applied-ai-018 commited on
Commit
ad58d47
·
verified ·
1 Parent(s): 8094538

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/21.attention.dense.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/6.input_layernorm.weight/fp32.pt +3 -0
  3. ckpts/universal/global_step40/zero/9.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step40/zero/9.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
  5. venv/lib/python3.10/site-packages/nltk/inference/__init__.py +24 -0
  6. venv/lib/python3.10/site-packages/nltk/inference/__pycache__/api.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/nltk/inference/__pycache__/discourse.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/nltk/inference/__pycache__/mace.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/nltk/inference/__pycache__/resolution.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/nltk/inference/__pycache__/tableau.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/nltk/inference/discourse.py +651 -0
  12. venv/lib/python3.10/site-packages/nltk/inference/mace.py +383 -0
  13. venv/lib/python3.10/site-packages/nltk/inference/prover9.py +508 -0
  14. venv/lib/python3.10/site-packages/nltk/inference/tableau.py +712 -0
  15. venv/lib/python3.10/site-packages/nltk/test/__init__.py +18 -0
  16. venv/lib/python3.10/site-packages/nltk/test/all.py +25 -0
  17. venv/lib/python3.10/site-packages/nltk/test/bleu.doctest +29 -0
  18. venv/lib/python3.10/site-packages/nltk/test/bnc.doctest +60 -0
  19. venv/lib/python3.10/site-packages/nltk/test/ccg.doctest +376 -0
  20. venv/lib/python3.10/site-packages/nltk/test/ccg_semantics.doctest +552 -0
  21. venv/lib/python3.10/site-packages/nltk/test/chat80.doctest +232 -0
  22. venv/lib/python3.10/site-packages/nltk/test/childes.doctest +190 -0
  23. venv/lib/python3.10/site-packages/nltk/test/childes_fixt.py +13 -0
  24. venv/lib/python3.10/site-packages/nltk/test/chunk.doctest +372 -0
  25. venv/lib/python3.10/site-packages/nltk/test/classify.doctest +202 -0
  26. venv/lib/python3.10/site-packages/nltk/test/classify_fixt.py +5 -0
  27. venv/lib/python3.10/site-packages/nltk/test/collections.doctest +31 -0
  28. venv/lib/python3.10/site-packages/nltk/test/collocations.doctest +307 -0
  29. venv/lib/python3.10/site-packages/nltk/test/concordance.doctest +75 -0
  30. venv/lib/python3.10/site-packages/nltk/test/conftest.py +33 -0
  31. venv/lib/python3.10/site-packages/nltk/test/corpus.doctest +0 -0
  32. venv/lib/python3.10/site-packages/nltk/test/crubadan.doctest +65 -0
  33. venv/lib/python3.10/site-packages/nltk/test/data.doctest +387 -0
  34. venv/lib/python3.10/site-packages/nltk/test/dependency.doctest +241 -0
  35. venv/lib/python3.10/site-packages/nltk/test/discourse.doctest +552 -0
  36. venv/lib/python3.10/site-packages/nltk/test/drt.doctest +515 -0
  37. venv/lib/python3.10/site-packages/nltk/test/featgram.doctest +610 -0
  38. venv/lib/python3.10/site-packages/nltk/test/featstruct.doctest +1229 -0
  39. venv/lib/python3.10/site-packages/nltk/test/framenet.doctest +288 -0
  40. venv/lib/python3.10/site-packages/nltk/test/generate.doctest +78 -0
  41. venv/lib/python3.10/site-packages/nltk/test/gensim.doctest +141 -0
  42. venv/lib/python3.10/site-packages/nltk/test/gensim_fixt.py +4 -0
  43. venv/lib/python3.10/site-packages/nltk/test/gluesemantics.doctest +383 -0
  44. venv/lib/python3.10/site-packages/nltk/test/gluesemantics_malt.doctest +69 -0
  45. venv/lib/python3.10/site-packages/nltk/test/gluesemantics_malt_fixt.py +9 -0
  46. venv/lib/python3.10/site-packages/nltk/test/grammar.doctest +69 -0
  47. venv/lib/python3.10/site-packages/nltk/test/grammartestsuites.doctest +109 -0
  48. venv/lib/python3.10/site-packages/nltk/test/index.doctest +100 -0
  49. venv/lib/python3.10/site-packages/nltk/test/inference.doctest +536 -0
  50. venv/lib/python3.10/site-packages/nltk/test/internals.doctest +161 -0
ckpts/universal/global_step40/zero/21.attention.dense.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f09dc5e3d1f2fe00de5384020d14c0ee5fc3fa0bab27d7faefaa38bd2363308
3
+ size 16778396
ckpts/universal/global_step40/zero/6.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b074d879d2851f59ad55ac4cab24e0ed9d2d60b6f4f5bca4ffb03065da84fd47
3
+ size 9293
ckpts/universal/global_step40/zero/9.mlp.dense_h_to_4h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a41a58055098f1e089395656f9f2e10d72480b0ea255e5b8678079a7ff642450
3
+ size 33555627
ckpts/universal/global_step40/zero/9.mlp.dense_h_to_4h.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05242d2dd26391d8ddc050af5a04fdbe12fd8abb28b40782e791565f7d7f37bd
3
+ size 33555533
venv/lib/python3.10/site-packages/nltk/inference/__init__.py ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Inference
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Dan Garrette <[email protected]>
5
+ # Ewan Klein <[email protected]>
6
+ #
7
+ # URL: <https://www.nltk.org/>
8
+ # For license information, see LICENSE.TXT
9
+
10
+ """
11
+ Classes and interfaces for theorem proving and model building.
12
+ """
13
+
14
+ from nltk.inference.api import ParallelProverBuilder, ParallelProverBuilderCommand
15
+ from nltk.inference.discourse import (
16
+ CfgReadingCommand,
17
+ DiscourseTester,
18
+ DrtGlueReadingCommand,
19
+ ReadingCommand,
20
+ )
21
+ from nltk.inference.mace import Mace, MaceCommand
22
+ from nltk.inference.prover9 import Prover9, Prover9Command
23
+ from nltk.inference.resolution import ResolutionProver, ResolutionProverCommand
24
+ from nltk.inference.tableau import TableauProver, TableauProverCommand
venv/lib/python3.10/site-packages/nltk/inference/__pycache__/api.cpython-310.pyc ADDED
Binary file (19.1 kB). View file
 
venv/lib/python3.10/site-packages/nltk/inference/__pycache__/discourse.cpython-310.pyc ADDED
Binary file (20.8 kB). View file
 
venv/lib/python3.10/site-packages/nltk/inference/__pycache__/mace.cpython-310.pyc ADDED
Binary file (10.6 kB). View file
 
venv/lib/python3.10/site-packages/nltk/inference/__pycache__/resolution.cpython-310.pyc ADDED
Binary file (21.4 kB). View file
 
venv/lib/python3.10/site-packages/nltk/inference/__pycache__/tableau.cpython-310.pyc ADDED
Binary file (18.2 kB). View file
 
venv/lib/python3.10/site-packages/nltk/inference/discourse.py ADDED
@@ -0,0 +1,651 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Discourse Processing
2
+ #
3
+ # Author: Ewan Klein <[email protected]>
4
+ # Dan Garrette <[email protected]>
5
+ #
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ r"""
10
+ Module for incrementally developing simple discourses, and checking for semantic ambiguity,
11
+ consistency and informativeness.
12
+
13
+ Many of the ideas are based on the CURT family of programs of Blackburn and Bos
14
+ (see http://homepages.inf.ed.ac.uk/jbos/comsem/book1.html).
15
+
16
+ Consistency checking is carried out by using the ``mace`` module to call the Mace4 model builder.
17
+ Informativeness checking is carried out with a call to ``Prover.prove()`` from
18
+ the ``inference`` module.
19
+
20
+ ``DiscourseTester`` is a constructor for discourses.
