Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_bunch.py +67 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_cython_blas.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_cython_blas.pxd +41 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_fast_dict.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_heap.pxd +14 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_mask.py +63 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_mocking.py +400 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_openmp_helpers.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_plotting.py +98 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_random.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_response.py +298 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_seq_dataset.pxd +104 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_set_output.py +441 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_sorting.pxd +9 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_tags.py +68 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_testing.py +1169 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_typedefs.pxd +29 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_vector_sentinel.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_weight_vector.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/_weight_vector.pxd +48 -0
- venv/lib/python3.10/site-packages/sklearn/utils/class_weight.py +224 -0
- venv/lib/python3.10/site-packages/sklearn/utils/deprecation.py +116 -0
- venv/lib/python3.10/site-packages/sklearn/utils/extmath.py +1284 -0
- venv/lib/python3.10/site-packages/sklearn/utils/optimize.py +302 -0
- venv/lib/python3.10/site-packages/sklearn/utils/parallel.py +129 -0
- venv/lib/python3.10/site-packages/sklearn/utils/sparsefuncs.py +745 -0
- venv/lib/python3.10/site-packages/sklearn/utils/sparsefuncs_fast.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/stats.py +69 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_bunch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_checks.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_multiclass.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_optimize.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_param_validation.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_plotting.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_seq_dataset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_show_versions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_stats.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_weight_vector.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/test_arpack.py +16 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/test_array_api.py +331 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/test_arrayfuncs.py +38 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/test_bunch.py +32 -0
- venv/lib/python3.10/site-packages/sklearn/utils/tests/test_class_weight.py +316 -0
ckpts/universal/global_step40/zero/10.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bae3355ac505dba276fbc9ef1a8d8a4a431a137ebb360756af8d63420c8d51f2
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cadac90d4f41233545e34e5aa5b51138130b7cd0ade41055f9eb78dfffab118d
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4e379e326b77e978f944bd8a16ac6eabfab08f8e5c84039959e2281e0f6f331f
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/19.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:10f2fae360748617999505b629e700527fd4f54adec3a0a0d65e18d641104e1c
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33d6a07534b7dcdeb437b1000f825147b2ad45d03b9447841dad2ec134b17d00
|
3 |
+
size 50332828
|
ckpts/universal/global_step40/zero/21.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c2062d08884b7b2cbf5001d295a8965e9df7e168728992285576d6a82f2934cb
|
3 |
+
size 50332843
|
venv/lib/python3.10/site-packages/sklearn/utils/_bunch.py
ADDED
@@ -0,0 +1,67 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
|
4 |
+
class Bunch(dict):
|
5 |
+
"""Container object exposing keys as attributes.
|
6 |
+
|
7 |
+
Bunch objects are sometimes used as an output for functions and methods.
|
8 |
+
They extend dictionaries by enabling values to be accessed by key,
|
9 |
+
`bunch["value_key"]`, or by an attribute, `bunch.value_key`.
|
10 |
+
|
11 |
+
Examples
|
12 |
+
--------
|
13 |
+
>>> from sklearn.utils import Bunch
|
14 |
+
>>> b = Bunch(a=1, b=2)
|
15 |
+
>>> b['b']
|
16 |
+
2
|
17 |
+
>>> b.b
|
18 |
+
2
|
19 |
+
>>> b.a = 3
|
20 |
+
>>> b['a']
|
21 |
+
3
|
22 |
+
>>> b.c = 6
|
23 |
+
>>> b['c']
|
24 |
+
6
|
25 |
+
"""
|
26 |
+
|
27 |
+
def __init__(self, **kwargs):
|
28 |
+
super().__init__(kwargs)
|
29 |
+
|
30 |
+
# Map from deprecated key to warning message
|
31 |
+
self.__dict__["_deprecated_key_to_warnings"] = {}
|
32 |
+
|
33 |
+
def __getitem__(self, key):
|
34 |
+
if key in self.__dict__.get("_deprecated_key_to_warnings", {}):
|
35 |
+
warnings.warn(
|
36 |
+
self._deprecated_key_to_warnings[key],
|
37 |
+
FutureWarning,
|
38 |
+
)
|
39 |
+
return super().__getitem__(key)
|
40 |
+
|
41 |
+
def _set_deprecated(self, value, *, new_key, deprecated_key, warning_message):
|
42 |
+
"""Set key in dictionary to be deprecated with its warning message."""
|
43 |
+
self.__dict__["_deprecated_key_to_warnings"][deprecated_key] = warning_message
|
44 |
+
self[new_key] = self[deprecated_key] = value
|
45 |
+
|
46 |
+
def __setattr__(self, key, value):
|
47 |
+
self[key] = value
|
48 |
+
|
49 |
+
def __dir__(self):
|
50 |
+
return self.keys()
|
51 |
+
|
52 |
+
def __getattr__(self, key):
|
53 |
+
try:
|
54 |
+
return self[key]
|
55 |
+
except KeyError:
|
56 |
+
raise AttributeError(key)
|
57 |
+
|
58 |
+
def __setstate__(self, state):
|
59 |
+
# Bunch pickles generated with scikit-learn 0.16.* have an non
|
60 |
+
# empty __dict__. This causes a surprising behaviour when
|
61 |
+
# loading these pickles scikit-learn 0.17: reading bunch.key
|
62 |
+
# uses __dict__ but assigning to bunch.key use __setattr__ and
|
63 |
+
# only changes bunch['key']. More details can be found at:
|
64 |
+
# https://github.com/scikit-learn/scikit-learn/issues/6196.
|
65 |
+
# Overriding __setstate__ to be a noop has the effect of
|
66 |
+
# ignoring the pickled __dict__
|
67 |
+
pass
|
venv/lib/python3.10/site-packages/sklearn/utils/_cython_blas.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (528 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_cython_blas.pxd
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from cython cimport floating
|
2 |
+
|
3 |
+
|
4 |
+
cpdef enum BLAS_Order:
|
5 |
+
RowMajor # C contiguous
|
6 |
+
ColMajor # Fortran contiguous
|
7 |
+
|
8 |
+
|
9 |
+
cpdef enum BLAS_Trans:
|
10 |
+
NoTrans = 110 # correspond to 'n'
|
11 |
+
Trans = 116 # correspond to 't'
|
12 |
+
|
13 |
+
|
14 |
+
# BLAS Level 1 ################################################################
|
15 |
+
cdef floating _dot(int, const floating*, int, const floating*, int) noexcept nogil
|
16 |
+
|
17 |
+
cdef floating _asum(int, const floating*, int) noexcept nogil
|
18 |
+
|
19 |
+
cdef void _axpy(int, floating, const floating*, int, floating*, int) noexcept nogil
|
20 |
+
|
21 |
+
cdef floating _nrm2(int, const floating*, int) noexcept nogil
|
22 |
+
|
23 |
+
cdef void _copy(int, const floating*, int, const floating*, int) noexcept nogil
|
24 |
+
|
25 |
+
cdef void _scal(int, floating, const floating*, int) noexcept nogil
|
26 |
+
|
27 |
+
cdef void _rotg(floating*, floating*, floating*, floating*) noexcept nogil
|
28 |
+
|
29 |
+
cdef void _rot(int, floating*, int, floating*, int, floating, floating) noexcept nogil
|
30 |
+
|
31 |
+
# BLAS Level 2 ################################################################
|
32 |
+
cdef void _gemv(BLAS_Order, BLAS_Trans, int, int, floating, const floating*, int,
|
33 |
+
const floating*, int, floating, floating*, int) noexcept nogil
|
34 |
+
|
35 |
+
cdef void _ger(BLAS_Order, int, int, floating, const floating*, int, const floating*,
|
36 |
+
int, floating*, int) noexcept nogil
|
37 |
+
|
38 |
+
# BLASLevel 3 ################################################################
|
39 |
+
cdef void _gemm(BLAS_Order, BLAS_Trans, BLAS_Trans, int, int, int, floating,
|
40 |
+
const floating*, int, const floating*, int, floating, floating*,
|
41 |
+
int) noexcept nogil
|
venv/lib/python3.10/site-packages/sklearn/utils/_fast_dict.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (288 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_heap.pxd
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Heap routines, used in various Cython implementations.
|
2 |
+
|
3 |
+
from cython cimport floating
|
4 |
+
|
5 |
+
from ._typedefs cimport intp_t
|
6 |
+
|
7 |
+
|
8 |
+
cdef int heap_push(
|
9 |
+
floating* values,
|
10 |
+
intp_t* indices,
|
11 |
+
intp_t size,
|
12 |
+
floating val,
|
13 |
+
intp_t val_idx,
|
14 |
+
) noexcept nogil
|
venv/lib/python3.10/site-packages/sklearn/utils/_mask.py
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from contextlib import suppress
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from scipy import sparse as sp
|
5 |
+
|
6 |
+
from . import is_scalar_nan
|
7 |
+
from .fixes import _object_dtype_isnan
|
8 |
+
|
9 |
+
|
10 |
+
def _get_dense_mask(X, value_to_mask):
|
11 |
+
with suppress(ImportError, AttributeError):
|
12 |
+
# We also suppress `AttributeError` because older versions of pandas do
|
13 |
+
# not have `NA`.
|
14 |
+
import pandas
|
15 |
+
|
16 |
+
if value_to_mask is pandas.NA:
|
17 |
+
return pandas.isna(X)
|
18 |
+
|
19 |
+
if is_scalar_nan(value_to_mask):
|
20 |
+
if X.dtype.kind == "f":
|
21 |
+
Xt = np.isnan(X)
|
22 |
+
elif X.dtype.kind in ("i", "u"):
|
23 |
+
# can't have NaNs in integer array.
|
24 |
+
Xt = np.zeros(X.shape, dtype=bool)
|
25 |
+
else:
|
26 |
+
# np.isnan does not work on object dtypes.
|
27 |
+
Xt = _object_dtype_isnan(X)
|
28 |
+
else:
|
29 |
+
Xt = X == value_to_mask
|
30 |
+
|
31 |
+
return Xt
|
32 |
+
|
33 |
+
|
34 |
+
def _get_mask(X, value_to_mask):
|
35 |
+
"""Compute the boolean mask X == value_to_mask.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
X : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
40 |
+
Input data, where ``n_samples`` is the number of samples and
|
41 |
+
``n_features`` is the number of features.
|
42 |
+
|
43 |
+
value_to_mask : {int, float}
|
44 |
+
The value which is to be masked in X.
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
X_mask : {ndarray, sparse matrix} of shape (n_samples, n_features)
|
49 |
+
Missing mask.
|
50 |
+
"""
|
51 |
+
if not sp.issparse(X):
|
52 |
+
# For all cases apart of a sparse input where we need to reconstruct
|
53 |
+
# a sparse output
|
54 |
+
return _get_dense_mask(X, value_to_mask)
|
55 |
+
|
56 |
+
Xt = _get_dense_mask(X.data, value_to_mask)
|
57 |
+
|
58 |
+
sparse_constructor = sp.csr_matrix if X.format == "csr" else sp.csc_matrix
|
59 |
+
Xt_sparse = sparse_constructor(
|
60 |
+
(Xt, X.indices.copy(), X.indptr.copy()), shape=X.shape, dtype=bool
|
61 |
+
)
|
62 |
+
|
63 |
+
return Xt_sparse
|
venv/lib/python3.10/site-packages/sklearn/utils/_mocking.py
ADDED
@@ -0,0 +1,400 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from ..base import BaseEstimator, ClassifierMixin
|
4 |
+
from ..utils._metadata_requests import RequestMethod
|
5 |
+
from .metaestimators import available_if
|
6 |
+
from .validation import _check_sample_weight, _num_samples, check_array, check_is_fitted
|
7 |
+
|
8 |
+
|
9 |
+
class ArraySlicingWrapper:
|
10 |
+
"""
|
11 |
+
Parameters
|
12 |
+
----------
|
13 |
+
array
|
14 |
+
"""
|
15 |
+
|
16 |
+
def __init__(self, array):
|
17 |
+
self.array = array
|
18 |
+
|
19 |
+
def __getitem__(self, aslice):
|
20 |
+
return MockDataFrame(self.array[aslice])
|
21 |
+
|
22 |
+
|
23 |
+
class MockDataFrame:
|
24 |
+
"""
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
array
|
28 |
+
"""
|
29 |
+
|
30 |
+
# have shape and length but don't support indexing.
|
31 |
+
|
32 |
+
def __init__(self, array):
|
33 |
+
self.array = array
|
34 |
+
self.values = array
|
35 |
+
self.shape = array.shape
|
36 |
+
self.ndim = array.ndim
|
37 |
+
# ugly hack to make iloc work.
|
38 |
+
self.iloc = ArraySlicingWrapper(array)
|
39 |
+
|
40 |
+
def __len__(self):
|
41 |
+
return len(self.array)
|
42 |
+
|
43 |
+
def __array__(self, dtype=None):
|
44 |
+
# Pandas data frames also are array-like: we want to make sure that
|
45 |
+
# input validation in cross-validation does not try to call that
|
46 |
+
# method.
|
47 |
+
return self.array
|
48 |
+
|
49 |
+
def __eq__(self, other):
|
50 |
+
return MockDataFrame(self.array == other.array)
|
51 |
+
|
52 |
+
def __ne__(self, other):
|
53 |
+
return not self == other
|
54 |
+
|
55 |
+
def take(self, indices, axis=0):
|
56 |
+
return MockDataFrame(self.array.take(indices, axis=axis))
|
57 |
+
|
58 |
+
|
59 |
+
class CheckingClassifier(ClassifierMixin, BaseEstimator):
|
60 |
+
"""Dummy classifier to test pipelining and meta-estimators.
|
61 |
+
|
62 |
+
Checks some property of `X` and `y`in fit / predict.
|
63 |
+
This allows testing whether pipelines / cross-validation or metaestimators
|
64 |
+
changed the input.
|
65 |
+
|
66 |
+
Can also be used to check if `fit_params` are passed correctly, and
|
67 |
+
to force a certain score to be returned.
|
68 |
+
|
69 |
+
Parameters
|
70 |
+
----------
|
71 |
+
check_y, check_X : callable, default=None
|
72 |
+
The callable used to validate `X` and `y`. These callable should return
|
73 |
+
a bool where `False` will trigger an `AssertionError`. If `None`, the
|
74 |
+
data is not validated. Default is `None`.
|
75 |
+
|
76 |
+
check_y_params, check_X_params : dict, default=None
|
77 |
+
The optional parameters to pass to `check_X` and `check_y`. If `None`,
|
78 |
+
then no parameters are passed in.
|
79 |
+
|
80 |
+
methods_to_check : "all" or list of str, default="all"
|
81 |
+
The methods in which the checks should be applied. By default,
|
82 |
+
all checks will be done on all methods (`fit`, `predict`,
|
83 |
+
`predict_proba`, `decision_function` and `score`).
|
84 |
+
|
85 |
+
foo_param : int, default=0
|
86 |
+
A `foo` param. When `foo > 1`, the output of :meth:`score` will be 1
|
87 |
+
otherwise it is 0.
|
88 |
+
|
89 |
+
expected_sample_weight : bool, default=False
|
90 |
+
Whether to check if a valid `sample_weight` was passed to `fit`.
|
91 |
+
|
92 |
+
expected_fit_params : list of str, default=None
|
93 |
+
A list of the expected parameters given when calling `fit`.
|
94 |
+
|
95 |
+
Attributes
|
96 |
+
----------
|
97 |
+
classes_ : int
|
98 |
+
The classes seen during `fit`.
|
99 |
+
|
100 |
+
n_features_in_ : int
|
101 |
+
The number of features seen during `fit`.
|
102 |
+
|
103 |
+
Examples
|
104 |
+
--------
|
105 |
+
>>> from sklearn.utils._mocking import CheckingClassifier
|
106 |
+
|
107 |
+
This helper allow to assert to specificities regarding `X` or `y`. In this
|
108 |
+
case we expect `check_X` or `check_y` to return a boolean.
|
109 |
+
|
110 |
+
>>> from sklearn.datasets import load_iris
|
111 |
+
>>> X, y = load_iris(return_X_y=True)
|
112 |
+
>>> clf = CheckingClassifier(check_X=lambda x: x.shape == (150, 4))
|
113 |
+
>>> clf.fit(X, y)
|
114 |
+
CheckingClassifier(...)
|
115 |
+
|
116 |
+
We can also provide a check which might raise an error. In this case, we
|
117 |
+
expect `check_X` to return `X` and `check_y` to return `y`.
|
118 |
+
|
119 |
+
>>> from sklearn.utils import check_array
|
120 |
+
>>> clf = CheckingClassifier(check_X=check_array)
|
121 |
+
>>> clf.fit(X, y)
|
122 |
+
CheckingClassifier(...)
|
123 |
+
"""
|
124 |
+
|
125 |
+
def __init__(
|
126 |
+
self,
|
127 |
+
*,
|
128 |
+
check_y=None,
|
129 |
+
check_y_params=None,
|
130 |
+
check_X=None,
|
131 |
+
check_X_params=None,
|
132 |
+
methods_to_check="all",
|
133 |
+
foo_param=0,
|
134 |
+
expected_sample_weight=None,
|
135 |
+
expected_fit_params=None,
|
136 |
+
):
|
137 |
+
self.check_y = check_y
|
138 |
+
self.check_y_params = check_y_params
|
139 |
+
self.check_X = check_X
|
140 |
+
self.check_X_params = check_X_params
|
141 |
+
self.methods_to_check = methods_to_check
|
142 |
+
self.foo_param = foo_param
|
143 |
+
self.expected_sample_weight = expected_sample_weight
|
144 |
+
self.expected_fit_params = expected_fit_params
|
145 |
+
|
146 |
+
def _check_X_y(self, X, y=None, should_be_fitted=True):
|
147 |
+
"""Validate X and y and make extra check.
|
148 |
+
|
149 |
+
Parameters
|
150 |
+
----------
|
151 |
+
X : array-like of shape (n_samples, n_features)
|
152 |
+
The data set.
|
153 |
+
`X` is checked only if `check_X` is not `None` (default is None).
|
154 |
+
y : array-like of shape (n_samples), default=None
|
155 |
+
The corresponding target, by default `None`.
|
156 |
+
`y` is checked only if `check_y` is not `None` (default is None).
|
157 |
+
should_be_fitted : bool, default=True
|
158 |
+
Whether or not the classifier should be already fitted.
|
159 |
+
By default True.
|
160 |
+
|
161 |
+
Returns
|
162 |
+
-------
|
163 |
+
X, y
|
164 |
+
"""
|
165 |
+
if should_be_fitted:
|
166 |
+
check_is_fitted(self)
|
167 |
+
if self.check_X is not None:
|
168 |
+
params = {} if self.check_X_params is None else self.check_X_params
|
169 |
+
checked_X = self.check_X(X, **params)
|
170 |
+
if isinstance(checked_X, (bool, np.bool_)):
|
171 |
+
assert checked_X
|
172 |
+
else:
|
173 |
+
X = checked_X
|
174 |
+
if y is not None and self.check_y is not None:
|
175 |
+
params = {} if self.check_y_params is None else self.check_y_params
|
176 |
+
checked_y = self.check_y(y, **params)
|
177 |
+
if isinstance(checked_y, (bool, np.bool_)):
|
178 |
+
assert checked_y
|
179 |
+
else:
|
180 |
+
y = checked_y
|
181 |
+
return X, y
|
182 |
+
|
183 |
+
def fit(self, X, y, sample_weight=None, **fit_params):
|
184 |
+
"""Fit classifier.
|
185 |
+
|
186 |
+
Parameters
|
187 |
+
----------
|
188 |
+
X : array-like of shape (n_samples, n_features)
|
189 |
+
Training vector, where `n_samples` is the number of samples and
|
190 |
+
`n_features` is the number of features.
|
191 |
+
|
192 |
+
y : array-like of shape (n_samples, n_outputs) or (n_samples,), \
|
193 |
+
default=None
|
194 |
+
Target relative to X for classification or regression;
|
195 |
+
None for unsupervised learning.
|
196 |
+
|
197 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
198 |
+
Sample weights. If None, then samples are equally weighted.
|
199 |
+
|
200 |
+
**fit_params : dict of string -> object
|
201 |
+
Parameters passed to the ``fit`` method of the estimator
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
self
|
206 |
+
"""
|
207 |
+
assert _num_samples(X) == _num_samples(y)
|
208 |
+
if self.methods_to_check == "all" or "fit" in self.methods_to_check:
|
209 |
+
X, y = self._check_X_y(X, y, should_be_fitted=False)
|
210 |
+
self.n_features_in_ = np.shape(X)[1]
|
211 |
+
self.classes_ = np.unique(check_array(y, ensure_2d=False, allow_nd=True))
|
212 |
+
if self.expected_fit_params:
|
213 |
+
missing = set(self.expected_fit_params) - set(fit_params)
|
214 |
+
if missing:
|
215 |
+
raise AssertionError(
|
216 |
+
f"Expected fit parameter(s) {list(missing)} not seen."
|
217 |
+
)
|
218 |
+
for key, value in fit_params.items():
|
219 |
+
if _num_samples(value) != _num_samples(X):
|
220 |
+
raise AssertionError(
|
221 |
+
f"Fit parameter {key} has length {_num_samples(value)}"
|
222 |
+
f"; expected {_num_samples(X)}."
|
223 |
+
)
|
224 |
+
if self.expected_sample_weight:
|
225 |
+
if sample_weight is None:
|
226 |
+
raise AssertionError("Expected sample_weight to be passed")
|
227 |
+
_check_sample_weight(sample_weight, X)
|
228 |
+
|
229 |
+
return self
|
230 |
+
|
231 |
+
def predict(self, X):
|
232 |
+
"""Predict the first class seen in `classes_`.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
X : array-like of shape (n_samples, n_features)
|
237 |
+
The input data.
|
238 |
+
|
239 |
+
Returns
|
240 |
+
-------
|
241 |
+
preds : ndarray of shape (n_samples,)
|
242 |
+
Predictions of the first class seens in `classes_`.
|
243 |
+
"""
|
244 |
+
if self.methods_to_check == "all" or "predict" in self.methods_to_check:
|
245 |
+
X, y = self._check_X_y(X)
|
246 |
+
return self.classes_[np.zeros(_num_samples(X), dtype=int)]
|
247 |
+
|
248 |
+
def predict_proba(self, X):
|
249 |
+
"""Predict probabilities for each class.
|
250 |
+
|
251 |
+
Here, the dummy classifier will provide a probability of 1 for the
|
252 |
+
first class of `classes_` and 0 otherwise.
|
253 |
+
|
254 |
+
Parameters
|
255 |
+
----------
|
256 |
+
X : array-like of shape (n_samples, n_features)
|
257 |
+
The input data.
|
258 |
+
|
259 |
+
Returns
|
260 |
+
-------
|
261 |
+
proba : ndarray of shape (n_samples, n_classes)
|
262 |
+
The probabilities for each sample and class.
|
263 |
+
"""
|
264 |
+
if self.methods_to_check == "all" or "predict_proba" in self.methods_to_check:
|
265 |
+
X, y = self._check_X_y(X)
|
266 |
+
proba = np.zeros((_num_samples(X), len(self.classes_)))
|
267 |
+
proba[:, 0] = 1
|
268 |
+
return proba
|
269 |
+
|
270 |
+
def decision_function(self, X):
|
271 |
+
"""Confidence score.
|
272 |
+
|
273 |
+
Parameters
|
274 |
+
----------
|
275 |
+
X : array-like of shape (n_samples, n_features)
|
276 |
+
The input data.
|
277 |
+
|
278 |
+
Returns
|
279 |
+
-------
|
280 |
+
decision : ndarray of shape (n_samples,) if n_classes == 2\
|
281 |
+
else (n_samples, n_classes)
|
282 |
+
Confidence score.
|
283 |
+
"""
|
284 |
+
if (
|
285 |
+
self.methods_to_check == "all"
|
286 |
+
or "decision_function" in self.methods_to_check
|
287 |
+
):
|
288 |
+
X, y = self._check_X_y(X)
|
289 |
+
if len(self.classes_) == 2:
|
290 |
+
# for binary classifier, the confidence score is related to
|
291 |
+
# classes_[1] and therefore should be null.
|
292 |
+
return np.zeros(_num_samples(X))
|
293 |
+
else:
|
294 |
+
decision = np.zeros((_num_samples(X), len(self.classes_)))
|
295 |
+
decision[:, 0] = 1
|
296 |
+
return decision
|
297 |
+
|
298 |
+
def score(self, X=None, Y=None):
|
299 |
+
"""Fake score.
|
300 |
+
|
301 |
+
Parameters
|
302 |
+
----------
|
303 |
+
X : array-like of shape (n_samples, n_features)
|
304 |
+
Input data, where `n_samples` is the number of samples and
|
305 |
+
`n_features` is the number of features.
|
306 |
+
|
307 |
+
Y : array-like of shape (n_samples, n_output) or (n_samples,)
|
308 |
+
Target relative to X for classification or regression;
|
309 |
+
None for unsupervised learning.
|
310 |
+
|
311 |
+
Returns
|
312 |
+
-------
|
313 |
+
score : float
|
314 |
+
Either 0 or 1 depending of `foo_param` (i.e. `foo_param > 1 =>
|
315 |
+
score=1` otherwise `score=0`).
|
316 |
+
"""
|
317 |
+
if self.methods_to_check == "all" or "score" in self.methods_to_check:
|
318 |
+
self._check_X_y(X, Y)
|
319 |
+
if self.foo_param > 1:
|
320 |
+
score = 1.0
|
321 |
+
else:
|
322 |
+
score = 0.0
|
323 |
+
return score
|
324 |
+
|
325 |
+
def _more_tags(self):
|
326 |
+
return {"_skip_test": True, "X_types": ["1dlabel"]}
|
327 |
+
|
328 |
+
|
329 |
+
# Deactivate key validation for CheckingClassifier because we want to be able to
|
330 |
+
# call fit with arbitrary fit_params and record them. Without this change, we
|
331 |
+
# would get an error because those arbitrary params are not expected.
|
332 |
+
CheckingClassifier.set_fit_request = RequestMethod( # type: ignore
|
333 |
+
name="fit", keys=[], validate_keys=False
|
334 |
+
)
|
335 |
+
|
336 |
+
|
337 |
+
class NoSampleWeightWrapper(BaseEstimator):
|
338 |
+
"""Wrap estimator which will not expose `sample_weight`.
|
339 |
+
|
340 |
+
Parameters
|
341 |
+
----------
|
342 |
+
est : estimator, default=None
|
343 |
+
The estimator to wrap.
|
344 |
+
"""
|
345 |
+
|
346 |
+
def __init__(self, est=None):
|
347 |
+
self.est = est
|
348 |
+
|
349 |
+
def fit(self, X, y):
|
350 |
+
return self.est.fit(X, y)
|
351 |
+
|
352 |
+
def predict(self, X):
|
353 |
+
return self.est.predict(X)
|
354 |
+
|
355 |
+
def predict_proba(self, X):
|
356 |
+
return self.est.predict_proba(X)
|
357 |
+
|
358 |
+
def _more_tags(self):
|
359 |
+
return {"_skip_test": True}
|
360 |
+
|
361 |
+
|
362 |
+
def _check_response(method):
|
363 |
+
def check(self):
|
364 |
+
return self.response_methods is not None and method in self.response_methods
|
365 |
+
|
366 |
+
return check
|
367 |
+
|
368 |
+
|
369 |
+
class _MockEstimatorOnOffPrediction(BaseEstimator):
|
370 |
+
"""Estimator for which we can turn on/off the prediction methods.
|
371 |
+
|
372 |
+
Parameters
|
373 |
+
----------
|
374 |
+
response_methods: list of \
|
375 |
+
{"predict", "predict_proba", "decision_function"}, default=None
|
376 |
+
List containing the response implemented by the estimator. When, the
|
377 |
+
response is in the list, it will return the name of the response method
|
378 |
+
when called. Otherwise, an `AttributeError` is raised. It allows to
|
379 |
+
use `getattr` as any conventional estimator. By default, no response
|
380 |
+
methods are mocked.
|
381 |
+
"""
|
382 |
+
|
383 |
+
def __init__(self, response_methods=None):
|
384 |
+
self.response_methods = response_methods
|
385 |
+
|
386 |
+
def fit(self, X, y):
|
387 |
+
self.classes_ = np.unique(y)
|
388 |
+
return self
|
389 |
+
|
390 |
+
@available_if(_check_response("predict"))
|
391 |
+
def predict(self, X):
|
392 |
+
return "predict"
|
393 |
+
|
394 |
+
@available_if(_check_response("predict_proba"))
|
395 |
+
def predict_proba(self, X):
|
396 |
+
return "predict_proba"
|
397 |
+
|
398 |
+
@available_if(_check_response("decision_function"))
|
399 |
+
def decision_function(self, X):
|
400 |
+
return "decision_function"
|
venv/lib/python3.10/site-packages/sklearn/utils/_openmp_helpers.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (80.6 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_plotting.py
ADDED
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from . import check_consistent_length, check_matplotlib_support
|
4 |
+
from ._response import _get_response_values_binary
|
5 |
+
from .multiclass import type_of_target
|
6 |
+
from .validation import _check_pos_label_consistency
|
7 |
+
|
8 |
+
|
9 |
+
class _BinaryClassifierCurveDisplayMixin:
|
10 |
+
"""Mixin class to be used in Displays requiring a binary classifier.
|
11 |
+
|
12 |
+
The aim of this class is to centralize some validations regarding the estimator and
|
13 |
+
the target and gather the response of the estimator.
|
14 |
+
"""
|
15 |
+
|
16 |
+
def _validate_plot_params(self, *, ax=None, name=None):
|
17 |
+
check_matplotlib_support(f"{self.__class__.__name__}.plot")
|
18 |
+
import matplotlib.pyplot as plt
|
19 |
+
|
20 |
+
if ax is None:
|
21 |
+
_, ax = plt.subplots()
|
22 |
+
|
23 |
+
name = self.estimator_name if name is None else name
|
24 |
+
return ax, ax.figure, name
|
25 |
+
|
26 |
+
@classmethod
|
27 |
+
def _validate_and_get_response_values(
|
28 |
+
cls, estimator, X, y, *, response_method="auto", pos_label=None, name=None
|
29 |
+
):
|
30 |
+
check_matplotlib_support(f"{cls.__name__}.from_estimator")
|
31 |
+
|
32 |
+
name = estimator.__class__.__name__ if name is None else name
|
33 |
+
|
34 |
+
y_pred, pos_label = _get_response_values_binary(
|
35 |
+
estimator,
|
36 |
+
X,
|
37 |
+
response_method=response_method,
|
38 |
+
pos_label=pos_label,
|
39 |
+
)
|
40 |
+
|
41 |
+
return y_pred, pos_label, name
|
42 |
+
|
43 |
+
@classmethod
|
44 |
+
def _validate_from_predictions_params(
|
45 |
+
cls, y_true, y_pred, *, sample_weight=None, pos_label=None, name=None
|
46 |
+
):
|
47 |
+
check_matplotlib_support(f"{cls.__name__}.from_predictions")
|
48 |
+
|
49 |
+
if type_of_target(y_true) != "binary":
|
50 |
+
raise ValueError(
|
51 |
+
f"The target y is not binary. Got {type_of_target(y_true)} type of"
|
52 |
+
" target."
|
53 |
+
)
|
54 |
+
|
55 |
+
check_consistent_length(y_true, y_pred, sample_weight)
|
56 |
+
pos_label = _check_pos_label_consistency(pos_label, y_true)
|
57 |
+
|
58 |
+
name = name if name is not None else "Classifier"
|
59 |
+
|
60 |
+
return pos_label, name
|
61 |
+
|
62 |
+
|
63 |
+
def _validate_score_name(score_name, scoring, negate_score):
|
64 |
+
"""Validate the `score_name` parameter.
|
65 |
+
|
66 |
+
If `score_name` is provided, we just return it as-is.
|
67 |
+
If `score_name` is `None`, we use `Score` if `negate_score` is `False` and
|
68 |
+
`Negative score` otherwise.
|
69 |
+
If `score_name` is a string or a callable, we infer the name. We replace `_` by
|
70 |
+
spaces and capitalize the first letter. We remove `neg_` and replace it by
|
71 |
+
`"Negative"` if `negate_score` is `False` or just remove it otherwise.
|
72 |
+
"""
|
73 |
+
if score_name is not None:
|
74 |
+
return score_name
|
75 |
+
elif scoring is None:
|
76 |
+
return "Negative score" if negate_score else "Score"
|
77 |
+
else:
|
78 |
+
score_name = scoring.__name__ if callable(scoring) else scoring
|
79 |
+
if negate_score:
|
80 |
+
if score_name.startswith("neg_"):
|
81 |
+
score_name = score_name[4:]
|
82 |
+
else:
|
83 |
+
score_name = f"Negative {score_name}"
|
84 |
+
elif score_name.startswith("neg_"):
|
85 |
+
score_name = f"Negative {score_name[4:]}"
|
86 |
+
score_name = score_name.replace("_", " ")
|
87 |
+
return score_name.capitalize()
|
88 |
+
|
89 |
+
|
90 |
+
def _interval_max_min_ratio(data):
|
91 |
+
"""Compute the ratio between the largest and smallest inter-point distances.
|
92 |
+
|
93 |
+
A value larger than 5 typically indicates that the parameter range would
|
94 |
+
better be displayed with a log scale while a linear scale would be more
|
95 |
+
suitable otherwise.
|
96 |
+
"""
|
97 |
+
diff = np.diff(np.sort(data))
|
98 |
+
return diff.max() / diff.min()
|
venv/lib/python3.10/site-packages/sklearn/utils/_random.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (356 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_response.py
ADDED
@@ -0,0 +1,298 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Utilities to get the response values of a classifier or a regressor.
|
2 |
+
|
3 |
+
It allows to make uniform checks and validation.
|
4 |
+
"""
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from ..base import is_classifier
|
8 |
+
from .multiclass import type_of_target
|
9 |
+
from .validation import _check_response_method, check_is_fitted
|
10 |
+
|
11 |
+
|
12 |
+
def _process_predict_proba(*, y_pred, target_type, classes, pos_label):
|
13 |
+
"""Get the response values when the response method is `predict_proba`.
|
14 |
+
|
15 |
+
This function process the `y_pred` array in the binary and multi-label cases.
|
16 |
+
In the binary case, it selects the column corresponding to the positive
|
17 |
+
class. In the multi-label case, it stacks the predictions if they are not
|
18 |
+
in the "compressed" format `(n_samples, n_outputs)`.
|
19 |
+
|
20 |
+
Parameters
|
21 |
+
----------
|
22 |
+
y_pred : ndarray
|
23 |
+
Output of `estimator.predict_proba`. The shape depends on the target type:
|
24 |
+
|
25 |
+
- for binary classification, it is a 2d array of shape `(n_samples, 2)`;
|
26 |
+
- for multiclass classification, it is a 2d array of shape
|
27 |
+
`(n_samples, n_classes)`;
|
28 |
+
- for multilabel classification, it is either a list of 2d arrays of shape
|
29 |
+
`(n_samples, 2)` (e.g. `RandomForestClassifier` or `KNeighborsClassifier`) or
|
30 |
+
an array of shape `(n_samples, n_outputs)` (e.g. `MLPClassifier` or
|
31 |
+
`RidgeClassifier`).
|
32 |
+
|
33 |
+
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
34 |
+
Type of the target.
|
35 |
+
|
36 |
+
classes : ndarray of shape (n_classes,) or list of such arrays
|
37 |
+
Class labels as reported by `estimator.classes_`.
|
38 |
+
|
39 |
+
pos_label : int, float, bool or str
|
40 |
+
Only used with binary and multiclass targets.
|
41 |
+
|
42 |
+
Returns
|
43 |
+
-------
|
44 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
45 |
+
(n_samples, n_output)
|
46 |
+
Compressed predictions format as requested by the metrics.
|
47 |
+
"""
|
48 |
+
if target_type == "binary" and y_pred.shape[1] < 2:
|
49 |
+
# We don't handle classifiers trained on a single class.
|
50 |
+
raise ValueError(
|
51 |
+
f"Got predict_proba of shape {y_pred.shape}, but need "
|
52 |
+
"classifier with two classes."
|
53 |
+
)
|
54 |
+
|
55 |
+
if target_type == "binary":
|
56 |
+
col_idx = np.flatnonzero(classes == pos_label)[0]
|
57 |
+
return y_pred[:, col_idx]
|
58 |
+
elif target_type == "multilabel-indicator":
|
59 |
+
# Use a compress format of shape `(n_samples, n_output)`.
|
60 |
+
# Only `MLPClassifier` and `RidgeClassifier` return an array of shape
|
61 |
+
# `(n_samples, n_outputs)`.
|
62 |
+
if isinstance(y_pred, list):
|
63 |
+
# list of arrays of shape `(n_samples, 2)`
|
64 |
+
return np.vstack([p[:, -1] for p in y_pred]).T
|
65 |
+
else:
|
66 |
+
# array of shape `(n_samples, n_outputs)`
|
67 |
+
return y_pred
|
68 |
+
|
69 |
+
return y_pred
|
70 |
+
|
71 |
+
|
72 |
+
def _process_decision_function(*, y_pred, target_type, classes, pos_label):
|
73 |
+
"""Get the response values when the response method is `decision_function`.
|
74 |
+
|
75 |
+
This function process the `y_pred` array in the binary and multi-label cases.
|
76 |
+
In the binary case, it inverts the sign of the score if the positive label
|
77 |
+
is not `classes[1]`. In the multi-label case, it stacks the predictions if
|
78 |
+
they are not in the "compressed" format `(n_samples, n_outputs)`.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
y_pred : ndarray
|
83 |
+
Output of `estimator.predict_proba`. The shape depends on the target type:
|
84 |
+
|
85 |
+
- for binary classification, it is a 1d array of shape `(n_samples,)` where the
|
86 |
+
sign is assuming that `classes[1]` is the positive class;
|
87 |
+
- for multiclass classification, it is a 2d array of shape
|
88 |
+
`(n_samples, n_classes)`;
|
89 |
+
- for multilabel classification, it is a 2d array of shape `(n_samples,
|
90 |
+
n_outputs)`.
|
91 |
+
|
92 |
+
target_type : {"binary", "multiclass", "multilabel-indicator"}
|
93 |
+
Type of the target.
|
94 |
+
|
95 |
+
classes : ndarray of shape (n_classes,) or list of such arrays
|
96 |
+
Class labels as reported by `estimator.classes_`.
|
97 |
+
|
98 |
+
pos_label : int, float, bool or str
|
99 |
+
Only used with binary and multiclass targets.
|
100 |
+
|
101 |
+
Returns
|
102 |
+
-------
|
103 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
104 |
+
(n_samples, n_output)
|
105 |
+
Compressed predictions format as requested by the metrics.
|
106 |
+
"""
|
107 |
+
if target_type == "binary" and pos_label == classes[0]:
|
108 |
+
return -1 * y_pred
|
109 |
+
return y_pred
|
110 |
+
|
111 |
+
|
112 |
+
def _get_response_values(
|
113 |
+
estimator,
|
114 |
+
X,
|
115 |
+
response_method,
|
116 |
+
pos_label=None,
|
117 |
+
return_response_method_used=False,
|
118 |
+
):
|
119 |
+
"""Compute the response values of a classifier, an outlier detector, or a regressor.
