid the
|
643 |
+
# late binding closure "gotcha").
|
644 |
+
events = [lambda t, x, event=event: event(t, x, *args)
|
645 |
+
for event in events]
|
646 |
+
g = [event(t0, y0) for event in events]
|
647 |
+
t_events = [[] for _ in range(len(events))]
|
648 |
+
y_events = [[] for _ in range(len(events))]
|
649 |
+
else:
|
650 |
+
t_events = None
|
651 |
+
y_events = None
|
652 |
+
|
653 |
+
status = None
|
654 |
+
while status is None:
|
655 |
+
message = solver.step()
|
656 |
+
|
657 |
+
if solver.status == 'finished':
|
658 |
+
status = 0
|
659 |
+
elif solver.status == 'failed':
|
660 |
+
status = -1
|
661 |
+
break
|
662 |
+
|
663 |
+
t_old = solver.t_old
|
664 |
+
t = solver.t
|
665 |
+
y = solver.y
|
666 |
+
|
667 |
+
if dense_output:
|
668 |
+
sol = solver.dense_output()
|
669 |
+
interpolants.append(sol)
|
670 |
+
else:
|
671 |
+
sol = None
|
672 |
+
|
673 |
+
if events is not None:
|
674 |
+
g_new = [event(t, y) for event in events]
|
675 |
+
active_events = find_active_events(g, g_new, event_dir)
|
676 |
+
if active_events.size > 0:
|
677 |
+
if sol is None:
|
678 |
+
sol = solver.dense_output()
|
679 |
+
|
680 |
+
event_count[active_events] += 1
|
681 |
+
root_indices, roots, terminate = handle_events(
|
682 |
+
sol, events, active_events, event_count, max_events,
|
683 |
+
t_old, t)
|
684 |
+
|
685 |
+
for e, te in zip(root_indices, roots):
|
686 |
+
t_events[e].append(te)
|
687 |
+
y_events[e].append(sol(te))
|
688 |
+
|
689 |
+
if terminate:
|
690 |
+
status = 1
|
691 |
+
t = roots[-1]
|
692 |
+
y = sol(t)
|
693 |
+
|
694 |
+
g = g_new
|
695 |
+
|
696 |
+
if t_eval is None:
|
697 |
+
ts.append(t)
|
698 |
+
ys.append(y)
|
699 |
+
else:
|
700 |
+
# The value in t_eval equal to t will be included.
|
701 |
+
if solver.direction > 0:
|
702 |
+
t_eval_i_new = np.searchsorted(t_eval, t, side='right')
|
703 |
+
t_eval_step = t_eval[t_eval_i:t_eval_i_new]
|
704 |
+
else:
|
705 |
+
t_eval_i_new = np.searchsorted(t_eval, t, side='left')
|
706 |
+
# It has to be done with two slice operations, because
|
707 |
+
# you can't slice to 0th element inclusive using backward
|
708 |
+
# slicing.
|
709 |
+
t_eval_step = t_eval[t_eval_i_new:t_eval_i][::-1]
|
710 |
+
|
711 |
+
if t_eval_step.size > 0:
|
712 |
+
if sol is None:
|
713 |
+
sol = solver.dense_output()
|
714 |
+
ts.append(t_eval_step)
|
715 |
+
ys.append(sol(t_eval_step))
|
716 |
+
t_eval_i = t_eval_i_new
|
717 |
+
|
718 |
+
if t_eval is not None and dense_output:
|
719 |
+
ti.append(t)
|
720 |
+
|
721 |
+
message = MESSAGES.get(status, message)
|
722 |
+
|
723 |
+
if t_events is not None:
|
724 |
+
t_events = [np.asarray(te) for te in t_events]
|
725 |
+
y_events = [np.asarray(ye) for ye in y_events]
|
726 |
+
|
727 |
+
if t_eval is None:
|
728 |
+
ts = np.array(ts)
|
729 |
+
ys = np.vstack(ys).T
|
730 |
+
elif ts:
|
731 |
+
ts = np.hstack(ts)
|
732 |
+
ys = np.hstack(ys)
|
733 |
+
|
734 |
+
if dense_output:
|
735 |
+
if t_eval is None:
|
736 |
+
sol = OdeSolution(
|
737 |
+
ts, interpolants, alt_segment=True if method in [BDF, LSODA] else False
|
738 |
+
)
|
739 |
+
else:
|
740 |
+
sol = OdeSolution(
|
741 |
+
ti, interpolants, alt_segment=True if method in [BDF, LSODA] else False
|
742 |
+
)
|
743 |
+
else:
|
744 |
+
sol = None
|
745 |
+
|
746 |
+
return OdeResult(t=ts, y=ys, sol=sol, t_events=t_events, y_events=y_events,
|
747 |
+
nfev=solver.nfev, njev=solver.njev, nlu=solver.nlu,
|
748 |
+
status=status, message=message, success=status >= 0)
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/lsoda.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.integrate import ode
|
3 |
+
from .common import validate_tol, validate_first_step, warn_extraneous
|
4 |
+
from .base import OdeSolver, DenseOutput
|
5 |
+
|
6 |
+
|
7 |
+
class LSODA(OdeSolver):
|
8 |
+
"""Adams/BDF method with automatic stiffness detection and switching.
|
9 |
+
|
10 |
+
This is a wrapper to the Fortran solver from ODEPACK [1]_. It switches
|
11 |
+
automatically between the nonstiff Adams method and the stiff BDF method.
|
12 |
+
The method was originally detailed in [2]_.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
fun : callable
|
17 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
18 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
19 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
|
20 |
+
return an array of the same shape as ``y``. See `vectorized` for more
|
21 |
+
information.
|
22 |
+
t0 : float
|
23 |
+
Initial time.
|
24 |
+
y0 : array_like, shape (n,)
|
25 |
+
Initial state.
|
26 |
+
t_bound : float
|
27 |
+
Boundary time - the integration won't continue beyond it. It also
|
28 |
+
determines the direction of the integration.
|
29 |
+
first_step : float or None, optional
|
30 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
31 |
+
should choose.
|
32 |
+
min_step : float, optional
|
33 |
+
Minimum allowed step size. Default is 0.0, i.e., the step size is not
|
34 |
+
bounded and determined solely by the solver.
|
35 |
+
max_step : float, optional
|
36 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
37 |
+
bounded and determined solely by the solver.
|
38 |
+
rtol, atol : float and array_like, optional
|
39 |
+
Relative and absolute tolerances. The solver keeps the local error
|
40 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
41 |
+
relative accuracy (number of correct digits), while `atol` controls
|
42 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
43 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
44 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
45 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
46 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
47 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
48 |
+
than `atol`. If components of y have different scales, it might be
|
49 |
+
beneficial to set different `atol` values for different components by
|
50 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
51 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
52 |
+
jac : None or callable, optional
|
53 |
+
Jacobian matrix of the right-hand side of the system with respect to
|
54 |
+
``y``. The Jacobian matrix has shape (n, n) and its element (i, j) is
|
55 |
+
equal to ``d f_i / d y_j``. The function will be called as
|
56 |
+
``jac(t, y)``. If None (default), the Jacobian will be
|
57 |
+
approximated by finite differences. It is generally recommended to
|
58 |
+
provide the Jacobian rather than relying on a finite-difference
|
59 |
+
approximation.
|
60 |
+
lband, uband : int or None
|
61 |
+
Parameters defining the bandwidth of the Jacobian,
|
62 |
+
i.e., ``jac[i, j] != 0 only for i - lband <= j <= i + uband``. Setting
|
63 |
+
these requires your jac routine to return the Jacobian in the packed format:
|
64 |
+
the returned array must have ``n`` columns and ``uband + lband + 1``
|
65 |
+
rows in which Jacobian diagonals are written. Specifically
|
66 |
+
``jac_packed[uband + i - j , j] = jac[i, j]``. The same format is used
|
67 |
+
in `scipy.linalg.solve_banded` (check for an illustration).
|
68 |
+
These parameters can be also used with ``jac=None`` to reduce the
|
69 |
+
number of Jacobian elements estimated by finite differences.
|
70 |
+
vectorized : bool, optional
|
71 |
+
Whether `fun` may be called in a vectorized fashion. False (default)
|
72 |
+
is recommended for this solver.
|
73 |
+
|
74 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
75 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
76 |
+
|
77 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
78 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
79 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
80 |
+
the returned array is the time derivative of the state corresponding
|
81 |
+
with a column of ``y``).
|
82 |
+
|
83 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
84 |
+
approximation of the Jacobian by methods 'Radau' and 'BDF', but
|
85 |
+
will result in slower execution for this solver.
|
86 |
+
|
87 |
+
Attributes
|
88 |
+
----------
|
89 |
+
n : int
|
90 |
+
Number of equations.
|
91 |
+
status : string
|
92 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
93 |
+
t_bound : float
|
94 |
+
Boundary time.
|
95 |
+
direction : float
|
96 |
+
Integration direction: +1 or -1.
|
97 |
+
t : float
|
98 |
+
Current time.
|
99 |
+
y : ndarray
|
100 |
+
Current state.
|
101 |
+
t_old : float
|
102 |
+
Previous time. None if no steps were made yet.
|
103 |
+
nfev : int
|
104 |
+
Number of evaluations of the right-hand side.
|
105 |
+
njev : int
|
106 |
+
Number of evaluations of the Jacobian.
|
107 |
+
|
108 |
+
References
|
109 |
+
----------
|
110 |
+
.. [1] A. C. Hindmarsh, "ODEPACK, A Systematized Collection of ODE
|
111 |
+
Solvers," IMACS Transactions on Scientific Computation, Vol 1.,
|
112 |
+
pp. 55-64, 1983.
|
113 |
+
.. [2] L. Petzold, "Automatic selection of methods for solving stiff and
|
114 |
+
nonstiff systems of ordinary differential equations", SIAM Journal
|
115 |
+
on Scientific and Statistical Computing, Vol. 4, No. 1, pp. 136-148,
|
116 |
+
1983.
|
117 |
+
"""
|
118 |
+
def __init__(self, fun, t0, y0, t_bound, first_step=None, min_step=0.0,
|
119 |
+
max_step=np.inf, rtol=1e-3, atol=1e-6, jac=None, lband=None,
|
120 |
+
uband=None, vectorized=False, **extraneous):
|
121 |
+
warn_extraneous(extraneous)
|
122 |
+
super().__init__(fun, t0, y0, t_bound, vectorized)
|
123 |
+
|
124 |
+
if first_step is None:
|
125 |
+
first_step = 0 # LSODA value for automatic selection.
|
126 |
+
else:
|
127 |
+
first_step = validate_first_step(first_step, t0, t_bound)
|
128 |
+
|
129 |
+
first_step *= self.direction
|
130 |
+
|
131 |
+
if max_step == np.inf:
|
132 |
+
max_step = 0 # LSODA value for infinity.
|
133 |
+
elif max_step <= 0:
|
134 |
+
raise ValueError("`max_step` must be positive.")
|
135 |
+
|
136 |
+
if min_step < 0:
|
137 |
+
raise ValueError("`min_step` must be nonnegative.")
|
138 |
+
|
139 |
+
rtol, atol = validate_tol(rtol, atol, self.n)
|
140 |
+
|
141 |
+
solver = ode(self.fun, jac)
|
142 |
+
solver.set_integrator('lsoda', rtol=rtol, atol=atol, max_step=max_step,
|
143 |
+
min_step=min_step, first_step=first_step,
|
144 |
+
lband=lband, uband=uband)
|
145 |
+
solver.set_initial_value(y0, t0)
|
146 |
+
|
147 |
+
# Inject t_bound into rwork array as needed for itask=5.
|
148 |
+
solver._integrator.rwork[0] = self.t_bound
|
149 |
+
solver._integrator.call_args[4] = solver._integrator.rwork
|
150 |
+
|
151 |
+
self._lsoda_solver = solver
|
152 |
+
|
153 |
+
def _step_impl(self):
|
154 |
+
solver = self._lsoda_solver
|
155 |
+
integrator = solver._integrator
|
156 |
+
|
157 |
+
# From lsoda.step and lsoda.integrate itask=5 means take a single
|
158 |
+
# step and do not go past t_bound.
|
159 |
+
itask = integrator.call_args[2]
|
160 |
+
integrator.call_args[2] = 5
|
161 |
+
solver._y, solver.t = integrator.run(
|
162 |
+
solver.f, solver.jac or (lambda: None), solver._y, solver.t,
|
163 |
+
self.t_bound, solver.f_params, solver.jac_params)
|
164 |
+
integrator.call_args[2] = itask
|
165 |
+
|
166 |
+
if solver.successful():
|
167 |
+
self.t = solver.t
|
168 |
+
self.y = solver._y
|
169 |
+
# From LSODA Fortran source njev is equal to nlu.
|
170 |
+
self.njev = integrator.iwork[12]
|
171 |
+
self.nlu = integrator.iwork[12]
|
172 |
+
return True, None
|
173 |
+
else:
|
174 |
+
return False, 'Unexpected istate in LSODA.'
|
175 |
+
|
176 |
+
def _dense_output_impl(self):
|
177 |
+
iwork = self._lsoda_solver._integrator.iwork
|
178 |
+
rwork = self._lsoda_solver._integrator.rwork
|
179 |
+
|
180 |
+
# We want to produce the Nordsieck history array, yh, up to the order
|
181 |
+
# used in the last successful iteration. The step size is unimportant
|
182 |
+
# because it will be scaled out in LsodaDenseOutput. Some additional
|
183 |
+
# work may be required because ODEPACK's LSODA implementation produces
|
184 |
+
# the Nordsieck history in the state needed for the next iteration.
|
185 |
+
|
186 |
+
# iwork[13] contains order from last successful iteration, while
|
187 |
+
# iwork[14] contains order to be attempted next.
|
188 |
+
order = iwork[13]
|
189 |
+
|
190 |
+
# rwork[11] contains the step size to be attempted next, while
|
191 |
+
# rwork[10] contains step size from last successful iteration.
|
192 |
+
h = rwork[11]
|
193 |
+
|
194 |
+
# rwork[20:20 + (iwork[14] + 1) * self.n] contains entries of the
|
195 |
+
# Nordsieck array in state needed for next iteration. We want
|
196 |
+
# the entries up to order for the last successful step so use the
|
197 |
+
# following.
|
198 |
+
yh = np.reshape(rwork[20:20 + (order + 1) * self.n],
|
199 |
+
(self.n, order + 1), order='F').copy()
|
200 |
+
if iwork[14] < order:
|
201 |
+
# If the order is set to decrease then the final column of yh
|
202 |
+
# has not been updated within ODEPACK's LSODA
|
203 |
+
# implementation because this column will not be used in the
|
204 |
+
# next iteration. We must rescale this column to make the
|
205 |
+
# associated step size consistent with the other columns.
|
206 |
+
yh[:, -1] *= (h / rwork[10]) ** order
|
207 |
+
|
208 |
+
return LsodaDenseOutput(self.t_old, self.t, h, order, yh)
|
209 |
+
|
210 |
+
|
211 |
+
class LsodaDenseOutput(DenseOutput):
|
212 |
+
def __init__(self, t_old, t, h, order, yh):
|
213 |
+
super().__init__(t_old, t)
|
214 |
+
self.h = h
|
215 |
+
self.yh = yh
|
216 |
+
self.p = np.arange(order + 1)
|
217 |
+
|
218 |
+
def _call_impl(self, t):
|
219 |
+
if t.ndim == 0:
|
220 |
+
x = ((t - self.t) / self.h) ** self.p
|
221 |
+
else:
|
222 |
+
x = ((t - self.t) / self.h) ** self.p[:, None]
|
223 |
+
|
224 |
+
return np.dot(self.yh, x)
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/radau.py
ADDED
@@ -0,0 +1,574 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy.linalg import lu_factor, lu_solve
|
3 |
+
from scipy.sparse import csc_matrix, issparse, eye
|
4 |
+
from scipy.sparse.linalg import splu
|
5 |
+
from scipy.optimize._numdiff import group_columns
|
6 |
+
from .common import (validate_max_step, validate_tol, select_initial_step,
|
7 |
+
norm, num_jac, EPS, warn_extraneous,
|
8 |
+
validate_first_step)
|
9 |
+
from .base import OdeSolver, DenseOutput
|
10 |
+
|
11 |
+
S6 = 6 ** 0.5
|
12 |
+
|
13 |
+
# Butcher tableau. A is not used directly, see below.
|
14 |
+
C = np.array([(4 - S6) / 10, (4 + S6) / 10, 1])
|
15 |
+
E = np.array([-13 - 7 * S6, -13 + 7 * S6, -1]) / 3
|
16 |
+
|
17 |
+
# Eigendecomposition of A is done: A = T L T**-1. There is 1 real eigenvalue
|
18 |
+
# and a complex conjugate pair. They are written below.
|
19 |
+
MU_REAL = 3 + 3 ** (2 / 3) - 3 ** (1 / 3)
|
20 |
+
MU_COMPLEX = (3 + 0.5 * (3 ** (1 / 3) - 3 ** (2 / 3))
|
21 |
+
- 0.5j * (3 ** (5 / 6) + 3 ** (7 / 6)))
|
22 |
+
|
23 |
+
# These are transformation matrices.
|
24 |
+
T = np.array([
|
25 |
+
[0.09443876248897524, -0.14125529502095421, 0.03002919410514742],
|
26 |
+
[0.25021312296533332, 0.20412935229379994, -0.38294211275726192],
|
27 |
+
[1, 1, 0]])
|
28 |
+
TI = np.array([
|
29 |
+
[4.17871859155190428, 0.32768282076106237, 0.52337644549944951],
|
30 |
+
[-4.17871859155190428, -0.32768282076106237, 0.47662355450055044],
|
31 |
+
[0.50287263494578682, -2.57192694985560522, 0.59603920482822492]])
|
32 |
+
# These linear combinations are used in the algorithm.
|
33 |
+
TI_REAL = TI[0]
|
34 |
+
TI_COMPLEX = TI[1] + 1j * TI[2]
|
35 |
+
|
36 |
+
# Interpolator coefficients.
|
37 |
+
P = np.array([
|
38 |
+
[13/3 + 7*S6/3, -23/3 - 22*S6/3, 10/3 + 5 * S6],
|
39 |
+
[13/3 - 7*S6/3, -23/3 + 22*S6/3, 10/3 - 5 * S6],
|
40 |
+
[1/3, -8/3, 10/3]])
|
41 |
+
|
42 |
+
|
43 |
+
NEWTON_MAXITER = 6 # Maximum number of Newton iterations.
|
44 |
+
MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
|
45 |
+
MAX_FACTOR = 10 # Maximum allowed increase in a step size.
|
46 |
+
|
47 |
+
|
48 |
+
def solve_collocation_system(fun, t, y, h, Z0, scale, tol,
|
49 |
+
LU_real, LU_complex, solve_lu):
|
50 |
+
"""Solve the collocation system.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
fun : callable
|
55 |
+
Right-hand side of the system.
|
56 |
+
t : float
|
57 |
+
Current time.
|
58 |
+
y : ndarray, shape (n,)
|
59 |
+
Current state.
|
60 |
+
h : float
|
61 |
+
Step to try.
|
62 |
+
Z0 : ndarray, shape (3, n)
|
63 |
+
Initial guess for the solution. It determines new values of `y` at
|
64 |
+
``t + h * C`` as ``y + Z0``, where ``C`` is the Radau method constants.
|
65 |
+
scale : ndarray, shape (n)
|
66 |
+
Problem tolerance scale, i.e. ``rtol * abs(y) + atol``.
|
67 |
+
tol : float
|
68 |
+
Tolerance to which solve the system. This value is compared with
|
69 |
+
the normalized by `scale` error.
|
70 |
+
LU_real, LU_complex
|
71 |
+
LU decompositions of the system Jacobians.
|
72 |
+
solve_lu : callable
|
73 |
+
Callable which solves a linear system given a LU decomposition. The
|
74 |
+
signature is ``solve_lu(LU, b)``.
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
converged : bool
|
79 |
+
Whether iterations converged.
|
80 |
+
n_iter : int
|
81 |
+
Number of completed iterations.
|
82 |
+
Z : ndarray, shape (3, n)
|
83 |
+
Found solution.
|
84 |
+
rate : float
|
85 |
+
The rate of convergence.
|
86 |
+
"""
|
87 |
+
n = y.shape[0]
|
88 |
+
M_real = MU_REAL / h
|
89 |
+
M_complex = MU_COMPLEX / h
|
90 |
+
|
91 |
+
W = TI.dot(Z0)
|
92 |
+
Z = Z0
|
93 |
+
|
94 |
+
F = np.empty((3, n))
|
95 |
+
ch = h * C
|
96 |
+
|
97 |
+
dW_norm_old = None
|
98 |
+
dW = np.empty_like(W)
|
99 |
+
converged = False
|
100 |
+
rate = None
|
101 |
+
for k in range(NEWTON_MAXITER):
|
102 |
+
for i in range(3):
|
103 |
+
F[i] = fun(t + ch[i], y + Z[i])
|
104 |
+
|
105 |
+
if not np.all(np.isfinite(F)):
|
106 |
+
break
|
107 |
+
|
108 |
+
f_real = F.T.dot(TI_REAL) - M_real * W[0]
|
109 |
+
f_complex = F.T.dot(TI_COMPLEX) - M_complex * (W[1] + 1j * W[2])
|
110 |
+
|
111 |
+
dW_real = solve_lu(LU_real, f_real)
|
112 |
+
dW_complex = solve_lu(LU_complex, f_complex)
|
113 |
+
|
114 |
+
dW[0] = dW_real
|
115 |
+
dW[1] = dW_complex.real
|
116 |
+
dW[2] = dW_complex.imag
|
117 |
+
|
118 |
+
dW_norm = norm(dW / scale)
|
119 |
+
if dW_norm_old is not None:
|
120 |
+
rate = dW_norm / dW_norm_old
|
121 |
+
|
122 |
+
if (rate is not None and (rate >= 1 or
|
123 |
+
rate ** (NEWTON_MAXITER - k) / (1 - rate) * dW_norm > tol)):
|
124 |
+
break
|
125 |
+
|
126 |
+
W += dW
|
127 |
+
Z = T.dot(W)
|
128 |
+
|
129 |
+
if (dW_norm == 0 or
|
130 |
+
rate is not None and rate / (1 - rate) * dW_norm < tol):
|
131 |
+
converged = True
|
132 |
+
break
|
133 |
+
|
134 |
+
dW_norm_old = dW_norm
|
135 |
+
|
136 |
+
return converged, k + 1, Z, rate
|
137 |
+
|
138 |
+
|
139 |
+
def predict_factor(h_abs, h_abs_old, error_norm, error_norm_old):
|
140 |
+
"""Predict by which factor to increase/decrease the step size.
|
141 |
+
|
142 |
+
The algorithm is described in [1]_.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
h_abs, h_abs_old : float
|
147 |
+
Current and previous values of the step size, `h_abs_old` can be None
|
148 |
+
(see Notes).
|
149 |
+
error_norm, error_norm_old : float
|
150 |
+
Current and previous values of the error norm, `error_norm_old` can
|
151 |
+
be None (see Notes).
|
152 |
+
|
153 |
+
Returns
|
154 |
+
-------
|
155 |
+
factor : float
|
156 |
+
Predicted factor.
|
157 |
+
|
158 |
+
Notes
|
159 |
+
-----
|
160 |
+
If `h_abs_old` and `error_norm_old` are both not None then a two-step
|
161 |
+
algorithm is used, otherwise a one-step algorithm is used.
|
162 |
+
|
163 |
+
References
|
164 |
+
----------
|
165 |
+
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
|
166 |
+
Equations II: Stiff and Differential-Algebraic Problems", Sec. IV.8.
|
167 |
+
"""
|
168 |
+
if error_norm_old is None or h_abs_old is None or error_norm == 0:
|
169 |
+
multiplier = 1
|
170 |
+
else:
|
171 |
+
multiplier = h_abs / h_abs_old * (error_norm_old / error_norm) ** 0.25
|
172 |
+
|
173 |
+
with np.errstate(divide='ignore'):
|
174 |
+
factor = min(1, multiplier) * error_norm ** -0.25
|
175 |
+
|
176 |
+
return factor
|
177 |
+
|
178 |
+
|
179 |
+
class Radau(OdeSolver):
|
180 |
+
"""Implicit Runge-Kutta method of Radau IIA family of order 5.
|
181 |
+
|
182 |
+
The implementation follows [1]_. The error is controlled with a
|
183 |
+
third-order accurate embedded formula. A cubic polynomial which satisfies
|
184 |
+
the collocation conditions is used for the dense output.
|
185 |
+
|
186 |
+
Parameters
|
187 |
+
----------
|
188 |
+
fun : callable
|
189 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
190 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
191 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
|
192 |
+
return an array of the same shape as ``y``. See `vectorized` for more
|
193 |
+
information.
|
194 |
+
t0 : float
|
195 |
+
Initial time.
|
196 |
+
y0 : array_like, shape (n,)
|
197 |
+
Initial state.
|
198 |
+
t_bound : float
|
199 |
+
Boundary time - the integration won't continue beyond it. It also
|
200 |
+
determines the direction of the integration.
|
201 |
+
first_step : float or None, optional
|
202 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
203 |
+
should choose.
|
204 |
+
max_step : float, optional
|
205 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
206 |
+
bounded and determined solely by the solver.
|
207 |
+
rtol, atol : float and array_like, optional
|
208 |
+
Relative and absolute tolerances. The solver keeps the local error
|
209 |
+
estimates less than ``atol + rtol * abs(y)``. HHere `rtol` controls a
|
210 |
+
relative accuracy (number of correct digits), while `atol` controls
|
211 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
212 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
213 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
214 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
215 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
216 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
217 |
+
than `atol`. If components of y have different scales, it might be
|
218 |
+
beneficial to set different `atol` values for different components by
|
219 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
220 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
221 |
+
jac : {None, array_like, sparse_matrix, callable}, optional
|
222 |
+
Jacobian matrix of the right-hand side of the system with respect to
|
223 |
+
y, required by this method. The Jacobian matrix has shape (n, n) and
|
224 |
+
its element (i, j) is equal to ``d f_i / d y_j``.
|
225 |
+
There are three ways to define the Jacobian:
|
226 |
+
|
227 |
+
* If array_like or sparse_matrix, the Jacobian is assumed to
|
228 |
+
be constant.
|
229 |
+
* If callable, the Jacobian is assumed to depend on both
|
230 |
+
t and y; it will be called as ``jac(t, y)`` as necessary.
|
231 |
+
For the 'Radau' and 'BDF' methods, the return value might be a
|
232 |
+
sparse matrix.
|
233 |
+
* If None (default), the Jacobian will be approximated by
|
234 |
+
finite differences.
|
235 |
+
|
236 |
+
It is generally recommended to provide the Jacobian rather than
|
237 |
+
relying on a finite-difference approximation.
|
238 |
+
jac_sparsity : {None, array_like, sparse matrix}, optional
|
239 |
+
Defines a sparsity structure of the Jacobian matrix for a
|
240 |
+
finite-difference approximation. Its shape must be (n, n). This argument
|
241 |
+
is ignored if `jac` is not `None`. If the Jacobian has only few non-zero
|
242 |
+
elements in *each* row, providing the sparsity structure will greatly
|
243 |
+
speed up the computations [2]_. A zero entry means that a corresponding
|
244 |
+
element in the Jacobian is always zero. If None (default), the Jacobian
|
245 |
+
is assumed to be dense.
|
246 |
+
vectorized : bool, optional
|
247 |
+
Whether `fun` can be called in a vectorized fashion. Default is False.
|
248 |
+
|
249 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
250 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
251 |
+
|
252 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
253 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
254 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
255 |
+
the returned array is the time derivative of the state corresponding
|
256 |
+
with a column of ``y``).
|
257 |
+
|
258 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
259 |
+
approximation of the Jacobian by this method, but may result in slower
|
260 |
+
execution overall in some circumstances (e.g. small ``len(y0)``).
|
261 |
+
|
262 |
+
Attributes
|
263 |
+
----------
|
264 |
+
n : int
|
265 |
+
Number of equations.
|
266 |
+
status : string
|
267 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
268 |
+
t_bound : float
|
269 |
+
Boundary time.
|
270 |
+
direction : float
|
271 |
+
Integration direction: +1 or -1.
|
272 |
+
t : float
|
273 |
+
Current time.
|
274 |
+
y : ndarray
|
275 |
+
Current state.
|
276 |
+
t_old : float
|
277 |
+
Previous time. None if no steps were made yet.
|
278 |
+
step_size : float
|
279 |
+
Size of the last successful step. None if no steps were made yet.
|
280 |
+
nfev : int
|
281 |
+
Number of evaluations of the right-hand side.
|
282 |
+
njev : int
|
283 |
+
Number of evaluations of the Jacobian.
|
284 |
+
nlu : int
|
285 |
+
Number of LU decompositions.
|
286 |
+
|
287 |
+
References
|
288 |
+
----------
|
289 |
+
.. [1] E. Hairer, G. Wanner, "Solving Ordinary Differential Equations II:
|
290 |
+
Stiff and Differential-Algebraic Problems", Sec. IV.8.
|
291 |
+
.. [2] A. Curtis, M. J. D. Powell, and J. Reid, "On the estimation of
|
292 |
+
sparse Jacobian matrices", Journal of the Institute of Mathematics
|
293 |
+
and its Applications, 13, pp. 117-120, 1974.
|
294 |
+
"""
|
295 |
+
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
|
296 |
+
rtol=1e-3, atol=1e-6, jac=None, jac_sparsity=None,
|
297 |
+
vectorized=False, first_step=None, **extraneous):
|
298 |
+
warn_extraneous(extraneous)
|
299 |
+
super().__init__(fun, t0, y0, t_bound, vectorized)
|
300 |
+
self.y_old = None
|
301 |
+
self.max_step = validate_max_step(max_step)
|
302 |
+
self.rtol, self.atol = validate_tol(rtol, atol, self.n)
|
303 |
+
self.f = self.fun(self.t, self.y)
|
304 |
+
# Select initial step assuming the same order which is used to control
|
305 |
+
# the error.
|
306 |
+
if first_step is None:
|
307 |
+
self.h_abs = select_initial_step(
|
308 |
+
self.fun, self.t, self.y, self.f, self.direction,
|
309 |
+
3, self.rtol, self.atol)
|
310 |
+
else:
|
311 |
+
self.h_abs = validate_first_step(first_step, t0, t_bound)
|
312 |
+
self.h_abs_old = None
|
313 |
+
self.error_norm_old = None
|
314 |
+
|
315 |
+
self.newton_tol = max(10 * EPS / rtol, min(0.03, rtol ** 0.5))
|
316 |
+
self.sol = None
|
317 |
+
|
318 |
+
self.jac_factor = None
|
319 |
+
self.jac, self.J = self._validate_jac(jac, jac_sparsity)
|
320 |
+
if issparse(self.J):
|
321 |
+
def lu(A):
|
322 |
+
self.nlu += 1
|
323 |
+
return splu(A)
|
324 |
+
|
325 |
+
def solve_lu(LU, b):
|
326 |
+
return LU.solve(b)
|
327 |
+
|
328 |
+
I = eye(self.n, format='csc')
|
329 |
+
else:
|
330 |
+
def lu(A):
|
331 |
+
self.nlu += 1
|
332 |
+
return lu_factor(A, overwrite_a=True)
|
333 |
+
|
334 |
+
def solve_lu(LU, b):
|
335 |
+
return lu_solve(LU, b, overwrite_b=True)
|
336 |
+
|
337 |
+
I = np.identity(self.n)
|
338 |
+
|
339 |
+
self.lu = lu
|
340 |
+
self.solve_lu = solve_lu
|
341 |
+
self.I = I
|
342 |
+
|
343 |
+
self.current_jac = True
|
344 |
+
self.LU_real = None
|
345 |
+
self.LU_complex = None
|
346 |
+
self.Z = None
|
347 |
+
|
348 |
+
def _validate_jac(self, jac, sparsity):
|
349 |
+
t0 = self.t
|
350 |
+
y0 = self.y
|
351 |
+
|
352 |
+
if jac is None:
|
353 |
+
if sparsity is not None:
|
354 |
+
if issparse(sparsity):
|
355 |
+
sparsity = csc_matrix(sparsity)
|
356 |
+
groups = group_columns(sparsity)
|
357 |
+
sparsity = (sparsity, groups)
|
358 |
+
|
359 |
+
def jac_wrapped(t, y, f):
|
360 |
+
self.njev += 1
|
361 |
+
J, self.jac_factor = num_jac(self.fun_vectorized, t, y, f,
|
362 |
+
self.atol, self.jac_factor,
|
363 |
+
sparsity)
|
364 |
+
return J
|
365 |
+
J = jac_wrapped(t0, y0, self.f)
|
366 |
+
elif callable(jac):
|
367 |
+
J = jac(t0, y0)
|
368 |
+
self.njev = 1
|
369 |
+
if issparse(J):
|
370 |
+
J = csc_matrix(J)
|
371 |
+
|
372 |
+
def jac_wrapped(t, y, _=None):
|
373 |
+
self.njev += 1
|
374 |
+
return csc_matrix(jac(t, y), dtype=float)
|
375 |
+
|
376 |
+
else:
|
377 |
+
J = np.asarray(J, dtype=float)
|
378 |
+
|
379 |
+
def jac_wrapped(t, y, _=None):
|
380 |
+
self.njev += 1
|
381 |
+
return np.asarray(jac(t, y), dtype=float)
|
382 |
+
|
383 |
+
if J.shape != (self.n, self.n):
|
384 |
+
raise ValueError("`jac` is expected to have shape {}, but "
|
385 |
+
"actually has {}."
|
386 |
+
.format((self.n, self.n), J.shape))
|
387 |
+
else:
|
388 |
+
if issparse(jac):
|
389 |
+
J = csc_matrix(jac)
|
390 |
+
else:
|
391 |
+
J = np.asarray(jac, dtype=float)
|
392 |
+
|
393 |
+
if J.shape != (self.n, self.n):
|
394 |
+
raise ValueError("`jac` is expected to have shape {}, but "
|
395 |
+
"actually has {}."
|
396 |
+
.format((self.n, self.n), J.shape))
|
397 |
+
jac_wrapped = None
|
398 |
+
|
399 |
+
return jac_wrapped, J
|
400 |
+
|
401 |
+
def _step_impl(self):
|
402 |
+
t = self.t
|
403 |
+
y = self.y
|
404 |
+
f = self.f
|
405 |
+
|
406 |
+
max_step = self.max_step
|
407 |
+
atol = self.atol
|
408 |
+
rtol = self.rtol
|
409 |
+
|
410 |
+
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
|
411 |
+
if self.h_abs > max_step:
|
412 |
+
h_abs = max_step
|
413 |
+
h_abs_old = None
|
414 |
+
error_norm_old = None
|
415 |
+
elif self.h_abs < min_step:
|
416 |
+
h_abs = min_step
|
417 |
+
h_abs_old = None
|
418 |
+
error_norm_old = None
|
419 |
+
else:
|
420 |
+
h_abs = self.h_abs
|
421 |
+
h_abs_old = self.h_abs_old
|
422 |
+
error_norm_old = self.error_norm_old
|
423 |
+
|
424 |
+
J = self.J
|
425 |
+
LU_real = self.LU_real
|
426 |
+
LU_complex = self.LU_complex
|
427 |
+
|
428 |
+
current_jac = self.current_jac
|
429 |
+
jac = self.jac
|
430 |
+
|
431 |
+
rejected = False
|
432 |
+
step_accepted = False
|
433 |
+
message = None
|
434 |
+
while not step_accepted:
|
435 |
+
if h_abs < min_step:
|
436 |
+
return False, self.TOO_SMALL_STEP
|
437 |
+
|
438 |
+
h = h_abs * self.direction
|
439 |
+
t_new = t + h
|
440 |
+
|
441 |
+
if self.direction * (t_new - self.t_bound) > 0:
|
442 |
+
t_new = self.t_bound
|
443 |
+
|
444 |
+
h = t_new - t
|
445 |
+
h_abs = np.abs(h)
|
446 |
+
|
447 |
+
if self.sol is None:
|
448 |
+
Z0 = np.zeros((3, y.shape[0]))
|
449 |
+
else:
|
450 |
+
Z0 = self.sol(t + h * C).T - y
|
451 |
+
|
452 |
+
scale = atol + np.abs(y) * rtol
|
453 |
+
|
454 |
+
converged = False
|
455 |
+
while not converged:
|
456 |
+
if LU_real is None or LU_complex is None:
|
457 |
+
LU_real = self.lu(MU_REAL / h * self.I - J)
|
458 |
+
LU_complex = self.lu(MU_COMPLEX / h * self.I - J)
|
459 |
+
|
460 |
+
converged, n_iter, Z, rate = solve_collocation_system(
|
461 |
+
self.fun, t, y, h, Z0, scale, self.newton_tol,
|
462 |
+
LU_real, LU_complex, self.solve_lu)
|
463 |
+
|
464 |
+
if not converged:
|
465 |
+
if current_jac:
|
466 |
+
break
|
467 |
+
|
468 |
+
J = self.jac(t, y, f)
|
469 |
+
current_jac = True
|
470 |
+
LU_real = None
|
471 |
+
LU_complex = None
|
472 |
+
|
473 |
+
if not converged:
|
474 |
+
h_abs *= 0.5
|
475 |
+
LU_real = None
|
476 |
+
LU_complex = None
|
477 |
+
continue
|
478 |
+
|
479 |
+
y_new = y + Z[-1]
|
480 |
+
ZE = Z.T.dot(E) / h
|
481 |
+
error = self.solve_lu(LU_real, f + ZE)
|
482 |
+
scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
|
483 |
+
error_norm = norm(error / scale)
|
484 |
+
safety = 0.9 * (2 * NEWTON_MAXITER + 1) / (2 * NEWTON_MAXITER
|
485 |
+
+ n_iter)
|
486 |
+
|
487 |
+
if rejected and error_norm > 1:
|
488 |
+
error = self.solve_lu(LU_real, self.fun(t, y + error) + ZE)
|
489 |
+
error_norm = norm(error / scale)
|
490 |
+
|
491 |
+
if error_norm > 1:
|
492 |
+
factor = predict_factor(h_abs, h_abs_old,
|
493 |
+
error_norm, error_norm_old)
|
494 |
+
h_abs *= max(MIN_FACTOR, safety * factor)
|
495 |
+
|
496 |
+
LU_real = None
|
497 |
+
LU_complex = None
|
498 |
+
rejected = True
|
499 |
+
else:
|
500 |
+
step_accepted = True
|
501 |
+
|
502 |
+
recompute_jac = jac is not None and n_iter > 2 and rate > 1e-3
|
503 |
+
|
504 |
+
factor = predict_factor(h_abs, h_abs_old, error_norm, error_norm_old)
|
505 |
+
factor = min(MAX_FACTOR, safety * factor)
|
506 |
+
|
507 |
+
if not recompute_jac and factor < 1.2:
|
508 |
+
factor = 1
|
509 |
+
else:
|
510 |
+
LU_real = None
|
511 |
+
LU_complex = None
|
512 |
+
|
513 |
+
f_new = self.fun(t_new, y_new)
|
514 |
+
if recompute_jac:
|
515 |
+
J = jac(t_new, y_new, f_new)
|
516 |
+
current_jac = True
|
517 |
+
elif jac is not None:
|
518 |
+
current_jac = False
|
519 |
+
|
520 |
+
self.h_abs_old = self.h_abs
|
521 |
+
self.error_norm_old = error_norm
|
522 |
+
|
523 |
+
self.h_abs = h_abs * factor
|
524 |
+
|
525 |
+
self.y_old = y
|
526 |
+
|
527 |
+
self.t = t_new
|
528 |
+
self.y = y_new
|
529 |
+
self.f = f_new
|
530 |
+
|
531 |
+
self.Z = Z
|
532 |
+
|
533 |
+
self.LU_real = LU_real
|
534 |
+
self.LU_complex = LU_complex
|
535 |
+
self.current_jac = current_jac
|
536 |
+
self.J = J
|
537 |
+
|
538 |
+
self.t_old = t
|
539 |
+
self.sol = self._compute_dense_output()
|
540 |
+
|
541 |
+
return step_accepted, message
|
542 |
+
|
543 |
+
def _compute_dense_output(self):
|
544 |
+
Q = np.dot(self.Z.T, P)
|
545 |
+
return RadauDenseOutput(self.t_old, self.t, self.y_old, Q)
|
546 |
+
|
547 |
+
def _dense_output_impl(self):
|
548 |
+
return self.sol
|
549 |
+
|
550 |
+
|
551 |
+
class RadauDenseOutput(DenseOutput):
|
552 |
+
def __init__(self, t_old, t, y_old, Q):
|
553 |
+
super().__init__(t_old, t)
|
554 |
+
self.h = t - t_old
|
555 |
+
self.Q = Q
|
556 |
+
self.order = Q.shape[1] - 1
|
557 |
+
self.y_old = y_old
|
558 |
+
|
559 |
+
def _call_impl(self, t):
|
560 |
+
x = (t - self.t_old) / self.h
|
561 |
+
if t.ndim == 0:
|
562 |
+
p = np.tile(x, self.order + 1)
|
563 |
+
p = np.cumprod(p)
|
564 |
+
else:
|
565 |
+
p = np.tile(x, (self.order + 1, 1))
|
566 |
+
p = np.cumprod(p, axis=0)
|
567 |
+
# Here we don't multiply by h, not a mistake.
|
568 |
+
y = np.dot(self.Q, p)
|
569 |
+
if y.ndim == 2:
|
570 |
+
y += self.y_old[:, None]
|
571 |
+
else:
|
572 |
+
y += self.y_old
|
573 |
+
|
574 |
+
return y
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/rk.py
ADDED
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from .base import OdeSolver, DenseOutput
|
3 |
+
from .common import (validate_max_step, validate_tol, select_initial_step,
|
4 |
+
norm, warn_extraneous, validate_first_step)
|
5 |
+
from . import dop853_coefficients
|
6 |
+
|
7 |
+
# Multiply steps computed from asymptotic behaviour of errors by this.
|
8 |
+
SAFETY = 0.9
|
9 |
+
|
10 |
+
MIN_FACTOR = 0.2 # Minimum allowed decrease in a step size.
|
11 |
+
MAX_FACTOR = 10 # Maximum allowed increase in a step size.
|
12 |
+
|
13 |
+
|
14 |
+
def rk_step(fun, t, y, f, h, A, B, C, K):
|
15 |
+
"""Perform a single Runge-Kutta step.
|
16 |
+
|
17 |
+
This function computes a prediction of an explicit Runge-Kutta method and
|
18 |
+
also estimates the error of a less accurate method.
|
19 |
+
|
20 |
+
Notation for Butcher tableau is as in [1]_.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
fun : callable
|
25 |
+
Right-hand side of the system.
|
26 |
+
t : float
|
27 |
+
Current time.
|
28 |
+
y : ndarray, shape (n,)
|
29 |
+
Current state.
|
30 |
+
f : ndarray, shape (n,)
|
31 |
+
Current value of the derivative, i.e., ``fun(x, y)``.
|
32 |
+
h : float
|
33 |
+
Step to use.
|
34 |
+
A : ndarray, shape (n_stages, n_stages)
|
35 |
+
Coefficients for combining previous RK stages to compute the next
|
36 |
+
stage. For explicit methods the coefficients at and above the main
|
37 |
+
diagonal are zeros.
|
38 |
+
B : ndarray, shape (n_stages,)
|
39 |
+
Coefficients for combining RK stages for computing the final
|
40 |
+
prediction.
|
41 |
+
C : ndarray, shape (n_stages,)
|
42 |
+
Coefficients for incrementing time for consecutive RK stages.
|
43 |
+
The value for the first stage is always zero.
|
44 |
+
K : ndarray, shape (n_stages + 1, n)
|
45 |
+
Storage array for putting RK stages here. Stages are stored in rows.
|
46 |
+
The last row is a linear combination of the previous rows with
|
47 |
+
coefficients
|
48 |
+
|
49 |
+
Returns
|
50 |
+
-------
|
51 |
+
y_new : ndarray, shape (n,)
|
52 |
+
Solution at t + h computed with a higher accuracy.
|
53 |
+
f_new : ndarray, shape (n,)
|
54 |
+
Derivative ``fun(t + h, y_new)``.
|
55 |
+
|
56 |
+
References
|
57 |
+
----------
|
58 |
+
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
|
59 |
+
Equations I: Nonstiff Problems", Sec. II.4.
|
60 |
+
"""
|
61 |
+
K[0] = f
|
62 |
+
for s, (a, c) in enumerate(zip(A[1:], C[1:]), start=1):
|
63 |
+
dy = np.dot(K[:s].T, a[:s]) * h
|
64 |
+
K[s] = fun(t + c * h, y + dy)
|
65 |
+
|
66 |
+
y_new = y + h * np.dot(K[:-1].T, B)
|
67 |
+
f_new = fun(t + h, y_new)
|
68 |
+
|
69 |
+
K[-1] = f_new
|
70 |
+
|
71 |
+
return y_new, f_new
|
72 |
+
|
73 |
+
|
74 |
+
class RungeKutta(OdeSolver):
|
75 |
+
"""Base class for explicit Runge-Kutta methods."""
|
76 |
+
C: np.ndarray = NotImplemented
|
77 |
+
A: np.ndarray = NotImplemented
|
78 |
+
B: np.ndarray = NotImplemented
|
79 |
+
E: np.ndarray = NotImplemented
|
80 |
+
P: np.ndarray = NotImplemented
|
81 |
+
order: int = NotImplemented
|
82 |
+
error_estimator_order: int = NotImplemented
|
83 |
+
n_stages: int = NotImplemented
|
84 |
+
|
85 |
+
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
|
86 |
+
rtol=1e-3, atol=1e-6, vectorized=False,
|
87 |
+
first_step=None, **extraneous):
|
88 |
+
warn_extraneous(extraneous)
|
89 |
+
super().__init__(fun, t0, y0, t_bound, vectorized,
|
90 |
+
support_complex=True)
|
91 |
+
self.y_old = None
|
92 |
+
self.max_step = validate_max_step(max_step)
|
93 |
+
self.rtol, self.atol = validate_tol(rtol, atol, self.n)
|
94 |
+
self.f = self.fun(self.t, self.y)
|
95 |
+
if first_step is None:
|
96 |
+
self.h_abs = select_initial_step(
|
97 |
+
self.fun, self.t, self.y, self.f, self.direction,
|
98 |
+
self.error_estimator_order, self.rtol, self.atol)
|
99 |
+
else:
|
100 |
+
self.h_abs = validate_first_step(first_step, t0, t_bound)
|
101 |
+
self.K = np.empty((self.n_stages + 1, self.n), dtype=self.y.dtype)
|
102 |
+
self.error_exponent = -1 / (self.error_estimator_order + 1)
|
103 |
+
self.h_previous = None
|
104 |
+
|
105 |
+
def _estimate_error(self, K, h):
|
106 |
+
return np.dot(K.T, self.E) * h
|
107 |
+
|
108 |
+
def _estimate_error_norm(self, K, h, scale):
|
109 |
+
return norm(self._estimate_error(K, h) / scale)
|
110 |
+
|
111 |
+
def _step_impl(self):
|
112 |
+
t = self.t
|
113 |
+
y = self.y
|
114 |
+
|
115 |
+
max_step = self.max_step
|
116 |
+
rtol = self.rtol
|
117 |
+
atol = self.atol
|
118 |
+
|
119 |
+
min_step = 10 * np.abs(np.nextafter(t, self.direction * np.inf) - t)
|
120 |
+
|
121 |
+
if self.h_abs > max_step:
|
122 |
+
h_abs = max_step
|
123 |
+
elif self.h_abs < min_step:
|
124 |
+
h_abs = min_step
|
125 |
+
else:
|
126 |
+
h_abs = self.h_abs
|
127 |
+
|
128 |
+
step_accepted = False
|
129 |
+
step_rejected = False
|
130 |
+
|
131 |
+
while not step_accepted:
|
132 |
+
if h_abs < min_step:
|
133 |
+
return False, self.TOO_SMALL_STEP
|
134 |
+
|
135 |
+
h = h_abs * self.direction
|
136 |
+
t_new = t + h
|
137 |
+
|
138 |
+
if self.direction * (t_new - self.t_bound) > 0:
|
139 |
+
t_new = self.t_bound
|
140 |
+
|
141 |
+
h = t_new - t
|
142 |
+
h_abs = np.abs(h)
|
143 |
+
|
144 |
+
y_new, f_new = rk_step(self.fun, t, y, self.f, h, self.A,
|
145 |
+
self.B, self.C, self.K)
|
146 |
+
scale = atol + np.maximum(np.abs(y), np.abs(y_new)) * rtol
|
147 |
+
error_norm = self._estimate_error_norm(self.K, h, scale)
|
148 |
+
|
149 |
+
if error_norm < 1:
|
150 |
+
if error_norm == 0:
|
151 |
+
factor = MAX_FACTOR
|
152 |
+
else:
|
153 |
+
factor = min(MAX_FACTOR,
|
154 |
+
SAFETY * error_norm ** self.error_exponent)
|
155 |
+
|
156 |
+
if step_rejected:
|
157 |
+
factor = min(1, factor)
|
158 |
+
|
159 |
+
h_abs *= factor
|
160 |
+
|
161 |
+
step_accepted = True
|
162 |
+
else:
|
163 |
+
h_abs *= max(MIN_FACTOR,
|
164 |
+
SAFETY * error_norm ** self.error_exponent)
|
165 |
+
step_rejected = True
|
166 |
+
|
167 |
+
self.h_previous = h
|
168 |
+
self.y_old = y
|
169 |
+
|
170 |
+
self.t = t_new
|
171 |
+
self.y = y_new
|
172 |
+
|
173 |
+
self.h_abs = h_abs
|
174 |
+
self.f = f_new
|
175 |
+
|
176 |
+
return True, None
|
177 |
+
|
178 |
+
def _dense_output_impl(self):
|
179 |
+
Q = self.K.T.dot(self.P)
|
180 |
+
return RkDenseOutput(self.t_old, self.t, self.y_old, Q)
|
181 |
+
|
182 |
+
|
183 |
+
class RK23(RungeKutta):
|
184 |
+
"""Explicit Runge-Kutta method of order 3(2).
|
185 |
+
|
186 |
+
This uses the Bogacki-Shampine pair of formulas [1]_. The error is controlled
|
187 |
+
assuming accuracy of the second-order method, but steps are taken using the
|
188 |
+
third-order accurate formula (local extrapolation is done). A cubic Hermite
|
189 |
+
polynomial is used for the dense output.
|
190 |
+
|
191 |
+
Can be applied in the complex domain.
|
192 |
+
|
193 |
+
Parameters
|
194 |
+
----------
|
195 |
+
fun : callable
|
196 |
+
Right-hand side of the system: the time derivative of the state ``y``
|
197 |
+
at time ``t``. The calling signature is ``fun(t, y)``, where ``t`` is a
|
198 |
+
scalar and ``y`` is an ndarray with ``len(y) = len(y0)``. ``fun`` must
|
199 |
+
return an array of the same shape as ``y``. See `vectorized` for more
|
200 |
+
information.