21
+ The basic data structure is a list of sentences, stored as ``self._sentences``. Each sentence in the list
22
+ is assigned a "sentence ID" (``sid``) of the form ``s``\ *i*. For example::
23
+
24
+ s0: A boxer walks
25
+ s1: Every boxer chases a girl
26
+
27
+ Each sentence can be ambiguous between a number of readings, each of which receives a
28
+ "reading ID" (``rid``) of the form ``s``\ *i* -``r``\ *j*. For example::
29
+
30
+ s0 readings:
31
+
32
+ s0-r1: some x.(boxer(x) & walk(x))
33
+ s0-r0: some x.(boxerdog(x) & walk(x))
34
+
35
+ A "thread" is a list of readings, represented as a list of ``rid``\ s.
36
+ Each thread receives a "thread ID" (``tid``) of the form ``d``\ *i*.
37
+ For example::
38
+
39
+ d0: ['s0-r0', 's1-r0']
40
+
41
+ The set of all threads for a discourse is the Cartesian product of all the readings of the sequences of sentences.
42
+ (This is not intended to scale beyond very short discourses!) The method ``readings(filter=True)`` will only show
43
+ those threads which are consistent (taking into account any background assumptions).
44
+ """
45
+
46
+ import os
47
+ from abc import ABCMeta, abstractmethod
48
+ from functools import reduce
49
+ from operator import add, and_
50
+
51
+ from nltk.data import show_cfg
52
+ from nltk.inference.mace import MaceCommand
53
+ from nltk.inference.prover9 import Prover9Command
54
+ from nltk.parse import load_parser
55
+ from nltk.parse.malt import MaltParser
56
+ from nltk.sem.drt import AnaphoraResolutionException, resolve_anaphora
57
+ from nltk.sem.glue import DrtGlue
58
+ from nltk.sem.logic import Expression
59
+ from nltk.tag import RegexpTagger
60
+
61
+
62
+ class ReadingCommand(metaclass=ABCMeta):
63
+ @abstractmethod
64
+ def parse_to_readings(self, sentence):
65
+ """
66
+ :param sentence: the sentence to read
67
+ :type sentence: str
68
+ """
69
+
70
+ def process_thread(self, sentence_readings):
71
+ """
72
+ This method should be used to handle dependencies between readings such
73
+ as resolving anaphora.
74
+
75
+ :param sentence_readings: readings to process
76
+ :type sentence_readings: list(Expression)
77
+ :return: the list of readings after processing
78
+ :rtype: list(Expression)
79
+ """
80
+ return sentence_readings
81
+
82
+ @abstractmethod
83
+ def combine_readings(self, readings):
84
+ """
85
+ :param readings: readings to combine
86
+ :type readings: list(Expression)
87
+ :return: one combined reading
88
+ :rtype: Expression
89
+ """
90
+
91
+ @abstractmethod
92
+ def to_fol(self, expression):
93
+ """
94
+ Convert this expression into a First-Order Logic expression.
95
+
96
+ :param expression: an expression
97
+ :type expression: Expression
98
+ :return: a FOL version of the input expression
99
+ :rtype: Expression
100
+ """
101
+
102
+
103
+ class CfgReadingCommand(ReadingCommand):
104
+ def __init__(self, gramfile=None):
105
+ """
106
+ :param gramfile: name of file where grammar can be loaded
107
+ :type gramfile: str
108
+ """
109
+ self._gramfile = (
110
+ gramfile if gramfile else "grammars/book_grammars/discourse.fcfg"
111
+ )
112
+ self._parser = load_parser(self._gramfile)
113
+
114
+ def parse_to_readings(self, sentence):
115
+ """:see: ReadingCommand.parse_to_readings()"""
116
+ from nltk.sem import root_semrep
117
+
118
+ tokens = sentence.split()
119
+ trees = self._parser.parse(tokens)
120
+ return [root_semrep(tree) for tree in trees]
121
+
122
+ def combine_readings(self, readings):
123
+ """:see: ReadingCommand.combine_readings()"""
124
+ return reduce(and_, readings)
125
+
126
+ def to_fol(self, expression):
127
+ """:see: ReadingCommand.to_fol()"""
128
+ return expression
129
+
130
+
131
+ class DrtGlueReadingCommand(ReadingCommand):
132
+ def __init__(self, semtype_file=None, remove_duplicates=False, depparser=None):
133
+ """
134
+ :param semtype_file: name of file where grammar can be loaded
135
+ :param remove_duplicates: should duplicates be removed?
136
+ :param depparser: the dependency parser
137
+ """
138
+ if semtype_file is None:
139
+ semtype_file = os.path.join(
140
+ "grammars", "sample_grammars", "drt_glue.semtype"
141
+ )
142
+ self._glue = DrtGlue(
143
+ semtype_file=semtype_file,
144
+ remove_duplicates=remove_duplicates,
145
+ depparser=depparser,
146
+ )
147
+
148
+ def parse_to_readings(self, sentence):
149
+ """:see: ReadingCommand.parse_to_readings()"""
150
+ return self._glue.parse_to_meaning(sentence)
151
+
152
+ def process_thread(self, sentence_readings):
153
+ """:see: ReadingCommand.process_thread()"""
154
+ try:
155
+ return [self.combine_readings(sentence_readings)]
156
+ except AnaphoraResolutionException:
157
+ return []
158
+
159
+ def combine_readings(self, readings):
160
+ """:see: ReadingCommand.combine_readings()"""
161
+ thread_reading = reduce(add, readings)
162
+ return resolve_anaphora(thread_reading.simplify())
163
+
164
+ def to_fol(self, expression):
165
+ """:see: ReadingCommand.to_fol()"""
166
+ return expression.fol()
167
+
168
+
169
+ class DiscourseTester:
170
+ """
171
+ Check properties of an ongoing discourse.
172
+ """
173
+
174
+ def __init__(self, input, reading_command=None, background=None):
175
+ """
176
+ Initialize a ``DiscourseTester``.
177
+
178
+ :param input: the discourse sentences
179
+ :type input: list of str
180
+ :param background: Formulas which express background assumptions
181
+ :type background: list(Expression)
182
+ """
183
+ self._input = input
184
+ self._sentences = {"s%s" % i: sent for i, sent in enumerate(input)}
185
+ self._models = None
186
+ self._readings = {}
187
+ self._reading_command = (
188
+ reading_command if reading_command else CfgReadingCommand()
189
+ )
190
+ self._threads = {}
191
+ self._filtered_threads = {}
192
+ if background is not None:
193
+ from nltk.sem.logic import Expression
194
+
195
+ for e in background:
196
+ assert isinstance(e, Expression)
197
+ self._background = background
198
+ else:
199
+ self._background = []
200
+
201
+ ###############################
202
+ # Sentences
203
+ ###############################
204
+
205
+ def sentences(self):
206
+ """
207
+ Display the list of sentences in the current discourse.
208
+ """
209
+ for id in sorted(self._sentences):
210
+ print(f"{id}: {self._sentences[id]}")
211
+
212
+ def add_sentence(self, sentence, informchk=False, consistchk=False):
213
+ """
214
+ Add a sentence to the current discourse.
215
+
216
+ Updates ``self._input`` and ``self._sentences``.
217
+ :param sentence: An input sentence
218
+ :type sentence: str
219
+ :param informchk: if ``True``, check that the result of adding the sentence is thread-informative. Updates ``self._readings``.
220
+ :param consistchk: if ``True``, check that the result of adding the sentence is thread-consistent. Updates ``self._readings``.