|
120 |
+
|
121 |
+
The response values are predictions such that it follows the following shape:
|
122 |
+
|
123 |
+
- for binary classification, it is a 1d array of shape `(n_samples,)`;
|
124 |
+
- for multiclass classification, it is a 2d array of shape `(n_samples, n_classes)`;
|
125 |
+
- for multilabel classification, it is a 2d array of shape `(n_samples, n_outputs)`;
|
126 |
+
- for outlier detection, it is a 1d array of shape `(n_samples,)`;
|
127 |
+
- for regression, it is a 1d array of shape `(n_samples,)`.
|
128 |
+
|
129 |
+
If `estimator` is a binary classifier, also return the label for the
|
130 |
+
effective positive class.
|
131 |
+
|
132 |
+
This utility is used primarily in the displays and the scikit-learn scorers.
|
133 |
+
|
134 |
+
.. versionadded:: 1.3
|
135 |
+
|
136 |
+
Parameters
|
137 |
+
----------
|
138 |
+
estimator : estimator instance
|
139 |
+
Fitted classifier, outlier detector, or regressor or a
|
140 |
+
fitted :class:`~sklearn.pipeline.Pipeline` in which the last estimator is a
|
141 |
+
classifier, an outlier detector, or a regressor.
|
142 |
+
|
143 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
144 |
+
Input values.
|
145 |
+
|
146 |
+
response_method : {"predict_proba", "predict_log_proba", "decision_function", \
|
147 |
+
"predict"} or list of such str
|
148 |
+
Specifies the response method to use get prediction from an estimator
|
149 |
+
(i.e. :term:`predict_proba`, :term:`predict_log_proba`,
|
150 |
+
:term:`decision_function` or :term:`predict`). Possible choices are:
|
151 |
+
|
152 |
+
- if `str`, it corresponds to the name to the method to return;
|
153 |
+
- if a list of `str`, it provides the method names in order of
|
154 |
+
preference. The method returned corresponds to the first method in
|
155 |
+
the list and which is implemented by `estimator`.
|
156 |
+
|
157 |
+
pos_label : int, float, bool or str, default=None
|
158 |
+
The class considered as the positive class when computing
|
159 |
+
the metrics. If `None` and target is 'binary', `estimators.classes_[1]` is
|
160 |
+
considered as the positive class.
|
161 |
+
|
162 |
+
return_response_method_used : bool, default=False
|
163 |
+
Whether to return the response method used to compute the response
|
164 |
+
values.
|
165 |
+
|
166 |
+
.. versionadded:: 1.4
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
y_pred : ndarray of shape (n_samples,), (n_samples, n_classes) or \
|
171 |
+
(n_samples, n_outputs)
|
172 |
+
Target scores calculated from the provided `response_method`
|
173 |
+
and `pos_label`.
|
174 |
+
|
175 |
+
pos_label : int, float, bool, str or None
|
176 |
+
The class considered as the positive class when computing
|
177 |
+
the metrics. Returns `None` if `estimator` is a regressor or an outlier
|
178 |
+
detector.
|
179 |
+
|
180 |
+
response_method_used : str
|
181 |
+
The response method used to compute the response values. Only returned
|
182 |
+
if `return_response_method_used` is `True`.
|
183 |
+
|
184 |
+
.. versionadded:: 1.4
|
185 |
+
|
186 |
+
Raises
|
187 |
+
------
|
188 |
+
ValueError
|
189 |
+
If `pos_label` is not a valid label.
|
190 |
+
If the shape of `y_pred` is not consistent for binary classifier.
|
191 |
+
If the response method can be applied to a classifier only and
|
192 |
+
`estimator` is a regressor.
|
193 |
+
"""
|
194 |
+
from sklearn.base import is_classifier, is_outlier_detector # noqa
|
195 |
+
|
196 |
+
if is_classifier(estimator):
|
197 |
+
prediction_method = _check_response_method(estimator, response_method)
|
198 |
+
classes = estimator.classes_
|
199 |
+
target_type = type_of_target(classes)
|
200 |
+
|
201 |
+
if target_type in ("binary", "multiclass"):
|
202 |
+
if pos_label is not None and pos_label not in classes.tolist():
|
203 |
+
raise ValueError(
|
204 |
+
f"pos_label={pos_label} is not a valid label: It should be "
|
205 |
+
f"one of {classes}"
|
206 |
+
)
|
207 |
+
elif pos_label is None and target_type == "binary":
|
208 |
+
pos_label = classes[-1]
|
209 |
+
|
210 |
+
y_pred = prediction_method(X)
|
211 |
+
|
212 |
+
if prediction_method.__name__ in ("predict_proba", "predict_log_proba"):
|
213 |
+
y_pred = _process_predict_proba(
|
214 |
+
y_pred=y_pred,
|
215 |
+
target_type=target_type,
|
216 |
+
classes=classes,
|
217 |
+
pos_label=pos_label,
|
218 |
+
)
|
219 |
+
elif prediction_method.__name__ == "decision_function":
|
220 |
+
y_pred = _process_decision_function(
|
221 |
+
y_pred=y_pred,
|
222 |
+
target_type=target_type,
|
223 |
+
classes=classes,
|
224 |
+
pos_label=pos_label,
|
225 |
+
)
|
226 |
+
elif is_outlier_detector(estimator):
|
227 |
+
prediction_method = _check_response_method(estimator, response_method)
|
228 |
+
y_pred, pos_label = prediction_method(X), None
|
229 |
+
else: # estimator is a regressor
|
230 |
+
if response_method != "predict":
|
231 |
+
raise ValueError(
|
232 |
+
f"{estimator.__class__.__name__} should either be a classifier to be "
|
233 |
+
f"used with response_method={response_method} or the response_method "
|
234 |
+
"should be 'predict'. Got a regressor with response_method="
|
235 |
+
f"{response_method} instead."
|
236 |
+
)
|
237 |
+
prediction_method = estimator.predict
|
238 |
+
y_pred, pos_label = prediction_method(X), None
|
239 |
+
|
240 |
+
if return_response_method_used:
|
241 |
+
return y_pred, pos_label, prediction_method.__name__
|
242 |
+
return y_pred, pos_label
|
243 |
+
|
244 |
+
|
245 |
+
def _get_response_values_binary(estimator, X, response_method, pos_label=None):
|
246 |
+
"""Compute the response values of a binary classifier.
|
247 |
+
|
248 |
+
Parameters
|
249 |
+
----------
|
250 |
+
estimator : estimator instance
|
251 |
+
Fitted classifier or a fitted :class:`~sklearn.pipeline.Pipeline`
|
252 |
+
in which the last estimator is a binary classifier.
|
253 |
+
|
254 |
+
X : {array-like, sparse matrix} of shape (n_samples, n_features)
|
255 |
+
Input values.
|
256 |
+
|
257 |
+
response_method : {'auto', 'predict_proba', 'decision_function'}
|
258 |
+
Specifies whether to use :term:`predict_proba` or
|
259 |
+
:term:`decision_function` as the target response. If set to 'auto',
|
260 |
+
:term:`predict_proba` is tried first and if it does not exist
|
261 |
+
:term:`decision_function` is tried next.
|
262 |
+
|
263 |
+
pos_label : int, float, bool or str, default=None
|
264 |
+
The class considered as the positive class when computing
|
265 |
+
the metrics. By default, `estimators.classes_[1]` is
|
266 |
+
considered as the positive class.
|
267 |
+
|
268 |
+
Returns
|
269 |
+
-------
|
270 |
+
y_pred : ndarray of shape (n_samples,)
|
271 |
+
Target scores calculated from the provided response_method
|
272 |
+
and pos_label.
|
273 |
+
|
274 |
+
pos_label : int, float, bool or str
|
275 |
+
The class considered as the positive class when computing
|
276 |
+
the metrics.
|
277 |
+
"""
|
278 |
+
classification_error = "Expected 'estimator' to be a binary classifier."
|
279 |
+
|
280 |
+
check_is_fitted(estimator)
|
281 |
+
if not is_classifier(estimator):
|
282 |
+
raise ValueError(
|
283 |
+
classification_error + f" Got {estimator.__class__.__name__} instead."
|
284 |
+
)
|
285 |
+
elif len(estimator.classes_) != 2:
|
286 |
+
raise ValueError(
|
287 |
+
classification_error + f" Got {len(estimator.classes_)} classes instead."
|
288 |
+
)
|
289 |
+
|
290 |
+
if response_method == "auto":
|
291 |
+
response_method = ["predict_proba", "decision_function"]
|
292 |
+
|
293 |
+
return _get_response_values(
|
294 |
+
estimator,
|
295 |
+
X,
|
296 |
+
response_method,
|
297 |
+
pos_label=pos_label,
|
298 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/utils/_seq_dataset.pxd
ADDED
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# WARNING: Do not edit this file directly.
|
2 |
+
# It is automatically generated from 'sklearn/utils/_seq_dataset.pxd.tp'.
|
3 |
+
# Changes must be made there.
|
4 |
+
|
5 |
+
"""Dataset abstractions for sequential data access."""
|
6 |
+
|
7 |
+
cimport numpy as cnp
|
8 |
+
|
9 |
+
# SequentialDataset and its two concrete subclasses are (optionally randomized)
|
10 |
+
# iterators over the rows of a matrix X and corresponding target values y.
|
11 |
+
|
12 |
+
#------------------------------------------------------------------------------
|
13 |
+
|
14 |
+
cdef class SequentialDataset64:
|
15 |
+
cdef int current_index
|
16 |
+
cdef int[::1] index
|
17 |
+
cdef int *index_data_ptr
|
18 |
+
cdef Py_ssize_t n_samples
|
19 |
+
cdef cnp.uint32_t seed
|
20 |
+
|
21 |
+
cdef void shuffle(self, cnp.uint32_t seed) noexcept nogil
|
22 |
+
cdef int _get_next_index(self) noexcept nogil
|
23 |
+
cdef int _get_random_index(self) noexcept nogil
|
24 |
+
|
25 |
+
cdef void _sample(self, double **x_data_ptr, int **x_ind_ptr,
|
26 |
+
int *nnz, double *y, double *sample_weight,
|
27 |
+
int current_index) noexcept nogil
|
28 |
+
cdef void next(self, double **x_data_ptr, int **x_ind_ptr,
|
29 |
+
int *nnz, double *y, double *sample_weight) noexcept nogil
|
30 |
+
cdef int random(self, double **x_data_ptr, int **x_ind_ptr,
|
31 |
+
int *nnz, double *y, double *sample_weight) noexcept nogil
|
32 |
+
|
33 |
+
|
34 |
+
cdef class ArrayDataset64(SequentialDataset64):
|
35 |
+
cdef const double[:, ::1] X
|
36 |
+
cdef const double[::1] Y
|
37 |
+
cdef const double[::1] sample_weights
|
38 |
+
cdef Py_ssize_t n_features
|
39 |
+
cdef cnp.npy_intp X_stride
|
40 |
+
cdef double *X_data_ptr
|
41 |
+
cdef double *Y_data_ptr
|
42 |
+
cdef const int[::1] feature_indices
|
43 |
+
cdef int *feature_indices_ptr
|
44 |
+
cdef double *sample_weight_data
|
45 |
+
|
46 |
+
|
47 |
+
cdef class CSRDataset64(SequentialDataset64):
|
48 |
+
cdef const double[::1] X_data
|
49 |
+
cdef const int[::1] X_indptr
|
50 |
+
cdef const int[::1] X_indices
|
51 |
+
cdef const double[::1] Y
|
52 |
+
cdef const double[::1] sample_weights
|
53 |
+
cdef double *X_data_ptr
|
54 |
+
cdef int *X_indptr_ptr
|
55 |
+
cdef int *X_indices_ptr
|
56 |
+
cdef double *Y_data_ptr
|
57 |
+
cdef double *sample_weight_data
|
58 |
+
|
59 |
+
#------------------------------------------------------------------------------
|
60 |
+
|
61 |
+
cdef class SequentialDataset32:
|
62 |
+
cdef int current_index
|
63 |
+
cdef int[::1] index
|
64 |
+
cdef int *index_data_ptr
|
65 |
+
cdef Py_ssize_t n_samples
|
66 |
+
cdef cnp.uint32_t seed
|
67 |
+
|
68 |
+
cdef void shuffle(self, cnp.uint32_t seed) noexcept nogil
|
69 |
+
cdef int _get_next_index(self) noexcept nogil
|
70 |
+
cdef int _get_random_index(self) noexcept nogil
|
71 |
+
|
72 |
+
cdef void _sample(self, float **x_data_ptr, int **x_ind_ptr,
|
73 |
+
int *nnz, float *y, float *sample_weight,
|
74 |
+
int current_index) noexcept nogil
|
75 |
+
cdef void next(self, float **x_data_ptr, int **x_ind_ptr,
|
76 |
+
int *nnz, float *y, float *sample_weight) noexcept nogil
|
77 |
+
cdef int random(self, float **x_data_ptr, int **x_ind_ptr,
|
78 |
+
int *nnz, float *y, float *sample_weight) noexcept nogil
|
79 |
+
|
80 |
+
|
81 |
+
cdef class ArrayDataset32(SequentialDataset32):
|
82 |
+
cdef const float[:, ::1] X
|
83 |
+
cdef const float[::1] Y
|
84 |
+
cdef const float[::1] sample_weights
|
85 |
+
cdef Py_ssize_t n_features
|
86 |
+
cdef cnp.npy_intp X_stride
|
87 |
+
cdef float *X_data_ptr
|
88 |
+
cdef float *Y_data_ptr
|
89 |
+
cdef const int[::1] feature_indices
|
90 |
+
cdef int *feature_indices_ptr
|
91 |
+
cdef float *sample_weight_data
|
92 |
+
|
93 |
+
|
94 |
+
cdef class CSRDataset32(SequentialDataset32):
|
95 |
+
cdef const float[::1] X_data
|
96 |
+
cdef const int[::1] X_indptr
|
97 |
+
cdef const int[::1] X_indices
|
98 |
+
cdef const float[::1] Y
|
99 |
+
cdef const float[::1] sample_weights
|
100 |
+
cdef float *X_data_ptr
|
101 |
+
cdef int *X_indptr_ptr
|
102 |
+
cdef int *X_indices_ptr
|
103 |
+
cdef float *Y_data_ptr
|
104 |
+
cdef float *sample_weight_data
|
venv/lib/python3.10/site-packages/sklearn/utils/_set_output.py
ADDED
@@ -0,0 +1,441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import importlib
|
2 |
+
from functools import wraps
|
3 |
+
from typing import Protocol, runtime_checkable
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
from scipy.sparse import issparse
|
7 |
+
|
8 |
+
from .._config import get_config
|
9 |
+
from ._available_if import available_if
|
10 |
+
|
11 |
+
|
12 |
+
def check_library_installed(library):
|
13 |
+
"""Check library is installed."""
|
14 |
+
try:
|
15 |
+
return importlib.import_module(library)
|
16 |
+
except ImportError as exc:
|
17 |
+
raise ImportError(
|
18 |
+
f"Setting output container to '{library}' requires {library} to be"
|
19 |
+
" installed"
|
20 |
+
) from exc
|
21 |
+
|
22 |
+
|
23 |
+
def get_columns(columns):
|
24 |
+
if callable(columns):
|
25 |
+
try:
|
26 |
+
return columns()
|
27 |
+
except Exception:
|
28 |
+
return None
|
29 |
+
return columns
|
30 |
+
|
31 |
+
|
32 |
+
@runtime_checkable
|
33 |
+
class ContainerAdapterProtocol(Protocol):
|
34 |
+
container_lib: str
|
35 |
+
|
36 |
+
def create_container(self, X_output, X_original, columns, inplace=False):
|
37 |
+
"""Create container from `X_output` with additional metadata.
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
X_output : {ndarray, dataframe}
|
42 |
+
Data to wrap.
|
43 |
+
|
44 |
+
X_original : {ndarray, dataframe}
|
45 |
+
Original input dataframe. This is used to extract the metadata that should
|
46 |
+
be passed to `X_output`, e.g. pandas row index.
|
47 |
+
|
48 |
+
columns : callable, ndarray, or None
|
49 |
+
The column names or a callable that returns the column names. The
|
50 |
+
callable is useful if the column names require some computation. If `None`,
|
51 |
+
then no columns are passed to the container's constructor.
|
52 |
+
|
53 |
+
inplace : bool, default=False
|
54 |
+
Whether or not we intend to modify `X_output` in-place. However, it does
|
55 |
+
not guarantee that we return the same object if the in-place operation
|
56 |
+
is not possible.
|
57 |
+
|
58 |
+
Returns
|
59 |
+
-------
|
60 |
+
wrapped_output : container_type
|
61 |
+
`X_output` wrapped into the container type.
|
62 |
+
"""
|
63 |
+
|
64 |
+
def is_supported_container(self, X):
|
65 |
+
"""Return True if X is a supported container.
|
66 |
+
|
67 |
+
Parameters
|
68 |
+
----------
|
69 |
+
Xs: container
|
70 |
+
Containers to be checked.
|
71 |
+
|
72 |
+
Returns
|
73 |
+
-------
|
74 |
+
is_supported_container : bool
|
75 |
+
True if X is a supported container.
|
76 |
+
"""
|
77 |
+
|
78 |
+
def rename_columns(self, X, columns):
|
79 |
+
"""Rename columns in `X`.
|
80 |
+
|
81 |
+
Parameters
|
82 |
+
----------
|
83 |
+
X : container
|
84 |
+
Container which columns is updated.
|
85 |
+
|
86 |
+
columns : ndarray of str
|
87 |
+
Columns to update the `X`'s columns with.
|
88 |
+
|
89 |
+
Returns
|
90 |
+
-------
|
91 |
+
updated_container : container
|
92 |
+
Container with new names.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def hstack(self, Xs):
|
96 |
+
"""Stack containers horizontally (column-wise).
|
97 |
+
|
98 |
+
Parameters
|
99 |
+
----------
|
100 |
+
Xs : list of containers
|
101 |
+
List of containers to stack.
|
102 |
+
|
103 |
+
Returns
|
104 |
+
-------
|
105 |
+
stacked_Xs : container
|
106 |
+
Stacked containers.
|
107 |
+
"""
|
108 |
+
|
109 |
+
|
110 |
+
class PandasAdapter:
|
111 |
+
container_lib = "pandas"
|
112 |
+
|
113 |
+
def create_container(self, X_output, X_original, columns, inplace=True):
|
114 |
+
pd = check_library_installed("pandas")
|
115 |
+
columns = get_columns(columns)
|
116 |
+
|
117 |
+
if not inplace or not isinstance(X_output, pd.DataFrame):
|
118 |
+
# In all these cases, we need to create a new DataFrame
|
119 |
+
|
120 |
+
# Unfortunately, we cannot use `getattr(container, "index")`
|
121 |
+
# because `list` exposes an `index` attribute.
|
122 |
+
if isinstance(X_output, pd.DataFrame):
|
123 |
+
index = X_output.index
|
124 |
+
elif isinstance(X_original, pd.DataFrame):
|
125 |
+
index = X_original.index
|
126 |
+
else:
|
127 |
+
index = None
|
128 |
+
|
129 |
+
# We don't pass columns here because it would intend columns selection
|
130 |
+
# instead of renaming.
|
131 |
+
X_output = pd.DataFrame(X_output, index=index, copy=not inplace)
|
132 |
+
|
133 |
+
if columns is not None:
|
134 |
+
return self.rename_columns(X_output, columns)
|
135 |
+
return X_output
|
136 |
+
|
137 |
+
def is_supported_container(self, X):
|
138 |
+
pd = check_library_installed("pandas")
|
139 |
+
return isinstance(X, pd.DataFrame)
|
140 |
+
|
141 |
+
def rename_columns(self, X, columns):
|
142 |
+
# we cannot use `rename` since it takes a dictionary and at this stage we have
|
143 |
+
# potentially duplicate column names in `X`
|
144 |
+
X.columns = columns
|
145 |
+
return X
|
146 |
+
|
147 |
+
def hstack(self, Xs):
|
148 |
+
pd = check_library_installed("pandas")
|
149 |
+
return pd.concat(Xs, axis=1)
|
150 |
+
|
151 |
+
|
152 |
+
class PolarsAdapter:
|
153 |
+
container_lib = "polars"
|
154 |
+
|
155 |
+
def create_container(self, X_output, X_original, columns, inplace=True):
|
156 |
+
pl = check_library_installed("polars")
|
157 |
+
columns = get_columns(columns)
|
158 |
+
columns = columns.tolist() if isinstance(columns, np.ndarray) else columns
|
159 |
+
|
160 |
+
if not inplace or not isinstance(X_output, pl.DataFrame):
|
161 |
+
# In all these cases, we need to create a new DataFrame
|
162 |
+
return pl.DataFrame(X_output, schema=columns, orient="row")
|
163 |
+
|
164 |
+
if columns is not None:
|
165 |
+
return self.rename_columns(X_output, columns)
|
166 |
+
return X_output
|
167 |
+
|
168 |
+
def is_supported_container(self, X):
|
169 |
+
pl = check_library_installed("polars")
|
170 |
+
return isinstance(X, pl.DataFrame)
|
171 |
+
|
172 |
+
def rename_columns(self, X, columns):
|
173 |
+
# we cannot use `rename` since it takes a dictionary and at this stage we have
|
174 |
+
# potentially duplicate column names in `X`
|
175 |
+
X.columns = columns
|
176 |
+
return X
|
177 |
+
|
178 |
+
def hstack(self, Xs):
|
179 |
+
pl = check_library_installed("polars")
|
180 |
+
return pl.concat(Xs, how="horizontal")
|
181 |
+
|
182 |
+
|
183 |
+
class ContainerAdaptersManager:
|
184 |
+
def __init__(self):
|
185 |
+
self.adapters = {}
|
186 |
+
|
187 |
+
@property
|
188 |
+
def supported_outputs(self):
|
189 |
+
return {"default"} | set(self.adapters)
|
190 |
+
|
191 |
+
def register(self, adapter):
|
192 |
+
self.adapters[adapter.container_lib] = adapter
|
193 |
+
|
194 |
+
|
195 |
+
ADAPTERS_MANAGER = ContainerAdaptersManager()
|
196 |
+
ADAPTERS_MANAGER.register(PandasAdapter())
|
197 |
+
ADAPTERS_MANAGER.register(PolarsAdapter())
|
198 |
+
|
199 |
+
|
200 |
+
def _get_container_adapter(method, estimator=None):
|
201 |
+
"""Get container adapter."""
|
202 |
+
dense_config = _get_output_config(method, estimator)["dense"]
|
203 |
+
try:
|
204 |
+
return ADAPTERS_MANAGER.adapters[dense_config]
|
205 |
+
except KeyError:
|
206 |
+
return None
|
207 |
+
|
208 |
+
|
209 |
+
def _get_output_config(method, estimator=None):
|
210 |
+
"""Get output config based on estimator and global configuration.
|
211 |
+
|
212 |
+
Parameters
|
213 |
+
----------
|
214 |
+
method : {"transform"}
|
215 |
+
Estimator's method for which the output container is looked up.
|
216 |
+
|
217 |
+
estimator : estimator instance or None
|
218 |
+
Estimator to get the output configuration from. If `None`, check global
|
219 |
+
configuration is used.
|
220 |
+
|
221 |
+
Returns
|
222 |
+
-------
|
223 |
+
config : dict
|
224 |
+
Dictionary with keys:
|
225 |
+
|
226 |
+
- "dense": specifies the dense container for `method`. This can be
|
227 |
+
`"default"` or `"pandas"`.
|
228 |
+
"""
|
229 |
+
est_sklearn_output_config = getattr(estimator, "_sklearn_output_config", {})
|
230 |
+
if method in est_sklearn_output_config:
|
231 |
+
dense_config = est_sklearn_output_config[method]
|
232 |
+
else:
|
233 |
+
dense_config = get_config()[f"{method}_output"]
|
234 |
+
|
235 |
+
supported_outputs = ADAPTERS_MANAGER.supported_outputs
|
236 |
+
if dense_config not in supported_outputs:
|
237 |
+
raise ValueError(
|
238 |
+
f"output config must be in {sorted(supported_outputs)}, got {dense_config}"
|
239 |
+
)
|
240 |
+
|
241 |
+
return {"dense": dense_config}
|
242 |
+
|
243 |
+
|
244 |
+
def _wrap_data_with_container(method, data_to_wrap, original_input, estimator):
|
245 |
+
"""Wrap output with container based on an estimator's or global config.
|
246 |
+
|
247 |
+
Parameters
|
248 |
+
----------
|
249 |
+
method : {"transform"}
|
250 |
+
Estimator's method to get container output for.
|
251 |
+
|
252 |
+
data_to_wrap : {ndarray, dataframe}
|
253 |
+
Data to wrap with container.
|
254 |
+
|
255 |
+
original_input : {ndarray, dataframe}
|
256 |
+
Original input of function.
|
257 |
+
|
258 |
+
estimator : estimator instance
|
259 |
+
Estimator with to get the output configuration from.
|
260 |
+
|
261 |
+
Returns
|
262 |
+
-------
|
263 |
+
output : {ndarray, dataframe}
|
264 |
+
If the output config is "default" or the estimator is not configured
|
265 |
+
for wrapping return `data_to_wrap` unchanged.
|
266 |
+
If the output config is "pandas", return `data_to_wrap` as a pandas
|
267 |
+
DataFrame.
|
268 |
+
"""
|
269 |
+
output_config = _get_output_config(method, estimator)
|
270 |
+
|
271 |
+
if output_config["dense"] == "default" or not _auto_wrap_is_configured(estimator):
|
272 |
+
return data_to_wrap
|
273 |
+
|
274 |
+
dense_config = output_config["dense"]
|
275 |
+
if issparse(data_to_wrap):
|
276 |
+
raise ValueError(
|
277 |
+
"The transformer outputs a scipy sparse matrix. "
|
278 |
+
"Try to set the transformer output to a dense array or disable "
|
279 |
+
f"{dense_config.capitalize()} output with set_output(transform='default')."
|
280 |
+
)
|
281 |
+
|
282 |
+
adapter = ADAPTERS_MANAGER.adapters[dense_config]
|
283 |
+
return adapter.create_container(
|
284 |
+
data_to_wrap,
|
285 |
+
original_input,
|
286 |
+
columns=estimator.get_feature_names_out,
|
287 |
+
)
|
288 |
+
|
289 |
+
|
290 |
+
def _wrap_method_output(f, method):
|
291 |
+
"""Wrapper used by `_SetOutputMixin` to automatically wrap methods."""
|
292 |
+
|
293 |
+
@wraps(f)
|
294 |
+
def wrapped(self, X, *args, **kwargs):
|
295 |
+
data_to_wrap = f(self, X, *args, **kwargs)
|
296 |
+
if isinstance(data_to_wrap, tuple):
|
297 |
+
# only wrap the first output for cross decomposition
|
298 |
+
return_tuple = (
|
299 |
+
_wrap_data_with_container(method, data_to_wrap[0], X, self),
|
300 |
+
*data_to_wrap[1:],
|
301 |
+
)
|
302 |
+
# Support for namedtuples `_make` is a documented API for namedtuples:
|
303 |
+
# https://docs.python.org/3/library/collections.html#collections.somenamedtuple._make
|
304 |
+
if hasattr(type(data_to_wrap), "_make"):
|
305 |
+
return type(data_to_wrap)._make(return_tuple)
|
306 |
+
return return_tuple
|
307 |
+
|
308 |
+
return _wrap_data_with_container(method, data_to_wrap, X, self)
|
309 |
+
|
310 |
+
return wrapped
|
311 |
+
|
312 |
+
|
313 |
+
def _auto_wrap_is_configured(estimator):
|
314 |
+
"""Return True if estimator is configured for auto-wrapping the transform method.
|
315 |
+
|
316 |
+
`_SetOutputMixin` sets `_sklearn_auto_wrap_output_keys` to `set()` if auto wrapping
|
317 |
+
is manually disabled.
|
318 |
+
"""
|
319 |
+
auto_wrap_output_keys = getattr(estimator, "_sklearn_auto_wrap_output_keys", set())
|
320 |
+
return (
|
321 |
+
hasattr(estimator, "get_feature_names_out")
|
322 |
+
and "transform" in auto_wrap_output_keys
|
323 |
+
)
|
324 |
+
|
325 |
+
|
326 |
+
class _SetOutputMixin:
|
327 |
+
"""Mixin that dynamically wraps methods to return container based on config.
|
328 |
+
|
329 |
+
Currently `_SetOutputMixin` wraps `transform` and `fit_transform` and configures
|
330 |
+
it based on `set_output` of the global configuration.
|
331 |
+
|
332 |
+
`set_output` is only defined if `get_feature_names_out` is defined and
|
333 |
+
`auto_wrap_output_keys` is the default value.
|
334 |
+
"""
|
335 |
+
|
336 |
+
def __init_subclass__(cls, auto_wrap_output_keys=("transform",), **kwargs):
|
337 |
+
super().__init_subclass__(**kwargs)
|
338 |
+
|
339 |
+
# Dynamically wraps `transform` and `fit_transform` and configure it's
|
340 |
+
# output based on `set_output`.
|
341 |
+
if not (
|
342 |
+
isinstance(auto_wrap_output_keys, tuple) or auto_wrap_output_keys is None
|
343 |
+
):
|
344 |
+
raise ValueError("auto_wrap_output_keys must be None or a tuple of keys.")
|
345 |
+
|
346 |
+
if auto_wrap_output_keys is None:
|
347 |
+
cls._sklearn_auto_wrap_output_keys = set()
|
348 |
+
return
|
349 |
+
|
350 |
+
# Mapping from method to key in configurations
|
351 |
+
method_to_key = {
|
352 |
+
"transform": "transform",
|
353 |
+
"fit_transform": "transform",
|
354 |
+
}
|
355 |
+
cls._sklearn_auto_wrap_output_keys = set()
|
356 |
+
|
357 |
+
for method, key in method_to_key.items():
|
358 |
+
if not hasattr(cls, method) or key not in auto_wrap_output_keys:
|
359 |
+
continue
|
360 |
+
cls._sklearn_auto_wrap_output_keys.add(key)
|
361 |
+
|
362 |
+
# Only wrap methods defined by cls itself
|
363 |
+
if method not in cls.__dict__:
|
364 |
+
continue
|
365 |
+
wrapped_method = _wrap_method_output(getattr(cls, method), key)
|
366 |
+
setattr(cls, method, wrapped_method)
|
367 |
+
|
368 |
+
@available_if(_auto_wrap_is_configured)
|
369 |
+
def set_output(self, *, transform=None):
|
370 |
+
"""Set output container.
|
371 |
+
|
372 |
+
See :ref:`sphx_glr_auto_examples_miscellaneous_plot_set_output.py`
|
373 |
+
for an example on how to use the API.
|
374 |
+
|
375 |
+
Parameters
|
376 |
+
----------
|
377 |
+
transform : {"default", "pandas"}, default=None
|
378 |
+
Configure output of `transform` and `fit_transform`.
|
379 |
+
|
380 |
+
- `"default"`: Default output format of a transformer
|
381 |
+
- `"pandas"`: DataFrame output
|
382 |
+
- `"polars"`: Polars output
|
383 |
+
- `None`: Transform configuration is unchanged
|
384 |
+
|
385 |
+
.. versionadded:: 1.4
|
386 |
+
`"polars"` option was added.
|
387 |
+
|
388 |
+
Returns
|
389 |
+
-------
|
390 |
+
self : estimator instance
|
391 |
+
Estimator instance.
|
392 |
+
"""
|
393 |
+
if transform is None:
|
394 |
+
return self
|
395 |
+
|
396 |
+
if not hasattr(self, "_sklearn_output_config"):
|
397 |
+
self._sklearn_output_config = {}
|
398 |
+
|
399 |
+
self._sklearn_output_config["transform"] = transform
|
400 |
+
return self
|
401 |
+
|
402 |
+
|
403 |
+
def _safe_set_output(estimator, *, transform=None):
|
404 |
+
"""Safely call estimator.set_output and error if it not available.
|
405 |
+
|
406 |
+
This is used by meta-estimators to set the output for child estimators.
|
407 |
+
|
408 |
+
Parameters
|
409 |
+
----------
|
410 |
+
estimator : estimator instance
|
411 |
+
Estimator instance.
|
412 |
+
|
413 |
+
transform : {"default", "pandas"}, default=None
|
414 |
+
Configure output of the following estimator's methods:
|
415 |
+
|
416 |
+
- `"transform"`
|
417 |
+
- `"fit_transform"`
|
418 |
+
|
419 |
+
If `None`, this operation is a no-op.
|
420 |
+
|
421 |
+
Returns
|
422 |
+
-------
|
423 |
+
estimator : estimator instance
|
424 |
+
Estimator instance.
|
425 |
+
"""
|
426 |
+
set_output_for_transform = (
|
427 |
+
hasattr(estimator, "transform")
|
428 |
+
or hasattr(estimator, "fit_transform")
|
429 |
+
and transform is not None
|
430 |
+
)
|
431 |
+
if not set_output_for_transform:
|
432 |
+
# If estimator can not transform, then `set_output` does not need to be
|
433 |
+
# called.
|
434 |
+
return
|
435 |
+
|
436 |
+
if not hasattr(estimator, "set_output"):
|
437 |
+
raise ValueError(
|
438 |
+
f"Unable to configure output for {estimator} because `set_output` "
|
439 |
+
"is not available."
|
440 |
+
)
|
441 |
+
return estimator.set_output(transform=transform)
|
venv/lib/python3.10/site-packages/sklearn/utils/_sorting.pxd
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ._typedefs cimport intp_t
|
2 |
+
|
3 |
+
from cython cimport floating
|
4 |
+
|
5 |
+
cdef int simultaneous_sort(
|
6 |
+
floating *dist,
|
7 |
+
intp_t *idx,
|
8 |
+
intp_t size,
|
9 |
+
) noexcept nogil
|
venv/lib/python3.10/site-packages/sklearn/utils/_tags.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
_DEFAULT_TAGS = {
|
4 |
+
"array_api_support": False,
|
5 |
+
"non_deterministic": False,
|
6 |
+
"requires_positive_X": False,
|
7 |
+
"requires_positive_y": False,
|
8 |
+
"X_types": ["2darray"],
|
9 |
+
"poor_score": False,
|
10 |
+
"no_validation": False,
|
11 |
+
"multioutput": False,
|
12 |
+
"allow_nan": False,
|
13 |
+
"stateless": False,
|
14 |
+
"multilabel": False,
|
15 |
+
"_skip_test": False,
|
16 |
+
"_xfail_checks": False,
|
17 |
+
"multioutput_only": False,
|
18 |
+
"binary_only": False,
|
19 |
+
"requires_fit": True,
|
20 |
+
"preserves_dtype": [np.float64],
|
21 |
+
"requires_y": False,
|
22 |
+
"pairwise": False,
|
23 |
+
}
|
24 |
+
|
25 |
+
|
26 |
+
def _safe_tags(estimator, key=None):
|
27 |
+
"""Safely get estimator tags.
|
28 |
+
|
29 |
+
:class:`~sklearn.BaseEstimator` provides the estimator tags machinery.
|
30 |
+
However, if an estimator does not inherit from this base class, we should
|
31 |
+
fall-back to the default tags.
|
32 |
+
|
33 |
+
For scikit-learn built-in estimators, we should still rely on
|
34 |
+
`self._get_tags()`. `_safe_tags(est)` should be used when we are not sure
|
35 |
+
where `est` comes from: typically `_safe_tags(self.base_estimator)` where
|
36 |
+
`self` is a meta-estimator, or in the common checks.
|
37 |
+
|
38 |
+
Parameters
|
39 |
+
----------
|
40 |
+
estimator : estimator object
|
41 |
+
The estimator from which to get the tag.
|
42 |
+
|
43 |
+
key : str, default=None
|
44 |
+
Tag name to get. By default (`None`), all tags are returned.
|
45 |
+
|
46 |
+
Returns
|
47 |
+
-------
|
48 |
+
tags : dict or tag value
|
49 |
+
The estimator tags. A single value is returned if `key` is not None.
|
50 |
+
"""
|
51 |
+
if hasattr(estimator, "_get_tags"):
|
52 |
+
tags_provider = "_get_tags()"
|
53 |
+
tags = estimator._get_tags()
|
54 |
+
elif hasattr(estimator, "_more_tags"):
|
55 |
+
tags_provider = "_more_tags()"
|
56 |
+
tags = {**_DEFAULT_TAGS, **estimator._more_tags()}
|
57 |
+
else:
|
58 |
+
tags_provider = "_DEFAULT_TAGS"
|
59 |
+
tags = _DEFAULT_TAGS
|
60 |
+
|
61 |
+
if key is not None:
|
62 |
+
if key not in tags:
|
63 |
+
raise ValueError(
|
64 |
+
f"The key {key} is not defined in {tags_provider} for the "
|
65 |
+
f"class {estimator.__class__.__name__}."
|
66 |
+
)
|
67 |
+
return tags[key]
|
68 |
+
return tags
|
venv/lib/python3.10/site-packages/sklearn/utils/_testing.py
ADDED
@@ -0,0 +1,1169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Testing utilities."""
|
2 |
+
|
3 |
+
# Copyright (c) 2011, 2012
|
4 |
+
# Authors: Pietro Berkes,
|
5 |
+
# Andreas Muller
|
6 |
+
# Mathieu Blondel
|
7 |
+
# Olivier Grisel
|
8 |
+
# Arnaud Joly
|
9 |
+
# Denis Engemann
|
10 |
+
# Giorgio Patrini
|
11 |
+
# Thierry Guillemot
|
12 |
+
# License: BSD 3 clause
|
13 |
+
import atexit
|
14 |
+
import contextlib
|
15 |
+
import functools
|
16 |
+
import importlib
|
17 |
+
import inspect
|
18 |
+
import os
|
19 |
+
import os.path as op
|
20 |
+
import re
|
21 |
+
import shutil
|
22 |
+
import sys
|
23 |
+
import tempfile
|
24 |
+
import unittest
|
25 |
+
import warnings
|
26 |
+
from collections.abc import Iterable
|
27 |
+
from dataclasses import dataclass
|
28 |
+
from functools import wraps
|
29 |
+
from inspect import signature
|
30 |
+
from subprocess import STDOUT, CalledProcessError, TimeoutExpired, check_output
|
31 |
+
from unittest import TestCase
|
32 |
+
|
33 |
+
import joblib
|
34 |
+
import numpy as np
|
35 |
+
import scipy as sp
|
36 |
+
from numpy.testing import assert_allclose as np_assert_allclose
|
37 |
+
from numpy.testing import (
|
38 |
+
assert_almost_equal,
|
39 |
+
assert_approx_equal,
|
40 |
+
assert_array_almost_equal,
|
41 |
+
assert_array_equal,
|
42 |
+
assert_array_less,
|
43 |
+
assert_no_warnings,
|
44 |
+
)
|
45 |
+
|
46 |
+
import sklearn
|
47 |
+
from sklearn.utils import (
|
48 |
+
_IS_32BIT,
|
49 |
+
IS_PYPY,
|
50 |
+
_in_unstable_openblas_configuration,
|
51 |
+
)
|
52 |
+
from sklearn.utils._array_api import _check_array_api_dispatch
|
53 |
+
from sklearn.utils.fixes import VisibleDeprecationWarning, parse_version, sp_version
|
54 |
+
from sklearn.utils.multiclass import check_classification_targets
|
55 |
+
from sklearn.utils.validation import (
|
56 |
+
check_array,
|
57 |
+
check_is_fitted,
|
58 |
+
check_X_y,
|
59 |
+
)
|
60 |
+
|
61 |
+
__all__ = [
|
62 |
+
"assert_raises",
|
63 |
+
"assert_raises_regexp",
|
64 |
+
"assert_array_equal",
|
65 |
+
"assert_almost_equal",
|
66 |
+
"assert_array_almost_equal",
|
67 |
+
"assert_array_less",
|
68 |
+
"assert_approx_equal",
|
69 |
+
"assert_allclose",
|
70 |
+
"assert_run_python_script_without_output",
|
71 |
+
"assert_no_warnings",
|
72 |
+
"SkipTest",
|
73 |
+
]
|
74 |
+
|
75 |
+
_dummy = TestCase("__init__")
|
76 |
+
assert_raises = _dummy.assertRaises
|
77 |
+
SkipTest = unittest.case.SkipTest
|
78 |
+
assert_dict_equal = _dummy.assertDictEqual
|
79 |
+
|
80 |
+
assert_raises_regex = _dummy.assertRaisesRegex
|
81 |
+
# assert_raises_regexp is deprecated in Python 3.4 in favor of
|
82 |
+
# assert_raises_regex but lets keep the backward compat in scikit-learn with
|
83 |
+
# the old name for now
|
84 |
+
assert_raises_regexp = assert_raises_regex
|
85 |
+
|
86 |
+
|
87 |
+
def ignore_warnings(obj=None, category=Warning):
|
88 |
+
"""Context manager and decorator to ignore warnings.