|
201 |
+
t0 : float
|
202 |
+
Initial time.
|
203 |
+
y0 : array_like, shape (n,)
|
204 |
+
Initial state.
|
205 |
+
t_bound : float
|
206 |
+
Boundary time - the integration won't continue beyond it. It also
|
207 |
+
determines the direction of the integration.
|
208 |
+
first_step : float or None, optional
|
209 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
210 |
+
should choose.
|
211 |
+
max_step : float, optional
|
212 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
213 |
+
bounded and determined solely by the solver.
|
214 |
+
rtol, atol : float and array_like, optional
|
215 |
+
Relative and absolute tolerances. The solver keeps the local error
|
216 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
217 |
+
relative accuracy (number of correct digits), while `atol` controls
|
218 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
219 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
220 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
221 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
222 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
223 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
224 |
+
than `atol`. If components of y have different scales, it might be
|
225 |
+
beneficial to set different `atol` values for different components by
|
226 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
227 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
228 |
+
vectorized : bool, optional
|
229 |
+
Whether `fun` may be called in a vectorized fashion. False (default)
|
230 |
+
is recommended for this solver.
|
231 |
+
|
232 |
+
If ``vectorized`` is False, `fun` will always be called with ``y`` of
|
233 |
+
shape ``(n,)``, where ``n = len(y0)``.
|
234 |
+
|
235 |
+
If ``vectorized`` is True, `fun` may be called with ``y`` of shape
|
236 |
+
``(n, k)``, where ``k`` is an integer. In this case, `fun` must behave
|
237 |
+
such that ``fun(t, y)[:, i] == fun(t, y[:, i])`` (i.e. each column of
|
238 |
+
the returned array is the time derivative of the state corresponding
|
239 |
+
with a column of ``y``).
|
240 |
+
|
241 |
+
Setting ``vectorized=True`` allows for faster finite difference
|
242 |
+
approximation of the Jacobian by methods 'Radau' and 'BDF', but
|
243 |
+
will result in slower execution for this solver.
|
244 |
+
|
245 |
+
Attributes
|
246 |
+
----------
|
247 |
+
n : int
|
248 |
+
Number of equations.
|
249 |
+
status : string
|
250 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
251 |
+
t_bound : float
|
252 |
+
Boundary time.
|
253 |
+
direction : float
|
254 |
+
Integration direction: +1 or -1.
|
255 |
+
t : float
|
256 |
+
Current time.
|
257 |
+
y : ndarray
|
258 |
+
Current state.
|
259 |
+
t_old : float
|
260 |
+
Previous time. None if no steps were made yet.
|
261 |
+
step_size : float
|
262 |
+
Size of the last successful step. None if no steps were made yet.
|
263 |
+
nfev : int
|
264 |
+
Number evaluations of the system's right-hand side.
|
265 |
+
njev : int
|
266 |
+
Number of evaluations of the Jacobian.
|
267 |
+
Is always 0 for this solver as it does not use the Jacobian.
|
268 |
+
nlu : int
|
269 |
+
Number of LU decompositions. Is always 0 for this solver.
|
270 |
+
|
271 |
+
References
|
272 |
+
----------
|
273 |
+
.. [1] P. Bogacki, L.F. Shampine, "A 3(2) Pair of Runge-Kutta Formulas",
|
274 |
+
Appl. Math. Lett. Vol. 2, No. 4. pp. 321-325, 1989.
|
275 |
+
"""
|
276 |
+
order = 3
|
277 |
+
error_estimator_order = 2
|
278 |
+
n_stages = 3
|
279 |
+
C = np.array([0, 1/2, 3/4])
|
280 |
+
A = np.array([
|
281 |
+
[0, 0, 0],
|
282 |
+
[1/2, 0, 0],
|
283 |
+
[0, 3/4, 0]
|
284 |
+
])
|
285 |
+
B = np.array([2/9, 1/3, 4/9])
|
286 |
+
E = np.array([5/72, -1/12, -1/9, 1/8])
|
287 |
+
P = np.array([[1, -4 / 3, 5 / 9],
|
288 |
+
[0, 1, -2/3],
|
289 |
+
[0, 4/3, -8/9],
|
290 |
+
[0, -1, 1]])
|
291 |
+
|
292 |
+
|
293 |
+
class RK45(RungeKutta):
|
294 |
+
"""Explicit Runge-Kutta method of order 5(4).
|
295 |
+
|
296 |
+
This uses the Dormand-Prince pair of formulas [1]_. The error is controlled
|
297 |
+
assuming accuracy of the fourth-order method accuracy, but steps are taken
|
298 |
+
using the fifth-order accurate formula (local extrapolation is done).
|
299 |
+
A quartic interpolation polynomial is used for the dense output [2]_.
|
300 |
+
|
301 |
+
Can be applied in the complex domain.
|
302 |
+
|
303 |
+
Parameters
|
304 |
+
----------
|
305 |
+
fun : callable
|
306 |
+
Right-hand side of the system. The calling signature is ``fun(t, y)``.
|
307 |
+
Here ``t`` is a scalar, and there are two options for the ndarray ``y``:
|
308 |
+
It can either have shape (n,); then ``fun`` must return array_like with
|
309 |
+
shape (n,). Alternatively it can have shape (n, k); then ``fun``
|
310 |
+
must return an array_like with shape (n, k), i.e., each column
|
311 |
+
corresponds to a single column in ``y``. The choice between the two
|
312 |
+
options is determined by `vectorized` argument (see below).
|
313 |
+
t0 : float
|
314 |
+
Initial time.
|
315 |
+
y0 : array_like, shape (n,)
|
316 |
+
Initial state.
|
317 |
+
t_bound : float
|
318 |
+
Boundary time - the integration won't continue beyond it. It also
|
319 |
+
determines the direction of the integration.
|
320 |
+
first_step : float or None, optional
|
321 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
322 |
+
should choose.
|
323 |
+
max_step : float, optional
|
324 |
+
Maximum allowed step size. Default is np.inf, i.e., the step size is not
|
325 |
+
bounded and determined solely by the solver.
|
326 |
+
rtol, atol : float and array_like, optional
|
327 |
+
Relative and absolute tolerances. The solver keeps the local error
|
328 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
329 |
+
relative accuracy (number of correct digits), while `atol` controls
|
330 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
331 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
332 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
333 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
334 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
335 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
336 |
+
than `atol`. If components of y have different scales, it might be
|
337 |
+
beneficial to set different `atol` values for different components by
|
338 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
339 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
340 |
+
vectorized : bool, optional
|
341 |
+
Whether `fun` is implemented in a vectorized fashion. Default is False.
|
342 |
+
|
343 |
+
Attributes
|
344 |
+
----------
|
345 |
+
n : int
|
346 |
+
Number of equations.
|
347 |
+
status : string
|
348 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
349 |
+
t_bound : float
|
350 |
+
Boundary time.
|
351 |
+
direction : float
|
352 |
+
Integration direction: +1 or -1.
|
353 |
+
t : float
|
354 |
+
Current time.
|
355 |
+
y : ndarray
|
356 |
+
Current state.
|
357 |
+
t_old : float
|
358 |
+
Previous time. None if no steps were made yet.
|
359 |
+
step_size : float
|
360 |
+
Size of the last successful step. None if no steps were made yet.
|
361 |
+
nfev : int
|
362 |
+
Number evaluations of the system's right-hand side.
|
363 |
+
njev : int
|
364 |
+
Number of evaluations of the Jacobian.
|
365 |
+
Is always 0 for this solver as it does not use the Jacobian.
|
366 |
+
nlu : int
|
367 |
+
Number of LU decompositions. Is always 0 for this solver.
|
368 |
+
|
369 |
+
References
|
370 |
+
----------
|
371 |
+
.. [1] J. R. Dormand, P. J. Prince, "A family of embedded Runge-Kutta
|
372 |
+
formulae", Journal of Computational and Applied Mathematics, Vol. 6,
|
373 |
+
No. 1, pp. 19-26, 1980.
|
374 |
+
.. [2] L. W. Shampine, "Some Practical Runge-Kutta Formulas", Mathematics
|
375 |
+
of Computation,, Vol. 46, No. 173, pp. 135-150, 1986.
|
376 |
+
"""
|
377 |
+
order = 5
|
378 |
+
error_estimator_order = 4
|
379 |
+
n_stages = 6
|
380 |
+
C = np.array([0, 1/5, 3/10, 4/5, 8/9, 1])
|
381 |
+
A = np.array([
|
382 |
+
[0, 0, 0, 0, 0],
|
383 |
+
[1/5, 0, 0, 0, 0],
|
384 |
+
[3/40, 9/40, 0, 0, 0],
|
385 |
+
[44/45, -56/15, 32/9, 0, 0],
|
386 |
+
[19372/6561, -25360/2187, 64448/6561, -212/729, 0],
|
387 |
+
[9017/3168, -355/33, 46732/5247, 49/176, -5103/18656]
|
388 |
+
])
|
389 |
+
B = np.array([35/384, 0, 500/1113, 125/192, -2187/6784, 11/84])
|
390 |
+
E = np.array([-71/57600, 0, 71/16695, -71/1920, 17253/339200, -22/525,
|
391 |
+
1/40])
|
392 |
+
# Corresponds to the optimum value of c_6 from [2]_.
|
393 |
+
P = np.array([
|
394 |
+
[1, -8048581381/2820520608, 8663915743/2820520608,
|
395 |
+
-12715105075/11282082432],
|
396 |
+
[0, 0, 0, 0],
|
397 |
+
[0, 131558114200/32700410799, -68118460800/10900136933,
|
398 |
+
87487479700/32700410799],
|
399 |
+
[0, -1754552775/470086768, 14199869525/1410260304,
|
400 |
+
-10690763975/1880347072],
|
401 |
+
[0, 127303824393/49829197408, -318862633887/49829197408,
|
402 |
+
701980252875 / 199316789632],
|
403 |
+
[0, -282668133/205662961, 2019193451/616988883, -1453857185/822651844],
|
404 |
+
[0, 40617522/29380423, -110615467/29380423, 69997945/29380423]])
|
405 |
+
|
406 |
+
|
407 |
+
class DOP853(RungeKutta):
|
408 |
+
"""Explicit Runge-Kutta method of order 8.
|
409 |
+
|
410 |
+
This is a Python implementation of "DOP853" algorithm originally written
|
411 |
+
in Fortran [1]_, [2]_. Note that this is not a literal translation, but
|
412 |
+
the algorithmic core and coefficients are the same.
|
413 |
+
|
414 |
+
Can be applied in the complex domain.
|
415 |
+
|
416 |
+
Parameters
|
417 |
+
----------
|
418 |
+
fun : callable
|
419 |
+
Right-hand side of the system. The calling signature is ``fun(t, y)``.
|
420 |
+
Here, ``t`` is a scalar, and there are two options for the ndarray ``y``:
|
421 |
+
It can either have shape (n,); then ``fun`` must return array_like with
|
422 |
+
shape (n,). Alternatively it can have shape (n, k); then ``fun``
|
423 |
+
must return an array_like with shape (n, k), i.e. each column
|
424 |
+
corresponds to a single column in ``y``. The choice between the two
|
425 |
+
options is determined by `vectorized` argument (see below).
|
426 |
+
t0 : float
|
427 |
+
Initial time.
|
428 |
+
y0 : array_like, shape (n,)
|
429 |
+
Initial state.
|
430 |
+
t_bound : float
|
431 |
+
Boundary time - the integration won't continue beyond it. It also
|
432 |
+
determines the direction of the integration.
|
433 |
+
first_step : float or None, optional
|
434 |
+
Initial step size. Default is ``None`` which means that the algorithm
|
435 |
+
should choose.
|
436 |
+
max_step : float, optional
|
437 |
+
Maximum allowed step size. Default is np.inf, i.e. the step size is not
|
438 |
+
bounded and determined solely by the solver.
|
439 |
+
rtol, atol : float and array_like, optional
|
440 |
+
Relative and absolute tolerances. The solver keeps the local error
|
441 |
+
estimates less than ``atol + rtol * abs(y)``. Here `rtol` controls a
|
442 |
+
relative accuracy (number of correct digits), while `atol` controls
|
443 |
+
absolute accuracy (number of correct decimal places). To achieve the
|
444 |
+
desired `rtol`, set `atol` to be smaller than the smallest value that
|
445 |
+
can be expected from ``rtol * abs(y)`` so that `rtol` dominates the
|
446 |
+
allowable error. If `atol` is larger than ``rtol * abs(y)`` the
|
447 |
+
number of correct digits is not guaranteed. Conversely, to achieve the
|
448 |
+
desired `atol` set `rtol` such that ``rtol * abs(y)`` is always smaller
|
449 |
+
than `atol`. If components of y have different scales, it might be
|
450 |
+
beneficial to set different `atol` values for different components by
|
451 |
+
passing array_like with shape (n,) for `atol`. Default values are
|
452 |
+
1e-3 for `rtol` and 1e-6 for `atol`.
|
453 |
+
vectorized : bool, optional
|
454 |
+
Whether `fun` is implemented in a vectorized fashion. Default is False.
|
455 |
+
|
456 |
+
Attributes
|
457 |
+
----------
|
458 |
+
n : int
|
459 |
+
Number of equations.
|
460 |
+
status : string
|
461 |
+
Current status of the solver: 'running', 'finished' or 'failed'.
|
462 |
+
t_bound : float
|
463 |
+
Boundary time.
|
464 |
+
direction : float
|
465 |
+
Integration direction: +1 or -1.
|
466 |
+
t : float
|
467 |
+
Current time.
|
468 |
+
y : ndarray
|
469 |
+
Current state.
|
470 |
+
t_old : float
|
471 |
+
Previous time. None if no steps were made yet.
|
472 |
+
step_size : float
|
473 |
+
Size of the last successful step. None if no steps were made yet.
|
474 |
+
nfev : int
|
475 |
+
Number evaluations of the system's right-hand side.
|
476 |
+
njev : int
|
477 |
+
Number of evaluations of the Jacobian. Is always 0 for this solver
|
478 |
+
as it does not use the Jacobian.
|
479 |
+
nlu : int
|
480 |
+
Number of LU decompositions. Is always 0 for this solver.
|
481 |
+
|
482 |
+
References
|
483 |
+
----------
|
484 |
+
.. [1] E. Hairer, S. P. Norsett G. Wanner, "Solving Ordinary Differential
|
485 |
+
Equations I: Nonstiff Problems", Sec. II.
|
486 |
+
.. [2] `Page with original Fortran code of DOP853
|
487 |
+
<http://www.unige.ch/~hairer/software.html>`_.
|
488 |
+
"""
|
489 |
+
n_stages = dop853_coefficients.N_STAGES
|
490 |
+
order = 8
|
491 |
+
error_estimator_order = 7
|
492 |
+
A = dop853_coefficients.A[:n_stages, :n_stages]
|
493 |
+
B = dop853_coefficients.B
|
494 |
+
C = dop853_coefficients.C[:n_stages]
|
495 |
+
E3 = dop853_coefficients.E3
|
496 |
+
E5 = dop853_coefficients.E5
|
497 |
+
D = dop853_coefficients.D
|
498 |
+
|
499 |
+
A_EXTRA = dop853_coefficients.A[n_stages + 1:]
|
500 |
+
C_EXTRA = dop853_coefficients.C[n_stages + 1:]
|
501 |
+
|
502 |
+
def __init__(self, fun, t0, y0, t_bound, max_step=np.inf,
|
503 |
+
rtol=1e-3, atol=1e-6, vectorized=False,
|
504 |
+
first_step=None, **extraneous):
|
505 |
+
super().__init__(fun, t0, y0, t_bound, max_step, rtol, atol,
|
506 |
+
vectorized, first_step, **extraneous)
|
507 |
+
self.K_extended = np.empty((dop853_coefficients.N_STAGES_EXTENDED,
|
508 |
+
self.n), dtype=self.y.dtype)
|
509 |
+
self.K = self.K_extended[:self.n_stages + 1]
|
510 |
+
|
511 |
+
def _estimate_error(self, K, h): # Left for testing purposes.
|
512 |
+
err5 = np.dot(K.T, self.E5)
|
513 |
+
err3 = np.dot(K.T, self.E3)
|
514 |
+
denom = np.hypot(np.abs(err5), 0.1 * np.abs(err3))
|
515 |
+
correction_factor = np.ones_like(err5)
|
516 |
+
mask = denom > 0
|
517 |
+
correction_factor[mask] = np.abs(err5[mask]) / denom[mask]
|
518 |
+
return h * err5 * correction_factor
|
519 |
+
|
520 |
+
def _estimate_error_norm(self, K, h, scale):
|
521 |
+
err5 = np.dot(K.T, self.E5) / scale
|
522 |
+
err3 = np.dot(K.T, self.E3) / scale
|
523 |
+
err5_norm_2 = np.linalg.norm(err5)**2
|
524 |
+
err3_norm_2 = np.linalg.norm(err3)**2
|
525 |
+
if err5_norm_2 == 0 and err3_norm_2 == 0:
|
526 |
+
return 0.0
|
527 |
+
denom = err5_norm_2 + 0.01 * err3_norm_2
|
528 |
+
return np.abs(h) * err5_norm_2 / np.sqrt(denom * len(scale))
|
529 |
+
|
530 |
+
def _dense_output_impl(self):
|
531 |
+
K = self.K_extended
|
532 |
+
h = self.h_previous
|
533 |
+
for s, (a, c) in enumerate(zip(self.A_EXTRA, self.C_EXTRA),
|
534 |
+
start=self.n_stages + 1):
|
535 |
+
dy = np.dot(K[:s].T, a[:s]) * h
|
536 |
+
K[s] = self.fun(self.t_old + c * h, self.y_old + dy)
|
537 |
+
|
538 |
+
F = np.empty((dop853_coefficients.INTERPOLATOR_POWER, self.n),
|
539 |
+
dtype=self.y_old.dtype)
|
540 |
+
|
541 |
+
f_old = K[0]
|
542 |
+
delta_y = self.y - self.y_old
|
543 |
+
|
544 |
+
F[0] = delta_y
|
545 |
+
F[1] = h * f_old - delta_y
|
546 |
+
F[2] = 2 * delta_y - h * (self.f + f_old)
|
547 |
+
F[3:] = h * np.dot(self.D, K)
|
548 |
+
|
549 |
+
return Dop853DenseOutput(self.t_old, self.t, self.y_old, F)
|
550 |
+
|
551 |
+
|
552 |
+
class RkDenseOutput(DenseOutput):
|
553 |
+
def __init__(self, t_old, t, y_old, Q):
|
554 |
+
super().__init__(t_old, t)
|
555 |
+
self.h = t - t_old
|
556 |
+
self.Q = Q
|
557 |
+
self.order = Q.shape[1] - 1
|
558 |
+
self.y_old = y_old
|
559 |
+
|
560 |
+
def _call_impl(self, t):
|
561 |
+
x = (t - self.t_old) / self.h
|
562 |
+
if t.ndim == 0:
|
563 |
+
p = np.tile(x, self.order + 1)
|
564 |
+
p = np.cumprod(p)
|
565 |
+
else:
|
566 |
+
p = np.tile(x, (self.order + 1, 1))
|
567 |
+
p = np.cumprod(p, axis=0)
|
568 |
+
y = self.h * np.dot(self.Q, p)
|
569 |
+
if y.ndim == 2:
|
570 |
+
y += self.y_old[:, None]
|
571 |
+
else:
|
572 |
+
y += self.y_old
|
573 |
+
|
574 |
+
return y
|
575 |
+
|
576 |
+
|
577 |
+
class Dop853DenseOutput(DenseOutput):
|
578 |
+
def __init__(self, t_old, t, y_old, F):
|
579 |
+
super().__init__(t_old, t)
|
580 |
+
self.h = t - t_old
|
581 |
+
self.F = F
|
582 |
+
self.y_old = y_old
|
583 |
+
|
584 |
+
def _call_impl(self, t):
|
585 |
+
x = (t - self.t_old) / self.h
|
586 |
+
|
587 |
+
if t.ndim == 0:
|
588 |
+
y = np.zeros_like(self.y_old)
|
589 |
+
else:
|
590 |
+
x = x[:, None]
|
591 |
+
y = np.zeros((len(x), len(self.y_old)), dtype=self.y_old.dtype)
|
592 |
+
|
593 |
+
for i, f in enumerate(reversed(self.F)):
|
594 |
+
y += f
|
595 |
+
if i % 2 == 0:
|
596 |
+
y *= x
|
597 |
+
else:
|
598 |
+
y *= 1 - x
|
599 |
+
y += self.y_old
|
600 |
+
|
601 |
+
return y.T
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (194 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_ivp.cpython-310.pyc
ADDED
Binary file (29.5 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/__pycache__/test_rk.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_ivp.py
ADDED
@@ -0,0 +1,1135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from itertools import product
|
2 |
+
from numpy.testing import (assert_, assert_allclose, assert_array_less,
|
3 |
+
assert_equal, assert_no_warnings, suppress_warnings)
|
4 |
+
import pytest
|
5 |
+
from pytest import raises as assert_raises
|
6 |
+
import numpy as np
|
7 |
+
from scipy.optimize._numdiff import group_columns
|
8 |
+
from scipy.integrate import solve_ivp, RK23, RK45, DOP853, Radau, BDF, LSODA
|
9 |
+
from scipy.integrate import OdeSolution
|
10 |
+
from scipy.integrate._ivp.common import num_jac
|
11 |
+
from scipy.integrate._ivp.base import ConstantDenseOutput
|
12 |
+
from scipy.sparse import coo_matrix, csc_matrix
|
13 |
+
|
14 |
+
|
15 |
+
def fun_zero(t, y):
|
16 |
+
return np.zeros_like(y)
|
17 |
+
|
18 |
+
|
19 |
+
def fun_linear(t, y):
|
20 |
+
return np.array([-y[0] - 5 * y[1], y[0] + y[1]])
|
21 |
+
|
22 |
+
|
23 |
+
def jac_linear():
|
24 |
+
return np.array([[-1, -5], [1, 1]])
|
25 |
+
|
26 |
+
|
27 |
+
def sol_linear(t):
|
28 |
+
return np.vstack((-5 * np.sin(2 * t),
|
29 |
+
2 * np.cos(2 * t) + np.sin(2 * t)))
|
30 |
+
|
31 |
+
|
32 |
+
def fun_rational(t, y):
|
33 |
+
return np.array([y[1] / t,
|
34 |
+
y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))])
|
35 |
+
|
36 |
+
|
37 |
+
def fun_rational_vectorized(t, y):
|
38 |
+
return np.vstack((y[1] / t,
|
39 |
+
y[1] * (y[0] + 2 * y[1] - 1) / (t * (y[0] - 1))))
|
40 |
+
|
41 |
+
|
42 |
+
def jac_rational(t, y):
|
43 |
+
return np.array([
|
44 |
+
[0, 1 / t],
|
45 |
+
[-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
|
46 |
+
(y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
|
47 |
+
])
|
48 |
+
|
49 |
+
|
50 |
+
def jac_rational_sparse(t, y):
|
51 |
+
return csc_matrix([
|
52 |
+
[0, 1 / t],
|
53 |
+
[-2 * y[1] ** 2 / (t * (y[0] - 1) ** 2),
|
54 |
+
(y[0] + 4 * y[1] - 1) / (t * (y[0] - 1))]
|
55 |
+
])
|
56 |
+
|
57 |
+
|
58 |
+
def sol_rational(t):
|
59 |
+
return np.asarray((t / (t + 10), 10 * t / (t + 10) ** 2))
|
60 |
+
|
61 |
+
|
62 |
+
def fun_medazko(t, y):
|
63 |
+
n = y.shape[0] // 2
|
64 |
+
k = 100
|
65 |
+
c = 4
|
66 |
+
|
67 |
+
phi = 2 if t <= 5 else 0
|
68 |
+
y = np.hstack((phi, 0, y, y[-2]))
|
69 |
+
|
70 |
+
d = 1 / n
|
71 |
+
j = np.arange(n) + 1
|
72 |
+
alpha = 2 * (j * d - 1) ** 3 / c ** 2
|
73 |
+
beta = (j * d - 1) ** 4 / c ** 2
|
74 |
+
|
75 |
+
j_2_p1 = 2 * j + 2
|
76 |
+
j_2_m3 = 2 * j - 2
|
77 |
+
j_2_m1 = 2 * j
|
78 |
+
j_2 = 2 * j + 1
|
79 |
+
|
80 |
+
f = np.empty(2 * n)
|
81 |
+
f[::2] = (alpha * (y[j_2_p1] - y[j_2_m3]) / (2 * d) +
|
82 |
+
beta * (y[j_2_m3] - 2 * y[j_2_m1] + y[j_2_p1]) / d ** 2 -
|
83 |
+
k * y[j_2_m1] * y[j_2])
|
84 |
+
f[1::2] = -k * y[j_2] * y[j_2_m1]
|
85 |
+
|
86 |
+
return f
|
87 |
+
|
88 |
+
|
89 |
+
def medazko_sparsity(n):
|
90 |
+
cols = []
|
91 |
+
rows = []
|
92 |
+
|
93 |
+
i = np.arange(n) * 2
|
94 |
+
|
95 |
+
cols.append(i[1:])
|
96 |
+
rows.append(i[1:] - 2)
|
97 |
+
|
98 |
+
cols.append(i)
|
99 |
+
rows.append(i)
|
100 |
+
|
101 |
+
cols.append(i)
|
102 |
+
rows.append(i + 1)
|
103 |
+
|
104 |
+
cols.append(i[:-1])
|
105 |
+
rows.append(i[:-1] + 2)
|
106 |
+
|
107 |
+
i = np.arange(n) * 2 + 1
|
108 |
+
|
109 |
+
cols.append(i)
|
110 |
+
rows.append(i)
|
111 |
+
|
112 |
+
cols.append(i)
|
113 |
+
rows.append(i - 1)
|
114 |
+
|
115 |
+
cols = np.hstack(cols)
|
116 |
+
rows = np.hstack(rows)
|
117 |
+
|
118 |
+
return coo_matrix((np.ones_like(cols), (cols, rows)))
|
119 |
+
|
120 |
+
|
121 |
+
def fun_complex(t, y):
|
122 |
+
return -y
|
123 |
+
|
124 |
+
|
125 |
+
def jac_complex(t, y):
|
126 |
+
return -np.eye(y.shape[0])
|
127 |
+
|
128 |
+
|
129 |
+
def jac_complex_sparse(t, y):
|
130 |
+
return csc_matrix(jac_complex(t, y))
|
131 |
+
|
132 |
+
|
133 |
+
def sol_complex(t):
|
134 |
+
y = (0.5 + 1j) * np.exp(-t)
|
135 |
+
return y.reshape((1, -1))
|
136 |
+
|
137 |
+
|
138 |
+
def fun_event_dense_output_LSODA(t, y):
|
139 |
+
return y * (t - 2)
|
140 |
+
|
141 |
+
|
142 |
+
def jac_event_dense_output_LSODA(t, y):
|
143 |
+
return t - 2
|
144 |
+
|
145 |
+
|
146 |
+
def sol_event_dense_output_LSODA(t):
|
147 |
+
return np.exp(t ** 2 / 2 - 2 * t + np.log(0.05) - 6)
|
148 |
+
|
149 |
+
|
150 |
+
def compute_error(y, y_true, rtol, atol):
|
151 |
+
e = (y - y_true) / (atol + rtol * np.abs(y_true))
|
152 |
+
return np.linalg.norm(e, axis=0) / np.sqrt(e.shape[0])
|
153 |
+
|
154 |
+
|
155 |
+
def test_integration():
|
156 |
+
rtol = 1e-3
|
157 |
+
atol = 1e-6
|
158 |
+
y0 = [1/3, 2/9]
|
159 |
+
|
160 |
+
for vectorized, method, t_span, jac in product(
|
161 |
+
[False, True],
|
162 |
+
['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA'],
|
163 |
+
[[5, 9], [5, 1]],
|
164 |
+
[None, jac_rational, jac_rational_sparse]):
|
165 |
+
|
166 |
+
if vectorized:
|
167 |
+
fun = fun_rational_vectorized
|
168 |
+
else:
|
169 |
+
fun = fun_rational
|
170 |
+
|
171 |
+
with suppress_warnings() as sup:
|
172 |
+
sup.filter(UserWarning,
|
173 |
+
"The following arguments have no effect for a chosen "
|
174 |
+
"solver: `jac`")
|
175 |
+
res = solve_ivp(fun, t_span, y0, rtol=rtol,
|
176 |
+
atol=atol, method=method, dense_output=True,
|
177 |
+
jac=jac, vectorized=vectorized)
|
178 |
+
assert_equal(res.t[0], t_span[0])
|
179 |
+
assert_(res.t_events is None)
|
180 |
+
assert_(res.y_events is None)
|
181 |
+
assert_(res.success)
|
182 |
+
assert_equal(res.status, 0)
|
183 |
+
|
184 |
+
if method == 'DOP853':
|
185 |
+
# DOP853 spends more functions evaluation because it doesn't
|
186 |
+
# have enough time to develop big enough step size.
|
187 |
+
assert_(res.nfev < 50)
|
188 |
+
else:
|
189 |
+
assert_(res.nfev < 40)
|
190 |
+
|
191 |
+
if method in ['RK23', 'RK45', 'DOP853', 'LSODA']:
|
192 |
+
assert_equal(res.njev, 0)
|
193 |
+
assert_equal(res.nlu, 0)
|
194 |
+
else:
|
195 |
+
assert_(0 < res.njev < 3)
|
196 |
+
assert_(0 < res.nlu < 10)
|
197 |
+
|
198 |
+
y_true = sol_rational(res.t)
|
199 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
200 |
+
assert_(np.all(e < 5))
|
201 |
+
|
202 |
+
tc = np.linspace(*t_span)
|
203 |
+
yc_true = sol_rational(tc)
|
204 |
+
yc = res.sol(tc)
|
205 |
+
|
206 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
207 |
+
assert_(np.all(e < 5))
|
208 |
+
|
209 |
+
tc = (t_span[0] + t_span[-1]) / 2
|
210 |
+
yc_true = sol_rational(tc)
|
211 |
+
yc = res.sol(tc)
|
212 |
+
|
213 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
214 |
+
assert_(np.all(e < 5))
|
215 |
+
|
216 |
+
assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
|
217 |
+
|
218 |
+
|
219 |
+
def test_integration_complex():
|
220 |
+
rtol = 1e-3
|
221 |
+
atol = 1e-6
|
222 |
+
y0 = [0.5 + 1j]
|
223 |
+
t_span = [0, 1]
|
224 |
+
tc = np.linspace(t_span[0], t_span[1])
|
225 |
+
for method, jac in product(['RK23', 'RK45', 'DOP853', 'BDF'],
|
226 |
+
[None, jac_complex, jac_complex_sparse]):
|
227 |
+
with suppress_warnings() as sup:
|
228 |
+
sup.filter(UserWarning,
|
229 |
+
"The following arguments have no effect for a chosen "
|
230 |
+
"solver: `jac`")
|
231 |
+
res = solve_ivp(fun_complex, t_span, y0, method=method,
|
232 |
+
dense_output=True, rtol=rtol, atol=atol, jac=jac)
|
233 |
+
|
234 |
+
assert_equal(res.t[0], t_span[0])
|
235 |
+
assert_(res.t_events is None)
|
236 |
+
assert_(res.y_events is None)
|
237 |
+
assert_(res.success)
|
238 |
+
assert_equal(res.status, 0)
|
239 |
+
|
240 |
+
if method == 'DOP853':
|
241 |
+
assert res.nfev < 35
|
242 |
+
else:
|
243 |
+
assert res.nfev < 25
|
244 |
+
|
245 |
+
if method == 'BDF':
|
246 |
+
assert_equal(res.njev, 1)
|
247 |
+
assert res.nlu < 6
|
248 |
+
else:
|
249 |
+
assert res.njev == 0
|
250 |
+
assert res.nlu == 0
|
251 |
+
|
252 |
+
y_true = sol_complex(res.t)
|
253 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
254 |
+
assert np.all(e < 5)
|
255 |
+
|
256 |
+
yc_true = sol_complex(tc)
|
257 |
+
yc = res.sol(tc)
|
258 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
259 |
+
|
260 |
+
assert np.all(e < 5)
|
261 |
+
|
262 |
+
|
263 |
+
def test_integration_sparse_difference():
|
264 |
+
n = 200
|
265 |
+
t_span = [0, 20]
|
266 |
+
y0 = np.zeros(2 * n)
|
267 |
+
y0[1::2] = 1
|
268 |
+
sparsity = medazko_sparsity(n)
|
269 |
+
|
270 |
+
for method in ['BDF', 'Radau']:
|
271 |
+
res = solve_ivp(fun_medazko, t_span, y0, method=method,
|
272 |
+
jac_sparsity=sparsity)
|
273 |
+
|
274 |
+
assert_equal(res.t[0], t_span[0])
|
275 |
+
assert_(res.t_events is None)
|
276 |
+
assert_(res.y_events is None)
|
277 |
+
assert_(res.success)
|
278 |
+
assert_equal(res.status, 0)
|
279 |
+
|
280 |
+
assert_allclose(res.y[78, -1], 0.233994e-3, rtol=1e-2)
|
281 |
+
assert_allclose(res.y[79, -1], 0, atol=1e-3)
|
282 |
+
assert_allclose(res.y[148, -1], 0.359561e-3, rtol=1e-2)
|
283 |
+
assert_allclose(res.y[149, -1], 0, atol=1e-3)
|
284 |
+
assert_allclose(res.y[198, -1], 0.117374129e-3, rtol=1e-2)
|
285 |
+
assert_allclose(res.y[199, -1], 0.6190807e-5, atol=1e-3)
|
286 |
+
assert_allclose(res.y[238, -1], 0, atol=1e-3)
|
287 |
+
assert_allclose(res.y[239, -1], 0.9999997, rtol=1e-2)
|
288 |
+
|
289 |
+
|
290 |
+
def test_integration_const_jac():
|
291 |
+
rtol = 1e-3
|
292 |
+
atol = 1e-6
|
293 |
+
y0 = [0, 2]
|
294 |
+
t_span = [0, 2]
|
295 |
+
J = jac_linear()
|
296 |
+
J_sparse = csc_matrix(J)
|
297 |
+
|
298 |
+
for method, jac in product(['Radau', 'BDF'], [J, J_sparse]):
|
299 |
+
res = solve_ivp(fun_linear, t_span, y0, rtol=rtol, atol=atol,
|
300 |
+
method=method, dense_output=True, jac=jac)
|
301 |
+
assert_equal(res.t[0], t_span[0])
|
302 |
+
assert_(res.t_events is None)
|
303 |
+
assert_(res.y_events is None)
|
304 |
+
assert_(res.success)
|
305 |
+
assert_equal(res.status, 0)
|
306 |
+
|
307 |
+
assert_(res.nfev < 100)
|
308 |
+
assert_equal(res.njev, 0)
|
309 |
+
assert_(0 < res.nlu < 15)
|
310 |
+
|
311 |
+
y_true = sol_linear(res.t)
|
312 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
313 |
+
assert_(np.all(e < 10))
|
314 |
+
|
315 |
+
tc = np.linspace(*t_span)
|
316 |
+
yc_true = sol_linear(tc)
|
317 |
+
yc = res.sol(tc)
|
318 |
+
|
319 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
320 |
+
assert_(np.all(e < 15))
|
321 |
+
|
322 |
+
assert_allclose(res.sol(res.t), res.y, rtol=1e-14, atol=1e-14)
|
323 |
+
|
324 |
+
|
325 |
+
@pytest.mark.slow
|
326 |
+
@pytest.mark.parametrize('method', ['Radau', 'BDF', 'LSODA'])
|
327 |
+
def test_integration_stiff(method):
|
328 |
+
rtol = 1e-6
|
329 |
+
atol = 1e-6
|
330 |
+
y0 = [1e4, 0, 0]
|
331 |
+
tspan = [0, 1e8]
|
332 |
+
|
333 |
+
def fun_robertson(t, state):
|
334 |
+
x, y, z = state
|
335 |
+
return [
|
336 |
+
-0.04 * x + 1e4 * y * z,
|
337 |
+
0.04 * x - 1e4 * y * z - 3e7 * y * y,
|
338 |
+
3e7 * y * y,
|
339 |
+
]
|
340 |
+
|
341 |
+
res = solve_ivp(fun_robertson, tspan, y0, rtol=rtol,
|
342 |
+
atol=atol, method=method)
|
343 |
+
|
344 |
+
# If the stiff mode is not activated correctly, these numbers will be much bigger
|
345 |
+
assert res.nfev < 5000
|
346 |
+
assert res.njev < 200
|
347 |
+
|
348 |
+
|
349 |
+
def test_events():
|
350 |
+
def event_rational_1(t, y):
|
351 |
+
return y[0] - y[1] ** 0.7
|
352 |
+
|
353 |
+
def event_rational_2(t, y):
|
354 |
+
return y[1] ** 0.6 - y[0]
|
355 |
+
|
356 |
+
def event_rational_3(t, y):
|
357 |
+
return t - 7.4
|
358 |
+
|
359 |
+
event_rational_3.terminal = True
|
360 |
+
|
361 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
362 |
+
res = solve_ivp(fun_rational, [5, 8], [1/3, 2/9], method=method,
|
363 |
+
events=(event_rational_1, event_rational_2))
|
364 |
+
assert_equal(res.status, 0)
|
365 |
+
assert_equal(res.t_events[0].size, 1)
|
366 |
+
assert_equal(res.t_events[1].size, 1)
|
367 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
368 |
+
assert_(7.3 < res.t_events[1][0] < 7.7)
|
369 |
+
|
370 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
371 |
+
assert_equal(res.y_events[1].shape, (1, 2))
|
372 |
+
assert np.isclose(
|
373 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
374 |
+
assert np.isclose(
|
375 |
+
event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
|
376 |
+
|
377 |
+
event_rational_1.direction = 1
|
378 |
+
event_rational_2.direction = 1
|
379 |
+
res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
|
380 |
+
events=(event_rational_1, event_rational_2))
|
381 |
+
assert_equal(res.status, 0)
|
382 |
+
assert_equal(res.t_events[0].size, 1)
|
383 |
+
assert_equal(res.t_events[1].size, 0)
|
384 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
385 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
386 |
+
assert_equal(res.y_events[1].shape, (0,))
|
387 |
+
assert np.isclose(
|
388 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
389 |
+
|
390 |
+
event_rational_1.direction = -1
|
391 |
+
event_rational_2.direction = -1
|
392 |
+
res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
|
393 |
+
events=(event_rational_1, event_rational_2))
|
394 |
+
assert_equal(res.status, 0)
|
395 |
+
assert_equal(res.t_events[0].size, 0)
|
396 |
+
assert_equal(res.t_events[1].size, 1)
|
397 |
+
assert_(7.3 < res.t_events[1][0] < 7.7)
|
398 |
+
assert_equal(res.y_events[0].shape, (0,))
|
399 |
+
assert_equal(res.y_events[1].shape, (1, 2))
|
400 |
+
assert np.isclose(
|
401 |
+
event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
|
402 |
+
|
403 |
+
event_rational_1.direction = 0
|
404 |
+
event_rational_2.direction = 0
|
405 |
+
|
406 |
+
res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
|
407 |
+
events=(event_rational_1, event_rational_2,
|
408 |
+
event_rational_3), dense_output=True)
|
409 |
+
assert_equal(res.status, 1)
|
410 |
+
assert_equal(res.t_events[0].size, 1)
|
411 |
+
assert_equal(res.t_events[1].size, 0)
|
412 |
+
assert_equal(res.t_events[2].size, 1)
|
413 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
414 |
+
assert_(7.3 < res.t_events[2][0] < 7.5)
|
415 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
416 |
+
assert_equal(res.y_events[1].shape, (0,))
|
417 |
+
assert_equal(res.y_events[2].shape, (1, 2))
|
418 |
+
assert np.isclose(
|
419 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
420 |
+
assert np.isclose(
|
421 |
+
event_rational_3(res.t_events[2][0], res.y_events[2][0]), 0)
|
422 |
+
|
423 |
+
res = solve_ivp(fun_rational, [5, 8], [1 / 3, 2 / 9], method=method,
|
424 |
+
events=event_rational_1, dense_output=True)
|
425 |
+
assert_equal(res.status, 0)
|
426 |
+
assert_equal(res.t_events[0].size, 1)
|
427 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
428 |
+
|
429 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
430 |
+
assert np.isclose(
|
431 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
432 |
+
|
433 |
+
# Also test that termination by event doesn't break interpolants.
|
434 |
+
tc = np.linspace(res.t[0], res.t[-1])
|
435 |
+
yc_true = sol_rational(tc)
|
436 |
+
yc = res.sol(tc)
|
437 |
+
e = compute_error(yc, yc_true, 1e-3, 1e-6)
|
438 |
+
assert_(np.all(e < 5))
|
439 |
+
|
440 |
+
# Test that the y_event matches solution
|
441 |
+
assert np.allclose(sol_rational(res.t_events[0][0]), res.y_events[0][0],
|
442 |
+
rtol=1e-3, atol=1e-6)
|
443 |
+
|
444 |
+
# Test in backward direction.
|
445 |
+
event_rational_1.direction = 0
|
446 |
+
event_rational_2.direction = 0
|
447 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
448 |
+
res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
|
449 |
+
events=(event_rational_1, event_rational_2))
|
450 |
+
assert_equal(res.status, 0)
|
451 |
+
assert_equal(res.t_events[0].size, 1)
|
452 |
+
assert_equal(res.t_events[1].size, 1)
|
453 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
454 |
+
assert_(7.3 < res.t_events[1][0] < 7.7)
|
455 |
+
|
456 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
457 |
+
assert_equal(res.y_events[1].shape, (1, 2))
|
458 |
+
assert np.isclose(
|
459 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
460 |
+
assert np.isclose(
|
461 |
+
event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
|
462 |
+
|
463 |
+
event_rational_1.direction = -1
|
464 |
+
event_rational_2.direction = -1
|
465 |
+
res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
|
466 |
+
events=(event_rational_1, event_rational_2))
|
467 |
+
assert_equal(res.status, 0)
|
468 |
+
assert_equal(res.t_events[0].size, 1)
|
469 |
+
assert_equal(res.t_events[1].size, 0)
|
470 |
+
assert_(5.3 < res.t_events[0][0] < 5.7)
|
471 |
+
|
472 |
+
assert_equal(res.y_events[0].shape, (1, 2))
|
473 |
+
assert_equal(res.y_events[1].shape, (0,))
|
474 |
+
assert np.isclose(
|
475 |
+
event_rational_1(res.t_events[0][0], res.y_events[0][0]), 0)
|
476 |
+
|
477 |
+
event_rational_1.direction = 1
|
478 |
+
event_rational_2.direction = 1
|
479 |
+
res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
|
480 |
+
events=(event_rational_1, event_rational_2))
|
481 |
+
assert_equal(res.status, 0)
|
482 |
+
assert_equal(res.t_events[0].size, 0)
|
483 |
+
assert_equal(res.t_events[1].size, 1)
|
484 |
+
assert_(7.3 < res.t_events[1][0] < 7.7)
|
485 |
+
|
486 |
+
assert_equal(res.y_events[0].shape, (0,))
|
487 |
+
assert_equal(res.y_events[1].shape, (1, 2))
|
488 |
+
assert np.isclose(
|
489 |
+
event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
|
490 |
+
|
491 |
+
event_rational_1.direction = 0
|
492 |
+
event_rational_2.direction = 0
|
493 |
+
|
494 |
+
res = solve_ivp(fun_rational, [8, 5], [4/9, 20/81], method=method,
|
495 |
+
events=(event_rational_1, event_rational_2,
|
496 |
+
event_rational_3), dense_output=True)
|
497 |
+
assert_equal(res.status, 1)
|
498 |
+
assert_equal(res.t_events[0].size, 0)
|
499 |
+
assert_equal(res.t_events[1].size, 1)
|
500 |
+
assert_equal(res.t_events[2].size, 1)
|
501 |
+
assert_(7.3 < res.t_events[1][0] < 7.7)
|
502 |
+
assert_(7.3 < res.t_events[2][0] < 7.5)
|
503 |
+
|
504 |
+
assert_equal(res.y_events[0].shape, (0,))
|
505 |
+
assert_equal(res.y_events[1].shape, (1, 2))
|
506 |
+
assert_equal(res.y_events[2].shape, (1, 2))
|
507 |
+
assert np.isclose(
|
508 |
+
event_rational_2(res.t_events[1][0], res.y_events[1][0]), 0)
|
509 |
+
assert np.isclose(
|
510 |
+
event_rational_3(res.t_events[2][0], res.y_events[2][0]), 0)
|
511 |
+
|
512 |
+
# Also test that termination by event doesn't break interpolants.
|
513 |
+
tc = np.linspace(res.t[-1], res.t[0])
|
514 |
+
yc_true = sol_rational(tc)
|
515 |
+
yc = res.sol(tc)
|
516 |
+
e = compute_error(yc, yc_true, 1e-3, 1e-6)
|
517 |
+
assert_(np.all(e < 5))
|
518 |
+
|
519 |
+
assert np.allclose(sol_rational(res.t_events[1][0]), res.y_events[1][0],
|
520 |
+
rtol=1e-3, atol=1e-6)
|
521 |
+
assert np.allclose(sol_rational(res.t_events[2][0]), res.y_events[2][0],
|
522 |
+
rtol=1e-3, atol=1e-6)
|
523 |
+
|
524 |
+
|
525 |
+
def _get_harmonic_oscillator():
|
526 |
+
def f(t, y):
|
527 |
+
return [y[1], -y[0]]
|
528 |
+
|
529 |
+
def event(t, y):
|
530 |
+
return y[0]
|
531 |
+
|
532 |
+
return f, event
|
533 |
+
|
534 |
+
|
535 |
+
@pytest.mark.parametrize('n_events', [3, 4])
|
536 |
+
def test_event_terminal_integer(n_events):
|
537 |
+
f, event = _get_harmonic_oscillator()
|
538 |
+
event.terminal = n_events
|
539 |
+
res = solve_ivp(f, (0, 100), [1, 0], events=event)
|
540 |
+
assert len(res.t_events[0]) == n_events
|
541 |
+
assert len(res.y_events[0]) == n_events
|
542 |
+
assert_allclose(res.y_events[0][:, 0], 0, atol=1e-14)
|
543 |
+
|
544 |
+
|
545 |
+
def test_event_terminal_iv():
|
546 |
+
f, event = _get_harmonic_oscillator()
|
547 |
+
args = (f, (0, 100), [1, 0])
|
548 |
+
|
549 |
+
event.terminal = None
|
550 |
+
res = solve_ivp(*args, events=event)
|
551 |
+
event.terminal = 0
|
552 |
+
ref = solve_ivp(*args, events=event)
|
553 |
+
assert_allclose(res.t_events, ref.t_events)
|
554 |
+
|
555 |
+
message = "The `terminal` attribute..."
