diff --git a/.gitattributes b/.gitattributes index 39098152ad1adb37438d19cab705abee635ae90c..c2cf9adbcbe88793afd64cf6552d04a86152b9fd 100644 --- a/.gitattributes +++ b/.gitattributes @@ -82,3 +82,4 @@ venv/lib/python3.10/site-packages/pyarrow/libarrow_python.so filter=lfs diff=lfs venv/lib/python3.10/site-packages/torch/lib/libtorch_cuda_linalg.so filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/pyarrow/libarrow_flight.so.1600 filter=lfs diff=lfs merge=lfs -text venv/lib/python3.10/site-packages/pyarrow/libarrow.so.1600 filter=lfs diff=lfs merge=lfs -text +venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text diff --git a/ckpts/universal/global_step40/zero/10.attention.query_key_value.weight/fp32.pt b/ckpts/universal/global_step40/zero/10.attention.query_key_value.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..5547ade870edb012a3298d47237d14884d3d636f --- /dev/null +++ b/ckpts/universal/global_step40/zero/10.attention.query_key_value.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:75db47748b73b247ad0f065867073cd201c141f058f4ac72c19a8e60a02cba3b +size 50332749 diff --git a/ckpts/universal/global_step40/zero/23.attention.query_key_value.weight/fp32.pt b/ckpts/universal/global_step40/zero/23.attention.query_key_value.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..b9b259b44923d040c0dd015e90cc5562b2c2a420 --- /dev/null +++ b/ckpts/universal/global_step40/zero/23.attention.query_key_value.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:998905bfa7c1c3025b7c15821e97cecdea461a10716950aad773e9d4494a7926 +size 50332749 diff --git a/lm-evaluation-harness/tests/testdata/arc_challenge-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/arc_challenge-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..91a3560635db37739cd7504bdc84c6c840192462 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arc_challenge-v0-loglikelihood @@ -0,0 +1 @@ +41c34c96cca8ace661911d0033d630c554b283f5a3953bcdc50720ae6b00a9c1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_4da-v0-res.json b/lm-evaluation-harness/tests/testdata/arithmetic_4da-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..57ce0e3007f3e987096d09f4442fa6bd106ab2ca --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_4da-v0-res.json @@ -0,0 +1 @@ +{"results": {"arithmetic_4da": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"arithmetic_4da": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_anaphor_gender_agreement-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_anaphor_gender_agreement-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..32b700ea9e48728cbf99c82ae417261e53698bb3 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_anaphor_gender_agreement-v0-loglikelihood @@ -0,0 +1 @@ +2d8964e56a17661502ecf3f09c0befba63915360ddf2145b0bd845816950515d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_causative-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_causative-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..5a0f6a35590db43e610a0550607dd7ab5e382f5f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_causative-v0-loglikelihood @@ -0,0 +1 @@ +3d67ad025185dbb0808ebd7f508edcb5750c18fc3c01ad91f20fda80780c916c \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a260838746d5405e89cba4147101e9194f93b88e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_2-v0-loglikelihood @@ -0,0 +1 @@ +95acb74fac7d57ae2c9d208361a5f8ad36b0b19a055f02e648ed8e99505f4b43 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..6756cc4020c8016b08fb43470dcdfcc4d1d5b374 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adj_irregular_1-v0-loglikelihood @@ -0,0 +1 @@ +ad61c619aa79433d02f1aeacde2ab87291fd5d5c370032c24d41c4f0065ed1f9 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..1005f68060123bf94b6bf001f9284a7070a64258 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-loglikelihood @@ -0,0 +1 @@ +0523771a217759f0b22b89807694ee7f6381ce98a584b1fd070ba96194a3273b \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..5b721ca1529d4fe03bb77f8f581411a6fccbfc92 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_ellipsis_n_bar_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_ellipsis_n_bar_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_ellipsis_n_bar_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d23fba902ae50f259bed6e5fb5f33083dc1bf5fc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-loglikelihood @@ -0,0 +1 @@ +63567712076256f373131971676c1c6d711efef73cd0e4de3cc639bc631a2413 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0a32ca7f971e537ab6fc6d338db3ad1c3d506f64 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_regular_plural_subject_verb_agreement_1-v0-loglikelihood @@ -0,0 +1 @@ +5bc0441f31e32443cf761bca6e961d504e1e84b15aa4e1d79e5c8ed5b4c2aa3a \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2733d251cf90f264f28db48a2b17b520e528f2c7 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_superlative_quantifiers_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_superlative_quantifiers_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_superlative_quantifiers_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/boolq-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/boolq-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..14c1bf5f5ee1300b8652f6a73185badea754ec73 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/boolq-v0-loglikelihood @@ -0,0 +1 @@ +de5aa6f77a2e0fd050b9c272f10c4d5d5581e4f75ffa60926f79e60ae1738960 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/cb-v1-loglikelihood b/lm-evaluation-harness/tests/testdata/cb-v1-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..ad7e928fe6a3d79857c3c076c6459d8b6c31897c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/cb-v1-loglikelihood @@ -0,0 +1 @@ +77b11f4348eb8a7f57faf95c531fda01ab4bf0e729f91a82451ed8e71ec8e66d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/copa-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/copa-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..ebe4c6512a5a4befba815e4ab3b52a3732600607 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/copa-v0-loglikelihood @@ -0,0 +1 @@ +66276b9045b5300cba4b81340db06f674f031fa0b8883714ad0d03be464cd799 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..63749433f1703a4c81965e6c04fec04177631bae --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english-v0-loglikelihood @@ -0,0 +1 @@ +ee3ce1ddb8071d4189e5b06e7f3c618a434221ac52935d0f434c4d183f01458a \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..4e5ce5b3e7d4df6366fc2cb0219a24b92f1fabed --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_physical_appearance-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english_physical_appearance": {"likelihood_difference": 0.3221673223187262, "likelihood_difference_stderr": 0.026978346460100555, "pct_stereotype": 0.4027777777777778, "pct_stereotype_stderr": 0.05820650942569533}}, "versions": {"crows_pairs_english_physical_appearance": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/crows_pairs_english_religion-v0-res.json b/lm-evaluation-harness/tests/testdata/crows_pairs_english_religion-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..670f2d2cffeac37f0510e17d7195a0a68700d4fe --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/crows_pairs_english_religion-v0-res.json @@ -0,0 +1 @@ +{"results": {"crows_pairs_english_religion": {"likelihood_difference": 0.32170622542430666, "likelihood_difference_stderr": 0.022101541392310232, "pct_stereotype": 0.43243243243243246, "pct_stereotype_stderr": 0.04723583229758394}}, "versions": {"crows_pairs_english_religion": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/ethics_cm-v0-res.json b/lm-evaluation-harness/tests/testdata/ethics_cm-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..f81a700903262aec7eae2b4c39260f3f2c8f1dd0 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/ethics_cm-v0-res.json @@ -0,0 +1 @@ +{"results": {"ethics_cm": {"acc": 0.49987129987129986, "acc_stderr": 0.008022881531793336}}, "versions": {"ethics_cm": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/ethics_deontology-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/ethics_deontology-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..ab01349737c063432656f3951ae913a63a85adba --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/ethics_deontology-v0-loglikelihood @@ -0,0 +1 @@ +74ecebe322457d70afc16fde848978410a09b854dc65c47f428d100bd1593248 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_chemistry-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_chemistry-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..52a255e82a35b8d084459e72140f30f26ef8c57f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_chemistry-v0-loglikelihood @@ -0,0 +1 @@ +044752b21540db95118b8cbe7e75c4c9b8758e27df56543deaeadec7f749a28d \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_computer_science-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_computer_science-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..695bc8c31592a4c33d70d5d07a8c5b523d9bd3cc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_computer_science-v0-loglikelihood @@ -0,0 +1 @@ +4ea26ad780290429ac5a3317559c154848d662bd40532c966458ba6f2a32d0a3 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-college_mathematics-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_mathematics-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..766b3388ed88d61e2c17ed2a35110879160c5f7f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-college_mathematics-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-college_mathematics": {"acc": 0.18, "acc_norm": 0.2, "acc_norm_stderr": 0.04020151261036844, "acc_stderr": 0.038612291966536955}}, "versions": {"hendrycksTest-college_mathematics": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d4c0ee2d78364c0275d984a4ef43cfcedbaf55ed --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-computer_security-v0-loglikelihood @@ -0,0 +1 @@ +a8a1892d1906cc3e7ffd321043f0a60f3b8b69ef76e5c6ff03c6ea41dc87d0cb \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-elementary_mathematics-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-elementary_mathematics-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..e281f72feb428451f27dbaba80408c468ef51bce --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-elementary_mathematics-v0-loglikelihood @@ -0,0 +1 @@ +6b21f5cd5606268421a667152ec989424b66905c02adbab8d4ff6bb9d21b77d1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a4751fdbfad7b614f9ec059a78130426e1d8a39c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-global_facts-v0-loglikelihood @@ -0,0 +1 @@ +9fdc85240b8170839278b1e883ee0868611d84dce202cb8aa037c841ec76d089 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2d81594963cefe41f139a813fcdc16c0f247f9ed --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_chemistry-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-high_school_chemistry": {"acc": 0.2857142857142857, "acc_norm": 0.2660098522167488, "acc_norm_stderr": 0.031089826002937523, "acc_stderr": 0.031785297106427496}}, "versions": {"hendrycksTest-high_school_chemistry": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_macroeconomics-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_macroeconomics-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..c0106d373dcf6136b147bb3787fed6c9c8a3da8f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_macroeconomics-v0-loglikelihood @@ -0,0 +1 @@ +ce4faae2fb6628caa48f6fc74cbc848880db49e6ff51079392778a2322bcefef \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_mathematics-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_mathematics-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..dc86769fa93781e03ca8f7e7b3493b39338bcdaa --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_mathematics-v0-loglikelihood @@ -0,0 +1 @@ +ab368d16fc4648ad27940f71abd266366663f51db612f732a0b9b0eea28de9f8 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-jurisprudence-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-jurisprudence-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..4ef181974956e3f899121ac46dc5e192231d1a65 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-jurisprudence-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-jurisprudence": {"acc": 0.25, "acc_norm": 0.3148148148148148, "acc_norm_stderr": 0.04489931073591312, "acc_stderr": 0.04186091791394607}}, "versions": {"hendrycksTest-jurisprudence": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-moral_scenarios-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-moral_scenarios-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..62ec15971237e04f6c883c7369bbb50888494830 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-moral_scenarios-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-moral_scenarios": {"acc": 0.2547486033519553, "acc_norm": 0.25251396648044694, "acc_norm_stderr": 0.014530330201468654, "acc_stderr": 0.014572650383409158}}, "versions": {"hendrycksTest-moral_scenarios": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_medicine-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_medicine-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..801ea2d224b7f4699c3a3defd7cde023e777a29e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_medicine-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-professional_medicine": {"acc": 0.23161764705882354, "acc_norm": 0.2536764705882353, "acc_norm_stderr": 0.02643132987078953, "acc_stderr": 0.025626533803777562}}, "versions": {"hendrycksTest-professional_medicine": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_psychology-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_psychology-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..9865854da311057c18f8a2571eedac2d02608df5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-professional_psychology-v0-loglikelihood @@ -0,0 +1 @@ +92a5fad6e9ec700f84946faeccd399dda3569fb71837c9fb0c5c87f5ec29c43e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2c9de8886a29e0479074513470594c9266c5d0ac --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-security_studies-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-security_studies": {"acc": 0.2979591836734694, "acc_norm": 0.2693877551020408, "acc_norm_stderr": 0.02840125202902294, "acc_stderr": 0.029279567411065674}}, "versions": {"hendrycksTest-security_studies": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada_mt_fr-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/lambada_mt_fr-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..3c444f66611959e4c13451d306fba403261ecfbb --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada_mt_fr-v0-loglikelihood @@ -0,0 +1 @@ +5d16f4a0c51dc6d7b6df2ebeba2bbfa51e700b843779b559b3d90183d7b02a11 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/logiqa-v0-res.json b/lm-evaluation-harness/tests/testdata/logiqa-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..7a80c24d1b3e57ffca8ca89252d3c9b01b506f49 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/logiqa-v0-res.json @@ -0,0 +1 @@ +{"results": {"logiqa": {"acc": 0.25806451612903225, "acc_norm": 0.2764976958525346, "acc_norm_stderr": 0.017543209075825194, "acc_stderr": 0.017162894755127077}}, "versions": {"logiqa": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_geometry-v0-greedy_until b/lm-evaluation-harness/tests/testdata/math_geometry-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..1c7362fe44e4432f56f18932b4b429d5cf573399 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_geometry-v0-greedy_until @@ -0,0 +1 @@ +46bc4cb219b6903397da782699a684bdbb982c0c954ff82e6beeed5c84878f42 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_geometry-v1-res.json b/lm-evaluation-harness/tests/testdata/math_geometry-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..eb6851fc63ff08c657743ef6abf5073ba73144e5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_geometry-v1-res.json @@ -0,0 +1 @@ +{"results": {"math_geometry": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_geometry": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_num_theory-v1-greedy_until b/lm-evaluation-harness/tests/testdata/math_num_theory-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..82febb9f5dfeefbd6dc5d244574ac5666c6b8bba --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_num_theory-v1-greedy_until @@ -0,0 +1 @@ +b920ccb507afdcf3ef6f4c04891913731e9f32ec914801791c6d9f8abf6e1897 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mutual_plus-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/mutual_plus-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f4ba9d37310a19cc7928fd0d599776d8a9da8dba --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mutual_plus-v0-loglikelihood @@ -0,0 +1 @@ +b846bb9db109535f59a93d1ce340cf09f68bdf4fed5b8decd168784220fe07fa \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..7b5771f4911f3069217d75d12cbdfa1a579b6663 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-loglikelihood_rolling @@ -0,0 +1 @@ +d77f3f68aadd6cbf1290c2f6737b2ed5d5c2a60e4c81a65c280f207783caabe1 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..0bda41ffb37dd04bebd9982faf464616dd82a31d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_freelaw-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_freelaw": {"bits_per_byte": 3.16238943008513e-05, "byte_perplexity": 1.0000316243943415, "word_perplexity": 1.000203169094218}}, "versions": {"pile_freelaw": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_freelaw-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_freelaw-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..dd0e0bac36b116bddbcd70d4327c3cdb3e3630e9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_freelaw-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_freelaw": {"bits_per_byte": 4.5623635481434923e-05, "byte_perplexity": 1.0000316243943415, "word_perplexity": 1.000203169094218}}, "versions": {"pile_freelaw": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_github-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_github-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..cc06a45501fb498db32e56d0677ef01f10869cc9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_github-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_github": {"bits_per_byte": 0.00013764216145332133, "byte_perplexity": 1.0000954108274611, "word_perplexity": 1.0009643183931227}}, "versions": {"pile_github": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_hackernews-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_hackernews-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..ea135278b720703540187531afb0ef82e7d6a1ce --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_hackernews-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_hackernews": {"bits_per_byte": 0.00014672607267878518, "byte_perplexity": 1.0001017079354932, "word_perplexity": 1.0006273924348839}}, "versions": {"pile_hackernews": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..1c7bb56c6dc6cec7e2677317b3f9888293a65b92 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_nih-exporter-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_nih-exporter": {"bits_per_byte": 0.00024394433346975716, "byte_perplexity": 1.0002439740903082, "word_perplexity": 1.0016712202288802}}, "versions": {"pile_nih-exporter": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_openwebtext2-v1-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_openwebtext2-v1-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..22046e440584d0df85ceeed057ad2c0633273782 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_openwebtext2-v1-loglikelihood_rolling @@ -0,0 +1 @@ +5d6c19665f429ab1ccbe027da67f42bdaf219f819ab093673976eee55e015ff4 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/rte-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/rte-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..c239923e4f3ec676961da50b3823c09872edd36d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/rte-v0-loglikelihood @@ -0,0 +1 @@ +c80ce13c8c736087f1557f8736d5d318b540ff01e4bb7f55e568890dc8b0393e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v1-greedy_until b/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v1-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..d5261f22133a65b6968881eeb87260c5a1fca3af --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v1-greedy_until @@ -0,0 +1 @@ +1a280973bbac2b7ac29dd64dddac474fb4749585f7de893483b4034814466c67 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/webqs-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/webqs-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..4d604d438db6c4cc77a43aca8d2a7f605aef6b1c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/webqs-v0-loglikelihood @@ -0,0 +1 @@ +96b218173468cc94552a0b946193bda89faba51f1bfc3e7945531f9dff8d6fe9 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-en-cs-v0-res.json b/lm-evaluation-harness/tests/testdata/wmt20-en-cs-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2ba9db70d3579ff23ee70c3b16eb92d7d87144e6 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-en-cs-v0-res.json @@ -0,0 +1 @@ +{"results": {"wmt20-en-cs": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.009879653442394573, "chrf_stderr": 8.210293331159994e-05, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-en-cs": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-en-ja-v1-res.json b/lm-evaluation-harness/tests/testdata/wmt20-en-ja-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..be5e56abcf2253276d405dae64758b9cab09f3e4 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-en-ja-v1-res.json @@ -0,0 +1 @@ +{"results": {"wmt20-en-ja": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 4.1305928226819116e-05, "chrf_stderr": 2.0455354158878388e-05, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-en-ja": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-fr-de-v0-greedy_until b/lm-evaluation-harness/tests/testdata/wmt20-fr-de-v0-greedy_until new file mode 100644 index 0000000000000000000000000000000000000000..7353ad4475b3d292bfd64e6dcb41972d697c34da --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-fr-de-v0-greedy_until @@ -0,0 +1 @@ +8a4b65c59dcac6591d46261909ee92ebcf41c19ee7442b12842302b2d8aeb36f \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wmt20-zh-en-v0-res.json b/lm-evaluation-harness/tests/testdata/wmt20-zh-en-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..11b8df7f8739d9e4a459636640af6ebb2b7b868a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wmt20-zh-en-v0-res.json @@ -0,0 +1 @@ +{"results": {"wmt20-zh-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.008438201290981157, "chrf_stderr": 0.0001109053964076822, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-zh-en": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wnli-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/wnli-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0c5c0b8ceb64a158bd57294d432b2186f3a0fdf9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wnli-v0-loglikelihood @@ -0,0 +1 @@ +2ffd304d6096416eb29607e2e7642b1d6043163624967bcf4c4fc00fddc6c721 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wnli-v0-res.json b/lm-evaluation-harness/tests/testdata/wnli-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..8841cb74d16977645c1c7399d8b58de094bafef1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wnli-v0-res.json @@ -0,0 +1 @@ +{"results": {"wnli": {"acc": 0.3380281690140845, "acc_stderr": 0.05653887739133514}}, "versions": {"wnli": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wnli-v1-res.json b/lm-evaluation-harness/tests/testdata/wnli-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..d12348e0aeb8d7feec272059e08eb30cbb1d918d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wnli-v1-res.json @@ -0,0 +1 @@ +{"results": {"wnli": {"acc": 0.5633802816901409, "acc_stderr": 0.0592793555841297}}, "versions": {"wnli": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wsc-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/wsc-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d0d2963fe90b29dbbf2527e9a3b559cf9b9c23c7 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wsc-v0-loglikelihood @@ -0,0 +1 @@ +45865468eff5ca31e6a050947a6b3310d9d5ed19d0f2e578a32ecaf1c768600f \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/dateutil/zoneinfo/dateutil-zoneinfo.tar.gz b/venv/lib/python3.10/site-packages/dateutil/zoneinfo/dateutil-zoneinfo.tar.gz new file mode 100644 index 0000000000000000000000000000000000000000..ff62a934a5009337271c60501278a7a34913a20b --- /dev/null +++ b/venv/lib/python3.10/site-packages/dateutil/zoneinfo/dateutil-zoneinfo.tar.gz @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d3ea52e7b6e968de0d884df1288193596fa95b803db4f92a18279a7398004475 +size 156400 diff --git a/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gw1.gpickle.bz2 b/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gw1.gpickle.bz2 new file mode 100644 index 0000000000000000000000000000000000000000..356e5deb3d243226bd9942e3ce02129d3d7a0201 --- /dev/null +++ b/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/gw1.gpickle.bz2 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:6f79f0e90fa4c51ec79165f15963e1ed89477576e06bcaa67ae622c260411931 +size 42248 diff --git a/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/wlm3.gpickle.bz2 b/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/wlm3.gpickle.bz2 new file mode 100644 index 0000000000000000000000000000000000000000..c95da5b280f27411afeeb215cac8a99219e89078 --- /dev/null +++ b/venv/lib/python3.10/site-packages/networkx/algorithms/flow/tests/wlm3.gpickle.bz2 @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:ccacba1e0fbfb30bec361f0e48ec88c999d3474fcda5ddf93bd444ace17cfa0e +size 88132 diff --git a/venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so b/venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so new file mode 100644 index 0000000000000000000000000000000000000000..f98c6927043bbcfe6fcb62c397b1a686a0d8649d --- /dev/null +++ b/venv/lib/python3.10/site-packages/regex/_regex.cpython-310-x86_64-linux-gnu.so @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:7836accb6f19aadd3c2a5066acfb2f86fcdff510bb6d3efb3832ea3f26e4cc13 +size 2503320 diff --git a/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..894e7c0290202438a424feb09d189602993a2969 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b3358111bc91a4785ffa2842d51fccda8b67814a Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/configuration_albert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..35a47be249faa174c3fa801720bc8bffa57889b5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/albert/__pycache__/tokenization_albert.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..32e8617e8270e98a29522c0ea95b421eef6cef7f --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/__init__.py @@ -0,0 +1,103 @@ +# Copyright 2022 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = { + "configuration_bloom": ["BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP", "BloomConfig", "BloomOnnxConfig"], +} +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_bloom_fast"] = ["BloomTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_bloom"] = [ + "BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST", + "BloomForCausalLM", + "BloomModel", + "BloomPreTrainedModel", + "BloomForSequenceClassification", + "BloomForTokenClassification", + "BloomForQuestionAnswering", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_bloom"] = [ + "FlaxBloomForCausalLM", + "FlaxBloomModel", + "FlaxBloomPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_bloom_fast import BloomTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_bloom import ( + BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, + BloomForCausalLM, + BloomForQuestionAnswering, + BloomForSequenceClassification, + BloomForTokenClassification, + BloomModel, + BloomPreTrainedModel, + ) + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_bloom import FlaxBloomForCausalLM, FlaxBloomModel, FlaxBloomPreTrainedModel +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py new file mode 100644 index 0000000000000000000000000000000000000000..e04877485e3f541e5af1f1fe697af0af849dc90b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/configuration_bloom.py @@ -0,0 +1,236 @@ +# coding=utf-8 +# Copyright 2022 the Big Science Workshop and HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Bloom configuration""" +from collections import OrderedDict +from typing import TYPE_CHECKING, Any, List, Mapping, Optional + +from packaging import version + + +if TYPE_CHECKING: + from ... import PreTrainedTokenizer, TensorType + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfigWithPast, PatchingSpec +from ...utils import is_torch_available, logging + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class BloomConfig(PretrainedConfig): + """ + This is the configuration class to store the configuration of a [`BloomModel`]. It is used to instantiate a Bloom + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to the Bloom architecture + [bigscience/bloom](https://huggingface.co/bigscience/bloom). + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 250880): + Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented + by the `inputs_ids` passed when calling [`BloomModel`]. Check [this + discussion](https://huggingface.co/bigscience/bloom/discussions/120#633d28389addb8530b406c2a) on how the + `vocab_size` has been defined. + hidden_size (`int`, *optional*, defaults to 64): + Dimensionality of the embeddings and hidden states. + n_layer (`int`, *optional*, defaults to 2): + Number of hidden layers in the Transformer encoder. + n_head (`int`, *optional*, defaults to 8): + Number of attention heads for each attention layer in the Transformer encoder. + layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): + The epsilon to use in the layer normalization layers. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + apply_residual_connection_post_layernorm (`bool`, *optional*, defaults to `False`): + If enabled, use the layer norm of the hidden states as the residual in the transformer blocks + hidden_dropout (`float`, *optional*, defaults to 0.1): + Dropout rate of the dropout function on the bias dropout. + attention_dropout (`float`, *optional*, defaults to 0.1): + Dropout rate applied to the attention probs + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + pretraining_tp (`int`, *optional*, defaults to `1`): + Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to [this + document](https://huggingface.co/docs/transformers/parallelism) to understand more about it. This value is + necessary to ensure exact reproducibility of the pretraining results. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). Note also that this is enabled only when + `slow_but_exact=True`. + slow_but_exact (`bool`, *optional*, defaults to `False`): + Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While + merging the TP rank tensors, due to slicing operations the results may be slightly different between the + model trained on Megatron and our model. Please refer to [this + issue](https://github.com/pytorch/pytorch/issues/76232). A solution to obtain more accurate results is to + enable this feature. Enabling this will hurt the computational time of the inference. Will be probably + resolved in the future once the main model has been fine-tuned with TP_rank=1. + + Example: + + ```python + >>> from transformers import BloomConfig, BloomModel + + >>> # Initializing a Bloom configuration + >>> configuration = BloomConfig() + + >>> # Initializing a model (with random weights) from the configuration + >>> model = BloomModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "bloom" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = { + "num_hidden_layers": "n_layer", + "num_attention_heads": "n_head", + } + + def __init__( + self, + vocab_size=250880, + hidden_size=64, + n_layer=2, + n_head=8, + layer_norm_epsilon=1e-5, + initializer_range=0.02, + use_cache=True, + bos_token_id=1, + eos_token_id=2, + apply_residual_connection_post_layernorm=False, + hidden_dropout=0.0, + attention_dropout=0.0, + pretraining_tp=1, # TP rank used when training with megatron + slow_but_exact=False, + **kwargs, + ): + self.vocab_size = vocab_size + # Backward compatibility with n_embed kwarg + n_embed = kwargs.pop("n_embed", None) + self.hidden_size = hidden_size if n_embed is None else n_embed + self.n_layer = n_layer + self.n_head = n_head + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_range = initializer_range + self.use_cache = use_cache + self.pretraining_tp = pretraining_tp + self.apply_residual_connection_post_layernorm = apply_residual_connection_post_layernorm + self.hidden_dropout = hidden_dropout + self.attention_dropout = attention_dropout + + self.bos_token_id = bos_token_id + self.eos_token_id = eos_token_id + self.slow_but_exact = slow_but_exact + + super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) + + +class BloomOnnxConfig(OnnxConfigWithPast): + torch_onnx_minimum_version = version.parse("1.12") + + def __init__( + self, + config: PretrainedConfig, + task: str = "default", + patching_specs: List[PatchingSpec] = None, + use_past: bool = False, + ): + super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past) + if not getattr(self._config, "pad_token_id", None): + # TODO: how to do that better? + self._config.pad_token_id = 0 + + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}}) + if self.use_past: + # BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344 + self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True) + common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"} + else: + common_inputs["attention_mask"] = {0: "batch", 1: "sequence"} + + return common_inputs + + @property + def num_layers(self) -> int: + return self._config.n_layer + + @property + def num_attention_heads(self) -> int: + return self._config.n_head + + @property + def atol_for_validation(self) -> float: + return 1e-3 + + def generate_dummy_inputs( + self, + tokenizer: "PreTrainedTokenizer", + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional["TensorType"] = None, + ) -> Mapping[str, Any]: + common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + # We need to order the input in the way they appears in the forward() + ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]}) + + # Need to add the past_keys + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + head_dim = self._config.hidden_size // self.num_attention_heads + past_key_shape = ( + batch * self.num_attention_heads, + head_dim, + past_key_values_length, + ) + past_value_shape = ( + batch * self.num_attention_heads, + past_key_values_length, + head_dim, + ) + ordered_inputs["past_key_values"] = [ + (torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers) + ] + + ordered_inputs["attention_mask"] = common_inputs["attention_mask"] + if self.use_past: + mask_dtype = ordered_inputs["attention_mask"].dtype + ordered_inputs["attention_mask"] = torch.cat( + [ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + + return ordered_inputs + + @property + def default_onnx_opset(self) -> int: + return 13 diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..eda9a2d815e6b82add587035f9e8f2797bd5c748 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/convert_bloom_original_checkpoint_to_pytorch.py @@ -0,0 +1,255 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert BigScience BLOOM checkpoint.""" + + +import argparse +import json +import os +import re + +import torch + +from transformers import BloomConfig, BloomModel +from transformers.file_utils import CONFIG_NAME, WEIGHTS_NAME +from transformers.utils import logging + + +logging.set_verbosity_info() + +WEIGHTS_TO_AVERAGE_ENDSWITH = [ + "word_embeddings_layernorm.weight", + "word_embeddings_layernorm.bias", + "input_layernorm.weight", + "input_layernorm.bias", + "post_attention_layernorm.weight", + "post_attention_layernorm.bias", + "self_attention.dense.bias", + "mlp.dense_4h_to_h.bias", + "ln_f.weight", + "ln_f.bias", +] + +WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN = [ + "mlp.dense_4h_to_h.weight", + "self_attention.dense.weight", +] + + +def layer_name_mapping(key, file): + """Convert Megatron-DeepSpeed TP/PP weights mapping in transformers PP only""" + # Handle first and last layers + layer_rename_map = { + "word_embeddings.weight": "word_embeddings.weight", + "word_embeddings.norm.weight": "word_embeddings_layernorm.weight", + "word_embeddings.norm.bias": "word_embeddings_layernorm.bias", + "weight": "ln_f.weight", + "bias": "ln_f.bias", + } + + if key in layer_rename_map: + return layer_rename_map[key] + + # Handle transformer blocks + layer_number = int(re.match(r".*layer_(\d*).*", file)[1]) + layer_number -= 3 + return f"h.{layer_number}." + key + + +def get_dtype_size(dtype): + if dtype == torch.bool: + return 1 / 8 + bit_search = re.search(r"[^\d](\d+)$", str(dtype)) + if bit_search is None: + raise ValueError(f"`dtype` is not a valid dtype: {dtype}.") + bit_size = int(bit_search.groups()[0]) + return bit_size // 8 + + +def convert_bloom_checkpoint_to_pytorch( + bloom_checkpoint_path, bloom_config_file, pytorch_dump_folder_path, shard_model, pretraining_tp +): + # Construct model + if bloom_config_file == "": + config = BloomConfig() + else: + config = BloomConfig.from_json_file(bloom_config_file) + + if shard_model: + file_names = os.listdir(bloom_checkpoint_path) + file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names)) + + index_dict = {"weight_map": {}, "metadata": {}} + total_size = 0 + + missing_keys = None + + config = BloomConfig() + + for j, file in enumerate(file_names): + print("Processing file: {}".format(file)) + tensors = None + + for i in range(pretraining_tp): + # load all TP files + f_name = file.replace("model_00", f"model_0{i}") + temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") + + # Rename keys in the transformers names + keys = list(temp.keys()) + for key in keys: + temp[layer_name_mapping(key, file)] = temp.pop(key) + + if tensors is None: + tensors = temp + else: + for key in tensors.keys(): + if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): + # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) + tensors[key] += temp[key] + else: + # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel + cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 + # We concatenate these weights accross TP ranks + tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) + + # Divide by the number of TP the weights we want to average + for key in tensors.keys(): + if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): + tensors[key] = tensors[key] / pretraining_tp + torch.save( + tensors, + os.path.join( + pytorch_dump_folder_path, + "pytorch_model_{}-of-{}.bin".format(str(j + 1).zfill(5), str(len(file_names)).zfill(5)), + ), + ) + + for key in tensors.keys(): + value = tensors[key] + total_size += value.numel() * get_dtype_size(value.dtype) + if key not in index_dict["weight_map"]: + index_dict["weight_map"][key] = "pytorch_model_{}-of-{}.bin".format( + str(j + 1).zfill(5), str(len(file_names)).zfill(5) + ) + + config = BloomConfig() + pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME + index_dict["metadata"]["total_size"] = total_size + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + with open(os.path.join(pytorch_dump_folder_path, WEIGHTS_NAME + ".index.json"), "w", encoding="utf-8") as f: + json_config = json.dumps(index_dict, indent=2, sort_keys=True) + "\n" + f.write(json_config) + else: + model = BloomModel(config) + + file_names = os.listdir(bloom_checkpoint_path) + file_names = sorted(filter(lambda s: s.startswith("layer") and "model_00" in s, file_names)) + + missing_keys = None + for i, file in enumerate(file_names): + tensors = None + for i in range(pretraining_tp): + # load all TP files + f_name = file.replace("model_00", f"model_0{i}") + temp = torch.load(os.path.join(bloom_checkpoint_path, f_name), map_location="cpu") + + # Rename keys in the transformers names + keys = list(temp.keys()) + for key in keys: + temp[layer_name_mapping(key, file)] = temp.pop(key) + + if tensors is None: + tensors = temp + else: + for key in tensors.keys(): + # We average (sum and then divide) some weights accross TP ranks (see https://github.com/bigscience-workshop/Megatron-DeepSpeed/blob/olruwase/sync_layer_norms/megatron/training.py#L425) + if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): + tensors[key] += temp[key] + else: + # Some weights are RowParallelLinear in Megatron-Deepspeed, others are ColumnParallel + cat_dim = 1 if any(text in key for text in WEIGHTS_WITH_ROW_PARALLELISM_CONTAIN) else 0 + # We concatenate these weights accross TP ranks + tensors[key] = torch.cat([tensors[key], temp[key]], dim=cat_dim) + + # Divide by the number of TP the weights we want to average + for key in tensors.keys(): + if any(key.endswith(end) for end in WEIGHTS_TO_AVERAGE_ENDSWITH): + tensors[key] = tensors[key] / pretraining_tp + + other_keys = model.load_state_dict(tensors, strict=False) + assert not other_keys.unexpected_keys, f"The keys {other_keys.unexpected_keys} are unexpected" + if missing_keys is None: + missing_keys = set(other_keys.missing_keys) + else: + missing_keys = missing_keys.intersection(set(other_keys.missing_keys)) + + assert not missing_keys, f"The keys {missing_keys} are missing" + + # Save pytorch-model + os.makedirs(pytorch_dump_folder_path, exist_ok=True) + pytorch_weights_dump_path = pytorch_dump_folder_path + "/" + WEIGHTS_NAME + pytorch_config_dump_path = pytorch_dump_folder_path + "/" + CONFIG_NAME + print(f"Save PyTorch model to {pytorch_weights_dump_path} with dtype {config.torch_dtype}") + if config.torch_dtype is not None: + model = model.to(config.torch_dtype) + torch.save(model.state_dict(), pytorch_weights_dump_path) + print(f"Save configuration file to {pytorch_config_dump_path}") + with open(pytorch_config_dump_path, "w", encoding="utf-8") as f: + f.write(config.to_json_string()) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--bloom_checkpoint_path", + default=None, + type=str, + required=True, + help="Path to the Megatron-LM checkpoint path.", + ) + parser.add_argument( + "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + parser.add_argument( + "--bloom_config_file", + default="", + type=str, + help=( + "An optional config json file corresponding to the pre-trained model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--shard_model", + action="store_true", + help="An optional setting to shard the output model \nThis enables sharding the converted checkpoint", + ) + parser.add_argument( + "--pretraining_tp", + default=4, + type=int, + help="Pretraining TP rank that has been used when training the model in Megatron-LM \n", + ) + args = parser.parse_args() + convert_bloom_checkpoint_to_pytorch( + args.bloom_checkpoint_path, + args.bloom_config_file, + args.pytorch_dump_folder_path, + args.shard_model, + args.pretraining_tp, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py new file mode 100644 index 0000000000000000000000000000000000000000..187230f35ab9e4a5d20c10bc5b9a03a48761d070 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/modeling_flax_bloom.py @@ -0,0 +1,734 @@ +# coding=utf-8 +# Copyright 2023 HuggingFace Inc. Team and Bigscience Workshop. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Flax BLOOM model.""" + +import math +from functools import partial +from typing import Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, dot_product_attention_weights, make_causal_mask +from flax.linen.activation import tanh +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutput, +) +from ...modeling_flax_utils import FlaxPreTrainedModel, append_call_sample_docstring +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging +from .configuration_bloom import BloomConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "bigscience/bloom" +_CONFIG_FOR_DOC = "BloomConfig" + + +BLOOM_START_DOCSTRING = r""" + + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`BloomConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +BLOOM_INPUTS_DOCSTRING = r""" + Args: + input_ids (`numpy.ndarray` of shape `(batch_size, input_ids_length)`): + `input_ids_length` = `sequence_length`. Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`BloomTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def build_alibi_tensor(attention_mask: jnp.ndarray, num_heads: int, dtype: Optional[jnp.dtype] = jnp.float32): + """ + Flax implementation of the BLOOM Alibi tensor. BLOOM Alibi tensor is not causal as the original paper mentions, it + relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value + `softmax(l+a) = softmax(l)`. Based on + https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742 + Link to paper: https://arxiv.org/abs/2108.12409 + + Args: + attention_mask (`jnp.ndarray`): + Token-wise attention mask, this should be of shape `(batch_size, max_seq_len)`. + num_heads (`int`): + Number of attention heads. + dtype (`jnp.dtype`, *optional*, defaults to `jnp.float32`): + The data type (dtype) of the output tensor. + + Returns: Alibi tensor of shape `(batch_size * num_heads, 1, max_seq_len)`. + """ + batch_size, seq_length = attention_mask.shape + closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) + base = jnp.array(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=jnp.float32) + powers = jnp.arange(1, 1 + closest_power_of_2, dtype=jnp.float32) + slopes = jax.lax.pow(base, powers) + + if closest_power_of_2 != num_heads: + extra_base = jnp.array(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=jnp.float32) + num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) + extra_powers = jnp.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=jnp.float32) + slopes = jnp.cat([slopes, jax.lax.pow(extra_base, extra_powers)], axis=0) + + # Note: the Alibi tensor will added to the attention bias that will be applied to the query, key product of attention + # therefore, Alibi will have to be of shape (batch_size, num_heads, query_length, key_length) + # => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length) + # so that the query_length dimension will then be broadcast correctly. + # This is more or less identical to T5's relative position bias: + # https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527 + arange_tensor = ((attention_mask.cumsum(axis=-1) - 1) * attention_mask)[:, None, :] + alibi = slopes[..., None] * arange_tensor + alibi = jnp.expand_dims(alibi, axis=2) + return jnp.asarray(alibi, dtype) + + +class FlaxBloomAttention(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.hidden_size = self.config.hidden_size + self.num_heads = self.config.n_head + self.head_dim = self.hidden_size // self.num_heads + self.attention_softmax_in_fp32 = self.dtype is not jnp.float32 + + if self.head_dim * self.num_heads != self.hidden_size: + raise ValueError( + f"`hidden_size` must be divisible by `num_heads` (got `hidden_size`: {self.hidden_size} and " + f"`num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.initializer_range), + ) + + self.query_key_value = dense(self.hidden_size * 3) + self.dense = dense(self.hidden_size) + self.resid_dropout = nn.Dropout(rate=self.config.hidden_dropout) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:-1] + (self.num_heads, self.head_dim * 3)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.hidden_size,)) + + @nn.compact + # Copied from transformers.models.gptj.modeling_flax_gptj.FlaxGPTJAttention._concatenate_to_cache + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key + # positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states, + residual, + alibi, + attention_mask=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + ): + batch_size, seq_length = hidden_states.shape[:2] + + # proj q, k, v + fused_qkv = self.query_key_value(hidden_states) + fused_qkv = self._split_heads(fused_qkv) + query, key, value = jnp.split(fused_qkv, 3, axis=-1) + + causal_attention_mask = make_causal_mask(attention_mask, dtype="bool") + + # for fast decoding causal attention mask should be shifted + causal_attention_mask_shift = ( + self.variables["cache"]["cache_index"] if self.has_variable("cache", "cached_key") else 0 + ) + + # fast decoding for generate requires special attention_mask + if self.has_variable("cache", "cached_key"): + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_attention_mask = jax.lax.dynamic_slice( + causal_attention_mask, + (0, 0, causal_attention_mask_shift, 0), + (1, 1, seq_length, max_decoder_length), + ) + + # broadcast causal attention mask & attention mask to fit for merge + causal_attention_mask = jnp.broadcast_to( + causal_attention_mask, (batch_size,) + causal_attention_mask.shape[1:] + ) + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_attention_mask.shape) + attention_mask = combine_masks(attention_mask, causal_attention_mask) + + dropout_rng = None + if not deterministic and self.config.attention_dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.has_variable("cache", "cached_key") or init_cache: + key, value, attention_mask = self._concatenate_to_cache(key, value, query, attention_mask) + + # transform boolean mask into float mask + mask_value = jnp.finfo(self.dtype).min + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, mask_value).astype(self.dtype), + ) + + attention_bias = attention_bias + alibi + + # Cast in fp32 if the original dtype is different from fp32 + attention_dtype = jnp.float32 if self.attention_softmax_in_fp32 else self.dtype + + attn_weights = dot_product_attention_weights( + query, + key, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.config.attention_dropout, + deterministic=deterministic, + dtype=attention_dtype, + ) + + # Cast back in the original dtype if the native dtype is not fp32 + if self.attention_softmax_in_fp32: + attn_weights = attn_weights.astype(self.dtype) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value) + attn_output = self._merge_heads(attn_output) + attn_output = self.dense(attn_output) + attn_output = self.resid_dropout(attn_output, deterministic=deterministic) + + attn_output = attn_output + residual + + outputs = (attn_output, attn_weights) if output_attentions else (attn_output,) + return outputs + + +class BloomGELU(nn.Module): + def setup(self): + self.dtype = jnp.float32 + + def __call__(self, x): + return x * 0.5 * (1.0 + tanh(0.79788456 * x * (1 + 0.044715 * x * x))) + + +class FlaxBloomMLP(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + hidden_size = self.config.hidden_size + + kernel_init = jax.nn.initializers.normal(self.config.initializer_range) + + self.dense_h_to_4h = nn.Dense(4 * hidden_size, dtype=self.dtype, kernel_init=kernel_init) + self.dense_4h_to_h = nn.Dense(hidden_size, dtype=self.dtype, kernel_init=kernel_init) + self.hidden_dropout = nn.Dropout(self.config.hidden_dropout) + self.act = BloomGELU() + + def __call__(self, hidden_states, residual, deterministic: bool = True): + hidden_states = self.dense_h_to_4h(hidden_states) + hidden_states = self.act(hidden_states) + + intermediate_output = self.dense_4h_to_h(hidden_states) + + intermediate_output = intermediate_output + residual + hidden_states = self.hidden_dropout(intermediate_output, deterministic=deterministic) + + return hidden_states + + +class FlaxBloomBlock(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.input_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) + + self.self_attention = FlaxBloomAttention(self.config, dtype=self.dtype) + self.post_attention_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) + + self.mlp = FlaxBloomMLP(self.config, dtype=self.dtype) + + self.apply_residual_connection_post_layernorm = self.config.apply_residual_connection_post_layernorm + self.hidden_dropout = self.config.hidden_dropout + + def __call__( + self, + hidden_states, + alibi, + attention_mask=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + ): + layernorm_output = self.input_layernorm(hidden_states) + + # layer norm before saving residual if config calls for it + if self.apply_residual_connection_post_layernorm: + residual = layernorm_output + else: + residual = hidden_states + + # self-attention + attn_outputs = self.self_attention( + layernorm_output, + residual=residual, + alibi=alibi, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + ) + + attention_output = attn_outputs[0] + + outputs = attn_outputs[1:] + + post_layernorm = self.post_attention_layernorm(attention_output) + + # set residual based on config + if self.apply_residual_connection_post_layernorm: + residual = post_layernorm + else: + residual = attention_output + + output = self.mlp(post_layernorm, residual, deterministic=deterministic) + + outputs = (output,) + outputs + + return outputs + + +class FlaxBloomPreTrainedModel(FlaxPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = BloomConfig + base_model_prefix = "transformer" + module_class: nn.Module = None + + def __init__( + self, + config: BloomConfig, + input_shape: Tuple = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + attention_mask = jnp.ones_like(input_ids) + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init(rngs, input_ids, attention_mask, return_dict=False)["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + def init_cache(self, batch_size, max_length): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + """ + # init input variables to retrieve cache + input_ids = jnp.ones((batch_size, max_length), dtype="i4") + attention_mask = jnp.ones_like(input_ids) + + init_variables = self.module.init( + jax.random.PRNGKey(0), input_ids, attention_mask, return_dict=False, init_cache=True + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings_to_model_forward(BLOOM_INPUTS_DOCSTRING) + def __call__( + self, + input_ids, + attention_mask=None, + past_key_values: dict = None, + params: dict = None, + dropout_rng: jax.random.PRNGKey = None, + train: bool = False, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + batch_size, sequence_length = input_ids.shape + + if attention_mask is None: + attention_mask = jnp.ones((batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # If past_key_values are passed then cache is already initialized a private flag init_cache has to be passed + # down to ensure cache is used. It has to be made sure that cache is marked as mutable so that it can be + # changed by FlaxBloomAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + outputs = self.module.apply( + inputs, + jnp.array(input_ids, dtype="i4"), + jnp.array(attention_mask, dtype="i4"), + not train, + False, + output_attentions, + output_hidden_states, + return_dict, + rngs=rngs, + mutable=mutable, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past_key_values = outputs + outputs["past_key_values"] = unfreeze(past_key_values["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past_key_values = outputs + outputs = outputs[:1] + (unfreeze(past_key_values["cache"]),) + outputs[1:] + + return outputs + + +class FlaxBloomBlockCollection(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.layers = [ + FlaxBloomBlock(self.config, name=str(layer_number), dtype=self.dtype) + for layer_number in range(self.config.num_hidden_layers) + ] + + def __call__( + self, + hidden_states, + alibi, + attention_mask=None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for layer_number in range(self.config.num_hidden_layers): + if output_hidden_states: + all_hidden_states += (hidden_states,) + + layer_outputs = self.layers[layer_number]( + hidden_states, + alibi=alibi, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + ) + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions += (layer_outputs[1],) + + # this contains possible `None` values - `FlaxBloomModule` will filter them out + outputs = (hidden_states, all_hidden_states, all_attentions) + + return outputs + + +class FlaxBloomModule(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.embed_dim = self.config.hidden_size + + # word embeddings (no positional embedding layer) + self.word_embeddings = nn.Embed( + self.config.vocab_size, + self.embed_dim, + embedding_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + dtype=self.dtype, + ) + + # post-embedding layernorm + self.word_embeddings_layernorm = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) + + # transformer layers + self.h = FlaxBloomBlockCollection(self.config, dtype=self.dtype) + + # final layernorm + self.ln_f = nn.LayerNorm(epsilon=self.config.layer_norm_epsilon, dtype=self.dtype) + + def __call__( + self, + input_ids=None, + attention_mask=None, + deterministic=True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + inputs_embeds = self.word_embeddings(input_ids) + # do post-embedding layernorm + hidden_states = self.word_embeddings_layernorm(inputs_embeds) + + # build alibi depending on `attention_mask` + alibi = build_alibi_tensor(attention_mask, self.config.n_head, dtype=hidden_states.dtype) + + outputs = self.h( + hidden_states, + alibi=alibi, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_hidden_states=output_hidden_states, + output_attentions=output_attentions, + ) + + hidden_states = outputs[0] + hidden_states = self.ln_f(hidden_states) + + if output_hidden_states: + all_hidden_states = outputs[1] + (hidden_states,) + outputs = (hidden_states, all_hidden_states) + outputs[2:] + else: + outputs = (hidden_states,) + outputs[1:] + + if not return_dict: + return tuple(v for v in [outputs[0], outputs[-1]] if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=outputs[1], + attentions=outputs[-1], + ) + + +@add_start_docstrings( + "The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.", + BLOOM_START_DOCSTRING, +) +# Copied from transformers.models.gpt_neo.modeling_flax_gpt_neo.FlaxGPTNeoModel with GPTNeo->Bloom +class FlaxBloomModel(FlaxBloomPreTrainedModel): + module_class = FlaxBloomModule + + +append_call_sample_docstring(FlaxBloomModel, _CHECKPOINT_FOR_DOC, FlaxBaseModelOutput, _CONFIG_FOR_DOC) + + +class FlaxBloomForCausalLMModule(nn.Module): + config: BloomConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.transformer = FlaxBloomModule(self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.config.vocab_size, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(stddev=self.config.initializer_range), + ) + + def __call__( + self, + input_ids, + attention_mask, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_kernel = self.transformer.variables["params"]["word_embeddings"]["embedding"].T + lm_logits = self.lm_head.apply({"params": {"kernel": shared_kernel}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + if not return_dict: + return (lm_logits,) + outputs[1:] + + return FlaxCausalLMOutput(logits=lm_logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions) + + +@add_start_docstrings( + """ + The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input + embeddings). + """, + BLOOM_START_DOCSTRING, +) +class FlaxBloomForCausalLM(FlaxBloomPreTrainedModel): + module_class = FlaxBloomForCausalLMModule + + def prepare_inputs_for_generation(self, input_ids, max_length, attention_mask: Optional[jax.Array] = None): + # initializing the cache + batch_size, seq_length = input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length) + # Note that usually one would have to put 0's in the attention_mask for + # x > input_ids.shape[-1] and x < cache_length. But since Bloom uses a causal mask, + # those positions are masked anyway. Thus, we can create a single static attention_mask here, + # which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if attention_mask is not None: + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, attention_mask, (0, 0)) + + return { + "past_key_values": past_key_values, + "attention_mask": extended_attention_mask, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + return model_kwargs + + +append_call_sample_docstring(FlaxBloomForCausalLM, _CHECKPOINT_FOR_DOC, FlaxCausalLMOutput, _CONFIG_FOR_DOC) diff --git a/venv/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py b/venv/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..3a0972d87ae349d08de4acf473fefe4db132b05d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/bloom/tokenization_bloom_fast.py @@ -0,0 +1,164 @@ +# coding=utf-8 +# Copyright 2022 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Tokenization classes for Bloom.""" + + +import pickle +from typing import Optional, Tuple + +from ...tokenization_utils_base import BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import logging + + +logger = logging.get_logger(__name__) + +VOCAB_FILES_NAMES = {"tokenizer_file": "tokenizer.json"} + + +class BloomTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" Bloom tokenizer (backed by HuggingFace's *tokenizers* library). Based on byte-level + Byte-Pair-Encoding. + + This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will + be encoded differently whether it is at the beginning of the sentence (without space) or not: + + ```python + >>> from transformers import BloomTokenizerFast + + >>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom") + >>> tokenizer("Hello world")["input_ids"] + [59414, 8876] + + >>> tokenizer(" Hello world")["input_ids"] + [86153, 8876] + ``` + + You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer, but since + the model was not pretrained this way, it might yield a decrease in performance. + + + + When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`. + + + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + merges_file (`str`): + Path to the merges file. + errors (`str`, *optional*, defaults to `"replace"`): + Paradigm to follow when decoding bytes to UTF-8. See + [bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information. + unk_token (`str`, *optional*, defaults to `<|endoftext|>`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + bos_token (`str`, *optional*, defaults to `<|endoftext|>`): + The beginning of sequence token. + eos_token (`str`, *optional*, defaults to `<|endoftext|>`): + The end of sequence token. + add_prefix_space (`bool`, *optional*, defaults to `False`): + Whether or not to add an initial space to the input. This allows to treat the leading word just as any + other word. (Bloom tokenizer detect beginning of words by the preceding space). + trim_offsets (`bool`, *optional*, defaults to `True`): + Whether or not the post-processing step should trim offsets to avoid including whitespaces. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = None + # No `max_model_input_sizes` as BLOOM uses ALiBi positional embeddings + + def __init__( + self, + vocab_file=None, + merges_file=None, + tokenizer_file=None, + unk_token="", + bos_token="", + eos_token="", + pad_token="", + add_prefix_space=False, + clean_up_tokenization_spaces=False, + **kwargs, + ): + super().__init__( + vocab_file, + merges_file, + tokenizer_file=tokenizer_file, + unk_token=unk_token, + bos_token=bos_token, + eos_token=eos_token, + pad_token=pad_token, + add_prefix_space=add_prefix_space, + clean_up_tokenization_spaces=clean_up_tokenization_spaces, + **kwargs, + ) + # TODO @ArthurZucker this can only work one way for now, to update later-on. Tests should also properly + # check this as they were green before. + pre_tok_state = pickle.dumps(self.backend_tokenizer.pre_tokenizer) + decoder_state = pickle.dumps(self.backend_tokenizer.decoder) + + if add_prefix_space: + pre_tok_state = pre_tok_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') + decoder_state = decoder_state.replace(b'"add_prefix_space":false', b'"add_prefix_space": true') + self.backend_tokenizer.pre_tokenizer = pickle.loads(pre_tok_state) + self.backend_tokenizer.decoder = pickle.loads(decoder_state) + + self.add_prefix_space = add_prefix_space + + def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + if not (self.add_prefix_space or not is_split_into_words): + raise Exception( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" + " pretokenized inputs." + ) + + return super()._batch_encode_plus(*args, **kwargs) + + def _encode_plus(self, *args, **kwargs) -> BatchEncoding: + is_split_into_words = kwargs.get("is_split_into_words", False) + + if not (self.add_prefix_space or not is_split_into_words): + raise Exception( + f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True to use it with" + " pretokenized inputs." + ) + + return super()._encode_plus(*args, **kwargs) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + files = self._tokenizer.model.save(save_directory, name=filename_prefix) + return tuple(files) + + @property + # Copied from transformers.models.gpt2.tokenization_gpt2.GPT2Tokenizer.default_chat_template + def default_chat_template(self): + """ + A simple chat template that ignores role information and just concatenates messages with EOS tokens. + """ + logger.warning_once( + "\nNo chat template is defined for this tokenizer - using the default template " + f"for the {self.__class__.__name__} class. If the default is not appropriate for " + "your model, please set `tokenizer.chat_template` to an appropriate template. " + "See https://huggingface.co/docs/transformers/main/chat_templating for more information.\n" + ) + return "{% for message in messages %}" "{{ message.content }}{{ eos_token }}" "{% endfor %}" diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/mt5/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e142aa43676e61d2c899071866270c11e5edf156 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mt5/__init__.py @@ -0,0 +1,123 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +if is_sentencepiece_available(): + from ..t5.tokenization_t5 import T5Tokenizer +else: + from ...utils.dummy_sentencepiece_objects import T5Tokenizer + +MT5Tokenizer = T5Tokenizer + +if is_tokenizers_available(): + from ..t5.tokenization_t5_fast import T5TokenizerFast +else: + from ...utils.dummy_tokenizers_objects import T5TokenizerFast + +MT5TokenizerFast = T5TokenizerFast + +_import_structure = {"configuration_mt5": ["MT5Config", "MT5OnnxConfig"]} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mt5"] = [ + "MT5EncoderModel", + "MT5ForConditionalGeneration", + "MT5ForQuestionAnswering", + "MT5ForSequenceClassification", + "MT5ForTokenClassification", + "MT5Model", + "MT5PreTrainedModel", + "MT5Stack", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mt5"] = ["TFMT5EncoderModel", "TFMT5ForConditionalGeneration", "TFMT5Model"] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_mt5"] = ["FlaxMT5EncoderModel", "FlaxMT5ForConditionalGeneration", "FlaxMT5Model"] + + +if TYPE_CHECKING: + from .configuration_mt5 import MT5Config, MT5OnnxConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mt5 import ( + MT5EncoderModel, + MT5ForConditionalGeneration, + MT5ForQuestionAnswering, + MT5ForSequenceClassification, + MT5ForTokenClassification, + MT5Model, + MT5PreTrainedModel, + MT5Stack, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mt5 import TFMT5EncoderModel, TFMT5ForConditionalGeneration, TFMT5Model + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_mt5 import FlaxMT5EncoderModel, FlaxMT5ForConditionalGeneration, FlaxMT5Model + +else: + import sys + + sys.modules[__name__] = _LazyModule( + __name__, + globals()["__file__"], + _import_structure, + extra_objects={"MT5Tokenizer": MT5Tokenizer, "MT5TokenizerFast": MT5TokenizerFast}, + module_spec=__spec__, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d217e9a37fbd350bc6d5d53a5582fe8cc928bf99 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/configuration_mt5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/configuration_mt5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2a458678a9f907000f561d7edc8e820c68003948 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/configuration_mt5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_flax_mt5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_flax_mt5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7261313b0119978f84cb83c92747d2d7682f63bc Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_flax_mt5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_mt5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_mt5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..755cb2c32d805f0d2ec3dab4d8ac0ba52fac19ce Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_mt5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_tf_mt5.