221
+
222
+ """
223
+ # check whether the new sentence is informative (i.e. not entailed by the previous discourse)
224
+ if informchk:
225
+ self.readings(verbose=False)
226
+ for tid in sorted(self._threads):
227
+ assumptions = [reading for (rid, reading) in self.expand_threads(tid)]
228
+ assumptions += self._background
229
+ for sent_reading in self._get_readings(sentence):
230
+ tp = Prover9Command(goal=sent_reading, assumptions=assumptions)
231
+ if tp.prove():
232
+ print(
233
+ "Sentence '%s' under reading '%s':"
234
+ % (sentence, str(sent_reading))
235
+ )
236
+ print("Not informative relative to thread '%s'" % tid)
237
+
238
+ self._input.append(sentence)
239
+ self._sentences = {"s%s" % i: sent for i, sent in enumerate(self._input)}
240
+ # check whether adding the new sentence to the discourse preserves consistency (i.e. a model can be found for the combined set of
241
+ # of assumptions
242
+ if consistchk:
243
+ self.readings(verbose=False)
244
+ self.models(show=False)
245
+
246
+ def retract_sentence(self, sentence, verbose=True):
247
+ """
248
+ Remove a sentence from the current discourse.
249
+
250
+ Updates ``self._input``, ``self._sentences`` and ``self._readings``.
251
+ :param sentence: An input sentence
252
+ :type sentence: str
253
+ :param verbose: If ``True``, report on the updated list of sentences.
254
+ """
255
+ try:
256
+ self._input.remove(sentence)
257
+ except ValueError:
258
+ print(
259
+ "Retraction failed. The sentence '%s' is not part of the current discourse:"
260
+ % sentence
261
+ )
262
+ self.sentences()
263
+ return None
264
+ self._sentences = {"s%s" % i: sent for i, sent in enumerate(self._input)}
265
+ self.readings(verbose=False)
266
+ if verbose:
267
+ print("Current sentences are ")
268
+ self.sentences()
269
+
270
+ def grammar(self):
271
+ """
272
+ Print out the grammar in use for parsing input sentences
273
+ """
274
+ show_cfg(self._reading_command._gramfile)
275
+
276
+ ###############################
277
+ # Readings and Threads
278
+ ###############################
279
+
280
+ def _get_readings(self, sentence):
281
+ """
282
+ Build a list of semantic readings for a sentence.
283
+
284
+ :rtype: list(Expression)
285
+ """
286
+ return self._reading_command.parse_to_readings(sentence)
287
+
288
+ def _construct_readings(self):
289
+ """
290
+ Use ``self._sentences`` to construct a value for ``self._readings``.
291
+ """
292
+ # re-initialize self._readings in case we have retracted a sentence
293
+ self._readings = {}
294
+ for sid in sorted(self._sentences):
295
+ sentence = self._sentences[sid]
296
+ readings = self._get_readings(sentence)
297
+ self._readings[sid] = {
298
+ f"{sid}-r{rid}": reading.simplify()
299
+ for rid, reading in enumerate(sorted(readings, key=str))
300
+ }
301
+
302
+ def _construct_threads(self):
303
+ """
304
+ Use ``self._readings`` to construct a value for ``self._threads``
305
+ and use the model builder to construct a value for ``self._filtered_threads``
306
+ """
307
+ thread_list = [[]]
308
+ for sid in sorted(self._readings):
309
+ thread_list = self.multiply(thread_list, sorted(self._readings[sid]))
310
+ self._threads = {"d%s" % tid: thread for tid, thread in enumerate(thread_list)}
311
+ # re-initialize the filtered threads
312
+ self._filtered_threads = {}
313
+ # keep the same ids, but only include threads which get models
314
+ consistency_checked = self._check_consistency(self._threads)
315
+ for (tid, thread) in self._threads.items():
316
+ if (tid, True) in consistency_checked:
317
+ self._filtered_threads[tid] = thread
318
+
319
+ def _show_readings(self, sentence=None):
320
+ """
321
+ Print out the readings for the discourse (or a single sentence).
322
+ """
323
+ if sentence is not None:
324
+ print("The sentence '%s' has these readings:" % sentence)
325
+ for r in [str(reading) for reading in (self._get_readings(sentence))]:
326
+ print(" %s" % r)
327
+ else:
328
+ for sid in sorted(self._readings):
329
+ print()
330
+ print("%s readings:" % sid)
331
+ print() #'-' * 30
332
+ for rid in sorted(self._readings[sid]):
333
+ lf = self._readings[sid][rid]
334
+ print(f"{rid}: {lf.normalize()}")
335
+
336
+ def _show_threads(self, filter=False, show_thread_readings=False):
337
+ """
338
+ Print out the value of ``self._threads`` or ``self._filtered_hreads``
339
+ """
340
+ threads = self._filtered_threads if filter else self._threads
341
+ for tid in sorted(threads):
342
+ if show_thread_readings:
343
+ readings = [
344
+ self._readings[rid.split("-")[0]][rid] for rid in self._threads[tid]
345
+ ]
346
+ try:
347
+ thread_reading = (
348
+ ": %s"
349
+ % self._reading_command.combine_readings(readings).normalize()
350
+ )
351
+ except Exception as e:
352
+ thread_reading = ": INVALID: %s" % e.__class__.__name__
353
+ else:
354
+ thread_reading = ""
355
+
356
+ print("%s:" % tid, self._threads[tid], thread_reading)
357
+
358
+ def readings(
359
+ self,
360
+ sentence=None,
361
+ threaded=False,
362
+ verbose=True,
363
+ filter=False,
364
+ show_thread_readings=False,
365
+ ):
366
+ """
367
+ Construct and show the readings of the discourse (or of a single sentence).
368
+
369
+ :param sentence: test just this sentence
370
+ :type sentence: str
371
+ :param threaded: if ``True``, print out each thread ID and the corresponding thread.
372
+ :param filter: if ``True``, only print out consistent thread IDs and threads.
373
+ """
374
+ self._construct_readings()
375
+ self._construct_threads()
376
+
377
+ # if we are filtering or showing thread readings, show threads
378
+ if filter or show_thread_readings:
379
+ threaded = True
380
+
381
+ if verbose:
382
+ if not threaded:
383
+ self._show_readings(sentence=sentence)
384
+ else:
385
+ self._show_threads(
386
+ filter=filter, show_thread_readings=show_thread_readings
387
+ )
388
+
389
+ def expand_threads(self, thread_id, threads=None):
390
+ """
391
+ Given a thread ID, find the list of ``logic.Expression`` objects corresponding to the reading IDs in that thread.
392
+
393
+ :param thread_id: thread ID
394
+ :type thread_id: str
395
+ :param threads: a mapping from thread IDs to lists of reading IDs
396
+ :type threads: dict
397
+ :return: A list of pairs ``(rid, reading)`` where reading is the ``logic.Expression`` associated with a reading ID
398
+ :rtype: list of tuple
399
+ """
400
+ if threads is None:
401
+ threads = self._threads
402
+ return [
403
+ (rid, self._readings[sid][rid])
404
+ for rid in threads[thread_id]
405
+ for sid in rid.split("-")[:1]
406
+ ]
407
+
408
+ ###############################
409
+ # Models and Background
410
+ ###############################
411
+
412
+ def _check_consistency(self, threads, show=False, verbose=False):
413
+ results = []
414
+ for tid in sorted(threads):
415
+ assumptions = [
416
+ reading for (rid, reading) in self.expand_threads(tid, threads=threads)
417
+ ]
418
+ assumptions = list(
419
+ map(
420
+ self._reading_command.to_fol,
421
+ self._reading_command.process_thread(assumptions),
422
+ )
423
+ )
424
+ if assumptions:
425
+ assumptions += self._background
426
+ # if Mace4 finds a model, it always seems to find it quickly
427
+ mb = MaceCommand(None, assumptions, max_models=20)
428
+ modelfound = mb.build_model()
429
+ else:
430
+ modelfound = False
431
+ results.append((tid, modelfound))
432
+ if show:
433
+ spacer(80)
434
+ print("Model for Discourse Thread %s" % tid)
435
+ spacer(80)
436
+ if verbose:
437
+ for a in assumptions:
438
+ print(a)
439
+ spacer(80)
440
+ if modelfound:
441
+ print(mb.model(format="cooked"))
442
+ else:
443
+ print("No model found!\n")
444
+ return results
445
+
446
+ def models(self, thread_id=None, show=True, verbose=False):
447
+ """
448
+ Call Mace4 to build a model for each current discourse thread.