|
556 |
+
event.terminal = -1
|
557 |
+
with pytest.raises(ValueError, match=message):
|
558 |
+
solve_ivp(*args, events=event)
|
559 |
+
event.terminal = 3.5
|
560 |
+
with pytest.raises(ValueError, match=message):
|
561 |
+
solve_ivp(*args, events=event)
|
562 |
+
|
563 |
+
|
564 |
+
def test_max_step():
|
565 |
+
rtol = 1e-3
|
566 |
+
atol = 1e-6
|
567 |
+
y0 = [1/3, 2/9]
|
568 |
+
for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
|
569 |
+
for t_span in ([5, 9], [5, 1]):
|
570 |
+
res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
|
571 |
+
max_step=0.5, atol=atol, method=method,
|
572 |
+
dense_output=True)
|
573 |
+
assert_equal(res.t[0], t_span[0])
|
574 |
+
assert_equal(res.t[-1], t_span[-1])
|
575 |
+
assert_(np.all(np.abs(np.diff(res.t)) <= 0.5 + 1e-15))
|
576 |
+
assert_(res.t_events is None)
|
577 |
+
assert_(res.success)
|
578 |
+
assert_equal(res.status, 0)
|
579 |
+
|
580 |
+
y_true = sol_rational(res.t)
|
581 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
582 |
+
assert_(np.all(e < 5))
|
583 |
+
|
584 |
+
tc = np.linspace(*t_span)
|
585 |
+
yc_true = sol_rational(tc)
|
586 |
+
yc = res.sol(tc)
|
587 |
+
|
588 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
589 |
+
assert_(np.all(e < 5))
|
590 |
+
|
591 |
+
assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
|
592 |
+
|
593 |
+
assert_raises(ValueError, method, fun_rational, t_span[0], y0,
|
594 |
+
t_span[1], max_step=-1)
|
595 |
+
|
596 |
+
if method is not LSODA:
|
597 |
+
solver = method(fun_rational, t_span[0], y0, t_span[1],
|
598 |
+
rtol=rtol, atol=atol, max_step=1e-20)
|
599 |
+
message = solver.step()
|
600 |
+
|
601 |
+
assert_equal(solver.status, 'failed')
|
602 |
+
assert_("step size is less" in message)
|
603 |
+
assert_raises(RuntimeError, solver.step)
|
604 |
+
|
605 |
+
|
606 |
+
def test_first_step():
|
607 |
+
rtol = 1e-3
|
608 |
+
atol = 1e-6
|
609 |
+
y0 = [1/3, 2/9]
|
610 |
+
first_step = 0.1
|
611 |
+
for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
|
612 |
+
for t_span in ([5, 9], [5, 1]):
|
613 |
+
res = solve_ivp(fun_rational, t_span, y0, rtol=rtol,
|
614 |
+
max_step=0.5, atol=atol, method=method,
|
615 |
+
dense_output=True, first_step=first_step)
|
616 |
+
|
617 |
+
assert_equal(res.t[0], t_span[0])
|
618 |
+
assert_equal(res.t[-1], t_span[-1])
|
619 |
+
assert_allclose(first_step, np.abs(res.t[1] - 5))
|
620 |
+
assert_(res.t_events is None)
|
621 |
+
assert_(res.success)
|
622 |
+
assert_equal(res.status, 0)
|
623 |
+
|
624 |
+
y_true = sol_rational(res.t)
|
625 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
626 |
+
assert_(np.all(e < 5))
|
627 |
+
|
628 |
+
tc = np.linspace(*t_span)
|
629 |
+
yc_true = sol_rational(tc)
|
630 |
+
yc = res.sol(tc)
|
631 |
+
|
632 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
633 |
+
assert_(np.all(e < 5))
|
634 |
+
|
635 |
+
assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
|
636 |
+
|
637 |
+
assert_raises(ValueError, method, fun_rational, t_span[0], y0,
|
638 |
+
t_span[1], first_step=-1)
|
639 |
+
assert_raises(ValueError, method, fun_rational, t_span[0], y0,
|
640 |
+
t_span[1], first_step=5)
|
641 |
+
|
642 |
+
|
643 |
+
def test_t_eval():
|
644 |
+
rtol = 1e-3
|
645 |
+
atol = 1e-6
|
646 |
+
y0 = [1/3, 2/9]
|
647 |
+
for t_span in ([5, 9], [5, 1]):
|
648 |
+
t_eval = np.linspace(t_span[0], t_span[1], 10)
|
649 |
+
res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
|
650 |
+
t_eval=t_eval)
|
651 |
+
assert_equal(res.t, t_eval)
|
652 |
+
assert_(res.t_events is None)
|
653 |
+
assert_(res.success)
|
654 |
+
assert_equal(res.status, 0)
|
655 |
+
|
656 |
+
y_true = sol_rational(res.t)
|
657 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
658 |
+
assert_(np.all(e < 5))
|
659 |
+
|
660 |
+
t_eval = [5, 5.01, 7, 8, 8.01, 9]
|
661 |
+
res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
|
662 |
+
t_eval=t_eval)
|
663 |
+
assert_equal(res.t, t_eval)
|
664 |
+
assert_(res.t_events is None)
|
665 |
+
assert_(res.success)
|
666 |
+
assert_equal(res.status, 0)
|
667 |
+
|
668 |
+
y_true = sol_rational(res.t)
|
669 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
670 |
+
assert_(np.all(e < 5))
|
671 |
+
|
672 |
+
t_eval = [5, 4.99, 3, 1.5, 1.1, 1.01, 1]
|
673 |
+
res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
|
674 |
+
t_eval=t_eval)
|
675 |
+
assert_equal(res.t, t_eval)
|
676 |
+
assert_(res.t_events is None)
|
677 |
+
assert_(res.success)
|
678 |
+
assert_equal(res.status, 0)
|
679 |
+
|
680 |
+
t_eval = [5.01, 7, 8, 8.01]
|
681 |
+
res = solve_ivp(fun_rational, [5, 9], y0, rtol=rtol, atol=atol,
|
682 |
+
t_eval=t_eval)
|
683 |
+
assert_equal(res.t, t_eval)
|
684 |
+
assert_(res.t_events is None)
|
685 |
+
assert_(res.success)
|
686 |
+
assert_equal(res.status, 0)
|
687 |
+
|
688 |
+
y_true = sol_rational(res.t)
|
689 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
690 |
+
assert_(np.all(e < 5))
|
691 |
+
|
692 |
+
t_eval = [4.99, 3, 1.5, 1.1, 1.01]
|
693 |
+
res = solve_ivp(fun_rational, [5, 1], y0, rtol=rtol, atol=atol,
|
694 |
+
t_eval=t_eval)
|
695 |
+
assert_equal(res.t, t_eval)
|
696 |
+
assert_(res.t_events is None)
|
697 |
+
assert_(res.success)
|
698 |
+
assert_equal(res.status, 0)
|
699 |
+
|
700 |
+
t_eval = [4, 6]
|
701 |
+
assert_raises(ValueError, solve_ivp, fun_rational, [5, 9], y0,
|
702 |
+
rtol=rtol, atol=atol, t_eval=t_eval)
|
703 |
+
|
704 |
+
|
705 |
+
def test_t_eval_dense_output():
|
706 |
+
rtol = 1e-3
|
707 |
+
atol = 1e-6
|
708 |
+
y0 = [1/3, 2/9]
|
709 |
+
t_span = [5, 9]
|
710 |
+
t_eval = np.linspace(t_span[0], t_span[1], 10)
|
711 |
+
res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
|
712 |
+
t_eval=t_eval)
|
713 |
+
res_d = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
|
714 |
+
t_eval=t_eval, dense_output=True)
|
715 |
+
assert_equal(res.t, t_eval)
|
716 |
+
assert_(res.t_events is None)
|
717 |
+
assert_(res.success)
|
718 |
+
assert_equal(res.status, 0)
|
719 |
+
|
720 |
+
assert_equal(res.t, res_d.t)
|
721 |
+
assert_equal(res.y, res_d.y)
|
722 |
+
assert_(res_d.t_events is None)
|
723 |
+
assert_(res_d.success)
|
724 |
+
assert_equal(res_d.status, 0)
|
725 |
+
|
726 |
+
# if t and y are equal only test values for one case
|
727 |
+
y_true = sol_rational(res.t)
|
728 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
729 |
+
assert_(np.all(e < 5))
|
730 |
+
|
731 |
+
|
732 |
+
def test_t_eval_early_event():
|
733 |
+
def early_event(t, y):
|
734 |
+
return t - 7
|
735 |
+
|
736 |
+
early_event.terminal = True
|
737 |
+
|
738 |
+
rtol = 1e-3
|
739 |
+
atol = 1e-6
|
740 |
+
y0 = [1/3, 2/9]
|
741 |
+
t_span = [5, 9]
|
742 |
+
t_eval = np.linspace(7.5, 9, 16)
|
743 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
744 |
+
with suppress_warnings() as sup:
|
745 |
+
sup.filter(UserWarning,
|
746 |
+
"The following arguments have no effect for a chosen "
|
747 |
+
"solver: `jac`")
|
748 |
+
res = solve_ivp(fun_rational, t_span, y0, rtol=rtol, atol=atol,
|
749 |
+
method=method, t_eval=t_eval, events=early_event,
|
750 |
+
jac=jac_rational)
|
751 |
+
assert res.success
|
752 |
+
assert res.message == 'A termination event occurred.'
|
753 |
+
assert res.status == 1
|
754 |
+
assert not res.t and not res.y
|
755 |
+
assert len(res.t_events) == 1
|
756 |
+
assert res.t_events[0].size == 1
|
757 |
+
assert res.t_events[0][0] == 7
|
758 |
+
|
759 |
+
|
760 |
+
def test_event_dense_output_LSODA():
|
761 |
+
def event_lsoda(t, y):
|
762 |
+
return y[0] - 2.02e-5
|
763 |
+
|
764 |
+
rtol = 1e-3
|
765 |
+
atol = 1e-6
|
766 |
+
y0 = [0.05]
|
767 |
+
t_span = [-2, 2]
|
768 |
+
first_step = 1e-3
|
769 |
+
res = solve_ivp(
|
770 |
+
fun_event_dense_output_LSODA,
|
771 |
+
t_span,
|
772 |
+
y0,
|
773 |
+
method="LSODA",
|
774 |
+
dense_output=True,
|
775 |
+
events=event_lsoda,
|
776 |
+
first_step=first_step,
|
777 |
+
max_step=1,
|
778 |
+
rtol=rtol,
|
779 |
+
atol=atol,
|
780 |
+
jac=jac_event_dense_output_LSODA,
|
781 |
+
)
|
782 |
+
|
783 |
+
assert_equal(res.t[0], t_span[0])
|
784 |
+
assert_equal(res.t[-1], t_span[-1])
|
785 |
+
assert_allclose(first_step, np.abs(res.t[1] - t_span[0]))
|
786 |
+
assert res.success
|
787 |
+
assert_equal(res.status, 0)
|
788 |
+
|
789 |
+
y_true = sol_event_dense_output_LSODA(res.t)
|
790 |
+
e = compute_error(res.y, y_true, rtol, atol)
|
791 |
+
assert_array_less(e, 5)
|
792 |
+
|
793 |
+
tc = np.linspace(*t_span)
|
794 |
+
yc_true = sol_event_dense_output_LSODA(tc)
|
795 |
+
yc = res.sol(tc)
|
796 |
+
e = compute_error(yc, yc_true, rtol, atol)
|
797 |
+
assert_array_less(e, 5)
|
798 |
+
|
799 |
+
assert_allclose(res.sol(res.t), res.y, rtol=1e-15, atol=1e-15)
|
800 |
+
|
801 |
+
|
802 |
+
def test_no_integration():
|
803 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
804 |
+
sol = solve_ivp(lambda t, y: -y, [4, 4], [2, 3],
|
805 |
+
method=method, dense_output=True)
|
806 |
+
assert_equal(sol.sol(4), [2, 3])
|
807 |
+
assert_equal(sol.sol([4, 5, 6]), [[2, 2, 2], [3, 3, 3]])
|
808 |
+
|
809 |
+
|
810 |
+
def test_no_integration_class():
|
811 |
+
for method in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
|
812 |
+
solver = method(lambda t, y: -y, 0.0, [10.0, 0.0], 0.0)
|
813 |
+
solver.step()
|
814 |
+
assert_equal(solver.status, 'finished')
|
815 |
+
sol = solver.dense_output()
|
816 |
+
assert_equal(sol(0.0), [10.0, 0.0])
|
817 |
+
assert_equal(sol([0, 1, 2]), [[10, 10, 10], [0, 0, 0]])
|
818 |
+
|
819 |
+
solver = method(lambda t, y: -y, 0.0, [], np.inf)
|
820 |
+
solver.step()
|
821 |
+
assert_equal(solver.status, 'finished')
|
822 |
+
sol = solver.dense_output()
|
823 |
+
assert_equal(sol(100.0), [])
|
824 |
+
assert_equal(sol([0, 1, 2]), np.empty((0, 3)))
|
825 |
+
|
826 |
+
|
827 |
+
def test_empty():
|
828 |
+
def fun(t, y):
|
829 |
+
return np.zeros((0,))
|
830 |
+
|
831 |
+
y0 = np.zeros((0,))
|
832 |
+
|
833 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
834 |
+
sol = assert_no_warnings(solve_ivp, fun, [0, 10], y0,
|
835 |
+
method=method, dense_output=True)
|
836 |
+
assert_equal(sol.sol(10), np.zeros((0,)))
|
837 |
+
assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
|
838 |
+
|
839 |
+
for method in ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA']:
|
840 |
+
sol = assert_no_warnings(solve_ivp, fun, [0, np.inf], y0,
|
841 |
+
method=method, dense_output=True)
|
842 |
+
assert_equal(sol.sol(10), np.zeros((0,)))
|
843 |
+
assert_equal(sol.sol([1, 2, 3]), np.zeros((0, 3)))
|
844 |
+
|
845 |
+
|
846 |
+
def test_ConstantDenseOutput():
|
847 |
+
sol = ConstantDenseOutput(0, 1, np.array([1, 2]))
|
848 |
+
assert_allclose(sol(1.5), [1, 2])
|
849 |
+
assert_allclose(sol([1, 1.5, 2]), [[1, 1, 1], [2, 2, 2]])
|
850 |
+
|
851 |
+
sol = ConstantDenseOutput(0, 1, np.array([]))
|
852 |
+
assert_allclose(sol(1.5), np.empty(0))
|
853 |
+
assert_allclose(sol([1, 1.5, 2]), np.empty((0, 3)))
|
854 |
+
|
855 |
+
|
856 |
+
def test_classes():
|
857 |
+
y0 = [1 / 3, 2 / 9]
|
858 |
+
for cls in [RK23, RK45, DOP853, Radau, BDF, LSODA]:
|
859 |
+
solver = cls(fun_rational, 5, y0, np.inf)
|
860 |
+
assert_equal(solver.n, 2)
|
861 |
+
assert_equal(solver.status, 'running')
|
862 |
+
assert_equal(solver.t_bound, np.inf)
|
863 |
+
assert_equal(solver.direction, 1)
|
864 |
+
assert_equal(solver.t, 5)
|
865 |
+
assert_equal(solver.y, y0)
|
866 |
+
assert_(solver.step_size is None)
|
867 |
+
if cls is not LSODA:
|
868 |
+
assert_(solver.nfev > 0)
|
869 |
+
assert_(solver.njev >= 0)
|
870 |
+
assert_equal(solver.nlu, 0)
|
871 |
+
else:
|
872 |
+
assert_equal(solver.nfev, 0)
|
873 |
+
assert_equal(solver.njev, 0)
|
874 |
+
assert_equal(solver.nlu, 0)
|
875 |
+
|
876 |
+
assert_raises(RuntimeError, solver.dense_output)
|
877 |
+
|
878 |
+
message = solver.step()
|
879 |
+
assert_equal(solver.status, 'running')
|
880 |
+
assert_equal(message, None)
|
881 |
+
assert_equal(solver.n, 2)
|
882 |
+
assert_equal(solver.t_bound, np.inf)
|
883 |
+
assert_equal(solver.direction, 1)
|
884 |
+
assert_(solver.t > 5)
|
885 |
+
assert_(not np.all(np.equal(solver.y, y0)))
|
886 |
+
assert_(solver.step_size > 0)
|
887 |
+
assert_(solver.nfev > 0)
|
888 |
+
assert_(solver.njev >= 0)
|
889 |
+
assert_(solver.nlu >= 0)
|
890 |
+
sol = solver.dense_output()
|
891 |
+
assert_allclose(sol(5), y0, rtol=1e-15, atol=0)
|
892 |
+
|
893 |
+
|
894 |
+
def test_OdeSolution():
|
895 |
+
ts = np.array([0, 2, 5], dtype=float)
|
896 |
+
s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
|
897 |
+
s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
|
898 |
+
|
899 |
+
sol = OdeSolution(ts, [s1, s2])
|
900 |
+
|
901 |
+
assert_equal(sol(-1), [-1])
|
902 |
+
assert_equal(sol(1), [-1])
|
903 |
+
assert_equal(sol(2), [-1])
|
904 |
+
assert_equal(sol(3), [1])
|
905 |
+
assert_equal(sol(5), [1])
|
906 |
+
assert_equal(sol(6), [1])
|
907 |
+
|
908 |
+
assert_equal(sol([0, 6, -2, 1.5, 4.5, 2.5, 5, 5.5, 2]),
|
909 |
+
np.array([[-1, 1, -1, -1, 1, 1, 1, 1, -1]]))
|
910 |
+
|
911 |
+
ts = np.array([10, 4, -3])
|
912 |
+
s1 = ConstantDenseOutput(ts[0], ts[1], np.array([-1]))
|
913 |
+
s2 = ConstantDenseOutput(ts[1], ts[2], np.array([1]))
|
914 |
+
|
915 |
+
sol = OdeSolution(ts, [s1, s2])
|
916 |
+
assert_equal(sol(11), [-1])
|
917 |
+
assert_equal(sol(10), [-1])
|
918 |
+
assert_equal(sol(5), [-1])
|
919 |
+
assert_equal(sol(4), [-1])
|
920 |
+
assert_equal(sol(0), [1])
|
921 |
+
assert_equal(sol(-3), [1])
|
922 |
+
assert_equal(sol(-4), [1])
|
923 |
+
|
924 |
+
assert_equal(sol([12, -5, 10, -3, 6, 1, 4]),
|
925 |
+
np.array([[-1, 1, -1, 1, -1, 1, -1]]))
|
926 |
+
|
927 |
+
ts = np.array([1, 1])
|
928 |
+
s = ConstantDenseOutput(1, 1, np.array([10]))
|
929 |
+
sol = OdeSolution(ts, [s])
|
930 |
+
assert_equal(sol(0), [10])
|
931 |
+
assert_equal(sol(1), [10])
|
932 |
+
assert_equal(sol(2), [10])
|
933 |
+
|
934 |
+
assert_equal(sol([2, 1, 0]), np.array([[10, 10, 10]]))
|
935 |
+
|
936 |
+
|
937 |
+
def test_num_jac():
|
938 |
+
def fun(t, y):
|
939 |
+
return np.vstack([
|
940 |
+
-0.04 * y[0] + 1e4 * y[1] * y[2],
|
941 |
+
0.04 * y[0] - 1e4 * y[1] * y[2] - 3e7 * y[1] ** 2,
|
942 |
+
3e7 * y[1] ** 2
|
943 |
+
])
|
944 |
+
|
945 |
+
def jac(t, y):
|
946 |
+
return np.array([
|
947 |
+
[-0.04, 1e4 * y[2], 1e4 * y[1]],
|
948 |
+
[0.04, -1e4 * y[2] - 6e7 * y[1], -1e4 * y[1]],
|
949 |
+
[0, 6e7 * y[1], 0]
|
950 |
+
])
|
951 |
+
|
952 |
+
t = 1
|
953 |
+
y = np.array([1, 0, 0])
|
954 |
+
J_true = jac(t, y)
|
955 |
+
threshold = 1e-5
|
956 |
+
f = fun(t, y).ravel()
|
957 |
+
|
958 |
+
J_num, factor = num_jac(fun, t, y, f, threshold, None)
|
959 |
+
assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
|
960 |
+
|
961 |
+
J_num, factor = num_jac(fun, t, y, f, threshold, factor)
|
962 |
+
assert_allclose(J_num, J_true, rtol=1e-5, atol=1e-5)
|
963 |
+
|
964 |
+
|
965 |
+
def test_num_jac_sparse():
|
966 |
+
def fun(t, y):
|
967 |
+
e = y[1:]**3 - y[:-1]**2
|
968 |
+
z = np.zeros(y.shape[1])
|
969 |
+
return np.vstack((z, 3 * e)) + np.vstack((2 * e, z))
|
970 |
+
|
971 |
+
def structure(n):
|
972 |
+
A = np.zeros((n, n), dtype=int)
|
973 |
+
A[0, 0] = 1
|
974 |
+
A[0, 1] = 1
|
975 |
+
for i in range(1, n - 1):
|
976 |
+
A[i, i - 1: i + 2] = 1
|
977 |
+
A[-1, -1] = 1
|
978 |
+
A[-1, -2] = 1
|
979 |
+
|
980 |
+
return A
|
981 |
+
|
982 |
+
np.random.seed(0)
|
983 |
+
n = 20
|
984 |
+
y = np.random.randn(n)
|
985 |
+
A = structure(n)
|
986 |
+
groups = group_columns(A)
|
987 |
+
|
988 |
+
f = fun(0, y[:, None]).ravel()
|
989 |
+
|
990 |
+
# Compare dense and sparse results, assuming that dense implementation
|
991 |
+
# is correct (as it is straightforward).
|
992 |
+
J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, None,
|
993 |
+
sparsity=(A, groups))
|
994 |
+
J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, None)
|
995 |
+
assert_allclose(J_num_dense, J_num_sparse.toarray(),
|
996 |
+
rtol=1e-12, atol=1e-14)
|
997 |
+
assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
|
998 |
+
|
999 |
+
# Take small factors to trigger their recomputing inside.
|
1000 |
+
factor = np.random.uniform(0, 1e-12, size=n)
|
1001 |
+
J_num_sparse, factor_sparse = num_jac(fun, 0, y.ravel(), f, 1e-8, factor,
|
1002 |
+
sparsity=(A, groups))
|
1003 |
+
J_num_dense, factor_dense = num_jac(fun, 0, y.ravel(), f, 1e-8, factor)
|
1004 |
+
|
1005 |
+
assert_allclose(J_num_dense, J_num_sparse.toarray(),
|
1006 |
+
rtol=1e-12, atol=1e-14)
|
1007 |
+
assert_allclose(factor_dense, factor_sparse, rtol=1e-12, atol=1e-14)
|
1008 |
+
|
1009 |
+
|
1010 |
+
def test_args():
|
1011 |
+
|
1012 |
+
# sys3 is actually two decoupled systems. (x, y) form a
|
1013 |
+
# linear oscillator, while z is a nonlinear first order
|
1014 |
+
# system with equilibria at z=0 and z=1. If k > 0, z=1
|
1015 |
+
# is stable and z=0 is unstable.
|
1016 |
+
|
1017 |
+
def sys3(t, w, omega, k, zfinal):
|
1018 |
+
x, y, z = w
|
1019 |
+
return [-omega*y, omega*x, k*z*(1 - z)]
|
1020 |
+
|
1021 |
+
def sys3_jac(t, w, omega, k, zfinal):
|
1022 |
+
x, y, z = w
|
1023 |
+
J = np.array([[0, -omega, 0],
|
1024 |
+
[omega, 0, 0],
|
1025 |
+
[0, 0, k*(1 - 2*z)]])
|
1026 |
+
return J
|
1027 |
+
|
1028 |
+
def sys3_x0decreasing(t, w, omega, k, zfinal):
|
1029 |
+
x, y, z = w
|
1030 |
+
return x
|
1031 |
+
|
1032 |
+
def sys3_y0increasing(t, w, omega, k, zfinal):
|
1033 |
+
x, y, z = w
|
1034 |
+
return y
|
1035 |
+
|
1036 |
+
def sys3_zfinal(t, w, omega, k, zfinal):
|
1037 |
+
x, y, z = w
|
1038 |
+
return z - zfinal
|
1039 |
+
|
1040 |
+
# Set the event flags for the event functions.
|
1041 |
+
sys3_x0decreasing.direction = -1
|
1042 |
+
sys3_y0increasing.direction = 1
|
1043 |
+
sys3_zfinal.terminal = True
|
1044 |
+
|
1045 |
+
omega = 2
|
1046 |
+
k = 4
|
1047 |
+
|
1048 |
+
tfinal = 5
|
1049 |
+
zfinal = 0.99
|
1050 |
+
# Find z0 such that when z(0) = z0, z(tfinal) = zfinal.
|
1051 |
+
# The condition z(tfinal) = zfinal is the terminal event.
|
1052 |
+
z0 = np.exp(-k*tfinal)/((1 - zfinal)/zfinal + np.exp(-k*tfinal))
|
1053 |
+
|
1054 |
+
w0 = [0, -1, z0]
|
1055 |
+
|
1056 |
+
# Provide the jac argument and use the Radau method to ensure that the use
|
1057 |
+
# of the Jacobian function is exercised.
|
1058 |
+
# If event handling is working, the solution will stop at tfinal, not tend.
|
1059 |
+
tend = 2*tfinal
|
1060 |
+
sol = solve_ivp(sys3, [0, tend], w0,
|
1061 |
+
events=[sys3_x0decreasing, sys3_y0increasing, sys3_zfinal],
|
1062 |
+
dense_output=True, args=(omega, k, zfinal),
|
1063 |
+
method='Radau', jac=sys3_jac,
|
1064 |
+
rtol=1e-10, atol=1e-13)
|
1065 |
+
|
1066 |
+
# Check that we got the expected events at the expected times.
|
1067 |
+
x0events_t = sol.t_events[0]
|
1068 |
+
y0events_t = sol.t_events[1]
|
1069 |
+
zfinalevents_t = sol.t_events[2]
|
1070 |
+
assert_allclose(x0events_t, [0.5*np.pi, 1.5*np.pi])
|
1071 |
+
assert_allclose(y0events_t, [0.25*np.pi, 1.25*np.pi])
|
1072 |
+
assert_allclose(zfinalevents_t, [tfinal])
|
1073 |
+
|
1074 |
+
# Check that the solution agrees with the known exact solution.
|
1075 |
+
t = np.linspace(0, zfinalevents_t[0], 250)
|
1076 |
+
w = sol.sol(t)
|
1077 |
+
assert_allclose(w[0], np.sin(omega*t), rtol=1e-9, atol=1e-12)
|
1078 |
+
assert_allclose(w[1], -np.cos(omega*t), rtol=1e-9, atol=1e-12)
|
1079 |
+
assert_allclose(w[2], 1/(((1 - z0)/z0)*np.exp(-k*t) + 1),
|
1080 |
+
rtol=1e-9, atol=1e-12)
|
1081 |
+
|
1082 |
+
# Check that the state variables have the expected values at the events.
|
1083 |
+
x0events = sol.sol(x0events_t)
|
1084 |
+
y0events = sol.sol(y0events_t)
|
1085 |
+
zfinalevents = sol.sol(zfinalevents_t)
|
1086 |
+
assert_allclose(x0events[0], np.zeros_like(x0events[0]), atol=5e-14)
|
1087 |
+
assert_allclose(x0events[1], np.ones_like(x0events[1]))
|
1088 |
+
assert_allclose(y0events[0], np.ones_like(y0events[0]))
|
1089 |
+
assert_allclose(y0events[1], np.zeros_like(y0events[1]), atol=5e-14)
|
1090 |
+
assert_allclose(zfinalevents[2], [zfinal])
|
1091 |
+
|
1092 |
+
|
1093 |
+
def test_array_rtol():
|
1094 |
+
# solve_ivp had a bug with array_like `rtol`; see gh-15482
|
1095 |
+
# check that it's fixed
|
1096 |
+
def f(t, y):
|
1097 |
+
return y[0], y[1]
|
1098 |
+
|
1099 |
+
# no warning (or error) when `rtol` is array_like
|
1100 |
+
sol = solve_ivp(f, (0, 1), [1., 1.], rtol=[1e-1, 1e-1])
|
1101 |
+
err1 = np.abs(np.linalg.norm(sol.y[:, -1] - np.exp(1)))
|
1102 |
+
|
1103 |
+
# warning when an element of `rtol` is too small
|
1104 |
+
with pytest.warns(UserWarning, match="At least one element..."):
|
1105 |
+
sol = solve_ivp(f, (0, 1), [1., 1.], rtol=[1e-1, 1e-16])
|
1106 |
+
err2 = np.abs(np.linalg.norm(sol.y[:, -1] - np.exp(1)))
|
1107 |
+
|
1108 |
+
# tighter rtol improves the error
|
1109 |
+
assert err2 < err1
|
1110 |
+
|
1111 |
+
@pytest.mark.parametrize('method', ['RK23', 'RK45', 'DOP853', 'Radau', 'BDF', 'LSODA'])
|
1112 |
+
def test_integration_zero_rhs(method):
|
1113 |
+
result = solve_ivp(fun_zero, [0, 10], np.ones(3), method=method)
|
1114 |
+
assert_(result.success)
|
1115 |
+
assert_equal(result.status, 0)
|
1116 |
+
assert_allclose(result.y, 1.0, rtol=1e-15)
|
1117 |
+
|
1118 |
+
|
1119 |
+
def test_args_single_value():
|
1120 |
+
def fun_with_arg(t, y, a):
|
1121 |
+
return a*y
|
1122 |
+
|
1123 |
+
message = "Supplied 'args' cannot be unpacked."
|
1124 |
+
with pytest.raises(TypeError, match=message):
|
1125 |
+
solve_ivp(fun_with_arg, (0, 0.1), [1], args=-1)
|
1126 |
+
|
1127 |
+
sol = solve_ivp(fun_with_arg, (0, 0.1), [1], args=(-1,))
|
1128 |
+
assert_allclose(sol.y[0, -1], np.exp(-0.1))
|
1129 |
+
|
1130 |
+
@pytest.mark.parametrize("f0_fill", [np.nan, np.inf])
|
1131 |
+
def test_initial_state_finiteness(f0_fill):
|
1132 |
+
# regression test for gh-17846
|
1133 |
+
msg = "All components of the initial state `y0` must be finite."
|
1134 |
+
with pytest.raises(ValueError, match=msg):
|
1135 |
+
solve_ivp(fun_zero, [0, 10], np.full(3, f0_fill))
|
venv/lib/python3.10/site-packages/scipy/integrate/_ivp/tests/test_rk.py
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from numpy.testing import assert_allclose, assert_
|
3 |
+
import numpy as np
|
4 |
+
from scipy.integrate import RK23, RK45, DOP853
|
5 |
+
from scipy.integrate._ivp import dop853_coefficients
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.mark.parametrize("solver", [RK23, RK45, DOP853])
|
9 |
+
def test_coefficient_properties(solver):
|
10 |
+
assert_allclose(np.sum(solver.B), 1, rtol=1e-15)
|
11 |
+
assert_allclose(np.sum(solver.A, axis=1), solver.C, rtol=1e-14)
|
12 |
+
|
13 |
+
|
14 |
+
def test_coefficient_properties_dop853():
|
15 |
+
assert_allclose(np.sum(dop853_coefficients.B), 1, rtol=1e-15)
|
16 |
+
assert_allclose(np.sum(dop853_coefficients.A, axis=1),
|
17 |
+
dop853_coefficients.C,
|
18 |
+
rtol=1e-14)
|
19 |
+
|
20 |
+
|
21 |
+
@pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
|
22 |
+
def test_error_estimation(solver_class):
|
23 |
+
step = 0.2
|
24 |
+
solver = solver_class(lambda t, y: y, 0, [1], 1, first_step=step)
|
25 |
+
solver.step()
|
26 |
+
error_estimate = solver._estimate_error(solver.K, step)
|
27 |
+
error = solver.y - np.exp([step])
|
28 |
+
assert_(np.abs(error) < np.abs(error_estimate))
|
29 |
+
|
30 |
+
|
31 |
+
@pytest.mark.parametrize("solver_class", [RK23, RK45, DOP853])
|
32 |
+
def test_error_estimation_complex(solver_class):
|
33 |
+
h = 0.2
|
34 |
+
solver = solver_class(lambda t, y: 1j * y, 0, [1j], 1, first_step=h)
|
35 |
+
solver.step()
|
36 |
+
err_norm = solver._estimate_error_norm(solver.K, h, scale=[1])
|
37 |
+
assert np.isrealobj(err_norm)
|
venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_bvp.cpython-310.pyc
ADDED
Binary file (19.7 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_integrate.cpython-310.pyc
ADDED
Binary file (24.6 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/integrate/tests/__pycache__/test_odeint_jac.cpython-310.pyc
ADDED
Binary file (2.1 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/spatial/__init__.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
=============================================================
|
3 |
+
Spatial algorithms and data structures (:mod:`scipy.spatial`)
|
4 |
+
=============================================================
|
5 |
+
|
6 |
+
.. currentmodule:: scipy.spatial
|
7 |
+
|
8 |
+
.. toctree::
|
9 |
+
:hidden:
|
10 |
+
|
11 |
+
spatial.distance
|
12 |
+
|
13 |
+
Spatial transformations
|
14 |
+
=======================
|
15 |
+
|
16 |
+
These are contained in the `scipy.spatial.transform` submodule.
|
17 |
+
|
18 |
+
Nearest-neighbor queries
|
19 |
+
========================
|
20 |
+
.. autosummary::
|
21 |
+
:toctree: generated/
|
22 |
+
|
23 |
+
KDTree -- class for efficient nearest-neighbor queries
|
24 |
+
cKDTree -- class for efficient nearest-neighbor queries (faster implementation)
|
25 |
+
Rectangle
|
26 |
+
|
27 |
+
Distance metrics
|
28 |
+
================
|
29 |
+
|
30 |
+
Distance metrics are contained in the :mod:`scipy.spatial.distance` submodule.
|
31 |
+
|
32 |
+
Delaunay triangulation, convex hulls, and Voronoi diagrams
|
33 |
+
==========================================================
|
34 |
+
|
35 |
+
.. autosummary::
|
36 |
+
:toctree: generated/
|
37 |
+
|
38 |
+
Delaunay -- compute Delaunay triangulation of input points
|
39 |
+
ConvexHull -- compute a convex hull for input points
|
40 |
+
Voronoi -- compute a Voronoi diagram hull from input points
|
41 |
+
SphericalVoronoi -- compute a Voronoi diagram from input points on the surface of a sphere
|
42 |
+
HalfspaceIntersection -- compute the intersection points of input halfspaces
|
43 |
+
|
44 |
+
Plotting helpers
|
45 |
+
================
|
46 |
+
|
47 |
+
.. autosummary::
|
48 |
+
:toctree: generated/
|
49 |
+
|
50 |
+
delaunay_plot_2d -- plot 2-D triangulation
|
51 |
+
convex_hull_plot_2d -- plot 2-D convex hull
|
52 |
+
voronoi_plot_2d -- plot 2-D Voronoi diagram
|
53 |
+
|
54 |
+
.. seealso:: :ref:`Tutorial <qhulltutorial>`
|
55 |
+
|
56 |
+
|
57 |
+
Simplex representation
|
58 |
+
======================
|
59 |
+
The simplices (triangles, tetrahedra, etc.) appearing in the Delaunay
|
60 |
+
tessellation (N-D simplices), convex hull facets, and Voronoi ridges
|
61 |
+
(N-1-D simplices) are represented in the following scheme::
|
62 |
+
|
63 |
+
tess = Delaunay(points)
|
64 |
+
hull = ConvexHull(points)
|
65 |
+
voro = Voronoi(points)
|
66 |
+
|
67 |
+
# coordinates of the jth vertex of the ith simplex
|
68 |
+
tess.points[tess.simplices[i, j], :] # tessellation element
|
69 |
+
hull.points[hull.simplices[i, j], :] # convex hull facet
|
70 |
+
voro.vertices[voro.ridge_vertices[i, j], :] # ridge between Voronoi cells
|
71 |
+
|
72 |
+
For Delaunay triangulations and convex hulls, the neighborhood
|
73 |
+
structure of the simplices satisfies the condition:
|
74 |
+
``tess.neighbors[i,j]`` is the neighboring simplex of the ith
|
75 |
+
simplex, opposite to the ``j``-vertex. It is -1 in case of no neighbor.
|
76 |
+
|
77 |
+
Convex hull facets also define a hyperplane equation::
|
78 |
+
|
79 |
+
(hull.equations[i,:-1] * coord).sum() + hull.equations[i,-1] == 0
|
80 |
+
|
81 |
+
Similar hyperplane equations for the Delaunay triangulation correspond
|
82 |
+
to the convex hull facets on the corresponding N+1-D
|
83 |
+
paraboloid.
|
84 |
+
|
85 |
+
The Delaunay triangulation objects offer a method for locating the
|
86 |
+
simplex containing a given point, and barycentric coordinate
|
87 |
+
computations.
|
88 |
+
|
89 |
+
Functions
|
90 |
+
---------
|
91 |
+
|
92 |
+
.. autosummary::
|
93 |
+
:toctree: generated/
|
94 |
+
|
95 |
+
tsearch
|
96 |
+
distance_matrix
|
97 |
+
minkowski_distance
|
98 |
+
minkowski_distance_p
|
99 |
+
procrustes
|
100 |
+
geometric_slerp
|
101 |
+
|
102 |
+
Warnings / Errors used in :mod:`scipy.spatial`
|
103 |
+
----------------------------------------------
|
104 |
+
.. autosummary::
|
105 |
+
:toctree: generated/
|
106 |
+
|
107 |
+
QhullError
|
108 |
+
""" # noqa: E501
|
109 |
+
|
110 |
+
from ._kdtree import *
|
111 |
+
from ._ckdtree import *
|
112 |
+
from ._qhull import *
|
113 |
+
from ._spherical_voronoi import SphericalVoronoi
|
114 |
+
from ._plotutils import *
|
115 |
+
from ._procrustes import procrustes
|
116 |
+
from ._geometric_slerp import geometric_slerp
|
117 |
+
|
118 |
+
# Deprecated namespaces, to be removed in v2.0.0
|
119 |
+
from . import ckdtree, kdtree, qhull
|
120 |
+
|
121 |
+
__all__ = [s for s in dir() if not s.startswith('_')]
|
122 |
+
|
123 |
+
from . import distance, transform
|
124 |
+
|
125 |
+
__all__ += ['distance', 'transform']
|
126 |
+
|
127 |
+
from scipy._lib._testutils import PytestTester
|
128 |
+
test = PytestTester(__name__)
|
129 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/scipy/spatial/_ckdtree.pyi
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
Generic,
|
5 |
+
overload,
|
6 |
+
TypeVar,
|
7 |
+
)
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
import numpy.typing as npt
|
11 |
+
from scipy.sparse import coo_matrix, dok_matrix
|
12 |
+
|
13 |
+
from typing import Literal
|
14 |
+
|
15 |
+
# TODO: Replace `ndarray` with a 1D float64 array when possible
|
16 |
+
_BoxType = TypeVar("_BoxType", None, npt.NDArray[np.float64])
|
17 |
+
|
18 |
+
# Copied from `numpy.typing._scalar_like._ScalarLike`
|
19 |
+
# TODO: Expand with 0D arrays once we have shape support
|
20 |
+
_ArrayLike0D = bool | int | float | complex | str | bytes | np.generic
|
21 |
+
|
22 |
+
_WeightType = npt.ArrayLike | tuple[npt.ArrayLike | None, npt.ArrayLike | None]
|
23 |
+
|
24 |
+
class cKDTreeNode:
|
25 |
+
@property
|
26 |
+
def data_points(self) -> npt.NDArray[np.float64]: ...
|
27 |
+
@property
|
28 |
+
def indices(self) -> npt.NDArray[np.intp]: ...
|
29 |
+
|
30 |
+
# These are read-only attributes in cython, which behave like properties
|
31 |
+
@property
|
32 |
+
def level(self) -> int: ...
|
33 |
+
@property
|
34 |
+
def split_dim(self) -> int: ...
|
35 |
+
@property
|
36 |
+
def children(self) -> int: ...
|
37 |
+
@property
|
38 |
+
def start_idx(self) -> int: ...
|
39 |
+
@property
|
40 |
+
def end_idx(self) -> int: ...
|
41 |
+
@property
|
42 |
+
def split(self) -> float: ...
|
43 |
+
@property
|
44 |
+
def lesser(self) -> cKDTreeNode | None: ...
|
45 |
+
@property
|
46 |
+
def greater(self) -> cKDTreeNode | None: ...
|
47 |
+
|
48 |
+
class cKDTree(Generic[_BoxType]):
|
49 |
+
@property
|
50 |
+
def n(self) -> int: ...
|
51 |
+
@property
|
52 |
+
def m(self) -> int: ...
|
53 |
+
@property
|
54 |
+
def leafsize(self) -> int: ...
|
55 |
+
@property
|
56 |
+
def size(self) -> int: ...
|
57 |
+
@property
|
58 |
+
def tree(self) -> cKDTreeNode: ...
|
59 |
+
|
60 |
+
# These are read-only attributes in cython, which behave like properties
|
61 |
+
@property
|
62 |
+
def data(self) -> npt.NDArray[np.float64]: ...
|
63 |
+
@property
|
64 |
+
def maxes(self) -> npt.NDArray[np.float64]: ...
|
65 |
+
@property
|
66 |
+
def mins(self) -> npt.NDArray[np.float64]: ...
|
67 |
+
@property
|
68 |
+
def indices(self) -> npt.NDArray[np.float64]: ...
|
69 |
+
@property
|
70 |
+
def boxsize(self) -> _BoxType: ...
|
71 |
+
|
72 |
+
# NOTE: In practice `__init__` is used as constructor, not `__new__`.
|
73 |
+
# The latter gives us more flexibility in setting the generic parameter
|
74 |
+
# though.
|
75 |
+
@overload
|
76 |
+
def __new__( # type: ignore[misc]
|
77 |
+
cls,
|
78 |
+
data: npt.ArrayLike,
|
79 |
+
leafsize: int = ...,
|
80 |
+
compact_nodes: bool = ...,
|
81 |
+
copy_data: bool = ...,
|
82 |
+
balanced_tree: bool = ...,
|
83 |
+
boxsize: None = ...,
|
84 |
+
) -> cKDTree[None]: ...
|
85 |
+
@overload
|
86 |
+
def __new__(
|
87 |
+
cls,
|
88 |
+
data: npt.ArrayLike,
|
89 |
+
leafsize: int = ...,
|
90 |
+
compact_nodes: bool = ...,
|
91 |
+
copy_data: bool = ...,
|
92 |
+
balanced_tree: bool = ...,
|
93 |
+
boxsize: npt.ArrayLike = ...,
|
94 |
+
) -> cKDTree[npt.NDArray[np.float64]]: ...
|
95 |
+
|
96 |
+
# TODO: returns a 2-tuple of scalars if `x.ndim == 1` and `k == 1`,
|
97 |
+
# returns a 2-tuple of arrays otherwise
|
98 |
+
def query(
|
99 |
+
self,
|
100 |
+
x: npt.ArrayLike,
|
101 |
+
k: npt.ArrayLike = ...,
|
102 |
+
eps: float = ...,
|
103 |
+
p: float = ...,
|
104 |
+
distance_upper_bound: float = ...,
|
105 |
+
workers: int | None = ...,
|
106 |
+
) -> tuple[Any, Any]: ...
|
107 |
+
|
108 |
+
# TODO: returns a list scalars if `x.ndim <= 1`,
|
109 |
+
# returns an object array of lists otherwise
|
110 |
+
def query_ball_point(
|
111 |
+
self,
|
112 |
+
x: npt.ArrayLike,
|
113 |
+
r: npt.ArrayLike,
|
114 |
+
p: float,
|
115 |
+
eps: float = ...,
|
116 |
+
workers: int | None = ...,
|
117 |
+
return_sorted: bool | None = ...,
|
118 |
+
return_length: bool = ...
|
119 |
+
) -> Any: ...
|
120 |
+
|
121 |
+
def query_ball_tree(
|
122 |
+
self,
|
123 |
+
other: cKDTree,
|
124 |
+
r: float,
|
125 |
+
p: float,
|
126 |
+
eps: float = ...,
|
127 |
+
) -> list[list[int]]: ...
|
128 |
+
|
129 |
+
@overload
|
130 |
+
def query_pairs( # type: ignore[misc]
|
131 |
+
self,
|
132 |
+
r: float,
|
133 |
+
p: float = ...,
|
134 |
+
eps: float = ...,
|
135 |
+
output_type: Literal["set"] = ...,
|
136 |
+
) -> set[tuple[int, int]]: ...
|
137 |
+
@overload
|
138 |
+
def query_pairs(
|
139 |
+
self,
|
140 |
+
r: float,
|
141 |
+
p: float = ...,
|
142 |
+
eps: float = ...,
|
143 |
+
output_type: Literal["ndarray"] = ...,
|
144 |
+
) -> npt.NDArray[np.intp]: ...
|
145 |
+
|
146 |
+
@overload
|
147 |
+
def count_neighbors( # type: ignore[misc]
|
148 |
+
self,
|
149 |
+
other: cKDTree,
|
150 |
+
r: _ArrayLike0D,
|
151 |
+
p: float = ...,
|
152 |
+
weights: None | tuple[None, None] = ...,
|
153 |
+
cumulative: bool = ...,
|
154 |
+
) -> int: ...
|
155 |
+
@overload
|
156 |
+
def count_neighbors( # type: ignore[misc]
|
157 |
+
self,
|
158 |
+
other: cKDTree,
|
159 |
+
r: _ArrayLike0D,
|
160 |
+
p: float = ...,
|
161 |
+
weights: _WeightType = ...,
|
162 |
+
cumulative: bool = ...,
|
163 |
+
) -> np.float64: ...
|
164 |
+
@overload
|
165 |
+
def count_neighbors( # type: ignore[misc]
|
166 |
+
self,
|
167 |
+
other: cKDTree,
|
168 |
+
r: npt.ArrayLike,
|
169 |
+
p: float = ...,
|
170 |
+
weights: None | tuple[None, None] = ...,
|
171 |
+
cumulative: bool = ...,
|
172 |
+
) -> npt.NDArray[np.intp]: ...
|
173 |
+
@overload
|
174 |
+
def count_neighbors(
|
175 |
+
self,
|
176 |
+
other: cKDTree,
|
177 |
+
r: npt.ArrayLike,
|
178 |
+
p: float = ...,
|
179 |
+
weights: _WeightType = ...,
|
180 |
+
cumulative: bool = ...,
|
181 |
+
) -> npt.NDArray[np.float64]: ...
|
182 |
+
|
183 |
+
@overload
|
184 |
+
def sparse_distance_matrix( # type: ignore[misc]
|
185 |
+
self,
|
186 |
+
other: cKDTree,
|
187 |
+
max_distance: float,
|
188 |
+
p: float = ...,
|
189 |
+
output_type: Literal["dok_matrix"] = ...,
|
190 |
+
) -> dok_matrix: ...
|
191 |
+
@overload
|
192 |
+
def sparse_distance_matrix( # type: ignore[misc]
|
193 |
+
self,
|
194 |
+
other: cKDTree,
|
195 |
+
max_distance: float,
|
196 |
+
p: float = ...,
|
197 |
+
output_type: Literal["coo_matrix"] = ...,
|
198 |
+
) -> coo_matrix: ...
|
199 |
+
@overload
|
200 |
+
def sparse_distance_matrix( # type: ignore[misc]
|
201 |
+
self,
|
202 |
+
other: cKDTree,
|
203 |
+
max_distance: float,
|
204 |
+
p: float = ...,
|
205 |
+
output_type: Literal["dict"] = ...,
|
206 |
+
) -> dict[tuple[int, int], float]: ...
|
207 |
+
@overload
|
208 |
+
def sparse_distance_matrix(
|
209 |
+
self,
|
210 |
+
other: cKDTree,
|
211 |
+
max_distance: float,
|
212 |
+
p: float = ...,
|
213 |
+
output_type: Literal["ndarray"] = ...,
|
214 |
+
) -> npt.NDArray[np.void]: ...
|
venv/lib/python3.10/site-packages/scipy/spatial/_distance_pybind.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (641 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/spatial/_distance_wrap.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (113 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/spatial/_geometric_slerp.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
__all__ = ['geometric_slerp']
|
4 |
+
|
5 |
+
import warnings
|
6 |
+
from typing import TYPE_CHECKING
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from scipy.spatial.distance import euclidean
|
10 |
+
|
11 |
+
if TYPE_CHECKING:
|
12 |
+
import numpy.typing as npt
|
13 |
+
|
14 |
+
|
15 |
+
def _geometric_slerp(start, end, t):
|
16 |
+
# create an orthogonal basis using QR decomposition
|
17 |
+
basis = np.vstack([start, end])
|
18 |
+
Q, R = np.linalg.qr(basis.T)
|
19 |
+
signs = 2 * (np.diag(R) >= 0) - 1
|
20 |
+
Q = Q.T * signs.T[:, np.newaxis]
|
21 |
+
R = R.T * signs.T[:, np.newaxis]
|
22 |
+
|
23 |
+
# calculate the angle between `start` and `end`
|
24 |
+
c = np.dot(start, end)
|
25 |
+
s = np.linalg.det(R)
|
26 |
+
omega = np.arctan2(s, c)
|
27 |
+
|
28 |
+
# interpolate
|
29 |
+
start, end = Q
|
30 |
+
s = np.sin(t * omega)
|
31 |
+
c = np.cos(t * omega)
|
32 |
+
return start * c[:, np.newaxis] + end * s[:, np.newaxis]
|
33 |
+
|
34 |
+
|
35 |
+
def geometric_slerp(
|
36 |
+
start: npt.ArrayLike,
|
37 |
+
end: npt.ArrayLike,
|
38 |
+
t: npt.ArrayLike,
|
39 |
+
tol: float = 1e-7,
|
40 |
+
) -> np.ndarray:
|
41 |
+
"""
|
42 |
+
Geometric spherical linear interpolation.
|
43 |
+
|
44 |
+
The interpolation occurs along a unit-radius
|
45 |
+
great circle arc in arbitrary dimensional space.
|
46 |
+
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
start : (n_dimensions, ) array-like
|
50 |
+
Single n-dimensional input coordinate in a 1-D array-like
|
51 |
+
object. `n` must be greater than 1.
|
52 |
+
end : (n_dimensions, ) array-like
|
53 |
+
Single n-dimensional input coordinate in a 1-D array-like
|
54 |
+
object. `n` must be greater than 1.
|
55 |
+
t : float or (n_points,) 1D array-like
|
56 |
+
A float or 1D array-like of doubles representing interpolation
|
57 |
+
parameters, with values required in the inclusive interval
|
58 |
+
between 0 and 1. A common approach is to generate the array
|
59 |
+
with ``np.linspace(0, 1, n_pts)`` for linearly spaced points.
|
60 |
+
Ascending, descending, and scrambled orders are permitted.
|
61 |
+
tol : float
|
62 |
+
The absolute tolerance for determining if the start and end
|
63 |
+
coordinates are antipodes.
|
64 |
+
|
65 |
+
Returns
|
66 |
+
-------
|
67 |
+
result : (t.size, D)
|
68 |
+
An array of doubles containing the interpolated
|
69 |
+
spherical path and including start and
|
70 |
+
end when 0 and 1 t are used. The
|
71 |
+
interpolated values should correspond to the
|
72 |
+
same sort order provided in the t array. The result
|
73 |
+
may be 1-dimensional if ``t`` is a float.
|
74 |
+
|
75 |
+
Raises
|
76 |
+
------
|
77 |
+
ValueError
|
78 |
+
If ``start`` and ``end`` are antipodes, not on the
|
79 |
+
unit n-sphere, or for a variety of degenerate conditions.
|
80 |
+
|
81 |
+
See Also
|
82 |
+
--------
|
83 |
+
scipy.spatial.transform.Slerp : 3-D Slerp that works with quaternions
|
84 |
+
|
85 |
+
Notes
|
86 |
+
-----
|
87 |
+
The implementation is based on the mathematical formula provided in [1]_,
|
88 |
+
and the first known presentation of this algorithm, derived from study of
|
89 |
+
4-D geometry, is credited to Glenn Davis in a footnote of the original
|
90 |
+
quaternion Slerp publication by Ken Shoemake [2]_.
|
91 |
+
|
92 |
+
.. versionadded:: 1.5.0
|
93 |
+
|
94 |
+
References
|
95 |
+
----------
|
96 |
+
.. [1] https://en.wikipedia.org/wiki/Slerp#Geometric_Slerp
|
97 |
+
.. [2] Ken Shoemake (1985) Animating rotation with quaternion curves.
|
98 |
+
ACM SIGGRAPH Computer Graphics, 19(3): 245-254.
|
99 |
+
|
100 |
+
Examples
|
101 |
+
--------
|
102 |
+
Interpolate four linearly-spaced values on the circumference of
|
103 |
+
a circle spanning 90 degrees:
|
104 |
+
|
105 |
+
>>> import numpy as np
|
106 |
+
>>> from scipy.spatial import geometric_slerp
|
107 |
+
>>> import matplotlib.pyplot as plt
|
108 |
+
>>> fig = plt.figure()
|
109 |
+
>>> ax = fig.add_subplot(111)
|
110 |
+
>>> start = np.array([1, 0])
|
111 |
+
>>> end = np.array([0, 1])
|
112 |
+
>>> t_vals = np.linspace(0, 1, 4)
|
113 |
+
>>> result = geometric_slerp(start,
|
114 |
+
... end,
|
115 |
+
... t_vals)
|
116 |
+
|
117 |
+
The interpolated results should be at 30 degree intervals
|
118 |
+
recognizable on the unit circle:
|
119 |
+
|
120 |
+
>>> ax.scatter(result[...,0], result[...,1], c='k')
|
121 |
+
>>> circle = plt.Circle((0, 0), 1, color='grey')
|
122 |
+
>>> ax.add_artist(circle)
|
123 |
+
>>> ax.set_aspect('equal')
|
124 |
+
>>> plt.show()
|
125 |
+
|
126 |
+
Attempting to interpolate between antipodes on a circle is
|
127 |
+
ambiguous because there are two possible paths, and on a
|
128 |
+
sphere there are infinite possible paths on the geodesic surface.