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_tf_mt5.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c7ca6863ff61d34287a085b83a873daa1db18dd Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mt5/__pycache__/modeling_tf_mt5.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/configuration_mt5.py b/venv/lib/python3.10/site-packages/transformers/models/mt5/configuration_mt5.py new file mode 100644 index 0000000000000000000000000000000000000000..2d31a52563175c2394d98554be05d7e38367b9ba --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mt5/configuration_mt5.py @@ -0,0 +1,173 @@ +# coding=utf-8 +# Copyright 2020, The T5 Authors and HuggingFace Inc. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" mT5 model configuration""" +from typing import Mapping + +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxSeq2SeqConfigWithPast +from ...utils import logging + + +logger = logging.get_logger(__name__) + + +class MT5Config(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MT5Model`] or a [`TFMT5Model`]. It is used to + instantiate a mT5 model according to the specified arguments, defining the model architecture. Instantiating a + configuration with the defaults will yield a similar configuration to that of the mT5 + [google/mt5-small](https://huggingface.co/google/mt5-small) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Arguments: + vocab_size (`int`, *optional*, defaults to 250112): + Vocabulary size of the T5 model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`T5Model`] or [`TFT5Model`]. + d_model (`int`, *optional*, defaults to 512): + Size of the encoder layers and the pooler layer. + d_kv (`int`, *optional*, defaults to 64): + Size of the key, query, value projections per attention head. In the conventional context, it is typically expected that `d_kv` has to be equal to `d_model // num_heads`. + But in the architecture of mt5-small, `d_kv` is not equal to `d_model //num_heads`. The `inner_dim` of the projection layer will be defined as `num_heads * d_kv`. + d_ff (`int`, *optional*, defaults to 1024): + Size of the intermediate feed forward layer in each `T5Block`. + num_layers (`int`, *optional*, defaults to 8): + Number of hidden layers in the Transformer encoder. + num_decoder_layers (`int`, *optional*): + Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set. + num_heads (`int`, *optional*, defaults to 6): + Number of attention heads for each attention layer in the Transformer encoder. + relative_attention_num_buckets (`int`, *optional*, defaults to 32): + The number of buckets to use for each attention layer. + relative_attention_max_distance (`int`, *optional*, defaults to 128): + The maximum distance of the longer sequences for the bucket separation. + dropout_rate (`float`, *optional*, defaults to 0.1): + The ratio for all dropout layers. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + layer_norm_eps (`float`, *optional*, defaults to 1e-6): + The epsilon used by the layer normalization layers. + initializer_factor (`float`, *optional*, defaults to 1): + A factor for initializing all weight matrices (should be kept to 1, used internally for initialization + testing). + feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`): + Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`. + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models). + """ + + model_type = "mt5" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} + + def __init__( + self, + vocab_size=250112, + d_model=512, + d_kv=64, + d_ff=1024, + num_layers=8, + num_decoder_layers=None, + num_heads=6, + relative_attention_num_buckets=32, + relative_attention_max_distance=128, + dropout_rate=0.1, + layer_norm_epsilon=1e-6, + initializer_factor=1.0, + feed_forward_proj="gated-gelu", + is_encoder_decoder=True, + use_cache=True, + tokenizer_class="T5Tokenizer", + tie_word_embeddings=False, + pad_token_id=0, + eos_token_id=1, + decoder_start_token_id=0, + classifier_dropout=0.0, + **kwargs, + ): + self.vocab_size = vocab_size + self.d_model = d_model + self.d_kv = d_kv + self.d_ff = d_ff + self.num_layers = num_layers + self.num_decoder_layers = ( + num_decoder_layers if num_decoder_layers is not None else self.num_layers + ) # default = symmetry + self.num_heads = num_heads + self.relative_attention_num_buckets = relative_attention_num_buckets + self.relative_attention_max_distance = relative_attention_max_distance + self.dropout_rate = dropout_rate + self.classifier_dropout = classifier_dropout + self.layer_norm_epsilon = layer_norm_epsilon + self.initializer_factor = initializer_factor + self.feed_forward_proj = feed_forward_proj + self.use_cache = use_cache + + act_info = self.feed_forward_proj.split("-") + self.dense_act_fn = act_info[-1] + self.is_gated_act = act_info[0] == "gated" + + if len(act_info) > 1 and act_info[0] != "gated" or len(act_info) > 2: + raise ValueError( + f"`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer. " + "Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. " + "'gated-gelu' or 'relu'" + ) + + # for backwards compatibility + if feed_forward_proj == "gated-gelu": + self.dense_act_fn = "gelu_new" + + super().__init__( + is_encoder_decoder=is_encoder_decoder, + tokenizer_class=tokenizer_class, + tie_word_embeddings=tie_word_embeddings, + pad_token_id=pad_token_id, + eos_token_id=eos_token_id, + decoder_start_token_id=decoder_start_token_id, + **kwargs, + ) + + +class MT5OnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs + def inputs(self) -> Mapping[str, Mapping[int, str]]: + common_inputs = { + "input_ids": {0: "batch", 1: "encoder_sequence"}, + "attention_mask": {0: "batch", 1: "encoder_sequence"}, + } + if self.use_past: + common_inputs["attention_mask"][1] = "past_encoder_sequence + sequence" + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + + return common_inputs + + @property + # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset + def default_onnx_opset(self) -> int: + return 13 + + @property + def atol_for_validation(self) -> float: + return 5e-4 diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_flax_mt5.py b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_flax_mt5.py new file mode 100644 index 0000000000000000000000000000000000000000..98406439dfbfcaabd9dd07e31c3976b0b46e5bb2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_flax_mt5.py @@ -0,0 +1,120 @@ +# coding=utf-8 +# Copyright 2021 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax mT5 model.""" + +import jax.numpy as jnp + +from ...utils import logging +from ..t5.modeling_flax_t5 import FlaxT5EncoderModel, FlaxT5ForConditionalGeneration, FlaxT5Model +from .configuration_mt5 import MT5Config + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "T5Config" + + +# Copied from transformers.models.bart.modeling_flax_bart.shift_tokens_right +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int, decoder_start_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right. + """ + shifted_input_ids = jnp.zeros_like(input_ids) + shifted_input_ids = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1]) + shifted_input_ids = shifted_input_ids.at[:, 0].set(decoder_start_token_id) + + shifted_input_ids = jnp.where(shifted_input_ids == -100, pad_token_id, shifted_input_ids) + return shifted_input_ids + + +class FlaxMT5Model(FlaxT5Model): + r""" + This class overrides [`FlaxT5Model`]. Please check the superclass for the appropriate documentation alongside usage + examples. + + Examples: + + ```python + >>> from transformers import FlaxMT5Model, AutoTokenizer + + >>> model = FlaxMT5Model.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, return_tensors="np") + + >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids + + >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=decoder_input_ids) + >>> hidden_states = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config + + +class FlaxMT5EncoderModel(FlaxT5EncoderModel): + r""" + This class overrides [`FlaxT5EncoderModel`]. Please check the superclass for the appropriate documentation + alongside usage examples. + + Examples: + + ```python + >>> from transformers import FlaxT5EncoderModel, AutoTokenizer + + >>> model = FlaxT5EncoderModel.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, return_tensors="np") + + >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids + + >>> outputs = model(input_ids=inputs["input_ids"]) + >>> hidden_states = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config + + +class FlaxMT5ForConditionalGeneration(FlaxT5ForConditionalGeneration): + r""" + This class overrides [`FlaxT5ForConditionalGeneration`]. Please check the superclass for the appropriate + documentation alongside usage examples. + + Examples: + + ```python + >>> from transformers import FlaxMT5ForConditionalGeneration, AutoTokenizer + + >>> model = FlaxMT5ForConditionalGeneration.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, return_tensors="np") + + >>> decoder_input_ids = tokenizer(text_target=summary, return_tensors="np").input_ids + + >>> outputs = model(**inputs, decoder_input_ids=decoder_input_ids) + >>> logits = outputs.logits + ```""" + + model_type = "mt5" + config_class = MT5Config diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_mt5.py b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_mt5.py new file mode 100644 index 0000000000000000000000000000000000000000..84a9f78ca91ec53f95b5302b61baa78e7875748d --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_mt5.py @@ -0,0 +1,2434 @@ +# coding=utf-8 +# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch mT5 model.""" + +import copy +import math +import os +import warnings +from typing import List, Optional, Tuple, Union + +import torch +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqQuestionAnsweringModelOutput, + Seq2SeqSequenceClassifierOutput, + TokenClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer +from ...utils import ( + DUMMY_INPUTS, + DUMMY_MASK, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_torch_fx_proxy, + logging, + replace_return_docstrings, +) +from ...utils.model_parallel_utils import assert_device_map, get_device_map +from .configuration_mt5 import MT5Config + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "MT5Config" +_CHECKPOINT_FOR_DOC = "mt5-small" + + +#################################################### +# This dict contains ids and associated url +# for the pretrained weights provided with the models +#################################################### + +PARALLELIZE_DOCSTRING = r""" + This is an experimental feature and is a subject to change at a moment's notice. + + Uses a device map to distribute attention modules of the model across several devices. If no device map is given, + it will evenly distribute blocks across all devices. + + Args: + device_map (`Dict[int, list]`, optional, defaults to None): + A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always + automatically mapped to the first device (for esoteric reasons). That means that the first device should + have fewer attention modules mapped to it than other devices. For reference, the mt5 models have the + following number of attention modules: + + - mt5-small: 6 + - mt5-base: 12 + - mt5-large: 24 + - mt5-xl: 24 + - mt5-xxl: 24 + + Example: + + ```python + # Here is an example of a device map on a machine with 4 GPUs using mt5-xl, which has a total of 24 attention modules: + model = MT5ForConditionalGeneration.from_pretrained("mt5-xl") + device_map = { + 0: [0, 1, 2], + 1: [3, 4, 5, 6, 7, 8, 9], + 2: [10, 11, 12, 13, 14, 15, 16], + 3: [17, 18, 19, 20, 21, 22, 23], + } + model.parallelize(device_map) + ``` +""" +DEPARALLELIZE_DOCSTRING = r""" + Moves the model to cpu from a model parallel state. + + Example: + + ```python + # On a 4 GPU machine with mt5-xl: + model = MT5ForConditionalGeneration.from_pretrained("Mt5-xl") + device_map = { + 0: [0, 1, 2], + 1: [3, 4, 5, 6, 7, 8, 9], + 2: [10, 11, 12, 13, 14, 15, 16], + 3: [17, 18, 19, 20, 21, 22, 23], + } + model.parallelize(device_map) # Splits the model across several devices + model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() + ``` +""" + + +# Copied from transformers.models.t5.modeling_t5.T5LayerNorm with T5->MT5 +class MT5LayerNorm(nn.Module): + def __init__(self, hidden_size, eps=1e-6): + """ + Construct a layernorm module in the MT5 style. No bias and no subtraction of mean. + """ + super().__init__() + self.weight = nn.Parameter(torch.ones(hidden_size)) + self.variance_epsilon = eps + + def forward(self, hidden_states): + # MT5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean + # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus varience is calculated + # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for + # half-precision inputs is done in fp32 + + variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) + hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) + + # convert into half-precision if necessary + if self.weight.dtype in [torch.float16, torch.bfloat16]: + hidden_states = hidden_states.to(self.weight.dtype) + + return self.weight * hidden_states + + +# Copied from transformers.models.t5.modeling_t5.T5DenseActDense with T5->MT5 +class MT5DenseActDense(nn.Module): + def __init__(self, config: MT5Config): + super().__init__() + self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_states = self.wi(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.dropout(hidden_states) + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + hidden_states = self.wo(hidden_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_t5.T5DenseGatedActDense with T5->MT5 +class MT5DenseGatedActDense(nn.Module): + def __init__(self, config: MT5Config): + super().__init__() + self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) + self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) + self.dropout = nn.Dropout(config.dropout_rate) + self.act = ACT2FN[config.dense_act_fn] + + def forward(self, hidden_states): + hidden_gelu = self.act(self.wi_0(hidden_states)) + hidden_linear = self.wi_1(hidden_states) + hidden_states = hidden_gelu * hidden_linear + hidden_states = self.dropout(hidden_states) + + # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. + # See https://github.com/huggingface/transformers/issues/20287 + # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` + if ( + isinstance(self.wo.weight, torch.Tensor) + and hidden_states.dtype != self.wo.weight.dtype + and self.wo.weight.dtype != torch.int8 + ): + hidden_states = hidden_states.to(self.wo.weight.dtype) + + hidden_states = self.wo(hidden_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_t5.T5LayerFF with T5->MT5 +class MT5LayerFF(nn.Module): + def __init__(self, config: MT5Config): + super().__init__() + if config.is_gated_act: + self.DenseReluDense = MT5DenseGatedActDense(config) + else: + self.DenseReluDense = MT5DenseActDense(config) + + self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward(self, hidden_states): + forwarded_states = self.layer_norm(hidden_states) + forwarded_states = self.DenseReluDense(forwarded_states) + hidden_states = hidden_states + self.dropout(forwarded_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_t5.T5Attention with T5->MT5 +class MT5Attention(nn.Module): + def __init__(self, config: MT5Config, has_relative_attention_bias=False): + super().