449
+
450
+ :param thread_id: thread ID
451
+ :type thread_id: str
452
+ :param show: If ``True``, display the model that has been found.
453
+ """
454
+ self._construct_readings()
455
+ self._construct_threads()
456
+ threads = {thread_id: self._threads[thread_id]} if thread_id else self._threads
457
+
458
+ for (tid, modelfound) in self._check_consistency(
459
+ threads, show=show, verbose=verbose
460
+ ):
461
+ idlist = [rid for rid in threads[tid]]
462
+
463
+ if not modelfound:
464
+ print(f"Inconsistent discourse: {tid} {idlist}:")
465
+ for rid, reading in self.expand_threads(tid):
466
+ print(f" {rid}: {reading.normalize()}")
467
+ print()
468
+ else:
469
+ print(f"Consistent discourse: {tid} {idlist}:")
470
+ for rid, reading in self.expand_threads(tid):
471
+ print(f" {rid}: {reading.normalize()}")
472
+ print()
473
+
474
+ def add_background(self, background, verbose=False):
475
+ """
476
+ Add a list of background assumptions for reasoning about the discourse.
477
+
478
+ When called, this method also updates the discourse model's set of readings and threads.
479
+ :param background: Formulas which contain background information
480
+ :type background: list(Expression)
481
+ """
482
+ from nltk.sem.logic import Expression
483
+
484
+ for (count, e) in enumerate(background):
485
+ assert isinstance(e, Expression)
486
+ if verbose:
487
+ print("Adding assumption %s to background" % count)
488
+ self._background.append(e)
489
+
490
+ # update the state
491
+ self._construct_readings()
492
+ self._construct_threads()
493
+
494
+ def background(self):
495
+ """
496
+ Show the current background assumptions.
497
+ """
498
+ for e in self._background:
499
+ print(str(e))
500
+
501
+ ###############################
502
+ # Misc
503
+ ###############################
504
+
505
+ @staticmethod
506
+ def multiply(discourse, readings):
507
+ """
508
+ Multiply every thread in ``discourse`` by every reading in ``readings``.
509
+
510
+ Given discourse = [['A'], ['B']], readings = ['a', 'b', 'c'] , returns
511
+ [['A', 'a'], ['A', 'b'], ['A', 'c'], ['B', 'a'], ['B', 'b'], ['B', 'c']]
512
+
513
+ :param discourse: the current list of readings
514
+ :type discourse: list of lists
515
+ :param readings: an additional list of readings
516
+ :type readings: list(Expression)
517
+ :rtype: A list of lists
518
+ """
519
+ result = []
520
+ for sublist in discourse:
521
+ for r in readings:
522
+ new = []
523
+ new += sublist
524
+ new.append(r)
525
+ result.append(new)
526
+ return result
527
+
528
+
529
+ def load_fol(s):
530
+ """
531
+ Temporarily duplicated from ``nltk.sem.util``.
532
+ Convert a file of first order formulas into a list of ``Expression`` objects.
533
+
534
+ :param s: the contents of the file
535
+ :type s: str
536
+ :return: a list of parsed formulas.
537
+ :rtype: list(Expression)
538
+ """
539
+ statements = []
540
+ for linenum, line in enumerate(s.splitlines()):
541
+ line = line.strip()
542
+ if line.startswith("#") or line == "":
543
+ continue
544
+ try:
545
+ statements.append(Expression.fromstring(line))
546
+ except Exception as e:
547
+ raise ValueError(f"Unable to parse line {linenum}: {line}") from e
548
+ return statements
549
+
550
+
551
+ ###############################
552
+ # Demo
553
+ ###############################
554
+ def discourse_demo(reading_command=None):
555
+ """
556
+ Illustrate the various methods of ``DiscourseTester``
557
+ """
558
+ dt = DiscourseTester(
559
+ ["A boxer walks", "Every boxer chases a girl"], reading_command
560
+ )
561
+ dt.models()
562
+ print()
563
+ # dt.grammar()
564
+ print()
565
+ dt.sentences()
566
+ print()
567
+ dt.readings()
568
+ print()
569
+ dt.readings(threaded=True)
570
+ print()
571
+ dt.models("d1")
572
+ dt.add_sentence("John is a boxer")
573
+ print()
574
+ dt.sentences()
575
+ print()
576
+ dt.readings(threaded=True)
577
+ print()
578
+ dt = DiscourseTester(
579
+ ["A student dances", "Every student is a person"], reading_command
580
+ )
581
+ print()
582
+ dt.add_sentence("No person dances", consistchk=True)
583
+ print()
584
+ dt.readings()
585
+ print()
586
+ dt.retract_sentence("No person dances", verbose=True)
587
+ print()
588
+ dt.models()
589
+ print()
590
+ dt.readings("A person dances")
591
+ print()
592
+ dt.add_sentence("A person dances", informchk=True)
593
+ dt = DiscourseTester(
594
+ ["Vincent is a boxer", "Fido is a boxer", "Vincent is married", "Fido barks"],
595
+ reading_command,
596
+ )
597
+ dt.readings(filter=True)
598
+ import nltk.data
599
+
600
+ background_file = os.path.join("grammars", "book_grammars", "background.fol")
601
+ background = nltk.data.load(background_file)
602
+
603
+ print()
604
+ dt.add_background(background, verbose=False)
605
+ dt.background()
606
+ print()
607
+ dt.readings(filter=True)
608
+ print()
609
+ dt.models()
610
+
611
+
612
+ def drt_discourse_demo(reading_command=None):
613
+ """
614
+ Illustrate the various methods of ``DiscourseTester``
615
+ """
616
+ dt = DiscourseTester(["every dog chases a boy", "he runs"], reading_command)
617
+ dt.models()
618
+ print()
619
+ dt.sentences()
620
+ print()
621
+ dt.readings()
622
+ print()
623
+ dt.readings(show_thread_readings=True)
624
+ print()
625
+ dt.readings(filter=True, show_thread_readings=True)
626
+
627
+
628
+ def spacer(num=30):
629
+ print("-" * num)
630
+
631
+
632
+ def demo():
633
+ discourse_demo()
634
+
635
+ tagger = RegexpTagger(
636
+ [
637
+ ("^(chases|runs)$", "VB"),
638
+ ("^(a)$", "ex_quant"),
639
+ ("^(every)$", "univ_quant"),
640
+ ("^(dog|boy)$", "NN"),
641
+ ("^(he)$", "PRP"),
642
+ ]
643
+ )
644
+ depparser = MaltParser(tagger=tagger)
645
+ drt_discourse_demo(
646
+ DrtGlueReadingCommand(remove_duplicates=False, depparser=depparser)
647
+ )
648
+
649
+
650
+ if __name__ == "__main__":
651
+ demo()
venv/lib/python3.10/site-packages/nltk/inference/mace.py ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Interface to the Mace4 Model Builder
2
+ #
3
+ # Author: Dan Garrette <[email protected]>
4
+ # Ewan Klein <[email protected]>
5
+
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ A model builder that makes use of the external 'Mace4' package.
11
+ """
12
+
13
+ import os
14
+ import tempfile
15
+
16
+ from nltk.inference.api import BaseModelBuilderCommand, ModelBuilder
17
+ from nltk.inference.prover9 import Prover9CommandParent, Prover9Parent
18
+ from nltk.sem import Expression, Valuation
19
+ from nltk.sem.logic import is_indvar
20
+
21
+
22
+ class MaceCommand(Prover9CommandParent, BaseModelBuilderCommand):
23
+ """
24
+ A ``MaceCommand`` specific to the ``Mace`` model builder. It contains
25
+ a print_assumptions() method that is used to print the list
26
+ of assumptions in multiple formats.
27
+ """
28
+
29
+ _interpformat_bin = None
30
+
31
+ def __init__(self, goal=None, assumptions=None, max_models=500, model_builder=None):
32
+ """
33
+ :param goal: Input expression to prove
34
+ :type goal: sem.Expression
35
+ :param assumptions: Input expressions to use as assumptions in
36
+ the proof.