|
129 |
+
Nonetheless, one of the ambiguous paths is returned along
|
130 |
+
with a warning:
|
131 |
+
|
132 |
+
>>> opposite_pole = np.array([-1, 0])
|
133 |
+
>>> with np.testing.suppress_warnings() as sup:
|
134 |
+
... sup.filter(UserWarning)
|
135 |
+
... geometric_slerp(start,
|
136 |
+
... opposite_pole,
|
137 |
+
... t_vals)
|
138 |
+
array([[ 1.00000000e+00, 0.00000000e+00],
|
139 |
+
[ 5.00000000e-01, 8.66025404e-01],
|
140 |
+
[-5.00000000e-01, 8.66025404e-01],
|
141 |
+
[-1.00000000e+00, 1.22464680e-16]])
|
142 |
+
|
143 |
+
Extend the original example to a sphere and plot interpolation
|
144 |
+
points in 3D:
|
145 |
+
|
146 |
+
>>> from mpl_toolkits.mplot3d import proj3d
|
147 |
+
>>> fig = plt.figure()
|
148 |
+
>>> ax = fig.add_subplot(111, projection='3d')
|
149 |
+
|
150 |
+
Plot the unit sphere for reference (optional):
|
151 |
+
|
152 |
+
>>> u = np.linspace(0, 2 * np.pi, 100)
|
153 |
+
>>> v = np.linspace(0, np.pi, 100)
|
154 |
+
>>> x = np.outer(np.cos(u), np.sin(v))
|
155 |
+
>>> y = np.outer(np.sin(u), np.sin(v))
|
156 |
+
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
|
157 |
+
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
|
158 |
+
|
159 |
+
Interpolating over a larger number of points
|
160 |
+
may provide the appearance of a smooth curve on
|
161 |
+
the surface of the sphere, which is also useful
|
162 |
+
for discretized integration calculations on a
|
163 |
+
sphere surface:
|
164 |
+
|
165 |
+
>>> start = np.array([1, 0, 0])
|
166 |
+
>>> end = np.array([0, 0, 1])
|
167 |
+
>>> t_vals = np.linspace(0, 1, 200)
|
168 |
+
>>> result = geometric_slerp(start,
|
169 |
+
... end,
|
170 |
+
... t_vals)
|
171 |
+
>>> ax.plot(result[...,0],
|
172 |
+
... result[...,1],
|
173 |
+
... result[...,2],
|
174 |
+
... c='k')
|
175 |
+
>>> plt.show()
|
176 |
+
"""
|
177 |
+
|
178 |
+
start = np.asarray(start, dtype=np.float64)
|
179 |
+
end = np.asarray(end, dtype=np.float64)
|
180 |
+
t = np.asarray(t)
|
181 |
+
|
182 |
+
if t.ndim > 1:
|
183 |
+
raise ValueError("The interpolation parameter "
|
184 |
+
"value must be one dimensional.")
|
185 |
+
|
186 |
+
if start.ndim != 1 or end.ndim != 1:
|
187 |
+
raise ValueError("Start and end coordinates "
|
188 |
+
"must be one-dimensional")
|
189 |
+
|
190 |
+
if start.size != end.size:
|
191 |
+
raise ValueError("The dimensions of start and "
|
192 |
+
"end must match (have same size)")
|
193 |
+
|
194 |
+
if start.size < 2 or end.size < 2:
|
195 |
+
raise ValueError("The start and end coordinates must "
|
196 |
+
"both be in at least two-dimensional "
|
197 |
+
"space")
|
198 |
+
|
199 |
+
if np.array_equal(start, end):
|
200 |
+
return np.linspace(start, start, t.size)
|
201 |
+
|
202 |
+
# for points that violate equation for n-sphere
|
203 |
+
for coord in [start, end]:
|
204 |
+
if not np.allclose(np.linalg.norm(coord), 1.0,
|
205 |
+
rtol=1e-9,
|
206 |
+
atol=0):
|
207 |
+
raise ValueError("start and end are not"
|
208 |
+
" on a unit n-sphere")
|
209 |
+
|
210 |
+
if not isinstance(tol, float):
|
211 |
+
raise ValueError("tol must be a float")
|
212 |
+
else:
|
213 |
+
tol = np.fabs(tol)
|
214 |
+
|
215 |
+
coord_dist = euclidean(start, end)
|
216 |
+
|
217 |
+
# diameter of 2 within tolerance means antipodes, which is a problem
|
218 |
+
# for all unit n-spheres (even the 0-sphere would have an ambiguous path)
|
219 |
+
if np.allclose(coord_dist, 2.0, rtol=0, atol=tol):
|
220 |
+
warnings.warn("start and end are antipodes "
|
221 |
+
"using the specified tolerance; "
|
222 |
+
"this may cause ambiguous slerp paths",
|
223 |
+
stacklevel=2)
|
224 |
+
|
225 |
+
t = np.asarray(t, dtype=np.float64)
|
226 |
+
|
227 |
+
if t.size == 0:
|
228 |
+
return np.empty((0, start.size))
|
229 |
+
|
230 |
+
if t.min() < 0 or t.max() > 1:
|
231 |
+
raise ValueError("interpolation parameter must be in [0, 1]")
|
232 |
+
|
233 |
+
if t.ndim == 0:
|
234 |
+
return _geometric_slerp(start,
|
235 |
+
end,
|
236 |
+
np.atleast_1d(t)).ravel()
|
237 |
+
else:
|
238 |
+
return _geometric_slerp(start,
|
239 |
+
end,
|
240 |
+
t)
|
venv/lib/python3.10/site-packages/scipy/spatial/_hausdorff.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (250 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/spatial/_kdtree.py
ADDED
@@ -0,0 +1,920 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright Anne M. Archibald 2008
|
2 |
+
# Released under the scipy license
|
3 |
+
import numpy as np
|
4 |
+
from ._ckdtree import cKDTree, cKDTreeNode
|
5 |
+
|
6 |
+
__all__ = ['minkowski_distance_p', 'minkowski_distance',
|
7 |
+
'distance_matrix',
|
8 |
+
'Rectangle', 'KDTree']
|
9 |
+
|
10 |
+
|
11 |
+
def minkowski_distance_p(x, y, p=2):
|
12 |
+
"""Compute the pth power of the L**p distance between two arrays.
|
13 |
+
|
14 |
+
For efficiency, this function computes the L**p distance but does
|
15 |
+
not extract the pth root. If `p` is 1 or infinity, this is equal to
|
16 |
+
the actual L**p distance.
|
17 |
+
|
18 |
+
The last dimensions of `x` and `y` must be the same length. Any
|
19 |
+
other dimensions must be compatible for broadcasting.
|
20 |
+
|
21 |
+
Parameters
|
22 |
+
----------
|
23 |
+
x : (..., K) array_like
|
24 |
+
Input array.
|
25 |
+
y : (..., K) array_like
|
26 |
+
Input array.
|
27 |
+
p : float, 1 <= p <= infinity
|
28 |
+
Which Minkowski p-norm to use.
|
29 |
+
|
30 |
+
Returns
|
31 |
+
-------
|
32 |
+
dist : ndarray
|
33 |
+
pth power of the distance between the input arrays.
|
34 |
+
|
35 |
+
Examples
|
36 |
+
--------
|
37 |
+
>>> from scipy.spatial import minkowski_distance_p
|
38 |
+
>>> minkowski_distance_p([[0, 0], [0, 0]], [[1, 1], [0, 1]])
|
39 |
+
array([2, 1])
|
40 |
+
|
41 |
+
"""
|
42 |
+
x = np.asarray(x)
|
43 |
+
y = np.asarray(y)
|
44 |
+
|
45 |
+
# Find smallest common datatype with float64 (return type of this
|
46 |
+
# function) - addresses #10262.
|
47 |
+
# Don't just cast to float64 for complex input case.
|
48 |
+
common_datatype = np.promote_types(np.promote_types(x.dtype, y.dtype),
|
49 |
+
'float64')
|
50 |
+
|
51 |
+
# Make sure x and y are NumPy arrays of correct datatype.
|
52 |
+
x = x.astype(common_datatype)
|
53 |
+
y = y.astype(common_datatype)
|
54 |
+
|
55 |
+
if p == np.inf:
|
56 |
+
return np.amax(np.abs(y-x), axis=-1)
|
57 |
+
elif p == 1:
|
58 |
+
return np.sum(np.abs(y-x), axis=-1)
|
59 |
+
else:
|
60 |
+
return np.sum(np.abs(y-x)**p, axis=-1)
|
61 |
+
|
62 |
+
|
63 |
+
def minkowski_distance(x, y, p=2):
|
64 |
+
"""Compute the L**p distance between two arrays.
|
65 |
+
|
66 |
+
The last dimensions of `x` and `y` must be the same length. Any
|
67 |
+
other dimensions must be compatible for broadcasting.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
x : (..., K) array_like
|
72 |
+
Input array.
|
73 |
+
y : (..., K) array_like
|
74 |
+
Input array.
|
75 |
+
p : float, 1 <= p <= infinity
|
76 |
+
Which Minkowski p-norm to use.
|
77 |
+
|
78 |
+
Returns
|
79 |
+
-------
|
80 |
+
dist : ndarray
|
81 |
+
Distance between the input arrays.
|
82 |
+
|
83 |
+
Examples
|
84 |
+
--------
|
85 |
+
>>> from scipy.spatial import minkowski_distance
|
86 |
+
>>> minkowski_distance([[0, 0], [0, 0]], [[1, 1], [0, 1]])
|
87 |
+
array([ 1.41421356, 1. ])
|
88 |
+
|
89 |
+
"""
|
90 |
+
x = np.asarray(x)
|
91 |
+
y = np.asarray(y)
|
92 |
+
if p == np.inf or p == 1:
|
93 |
+
return minkowski_distance_p(x, y, p)
|
94 |
+
else:
|
95 |
+
return minkowski_distance_p(x, y, p)**(1./p)
|
96 |
+
|
97 |
+
|
98 |
+
class Rectangle:
|
99 |
+
"""Hyperrectangle class.
|
100 |
+
|
101 |
+
Represents a Cartesian product of intervals.
|
102 |
+
"""
|
103 |
+
def __init__(self, maxes, mins):
|
104 |
+
"""Construct a hyperrectangle."""
|
105 |
+
self.maxes = np.maximum(maxes,mins).astype(float)
|
106 |
+
self.mins = np.minimum(maxes,mins).astype(float)
|
107 |
+
self.m, = self.maxes.shape
|
108 |
+
|
109 |
+
def __repr__(self):
|
110 |
+
return "<Rectangle %s>" % list(zip(self.mins, self.maxes))
|
111 |
+
|
112 |
+
def volume(self):
|
113 |
+
"""Total volume."""
|
114 |
+
return np.prod(self.maxes-self.mins)
|
115 |
+
|
116 |
+
def split(self, d, split):
|
117 |
+
"""Produce two hyperrectangles by splitting.
|
118 |
+
|
119 |
+
In general, if you need to compute maximum and minimum
|
120 |
+
distances to the children, it can be done more efficiently
|
121 |
+
by updating the maximum and minimum distances to the parent.
|
122 |
+
|
123 |
+
Parameters
|
124 |
+
----------
|
125 |
+
d : int
|
126 |
+
Axis to split hyperrectangle along.
|
127 |
+
split : float
|
128 |
+
Position along axis `d` to split at.
|
129 |
+
|
130 |
+
"""
|
131 |
+
mid = np.copy(self.maxes)
|
132 |
+
mid[d] = split
|
133 |
+
less = Rectangle(self.mins, mid)
|
134 |
+
mid = np.copy(self.mins)
|
135 |
+
mid[d] = split
|
136 |
+
greater = Rectangle(mid, self.maxes)
|
137 |
+
return less, greater
|
138 |
+
|
139 |
+
def min_distance_point(self, x, p=2.):
|
140 |
+
"""
|
141 |
+
Return the minimum distance between input and points in the
|
142 |
+
hyperrectangle.
|
143 |
+
|
144 |
+
Parameters
|
145 |
+
----------
|
146 |
+
x : array_like
|
147 |
+
Input.
|
148 |
+
p : float, optional
|
149 |
+
Input.
|
150 |
+
|
151 |
+
"""
|
152 |
+
return minkowski_distance(
|
153 |
+
0, np.maximum(0, np.maximum(self.mins-x, x-self.maxes)),
|
154 |
+
p
|
155 |
+
)
|
156 |
+
|
157 |
+
def max_distance_point(self, x, p=2.):
|
158 |
+
"""
|
159 |
+
Return the maximum distance between input and points in the hyperrectangle.
|
160 |
+
|
161 |
+
Parameters
|
162 |
+
----------
|
163 |
+
x : array_like
|
164 |
+
Input array.
|
165 |
+
p : float, optional
|
166 |
+
Input.
|
167 |
+
|
168 |
+
"""
|
169 |
+
return minkowski_distance(0, np.maximum(self.maxes-x, x-self.mins), p)
|
170 |
+
|
171 |
+
def min_distance_rectangle(self, other, p=2.):
|
172 |
+
"""
|
173 |
+
Compute the minimum distance between points in the two hyperrectangles.
|
174 |
+
|
175 |
+
Parameters
|
176 |
+
----------
|
177 |
+
other : hyperrectangle
|
178 |
+
Input.
|
179 |
+
p : float
|
180 |
+
Input.
|
181 |
+
|
182 |
+
"""
|
183 |
+
return minkowski_distance(
|
184 |
+
0,
|
185 |
+
np.maximum(0, np.maximum(self.mins-other.maxes,
|
186 |
+
other.mins-self.maxes)),
|
187 |
+
p
|
188 |
+
)
|
189 |
+
|
190 |
+
def max_distance_rectangle(self, other, p=2.):
|
191 |
+
"""
|
192 |
+
Compute the maximum distance between points in the two hyperrectangles.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
other : hyperrectangle
|
197 |
+
Input.
|
198 |
+
p : float, optional
|
199 |
+
Input.
|
200 |
+
|
201 |
+
"""
|
202 |
+
return minkowski_distance(
|
203 |
+
0, np.maximum(self.maxes-other.mins, other.maxes-self.mins), p)
|
204 |
+
|
205 |
+
|
206 |
+
class KDTree(cKDTree):
|
207 |
+
"""kd-tree for quick nearest-neighbor lookup.
|
208 |
+
|
209 |
+
This class provides an index into a set of k-dimensional points
|
210 |
+
which can be used to rapidly look up the nearest neighbors of any
|
211 |
+
point.
|
212 |
+
|
213 |
+
Parameters
|
214 |
+
----------
|
215 |
+
data : array_like, shape (n,m)
|
216 |
+
The n data points of dimension m to be indexed. This array is
|
217 |
+
not copied unless this is necessary to produce a contiguous
|
218 |
+
array of doubles, and so modifying this data will result in
|
219 |
+
bogus results. The data are also copied if the kd-tree is built
|
220 |
+
with copy_data=True.
|
221 |
+
leafsize : positive int, optional
|
222 |
+
The number of points at which the algorithm switches over to
|
223 |
+
brute-force. Default: 10.
|
224 |
+
compact_nodes : bool, optional
|
225 |
+
If True, the kd-tree is built to shrink the hyperrectangles to
|
226 |
+
the actual data range. This usually gives a more compact tree that
|
227 |
+
is robust against degenerated input data and gives faster queries
|
228 |
+
at the expense of longer build time. Default: True.
|
229 |
+
copy_data : bool, optional
|
230 |
+
If True the data is always copied to protect the kd-tree against
|
231 |
+
data corruption. Default: False.
|
232 |
+
balanced_tree : bool, optional
|
233 |
+
If True, the median is used to split the hyperrectangles instead of
|
234 |
+
the midpoint. This usually gives a more compact tree and
|
235 |
+
faster queries at the expense of longer build time. Default: True.
|
236 |
+
boxsize : array_like or scalar, optional
|
237 |
+
Apply a m-d toroidal topology to the KDTree.. The topology is generated
|
238 |
+
by :math:`x_i + n_i L_i` where :math:`n_i` are integers and :math:`L_i`
|
239 |
+
is the boxsize along i-th dimension. The input data shall be wrapped
|
240 |
+
into :math:`[0, L_i)`. A ValueError is raised if any of the data is
|
241 |
+
outside of this bound.
|
242 |
+
|
243 |
+
Notes
|
244 |
+
-----
|
245 |
+
The algorithm used is described in Maneewongvatana and Mount 1999.
|
246 |
+
The general idea is that the kd-tree is a binary tree, each of whose
|
247 |
+
nodes represents an axis-aligned hyperrectangle. Each node specifies
|
248 |
+
an axis and splits the set of points based on whether their coordinate
|
249 |
+
along that axis is greater than or less than a particular value.
|
250 |
+
|
251 |
+
During construction, the axis and splitting point are chosen by the
|
252 |
+
"sliding midpoint" rule, which ensures that the cells do not all
|
253 |
+
become long and thin.
|
254 |
+
|
255 |
+
The tree can be queried for the r closest neighbors of any given point
|
256 |
+
(optionally returning only those within some maximum distance of the
|
257 |
+
point). It can also be queried, with a substantial gain in efficiency,
|
258 |
+
for the r approximate closest neighbors.
|
259 |
+
|
260 |
+
For large dimensions (20 is already large) do not expect this to run
|
261 |
+
significantly faster than brute force. High-dimensional nearest-neighbor
|
262 |
+
queries are a substantial open problem in computer science.
|
263 |
+
|
264 |
+
Attributes
|
265 |
+
----------
|
266 |
+
data : ndarray, shape (n,m)
|
267 |
+
The n data points of dimension m to be indexed. This array is
|
268 |
+
not copied unless this is necessary to produce a contiguous
|
269 |
+
array of doubles. The data are also copied if the kd-tree is built
|
270 |
+
with `copy_data=True`.
|
271 |
+
leafsize : positive int
|
272 |
+
The number of points at which the algorithm switches over to
|
273 |
+
brute-force.
|
274 |
+
m : int
|
275 |
+
The dimension of a single data-point.
|
276 |
+
n : int
|
277 |
+
The number of data points.
|
278 |
+
maxes : ndarray, shape (m,)
|
279 |
+
The maximum value in each dimension of the n data points.
|
280 |
+
mins : ndarray, shape (m,)
|
281 |
+
The minimum value in each dimension of the n data points.
|
282 |
+
size : int
|
283 |
+
The number of nodes in the tree.
|
284 |
+
|
285 |
+
"""
|
286 |
+
|
287 |
+
class node:
|
288 |
+
@staticmethod
|
289 |
+
def _create(ckdtree_node=None):
|
290 |
+
"""Create either an inner or leaf node, wrapping a cKDTreeNode instance"""
|
291 |
+
if ckdtree_node is None:
|
292 |
+
return KDTree.node(ckdtree_node)
|
293 |
+
elif ckdtree_node.split_dim == -1:
|
294 |
+
return KDTree.leafnode(ckdtree_node)
|
295 |
+
else:
|
296 |
+
return KDTree.innernode(ckdtree_node)
|
297 |
+
|
298 |
+
def __init__(self, ckdtree_node=None):
|
299 |
+
if ckdtree_node is None:
|
300 |
+
ckdtree_node = cKDTreeNode()
|
301 |
+
self._node = ckdtree_node
|
302 |
+
|
303 |
+
def __lt__(self, other):
|
304 |
+
return id(self) < id(other)
|
305 |
+
|
306 |
+
def __gt__(self, other):
|
307 |
+
return id(self) > id(other)
|
308 |
+
|
309 |
+
def __le__(self, other):
|
310 |
+
return id(self) <= id(other)
|
311 |
+
|
312 |
+
def __ge__(self, other):
|
313 |
+
return id(self) >= id(other)
|
314 |
+
|
315 |
+
def __eq__(self, other):
|
316 |
+
return id(self) == id(other)
|
317 |
+
|
318 |
+
class leafnode(node):
|
319 |
+
@property
|
320 |
+
def idx(self):
|
321 |
+
return self._node.indices
|
322 |
+
|
323 |
+
@property
|
324 |
+
def children(self):
|
325 |
+
return self._node.children
|
326 |
+
|
327 |
+
class innernode(node):
|
328 |
+
def __init__(self, ckdtreenode):
|
329 |
+
assert isinstance(ckdtreenode, cKDTreeNode)
|
330 |
+
super().__init__(ckdtreenode)
|
331 |
+
self.less = KDTree.node._create(ckdtreenode.lesser)
|
332 |
+
self.greater = KDTree.node._create(ckdtreenode.greater)
|
333 |
+
|
334 |
+
@property
|
335 |
+
def split_dim(self):
|
336 |
+
return self._node.split_dim
|
337 |
+
|
338 |
+
@property
|
339 |
+
def split(self):
|
340 |
+
return self._node.split
|
341 |
+
|
342 |
+
@property
|
343 |
+
def children(self):
|
344 |
+
return self._node.children
|
345 |
+
|
346 |
+
@property
|
347 |
+
def tree(self):
|
348 |
+
if not hasattr(self, "_tree"):
|
349 |
+
self._tree = KDTree.node._create(super().tree)
|
350 |
+
|
351 |
+
return self._tree
|
352 |
+
|
353 |
+
def __init__(self, data, leafsize=10, compact_nodes=True, copy_data=False,
|
354 |
+
balanced_tree=True, boxsize=None):
|
355 |
+
data = np.asarray(data)
|
356 |
+
if data.dtype.kind == 'c':
|
357 |
+
raise TypeError("KDTree does not work with complex data")
|
358 |
+
|
359 |
+
# Note KDTree has different default leafsize from cKDTree
|
360 |
+
super().__init__(data, leafsize, compact_nodes, copy_data,
|
361 |
+
balanced_tree, boxsize)
|
362 |
+
|
363 |
+
def query(
|
364 |
+
self, x, k=1, eps=0, p=2, distance_upper_bound=np.inf, workers=1):
|
365 |
+
r"""Query the kd-tree for nearest neighbors.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
----------
|
369 |
+
x : array_like, last dimension self.m
|
370 |
+
An array of points to query.
|
371 |
+
k : int or Sequence[int], optional
|
372 |
+
Either the number of nearest neighbors to return, or a list of the
|
373 |
+
k-th nearest neighbors to return, starting from 1.
|
374 |
+
eps : nonnegative float, optional
|
375 |
+
Return approximate nearest neighbors; the kth returned value
|
376 |
+
is guaranteed to be no further than (1+eps) times the
|
377 |
+
distance to the real kth nearest neighbor.
|
378 |
+
p : float, 1<=p<=infinity, optional
|
379 |
+
Which Minkowski p-norm to use.
|
380 |
+
1 is the sum-of-absolute-values distance ("Manhattan" distance).
|
381 |
+
2 is the usual Euclidean distance.
|
382 |
+
infinity is the maximum-coordinate-difference distance.
|
383 |
+
A large, finite p may cause a ValueError if overflow can occur.
|
384 |
+
distance_upper_bound : nonnegative float, optional
|
385 |
+
Return only neighbors within this distance. This is used to prune
|
386 |
+
tree searches, so if you are doing a series of nearest-neighbor
|
387 |
+
queries, it may help to supply the distance to the nearest neighbor
|
388 |
+
of the most recent point.
|
389 |
+
workers : int, optional
|
390 |
+
Number of workers to use for parallel processing. If -1 is given
|
391 |
+
all CPU threads are used. Default: 1.
|
392 |
+
|
393 |
+
.. versionadded:: 1.6.0
|
394 |
+
|
395 |
+
Returns
|
396 |
+
-------
|
397 |
+
d : float or array of floats
|
398 |
+
The distances to the nearest neighbors.
|
399 |
+
If ``x`` has shape ``tuple+(self.m,)``, then ``d`` has shape
|
400 |
+
``tuple+(k,)``.
|
401 |
+
When k == 1, the last dimension of the output is squeezed.
|
402 |
+
Missing neighbors are indicated with infinite distances.
|
403 |
+
Hits are sorted by distance (nearest first).
|
404 |
+
|
405 |
+
.. versionchanged:: 1.9.0
|
406 |
+
Previously if ``k=None``, then `d` was an object array of
|
407 |
+
shape ``tuple``, containing lists of distances. This behavior
|
408 |
+
has been removed, use `query_ball_point` instead.
|
409 |
+
|
410 |
+
i : integer or array of integers
|
411 |
+
The index of each neighbor in ``self.data``.
|
412 |
+
``i`` is the same shape as d.
|
413 |
+
Missing neighbors are indicated with ``self.n``.
|
414 |
+
|
415 |
+
Examples
|
416 |
+
--------
|
417 |
+
|
418 |
+
>>> import numpy as np
|
419 |
+
>>> from scipy.spatial import KDTree
|
420 |
+
>>> x, y = np.mgrid[0:5, 2:8]
|
421 |
+
>>> tree = KDTree(np.c_[x.ravel(), y.ravel()])
|
422 |
+
|
423 |
+
To query the nearest neighbours and return squeezed result, use
|
424 |
+
|
425 |
+
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=1)
|
426 |
+
>>> print(dd, ii, sep='\n')
|
427 |
+
[2. 0.2236068]
|
428 |
+
[ 0 13]
|
429 |
+
|
430 |
+
To query the nearest neighbours and return unsqueezed result, use
|
431 |
+
|
432 |
+
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1])
|
433 |
+
>>> print(dd, ii, sep='\n')
|
434 |
+
[[2. ]
|
435 |
+
[0.2236068]]
|
436 |
+
[[ 0]
|
437 |
+
[13]]
|
438 |
+
|
439 |
+
To query the second nearest neighbours and return unsqueezed result,
|
440 |
+
use
|
441 |
+
|
442 |
+
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[2])
|
443 |
+
>>> print(dd, ii, sep='\n')
|
444 |
+
[[2.23606798]
|
445 |
+
[0.80622577]]
|
446 |
+
[[ 6]
|
447 |
+
[19]]
|
448 |
+
|
449 |
+
To query the first and second nearest neighbours, use
|
450 |
+
|
451 |
+
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=2)
|
452 |
+
>>> print(dd, ii, sep='\n')
|
453 |
+
[[2. 2.23606798]
|
454 |
+
[0.2236068 0.80622577]]
|
455 |
+
[[ 0 6]
|
456 |
+
[13 19]]
|
457 |
+
|
458 |
+
or, be more specific
|
459 |
+
|
460 |
+
>>> dd, ii = tree.query([[0, 0], [2.2, 2.9]], k=[1, 2])
|
461 |
+
>>> print(dd, ii, sep='\n')
|
462 |
+
[[2. 2.23606798]
|
463 |
+
[0.2236068 0.80622577]]
|
464 |
+
[[ 0 6]
|
465 |
+
[13 19]]
|
466 |
+
|
467 |
+
"""
|
468 |
+
x = np.asarray(x)
|
469 |
+
if x.dtype.kind == 'c':
|
470 |
+
raise TypeError("KDTree does not work with complex data")
|
471 |
+
|
472 |
+
if k is None:
|
473 |
+
raise ValueError("k must be an integer or a sequence of integers")
|
474 |
+
|
475 |
+
d, i = super().query(x, k, eps, p, distance_upper_bound, workers)
|
476 |
+
if isinstance(i, int):
|
477 |
+
i = np.intp(i)
|
478 |
+
return d, i
|
479 |
+
|
480 |
+
def query_ball_point(self, x, r, p=2., eps=0, workers=1,
|
481 |
+
return_sorted=None, return_length=False):
|
482 |
+
"""Find all points within distance r of point(s) x.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
x : array_like, shape tuple + (self.m,)
|
487 |
+
The point or points to search for neighbors of.
|
488 |
+
r : array_like, float
|
489 |
+
The radius of points to return, must broadcast to the length of x.
|
490 |
+
p : float, optional
|
491 |
+
Which Minkowski p-norm to use. Should be in the range [1, inf].
|
492 |
+
A finite large p may cause a ValueError if overflow can occur.
|
493 |
+
eps : nonnegative float, optional
|
494 |
+
Approximate search. Branches of the tree are not explored if their
|
495 |
+
nearest points are further than ``r / (1 + eps)``, and branches are
|
496 |
+
added in bulk if their furthest points are nearer than
|
497 |
+
``r * (1 + eps)``.
|
498 |
+
workers : int, optional
|
499 |
+
Number of jobs to schedule for parallel processing. If -1 is given
|
500 |
+
all processors are used. Default: 1.
|
501 |
+
|
502 |
+
.. versionadded:: 1.6.0
|
503 |
+
return_sorted : bool, optional
|
504 |
+
Sorts returned indices if True and does not sort them if False. If
|
505 |
+
None, does not sort single point queries, but does sort
|
506 |
+
multi-point queries which was the behavior before this option
|
507 |
+
was added.
|
508 |
+
|
509 |
+
.. versionadded:: 1.6.0
|
510 |
+
return_length : bool, optional
|
511 |
+
Return the number of points inside the radius instead of a list
|
512 |
+
of the indices.
|
513 |
+
|
514 |
+
.. versionadded:: 1.6.0
|
515 |
+
|
516 |
+
Returns
|
517 |
+
-------
|
518 |
+
results : list or array of lists
|
519 |
+
If `x` is a single point, returns a list of the indices of the
|
520 |
+
neighbors of `x`. If `x` is an array of points, returns an object
|
521 |
+
array of shape tuple containing lists of neighbors.
|
522 |
+
|
523 |
+
Notes
|
524 |
+
-----
|
525 |
+
If you have many points whose neighbors you want to find, you may save
|
526 |
+
substantial amounts of time by putting them in a KDTree and using
|
527 |
+
query_ball_tree.
|
528 |
+
|
529 |
+
Examples
|
530 |
+
--------
|
531 |
+
>>> import numpy as np
|
532 |
+
>>> from scipy import spatial
|
533 |
+
>>> x, y = np.mgrid[0:5, 0:5]
|
534 |
+
>>> points = np.c_[x.ravel(), y.ravel()]
|
535 |
+
>>> tree = spatial.KDTree(points)
|
536 |
+
>>> sorted(tree.query_ball_point([2, 0], 1))
|
537 |
+
[5, 10, 11, 15]
|
538 |
+
|
539 |
+
Query multiple points and plot the results:
|
540 |
+
|
541 |
+
>>> import matplotlib.pyplot as plt
|
542 |
+
>>> points = np.asarray(points)
|
543 |
+
>>> plt.plot(points[:,0], points[:,1], '.')
|
544 |
+
>>> for results in tree.query_ball_point(([2, 0], [3, 3]), 1):
|
545 |
+
... nearby_points = points[results]
|
546 |
+
... plt.plot(nearby_points[:,0], nearby_points[:,1], 'o')
|
547 |
+
>>> plt.margins(0.1, 0.1)
|
548 |
+
>>> plt.show()
|
549 |
+
|
550 |
+
"""
|
551 |
+
x = np.asarray(x)
|
552 |
+
if x.dtype.kind == 'c':
|
553 |
+
raise TypeError("KDTree does not work with complex data")
|
554 |
+
return super().query_ball_point(
|
555 |
+
x, r, p, eps, workers, return_sorted, return_length)
|
556 |
+
|
557 |
+
def query_ball_tree(self, other, r, p=2., eps=0):
|
558 |
+
"""
|
559 |
+
Find all pairs of points between `self` and `other` whose distance is
|
560 |
+
at most r.
|
561 |
+
|
562 |
+
Parameters
|
563 |
+
----------
|
564 |
+
other : KDTree instance
|
565 |
+
The tree containing points to search against.
|
566 |
+
r : float
|
567 |
+
The maximum distance, has to be positive.
|
568 |
+
p : float, optional
|
569 |
+
Which Minkowski norm to use. `p` has to meet the condition
|
570 |
+
``1 <= p <= infinity``.
|
571 |
+
eps : float, optional
|
572 |
+
Approximate search. Branches of the tree are not explored
|
573 |
+
if their nearest points are further than ``r/(1+eps)``, and
|
574 |
+
branches are added in bulk if their furthest points are nearer
|
575 |
+
than ``r * (1+eps)``. `eps` has to be non-negative.
|
576 |
+
|
577 |
+
Returns
|
578 |
+
-------
|
579 |
+
results : list of lists
|
580 |
+
For each element ``self.data[i]`` of this tree, ``results[i]`` is a
|
581 |
+
list of the indices of its neighbors in ``other.data``.
|
582 |
+
|
583 |
+
Examples
|
584 |
+
--------
|
585 |
+
You can search all pairs of points between two kd-trees within a distance:
|
586 |
+
|
587 |
+
>>> import matplotlib.pyplot as plt
|
588 |
+
>>> import numpy as np
|
589 |
+
>>> from scipy.spatial import KDTree
|
590 |
+
>>> rng = np.random.default_rng()
|
591 |
+
>>> points1 = rng.random((15, 2))
|
592 |
+
>>> points2 = rng.random((15, 2))
|
593 |
+
>>> plt.figure(figsize=(6, 6))
|
594 |
+
>>> plt.plot(points1[:, 0], points1[:, 1], "xk", markersize=14)
|
595 |
+
>>> plt.plot(points2[:, 0], points2[:, 1], "og", markersize=14)
|
596 |
+
>>> kd_tree1 = KDTree(points1)
|
597 |
+
>>> kd_tree2 = KDTree(points2)
|
598 |
+
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
|
599 |
+
>>> for i in range(len(indexes)):
|
600 |
+
... for j in indexes[i]:
|
601 |
+
... plt.plot([points1[i, 0], points2[j, 0]],
|
602 |
+
... [points1[i, 1], points2[j, 1]], "-r")
|
603 |
+
>>> plt.show()
|
604 |
+
|
605 |
+
"""
|
606 |
+
return super().query_ball_tree(other, r, p, eps)
|
607 |
+
|
608 |
+
def query_pairs(self, r, p=2., eps=0, output_type='set'):
|
609 |
+
"""Find all pairs of points in `self` whose distance is at most r.
|
610 |
+
|
611 |
+
Parameters
|
612 |
+
----------
|
613 |
+
r : positive float
|
614 |
+
The maximum distance.
|
615 |
+
p : float, optional
|
616 |
+
Which Minkowski norm to use. `p` has to meet the condition
|
617 |
+
``1 <= p <= infinity``.
|
618 |
+
eps : float, optional
|
619 |
+
Approximate search. Branches of the tree are not explored
|
620 |
+
if their nearest points are further than ``r/(1+eps)``, and
|
621 |
+
branches are added in bulk if their furthest points are nearer
|
622 |
+
than ``r * (1+eps)``. `eps` has to be non-negative.
|
623 |
+
output_type : string, optional
|
624 |
+
Choose the output container, 'set' or 'ndarray'. Default: 'set'
|
625 |
+
|
626 |
+
.. versionadded:: 1.6.0
|
627 |
+
|
628 |
+
Returns
|
629 |
+
-------
|
630 |
+
results : set or ndarray
|
631 |
+
Set of pairs ``(i,j)``, with ``i < j``, for which the corresponding
|
632 |
+
positions are close. If output_type is 'ndarray', an ndarry is
|
633 |
+
returned instead of a set.
|
634 |
+
|
635 |
+
Examples
|
636 |
+
--------
|
637 |
+
You can search all pairs of points in a kd-tree within a distance:
|
638 |
+
|
639 |
+
>>> import matplotlib.pyplot as plt
|
640 |
+
>>> import numpy as np
|
641 |
+
>>> from scipy.spatial import KDTree
|
642 |
+
>>> rng = np.random.default_rng()
|
643 |
+
>>> points = rng.random((20, 2))
|
644 |
+
>>> plt.figure(figsize=(6, 6))
|
645 |
+
>>> plt.plot(points[:, 0], points[:, 1], "xk", markersize=14)
|
646 |
+
>>> kd_tree = KDTree(points)
|
647 |
+
>>> pairs = kd_tree.query_pairs(r=0.2)
|
648 |
+
>>> for (i, j) in pairs:
|
649 |
+
... plt.plot([points[i, 0], points[j, 0]],
|
650 |
+
... [points[i, 1], points[j, 1]], "-r")
|
651 |
+
>>> plt.show()
|
652 |
+
|
653 |
+
"""
|
654 |
+
return super().query_pairs(r, p, eps, output_type)
|
655 |
+
|
656 |
+
def count_neighbors(self, other, r, p=2., weights=None, cumulative=True):
|
657 |
+
"""Count how many nearby pairs can be formed.
|
658 |
+
|
659 |
+
Count the number of pairs ``(x1,x2)`` can be formed, with ``x1`` drawn
|
660 |
+
from ``self`` and ``x2`` drawn from ``other``, and where
|
661 |
+
``distance(x1, x2, p) <= r``.
|
662 |
+
|
663 |
+
Data points on ``self`` and ``other`` are optionally weighted by the
|
664 |
+
``weights`` argument. (See below)
|
665 |
+
|
666 |
+
This is adapted from the "two-point correlation" algorithm described by
|
667 |
+
Gray and Moore [1]_. See notes for further discussion.
|
668 |
+
|
669 |
+
Parameters
|
670 |
+
----------
|
671 |
+
other : KDTree
|
672 |
+
The other tree to draw points from, can be the same tree as self.
|
673 |
+
r : float or one-dimensional array of floats
|
674 |
+
The radius to produce a count for. Multiple radii are searched with
|
675 |
+
a single tree traversal.
|
676 |
+
If the count is non-cumulative(``cumulative=False``), ``r`` defines
|
677 |
+
the edges of the bins, and must be non-decreasing.
|
678 |
+
p : float, optional
|
679 |
+
1<=p<=infinity.
|
680 |
+
Which Minkowski p-norm to use.
|
681 |
+
Default 2.0.
|
682 |
+
A finite large p may cause a ValueError if overflow can occur.
|
683 |
+
weights : tuple, array_like, or None, optional
|
684 |
+
If None, the pair-counting is unweighted.
|
685 |
+
If given as a tuple, weights[0] is the weights of points in
|
686 |
+
``self``, and weights[1] is the weights of points in ``other``;
|
687 |
+
either can be None to indicate the points are unweighted.
|
688 |
+
If given as an array_like, weights is the weights of points in
|
689 |
+
``self`` and ``other``. For this to make sense, ``self`` and
|
690 |
+
``other`` must be the same tree. If ``self`` and ``other`` are two
|
691 |
+
different trees, a ``ValueError`` is raised.
|
692 |
+
Default: None
|
693 |
+
|
694 |
+
.. versionadded:: 1.6.0
|
695 |
+
cumulative : bool, optional
|
696 |
+
Whether the returned counts are cumulative. When cumulative is set
|
697 |
+
to ``False`` the algorithm is optimized to work with a large number
|
698 |
+
of bins (>10) specified by ``r``. When ``cumulative`` is set to
|
699 |
+
True, the algorithm is optimized to work with a small number of
|
700 |
+
``r``. Default: True
|
701 |
+
|
702 |
+
.. versionadded:: 1.6.0
|
703 |
+
|
704 |
+
Returns
|
705 |
+
-------
|
706 |
+
result : scalar or 1-D array
|
707 |
+
The number of pairs. For unweighted counts, the result is integer.
|
708 |
+
For weighted counts, the result is float.
|
709 |
+
If cumulative is False, ``result[i]`` contains the counts with
|
710 |
+
``(-inf if i == 0 else r[i-1]) < R <= r[i]``
|
711 |
+
|
712 |
+
Notes
|
713 |
+
-----
|
714 |
+
Pair-counting is the basic operation used to calculate the two point
|
715 |
+
correlation functions from a data set composed of position of objects.
|
716 |
+
|
717 |
+
Two point correlation function measures the clustering of objects and
|
718 |
+
is widely used in cosmology to quantify the large scale structure
|
719 |
+
in our Universe, but it may be useful for data analysis in other fields
|
720 |
+
where self-similar assembly of objects also occur.
|
721 |
+
|
722 |
+
The Landy-Szalay estimator for the two point correlation function of
|
723 |
+
``D`` measures the clustering signal in ``D``. [2]_
|
724 |
+
|
725 |
+
For example, given the position of two sets of objects,
|
726 |
+
|
727 |
+
- objects ``D`` (data) contains the clustering signal, and
|
728 |
+
|
729 |
+
- objects ``R`` (random) that contains no signal,
|
730 |
+
|
731 |
+
.. math::
|
732 |
+
|
733 |
+
\\xi(r) = \\frac{<D, D> - 2 f <D, R> + f^2<R, R>}{f^2<R, R>},
|
734 |
+
|
735 |
+
where the brackets represents counting pairs between two data sets
|
736 |
+
in a finite bin around ``r`` (distance), corresponding to setting
|
737 |
+
`cumulative=False`, and ``f = float(len(D)) / float(len(R))`` is the
|
738 |
+
ratio between number of objects from data and random.
|
739 |
+
|
740 |
+
The algorithm implemented here is loosely based on the dual-tree
|
741 |
+
algorithm described in [1]_. We switch between two different
|
742 |
+
pair-cumulation scheme depending on the setting of ``cumulative``.
|
743 |
+
The computing time of the method we use when for
|
744 |
+
``cumulative == False`` does not scale with the total number of bins.
|
745 |
+
The algorithm for ``cumulative == True`` scales linearly with the
|
746 |
+
number of bins, though it is slightly faster when only
|
747 |
+
1 or 2 bins are used. [5]_.
|
748 |
+
|
749 |
+
As an extension to the naive pair-counting,
|
750 |
+
weighted pair-counting counts the product of weights instead
|
751 |
+
of number of pairs.
|
752 |
+
Weighted pair-counting is used to estimate marked correlation functions
|
753 |
+
([3]_, section 2.2),
|
754 |
+
or to properly calculate the average of data per distance bin
|
755 |
+
(e.g. [4]_, section 2.1 on redshift).
|
756 |
+
|
757 |
+
.. [1] Gray and Moore,
|
758 |
+
"N-body problems in statistical learning",
|
759 |
+
Mining the sky, 2000,
|
760 |
+
https://arxiv.org/abs/astro-ph/0012333
|
761 |
+
|
762 |
+
.. [2] Landy and Szalay,
|
763 |
+
"Bias and variance of angular correlation functions",
|
764 |
+
The Astrophysical Journal, 1993,
|
765 |
+
http://adsabs.harvard.edu/abs/1993ApJ...412...64L
|
766 |
+
|
767 |
+
.. [3] Sheth, Connolly and Skibba,
|
768 |
+
"Marked correlations in galaxy formation models",
|
769 |
+
Arxiv e-print, 2005,
|
770 |
+
https://arxiv.org/abs/astro-ph/0511773
|
771 |
+
|
772 |
+
.. [4] Hawkins, et al.,
|
773 |
+
"The 2dF Galaxy Redshift Survey: correlation functions,
|
774 |
+
peculiar velocities and the matter density of the Universe",
|
775 |
+
Monthly Notices of the Royal Astronomical Society, 2002,
|
776 |
+
http://adsabs.harvard.edu/abs/2003MNRAS.346...78H
|
777 |
+
|
778 |
+
.. [5] https://github.com/scipy/scipy/pull/5647#issuecomment-168474926
|
779 |
+
|
780 |
+
Examples
|
781 |
+
--------
|
782 |
+
You can count neighbors number between two kd-trees within a distance:
|
783 |
+
|
784 |
+
>>> import numpy as np
|
785 |
+
>>> from scipy.spatial import KDTree
|
786 |
+
>>> rng = np.random.default_rng()
|
787 |
+
>>> points1 = rng.random((5, 2))
|
788 |
+
>>> points2 = rng.random((5, 2))
|
789 |
+
>>> kd_tree1 = KDTree(points1)
|
790 |
+
>>> kd_tree2 = KDTree(points2)
|
791 |
+
>>> kd_tree1.count_neighbors(kd_tree2, 0.2)
|
792 |
+
1
|
793 |
+
|
794 |
+
This number is same as the total pair number calculated by
|
795 |
+
`query_ball_tree`:
|
796 |
+
|
797 |
+
>>> indexes = kd_tree1.query_ball_tree(kd_tree2, r=0.2)
|
798 |
+
>>> sum([len(i) for i in indexes])
|
799 |
+
1
|
800 |
+
|
801 |
+
"""
|
802 |
+
return super().count_neighbors(other, r, p, weights, cumulative)
|
803 |
+
|
804 |
+
def sparse_distance_matrix(
|
805 |
+
self, other, max_distance, p=2., output_type='dok_matrix'):
|
806 |
+
"""Compute a sparse distance matrix.
|
807 |
+
|
808 |
+
Computes a distance matrix between two KDTrees, leaving as zero
|
809 |
+
any distance greater than max_distance.
|
810 |
+
|
811 |
+
Parameters
|
812 |
+
----------
|
813 |
+
other : KDTree
|
814 |
+
|
815 |
+
max_distance : positive float
|
816 |
+
|
817 |
+
p : float, 1<=p<=infinity
|
818 |
+
Which Minkowski p-norm to use.
|
819 |
+
A finite large p may cause a ValueError if overflow can occur.
|
820 |
+
|
821 |
+
output_type : string, optional
|
822 |
+
Which container to use for output data. Options: 'dok_matrix',
|
823 |
+
'coo_matrix', 'dict', or 'ndarray'. Default: 'dok_matrix'.
|
824 |
+
|
825 |
+
.. versionadded:: 1.6.0
|
826 |
+
|
827 |
+
Returns
|
828 |
+
-------
|
829 |
+
result : dok_matrix, coo_matrix, dict or ndarray
|
830 |
+
Sparse matrix representing the results in "dictionary of keys"
|
831 |
+
format. If a dict is returned the keys are (i,j) tuples of indices.
|
832 |
+
If output_type is 'ndarray' a record array with fields 'i', 'j',
|
833 |
+
and 'v' is returned,
|
834 |
+
|
835 |
+
Examples
|
836 |
+
--------
|
837 |
+
You can compute a sparse distance matrix between two kd-trees:
|
838 |
+
|
839 |
+
>>> import numpy as np
|
840 |
+
>>> from scipy.spatial import KDTree
|
841 |
+
>>> rng = np.random.default_rng()
|
842 |
+
>>> points1 = rng.random((5, 2))
|
843 |
+
>>> points2 = rng.random((5, 2))
|
844 |
+
>>> kd_tree1 = KDTree(points1)
|
845 |
+
>>> kd_tree2 = KDTree(points2)
|
846 |
+
>>> sdm = kd_tree1.sparse_distance_matrix(kd_tree2, 0.3)
|
847 |
+
>>> sdm.toarray()
|
848 |
+
array([[0. , 0. , 0.12295571, 0. , 0. ],
|
849 |
+
[0. , 0. , 0. , 0. , 0. ],
|
850 |
+
[0.28942611, 0. , 0. , 0.2333084 , 0. ],
|
851 |
+
[0. , 0. , 0. , 0. , 0. ],
|
852 |
+
[0.24617575, 0.29571802, 0.26836782, 0. , 0. ]])
|
853 |
+
|
854 |
+
You can check distances above the `max_distance` are zeros:
|
855 |
+
|
856 |
+
>>> from scipy.spatial import distance_matrix
|
857 |
+
>>> distance_matrix(points1, points2)
|
858 |
+
array([[0.56906522, 0.39923701, 0.12295571, 0.8658745 , 0.79428925],
|
859 |
+
[0.37327919, 0.7225693 , 0.87665969, 0.32580855, 0.75679479],
|
860 |
+
[0.28942611, 0.30088013, 0.6395831 , 0.2333084 , 0.33630734],
|
861 |
+
[0.31994999, 0.72658602, 0.71124834, 0.55396483, 0.90785663],
|
862 |
+
[0.24617575, 0.29571802, 0.26836782, 0.57714465, 0.6473269 ]])
|
863 |
+
|
864 |
+
"""
|
865 |
+
return super().sparse_distance_matrix(
|
866 |
+
other, max_distance, p, output_type)
|
867 |
+
|
868 |
+
|
869 |
+
def distance_matrix(x, y, p=2, threshold=1000000):
|
870 |
+
"""Compute the distance matrix.
|
871 |
+
|
872 |
+
Returns the matrix of all pair-wise distances.
|
873 |
+
|
874 |
+
Parameters
|
875 |
+
----------
|
876 |
+
x : (M, K) array_like
|
877 |
+
Matrix of M vectors in K dimensions.
|
878 |
+
y : (N, K) array_like
|
879 |
+
Matrix of N vectors in K dimensions.
|
880 |
+
p : float, 1 <= p <= infinity
|
881 |
+
Which Minkowski p-norm to use.
|
882 |
+
threshold : positive int
|
883 |
+
If ``M * N * K`` > `threshold`, algorithm uses a Python loop instead
|
884 |
+
of large temporary arrays.
|
885 |
+
|
886 |
+
Returns
|
887 |
+
-------
|
888 |
+
result : (M, N) ndarray
|
889 |
+
Matrix containing the distance from every vector in `x` to every vector
|
890 |
+
in `y`.
|
891 |
+
|
892 |
+
Examples
|
893 |
+
--------
|
894 |
+
>>> from scipy.spatial import distance_matrix
|
895 |
+
>>> distance_matrix([[0,0],[0,1]], [[1,0],[1,1]])
|
896 |
+
array([[ 1. , 1.41421356],
|
897 |
+
[ 1.41421356, 1. ]])
|
898 |
+
|
899 |
+
"""
|
900 |
+
|
901 |
+
x = np.asarray(x)
|
902 |
+
m, k = x.shape
|
903 |
+
y = np.asarray(y)
|
904 |
+
n, kk = y.shape
|
905 |
+
|
906 |
+
if k != kk:
|
907 |
+
raise ValueError(f"x contains {k}-dimensional vectors but y contains "
|
908 |
+
f"{kk}-dimensional vectors")
|
909 |
+
|
910 |
+
if m*n*k <= threshold:
|
911 |
+
return minkowski_distance(x[:,np.newaxis,:],y[np.newaxis,:,:],p)
|
912 |
+
else:
|
913 |
+
result = np.empty((m,n),dtype=float) # FIXME: figure out the best dtype
|
914 |
+
if m < n:
|
915 |
+
for i in range(m):
|
916 |
+
result[i,:] = minkowski_distance(x[i],y,p)
|
917 |
+
else:
|
918 |
+
for j in range(n):
|
919 |
+
result[:,j] = minkowski_distance(x,y[j],p)
|
920 |
+
return result
|
venv/lib/python3.10/site-packages/scipy/spatial/_plotutils.py
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from scipy._lib.decorator import decorator as _decorator
|
3 |
+
|
4 |
+
__all__ = ['delaunay_plot_2d', 'convex_hull_plot_2d', 'voronoi_plot_2d']
|
5 |
+
|
6 |
+
|
7 |
+
@_decorator
|
8 |
+
def _held_figure(func, obj, ax=None, **kw):
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
|
11 |
+
if ax is None:
|
12 |
+
fig = plt.figure()
|
13 |
+
ax = fig.gca()
|
14 |
+
return func(obj, ax=ax, **kw)
|
15 |
+
|
16 |
+
# As of matplotlib 2.0, the "hold" mechanism is deprecated.
|
17 |
+
# When matplotlib 1.x is no longer supported, this check can be removed.
|
18 |
+
was_held = getattr(ax, 'ishold', lambda: True)()
|
19 |
+
if was_held:
|
20 |
+
return func(obj, ax=ax, **kw)
|
21 |
+
try:
|
22 |
+
ax.hold(True)
|
23 |
+
return func(obj, ax=ax, **kw)
|
24 |
+
finally:
|
25 |
+
ax.hold(was_held)
|
26 |
+
|
27 |
+
|
28 |
+
def _adjust_bounds(ax, points):
|
29 |
+
margin = 0.1 * np.ptp(points, axis=0)
|
30 |
+
xy_min = points.min(axis=0) - margin
|
31 |
+
xy_max = points.max(axis=0) + margin
|
32 |
+
ax.set_xlim(xy_min[0], xy_max[0])
|
33 |
+
ax.set_ylim(xy_min[1], xy_max[1])
|
34 |
+
|
35 |
+
|
36 |
+
@_held_figure
|
37 |
+
def delaunay_plot_2d(tri, ax=None):
|
38 |
+
"""
|
39 |
+
Plot the given Delaunay triangulation in 2-D
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
tri : scipy.spatial.Delaunay instance
|
44 |
+
Triangulation to plot
|
45 |
+
ax : matplotlib.axes.Axes instance, optional
|
46 |
+
Axes to plot on
|
47 |
+
|
48 |
+
Returns
|
49 |
+
-------
|
50 |
+
fig : matplotlib.figure.Figure instance
|
51 |
+
Figure for the plot
|
52 |
+
|
53 |
+
See Also
|
54 |
+
--------
|
55 |
+
Delaunay
|
56 |
+
matplotlib.pyplot.triplot
|
57 |
+
|
58 |
+
Notes
|
59 |
+
-----
|
60 |
+
Requires Matplotlib.