__init__() + self.is_decoder = config.is_decoder + self.has_relative_attention_bias = has_relative_attention_bias + self.relative_attention_num_buckets = config.relative_attention_num_buckets + self.relative_attention_max_distance = config.relative_attention_max_distance + self.d_model = config.d_model + self.key_value_proj_dim = config.d_kv + self.n_heads = config.num_heads + self.dropout = config.dropout_rate + self.inner_dim = self.n_heads * self.key_value_proj_dim + + # Mesh TensorFlow initialization to avoid scaling before softmax + self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) + self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) + + if self.has_relative_attention_bias: + self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) + self.pruned_heads = set() + self.gradient_checkpointing = False + + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads + ) + # Prune linear layers + self.q = prune_linear_layer(self.q, index) + self.k = prune_linear_layer(self.k, index) + self.v = prune_linear_layer(self.v, index) + self.o = prune_linear_layer(self.o, index, dim=1) + # Update hyper params + self.n_heads = self.n_heads - len(heads) + self.inner_dim = self.key_value_proj_dim * self.n_heads + self.pruned_heads = self.pruned_heads.union(heads) + + @staticmethod + def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): + """ + Adapted from Mesh Tensorflow: + https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 + + Translate relative position to a bucket number for relative attention. The relative position is defined as + memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to + position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for + small absolute relative_position and larger buckets for larger absolute relative_positions. All relative + positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. + This should allow for more graceful generalization to longer sequences than the model has been trained on + + Args: + relative_position: an int32 Tensor + bidirectional: a boolean - whether the attention is bidirectional + num_buckets: an integer + max_distance: an integer + + Returns: + a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) + """ + relative_buckets = 0 + if bidirectional: + num_buckets //= 2 + relative_buckets += (relative_position > 0).to(torch.long) * num_buckets + relative_position = torch.abs(relative_position) + else: + relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) + # now relative_position is in the range [0, inf) + + # half of the buckets are for exact increments in positions + max_exact = num_buckets // 2 + is_small = relative_position < max_exact + + # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance + relative_position_if_large = max_exact + ( + torch.log(relative_position.float() / max_exact) + / math.log(max_distance / max_exact) + * (num_buckets - max_exact) + ).to(torch.long) + relative_position_if_large = torch.min( + relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) + ) + + relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) + return relative_buckets + + def compute_bias(self, query_length, key_length, device=None): + """Compute binned relative position bias""" + if device is None: + device = self.relative_attention_bias.weight.device + context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] + memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] + relative_position = memory_position - context_position # shape (query_length, key_length) + relative_position_bucket = self._relative_position_bucket( + relative_position, # shape (query_length, key_length) + bidirectional=(not self.is_decoder), + num_buckets=self.relative_attention_num_buckets, + max_distance=self.relative_attention_max_distance, + ) + values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) + values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) + return values + + def forward( + self, + hidden_states, + mask=None, + key_value_states=None, + position_bias=None, + past_key_value=None, + layer_head_mask=None, + query_length=None, + use_cache=False, + output_attentions=False, + ): + """ + Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). + """ + # Input is (batch_size, seq_length, dim) + # Mask is (batch_size, key_length) (non-causal) or (batch_size, key_length, key_length) + # past_key_value[0] is (batch_size, n_heads, q_len - 1, dim_per_head) + batch_size, seq_length = hidden_states.shape[:2] + + real_seq_length = seq_length + + if past_key_value is not None: + if len(past_key_value) != 2: + raise ValueError( + f"past_key_value should have 2 past states: keys and values. Got { len(past_key_value)} past states" + ) + real_seq_length += past_key_value[0].shape[2] if query_length is None else query_length + + key_length = real_seq_length if key_value_states is None else key_value_states.shape[1] + + def shape(states): + """projection""" + return states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) + + def unshape(states): + """reshape""" + return states.transpose(1, 2).contiguous().view(batch_size, -1, self.inner_dim) + + def project(hidden_states, proj_layer, key_value_states, past_key_value): + """projects hidden states correctly to key/query states""" + if key_value_states is None: + # self-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(hidden_states)) + elif past_key_value is None: + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + + if past_key_value is not None: + if key_value_states is None: + # self-attn + # (batch_size, n_heads, key_length, dim_per_head) + hidden_states = torch.cat([past_key_value, hidden_states], dim=2) + elif past_key_value.shape[2] != key_value_states.shape[1]: + # checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + # cross-attn + # (batch_size, n_heads, seq_length, dim_per_head) + hidden_states = shape(proj_layer(key_value_states)) + else: + # cross-attn + hidden_states = past_key_value + return hidden_states + + # get query states + query_states = shape(self.q(hidden_states)) # (batch_size, n_heads, seq_length, dim_per_head) + + # get key/value states + key_states = project( + hidden_states, self.k, key_value_states, past_key_value[0] if past_key_value is not None else None + ) + value_states = project( + hidden_states, self.v, key_value_states, past_key_value[1] if past_key_value is not None else None + ) + + # compute scores + scores = torch.matmul( + query_states, key_states.transpose(3, 2) + ) # equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 + + if position_bias is None: + if not self.has_relative_attention_bias: + position_bias = torch.zeros( + (1, self.n_heads, real_seq_length, key_length), device=scores.device, dtype=scores.dtype + ) + if self.gradient_checkpointing and self.training: + position_bias.requires_grad = True + else: + position_bias = self.compute_bias(real_seq_length, key_length, device=scores.device) + + # if key and values are already calculated + # we want only the last query position bias + if past_key_value is not None: + position_bias = position_bias[:, :, -hidden_states.size(1) :, :] + + if mask is not None: + position_bias = position_bias + mask # (batch_size, n_heads, seq_length, key_length) + + if self.pruned_heads: + mask = torch.ones(position_bias.shape[1]) + mask[list(self.pruned_heads)] = 0 + position_bias_masked = position_bias[:, mask.bool()] + else: + position_bias_masked = position_bias + + scores += position_bias_masked + attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as( + scores + ) # (batch_size, n_heads, seq_length, key_length) + attn_weights = nn.functional.dropout( + attn_weights, p=self.dropout, training=self.training + ) # (batch_size, n_heads, seq_length, key_length) + + # Mask heads if we want to + if layer_head_mask is not None: + attn_weights = attn_weights * layer_head_mask + + attn_output = unshape(torch.matmul(attn_weights, value_states)) # (batch_size, seq_length, dim) + attn_output = self.o(attn_output) + + present_key_value_state = (key_states, value_states) if (self.is_decoder and use_cache) else None + outputs = (attn_output,) + (present_key_value_state,) + (position_bias,) + + if output_attentions: + outputs = outputs + (attn_weights,) + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerSelfAttention with T5->MT5 +class MT5LayerSelfAttention(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.SelfAttention = MT5Attention(config, has_relative_attention_bias=has_relative_attention_bias) + self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.SelfAttention( + normed_hidden_states, + mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = hidden_states + self.dropout(attention_output[0]) + outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5LayerCrossAttention with T5->MT5 +class MT5LayerCrossAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.EncDecAttention = MT5Attention(config, has_relative_attention_bias=False) + self.layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + def forward( + self, + hidden_states, + key_value_states, + attention_mask=None, + position_bias=None, + layer_head_mask=None, + past_key_value=None, + use_cache=False, + query_length=None, + output_attentions=False, + ): + normed_hidden_states = self.layer_norm(hidden_states) + attention_output = self.EncDecAttention( + normed_hidden_states, + mask=attention_mask, + key_value_states=key_value_states, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + query_length=query_length, + output_attentions=output_attentions, + ) + layer_output = hidden_states + self.dropout(attention_output[0]) + outputs = (layer_output,) + attention_output[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.t5.modeling_t5.T5Block with T5->MT5 +class MT5Block(nn.Module): + def __init__(self, config, has_relative_attention_bias=False): + super().__init__() + self.is_decoder = config.is_decoder + self.layer = nn.ModuleList() + self.layer.append(MT5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias)) + if self.is_decoder: + self.layer.append(MT5LayerCrossAttention(config)) + + self.layer.append(MT5LayerFF(config)) + + def forward( + self, + hidden_states, + attention_mask=None, + position_bias=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + encoder_decoder_position_bias=None, + layer_head_mask=None, + cross_attn_layer_head_mask=None, + past_key_value=None, + use_cache=False, + output_attentions=False, + return_dict=True, + ): + if past_key_value is not None: + if not self.is_decoder: + logger.warning("`past_key_values` is passed to the encoder. Please make sure this is intended.") + expected_num_past_key_values = 2 if encoder_hidden_states is None else 4 + + if len(past_key_value) != expected_num_past_key_values: + raise ValueError( + f"There should be {expected_num_past_key_values} past states. " + f"{'2 (key / value) for cross attention. ' if expected_num_past_key_values == 4 else ''}" + f"Got {len(past_key_value)} past key / value states" + ) + + self_attn_past_key_value = past_key_value[:2] + cross_attn_past_key_value = past_key_value[2:] + else: + self_attn_past_key_value, cross_attn_past_key_value = None, None + + self_attention_outputs = self.layer[0]( + hidden_states, + attention_mask=attention_mask, + position_bias=position_bias, + layer_head_mask=layer_head_mask, + past_key_value=self_attn_past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states, present_key_value_state = self_attention_outputs[:2] + attention_outputs = self_attention_outputs[2:] # Keep self-attention outputs and relative position weights + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + do_cross_attention = self.is_decoder and encoder_hidden_states is not None + if do_cross_attention: + # the actual query length is unknown for cross attention + # if using past key value states. Need to inject it here + if present_key_value_state is not None: + query_length = present_key_value_state[0].shape[2] + else: + query_length = None + + cross_attention_outputs = self.layer[1]( + hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + position_bias=encoder_decoder_position_bias, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + query_length=query_length, + use_cache=use_cache, + output_attentions=output_attentions, + ) + hidden_states = cross_attention_outputs[0] + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + # Combine self attn and cross attn key value states + if present_key_value_state is not None: + present_key_value_state = present_key_value_state + cross_attention_outputs[1] + + # Keep cross-attention outputs and relative position weights + attention_outputs = attention_outputs + cross_attention_outputs[2:] + + # Apply Feed Forward layer + hidden_states = self.layer[-1](hidden_states) + + # clamp inf values to enable fp16 training + if hidden_states.dtype == torch.float16: + clamp_value = torch.where( + torch.isinf(hidden_states).any(), + torch.finfo(hidden_states.dtype).max - 1000, + torch.finfo(hidden_states.dtype).max, + ) + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if use_cache: + outputs = outputs + (present_key_value_state,) + attention_outputs + else: + outputs = outputs + attention_outputs + + return outputs # hidden-states, present_key_value_states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + + +def load_tf_weights_in_mt5(model, config, tf_checkpoint_path): + """Load tf checkpoints in a pytorch model.""" + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + tf_weights = {} + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + tf_weights[name] = array + + for txt_name in names: + name = txt_name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v + # which are not required for using pretrained model + if any( + n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + tf_weights.pop(txt_name, None) + continue + if "_slot_" in name[-1]: + logger.info(f"Skipping {'/'.join(name)}") + tf_weights.pop(txt_name, None) + continue + pointer = model + array = tf_weights[txt_name] + + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] in ["kernel", "scale", "embedding"]: + pointer = getattr(pointer, "weight") + elif scope_names[0] == "self_attention": + pointer = getattr(pointer, "layer") + pointer = pointer[0] + elif scope_names[0] == "enc_dec_attention": + pointer = getattr(pointer, "layer") + pointer = pointer[1] + elif scope_names[0] == "dense_relu_dense": + pointer = getattr(pointer, "layer") + pointer = pointer[2] + elif scope_names[0] == "rms_norm": + if hasattr(pointer, "layer_norm"): + pointer = getattr(pointer, "layer_norm") + elif hasattr(pointer, "final_layer_norm"): + pointer = getattr(pointer, "final_layer_norm") + elif scope_names[0] == "scale": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "output_bias" or scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + elif scope_names[0] == "squad": + pointer = getattr(pointer, "classifier") + elif scope_names[0] == "decoder" and name[1] == "logits": + continue + elif scope_names[0] == "logits": + pointer = getattr(pointer, "lm_head") + elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): + pointer = getattr(pointer, f"wi_{scope_names[1]}") + continue + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if scope_names[0] not in ["kernel", "scale", "embedding"]: + pointer = getattr(pointer, "weight") + if scope_names[0] != "embedding": + logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") + array = np.transpose(array) + try: + assert ( + pointer.shape == array.shape + ), f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched" + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + pointer.data = torch.from_numpy(array.astype(np.float32)) + tf_weights.pop(txt_name, None) + + logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") + return model + + +# Copied from transformers.models.t5.modeling_t5.T5ClassificationHead with T5->MT5 +class MT5ClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__(self, config: MT5Config): + super().__init__() + self.dense = nn.Linear(config.d_model, config.d_model) + self.dropout = nn.Dropout(p=config.classifier_dropout) + self.out_proj = nn.Linear(config.d_model, config.num_labels) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +# Copied from transformers.models.t5.modeling_t5.T5PreTrainedModel with T5->MT5, t5->mt5 +class MT5PreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = MT5Config + load_tf_weights = load_tf_weights_in_mt5 + base_model_prefix = "transformer" + is_parallelizable = True + supports_gradient_checkpointing = True + _no_split_modules = ["MT5Block"] + _keep_in_fp32_modules = ["wo"] + + @property + def dummy_inputs(self): + input_ids = torch.tensor(DUMMY_INPUTS) + input_mask = torch.tensor(DUMMY_MASK) + dummy_inputs = { + "decoder_input_ids": input_ids, + "input_ids": input_ids, + "decoder_attention_mask": input_mask, + } + return dummy_inputs + + def _init_weights(self, module): + """Initialize the weights""" + factor = self.config.initializer_factor # Used for testing weights initialization + if isinstance(module, MT5LayerNorm): + module.weight.data.fill_(factor * 1.0) + elif isinstance( + module, + (MT5Model, MT5ForConditionalGeneration, MT5EncoderModel, MT5ForQuestionAnswering), + ): + # Mesh TensorFlow embeddings initialization + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 + module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: + module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) + if hasattr(module, "qa_outputs"): + module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + module.qa_outputs.bias.data.zero_() + elif isinstance(module, MT5ForTokenClassification): + if hasattr(module, "classifier"): + module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) + module.classifier.bias.data.zero_() + elif isinstance(module, MT5ClassificationHead): + module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.dense, "bias") and module.dense.bias is not None: + module.dense.bias.data.zero_() + module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: + module.out_proj.bias.data.zero_() + elif isinstance(module, MT5DenseActDense): + # Mesh TensorFlow FF initialization + # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 + # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 + module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi, "bias") and module.wi.bias is not None: + module.wi.