|
89 |
+
|
90 |
+
Note: Using this (in both variants) will clear all warnings
|
91 |
+
from all python modules loaded. In case you need to test
|
92 |
+
cross-module-warning-logging, this is not your tool of choice.
|
93 |
+
|
94 |
+
Parameters
|
95 |
+
----------
|
96 |
+
obj : callable, default=None
|
97 |
+
callable where you want to ignore the warnings.
|
98 |
+
category : warning class, default=Warning
|
99 |
+
The category to filter. If Warning, all categories will be muted.
|
100 |
+
|
101 |
+
Examples
|
102 |
+
--------
|
103 |
+
>>> import warnings
|
104 |
+
>>> from sklearn.utils._testing import ignore_warnings
|
105 |
+
>>> with ignore_warnings():
|
106 |
+
... warnings.warn('buhuhuhu')
|
107 |
+
|
108 |
+
>>> def nasty_warn():
|
109 |
+
... warnings.warn('buhuhuhu')
|
110 |
+
... print(42)
|
111 |
+
|
112 |
+
>>> ignore_warnings(nasty_warn)()
|
113 |
+
42
|
114 |
+
"""
|
115 |
+
if isinstance(obj, type) and issubclass(obj, Warning):
|
116 |
+
# Avoid common pitfall of passing category as the first positional
|
117 |
+
# argument which result in the test not being run
|
118 |
+
warning_name = obj.__name__
|
119 |
+
raise ValueError(
|
120 |
+
"'obj' should be a callable where you want to ignore warnings. "
|
121 |
+
"You passed a warning class instead: 'obj={warning_name}'. "
|
122 |
+
"If you want to pass a warning class to ignore_warnings, "
|
123 |
+
"you should use 'category={warning_name}'".format(warning_name=warning_name)
|
124 |
+
)
|
125 |
+
elif callable(obj):
|
126 |
+
return _IgnoreWarnings(category=category)(obj)
|
127 |
+
else:
|
128 |
+
return _IgnoreWarnings(category=category)
|
129 |
+
|
130 |
+
|
131 |
+
class _IgnoreWarnings:
|
132 |
+
"""Improved and simplified Python warnings context manager and decorator.
|
133 |
+
|
134 |
+
This class allows the user to ignore the warnings raised by a function.
|
135 |
+
Copied from Python 2.7.5 and modified as required.
|
136 |
+
|
137 |
+
Parameters
|
138 |
+
----------
|
139 |
+
category : tuple of warning class, default=Warning
|
140 |
+
The category to filter. By default, all the categories will be muted.
|
141 |
+
|
142 |
+
"""
|
143 |
+
|
144 |
+
def __init__(self, category):
|
145 |
+
self._record = True
|
146 |
+
self._module = sys.modules["warnings"]
|
147 |
+
self._entered = False
|
148 |
+
self.log = []
|
149 |
+
self.category = category
|
150 |
+
|
151 |
+
def __call__(self, fn):
|
152 |
+
"""Decorator to catch and hide warnings without visual nesting."""
|
153 |
+
|
154 |
+
@wraps(fn)
|
155 |
+
def wrapper(*args, **kwargs):
|
156 |
+
with warnings.catch_warnings():
|
157 |
+
warnings.simplefilter("ignore", self.category)
|
158 |
+
return fn(*args, **kwargs)
|
159 |
+
|
160 |
+
return wrapper
|
161 |
+
|
162 |
+
def __repr__(self):
|
163 |
+
args = []
|
164 |
+
if self._record:
|
165 |
+
args.append("record=True")
|
166 |
+
if self._module is not sys.modules["warnings"]:
|
167 |
+
args.append("module=%r" % self._module)
|
168 |
+
name = type(self).__name__
|
169 |
+
return "%s(%s)" % (name, ", ".join(args))
|
170 |
+
|
171 |
+
def __enter__(self):
|
172 |
+
if self._entered:
|
173 |
+
raise RuntimeError("Cannot enter %r twice" % self)
|
174 |
+
self._entered = True
|
175 |
+
self._filters = self._module.filters
|
176 |
+
self._module.filters = self._filters[:]
|
177 |
+
self._showwarning = self._module.showwarning
|
178 |
+
warnings.simplefilter("ignore", self.category)
|
179 |
+
|
180 |
+
def __exit__(self, *exc_info):
|
181 |
+
if not self._entered:
|
182 |
+
raise RuntimeError("Cannot exit %r without entering first" % self)
|
183 |
+
self._module.filters = self._filters
|
184 |
+
self._module.showwarning = self._showwarning
|
185 |
+
self.log[:] = []
|
186 |
+
|
187 |
+
|
188 |
+
def assert_raise_message(exceptions, message, function, *args, **kwargs):
|
189 |
+
"""Helper function to test the message raised in an exception.
|
190 |
+
|
191 |
+
Given an exception, a callable to raise the exception, and
|
192 |
+
a message string, tests that the correct exception is raised and
|
193 |
+
that the message is a substring of the error thrown. Used to test
|
194 |
+
that the specific message thrown during an exception is correct.
|
195 |
+
|
196 |
+
Parameters
|
197 |
+
----------
|
198 |
+
exceptions : exception or tuple of exception
|
199 |
+
An Exception object.
|
200 |
+
|
201 |
+
message : str
|
202 |
+
The error message or a substring of the error message.
|
203 |
+
|
204 |
+
function : callable
|
205 |
+
Callable object to raise error.
|
206 |
+
|
207 |
+
*args : the positional arguments to `function`.
|
208 |
+
|
209 |
+
**kwargs : the keyword arguments to `function`.
|
210 |
+
"""
|
211 |
+
try:
|
212 |
+
function(*args, **kwargs)
|
213 |
+
except exceptions as e:
|
214 |
+
error_message = str(e)
|
215 |
+
if message not in error_message:
|
216 |
+
raise AssertionError(
|
217 |
+
"Error message does not include the expected"
|
218 |
+
" string: %r. Observed error message: %r" % (message, error_message)
|
219 |
+
)
|
220 |
+
else:
|
221 |
+
# concatenate exception names
|
222 |
+
if isinstance(exceptions, tuple):
|
223 |
+
names = " or ".join(e.__name__ for e in exceptions)
|
224 |
+
else:
|
225 |
+
names = exceptions.__name__
|
226 |
+
|
227 |
+
raise AssertionError("%s not raised by %s" % (names, function.__name__))
|
228 |
+
|
229 |
+
|
230 |
+
def assert_allclose(
|
231 |
+
actual, desired, rtol=None, atol=0.0, equal_nan=True, err_msg="", verbose=True
|
232 |
+
):
|
233 |
+
"""dtype-aware variant of numpy.testing.assert_allclose
|
234 |
+
|
235 |
+
This variant introspects the least precise floating point dtype
|
236 |
+
in the input argument and automatically sets the relative tolerance
|
237 |
+
parameter to 1e-4 float32 and use 1e-7 otherwise (typically float64
|
238 |
+
in scikit-learn).
|
239 |
+
|
240 |
+
`atol` is always left to 0. by default. It should be adjusted manually
|
241 |
+
to an assertion-specific value in case there are null values expected
|
242 |
+
in `desired`.
|
243 |
+
|
244 |
+
The aggregate tolerance is `atol + rtol * abs(desired)`.
|
245 |
+
|
246 |
+
Parameters
|
247 |
+
----------
|
248 |
+
actual : array_like
|
249 |
+
Array obtained.
|
250 |
+
desired : array_like
|
251 |
+
Array desired.
|
252 |
+
rtol : float, optional, default=None
|
253 |
+
Relative tolerance.
|
254 |
+
If None, it is set based on the provided arrays' dtypes.
|
255 |
+
atol : float, optional, default=0.
|
256 |
+
Absolute tolerance.
|
257 |
+
equal_nan : bool, optional, default=True
|
258 |
+
If True, NaNs will compare equal.
|
259 |
+
err_msg : str, optional, default=''
|
260 |
+
The error message to be printed in case of failure.
|
261 |
+
verbose : bool, optional, default=True
|
262 |
+
If True, the conflicting values are appended to the error message.
|
263 |
+
|
264 |
+
Raises
|
265 |
+
------
|
266 |
+
AssertionError
|
267 |
+
If actual and desired are not equal up to specified precision.
|
268 |
+
|
269 |
+
See Also
|
270 |
+
--------
|
271 |
+
numpy.testing.assert_allclose
|
272 |
+
|
273 |
+
Examples
|
274 |
+
--------
|
275 |
+
>>> import numpy as np
|
276 |
+
>>> from sklearn.utils._testing import assert_allclose
|
277 |
+
>>> x = [1e-5, 1e-3, 1e-1]
|
278 |
+
>>> y = np.arccos(np.cos(x))
|
279 |
+
>>> assert_allclose(x, y, rtol=1e-5, atol=0)
|
280 |
+
>>> a = np.full(shape=10, fill_value=1e-5, dtype=np.float32)
|
281 |
+
>>> assert_allclose(a, 1e-5)
|
282 |
+
"""
|
283 |
+
dtypes = []
|
284 |
+
|
285 |
+
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
|
286 |
+
dtypes = [actual.dtype, desired.dtype]
|
287 |
+
|
288 |
+
if rtol is None:
|
289 |
+
rtols = [1e-4 if dtype == np.float32 else 1e-7 for dtype in dtypes]
|
290 |
+
rtol = max(rtols)
|
291 |
+
|
292 |
+
np_assert_allclose(
|
293 |
+
actual,
|
294 |
+
desired,
|
295 |
+
rtol=rtol,
|
296 |
+
atol=atol,
|
297 |
+
equal_nan=equal_nan,
|
298 |
+
err_msg=err_msg,
|
299 |
+
verbose=verbose,
|
300 |
+
)
|
301 |
+
|
302 |
+
|
303 |
+
def assert_allclose_dense_sparse(x, y, rtol=1e-07, atol=1e-9, err_msg=""):
|
304 |
+
"""Assert allclose for sparse and dense data.
|
305 |
+
|
306 |
+
Both x and y need to be either sparse or dense, they
|
307 |
+
can't be mixed.
|
308 |
+
|
309 |
+
Parameters
|
310 |
+
----------
|
311 |
+
x : {array-like, sparse matrix}
|
312 |
+
First array to compare.
|
313 |
+
|
314 |
+
y : {array-like, sparse matrix}
|
315 |
+
Second array to compare.
|
316 |
+
|
317 |
+
rtol : float, default=1e-07
|
318 |
+
relative tolerance; see numpy.allclose.
|
319 |
+
|
320 |
+
atol : float, default=1e-9
|
321 |
+
absolute tolerance; see numpy.allclose. Note that the default here is
|
322 |
+
more tolerant than the default for numpy.testing.assert_allclose, where
|
323 |
+
atol=0.
|
324 |
+
|
325 |
+
err_msg : str, default=''
|
326 |
+
Error message to raise.
|
327 |
+
"""
|
328 |
+
if sp.sparse.issparse(x) and sp.sparse.issparse(y):
|
329 |
+
x = x.tocsr()
|
330 |
+
y = y.tocsr()
|
331 |
+
x.sum_duplicates()
|
332 |
+
y.sum_duplicates()
|
333 |
+
assert_array_equal(x.indices, y.indices, err_msg=err_msg)
|
334 |
+
assert_array_equal(x.indptr, y.indptr, err_msg=err_msg)
|
335 |
+
assert_allclose(x.data, y.data, rtol=rtol, atol=atol, err_msg=err_msg)
|
336 |
+
elif not sp.sparse.issparse(x) and not sp.sparse.issparse(y):
|
337 |
+
# both dense
|
338 |
+
assert_allclose(x, y, rtol=rtol, atol=atol, err_msg=err_msg)
|
339 |
+
else:
|
340 |
+
raise ValueError(
|
341 |
+
"Can only compare two sparse matrices, not a sparse matrix and an array."
|
342 |
+
)
|
343 |
+
|
344 |
+
|
345 |
+
def set_random_state(estimator, random_state=0):
|
346 |
+
"""Set random state of an estimator if it has the `random_state` param.
|
347 |
+
|
348 |
+
Parameters
|
349 |
+
----------
|
350 |
+
estimator : object
|
351 |
+
The estimator.
|
352 |
+
random_state : int, RandomState instance or None, default=0
|
353 |
+
Pseudo random number generator state.
|
354 |
+
Pass an int for reproducible results across multiple function calls.
|
355 |
+
See :term:`Glossary <random_state>`.
|
356 |
+
"""
|
357 |
+
if "random_state" in estimator.get_params():
|
358 |
+
estimator.set_params(random_state=random_state)
|
359 |
+
|
360 |
+
|
361 |
+
try:
|
362 |
+
_check_array_api_dispatch(True)
|
363 |
+
ARRAY_API_COMPAT_FUNCTIONAL = True
|
364 |
+
except ImportError:
|
365 |
+
ARRAY_API_COMPAT_FUNCTIONAL = False
|
366 |
+
|
367 |
+
try:
|
368 |
+
import pytest
|
369 |
+
|
370 |
+
skip_if_32bit = pytest.mark.skipif(_IS_32BIT, reason="skipped on 32bit platforms")
|
371 |
+
fails_if_pypy = pytest.mark.xfail(IS_PYPY, reason="not compatible with PyPy")
|
372 |
+
fails_if_unstable_openblas = pytest.mark.xfail(
|
373 |
+
_in_unstable_openblas_configuration(),
|
374 |
+
reason="OpenBLAS is unstable for this configuration",
|
375 |
+
)
|
376 |
+
skip_if_no_parallel = pytest.mark.skipif(
|
377 |
+
not joblib.parallel.mp, reason="joblib is in serial mode"
|
378 |
+
)
|
379 |
+
skip_if_array_api_compat_not_configured = pytest.mark.skipif(
|
380 |
+
not ARRAY_API_COMPAT_FUNCTIONAL,
|
381 |
+
reason="requires array_api_compat installed and a new enough version of NumPy",
|
382 |
+
)
|
383 |
+
|
384 |
+
# Decorator for tests involving both BLAS calls and multiprocessing.
|
385 |
+
#
|
386 |
+
# Under POSIX (e.g. Linux or OSX), using multiprocessing in conjunction
|
387 |
+
# with some implementation of BLAS (or other libraries that manage an
|
388 |
+
# internal posix thread pool) can cause a crash or a freeze of the Python
|
389 |
+
# process.
|
390 |
+
#
|
391 |
+
# In practice all known packaged distributions (from Linux distros or
|
392 |
+
# Anaconda) of BLAS under Linux seems to be safe. So we this problem seems
|
393 |
+
# to only impact OSX users.
|
394 |
+
#
|
395 |
+
# This wrapper makes it possible to skip tests that can possibly cause
|
396 |
+
# this crash under OS X with.
|
397 |
+
#
|
398 |
+
# Under Python 3.4+ it is possible to use the `forkserver` start method
|
399 |
+
# for multiprocessing to avoid this issue. However it can cause pickling
|
400 |
+
# errors on interactively defined functions. It therefore not enabled by
|
401 |
+
# default.
|
402 |
+
|
403 |
+
if_safe_multiprocessing_with_blas = pytest.mark.skipif(
|
404 |
+
sys.platform == "darwin", reason="Possible multi-process bug with some BLAS"
|
405 |
+
)
|
406 |
+
except ImportError:
|
407 |
+
pass
|
408 |
+
|
409 |
+
|
410 |
+
def check_skip_network():
|
411 |
+
if int(os.environ.get("SKLEARN_SKIP_NETWORK_TESTS", 0)):
|
412 |
+
raise SkipTest("Text tutorial requires large dataset download")
|
413 |
+
|
414 |
+
|
415 |
+
def _delete_folder(folder_path, warn=False):
|
416 |
+
"""Utility function to cleanup a temporary folder if still existing.
|
417 |
+
|
418 |
+
Copy from joblib.pool (for independence).
|
419 |
+
"""
|
420 |
+
try:
|
421 |
+
if os.path.exists(folder_path):
|
422 |
+
# This can fail under windows,
|
423 |
+
# but will succeed when called by atexit
|
424 |
+
shutil.rmtree(folder_path)
|
425 |
+
except OSError:
|
426 |
+
if warn:
|
427 |
+
warnings.warn("Could not delete temporary folder %s" % folder_path)
|
428 |
+
|
429 |
+
|
430 |
+
class TempMemmap:
|
431 |
+
"""
|
432 |
+
Parameters
|
433 |
+
----------
|
434 |
+
data
|
435 |
+
mmap_mode : str, default='r'
|
436 |
+
"""
|
437 |
+
|
438 |
+
def __init__(self, data, mmap_mode="r"):
|
439 |
+
self.mmap_mode = mmap_mode
|
440 |
+
self.data = data
|
441 |
+
|
442 |
+
def __enter__(self):
|
443 |
+
data_read_only, self.temp_folder = create_memmap_backed_data(
|
444 |
+
self.data, mmap_mode=self.mmap_mode, return_folder=True
|
445 |
+
)
|
446 |
+
return data_read_only
|
447 |
+
|
448 |
+
def __exit__(self, exc_type, exc_val, exc_tb):
|
449 |
+
_delete_folder(self.temp_folder)
|
450 |
+
|
451 |
+
|
452 |
+
def create_memmap_backed_data(data, mmap_mode="r", return_folder=False):
|
453 |
+
"""
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
data
|
457 |
+
mmap_mode : str, default='r'
|
458 |
+
return_folder : bool, default=False
|
459 |
+
"""
|
460 |
+
temp_folder = tempfile.mkdtemp(prefix="sklearn_testing_")
|
461 |
+
atexit.register(functools.partial(_delete_folder, temp_folder, warn=True))
|
462 |
+
filename = op.join(temp_folder, "data.pkl")
|
463 |
+
joblib.dump(data, filename)
|
464 |
+
memmap_backed_data = joblib.load(filename, mmap_mode=mmap_mode)
|
465 |
+
result = (
|
466 |
+
memmap_backed_data if not return_folder else (memmap_backed_data, temp_folder)
|
467 |
+
)
|
468 |
+
return result
|
469 |
+
|
470 |
+
|
471 |
+
# Utils to test docstrings
|
472 |
+
|
473 |
+
|
474 |
+
def _get_args(function, varargs=False):
|
475 |
+
"""Helper to get function arguments."""
|
476 |
+
|
477 |
+
try:
|
478 |
+
params = signature(function).parameters
|
479 |
+
except ValueError:
|
480 |
+
# Error on builtin C function
|
481 |
+
return []
|
482 |
+
args = [
|
483 |
+
key
|
484 |
+
for key, param in params.items()
|
485 |
+
if param.kind not in (param.VAR_POSITIONAL, param.VAR_KEYWORD)
|
486 |
+
]
|
487 |
+
if varargs:
|
488 |
+
varargs = [
|
489 |
+
param.name
|
490 |
+
for param in params.values()
|
491 |
+
if param.kind == param.VAR_POSITIONAL
|
492 |
+
]
|
493 |
+
if len(varargs) == 0:
|
494 |
+
varargs = None
|
495 |
+
return args, varargs
|
496 |
+
else:
|
497 |
+
return args
|
498 |
+
|
499 |
+
|
500 |
+
def _get_func_name(func):
|
501 |
+
"""Get function full name.
|
502 |
+
|
503 |
+
Parameters
|
504 |
+
----------
|
505 |
+
func : callable
|
506 |
+
The function object.
|
507 |
+
|
508 |
+
Returns
|
509 |
+
-------
|
510 |
+
name : str
|
511 |
+
The function name.
|
512 |
+
"""
|
513 |
+
parts = []
|
514 |
+
module = inspect.getmodule(func)
|
515 |
+
if module:
|
516 |
+
parts.append(module.__name__)
|
517 |
+
|
518 |
+
qualname = func.__qualname__
|
519 |
+
if qualname != func.__name__:
|
520 |
+
parts.append(qualname[: qualname.find(".")])
|
521 |
+
|
522 |
+
parts.append(func.__name__)
|
523 |
+
return ".".join(parts)
|
524 |
+
|
525 |
+
|
526 |
+
def check_docstring_parameters(func, doc=None, ignore=None):
|
527 |
+
"""Helper to check docstring.
|
528 |
+
|
529 |
+
Parameters
|
530 |
+
----------
|
531 |
+
func : callable
|
532 |
+
The function object to test.
|
533 |
+
doc : str, default=None
|
534 |
+
Docstring if it is passed manually to the test.
|
535 |
+
ignore : list, default=None
|
536 |
+
Parameters to ignore.
|
537 |
+
|
538 |
+
Returns
|
539 |
+
-------
|
540 |
+
incorrect : list
|
541 |
+
A list of string describing the incorrect results.
|
542 |
+
"""
|
543 |
+
from numpydoc import docscrape
|
544 |
+
|
545 |
+
incorrect = []
|
546 |
+
ignore = [] if ignore is None else ignore
|
547 |
+
|
548 |
+
func_name = _get_func_name(func)
|
549 |
+
if not func_name.startswith("sklearn.") or func_name.startswith(
|
550 |
+
"sklearn.externals"
|
551 |
+
):
|
552 |
+
return incorrect
|
553 |
+
# Don't check docstring for property-functions
|
554 |
+
if inspect.isdatadescriptor(func):
|
555 |
+
return incorrect
|
556 |
+
# Don't check docstring for setup / teardown pytest functions
|
557 |
+
if func_name.split(".")[-1] in ("setup_module", "teardown_module"):
|
558 |
+
return incorrect
|
559 |
+
# Dont check estimator_checks module
|
560 |
+
if func_name.split(".")[2] == "estimator_checks":
|
561 |
+
return incorrect
|
562 |
+
# Get the arguments from the function signature
|
563 |
+
param_signature = list(filter(lambda x: x not in ignore, _get_args(func)))
|
564 |
+
# drop self
|
565 |
+
if len(param_signature) > 0 and param_signature[0] == "self":
|
566 |
+
param_signature.remove("self")
|
567 |
+
|
568 |
+
# Analyze function's docstring
|
569 |
+
if doc is None:
|
570 |
+
records = []
|
571 |
+
with warnings.catch_warnings(record=True):
|
572 |
+
warnings.simplefilter("error", UserWarning)
|
573 |
+
try:
|
574 |
+
doc = docscrape.FunctionDoc(func)
|
575 |
+
except UserWarning as exp:
|
576 |
+
if "potentially wrong underline length" in str(exp):
|
577 |
+
# Catch warning raised as of numpydoc 1.2 when
|
578 |
+
# the underline length for a section of a docstring
|
579 |
+
# is not consistent.
|
580 |
+
message = str(exp).split("\n")[:3]
|
581 |
+
incorrect += [f"In function: {func_name}"] + message
|
582 |
+
return incorrect
|
583 |
+
records.append(str(exp))
|
584 |
+
except Exception as exp:
|
585 |
+
incorrect += [func_name + " parsing error: " + str(exp)]
|
586 |
+
return incorrect
|
587 |
+
if len(records):
|
588 |
+
raise RuntimeError("Error for %s:\n%s" % (func_name, records[0]))
|
589 |
+
|
590 |
+
param_docs = []
|
591 |
+
for name, type_definition, param_doc in doc["Parameters"]:
|
592 |
+
# Type hints are empty only if parameter name ended with :
|
593 |
+
if not type_definition.strip():
|
594 |
+
if ":" in name and name[: name.index(":")][-1:].strip():
|
595 |
+
incorrect += [
|
596 |
+
func_name
|
597 |
+
+ " There was no space between the param name and colon (%r)" % name
|
598 |
+
]
|
599 |
+
elif name.rstrip().endswith(":"):
|
600 |
+
incorrect += [
|
601 |
+
func_name
|
602 |
+
+ " Parameter %r has an empty type spec. Remove the colon"
|
603 |
+
% (name.lstrip())
|
604 |
+
]
|
605 |
+
|
606 |
+
# Create a list of parameters to compare with the parameters gotten
|
607 |
+
# from the func signature
|
608 |
+
if "*" not in name:
|
609 |
+
param_docs.append(name.split(":")[0].strip("` "))
|
610 |
+
|
611 |
+
# If one of the docstring's parameters had an error then return that
|
612 |
+
# incorrect message
|
613 |
+
if len(incorrect) > 0:
|
614 |
+
return incorrect
|
615 |
+
|
616 |
+
# Remove the parameters that should be ignored from list
|
617 |
+
param_docs = list(filter(lambda x: x not in ignore, param_docs))
|
618 |
+
|
619 |
+
# The following is derived from pytest, Copyright (c) 2004-2017 Holger
|
620 |
+
# Krekel and others, Licensed under MIT License. See
|
621 |
+
# https://github.com/pytest-dev/pytest
|
622 |
+
|
623 |
+
message = []
|
624 |
+
for i in range(min(len(param_docs), len(param_signature))):
|
625 |
+
if param_signature[i] != param_docs[i]:
|
626 |
+
message += [
|
627 |
+
"There's a parameter name mismatch in function"
|
628 |
+
" docstring w.r.t. function signature, at index %s"
|
629 |
+
" diff: %r != %r" % (i, param_signature[i], param_docs[i])
|
630 |
+
]
|
631 |
+
break
|
632 |
+
if len(param_signature) > len(param_docs):
|
633 |
+
message += [
|
634 |
+
"Parameters in function docstring have less items w.r.t."
|
635 |
+
" function signature, first missing item: %s"
|
636 |
+
% param_signature[len(param_docs)]
|
637 |
+
]
|
638 |
+
|
639 |
+
elif len(param_signature) < len(param_docs):
|
640 |
+
message += [
|
641 |
+
"Parameters in function docstring have more items w.r.t."
|
642 |
+
" function signature, first extra item: %s"
|
643 |
+
% param_docs[len(param_signature)]
|
644 |
+
]
|
645 |
+
|
646 |
+
# If there wasn't any difference in the parameters themselves between
|
647 |
+
# docstring and signature including having the same length then return
|
648 |
+
# empty list
|
649 |
+
if len(message) == 0:
|
650 |
+
return []
|
651 |
+
|
652 |
+
import difflib
|
653 |
+
import pprint
|
654 |
+
|
655 |
+
param_docs_formatted = pprint.pformat(param_docs).splitlines()
|
656 |
+
param_signature_formatted = pprint.pformat(param_signature).splitlines()
|
657 |
+
|
658 |
+
message += ["Full diff:"]
|
659 |
+
|
660 |
+
message.extend(
|
661 |
+
line.strip()
|
662 |
+
for line in difflib.ndiff(param_signature_formatted, param_docs_formatted)
|
663 |
+
)
|
664 |
+
|
665 |
+
incorrect.extend(message)
|
666 |
+
|
667 |
+
# Prepend function name
|
668 |
+
incorrect = ["In function: " + func_name] + incorrect
|
669 |
+
|
670 |
+
return incorrect
|
671 |
+
|
672 |
+
|
673 |
+
def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60):
|
674 |
+
"""Utility to check assertions in an independent Python subprocess.
|
675 |
+
|
676 |
+
The script provided in the source code should return 0 and the stdtout +
|
677 |
+
stderr should not match the pattern `pattern`.
|
678 |
+
|
679 |
+
This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle
|
680 |
+
|
681 |
+
Parameters
|
682 |
+
----------
|
683 |
+
source_code : str
|
684 |
+
The Python source code to execute.
|
685 |
+
pattern : str
|
686 |
+
Pattern that the stdout + stderr should not match. By default, unless
|
687 |
+
stdout + stderr are both empty, an error will be raised.
|
688 |
+
timeout : int, default=60
|
689 |
+
Time in seconds before timeout.
|
690 |
+
"""
|
691 |
+
fd, source_file = tempfile.mkstemp(suffix="_src_test_sklearn.py")
|
692 |
+
os.close(fd)
|
693 |
+
try:
|
694 |
+
with open(source_file, "wb") as f:
|
695 |
+
f.write(source_code.encode("utf-8"))
|
696 |
+
cmd = [sys.executable, source_file]
|
697 |
+
cwd = op.normpath(op.join(op.dirname(sklearn.__file__), ".."))
|
698 |
+
env = os.environ.copy()
|
699 |
+
try:
|
700 |
+
env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]])
|
701 |
+
except KeyError:
|
702 |
+
env["PYTHONPATH"] = cwd
|
703 |
+
kwargs = {"cwd": cwd, "stderr": STDOUT, "env": env}
|
704 |
+
# If coverage is running, pass the config file to the subprocess
|
705 |
+
coverage_rc = os.environ.get("COVERAGE_PROCESS_START")
|
706 |
+
if coverage_rc:
|
707 |
+
kwargs["env"]["COVERAGE_PROCESS_START"] = coverage_rc
|
708 |
+
|
709 |
+
kwargs["timeout"] = timeout
|
710 |
+
try:
|
711 |
+
try:
|
712 |
+
out = check_output(cmd, **kwargs)
|
713 |
+
except CalledProcessError as e:
|
714 |
+
raise RuntimeError(
|
715 |
+
"script errored with output:\n%s" % e.output.decode("utf-8")
|
716 |
+
)
|
717 |
+
|
718 |
+
out = out.decode("utf-8")
|
719 |
+
if re.search(pattern, out):
|
720 |
+
if pattern == ".+":
|
721 |
+
expectation = "Expected no output"
|
722 |
+
else:
|
723 |
+
expectation = f"The output was not supposed to match {pattern!r}"
|
724 |
+
|
725 |
+
message = f"{expectation}, got the following output instead: {out!r}"
|
726 |
+
raise AssertionError(message)
|
727 |
+
except TimeoutExpired as e:
|
728 |
+
raise RuntimeError(
|
729 |
+
"script timeout, output so far:\n%s" % e.output.decode("utf-8")
|
730 |
+
)
|
731 |
+
finally:
|
732 |
+
os.unlink(source_file)
|
733 |
+
|
734 |
+
|
735 |
+
def _convert_container(
|
736 |
+
container,
|
737 |
+
constructor_name,
|
738 |
+
columns_name=None,
|
739 |
+
dtype=None,
|
740 |
+
minversion=None,
|
741 |
+
categorical_feature_names=None,
|
742 |
+
):
|
743 |
+
"""Convert a given container to a specific array-like with a dtype.
|
744 |
+
|
745 |
+
Parameters
|
746 |
+
----------
|
747 |
+
container : array-like
|
748 |
+
The container to convert.
|
749 |
+
constructor_name : {"list", "tuple", "array", "sparse", "dataframe", \
|
750 |
+
"series", "index", "slice", "sparse_csr", "sparse_csc"}
|
751 |
+
The type of the returned container.
|
752 |
+
columns_name : index or array-like, default=None
|
753 |
+
For pandas container supporting `columns_names`, it will affect
|
754 |
+
specific names.
|
755 |
+
dtype : dtype, default=None
|
756 |
+
Force the dtype of the container. Does not apply to `"slice"`
|
757 |
+
container.
|
758 |
+
minversion : str, default=None
|
759 |
+
Minimum version for package to install.
|
760 |
+
categorical_feature_names : list of str, default=None
|
761 |
+
List of column names to cast to categorical dtype.
|
762 |
+
|
763 |
+
Returns
|
764 |
+
-------
|
765 |
+
converted_container
|
766 |
+
"""
|
767 |
+
if constructor_name == "list":
|
768 |
+
if dtype is None:
|
769 |
+
return list(container)
|
770 |
+
else:
|
771 |
+
return np.asarray(container, dtype=dtype).tolist()
|
772 |
+
elif constructor_name == "tuple":
|
773 |
+
if dtype is None:
|
774 |
+
return tuple(container)
|
775 |
+
else:
|
776 |
+
return tuple(np.asarray(container, dtype=dtype).tolist())
|
777 |
+
elif constructor_name == "array":
|
778 |
+
return np.asarray(container, dtype=dtype)
|
779 |
+
elif constructor_name in ("pandas", "dataframe"):
|
780 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
781 |
+
result = pd.DataFrame(container, columns=columns_name, dtype=dtype, copy=False)
|
782 |
+
if categorical_feature_names is not None:
|
783 |
+
for col_name in categorical_feature_names:
|
784 |
+
result[col_name] = result[col_name].astype("category")
|
785 |
+
return result
|
786 |
+
elif constructor_name == "pyarrow":
|
787 |
+
pa = pytest.importorskip("pyarrow", minversion=minversion)
|
788 |
+
array = np.asarray(container)
|
789 |
+
if columns_name is None:
|
790 |
+
columns_name = [f"col{i}" for i in range(array.shape[1])]
|
791 |
+
data = {name: array[:, i] for i, name in enumerate(columns_name)}
|
792 |
+
result = pa.Table.from_pydict(data)
|
793 |
+
if categorical_feature_names is not None:
|
794 |
+
for col_idx, col_name in enumerate(result.column_names):
|
795 |
+
if col_name in categorical_feature_names:
|
796 |
+
result = result.set_column(
|
797 |
+
col_idx, col_name, result.column(col_name).dictionary_encode()
|
798 |
+
)
|
799 |
+
return result
|
800 |
+
elif constructor_name == "polars":
|
801 |
+
pl = pytest.importorskip("polars", minversion=minversion)
|
802 |
+
result = pl.DataFrame(container, schema=columns_name, orient="row")
|
803 |
+
if categorical_feature_names is not None:
|
804 |
+
for col_name in categorical_feature_names:
|
805 |
+
result = result.with_columns(pl.col(col_name).cast(pl.Categorical))
|
806 |
+
return result
|
807 |
+
elif constructor_name == "series":
|
808 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
809 |
+
return pd.Series(container, dtype=dtype)
|
810 |
+
elif constructor_name == "index":
|
811 |
+
pd = pytest.importorskip("pandas", minversion=minversion)
|
812 |
+
return pd.Index(container, dtype=dtype)
|
813 |
+
elif constructor_name == "slice":
|
814 |
+
return slice(container[0], container[1])
|
815 |
+
elif "sparse" in constructor_name:
|
816 |
+
if not sp.sparse.issparse(container):
|
817 |
+
# For scipy >= 1.13, sparse array constructed from 1d array may be
|
818 |
+
# 1d or raise an exception. To avoid this, we make sure that the
|
819 |
+
# input container is 2d. For more details, see
|
820 |
+
# https://github.com/scipy/scipy/pull/18530#issuecomment-1878005149
|
821 |
+
container = np.atleast_2d(container)
|
822 |
+
|
823 |
+
if "array" in constructor_name and sp_version < parse_version("1.8"):
|
824 |
+
raise ValueError(
|
825 |
+
f"{constructor_name} is only available with scipy>=1.8.0, got "
|
826 |
+
f"{sp_version}"
|
827 |
+
)
|
828 |
+
if constructor_name in ("sparse", "sparse_csr"):
|
829 |
+
# sparse and sparse_csr are equivalent for legacy reasons
|
830 |
+
return sp.sparse.csr_matrix(container, dtype=dtype)
|
831 |
+
elif constructor_name == "sparse_csr_array":
|
832 |
+
return sp.sparse.csr_array(container, dtype=dtype)
|
833 |
+
elif constructor_name == "sparse_csc":
|
834 |
+
return sp.sparse.csc_matrix(container, dtype=dtype)
|
835 |
+
elif constructor_name == "sparse_csc_array":
|
836 |
+
return sp.sparse.csc_array(container, dtype=dtype)
|
837 |
+
|
838 |
+
|
839 |
+
def raises(expected_exc_type, match=None, may_pass=False, err_msg=None):
|
840 |
+
"""Context manager to ensure exceptions are raised within a code block.
|
841 |
+
|
842 |
+
This is similar to and inspired from pytest.raises, but supports a few
|
843 |
+
other cases.
|
844 |
+
|
845 |
+
This is only intended to be used in estimator_checks.py where we don't
|
846 |
+
want to use pytest. In the rest of the code base, just use pytest.raises
|
847 |
+
instead.
|
848 |
+
|
849 |
+
Parameters
|
850 |
+
----------
|
851 |
+
excepted_exc_type : Exception or list of Exception
|
852 |
+
The exception that should be raised by the block. If a list, the block
|
853 |
+
should raise one of the exceptions.
|
854 |
+
match : str or list of str, default=None
|
855 |
+
A regex that the exception message should match. If a list, one of
|
856 |
+
the entries must match. If None, match isn't enforced.
|
857 |
+
may_pass : bool, default=False
|
858 |
+
If True, the block is allowed to not raise an exception. Useful in
|
859 |
+
cases where some estimators may support a feature but others must
|
860 |
+
fail with an appropriate error message. By default, the context
|
861 |
+
manager will raise an exception if the block does not raise an
|
862 |
+
exception.
|
863 |
+
err_msg : str, default=None
|
864 |
+
If the context manager fails (e.g. the block fails to raise the
|
865 |
+
proper exception, or fails to match), then an AssertionError is
|
866 |
+
raised with this message. By default, an AssertionError is raised
|
867 |
+
with a default error message (depends on the kind of failure). Use
|
868 |
+
this to indicate how users should fix their estimators to pass the
|
869 |
+
checks.
|
870 |
+
|
871 |
+
Attributes
|
872 |
+
----------
|
873 |
+
raised_and_matched : bool
|
874 |
+
True if an exception was raised and a match was found, False otherwise.