37
+ :type assumptions: list(sem.Expression)
38
+ :param max_models: The maximum number of models that Mace will try before
39
+ simply returning false. (Use 0 for no maximum.)
40
+ :type max_models: int
41
+ """
42
+ if model_builder is not None:
43
+ assert isinstance(model_builder, Mace)
44
+ else:
45
+ model_builder = Mace(max_models)
46
+
47
+ BaseModelBuilderCommand.__init__(self, model_builder, goal, assumptions)
48
+
49
+ @property
50
+ def valuation(mbc):
51
+ return mbc.model("valuation")
52
+
53
+ def _convert2val(self, valuation_str):
54
+ """
55
+ Transform the output file into an NLTK-style Valuation.
56
+
57
+ :return: A model if one is generated; None otherwise.
58
+ :rtype: sem.Valuation
59
+ """
60
+ valuation_standard_format = self._transform_output(valuation_str, "standard")
61
+
62
+ val = []
63
+ for line in valuation_standard_format.splitlines(False):
64
+ l = line.strip()
65
+
66
+ if l.startswith("interpretation"):
67
+ # find the number of entities in the model
68
+ num_entities = int(l[l.index("(") + 1 : l.index(",")].strip())
69
+
70
+ elif l.startswith("function") and l.find("_") == -1:
71
+ # replace the integer identifier with a corresponding alphabetic character
72
+ name = l[l.index("(") + 1 : l.index(",")].strip()
73
+ if is_indvar(name):
74
+ name = name.upper()
75
+ value = int(l[l.index("[") + 1 : l.index("]")].strip())
76
+ val.append((name, MaceCommand._make_model_var(value)))
77
+
78
+ elif l.startswith("relation"):
79
+ l = l[l.index("(") + 1 :]
80
+ if "(" in l:
81
+ # relation is not nullary
82
+ name = l[: l.index("(")].strip()
83
+ values = [
84
+ int(v.strip())
85
+ for v in l[l.index("[") + 1 : l.index("]")].split(",")
86
+ ]
87
+ val.append(
88
+ (name, MaceCommand._make_relation_set(num_entities, values))
89
+ )
90
+ else:
91
+ # relation is nullary
92
+ name = l[: l.index(",")].strip()
93
+ value = int(l[l.index("[") + 1 : l.index("]")].strip())
94
+ val.append((name, value == 1))
95
+
96
+ return Valuation(val)
97
+
98
+ @staticmethod
99
+ def _make_relation_set(num_entities, values):
100
+ """
101
+ Convert a Mace4-style relation table into a dictionary.
102
+
103
+ :param num_entities: the number of entities in the model; determines the row length in the table.
104
+ :type num_entities: int
105
+ :param values: a list of 1's and 0's that represent whether a relation holds in a Mace4 model.
106
+ :type values: list of int
107
+ """
108
+ r = set()
109
+ for position in [pos for (pos, v) in enumerate(values) if v == 1]:
110
+ r.add(
111
+ tuple(MaceCommand._make_relation_tuple(position, values, num_entities))
112
+ )
113
+ return r
114
+
115
+ @staticmethod
116
+ def _make_relation_tuple(position, values, num_entities):
117
+ if len(values) == 1:
118
+ return []
119
+ else:
120
+ sublist_size = len(values) // num_entities
121
+ sublist_start = position // sublist_size
122
+ sublist_position = int(position % sublist_size)
123
+
124
+ sublist = values[
125
+ sublist_start * sublist_size : (sublist_start + 1) * sublist_size
126
+ ]
127
+ return [
128
+ MaceCommand._make_model_var(sublist_start)
129
+ ] + MaceCommand._make_relation_tuple(
130
+ sublist_position, sublist, num_entities
131
+ )
132
+
133
+ @staticmethod
134
+ def _make_model_var(value):
135
+ """
136
+ Pick an alphabetic character as identifier for an entity in the model.
137
+
138
+ :param value: where to index into the list of characters
139
+ :type value: int
140
+ """
141
+ letter = [
142
+ "a",
143
+ "b",
144
+ "c",
145
+ "d",
146
+ "e",
147
+ "f",
148
+ "g",
149
+ "h",
150
+ "i",
151
+ "j",
152
+ "k",
153
+ "l",
154
+ "m",
155
+ "n",
156
+ "o",
157
+ "p",
158
+ "q",
159
+ "r",
160
+ "s",
161
+ "t",
162
+ "u",
163
+ "v",
164
+ "w",
165
+ "x",
166
+ "y",
167
+ "z",
168
+ ][value]
169
+ num = value // 26
170
+ return letter + str(num) if num > 0 else letter
171
+
172
+ def _decorate_model(self, valuation_str, format):
173
+ """
174
+ Print out a Mace4 model using any Mace4 ``interpformat`` format.
175
+ See https://www.cs.unm.edu/~mccune/mace4/manual/ for details.
176
+
177
+ :param valuation_str: str with the model builder's output
178
+ :param format: str indicating the format for displaying
179
+ models. Defaults to 'standard' format.
180
+ :return: str
181
+ """
182
+ if not format:
183
+ return valuation_str
184
+ elif format == "valuation":
185
+ return self._convert2val(valuation_str)
186
+ else:
187
+ return self._transform_output(valuation_str, format)
188
+
189
+ def _transform_output(self, valuation_str, format):
190
+ """
191
+ Transform the output file into any Mace4 ``interpformat`` format.
192
+
193
+ :param format: Output format for displaying models.
194
+ :type format: str
195
+ """
196
+ if format in [
197
+ "standard",
198
+ "standard2",
199
+ "portable",
200
+ "tabular",
201
+ "raw",
202
+ "cooked",
203
+ "xml",
204
+ "tex",
205
+ ]:
206
+ return self._call_interpformat(valuation_str, [format])[0]
207
+ else:
208
+ raise LookupError("The specified format does not exist")
209
+
210
+ def _call_interpformat(self, input_str, args=[], verbose=False):
211
+ """
212
+ Call the ``interpformat`` binary with the given input.
213
+
214
+ :param input_str: A string whose contents are used as stdin.
215
+ :param args: A list of command-line arguments.
216
+ :return: A tuple (stdout, returncode)
217
+ :see: ``config_prover9``
218
+ """
219
+ if self._interpformat_bin is None:
220
+ self._interpformat_bin = self._modelbuilder._find_binary(
221
+ "interpformat", verbose
222
+ )
223
+
224
+ return self._modelbuilder._call(
225
+ input_str, self._interpformat_bin, args, verbose
226
+ )
227
+
228
+
229
+ class Mace(Prover9Parent, ModelBuilder):
230
+ _mace4_bin = None
231
+
232
+ def __init__(self, end_size=500):
233
+ self._end_size = end_size
234
+ """The maximum model size that Mace will try before
235
+ simply returning false. (Use -1 for no maximum.)"""
236
+
237
+ def _build_model(self, goal=None, assumptions=None, verbose=False):
238
+ """
239
+ Use Mace4 to build a first order model.
240
+
241
+ :return: ``True`` if a model was found (i.e. Mace returns value of 0),
242
+ else ``False``
243
+ """
244
+ if not assumptions:
245
+ assumptions = []
246
+
247
+ stdout, returncode = self._call_mace4(
248
+ self.prover9_input(goal, assumptions), verbose=verbose
249
+ )
250
+ return (returncode == 0, stdout)
251
+
252
+ def _call_mace4(self, input_str, args=[], verbose=False):
253
+ """
254
+ Call the ``mace4`` binary with the given input.
255
+
256
+ :param input_str: A string whose contents are used as stdin.
257
+ :param args: A list of command-line arguments.