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, MT5DenseGatedActDense): + module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: + module.wi_0.bias.data.zero_() + module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) + if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: + module.wi_1.bias.data.zero_() + module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) + if hasattr(module.wo, "bias") and module.wo.bias is not None: + module.wo.bias.data.zero_() + elif isinstance(module, MT5Attention): + # Mesh TensorFlow attention initialization to avoid scaling before softmax + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 + d_model = self.config.d_model + key_value_proj_dim = self.config.d_kv + n_heads = self.config.num_heads + module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) + module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) + module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) + if module.has_relative_attention_bias: + module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) + + def _shift_right(self, input_ids): + decoder_start_token_id = self.config.decoder_start_token_id + pad_token_id = self.config.pad_token_id + + if decoder_start_token_id is None: + raise ValueError( + "self.model.config.decoder_start_token_id has to be defined. In MT5 it is usually set to the pad_token_id. " + "See MT5 docs for more information." + ) + + # shift inputs to the right + if is_torch_fx_proxy(input_ids): + # Item assignment is not supported natively for proxies. + shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) + shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) + else: + shifted_input_ids = input_ids.new_zeros(input_ids.shape) + shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() + shifted_input_ids[..., 0] = decoder_start_token_id + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) + + return shifted_input_ids + + +# Copied from transformers.models.t5.modeling_t5.T5Stack with T5->MT5 +class MT5Stack(MT5PreTrainedModel): + def __init__(self, config, embed_tokens=None): + super().__init__(config) + + self.embed_tokens = embed_tokens + self.is_decoder = config.is_decoder + + self.block = nn.ModuleList( + [MT5Block(config, has_relative_attention_bias=bool(i == 0)) for i in range(config.num_layers)] + ) + self.final_layer_norm = MT5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) + self.dropout = nn.Dropout(config.dropout_rate) + + # Initialize weights and apply final processing + self.post_init() + # Model parallel + self.model_parallel = False + self.device_map = None + self.gradient_checkpointing = False + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + def parallelize(self, device_map=None): + warnings.warn( + "`MT5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" + " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," + " 'block.1': 1, ...}", + FutureWarning, + ) + # Check validity of device_map + self.device_map = ( + get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map + ) + assert_device_map(self.device_map, len(self.block)) + self.model_parallel = True + self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) + self.last_device = "cuda:" + str(max(self.device_map.keys())) + # Load onto devices + for k, v in self.device_map.items(): + for layer in v: + cuda_device = "cuda:" + str(k) + self.block[layer] = self.block[layer].to(cuda_device) + + # Set embed_tokens to first layer + self.embed_tokens = self.embed_tokens.to(self.first_device) + # Set final layer norm to last device + self.final_layer_norm = self.final_layer_norm.to(self.last_device) + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.model_parallel = False + self.device_map = None + self.first_device = "cpu" + self.last_device = "cpu" + for i in range(len(self.block)): + self.block[i] = self.block[i].to("cpu") + self.embed_tokens = self.embed_tokens.to("cpu") + self.final_layer_norm = self.final_layer_norm.to("cpu") + torch.cuda.empty_cache() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, new_embeddings): + self.embed_tokens = new_embeddings + + def forward( + self, + input_ids=None, + attention_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + inputs_embeds=None, + head_mask=None, + cross_attn_head_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=None, + output_hidden_states=None, + return_dict=None, + ): + # Model parallel + if self.model_parallel: + torch.cuda.set_device(self.first_device) + self.embed_tokens = self.embed_tokens.to(self.first_device) + use_cache = use_cache if use_cache is not None else self.config.use_cache + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError( + f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" + ) + elif input_ids is not None: + input_shape = input_ids.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + err_msg_prefix = "decoder_" if self.is_decoder else "" + raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") + + if inputs_embeds is None: + if self.embed_tokens is None: + raise ValueError("You have to initialize the model with valid token embeddings") + inputs_embeds = self.embed_tokens(input_ids) + + batch_size, seq_length = input_shape + + # required mask seq length can be calculated via length of past + mask_seq_length = past_key_values[0][0].shape[2] + seq_length if past_key_values is not None else seq_length + + if use_cache is True: + if not self.is_decoder: + raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") + + # initialize past_key_values with `None` if past does not exist + if past_key_values is None: + past_key_values = [None] * len(self.block) + + if attention_mask is None: + attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D or 3D attention mask is provided for the cross-attention + # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] + if self.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones( + encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long + ) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." + ) + use_cache = False + + # Prepare head mask if needed + head_mask = self.get_head_mask(head_mask, self.config.num_layers) + cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) + present_key_value_states = () if use_cache else None + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if (output_attentions and self.is_decoder) else None + position_bias = None + encoder_decoder_position_bias = None + + hidden_states = self.dropout(inputs_embeds) + + for i, (layer_module, past_key_value) in enumerate(zip(self.block, past_key_values)): + layer_head_mask = head_mask[i] + cross_attn_layer_head_mask = cross_attn_head_mask[i] + # Model parallel + if self.model_parallel: + torch.cuda.set_device(hidden_states.device) + # Ensure that attention_mask is always on the same device as hidden_states + if attention_mask is not None: + attention_mask = attention_mask.to(hidden_states.device) + if position_bias is not None: + position_bias = position_bias.to(hidden_states.device) + if encoder_hidden_states is not None: + encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) + if encoder_extended_attention_mask is not None: + encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) + if encoder_decoder_position_bias is not None: + encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) + if layer_head_mask is not None: + layer_head_mask = layer_head_mask.to(hidden_states.device) + if cross_attn_layer_head_mask is not None: + cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.forward, + hidden_states, + extended_attention_mask, + position_bias, + encoder_hidden_states, + encoder_extended_attention_mask, + encoder_decoder_position_bias, + layer_head_mask, + cross_attn_layer_head_mask, + None, # past_key_value is always None with gradient checkpointing + use_cache, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask=extended_attention_mask, + position_bias=position_bias, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + encoder_decoder_position_bias=encoder_decoder_position_bias, + layer_head_mask=layer_head_mask, + cross_attn_layer_head_mask=cross_attn_layer_head_mask, + past_key_value=past_key_value, + use_cache=use_cache, + output_attentions=output_attentions, + ) + + # layer_outputs is a tuple with: + # hidden-states, key-value-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) + if use_cache is False: + layer_outputs = layer_outputs[:1] + (None,) + layer_outputs[1:] + + hidden_states, present_key_value_state = layer_outputs[:2] + + # We share the position biases between the layers - the first layer store them + # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), + # (cross-attention position bias), (cross-attention weights) + position_bias = layer_outputs[2] + if self.is_decoder and encoder_hidden_states is not None: + encoder_decoder_position_bias = layer_outputs[4 if output_attentions else 3] + # append next layer key value states + if use_cache: + present_key_value_states = present_key_value_states + (present_key_value_state,) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[3],) + if self.is_decoder: + all_cross_attentions = all_cross_attentions + (layer_outputs[5],) + + # Model Parallel: If it's the last layer for that device, put things on the next device + if self.model_parallel: + for k, v in self.device_map.items(): + if i == v[-1] and "cuda:" + str(k) != self.last_device: + hidden_states = hidden_states.to("cuda:" + str(k + 1)) + + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.dropout(hidden_states) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v + for v in [ + hidden_states, + present_key_value_states, + all_hidden_states, + all_attentions, + all_cross_attentions, + ] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_value_states, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + +MT5_START_DOCSTRING = r""" + + The MT5 model was proposed in [Exploring the Limits of Transfer Learning with a Unified Text-to-Text + Transformer](https://arxiv.org/abs/1910.10683) by Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan + Narang, Michael Matena, Yanqi Zhou, Wei Li, Peter J. Liu. It's an encoder decoder transformer pre-trained in a + text-to-text denoising generative setting. + + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MT5Config`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MT5_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + [What are input IDs?](../glossary#input-ids) + + To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + MT5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` + is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). + + To know more on how to prepare `decoder_input_ids` for pretraining take a look at [MT5 + Training](./mt5#training). + decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the encoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in + `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, `optional`: *hidden_states*, `optional`: *attentions*) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)` is a sequence of hidden states at + the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +MT5_ENCODER_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. MT5 is a model with relative position embeddings so you + should be able to pad the inputs on both the right and the left. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for detail. + + To know more on how to prepare `input_ids` for pretraining take a look a [MT5 Training](./mt5#training). + attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +# Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask +__HEAD_MASK_WARNING_MSG = """ +The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, +`decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. +If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, +num_heads)`. +""" + + +@add_start_docstrings( + "The bare MT5 Model transformer outputting raw hidden-states without any specific head on top.", + MT5_START_DOCSTRING, +) +class MT5Model(MT5PreTrainedModel): + r""" + Examples: + + ```python + >>> from transformers import MT5Model, AutoTokenizer + + >>> model = MT5Model.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, return_tensors="pt") + >>> labels = tokenizer(text_target=summary, return_tensors="pt") + + >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) + >>> hidden_states = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5Model.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = MT5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = MT5Stack(decoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5Model.parallelize + def parallelize(self, device_map=None): + warnings.warn( + "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" + " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" + " 0, 'encoder.block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.decoder.parallelize(self.device_map) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5Model.deparallelize + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.decoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.decoder = self.decoder.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + # Copied from transformers.models.t5.modeling_t5.T5Model.get_input_embeddings + def get_input_embeddings(self): + return self.shared + + # Copied from transformers.models.t5.modeling_t5.T5Model.set_input_embeddings + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + # Copied from transformers.models.t5.modeling_t5.T5Model.get_encoder + def get_encoder(self): + return self.encoder + + # Copied from transformers.models.t5.modeling_t5.T5Model.get_decoder + def get_decoder(self): + return self.decoder + + # Copied from transformers.models.t5.modeling_t5.T5Model._prune_heads + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqModelOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5Model.forward with T5->MT5, t5->mt5 + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.Tensor] = None, + decoder_inputs_embeds: Optional[torch.Tensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MT5Model + + >>> tokenizer = AutoTokenizer.from_pretrained("google-mt5/mt5-small") + >>> model = MT5Model.from_pretrained("google-mt5/mt5-small") + + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 + + >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for MT5Model. + >>> # This is not needed for torch's MT5ForConditionalGeneration as it does this internally using labels arg. + >>> decoder_input_ids = model._shift_right(decoder_input_ids) + + >>> # forward pass + >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + hidden_states = hidden_states.to(self.decoder.first_device) + if decoder_input_ids is not None: + decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) + if attention_mask is not None: + attention_mask = attention_mask.to(self.decoder.first_device) + if decoder_attention_mask is not None: + decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings("""MT5 Model with a `language modeling` head on top.""", MT5_START_DOCSTRING) +class MT5ForConditionalGeneration(MT5PreTrainedModel): + r""" + Examples: + + ```python + >>> from transformers import MT5ForConditionalGeneration, AutoTokenizer + + >>> model = MT5ForConditionalGeneration.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, text_target=summary, return_tensors="pt") + + >>> outputs = model(**inputs) + >>> loss = outputs.loss + ```""" + + model_type = "mt5" + config_class = MT5Config + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.model_dim = config.d_model + + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = MT5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = MT5Stack(decoder_config, self.shared) + + self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.parallelize + def parallelize(self, device_map=None): + warnings.warn( + "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" + " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" + " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" + " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.decoder.parallelize(self.device_map) + self.lm_head = self.lm_head.to(self.decoder.first_device) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.deparallelize + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.decoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.decoder = self.decoder.to("cpu") + self.lm_head = self.lm_head.