|
875 |
+
"""
|
876 |
+
return _Raises(expected_exc_type, match, may_pass, err_msg)
|
877 |
+
|
878 |
+
|
879 |
+
class _Raises(contextlib.AbstractContextManager):
|
880 |
+
# see raises() for parameters
|
881 |
+
def __init__(self, expected_exc_type, match, may_pass, err_msg):
|
882 |
+
self.expected_exc_types = (
|
883 |
+
expected_exc_type
|
884 |
+
if isinstance(expected_exc_type, Iterable)
|
885 |
+
else [expected_exc_type]
|
886 |
+
)
|
887 |
+
self.matches = [match] if isinstance(match, str) else match
|
888 |
+
self.may_pass = may_pass
|
889 |
+
self.err_msg = err_msg
|
890 |
+
self.raised_and_matched = False
|
891 |
+
|
892 |
+
def __exit__(self, exc_type, exc_value, _):
|
893 |
+
# see
|
894 |
+
# https://docs.python.org/2.5/whatsnew/pep-343.html#SECTION000910000000000000000
|
895 |
+
|
896 |
+
if exc_type is None: # No exception was raised in the block
|
897 |
+
if self.may_pass:
|
898 |
+
return True # CM is happy
|
899 |
+
else:
|
900 |
+
err_msg = self.err_msg or f"Did not raise: {self.expected_exc_types}"
|
901 |
+
raise AssertionError(err_msg)
|
902 |
+
|
903 |
+
if not any(
|
904 |
+
issubclass(exc_type, expected_type)
|
905 |
+
for expected_type in self.expected_exc_types
|
906 |
+
):
|
907 |
+
if self.err_msg is not None:
|
908 |
+
raise AssertionError(self.err_msg) from exc_value
|
909 |
+
else:
|
910 |
+
return False # will re-raise the original exception
|
911 |
+
|
912 |
+
if self.matches is not None:
|
913 |
+
err_msg = self.err_msg or (
|
914 |
+
"The error message should contain one of the following "
|
915 |
+
"patterns:\n{}\nGot {}".format("\n".join(self.matches), str(exc_value))
|
916 |
+
)
|
917 |
+
if not any(re.search(match, str(exc_value)) for match in self.matches):
|
918 |
+
raise AssertionError(err_msg) from exc_value
|
919 |
+
self.raised_and_matched = True
|
920 |
+
|
921 |
+
return True
|
922 |
+
|
923 |
+
|
924 |
+
class MinimalClassifier:
|
925 |
+
"""Minimal classifier implementation with inheriting from BaseEstimator.
|
926 |
+
|
927 |
+
This estimator should be tested with:
|
928 |
+
|
929 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
930 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
931 |
+
* within a `SearchCV` in `test_search.py`.
|
932 |
+
"""
|
933 |
+
|
934 |
+
_estimator_type = "classifier"
|
935 |
+
|
936 |
+
def __init__(self, param=None):
|
937 |
+
self.param = param
|
938 |
+
|
939 |
+
def get_params(self, deep=True):
|
940 |
+
return {"param": self.param}
|
941 |
+
|
942 |
+
def set_params(self, **params):
|
943 |
+
for key, value in params.items():
|
944 |
+
setattr(self, key, value)
|
945 |
+
return self
|
946 |
+
|
947 |
+
def fit(self, X, y):
|
948 |
+
X, y = check_X_y(X, y)
|
949 |
+
check_classification_targets(y)
|
950 |
+
self.classes_, counts = np.unique(y, return_counts=True)
|
951 |
+
self._most_frequent_class_idx = counts.argmax()
|
952 |
+
return self
|
953 |
+
|
954 |
+
def predict_proba(self, X):
|
955 |
+
check_is_fitted(self)
|
956 |
+
X = check_array(X)
|
957 |
+
proba_shape = (X.shape[0], self.classes_.size)
|
958 |
+
y_proba = np.zeros(shape=proba_shape, dtype=np.float64)
|
959 |
+
y_proba[:, self._most_frequent_class_idx] = 1.0
|
960 |
+
return y_proba
|
961 |
+
|
962 |
+
def predict(self, X):
|
963 |
+
y_proba = self.predict_proba(X)
|
964 |
+
y_pred = y_proba.argmax(axis=1)
|
965 |
+
return self.classes_[y_pred]
|
966 |
+
|
967 |
+
def score(self, X, y):
|
968 |
+
from sklearn.metrics import accuracy_score
|
969 |
+
|
970 |
+
return accuracy_score(y, self.predict(X))
|
971 |
+
|
972 |
+
|
973 |
+
class MinimalRegressor:
|
974 |
+
"""Minimal regressor implementation with inheriting from BaseEstimator.
|
975 |
+
|
976 |
+
This estimator should be tested with:
|
977 |
+
|
978 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
979 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
980 |
+
* within a `SearchCV` in `test_search.py`.
|
981 |
+
"""
|
982 |
+
|
983 |
+
_estimator_type = "regressor"
|
984 |
+
|
985 |
+
def __init__(self, param=None):
|
986 |
+
self.param = param
|
987 |
+
|
988 |
+
def get_params(self, deep=True):
|
989 |
+
return {"param": self.param}
|
990 |
+
|
991 |
+
def set_params(self, **params):
|
992 |
+
for key, value in params.items():
|
993 |
+
setattr(self, key, value)
|
994 |
+
return self
|
995 |
+
|
996 |
+
def fit(self, X, y):
|
997 |
+
X, y = check_X_y(X, y)
|
998 |
+
self.is_fitted_ = True
|
999 |
+
self._mean = np.mean(y)
|
1000 |
+
return self
|
1001 |
+
|
1002 |
+
def predict(self, X):
|
1003 |
+
check_is_fitted(self)
|
1004 |
+
X = check_array(X)
|
1005 |
+
return np.ones(shape=(X.shape[0],)) * self._mean
|
1006 |
+
|
1007 |
+
def score(self, X, y):
|
1008 |
+
from sklearn.metrics import r2_score
|
1009 |
+
|
1010 |
+
return r2_score(y, self.predict(X))
|
1011 |
+
|
1012 |
+
|
1013 |
+
class MinimalTransformer:
|
1014 |
+
"""Minimal transformer implementation with inheriting from
|
1015 |
+
BaseEstimator.
|
1016 |
+
|
1017 |
+
This estimator should be tested with:
|
1018 |
+
|
1019 |
+
* `check_estimator` in `test_estimator_checks.py`;
|
1020 |
+
* within a `Pipeline` in `test_pipeline.py`;
|
1021 |
+
* within a `SearchCV` in `test_search.py`.
|
1022 |
+
"""
|
1023 |
+
|
1024 |
+
def __init__(self, param=None):
|
1025 |
+
self.param = param
|
1026 |
+
|
1027 |
+
def get_params(self, deep=True):
|
1028 |
+
return {"param": self.param}
|
1029 |
+
|
1030 |
+
def set_params(self, **params):
|
1031 |
+
for key, value in params.items():
|
1032 |
+
setattr(self, key, value)
|
1033 |
+
return self
|
1034 |
+
|
1035 |
+
def fit(self, X, y=None):
|
1036 |
+
check_array(X)
|
1037 |
+
self.is_fitted_ = True
|
1038 |
+
return self
|
1039 |
+
|
1040 |
+
def transform(self, X, y=None):
|
1041 |
+
check_is_fitted(self)
|
1042 |
+
X = check_array(X)
|
1043 |
+
return X
|
1044 |
+
|
1045 |
+
def fit_transform(self, X, y=None):
|
1046 |
+
return self.fit(X, y).transform(X, y)
|
1047 |
+
|
1048 |
+
|
1049 |
+
def _array_api_for_tests(array_namespace, device):
|
1050 |
+
try:
|
1051 |
+
if array_namespace == "numpy.array_api":
|
1052 |
+
# FIXME: once it is not experimental anymore
|
1053 |
+
with ignore_warnings(category=UserWarning):
|
1054 |
+
# UserWarning: numpy.array_api submodule is still experimental.
|
1055 |
+
array_mod = importlib.import_module(array_namespace)
|
1056 |
+
else:
|
1057 |
+
array_mod = importlib.import_module(array_namespace)
|
1058 |
+
except ModuleNotFoundError:
|
1059 |
+
raise SkipTest(
|
1060 |
+
f"{array_namespace} is not installed: not checking array_api input"
|
1061 |
+
)
|
1062 |
+
try:
|
1063 |
+
import array_api_compat # noqa
|
1064 |
+
except ImportError:
|
1065 |
+
raise SkipTest(
|
1066 |
+
"array_api_compat is not installed: not checking array_api input"
|
1067 |
+
)
|
1068 |
+
|
1069 |
+
# First create an array using the chosen array module and then get the
|
1070 |
+
# corresponding (compatibility wrapped) array namespace based on it.
|
1071 |
+
# This is because `cupy` is not the same as the compatibility wrapped
|
1072 |
+
# namespace of a CuPy array.
|
1073 |
+
xp = array_api_compat.get_namespace(array_mod.asarray(1))
|
1074 |
+
if (
|
1075 |
+
array_namespace == "torch"
|
1076 |
+
and device == "cuda"
|
1077 |
+
and not xp.backends.cuda.is_built()
|
1078 |
+
):
|
1079 |
+
raise SkipTest("PyTorch test requires cuda, which is not available")
|
1080 |
+
elif array_namespace == "torch" and device == "mps":
|
1081 |
+
if os.getenv("PYTORCH_ENABLE_MPS_FALLBACK") != "1":
|
1082 |
+
# For now we need PYTORCH_ENABLE_MPS_FALLBACK=1 for all estimators to work
|
1083 |
+
# when using the MPS device.
|
1084 |
+
raise SkipTest(
|
1085 |
+
"Skipping MPS device test because PYTORCH_ENABLE_MPS_FALLBACK is not "
|
1086 |
+
"set."
|
1087 |
+
)
|
1088 |
+
if not xp.backends.mps.is_built():
|
1089 |
+
raise SkipTest(
|
1090 |
+
"MPS is not available because the current PyTorch install was not "
|
1091 |
+
"built with MPS enabled."
|
1092 |
+
)
|
1093 |
+
elif array_namespace in {"cupy", "cupy.array_api"}: # pragma: nocover
|
1094 |
+
import cupy
|
1095 |
+
|
1096 |
+
if cupy.cuda.runtime.getDeviceCount() == 0:
|
1097 |
+
raise SkipTest("CuPy test requires cuda, which is not available")
|
1098 |
+
return xp
|
1099 |
+
|
1100 |
+
|
1101 |
+
def _get_warnings_filters_info_list():
|
1102 |
+
@dataclass
|
1103 |
+
class WarningInfo:
|
1104 |
+
action: "warnings._ActionKind"
|
1105 |
+
message: str = ""
|
1106 |
+
category: type[Warning] = Warning
|
1107 |
+
|
1108 |
+
def to_filterwarning_str(self):
|
1109 |
+
if self.category.__module__ == "builtins":
|
1110 |
+
category = self.category.__name__
|
1111 |
+
else:
|
1112 |
+
category = f"{self.category.__module__}.{self.category.__name__}"
|
1113 |
+
|
1114 |
+
return f"{self.action}:{self.message}:{category}"
|
1115 |
+
|
1116 |
+
return [
|
1117 |
+
WarningInfo("error", category=DeprecationWarning),
|
1118 |
+
WarningInfo("error", category=FutureWarning),
|
1119 |
+
WarningInfo("error", category=VisibleDeprecationWarning),
|
1120 |
+
# TODO: remove when pyamg > 5.0.1
|
1121 |
+
# Avoid a deprecation warning due pkg_resources usage in pyamg.
|
1122 |
+
WarningInfo(
|
1123 |
+
"ignore",
|
1124 |
+
message="pkg_resources is deprecated as an API",
|
1125 |
+
category=DeprecationWarning,
|
1126 |
+
),
|
1127 |
+
WarningInfo(
|
1128 |
+
"ignore",
|
1129 |
+
message="Deprecated call to `pkg_resources",
|
1130 |
+
category=DeprecationWarning,
|
1131 |
+
),
|
1132 |
+
# pytest-cov issue https://github.com/pytest-dev/pytest-cov/issues/557 not
|
1133 |
+
# fixed although it has been closed. https://github.com/pytest-dev/pytest-cov/pull/623
|
1134 |
+
# would probably fix it.
|
1135 |
+
WarningInfo(
|
1136 |
+
"ignore",
|
1137 |
+
message=(
|
1138 |
+
"The --rsyncdir command line argument and rsyncdirs config variable are"
|
1139 |
+
" deprecated"
|
1140 |
+
),
|
1141 |
+
category=DeprecationWarning,
|
1142 |
+
),
|
1143 |
+
# XXX: Easiest way to ignore pandas Pyarrow DeprecationWarning in the
|
1144 |
+
# short-term. See https://github.com/pandas-dev/pandas/issues/54466 for
|
1145 |
+
# more details.
|
1146 |
+
WarningInfo(
|
1147 |
+
"ignore",
|
1148 |
+
message=r"\s*Pyarrow will become a required dependency",
|
1149 |
+
category=DeprecationWarning,
|
1150 |
+
),
|
1151 |
+
]
|
1152 |
+
|
1153 |
+
|
1154 |
+
def get_pytest_filterwarning_lines():
|
1155 |
+
warning_filters_info_list = _get_warnings_filters_info_list()
|
1156 |
+
return [
|
1157 |
+
warning_info.to_filterwarning_str()
|
1158 |
+
for warning_info in warning_filters_info_list
|
1159 |
+
]
|
1160 |
+
|
1161 |
+
|
1162 |
+
def turn_warnings_into_errors():
|
1163 |
+
warnings_filters_info_list = _get_warnings_filters_info_list()
|
1164 |
+
for warning_info in warnings_filters_info_list:
|
1165 |
+
warnings.filterwarnings(
|
1166 |
+
warning_info.action,
|
1167 |
+
message=warning_info.message,
|
1168 |
+
category=warning_info.category,
|
1169 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/utils/_typedefs.pxd
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Commonly used types
|
2 |
+
# These are redefinitions of the ones defined by numpy in
|
3 |
+
# https://github.com/numpy/numpy/blob/main/numpy/__init__.pxd
|
4 |
+
# and exposed by cython in
|
5 |
+
# https://github.com/cython/cython/blob/master/Cython/Includes/numpy/__init__.pxd.
|
6 |
+
# It will eventually avoid having to always include the numpy headers even when we
|
7 |
+
# would only use it for the types.
|
8 |
+
#
|
9 |
+
# When used to declare variables that will receive values from numpy arrays, it
|
10 |
+
# should match the dtype of the array. For example, to declare a variable that will
|
11 |
+
# receive values from a numpy array of dtype np.float64, the type float64_t must be
|
12 |
+
# used.
|
13 |
+
#
|
14 |
+
# TODO: Stop defining custom types locally or globally like DTYPE_t and friends and
|
15 |
+
# use these consistently throughout the codebase.
|
16 |
+
# NOTE: Extend this list as needed when converting more cython extensions.
|
17 |
+
ctypedef unsigned char uint8_t
|
18 |
+
ctypedef unsigned int uint32_t
|
19 |
+
ctypedef unsigned long long uint64_t
|
20 |
+
ctypedef Py_ssize_t intp_t
|
21 |
+
ctypedef float float32_t
|
22 |
+
ctypedef double float64_t
|
23 |
+
# Sparse matrices indices and indices' pointers arrays must use int32_t over
|
24 |
+
# intp_t because intp_t is platform dependent.
|
25 |
+
# When large sparse matrices are supported, indexing must use int64_t.
|
26 |
+
# See https://github.com/scikit-learn/scikit-learn/issues/23653 which tracks the
|
27 |
+
# ongoing work to support large sparse matrices.
|
28 |
+
ctypedef signed int int32_t
|
29 |
+
ctypedef signed long long int64_t
|
venv/lib/python3.10/site-packages/sklearn/utils/_vector_sentinel.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (176 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_weight_vector.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (208 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/_weight_vector.pxd
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# WARNING: Do not edit this file directly.
|
2 |
+
# It is automatically generated from 'sklearn/utils/_weight_vector.pxd.tp'.
|
3 |
+
# Changes must be made there.
|
4 |
+
|
5 |
+
|
6 |
+
cdef class WeightVector64(object):
|
7 |
+
cdef readonly double[::1] w
|
8 |
+
cdef readonly double[::1] aw
|
9 |
+
cdef double *w_data_ptr
|
10 |
+
cdef double *aw_data_ptr
|
11 |
+
|
12 |
+
cdef double wscale
|
13 |
+
cdef double average_a
|
14 |
+
cdef double average_b
|
15 |
+
cdef int n_features
|
16 |
+
cdef double sq_norm
|
17 |
+
|
18 |
+
cdef void add(self, double *x_data_ptr, int *x_ind_ptr,
|
19 |
+
int xnnz, double c) noexcept nogil
|
20 |
+
cdef void add_average(self, double *x_data_ptr, int *x_ind_ptr,
|
21 |
+
int xnnz, double c, double num_iter) noexcept nogil
|
22 |
+
cdef double dot(self, double *x_data_ptr, int *x_ind_ptr,
|
23 |
+
int xnnz) noexcept nogil
|
24 |
+
cdef void scale(self, double c) noexcept nogil
|
25 |
+
cdef void reset_wscale(self) noexcept nogil
|
26 |
+
cdef double norm(self) noexcept nogil
|
27 |
+
|
28 |
+
cdef class WeightVector32(object):
|
29 |
+
cdef readonly float[::1] w
|
30 |
+
cdef readonly float[::1] aw
|
31 |
+
cdef float *w_data_ptr
|
32 |
+
cdef float *aw_data_ptr
|
33 |
+
|
34 |
+
cdef double wscale
|
35 |
+
cdef double average_a
|
36 |
+
cdef double average_b
|
37 |
+
cdef int n_features
|
38 |
+
cdef double sq_norm
|
39 |
+
|
40 |
+
cdef void add(self, float *x_data_ptr, int *x_ind_ptr,
|
41 |
+
int xnnz, float c) noexcept nogil
|
42 |
+
cdef void add_average(self, float *x_data_ptr, int *x_ind_ptr,
|
43 |
+
int xnnz, float c, float num_iter) noexcept nogil
|
44 |
+
cdef float dot(self, float *x_data_ptr, int *x_ind_ptr,
|
45 |
+
int xnnz) noexcept nogil
|
46 |
+
cdef void scale(self, float c) noexcept nogil
|
47 |
+
cdef void reset_wscale(self) noexcept nogil
|
48 |
+
cdef float norm(self) noexcept nogil
|
venv/lib/python3.10/site-packages/sklearn/utils/class_weight.py
ADDED
@@ -0,0 +1,224 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.utils.class_weight` module includes utilities for handling
|
3 |
+
weights based on class labels.
|
4 |
+
"""
|
5 |
+
|
6 |
+
# Authors: Andreas Mueller
|
7 |
+
# Manoj Kumar
|
8 |
+
# License: BSD 3 clause
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
from scipy import sparse
|
12 |
+
|
13 |
+
from ._param_validation import StrOptions, validate_params
|
14 |
+
|
15 |
+
|
16 |
+
@validate_params(
|
17 |
+
{
|
18 |
+
"class_weight": [dict, StrOptions({"balanced"}), None],
|
19 |
+
"classes": [np.ndarray],
|
20 |
+
"y": ["array-like"],
|
21 |
+
},
|
22 |
+
prefer_skip_nested_validation=True,
|
23 |
+
)
|
24 |
+
def compute_class_weight(class_weight, *, classes, y):
|
25 |
+
"""Estimate class weights for unbalanced datasets.
|
26 |
+
|
27 |
+
Parameters
|
28 |
+
----------
|
29 |
+
class_weight : dict, "balanced" or None
|
30 |
+
If "balanced", class weights will be given by
|
31 |
+
`n_samples / (n_classes * np.bincount(y))`.
|
32 |
+
If a dictionary is given, keys are classes and values are corresponding class
|
33 |
+
weights.
|
34 |
+
If `None` is given, the class weights will be uniform.
|
35 |
+
|
36 |
+
classes : ndarray
|
37 |
+
Array of the classes occurring in the data, as given by
|
38 |
+
`np.unique(y_org)` with `y_org` the original class labels.
|
39 |
+
|
40 |
+
y : array-like of shape (n_samples,)
|
41 |
+
Array of original class labels per sample.
|
42 |
+
|
43 |
+
Returns
|
44 |
+
-------
|
45 |
+
class_weight_vect : ndarray of shape (n_classes,)
|
46 |
+
Array with `class_weight_vect[i]` the weight for i-th class.
|
47 |
+
|
48 |
+
References
|
49 |
+
----------
|
50 |
+
The "balanced" heuristic is inspired by
|
51 |
+
Logistic Regression in Rare Events Data, King, Zen, 2001.
|
52 |
+
|
53 |
+
Examples
|
54 |
+
--------
|
55 |
+
>>> import numpy as np
|
56 |
+
>>> from sklearn.utils.class_weight import compute_class_weight
|
57 |
+
>>> y = [1, 1, 1, 1, 0, 0]
|
58 |
+
>>> compute_class_weight(class_weight="balanced", classes=np.unique(y), y=y)
|
59 |
+
array([1.5 , 0.75])
|
60 |
+
"""
|
61 |
+
# Import error caused by circular imports.
|
62 |
+
from ..preprocessing import LabelEncoder
|
63 |
+
|
64 |
+
if set(y) - set(classes):
|
65 |
+
raise ValueError("classes should include all valid labels that can be in y")
|
66 |
+
if class_weight is None or len(class_weight) == 0:
|
67 |
+
# uniform class weights
|
68 |
+
weight = np.ones(classes.shape[0], dtype=np.float64, order="C")
|
69 |
+
elif class_weight == "balanced":
|
70 |
+
# Find the weight of each class as present in y.
|
71 |
+
le = LabelEncoder()
|
72 |
+
y_ind = le.fit_transform(y)
|
73 |
+
if not all(np.isin(classes, le.classes_)):
|
74 |
+
raise ValueError("classes should have valid labels that are in y")
|
75 |
+
|
76 |
+
recip_freq = len(y) / (len(le.classes_) * np.bincount(y_ind).astype(np.float64))
|
77 |
+
weight = recip_freq[le.transform(classes)]
|
78 |
+
else:
|
79 |
+
# user-defined dictionary
|
80 |
+
weight = np.ones(classes.shape[0], dtype=np.float64, order="C")
|
81 |
+
unweighted_classes = []
|
82 |
+
for i, c in enumerate(classes):
|
83 |
+
if c in class_weight:
|
84 |
+
weight[i] = class_weight[c]
|
85 |
+
else:
|
86 |
+
unweighted_classes.append(c)
|
87 |
+
|
88 |
+
n_weighted_classes = len(classes) - len(unweighted_classes)
|
89 |
+
if unweighted_classes and n_weighted_classes != len(class_weight):
|
90 |
+
unweighted_classes_user_friendly_str = np.array(unweighted_classes).tolist()
|
91 |
+
raise ValueError(
|
92 |
+
f"The classes, {unweighted_classes_user_friendly_str}, are not in"
|
93 |
+
" class_weight"
|
94 |
+
)
|
95 |
+
|
96 |
+
return weight
|
97 |
+
|
98 |
+
|
99 |
+
@validate_params(
|
100 |
+
{
|
101 |
+
"class_weight": [dict, list, StrOptions({"balanced"}), None],
|
102 |
+
"y": ["array-like", "sparse matrix"],
|
103 |
+
"indices": ["array-like", None],
|
104 |
+
},
|
105 |
+
prefer_skip_nested_validation=True,
|
106 |
+
)
|
107 |
+
def compute_sample_weight(class_weight, y, *, indices=None):
|
108 |
+
"""Estimate sample weights by class for unbalanced datasets.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
class_weight : dict, list of dicts, "balanced", or None
|
113 |
+
Weights associated with classes in the form `{class_label: weight}`.
|
114 |
+
If not given, all classes are supposed to have weight one. For
|
115 |
+
multi-output problems, a list of dicts can be provided in the same
|
116 |
+
order as the columns of y.
|
117 |
+
|
118 |
+
Note that for multioutput (including multilabel) weights should be
|
119 |
+
defined for each class of every column in its own dict. For example,
|
120 |
+
for four-class multilabel classification weights should be
|
121 |
+
`[{0: 1, 1: 1}, {0: 1, 1: 5}, {0: 1, 1: 1}, {0: 1, 1: 1}]` instead of
|
122 |
+
`[{1:1}, {2:5}, {3:1}, {4:1}]`.
|
123 |
+
|
124 |
+
The `"balanced"` mode uses the values of y to automatically adjust
|
125 |
+
weights inversely proportional to class frequencies in the input data:
|
126 |
+
`n_samples / (n_classes * np.bincount(y))`.
|
127 |
+
|
128 |
+
For multi-output, the weights of each column of y will be multiplied.
|
129 |
+
|
130 |
+
y : {array-like, sparse matrix} of shape (n_samples,) or (n_samples, n_outputs)
|
131 |
+
Array of original class labels per sample.
|
132 |
+
|
133 |
+
indices : array-like of shape (n_subsample,), default=None
|
134 |
+
Array of indices to be used in a subsample. Can be of length less than
|
135 |
+
`n_samples` in the case of a subsample, or equal to `n_samples` in the
|
136 |
+
case of a bootstrap subsample with repeated indices. If `None`, the
|
137 |
+
sample weight will be calculated over the full sample. Only `"balanced"`
|
138 |
+
is supported for `class_weight` if this is provided.
|
139 |
+
|
140 |
+
Returns
|
141 |
+
-------
|
142 |
+
sample_weight_vect : ndarray of shape (n_samples,)
|
143 |
+
Array with sample weights as applied to the original `y`.
|
144 |
+
|
145 |
+
Examples
|
146 |
+
--------
|
147 |
+
>>> from sklearn.utils.class_weight import compute_sample_weight
|
148 |
+
>>> y = [1, 1, 1, 1, 0, 0]
|
149 |
+
>>> compute_sample_weight(class_weight="balanced", y=y)
|
150 |
+
array([0.75, 0.75, 0.75, 0.75, 1.5 , 1.5 ])
|
151 |
+
"""
|
152 |
+
|
153 |
+
# Ensure y is 2D. Sparse matrices are already 2D.
|
154 |
+
if not sparse.issparse(y):
|
155 |
+
y = np.atleast_1d(y)
|
156 |
+
if y.ndim == 1:
|
157 |
+
y = np.reshape(y, (-1, 1))
|
158 |
+
n_outputs = y.shape[1]
|
159 |
+
|
160 |
+
if indices is not None and class_weight != "balanced":
|
161 |
+
raise ValueError(
|
162 |
+
"The only valid class_weight for subsampling is 'balanced'. "
|
163 |
+
f"Given {class_weight}."
|
164 |
+
)
|
165 |
+
elif n_outputs > 1:
|
166 |
+
if class_weight is None or isinstance(class_weight, dict):
|
167 |
+
raise ValueError(
|
168 |
+
"For multi-output, class_weight should be a list of dicts, or the "
|
169 |
+
"string 'balanced'."
|
170 |
+
)
|
171 |
+
elif isinstance(class_weight, list) and len(class_weight) != n_outputs:
|
172 |
+
raise ValueError(
|
173 |
+
"For multi-output, number of elements in class_weight should match "
|
174 |
+
f"number of outputs. Got {len(class_weight)} element(s) while having "
|
175 |
+
f"{n_outputs} outputs."
|
176 |
+
)
|
177 |
+
|
178 |
+
expanded_class_weight = []
|
179 |
+
for k in range(n_outputs):
|
180 |
+
if sparse.issparse(y):
|
181 |
+
# Ok to densify a single column at a time
|
182 |
+
y_full = y[:, [k]].toarray().flatten()
|
183 |
+
else:
|
184 |
+
y_full = y[:, k]
|
185 |
+
classes_full = np.unique(y_full)
|
186 |
+
classes_missing = None
|
187 |
+
|
188 |
+
if class_weight == "balanced" or n_outputs == 1:
|
189 |
+
class_weight_k = class_weight
|
190 |
+
else:
|
191 |
+
class_weight_k = class_weight[k]
|
192 |
+
|
193 |
+
if indices is not None:
|
194 |
+
# Get class weights for the subsample, covering all classes in
|
195 |
+
# case some labels that were present in the original data are
|
196 |
+
# missing from the sample.
|
197 |
+
y_subsample = y_full[indices]
|
198 |
+
classes_subsample = np.unique(y_subsample)
|
199 |
+
|
200 |
+
weight_k = np.take(
|
201 |
+
compute_class_weight(
|
202 |
+
class_weight_k, classes=classes_subsample, y=y_subsample
|
203 |
+
),
|
204 |
+
np.searchsorted(classes_subsample, classes_full),
|
205 |
+
mode="clip",
|
206 |
+
)
|
207 |
+
|
208 |
+
classes_missing = set(classes_full) - set(classes_subsample)
|
209 |
+
else:
|
210 |
+
weight_k = compute_class_weight(
|
211 |
+
class_weight_k, classes=classes_full, y=y_full
|
212 |
+
)
|
213 |
+
|
214 |
+
weight_k = weight_k[np.searchsorted(classes_full, y_full)]
|
215 |
+
|
216 |
+
if classes_missing:
|
217 |
+
# Make missing classes' weight zero
|
218 |
+
weight_k[np.isin(y_full, list(classes_missing))] = 0.0
|
219 |
+
|
220 |
+
expanded_class_weight.append(weight_k)
|
221 |
+
|
222 |
+
expanded_class_weight = np.prod(expanded_class_weight, axis=0, dtype=np.float64)
|
223 |
+
|
224 |
+
return expanded_class_weight
|
venv/lib/python3.10/site-packages/sklearn/utils/deprecation.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
import warnings
|
3 |
+
|
4 |
+
__all__ = ["deprecated"]
|
5 |
+
|
6 |
+
|
7 |
+
class deprecated:
|
8 |
+
"""Decorator to mark a function or class as deprecated.
|
9 |
+
|
10 |
+
Issue a warning when the function is called/the class is instantiated and
|
11 |
+
adds a warning to the docstring.
|
12 |
+
|
13 |
+
The optional extra argument will be appended to the deprecation message
|
14 |
+
and the docstring. Note: to use this with the default value for extra, put
|
15 |
+
in an empty of parentheses:
|
16 |
+
|
17 |
+
Examples
|
18 |
+
--------
|
19 |
+
>>> from sklearn.utils import deprecated
|
20 |
+
>>> deprecated()
|
21 |
+
<sklearn.utils.deprecation.deprecated object at ...>
|
22 |
+
>>> @deprecated()
|
23 |
+
... def some_function(): pass
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
extra : str, default=''
|
28 |
+
To be added to the deprecation messages.
|
29 |
+
"""
|
30 |
+
|
31 |
+
# Adapted from https://wiki.python.org/moin/PythonDecoratorLibrary,
|
32 |
+
# but with many changes.
|
33 |
+
|
34 |
+
def __init__(self, extra=""):
|
35 |
+
self.extra = extra
|
36 |
+
|
37 |
+
def __call__(self, obj):
|
38 |
+
"""Call method
|
39 |
+
|
40 |
+
Parameters
|
41 |
+
----------
|
42 |
+
obj : object
|
43 |
+
"""
|
44 |
+
if isinstance(obj, type):
|
45 |
+
return self._decorate_class(obj)
|
46 |
+
elif isinstance(obj, property):
|
47 |
+
# Note that this is only triggered properly if the `property`
|
48 |
+
# decorator comes before the `deprecated` decorator, like so:
|
49 |
+
#
|
50 |
+
# @deprecated(msg)
|
51 |
+
# @property
|
52 |
+
# def deprecated_attribute_(self):
|
53 |
+
# ...
|
54 |
+
return self._decorate_property(obj)
|
55 |
+
else:
|
56 |
+
return self._decorate_fun(obj)
|
57 |
+
|
58 |
+
def _decorate_class(self, cls):
|
59 |
+
msg = "Class %s is deprecated" % cls.__name__
|
60 |
+
if self.extra:
|
61 |
+
msg += "; %s" % self.extra
|
62 |
+
|
63 |
+
new = cls.__new__
|
64 |
+
|
65 |
+
def wrapped(cls, *args, **kwargs):
|
66 |
+
warnings.warn(msg, category=FutureWarning)
|
67 |
+
if new is object.__new__:
|
68 |
+
return object.__new__(cls)
|
69 |
+
return new(cls, *args, **kwargs)
|
70 |
+
|
71 |
+
cls.__new__ = wrapped
|
72 |
+
|
73 |
+
wrapped.__name__ = "__new__"
|
74 |
+
wrapped.deprecated_original = new
|
75 |
+
|
76 |
+
return cls
|
77 |
+
|
78 |
+
def _decorate_fun(self, fun):
|
79 |
+
"""Decorate function fun"""
|
80 |
+
|
81 |
+
msg = "Function %s is deprecated" % fun.__name__
|
82 |
+
if self.extra:
|
83 |
+
msg += "; %s" % self.extra
|
84 |
+
|
85 |
+
@functools.wraps(fun)
|
86 |
+
def wrapped(*args, **kwargs):
|
87 |
+
warnings.warn(msg, category=FutureWarning)
|
88 |
+
return fun(*args, **kwargs)
|
89 |
+
|
90 |
+
# Add a reference to the wrapped function so that we can introspect
|
91 |
+
# on function arguments in Python 2 (already works in Python 3)
|
92 |
+
wrapped.__wrapped__ = fun
|
93 |
+
|
94 |
+
return wrapped
|
95 |
+
|
96 |
+
def _decorate_property(self, prop):
|
97 |
+
msg = self.extra
|
98 |
+
|
99 |
+
@property
|
100 |
+
@functools.wraps(prop)
|
101 |
+
def wrapped(*args, **kwargs):
|
102 |
+
warnings.warn(msg, category=FutureWarning)
|
103 |
+
return prop.fget(*args, **kwargs)
|
104 |
+
|
105 |
+
return wrapped
|
106 |
+
|
107 |
+
|
108 |
+
def _is_deprecated(func):
|
109 |
+
"""Helper to check if func is wrapped by our deprecated decorator"""
|
110 |
+
closures = getattr(func, "__closure__", [])
|
111 |
+
if closures is None:
|
112 |
+
closures = []
|
113 |
+
is_deprecated = "deprecated" in "".join(
|
114 |
+
[c.cell_contents for c in closures if isinstance(c.cell_contents, str)]
|
115 |
+
)
|
116 |
+
return is_deprecated
|
venv/lib/python3.10/site-packages/sklearn/utils/extmath.py
ADDED
@@ -0,0 +1,1284 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.utils.extmath` module includes utilities to perform
|
3 |
+
optimal mathematical operations in scikit-learn that are not available in SciPy.
|
4 |
+
"""
|
5 |
+
# Authors: Gael Varoquaux
|
6 |
+
# Alexandre Gramfort
|
7 |
+
# Alexandre T. Passos
|
8 |
+
# Olivier Grisel
|
9 |
+
# Lars Buitinck
|
10 |
+
# Stefan van der Walt
|
11 |
+
# Kyle Kastner
|
12 |
+
# Giorgio Patrini
|
13 |
+
# License: BSD 3 clause
|
14 |
+
|
15 |
+
import warnings
|
16 |
+
from functools import partial
|
17 |
+
from numbers import Integral
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from scipy import linalg, sparse
|
21 |
+
|
22 |
+
from ..utils import deprecated
|
23 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
24 |
+
from . import check_random_state
|
25 |
+
from ._array_api import _is_numpy_namespace, device, get_namespace
|
26 |
+
from .sparsefuncs_fast import csr_row_norms
|
27 |
+
from .validation import check_array
|
28 |
+
|
29 |
+
|
30 |
+
def squared_norm(x):
|
31 |
+
"""Squared Euclidean or Frobenius norm of x.
|
32 |
+
|
33 |
+
Faster than norm(x) ** 2.
|
34 |
+
|
35 |
+
Parameters
|
36 |
+
----------
|
37 |
+
x : array-like
|
38 |
+
The input array which could be either be a vector or a 2 dimensional array.
|
39 |
+
|
40 |
+
Returns
|
41 |
+
-------
|
42 |
+
float
|
43 |
+
The Euclidean norm when x is a vector, the Frobenius norm when x
|
44 |
+
is a matrix (2-d array).
|
45 |
+
"""
|
46 |
+
x = np.ravel(x, order="K")
|
47 |
+
if np.issubdtype(x.dtype, np.integer):
|
48 |
+
warnings.warn(
|
49 |
+
(
|
50 |
+
"Array type is integer, np.dot may overflow. "
|
51 |
+
"Data should be float type to avoid this issue"
|
52 |
+
),
|
53 |
+
UserWarning,
|
54 |
+
)
|
55 |
+
return np.dot(x, x)
|
56 |
+
|
57 |
+
|
58 |
+
def row_norms(X, squared=False):
|
59 |
+
"""Row-wise (squared) Euclidean norm of X.
|
60 |
+
|
61 |
+
Equivalent to np.sqrt((X * X).sum(axis=1)), but also supports sparse
|
62 |
+
matrices and does not create an X.shape-sized temporary.
|
63 |
+
|
64 |
+
Performs no input validation.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
X : array-like
|
69 |
+
The input array.
|
70 |
+
squared : bool, default=False
|
71 |
+
If True, return squared norms.
|
72 |
+
|
73 |
+
Returns
|
74 |
+
-------
|
75 |
+
array-like
|
76 |
+
The row-wise (squared) Euclidean norm of X.
|
77 |
+
"""
|
78 |
+
if sparse.issparse(X):
|
79 |
+
X = X.tocsr()
|
80 |
+
norms = csr_row_norms(X)
|
81 |
+
if not squared:
|
82 |
+
norms = np.sqrt(norms)
|
83 |
+
else:
|
84 |
+
xp, _ = get_namespace(X)
|
85 |
+
if _is_numpy_namespace(xp):
|
86 |
+
X = np.asarray(X)
|
87 |
+
norms = np.einsum("ij,ij->i", X, X)
|
88 |
+
norms = xp.asarray(norms)
|
89 |
+
else:
|
90 |
+
norms = xp.sum(xp.multiply(X, X), axis=1)
|
91 |
+
if not squared:
|
92 |
+
norms = xp.sqrt(norms)
|
93 |
+
return norms
|
94 |
+
|
95 |
+
|
96 |
+
def fast_logdet(A):
|
97 |
+
"""Compute logarithm of determinant of a square matrix.
|
98 |
+
|
99 |
+
The (natural) logarithm of the determinant of a square matrix
|
100 |
+
is returned if det(A) is non-negative and well defined.
|
101 |
+
If the determinant is zero or negative returns -Inf.
|
102 |
+
|
103 |
+
Equivalent to : np.log(np.det(A)) but more robust.
|
104 |
+
|
105 |
+
Parameters
|
106 |
+
----------
|
107 |
+
A : array_like of shape (n, n)
|
108 |
+
The square matrix.
|
109 |
+
|
110 |
+
Returns
|
111 |
+
-------
|
112 |
+
logdet : float
|
113 |
+
When det(A) is strictly positive, log(det(A)) is returned.
|
114 |
+
When det(A) is non-positive or not defined, then -inf is returned.
|
115 |
+
|
116 |
+
See Also
|
117 |
+
--------
|
118 |
+
numpy.linalg.slogdet : Compute the sign and (natural) logarithm of the determinant
|
119 |
+
of an array.
|
120 |
+
|
121 |
+
Examples
|
122 |
+
--------
|
123 |
+
>>> import numpy as np
|
124 |
+
>>> from sklearn.utils.extmath import fast_logdet
|
125 |
+
>>> a = np.array([[5, 1], [2, 8]])
|
126 |
+
>>> fast_logdet(a)
|
127 |
+
3.6375861597263857
|
128 |
+
"""
|
129 |
+
xp, _ = get_namespace(A)
|
130 |
+
sign, ld = xp.linalg.slogdet(A)
|
131 |
+
if not sign > 0:
|
132 |
+
return -xp.inf
|
133 |
+
return ld
|
134 |
+
|
135 |
+
|
136 |
+
def density(w):
|
137 |
+
"""Compute density of a sparse vector.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
w : {ndarray, sparse matrix}
|
142 |
+
The input data can be numpy ndarray or a sparse matrix.