258
+ :return: A tuple (stdout, returncode)
259
+ :see: ``config_prover9``
260
+ """
261
+ if self._mace4_bin is None:
262
+ self._mace4_bin = self._find_binary("mace4", verbose)
263
+
264
+ updated_input_str = ""
265
+ if self._end_size > 0:
266
+ updated_input_str += "assign(end_size, %d).\n\n" % self._end_size
267
+ updated_input_str += input_str
268
+
269
+ return self._call(updated_input_str, self._mace4_bin, args, verbose)
270
+
271
+
272
+ def spacer(num=30):
273
+ print("-" * num)
274
+
275
+
276
+ def decode_result(found):
277
+ """
278
+ Decode the result of model_found()
279
+
280
+ :param found: The output of model_found()
281
+ :type found: bool
282
+ """
283
+ return {True: "Countermodel found", False: "No countermodel found", None: "None"}[
284
+ found
285
+ ]
286
+
287
+
288
+ def test_model_found(arguments):
289
+ """
290
+ Try some proofs and exhibit the results.
291
+ """
292
+ for (goal, assumptions) in arguments:
293
+ g = Expression.fromstring(goal)
294
+ alist = [lp.parse(a) for a in assumptions]
295
+ m = MaceCommand(g, assumptions=alist, max_models=50)
296
+ found = m.build_model()
297
+ for a in alist:
298
+ print(" %s" % a)
299
+ print(f"|- {g}: {decode_result(found)}\n")
300
+
301
+
302
+ def test_build_model(arguments):
303
+ """
304
+ Try to build a ``nltk.sem.Valuation``.
305
+ """
306
+ g = Expression.fromstring("all x.man(x)")
307
+ alist = [
308
+ Expression.fromstring(a)
309
+ for a in [
310
+ "man(John)",
311
+ "man(Socrates)",
312
+ "man(Bill)",
313
+ "some x.(-(x = John) & man(x) & sees(John,x))",
314
+ "some x.(-(x = Bill) & man(x))",
315
+ "all x.some y.(man(x) -> gives(Socrates,x,y))",
316
+ ]
317
+ ]
318
+
319
+ m = MaceCommand(g, assumptions=alist)
320
+ m.build_model()
321
+ spacer()
322
+ print("Assumptions and Goal")
323
+ spacer()
324
+ for a in alist:
325
+ print(" %s" % a)
326
+ print(f"|- {g}: {decode_result(m.build_model())}\n")
327
+ spacer()
328
+ # print(m.model('standard'))
329
+ # print(m.model('cooked'))
330
+ print("Valuation")
331
+ spacer()
332
+ print(m.valuation, "\n")
333
+
334
+
335
+ def test_transform_output(argument_pair):
336
+ """
337
+ Transform the model into various Mace4 ``interpformat`` formats.
338
+ """
339
+ g = Expression.fromstring(argument_pair[0])
340
+ alist = [lp.parse(a) for a in argument_pair[1]]
341
+ m = MaceCommand(g, assumptions=alist)
342
+ m.build_model()
343
+ for a in alist:
344
+ print(" %s" % a)
345
+ print(f"|- {g}: {m.build_model()}\n")
346
+ for format in ["standard", "portable", "xml", "cooked"]:
347
+ spacer()
348
+ print("Using '%s' format" % format)
349
+ spacer()
350
+ print(m.model(format=format))
351
+
352
+
353
+ def test_make_relation_set():
354
+ print(
355
+ MaceCommand._make_relation_set(num_entities=3, values=[1, 0, 1])
356
+ == {("c",), ("a",)}
357
+ )
358
+ print(
359
+ MaceCommand._make_relation_set(
360
+ num_entities=3, values=[0, 0, 0, 0, 0, 0, 1, 0, 0]
361
+ )
362
+ == {("c", "a")}
363
+ )
364
+ print(
365
+ MaceCommand._make_relation_set(num_entities=2, values=[0, 0, 1, 0, 0, 0, 1, 0])
366
+ == {("a", "b", "a"), ("b", "b", "a")}
367
+ )
368
+
369
+
370
+ arguments = [
371
+ ("mortal(Socrates)", ["all x.(man(x) -> mortal(x))", "man(Socrates)"]),
372
+ ("(not mortal(Socrates))", ["all x.(man(x) -> mortal(x))", "man(Socrates)"]),
373
+ ]
374
+
375
+
376
+ def demo():
377
+ test_model_found(arguments)
378
+ test_build_model(arguments)
379
+ test_transform_output(arguments[1])
380
+
381
+
382
+ if __name__ == "__main__":
383
+ demo()
venv/lib/python3.10/site-packages/nltk/inference/prover9.py ADDED
@@ -0,0 +1,508 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Interface to the Prover9 Theorem Prover
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Dan Garrette <[email protected]>
5
+ # Ewan Klein <[email protected]>
6
+ #
7
+ # URL: <https://www.nltk.org/>
8
+ # For license information, see LICENSE.TXT
9
+ """
10
+ A theorem prover that makes use of the external 'Prover9' package.
11
+ """
12
+
13
+ import os
14
+ import subprocess
15
+
16
+ import nltk
17
+ from nltk.inference.api import BaseProverCommand, Prover
18
+ from nltk.sem.logic import (
19
+ AllExpression,
20
+ AndExpression,
21
+ EqualityExpression,
22
+ ExistsExpression,
23
+ Expression,
24
+ IffExpression,
25
+ ImpExpression,
26
+ NegatedExpression,
27
+ OrExpression,
28
+ )
29
+
30
+ #
31
+ # Following is not yet used. Return code for 2 actually realized as 512.
32
+ #
33
+ p9_return_codes = {
34
+ 0: True,
35
+ 1: "(FATAL)", # A fatal error occurred (user's syntax error).
36
+ 2: False, # (SOS_EMPTY) Prover9 ran out of things to do
37
+ # (sos list exhausted).
38
+ 3: "(MAX_MEGS)", # The max_megs (memory limit) parameter was exceeded.
39
+ 4: "(MAX_SECONDS)", # The max_seconds parameter was exceeded.
40
+ 5: "(MAX_GIVEN)", # The max_given parameter was exceeded.
41
+ 6: "(MAX_KEPT)", # The max_kept parameter was exceeded.
42
+ 7: "(ACTION)", # A Prover9 action terminated the search.
43
+ 101: "(SIGSEGV)", # Prover9 crashed, most probably due to a bug.
44
+ }
45
+
46
+
47
+ class Prover9CommandParent:
48
+ """
49
+ A common base class used by both ``Prover9Command`` and ``MaceCommand``,
50
+ which is responsible for maintaining a goal and a set of assumptions,
51
+ and generating prover9-style input files from them.
52
+ """
53
+
54
+ def print_assumptions(self, output_format="nltk"):
55
+ """
56
+ Print the list of the current assumptions.
57
+ """
58
+ if output_format.lower() == "nltk":
59
+ for a in self.assumptions():
60
+ print(a)
61
+ elif output_format.lower() == "prover9":
62
+ for a in convert_to_prover9(self.assumptions()):
63
+ print(a)
64
+ else:
65
+ raise NameError(
66
+ "Unrecognized value for 'output_format': %s" % output_format
67
+ )
68
+
69
+
70
+ class Prover9Command(Prover9CommandParent, BaseProverCommand):
71
+ """
72
+ A ``ProverCommand`` specific to the ``Prover9`` prover. It contains
73
+ the a print_assumptions() method that is used to print the list
74
+ of assumptions in multiple formats.
75
+ """
76
+
77
+ def __init__(self, goal=None, assumptions=None, timeout=60, prover=None):
78
+ """
79
+ :param goal: Input expression to prove
80
+ :type goal: sem.Expression
81
+ :param assumptions: Input expressions to use as assumptions in
82
+ the proof.
83
+ :type assumptions: list(sem.Expression)
84
+ :param timeout: number of seconds before timeout; set to 0 for
85
+ no timeout.
86
+ :type timeout: int
87
+ :param prover: a prover. If not set, one will be created.