|
61 |
+
|
62 |
+
Examples
|
63 |
+
--------
|
64 |
+
|
65 |
+
>>> import numpy as np
|
66 |
+
>>> import matplotlib.pyplot as plt
|
67 |
+
>>> from scipy.spatial import Delaunay, delaunay_plot_2d
|
68 |
+
|
69 |
+
The Delaunay triangulation of a set of random points:
|
70 |
+
|
71 |
+
>>> rng = np.random.default_rng()
|
72 |
+
>>> points = rng.random((30, 2))
|
73 |
+
>>> tri = Delaunay(points)
|
74 |
+
|
75 |
+
Plot it:
|
76 |
+
|
77 |
+
>>> _ = delaunay_plot_2d(tri)
|
78 |
+
>>> plt.show()
|
79 |
+
|
80 |
+
"""
|
81 |
+
if tri.points.shape[1] != 2:
|
82 |
+
raise ValueError("Delaunay triangulation is not 2-D")
|
83 |
+
|
84 |
+
x, y = tri.points.T
|
85 |
+
ax.plot(x, y, 'o')
|
86 |
+
ax.triplot(x, y, tri.simplices.copy())
|
87 |
+
|
88 |
+
_adjust_bounds(ax, tri.points)
|
89 |
+
|
90 |
+
return ax.figure
|
91 |
+
|
92 |
+
|
93 |
+
@_held_figure
|
94 |
+
def convex_hull_plot_2d(hull, ax=None):
|
95 |
+
"""
|
96 |
+
Plot the given convex hull diagram in 2-D
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
hull : scipy.spatial.ConvexHull instance
|
101 |
+
Convex hull to plot
|
102 |
+
ax : matplotlib.axes.Axes instance, optional
|
103 |
+
Axes to plot on
|
104 |
+
|
105 |
+
Returns
|
106 |
+
-------
|
107 |
+
fig : matplotlib.figure.Figure instance
|
108 |
+
Figure for the plot
|
109 |
+
|
110 |
+
See Also
|
111 |
+
--------
|
112 |
+
ConvexHull
|
113 |
+
|
114 |
+
Notes
|
115 |
+
-----
|
116 |
+
Requires Matplotlib.
|
117 |
+
|
118 |
+
|
119 |
+
Examples
|
120 |
+
--------
|
121 |
+
|
122 |
+
>>> import numpy as np
|
123 |
+
>>> import matplotlib.pyplot as plt
|
124 |
+
>>> from scipy.spatial import ConvexHull, convex_hull_plot_2d
|
125 |
+
|
126 |
+
The convex hull of a random set of points:
|
127 |
+
|
128 |
+
>>> rng = np.random.default_rng()
|
129 |
+
>>> points = rng.random((30, 2))
|
130 |
+
>>> hull = ConvexHull(points)
|
131 |
+
|
132 |
+
Plot it:
|
133 |
+
|
134 |
+
>>> _ = convex_hull_plot_2d(hull)
|
135 |
+
>>> plt.show()
|
136 |
+
|
137 |
+
"""
|
138 |
+
from matplotlib.collections import LineCollection
|
139 |
+
|
140 |
+
if hull.points.shape[1] != 2:
|
141 |
+
raise ValueError("Convex hull is not 2-D")
|
142 |
+
|
143 |
+
ax.plot(hull.points[:, 0], hull.points[:, 1], 'o')
|
144 |
+
line_segments = [hull.points[simplex] for simplex in hull.simplices]
|
145 |
+
ax.add_collection(LineCollection(line_segments,
|
146 |
+
colors='k',
|
147 |
+
linestyle='solid'))
|
148 |
+
_adjust_bounds(ax, hull.points)
|
149 |
+
|
150 |
+
return ax.figure
|
151 |
+
|
152 |
+
|
153 |
+
@_held_figure
|
154 |
+
def voronoi_plot_2d(vor, ax=None, **kw):
|
155 |
+
"""
|
156 |
+
Plot the given Voronoi diagram in 2-D
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
vor : scipy.spatial.Voronoi instance
|
161 |
+
Diagram to plot
|
162 |
+
ax : matplotlib.axes.Axes instance, optional
|
163 |
+
Axes to plot on
|
164 |
+
show_points : bool, optional
|
165 |
+
Add the Voronoi points to the plot.
|
166 |
+
show_vertices : bool, optional
|
167 |
+
Add the Voronoi vertices to the plot.
|
168 |
+
line_colors : string, optional
|
169 |
+
Specifies the line color for polygon boundaries
|
170 |
+
line_width : float, optional
|
171 |
+
Specifies the line width for polygon boundaries
|
172 |
+
line_alpha : float, optional
|
173 |
+
Specifies the line alpha for polygon boundaries
|
174 |
+
point_size : float, optional
|
175 |
+
Specifies the size of points
|
176 |
+
|
177 |
+
Returns
|
178 |
+
-------
|
179 |
+
fig : matplotlib.figure.Figure instance
|
180 |
+
Figure for the plot
|
181 |
+
|
182 |
+
See Also
|
183 |
+
--------
|
184 |
+
Voronoi
|
185 |
+
|
186 |
+
Notes
|
187 |
+
-----
|
188 |
+
Requires Matplotlib.
|
189 |
+
|
190 |
+
Examples
|
191 |
+
--------
|
192 |
+
>>> import numpy as np
|
193 |
+
>>> import matplotlib.pyplot as plt
|
194 |
+
>>> from scipy.spatial import Voronoi, voronoi_plot_2d
|
195 |
+
|
196 |
+
Create a set of points for the example:
|
197 |
+
|
198 |
+
>>> rng = np.random.default_rng()
|
199 |
+
>>> points = rng.random((10,2))
|
200 |
+
|
201 |
+
Generate the Voronoi diagram for the points:
|
202 |
+
|
203 |
+
>>> vor = Voronoi(points)
|
204 |
+
|
205 |
+
Use `voronoi_plot_2d` to plot the diagram:
|
206 |
+
|
207 |
+
>>> fig = voronoi_plot_2d(vor)
|
208 |
+
|
209 |
+
Use `voronoi_plot_2d` to plot the diagram again, with some settings
|
210 |
+
customized:
|
211 |
+
|
212 |
+
>>> fig = voronoi_plot_2d(vor, show_vertices=False, line_colors='orange',
|
213 |
+
... line_width=2, line_alpha=0.6, point_size=2)
|
214 |
+
>>> plt.show()
|
215 |
+
|
216 |
+
"""
|
217 |
+
from matplotlib.collections import LineCollection
|
218 |
+
|
219 |
+
if vor.points.shape[1] != 2:
|
220 |
+
raise ValueError("Voronoi diagram is not 2-D")
|
221 |
+
|
222 |
+
if kw.get('show_points', True):
|
223 |
+
point_size = kw.get('point_size', None)
|
224 |
+
ax.plot(vor.points[:, 0], vor.points[:, 1], '.', markersize=point_size)
|
225 |
+
if kw.get('show_vertices', True):
|
226 |
+
ax.plot(vor.vertices[:, 0], vor.vertices[:, 1], 'o')
|
227 |
+
|
228 |
+
line_colors = kw.get('line_colors', 'k')
|
229 |
+
line_width = kw.get('line_width', 1.0)
|
230 |
+
line_alpha = kw.get('line_alpha', 1.0)
|
231 |
+
|
232 |
+
center = vor.points.mean(axis=0)
|
233 |
+
ptp_bound = np.ptp(vor.points, axis=0)
|
234 |
+
|
235 |
+
finite_segments = []
|
236 |
+
infinite_segments = []
|
237 |
+
for pointidx, simplex in zip(vor.ridge_points, vor.ridge_vertices):
|
238 |
+
simplex = np.asarray(simplex)
|
239 |
+
if np.all(simplex >= 0):
|
240 |
+
finite_segments.append(vor.vertices[simplex])
|
241 |
+
else:
|
242 |
+
i = simplex[simplex >= 0][0] # finite end Voronoi vertex
|
243 |
+
|
244 |
+
t = vor.points[pointidx[1]] - vor.points[pointidx[0]] # tangent
|
245 |
+
t /= np.linalg.norm(t)
|
246 |
+
n = np.array([-t[1], t[0]]) # normal
|
247 |
+
|
248 |
+
midpoint = vor.points[pointidx].mean(axis=0)
|
249 |
+
direction = np.sign(np.dot(midpoint - center, n)) * n
|
250 |
+
if (vor.furthest_site):
|
251 |
+
direction = -direction
|
252 |
+
aspect_factor = abs(ptp_bound.max() / ptp_bound.min())
|
253 |
+
far_point = vor.vertices[i] + direction * ptp_bound.max() * aspect_factor
|
254 |
+
|
255 |
+
infinite_segments.append([vor.vertices[i], far_point])
|
256 |
+
|
257 |
+
ax.add_collection(LineCollection(finite_segments,
|
258 |
+
colors=line_colors,
|
259 |
+
lw=line_width,
|
260 |
+
alpha=line_alpha,
|
261 |
+
linestyle='solid'))
|
262 |
+
ax.add_collection(LineCollection(infinite_segments,
|
263 |
+
colors=line_colors,
|
264 |
+
lw=line_width,
|
265 |
+
alpha=line_alpha,
|
266 |
+
linestyle='dashed'))
|
267 |
+
|
268 |
+
_adjust_bounds(ax, vor.points)
|
269 |
+
|
270 |
+
return ax.figure
|
venv/lib/python3.10/site-packages/scipy/spatial/_procrustes.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module provides functions to perform full Procrustes analysis.
|
3 |
+
|
4 |
+
This code was originally written by Justin Kucynski and ported over from
|
5 |
+
scikit-bio by Yoshiki Vazquez-Baeza.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from scipy.linalg import orthogonal_procrustes
|
10 |
+
|
11 |
+
|
12 |
+
__all__ = ['procrustes']
|
13 |
+
|
14 |
+
|
15 |
+
def procrustes(data1, data2):
|
16 |
+
r"""Procrustes analysis, a similarity test for two data sets.
|
17 |
+
|
18 |
+
Each input matrix is a set of points or vectors (the rows of the matrix).
|
19 |
+
The dimension of the space is the number of columns of each matrix. Given
|
20 |
+
two identically sized matrices, procrustes standardizes both such that:
|
21 |
+
|
22 |
+
- :math:`tr(AA^{T}) = 1`.
|
23 |
+
|
24 |
+
- Both sets of points are centered around the origin.
|
25 |
+
|
26 |
+
Procrustes ([1]_, [2]_) then applies the optimal transform to the second
|
27 |
+
matrix (including scaling/dilation, rotations, and reflections) to minimize
|
28 |
+
:math:`M^{2}=\sum(data1-data2)^{2}`, or the sum of the squares of the
|
29 |
+
pointwise differences between the two input datasets.
|
30 |
+
|
31 |
+
This function was not designed to handle datasets with different numbers of
|
32 |
+
datapoints (rows). If two data sets have different dimensionality
|
33 |
+
(different number of columns), simply add columns of zeros to the smaller
|
34 |
+
of the two.
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
data1 : array_like
|
39 |
+
Matrix, n rows represent points in k (columns) space `data1` is the
|
40 |
+
reference data, after it is standardised, the data from `data2` will be
|
41 |
+
transformed to fit the pattern in `data1` (must have >1 unique points).
|
42 |
+
data2 : array_like
|
43 |
+
n rows of data in k space to be fit to `data1`. Must be the same
|
44 |
+
shape ``(numrows, numcols)`` as data1 (must have >1 unique points).
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
mtx1 : array_like
|
49 |
+
A standardized version of `data1`.
|
50 |
+
mtx2 : array_like
|
51 |
+
The orientation of `data2` that best fits `data1`. Centered, but not
|
52 |
+
necessarily :math:`tr(AA^{T}) = 1`.
|
53 |
+
disparity : float
|
54 |
+
:math:`M^{2}` as defined above.
|
55 |
+
|
56 |
+
Raises
|
57 |
+
------
|
58 |
+
ValueError
|
59 |
+
If the input arrays are not two-dimensional.
|
60 |
+
If the shape of the input arrays is different.
|
61 |
+
If the input arrays have zero columns or zero rows.
|
62 |
+
|
63 |
+
See Also
|
64 |
+
--------
|
65 |
+
scipy.linalg.orthogonal_procrustes
|
66 |
+
scipy.spatial.distance.directed_hausdorff : Another similarity test
|
67 |
+
for two data sets
|
68 |
+
|
69 |
+
Notes
|
70 |
+
-----
|
71 |
+
- The disparity should not depend on the order of the input matrices, but
|
72 |
+
the output matrices will, as only the first output matrix is guaranteed
|
73 |
+
to be scaled such that :math:`tr(AA^{T}) = 1`.
|
74 |
+
|
75 |
+
- Duplicate data points are generally ok, duplicating a data point will
|
76 |
+
increase its effect on the procrustes fit.
|
77 |
+
|
78 |
+
- The disparity scales as the number of points per input matrix.
|
79 |
+
|
80 |
+
References
|
81 |
+
----------
|
82 |
+
.. [1] Krzanowski, W. J. (2000). "Principles of Multivariate analysis".
|
83 |
+
.. [2] Gower, J. C. (1975). "Generalized procrustes analysis".
|
84 |
+
|
85 |
+
Examples
|
86 |
+
--------
|
87 |
+
>>> import numpy as np
|
88 |
+
>>> from scipy.spatial import procrustes
|
89 |
+
|
90 |
+
The matrix ``b`` is a rotated, shifted, scaled and mirrored version of
|
91 |
+
``a`` here:
|
92 |
+
|
93 |
+
>>> a = np.array([[1, 3], [1, 2], [1, 1], [2, 1]], 'd')
|
94 |
+
>>> b = np.array([[4, -2], [4, -4], [4, -6], [2, -6]], 'd')
|
95 |
+
>>> mtx1, mtx2, disparity = procrustes(a, b)
|
96 |
+
>>> round(disparity)
|
97 |
+
0.0
|
98 |
+
|
99 |
+
"""
|
100 |
+
mtx1 = np.array(data1, dtype=np.float64, copy=True)
|
101 |
+
mtx2 = np.array(data2, dtype=np.float64, copy=True)
|
102 |
+
|
103 |
+
if mtx1.ndim != 2 or mtx2.ndim != 2:
|
104 |
+
raise ValueError("Input matrices must be two-dimensional")
|
105 |
+
if mtx1.shape != mtx2.shape:
|
106 |
+
raise ValueError("Input matrices must be of same shape")
|
107 |
+
if mtx1.size == 0:
|
108 |
+
raise ValueError("Input matrices must be >0 rows and >0 cols")
|
109 |
+
|
110 |
+
# translate all the data to the origin
|
111 |
+
mtx1 -= np.mean(mtx1, 0)
|
112 |
+
mtx2 -= np.mean(mtx2, 0)
|
113 |
+
|
114 |
+
norm1 = np.linalg.norm(mtx1)
|
115 |
+
norm2 = np.linalg.norm(mtx2)
|
116 |
+
|
117 |
+
if norm1 == 0 or norm2 == 0:
|
118 |
+
raise ValueError("Input matrices must contain >1 unique points")
|
119 |
+
|
120 |
+
# change scaling of data (in rows) such that trace(mtx*mtx') = 1
|
121 |
+
mtx1 /= norm1
|
122 |
+
mtx2 /= norm2
|
123 |
+
|
124 |
+
# transform mtx2 to minimize disparity
|
125 |
+
R, s = orthogonal_procrustes(mtx1, mtx2)
|
126 |
+
mtx2 = np.dot(mtx2, R.T) * s
|
127 |
+
|
128 |
+
# measure the dissimilarity between the two datasets
|
129 |
+
disparity = np.sum(np.square(mtx1 - mtx2))
|
130 |
+
|
131 |
+
return mtx1, mtx2, disparity
|
132 |
+
|
venv/lib/python3.10/site-packages/scipy/spatial/_qhull.pyi
ADDED
@@ -0,0 +1,213 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
'''
|
2 |
+
Static type checking stub file for scipy/spatial/qhull.pyx
|
3 |
+
'''
|
4 |
+
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
from numpy.typing import ArrayLike, NDArray
|
8 |
+
from typing_extensions import final
|
9 |
+
|
10 |
+
class QhullError(RuntimeError):
|
11 |
+
...
|
12 |
+
|
13 |
+
@final
|
14 |
+
class _Qhull:
|
15 |
+
# Read-only cython attribute that behaves, more or less, like a property
|
16 |
+
@property
|
17 |
+
def ndim(self) -> int: ...
|
18 |
+
mode_option: bytes
|
19 |
+
options: bytes
|
20 |
+
furthest_site: bool
|
21 |
+
|
22 |
+
def __init__(
|
23 |
+
self,
|
24 |
+
mode_option: bytes,
|
25 |
+
points: NDArray[np.float64],
|
26 |
+
options: None | bytes = ...,
|
27 |
+
required_options: None | bytes = ...,
|
28 |
+
furthest_site: bool = ...,
|
29 |
+
incremental: bool = ...,
|
30 |
+
interior_point: None | NDArray[np.float64] = ...,
|
31 |
+
) -> None: ...
|
32 |
+
def check_active(self) -> None: ...
|
33 |
+
def close(self) -> None: ...
|
34 |
+
def get_points(self) -> NDArray[np.float64]: ...
|
35 |
+
def add_points(
|
36 |
+
self,
|
37 |
+
points: ArrayLike,
|
38 |
+
interior_point: ArrayLike = ...
|
39 |
+
) -> None: ...
|
40 |
+
def get_paraboloid_shift_scale(self) -> tuple[float, float]: ...
|
41 |
+
def volume_area(self) -> tuple[float, float]: ...
|
42 |
+
def triangulate(self) -> None: ...
|
43 |
+
def get_simplex_facet_array(self) -> tuple[
|
44 |
+
NDArray[np.intc],
|
45 |
+
NDArray[np.intc],
|
46 |
+
NDArray[np.float64],
|
47 |
+
NDArray[np.intc],
|
48 |
+
NDArray[np.intc],
|
49 |
+
]: ...
|
50 |
+
def get_hull_points(self) -> NDArray[np.float64]: ...
|
51 |
+
def get_hull_facets(self) -> tuple[
|
52 |
+
list[list[int]],
|
53 |
+
NDArray[np.float64],
|
54 |
+
]: ...
|
55 |
+
def get_voronoi_diagram(self) -> tuple[
|
56 |
+
NDArray[np.float64],
|
57 |
+
NDArray[np.intc],
|
58 |
+
list[list[int]],
|
59 |
+
list[list[int]],
|
60 |
+
NDArray[np.intp],
|
61 |
+
]: ...
|
62 |
+
def get_extremes_2d(self) -> NDArray[np.intc]: ...
|
63 |
+
|
64 |
+
def _get_barycentric_transforms(
|
65 |
+
points: NDArray[np.float64],
|
66 |
+
simplices: NDArray[np.intc],
|
67 |
+
eps: float
|
68 |
+
) -> NDArray[np.float64]: ...
|
69 |
+
|
70 |
+
class _QhullUser:
|
71 |
+
ndim: int
|
72 |
+
npoints: int
|
73 |
+
min_bound: NDArray[np.float64]
|
74 |
+
max_bound: NDArray[np.float64]
|
75 |
+
|
76 |
+
def __init__(self, qhull: _Qhull, incremental: bool = ...) -> None: ...
|
77 |
+
def close(self) -> None: ...
|
78 |
+
def _update(self, qhull: _Qhull) -> None: ...
|
79 |
+
def _add_points(
|
80 |
+
self,
|
81 |
+
points: ArrayLike,
|
82 |
+
restart: bool = ...,
|
83 |
+
interior_point: ArrayLike = ...
|
84 |
+
) -> None: ...
|
85 |
+
|
86 |
+
class Delaunay(_QhullUser):
|
87 |
+
furthest_site: bool
|
88 |
+
paraboloid_scale: float
|
89 |
+
paraboloid_shift: float
|
90 |
+
simplices: NDArray[np.intc]
|
91 |
+
neighbors: NDArray[np.intc]
|
92 |
+
equations: NDArray[np.float64]
|
93 |
+
coplanar: NDArray[np.intc]
|
94 |
+
good: NDArray[np.intc]
|
95 |
+
nsimplex: int
|
96 |
+
vertices: NDArray[np.intc]
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
points: ArrayLike,
|
101 |
+
furthest_site: bool = ...,
|
102 |
+
incremental: bool = ...,
|
103 |
+
qhull_options: None | str = ...
|
104 |
+
) -> None: ...
|
105 |
+
def _update(self, qhull: _Qhull) -> None: ...
|
106 |
+
def add_points(
|
107 |
+
self,
|
108 |
+
points: ArrayLike,
|
109 |
+
restart: bool = ...
|
110 |
+
) -> None: ...
|
111 |
+
@property
|
112 |
+
def points(self) -> NDArray[np.float64]: ...
|
113 |
+
@property
|
114 |
+
def transform(self) -> NDArray[np.float64]: ...
|
115 |
+
@property
|
116 |
+
def vertex_to_simplex(self) -> NDArray[np.intc]: ...
|
117 |
+
@property
|
118 |
+
def vertex_neighbor_vertices(self) -> tuple[
|
119 |
+
NDArray[np.intc],
|
120 |
+
NDArray[np.intc],
|
121 |
+
]: ...
|
122 |
+
@property
|
123 |
+
def convex_hull(self) -> NDArray[np.intc]: ...
|
124 |
+
def find_simplex(
|
125 |
+
self,
|
126 |
+
xi: ArrayLike,
|
127 |
+
bruteforce: bool = ...,
|
128 |
+
tol: float = ...
|
129 |
+
) -> NDArray[np.intc]: ...
|
130 |
+
def plane_distance(self, xi: ArrayLike) -> NDArray[np.float64]: ...
|
131 |
+
def lift_points(self, x: ArrayLike) -> NDArray[np.float64]: ...
|
132 |
+
|
133 |
+
def tsearch(tri: Delaunay, xi: ArrayLike) -> NDArray[np.intc]: ...
|
134 |
+
def _copy_docstr(dst: object, src: object) -> None: ...
|
135 |
+
|
136 |
+
class ConvexHull(_QhullUser):
|
137 |
+
simplices: NDArray[np.intc]
|
138 |
+
neighbors: NDArray[np.intc]
|
139 |
+
equations: NDArray[np.float64]
|
140 |
+
coplanar: NDArray[np.intc]
|
141 |
+
good: None | NDArray[np.bool_]
|
142 |
+
volume: float
|
143 |
+
area: float
|
144 |
+
nsimplex: int
|
145 |
+
|
146 |
+
def __init__(
|
147 |
+
self,
|
148 |
+
points: ArrayLike,
|
149 |
+
incremental: bool = ...,
|
150 |
+
qhull_options: None | str = ...
|
151 |
+
) -> None: ...
|
152 |
+
def _update(self, qhull: _Qhull) -> None: ...
|
153 |
+
def add_points(self, points: ArrayLike,
|
154 |
+
restart: bool = ...) -> None: ...
|
155 |
+
@property
|
156 |
+
def points(self) -> NDArray[np.float64]: ...
|
157 |
+
@property
|
158 |
+
def vertices(self) -> NDArray[np.intc]: ...
|
159 |
+
|
160 |
+
class Voronoi(_QhullUser):
|
161 |
+
vertices: NDArray[np.float64]
|
162 |
+
ridge_points: NDArray[np.intc]
|
163 |
+
ridge_vertices: list[list[int]]
|
164 |
+
regions: list[list[int]]
|
165 |
+
point_region: NDArray[np.intp]
|
166 |
+
furthest_site: bool
|
167 |
+
|
168 |
+
def __init__(
|
169 |
+
self,
|
170 |
+
points: ArrayLike,
|
171 |
+
furthest_site: bool = ...,
|
172 |
+
incremental: bool = ...,
|
173 |
+
qhull_options: None | str = ...
|
174 |
+
) -> None: ...
|
175 |
+
def _update(self, qhull: _Qhull) -> None: ...
|
176 |
+
def add_points(
|
177 |
+
self,
|
178 |
+
points: ArrayLike,
|
179 |
+
restart: bool = ...
|
180 |
+
) -> None: ...
|
181 |
+
@property
|
182 |
+
def points(self) -> NDArray[np.float64]: ...
|
183 |
+
@property
|
184 |
+
def ridge_dict(self) -> dict[tuple[int, int], list[int]]: ...
|
185 |
+
|
186 |
+
class HalfspaceIntersection(_QhullUser):
|
187 |
+
interior_point: NDArray[np.float64]
|
188 |
+
dual_facets: list[list[int]]
|
189 |
+
dual_equations: NDArray[np.float64]
|
190 |
+
dual_points: NDArray[np.float64]
|
191 |
+
dual_volume: float
|
192 |
+
dual_area: float
|
193 |
+
intersections: NDArray[np.float64]
|
194 |
+
ndim: int
|
195 |
+
nineq: int
|
196 |
+
|
197 |
+
def __init__(
|
198 |
+
self,
|
199 |
+
halfspaces: ArrayLike,
|
200 |
+
interior_point: ArrayLike,
|
201 |
+
incremental: bool = ...,
|
202 |
+
qhull_options: None | str = ...
|
203 |
+
) -> None: ...
|
204 |
+
def _update(self, qhull: _Qhull) -> None: ...
|
205 |
+
def add_halfspaces(
|
206 |
+
self,
|
207 |
+
halfspaces: ArrayLike,
|
208 |
+
restart: bool = ...
|
209 |
+
) -> None: ...
|
210 |
+
@property
|
211 |
+
def halfspaces(self) -> NDArray[np.float64]: ...
|
212 |
+
@property
|
213 |
+
def dual_vertices(self) -> NDArray[np.integer]: ...
|
venv/lib/python3.10/site-packages/scipy/spatial/_spherical_voronoi.py
ADDED
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Spherical Voronoi Code
|
3 |
+
|
4 |
+
.. versionadded:: 0.18.0
|
5 |
+
|
6 |
+
"""
|
7 |
+
#
|
8 |
+
# Copyright (C) Tyler Reddy, Ross Hemsley, Edd Edmondson,
|
9 |
+
# Nikolai Nowaczyk, Joe Pitt-Francis, 2015.
|
10 |
+
#
|
11 |
+
# Distributed under the same BSD license as SciPy.
|
12 |
+
#
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
import scipy
|
16 |
+
from . import _voronoi
|
17 |
+
from scipy.spatial import cKDTree
|
18 |
+
|
19 |
+
__all__ = ['SphericalVoronoi']
|
20 |
+
|
21 |
+
|
22 |
+
def calculate_solid_angles(R):
|
23 |
+
"""Calculates the solid angles of plane triangles. Implements the method of
|
24 |
+
Van Oosterom and Strackee [VanOosterom]_ with some modifications. Assumes
|
25 |
+
that input points have unit norm."""
|
26 |
+
# Original method uses a triple product `R1 . (R2 x R3)` for the numerator.
|
27 |
+
# This is equal to the determinant of the matrix [R1 R2 R3], which can be
|
28 |
+
# computed with better stability.
|
29 |
+
numerator = np.linalg.det(R)
|
30 |
+
denominator = 1 + (np.einsum('ij,ij->i', R[:, 0], R[:, 1]) +
|
31 |
+
np.einsum('ij,ij->i', R[:, 1], R[:, 2]) +
|
32 |
+
np.einsum('ij,ij->i', R[:, 2], R[:, 0]))
|
33 |
+
return np.abs(2 * np.arctan2(numerator, denominator))
|
34 |
+
|
35 |
+
|
36 |
+
class SphericalVoronoi:
|
37 |
+
""" Voronoi diagrams on the surface of a sphere.
|
38 |
+
|
39 |
+
.. versionadded:: 0.18.0
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
points : ndarray of floats, shape (npoints, ndim)
|
44 |
+
Coordinates of points from which to construct a spherical
|
45 |
+
Voronoi diagram.
|
46 |
+
radius : float, optional
|
47 |
+
Radius of the sphere (Default: 1)
|
48 |
+
center : ndarray of floats, shape (ndim,)
|
49 |
+
Center of sphere (Default: origin)
|
50 |
+
threshold : float
|
51 |
+
Threshold for detecting duplicate points and
|
52 |
+
mismatches between points and sphere parameters.
|
53 |
+
(Default: 1e-06)
|
54 |
+
|
55 |
+
Attributes
|
56 |
+
----------
|
57 |
+
points : double array of shape (npoints, ndim)
|
58 |
+
the points in `ndim` dimensions to generate the Voronoi diagram from
|
59 |
+
radius : double
|
60 |
+
radius of the sphere
|
61 |
+
center : double array of shape (ndim,)
|
62 |
+
center of the sphere
|
63 |
+
vertices : double array of shape (nvertices, ndim)
|
64 |
+
Voronoi vertices corresponding to points
|
65 |
+
regions : list of list of integers of shape (npoints, _ )
|
66 |
+
the n-th entry is a list consisting of the indices
|
67 |
+
of the vertices belonging to the n-th point in points
|
68 |
+
|
69 |
+
Methods
|
70 |
+
-------
|
71 |
+
calculate_areas
|
72 |
+
Calculates the areas of the Voronoi regions. For 2D point sets, the
|
73 |
+
regions are circular arcs. The sum of the areas is `2 * pi * radius`.
|
74 |
+
For 3D point sets, the regions are spherical polygons. The sum of the
|
75 |
+
areas is `4 * pi * radius**2`.
|
76 |
+
|
77 |
+
Raises
|
78 |
+
------
|
79 |
+
ValueError
|
80 |
+
If there are duplicates in `points`.
|
81 |
+
If the provided `radius` is not consistent with `points`.
|
82 |
+
|
83 |
+
Notes
|
84 |
+
-----
|
85 |
+
The spherical Voronoi diagram algorithm proceeds as follows. The Convex
|
86 |
+
Hull of the input points (generators) is calculated, and is equivalent to
|
87 |
+
their Delaunay triangulation on the surface of the sphere [Caroli]_.
|
88 |
+
The Convex Hull neighbour information is then used to
|
89 |
+
order the Voronoi region vertices around each generator. The latter
|
90 |
+
approach is substantially less sensitive to floating point issues than
|
91 |
+
angle-based methods of Voronoi region vertex sorting.
|
92 |
+
|
93 |
+
Empirical assessment of spherical Voronoi algorithm performance suggests
|
94 |
+
quadratic time complexity (loglinear is optimal, but algorithms are more
|
95 |
+
challenging to implement).
|
96 |
+
|
97 |
+
References
|
98 |
+
----------
|
99 |
+
.. [Caroli] Caroli et al. Robust and Efficient Delaunay triangulations of
|
100 |
+
points on or close to a sphere. Research Report RR-7004, 2009.
|
101 |
+
|
102 |
+
.. [VanOosterom] Van Oosterom and Strackee. The solid angle of a plane
|
103 |
+
triangle. IEEE Transactions on Biomedical Engineering,
|
104 |
+
2, 1983, pp 125--126.
|
105 |
+
|
106 |
+
See Also
|
107 |
+
--------
|
108 |
+
Voronoi : Conventional Voronoi diagrams in N dimensions.
|
109 |
+
|
110 |
+
Examples
|
111 |
+
--------
|
112 |
+
Do some imports and take some points on a cube:
|
113 |
+
|
114 |
+
>>> import numpy as np
|
115 |
+
>>> import matplotlib.pyplot as plt
|
116 |
+
>>> from scipy.spatial import SphericalVoronoi, geometric_slerp
|
117 |
+
>>> from mpl_toolkits.mplot3d import proj3d
|
118 |
+
>>> # set input data
|
119 |
+
>>> points = np.array([[0, 0, 1], [0, 0, -1], [1, 0, 0],
|
120 |
+
... [0, 1, 0], [0, -1, 0], [-1, 0, 0], ])
|
121 |
+
|
122 |
+
Calculate the spherical Voronoi diagram:
|
123 |
+
|
124 |
+
>>> radius = 1
|
125 |
+
>>> center = np.array([0, 0, 0])
|
126 |
+
>>> sv = SphericalVoronoi(points, radius, center)
|
127 |
+
|
128 |
+
Generate plot:
|
129 |
+
|
130 |
+
>>> # sort vertices (optional, helpful for plotting)
|
131 |
+
>>> sv.sort_vertices_of_regions()
|
132 |
+
>>> t_vals = np.linspace(0, 1, 2000)
|
133 |
+
>>> fig = plt.figure()
|
134 |
+
>>> ax = fig.add_subplot(111, projection='3d')
|
135 |
+
>>> # plot the unit sphere for reference (optional)
|
136 |
+
>>> u = np.linspace(0, 2 * np.pi, 100)
|
137 |
+
>>> v = np.linspace(0, np.pi, 100)
|
138 |
+
>>> x = np.outer(np.cos(u), np.sin(v))
|
139 |
+
>>> y = np.outer(np.sin(u), np.sin(v))
|
140 |
+
>>> z = np.outer(np.ones(np.size(u)), np.cos(v))
|
141 |
+
>>> ax.plot_surface(x, y, z, color='y', alpha=0.1)
|
142 |
+
>>> # plot generator points
|
143 |
+
>>> ax.scatter(points[:, 0], points[:, 1], points[:, 2], c='b')
|
144 |
+
>>> # plot Voronoi vertices
|
145 |
+
>>> ax.scatter(sv.vertices[:, 0], sv.vertices[:, 1], sv.vertices[:, 2],
|
146 |
+
... c='g')
|
147 |
+
>>> # indicate Voronoi regions (as Euclidean polygons)
|
148 |
+
>>> for region in sv.regions:
|
149 |
+
... n = len(region)
|
150 |
+
... for i in range(n):
|
151 |
+
... start = sv.vertices[region][i]
|
152 |
+
... end = sv.vertices[region][(i + 1) % n]
|
153 |
+
... result = geometric_slerp(start, end, t_vals)
|
154 |
+
... ax.plot(result[..., 0],
|
155 |
+
... result[..., 1],
|
156 |
+
... result[..., 2],
|
157 |
+
... c='k')
|
158 |
+
>>> ax.azim = 10
|
159 |
+
>>> ax.elev = 40
|
160 |
+
>>> _ = ax.set_xticks([])
|
161 |
+
>>> _ = ax.set_yticks([])
|
162 |
+
>>> _ = ax.set_zticks([])
|
163 |
+
>>> fig.set_size_inches(4, 4)
|
164 |
+
>>> plt.show()
|
165 |
+
|
166 |
+
"""
|
167 |
+
def __init__(self, points, radius=1, center=None, threshold=1e-06):
|
168 |
+
|
169 |
+
if radius is None:
|
170 |
+
raise ValueError('`radius` is `None`. '
|
171 |
+
'Please provide a floating point number '
|
172 |
+
'(i.e. `radius=1`).')
|
173 |
+
|
174 |
+
self.radius = float(radius)
|
175 |
+
self.points = np.array(points).astype(np.float64)
|
176 |
+
self._dim = self.points.shape[1]
|
177 |
+
if center is None:
|
178 |
+
self.center = np.zeros(self._dim)
|
179 |
+
else:
|
180 |
+
self.center = np.array(center, dtype=float)
|
181 |
+
|
182 |
+
# test degenerate input
|
183 |
+
self._rank = np.linalg.matrix_rank(self.points - self.points[0],
|
184 |
+
tol=threshold * self.radius)
|
185 |
+
if self._rank < self._dim:
|
186 |
+
raise ValueError(f"Rank of input points must be at least {self._dim}")
|
187 |
+
|
188 |
+
if cKDTree(self.points).query_pairs(threshold * self.radius):
|
189 |
+
raise ValueError("Duplicate generators present.")
|
190 |
+
|
191 |
+
radii = np.linalg.norm(self.points - self.center, axis=1)
|
192 |
+
max_discrepancy = np.abs(radii - self.radius).max()
|
193 |
+
if max_discrepancy >= threshold * self.radius:
|
194 |
+
raise ValueError("Radius inconsistent with generators.")
|
195 |
+
|
196 |
+
self._calc_vertices_regions()
|
197 |
+
|
198 |
+
def _calc_vertices_regions(self):
|
199 |
+
"""
|
200 |
+
Calculates the Voronoi vertices and regions of the generators stored
|
201 |
+
in self.points. The vertices will be stored in self.vertices and the
|
202 |
+
regions in self.regions.
|
203 |
+
|
204 |
+
This algorithm was discussed at PyData London 2015 by
|
205 |
+
Tyler Reddy, Ross Hemsley and Nikolai Nowaczyk
|
206 |
+
"""
|
207 |
+
# get Convex Hull
|
208 |
+
conv = scipy.spatial.ConvexHull(self.points)
|
209 |
+
# get circumcenters of Convex Hull triangles from facet equations
|
210 |
+
# for 3D input circumcenters will have shape: (2N-4, 3)
|
211 |
+
self.vertices = self.radius * conv.equations[:, :-1] + self.center
|
212 |
+
self._simplices = conv.simplices
|
213 |
+
# calculate regions from triangulation
|
214 |
+
# for 3D input simplex_indices will have shape: (2N-4,)
|
215 |
+
simplex_indices = np.arange(len(self._simplices))
|
216 |
+
# for 3D input tri_indices will have shape: (6N-12,)
|
217 |
+
tri_indices = np.column_stack([simplex_indices] * self._dim).ravel()
|
218 |
+
# for 3D input point_indices will have shape: (6N-12,)
|
219 |
+
point_indices = self._simplices.ravel()
|
220 |
+
# for 3D input indices will have shape: (6N-12,)
|
221 |
+
indices = np.argsort(point_indices, kind='mergesort')
|
222 |
+
# for 3D input flattened_groups will have shape: (6N-12,)
|
223 |
+
flattened_groups = tri_indices[indices].astype(np.intp)
|
224 |
+
# intervals will have shape: (N+1,)
|
225 |
+
intervals = np.cumsum(np.bincount(point_indices + 1))
|
226 |
+
# split flattened groups to get nested list of unsorted regions
|
227 |
+
groups = [list(flattened_groups[intervals[i]:intervals[i + 1]])
|
228 |
+
for i in range(len(intervals) - 1)]
|
229 |
+
self.regions = groups
|
230 |
+
|
231 |
+
def sort_vertices_of_regions(self):
|
232 |
+
"""Sort indices of the vertices to be (counter-)clockwise ordered.
|
233 |
+
|
234 |
+
Raises
|
235 |
+
------
|
236 |
+
TypeError
|
237 |
+
If the points are not three-dimensional.
|
238 |
+
|
239 |
+
Notes
|
240 |
+
-----
|
241 |
+
For each region in regions, it sorts the indices of the Voronoi
|
242 |
+
vertices such that the resulting points are in a clockwise or
|
243 |
+
counterclockwise order around the generator point.
|
244 |
+
|
245 |
+
This is done as follows: Recall that the n-th region in regions
|
246 |
+
surrounds the n-th generator in points and that the k-th
|
247 |
+
Voronoi vertex in vertices is the circumcenter of the k-th triangle
|
248 |
+
in self._simplices. For each region n, we choose the first triangle
|
249 |
+
(=Voronoi vertex) in self._simplices and a vertex of that triangle
|
250 |
+
not equal to the center n. These determine a unique neighbor of that
|
251 |
+
triangle, which is then chosen as the second triangle. The second
|
252 |
+
triangle will have a unique vertex not equal to the current vertex or
|
253 |
+
the center. This determines a unique neighbor of the second triangle,
|
254 |
+
which is then chosen as the third triangle and so forth. We proceed
|
255 |
+
through all the triangles (=Voronoi vertices) belonging to the
|
256 |
+
generator in points and obtain a sorted version of the vertices
|
257 |
+
of its surrounding region.
|
258 |
+
"""
|
259 |
+
if self._dim != 3:
|
260 |
+
raise TypeError("Only supported for three-dimensional point sets")
|
261 |
+
_voronoi.sort_vertices_of_regions(self._simplices, self.regions)
|
262 |
+
|
263 |
+
def _calculate_areas_3d(self):
|
264 |
+
self.sort_vertices_of_regions()
|
265 |
+
sizes = [len(region) for region in self.regions]
|
266 |
+
csizes = np.cumsum(sizes)
|
267 |
+
num_regions = csizes[-1]
|
268 |
+
|
269 |
+
# We create a set of triangles consisting of one point and two Voronoi
|
270 |
+
# vertices. The vertices of each triangle are adjacent in the sorted
|
271 |
+
# regions list.
|
272 |
+
point_indices = [i for i, size in enumerate(sizes)
|
273 |
+
for j in range(size)]
|
274 |
+
|
275 |
+
nbrs1 = np.array([r for region in self.regions for r in region])
|
276 |
+
|
277 |
+
# The calculation of nbrs2 is a vectorized version of:
|
278 |
+
# np.array([r for region in self.regions for r in np.roll(region, 1)])
|
279 |
+
nbrs2 = np.roll(nbrs1, 1)
|
280 |
+
indices = np.roll(csizes, 1)
|
281 |
+
indices[0] = 0
|
282 |
+
nbrs2[indices] = nbrs1[csizes - 1]
|
283 |
+
|
284 |
+
# Normalize points and vertices.
|
285 |
+
pnormalized = (self.points - self.center) / self.radius
|
286 |
+
vnormalized = (self.vertices - self.center) / self.radius
|
287 |
+
|
288 |
+
# Create the complete set of triangles and calculate their solid angles
|
289 |
+
triangles = np.hstack([pnormalized[point_indices],
|
290 |
+
vnormalized[nbrs1],
|
291 |
+
vnormalized[nbrs2]
|
292 |
+
]).reshape((num_regions, 3, 3))
|
293 |
+
triangle_solid_angles = calculate_solid_angles(triangles)
|
294 |
+
|
295 |
+
# Sum the solid angles of the triangles in each region
|
296 |
+
solid_angles = np.cumsum(triangle_solid_angles)[csizes - 1]
|
297 |
+
solid_angles[1:] -= solid_angles[:-1]
|
298 |
+
|
299 |
+
# Get polygon areas using A = omega * r**2
|
300 |
+
return solid_angles * self.radius**2
|
301 |
+
|
302 |
+
def _calculate_areas_2d(self):
|
303 |
+
# Find start and end points of arcs
|
304 |
+
arcs = self.points[self._simplices] - self.center
|
305 |
+
|
306 |
+
# Calculate the angle subtended by arcs
|
307 |
+
d = np.sum((arcs[:, 1] - arcs[:, 0]) ** 2, axis=1)
|
308 |
+
theta = np.arccos(1 - (d / (2 * (self.radius ** 2))))
|
309 |
+
|
310 |
+
# Get areas using A = r * theta
|
311 |
+
areas = self.radius * theta
|
312 |
+
|
313 |
+
# Correct arcs which go the wrong way (single-hemisphere inputs)
|
314 |
+
signs = np.sign(np.einsum('ij,ij->i', arcs[:, 0],
|
315 |
+
self.vertices - self.center))
|
316 |
+
indices = np.where(signs < 0)
|
317 |
+
areas[indices] = 2 * np.pi * self.radius - areas[indices]
|
318 |
+
return areas
|
319 |
+
|
320 |
+
def calculate_areas(self):
|
321 |
+
"""Calculates the areas of the Voronoi regions.
|
322 |
+
|
323 |
+
For 2D point sets, the regions are circular arcs. The sum of the areas
|
324 |
+
is `2 * pi * radius`.
|
325 |
+
|
326 |
+
For 3D point sets, the regions are spherical polygons. The sum of the
|
327 |
+
areas is `4 * pi * radius**2`.
|
328 |
+
|
329 |
+
.. versionadded:: 1.5.0
|
330 |
+
|
331 |
+
Returns
|
332 |
+
-------
|
333 |
+
areas : double array of shape (npoints,)
|
334 |
+
The areas of the Voronoi regions.
|
335 |
+
"""
|
336 |
+
if self._dim == 2:
|
337 |
+
return self._calculate_areas_2d()
|
338 |
+
elif self._dim == 3:
|
339 |
+
return self._calculate_areas_3d()
|
340 |
+
else:
|
341 |
+
raise TypeError("Only supported for 2D and 3D point sets")
|
venv/lib/python3.10/site-packages/scipy/spatial/_voronoi.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (241 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/spatial/_voronoi.pyi
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
import numpy as np
|
3 |
+
|
4 |
+
def sort_vertices_of_regions(simplices: np.ndarray, regions: list[list[int]]) -> None: ... # noqa: E501
|
venv/lib/python3.10/site-packages/scipy/spatial/ckdtree.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.spatial` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'cKDTree',
|
10 |
+
'cKDTreeNode',
|
11 |
+
'coo_entries',
|
12 |
+
'operator',
|
13 |
+
'ordered_pairs',
|
14 |
+
'os',
|
15 |
+
'scipy',
|
16 |
+
'threading',
|
17 |
+
]
|
18 |
+
|
19 |
+
|
20 |
+
def __dir__():
|
21 |
+
return __all__
|
22 |
+
|
23 |
+
|
24 |
+
def __getattr__(name):
|
25 |
+
return _sub_module_deprecation(sub_package="spatial", module="ckdtree",
|
26 |
+
private_modules=["_ckdtree"], all=__all__,
|
27 |
+
attribute=name)
|
venv/lib/python3.10/site-packages/scipy/spatial/distance.py
ADDED
@@ -0,0 +1,2993 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Distance computations (:mod:`scipy.spatial.distance`)
|
3 |
+
=====================================================
|
4 |
+
|
5 |
+
.. sectionauthor:: Damian Eads
|
6 |
+
|
7 |
+
Function reference
|
8 |
+
------------------
|
9 |
+
|
10 |
+
Distance matrix computation from a collection of raw observation vectors
|
11 |
+
stored in a rectangular array.
|
12 |
+
|
13 |
+
.. autosummary::
|
14 |
+
:toctree: generated/
|
15 |
+
|
16 |
+
pdist -- pairwise distances between observation vectors.
|
17 |
+
cdist -- distances between two collections of observation vectors
|
18 |
+
squareform -- convert distance matrix to a condensed one and vice versa
|
19 |
+
directed_hausdorff -- directed Hausdorff distance between arrays
|
20 |
+
|
21 |
+
Predicates for checking the validity of distance matrices, both
|
22 |
+
condensed and redundant. Also contained in this module are functions
|
23 |
+
for computing the number of observations in a distance matrix.
|
24 |
+
|
25 |
+
.. autosummary::
|
26 |
+
:toctree: generated/
|
27 |
+
|
28 |
+
is_valid_dm -- checks for a valid distance matrix
|
29 |
+
is_valid_y -- checks for a valid condensed distance matrix
|
30 |
+
num_obs_dm -- # of observations in a distance matrix
|
31 |
+
num_obs_y -- # of observations in a condensed distance matrix
|
32 |
+
|
33 |
+
Distance functions between two numeric vectors ``u`` and ``v``. Computing
|
34 |
+
distances over a large collection of vectors is inefficient for these
|
35 |
+
functions. Use ``pdist`` for this purpose.
|
36 |
+
|
37 |
+
.. autosummary::
|
38 |
+
:toctree: generated/
|
39 |
+
|
40 |
+
braycurtis -- the Bray-Curtis distance.
|
41 |
+
canberra -- the Canberra distance.
|
42 |
+
chebyshev -- the Chebyshev distance.
|
43 |
+
cityblock -- the Manhattan distance.
|
44 |
+
correlation -- the Correlation distance.
|
45 |
+
cosine -- the Cosine distance.
|
46 |
+
euclidean -- the Euclidean distance.
|
47 |
+
jensenshannon -- the Jensen-Shannon distance.
|
48 |
+
mahalanobis -- the Mahalanobis distance.
|
49 |
+
minkowski -- the Minkowski distance.
|
50 |
+
seuclidean -- the normalized Euclidean distance.
|
51 |
+
sqeuclidean -- the squared Euclidean distance.
|
52 |
+
|
53 |
+
Distance functions between two boolean vectors (representing sets) ``u`` and
|
54 |
+
``v``. As in the case of numerical vectors, ``pdist`` is more efficient for
|
55 |
+
computing the distances between all pairs.
|
56 |
+
|
57 |
+
.. autosummary::
|
58 |
+
:toctree: generated/
|
59 |
+
|
60 |
+
dice -- the Dice dissimilarity.
|
61 |
+
hamming -- the Hamming distance.
|
62 |
+
jaccard -- the Jaccard distance.
|
63 |
+
kulczynski1 -- the Kulczynski 1 distance.
|
64 |
+
rogerstanimoto -- the Rogers-Tanimoto dissimilarity.
|
65 |
+
russellrao -- the Russell-Rao dissimilarity.
|
66 |
+
sokalmichener -- the Sokal-Michener dissimilarity.
|
67 |
+
sokalsneath -- the Sokal-Sneath dissimilarity.
|
68 |
+
yule -- the Yule dissimilarity.
|
69 |
+
|
70 |
+
:func:`hamming` also operates over discrete numerical vectors.
|
71 |
+
"""
|
72 |
+
|
73 |
+
# Copyright (C) Damian Eads, 2007-2008. New BSD License.
|
74 |
+
|
75 |
+
__all__ = [
|
76 |
+
'braycurtis',
|
77 |
+
'canberra',
|
78 |
+
'cdist',
|
79 |
+
'chebyshev',
|
80 |
+
'cityblock',
|
81 |
+
'correlation',
|
82 |
+
'cosine',
|
83 |
+
'dice',
|
84 |
+
'directed_hausdorff',
|
85 |
+
'euclidean',
|
86 |
+
'hamming',
|
87 |
+
'is_valid_dm',
|
88 |
+
'is_valid_y',
|
89 |
+
'jaccard',
|
90 |
+
'jensenshannon',
|
91 |
+
'kulczynski1',
|
92 |
+
'mahalanobis',
|
93 |
+
'minkowski',
|
94 |
+
'num_obs_dm',
|
95 |
+
'num_obs_y',
|
96 |
+
'pdist',
|
97 |
+
'rogerstanimoto',
|
98 |
+
'russellrao',
|
99 |
+
'seuclidean',
|
100 |
+
'sokalmichener',
|
101 |
+
'sokalsneath',
|
102 |
+
'sqeuclidean',
|
103 |
+
'squareform',
|
104 |
+
'yule'
|
105 |
+
]
|
106 |
+
|
107 |
+
|
108 |
+
import math
|
109 |
+
import warnings
|
110 |
+
import numpy as np
|
111 |
+
import dataclasses
|
112 |
+
|
113 |
+
from typing import Optional, Callable
|
114 |
+
|
115 |
+
from functools import partial
|
116 |
+
from scipy._lib._util import _asarray_validated
|
117 |
+
|
118 |
+
from . import _distance_wrap
|
119 |
+
from . import _hausdorff
|
120 |
+
from ..linalg import norm
|
121 |
+
from ..special import rel_entr
|
122 |
+
|
123 |
+
from . import _distance_pybind
|
124 |
+
|
125 |
+
|
126 |
+
def _copy_array_if_base_present(a):
|
127 |
+
"""Copy the array if its base points to a parent array."""