|
143 |
+
|
144 |
+
Returns
|
145 |
+
-------
|
146 |
+
float
|
147 |
+
The density of w, between 0 and 1.
|
148 |
+
|
149 |
+
Examples
|
150 |
+
--------
|
151 |
+
>>> from scipy import sparse
|
152 |
+
>>> from sklearn.utils.extmath import density
|
153 |
+
>>> X = sparse.random(10, 10, density=0.25, random_state=0)
|
154 |
+
>>> density(X)
|
155 |
+
0.25
|
156 |
+
"""
|
157 |
+
if hasattr(w, "toarray"):
|
158 |
+
d = float(w.nnz) / (w.shape[0] * w.shape[1])
|
159 |
+
else:
|
160 |
+
d = 0 if w is None else float((w != 0).sum()) / w.size
|
161 |
+
return d
|
162 |
+
|
163 |
+
|
164 |
+
def safe_sparse_dot(a, b, *, dense_output=False):
|
165 |
+
"""Dot product that handle the sparse matrix case correctly.
|
166 |
+
|
167 |
+
Parameters
|
168 |
+
----------
|
169 |
+
a : {ndarray, sparse matrix}
|
170 |
+
b : {ndarray, sparse matrix}
|
171 |
+
dense_output : bool, default=False
|
172 |
+
When False, ``a`` and ``b`` both being sparse will yield sparse output.
|
173 |
+
When True, output will always be a dense array.
|
174 |
+
|
175 |
+
Returns
|
176 |
+
-------
|
177 |
+
dot_product : {ndarray, sparse matrix}
|
178 |
+
Sparse if ``a`` and ``b`` are sparse and ``dense_output=False``.
|
179 |
+
|
180 |
+
Examples
|
181 |
+
--------
|
182 |
+
>>> from scipy.sparse import csr_matrix
|
183 |
+
>>> from sklearn.utils.extmath import safe_sparse_dot
|
184 |
+
>>> X = csr_matrix([[1, 2], [3, 4], [5, 6]])
|
185 |
+
>>> dot_product = safe_sparse_dot(X, X.T)
|
186 |
+
>>> dot_product.toarray()
|
187 |
+
array([[ 5, 11, 17],
|
188 |
+
[11, 25, 39],
|
189 |
+
[17, 39, 61]])
|
190 |
+
"""
|
191 |
+
if a.ndim > 2 or b.ndim > 2:
|
192 |
+
if sparse.issparse(a):
|
193 |
+
# sparse is always 2D. Implies b is 3D+
|
194 |
+
# [i, j] @ [k, ..., l, m, n] -> [i, k, ..., l, n]
|
195 |
+
b_ = np.rollaxis(b, -2)
|
196 |
+
b_2d = b_.reshape((b.shape[-2], -1))
|
197 |
+
ret = a @ b_2d
|
198 |
+
ret = ret.reshape(a.shape[0], *b_.shape[1:])
|
199 |
+
elif sparse.issparse(b):
|
200 |
+
# sparse is always 2D. Implies a is 3D+
|
201 |
+
# [k, ..., l, m] @ [i, j] -> [k, ..., l, j]
|
202 |
+
a_2d = a.reshape(-1, a.shape[-1])
|
203 |
+
ret = a_2d @ b
|
204 |
+
ret = ret.reshape(*a.shape[:-1], b.shape[1])
|
205 |
+
else:
|
206 |
+
ret = np.dot(a, b)
|
207 |
+
else:
|
208 |
+
ret = a @ b
|
209 |
+
|
210 |
+
if (
|
211 |
+
sparse.issparse(a)
|
212 |
+
and sparse.issparse(b)
|
213 |
+
and dense_output
|
214 |
+
and hasattr(ret, "toarray")
|
215 |
+
):
|
216 |
+
return ret.toarray()
|
217 |
+
return ret
|
218 |
+
|
219 |
+
|
220 |
+
def randomized_range_finder(
|
221 |
+
A, *, size, n_iter, power_iteration_normalizer="auto", random_state=None
|
222 |
+
):
|
223 |
+
"""Compute an orthonormal matrix whose range approximates the range of A.
|
224 |
+
|
225 |
+
Parameters
|
226 |
+
----------
|
227 |
+
A : 2D array
|
228 |
+
The input data matrix.
|
229 |
+
|
230 |
+
size : int
|
231 |
+
Size of the return array.
|
232 |
+
|
233 |
+
n_iter : int
|
234 |
+
Number of power iterations used to stabilize the result.
|
235 |
+
|
236 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
237 |
+
Whether the power iterations are normalized with step-by-step
|
238 |
+
QR factorization (the slowest but most accurate), 'none'
|
239 |
+
(the fastest but numerically unstable when `n_iter` is large, e.g.
|
240 |
+
typically 5 or larger), or 'LU' factorization (numerically stable
|
241 |
+
but can lose slightly in accuracy). The 'auto' mode applies no
|
242 |
+
normalization if `n_iter` <= 2 and switches to LU otherwise.
|
243 |
+
|
244 |
+
.. versionadded:: 0.18
|
245 |
+
|
246 |
+
random_state : int, RandomState instance or None, default=None
|
247 |
+
The seed of the pseudo random number generator to use when shuffling
|
248 |
+
the data, i.e. getting the random vectors to initialize the algorithm.
|
249 |
+
Pass an int for reproducible results across multiple function calls.
|
250 |
+
See :term:`Glossary <random_state>`.
|
251 |
+
|
252 |
+
Returns
|
253 |
+
-------
|
254 |
+
Q : ndarray
|
255 |
+
A (size x size) projection matrix, the range of which
|
256 |
+
approximates well the range of the input matrix A.
|
257 |
+
|
258 |
+
Notes
|
259 |
+
-----
|
260 |
+
|
261 |
+
Follows Algorithm 4.3 of
|
262 |
+
:arxiv:`"Finding structure with randomness:
|
263 |
+
Stochastic algorithms for constructing approximate matrix decompositions"
|
264 |
+
<0909.4061>`
|
265 |
+
Halko, et al. (2009)
|
266 |
+
|
267 |
+
An implementation of a randomized algorithm for principal component
|
268 |
+
analysis
|
269 |
+
A. Szlam et al. 2014
|
270 |
+
|
271 |
+
Examples
|
272 |
+
--------
|
273 |
+
>>> import numpy as np
|
274 |
+
>>> from sklearn.utils.extmath import randomized_range_finder
|
275 |
+
>>> A = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
|
276 |
+
>>> randomized_range_finder(A, size=2, n_iter=2, random_state=42)
|
277 |
+
array([[-0.21..., 0.88...],
|
278 |
+
[-0.52..., 0.24...],
|
279 |
+
[-0.82..., -0.38...]])
|
280 |
+
"""
|
281 |
+
xp, is_array_api_compliant = get_namespace(A)
|
282 |
+
random_state = check_random_state(random_state)
|
283 |
+
|
284 |
+
# Generating normal random vectors with shape: (A.shape[1], size)
|
285 |
+
# XXX: generate random number directly from xp if it's possible
|
286 |
+
# one day.
|
287 |
+
Q = xp.asarray(random_state.normal(size=(A.shape[1], size)))
|
288 |
+
if hasattr(A, "dtype") and xp.isdtype(A.dtype, kind="real floating"):
|
289 |
+
# Use float32 computation and components if A has a float32 dtype.
|
290 |
+
Q = xp.astype(Q, A.dtype, copy=False)
|
291 |
+
|
292 |
+
# Move Q to device if needed only after converting to float32 if needed to
|
293 |
+
# avoid allocating unnecessary memory on the device.
|
294 |
+
|
295 |
+
# Note: we cannot combine the astype and to_device operations in one go
|
296 |
+
# using xp.asarray(..., dtype=dtype, device=device) because downcasting
|
297 |
+
# from float64 to float32 in asarray might not always be accepted as only
|
298 |
+
# casts following type promotion rules are guarateed to work.
|
299 |
+
# https://github.com/data-apis/array-api/issues/647
|
300 |
+
if is_array_api_compliant:
|
301 |
+
Q = xp.asarray(Q, device=device(A))
|
302 |
+
|
303 |
+
# Deal with "auto" mode
|
304 |
+
if power_iteration_normalizer == "auto":
|
305 |
+
if n_iter <= 2:
|
306 |
+
power_iteration_normalizer = "none"
|
307 |
+
elif is_array_api_compliant:
|
308 |
+
# XXX: https://github.com/data-apis/array-api/issues/627
|
309 |
+
warnings.warn(
|
310 |
+
"Array API does not support LU factorization, falling back to QR"
|
311 |
+
" instead. Set `power_iteration_normalizer='QR'` explicitly to silence"
|
312 |
+
" this warning."
|
313 |
+
)
|
314 |
+
power_iteration_normalizer = "QR"
|
315 |
+
else:
|
316 |
+
power_iteration_normalizer = "LU"
|
317 |
+
elif power_iteration_normalizer == "LU" and is_array_api_compliant:
|
318 |
+
raise ValueError(
|
319 |
+
"Array API does not support LU factorization. Set "
|
320 |
+
"`power_iteration_normalizer='QR'` instead."
|
321 |
+
)
|
322 |
+
|
323 |
+
if is_array_api_compliant:
|
324 |
+
qr_normalizer = partial(xp.linalg.qr, mode="reduced")
|
325 |
+
else:
|
326 |
+
# Use scipy.linalg instead of numpy.linalg when not explicitly
|
327 |
+
# using the Array API.
|
328 |
+
qr_normalizer = partial(linalg.qr, mode="economic")
|
329 |
+
|
330 |
+
if power_iteration_normalizer == "QR":
|
331 |
+
normalizer = qr_normalizer
|
332 |
+
elif power_iteration_normalizer == "LU":
|
333 |
+
normalizer = partial(linalg.lu, permute_l=True)
|
334 |
+
else:
|
335 |
+
normalizer = lambda x: (x, None)
|
336 |
+
|
337 |
+
# Perform power iterations with Q to further 'imprint' the top
|
338 |
+
# singular vectors of A in Q
|
339 |
+
for _ in range(n_iter):
|
340 |
+
Q, _ = normalizer(A @ Q)
|
341 |
+
Q, _ = normalizer(A.T @ Q)
|
342 |
+
|
343 |
+
# Sample the range of A using by linear projection of Q
|
344 |
+
# Extract an orthonormal basis
|
345 |
+
Q, _ = qr_normalizer(A @ Q)
|
346 |
+
|
347 |
+
return Q
|
348 |
+
|
349 |
+
|
350 |
+
@validate_params(
|
351 |
+
{
|
352 |
+
"M": [np.ndarray, "sparse matrix"],
|
353 |
+
"n_components": [Interval(Integral, 1, None, closed="left")],
|
354 |
+
"n_oversamples": [Interval(Integral, 0, None, closed="left")],
|
355 |
+
"n_iter": [Interval(Integral, 0, None, closed="left"), StrOptions({"auto"})],
|
356 |
+
"power_iteration_normalizer": [StrOptions({"auto", "QR", "LU", "none"})],
|
357 |
+
"transpose": ["boolean", StrOptions({"auto"})],
|
358 |
+
"flip_sign": ["boolean"],
|
359 |
+
"random_state": ["random_state"],
|
360 |
+
"svd_lapack_driver": [StrOptions({"gesdd", "gesvd"})],
|
361 |
+
},
|
362 |
+
prefer_skip_nested_validation=True,
|
363 |
+
)
|
364 |
+
def randomized_svd(
|
365 |
+
M,
|
366 |
+
n_components,
|
367 |
+
*,
|
368 |
+
n_oversamples=10,
|
369 |
+
n_iter="auto",
|
370 |
+
power_iteration_normalizer="auto",
|
371 |
+
transpose="auto",
|
372 |
+
flip_sign=True,
|
373 |
+
random_state=None,
|
374 |
+
svd_lapack_driver="gesdd",
|
375 |
+
):
|
376 |
+
"""Compute a truncated randomized SVD.
|
377 |
+
|
378 |
+
This method solves the fixed-rank approximation problem described in [1]_
|
379 |
+
(problem (1.5), p5).
|
380 |
+
|
381 |
+
Parameters
|
382 |
+
----------
|
383 |
+
M : {ndarray, sparse matrix}
|
384 |
+
Matrix to decompose.
|
385 |
+
|
386 |
+
n_components : int
|
387 |
+
Number of singular values and vectors to extract.
|
388 |
+
|
389 |
+
n_oversamples : int, default=10
|
390 |
+
Additional number of random vectors to sample the range of `M` so as
|
391 |
+
to ensure proper conditioning. The total number of random vectors
|
392 |
+
used to find the range of `M` is `n_components + n_oversamples`. Smaller
|
393 |
+
number can improve speed but can negatively impact the quality of
|
394 |
+
approximation of singular vectors and singular values. Users might wish
|
395 |
+
to increase this parameter up to `2*k - n_components` where k is the
|
396 |
+
effective rank, for large matrices, noisy problems, matrices with
|
397 |
+
slowly decaying spectrums, or to increase precision accuracy. See [1]_
|
398 |
+
(pages 5, 23 and 26).
|
399 |
+
|
400 |
+
n_iter : int or 'auto', default='auto'
|
401 |
+
Number of power iterations. It can be used to deal with very noisy
|
402 |
+
problems. When 'auto', it is set to 4, unless `n_components` is small
|
403 |
+
(< .1 * min(X.shape)) in which case `n_iter` is set to 7.
|
404 |
+
This improves precision with few components. Note that in general
|
405 |
+
users should rather increase `n_oversamples` before increasing `n_iter`
|
406 |
+
as the principle of the randomized method is to avoid usage of these
|
407 |
+
more costly power iterations steps. When `n_components` is equal
|
408 |
+
or greater to the effective matrix rank and the spectrum does not
|
409 |
+
present a slow decay, `n_iter=0` or `1` should even work fine in theory
|
410 |
+
(see [1]_ page 9).
|
411 |
+
|
412 |
+
.. versionchanged:: 0.18
|
413 |
+
|
414 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
415 |
+
Whether the power iterations are normalized with step-by-step
|
416 |
+
QR factorization (the slowest but most accurate), 'none'
|
417 |
+
(the fastest but numerically unstable when `n_iter` is large, e.g.
|
418 |
+
typically 5 or larger), or 'LU' factorization (numerically stable
|
419 |
+
but can lose slightly in accuracy). The 'auto' mode applies no
|
420 |
+
normalization if `n_iter` <= 2 and switches to LU otherwise.
|
421 |
+
|
422 |
+
.. versionadded:: 0.18
|
423 |
+
|
424 |
+
transpose : bool or 'auto', default='auto'
|
425 |
+
Whether the algorithm should be applied to M.T instead of M. The
|
426 |
+
result should approximately be the same. The 'auto' mode will
|
427 |
+
trigger the transposition if M.shape[1] > M.shape[0] since this
|
428 |
+
implementation of randomized SVD tend to be a little faster in that
|
429 |
+
case.
|
430 |
+
|
431 |
+
.. versionchanged:: 0.18
|
432 |
+
|
433 |
+
flip_sign : bool, default=True
|
434 |
+
The output of a singular value decomposition is only unique up to a
|
435 |
+
permutation of the signs of the singular vectors. If `flip_sign` is
|
436 |
+
set to `True`, the sign ambiguity is resolved by making the largest
|
437 |
+
loadings for each component in the left singular vectors positive.
|
438 |
+
|
439 |
+
random_state : int, RandomState instance or None, default='warn'
|
440 |
+
The seed of the pseudo random number generator to use when
|
441 |
+
shuffling the data, i.e. getting the random vectors to initialize
|
442 |
+
the algorithm. Pass an int for reproducible results across multiple
|
443 |
+
function calls. See :term:`Glossary <random_state>`.
|
444 |
+
|
445 |
+
.. versionchanged:: 1.2
|
446 |
+
The default value changed from 0 to None.
|
447 |
+
|
448 |
+
svd_lapack_driver : {"gesdd", "gesvd"}, default="gesdd"
|
449 |
+
Whether to use the more efficient divide-and-conquer approach
|
450 |
+
(`"gesdd"`) or more general rectangular approach (`"gesvd"`) to compute
|
451 |
+
the SVD of the matrix B, which is the projection of M into a low
|
452 |
+
dimensional subspace, as described in [1]_.
|
453 |
+
|
454 |
+
.. versionadded:: 1.2
|
455 |
+
|
456 |
+
Returns
|
457 |
+
-------
|
458 |
+
u : ndarray of shape (n_samples, n_components)
|
459 |
+
Unitary matrix having left singular vectors with signs flipped as columns.
|
460 |
+
s : ndarray of shape (n_components,)
|
461 |
+
The singular values, sorted in non-increasing order.
|
462 |
+
vh : ndarray of shape (n_components, n_features)
|
463 |
+
Unitary matrix having right singular vectors with signs flipped as rows.
|
464 |
+
|
465 |
+
Notes
|
466 |
+
-----
|
467 |
+
This algorithm finds a (usually very good) approximate truncated
|
468 |
+
singular value decomposition using randomization to speed up the
|
469 |
+
computations. It is particularly fast on large matrices on which
|
470 |
+
you wish to extract only a small number of components. In order to
|
471 |
+
obtain further speed up, `n_iter` can be set <=2 (at the cost of
|
472 |
+
loss of precision). To increase the precision it is recommended to
|
473 |
+
increase `n_oversamples`, up to `2*k-n_components` where k is the
|
474 |
+
effective rank. Usually, `n_components` is chosen to be greater than k
|
475 |
+
so increasing `n_oversamples` up to `n_components` should be enough.
|
476 |
+
|
477 |
+
References
|
478 |
+
----------
|
479 |
+
.. [1] :arxiv:`"Finding structure with randomness:
|
480 |
+
Stochastic algorithms for constructing approximate matrix decompositions"
|
481 |
+
<0909.4061>`
|
482 |
+
Halko, et al. (2009)
|
483 |
+
|
484 |
+
.. [2] A randomized algorithm for the decomposition of matrices
|
485 |
+
Per-Gunnar Martinsson, Vladimir Rokhlin and Mark Tygert
|
486 |
+
|
487 |
+
.. [3] An implementation of a randomized algorithm for principal component
|
488 |
+
analysis A. Szlam et al. 2014
|
489 |
+
|
490 |
+
Examples
|
491 |
+
--------
|
492 |
+
>>> import numpy as np
|
493 |
+
>>> from sklearn.utils.extmath import randomized_svd
|
494 |
+
>>> a = np.array([[1, 2, 3, 5],
|
495 |
+
... [3, 4, 5, 6],
|
496 |
+
... [7, 8, 9, 10]])
|
497 |
+
>>> U, s, Vh = randomized_svd(a, n_components=2, random_state=0)
|
498 |
+
>>> U.shape, s.shape, Vh.shape
|
499 |
+
((3, 2), (2,), (2, 4))
|
500 |
+
"""
|
501 |
+
if sparse.issparse(M) and M.format in ("lil", "dok"):
|
502 |
+
warnings.warn(
|
503 |
+
"Calculating SVD of a {} is expensive. "
|
504 |
+
"csr_matrix is more efficient.".format(type(M).__name__),
|
505 |
+
sparse.SparseEfficiencyWarning,
|
506 |
+
)
|
507 |
+
|
508 |
+
random_state = check_random_state(random_state)
|
509 |
+
n_random = n_components + n_oversamples
|
510 |
+
n_samples, n_features = M.shape
|
511 |
+
|
512 |
+
if n_iter == "auto":
|
513 |
+
# Checks if the number of iterations is explicitly specified
|
514 |
+
# Adjust n_iter. 7 was found a good compromise for PCA. See #5299
|
515 |
+
n_iter = 7 if n_components < 0.1 * min(M.shape) else 4
|
516 |
+
|
517 |
+
if transpose == "auto":
|
518 |
+
transpose = n_samples < n_features
|
519 |
+
if transpose:
|
520 |
+
# this implementation is a bit faster with smaller shape[1]
|
521 |
+
M = M.T
|
522 |
+
|
523 |
+
Q = randomized_range_finder(
|
524 |
+
M,
|
525 |
+
size=n_random,
|
526 |
+
n_iter=n_iter,
|
527 |
+
power_iteration_normalizer=power_iteration_normalizer,
|
528 |
+
random_state=random_state,
|
529 |
+
)
|
530 |
+
|
531 |
+
# project M to the (k + p) dimensional space using the basis vectors
|
532 |
+
B = Q.T @ M
|
533 |
+
|
534 |
+
# compute the SVD on the thin matrix: (k + p) wide
|
535 |
+
xp, is_array_api_compliant = get_namespace(B)
|
536 |
+
if is_array_api_compliant:
|
537 |
+
Uhat, s, Vt = xp.linalg.svd(B, full_matrices=False)
|
538 |
+
else:
|
539 |
+
# When when array_api_dispatch is disabled, rely on scipy.linalg
|
540 |
+
# instead of numpy.linalg to avoid introducing a behavior change w.r.t.
|
541 |
+
# previous versions of scikit-learn.
|
542 |
+
Uhat, s, Vt = linalg.svd(
|
543 |
+
B, full_matrices=False, lapack_driver=svd_lapack_driver
|
544 |
+
)
|
545 |
+
del B
|
546 |
+
U = Q @ Uhat
|
547 |
+
|
548 |
+
if flip_sign:
|
549 |
+
if not transpose:
|
550 |
+
U, Vt = svd_flip(U, Vt)
|
551 |
+
else:
|
552 |
+
# In case of transpose u_based_decision=false
|
553 |
+
# to actually flip based on u and not v.
|
554 |
+
U, Vt = svd_flip(U, Vt, u_based_decision=False)
|
555 |
+
|
556 |
+
if transpose:
|
557 |
+
# transpose back the results according to the input convention
|
558 |
+
return Vt[:n_components, :].T, s[:n_components], U[:, :n_components].T
|
559 |
+
else:
|
560 |
+
return U[:, :n_components], s[:n_components], Vt[:n_components, :]
|
561 |
+
|
562 |
+
|
563 |
+
def _randomized_eigsh(
|
564 |
+
M,
|
565 |
+
n_components,
|
566 |
+
*,
|
567 |
+
n_oversamples=10,
|
568 |
+
n_iter="auto",
|
569 |
+
power_iteration_normalizer="auto",
|
570 |
+
selection="module",
|
571 |
+
random_state=None,
|
572 |
+
):
|
573 |
+
"""Computes a truncated eigendecomposition using randomized methods
|
574 |
+
|
575 |
+
This method solves the fixed-rank approximation problem described in the
|
576 |
+
Halko et al paper.
|
577 |
+
|
578 |
+
The choice of which components to select can be tuned with the `selection`
|
579 |
+
parameter.
|
580 |
+
|
581 |
+
.. versionadded:: 0.24
|
582 |
+
|
583 |
+
Parameters
|
584 |
+
----------
|
585 |
+
M : ndarray or sparse matrix
|
586 |
+
Matrix to decompose, it should be real symmetric square or complex
|
587 |
+
hermitian
|
588 |
+
|
589 |
+
n_components : int
|
590 |
+
Number of eigenvalues and vectors to extract.
|
591 |
+
|
592 |
+
n_oversamples : int, default=10
|
593 |
+
Additional number of random vectors to sample the range of M so as
|
594 |
+
to ensure proper conditioning. The total number of random vectors
|
595 |
+
used to find the range of M is n_components + n_oversamples. Smaller
|
596 |
+
number can improve speed but can negatively impact the quality of
|
597 |
+
approximation of eigenvectors and eigenvalues. Users might wish
|
598 |
+
to increase this parameter up to `2*k - n_components` where k is the
|
599 |
+
effective rank, for large matrices, noisy problems, matrices with
|
600 |
+
slowly decaying spectrums, or to increase precision accuracy. See Halko
|
601 |
+
et al (pages 5, 23 and 26).
|
602 |
+
|
603 |
+
n_iter : int or 'auto', default='auto'
|
604 |
+
Number of power iterations. It can be used to deal with very noisy
|
605 |
+
problems. When 'auto', it is set to 4, unless `n_components` is small
|
606 |
+
(< .1 * min(X.shape)) in which case `n_iter` is set to 7.
|
607 |
+
This improves precision with few components. Note that in general
|
608 |
+
users should rather increase `n_oversamples` before increasing `n_iter`
|
609 |
+
as the principle of the randomized method is to avoid usage of these
|
610 |
+
more costly power iterations steps. When `n_components` is equal
|
611 |
+
or greater to the effective matrix rank and the spectrum does not
|
612 |
+
present a slow decay, `n_iter=0` or `1` should even work fine in theory
|
613 |
+
(see Halko et al paper, page 9).
|
614 |
+
|
615 |
+
power_iteration_normalizer : {'auto', 'QR', 'LU', 'none'}, default='auto'
|
616 |
+
Whether the power iterations are normalized with step-by-step
|
617 |
+
QR factorization (the slowest but most accurate), 'none'
|
618 |
+
(the fastest but numerically unstable when `n_iter` is large, e.g.
|
619 |
+
typically 5 or larger), or 'LU' factorization (numerically stable
|
620 |
+
but can lose slightly in accuracy). The 'auto' mode applies no
|
621 |
+
normalization if `n_iter` <= 2 and switches to LU otherwise.
|
622 |
+
|
623 |
+
selection : {'value', 'module'}, default='module'
|
624 |
+
Strategy used to select the n components. When `selection` is `'value'`
|
625 |
+
(not yet implemented, will become the default when implemented), the
|
626 |
+
components corresponding to the n largest eigenvalues are returned.
|
627 |
+
When `selection` is `'module'`, the components corresponding to the n
|
628 |
+
eigenvalues with largest modules are returned.
|
629 |
+
|
630 |
+
random_state : int, RandomState instance, default=None
|
631 |
+
The seed of the pseudo random number generator to use when shuffling
|
632 |
+
the data, i.e. getting the random vectors to initialize the algorithm.
|
633 |
+
Pass an int for reproducible results across multiple function calls.
|
634 |
+
See :term:`Glossary <random_state>`.
|
635 |
+
|
636 |
+
Notes
|
637 |
+
-----
|
638 |
+
This algorithm finds a (usually very good) approximate truncated
|
639 |
+
eigendecomposition using randomized methods to speed up the computations.
|
640 |
+
|
641 |
+
This method is particularly fast on large matrices on which
|
642 |
+
you wish to extract only a small number of components. In order to
|
643 |
+
obtain further speed up, `n_iter` can be set <=2 (at the cost of
|
644 |
+
loss of precision). To increase the precision it is recommended to
|
645 |
+
increase `n_oversamples`, up to `2*k-n_components` where k is the
|
646 |
+
effective rank. Usually, `n_components` is chosen to be greater than k
|
647 |
+
so increasing `n_oversamples` up to `n_components` should be enough.
|
648 |
+
|
649 |
+
Strategy 'value': not implemented yet.
|
650 |
+
Algorithms 5.3, 5.4 and 5.5 in the Halko et al paper should provide good
|
651 |
+
candidates for a future implementation.
|
652 |
+
|
653 |
+
Strategy 'module':
|
654 |
+
The principle is that for diagonalizable matrices, the singular values and
|
655 |
+
eigenvalues are related: if t is an eigenvalue of A, then :math:`|t|` is a
|
656 |
+
singular value of A. This method relies on a randomized SVD to find the n
|
657 |
+
singular components corresponding to the n singular values with largest
|
658 |
+
modules, and then uses the signs of the singular vectors to find the true
|
659 |
+
sign of t: if the sign of left and right singular vectors are different
|
660 |
+
then the corresponding eigenvalue is negative.
|
661 |
+
|
662 |
+
Returns
|
663 |
+
-------
|
664 |
+
eigvals : 1D array of shape (n_components,) containing the `n_components`
|
665 |
+
eigenvalues selected (see ``selection`` parameter).
|
666 |
+
eigvecs : 2D array of shape (M.shape[0], n_components) containing the
|
667 |
+
`n_components` eigenvectors corresponding to the `eigvals`, in the
|
668 |
+
corresponding order. Note that this follows the `scipy.linalg.eigh`
|
669 |
+
convention.
|
670 |
+
|
671 |
+
See Also
|
672 |
+
--------
|
673 |
+
:func:`randomized_svd`
|
674 |
+
|
675 |
+
References
|
676 |
+
----------
|
677 |
+
* :arxiv:`"Finding structure with randomness:
|
678 |
+
Stochastic algorithms for constructing approximate matrix decompositions"
|
679 |
+
(Algorithm 4.3 for strategy 'module') <0909.4061>`
|
680 |
+
Halko, et al. (2009)
|
681 |
+
"""
|
682 |
+
if selection == "value": # pragma: no cover
|
683 |
+
# to do : an algorithm can be found in the Halko et al reference
|
684 |
+
raise NotImplementedError()
|
685 |
+
|
686 |
+
elif selection == "module":
|
687 |
+
# Note: no need for deterministic U and Vt (flip_sign=True),
|
688 |
+
# as we only use the dot product UVt afterwards
|
689 |
+
U, S, Vt = randomized_svd(
|
690 |
+
M,
|
691 |
+
n_components=n_components,
|
692 |
+
n_oversamples=n_oversamples,
|
693 |
+
n_iter=n_iter,
|
694 |
+
power_iteration_normalizer=power_iteration_normalizer,
|
695 |
+
flip_sign=False,
|
696 |
+
random_state=random_state,
|
697 |
+
)
|
698 |
+
|
699 |
+
eigvecs = U[:, :n_components]
|
700 |
+
eigvals = S[:n_components]
|
701 |
+
|
702 |
+
# Conversion of Singular values into Eigenvalues:
|
703 |
+
# For any eigenvalue t, the corresponding singular value is |t|.
|
704 |
+
# So if there is a negative eigenvalue t, the corresponding singular
|
705 |
+
# value will be -t, and the left (U) and right (V) singular vectors
|
706 |
+
# will have opposite signs.
|
707 |
+
# Fastest way: see <https://stackoverflow.com/a/61974002/7262247>
|
708 |
+
diag_VtU = np.einsum("ji,ij->j", Vt[:n_components, :], U[:, :n_components])
|
709 |
+
signs = np.sign(diag_VtU)
|
710 |
+
eigvals = eigvals * signs
|
711 |
+
|
712 |
+
else: # pragma: no cover
|
713 |
+
raise ValueError("Invalid `selection`: %r" % selection)
|
714 |
+
|
715 |
+
return eigvals, eigvecs
|
716 |
+
|
717 |
+
|
718 |
+
def weighted_mode(a, w, *, axis=0):
|
719 |
+
"""Return an array of the weighted modal (most common) value in the passed array.
|
720 |
+
|
721 |
+
If there is more than one such value, only the first is returned.
|
722 |
+
The bin-count for the modal bins is also returned.
|
723 |
+
|
724 |
+
This is an extension of the algorithm in scipy.stats.mode.
|
725 |
+
|
726 |
+
Parameters
|
727 |
+
----------
|
728 |
+
a : array-like of shape (n_samples,)
|
729 |
+
Array of which values to find mode(s).
|
730 |
+
w : array-like of shape (n_samples,)
|
731 |
+
Array of weights for each value.
|
732 |
+
axis : int, default=0
|
733 |
+
Axis along which to operate. Default is 0, i.e. the first axis.
|
734 |
+
|
735 |
+
Returns
|
736 |
+
-------
|
737 |
+
vals : ndarray
|
738 |
+
Array of modal values.
|
739 |
+
score : ndarray
|
740 |
+
Array of weighted counts for each mode.
|
741 |
+
|
742 |
+
See Also
|
743 |
+
--------
|
744 |
+
scipy.stats.mode: Calculates the Modal (most common) value of array elements
|
745 |
+
along specified axis.
|
746 |
+
|
747 |
+
Examples
|
748 |
+
--------
|
749 |
+
>>> from sklearn.utils.extmath import weighted_mode
|
750 |
+
>>> x = [4, 1, 4, 2, 4, 2]
|
751 |
+
>>> weights = [1, 1, 1, 1, 1, 1]
|
752 |
+
>>> weighted_mode(x, weights)
|
753 |
+
(array([4.]), array([3.]))
|
754 |
+
|
755 |
+
The value 4 appears three times: with uniform weights, the result is
|
756 |
+
simply the mode of the distribution.
|
757 |
+
|
758 |
+
>>> weights = [1, 3, 0.5, 1.5, 1, 2] # deweight the 4's
|
759 |
+
>>> weighted_mode(x, weights)
|
760 |
+
(array([2.]), array([3.5]))
|
761 |
+
|
762 |
+
The value 2 has the highest score: it appears twice with weights of
|
763 |
+
1.5 and 2: the sum of these is 3.5.
|
764 |
+
"""
|
765 |
+
if axis is None:
|
766 |
+
a = np.ravel(a)
|
767 |
+
w = np.ravel(w)
|
768 |
+
axis = 0
|
769 |
+
else:
|
770 |
+
a = np.asarray(a)
|
771 |
+
w = np.asarray(w)
|
772 |
+
|
773 |
+
if a.shape != w.shape:
|
774 |
+
w = np.full(a.shape, w, dtype=w.dtype)
|
775 |
+
|
776 |
+
scores = np.unique(np.ravel(a)) # get ALL unique values
|
777 |
+
testshape = list(a.shape)
|
778 |
+
testshape[axis] = 1
|
779 |
+
oldmostfreq = np.zeros(testshape)
|
780 |
+
oldcounts = np.zeros(testshape)
|
781 |
+
for score in scores:
|
782 |
+
template = np.zeros(a.shape)
|
783 |
+
ind = a == score
|
784 |
+
template[ind] = w[ind]
|
785 |
+
counts = np.expand_dims(np.sum(template, axis), axis)
|
786 |
+
mostfrequent = np.where(counts > oldcounts, score, oldmostfreq)
|
787 |
+
oldcounts = np.maximum(counts, oldcounts)
|
788 |
+
oldmostfreq = mostfrequent
|
789 |
+
return mostfrequent, oldcounts
|
790 |
+
|
791 |
+
|
792 |
+
def cartesian(arrays, out=None):
|
793 |
+
"""Generate a cartesian product of input arrays.
|
794 |
+
|
795 |
+
Parameters
|
796 |
+
----------
|
797 |
+
arrays : list of array-like
|
798 |
+
1-D arrays to form the cartesian product of.
|
799 |
+
out : ndarray of shape (M, len(arrays)), default=None
|
800 |
+
Array to place the cartesian product in.
|
801 |
+
|
802 |
+
Returns
|
803 |
+
-------
|
804 |
+
out : ndarray of shape (M, len(arrays))
|
805 |
+
Array containing the cartesian products formed of input arrays.
|
806 |
+
If not provided, the `dtype` of the output array is set to the most
|
807 |
+
permissive `dtype` of the input arrays, according to NumPy type
|
808 |
+
promotion.
|
809 |
+
|
810 |
+
.. versionadded:: 1.2
|
811 |
+
Add support for arrays of different types.
|
812 |
+
|
813 |
+
Notes
|
814 |
+
-----
|
815 |
+
This function may not be used on more than 32 arrays
|
816 |
+
because the underlying numpy functions do not support it.
|
817 |
+
|
818 |
+
Examples
|
819 |
+
--------
|
820 |
+
>>> from sklearn.utils.extmath import cartesian
|
821 |
+
>>> cartesian(([1, 2, 3], [4, 5], [6, 7]))
|
822 |
+
array([[1, 4, 6],
|
823 |
+
[1, 4, 7],
|
824 |
+
[1, 5, 6],
|
825 |
+
[1, 5, 7],
|
826 |
+
[2, 4, 6],
|
827 |
+
[2, 4, 7],
|
828 |
+
[2, 5, 6],
|
829 |
+
[2, 5, 7],
|
830 |
+
[3, 4, 6],
|
831 |
+
[3, 4, 7],
|
832 |
+
[3, 5, 6],
|
833 |
+
[3, 5, 7]])
|
834 |
+
"""
|
835 |
+
arrays = [np.asarray(x) for x in arrays]
|
836 |
+
shape = (len(x) for x in arrays)
|
837 |
+
|
838 |
+
ix = np.indices(shape)
|
839 |
+
ix = ix.reshape(len(arrays), -1).T
|
840 |
+
|
841 |
+
if out is None:
|
842 |
+
dtype = np.result_type(*arrays) # find the most permissive dtype
|
843 |
+
out = np.empty_like(ix, dtype=dtype)
|
844 |
+
|
845 |
+
for n, arr in enumerate(arrays):
|
846 |
+
out[:, n] = arrays[n][ix[:, n]]
|
847 |
+
|
848 |
+
return out
|
849 |
+
|
850 |
+
|
851 |
+
def svd_flip(u, v, u_based_decision=True):
|
852 |
+
"""Sign correction to ensure deterministic output from SVD.
|
853 |
+
|
854 |
+
Adjusts the columns of u and the rows of v such that the loadings in the
|
855 |
+
columns in u that are largest in absolute value are always positive.
|
856 |
+
|
857 |
+
If u_based_decision is False, then the same sign correction is applied to
|
858 |
+
so that the rows in v that are largest in absolute value are always
|
859 |
+
positive.
|
860 |
+
|
861 |
+
Parameters
|
862 |
+
----------
|
863 |
+
u : ndarray
|
864 |
+
Parameters u and v are the output of `linalg.svd` or
|
865 |
+
:func:`~sklearn.utils.extmath.randomized_svd`, with matching inner
|
866 |
+
dimensions so one can compute `np.dot(u * s, v)`.
|
867 |
+
|
868 |
+
v : ndarray
|
869 |
+
Parameters u and v are the output of `linalg.svd` or
|
870 |
+
:func:`~sklearn.utils.extmath.randomized_svd`, with matching inner
|
871 |
+
dimensions so one can compute `np.dot(u * s, v)`. The input v should
|
872 |
+
really be called vt to be consistent with scipy's output.
|
873 |
+
|
874 |
+
u_based_decision : bool, default=True
|
875 |
+
If True, use the columns of u as the basis for sign flipping.
|
876 |
+
Otherwise, use the rows of v. The choice of which variable to base the
|
877 |
+
decision on is generally algorithm dependent.
|
878 |
+
|
879 |
+
Returns
|
880 |
+
-------
|
881 |
+
u_adjusted : ndarray
|
882 |
+
Array u with adjusted columns and the same dimensions as u.
|
883 |
+
|
884 |
+
v_adjusted : ndarray
|
885 |
+
Array v with adjusted rows and the same dimensions as v.