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_input_embeddings + def get_input_embeddings(self): + return self.shared + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_input_embeddings + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.set_output_embeddings + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_output_embeddings + def get_output_embeddings(self): + return self.lm_head + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_encoder + def get_encoder(self): + return self.encoder + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.get_decoder + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.forward with T5->MT5, t5->mt5 + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., + config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for + labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, MT5ForConditionalGeneration + + >>> tokenizer = AutoTokenizer.from_pretrained("google-mt5/mt5-small") + >>> model = MT5ForConditionalGeneration.from_pretrained("google-mt5/mt5-small") + + >>> # training + >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids + >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids + >>> outputs = model(input_ids=input_ids, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + + >>> # inference + >>> input_ids = tokenizer( + ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model.generate(input_ids) + >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) + >>> # studies have shown that owning a dog is good for you. + ```""" + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + # Convert encoder inputs in embeddings if needed + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + + if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: + # get decoder inputs from shifting lm labels to the right + decoder_input_ids = self._shift_right(labels) + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.decoder.first_device) + hidden_states = hidden_states.to(self.decoder.first_device) + if decoder_input_ids is not None: + decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) + if attention_mask is not None: + attention_mask = attention_mask.to(self.decoder.first_device) + if decoder_attention_mask is not None: + decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=past_key_values, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + # Set device for model parallelism + if self.model_parallel: + torch.cuda.set_device(self.encoder.first_device) + self.lm_head = self.lm_head.to(self.encoder.first_device) + sequence_output = sequence_output.to(self.lm_head.weight.device) + + if self.config.tie_word_embeddings: + # Rescale output before projecting on vocab + # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 + sequence_output = sequence_output * (self.model_dim**-0.5) + + lm_logits = self.lm_head(sequence_output) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss(ignore_index=-100) + # move labels to correct device to enable PP + labels = labels.to(lm_logits.device) + loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) + # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 + + if not return_dict: + output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs + return ((loss,) + output) if loss is not None else output + + return Seq2SeqLMOutput( + loss=loss, + logits=lm_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + decoder_attention_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + + return { + "decoder_input_ids": input_ids, + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "decoder_attention_mask": decoder_attention_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, + } + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration.prepare_decoder_input_ids_from_labels + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return self._shift_right(labels) + + # Copied from transformers.models.t5.modeling_t5.T5ForConditionalGeneration._reorder_cache + def _reorder_cache(self, past_key_values, beam_idx): + # if decoder past is not included in output + # speedy decoding is disabled and no need to reorder + if past_key_values is None: + logger.warning("You might want to consider setting `use_cache=True` to speed up decoding") + return past_key_values + + reordered_decoder_past = () + for layer_past_states in past_key_values: + # get the correct batch idx from layer past batch dim + # batch dim of `past` is at 2nd position + reordered_layer_past_states = () + for layer_past_state in layer_past_states: + # need to set correct `past` for each of the four key / value states + reordered_layer_past_states = reordered_layer_past_states + ( + layer_past_state.index_select(0, beam_idx.to(layer_past_state.device)), + ) + + if reordered_layer_past_states[0].shape != layer_past_states[0].shape: + raise ValueError( + f"reordered_layer_past_states[0] shape {reordered_layer_past_states[0].shape} and layer_past_states[0] shape {layer_past_states[0].shape} mismatched" + ) + if len(reordered_layer_past_states) != len(layer_past_states): + raise ValueError( + f"length of reordered_layer_past_states {len(reordered_layer_past_states)} and length of layer_past_states {len(layer_past_states)} mismatched" + ) + + reordered_decoder_past = reordered_decoder_past + (reordered_layer_past_states,) + return reordered_decoder_past + + +@add_start_docstrings( + "The bare MT5 Model transformer outputting encoder's raw hidden-states without any specific head on top.", + MT5_START_DOCSTRING, +) +class MT5EncoderModel(MT5PreTrainedModel): + r""" + Examples: + + ```python + >>> from transformers import MT5EncoderModel, AutoTokenizer + + >>> model = MT5EncoderModel.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> input_ids = tokenizer(article, return_tensors="pt").input_ids + >>> outputs = model(input_ids) + >>> hidden_state = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config + _tied_weights_keys = ["encoder.embed_tokens.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = MT5Stack(encoder_config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + # Model parallel + self.model_parallel = False + self.device_map = None + + @add_start_docstrings(PARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.parallelize + def parallelize(self, device_map=None): + warnings.warn( + "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" + " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" + " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," + " 'block.1': 1, ...}", + FutureWarning, + ) + self.device_map = ( + get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) + if device_map is None + else device_map + ) + assert_device_map(self.device_map, len(self.encoder.block)) + self.encoder.parallelize(self.device_map) + self.model_parallel = True + + @add_start_docstrings(DEPARALLELIZE_DOCSTRING) + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.deparallelize + def deparallelize(self): + warnings.warn( + "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", + FutureWarning, + ) + self.encoder.deparallelize() + self.encoder = self.encoder.to("cpu") + self.model_parallel = False + self.device_map = None + torch.cuda.empty_cache() + + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_input_embeddings + def get_input_embeddings(self): + return self.shared + + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.set_input_embeddings + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.get_encoder + def get_encoder(self): + return self.encoder + + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel._prune_heads + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(MT5_ENCODER_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=BaseModelOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5EncoderModel.forward with T5->MT5, t5->mt5 + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], BaseModelOutput]: + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MT5EncoderModel + + >>> tokenizer = AutoTokenizer.from_pretrained("google-mt5/mt5-small") + >>> model = MT5EncoderModel.from_pretrained("google-mt5/mt5-small") + >>> input_ids = tokenizer( + ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" + ... ).input_ids # Batch size 1 + >>> outputs = model(input_ids=input_ids) + >>> last_hidden_states = outputs.last_hidden_state + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + return encoder_outputs + + +@add_start_docstrings( + """ + MT5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + MT5_START_DOCSTRING, +) +class MT5ForSequenceClassification(MT5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.transformer = MT5Model(config) + self.classification_head = MT5ClassificationHead(config) + + # Initialize weights and apply final processing + self.post_init() + + self.model_parallel = False + + @add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5ForSequenceClassification.forward + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + if input_ids is None and inputs_embeds is not None: + raise NotImplementedError( + f"Passing input embeddings is currently not supported for {self.__class__.__name__}" + ) + + # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates + # decoder_input_ids from input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + if input_ids is None: + raise ValueError( + "If no `decoder_input_ids` or `decoder_inputs_embeds` are " + "passed, `input_ids` cannot be `None`. Please pass either " + "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." + ) + decoder_input_ids = self._shift_right(input_ids) + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = outputs[0] + + eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) + + if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + batch_size, _, hidden_size = sequence_output.shape + sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] + logits = self.classification_head(sentence_representation) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSequenceClassifierOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MT5 Encoder Model with a token classification head on top (a linear layer on top of the hidden-states output) + e.g. for Named-Entity-Recognition (NER) tasks. + """, + MT5_START_DOCSTRING, +) +class MT5ForTokenClassification(MT5PreTrainedModel): + _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.num_labels = config.num_labels + + self.transformer = MT5EncoderModel(config) + self.dropout = nn.Dropout(config.classifier_dropout) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TokenClassifierOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5ForTokenClassification.forward with T5->MT5 + def forward( + self, + input_ids: Optional[torch.Tensor] = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.Tensor] = None, + labels: Optional[torch.Tensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], TokenClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.transformer( + input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + hidden_states = outputs[0] + hidden_states = self.dropout(hidden_states) + logits = self.classifier(hidden_states) + + loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + + if not return_dict: + output = (logits, outputs[2:-1]) + return ((loss,) + output) if loss is not None else output + + return TokenClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + MT5 Model with a span classification head on top for extractive question-answering tasks like SQuAD (linear layers + on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MT5_START_DOCSTRING, +) +class MT5ForQuestionAnswering(MT5PreTrainedModel): + _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.__init__ with T5->MT5 + def __init__(self, config: MT5Config): + super().__init__(config) + self.model_dim = config.d_model + + self.shared = nn.Embedding(config.vocab_size, config.d_model) + + encoder_config = copy.deepcopy(config) + encoder_config.is_decoder = False + encoder_config.use_cache = False + encoder_config.is_encoder_decoder = False + self.encoder = MT5Stack(encoder_config, self.shared) + + decoder_config = copy.deepcopy(config) + decoder_config.is_decoder = True + decoder_config.is_encoder_decoder = False + decoder_config.num_layers = config.num_decoder_layers + self.decoder = MT5Stack(decoder_config, self.shared) + + self.num_labels = config.num_labels + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + self.model_parallel = False + + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_input_embeddings + def get_input_embeddings(self): + return self.shared + + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.set_input_embeddings + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.set_input_embeddings(new_embeddings) + self.decoder.set_input_embeddings(new_embeddings) + + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_encoder + def get_encoder(self): + return self.encoder + + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.get_decoder + def get_decoder(self): + return self.decoder + + @add_start_docstrings_to_model_forward(MT5_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqQuestionAnsweringModelOutput, config_class=_CONFIG_FOR_DOC) + # Copied from transformers.models.t5.modeling_t5.T5ForQuestionAnswering.forward + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.BoolTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + decoder_head_mask: Optional[torch.FloatTensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.Tensor]]] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + Returns: + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + if start_positions is not None and end_positions is not None: + use_cache = False + + # Copied from models.bart.modeling_bart.BartModel.forward + # different to other models, T5 automatically creates decoder_input_ids from + # input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + if input_ids is None: + raise ValueError( + "If no `decoder_input_ids` or `decoder_inputs_embeds` are " + "passed, `input_ids` cannot be `None`. Please pass either " + "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." + ) + decoder_input_ids = self._shift_right(input_ids) + + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask + if head_mask is not None and decoder_head_mask is None: + if self.config.num_layers == self.config.num_decoder_layers: + warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) + decoder_head_mask = head_mask + + # Encode if needed (training, first prediction pass) + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + inputs_embeds=inputs_embeds, + head_mask=head_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + hidden_states = encoder_outputs[0] + + # Decode + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + inputs_embeds=decoder_inputs_embeds, + past_key_values=None, + encoder_hidden_states=hidden_states, + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = decoder_outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1).to(start_logits.device) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1).to(end_logits.device) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs + return ((total_loss,) + output) if total_loss is not None else output + + return Seq2SeqQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_tf_mt5.py b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_tf_mt5.py new file mode 100644 index 0000000000000000000000000000000000000000..f8350eb19798d3c548aa3e381c3ab0e0035807e0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mt5/modeling_tf_mt5.py @@ -0,0 +1,95 @@ +# coding=utf-8 +# Copyright 2020 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tensorflow mT5 model.""" + +from ...utils import logging +from ..t5.modeling_tf_t5 import TFT5EncoderModel, TFT5ForConditionalGeneration, TFT5Model +from .configuration_mt5 import MT5Config + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "T5Config" + + +class TFMT5Model(TFT5Model): + r""" + This class overrides [`TFT5Model`]. Please check the superclass for the appropriate documentation alongside usage + examples. + + Examples: + + ```python + >>> from transformers import TFMT5Model, AutoTokenizer + + >>> model = TFMT5Model.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, return_tensors="tf") + >>> labels = tokenizer(text_target=summary, return_tensors="tf") + + >>> outputs = model(input_ids=inputs["input_ids"], decoder_input_ids=labels["input_ids"]) + >>> hidden_states = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config + + +class TFMT5ForConditionalGeneration(TFT5ForConditionalGeneration): + r""" + This class overrides [`TFT5ForConditionalGeneration`]. Please check the superclass for the appropriate + documentation alongside usage examples. + + Examples: + + ```python + >>> from transformers import TFMT5ForConditionalGeneration, AutoTokenizer + + >>> model = TFMT5ForConditionalGeneration.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> summary = "Weiter Verhandlung in Syrien." + >>> inputs = tokenizer(article, text_target=summary, return_tensors="tf") + + >>> outputs = model(**inputs) + >>> loss = outputs.loss + ```""" + + model_type = "mt5" + config_class = MT5Config + + +class TFMT5EncoderModel(TFT5EncoderModel): + r""" + This class overrides [`TFT5EncoderModel`]. Please check the superclass for the appropriate documentation alongside + usage examples. + + Examples: + + ```python + >>> from transformers import TFMT5EncoderModel, AutoTokenizer + + >>> model = TFMT5EncoderModel.from_pretrained("google/mt5-small") + >>> tokenizer = AutoTokenizer.from_pretrained("google/mt5-small") + >>> article = "UN Offizier sagt, dass weiter verhandelt werden muss in Syrien." + >>> input_ids = tokenizer(article, return_tensors="tf").input_ids + >>> outputs = model(input_ids) + >>> hidden_state = outputs.last_hidden_state + ```""" + + model_type = "mt5" + config_class = MT5Config