|
128 |
+
if a.base is not None:
|
129 |
+
return a.copy()
|
130 |
+
return a
|
131 |
+
|
132 |
+
|
133 |
+
def _correlation_cdist_wrap(XA, XB, dm, **kwargs):
|
134 |
+
XA = XA - XA.mean(axis=1, keepdims=True)
|
135 |
+
XB = XB - XB.mean(axis=1, keepdims=True)
|
136 |
+
_distance_wrap.cdist_cosine_double_wrap(XA, XB, dm, **kwargs)
|
137 |
+
|
138 |
+
|
139 |
+
def _correlation_pdist_wrap(X, dm, **kwargs):
|
140 |
+
X2 = X - X.mean(axis=1, keepdims=True)
|
141 |
+
_distance_wrap.pdist_cosine_double_wrap(X2, dm, **kwargs)
|
142 |
+
|
143 |
+
|
144 |
+
def _convert_to_type(X, out_type):
|
145 |
+
return np.ascontiguousarray(X, dtype=out_type)
|
146 |
+
|
147 |
+
|
148 |
+
def _nbool_correspond_all(u, v, w=None):
|
149 |
+
if u.dtype == v.dtype == bool and w is None:
|
150 |
+
not_u = ~u
|
151 |
+
not_v = ~v
|
152 |
+
nff = (not_u & not_v).sum()
|
153 |
+
nft = (not_u & v).sum()
|
154 |
+
ntf = (u & not_v).sum()
|
155 |
+
ntt = (u & v).sum()
|
156 |
+
else:
|
157 |
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
158 |
+
u = u.astype(dtype)
|
159 |
+
v = v.astype(dtype)
|
160 |
+
not_u = 1.0 - u
|
161 |
+
not_v = 1.0 - v
|
162 |
+
if w is not None:
|
163 |
+
not_u = w * not_u
|
164 |
+
u = w * u
|
165 |
+
nff = (not_u * not_v).sum()
|
166 |
+
nft = (not_u * v).sum()
|
167 |
+
ntf = (u * not_v).sum()
|
168 |
+
ntt = (u * v).sum()
|
169 |
+
return (nff, nft, ntf, ntt)
|
170 |
+
|
171 |
+
|
172 |
+
def _nbool_correspond_ft_tf(u, v, w=None):
|
173 |
+
if u.dtype == v.dtype == bool and w is None:
|
174 |
+
not_u = ~u
|
175 |
+
not_v = ~v
|
176 |
+
nft = (not_u & v).sum()
|
177 |
+
ntf = (u & not_v).sum()
|
178 |
+
else:
|
179 |
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
180 |
+
u = u.astype(dtype)
|
181 |
+
v = v.astype(dtype)
|
182 |
+
not_u = 1.0 - u
|
183 |
+
not_v = 1.0 - v
|
184 |
+
if w is not None:
|
185 |
+
not_u = w * not_u
|
186 |
+
u = w * u
|
187 |
+
nft = (not_u * v).sum()
|
188 |
+
ntf = (u * not_v).sum()
|
189 |
+
return (nft, ntf)
|
190 |
+
|
191 |
+
|
192 |
+
def _validate_cdist_input(XA, XB, mA, mB, n, metric_info, **kwargs):
|
193 |
+
# get supported types
|
194 |
+
types = metric_info.types
|
195 |
+
# choose best type
|
196 |
+
typ = types[types.index(XA.dtype)] if XA.dtype in types else types[0]
|
197 |
+
# validate data
|
198 |
+
XA = _convert_to_type(XA, out_type=typ)
|
199 |
+
XB = _convert_to_type(XB, out_type=typ)
|
200 |
+
|
201 |
+
# validate kwargs
|
202 |
+
_validate_kwargs = metric_info.validator
|
203 |
+
if _validate_kwargs:
|
204 |
+
kwargs = _validate_kwargs((XA, XB), mA + mB, n, **kwargs)
|
205 |
+
return XA, XB, typ, kwargs
|
206 |
+
|
207 |
+
|
208 |
+
def _validate_weight_with_size(X, m, n, **kwargs):
|
209 |
+
w = kwargs.pop('w', None)
|
210 |
+
if w is None:
|
211 |
+
return kwargs
|
212 |
+
|
213 |
+
if w.ndim != 1 or w.shape[0] != n:
|
214 |
+
raise ValueError("Weights must have same size as input vector. "
|
215 |
+
f"{w.shape[0]} vs. {n}")
|
216 |
+
|
217 |
+
kwargs['w'] = _validate_weights(w)
|
218 |
+
return kwargs
|
219 |
+
|
220 |
+
|
221 |
+
def _validate_hamming_kwargs(X, m, n, **kwargs):
|
222 |
+
w = kwargs.get('w', np.ones((n,), dtype='double'))
|
223 |
+
|
224 |
+
if w.ndim != 1 or w.shape[0] != n:
|
225 |
+
raise ValueError(
|
226 |
+
"Weights must have same size as input vector. %d vs. %d" % (w.shape[0], n)
|
227 |
+
)
|
228 |
+
|
229 |
+
kwargs['w'] = _validate_weights(w)
|
230 |
+
return kwargs
|
231 |
+
|
232 |
+
|
233 |
+
def _validate_mahalanobis_kwargs(X, m, n, **kwargs):
|
234 |
+
VI = kwargs.pop('VI', None)
|
235 |
+
if VI is None:
|
236 |
+
if m <= n:
|
237 |
+
# There are fewer observations than the dimension of
|
238 |
+
# the observations.
|
239 |
+
raise ValueError("The number of observations (%d) is too "
|
240 |
+
"small; the covariance matrix is "
|
241 |
+
"singular. For observations with %d "
|
242 |
+
"dimensions, at least %d observations "
|
243 |
+
"are required." % (m, n, n + 1))
|
244 |
+
if isinstance(X, tuple):
|
245 |
+
X = np.vstack(X)
|
246 |
+
CV = np.atleast_2d(np.cov(X.astype(np.float64, copy=False).T))
|
247 |
+
VI = np.linalg.inv(CV).T.copy()
|
248 |
+
kwargs["VI"] = _convert_to_double(VI)
|
249 |
+
return kwargs
|
250 |
+
|
251 |
+
|
252 |
+
def _validate_minkowski_kwargs(X, m, n, **kwargs):
|
253 |
+
kwargs = _validate_weight_with_size(X, m, n, **kwargs)
|
254 |
+
if 'p' not in kwargs:
|
255 |
+
kwargs['p'] = 2.
|
256 |
+
else:
|
257 |
+
if kwargs['p'] <= 0:
|
258 |
+
raise ValueError("p must be greater than 0")
|
259 |
+
|
260 |
+
return kwargs
|
261 |
+
|
262 |
+
|
263 |
+
def _validate_pdist_input(X, m, n, metric_info, **kwargs):
|
264 |
+
# get supported types
|
265 |
+
types = metric_info.types
|
266 |
+
# choose best type
|
267 |
+
typ = types[types.index(X.dtype)] if X.dtype in types else types[0]
|
268 |
+
# validate data
|
269 |
+
X = _convert_to_type(X, out_type=typ)
|
270 |
+
|
271 |
+
# validate kwargs
|
272 |
+
_validate_kwargs = metric_info.validator
|
273 |
+
if _validate_kwargs:
|
274 |
+
kwargs = _validate_kwargs(X, m, n, **kwargs)
|
275 |
+
return X, typ, kwargs
|
276 |
+
|
277 |
+
|
278 |
+
def _validate_seuclidean_kwargs(X, m, n, **kwargs):
|
279 |
+
V = kwargs.pop('V', None)
|
280 |
+
if V is None:
|
281 |
+
if isinstance(X, tuple):
|
282 |
+
X = np.vstack(X)
|
283 |
+
V = np.var(X.astype(np.float64, copy=False), axis=0, ddof=1)
|
284 |
+
else:
|
285 |
+
V = np.asarray(V, order='c')
|
286 |
+
if len(V.shape) != 1:
|
287 |
+
raise ValueError('Variance vector V must '
|
288 |
+
'be one-dimensional.')
|
289 |
+
if V.shape[0] != n:
|
290 |
+
raise ValueError('Variance vector V must be of the same '
|
291 |
+
'dimension as the vectors on which the distances '
|
292 |
+
'are computed.')
|
293 |
+
kwargs['V'] = _convert_to_double(V)
|
294 |
+
return kwargs
|
295 |
+
|
296 |
+
|
297 |
+
def _validate_vector(u, dtype=None):
|
298 |
+
# XXX Is order='c' really necessary?
|
299 |
+
u = np.asarray(u, dtype=dtype, order='c')
|
300 |
+
if u.ndim == 1:
|
301 |
+
return u
|
302 |
+
raise ValueError("Input vector should be 1-D.")
|
303 |
+
|
304 |
+
|
305 |
+
def _validate_weights(w, dtype=np.float64):
|
306 |
+
w = _validate_vector(w, dtype=dtype)
|
307 |
+
if np.any(w < 0):
|
308 |
+
raise ValueError("Input weights should be all non-negative")
|
309 |
+
return w
|
310 |
+
|
311 |
+
|
312 |
+
def directed_hausdorff(u, v, seed=0):
|
313 |
+
"""
|
314 |
+
Compute the directed Hausdorff distance between two 2-D arrays.
|
315 |
+
|
316 |
+
Distances between pairs are calculated using a Euclidean metric.
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
u : (M,N) array_like
|
321 |
+
Input array with M points in N dimensions.
|
322 |
+
v : (O,N) array_like
|
323 |
+
Input array with O points in N dimensions.
|
324 |
+
seed : int or None, optional
|
325 |
+
Local `numpy.random.RandomState` seed. Default is 0, a random
|
326 |
+
shuffling of u and v that guarantees reproducibility.
|
327 |
+
|
328 |
+
Returns
|
329 |
+
-------
|
330 |
+
d : double
|
331 |
+
The directed Hausdorff distance between arrays `u` and `v`,
|
332 |
+
|
333 |
+
index_1 : int
|
334 |
+
index of point contributing to Hausdorff pair in `u`
|
335 |
+
|
336 |
+
index_2 : int
|
337 |
+
index of point contributing to Hausdorff pair in `v`
|
338 |
+
|
339 |
+
Raises
|
340 |
+
------
|
341 |
+
ValueError
|
342 |
+
An exception is thrown if `u` and `v` do not have
|
343 |
+
the same number of columns.
|
344 |
+
|
345 |
+
See Also
|
346 |
+
--------
|
347 |
+
scipy.spatial.procrustes : Another similarity test for two data sets
|
348 |
+
|
349 |
+
Notes
|
350 |
+
-----
|
351 |
+
Uses the early break technique and the random sampling approach
|
352 |
+
described by [1]_. Although worst-case performance is ``O(m * o)``
|
353 |
+
(as with the brute force algorithm), this is unlikely in practice
|
354 |
+
as the input data would have to require the algorithm to explore
|
355 |
+
every single point interaction, and after the algorithm shuffles
|
356 |
+
the input points at that. The best case performance is O(m), which
|
357 |
+
is satisfied by selecting an inner loop distance that is less than
|
358 |
+
cmax and leads to an early break as often as possible. The authors
|
359 |
+
have formally shown that the average runtime is closer to O(m).
|
360 |
+
|
361 |
+
.. versionadded:: 0.19.0
|
362 |
+
|
363 |
+
References
|
364 |
+
----------
|
365 |
+
.. [1] A. A. Taha and A. Hanbury, "An efficient algorithm for
|
366 |
+
calculating the exact Hausdorff distance." IEEE Transactions On
|
367 |
+
Pattern Analysis And Machine Intelligence, vol. 37 pp. 2153-63,
|
368 |
+
2015.
|
369 |
+
|
370 |
+
Examples
|
371 |
+
--------
|
372 |
+
Find the directed Hausdorff distance between two 2-D arrays of
|
373 |
+
coordinates:
|
374 |
+
|
375 |
+
>>> from scipy.spatial.distance import directed_hausdorff
|
376 |
+
>>> import numpy as np
|
377 |
+
>>> u = np.array([(1.0, 0.0),
|
378 |
+
... (0.0, 1.0),
|
379 |
+
... (-1.0, 0.0),
|
380 |
+
... (0.0, -1.0)])
|
381 |
+
>>> v = np.array([(2.0, 0.0),
|
382 |
+
... (0.0, 2.0),
|
383 |
+
... (-2.0, 0.0),
|
384 |
+
... (0.0, -4.0)])
|
385 |
+
|
386 |
+
>>> directed_hausdorff(u, v)[0]
|
387 |
+
2.23606797749979
|
388 |
+
>>> directed_hausdorff(v, u)[0]
|
389 |
+
3.0
|
390 |
+
|
391 |
+
Find the general (symmetric) Hausdorff distance between two 2-D
|
392 |
+
arrays of coordinates:
|
393 |
+
|
394 |
+
>>> max(directed_hausdorff(u, v)[0], directed_hausdorff(v, u)[0])
|
395 |
+
3.0
|
396 |
+
|
397 |
+
Find the indices of the points that generate the Hausdorff distance
|
398 |
+
(the Hausdorff pair):
|
399 |
+
|
400 |
+
>>> directed_hausdorff(v, u)[1:]
|
401 |
+
(3, 3)
|
402 |
+
|
403 |
+
"""
|
404 |
+
u = np.asarray(u, dtype=np.float64, order='c')
|
405 |
+
v = np.asarray(v, dtype=np.float64, order='c')
|
406 |
+
if u.shape[1] != v.shape[1]:
|
407 |
+
raise ValueError('u and v need to have the same '
|
408 |
+
'number of columns')
|
409 |
+
result = _hausdorff.directed_hausdorff(u, v, seed)
|
410 |
+
return result
|
411 |
+
|
412 |
+
|
413 |
+
def minkowski(u, v, p=2, w=None):
|
414 |
+
"""
|
415 |
+
Compute the Minkowski distance between two 1-D arrays.
|
416 |
+
|
417 |
+
The Minkowski distance between 1-D arrays `u` and `v`,
|
418 |
+
is defined as
|
419 |
+
|
420 |
+
.. math::
|
421 |
+
|
422 |
+
{\\|u-v\\|}_p = (\\sum{|u_i - v_i|^p})^{1/p}.
|
423 |
+
|
424 |
+
|
425 |
+
\\left(\\sum{w_i(|(u_i - v_i)|^p)}\\right)^{1/p}.
|
426 |
+
|
427 |
+
Parameters
|
428 |
+
----------
|
429 |
+
u : (N,) array_like
|
430 |
+
Input array.
|
431 |
+
v : (N,) array_like
|
432 |
+
Input array.
|
433 |
+
p : scalar
|
434 |
+
The order of the norm of the difference :math:`{\\|u-v\\|}_p`. Note
|
435 |
+
that for :math:`0 < p < 1`, the triangle inequality only holds with
|
436 |
+
an additional multiplicative factor, i.e. it is only a quasi-metric.
|
437 |
+
w : (N,) array_like, optional
|
438 |
+
The weights for each value in `u` and `v`. Default is None,
|
439 |
+
which gives each value a weight of 1.0
|
440 |
+
|
441 |
+
Returns
|
442 |
+
-------
|
443 |
+
minkowski : double
|
444 |
+
The Minkowski distance between vectors `u` and `v`.
|
445 |
+
|
446 |
+
Examples
|
447 |
+
--------
|
448 |
+
>>> from scipy.spatial import distance
|
449 |
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 1)
|
450 |
+
2.0
|
451 |
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 2)
|
452 |
+
1.4142135623730951
|
453 |
+
>>> distance.minkowski([1, 0, 0], [0, 1, 0], 3)
|
454 |
+
1.2599210498948732
|
455 |
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 1)
|
456 |
+
1.0
|
457 |
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 2)
|
458 |
+
1.0
|
459 |
+
>>> distance.minkowski([1, 1, 0], [0, 1, 0], 3)
|
460 |
+
1.0
|
461 |
+
|
462 |
+
"""
|
463 |
+
u = _validate_vector(u)
|
464 |
+
v = _validate_vector(v)
|
465 |
+
if p <= 0:
|
466 |
+
raise ValueError("p must be greater than 0")
|
467 |
+
u_v = u - v
|
468 |
+
if w is not None:
|
469 |
+
w = _validate_weights(w)
|
470 |
+
if p == 1:
|
471 |
+
root_w = w
|
472 |
+
elif p == 2:
|
473 |
+
# better precision and speed
|
474 |
+
root_w = np.sqrt(w)
|
475 |
+
elif p == np.inf:
|
476 |
+
root_w = (w != 0)
|
477 |
+
else:
|
478 |
+
root_w = np.power(w, 1/p)
|
479 |
+
u_v = root_w * u_v
|
480 |
+
dist = norm(u_v, ord=p)
|
481 |
+
return dist
|
482 |
+
|
483 |
+
|
484 |
+
def euclidean(u, v, w=None):
|
485 |
+
"""
|
486 |
+
Computes the Euclidean distance between two 1-D arrays.
|
487 |
+
|
488 |
+
The Euclidean distance between 1-D arrays `u` and `v`, is defined as
|
489 |
+
|
490 |
+
.. math::
|
491 |
+
|
492 |
+
{\\|u-v\\|}_2
|
493 |
+
|
494 |
+
\\left(\\sum{(w_i |(u_i - v_i)|^2)}\\right)^{1/2}
|
495 |
+
|
496 |
+
Parameters
|
497 |
+
----------
|
498 |
+
u : (N,) array_like
|
499 |
+
Input array.
|
500 |
+
v : (N,) array_like
|
501 |
+
Input array.
|
502 |
+
w : (N,) array_like, optional
|
503 |
+
The weights for each value in `u` and `v`. Default is None,
|
504 |
+
which gives each value a weight of 1.0
|
505 |
+
|
506 |
+
Returns
|
507 |
+
-------
|
508 |
+
euclidean : double
|
509 |
+
The Euclidean distance between vectors `u` and `v`.
|
510 |
+
|
511 |
+
Examples
|
512 |
+
--------
|
513 |
+
>>> from scipy.spatial import distance
|
514 |
+
>>> distance.euclidean([1, 0, 0], [0, 1, 0])
|
515 |
+
1.4142135623730951
|
516 |
+
>>> distance.euclidean([1, 1, 0], [0, 1, 0])
|
517 |
+
1.0
|
518 |
+
|
519 |
+
"""
|
520 |
+
return minkowski(u, v, p=2, w=w)
|
521 |
+
|
522 |
+
|
523 |
+
def sqeuclidean(u, v, w=None):
|
524 |
+
"""
|
525 |
+
Compute the squared Euclidean distance between two 1-D arrays.
|
526 |
+
|
527 |
+
The squared Euclidean distance between `u` and `v` is defined as
|
528 |
+
|
529 |
+
.. math::
|
530 |
+
|
531 |
+
\\sum_i{w_i |u_i - v_i|^2}
|
532 |
+
|
533 |
+
Parameters
|
534 |
+
----------
|
535 |
+
u : (N,) array_like
|
536 |
+
Input array.
|
537 |
+
v : (N,) array_like
|
538 |
+
Input array.
|
539 |
+
w : (N,) array_like, optional
|
540 |
+
The weights for each value in `u` and `v`. Default is None,
|
541 |
+
which gives each value a weight of 1.0
|
542 |
+
|
543 |
+
Returns
|
544 |
+
-------
|
545 |
+
sqeuclidean : double
|
546 |
+
The squared Euclidean distance between vectors `u` and `v`.
|
547 |
+
|
548 |
+
Examples
|
549 |
+
--------
|
550 |
+
>>> from scipy.spatial import distance
|
551 |
+
>>> distance.sqeuclidean([1, 0, 0], [0, 1, 0])
|
552 |
+
2.0
|
553 |
+
>>> distance.sqeuclidean([1, 1, 0], [0, 1, 0])
|
554 |
+
1.0
|
555 |
+
|
556 |
+
"""
|
557 |
+
# Preserve float dtypes, but convert everything else to np.float64
|
558 |
+
# for stability.
|
559 |
+
utype, vtype = None, None
|
560 |
+
if not (hasattr(u, "dtype") and np.issubdtype(u.dtype, np.inexact)):
|
561 |
+
utype = np.float64
|
562 |
+
if not (hasattr(v, "dtype") and np.issubdtype(v.dtype, np.inexact)):
|
563 |
+
vtype = np.float64
|
564 |
+
|
565 |
+
u = _validate_vector(u, dtype=utype)
|
566 |
+
v = _validate_vector(v, dtype=vtype)
|
567 |
+
u_v = u - v
|
568 |
+
u_v_w = u_v # only want weights applied once
|
569 |
+
if w is not None:
|
570 |
+
w = _validate_weights(w)
|
571 |
+
u_v_w = w * u_v
|
572 |
+
return np.dot(u_v, u_v_w)
|
573 |
+
|
574 |
+
|
575 |
+
def correlation(u, v, w=None, centered=True):
|
576 |
+
"""
|
577 |
+
Compute the correlation distance between two 1-D arrays.
|
578 |
+
|
579 |
+
The correlation distance between `u` and `v`, is
|
580 |
+
defined as
|
581 |
+
|
582 |
+
.. math::
|
583 |
+
|
584 |
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
585 |
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
586 |
+
|
587 |
+
where :math:`\\bar{u}` is the mean of the elements of `u`
|
588 |
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
589 |
+
|
590 |
+
Parameters
|
591 |
+
----------
|
592 |
+
u : (N,) array_like
|
593 |
+
Input array.
|
594 |
+
v : (N,) array_like
|
595 |
+
Input array.
|
596 |
+
w : (N,) array_like, optional
|
597 |
+
The weights for each value in `u` and `v`. Default is None,
|
598 |
+
which gives each value a weight of 1.0
|
599 |
+
centered : bool, optional
|
600 |
+
If True, `u` and `v` will be centered. Default is True.
|
601 |
+
|
602 |
+
Returns
|
603 |
+
-------
|
604 |
+
correlation : double
|
605 |
+
The correlation distance between 1-D array `u` and `v`.
|
606 |
+
|
607 |
+
Examples
|
608 |
+
--------
|
609 |
+
Find the correlation between two arrays.
|
610 |
+
|
611 |
+
>>> from scipy.spatial.distance import correlation
|
612 |
+
>>> correlation([1, 0, 1], [1, 1, 0])
|
613 |
+
1.5
|
614 |
+
|
615 |
+
Using a weighting array, the correlation can be calculated as:
|
616 |
+
|
617 |
+
>>> correlation([1, 0, 1], [1, 1, 0], w=[0.9, 0.1, 0.1])
|
618 |
+
1.1
|
619 |
+
|
620 |
+
If centering is not needed, the correlation can be calculated as:
|
621 |
+
|
622 |
+
>>> correlation([1, 0, 1], [1, 1, 0], centered=False)
|
623 |
+
0.5
|
624 |
+
"""
|
625 |
+
u = _validate_vector(u)
|
626 |
+
v = _validate_vector(v)
|
627 |
+
if w is not None:
|
628 |
+
w = _validate_weights(w)
|
629 |
+
w = w / w.sum()
|
630 |
+
if centered:
|
631 |
+
if w is not None:
|
632 |
+
umu = np.dot(u, w)
|
633 |
+
vmu = np.dot(v, w)
|
634 |
+
else:
|
635 |
+
umu = np.mean(u)
|
636 |
+
vmu = np.mean(v)
|
637 |
+
u = u - umu
|
638 |
+
v = v - vmu
|
639 |
+
if w is not None:
|
640 |
+
vw = v * w
|
641 |
+
uw = u * w
|
642 |
+
else:
|
643 |
+
vw, uw = v, u
|
644 |
+
uv = np.dot(u, vw)
|
645 |
+
uu = np.dot(u, uw)
|
646 |
+
vv = np.dot(v, vw)
|
647 |
+
dist = 1.0 - uv / math.sqrt(uu * vv)
|
648 |
+
# Clip the result to avoid rounding error
|
649 |
+
return np.clip(dist, 0.0, 2.0)
|
650 |
+
|
651 |
+
|
652 |
+
def cosine(u, v, w=None):
|
653 |
+
"""
|
654 |
+
Compute the Cosine distance between 1-D arrays.
|
655 |
+
|
656 |
+
The Cosine distance between `u` and `v`, is defined as
|
657 |
+
|
658 |
+
.. math::
|
659 |
+
|
660 |
+
1 - \\frac{u \\cdot v}
|
661 |
+
{\\|u\\|_2 \\|v\\|_2}.
|
662 |
+
|
663 |
+
where :math:`u \\cdot v` is the dot product of :math:`u` and
|
664 |
+
:math:`v`.
|
665 |
+
|
666 |
+
Parameters
|
667 |
+
----------
|
668 |
+
u : (N,) array_like
|
669 |
+
Input array.
|
670 |
+
v : (N,) array_like
|
671 |
+
Input array.
|
672 |
+
w : (N,) array_like, optional
|
673 |
+
The weights for each value in `u` and `v`. Default is None,
|
674 |
+
which gives each value a weight of 1.0
|
675 |
+
|
676 |
+
Returns
|
677 |
+
-------
|
678 |
+
cosine : double
|
679 |
+
The Cosine distance between vectors `u` and `v`.
|
680 |
+
|
681 |
+
Examples
|
682 |
+
--------
|
683 |
+
>>> from scipy.spatial import distance
|
684 |
+
>>> distance.cosine([1, 0, 0], [0, 1, 0])
|
685 |
+
1.0
|
686 |
+
>>> distance.cosine([100, 0, 0], [0, 1, 0])
|
687 |
+
1.0
|
688 |
+
>>> distance.cosine([1, 1, 0], [0, 1, 0])
|
689 |
+
0.29289321881345254
|
690 |
+
|
691 |
+
"""
|
692 |
+
# cosine distance is also referred to as 'uncentered correlation',
|
693 |
+
# or 'reflective correlation'
|
694 |
+
return correlation(u, v, w=w, centered=False)
|
695 |
+
|
696 |
+
|
697 |
+
def hamming(u, v, w=None):
|
698 |
+
"""
|
699 |
+
Compute the Hamming distance between two 1-D arrays.
|
700 |
+
|
701 |
+
The Hamming distance between 1-D arrays `u` and `v`, is simply the
|
702 |
+
proportion of disagreeing components in `u` and `v`. If `u` and `v` are
|
703 |
+
boolean vectors, the Hamming distance is
|
704 |
+
|
705 |
+
.. math::
|
706 |
+
|
707 |
+
\\frac{c_{01} + c_{10}}{n}
|
708 |
+
|
709 |
+
where :math:`c_{ij}` is the number of occurrences of
|
710 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
711 |
+
:math:`k < n`.
|
712 |
+
|
713 |
+
Parameters
|
714 |
+
----------
|
715 |
+
u : (N,) array_like
|
716 |
+
Input array.
|
717 |
+
v : (N,) array_like
|
718 |
+
Input array.
|
719 |
+
w : (N,) array_like, optional
|
720 |
+
The weights for each value in `u` and `v`. Default is None,
|
721 |
+
which gives each value a weight of 1.0
|
722 |
+
|
723 |
+
Returns
|
724 |
+
-------
|
725 |
+
hamming : double
|
726 |
+
The Hamming distance between vectors `u` and `v`.
|
727 |
+
|
728 |
+
Examples
|
729 |
+
--------
|
730 |
+
>>> from scipy.spatial import distance
|
731 |
+
>>> distance.hamming([1, 0, 0], [0, 1, 0])
|
732 |
+
0.66666666666666663
|
733 |
+
>>> distance.hamming([1, 0, 0], [1, 1, 0])
|
734 |
+
0.33333333333333331
|
735 |
+
>>> distance.hamming([1, 0, 0], [2, 0, 0])
|
736 |
+
0.33333333333333331
|
737 |
+
>>> distance.hamming([1, 0, 0], [3, 0, 0])
|
738 |
+
0.33333333333333331
|
739 |
+
|
740 |
+
"""
|
741 |
+
u = _validate_vector(u)
|
742 |
+
v = _validate_vector(v)
|
743 |
+
if u.shape != v.shape:
|
744 |
+
raise ValueError('The 1d arrays must have equal lengths.')
|
745 |
+
u_ne_v = u != v
|
746 |
+
if w is not None:
|
747 |
+
w = _validate_weights(w)
|
748 |
+
if w.shape != u.shape:
|
749 |
+
raise ValueError("'w' should have the same length as 'u' and 'v'.")
|
750 |
+
w = w / w.sum()
|
751 |
+
return np.dot(u_ne_v, w)
|
752 |
+
return np.mean(u_ne_v)
|
753 |
+
|
754 |
+
|
755 |
+
def jaccard(u, v, w=None):
|
756 |
+
"""
|
757 |
+
Compute the Jaccard-Needham dissimilarity between two boolean 1-D arrays.
|
758 |
+
|
759 |
+
The Jaccard-Needham dissimilarity between 1-D boolean arrays `u` and `v`,
|
760 |
+
is defined as
|
761 |
+
|
762 |
+
.. math::
|
763 |
+
|
764 |
+
\\frac{c_{TF} + c_{FT}}
|
765 |
+
{c_{TT} + c_{FT} + c_{TF}}
|
766 |
+
|
767 |
+
where :math:`c_{ij}` is the number of occurrences of
|
768 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
769 |
+
:math:`k < n`.
|
770 |
+
|
771 |
+
Parameters
|
772 |
+
----------
|
773 |
+
u : (N,) array_like, bool
|
774 |
+
Input array.
|
775 |
+
v : (N,) array_like, bool
|
776 |
+
Input array.
|
777 |
+
w : (N,) array_like, optional
|
778 |
+
The weights for each value in `u` and `v`. Default is None,
|
779 |
+
which gives each value a weight of 1.0
|
780 |
+
|
781 |
+
Returns
|
782 |
+
-------
|
783 |
+
jaccard : double
|
784 |
+
The Jaccard distance between vectors `u` and `v`.
|
785 |
+
|
786 |
+
Notes
|
787 |
+
-----
|
788 |
+
When both `u` and `v` lead to a `0/0` division i.e. there is no overlap
|
789 |
+
between the items in the vectors the returned distance is 0. See the
|
790 |
+
Wikipedia page on the Jaccard index [1]_, and this paper [2]_.
|
791 |
+
|
792 |
+
.. versionchanged:: 1.2.0
|
793 |
+
Previously, when `u` and `v` lead to a `0/0` division, the function
|
794 |
+
would return NaN. This was changed to return 0 instead.
|
795 |
+
|
796 |
+
References
|
797 |
+
----------
|
798 |
+
.. [1] https://en.wikipedia.org/wiki/Jaccard_index
|
799 |
+
.. [2] S. Kosub, "A note on the triangle inequality for the Jaccard
|
800 |
+
distance", 2016, :arxiv:`1612.02696`
|
801 |
+
|
802 |
+
Examples
|
803 |
+
--------
|
804 |
+
>>> from scipy.spatial import distance
|
805 |
+
>>> distance.jaccard([1, 0, 0], [0, 1, 0])
|
806 |
+
1.0
|
807 |
+
>>> distance.jaccard([1, 0, 0], [1, 1, 0])
|
808 |
+
0.5
|
809 |
+
>>> distance.jaccard([1, 0, 0], [1, 2, 0])
|
810 |
+
0.5
|
811 |
+
>>> distance.jaccard([1, 0, 0], [1, 1, 1])
|
812 |
+
0.66666666666666663
|
813 |
+
|
814 |
+
"""
|
815 |
+
u = _validate_vector(u)
|
816 |
+
v = _validate_vector(v)
|
817 |
+
|
818 |
+
nonzero = np.bitwise_or(u != 0, v != 0)
|
819 |
+
unequal_nonzero = np.bitwise_and((u != v), nonzero)
|
820 |
+
if w is not None:
|
821 |
+
w = _validate_weights(w)
|
822 |
+
nonzero = w * nonzero
|
823 |
+
unequal_nonzero = w * unequal_nonzero
|
824 |
+
a = np.float64(unequal_nonzero.sum())
|
825 |
+
b = np.float64(nonzero.sum())
|
826 |
+
return (a / b) if b != 0 else 0
|
827 |
+
|
828 |
+
|
829 |
+
def kulczynski1(u, v, *, w=None):
|
830 |
+
"""
|
831 |
+
Compute the Kulczynski 1 dissimilarity between two boolean 1-D arrays.
|
832 |
+
|
833 |
+
The Kulczynski 1 dissimilarity between two boolean 1-D arrays `u` and `v`
|
834 |
+
of length ``n``, is defined as
|
835 |
+
|
836 |
+
.. math::
|
837 |
+
|
838 |
+
\\frac{c_{11}}
|
839 |
+
{c_{01} + c_{10}}
|
840 |
+
|
841 |
+
where :math:`c_{ij}` is the number of occurrences of
|
842 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
843 |
+
:math:`k \\in {0, 1, ..., n-1}`.
|
844 |
+
|
845 |
+
Parameters
|
846 |
+
----------
|
847 |
+
u : (N,) array_like, bool
|
848 |
+
Input array.
|
849 |
+
v : (N,) array_like, bool
|
850 |
+
Input array.
|
851 |
+
w : (N,) array_like, optional
|
852 |
+
The weights for each value in `u` and `v`. Default is None,
|
853 |
+
which gives each value a weight of 1.0
|
854 |
+
|
855 |
+
Returns
|
856 |
+
-------
|
857 |
+
kulczynski1 : float
|
858 |
+
The Kulczynski 1 distance between vectors `u` and `v`.
|
859 |
+
|
860 |
+
Notes
|
861 |
+
-----
|
862 |
+
This measure has a minimum value of 0 and no upper limit.
|
863 |
+
It is un-defined when there are no non-matches.
|
864 |
+
|
865 |
+
.. versionadded:: 1.8.0
|
866 |
+
|
867 |
+
References
|
868 |
+
----------
|
869 |
+
.. [1] Kulczynski S. et al. Bulletin
|
870 |
+
International de l'Academie Polonaise des Sciences
|
871 |
+
et des Lettres, Classe des Sciences Mathematiques
|
872 |
+
et Naturelles, Serie B (Sciences Naturelles). 1927;
|
873 |
+
Supplement II: 57-203.
|
874 |
+
|
875 |
+
Examples
|
876 |
+
--------
|
877 |
+
>>> from scipy.spatial import distance
|
878 |
+
>>> distance.kulczynski1([1, 0, 0], [0, 1, 0])
|
879 |
+
0.0
|
880 |
+
>>> distance.kulczynski1([True, False, False], [True, True, False])
|
881 |
+
1.0
|
882 |
+
>>> distance.kulczynski1([True, False, False], [True])
|
883 |
+
0.5
|
884 |
+
>>> distance.kulczynski1([1, 0, 0], [3, 1, 0])
|
885 |
+
-3.0
|
886 |
+
|
887 |
+
"""
|
888 |
+
u = _validate_vector(u)
|
889 |
+
v = _validate_vector(v)
|
890 |
+
if w is not None:
|
891 |
+
w = _validate_weights(w)
|
892 |
+
(_, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
893 |
+
|
894 |
+
return ntt / (ntf + nft)
|
895 |
+
|
896 |
+
|
897 |
+
def seuclidean(u, v, V):
|
898 |
+
"""
|
899 |
+
Return the standardized Euclidean distance between two 1-D arrays.
|
900 |
+
|
901 |
+
The standardized Euclidean distance between two n-vectors `u` and `v` is
|
902 |
+
|
903 |
+
.. math::
|
904 |
+
|
905 |
+
\\sqrt{\\sum\\limits_i \\frac{1}{V_i} \\left(u_i-v_i \\right)^2}
|
906 |
+
|
907 |
+
``V`` is the variance vector; ``V[I]`` is the variance computed over all the i-th
|
908 |
+
components of the points. If not passed, it is automatically computed.
|
909 |
+
|
910 |
+
Parameters
|
911 |
+
----------
|
912 |
+
u : (N,) array_like
|
913 |
+
Input array.
|
914 |
+
v : (N,) array_like
|
915 |
+
Input array.
|
916 |
+
V : (N,) array_like
|
917 |
+
`V` is an 1-D array of component variances. It is usually computed
|
918 |
+
among a larger collection vectors.
|
919 |
+
|
920 |
+
Returns
|
921 |
+
-------
|
922 |
+
seuclidean : double
|
923 |
+
The standardized Euclidean distance between vectors `u` and `v`.
|
924 |
+
|
925 |
+
Examples
|
926 |
+
--------
|
927 |
+
>>> from scipy.spatial import distance
|
928 |
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [0.1, 0.1, 0.1])
|
929 |
+
4.4721359549995796
|
930 |
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [1, 0.1, 0.1])
|
931 |
+
3.3166247903553998
|
932 |
+
>>> distance.seuclidean([1, 0, 0], [0, 1, 0], [10, 0.1, 0.1])
|
933 |
+
3.1780497164141406
|
934 |
+
|
935 |
+
"""
|
936 |
+
u = _validate_vector(u)
|
937 |
+
v = _validate_vector(v)
|
938 |
+
V = _validate_vector(V, dtype=np.float64)
|
939 |
+
if V.shape[0] != u.shape[0] or u.shape[0] != v.shape[0]:
|
940 |
+
raise TypeError('V must be a 1-D array of the same dimension '
|
941 |
+
'as u and v.')
|
942 |
+
return euclidean(u, v, w=1/V)
|
943 |
+
|
944 |
+
|
945 |
+
def cityblock(u, v, w=None):
|
946 |
+
"""
|
947 |
+
Compute the City Block (Manhattan) distance.
|
948 |
+
|
949 |
+
Computes the Manhattan distance between two 1-D arrays `u` and `v`,
|
950 |
+
which is defined as
|
951 |
+
|
952 |
+
.. math::
|
953 |
+
|
954 |
+
\\sum_i {\\left| u_i - v_i \\right|}.
|
955 |
+
|
956 |
+
Parameters
|
957 |
+
----------
|
958 |
+
u : (N,) array_like
|
959 |
+
Input array.
|
960 |
+
v : (N,) array_like
|
961 |
+
Input array.
|
962 |
+
w : (N,) array_like, optional
|
963 |
+
The weights for each value in `u` and `v`. Default is None,
|
964 |
+
which gives each value a weight of 1.0
|
965 |
+
|
966 |
+
Returns
|
967 |
+
-------
|
968 |
+
cityblock : double
|
969 |
+
The City Block (Manhattan) distance between vectors `u` and `v`.
|
970 |
+
|
971 |
+
Examples
|
972 |
+
--------
|
973 |
+
>>> from scipy.spatial import distance
|
974 |
+
>>> distance.cityblock([1, 0, 0], [0, 1, 0])
|
975 |
+
2
|
976 |
+
>>> distance.cityblock([1, 0, 0], [0, 2, 0])
|
977 |
+
3
|
978 |
+
>>> distance.cityblock([1, 0, 0], [1, 1, 0])
|
979 |
+
1
|
980 |
+
|
981 |
+
"""
|
982 |
+
u = _validate_vector(u)
|
983 |
+
v = _validate_vector(v)
|
984 |
+
l1_diff = abs(u - v)
|
985 |
+
if w is not None:
|
986 |
+
w = _validate_weights(w)
|
987 |
+
l1_diff = w * l1_diff
|
988 |
+
return l1_diff.sum()
|
989 |
+
|
990 |
+
|
991 |
+
def mahalanobis(u, v, VI):
|
992 |
+
"""
|
993 |
+
Compute the Mahalanobis distance between two 1-D arrays.
|
994 |
+
|
995 |
+
The Mahalanobis distance between 1-D arrays `u` and `v`, is defined as
|
996 |
+
|
997 |
+
.. math::
|
998 |
+
|
999 |
+
\\sqrt{ (u-v) V^{-1} (u-v)^T }
|
1000 |
+
|
1001 |
+
where ``V`` is the covariance matrix. Note that the argument `VI`
|
1002 |
+
is the inverse of ``V``.
|
1003 |
+
|
1004 |
+
Parameters
|
1005 |
+
----------
|
1006 |
+
u : (N,) array_like
|
1007 |
+
Input array.
|
1008 |
+
v : (N,) array_like
|
1009 |
+
Input array.
|
1010 |
+
VI : array_like
|
1011 |
+
The inverse of the covariance matrix.
|
1012 |
+
|
1013 |
+
Returns
|
1014 |
+
-------
|
1015 |
+
mahalanobis : double
|
1016 |
+
The Mahalanobis distance between vectors `u` and `v`.
|
1017 |
+
|
1018 |
+
Examples
|
1019 |
+
--------
|
1020 |
+
>>> from scipy.spatial import distance
|
1021 |
+
>>> iv = [[1, 0.5, 0.5], [0.5, 1, 0.5], [0.5, 0.5, 1]]
|
1022 |
+
>>> distance.mahalanobis([1, 0, 0], [0, 1, 0], iv)
|
1023 |
+
1.0
|
1024 |
+
>>> distance.mahalanobis([0, 2, 0], [0, 1, 0], iv)
|
1025 |
+
1.0
|
1026 |
+
>>> distance.mahalanobis([2, 0, 0], [0, 1, 0], iv)
|
1027 |
+
1.7320508075688772
|
1028 |
+
|
1029 |
+
"""
|
1030 |
+
u = _validate_vector(u)
|
1031 |
+
v = _validate_vector(v)
|
1032 |
+
VI = np.atleast_2d(VI)
|
1033 |
+
delta = u - v
|
1034 |
+
m = np.dot(np.dot(delta, VI), delta)
|
1035 |
+
return np.sqrt(m)
|
1036 |
+
|
1037 |
+
|
1038 |
+
def chebyshev(u, v, w=None):
|
1039 |
+
"""
|
1040 |
+
Compute the Chebyshev distance.
|
1041 |
+
|
1042 |
+
Computes the Chebyshev distance between two 1-D arrays `u` and `v`,
|
1043 |
+
which is defined as
|
1044 |
+
|
1045 |
+
.. math::
|
1046 |
+
|
1047 |
+
\\max_i {|u_i-v_i|}.
|
1048 |
+
|
1049 |
+
Parameters
|
1050 |
+
----------
|
1051 |
+
u : (N,) array_like
|
1052 |
+
Input vector.
|
1053 |
+
v : (N,) array_like
|
1054 |
+
Input vector.
|
1055 |
+
w : (N,) array_like, optional
|
1056 |
+
Unused, as 'max' is a weightless operation. Here for API consistency.
|
1057 |
+
|
1058 |
+
Returns
|
1059 |
+
-------
|
1060 |
+
chebyshev : double
|
1061 |
+
The Chebyshev distance between vectors `u` and `v`.
|
1062 |
+
|
1063 |
+
Examples
|
1064 |
+
--------
|
1065 |
+
>>> from scipy.spatial import distance
|
1066 |
+
>>> distance.chebyshev([1, 0, 0], [0, 1, 0])
|
1067 |
+
1
|
1068 |
+
>>> distance.chebyshev([1, 1, 0], [0, 1, 0])
|
1069 |
+
1
|
1070 |
+
|
1071 |
+
"""
|
1072 |
+
u = _validate_vector(u)
|
1073 |
+
v = _validate_vector(v)
|
1074 |
+
if w is not None:
|
1075 |
+
w = _validate_weights(w)
|
1076 |
+
has_weight = w > 0
|
1077 |
+
if has_weight.sum() < w.size:
|
1078 |
+
u = u[has_weight]
|
1079 |
+
v = v[has_weight]
|
1080 |
+
return max(abs(u - v))
|
1081 |
+
|
1082 |
+
|
1083 |
+
def braycurtis(u, v, w=None):
|
1084 |
+
"""
|
1085 |
+
Compute the Bray-Curtis distance between two 1-D arrays.
|
1086 |
+
|
1087 |
+
Bray-Curtis distance is defined as
|
1088 |
+
|
1089 |
+
.. math::
|
1090 |
+
|
1091 |
+
\\sum{|u_i-v_i|} / \\sum{|u_i+v_i|}
|
1092 |
+
|
1093 |
+
The Bray-Curtis distance is in the range [0, 1] if all coordinates are
|
1094 |
+
positive, and is undefined if the inputs are of length zero.
|
1095 |
+
|
1096 |
+
Parameters
|
1097 |
+
----------
|
1098 |
+
u : (N,) array_like
|
1099 |
+
Input array.
|
1100 |
+
v : (N,) array_like
|
1101 |
+
Input array.
|
1102 |
+
w : (N,) array_like, optional
|
1103 |
+
The weights for each value in `u` and `v`. Default is None,
|
1104 |
+
which gives each value a weight of 1.0
|
1105 |
+
|
1106 |
+
Returns
|
1107 |
+
-------
|
1108 |
+
braycurtis : double
|
1109 |
+
The Bray-Curtis distance between 1-D arrays `u` and `v`.
|
1110 |
+
|
1111 |
+
Examples
|
1112 |
+
--------
|
1113 |
+
>>> from scipy.spatial import distance
|
1114 |
+
>>> distance.braycurtis([1, 0, 0], [0, 1, 0])
|
1115 |
+
1.0
|
1116 |
+
>>> distance.braycurtis([1, 1, 0], [0, 1, 0])
|
1117 |
+
0.33333333333333331
|
1118 |
+
|
1119 |
+
"""
|
1120 |
+
u = _validate_vector(u)
|
1121 |
+
v = _validate_vector(v, dtype=np.float64)
|
1122 |
+
l1_diff = abs(u - v)
|
1123 |
+
l1_sum = abs(u + v)
|
1124 |
+
if w is not None:
|
1125 |
+
w = _validate_weights(w)
|
1126 |
+
l1_diff = w * l1_diff
|
1127 |
+
l1_sum = w * l1_sum
|
1128 |
+
return l1_diff.sum() / l1_sum.sum()
|
1129 |
+
|
1130 |
+
|
1131 |
+
def canberra(u, v, w=None):
|
1132 |
+
"""
|
1133 |
+
Compute the Canberra distance between two 1-D arrays.
|
1134 |
+
|
1135 |
+
The Canberra distance is defined as
|
1136 |
+
|
1137 |
+
.. math::
|
1138 |
+
|
1139 |
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
1140 |
+
{|u_i|+|v_i|}.
|
1141 |
+
|
1142 |
+
Parameters
|
1143 |
+
----------
|
1144 |
+
u : (N,) array_like
|
1145 |
+
Input array.
|
1146 |
+
v : (N,) array_like
|
1147 |
+
Input array.
|
1148 |
+
w : (N,) array_like, optional
|
1149 |
+
The weights for each value in `u` and `v`. Default is None,
|
1150 |
+
which gives each value a weight of 1.0
|
1151 |
+
|
1152 |
+
Returns
|
1153 |
+
-------
|
1154 |
+
canberra : double
|
1155 |
+
The Canberra distance between vectors `u` and `v`.
|
1156 |
+
|
1157 |
+
Notes
|
1158 |
+
-----
|
1159 |
+
When `u[i]` and `v[i]` are 0 for given i, then the fraction 0/0 = 0 is
|
1160 |
+
used in the calculation.
|
1161 |
+
|
1162 |
+
Examples
|
1163 |
+
--------
|
1164 |
+
>>> from scipy.spatial import distance
|
1165 |
+
>>> distance.canberra([1, 0, 0], [0, 1, 0])
|
1166 |
+
2.0
|
1167 |
+
>>> distance.canberra([1, 1, 0], [0, 1, 0])
|
1168 |
+
1.0
|
1169 |
+
|
1170 |
+
"""
|
1171 |
+
u = _validate_vector(u)
|
1172 |
+
v = _validate_vector(v, dtype=np.float64)
|
1173 |
+
if w is not None:
|
1174 |
+
w = _validate_weights(w)
|
1175 |
+
with np.errstate(invalid='ignore'):
|
1176 |
+
abs_uv = abs(u - v)
|
1177 |
+
abs_u = abs(u)
|
1178 |
+
abs_v = abs(v)
|
1179 |
+
d = abs_uv / (abs_u + abs_v)
|
1180 |
+
if w is not None:
|
1181 |
+
d = w * d
|
1182 |
+
d = np.nansum(d)
|
1183 |
+
return d
|
1184 |
+
|
1185 |
+
|
1186 |
+
def jensenshannon(p, q, base=None, *, axis=0, keepdims=False):
|
1187 |
+
"""
|
1188 |
+
Compute the Jensen-Shannon distance (metric) between
|
1189 |
+
two probability arrays. This is the square root
|
1190 |
+
of the Jensen-Shannon divergence.
|
1191 |
+
|
1192 |
+
The Jensen-Shannon distance between two probability
|
1193 |
+
vectors `p` and `q` is defined as,
|
1194 |
+
|
1195 |
+
.. math::
|
1196 |
+
|
1197 |
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
1198 |
+
|
1199 |
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
1200 |
+
and :math:`D` is the Kullback-Leibler divergence.
|
1201 |
+
|
1202 |
+
This routine will normalize `p` and `q` if they don't sum to 1.0.
|
1203 |
+
|
1204 |
+
Parameters
|
1205 |
+
----------
|
1206 |
+
p : (N,) array_like
|
1207 |
+
left probability vector
|
1208 |
+
q : (N,) array_like
|
1209 |
+
right probability vector
|
1210 |
+
base : double, optional
|
1211 |
+
the base of the logarithm used to compute the output
|
1212 |
+
if not given, then the routine uses the default base of
|
1213 |
+
scipy.stats.entropy.
|
1214 |
+
axis : int, optional
|
1215 |
+
Axis along which the Jensen-Shannon distances are computed. The default
|
1216 |
+
is 0.
|
1217 |
+
|
1218 |
+
.. versionadded:: 1.7.0
|
1219 |
+
keepdims : bool, optional
|
1220 |
+
If this is set to `True`, the reduced axes are left in the
|
1221 |
+
result as dimensions with size one. With this option,
|
1222 |
+
the result will broadcast correctly against the input array.
|
1223 |
+
Default is False.
|
1224 |
+
|
1225 |
+
.. versionadded:: 1.7.0
|
1226 |
+
|
1227 |
+
Returns
|
1228 |
+
-------
|
1229 |
+
js : double or ndarray
|
1230 |
+
The Jensen-Shannon distances between `p` and `q` along the `axis`.