|
886 |
+
"""
|
887 |
+
xp, _ = get_namespace(u, v)
|
888 |
+
device = getattr(u, "device", None)
|
889 |
+
|
890 |
+
if u_based_decision:
|
891 |
+
# columns of u, rows of v, or equivalently rows of u.T and v
|
892 |
+
max_abs_u_cols = xp.argmax(xp.abs(u.T), axis=1)
|
893 |
+
shift = xp.arange(u.T.shape[0], device=device)
|
894 |
+
indices = max_abs_u_cols + shift * u.T.shape[1]
|
895 |
+
signs = xp.sign(xp.take(xp.reshape(u.T, (-1,)), indices, axis=0))
|
896 |
+
u *= signs[np.newaxis, :]
|
897 |
+
v *= signs[:, np.newaxis]
|
898 |
+
else:
|
899 |
+
# rows of v, columns of u
|
900 |
+
max_abs_v_rows = xp.argmax(xp.abs(v), axis=1)
|
901 |
+
shift = xp.arange(v.shape[0], device=device)
|
902 |
+
indices = max_abs_v_rows + shift * v.shape[1]
|
903 |
+
signs = xp.sign(xp.take(xp.reshape(v, (-1,)), indices))
|
904 |
+
u *= signs[np.newaxis, :]
|
905 |
+
v *= signs[:, np.newaxis]
|
906 |
+
return u, v
|
907 |
+
|
908 |
+
|
909 |
+
# TODO(1.6): remove
|
910 |
+
@deprecated( # type: ignore
|
911 |
+
"The function `log_logistic` is deprecated and will be removed in 1.6. "
|
912 |
+
"Use `-np.logaddexp(0, -x)` instead."
|
913 |
+
)
|
914 |
+
def log_logistic(X, out=None):
|
915 |
+
"""Compute the log of the logistic function, ``log(1 / (1 + e ** -x))``.
|
916 |
+
|
917 |
+
This implementation is numerically stable and uses `-np.logaddexp(0, -x)`.
|
918 |
+
|
919 |
+
For the ordinary logistic function, use ``scipy.special.expit``.
|
920 |
+
|
921 |
+
Parameters
|
922 |
+
----------
|
923 |
+
X : array-like of shape (M, N) or (M,)
|
924 |
+
Argument to the logistic function.
|
925 |
+
|
926 |
+
out : array-like of shape (M, N) or (M,), default=None
|
927 |
+
Preallocated output array.
|
928 |
+
|
929 |
+
Returns
|
930 |
+
-------
|
931 |
+
out : ndarray of shape (M, N) or (M,)
|
932 |
+
Log of the logistic function evaluated at every point in x.
|
933 |
+
|
934 |
+
Notes
|
935 |
+
-----
|
936 |
+
See the blog post describing this implementation:
|
937 |
+
http://fa.bianp.net/blog/2013/numerical-optimizers-for-logistic-regression/
|
938 |
+
"""
|
939 |
+
X = check_array(X, dtype=np.float64, ensure_2d=False)
|
940 |
+
|
941 |
+
if out is None:
|
942 |
+
out = np.empty_like(X)
|
943 |
+
|
944 |
+
np.logaddexp(0, -X, out=out)
|
945 |
+
out *= -1
|
946 |
+
return out
|
947 |
+
|
948 |
+
|
949 |
+
def softmax(X, copy=True):
|
950 |
+
"""
|
951 |
+
Calculate the softmax function.
|
952 |
+
|
953 |
+
The softmax function is calculated by
|
954 |
+
np.exp(X) / np.sum(np.exp(X), axis=1)
|
955 |
+
|
956 |
+
This will cause overflow when large values are exponentiated.
|
957 |
+
Hence the largest value in each row is subtracted from each data
|
958 |
+
point to prevent this.
|
959 |
+
|
960 |
+
Parameters
|
961 |
+
----------
|
962 |
+
X : array-like of float of shape (M, N)
|
963 |
+
Argument to the logistic function.
|
964 |
+
|
965 |
+
copy : bool, default=True
|
966 |
+
Copy X or not.
|
967 |
+
|
968 |
+
Returns
|
969 |
+
-------
|
970 |
+
out : ndarray of shape (M, N)
|
971 |
+
Softmax function evaluated at every point in x.
|
972 |
+
"""
|
973 |
+
xp, is_array_api_compliant = get_namespace(X)
|
974 |
+
if copy:
|
975 |
+
X = xp.asarray(X, copy=True)
|
976 |
+
max_prob = xp.reshape(xp.max(X, axis=1), (-1, 1))
|
977 |
+
X -= max_prob
|
978 |
+
|
979 |
+
if _is_numpy_namespace(xp):
|
980 |
+
# optimization for NumPy arrays
|
981 |
+
np.exp(X, out=np.asarray(X))
|
982 |
+
else:
|
983 |
+
# array_api does not have `out=`
|
984 |
+
X = xp.exp(X)
|
985 |
+
|
986 |
+
sum_prob = xp.reshape(xp.sum(X, axis=1), (-1, 1))
|
987 |
+
X /= sum_prob
|
988 |
+
return X
|
989 |
+
|
990 |
+
|
991 |
+
def make_nonnegative(X, min_value=0):
|
992 |
+
"""Ensure `X.min()` >= `min_value`.
|
993 |
+
|
994 |
+
Parameters
|
995 |
+
----------
|
996 |
+
X : array-like
|
997 |
+
The matrix to make non-negative.
|
998 |
+
min_value : float, default=0
|
999 |
+
The threshold value.
|
1000 |
+
|
1001 |
+
Returns
|
1002 |
+
-------
|
1003 |
+
array-like
|
1004 |
+
The thresholded array.
|
1005 |
+
|
1006 |
+
Raises
|
1007 |
+
------
|
1008 |
+
ValueError
|
1009 |
+
When X is sparse.
|
1010 |
+
"""
|
1011 |
+
min_ = X.min()
|
1012 |
+
if min_ < min_value:
|
1013 |
+
if sparse.issparse(X):
|
1014 |
+
raise ValueError(
|
1015 |
+
"Cannot make the data matrix"
|
1016 |
+
" nonnegative because it is sparse."
|
1017 |
+
" Adding a value to every entry would"
|
1018 |
+
" make it no longer sparse."
|
1019 |
+
)
|
1020 |
+
X = X + (min_value - min_)
|
1021 |
+
return X
|
1022 |
+
|
1023 |
+
|
1024 |
+
# Use at least float64 for the accumulating functions to avoid precision issue
|
1025 |
+
# see https://github.com/numpy/numpy/issues/9393. The float64 is also retained
|
1026 |
+
# as it is in case the float overflows
|
1027 |
+
def _safe_accumulator_op(op, x, *args, **kwargs):
|
1028 |
+
"""
|
1029 |
+
This function provides numpy accumulator functions with a float64 dtype
|
1030 |
+
when used on a floating point input. This prevents accumulator overflow on
|
1031 |
+
smaller floating point dtypes.
|
1032 |
+
|
1033 |
+
Parameters
|
1034 |
+
----------
|
1035 |
+
op : function
|
1036 |
+
A numpy accumulator function such as np.mean or np.sum.
|
1037 |
+
x : ndarray
|
1038 |
+
A numpy array to apply the accumulator function.
|
1039 |
+
*args : positional arguments
|
1040 |
+
Positional arguments passed to the accumulator function after the
|
1041 |
+
input x.
|
1042 |
+
**kwargs : keyword arguments
|
1043 |
+
Keyword arguments passed to the accumulator function.
|
1044 |
+
|
1045 |
+
Returns
|
1046 |
+
-------
|
1047 |
+
result
|
1048 |
+
The output of the accumulator function passed to this function.
|
1049 |
+
"""
|
1050 |
+
if np.issubdtype(x.dtype, np.floating) and x.dtype.itemsize < 8:
|
1051 |
+
result = op(x, *args, **kwargs, dtype=np.float64)
|
1052 |
+
else:
|
1053 |
+
result = op(x, *args, **kwargs)
|
1054 |
+
return result
|
1055 |
+
|
1056 |
+
|
1057 |
+
def _incremental_mean_and_var(
|
1058 |
+
X, last_mean, last_variance, last_sample_count, sample_weight=None
|
1059 |
+
):
|
1060 |
+
"""Calculate mean update and a Youngs and Cramer variance update.
|
1061 |
+
|
1062 |
+
If sample_weight is given, the weighted mean and variance is computed.
|
1063 |
+
|
1064 |
+
Update a given mean and (possibly) variance according to new data given
|
1065 |
+
in X. last_mean is always required to compute the new mean.
|
1066 |
+
If last_variance is None, no variance is computed and None return for
|
1067 |
+
updated_variance.
|
1068 |
+
|
1069 |
+
From the paper "Algorithms for computing the sample variance: analysis and
|
1070 |
+
recommendations", by Chan, Golub, and LeVeque.
|
1071 |
+
|
1072 |
+
Parameters
|
1073 |
+
----------
|
1074 |
+
X : array-like of shape (n_samples, n_features)
|
1075 |
+
Data to use for variance update.
|
1076 |
+
|
1077 |
+
last_mean : array-like of shape (n_features,)
|
1078 |
+
|
1079 |
+
last_variance : array-like of shape (n_features,)
|
1080 |
+
|
1081 |
+
last_sample_count : array-like of shape (n_features,)
|
1082 |
+
The number of samples encountered until now if sample_weight is None.
|
1083 |
+
If sample_weight is not None, this is the sum of sample_weight
|
1084 |
+
encountered.
|
1085 |
+
|
1086 |
+
sample_weight : array-like of shape (n_samples,) or None
|
1087 |
+
Sample weights. If None, compute the unweighted mean/variance.
|
1088 |
+
|
1089 |
+
Returns
|
1090 |
+
-------
|
1091 |
+
updated_mean : ndarray of shape (n_features,)
|
1092 |
+
|
1093 |
+
updated_variance : ndarray of shape (n_features,)
|
1094 |
+
None if last_variance was None.
|
1095 |
+
|
1096 |
+
updated_sample_count : ndarray of shape (n_features,)
|
1097 |
+
|
1098 |
+
Notes
|
1099 |
+
-----
|
1100 |
+
NaNs are ignored during the algorithm.
|
1101 |
+
|
1102 |
+
References
|
1103 |
+
----------
|
1104 |
+
T. Chan, G. Golub, R. LeVeque. Algorithms for computing the sample
|
1105 |
+
variance: recommendations, The American Statistician, Vol. 37, No. 3,
|
1106 |
+
pp. 242-247
|
1107 |
+
|
1108 |
+
Also, see the sparse implementation of this in
|
1109 |
+
`utils.sparsefuncs.incr_mean_variance_axis` and
|
1110 |
+
`utils.sparsefuncs_fast.incr_mean_variance_axis0`
|
1111 |
+
"""
|
1112 |
+
# old = stats until now
|
1113 |
+
# new = the current increment
|
1114 |
+
# updated = the aggregated stats
|
1115 |
+
last_sum = last_mean * last_sample_count
|
1116 |
+
X_nan_mask = np.isnan(X)
|
1117 |
+
if np.any(X_nan_mask):
|
1118 |
+
sum_op = np.nansum
|
1119 |
+
else:
|
1120 |
+
sum_op = np.sum
|
1121 |
+
if sample_weight is not None:
|
1122 |
+
# equivalent to np.nansum(X * sample_weight, axis=0)
|
1123 |
+
# safer because np.float64(X*W) != np.float64(X)*np.float64(W)
|
1124 |
+
new_sum = _safe_accumulator_op(
|
1125 |
+
np.matmul, sample_weight, np.where(X_nan_mask, 0, X)
|
1126 |
+
)
|
1127 |
+
new_sample_count = _safe_accumulator_op(
|
1128 |
+
np.sum, sample_weight[:, None] * (~X_nan_mask), axis=0
|
1129 |
+
)
|
1130 |
+
else:
|
1131 |
+
new_sum = _safe_accumulator_op(sum_op, X, axis=0)
|
1132 |
+
n_samples = X.shape[0]
|
1133 |
+
new_sample_count = n_samples - np.sum(X_nan_mask, axis=0)
|
1134 |
+
|
1135 |
+
updated_sample_count = last_sample_count + new_sample_count
|
1136 |
+
|
1137 |
+
updated_mean = (last_sum + new_sum) / updated_sample_count
|
1138 |
+
|
1139 |
+
if last_variance is None:
|
1140 |
+
updated_variance = None
|
1141 |
+
else:
|
1142 |
+
T = new_sum / new_sample_count
|
1143 |
+
temp = X - T
|
1144 |
+
if sample_weight is not None:
|
1145 |
+
# equivalent to np.nansum((X-T)**2 * sample_weight, axis=0)
|
1146 |
+
# safer because np.float64(X*W) != np.float64(X)*np.float64(W)
|
1147 |
+
correction = _safe_accumulator_op(
|
1148 |
+
np.matmul, sample_weight, np.where(X_nan_mask, 0, temp)
|
1149 |
+
)
|
1150 |
+
temp **= 2
|
1151 |
+
new_unnormalized_variance = _safe_accumulator_op(
|
1152 |
+
np.matmul, sample_weight, np.where(X_nan_mask, 0, temp)
|
1153 |
+
)
|
1154 |
+
else:
|
1155 |
+
correction = _safe_accumulator_op(sum_op, temp, axis=0)
|
1156 |
+
temp **= 2
|
1157 |
+
new_unnormalized_variance = _safe_accumulator_op(sum_op, temp, axis=0)
|
1158 |
+
|
1159 |
+
# correction term of the corrected 2 pass algorithm.
|
1160 |
+
# See "Algorithms for computing the sample variance: analysis
|
1161 |
+
# and recommendations", by Chan, Golub, and LeVeque.
|
1162 |
+
new_unnormalized_variance -= correction**2 / new_sample_count
|
1163 |
+
|
1164 |
+
last_unnormalized_variance = last_variance * last_sample_count
|
1165 |
+
|
1166 |
+
with np.errstate(divide="ignore", invalid="ignore"):
|
1167 |
+
last_over_new_count = last_sample_count / new_sample_count
|
1168 |
+
updated_unnormalized_variance = (
|
1169 |
+
last_unnormalized_variance
|
1170 |
+
+ new_unnormalized_variance
|
1171 |
+
+ last_over_new_count
|
1172 |
+
/ updated_sample_count
|
1173 |
+
* (last_sum / last_over_new_count - new_sum) ** 2
|
1174 |
+
)
|
1175 |
+
|
1176 |
+
zeros = last_sample_count == 0
|
1177 |
+
updated_unnormalized_variance[zeros] = new_unnormalized_variance[zeros]
|
1178 |
+
updated_variance = updated_unnormalized_variance / updated_sample_count
|
1179 |
+
|
1180 |
+
return updated_mean, updated_variance, updated_sample_count
|
1181 |
+
|
1182 |
+
|
1183 |
+
def _deterministic_vector_sign_flip(u):
|
1184 |
+
"""Modify the sign of vectors for reproducibility.
|
1185 |
+
|
1186 |
+
Flips the sign of elements of all the vectors (rows of u) such that
|
1187 |
+
the absolute maximum element of each vector is positive.
|
1188 |
+
|
1189 |
+
Parameters
|
1190 |
+
----------
|
1191 |
+
u : ndarray
|
1192 |
+
Array with vectors as its rows.
|
1193 |
+
|
1194 |
+
Returns
|
1195 |
+
-------
|
1196 |
+
u_flipped : ndarray with same shape as u
|
1197 |
+
Array with the sign flipped vectors as its rows.
|
1198 |
+
"""
|
1199 |
+
max_abs_rows = np.argmax(np.abs(u), axis=1)
|
1200 |
+
signs = np.sign(u[range(u.shape[0]), max_abs_rows])
|
1201 |
+
u *= signs[:, np.newaxis]
|
1202 |
+
return u
|
1203 |
+
|
1204 |
+
|
1205 |
+
def stable_cumsum(arr, axis=None, rtol=1e-05, atol=1e-08):
|
1206 |
+
"""Use high precision for cumsum and check that final value matches sum.
|
1207 |
+
|
1208 |
+
Warns if the final cumulative sum does not match the sum (up to the chosen
|
1209 |
+
tolerance).
|
1210 |
+
|
1211 |
+
Parameters
|
1212 |
+
----------
|
1213 |
+
arr : array-like
|
1214 |
+
To be cumulatively summed as flat.
|
1215 |
+
axis : int, default=None
|
1216 |
+
Axis along which the cumulative sum is computed.
|
1217 |
+
The default (None) is to compute the cumsum over the flattened array.
|
1218 |
+
rtol : float, default=1e-05
|
1219 |
+
Relative tolerance, see ``np.allclose``.
|
1220 |
+
atol : float, default=1e-08
|
1221 |
+
Absolute tolerance, see ``np.allclose``.
|
1222 |
+
|
1223 |
+
Returns
|
1224 |
+
-------
|
1225 |
+
out : ndarray
|
1226 |
+
Array with the cumulative sums along the chosen axis.
|
1227 |
+
"""
|
1228 |
+
out = np.cumsum(arr, axis=axis, dtype=np.float64)
|
1229 |
+
expected = np.sum(arr, axis=axis, dtype=np.float64)
|
1230 |
+
if not np.allclose(
|
1231 |
+
out.take(-1, axis=axis), expected, rtol=rtol, atol=atol, equal_nan=True
|
1232 |
+
):
|
1233 |
+
warnings.warn(
|
1234 |
+
(
|
1235 |
+
"cumsum was found to be unstable: "
|
1236 |
+
"its last element does not correspond to sum"
|
1237 |
+
),
|
1238 |
+
RuntimeWarning,
|
1239 |
+
)
|
1240 |
+
return out
|
1241 |
+
|
1242 |
+
|
1243 |
+
def _nanaverage(a, weights=None):
|
1244 |
+
"""Compute the weighted average, ignoring NaNs.
|
1245 |
+
|
1246 |
+
Parameters
|
1247 |
+
----------
|
1248 |
+
a : ndarray
|
1249 |
+
Array containing data to be averaged.
|
1250 |
+
weights : array-like, default=None
|
1251 |
+
An array of weights associated with the values in a. Each value in a
|
1252 |
+
contributes to the average according to its associated weight. The
|
1253 |
+
weights array can either be 1-D of the same shape as a. If `weights=None`,
|
1254 |
+
then all data in a are assumed to have a weight equal to one.
|
1255 |
+
|
1256 |
+
Returns
|
1257 |
+
-------
|
1258 |
+
weighted_average : float
|
1259 |
+
The weighted average.
|
1260 |
+
|
1261 |
+
Notes
|
1262 |
+
-----
|
1263 |
+
This wrapper to combine :func:`numpy.average` and :func:`numpy.nanmean`, so
|
1264 |
+
that :func:`np.nan` values are ignored from the average and weights can
|
1265 |
+
be passed. Note that when possible, we delegate to the prime methods.
|
1266 |
+
"""
|
1267 |
+
|
1268 |
+
if len(a) == 0:
|
1269 |
+
return np.nan
|
1270 |
+
|
1271 |
+
mask = np.isnan(a)
|
1272 |
+
if mask.all():
|
1273 |
+
return np.nan
|
1274 |
+
|
1275 |
+
if weights is None:
|
1276 |
+
return np.nanmean(a)
|
1277 |
+
|
1278 |
+
weights = np.asarray(weights)
|
1279 |
+
a, weights = a[~mask], weights[~mask]
|
1280 |
+
try:
|
1281 |
+
return np.average(a, weights=weights)
|
1282 |
+
except ZeroDivisionError:
|
1283 |
+
# this is when all weights are zero, then ignore them
|
1284 |
+
return np.average(a)
|
venv/lib/python3.10/site-packages/sklearn/utils/optimize.py
ADDED
@@ -0,0 +1,302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Our own implementation of the Newton algorithm
|
3 |
+
|
4 |
+
Unlike the scipy.optimize version, this version of the Newton conjugate
|
5 |
+
gradient solver uses only one function call to retrieve the
|
6 |
+
func value, the gradient value and a callable for the Hessian matvec
|
7 |
+
product. If the function call is very expensive (e.g. for logistic
|
8 |
+
regression with large design matrix), this approach gives very
|
9 |
+
significant speedups.
|
10 |
+
"""
|
11 |
+
# This is a modified file from scipy.optimize
|
12 |
+
# Original authors: Travis Oliphant, Eric Jones
|
13 |
+
# Modifications by Gael Varoquaux, Mathieu Blondel and Tom Dupre la Tour
|
14 |
+
# License: BSD
|
15 |
+
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
import numpy as np
|
19 |
+
import scipy
|
20 |
+
|
21 |
+
from ..exceptions import ConvergenceWarning
|
22 |
+
from .fixes import line_search_wolfe1, line_search_wolfe2
|
23 |
+
|
24 |
+
|
25 |
+
class _LineSearchError(RuntimeError):
|
26 |
+
pass
|
27 |
+
|
28 |
+
|
29 |
+
def _line_search_wolfe12(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs):
|
30 |
+
"""
|
31 |
+
Same as line_search_wolfe1, but fall back to line_search_wolfe2 if
|
32 |
+
suitable step length is not found, and raise an exception if a
|
33 |
+
suitable step length is not found.
|
34 |
+
|
35 |
+
Raises
|
36 |
+
------
|
37 |
+
_LineSearchError
|
38 |
+
If no suitable step size is found.
|
39 |
+
|
40 |
+
"""
|
41 |
+
ret = line_search_wolfe1(f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs)
|
42 |
+
|
43 |
+
if ret[0] is None:
|
44 |
+
# Have a look at the line_search method of our NewtonSolver class. We borrow
|
45 |
+
# the logic from there
|
46 |
+
# Deal with relative loss differences around machine precision.
|
47 |
+
args = kwargs.get("args", tuple())
|
48 |
+
fval = f(xk + pk, *args)
|
49 |
+
eps = 16 * np.finfo(np.asarray(old_fval).dtype).eps
|
50 |
+
tiny_loss = np.abs(old_fval * eps)
|
51 |
+
loss_improvement = fval - old_fval
|
52 |
+
check = np.abs(loss_improvement) <= tiny_loss
|
53 |
+
if check:
|
54 |
+
# 2.1 Check sum of absolute gradients as alternative condition.
|
55 |
+
sum_abs_grad_old = scipy.linalg.norm(gfk, ord=1)
|
56 |
+
grad = fprime(xk + pk, *args)
|
57 |
+
sum_abs_grad = scipy.linalg.norm(grad, ord=1)
|
58 |
+
check = sum_abs_grad < sum_abs_grad_old
|
59 |
+
if check:
|
60 |
+
ret = (
|
61 |
+
1.0, # step size
|
62 |
+
ret[1] + 1, # number of function evaluations
|
63 |
+
ret[2] + 1, # number of gradient evaluations
|
64 |
+
fval,
|
65 |
+
old_fval,
|
66 |
+
grad,
|
67 |
+
)
|
68 |
+
|
69 |
+
if ret[0] is None:
|
70 |
+
# line search failed: try different one.
|
71 |
+
# TODO: It seems that the new check for the sum of absolute gradients above
|
72 |
+
# catches all cases that, earlier, ended up here. In fact, our tests never
|
73 |
+
# trigger this "if branch" here and we can consider to remove it.
|
74 |
+
ret = line_search_wolfe2(
|
75 |
+
f, fprime, xk, pk, gfk, old_fval, old_old_fval, **kwargs
|
76 |
+
)
|
77 |
+
|
78 |
+
if ret[0] is None:
|
79 |
+
raise _LineSearchError()
|
80 |
+
|
81 |
+
return ret
|
82 |
+
|
83 |
+
|
84 |
+
def _cg(fhess_p, fgrad, maxiter, tol):
|
85 |
+
"""
|
86 |
+
Solve iteratively the linear system 'fhess_p . xsupi = fgrad'
|
87 |
+
with a conjugate gradient descent.
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
fhess_p : callable
|
92 |
+
Function that takes the gradient as a parameter and returns the
|
93 |
+
matrix product of the Hessian and gradient.
|
94 |
+
|
95 |
+
fgrad : ndarray of shape (n_features,) or (n_features + 1,)
|
96 |
+
Gradient vector.
|
97 |
+
|
98 |
+
maxiter : int
|
99 |
+
Number of CG iterations.
|
100 |
+
|
101 |
+
tol : float
|
102 |
+
Stopping criterion.
|
103 |
+
|
104 |
+
Returns
|
105 |
+
-------
|
106 |
+
xsupi : ndarray of shape (n_features,) or (n_features + 1,)
|
107 |
+
Estimated solution.
|
108 |
+
"""
|
109 |
+
xsupi = np.zeros(len(fgrad), dtype=fgrad.dtype)
|
110 |
+
ri = np.copy(fgrad)
|
111 |
+
psupi = -ri
|
112 |
+
i = 0
|
113 |
+
dri0 = np.dot(ri, ri)
|
114 |
+
# We also track of |p_i|^2.
|
115 |
+
psupi_norm2 = dri0
|
116 |
+
|
117 |
+
while i <= maxiter:
|
118 |
+
if np.sum(np.abs(ri)) <= tol:
|
119 |
+
break
|
120 |
+
|
121 |
+
Ap = fhess_p(psupi)
|
122 |
+
# check curvature
|
123 |
+
curv = np.dot(psupi, Ap)
|
124 |
+
if 0 <= curv <= 16 * np.finfo(np.float64).eps * psupi_norm2:
|
125 |
+
# See https://arxiv.org/abs/1803.02924, Algo 1 Capped Conjugate Gradient.
|
126 |
+
break
|
127 |
+
elif curv < 0:
|
128 |
+
if i > 0:
|
129 |
+
break
|
130 |
+
else:
|
131 |
+
# fall back to steepest descent direction
|
132 |
+
xsupi += dri0 / curv * psupi
|
133 |
+
break
|
134 |
+
alphai = dri0 / curv
|
135 |
+
xsupi += alphai * psupi
|
136 |
+
ri += alphai * Ap
|
137 |
+
dri1 = np.dot(ri, ri)
|
138 |
+
betai = dri1 / dri0
|
139 |
+
psupi = -ri + betai * psupi
|
140 |
+
# We use |p_i|^2 = |r_i|^2 + beta_i^2 |p_{i-1}|^2
|
141 |
+
psupi_norm2 = dri1 + betai**2 * psupi_norm2
|
142 |
+
i = i + 1
|
143 |
+
dri0 = dri1 # update np.dot(ri,ri) for next time.
|
144 |
+
|
145 |
+
return xsupi
|
146 |
+
|
147 |
+
|
148 |
+
def _newton_cg(
|
149 |
+
grad_hess,
|
150 |
+
func,
|
151 |
+
grad,
|
152 |
+
x0,
|
153 |
+
args=(),
|
154 |
+
tol=1e-4,
|
155 |
+
maxiter=100,
|
156 |
+
maxinner=200,
|
157 |
+
line_search=True,
|
158 |
+
warn=True,
|
159 |
+
):
|
160 |
+
"""
|
161 |
+
Minimization of scalar function of one or more variables using the
|
162 |
+
Newton-CG algorithm.
|
163 |
+
|
164 |
+
Parameters
|
165 |
+
----------
|
166 |
+
grad_hess : callable
|
167 |
+
Should return the gradient and a callable returning the matvec product
|
168 |
+
of the Hessian.
|
169 |
+
|
170 |
+
func : callable
|
171 |
+
Should return the value of the function.
|
172 |
+
|
173 |
+
grad : callable
|
174 |
+
Should return the function value and the gradient. This is used
|
175 |
+
by the linesearch functions.
|
176 |
+
|
177 |
+
x0 : array of float
|
178 |
+
Initial guess.
|
179 |
+
|
180 |
+
args : tuple, default=()
|
181 |
+
Arguments passed to func_grad_hess, func and grad.
|
182 |
+
|
183 |
+
tol : float, default=1e-4
|
184 |
+
Stopping criterion. The iteration will stop when
|
185 |
+
``max{|g_i | i = 1, ..., n} <= tol``
|
186 |
+
where ``g_i`` is the i-th component of the gradient.
|
187 |
+
|
188 |
+
maxiter : int, default=100
|
189 |
+
Number of Newton iterations.
|
190 |
+
|
191 |
+
maxinner : int, default=200
|
192 |
+
Number of CG iterations.
|
193 |
+
|
194 |
+
line_search : bool, default=True
|
195 |
+
Whether to use a line search or not.
|
196 |
+
|
197 |
+
warn : bool, default=True
|
198 |
+
Whether to warn when didn't converge.
|
199 |
+
|
200 |
+
Returns
|
201 |
+
-------
|
202 |
+
xk : ndarray of float
|
203 |
+
Estimated minimum.
|
204 |
+
"""
|
205 |
+
x0 = np.asarray(x0).flatten()
|
206 |
+
xk = np.copy(x0)
|
207 |
+
k = 0
|
208 |
+
|
209 |
+
if line_search:
|
210 |
+
old_fval = func(x0, *args)
|
211 |
+
old_old_fval = None
|
212 |
+
|
213 |
+
# Outer loop: our Newton iteration
|
214 |
+
while k < maxiter:
|
215 |
+
# Compute a search direction pk by applying the CG method to
|
216 |
+
# del2 f(xk) p = - fgrad f(xk) starting from 0.
|
217 |
+
fgrad, fhess_p = grad_hess(xk, *args)
|
218 |
+
|
219 |
+
absgrad = np.abs(fgrad)
|
220 |
+
if np.max(absgrad) <= tol:
|
221 |
+
break
|
222 |
+
|
223 |
+
maggrad = np.sum(absgrad)
|
224 |
+
eta = min([0.5, np.sqrt(maggrad)])
|
225 |
+
termcond = eta * maggrad
|
226 |
+
|
227 |
+
# Inner loop: solve the Newton update by conjugate gradient, to
|
228 |
+
# avoid inverting the Hessian
|
229 |
+
xsupi = _cg(fhess_p, fgrad, maxiter=maxinner, tol=termcond)
|
230 |
+
|
231 |
+
alphak = 1.0
|
232 |
+
|
233 |
+
if line_search:
|
234 |
+
try:
|
235 |
+
alphak, fc, gc, old_fval, old_old_fval, gfkp1 = _line_search_wolfe12(
|
236 |
+
func, grad, xk, xsupi, fgrad, old_fval, old_old_fval, args=args
|
237 |
+
)
|
238 |
+
except _LineSearchError:
|
239 |
+
warnings.warn("Line Search failed")
|
240 |
+
break
|
241 |
+
|
242 |
+
xk += alphak * xsupi # upcast if necessary
|
243 |
+
k += 1
|
244 |
+
|
245 |
+
if warn and k >= maxiter:
|
246 |
+
warnings.warn(
|
247 |
+
"newton-cg failed to converge. Increase the number of iterations.",
|
248 |
+
ConvergenceWarning,
|
249 |
+
)
|
250 |
+
return xk, k
|
251 |
+
|
252 |
+
|
253 |
+
def _check_optimize_result(solver, result, max_iter=None, extra_warning_msg=None):
|
254 |
+
"""Check the OptimizeResult for successful convergence
|
255 |
+
|
256 |
+
Parameters
|
257 |
+
----------
|
258 |
+
solver : str
|
259 |
+
Solver name. Currently only `lbfgs` is supported.
|
260 |
+
|
261 |
+
result : OptimizeResult
|
262 |
+
Result of the scipy.optimize.minimize function.
|
263 |
+
|
264 |
+
max_iter : int, default=None
|
265 |
+
Expected maximum number of iterations.
|
266 |
+
|
267 |
+
extra_warning_msg : str, default=None
|
268 |
+
Extra warning message.
|
269 |
+
|
270 |
+
Returns
|
271 |
+
-------
|
272 |
+
n_iter : int
|
273 |
+
Number of iterations.
|
274 |
+
"""
|
275 |
+
# handle both scipy and scikit-learn solver names
|
276 |
+
if solver == "lbfgs":
|
277 |
+
if result.status != 0:
|
278 |
+
try:
|
279 |
+
# The message is already decoded in scipy>=1.6.0
|
280 |
+
result_message = result.message.decode("latin1")
|
281 |
+
except AttributeError:
|
282 |
+
result_message = result.message
|
283 |
+
warning_msg = (
|
284 |
+
"{} failed to converge (status={}):\n{}.\n\n"
|
285 |
+
"Increase the number of iterations (max_iter) "
|
286 |
+
"or scale the data as shown in:\n"
|
287 |
+
" https://scikit-learn.org/stable/modules/"
|
288 |
+
"preprocessing.html"
|
289 |
+
).format(solver, result.status, result_message)
|
290 |
+
if extra_warning_msg is not None:
|
291 |
+
warning_msg += "\n" + extra_warning_msg
|
292 |
+
warnings.warn(warning_msg, ConvergenceWarning, stacklevel=2)
|
293 |
+
if max_iter is not None:
|
294 |
+
# In scipy <= 1.0.0, nit may exceed maxiter for lbfgs.
|
295 |
+
# See https://github.com/scipy/scipy/issues/7854
|
296 |
+
n_iter_i = min(result.nit, max_iter)
|
297 |
+
else:
|
298 |
+
n_iter_i = result.nit
|
299 |
+
else:
|
300 |
+
raise NotImplementedError
|
301 |
+
|
302 |
+
return n_iter_i
|
venv/lib/python3.10/site-packages/sklearn/utils/parallel.py
ADDED
@@ -0,0 +1,129 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.utils.parallel` customizes `joblib` tools for scikit-learn usage.
|
3 |
+
"""
|
4 |
+
|
5 |
+
import functools
|
6 |
+
import warnings
|
7 |
+
from functools import update_wrapper
|
8 |
+
|
9 |
+
import joblib
|
10 |
+
|
11 |
+
from .._config import config_context, get_config
|
12 |
+
|
13 |
+
|
14 |
+
def _with_config(delayed_func, config):
|
15 |
+
"""Helper function that intends to attach a config to a delayed function."""
|
16 |
+
if hasattr(delayed_func, "with_config"):
|
17 |
+
return delayed_func.with_config(config)
|
18 |
+
else:
|
19 |
+
warnings.warn(
|
20 |
+
(
|
21 |
+
"`sklearn.utils.parallel.Parallel` needs to be used in "
|
22 |
+
"conjunction with `sklearn.utils.parallel.delayed` instead of "
|
23 |
+
"`joblib.delayed` to correctly propagate the scikit-learn "
|
24 |
+
"configuration to the joblib workers."
|
25 |
+
),
|
26 |
+
UserWarning,
|
27 |
+
)
|
28 |
+
return delayed_func
|
29 |
+
|
30 |
+
|
31 |
+
class Parallel(joblib.Parallel):
|
32 |
+
"""Tweak of :class:`joblib.Parallel` that propagates the scikit-learn configuration.
|
33 |
+
|
34 |
+
This subclass of :class:`joblib.Parallel` ensures that the active configuration
|
35 |
+
(thread-local) of scikit-learn is propagated to the parallel workers for the
|
36 |
+
duration of the execution of the parallel tasks.
|
37 |
+
|
38 |
+
The API does not change and you can refer to :class:`joblib.Parallel`
|
39 |
+
documentation for more details.
|
40 |
+
|
41 |
+
.. versionadded:: 1.3
|
42 |
+
"""
|
43 |
+
|
44 |
+
def __call__(self, iterable):
|
45 |
+
"""Dispatch the tasks and return the results.
|
46 |
+
|
47 |
+
Parameters
|
48 |
+
----------
|
49 |
+
iterable : iterable
|
50 |
+
Iterable containing tuples of (delayed_function, args, kwargs) that should
|
51 |
+
be consumed.
|
52 |
+
|
53 |
+
Returns
|
54 |
+
-------
|
55 |
+
results : list
|
56 |
+
List of results of the tasks.
|
57 |
+
"""
|
58 |
+
# Capture the thread-local scikit-learn configuration at the time
|
59 |
+
# Parallel.__call__ is issued since the tasks can be dispatched
|
60 |
+
# in a different thread depending on the backend and on the value of
|
61 |
+
# pre_dispatch and n_jobs.
|
62 |
+
config = get_config()
|
63 |
+
iterable_with_config = (
|
64 |
+
(_with_config(delayed_func, config), args, kwargs)
|
65 |
+
for delayed_func, args, kwargs in iterable
|
66 |
+
)
|
67 |
+
return super().__call__(iterable_with_config)
|
68 |
+
|
69 |
+
|
70 |
+
# remove when https://github.com/joblib/joblib/issues/1071 is fixed
|
71 |
+
def delayed(function):
|
72 |
+
"""Decorator used to capture the arguments of a function.
|
73 |
+
|
74 |
+
This alternative to `joblib.delayed` is meant to be used in conjunction
|
75 |
+
with `sklearn.utils.parallel.Parallel`. The latter captures the scikit-
|
76 |
+
learn configuration by calling `sklearn.get_config()` in the current
|
77 |
+
thread, prior to dispatching the first task. The captured configuration is
|
78 |
+
then propagated and enabled for the duration of the execution of the
|
79 |
+
delayed function in the joblib workers.
|
80 |
+
|
81 |
+
.. versionchanged:: 1.3
|
82 |
+
`delayed` was moved from `sklearn.utils.fixes` to `sklearn.utils.parallel`
|
83 |
+
in scikit-learn 1.3.
|
84 |
+
|
85 |
+
Parameters
|
86 |
+
----------
|
87 |
+
function : callable
|
88 |
+
The function to be delayed.
|
89 |
+
|
90 |
+
Returns
|
91 |
+
-------
|
92 |
+
output: tuple
|
93 |
+
Tuple containing the delayed function, the positional arguments, and the
|
94 |
+
keyword arguments.
|
95 |
+
"""
|
96 |
+
|
97 |
+
@functools.wraps(function)
|
98 |
+
def delayed_function(*args, **kwargs):
|
99 |
+
return _FuncWrapper(function), args, kwargs
|
100 |
+
|
101 |
+
return delayed_function
|
102 |
+
|
103 |
+
|
104 |
+
class _FuncWrapper:
|
105 |
+
"""Load the global configuration before calling the function."""
|
106 |
+
|
107 |
+
def __init__(self, function):
|
108 |
+
self.function = function
|
109 |
+
update_wrapper(self, self.function)
|
110 |
+
|
111 |
+
def with_config(self, config):
|
112 |
+
self.config = config
|
113 |
+
return self
|
114 |
+
|
115 |
+
def __call__(self, *args, **kwargs):
|
116 |
+
config = getattr(self, "config", None)
|
117 |
+
if config is None:
|
118 |
+
warnings.warn(
|
119 |
+
(
|
120 |
+
"`sklearn.utils.parallel.delayed` should be used with"
|
121 |
+
" `sklearn.utils.parallel.Parallel` to make it possible to"
|
122 |
+
" propagate the scikit-learn configuration of the current thread to"
|
123 |
+
" the joblib workers."
|
124 |
+
),
|
125 |
+
UserWarning,
|
126 |
+
)
|
127 |
+
config = {}
|
128 |
+
with config_context(**config):
|
129 |
+
return self.function(*args, **kwargs)
|
venv/lib/python3.10/site-packages/sklearn/utils/sparsefuncs.py
ADDED
@@ -0,0 +1,745 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The :mod:`sklearn.utils.sparsefuncs` module includes a collection of utilities to
|
3 |
+
work with sparse matrices and arrays.
|
4 |
+
"""
|
5 |
+
|
6 |
+
# Authors: Manoj Kumar
|
7 |
+
# Thomas Unterthiner
|
8 |
+
# Giorgio Patrini
|
9 |
+
#
|
10 |
+
# License: BSD 3 clause
|
11 |
+
import numpy as np
|
12 |
+
import scipy.sparse as sp
|
13 |
+
from scipy.sparse.linalg import LinearOperator
|
14 |
+
|
15 |
+
from ..utils.fixes import _sparse_min_max, _sparse_nan_min_max
|
16 |
+
from ..utils.validation import _check_sample_weight
|
17 |
+
from .sparsefuncs_fast import (
|
18 |
+
csc_mean_variance_axis0 as _csc_mean_var_axis0,
|
19 |
+
)
|
20 |
+
from .sparsefuncs_fast import (
|
21 |
+
csr_mean_variance_axis0 as _csr_mean_var_axis0,
|
22 |
+
)
|
23 |
+
from .sparsefuncs_fast import (
|
24 |
+
incr_mean_variance_axis0 as _incr_mean_var_axis0,
|
25 |
+
)
|
26 |
+
|
27 |
+
|
28 |
+
def _raise_typeerror(X):
|
29 |
+
"""Raises a TypeError if X is not a CSR or CSC matrix"""
|
30 |
+
input_type = X.format if sp.issparse(X) else type(X)
|
31 |
+
err = "Expected a CSR or CSC sparse matrix, got %s." % input_type
|
32 |
+
raise TypeError(err)
|
33 |
+
|
34 |
+
|
35 |
+
def _raise_error_wrong_axis(axis):
|
36 |
+
if axis not in (0, 1):
|
37 |
+
raise ValueError(
|
38 |
+
"Unknown axis value: %d. Use 0 for rows, or 1 for columns" % axis
|
39 |
+
)
|
40 |
+
|
41 |
+
|
42 |
+
def inplace_csr_column_scale(X, scale):
|
43 |
+
"""Inplace column scaling of a CSR matrix.
|
44 |
+
|
45 |
+
Scale each feature of the data matrix by multiplying with specific scale
|
46 |
+
provided by the caller assuming a (n_samples, n_features) shape.
|
47 |
+
|
48 |
+
Parameters
|
49 |
+
----------
|
50 |
+
X : sparse matrix of shape (n_samples, n_features)
|
51 |
+
Matrix to normalize using the variance of the features.
|
52 |
+
It should be of CSR format.
|
53 |
+
|
54 |
+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
|
55 |
+
Array of precomputed feature-wise values to use for scaling.
|
56 |
+
|
57 |
+
Examples
|
58 |
+
--------
|
59 |
+
>>> from sklearn.utils import sparsefuncs
|
60 |
+
>>> from scipy import sparse
|
61 |
+
>>> import numpy as np
|
62 |
+
>>> indptr = np.array([0, 3, 4, 4, 4])
|
63 |
+
>>> indices = np.array([0, 1, 2, 2])
|
64 |
+
>>> data = np.array([8, 1, 2, 5])
|
65 |
+
>>> scale = np.array([2, 3, 2])
|
66 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
67 |
+
>>> csr.todense()
|
68 |
+
matrix([[8, 1, 2],
|
69 |
+
[0, 0, 5],
|
70 |
+
[0, 0, 0],
|
71 |
+
[0, 0, 0]])
|
72 |
+
>>> sparsefuncs.inplace_csr_column_scale(csr, scale)
|
73 |
+
>>> csr.todense()
|
74 |
+
matrix([[16, 3, 4],
|
75 |
+
[ 0, 0, 10],
|
76 |
+
[ 0, 0, 0],
|
77 |
+
[ 0, 0, 0]])
|
78 |
+
"""
|
79 |
+
assert scale.shape[0] == X.shape[1]
|
80 |
+
X.data *= scale.take(X.indices, mode="clip")
|
81 |
+
|
82 |
+
|
83 |
+
def inplace_csr_row_scale(X, scale):
|
84 |
+
"""Inplace row scaling of a CSR matrix.
|
85 |
+
|
86 |
+
Scale each sample of the data matrix by multiplying with specific scale
|
87 |
+
provided by the caller assuming a (n_samples, n_features) shape.