88
+ :type prover: Prover9
89
+ """
90
+ if not assumptions:
91
+ assumptions = []
92
+
93
+ if prover is not None:
94
+ assert isinstance(prover, Prover9)
95
+ else:
96
+ prover = Prover9(timeout)
97
+
98
+ BaseProverCommand.__init__(self, prover, goal, assumptions)
99
+
100
+ def decorate_proof(self, proof_string, simplify=True):
101
+ """
102
+ :see BaseProverCommand.decorate_proof()
103
+ """
104
+ if simplify:
105
+ return self._prover._call_prooftrans(proof_string, ["striplabels"])[
106
+ 0
107
+ ].rstrip()
108
+ else:
109
+ return proof_string.rstrip()
110
+
111
+
112
+ class Prover9Parent:
113
+ """
114
+ A common class extended by both ``Prover9`` and ``Mace <mace.Mace>``.
115
+ It contains the functionality required to convert NLTK-style
116
+ expressions into Prover9-style expressions.
117
+ """
118
+
119
+ _binary_location = None
120
+
121
+ def config_prover9(self, binary_location, verbose=False):
122
+ if binary_location is None:
123
+ self._binary_location = None
124
+ self._prover9_bin = None
125
+ else:
126
+ name = "prover9"
127
+ self._prover9_bin = nltk.internals.find_binary(
128
+ name,
129
+ path_to_bin=binary_location,
130
+ env_vars=["PROVER9"],
131
+ url="https://www.cs.unm.edu/~mccune/prover9/",
132
+ binary_names=[name, name + ".exe"],
133
+ verbose=verbose,
134
+ )
135
+ self._binary_location = self._prover9_bin.rsplit(os.path.sep, 1)
136
+
137
+ def prover9_input(self, goal, assumptions):
138
+ """
139
+ :return: The input string that should be provided to the
140
+ prover9 binary. This string is formed based on the goal,
141
+ assumptions, and timeout value of this object.
142
+ """
143
+ s = ""
144
+
145
+ if assumptions:
146
+ s += "formulas(assumptions).\n"
147
+ for p9_assumption in convert_to_prover9(assumptions):
148
+ s += " %s.\n" % p9_assumption
149
+ s += "end_of_list.\n\n"
150
+
151
+ if goal:
152
+ s += "formulas(goals).\n"
153
+ s += " %s.\n" % convert_to_prover9(goal)
154
+ s += "end_of_list.\n\n"
155
+
156
+ return s
157
+
158
+ def binary_locations(self):
159
+ """
160
+ A list of directories that should be searched for the prover9
161
+ executables. This list is used by ``config_prover9`` when searching
162
+ for the prover9 executables.
163
+ """
164
+ return [
165
+ "/usr/local/bin/prover9",
166
+ "/usr/local/bin/prover9/bin",
167
+ "/usr/local/bin",
168
+ "/usr/bin",
169
+ "/usr/local/prover9",
170
+ "/usr/local/share/prover9",
171
+ ]
172
+
173
+ def _find_binary(self, name, verbose=False):
174
+ binary_locations = self.binary_locations()
175
+ if self._binary_location is not None:
176
+ binary_locations += [self._binary_location]
177
+ return nltk.internals.find_binary(
178
+ name,
179
+ searchpath=binary_locations,
180
+ env_vars=["PROVER9"],
181
+ url="https://www.cs.unm.edu/~mccune/prover9/",
182
+ binary_names=[name, name + ".exe"],
183
+ verbose=verbose,
184
+ )
185
+
186
+ def _call(self, input_str, binary, args=[], verbose=False):
187
+ """
188
+ Call the binary with the given input.
189
+
190
+ :param input_str: A string whose contents are used as stdin.
191
+ :param binary: The location of the binary to call
192
+ :param args: A list of command-line arguments.
193
+ :return: A tuple (stdout, returncode)
194
+ :see: ``config_prover9``
195
+ """
196
+ if verbose:
197
+ print("Calling:", binary)
198
+ print("Args:", args)
199
+ print("Input:\n", input_str, "\n")
200
+
201
+ # Call prover9 via a subprocess
202
+ cmd = [binary] + args
203
+ try:
204
+ input_str = input_str.encode("utf8")
205
+ except AttributeError:
206
+ pass
207
+ p = subprocess.Popen(
208
+ cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, stdin=subprocess.PIPE
209
+ )
210
+ (stdout, stderr) = p.communicate(input=input_str)
211
+
212
+ if verbose:
213
+ print("Return code:", p.returncode)
214
+ if stdout:
215
+ print("stdout:\n", stdout, "\n")
216
+ if stderr:
217
+ print("stderr:\n", stderr, "\n")
218
+
219
+ return (stdout.decode("utf-8"), p.returncode)
220
+
221
+
222
+ def convert_to_prover9(input):
223
+ """
224
+ Convert a ``logic.Expression`` to Prover9 format.
225
+ """
226
+ if isinstance(input, list):
227
+ result = []
228
+ for s in input:
229
+ try:
230
+ result.append(_convert_to_prover9(s.simplify()))
231
+ except:
232
+ print("input %s cannot be converted to Prover9 input syntax" % input)
233
+ raise
234
+ return result
235
+ else:
236
+ try:
237
+ return _convert_to_prover9(input.simplify())
238
+ except:
239
+ print("input %s cannot be converted to Prover9 input syntax" % input)
240
+ raise
241
+
242
+
243
+ def _convert_to_prover9(expression):
244
+ """
245
+ Convert ``logic.Expression`` to Prover9 formatted string.
246
+ """
247
+ if isinstance(expression, ExistsExpression):
248
+ return (
249
+ "exists "
250
+ + str(expression.variable)
251
+ + " "
252
+ + _convert_to_prover9(expression.term)
253
+ )
254
+ elif isinstance(expression, AllExpression):
255
+ return (
256
+ "all "
257
+ + str(expression.variable)
258
+ + " "
259
+ + _convert_to_prover9(expression.term)
260
+ )
261
+ elif isinstance(expression, NegatedExpression):
262
+ return "-(" + _convert_to_prover9(expression.term) + ")"
263
+ elif isinstance(expression, AndExpression):
264
+ return (
265
+ "("
266
+ + _convert_to_prover9(expression.first)
267
+ + " & "
268
+ + _convert_to_prover9(expression.second)
269
+ + ")"
270
+ )
271
+ elif isinstance(expression, OrExpression):
272
+ return (
273
+ "("
274
+ + _convert_to_prover9(expression.first)
275
+ + " | "
276
+ + _convert_to_prover9(expression.second)
277
+ + ")"
278
+ )
279
+ elif isinstance(expression, ImpExpression):
280
+ return (
281
+ "("
282
+ + _convert_to_prover9(expression.first)
283
+ + " -> "
284
+ + _convert_to_prover9(expression.second)
285
+ + ")"
286
+ )
287
+ elif isinstance(expression, IffExpression):
288
+ return (
289
+ "("
290
+ + _convert_to_prover9(expression.first)
291
+ + " <-> "
292
+ + _convert_to_prover9(expression.second)
293
+ + ")"
294
+ )
295
+ elif isinstance(expression, EqualityExpression):
296
+ return (
297
+ "("
298
+ + _convert_to_prover9(expression.first)
299
+ + " = "
300
+ + _convert_to_prover9(expression.second)
301
+ + ")"
302
+ )
303
+ else:
304
+ return str(expression)
305
+
306
+
307
+ class Prover9(Prover9Parent, Prover):
308
+ _prover9_bin = None
309
+ _prooftrans_bin = None
310
+
311
+ def __init__(self, timeout=60):
312
+ self._timeout = timeout
313
+ """The timeout value for prover9. If a proof can not be found
314
+ in this amount of time, then prover9 will return false.
315
+ (Use 0 for no timeout.)"""
316
+
317
+ def _prove(self, goal=None, assumptions=None, verbose=False):
318
+ """
319
+ Use Prover9 to prove a theorem.
320
+ :return: A pair whose first element is a boolean indicating if the
321
+ proof was successful (i.e. returns value of 0) and whose second element
322
+ is the output of the prover.