|
1231 |
+
|
1232 |
+
Notes
|
1233 |
+
-----
|
1234 |
+
|
1235 |
+
.. versionadded:: 1.2.0
|
1236 |
+
|
1237 |
+
Examples
|
1238 |
+
--------
|
1239 |
+
>>> from scipy.spatial import distance
|
1240 |
+
>>> import numpy as np
|
1241 |
+
>>> distance.jensenshannon([1.0, 0.0, 0.0], [0.0, 1.0, 0.0], 2.0)
|
1242 |
+
1.0
|
1243 |
+
>>> distance.jensenshannon([1.0, 0.0], [0.5, 0.5])
|
1244 |
+
0.46450140402245893
|
1245 |
+
>>> distance.jensenshannon([1.0, 0.0, 0.0], [1.0, 0.0, 0.0])
|
1246 |
+
0.0
|
1247 |
+
>>> a = np.array([[1, 2, 3, 4],
|
1248 |
+
... [5, 6, 7, 8],
|
1249 |
+
... [9, 10, 11, 12]])
|
1250 |
+
>>> b = np.array([[13, 14, 15, 16],
|
1251 |
+
... [17, 18, 19, 20],
|
1252 |
+
... [21, 22, 23, 24]])
|
1253 |
+
>>> distance.jensenshannon(a, b, axis=0)
|
1254 |
+
array([0.1954288, 0.1447697, 0.1138377, 0.0927636])
|
1255 |
+
>>> distance.jensenshannon(a, b, axis=1)
|
1256 |
+
array([0.1402339, 0.0399106, 0.0201815])
|
1257 |
+
|
1258 |
+
"""
|
1259 |
+
p = np.asarray(p)
|
1260 |
+
q = np.asarray(q)
|
1261 |
+
p = p / np.sum(p, axis=axis, keepdims=True)
|
1262 |
+
q = q / np.sum(q, axis=axis, keepdims=True)
|
1263 |
+
m = (p + q) / 2.0
|
1264 |
+
left = rel_entr(p, m)
|
1265 |
+
right = rel_entr(q, m)
|
1266 |
+
left_sum = np.sum(left, axis=axis, keepdims=keepdims)
|
1267 |
+
right_sum = np.sum(right, axis=axis, keepdims=keepdims)
|
1268 |
+
js = left_sum + right_sum
|
1269 |
+
if base is not None:
|
1270 |
+
js /= np.log(base)
|
1271 |
+
return np.sqrt(js / 2.0)
|
1272 |
+
|
1273 |
+
|
1274 |
+
def yule(u, v, w=None):
|
1275 |
+
"""
|
1276 |
+
Compute the Yule dissimilarity between two boolean 1-D arrays.
|
1277 |
+
|
1278 |
+
The Yule dissimilarity is defined as
|
1279 |
+
|
1280 |
+
.. math::
|
1281 |
+
|
1282 |
+
\\frac{R}{c_{TT} * c_{FF} + \\frac{R}{2}}
|
1283 |
+
|
1284 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1285 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1286 |
+
:math:`k < n` and :math:`R = 2.0 * c_{TF} * c_{FT}`.
|
1287 |
+
|
1288 |
+
Parameters
|
1289 |
+
----------
|
1290 |
+
u : (N,) array_like, bool
|
1291 |
+
Input array.
|
1292 |
+
v : (N,) array_like, bool
|
1293 |
+
Input array.
|
1294 |
+
w : (N,) array_like, optional
|
1295 |
+
The weights for each value in `u` and `v`. Default is None,
|
1296 |
+
which gives each value a weight of 1.0
|
1297 |
+
|
1298 |
+
Returns
|
1299 |
+
-------
|
1300 |
+
yule : double
|
1301 |
+
The Yule dissimilarity between vectors `u` and `v`.
|
1302 |
+
|
1303 |
+
Examples
|
1304 |
+
--------
|
1305 |
+
>>> from scipy.spatial import distance
|
1306 |
+
>>> distance.yule([1, 0, 0], [0, 1, 0])
|
1307 |
+
2.0
|
1308 |
+
>>> distance.yule([1, 1, 0], [0, 1, 0])
|
1309 |
+
0.0
|
1310 |
+
|
1311 |
+
"""
|
1312 |
+
u = _validate_vector(u)
|
1313 |
+
v = _validate_vector(v)
|
1314 |
+
if w is not None:
|
1315 |
+
w = _validate_weights(w)
|
1316 |
+
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
1317 |
+
half_R = ntf * nft
|
1318 |
+
if half_R == 0:
|
1319 |
+
return 0.0
|
1320 |
+
else:
|
1321 |
+
return float(2.0 * half_R / (ntt * nff + half_R))
|
1322 |
+
|
1323 |
+
|
1324 |
+
def dice(u, v, w=None):
|
1325 |
+
"""
|
1326 |
+
Compute the Dice dissimilarity between two boolean 1-D arrays.
|
1327 |
+
|
1328 |
+
The Dice dissimilarity between `u` and `v`, is
|
1329 |
+
|
1330 |
+
.. math::
|
1331 |
+
|
1332 |
+
\\frac{c_{TF} + c_{FT}}
|
1333 |
+
{2c_{TT} + c_{FT} + c_{TF}}
|
1334 |
+
|
1335 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1336 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1337 |
+
:math:`k < n`.
|
1338 |
+
|
1339 |
+
Parameters
|
1340 |
+
----------
|
1341 |
+
u : (N,) array_like, bool
|
1342 |
+
Input 1-D array.
|
1343 |
+
v : (N,) array_like, bool
|
1344 |
+
Input 1-D array.
|
1345 |
+
w : (N,) array_like, optional
|
1346 |
+
The weights for each value in `u` and `v`. Default is None,
|
1347 |
+
which gives each value a weight of 1.0
|
1348 |
+
|
1349 |
+
Returns
|
1350 |
+
-------
|
1351 |
+
dice : double
|
1352 |
+
The Dice dissimilarity between 1-D arrays `u` and `v`.
|
1353 |
+
|
1354 |
+
Notes
|
1355 |
+
-----
|
1356 |
+
This function computes the Dice dissimilarity index. To compute the
|
1357 |
+
Dice similarity index, convert one to the other with similarity =
|
1358 |
+
1 - dissimilarity.
|
1359 |
+
|
1360 |
+
Examples
|
1361 |
+
--------
|
1362 |
+
>>> from scipy.spatial import distance
|
1363 |
+
>>> distance.dice([1, 0, 0], [0, 1, 0])
|
1364 |
+
1.0
|
1365 |
+
>>> distance.dice([1, 0, 0], [1, 1, 0])
|
1366 |
+
0.3333333333333333
|
1367 |
+
>>> distance.dice([1, 0, 0], [2, 0, 0])
|
1368 |
+
-0.3333333333333333
|
1369 |
+
|
1370 |
+
"""
|
1371 |
+
u = _validate_vector(u)
|
1372 |
+
v = _validate_vector(v)
|
1373 |
+
if w is not None:
|
1374 |
+
w = _validate_weights(w)
|
1375 |
+
if u.dtype == v.dtype == bool and w is None:
|
1376 |
+
ntt = (u & v).sum()
|
1377 |
+
else:
|
1378 |
+
dtype = np.result_type(int, u.dtype, v.dtype)
|
1379 |
+
u = u.astype(dtype)
|
1380 |
+
v = v.astype(dtype)
|
1381 |
+
if w is None:
|
1382 |
+
ntt = (u * v).sum()
|
1383 |
+
else:
|
1384 |
+
ntt = (u * v * w).sum()
|
1385 |
+
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
1386 |
+
return float((ntf + nft) / np.array(2.0 * ntt + ntf + nft))
|
1387 |
+
|
1388 |
+
|
1389 |
+
def rogerstanimoto(u, v, w=None):
|
1390 |
+
"""
|
1391 |
+
Compute the Rogers-Tanimoto dissimilarity between two boolean 1-D arrays.
|
1392 |
+
|
1393 |
+
The Rogers-Tanimoto dissimilarity between two boolean 1-D arrays
|
1394 |
+
`u` and `v`, is defined as
|
1395 |
+
|
1396 |
+
.. math::
|
1397 |
+
\\frac{R}
|
1398 |
+
{c_{TT} + c_{FF} + R}
|
1399 |
+
|
1400 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1401 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1402 |
+
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
1403 |
+
|
1404 |
+
Parameters
|
1405 |
+
----------
|
1406 |
+
u : (N,) array_like, bool
|
1407 |
+
Input array.
|
1408 |
+
v : (N,) array_like, bool
|
1409 |
+
Input array.
|
1410 |
+
w : (N,) array_like, optional
|
1411 |
+
The weights for each value in `u` and `v`. Default is None,
|
1412 |
+
which gives each value a weight of 1.0
|
1413 |
+
|
1414 |
+
Returns
|
1415 |
+
-------
|
1416 |
+
rogerstanimoto : double
|
1417 |
+
The Rogers-Tanimoto dissimilarity between vectors
|
1418 |
+
`u` and `v`.
|
1419 |
+
|
1420 |
+
Examples
|
1421 |
+
--------
|
1422 |
+
>>> from scipy.spatial import distance
|
1423 |
+
>>> distance.rogerstanimoto([1, 0, 0], [0, 1, 0])
|
1424 |
+
0.8
|
1425 |
+
>>> distance.rogerstanimoto([1, 0, 0], [1, 1, 0])
|
1426 |
+
0.5
|
1427 |
+
>>> distance.rogerstanimoto([1, 0, 0], [2, 0, 0])
|
1428 |
+
-1.0
|
1429 |
+
|
1430 |
+
"""
|
1431 |
+
u = _validate_vector(u)
|
1432 |
+
v = _validate_vector(v)
|
1433 |
+
if w is not None:
|
1434 |
+
w = _validate_weights(w)
|
1435 |
+
(nff, nft, ntf, ntt) = _nbool_correspond_all(u, v, w=w)
|
1436 |
+
return float(2.0 * (ntf + nft)) / float(ntt + nff + (2.0 * (ntf + nft)))
|
1437 |
+
|
1438 |
+
|
1439 |
+
def russellrao(u, v, w=None):
|
1440 |
+
"""
|
1441 |
+
Compute the Russell-Rao dissimilarity between two boolean 1-D arrays.
|
1442 |
+
|
1443 |
+
The Russell-Rao dissimilarity between two boolean 1-D arrays, `u` and
|
1444 |
+
`v`, is defined as
|
1445 |
+
|
1446 |
+
.. math::
|
1447 |
+
|
1448 |
+
\\frac{n - c_{TT}}
|
1449 |
+
{n}
|
1450 |
+
|
1451 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1452 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1453 |
+
:math:`k < n`.
|
1454 |
+
|
1455 |
+
Parameters
|
1456 |
+
----------
|
1457 |
+
u : (N,) array_like, bool
|
1458 |
+
Input array.
|
1459 |
+
v : (N,) array_like, bool
|
1460 |
+
Input array.
|
1461 |
+
w : (N,) array_like, optional
|
1462 |
+
The weights for each value in `u` and `v`. Default is None,
|
1463 |
+
which gives each value a weight of 1.0
|
1464 |
+
|
1465 |
+
Returns
|
1466 |
+
-------
|
1467 |
+
russellrao : double
|
1468 |
+
The Russell-Rao dissimilarity between vectors `u` and `v`.
|
1469 |
+
|
1470 |
+
Examples
|
1471 |
+
--------
|
1472 |
+
>>> from scipy.spatial import distance
|
1473 |
+
>>> distance.russellrao([1, 0, 0], [0, 1, 0])
|
1474 |
+
1.0
|
1475 |
+
>>> distance.russellrao([1, 0, 0], [1, 1, 0])
|
1476 |
+
0.6666666666666666
|
1477 |
+
>>> distance.russellrao([1, 0, 0], [2, 0, 0])
|
1478 |
+
0.3333333333333333
|
1479 |
+
|
1480 |
+
"""
|
1481 |
+
u = _validate_vector(u)
|
1482 |
+
v = _validate_vector(v)
|
1483 |
+
if u.dtype == v.dtype == bool and w is None:
|
1484 |
+
ntt = (u & v).sum()
|
1485 |
+
n = float(len(u))
|
1486 |
+
elif w is None:
|
1487 |
+
ntt = (u * v).sum()
|
1488 |
+
n = float(len(u))
|
1489 |
+
else:
|
1490 |
+
w = _validate_weights(w)
|
1491 |
+
ntt = (u * v * w).sum()
|
1492 |
+
n = w.sum()
|
1493 |
+
return float(n - ntt) / n
|
1494 |
+
|
1495 |
+
|
1496 |
+
def sokalmichener(u, v, w=None):
|
1497 |
+
"""
|
1498 |
+
Compute the Sokal-Michener dissimilarity between two boolean 1-D arrays.
|
1499 |
+
|
1500 |
+
The Sokal-Michener dissimilarity between boolean 1-D arrays `u` and `v`,
|
1501 |
+
is defined as
|
1502 |
+
|
1503 |
+
.. math::
|
1504 |
+
|
1505 |
+
\\frac{R}
|
1506 |
+
{S + R}
|
1507 |
+
|
1508 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1509 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1510 |
+
:math:`k < n`, :math:`R = 2 * (c_{TF} + c_{FT})` and
|
1511 |
+
:math:`S = c_{FF} + c_{TT}`.
|
1512 |
+
|
1513 |
+
Parameters
|
1514 |
+
----------
|
1515 |
+
u : (N,) array_like, bool
|
1516 |
+
Input array.
|
1517 |
+
v : (N,) array_like, bool
|
1518 |
+
Input array.
|
1519 |
+
w : (N,) array_like, optional
|
1520 |
+
The weights for each value in `u` and `v`. Default is None,
|
1521 |
+
which gives each value a weight of 1.0
|
1522 |
+
|
1523 |
+
Returns
|
1524 |
+
-------
|
1525 |
+
sokalmichener : double
|
1526 |
+
The Sokal-Michener dissimilarity between vectors `u` and `v`.
|
1527 |
+
|
1528 |
+
Examples
|
1529 |
+
--------
|
1530 |
+
>>> from scipy.spatial import distance
|
1531 |
+
>>> distance.sokalmichener([1, 0, 0], [0, 1, 0])
|
1532 |
+
0.8
|
1533 |
+
>>> distance.sokalmichener([1, 0, 0], [1, 1, 0])
|
1534 |
+
0.5
|
1535 |
+
>>> distance.sokalmichener([1, 0, 0], [2, 0, 0])
|
1536 |
+
-1.0
|
1537 |
+
|
1538 |
+
"""
|
1539 |
+
u = _validate_vector(u)
|
1540 |
+
v = _validate_vector(v)
|
1541 |
+
if w is not None:
|
1542 |
+
w = _validate_weights(w)
|
1543 |
+
nff, nft, ntf, ntt = _nbool_correspond_all(u, v, w=w)
|
1544 |
+
return float(2.0 * (ntf + nft)) / float(ntt + nff + 2.0 * (ntf + nft))
|
1545 |
+
|
1546 |
+
|
1547 |
+
def sokalsneath(u, v, w=None):
|
1548 |
+
"""
|
1549 |
+
Compute the Sokal-Sneath dissimilarity between two boolean 1-D arrays.
|
1550 |
+
|
1551 |
+
The Sokal-Sneath dissimilarity between `u` and `v`,
|
1552 |
+
|
1553 |
+
.. math::
|
1554 |
+
|
1555 |
+
\\frac{R}
|
1556 |
+
{c_{TT} + R}
|
1557 |
+
|
1558 |
+
where :math:`c_{ij}` is the number of occurrences of
|
1559 |
+
:math:`\\mathtt{u[k]} = i` and :math:`\\mathtt{v[k]} = j` for
|
1560 |
+
:math:`k < n` and :math:`R = 2(c_{TF} + c_{FT})`.
|
1561 |
+
|
1562 |
+
Parameters
|
1563 |
+
----------
|
1564 |
+
u : (N,) array_like, bool
|
1565 |
+
Input array.
|
1566 |
+
v : (N,) array_like, bool
|
1567 |
+
Input array.
|
1568 |
+
w : (N,) array_like, optional
|
1569 |
+
The weights for each value in `u` and `v`. Default is None,
|
1570 |
+
which gives each value a weight of 1.0
|
1571 |
+
|
1572 |
+
Returns
|
1573 |
+
-------
|
1574 |
+
sokalsneath : double
|
1575 |
+
The Sokal-Sneath dissimilarity between vectors `u` and `v`.
|
1576 |
+
|
1577 |
+
Examples
|
1578 |
+
--------
|
1579 |
+
>>> from scipy.spatial import distance
|
1580 |
+
>>> distance.sokalsneath([1, 0, 0], [0, 1, 0])
|
1581 |
+
1.0
|
1582 |
+
>>> distance.sokalsneath([1, 0, 0], [1, 1, 0])
|
1583 |
+
0.66666666666666663
|
1584 |
+
>>> distance.sokalsneath([1, 0, 0], [2, 1, 0])
|
1585 |
+
0.0
|
1586 |
+
>>> distance.sokalsneath([1, 0, 0], [3, 1, 0])
|
1587 |
+
-2.0
|
1588 |
+
|
1589 |
+
"""
|
1590 |
+
u = _validate_vector(u)
|
1591 |
+
v = _validate_vector(v)
|
1592 |
+
if u.dtype == v.dtype == bool and w is None:
|
1593 |
+
ntt = (u & v).sum()
|
1594 |
+
elif w is None:
|
1595 |
+
ntt = (u * v).sum()
|
1596 |
+
else:
|
1597 |
+
w = _validate_weights(w)
|
1598 |
+
ntt = (u * v * w).sum()
|
1599 |
+
(nft, ntf) = _nbool_correspond_ft_tf(u, v, w=w)
|
1600 |
+
denom = np.array(ntt + 2.0 * (ntf + nft))
|
1601 |
+
if not denom.any():
|
1602 |
+
raise ValueError('Sokal-Sneath dissimilarity is not defined for '
|
1603 |
+
'vectors that are entirely false.')
|
1604 |
+
return float(2.0 * (ntf + nft)) / denom
|
1605 |
+
|
1606 |
+
|
1607 |
+
_convert_to_double = partial(_convert_to_type, out_type=np.float64)
|
1608 |
+
_convert_to_bool = partial(_convert_to_type, out_type=bool)
|
1609 |
+
|
1610 |
+
# adding python-only wrappers to _distance_wrap module
|
1611 |
+
_distance_wrap.pdist_correlation_double_wrap = _correlation_pdist_wrap
|
1612 |
+
_distance_wrap.cdist_correlation_double_wrap = _correlation_cdist_wrap
|
1613 |
+
|
1614 |
+
|
1615 |
+
@dataclasses.dataclass(frozen=True)
|
1616 |
+
class CDistMetricWrapper:
|
1617 |
+
metric_name: str
|
1618 |
+
|
1619 |
+
def __call__(self, XA, XB, *, out=None, **kwargs):
|
1620 |
+
XA = np.ascontiguousarray(XA)
|
1621 |
+
XB = np.ascontiguousarray(XB)
|
1622 |
+
mA, n = XA.shape
|
1623 |
+
mB, _ = XB.shape
|
1624 |
+
metric_name = self.metric_name
|
1625 |
+
metric_info = _METRICS[metric_name]
|
1626 |
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
1627 |
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
1628 |
+
|
1629 |
+
w = kwargs.pop('w', None)
|
1630 |
+
if w is not None:
|
1631 |
+
metric = metric_info.dist_func
|
1632 |
+
return _cdist_callable(
|
1633 |
+
XA, XB, metric=metric, out=out, w=w, **kwargs)
|
1634 |
+
|
1635 |
+
dm = _prepare_out_argument(out, np.float64, (mA, mB))
|
1636 |
+
# get cdist wrapper
|
1637 |
+
cdist_fn = getattr(_distance_wrap, f'cdist_{metric_name}_{typ}_wrap')
|
1638 |
+
cdist_fn(XA, XB, dm, **kwargs)
|
1639 |
+
return dm
|
1640 |
+
|
1641 |
+
|
1642 |
+
@dataclasses.dataclass(frozen=True)
|
1643 |
+
class PDistMetricWrapper:
|
1644 |
+
metric_name: str
|
1645 |
+
|
1646 |
+
def __call__(self, X, *, out=None, **kwargs):
|
1647 |
+
X = np.ascontiguousarray(X)
|
1648 |
+
m, n = X.shape
|
1649 |
+
metric_name = self.metric_name
|
1650 |
+
metric_info = _METRICS[metric_name]
|
1651 |
+
X, typ, kwargs = _validate_pdist_input(
|
1652 |
+
X, m, n, metric_info, **kwargs)
|
1653 |
+
out_size = (m * (m - 1)) // 2
|
1654 |
+
w = kwargs.pop('w', None)
|
1655 |
+
if w is not None:
|
1656 |
+
metric = metric_info.dist_func
|
1657 |
+
return _pdist_callable(
|
1658 |
+
X, metric=metric, out=out, w=w, **kwargs)
|
1659 |
+
|
1660 |
+
dm = _prepare_out_argument(out, np.float64, (out_size,))
|
1661 |
+
# get pdist wrapper
|
1662 |
+
pdist_fn = getattr(_distance_wrap, f'pdist_{metric_name}_{typ}_wrap')
|
1663 |
+
pdist_fn(X, dm, **kwargs)
|
1664 |
+
return dm
|
1665 |
+
|
1666 |
+
|
1667 |
+
@dataclasses.dataclass(frozen=True)
|
1668 |
+
class MetricInfo:
|
1669 |
+
# Name of python distance function
|
1670 |
+
canonical_name: str
|
1671 |
+
# All aliases, including canonical_name
|
1672 |
+
aka: set[str]
|
1673 |
+
# unvectorized distance function
|
1674 |
+
dist_func: Callable
|
1675 |
+
# Optimized cdist function
|
1676 |
+
cdist_func: Callable
|
1677 |
+
# Optimized pdist function
|
1678 |
+
pdist_func: Callable
|
1679 |
+
# function that checks kwargs and computes default values:
|
1680 |
+
# f(X, m, n, **kwargs)
|
1681 |
+
validator: Optional[Callable] = None
|
1682 |
+
# list of supported types:
|
1683 |
+
# X (pdist) and XA (cdist) are used to choose the type. if there is no
|
1684 |
+
# match the first type is used. Default double
|
1685 |
+
types: list[str] = dataclasses.field(default_factory=lambda: ['double'])
|
1686 |
+
# true if out array must be C-contiguous
|
1687 |
+
requires_contiguous_out: bool = True
|
1688 |
+
|
1689 |
+
|
1690 |
+
# Registry of implemented metrics:
|
1691 |
+
_METRIC_INFOS = [
|
1692 |
+
MetricInfo(
|
1693 |
+
canonical_name='braycurtis',
|
1694 |
+
aka={'braycurtis'},
|
1695 |
+
dist_func=braycurtis,
|
1696 |
+
cdist_func=_distance_pybind.cdist_braycurtis,
|
1697 |
+
pdist_func=_distance_pybind.pdist_braycurtis,
|
1698 |
+
),
|
1699 |
+
MetricInfo(
|
1700 |
+
canonical_name='canberra',
|
1701 |
+
aka={'canberra'},
|
1702 |
+
dist_func=canberra,
|
1703 |
+
cdist_func=_distance_pybind.cdist_canberra,
|
1704 |
+
pdist_func=_distance_pybind.pdist_canberra,
|
1705 |
+
),
|
1706 |
+
MetricInfo(
|
1707 |
+
canonical_name='chebyshev',
|
1708 |
+
aka={'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch'},
|
1709 |
+
dist_func=chebyshev,
|
1710 |
+
cdist_func=_distance_pybind.cdist_chebyshev,
|
1711 |
+
pdist_func=_distance_pybind.pdist_chebyshev,
|
1712 |
+
),
|
1713 |
+
MetricInfo(
|
1714 |
+
canonical_name='cityblock',
|
1715 |
+
aka={'cityblock', 'cblock', 'cb', 'c'},
|
1716 |
+
dist_func=cityblock,
|
1717 |
+
cdist_func=_distance_pybind.cdist_cityblock,
|
1718 |
+
pdist_func=_distance_pybind.pdist_cityblock,
|
1719 |
+
),
|
1720 |
+
MetricInfo(
|
1721 |
+
canonical_name='correlation',
|
1722 |
+
aka={'correlation', 'co'},
|
1723 |
+
dist_func=correlation,
|
1724 |
+
cdist_func=CDistMetricWrapper('correlation'),
|
1725 |
+
pdist_func=PDistMetricWrapper('correlation'),
|
1726 |
+
),
|
1727 |
+
MetricInfo(
|
1728 |
+
canonical_name='cosine',
|
1729 |
+
aka={'cosine', 'cos'},
|
1730 |
+
dist_func=cosine,
|
1731 |
+
cdist_func=CDistMetricWrapper('cosine'),
|
1732 |
+
pdist_func=PDistMetricWrapper('cosine'),
|
1733 |
+
),
|
1734 |
+
MetricInfo(
|
1735 |
+
canonical_name='dice',
|
1736 |
+
aka={'dice'},
|
1737 |
+
types=['bool'],
|
1738 |
+
dist_func=dice,
|
1739 |
+
cdist_func=_distance_pybind.cdist_dice,
|
1740 |
+
pdist_func=_distance_pybind.pdist_dice,
|
1741 |
+
),
|
1742 |
+
MetricInfo(
|
1743 |
+
canonical_name='euclidean',
|
1744 |
+
aka={'euclidean', 'euclid', 'eu', 'e'},
|
1745 |
+
dist_func=euclidean,
|
1746 |
+
cdist_func=_distance_pybind.cdist_euclidean,
|
1747 |
+
pdist_func=_distance_pybind.pdist_euclidean,
|
1748 |
+
),
|
1749 |
+
MetricInfo(
|
1750 |
+
canonical_name='hamming',
|
1751 |
+
aka={'matching', 'hamming', 'hamm', 'ha', 'h'},
|
1752 |
+
types=['double', 'bool'],
|
1753 |
+
validator=_validate_hamming_kwargs,
|
1754 |
+
dist_func=hamming,
|
1755 |
+
cdist_func=_distance_pybind.cdist_hamming,
|
1756 |
+
pdist_func=_distance_pybind.pdist_hamming,
|
1757 |
+
),
|
1758 |
+
MetricInfo(
|
1759 |
+
canonical_name='jaccard',
|
1760 |
+
aka={'jaccard', 'jacc', 'ja', 'j'},
|
1761 |
+
types=['double', 'bool'],
|
1762 |
+
dist_func=jaccard,
|
1763 |
+
cdist_func=_distance_pybind.cdist_jaccard,
|
1764 |
+
pdist_func=_distance_pybind.pdist_jaccard,
|
1765 |
+
),
|
1766 |
+
MetricInfo(
|
1767 |
+
canonical_name='jensenshannon',
|
1768 |
+
aka={'jensenshannon', 'js'},
|
1769 |
+
dist_func=jensenshannon,
|
1770 |
+
cdist_func=CDistMetricWrapper('jensenshannon'),
|
1771 |
+
pdist_func=PDistMetricWrapper('jensenshannon'),
|
1772 |
+
),
|
1773 |
+
MetricInfo(
|
1774 |
+
canonical_name='kulczynski1',
|
1775 |
+
aka={'kulczynski1'},
|
1776 |
+
types=['bool'],
|
1777 |
+
dist_func=kulczynski1,
|
1778 |
+
cdist_func=_distance_pybind.cdist_kulczynski1,
|
1779 |
+
pdist_func=_distance_pybind.pdist_kulczynski1,
|
1780 |
+
),
|
1781 |
+
MetricInfo(
|
1782 |
+
canonical_name='mahalanobis',
|
1783 |
+
aka={'mahalanobis', 'mahal', 'mah'},
|
1784 |
+
validator=_validate_mahalanobis_kwargs,
|
1785 |
+
dist_func=mahalanobis,
|
1786 |
+
cdist_func=CDistMetricWrapper('mahalanobis'),
|
1787 |
+
pdist_func=PDistMetricWrapper('mahalanobis'),
|
1788 |
+
),
|
1789 |
+
MetricInfo(
|
1790 |
+
canonical_name='minkowski',
|
1791 |
+
aka={'minkowski', 'mi', 'm', 'pnorm'},
|
1792 |
+
validator=_validate_minkowski_kwargs,
|
1793 |
+
dist_func=minkowski,
|
1794 |
+
cdist_func=_distance_pybind.cdist_minkowski,
|
1795 |
+
pdist_func=_distance_pybind.pdist_minkowski,
|
1796 |
+
),
|
1797 |
+
MetricInfo(
|
1798 |
+
canonical_name='rogerstanimoto',
|
1799 |
+
aka={'rogerstanimoto'},
|
1800 |
+
types=['bool'],
|
1801 |
+
dist_func=rogerstanimoto,
|
1802 |
+
cdist_func=_distance_pybind.cdist_rogerstanimoto,
|
1803 |
+
pdist_func=_distance_pybind.pdist_rogerstanimoto,
|
1804 |
+
),
|
1805 |
+
MetricInfo(
|
1806 |
+
canonical_name='russellrao',
|
1807 |
+
aka={'russellrao'},
|
1808 |
+
types=['bool'],
|
1809 |
+
dist_func=russellrao,
|
1810 |
+
cdist_func=_distance_pybind.cdist_russellrao,
|
1811 |
+
pdist_func=_distance_pybind.pdist_russellrao,
|
1812 |
+
),
|
1813 |
+
MetricInfo(
|
1814 |
+
canonical_name='seuclidean',
|
1815 |
+
aka={'seuclidean', 'se', 's'},
|
1816 |
+
validator=_validate_seuclidean_kwargs,
|
1817 |
+
dist_func=seuclidean,
|
1818 |
+
cdist_func=CDistMetricWrapper('seuclidean'),
|
1819 |
+
pdist_func=PDistMetricWrapper('seuclidean'),
|
1820 |
+
),
|
1821 |
+
MetricInfo(
|
1822 |
+
canonical_name='sokalmichener',
|
1823 |
+
aka={'sokalmichener'},
|
1824 |
+
types=['bool'],
|
1825 |
+
dist_func=sokalmichener,
|
1826 |
+
cdist_func=_distance_pybind.cdist_sokalmichener,
|
1827 |
+
pdist_func=_distance_pybind.pdist_sokalmichener,
|
1828 |
+
),
|
1829 |
+
MetricInfo(
|
1830 |
+
canonical_name='sokalsneath',
|
1831 |
+
aka={'sokalsneath'},
|
1832 |
+
types=['bool'],
|
1833 |
+
dist_func=sokalsneath,
|
1834 |
+
cdist_func=_distance_pybind.cdist_sokalsneath,
|
1835 |
+
pdist_func=_distance_pybind.pdist_sokalsneath,
|
1836 |
+
),
|
1837 |
+
MetricInfo(
|
1838 |
+
canonical_name='sqeuclidean',
|
1839 |
+
aka={'sqeuclidean', 'sqe', 'sqeuclid'},
|
1840 |
+
dist_func=sqeuclidean,
|
1841 |
+
cdist_func=_distance_pybind.cdist_sqeuclidean,
|
1842 |
+
pdist_func=_distance_pybind.pdist_sqeuclidean,
|
1843 |
+
),
|
1844 |
+
MetricInfo(
|
1845 |
+
canonical_name='yule',
|
1846 |
+
aka={'yule'},
|
1847 |
+
types=['bool'],
|
1848 |
+
dist_func=yule,
|
1849 |
+
cdist_func=_distance_pybind.cdist_yule,
|
1850 |
+
pdist_func=_distance_pybind.pdist_yule,
|
1851 |
+
),
|
1852 |
+
]
|
1853 |
+
|
1854 |
+
_METRICS = {info.canonical_name: info for info in _METRIC_INFOS}
|
1855 |
+
_METRIC_ALIAS = {alias: info
|
1856 |
+
for info in _METRIC_INFOS
|
1857 |
+
for alias in info.aka}
|
1858 |
+
|
1859 |
+
_METRICS_NAMES = list(_METRICS.keys())
|
1860 |
+
|
1861 |
+
_TEST_METRICS = {'test_' + info.canonical_name: info for info in _METRIC_INFOS}
|
1862 |
+
|
1863 |
+
|
1864 |
+
def pdist(X, metric='euclidean', *, out=None, **kwargs):
|
1865 |
+
"""
|
1866 |
+
Pairwise distances between observations in n-dimensional space.
|
1867 |
+
|
1868 |
+
See Notes for common calling conventions.
|
1869 |
+
|
1870 |
+
Parameters
|
1871 |
+
----------
|
1872 |
+
X : array_like
|
1873 |
+
An m by n array of m original observations in an
|
1874 |
+
n-dimensional space.
|
1875 |
+
metric : str or function, optional
|
1876 |
+
The distance metric to use. The distance function can
|
1877 |
+
be 'braycurtis', 'canberra', 'chebyshev', 'cityblock',
|
1878 |
+
'correlation', 'cosine', 'dice', 'euclidean', 'hamming',
|
1879 |
+
'jaccard', 'jensenshannon', 'kulczynski1',
|
1880 |
+
'mahalanobis', 'matching', 'minkowski', 'rogerstanimoto',
|
1881 |
+
'russellrao', 'seuclidean', 'sokalmichener', 'sokalsneath',
|
1882 |
+
'sqeuclidean', 'yule'.
|
1883 |
+
out : ndarray, optional
|
1884 |
+
The output array.
|
1885 |
+
If not None, condensed distance matrix Y is stored in this array.
|
1886 |
+
**kwargs : dict, optional
|
1887 |
+
Extra arguments to `metric`: refer to each metric documentation for a
|
1888 |
+
list of all possible arguments.
|
1889 |
+
|
1890 |
+
Some possible arguments:
|
1891 |
+
|
1892 |
+
p : scalar
|
1893 |
+
The p-norm to apply for Minkowski, weighted and unweighted.
|
1894 |
+
Default: 2.
|
1895 |
+
|
1896 |
+
w : ndarray
|
1897 |
+
The weight vector for metrics that support weights (e.g., Minkowski).
|
1898 |
+
|
1899 |
+
V : ndarray
|
1900 |
+
The variance vector for standardized Euclidean.
|
1901 |
+
Default: var(X, axis=0, ddof=1)
|
1902 |
+
|
1903 |
+
VI : ndarray
|
1904 |
+
The inverse of the covariance matrix for Mahalanobis.
|
1905 |
+
Default: inv(cov(X.T)).T
|
1906 |
+
|
1907 |
+
Returns
|
1908 |
+
-------
|
1909 |
+
Y : ndarray
|
1910 |
+
Returns a condensed distance matrix Y. For each :math:`i` and :math:`j`
|
1911 |
+
(where :math:`i<j<m`),where m is the number of original observations.
|
1912 |
+
The metric ``dist(u=X[i], v=X[j])`` is computed and stored in entry ``m
|
1913 |
+
* i + j - ((i + 2) * (i + 1)) // 2``.
|
1914 |
+
|
1915 |
+
See Also
|
1916 |
+
--------
|
1917 |
+
squareform : converts between condensed distance matrices and
|
1918 |
+
square distance matrices.
|
1919 |
+
|
1920 |
+
Notes
|
1921 |
+
-----
|
1922 |
+
See ``squareform`` for information on how to calculate the index of
|
1923 |
+
this entry or to convert the condensed distance matrix to a
|
1924 |
+
redundant square matrix.
|
1925 |
+
|
1926 |
+
The following are common calling conventions.
|
1927 |
+
|
1928 |
+
1. ``Y = pdist(X, 'euclidean')``
|
1929 |
+
|
1930 |
+
Computes the distance between m points using Euclidean distance
|
1931 |
+
(2-norm) as the distance metric between the points. The points
|
1932 |
+
are arranged as m n-dimensional row vectors in the matrix X.
|
1933 |
+
|
1934 |
+
2. ``Y = pdist(X, 'minkowski', p=2.)``
|
1935 |
+
|
1936 |
+
Computes the distances using the Minkowski distance
|
1937 |
+
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
|
1938 |
+
that this is only a quasi-metric if :math:`0 < p < 1`).
|
1939 |
+
|
1940 |
+
3. ``Y = pdist(X, 'cityblock')``
|
1941 |
+
|
1942 |
+
Computes the city block or Manhattan distance between the
|
1943 |
+
points.
|
1944 |
+
|
1945 |
+
4. ``Y = pdist(X, 'seuclidean', V=None)``
|
1946 |
+
|
1947 |
+
Computes the standardized Euclidean distance. The standardized
|
1948 |
+
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
1949 |
+
|
1950 |
+
.. math::
|
1951 |
+
|
1952 |
+
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}
|
1953 |
+
|
1954 |
+
|
1955 |
+
V is the variance vector; V[i] is the variance computed over all
|
1956 |
+
the i'th components of the points. If not passed, it is
|
1957 |
+
automatically computed.
|
1958 |
+
|
1959 |
+
5. ``Y = pdist(X, 'sqeuclidean')``
|
1960 |
+
|
1961 |
+
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
|
1962 |
+
the vectors.
|
1963 |
+
|
1964 |
+
6. ``Y = pdist(X, 'cosine')``
|
1965 |
+
|
1966 |
+
Computes the cosine distance between vectors u and v,
|
1967 |
+
|
1968 |
+
.. math::
|
1969 |
+
|
1970 |
+
1 - \\frac{u \\cdot v}
|
1971 |
+
{{\\|u\\|}_2 {\\|v\\|}_2}
|
1972 |
+
|
1973 |
+
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
|
1974 |
+
:math:`u \\cdot v` is the dot product of ``u`` and ``v``.
|
1975 |
+
|
1976 |
+
7. ``Y = pdist(X, 'correlation')``
|
1977 |
+
|
1978 |
+
Computes the correlation distance between vectors u and v. This is
|
1979 |
+
|
1980 |
+
.. math::
|
1981 |
+
|
1982 |
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
1983 |
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
1984 |
+
|
1985 |
+
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
1986 |
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
1987 |
+
|
1988 |
+
8. ``Y = pdist(X, 'hamming')``
|
1989 |
+
|
1990 |
+
Computes the normalized Hamming distance, or the proportion of
|
1991 |
+
those vector elements between two n-vectors ``u`` and ``v``
|
1992 |
+
which disagree. To save memory, the matrix ``X`` can be of type
|
1993 |
+
boolean.
|
1994 |
+
|
1995 |
+
9. ``Y = pdist(X, 'jaccard')``
|
1996 |
+
|
1997 |
+
Computes the Jaccard distance between the points. Given two
|
1998 |
+
vectors, ``u`` and ``v``, the Jaccard distance is the
|
1999 |
+
proportion of those elements ``u[i]`` and ``v[i]`` that
|
2000 |
+
disagree.
|
2001 |
+
|
2002 |
+
10. ``Y = pdist(X, 'jensenshannon')``
|
2003 |
+
|
2004 |
+
Computes the Jensen-Shannon distance between two probability arrays.
|
2005 |
+
Given two probability vectors, :math:`p` and :math:`q`, the
|
2006 |
+
Jensen-Shannon distance is
|
2007 |
+
|
2008 |
+
.. math::
|
2009 |
+
|
2010 |
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
2011 |
+
|
2012 |
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
2013 |
+
and :math:`D` is the Kullback-Leibler divergence.
|
2014 |
+
|
2015 |
+
11. ``Y = pdist(X, 'chebyshev')``
|
2016 |
+
|
2017 |
+
Computes the Chebyshev distance between the points. The
|
2018 |
+
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
2019 |
+
maximum norm-1 distance between their respective elements. More
|
2020 |
+
precisely, the distance is given by
|
2021 |
+
|
2022 |
+
.. math::
|
2023 |
+
|
2024 |
+
d(u,v) = \\max_i {|u_i-v_i|}
|
2025 |
+
|
2026 |
+
12. ``Y = pdist(X, 'canberra')``
|
2027 |
+
|
2028 |
+
Computes the Canberra distance between the points. The
|
2029 |
+
Canberra distance between two points ``u`` and ``v`` is
|
2030 |
+
|
2031 |
+
.. math::
|
2032 |
+
|
2033 |
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
2034 |
+
{|u_i|+|v_i|}
|
2035 |
+
|
2036 |
+
|
2037 |
+
13. ``Y = pdist(X, 'braycurtis')``
|
2038 |
+
|
2039 |
+
Computes the Bray-Curtis distance between the points. The
|
2040 |
+
Bray-Curtis distance between two points ``u`` and ``v`` is
|
2041 |
+
|
2042 |
+
|
2043 |
+
.. math::
|
2044 |
+
|
2045 |
+
d(u,v) = \\frac{\\sum_i {|u_i-v_i|}}
|
2046 |
+
{\\sum_i {|u_i+v_i|}}
|
2047 |
+
|
2048 |
+
14. ``Y = pdist(X, 'mahalanobis', VI=None)``
|
2049 |
+
|
2050 |
+
Computes the Mahalanobis distance between the points. The
|
2051 |
+
Mahalanobis distance between two points ``u`` and ``v`` is
|
2052 |
+
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
2053 |
+
variable) is the inverse covariance. If ``VI`` is not None,
|
2054 |
+
``VI`` will be used as the inverse covariance matrix.
|
2055 |
+
|
2056 |
+
15. ``Y = pdist(X, 'yule')``
|
2057 |
+
|
2058 |
+
Computes the Yule distance between each pair of boolean
|
2059 |
+
vectors. (see yule function documentation)
|
2060 |
+
|
2061 |
+
16. ``Y = pdist(X, 'matching')``
|
2062 |
+
|
2063 |
+
Synonym for 'hamming'.
|
2064 |
+
|
2065 |
+
17. ``Y = pdist(X, 'dice')``
|
2066 |
+
|
2067 |
+
Computes the Dice distance between each pair of boolean
|
2068 |
+
vectors. (see dice function documentation)
|
2069 |
+
|
2070 |
+
18. ``Y = pdist(X, 'kulczynski1')``
|
2071 |
+
|
2072 |
+
Computes the kulczynski1 distance between each pair of
|
2073 |
+
boolean vectors. (see kulczynski1 function documentation)
|
2074 |
+
|
2075 |
+
19. ``Y = pdist(X, 'rogerstanimoto')``
|
2076 |
+
|
2077 |
+
Computes the Rogers-Tanimoto distance between each pair of
|
2078 |
+
boolean vectors. (see rogerstanimoto function documentation)
|
2079 |
+
|
2080 |
+
20. ``Y = pdist(X, 'russellrao')``
|
2081 |
+
|
2082 |
+
Computes the Russell-Rao distance between each pair of
|
2083 |
+
boolean vectors. (see russellrao function documentation)
|
2084 |
+
|
2085 |
+
21. ``Y = pdist(X, 'sokalmichener')``
|
2086 |
+
|
2087 |
+
Computes the Sokal-Michener distance between each pair of
|
2088 |
+
boolean vectors. (see sokalmichener function documentation)
|
2089 |
+
|
2090 |
+
22. ``Y = pdist(X, 'sokalsneath')``
|
2091 |
+
|
2092 |
+
Computes the Sokal-Sneath distance between each pair of
|
2093 |
+
boolean vectors. (see sokalsneath function documentation)
|
2094 |
+
|
2095 |
+
23. ``Y = pdist(X, 'kulczynski1')``
|
2096 |
+
|
2097 |
+
Computes the Kulczynski 1 distance between each pair of
|
2098 |
+
boolean vectors. (see kulczynski1 function documentation)
|
2099 |
+
|
2100 |
+
24. ``Y = pdist(X, f)``
|
2101 |
+
|
2102 |
+
Computes the distance between all pairs of vectors in X
|
2103 |
+
using the user supplied 2-arity function f. For example,
|
2104 |
+
Euclidean distance between the vectors could be computed
|
2105 |
+
as follows::
|
2106 |
+
|
2107 |
+
dm = pdist(X, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
2108 |
+
|
2109 |
+
Note that you should avoid passing a reference to one of
|
2110 |
+
the distance functions defined in this library. For example,::
|
2111 |
+
|
2112 |
+
dm = pdist(X, sokalsneath)
|
2113 |
+
|
2114 |
+
would calculate the pair-wise distances between the vectors in
|
2115 |
+
X using the Python function sokalsneath. This would result in
|
2116 |
+
sokalsneath being called :math:`{n \\choose 2}` times, which
|
2117 |
+
is inefficient. Instead, the optimized C version is more
|
2118 |
+
efficient, and we call it using the following syntax.::
|
2119 |
+
|
2120 |
+
dm = pdist(X, 'sokalsneath')
|
2121 |
+
|
2122 |
+
Examples
|
2123 |
+
--------
|
2124 |
+
>>> import numpy as np
|
2125 |
+
>>> from scipy.spatial.distance import pdist
|
2126 |
+
|
2127 |
+
``x`` is an array of five points in three-dimensional space.
|
2128 |
+
|
2129 |
+
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
|
2130 |
+
|
2131 |
+
``pdist(x)`` with no additional arguments computes the 10 pairwise
|
2132 |
+
Euclidean distances:
|
2133 |
+
|
2134 |
+
>>> pdist(x)
|
2135 |
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2136 |
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2137 |
+
|
2138 |
+
The following computes the pairwise Minkowski distances with ``p = 3.5``:
|
2139 |
+
|
2140 |
+
>>> pdist(x, metric='minkowski', p=3.5)
|
2141 |
+
array([2.04898923, 5.1154929 , 7.02700737, 2.43802731, 4.19042714,
|
2142 |
+
6.03956994, 1. , 4.45128103, 4.10636143, 5.0619695 ])
|
2143 |
+
|
2144 |
+
The pairwise city block or Manhattan distances:
|
2145 |
+
|
2146 |
+
>>> pdist(x, metric='cityblock')
|
2147 |
+
array([ 3., 11., 10., 4., 8., 9., 1., 9., 7., 8.])
|
2148 |
+
|
2149 |
+
"""
|
2150 |
+
# You can also call this as:
|
2151 |
+
# Y = pdist(X, 'test_abc')
|
2152 |
+
# where 'abc' is the metric being tested. This computes the distance
|
2153 |
+
# between all pairs of vectors in X using the distance metric 'abc' but
|
2154 |
+
# with a more succinct, verifiable, but less efficient implementation.
|
2155 |
+
|
2156 |
+
X = _asarray_validated(X, sparse_ok=False, objects_ok=True, mask_ok=True,
|
2157 |
+
check_finite=False)
|
2158 |
+
|
2159 |
+
s = X.shape
|
2160 |
+
if len(s) != 2:
|
2161 |
+
raise ValueError('A 2-dimensional array must be passed.')
|
2162 |
+
|
2163 |
+
m, n = s
|
2164 |
+
|
2165 |
+
if callable(metric):
|
2166 |
+
mstr = getattr(metric, '__name__', 'UnknownCustomMetric')
|
2167 |
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2168 |
+
|
2169 |
+
if metric_info is not None:
|
2170 |
+
X, typ, kwargs = _validate_pdist_input(
|
2171 |
+
X, m, n, metric_info, **kwargs)
|
2172 |
+
|
2173 |
+
return _pdist_callable(X, metric=metric, out=out, **kwargs)
|
2174 |
+
elif isinstance(metric, str):
|
2175 |
+
mstr = metric.lower()
|
2176 |
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2177 |
+
|
2178 |
+
if metric_info is not None:
|
2179 |
+
pdist_fn = metric_info.pdist_func
|
2180 |
+
return pdist_fn(X, out=out, **kwargs)
|
2181 |
+
elif mstr.startswith("test_"):
|
2182 |
+
metric_info = _TEST_METRICS.get(mstr, None)
|
2183 |
+
if metric_info is None:
|
2184 |
+
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
|
2185 |
+
X, typ, kwargs = _validate_pdist_input(
|
2186 |
+
X, m, n, metric_info, **kwargs)
|
2187 |
+
return _pdist_callable(
|
2188 |
+
X, metric=metric_info.dist_func, out=out, **kwargs)
|
2189 |
+
else:
|
2190 |
+
raise ValueError('Unknown Distance Metric: %s' % mstr)
|
2191 |
+
else:
|
2192 |
+
raise TypeError('2nd argument metric must be a string identifier '
|
2193 |
+
'or a function.')
|
2194 |
+
|
2195 |
+
|
2196 |
+
def squareform(X, force="no", checks=True):
|
2197 |
+
"""
|
2198 |
+
Convert a vector-form distance vector to a square-form distance
|
2199 |
+
matrix, and vice-versa.
|
2200 |
+
|
2201 |
+
Parameters
|
2202 |
+
----------
|
2203 |
+
X : array_like
|
2204 |
+
Either a condensed or redundant distance matrix.
|
2205 |
+
force : str, optional
|
2206 |
+
As with MATLAB(TM), if force is equal to ``'tovector'`` or
|
2207 |
+
``'tomatrix'``, the input will be treated as a distance matrix or
|
2208 |
+
distance vector respectively.
|
2209 |
+
checks : bool, optional
|
2210 |
+
If set to False, no checks will be made for matrix
|
2211 |
+
symmetry nor zero diagonals. This is useful if it is known that
|
2212 |
+
``X - X.T1`` is small and ``diag(X)`` is close to zero.
|
2213 |
+
These values are ignored any way so they do not disrupt the
|
2214 |
+
squareform transformation.
|
2215 |
+
|
2216 |
+
Returns
|
2217 |
+
-------
|
2218 |
+
Y : ndarray
|
2219 |
+
If a condensed distance matrix is passed, a redundant one is
|
2220 |
+
returned, or if a redundant one is passed, a condensed distance
|
2221 |
+
matrix is returned.
|
2222 |
+
|
2223 |
+
Notes
|
2224 |
+
-----
|
2225 |
+
1. ``v = squareform(X)``
|
2226 |
+
|
2227 |
+
Given a square n-by-n symmetric distance matrix ``X``,
|
2228 |
+
``v = squareform(X)`` returns a ``n * (n-1) / 2``
|
2229 |
+
(i.e. binomial coefficient n choose 2) sized vector `v`
|
2230 |
+
where :math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
|
2231 |
+
is the distance between distinct points ``i`` and ``j``.
|
2232 |
+
If ``X`` is non-square or asymmetric, an error is raised.
|
2233 |
+
|
2234 |
+
2. ``X = squareform(v)``
|
2235 |
+
|
2236 |
+
Given a ``n * (n-1) / 2`` sized vector ``v``
|
2237 |
+
for some integer ``n >= 1`` encoding distances as described,
|
2238 |
+
``X = squareform(v)`` returns a n-by-n distance matrix ``X``.
|
2239 |
+
The ``X[i, j]`` and ``X[j, i]`` values are set to
|
2240 |
+
:math:`v[{n \\choose 2} - {n-i \\choose 2} + (j-i-1)]`
|
2241 |
+
and all diagonal elements are zero.
|
2242 |
+
|
2243 |
+
In SciPy 0.19.0, ``squareform`` stopped casting all input types to
|
2244 |
+
float64, and started returning arrays of the same dtype as the input.
|
2245 |
+
|
2246 |
+
Examples
|
2247 |
+
--------
|
2248 |
+
>>> import numpy as np
|
2249 |
+
>>> from scipy.spatial.distance import pdist, squareform
|
2250 |
+
|
2251 |
+
``x`` is an array of five points in three-dimensional space.