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
X : sparse matrix of shape (n_samples, n_features)
|
92 |
+
Matrix to be scaled. It should be of CSR format.
|
93 |
+
|
94 |
+
scale : ndarray of float of shape (n_samples,)
|
95 |
+
Array of precomputed sample-wise values to use for scaling.
|
96 |
+
"""
|
97 |
+
assert scale.shape[0] == X.shape[0]
|
98 |
+
X.data *= np.repeat(scale, np.diff(X.indptr))
|
99 |
+
|
100 |
+
|
101 |
+
def mean_variance_axis(X, axis, weights=None, return_sum_weights=False):
|
102 |
+
"""Compute mean and variance along an axis on a CSR or CSC matrix.
|
103 |
+
|
104 |
+
Parameters
|
105 |
+
----------
|
106 |
+
X : sparse matrix of shape (n_samples, n_features)
|
107 |
+
Input data. It can be of CSR or CSC format.
|
108 |
+
|
109 |
+
axis : {0, 1}
|
110 |
+
Axis along which the axis should be computed.
|
111 |
+
|
112 |
+
weights : ndarray of shape (n_samples,) or (n_features,), default=None
|
113 |
+
If axis is set to 0 shape is (n_samples,) or
|
114 |
+
if axis is set to 1 shape is (n_features,).
|
115 |
+
If it is set to None, then samples are equally weighted.
|
116 |
+
|
117 |
+
.. versionadded:: 0.24
|
118 |
+
|
119 |
+
return_sum_weights : bool, default=False
|
120 |
+
If True, returns the sum of weights seen for each feature
|
121 |
+
if `axis=0` or each sample if `axis=1`.
|
122 |
+
|
123 |
+
.. versionadded:: 0.24
|
124 |
+
|
125 |
+
Returns
|
126 |
+
-------
|
127 |
+
|
128 |
+
means : ndarray of shape (n_features,), dtype=floating
|
129 |
+
Feature-wise means.
|
130 |
+
|
131 |
+
variances : ndarray of shape (n_features,), dtype=floating
|
132 |
+
Feature-wise variances.
|
133 |
+
|
134 |
+
sum_weights : ndarray of shape (n_features,), dtype=floating
|
135 |
+
Returned if `return_sum_weights` is `True`.
|
136 |
+
|
137 |
+
Examples
|
138 |
+
--------
|
139 |
+
>>> from sklearn.utils import sparsefuncs
|
140 |
+
>>> from scipy import sparse
|
141 |
+
>>> import numpy as np
|
142 |
+
>>> indptr = np.array([0, 3, 4, 4, 4])
|
143 |
+
>>> indices = np.array([0, 1, 2, 2])
|
144 |
+
>>> data = np.array([8, 1, 2, 5])
|
145 |
+
>>> scale = np.array([2, 3, 2])
|
146 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
147 |
+
>>> csr.todense()
|
148 |
+
matrix([[8, 1, 2],
|
149 |
+
[0, 0, 5],
|
150 |
+
[0, 0, 0],
|
151 |
+
[0, 0, 0]])
|
152 |
+
>>> sparsefuncs.mean_variance_axis(csr, axis=0)
|
153 |
+
(array([2. , 0.25, 1.75]), array([12. , 0.1875, 4.1875]))
|
154 |
+
"""
|
155 |
+
_raise_error_wrong_axis(axis)
|
156 |
+
|
157 |
+
if sp.issparse(X) and X.format == "csr":
|
158 |
+
if axis == 0:
|
159 |
+
return _csr_mean_var_axis0(
|
160 |
+
X, weights=weights, return_sum_weights=return_sum_weights
|
161 |
+
)
|
162 |
+
else:
|
163 |
+
return _csc_mean_var_axis0(
|
164 |
+
X.T, weights=weights, return_sum_weights=return_sum_weights
|
165 |
+
)
|
166 |
+
elif sp.issparse(X) and X.format == "csc":
|
167 |
+
if axis == 0:
|
168 |
+
return _csc_mean_var_axis0(
|
169 |
+
X, weights=weights, return_sum_weights=return_sum_weights
|
170 |
+
)
|
171 |
+
else:
|
172 |
+
return _csr_mean_var_axis0(
|
173 |
+
X.T, weights=weights, return_sum_weights=return_sum_weights
|
174 |
+
)
|
175 |
+
else:
|
176 |
+
_raise_typeerror(X)
|
177 |
+
|
178 |
+
|
179 |
+
def incr_mean_variance_axis(X, *, axis, last_mean, last_var, last_n, weights=None):
|
180 |
+
"""Compute incremental mean and variance along an axis on a CSR or CSC matrix.
|
181 |
+
|
182 |
+
last_mean, last_var are the statistics computed at the last step by this
|
183 |
+
function. Both must be initialized to 0-arrays of the proper size, i.e.
|
184 |
+
the number of features in X. last_n is the number of samples encountered
|
185 |
+
until now.
|
186 |
+
|
187 |
+
Parameters
|
188 |
+
----------
|
189 |
+
X : CSR or CSC sparse matrix of shape (n_samples, n_features)
|
190 |
+
Input data.
|
191 |
+
|
192 |
+
axis : {0, 1}
|
193 |
+
Axis along which the axis should be computed.
|
194 |
+
|
195 |
+
last_mean : ndarray of shape (n_features,) or (n_samples,), dtype=floating
|
196 |
+
Array of means to update with the new data X.
|
197 |
+
Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.
|
198 |
+
|
199 |
+
last_var : ndarray of shape (n_features,) or (n_samples,), dtype=floating
|
200 |
+
Array of variances to update with the new data X.
|
201 |
+
Should be of shape (n_features,) if axis=0 or (n_samples,) if axis=1.
|
202 |
+
|
203 |
+
last_n : float or ndarray of shape (n_features,) or (n_samples,), \
|
204 |
+
dtype=floating
|
205 |
+
Sum of the weights seen so far, excluding the current weights
|
206 |
+
If not float, it should be of shape (n_features,) if
|
207 |
+
axis=0 or (n_samples,) if axis=1. If float it corresponds to
|
208 |
+
having same weights for all samples (or features).
|
209 |
+
|
210 |
+
weights : ndarray of shape (n_samples,) or (n_features,), default=None
|
211 |
+
If axis is set to 0 shape is (n_samples,) or
|
212 |
+
if axis is set to 1 shape is (n_features,).
|
213 |
+
If it is set to None, then samples are equally weighted.
|
214 |
+
|
215 |
+
.. versionadded:: 0.24
|
216 |
+
|
217 |
+
Returns
|
218 |
+
-------
|
219 |
+
means : ndarray of shape (n_features,) or (n_samples,), dtype=floating
|
220 |
+
Updated feature-wise means if axis = 0 or
|
221 |
+
sample-wise means if axis = 1.
|
222 |
+
|
223 |
+
variances : ndarray of shape (n_features,) or (n_samples,), dtype=floating
|
224 |
+
Updated feature-wise variances if axis = 0 or
|
225 |
+
sample-wise variances if axis = 1.
|
226 |
+
|
227 |
+
n : ndarray of shape (n_features,) or (n_samples,), dtype=integral
|
228 |
+
Updated number of seen samples per feature if axis=0
|
229 |
+
or number of seen features per sample if axis=1.
|
230 |
+
|
231 |
+
If weights is not None, n is a sum of the weights of the seen
|
232 |
+
samples or features instead of the actual number of seen
|
233 |
+
samples or features.
|
234 |
+
|
235 |
+
Notes
|
236 |
+
-----
|
237 |
+
NaNs are ignored in the algorithm.
|
238 |
+
|
239 |
+
Examples
|
240 |
+
--------
|
241 |
+
>>> from sklearn.utils import sparsefuncs
|
242 |
+
>>> from scipy import sparse
|
243 |
+
>>> import numpy as np
|
244 |
+
>>> indptr = np.array([0, 3, 4, 4, 4])
|
245 |
+
>>> indices = np.array([0, 1, 2, 2])
|
246 |
+
>>> data = np.array([8, 1, 2, 5])
|
247 |
+
>>> scale = np.array([2, 3, 2])
|
248 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
249 |
+
>>> csr.todense()
|
250 |
+
matrix([[8, 1, 2],
|
251 |
+
[0, 0, 5],
|
252 |
+
[0, 0, 0],
|
253 |
+
[0, 0, 0]])
|
254 |
+
>>> sparsefuncs.incr_mean_variance_axis(
|
255 |
+
... csr, axis=0, last_mean=np.zeros(3), last_var=np.zeros(3), last_n=2
|
256 |
+
... )
|
257 |
+
(array([1.3..., 0.1..., 1.1...]), array([8.8..., 0.1..., 3.4...]),
|
258 |
+
array([6., 6., 6.]))
|
259 |
+
"""
|
260 |
+
_raise_error_wrong_axis(axis)
|
261 |
+
|
262 |
+
if not (sp.issparse(X) and X.format in ("csc", "csr")):
|
263 |
+
_raise_typeerror(X)
|
264 |
+
|
265 |
+
if np.size(last_n) == 1:
|
266 |
+
last_n = np.full(last_mean.shape, last_n, dtype=last_mean.dtype)
|
267 |
+
|
268 |
+
if not (np.size(last_mean) == np.size(last_var) == np.size(last_n)):
|
269 |
+
raise ValueError("last_mean, last_var, last_n do not have the same shapes.")
|
270 |
+
|
271 |
+
if axis == 1:
|
272 |
+
if np.size(last_mean) != X.shape[0]:
|
273 |
+
raise ValueError(
|
274 |
+
"If axis=1, then last_mean, last_n, last_var should be of "
|
275 |
+
f"size n_samples {X.shape[0]} (Got {np.size(last_mean)})."
|
276 |
+
)
|
277 |
+
else: # axis == 0
|
278 |
+
if np.size(last_mean) != X.shape[1]:
|
279 |
+
raise ValueError(
|
280 |
+
"If axis=0, then last_mean, last_n, last_var should be of "
|
281 |
+
f"size n_features {X.shape[1]} (Got {np.size(last_mean)})."
|
282 |
+
)
|
283 |
+
|
284 |
+
X = X.T if axis == 1 else X
|
285 |
+
|
286 |
+
if weights is not None:
|
287 |
+
weights = _check_sample_weight(weights, X, dtype=X.dtype)
|
288 |
+
|
289 |
+
return _incr_mean_var_axis0(
|
290 |
+
X, last_mean=last_mean, last_var=last_var, last_n=last_n, weights=weights
|
291 |
+
)
|
292 |
+
|
293 |
+
|
294 |
+
def inplace_column_scale(X, scale):
|
295 |
+
"""Inplace column scaling of a CSC/CSR matrix.
|
296 |
+
|
297 |
+
Scale each feature of the data matrix by multiplying with specific scale
|
298 |
+
provided by the caller assuming a (n_samples, n_features) shape.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
X : sparse matrix of shape (n_samples, n_features)
|
303 |
+
Matrix to normalize using the variance of the features. It should be
|
304 |
+
of CSC or CSR format.
|
305 |
+
|
306 |
+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
|
307 |
+
Array of precomputed feature-wise values to use for scaling.
|
308 |
+
|
309 |
+
Examples
|
310 |
+
--------
|
311 |
+
>>> from sklearn.utils import sparsefuncs
|
312 |
+
>>> from scipy import sparse
|
313 |
+
>>> import numpy as np
|
314 |
+
>>> indptr = np.array([0, 3, 4, 4, 4])
|
315 |
+
>>> indices = np.array([0, 1, 2, 2])
|
316 |
+
>>> data = np.array([8, 1, 2, 5])
|
317 |
+
>>> scale = np.array([2, 3, 2])
|
318 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
319 |
+
>>> csr.todense()
|
320 |
+
matrix([[8, 1, 2],
|
321 |
+
[0, 0, 5],
|
322 |
+
[0, 0, 0],
|
323 |
+
[0, 0, 0]])
|
324 |
+
>>> sparsefuncs.inplace_column_scale(csr, scale)
|
325 |
+
>>> csr.todense()
|
326 |
+
matrix([[16, 3, 4],
|
327 |
+
[ 0, 0, 10],
|
328 |
+
[ 0, 0, 0],
|
329 |
+
[ 0, 0, 0]])
|
330 |
+
"""
|
331 |
+
if sp.issparse(X) and X.format == "csc":
|
332 |
+
inplace_csr_row_scale(X.T, scale)
|
333 |
+
elif sp.issparse(X) and X.format == "csr":
|
334 |
+
inplace_csr_column_scale(X, scale)
|
335 |
+
else:
|
336 |
+
_raise_typeerror(X)
|
337 |
+
|
338 |
+
|
339 |
+
def inplace_row_scale(X, scale):
|
340 |
+
"""Inplace row scaling of a CSR or CSC matrix.
|
341 |
+
|
342 |
+
Scale each row of the data matrix by multiplying with specific scale
|
343 |
+
provided by the caller assuming a (n_samples, n_features) shape.
|
344 |
+
|
345 |
+
Parameters
|
346 |
+
----------
|
347 |
+
X : sparse matrix of shape (n_samples, n_features)
|
348 |
+
Matrix to be scaled. It should be of CSR or CSC format.
|
349 |
+
|
350 |
+
scale : ndarray of shape (n_features,), dtype={np.float32, np.float64}
|
351 |
+
Array of precomputed sample-wise values to use for scaling.
|
352 |
+
|
353 |
+
Examples
|
354 |
+
--------
|
355 |
+
>>> from sklearn.utils import sparsefuncs
|
356 |
+
>>> from scipy import sparse
|
357 |
+
>>> import numpy as np
|
358 |
+
>>> indptr = np.array([0, 2, 3, 4, 5])
|
359 |
+
>>> indices = np.array([0, 1, 2, 3, 3])
|
360 |
+
>>> data = np.array([8, 1, 2, 5, 6])
|
361 |
+
>>> scale = np.array([2, 3, 4, 5])
|
362 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
363 |
+
>>> csr.todense()
|
364 |
+
matrix([[8, 1, 0, 0],
|
365 |
+
[0, 0, 2, 0],
|
366 |
+
[0, 0, 0, 5],
|
367 |
+
[0, 0, 0, 6]])
|
368 |
+
>>> sparsefuncs.inplace_row_scale(csr, scale)
|
369 |
+
>>> csr.todense()
|
370 |
+
matrix([[16, 2, 0, 0],
|
371 |
+
[ 0, 0, 6, 0],
|
372 |
+
[ 0, 0, 0, 20],
|
373 |
+
[ 0, 0, 0, 30]])
|
374 |
+
"""
|
375 |
+
if sp.issparse(X) and X.format == "csc":
|
376 |
+
inplace_csr_column_scale(X.T, scale)
|
377 |
+
elif sp.issparse(X) and X.format == "csr":
|
378 |
+
inplace_csr_row_scale(X, scale)
|
379 |
+
else:
|
380 |
+
_raise_typeerror(X)
|
381 |
+
|
382 |
+
|
383 |
+
def inplace_swap_row_csc(X, m, n):
|
384 |
+
"""Swap two rows of a CSC matrix in-place.
|
385 |
+
|
386 |
+
Parameters
|
387 |
+
----------
|
388 |
+
X : sparse matrix of shape (n_samples, n_features)
|
389 |
+
Matrix whose two rows are to be swapped. It should be of
|
390 |
+
CSC format.
|
391 |
+
|
392 |
+
m : int
|
393 |
+
Index of the row of X to be swapped.
|
394 |
+
|
395 |
+
n : int
|
396 |
+
Index of the row of X to be swapped.
|
397 |
+
"""
|
398 |
+
for t in [m, n]:
|
399 |
+
if isinstance(t, np.ndarray):
|
400 |
+
raise TypeError("m and n should be valid integers")
|
401 |
+
|
402 |
+
if m < 0:
|
403 |
+
m += X.shape[0]
|
404 |
+
if n < 0:
|
405 |
+
n += X.shape[0]
|
406 |
+
|
407 |
+
m_mask = X.indices == m
|
408 |
+
X.indices[X.indices == n] = m
|
409 |
+
X.indices[m_mask] = n
|
410 |
+
|
411 |
+
|
412 |
+
def inplace_swap_row_csr(X, m, n):
|
413 |
+
"""Swap two rows of a CSR matrix in-place.
|
414 |
+
|
415 |
+
Parameters
|
416 |
+
----------
|
417 |
+
X : sparse matrix of shape (n_samples, n_features)
|
418 |
+
Matrix whose two rows are to be swapped. It should be of
|
419 |
+
CSR format.
|
420 |
+
|
421 |
+
m : int
|
422 |
+
Index of the row of X to be swapped.
|
423 |
+
|
424 |
+
n : int
|
425 |
+
Index of the row of X to be swapped.
|
426 |
+
"""
|
427 |
+
for t in [m, n]:
|
428 |
+
if isinstance(t, np.ndarray):
|
429 |
+
raise TypeError("m and n should be valid integers")
|
430 |
+
|
431 |
+
if m < 0:
|
432 |
+
m += X.shape[0]
|
433 |
+
if n < 0:
|
434 |
+
n += X.shape[0]
|
435 |
+
|
436 |
+
# The following swapping makes life easier since m is assumed to be the
|
437 |
+
# smaller integer below.
|
438 |
+
if m > n:
|
439 |
+
m, n = n, m
|
440 |
+
|
441 |
+
indptr = X.indptr
|
442 |
+
m_start = indptr[m]
|
443 |
+
m_stop = indptr[m + 1]
|
444 |
+
n_start = indptr[n]
|
445 |
+
n_stop = indptr[n + 1]
|
446 |
+
nz_m = m_stop - m_start
|
447 |
+
nz_n = n_stop - n_start
|
448 |
+
|
449 |
+
if nz_m != nz_n:
|
450 |
+
# Modify indptr first
|
451 |
+
X.indptr[m + 2 : n] += nz_n - nz_m
|
452 |
+
X.indptr[m + 1] = m_start + nz_n
|
453 |
+
X.indptr[n] = n_stop - nz_m
|
454 |
+
|
455 |
+
X.indices = np.concatenate(
|
456 |
+
[
|
457 |
+
X.indices[:m_start],
|
458 |
+
X.indices[n_start:n_stop],
|
459 |
+
X.indices[m_stop:n_start],
|
460 |
+
X.indices[m_start:m_stop],
|
461 |
+
X.indices[n_stop:],
|
462 |
+
]
|
463 |
+
)
|
464 |
+
X.data = np.concatenate(
|
465 |
+
[
|
466 |
+
X.data[:m_start],
|
467 |
+
X.data[n_start:n_stop],
|
468 |
+
X.data[m_stop:n_start],
|
469 |
+
X.data[m_start:m_stop],
|
470 |
+
X.data[n_stop:],
|
471 |
+
]
|
472 |
+
)
|
473 |
+
|
474 |
+
|
475 |
+
def inplace_swap_row(X, m, n):
|
476 |
+
"""
|
477 |
+
Swap two rows of a CSC/CSR matrix in-place.
|
478 |
+
|
479 |
+
Parameters
|
480 |
+
----------
|
481 |
+
X : sparse matrix of shape (n_samples, n_features)
|
482 |
+
Matrix whose two rows are to be swapped. It should be of CSR or
|
483 |
+
CSC format.
|
484 |
+
|
485 |
+
m : int
|
486 |
+
Index of the row of X to be swapped.
|
487 |
+
|
488 |
+
n : int
|
489 |
+
Index of the row of X to be swapped.
|
490 |
+
|
491 |
+
Examples
|
492 |
+
--------
|
493 |
+
>>> from sklearn.utils import sparsefuncs
|
494 |
+
>>> from scipy import sparse
|
495 |
+
>>> import numpy as np
|
496 |
+
>>> indptr = np.array([0, 2, 3, 3, 3])
|
497 |
+
>>> indices = np.array([0, 2, 2])
|
498 |
+
>>> data = np.array([8, 2, 5])
|
499 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
500 |
+
>>> csr.todense()
|
501 |
+
matrix([[8, 0, 2],
|
502 |
+
[0, 0, 5],
|
503 |
+
[0, 0, 0],
|
504 |
+
[0, 0, 0]])
|
505 |
+
>>> sparsefuncs.inplace_swap_row(csr, 0, 1)
|
506 |
+
>>> csr.todense()
|
507 |
+
matrix([[0, 0, 5],
|
508 |
+
[8, 0, 2],
|
509 |
+
[0, 0, 0],
|
510 |
+
[0, 0, 0]])
|
511 |
+
"""
|
512 |
+
if sp.issparse(X) and X.format == "csc":
|
513 |
+
inplace_swap_row_csc(X, m, n)
|
514 |
+
elif sp.issparse(X) and X.format == "csr":
|
515 |
+
inplace_swap_row_csr(X, m, n)
|
516 |
+
else:
|
517 |
+
_raise_typeerror(X)
|
518 |
+
|
519 |
+
|
520 |
+
def inplace_swap_column(X, m, n):
|
521 |
+
"""
|
522 |
+
Swap two columns of a CSC/CSR matrix in-place.
|
523 |
+
|
524 |
+
Parameters
|
525 |
+
----------
|
526 |
+
X : sparse matrix of shape (n_samples, n_features)
|
527 |
+
Matrix whose two columns are to be swapped. It should be of
|
528 |
+
CSR or CSC format.
|
529 |
+
|
530 |
+
m : int
|
531 |
+
Index of the column of X to be swapped.
|
532 |
+
|
533 |
+
n : int
|
534 |
+
Index of the column of X to be swapped.
|
535 |
+
|
536 |
+
Examples
|
537 |
+
--------
|
538 |
+
>>> from sklearn.utils import sparsefuncs
|
539 |
+
>>> from scipy import sparse
|
540 |
+
>>> import numpy as np
|
541 |
+
>>> indptr = np.array([0, 2, 3, 3, 3])
|
542 |
+
>>> indices = np.array([0, 2, 2])
|
543 |
+
>>> data = np.array([8, 2, 5])
|
544 |
+
>>> csr = sparse.csr_matrix((data, indices, indptr))
|
545 |
+
>>> csr.todense()
|
546 |
+
matrix([[8, 0, 2],
|
547 |
+
[0, 0, 5],
|
548 |
+
[0, 0, 0],
|
549 |
+
[0, 0, 0]])
|
550 |
+
>>> sparsefuncs.inplace_swap_column(csr, 0, 1)
|
551 |
+
>>> csr.todense()
|
552 |
+
matrix([[0, 8, 2],
|
553 |
+
[0, 0, 5],
|
554 |
+
[0, 0, 0],
|
555 |
+
[0, 0, 0]])
|
556 |
+
"""
|
557 |
+
if m < 0:
|
558 |
+
m += X.shape[1]
|
559 |
+
if n < 0:
|
560 |
+
n += X.shape[1]
|
561 |
+
if sp.issparse(X) and X.format == "csc":
|
562 |
+
inplace_swap_row_csr(X, m, n)
|
563 |
+
elif sp.issparse(X) and X.format == "csr":
|
564 |
+
inplace_swap_row_csc(X, m, n)
|
565 |
+
else:
|
566 |
+
_raise_typeerror(X)
|
567 |
+
|
568 |
+
|
569 |
+
def min_max_axis(X, axis, ignore_nan=False):
|
570 |
+
"""Compute minimum and maximum along an axis on a CSR or CSC matrix.
|
571 |
+
|
572 |
+
Optionally ignore NaN values.
|
573 |
+
|
574 |
+
Parameters
|
575 |
+
----------
|
576 |
+
X : sparse matrix of shape (n_samples, n_features)
|
577 |
+
Input data. It should be of CSR or CSC format.
|
578 |
+
|
579 |
+
axis : {0, 1}
|
580 |
+
Axis along which the axis should be computed.
|
581 |
+
|
582 |
+
ignore_nan : bool, default=False
|
583 |
+
Ignore or passing through NaN values.
|
584 |
+
|
585 |
+
.. versionadded:: 0.20
|
586 |
+
|
587 |
+
Returns
|
588 |
+
-------
|
589 |
+
|
590 |
+
mins : ndarray of shape (n_features,), dtype={np.float32, np.float64}
|
591 |
+
Feature-wise minima.
|
592 |
+
|
593 |
+
maxs : ndarray of shape (n_features,), dtype={np.float32, np.float64}
|
594 |
+
Feature-wise maxima.
|
595 |
+
"""
|
596 |
+
if sp.issparse(X) and X.format in ("csr", "csc"):
|
597 |
+
if ignore_nan:
|
598 |
+
return _sparse_nan_min_max(X, axis=axis)
|
599 |
+
else:
|
600 |
+
return _sparse_min_max(X, axis=axis)
|
601 |
+
else:
|
602 |
+
_raise_typeerror(X)
|
603 |
+
|
604 |
+
|
605 |
+
def count_nonzero(X, axis=None, sample_weight=None):
|
606 |
+
"""A variant of X.getnnz() with extension to weighting on axis 0.
|
607 |
+
|
608 |
+
Useful in efficiently calculating multilabel metrics.
|
609 |
+
|
610 |
+
Parameters
|
611 |
+
----------
|
612 |
+
X : sparse matrix of shape (n_samples, n_labels)
|
613 |
+
Input data. It should be of CSR format.
|
614 |
+
|
615 |
+
axis : {0, 1}, default=None
|
616 |
+
The axis on which the data is aggregated.
|
617 |
+
|
618 |
+
sample_weight : array-like of shape (n_samples,), default=None
|
619 |
+
Weight for each row of X.
|
620 |
+
|
621 |
+
Returns
|
622 |
+
-------
|
623 |
+
nnz : int, float, ndarray of shape (n_samples,) or ndarray of shape (n_features,)
|
624 |
+
Number of non-zero values in the array along a given axis. Otherwise,
|
625 |
+
the total number of non-zero values in the array is returned.
|
626 |
+
"""
|
627 |
+
if axis == -1:
|
628 |
+
axis = 1
|
629 |
+
elif axis == -2:
|
630 |
+
axis = 0
|
631 |
+
elif X.format != "csr":
|
632 |
+
raise TypeError("Expected CSR sparse format, got {0}".format(X.format))
|
633 |
+
|
634 |
+
# We rely here on the fact that np.diff(Y.indptr) for a CSR
|
635 |
+
# will return the number of nonzero entries in each row.
|
636 |
+
# A bincount over Y.indices will return the number of nonzeros
|
637 |
+
# in each column. See ``csr_matrix.getnnz`` in scipy >= 0.14.
|
638 |
+
if axis is None:
|
639 |
+
if sample_weight is None:
|
640 |
+
return X.nnz
|
641 |
+
else:
|
642 |
+
return np.dot(np.diff(X.indptr), sample_weight)
|
643 |
+
elif axis == 1:
|
644 |
+
out = np.diff(X.indptr)
|
645 |
+
if sample_weight is None:
|
646 |
+
# astype here is for consistency with axis=0 dtype
|
647 |
+
return out.astype("intp")
|
648 |
+
return out * sample_weight
|
649 |
+
elif axis == 0:
|
650 |
+
if sample_weight is None:
|
651 |
+
return np.bincount(X.indices, minlength=X.shape[1])
|
652 |
+
else:
|
653 |
+
weights = np.repeat(sample_weight, np.diff(X.indptr))
|
654 |
+
return np.bincount(X.indices, minlength=X.shape[1], weights=weights)
|
655 |
+
else:
|
656 |
+
raise ValueError("Unsupported axis: {0}".format(axis))
|
657 |
+
|
658 |
+
|
659 |
+
def _get_median(data, n_zeros):
|
660 |
+
"""Compute the median of data with n_zeros additional zeros.
|
661 |
+
|
662 |
+
This function is used to support sparse matrices; it modifies data
|
663 |
+
in-place.
|
664 |
+
"""
|
665 |
+
n_elems = len(data) + n_zeros
|
666 |
+
if not n_elems:
|
667 |
+
return np.nan
|
668 |
+
n_negative = np.count_nonzero(data < 0)
|
669 |
+
middle, is_odd = divmod(n_elems, 2)
|
670 |
+
data.sort()
|
671 |
+
|
672 |
+
if is_odd:
|
673 |
+
return _get_elem_at_rank(middle, data, n_negative, n_zeros)
|
674 |
+
|
675 |
+
return (
|
676 |
+
_get_elem_at_rank(middle - 1, data, n_negative, n_zeros)
|
677 |
+
+ _get_elem_at_rank(middle, data, n_negative, n_zeros)
|
678 |
+
) / 2.0
|
679 |
+
|
680 |
+
|
681 |
+
def _get_elem_at_rank(rank, data, n_negative, n_zeros):
|
682 |
+
"""Find the value in data augmented with n_zeros for the given rank"""
|
683 |
+
if rank < n_negative:
|
684 |
+
return data[rank]
|
685 |
+
if rank - n_negative < n_zeros:
|
686 |
+
return 0
|
687 |
+
return data[rank - n_zeros]
|
688 |
+
|
689 |
+
|
690 |
+
def csc_median_axis_0(X):
|
691 |
+
"""Find the median across axis 0 of a CSC matrix.
|
692 |
+
|
693 |
+
It is equivalent to doing np.median(X, axis=0).
|
694 |
+
|
695 |
+
Parameters
|
696 |
+
----------
|
697 |
+
X : sparse matrix of shape (n_samples, n_features)
|
698 |
+
Input data. It should be of CSC format.
|
699 |
+
|
700 |
+
Returns
|
701 |
+
-------
|
702 |
+
median : ndarray of shape (n_features,)
|
703 |
+
Median.
|
704 |
+
"""
|
705 |
+
if not (sp.issparse(X) and X.format == "csc"):
|
706 |
+
raise TypeError("Expected matrix of CSC format, got %s" % X.format)
|
707 |
+
|
708 |
+
indptr = X.indptr
|
709 |
+
n_samples, n_features = X.shape
|
710 |
+
median = np.zeros(n_features)
|
711 |
+
|
712 |
+
for f_ind, (start, end) in enumerate(zip(indptr[:-1], indptr[1:])):
|
713 |
+
# Prevent modifying X in place
|
714 |
+
data = np.copy(X.data[start:end])
|
715 |
+
nz = n_samples - data.size
|
716 |
+
median[f_ind] = _get_median(data, nz)
|
717 |
+
|
718 |
+
return median
|
719 |
+
|
720 |
+
|
721 |
+
def _implicit_column_offset(X, offset):
|
722 |
+
"""Create an implicitly offset linear operator.
|
723 |
+
|
724 |
+
This is used by PCA on sparse data to avoid densifying the whole data
|
725 |
+
matrix.
|
726 |
+
|
727 |
+
Params
|
728 |
+
------
|
729 |
+
X : sparse matrix of shape (n_samples, n_features)
|
730 |
+
offset : ndarray of shape (n_features,)
|
731 |
+
|
732 |
+
Returns
|
733 |
+
-------
|
734 |
+
centered : LinearOperator
|
735 |
+
"""
|
736 |
+
offset = offset[None, :]
|
737 |
+
XT = X.T
|
738 |
+
return LinearOperator(
|
739 |
+
matvec=lambda x: X @ x - offset @ x,
|
740 |
+
matmat=lambda x: X @ x - offset @ x,
|
741 |
+
rmatvec=lambda x: XT @ x - (offset * x.sum()),
|
742 |
+
rmatmat=lambda x: XT @ x - offset.T @ x.sum(axis=0)[None, :],
|
743 |
+
dtype=X.dtype,
|
744 |
+
shape=X.shape,
|
745 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/utils/sparsefuncs_fast.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (840 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/stats.py
ADDED
@@ -0,0 +1,69 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
from .extmath import stable_cumsum
|
4 |
+
|
5 |
+
|
6 |
+
def _weighted_percentile(array, sample_weight, percentile=50):
|
7 |
+
"""Compute weighted percentile
|
8 |
+
|
9 |
+
Computes lower weighted percentile. If `array` is a 2D array, the
|
10 |
+
`percentile` is computed along the axis 0.
|
11 |
+
|
12 |
+
.. versionchanged:: 0.24
|
13 |
+
Accepts 2D `array`.
|
14 |
+
|
15 |
+
Parameters
|
16 |
+
----------
|
17 |
+
array : 1D or 2D array
|
18 |
+
Values to take the weighted percentile of.
|
19 |
+
|
20 |
+
sample_weight: 1D or 2D array
|
21 |
+
Weights for each value in `array`. Must be same shape as `array` or
|
22 |
+
of shape `(array.shape[0],)`.
|
23 |
+
|
24 |
+
percentile: int or float, default=50
|
25 |
+
Percentile to compute. Must be value between 0 and 100.
|
26 |
+
|
27 |
+
Returns
|
28 |
+
-------
|
29 |
+
percentile : int if `array` 1D, ndarray if `array` 2D
|
30 |
+
Weighted percentile.
|
31 |
+
"""
|
32 |
+
n_dim = array.ndim
|
33 |
+
if n_dim == 0:
|
34 |
+
return array[()]
|
35 |
+
if array.ndim == 1:
|
36 |
+
array = array.reshape((-1, 1))
|
37 |
+
# When sample_weight 1D, repeat for each array.shape[1]
|
38 |
+
if array.shape != sample_weight.shape and array.shape[0] == sample_weight.shape[0]:
|
39 |
+
sample_weight = np.tile(sample_weight, (array.shape[1], 1)).T
|
40 |
+
sorted_idx = np.argsort(array, axis=0)
|
41 |
+
sorted_weights = np.take_along_axis(sample_weight, sorted_idx, axis=0)
|
42 |
+
|
43 |
+
# Find index of median prediction for each sample
|
44 |
+
weight_cdf = stable_cumsum(sorted_weights, axis=0)
|
45 |
+
adjusted_percentile = percentile / 100 * weight_cdf[-1]
|
46 |
+
|
47 |
+
# For percentile=0, ignore leading observations with sample_weight=0. GH20528
|
48 |
+
mask = adjusted_percentile == 0
|
49 |
+
adjusted_percentile[mask] = np.nextafter(
|
50 |
+
adjusted_percentile[mask], adjusted_percentile[mask] + 1
|
51 |
+
)
|
52 |
+
|
53 |
+
percentile_idx = np.array(
|
54 |
+
[
|
55 |
+
np.searchsorted(weight_cdf[:, i], adjusted_percentile[i])
|
56 |
+
for i in range(weight_cdf.shape[1])
|
57 |
+
]
|
58 |
+
)
|
59 |
+
percentile_idx = np.array(percentile_idx)
|
60 |
+
# In rare cases, percentile_idx equals to sorted_idx.shape[0]
|
61 |
+
max_idx = sorted_idx.shape[0] - 1
|
62 |
+
percentile_idx = np.apply_along_axis(
|
63 |
+
lambda x: np.clip(x, 0, max_idx), axis=0, arr=percentile_idx
|
64 |
+
)
|
65 |
+
|
66 |
+
col_index = np.arange(array.shape[1])
|
67 |
+
percentile_in_sorted = sorted_idx[percentile_idx, col_index]
|
68 |
+
percentile = array[percentile_in_sorted, col_index]
|
69 |
+
return percentile[0] if n_dim == 1 else percentile
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_bunch.cpython-310.pyc
ADDED
Binary file (999 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_estimator_checks.cpython-310.pyc
ADDED
Binary file (43.1 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_multiclass.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_optimize.cpython-310.pyc
ADDED
Binary file (1.49 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_param_validation.cpython-310.pyc
ADDED
Binary file (21.7 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_plotting.cpython-310.pyc
ADDED
Binary file (1.68 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_seq_dataset.cpython-310.pyc
ADDED
Binary file (5.24 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_show_versions.cpython-310.pyc
ADDED
Binary file (1.32 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_stats.cpython-310.pyc
ADDED
Binary file (3.09 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/__pycache__/test_weight_vector.cpython-310.pyc
ADDED
Binary file (812 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/test_arpack.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pytest
|
2 |
+
from numpy.testing import assert_allclose
|
3 |
+
|
4 |
+
from sklearn.utils import check_random_state
|
5 |
+
from sklearn.utils._arpack import _init_arpack_v0
|
6 |
+
|
7 |
+
|
8 |
+
@pytest.mark.parametrize("seed", range(100))
|
9 |
+
def test_init_arpack_v0(seed):
|
10 |
+
# check that the initialization a sampling from an uniform distribution
|
11 |
+
# where we can fix the random state
|
12 |
+
size = 1000
|
13 |
+
v0 = _init_arpack_v0(size, seed)
|
14 |
+
|
15 |
+
rng = check_random_state(seed)
|
16 |
+
assert_allclose(v0, rng.uniform(-1, 1, size=size))
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/test_array_api.py
ADDED
@@ -0,0 +1,331 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from functools import partial
|
2 |
+
|
3 |
+
import numpy
|
4 |
+
import pytest
|
5 |
+
from numpy.testing import assert_allclose
|
6 |
+
|
7 |
+
from sklearn._config import config_context
|
8 |
+
from sklearn.base import BaseEstimator
|
9 |
+
from sklearn.utils._array_api import (
|
10 |
+
_ArrayAPIWrapper,
|
11 |
+
_asarray_with_order,
|
12 |
+
_atol_for_type,
|
13 |
+
_convert_to_numpy,
|
14 |
+
_estimator_with_converted_arrays,
|
15 |
+
_nanmax,
|
16 |
+
_nanmin,
|
17 |
+
_NumPyAPIWrapper,
|
18 |
+
_weighted_sum,
|
19 |
+
get_namespace,
|
20 |
+
supported_float_dtypes,
|
21 |
+
yield_namespace_device_dtype_combinations,
|
22 |
+
)
|
23 |
+
from sklearn.utils._testing import (
|
24 |
+
_array_api_for_tests,
|
25 |
+
skip_if_array_api_compat_not_configured,
|
26 |
+
)
|
27 |
+
|
28 |
+
pytestmark = pytest.mark.filterwarnings(
|
29 |
+
"ignore:The numpy.array_api submodule:UserWarning"
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
@pytest.mark.parametrize("X", [numpy.asarray([1, 2, 3]), [1, 2, 3]])
|
34 |
+
def test_get_namespace_ndarray_default(X):
|
35 |
+
"""Check that get_namespace returns NumPy wrapper"""
|
36 |
+
xp_out, is_array_api_compliant = get_namespace(X)
|
37 |
+
assert isinstance(xp_out, _NumPyAPIWrapper)
|
38 |
+
assert not is_array_api_compliant
|
39 |
+
|
40 |
+
|
41 |
+
def test_get_namespace_ndarray_creation_device():
|
42 |
+
"""Check expected behavior with device and creation functions."""