|
2252 |
+
|
2253 |
+
>>> x = np.array([[2, 0, 2], [2, 2, 3], [-2, 4, 5], [0, 1, 9], [2, 2, 4]])
|
2254 |
+
|
2255 |
+
``pdist(x)`` computes the Euclidean distances between each pair of
|
2256 |
+
points in ``x``. The distances are returned in a one-dimensional
|
2257 |
+
array with length ``5*(5 - 1)/2 = 10``.
|
2258 |
+
|
2259 |
+
>>> distvec = pdist(x)
|
2260 |
+
>>> distvec
|
2261 |
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2262 |
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2263 |
+
|
2264 |
+
``squareform(distvec)`` returns the 5x5 distance matrix.
|
2265 |
+
|
2266 |
+
>>> m = squareform(distvec)
|
2267 |
+
>>> m
|
2268 |
+
array([[0. , 2.23606798, 6.40312424, 7.34846923, 2.82842712],
|
2269 |
+
[2.23606798, 0. , 4.89897949, 6.40312424, 1. ],
|
2270 |
+
[6.40312424, 4.89897949, 0. , 5.38516481, 4.58257569],
|
2271 |
+
[7.34846923, 6.40312424, 5.38516481, 0. , 5.47722558],
|
2272 |
+
[2.82842712, 1. , 4.58257569, 5.47722558, 0. ]])
|
2273 |
+
|
2274 |
+
When given a square distance matrix ``m``, ``squareform(m)`` returns
|
2275 |
+
the one-dimensional condensed distance vector associated with the
|
2276 |
+
matrix. In this case, we recover ``distvec``.
|
2277 |
+
|
2278 |
+
>>> squareform(m)
|
2279 |
+
array([2.23606798, 6.40312424, 7.34846923, 2.82842712, 4.89897949,
|
2280 |
+
6.40312424, 1. , 5.38516481, 4.58257569, 5.47722558])
|
2281 |
+
"""
|
2282 |
+
X = np.ascontiguousarray(X)
|
2283 |
+
|
2284 |
+
s = X.shape
|
2285 |
+
|
2286 |
+
if force.lower() == 'tomatrix':
|
2287 |
+
if len(s) != 1:
|
2288 |
+
raise ValueError("Forcing 'tomatrix' but input X is not a "
|
2289 |
+
"distance vector.")
|
2290 |
+
elif force.lower() == 'tovector':
|
2291 |
+
if len(s) != 2:
|
2292 |
+
raise ValueError("Forcing 'tovector' but input X is not a "
|
2293 |
+
"distance matrix.")
|
2294 |
+
|
2295 |
+
# X = squareform(v)
|
2296 |
+
if len(s) == 1:
|
2297 |
+
if s[0] == 0:
|
2298 |
+
return np.zeros((1, 1), dtype=X.dtype)
|
2299 |
+
|
2300 |
+
# Grab the closest value to the square root of the number
|
2301 |
+
# of elements times 2 to see if the number of elements
|
2302 |
+
# is indeed a binomial coefficient.
|
2303 |
+
d = int(np.ceil(np.sqrt(s[0] * 2)))
|
2304 |
+
|
2305 |
+
# Check that v is of valid dimensions.
|
2306 |
+
if d * (d - 1) != s[0] * 2:
|
2307 |
+
raise ValueError('Incompatible vector size. It must be a binomial '
|
2308 |
+
'coefficient n choose 2 for some integer n >= 2.')
|
2309 |
+
|
2310 |
+
# Allocate memory for the distance matrix.
|
2311 |
+
M = np.zeros((d, d), dtype=X.dtype)
|
2312 |
+
|
2313 |
+
# Since the C code does not support striding using strides.
|
2314 |
+
# The dimensions are used instead.
|
2315 |
+
X = _copy_array_if_base_present(X)
|
2316 |
+
|
2317 |
+
# Fill in the values of the distance matrix.
|
2318 |
+
_distance_wrap.to_squareform_from_vector_wrap(M, X)
|
2319 |
+
|
2320 |
+
# Return the distance matrix.
|
2321 |
+
return M
|
2322 |
+
elif len(s) == 2:
|
2323 |
+
if s[0] != s[1]:
|
2324 |
+
raise ValueError('The matrix argument must be square.')
|
2325 |
+
if checks:
|
2326 |
+
is_valid_dm(X, throw=True, name='X')
|
2327 |
+
|
2328 |
+
# One-side of the dimensions is set here.
|
2329 |
+
d = s[0]
|
2330 |
+
|
2331 |
+
if d <= 1:
|
2332 |
+
return np.array([], dtype=X.dtype)
|
2333 |
+
|
2334 |
+
# Create a vector.
|
2335 |
+
v = np.zeros((d * (d - 1)) // 2, dtype=X.dtype)
|
2336 |
+
|
2337 |
+
# Since the C code does not support striding using strides.
|
2338 |
+
# The dimensions are used instead.
|
2339 |
+
X = _copy_array_if_base_present(X)
|
2340 |
+
|
2341 |
+
# Convert the vector to squareform.
|
2342 |
+
_distance_wrap.to_vector_from_squareform_wrap(X, v)
|
2343 |
+
return v
|
2344 |
+
else:
|
2345 |
+
raise ValueError(('The first argument must be one or two dimensional '
|
2346 |
+
'array. A %d-dimensional array is not '
|
2347 |
+
'permitted') % len(s))
|
2348 |
+
|
2349 |
+
|
2350 |
+
def is_valid_dm(D, tol=0.0, throw=False, name="D", warning=False):
|
2351 |
+
"""
|
2352 |
+
Return True if input array is a valid distance matrix.
|
2353 |
+
|
2354 |
+
Distance matrices must be 2-dimensional numpy arrays.
|
2355 |
+
They must have a zero-diagonal, and they must be symmetric.
|
2356 |
+
|
2357 |
+
Parameters
|
2358 |
+
----------
|
2359 |
+
D : array_like
|
2360 |
+
The candidate object to test for validity.
|
2361 |
+
tol : float, optional
|
2362 |
+
The distance matrix should be symmetric. `tol` is the maximum
|
2363 |
+
difference between entries ``ij`` and ``ji`` for the distance
|
2364 |
+
metric to be considered symmetric.
|
2365 |
+
throw : bool, optional
|
2366 |
+
An exception is thrown if the distance matrix passed is not valid.
|
2367 |
+
name : str, optional
|
2368 |
+
The name of the variable to checked. This is useful if
|
2369 |
+
throw is set to True so the offending variable can be identified
|
2370 |
+
in the exception message when an exception is thrown.
|
2371 |
+
warning : bool, optional
|
2372 |
+
Instead of throwing an exception, a warning message is
|
2373 |
+
raised.
|
2374 |
+
|
2375 |
+
Returns
|
2376 |
+
-------
|
2377 |
+
valid : bool
|
2378 |
+
True if the variable `D` passed is a valid distance matrix.
|
2379 |
+
|
2380 |
+
Notes
|
2381 |
+
-----
|
2382 |
+
Small numerical differences in `D` and `D.T` and non-zeroness of
|
2383 |
+
the diagonal are ignored if they are within the tolerance specified
|
2384 |
+
by `tol`.
|
2385 |
+
|
2386 |
+
Examples
|
2387 |
+
--------
|
2388 |
+
>>> import numpy as np
|
2389 |
+
>>> from scipy.spatial.distance import is_valid_dm
|
2390 |
+
|
2391 |
+
This matrix is a valid distance matrix.
|
2392 |
+
|
2393 |
+
>>> d = np.array([[0.0, 1.1, 1.2, 1.3],
|
2394 |
+
... [1.1, 0.0, 1.0, 1.4],
|
2395 |
+
... [1.2, 1.0, 0.0, 1.5],
|
2396 |
+
... [1.3, 1.4, 1.5, 0.0]])
|
2397 |
+
>>> is_valid_dm(d)
|
2398 |
+
True
|
2399 |
+
|
2400 |
+
In the following examples, the input is not a valid distance matrix.
|
2401 |
+
|
2402 |
+
Not square:
|
2403 |
+
|
2404 |
+
>>> is_valid_dm([[0, 2, 2], [2, 0, 2]])
|
2405 |
+
False
|
2406 |
+
|
2407 |
+
Nonzero diagonal element:
|
2408 |
+
|
2409 |
+
>>> is_valid_dm([[0, 1, 1], [1, 2, 3], [1, 3, 0]])
|
2410 |
+
False
|
2411 |
+
|
2412 |
+
Not symmetric:
|
2413 |
+
|
2414 |
+
>>> is_valid_dm([[0, 1, 3], [2, 0, 1], [3, 1, 0]])
|
2415 |
+
False
|
2416 |
+
|
2417 |
+
"""
|
2418 |
+
D = np.asarray(D, order='c')
|
2419 |
+
valid = True
|
2420 |
+
try:
|
2421 |
+
s = D.shape
|
2422 |
+
if len(D.shape) != 2:
|
2423 |
+
if name:
|
2424 |
+
raise ValueError(('Distance matrix \'%s\' must have shape=2 '
|
2425 |
+
'(i.e. be two-dimensional).') % name)
|
2426 |
+
else:
|
2427 |
+
raise ValueError('Distance matrix must have shape=2 (i.e. '
|
2428 |
+
'be two-dimensional).')
|
2429 |
+
if tol == 0.0:
|
2430 |
+
if not (D == D.T).all():
|
2431 |
+
if name:
|
2432 |
+
raise ValueError(('Distance matrix \'%s\' must be '
|
2433 |
+
'symmetric.') % name)
|
2434 |
+
else:
|
2435 |
+
raise ValueError('Distance matrix must be symmetric.')
|
2436 |
+
if not (D[range(0, s[0]), range(0, s[0])] == 0).all():
|
2437 |
+
if name:
|
2438 |
+
raise ValueError(('Distance matrix \'%s\' diagonal must '
|
2439 |
+
'be zero.') % name)
|
2440 |
+
else:
|
2441 |
+
raise ValueError('Distance matrix diagonal must be zero.')
|
2442 |
+
else:
|
2443 |
+
if not (D - D.T <= tol).all():
|
2444 |
+
if name:
|
2445 |
+
raise ValueError(f'Distance matrix \'{name}\' must be '
|
2446 |
+
f'symmetric within tolerance {tol:5.5f}.')
|
2447 |
+
else:
|
2448 |
+
raise ValueError('Distance matrix must be symmetric within '
|
2449 |
+
'tolerance %5.5f.' % tol)
|
2450 |
+
if not (D[range(0, s[0]), range(0, s[0])] <= tol).all():
|
2451 |
+
if name:
|
2452 |
+
raise ValueError(f'Distance matrix \'{name}\' diagonal must be '
|
2453 |
+
f'close to zero within tolerance {tol:5.5f}.')
|
2454 |
+
else:
|
2455 |
+
raise ValueError(('Distance matrix \'{}\' diagonal must be close '
|
2456 |
+
'to zero within tolerance {:5.5f}.').format(*tol))
|
2457 |
+
except Exception as e:
|
2458 |
+
if throw:
|
2459 |
+
raise
|
2460 |
+
if warning:
|
2461 |
+
warnings.warn(str(e), stacklevel=2)
|
2462 |
+
valid = False
|
2463 |
+
return valid
|
2464 |
+
|
2465 |
+
|
2466 |
+
def is_valid_y(y, warning=False, throw=False, name=None):
|
2467 |
+
"""
|
2468 |
+
Return True if the input array is a valid condensed distance matrix.
|
2469 |
+
|
2470 |
+
Condensed distance matrices must be 1-dimensional numpy arrays.
|
2471 |
+
Their length must be a binomial coefficient :math:`{n \\choose 2}`
|
2472 |
+
for some positive integer n.
|
2473 |
+
|
2474 |
+
Parameters
|
2475 |
+
----------
|
2476 |
+
y : array_like
|
2477 |
+
The condensed distance matrix.
|
2478 |
+
warning : bool, optional
|
2479 |
+
Invokes a warning if the variable passed is not a valid
|
2480 |
+
condensed distance matrix. The warning message explains why
|
2481 |
+
the distance matrix is not valid. `name` is used when
|
2482 |
+
referencing the offending variable.
|
2483 |
+
throw : bool, optional
|
2484 |
+
Throws an exception if the variable passed is not a valid
|
2485 |
+
condensed distance matrix.
|
2486 |
+
name : bool, optional
|
2487 |
+
Used when referencing the offending variable in the
|
2488 |
+
warning or exception message.
|
2489 |
+
|
2490 |
+
Returns
|
2491 |
+
-------
|
2492 |
+
bool
|
2493 |
+
True if the input array is a valid condensed distance matrix,
|
2494 |
+
False otherwise.
|
2495 |
+
|
2496 |
+
Examples
|
2497 |
+
--------
|
2498 |
+
>>> from scipy.spatial.distance import is_valid_y
|
2499 |
+
|
2500 |
+
This vector is a valid condensed distance matrix. The length is 6,
|
2501 |
+
which corresponds to ``n = 4``, since ``4*(4 - 1)/2`` is 6.
|
2502 |
+
|
2503 |
+
>>> v = [1.0, 1.2, 1.0, 0.5, 1.3, 0.9]
|
2504 |
+
>>> is_valid_y(v)
|
2505 |
+
True
|
2506 |
+
|
2507 |
+
An input vector with length, say, 7, is not a valid condensed distance
|
2508 |
+
matrix.
|
2509 |
+
|
2510 |
+
>>> is_valid_y([1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7])
|
2511 |
+
False
|
2512 |
+
|
2513 |
+
"""
|
2514 |
+
y = np.asarray(y, order='c')
|
2515 |
+
valid = True
|
2516 |
+
try:
|
2517 |
+
if len(y.shape) != 1:
|
2518 |
+
if name:
|
2519 |
+
raise ValueError(('Condensed distance matrix \'%s\' must '
|
2520 |
+
'have shape=1 (i.e. be one-dimensional).')
|
2521 |
+
% name)
|
2522 |
+
else:
|
2523 |
+
raise ValueError('Condensed distance matrix must have shape=1 '
|
2524 |
+
'(i.e. be one-dimensional).')
|
2525 |
+
n = y.shape[0]
|
2526 |
+
d = int(np.ceil(np.sqrt(n * 2)))
|
2527 |
+
if (d * (d - 1) / 2) != n:
|
2528 |
+
if name:
|
2529 |
+
raise ValueError(('Length n of condensed distance matrix '
|
2530 |
+
'\'%s\' must be a binomial coefficient, i.e.'
|
2531 |
+
'there must be a k such that '
|
2532 |
+
'(k \\choose 2)=n)!') % name)
|
2533 |
+
else:
|
2534 |
+
raise ValueError('Length n of condensed distance matrix must '
|
2535 |
+
'be a binomial coefficient, i.e. there must '
|
2536 |
+
'be a k such that (k \\choose 2)=n)!')
|
2537 |
+
except Exception as e:
|
2538 |
+
if throw:
|
2539 |
+
raise
|
2540 |
+
if warning:
|
2541 |
+
warnings.warn(str(e), stacklevel=2)
|
2542 |
+
valid = False
|
2543 |
+
return valid
|
2544 |
+
|
2545 |
+
|
2546 |
+
def num_obs_dm(d):
|
2547 |
+
"""
|
2548 |
+
Return the number of original observations that correspond to a
|
2549 |
+
square, redundant distance matrix.
|
2550 |
+
|
2551 |
+
Parameters
|
2552 |
+
----------
|
2553 |
+
d : array_like
|
2554 |
+
The target distance matrix.
|
2555 |
+
|
2556 |
+
Returns
|
2557 |
+
-------
|
2558 |
+
num_obs_dm : int
|
2559 |
+
The number of observations in the redundant distance matrix.
|
2560 |
+
|
2561 |
+
Examples
|
2562 |
+
--------
|
2563 |
+
Find the number of original observations corresponding
|
2564 |
+
to a square redundant distance matrix d.
|
2565 |
+
|
2566 |
+
>>> from scipy.spatial.distance import num_obs_dm
|
2567 |
+
>>> d = [[0, 100, 200], [100, 0, 150], [200, 150, 0]]
|
2568 |
+
>>> num_obs_dm(d)
|
2569 |
+
3
|
2570 |
+
"""
|
2571 |
+
d = np.asarray(d, order='c')
|
2572 |
+
is_valid_dm(d, tol=np.inf, throw=True, name='d')
|
2573 |
+
return d.shape[0]
|
2574 |
+
|
2575 |
+
|
2576 |
+
def num_obs_y(Y):
|
2577 |
+
"""
|
2578 |
+
Return the number of original observations that correspond to a
|
2579 |
+
condensed distance matrix.
|
2580 |
+
|
2581 |
+
Parameters
|
2582 |
+
----------
|
2583 |
+
Y : array_like
|
2584 |
+
Condensed distance matrix.
|
2585 |
+
|
2586 |
+
Returns
|
2587 |
+
-------
|
2588 |
+
n : int
|
2589 |
+
The number of observations in the condensed distance matrix `Y`.
|
2590 |
+
|
2591 |
+
Examples
|
2592 |
+
--------
|
2593 |
+
Find the number of original observations corresponding to a
|
2594 |
+
condensed distance matrix Y.
|
2595 |
+
|
2596 |
+
>>> from scipy.spatial.distance import num_obs_y
|
2597 |
+
>>> Y = [1, 2, 3.5, 7, 10, 4]
|
2598 |
+
>>> num_obs_y(Y)
|
2599 |
+
4
|
2600 |
+
"""
|
2601 |
+
Y = np.asarray(Y, order='c')
|
2602 |
+
is_valid_y(Y, throw=True, name='Y')
|
2603 |
+
k = Y.shape[0]
|
2604 |
+
if k == 0:
|
2605 |
+
raise ValueError("The number of observations cannot be determined on "
|
2606 |
+
"an empty distance matrix.")
|
2607 |
+
d = int(np.ceil(np.sqrt(k * 2)))
|
2608 |
+
if (d * (d - 1) / 2) != k:
|
2609 |
+
raise ValueError("Invalid condensed distance matrix passed. Must be "
|
2610 |
+
"some k where k=(n choose 2) for some n >= 2.")
|
2611 |
+
return d
|
2612 |
+
|
2613 |
+
|
2614 |
+
def _prepare_out_argument(out, dtype, expected_shape):
|
2615 |
+
if out is None:
|
2616 |
+
return np.empty(expected_shape, dtype=dtype)
|
2617 |
+
|
2618 |
+
if out.shape != expected_shape:
|
2619 |
+
raise ValueError("Output array has incorrect shape.")
|
2620 |
+
if not out.flags.c_contiguous:
|
2621 |
+
raise ValueError("Output array must be C-contiguous.")
|
2622 |
+
if out.dtype != np.float64:
|
2623 |
+
raise ValueError("Output array must be double type.")
|
2624 |
+
return out
|
2625 |
+
|
2626 |
+
|
2627 |
+
def _pdist_callable(X, *, out, metric, **kwargs):
|
2628 |
+
n = X.shape[0]
|
2629 |
+
out_size = (n * (n - 1)) // 2
|
2630 |
+
dm = _prepare_out_argument(out, np.float64, (out_size,))
|
2631 |
+
k = 0
|
2632 |
+
for i in range(X.shape[0] - 1):
|
2633 |
+
for j in range(i + 1, X.shape[0]):
|
2634 |
+
dm[k] = metric(X[i], X[j], **kwargs)
|
2635 |
+
k += 1
|
2636 |
+
return dm
|
2637 |
+
|
2638 |
+
|
2639 |
+
def _cdist_callable(XA, XB, *, out, metric, **kwargs):
|
2640 |
+
mA = XA.shape[0]
|
2641 |
+
mB = XB.shape[0]
|
2642 |
+
dm = _prepare_out_argument(out, np.float64, (mA, mB))
|
2643 |
+
for i in range(mA):
|
2644 |
+
for j in range(mB):
|
2645 |
+
dm[i, j] = metric(XA[i], XB[j], **kwargs)
|
2646 |
+
return dm
|
2647 |
+
|
2648 |
+
|
2649 |
+
def cdist(XA, XB, metric='euclidean', *, out=None, **kwargs):
|
2650 |
+
"""
|
2651 |
+
Compute distance between each pair of the two collections of inputs.
|
2652 |
+
|
2653 |
+
See Notes for common calling conventions.
|
2654 |
+
|
2655 |
+
Parameters
|
2656 |
+
----------
|
2657 |
+
XA : array_like
|
2658 |
+
An :math:`m_A` by :math:`n` array of :math:`m_A`
|
2659 |
+
original observations in an :math:`n`-dimensional space.
|
2660 |
+
Inputs are converted to float type.
|
2661 |
+
XB : array_like
|
2662 |
+
An :math:`m_B` by :math:`n` array of :math:`m_B`
|
2663 |
+
original observations in an :math:`n`-dimensional space.
|
2664 |
+
Inputs are converted to float type.
|
2665 |
+
metric : str or callable, optional
|
2666 |
+
The distance metric to use. If a string, the distance function can be
|
2667 |
+
'braycurtis', 'canberra', 'chebyshev', 'cityblock', 'correlation',
|
2668 |
+
'cosine', 'dice', 'euclidean', 'hamming', 'jaccard', 'jensenshannon',
|
2669 |
+
'kulczynski1', 'mahalanobis', 'matching', 'minkowski',
|
2670 |
+
'rogerstanimoto', 'russellrao', 'seuclidean', 'sokalmichener',
|
2671 |
+
'sokalsneath', 'sqeuclidean', 'yule'.
|
2672 |
+
**kwargs : dict, optional
|
2673 |
+
Extra arguments to `metric`: refer to each metric documentation for a
|
2674 |
+
list of all possible arguments.
|
2675 |
+
|
2676 |
+
Some possible arguments:
|
2677 |
+
|
2678 |
+
p : scalar
|
2679 |
+
The p-norm to apply for Minkowski, weighted and unweighted.
|
2680 |
+
Default: 2.
|
2681 |
+
|
2682 |
+
w : array_like
|
2683 |
+
The weight vector for metrics that support weights (e.g., Minkowski).
|
2684 |
+
|
2685 |
+
V : array_like
|
2686 |
+
The variance vector for standardized Euclidean.
|
2687 |
+
Default: var(vstack([XA, XB]), axis=0, ddof=1)
|
2688 |
+
|
2689 |
+
VI : array_like
|
2690 |
+
The inverse of the covariance matrix for Mahalanobis.
|
2691 |
+
Default: inv(cov(vstack([XA, XB].T))).T
|
2692 |
+
|
2693 |
+
out : ndarray
|
2694 |
+
The output array
|
2695 |
+
If not None, the distance matrix Y is stored in this array.
|
2696 |
+
|
2697 |
+
Returns
|
2698 |
+
-------
|
2699 |
+
Y : ndarray
|
2700 |
+
A :math:`m_A` by :math:`m_B` distance matrix is returned.
|
2701 |
+
For each :math:`i` and :math:`j`, the metric
|
2702 |
+
``dist(u=XA[i], v=XB[j])`` is computed and stored in the
|
2703 |
+
:math:`ij` th entry.
|
2704 |
+
|
2705 |
+
Raises
|
2706 |
+
------
|
2707 |
+
ValueError
|
2708 |
+
An exception is thrown if `XA` and `XB` do not have
|
2709 |
+
the same number of columns.
|
2710 |
+
|
2711 |
+
Notes
|
2712 |
+
-----
|
2713 |
+
The following are common calling conventions:
|
2714 |
+
|
2715 |
+
1. ``Y = cdist(XA, XB, 'euclidean')``
|
2716 |
+
|
2717 |
+
Computes the distance between :math:`m` points using
|
2718 |
+
Euclidean distance (2-norm) as the distance metric between the
|
2719 |
+
points. The points are arranged as :math:`m`
|
2720 |
+
:math:`n`-dimensional row vectors in the matrix X.
|
2721 |
+
|
2722 |
+
2. ``Y = cdist(XA, XB, 'minkowski', p=2.)``
|
2723 |
+
|
2724 |
+
Computes the distances using the Minkowski distance
|
2725 |
+
:math:`\\|u-v\\|_p` (:math:`p`-norm) where :math:`p > 0` (note
|
2726 |
+
that this is only a quasi-metric if :math:`0 < p < 1`).
|
2727 |
+
|
2728 |
+
3. ``Y = cdist(XA, XB, 'cityblock')``
|
2729 |
+
|
2730 |
+
Computes the city block or Manhattan distance between the
|
2731 |
+
points.
|
2732 |
+
|
2733 |
+
4. ``Y = cdist(XA, XB, 'seuclidean', V=None)``
|
2734 |
+
|
2735 |
+
Computes the standardized Euclidean distance. The standardized
|
2736 |
+
Euclidean distance between two n-vectors ``u`` and ``v`` is
|
2737 |
+
|
2738 |
+
.. math::
|
2739 |
+
|
2740 |
+
\\sqrt{\\sum {(u_i-v_i)^2 / V[x_i]}}.
|
2741 |
+
|
2742 |
+
V is the variance vector; V[i] is the variance computed over all
|
2743 |
+
the i'th components of the points. If not passed, it is
|
2744 |
+
automatically computed.
|
2745 |
+
|
2746 |
+
5. ``Y = cdist(XA, XB, 'sqeuclidean')``
|
2747 |
+
|
2748 |
+
Computes the squared Euclidean distance :math:`\\|u-v\\|_2^2` between
|
2749 |
+
the vectors.
|
2750 |
+
|
2751 |
+
6. ``Y = cdist(XA, XB, 'cosine')``
|
2752 |
+
|
2753 |
+
Computes the cosine distance between vectors u and v,
|
2754 |
+
|
2755 |
+
.. math::
|
2756 |
+
|
2757 |
+
1 - \\frac{u \\cdot v}
|
2758 |
+
{{\\|u\\|}_2 {\\|v\\|}_2}
|
2759 |
+
|
2760 |
+
where :math:`\\|*\\|_2` is the 2-norm of its argument ``*``, and
|
2761 |
+
:math:`u \\cdot v` is the dot product of :math:`u` and :math:`v`.
|
2762 |
+
|
2763 |
+
7. ``Y = cdist(XA, XB, 'correlation')``
|
2764 |
+
|
2765 |
+
Computes the correlation distance between vectors u and v. This is
|
2766 |
+
|
2767 |
+
.. math::
|
2768 |
+
|
2769 |
+
1 - \\frac{(u - \\bar{u}) \\cdot (v - \\bar{v})}
|
2770 |
+
{{\\|(u - \\bar{u})\\|}_2 {\\|(v - \\bar{v})\\|}_2}
|
2771 |
+
|
2772 |
+
where :math:`\\bar{v}` is the mean of the elements of vector v,
|
2773 |
+
and :math:`x \\cdot y` is the dot product of :math:`x` and :math:`y`.
|
2774 |
+
|
2775 |
+
|
2776 |
+
8. ``Y = cdist(XA, XB, 'hamming')``
|
2777 |
+
|
2778 |
+
Computes the normalized Hamming distance, or the proportion of
|
2779 |
+
those vector elements between two n-vectors ``u`` and ``v``
|
2780 |
+
which disagree. To save memory, the matrix ``X`` can be of type
|
2781 |
+
boolean.
|
2782 |
+
|
2783 |
+
9. ``Y = cdist(XA, XB, 'jaccard')``
|
2784 |
+
|
2785 |
+
Computes the Jaccard distance between the points. Given two
|
2786 |
+
vectors, ``u`` and ``v``, the Jaccard distance is the
|
2787 |
+
proportion of those elements ``u[i]`` and ``v[i]`` that
|
2788 |
+
disagree where at least one of them is non-zero.
|
2789 |
+
|
2790 |
+
10. ``Y = cdist(XA, XB, 'jensenshannon')``
|
2791 |
+
|
2792 |
+
Computes the Jensen-Shannon distance between two probability arrays.
|
2793 |
+
Given two probability vectors, :math:`p` and :math:`q`, the
|
2794 |
+
Jensen-Shannon distance is
|
2795 |
+
|
2796 |
+
.. math::
|
2797 |
+
|
2798 |
+
\\sqrt{\\frac{D(p \\parallel m) + D(q \\parallel m)}{2}}
|
2799 |
+
|
2800 |
+
where :math:`m` is the pointwise mean of :math:`p` and :math:`q`
|
2801 |
+
and :math:`D` is the Kullback-Leibler divergence.
|
2802 |
+
|
2803 |
+
11. ``Y = cdist(XA, XB, 'chebyshev')``
|
2804 |
+
|
2805 |
+
Computes the Chebyshev distance between the points. The
|
2806 |
+
Chebyshev distance between two n-vectors ``u`` and ``v`` is the
|
2807 |
+
maximum norm-1 distance between their respective elements. More
|
2808 |
+
precisely, the distance is given by
|
2809 |
+
|
2810 |
+
.. math::
|
2811 |
+
|
2812 |
+
d(u,v) = \\max_i {|u_i-v_i|}.
|
2813 |
+
|
2814 |
+
12. ``Y = cdist(XA, XB, 'canberra')``
|
2815 |
+
|
2816 |
+
Computes the Canberra distance between the points. The
|
2817 |
+
Canberra distance between two points ``u`` and ``v`` is
|
2818 |
+
|
2819 |
+
.. math::
|
2820 |
+
|
2821 |
+
d(u,v) = \\sum_i \\frac{|u_i-v_i|}
|
2822 |
+
{|u_i|+|v_i|}.
|
2823 |
+
|
2824 |
+
13. ``Y = cdist(XA, XB, 'braycurtis')``
|
2825 |
+
|
2826 |
+
Computes the Bray-Curtis distance between the points. The
|
2827 |
+
Bray-Curtis distance between two points ``u`` and ``v`` is
|
2828 |
+
|
2829 |
+
|
2830 |
+
.. math::
|
2831 |
+
|
2832 |
+
d(u,v) = \\frac{\\sum_i (|u_i-v_i|)}
|
2833 |
+
{\\sum_i (|u_i+v_i|)}
|
2834 |
+
|
2835 |
+
14. ``Y = cdist(XA, XB, 'mahalanobis', VI=None)``
|
2836 |
+
|
2837 |
+
Computes the Mahalanobis distance between the points. The
|
2838 |
+
Mahalanobis distance between two points ``u`` and ``v`` is
|
2839 |
+
:math:`\\sqrt{(u-v)(1/V)(u-v)^T}` where :math:`(1/V)` (the ``VI``
|
2840 |
+
variable) is the inverse covariance. If ``VI`` is not None,
|
2841 |
+
``VI`` will be used as the inverse covariance matrix.
|
2842 |
+
|
2843 |
+
15. ``Y = cdist(XA, XB, 'yule')``
|
2844 |
+
|
2845 |
+
Computes the Yule distance between the boolean
|
2846 |
+
vectors. (see `yule` function documentation)
|
2847 |
+
|
2848 |
+
16. ``Y = cdist(XA, XB, 'matching')``
|
2849 |
+
|
2850 |
+
Synonym for 'hamming'.
|
2851 |
+
|
2852 |
+
17. ``Y = cdist(XA, XB, 'dice')``
|
2853 |
+
|
2854 |
+
Computes the Dice distance between the boolean vectors. (see
|
2855 |
+
`dice` function documentation)
|
2856 |
+
|
2857 |
+
18. ``Y = cdist(XA, XB, 'kulczynski1')``
|
2858 |
+
|
2859 |
+
Computes the kulczynski distance between the boolean
|
2860 |
+
vectors. (see `kulczynski1` function documentation)
|
2861 |
+
|
2862 |
+
19. ``Y = cdist(XA, XB, 'rogerstanimoto')``
|
2863 |
+
|
2864 |
+
Computes the Rogers-Tanimoto distance between the boolean
|
2865 |
+
vectors. (see `rogerstanimoto` function documentation)
|
2866 |
+
|
2867 |
+
20. ``Y = cdist(XA, XB, 'russellrao')``
|
2868 |
+
|
2869 |
+
Computes the Russell-Rao distance between the boolean
|
2870 |
+
vectors. (see `russellrao` function documentation)
|
2871 |
+
|
2872 |
+
21. ``Y = cdist(XA, XB, 'sokalmichener')``
|
2873 |
+
|
2874 |
+
Computes the Sokal-Michener distance between the boolean
|
2875 |
+
vectors. (see `sokalmichener` function documentation)
|
2876 |
+
|
2877 |
+
22. ``Y = cdist(XA, XB, 'sokalsneath')``
|
2878 |
+
|
2879 |
+
Computes the Sokal-Sneath distance between the vectors. (see
|
2880 |
+
`sokalsneath` function documentation)
|
2881 |
+
|
2882 |
+
23. ``Y = cdist(XA, XB, f)``
|
2883 |
+
|
2884 |
+
Computes the distance between all pairs of vectors in X
|
2885 |
+
using the user supplied 2-arity function f. For example,
|
2886 |
+
Euclidean distance between the vectors could be computed
|
2887 |
+
as follows::
|
2888 |
+
|
2889 |
+
dm = cdist(XA, XB, lambda u, v: np.sqrt(((u-v)**2).sum()))
|
2890 |
+
|
2891 |
+
Note that you should avoid passing a reference to one of
|
2892 |
+
the distance functions defined in this library. For example,::
|
2893 |
+
|
2894 |
+
dm = cdist(XA, XB, sokalsneath)
|
2895 |
+
|
2896 |
+
would calculate the pair-wise distances between the vectors in
|
2897 |
+
X using the Python function `sokalsneath`. This would result in
|
2898 |
+
sokalsneath being called :math:`{n \\choose 2}` times, which
|
2899 |
+
is inefficient. Instead, the optimized C version is more
|
2900 |
+
efficient, and we call it using the following syntax::
|
2901 |
+
|
2902 |
+
dm = cdist(XA, XB, 'sokalsneath')
|
2903 |
+
|
2904 |
+
Examples
|
2905 |
+
--------
|
2906 |
+
Find the Euclidean distances between four 2-D coordinates:
|
2907 |
+
|
2908 |
+
>>> from scipy.spatial import distance
|
2909 |
+
>>> import numpy as np
|
2910 |
+
>>> coords = [(35.0456, -85.2672),
|
2911 |
+
... (35.1174, -89.9711),
|
2912 |
+
... (35.9728, -83.9422),
|
2913 |
+
... (36.1667, -86.7833)]
|
2914 |
+
>>> distance.cdist(coords, coords, 'euclidean')
|
2915 |
+
array([[ 0. , 4.7044, 1.6172, 1.8856],
|
2916 |
+
[ 4.7044, 0. , 6.0893, 3.3561],
|
2917 |
+
[ 1.6172, 6.0893, 0. , 2.8477],
|
2918 |
+
[ 1.8856, 3.3561, 2.8477, 0. ]])
|
2919 |
+
|
2920 |
+
|
2921 |
+
Find the Manhattan distance from a 3-D point to the corners of the unit
|
2922 |
+
cube:
|
2923 |
+
|
2924 |
+
>>> a = np.array([[0, 0, 0],
|
2925 |
+
... [0, 0, 1],
|
2926 |
+
... [0, 1, 0],
|
2927 |
+
... [0, 1, 1],
|
2928 |
+
... [1, 0, 0],
|
2929 |
+
... [1, 0, 1],
|
2930 |
+
... [1, 1, 0],
|
2931 |
+
... [1, 1, 1]])
|
2932 |
+
>>> b = np.array([[ 0.1, 0.2, 0.4]])
|
2933 |
+
>>> distance.cdist(a, b, 'cityblock')
|
2934 |
+
array([[ 0.7],
|
2935 |
+
[ 0.9],
|
2936 |
+
[ 1.3],
|
2937 |
+
[ 1.5],
|
2938 |
+
[ 1.5],
|
2939 |
+
[ 1.7],
|
2940 |
+
[ 2.1],
|
2941 |
+
[ 2.3]])
|
2942 |
+
|
2943 |
+
"""
|
2944 |
+
# You can also call this as:
|
2945 |
+
# Y = cdist(XA, XB, 'test_abc')
|
2946 |
+
# where 'abc' is the metric being tested. This computes the distance
|
2947 |
+
# between all pairs of vectors in XA and XB using the distance metric 'abc'
|
2948 |
+
# but with a more succinct, verifiable, but less efficient implementation.
|
2949 |
+
|
2950 |
+
XA = np.asarray(XA)
|
2951 |
+
XB = np.asarray(XB)
|
2952 |
+
|
2953 |
+
s = XA.shape
|
2954 |
+
sB = XB.shape
|
2955 |
+
|
2956 |
+
if len(s) != 2:
|
2957 |
+
raise ValueError('XA must be a 2-dimensional array.')
|
2958 |
+
if len(sB) != 2:
|
2959 |
+
raise ValueError('XB must be a 2-dimensional array.')
|
2960 |
+
if s[1] != sB[1]:
|
2961 |
+
raise ValueError('XA and XB must have the same number of columns '
|
2962 |
+
'(i.e. feature dimension.)')
|
2963 |
+
|
2964 |
+
mA = s[0]
|
2965 |
+
mB = sB[0]
|
2966 |
+
n = s[1]
|
2967 |
+
|
2968 |
+
if callable(metric):
|
2969 |
+
mstr = getattr(metric, '__name__', 'Unknown')
|
2970 |
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2971 |
+
if metric_info is not None:
|
2972 |
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
2973 |
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
2974 |
+
return _cdist_callable(XA, XB, metric=metric, out=out, **kwargs)
|
2975 |
+
elif isinstance(metric, str):
|
2976 |
+
mstr = metric.lower()
|
2977 |
+
metric_info = _METRIC_ALIAS.get(mstr, None)
|
2978 |
+
if metric_info is not None:
|
2979 |
+
cdist_fn = metric_info.cdist_func
|
2980 |
+
return cdist_fn(XA, XB, out=out, **kwargs)
|
2981 |
+
elif mstr.startswith("test_"):
|
2982 |
+
metric_info = _TEST_METRICS.get(mstr, None)
|
2983 |
+
if metric_info is None:
|
2984 |
+
raise ValueError(f'Unknown "Test" Distance Metric: {mstr[5:]}')
|
2985 |
+
XA, XB, typ, kwargs = _validate_cdist_input(
|
2986 |
+
XA, XB, mA, mB, n, metric_info, **kwargs)
|
2987 |
+
return _cdist_callable(
|
2988 |
+
XA, XB, metric=metric_info.dist_func, out=out, **kwargs)
|
2989 |
+
else:
|
2990 |
+
raise ValueError('Unknown Distance Metric: %s' % mstr)
|
2991 |
+
else:
|
2992 |
+
raise TypeError('2nd argument metric must be a string identifier '
|
2993 |
+
'or a function.')
|
venv/lib/python3.10/site-packages/scipy/spatial/distance.pyi
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
from typing import (overload, Any, SupportsFloat, Literal, Protocol, SupportsIndex)
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
from numpy.typing import ArrayLike, NDArray
|
6 |
+
|
7 |
+
# Anything that can be parsed by `np.float64.__init__` and is thus
|
8 |
+
# compatible with `ndarray.__setitem__` (for a float64 array)
|
9 |
+
_FloatValue = None | str | bytes | SupportsFloat | SupportsIndex
|
10 |
+
|
11 |
+
class _MetricCallback1(Protocol):
|
12 |
+
def __call__(
|
13 |
+
self, __XA: NDArray[Any], __XB: NDArray[Any]
|
14 |
+
) -> _FloatValue: ...
|
15 |
+
|
16 |
+
class _MetricCallback2(Protocol):
|
17 |
+
def __call__(
|
18 |
+
self, __XA: NDArray[Any], __XB: NDArray[Any], **kwargs: Any
|
19 |
+
) -> _FloatValue: ...
|
20 |
+
|
21 |
+
# TODO: Use a single protocol with a parameter specification variable
|
22 |
+
# once available (PEP 612)
|
23 |
+
_MetricCallback = _MetricCallback1 | _MetricCallback2
|
24 |
+
|
25 |
+
_MetricKind = Literal[
|
26 |
+
'braycurtis',
|
27 |
+
'canberra',
|
28 |
+
'chebychev', 'chebyshev', 'cheby', 'cheb', 'ch',
|
29 |
+
'cityblock', 'cblock', 'cb', 'c',
|
30 |
+
'correlation', 'co',
|
31 |
+
'cosine', 'cos',
|
32 |
+
'dice',
|
33 |
+
'euclidean', 'euclid', 'eu', 'e',
|
34 |
+
'hamming', 'hamm', 'ha', 'h',
|
35 |
+
'minkowski', 'mi', 'm', 'pnorm',
|
36 |
+
'jaccard', 'jacc', 'ja', 'j',
|
37 |
+
'jensenshannon', 'js',
|
38 |
+
'kulczynski1',
|
39 |
+
'mahalanobis', 'mahal', 'mah',
|
40 |
+
'rogerstanimoto',
|
41 |
+
'russellrao',
|
42 |
+
'seuclidean', 'se', 's',
|
43 |
+
'sokalmichener',
|
44 |
+
'sokalsneath',
|
45 |
+
'sqeuclidean', 'sqe', 'sqeuclid',
|
46 |
+
'yule',
|
47 |
+
]
|
48 |
+
|
49 |
+
# Function annotations
|
50 |
+
|
51 |
+
def braycurtis(
|
52 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
53 |
+
) -> np.float64: ...
|
54 |
+
|
55 |
+
def canberra(
|
56 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
57 |
+
) -> np.float64: ...
|
58 |
+
|
59 |
+
# TODO: Add `metric`-specific overloads
|
60 |
+
# Returns a float64 or float128 array, depending on the input dtype
|
61 |
+
@overload
|
62 |
+
def cdist(
|
63 |
+
XA: ArrayLike,
|
64 |
+
XB: ArrayLike,
|
65 |
+
metric: _MetricKind = ...,
|
66 |
+
*,
|
67 |
+
out: None | NDArray[np.floating[Any]] = ...,
|
68 |
+
p: float = ...,
|
69 |
+
w: ArrayLike | None = ...,
|
70 |
+
V: ArrayLike | None = ...,
|
71 |
+
VI: ArrayLike | None = ...,
|
72 |
+
) -> NDArray[np.floating[Any]]: ...
|
73 |
+
@overload
|
74 |
+
def cdist(
|
75 |
+
XA: ArrayLike,
|
76 |
+
XB: ArrayLike,
|
77 |
+
metric: _MetricCallback,
|
78 |
+
*,
|
79 |
+
out: None | NDArray[np.floating[Any]] = ...,
|
80 |
+
**kwargs: Any,
|
81 |
+
) -> NDArray[np.floating[Any]]: ...
|
82 |
+
|
83 |
+
# TODO: Wait for dtype support; the return type is
|
84 |
+
# dependent on the input arrays dtype
|
85 |
+
def chebyshev(
|
86 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
87 |
+
) -> Any: ...
|
88 |
+
|
89 |
+
# TODO: Wait for dtype support; the return type is
|
90 |
+
# dependent on the input arrays dtype
|
91 |
+
def cityblock(
|
92 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
93 |
+
) -> Any: ...
|
94 |
+
|
95 |
+
def correlation(
|
96 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ..., centered: bool = ...
|
97 |
+
) -> np.float64: ...
|
98 |
+
|
99 |
+
def cosine(
|
100 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
101 |
+
) -> np.float64: ...
|
102 |
+
|
103 |
+
def dice(
|
104 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
105 |
+
) -> float: ...
|
106 |
+
|
107 |
+
def directed_hausdorff(
|
108 |
+
u: ArrayLike, v: ArrayLike, seed: int | None = ...
|
109 |
+
) -> tuple[float, int, int]: ...
|
110 |
+
|
111 |
+
def euclidean(
|
112 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
113 |
+
) -> float: ...
|
114 |
+
|
115 |
+
def hamming(
|
116 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
117 |
+
) -> np.float64: ...
|
118 |
+
|
119 |
+
def is_valid_dm(
|
120 |
+
D: ArrayLike,
|
121 |
+
tol: float = ...,
|
122 |
+
throw: bool = ...,
|
123 |
+
name: str | None = ...,
|
124 |
+
warning: bool = ...,
|
125 |
+
) -> bool: ...
|
126 |
+
|
127 |
+
def is_valid_y(
|
128 |
+
y: ArrayLike,
|
129 |
+
warning: bool = ...,
|
130 |
+
throw: bool = ...,
|
131 |
+
name: str | None = ...,
|
132 |
+
) -> bool: ...
|
133 |
+
|
134 |
+
def jaccard(
|
135 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
136 |
+
) -> np.float64: ...
|
137 |
+
|
138 |
+
def jensenshannon(
|
139 |
+
p: ArrayLike, q: ArrayLike, base: float | None = ...
|
140 |
+
) -> np.float64: ...
|
141 |
+
|
142 |
+
def kulczynski1(
|
143 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
144 |
+
) -> np.float64: ...
|
145 |
+
|
146 |
+
def mahalanobis(
|
147 |
+
u: ArrayLike, v: ArrayLike, VI: ArrayLike
|
148 |
+
) -> np.float64: ...
|
149 |
+
|
150 |
+
def minkowski(
|
151 |
+
u: ArrayLike, v: ArrayLike, p: float = ..., w: ArrayLike | None = ...
|
152 |
+
) -> float: ...
|
153 |
+
|
154 |
+
def num_obs_dm(d: ArrayLike) -> int: ...
|
155 |
+
|
156 |
+
def num_obs_y(Y: ArrayLike) -> int: ...
|
157 |
+
|
158 |
+
# TODO: Add `metric`-specific overloads
|
159 |
+
@overload
|
160 |
+
def pdist(
|
161 |
+
X: ArrayLike,
|
162 |
+
metric: _MetricKind = ...,
|
163 |
+
*,
|
164 |
+
out: None | NDArray[np.floating[Any]] = ...,
|
165 |
+
p: float = ...,
|
166 |
+
w: ArrayLike | None = ...,
|
167 |
+
V: ArrayLike | None = ...,
|
168 |
+
VI: ArrayLike | None = ...,
|
169 |
+
) -> NDArray[np.floating[Any]]: ...
|
170 |
+
@overload
|
171 |
+
def pdist(
|
172 |
+
X: ArrayLike,
|
173 |
+
metric: _MetricCallback,
|
174 |
+
*,
|
175 |
+
out: None | NDArray[np.floating[Any]] = ...,
|
176 |
+
**kwargs: Any,
|
177 |
+
) -> NDArray[np.floating[Any]]: ...
|
178 |
+
|
179 |
+
def seuclidean(
|
180 |
+
u: ArrayLike, v: ArrayLike, V: ArrayLike
|
181 |
+
) -> float: ...
|
182 |
+
|
183 |
+
def sokalmichener(
|
184 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
185 |
+
) -> float: ...
|
186 |
+
|
187 |
+
def sokalsneath(
|
188 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
189 |
+
) -> np.float64: ...
|
190 |
+
|
191 |
+
def sqeuclidean(
|
192 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
193 |
+
) -> np.float64: ...
|
194 |
+
|
195 |
+
def squareform(
|
196 |
+
X: ArrayLike,
|
197 |
+
force: Literal["no", "tomatrix", "tovector"] = ...,
|
198 |
+
checks: bool = ...,
|
199 |
+
) -> NDArray[Any]: ...
|
200 |
+
|
201 |
+
def rogerstanimoto(
|
202 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
203 |
+
) -> float: ...
|
204 |
+
|
205 |
+
def russellrao(
|
206 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
207 |
+
) -> float: ...
|
208 |
+
|
209 |
+
def yule(
|
210 |
+
u: ArrayLike, v: ArrayLike, w: ArrayLike | None = ...
|
211 |
+
) -> float: ...
|
venv/lib/python3.10/site-packages/scipy/spatial/kdtree.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.spatial` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'KDTree',
|
10 |
+
'Rectangle',
|
11 |
+
'cKDTree',
|
12 |
+
'cKDTreeNode',
|
13 |
+
'distance_matrix',
|
14 |
+
'minkowski_distance',
|
15 |
+
'minkowski_distance_p',
|
16 |
+
]
|
17 |
+
|
18 |
+
|
19 |
+
def __dir__():
|
20 |
+
return __all__
|
21 |
+
|
22 |
+
|
23 |
+
def __getattr__(name):
|
24 |
+
return _sub_module_deprecation(sub_package="spatial", module="kdtree",
|
25 |
+
private_modules=["_kdtree"], all=__all__,
|
26 |
+
attribute=name)
|
venv/lib/python3.10/site-packages/scipy/spatial/qhull.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# This file is not meant for public use and will be removed in SciPy v2.0.0.
|
2 |
+
# Use the `scipy.spatial` namespace for importing the functions
|
3 |
+
# included below.
|
4 |
+
|
5 |
+
from scipy._lib.deprecation import _sub_module_deprecation
|
6 |
+
|
7 |
+
|
8 |
+
__all__ = [ # noqa: F822
|
9 |
+
'ConvexHull',
|
10 |
+
'Delaunay',
|
11 |
+
'HalfspaceIntersection',
|
12 |
+
'QhullError',
|
13 |
+
'Voronoi',
|
14 |
+
'tsearch',
|
15 |
+
]
|
16 |
+
|
17 |
+
|
18 |
+
def __dir__():
|
19 |
+
return __all__
|
20 |
+
|
21 |
+
|
22 |
+
def __getattr__(name):
|
23 |
+
return _sub_module_deprecation(sub_package="spatial", module="qhull",
|
24 |
+
private_modules=["_qhull"], all=__all__,
|
25 |
+
attribute=name)
|
venv/lib/python3.10/site-packages/scipy/spatial/qhull_src/COPYING.txt
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Qhull, Copyright (c) 1993-2019
|
2 |
+
|
3 |
+
C.B. Barber
|
4 |
+
Arlington, MA
|
5 |
+
|
6 |
+
and
|
7 |
+
|
8 |
+
The National Science and Technology Research Center for
|
9 |
+
Computation and Visualization of Geometric Structures
|
10 |
+
(The Geometry Center)
|
11 |
+
University of Minnesota
|
12 |
+
|
13 |
+
email: [email protected]
|
14 |
+
|
15 |
+
This software includes Qhull from C.B. Barber and The Geometry Center.
|
16 |
+
Qhull is copyrighted as noted above. Qhull is free software and may
|
17 |
+
be obtained via http from www.qhull.org. It may be freely copied, modified,
|
18 |
+
and redistributed under the following conditions:
|
19 |
+
|
20 |
+
1. All copyright notices must remain intact in all files.
|
21 |
+
|
22 |
+
2. A copy of this text file must be distributed along with any copies
|
23 |
+
of Qhull that you redistribute; this includes copies that you have
|
24 |
+
modified, or copies of programs or other software products that
|
25 |
+
include Qhull.
|
26 |
+
|
27 |
+
3. If you modify Qhull, you must include a notice giving the
|
28 |
+
name of the person performing the modification, the date of
|
29 |
+
modification, and the reason for such modification.
|
30 |
+
|
31 |
+
4. When distributing modified versions of Qhull, or other software
|
32 |
+
products that include Qhull, you must provide notice that the original
|
33 |
+
source code may be obtained as noted above.
|
34 |
+
|
35 |
+
5. There is no warranty or other guarantee of fitness for Qhull, it is
|
36 |
+
provided solely "as is". Bug reports or fixes may be sent to
|
37 |
+
[email protected]; the authors may or may not act on them as
|
38 |
+
they desire.
|
venv/lib/python3.10/site-packages/scipy/spatial/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/scipy/spatial/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|