|
43 |
+
X = numpy.asarray([1, 2, 3])
|
44 |
+
xp_out, _ = get_namespace(X)
|
45 |
+
|
46 |
+
full_array = xp_out.full(10, fill_value=2.0, device="cpu")
|
47 |
+
assert_allclose(full_array, [2.0] * 10)
|
48 |
+
|
49 |
+
with pytest.raises(ValueError, match="Unsupported device"):
|
50 |
+
xp_out.zeros(10, device="cuda")
|
51 |
+
|
52 |
+
|
53 |
+
@skip_if_array_api_compat_not_configured
|
54 |
+
def test_get_namespace_ndarray_with_dispatch():
|
55 |
+
"""Test get_namespace on NumPy ndarrays."""
|
56 |
+
array_api_compat = pytest.importorskip("array_api_compat")
|
57 |
+
|
58 |
+
X_np = numpy.asarray([[1, 2, 3]])
|
59 |
+
|
60 |
+
with config_context(array_api_dispatch=True):
|
61 |
+
xp_out, is_array_api_compliant = get_namespace(X_np)
|
62 |
+
assert is_array_api_compliant
|
63 |
+
assert xp_out is array_api_compat.numpy
|
64 |
+
|
65 |
+
|
66 |
+
@skip_if_array_api_compat_not_configured
|
67 |
+
def test_get_namespace_array_api():
|
68 |
+
"""Test get_namespace for ArrayAPI arrays."""
|
69 |
+
xp = pytest.importorskip("numpy.array_api")
|
70 |
+
|
71 |
+
X_np = numpy.asarray([[1, 2, 3]])
|
72 |
+
X_xp = xp.asarray(X_np)
|
73 |
+
with config_context(array_api_dispatch=True):
|
74 |
+
xp_out, is_array_api_compliant = get_namespace(X_xp)
|
75 |
+
assert is_array_api_compliant
|
76 |
+
assert isinstance(xp_out, _ArrayAPIWrapper)
|
77 |
+
|
78 |
+
with pytest.raises(TypeError):
|
79 |
+
xp_out, is_array_api_compliant = get_namespace(X_xp, X_np)
|
80 |
+
|
81 |
+
|
82 |
+
class _AdjustableNameAPITestWrapper(_ArrayAPIWrapper):
|
83 |
+
"""API wrapper that has an adjustable name. Used for testing."""
|
84 |
+
|
85 |
+
def __init__(self, array_namespace, name):
|
86 |
+
super().__init__(array_namespace=array_namespace)
|
87 |
+
self.__name__ = name
|
88 |
+
|
89 |
+
|
90 |
+
def test_array_api_wrapper_astype():
|
91 |
+
"""Test _ArrayAPIWrapper for ArrayAPIs that is not NumPy."""
|
92 |
+
numpy_array_api = pytest.importorskip("numpy.array_api")
|
93 |
+
xp_ = _AdjustableNameAPITestWrapper(numpy_array_api, "wrapped_numpy.array_api")
|
94 |
+
xp = _ArrayAPIWrapper(xp_)
|
95 |
+
|
96 |
+
X = xp.asarray(([[1, 2, 3], [3, 4, 5]]), dtype=xp.float64)
|
97 |
+
X_converted = xp.astype(X, xp.float32)
|
98 |
+
assert X_converted.dtype == xp.float32
|
99 |
+
|
100 |
+
X_converted = xp.asarray(X, dtype=xp.float32)
|
101 |
+
assert X_converted.dtype == xp.float32
|
102 |
+
|
103 |
+
|
104 |
+
@pytest.mark.parametrize("array_api", ["numpy", "numpy.array_api"])
|
105 |
+
def test_asarray_with_order(array_api):
|
106 |
+
"""Test _asarray_with_order passes along order for NumPy arrays."""
|
107 |
+
xp = pytest.importorskip(array_api)
|
108 |
+
|
109 |
+
X = xp.asarray([1.2, 3.4, 5.1])
|
110 |
+
X_new = _asarray_with_order(X, order="F", xp=xp)
|
111 |
+
|
112 |
+
X_new_np = numpy.asarray(X_new)
|
113 |
+
assert X_new_np.flags["F_CONTIGUOUS"]
|
114 |
+
|
115 |
+
|
116 |
+
def test_asarray_with_order_ignored():
|
117 |
+
"""Test _asarray_with_order ignores order for Generic ArrayAPI."""
|
118 |
+
xp = pytest.importorskip("numpy.array_api")
|
119 |
+
xp_ = _AdjustableNameAPITestWrapper(xp, "wrapped.array_api")
|
120 |
+
|
121 |
+
X = numpy.asarray([[1.2, 3.4, 5.1], [3.4, 5.5, 1.2]], order="C")
|
122 |
+
X = xp_.asarray(X)
|
123 |
+
|
124 |
+
X_new = _asarray_with_order(X, order="F", xp=xp_)
|
125 |
+
|
126 |
+
X_new_np = numpy.asarray(X_new)
|
127 |
+
assert X_new_np.flags["C_CONTIGUOUS"]
|
128 |
+
assert not X_new_np.flags["F_CONTIGUOUS"]
|
129 |
+
|
130 |
+
|
131 |
+
@pytest.mark.parametrize(
|
132 |
+
"array_namespace, device, dtype_name", yield_namespace_device_dtype_combinations()
|
133 |
+
)
|
134 |
+
@pytest.mark.parametrize(
|
135 |
+
"sample_weight, normalize, expected",
|
136 |
+
[
|
137 |
+
(None, False, 10.0),
|
138 |
+
(None, True, 2.5),
|
139 |
+
([0.4, 0.4, 0.5, 0.7], False, 5.5),
|
140 |
+
([0.4, 0.4, 0.5, 0.7], True, 2.75),
|
141 |
+
([1, 2, 3, 4], False, 30.0),
|
142 |
+
([1, 2, 3, 4], True, 3.0),
|
143 |
+
],
|
144 |
+
)
|
145 |
+
def test_weighted_sum(
|
146 |
+
array_namespace, device, dtype_name, sample_weight, normalize, expected
|
147 |
+
):
|
148 |
+
xp = _array_api_for_tests(array_namespace, device)
|
149 |
+
sample_score = numpy.asarray([1, 2, 3, 4], dtype=dtype_name)
|
150 |
+
sample_score = xp.asarray(sample_score, device=device)
|
151 |
+
if sample_weight is not None:
|
152 |
+
sample_weight = numpy.asarray(sample_weight, dtype=dtype_name)
|
153 |
+
sample_weight = xp.asarray(sample_weight, device=device)
|
154 |
+
|
155 |
+
with config_context(array_api_dispatch=True):
|
156 |
+
result = _weighted_sum(sample_score, sample_weight, normalize)
|
157 |
+
|
158 |
+
assert isinstance(result, float)
|
159 |
+
assert_allclose(result, expected, atol=_atol_for_type(dtype_name))
|
160 |
+
|
161 |
+
|
162 |
+
@skip_if_array_api_compat_not_configured
|
163 |
+
@pytest.mark.parametrize(
|
164 |
+
"library", ["numpy", "numpy.array_api", "cupy", "cupy.array_api", "torch"]
|
165 |
+
)
|
166 |
+
@pytest.mark.parametrize(
|
167 |
+
"X,reduction,expected",
|
168 |
+
[
|
169 |
+
([1, 2, numpy.nan], _nanmin, 1),
|
170 |
+
([1, -2, -numpy.nan], _nanmin, -2),
|
171 |
+
([numpy.inf, numpy.inf], _nanmin, numpy.inf),
|
172 |
+
(
|
173 |
+
[[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]],
|
174 |
+
partial(_nanmin, axis=0),
|
175 |
+
[1.0, 2.0, 3.0],
|
176 |
+
),
|
177 |
+
(
|
178 |
+
[[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]],
|
179 |
+
partial(_nanmin, axis=1),
|
180 |
+
[1.0, numpy.nan, 4.0],
|
181 |
+
),
|
182 |
+
([1, 2, numpy.nan], _nanmax, 2),
|
183 |
+
([1, 2, numpy.nan], _nanmax, 2),
|
184 |
+
([-numpy.inf, -numpy.inf], _nanmax, -numpy.inf),
|
185 |
+
(
|
186 |
+
[[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]],
|
187 |
+
partial(_nanmax, axis=0),
|
188 |
+
[4.0, 5.0, 6.0],
|
189 |
+
),
|
190 |
+
(
|
191 |
+
[[1, 2, 3], [numpy.nan, numpy.nan, numpy.nan], [4, 5, 6.0]],
|
192 |
+
partial(_nanmax, axis=1),
|
193 |
+
[3.0, numpy.nan, 6.0],
|
194 |
+
),
|
195 |
+
],
|
196 |
+
)
|
197 |
+
def test_nan_reductions(library, X, reduction, expected):
|
198 |
+
"""Check NaN reductions like _nanmin and _nanmax"""
|
199 |
+
xp = pytest.importorskip(library)
|
200 |
+
|
201 |
+
if isinstance(expected, list):
|
202 |
+
expected = xp.asarray(expected)
|
203 |
+
|
204 |
+
with config_context(array_api_dispatch=True):
|
205 |
+
result = reduction(xp.asarray(X))
|
206 |
+
|
207 |
+
assert_allclose(result, expected)
|
208 |
+
|
209 |
+
|
210 |
+
@skip_if_array_api_compat_not_configured
|
211 |
+
@pytest.mark.parametrize("library", ["cupy", "torch", "cupy.array_api"])
|
212 |
+
def test_convert_to_numpy_gpu(library): # pragma: nocover
|
213 |
+
"""Check convert_to_numpy for GPU backed libraries."""
|
214 |
+
xp = pytest.importorskip(library)
|
215 |
+
|
216 |
+
if library == "torch":
|
217 |
+
if not xp.backends.cuda.is_built():
|
218 |
+
pytest.skip("test requires cuda")
|
219 |
+
X_gpu = xp.asarray([1.0, 2.0, 3.0], device="cuda")
|
220 |
+
else:
|
221 |
+
X_gpu = xp.asarray([1.0, 2.0, 3.0])
|
222 |
+
|
223 |
+
X_cpu = _convert_to_numpy(X_gpu, xp=xp)
|
224 |
+
expected_output = numpy.asarray([1.0, 2.0, 3.0])
|
225 |
+
assert_allclose(X_cpu, expected_output)
|
226 |
+
|
227 |
+
|
228 |
+
def test_convert_to_numpy_cpu():
|
229 |
+
"""Check convert_to_numpy for PyTorch CPU arrays."""
|
230 |
+
torch = pytest.importorskip("torch")
|
231 |
+
X_torch = torch.asarray([1.0, 2.0, 3.0], device="cpu")
|
232 |
+
|
233 |
+
X_cpu = _convert_to_numpy(X_torch, xp=torch)
|
234 |
+
expected_output = numpy.asarray([1.0, 2.0, 3.0])
|
235 |
+
assert_allclose(X_cpu, expected_output)
|
236 |
+
|
237 |
+
|
238 |
+
class SimpleEstimator(BaseEstimator):
|
239 |
+
def fit(self, X, y=None):
|
240 |
+
self.X_ = X
|
241 |
+
self.n_features_ = X.shape[0]
|
242 |
+
return self
|
243 |
+
|
244 |
+
|
245 |
+
@skip_if_array_api_compat_not_configured
|
246 |
+
@pytest.mark.parametrize(
|
247 |
+
"array_namespace, converter",
|
248 |
+
[
|
249 |
+
("torch", lambda array: array.cpu().numpy()),
|
250 |
+
("numpy.array_api", lambda array: numpy.asarray(array)),
|
251 |
+
("cupy.array_api", lambda array: array._array.get()),
|
252 |
+
],
|
253 |
+
)
|
254 |
+
def test_convert_estimator_to_ndarray(array_namespace, converter):
|
255 |
+
"""Convert estimator attributes to ndarray."""
|
256 |
+
xp = pytest.importorskip(array_namespace)
|
257 |
+
|
258 |
+
X = xp.asarray([[1.3, 4.5]])
|
259 |
+
est = SimpleEstimator().fit(X)
|
260 |
+
|
261 |
+
new_est = _estimator_with_converted_arrays(est, converter)
|
262 |
+
assert isinstance(new_est.X_, numpy.ndarray)
|
263 |
+
|
264 |
+
|
265 |
+
@skip_if_array_api_compat_not_configured
|
266 |
+
def test_convert_estimator_to_array_api():
|
267 |
+
"""Convert estimator attributes to ArrayAPI arrays."""
|
268 |
+
xp = pytest.importorskip("numpy.array_api")
|
269 |
+
|
270 |
+
X_np = numpy.asarray([[1.3, 4.5]])
|
271 |
+
est = SimpleEstimator().fit(X_np)
|
272 |
+
|
273 |
+
new_est = _estimator_with_converted_arrays(est, lambda array: xp.asarray(array))
|
274 |
+
assert hasattr(new_est.X_, "__array_namespace__")
|
275 |
+
|
276 |
+
|
277 |
+
def test_reshape_behavior():
|
278 |
+
"""Check reshape behavior with copy and is strict with non-tuple shape."""
|
279 |
+
xp = _NumPyAPIWrapper()
|
280 |
+
X = xp.asarray([[1, 2, 3], [3, 4, 5]])
|
281 |
+
|
282 |
+
X_no_copy = xp.reshape(X, (-1,), copy=False)
|
283 |
+
assert X_no_copy.base is X
|
284 |
+
|
285 |
+
X_copy = xp.reshape(X, (6, 1), copy=True)
|
286 |
+
assert X_copy.base is not X.base
|
287 |
+
|
288 |
+
with pytest.raises(TypeError, match="shape must be a tuple"):
|
289 |
+
xp.reshape(X, -1)
|
290 |
+
|
291 |
+
|
292 |
+
@pytest.mark.parametrize("wrapper", [_ArrayAPIWrapper, _NumPyAPIWrapper])
|
293 |
+
def test_get_namespace_array_api_isdtype(wrapper):
|
294 |
+
"""Test isdtype implementation from _ArrayAPIWrapper and _NumPyAPIWrapper."""
|
295 |
+
|
296 |
+
if wrapper == _ArrayAPIWrapper:
|
297 |
+
xp_ = pytest.importorskip("numpy.array_api")
|
298 |
+
xp = _ArrayAPIWrapper(xp_)
|
299 |
+
else:
|
300 |
+
xp = _NumPyAPIWrapper()
|
301 |
+
|
302 |
+
assert xp.isdtype(xp.float32, xp.float32)
|
303 |
+
assert xp.isdtype(xp.float32, "real floating")
|
304 |
+
assert xp.isdtype(xp.float64, "real floating")
|
305 |
+
assert not xp.isdtype(xp.int32, "real floating")
|
306 |
+
|
307 |
+
for dtype in supported_float_dtypes(xp):
|
308 |
+
assert xp.isdtype(dtype, "real floating")
|
309 |
+
|
310 |
+
assert xp.isdtype(xp.bool, "bool")
|
311 |
+
assert not xp.isdtype(xp.float32, "bool")
|
312 |
+
|
313 |
+
assert xp.isdtype(xp.int16, "signed integer")
|
314 |
+
assert not xp.isdtype(xp.uint32, "signed integer")
|
315 |
+
|
316 |
+
assert xp.isdtype(xp.uint16, "unsigned integer")
|
317 |
+
assert not xp.isdtype(xp.int64, "unsigned integer")
|
318 |
+
|
319 |
+
assert xp.isdtype(xp.int64, "numeric")
|
320 |
+
assert xp.isdtype(xp.float32, "numeric")
|
321 |
+
assert xp.isdtype(xp.uint32, "numeric")
|
322 |
+
|
323 |
+
assert not xp.isdtype(xp.float32, "complex floating")
|
324 |
+
|
325 |
+
if wrapper == _NumPyAPIWrapper:
|
326 |
+
assert not xp.isdtype(xp.int8, "complex floating")
|
327 |
+
assert xp.isdtype(xp.complex64, "complex floating")
|
328 |
+
assert xp.isdtype(xp.complex128, "complex floating")
|
329 |
+
|
330 |
+
with pytest.raises(ValueError, match="Unrecognized data type"):
|
331 |
+
assert xp.isdtype(xp.int16, "unknown")
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/test_arrayfuncs.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
|
4 |
+
from sklearn.utils._testing import assert_allclose
|
5 |
+
from sklearn.utils.arrayfuncs import _all_with_any_reduction_axis_1, min_pos
|
6 |
+
|
7 |
+
|
8 |
+
def test_min_pos():
|
9 |
+
# Check that min_pos returns a positive value and that it's consistent
|
10 |
+
# between float and double
|
11 |
+
X = np.random.RandomState(0).randn(100)
|
12 |
+
|
13 |
+
min_double = min_pos(X)
|
14 |
+
min_float = min_pos(X.astype(np.float32))
|
15 |
+
|
16 |
+
assert_allclose(min_double, min_float)
|
17 |
+
assert min_double >= 0
|
18 |
+
|
19 |
+
|
20 |
+
@pytest.mark.parametrize("dtype", [np.float32, np.float64])
|
21 |
+
def test_min_pos_no_positive(dtype):
|
22 |
+
# Check that the return value of min_pos is the maximum representable
|
23 |
+
# value of the input dtype when all input elements are <= 0 (#19328)
|
24 |
+
X = np.full(100, -1.0).astype(dtype, copy=False)
|
25 |
+
|
26 |
+
assert min_pos(X) == np.finfo(dtype).max
|
27 |
+
|
28 |
+
|
29 |
+
@pytest.mark.parametrize("dtype", [np.int16, np.int32, np.float32, np.float64])
|
30 |
+
@pytest.mark.parametrize("value", [0, 1.5, -1])
|
31 |
+
def test_all_with_any_reduction_axis_1(dtype, value):
|
32 |
+
# Check that return value is False when there is no row equal to `value`
|
33 |
+
X = np.arange(12, dtype=dtype).reshape(3, 4)
|
34 |
+
assert not _all_with_any_reduction_axis_1(X, value=value)
|
35 |
+
|
36 |
+
# Make a row equal to `value`
|
37 |
+
X[1, :] = value
|
38 |
+
assert _all_with_any_reduction_axis_1(X, value=value)
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/test_bunch.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
import pytest
|
5 |
+
|
6 |
+
from sklearn.utils import Bunch
|
7 |
+
|
8 |
+
|
9 |
+
def test_bunch_attribute_deprecation():
|
10 |
+
"""Check that bunch raises deprecation message with `__getattr__`."""
|
11 |
+
bunch = Bunch()
|
12 |
+
values = np.asarray([1, 2, 3])
|
13 |
+
msg = (
|
14 |
+
"Key: 'values', is deprecated in 1.3 and will be "
|
15 |
+
"removed in 1.5. Please use 'grid_values' instead"
|
16 |
+
)
|
17 |
+
bunch._set_deprecated(
|
18 |
+
values, new_key="grid_values", deprecated_key="values", warning_message=msg
|
19 |
+
)
|
20 |
+
|
21 |
+
with warnings.catch_warnings():
|
22 |
+
# Does not warn for "grid_values"
|
23 |
+
warnings.simplefilter("error")
|
24 |
+
v = bunch["grid_values"]
|
25 |
+
|
26 |
+
assert v is values
|
27 |
+
|
28 |
+
with pytest.warns(FutureWarning, match=msg):
|
29 |
+
# Warns for "values"
|
30 |
+
v = bunch["values"]
|
31 |
+
|
32 |
+
assert v is values
|
venv/lib/python3.10/site-packages/sklearn/utils/tests/test_class_weight.py
ADDED
@@ -0,0 +1,316 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pytest
|
3 |
+
from numpy.testing import assert_allclose
|
4 |
+
|
5 |
+
from sklearn.datasets import make_blobs
|
6 |
+
from sklearn.linear_model import LogisticRegression
|
7 |
+
from sklearn.tree import DecisionTreeClassifier
|
8 |
+
from sklearn.utils._testing import assert_almost_equal, assert_array_almost_equal
|
9 |
+
from sklearn.utils.class_weight import compute_class_weight, compute_sample_weight
|
10 |
+
from sklearn.utils.fixes import CSC_CONTAINERS
|
11 |
+
|
12 |
+
|
13 |
+
def test_compute_class_weight():
|
14 |
+
# Test (and demo) compute_class_weight.
|
15 |
+
y = np.asarray([2, 2, 2, 3, 3, 4])
|
16 |
+
classes = np.unique(y)
|
17 |
+
|
18 |
+
cw = compute_class_weight("balanced", classes=classes, y=y)
|
19 |
+
# total effect of samples is preserved
|
20 |
+
class_counts = np.bincount(y)[2:]
|
21 |
+
assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
|
22 |
+
assert cw[0] < cw[1] < cw[2]
|
23 |
+
|
24 |
+
|
25 |
+
@pytest.mark.parametrize(
|
26 |
+
"y_type, class_weight, classes, err_msg",
|
27 |
+
[
|
28 |
+
(
|
29 |
+
"numeric",
|
30 |
+
"balanced",
|
31 |
+
np.arange(4),
|
32 |
+
"classes should have valid labels that are in y",
|
33 |
+
),
|
34 |
+
# Non-regression for https://github.com/scikit-learn/scikit-learn/issues/8312
|
35 |
+
(
|
36 |
+
"numeric",
|
37 |
+
{"label_not_present": 1.0},
|
38 |
+
np.arange(4),
|
39 |
+
r"The classes, \[0, 1, 2, 3\], are not in class_weight",
|
40 |
+
),
|
41 |
+
(
|
42 |
+
"numeric",
|
43 |
+
"balanced",
|
44 |
+
np.arange(2),
|
45 |
+
"classes should include all valid labels",
|
46 |
+
),
|
47 |
+
(
|
48 |
+
"numeric",
|
49 |
+
{0: 1.0, 1: 2.0},
|
50 |
+
np.arange(2),
|
51 |
+
"classes should include all valid labels",
|
52 |
+
),
|
53 |
+
(
|
54 |
+
"string",
|
55 |
+
{"dogs": 3, "cat": 2},
|
56 |
+
np.array(["dog", "cat"]),
|
57 |
+
r"The classes, \['dog'\], are not in class_weight",
|
58 |
+
),
|
59 |
+
],
|
60 |
+
)
|
61 |
+
def test_compute_class_weight_not_present(y_type, class_weight, classes, err_msg):
|
62 |
+
# Raise error when y does not contain all class labels
|
63 |
+
y = (
|
64 |
+
np.asarray([0, 0, 0, 1, 1, 2])
|
65 |
+
if y_type == "numeric"
|
66 |
+
else np.asarray(["dog", "cat", "dog"])
|
67 |
+
)
|
68 |
+
|
69 |
+
print(y)
|
70 |
+
with pytest.raises(ValueError, match=err_msg):
|
71 |
+
compute_class_weight(class_weight, classes=classes, y=y)
|
72 |
+
|
73 |
+
|
74 |
+
def test_compute_class_weight_dict():
|
75 |
+
classes = np.arange(3)
|
76 |
+
class_weights = {0: 1.0, 1: 2.0, 2: 3.0}
|
77 |
+
y = np.asarray([0, 0, 1, 2])
|
78 |
+
cw = compute_class_weight(class_weights, classes=classes, y=y)
|
79 |
+
|
80 |
+
# When the user specifies class weights, compute_class_weights should just
|
81 |
+
# return them.
|
82 |
+
assert_array_almost_equal(np.asarray([1.0, 2.0, 3.0]), cw)
|
83 |
+
|
84 |
+
# When a class weight is specified that isn't in classes, the weight is ignored
|
85 |
+
class_weights = {0: 1.0, 1: 2.0, 2: 3.0, 4: 1.5}
|
86 |
+
cw = compute_class_weight(class_weights, classes=classes, y=y)
|
87 |
+
assert_allclose([1.0, 2.0, 3.0], cw)
|
88 |
+
|
89 |
+
class_weights = {-1: 5.0, 0: 4.0, 1: 2.0, 2: 3.0}
|
90 |
+
cw = compute_class_weight(class_weights, classes=classes, y=y)
|
91 |
+
assert_allclose([4.0, 2.0, 3.0], cw)
|
92 |
+
|
93 |
+
|
94 |
+
def test_compute_class_weight_invariance():
|
95 |
+
# Test that results with class_weight="balanced" is invariant wrt
|
96 |
+
# class imbalance if the number of samples is identical.
|
97 |
+
# The test uses a balanced two class dataset with 100 datapoints.
|
98 |
+
# It creates three versions, one where class 1 is duplicated
|
99 |
+
# resulting in 150 points of class 1 and 50 of class 0,
|
100 |
+
# one where there are 50 points in class 1 and 150 in class 0,
|
101 |
+
# and one where there are 100 points of each class (this one is balanced
|
102 |
+
# again).
|
103 |
+
# With balancing class weights, all three should give the same model.
|
104 |
+
X, y = make_blobs(centers=2, random_state=0)
|
105 |
+
# create dataset where class 1 is duplicated twice
|
106 |
+
X_1 = np.vstack([X] + [X[y == 1]] * 2)
|
107 |
+
y_1 = np.hstack([y] + [y[y == 1]] * 2)
|
108 |
+
# create dataset where class 0 is duplicated twice
|
109 |
+
X_0 = np.vstack([X] + [X[y == 0]] * 2)
|
110 |
+
y_0 = np.hstack([y] + [y[y == 0]] * 2)
|
111 |
+
# duplicate everything
|
112 |
+
X_ = np.vstack([X] * 2)
|
113 |
+
y_ = np.hstack([y] * 2)
|
114 |
+
# results should be identical
|
115 |
+
logreg1 = LogisticRegression(class_weight="balanced").fit(X_1, y_1)
|
116 |
+
logreg0 = LogisticRegression(class_weight="balanced").fit(X_0, y_0)
|
117 |
+
logreg = LogisticRegression(class_weight="balanced").fit(X_, y_)
|
118 |
+
assert_array_almost_equal(logreg1.coef_, logreg0.coef_)
|
119 |
+
assert_array_almost_equal(logreg.coef_, logreg0.coef_)
|
120 |
+
|
121 |
+
|
122 |
+
def test_compute_class_weight_balanced_negative():
|
123 |
+
# Test compute_class_weight when labels are negative
|
124 |
+
# Test with balanced class labels.
|
125 |
+
classes = np.array([-2, -1, 0])
|
126 |
+
y = np.asarray([-1, -1, 0, 0, -2, -2])
|
127 |
+
|
128 |
+
cw = compute_class_weight("balanced", classes=classes, y=y)
|
129 |
+
assert len(cw) == len(classes)
|
130 |
+
assert_array_almost_equal(cw, np.array([1.0, 1.0, 1.0]))
|
131 |
+
|
132 |
+
# Test with unbalanced class labels.
|
133 |
+
y = np.asarray([-1, 0, 0, -2, -2, -2])
|
134 |
+
|
135 |
+
cw = compute_class_weight("balanced", classes=classes, y=y)
|
136 |
+
assert len(cw) == len(classes)
|
137 |
+
class_counts = np.bincount(y + 2)
|
138 |
+
assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
|
139 |
+
assert_array_almost_equal(cw, [2.0 / 3, 2.0, 1.0])
|
140 |
+
|
141 |
+
|
142 |
+
def test_compute_class_weight_balanced_unordered():
|
143 |
+
# Test compute_class_weight when classes are unordered
|
144 |
+
classes = np.array([1, 0, 3])
|
145 |
+
y = np.asarray([1, 0, 0, 3, 3, 3])
|
146 |
+
|
147 |
+
cw = compute_class_weight("balanced", classes=classes, y=y)
|
148 |
+
class_counts = np.bincount(y)[classes]
|
149 |
+
assert_almost_equal(np.dot(cw, class_counts), y.shape[0])
|
150 |
+
assert_array_almost_equal(cw, [2.0, 1.0, 2.0 / 3])
|
151 |
+
|
152 |
+
|
153 |
+
def test_compute_class_weight_default():
|
154 |
+
# Test for the case where no weight is given for a present class.
|
155 |
+
# Current behaviour is to assign the unweighted classes a weight of 1.
|
156 |
+
y = np.asarray([2, 2, 2, 3, 3, 4])
|
157 |
+
classes = np.unique(y)
|
158 |
+
classes_len = len(classes)
|
159 |
+
|
160 |
+
# Test for non specified weights
|
161 |
+
cw = compute_class_weight(None, classes=classes, y=y)
|
162 |
+
assert len(cw) == classes_len
|
163 |
+
assert_array_almost_equal(cw, np.ones(3))
|
164 |
+
|
165 |
+
# Tests for partly specified weights
|
166 |
+
cw = compute_class_weight({2: 1.5}, classes=classes, y=y)
|
167 |
+
assert len(cw) == classes_len
|
168 |
+
assert_array_almost_equal(cw, [1.5, 1.0, 1.0])
|
169 |
+
|
170 |
+
cw = compute_class_weight({2: 1.5, 4: 0.5}, classes=classes, y=y)
|
171 |
+
assert len(cw) == classes_len
|
172 |
+
assert_array_almost_equal(cw, [1.5, 1.0, 0.5])
|
173 |
+
|
174 |
+
|
175 |
+
def test_compute_sample_weight():
|
176 |
+
# Test (and demo) compute_sample_weight.
|
177 |
+
# Test with balanced classes
|
178 |
+
y = np.asarray([1, 1, 1, 2, 2, 2])
|
179 |
+
sample_weight = compute_sample_weight("balanced", y)
|
180 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
181 |
+
|
182 |
+
# Test with user-defined weights
|
183 |
+
sample_weight = compute_sample_weight({1: 2, 2: 1}, y)
|
184 |
+
assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 1.0, 1.0, 1.0])
|
185 |
+
|
186 |
+
# Test with column vector of balanced classes
|
187 |
+
y = np.asarray([[1], [1], [1], [2], [2], [2]])
|
188 |
+
sample_weight = compute_sample_weight("balanced", y)
|
189 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
190 |
+
|
191 |
+
# Test with unbalanced classes
|
192 |
+
y = np.asarray([1, 1, 1, 2, 2, 2, 3])
|
193 |
+
sample_weight = compute_sample_weight("balanced", y)
|
194 |
+
expected_balanced = np.array(
|
195 |
+
[0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 0.7777, 2.3333]
|
196 |
+
)
|
197 |
+
assert_array_almost_equal(sample_weight, expected_balanced, decimal=4)
|
198 |
+
|
199 |
+
# Test with `None` weights
|
200 |
+
sample_weight = compute_sample_weight(None, y)
|
201 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
202 |
+
|
203 |
+
# Test with multi-output of balanced classes
|
204 |
+
y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
|
205 |
+
sample_weight = compute_sample_weight("balanced", y)
|
206 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
207 |
+
|
208 |
+
# Test with multi-output with user-defined weights
|
209 |
+
y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
|
210 |
+
sample_weight = compute_sample_weight([{1: 2, 2: 1}, {0: 1, 1: 2}], y)
|
211 |
+
assert_array_almost_equal(sample_weight, [2.0, 2.0, 2.0, 2.0, 2.0, 2.0])
|
212 |
+
|
213 |
+
# Test with multi-output of unbalanced classes
|
214 |
+
y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [3, -1]])
|
215 |
+
sample_weight = compute_sample_weight("balanced", y)
|
216 |
+
assert_array_almost_equal(sample_weight, expected_balanced**2, decimal=3)
|
217 |
+
|
218 |
+
|
219 |
+
def test_compute_sample_weight_with_subsample():
|
220 |
+
# Test compute_sample_weight with subsamples specified.
|
221 |
+
# Test with balanced classes and all samples present
|
222 |
+
y = np.asarray([1, 1, 1, 2, 2, 2])
|
223 |
+
sample_weight = compute_sample_weight("balanced", y, indices=range(6))
|
224 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
225 |
+
|
226 |
+
# Test with column vector of balanced classes and all samples present
|
227 |
+
y = np.asarray([[1], [1], [1], [2], [2], [2]])
|
228 |
+
sample_weight = compute_sample_weight("balanced", y, indices=range(6))
|
229 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0])
|
230 |
+
|
231 |
+
# Test with a subsample
|
232 |
+
y = np.asarray([1, 1, 1, 2, 2, 2])
|
233 |
+
sample_weight = compute_sample_weight("balanced", y, indices=range(4))
|
234 |
+
assert_array_almost_equal(sample_weight, [2.0 / 3, 2.0 / 3, 2.0 / 3, 2.0, 2.0, 2.0])
|
235 |
+
|
236 |
+
# Test with a bootstrap subsample
|
237 |
+
y = np.asarray([1, 1, 1, 2, 2, 2])
|
238 |
+
sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
|
239 |
+
expected_balanced = np.asarray([0.6, 0.6, 0.6, 3.0, 3.0, 3.0])
|
240 |
+
assert_array_almost_equal(sample_weight, expected_balanced)
|
241 |
+
|
242 |
+
# Test with a bootstrap subsample for multi-output
|
243 |
+
y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
|
244 |
+
sample_weight = compute_sample_weight("balanced", y, indices=[0, 1, 1, 2, 2, 3])
|
245 |
+
assert_array_almost_equal(sample_weight, expected_balanced**2)
|
246 |
+
|
247 |
+
# Test with a missing class
|
248 |
+
y = np.asarray([1, 1, 1, 2, 2, 2, 3])
|
249 |
+
sample_weight = compute_sample_weight("balanced", y, indices=range(6))
|
250 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])
|
251 |
+
|
252 |
+
# Test with a missing class for multi-output
|
253 |
+
y = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1], [2, 2]])
|
254 |
+
sample_weight = compute_sample_weight("balanced", y, indices=range(6))
|
255 |
+
assert_array_almost_equal(sample_weight, [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0])
|
256 |
+
|
257 |
+
|
258 |
+
@pytest.mark.parametrize(
|
259 |
+
"y_type, class_weight, indices, err_msg",
|
260 |
+
[
|
261 |
+
(
|
262 |
+
"single-output",
|
263 |
+
{1: 2, 2: 1},
|
264 |
+
range(4),
|
265 |
+
"The only valid class_weight for subsampling is 'balanced'.",
|
266 |
+
),
|
267 |
+
(
|
268 |
+
"multi-output",
|
269 |
+
{1: 2, 2: 1},
|
270 |
+
None,
|
271 |
+
"For multi-output, class_weight should be a list of dicts, or the string",
|
272 |
+
),
|
273 |
+
(
|
274 |
+
"multi-output",
|
275 |
+
[{1: 2, 2: 1}],
|
276 |
+
None,
|
277 |
+
r"Got 1 element\(s\) while having 2 outputs",
|
278 |
+
),
|
279 |
+
],
|
280 |
+
)
|
281 |
+
def test_compute_sample_weight_errors(y_type, class_weight, indices, err_msg):
|
282 |
+
# Test compute_sample_weight raises errors expected.
|
283 |
+
# Invalid preset string
|
284 |
+
y_single_output = np.asarray([1, 1, 1, 2, 2, 2])
|
285 |
+
y_multi_output = np.asarray([[1, 0], [1, 0], [1, 0], [2, 1], [2, 1], [2, 1]])
|
286 |
+
|
287 |
+
y = y_single_output if y_type == "single-output" else y_multi_output
|
288 |
+
with pytest.raises(ValueError, match=err_msg):
|
289 |
+
compute_sample_weight(class_weight, y, indices=indices)
|
290 |
+
|
291 |
+
|
292 |
+
def test_compute_sample_weight_more_than_32():
|
293 |
+
# Non-regression smoke test for #12146
|
294 |
+
y = np.arange(50) # more than 32 distinct classes
|
295 |
+
indices = np.arange(50) # use subsampling
|
296 |
+
weight = compute_sample_weight("balanced", y, indices=indices)
|
297 |
+
assert_array_almost_equal(weight, np.ones(y.shape[0]))
|
298 |
+
|
299 |
+
|
300 |
+
def test_class_weight_does_not_contains_more_classes():
|
301 |
+
"""Check that class_weight can contain more labels than in y.
|
302 |
+
|
303 |
+
Non-regression test for #22413
|
304 |
+
"""
|
305 |
+
tree = DecisionTreeClassifier(class_weight={0: 1, 1: 10, 2: 20})
|
306 |
+
|
307 |
+
# Does not raise
|
308 |
+
tree.fit([[0, 0, 1], [1, 0, 1], [1, 2, 0]], [0, 0, 1])
|
309 |
+
|
310 |
+
|
311 |
+
@pytest.mark.parametrize("csc_container", CSC_CONTAINERS)
|
312 |
+
def test_compute_sample_weight_sparse(csc_container):
|
313 |
+
"""Check that we can compute weight for sparse `y`."""
|
314 |
+
y = csc_container(np.asarray([[0], [1], [1]]))
|
315 |
+
sample_weight = compute_sample_weight("balanced", y)
|
316 |
+
assert_allclose(sample_weight, [1.5, 0.75, 0.75])
|