323
+ """
324
+ if not assumptions:
325
+ assumptions = []
326
+
327
+ stdout, returncode = self._call_prover9(
328
+ self.prover9_input(goal, assumptions), verbose=verbose
329
+ )
330
+ return (returncode == 0, stdout)
331
+
332
+ def prover9_input(self, goal, assumptions):
333
+ """
334
+ :see: Prover9Parent.prover9_input
335
+ """
336
+ s = "clear(auto_denials).\n" # only one proof required
337
+ return s + Prover9Parent.prover9_input(self, goal, assumptions)
338
+
339
+ def _call_prover9(self, input_str, args=[], verbose=False):
340
+ """
341
+ Call the ``prover9`` binary with the given input.
342
+
343
+ :param input_str: A string whose contents are used as stdin.
344
+ :param args: A list of command-line arguments.
345
+ :return: A tuple (stdout, returncode)
346
+ :see: ``config_prover9``
347
+ """
348
+ if self._prover9_bin is None:
349
+ self._prover9_bin = self._find_binary("prover9", verbose)
350
+
351
+ updated_input_str = ""
352
+ if self._timeout > 0:
353
+ updated_input_str += "assign(max_seconds, %d).\n\n" % self._timeout
354
+ updated_input_str += input_str
355
+
356
+ stdout, returncode = self._call(
357
+ updated_input_str, self._prover9_bin, args, verbose
358
+ )
359
+
360
+ if returncode not in [0, 2]:
361
+ errormsgprefix = "%%ERROR:"
362
+ if errormsgprefix in stdout:
363
+ msgstart = stdout.index(errormsgprefix)
364
+ errormsg = stdout[msgstart:].strip()
365
+ else:
366
+ errormsg = None
367
+ if returncode in [3, 4, 5, 6]:
368
+ raise Prover9LimitExceededException(returncode, errormsg)
369
+ else:
370
+ raise Prover9FatalException(returncode, errormsg)
371
+
372
+ return stdout, returncode
373
+
374
+ def _call_prooftrans(self, input_str, args=[], verbose=False):
375
+ """
376
+ Call the ``prooftrans`` binary with the given input.
377
+
378
+ :param input_str: A string whose contents are used as stdin.
379
+ :param args: A list of command-line arguments.
380
+ :return: A tuple (stdout, returncode)
381
+ :see: ``config_prover9``
382
+ """
383
+ if self._prooftrans_bin is None:
384
+ self._prooftrans_bin = self._find_binary("prooftrans", verbose)
385
+
386
+ return self._call(input_str, self._prooftrans_bin, args, verbose)
387
+
388
+
389
+ class Prover9Exception(Exception):
390
+ def __init__(self, returncode, message):
391
+ msg = p9_return_codes[returncode]
392
+ if message:
393
+ msg += "\n%s" % message
394
+ Exception.__init__(self, msg)
395
+
396
+
397
+ class Prover9FatalException(Prover9Exception):
398
+ pass
399
+
400
+
401
+ class Prover9LimitExceededException(Prover9Exception):
402
+ pass
403
+
404
+
405
+ ######################################################################
406
+ # { Tests and Demos
407
+ ######################################################################
408
+
409
+
410
+ def test_config():
411
+
412
+ a = Expression.fromstring("(walk(j) & sing(j))")
413
+ g = Expression.fromstring("walk(j)")
414
+ p = Prover9Command(g, assumptions=[a])
415
+ p._executable_path = None
416
+ p.prover9_search = []
417
+ p.prove()
418
+ # config_prover9('/usr/local/bin')
419
+ print(p.prove())
420
+ print(p.proof())
421
+
422
+
423
+ def test_convert_to_prover9(expr):
424
+ """
425
+ Test that parsing works OK.
426
+ """
427
+ for t in expr:
428
+ e = Expression.fromstring(t)
429
+ print(convert_to_prover9(e))
430
+
431
+
432
+ def test_prove(arguments):
433
+ """
434
+ Try some proofs and exhibit the results.
435
+ """
436
+ for (goal, assumptions) in arguments:
437
+ g = Expression.fromstring(goal)
438
+ alist = [Expression.fromstring(a) for a in assumptions]
439
+ p = Prover9Command(g, assumptions=alist).prove()
440
+ for a in alist:
441
+ print(" %s" % a)
442
+ print(f"|- {g}: {p}\n")
443
+
444
+
445
+ arguments = [
446
+ ("(man(x) <-> (not (not man(x))))", []),
447
+ ("(not (man(x) & (not man(x))))", []),
448
+ ("(man(x) | (not man(x)))", []),
449
+ ("(man(x) & (not man(x)))", []),
450
+ ("(man(x) -> man(x))", []),
451
+ ("(not (man(x) & (not man(x))))", []),
452
+ ("(man(x) | (not man(x)))", []),
453
+ ("(man(x) -> man(x))", []),
454
+ ("(man(x) <-> man(x))", []),
455
+ ("(not (man(x) <-> (not man(x))))", []),
456
+ ("mortal(Socrates)", ["all x.(man(x) -> mortal(x))", "man(Socrates)"]),
457
+ ("((all x.(man(x) -> walks(x)) & man(Socrates)) -> some y.walks(y))", []),
458
+ ("(all x.man(x) -> all x.man(x))", []),
459
+ ("some x.all y.sees(x,y)", []),
460
+ (
461
+ "some e3.(walk(e3) & subj(e3, mary))",
462
+ [
463
+ "some e1.(see(e1) & subj(e1, john) & some e2.(pred(e1, e2) & walk(e2) & subj(e2, mary)))"
464
+ ],
465
+ ),
466
+ (
467
+ "some x e1.(see(e1) & subj(e1, x) & some e2.(pred(e1, e2) & walk(e2) & subj(e2, mary)))",
468
+ [
469
+ "some e1.(see(e1) & subj(e1, john) & some e2.(pred(e1, e2) & walk(e2) & subj(e2, mary)))"
470
+ ],
471
+ ),
472
+ ]
473
+
474
+ expressions = [
475
+ r"some x y.sees(x,y)",
476
+ r"some x.(man(x) & walks(x))",
477
+ r"\x.(man(x) & walks(x))",
478
+ r"\x y.sees(x,y)",
479
+ r"walks(john)",
480
+ r"\x.big(x, \y.mouse(y))",
481
+ r"(walks(x) & (runs(x) & (threes(x) & fours(x))))",
482
+ r"(walks(x) -> runs(x))",
483
+ r"some x.(PRO(x) & sees(John, x))",
484
+ r"some x.(man(x) & (not walks(x)))",
485
+ r"all x.(man(x) -> walks(x))",
486
+ ]
487
+
488
+
489
+ def spacer(num=45):
490
+ print("-" * num)
491
+
492
+
493
+ def demo():
494
+ print("Testing configuration")
495
+ spacer()
496
+ test_config()
497
+ print()
498
+ print("Testing conversion to Prover9 format")
499
+ spacer()
500
+ test_convert_to_prover9(expressions)
501
+ print()
502
+ print("Testing proofs")
503
+ spacer()
504
+ test_prove(arguments)
505
+
506
+
507
+ if __name__ == "__main__":
508
+ demo()
venv/lib/python3.10/site-packages/nltk/inference/tableau.py ADDED
@@ -0,0 +1,712 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: First-Order Tableau Theorem Prover
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Dan Garrette <[email protected]>
5
+ #
6
+ # URL: <https://www.nltk.org/>
7
+ # For license information, see LICENSE.TXT
8
+
9
+ """
10
+ Module for a tableau-based First Order theorem prover.
11
+ """
12
+
13
+ from nltk.inference.api import BaseProverCommand, Prover
14
+ from nltk.internals import Counter
15
+ from nltk.sem.logic import (
16
+ AbstractVariableExpression,
17
+ AllExpression,
18
+ AndExpression,
19
+ ApplicationExpression,
20
+ EqualityExpression,
21
+ ExistsExpression,
22
+ Expression,
23
+ FunctionVariableExpression,
24
+ IffExpression,
25
+ ImpExpression,
26
+ LambdaExpression,
27
+ NegatedExpression,
28
+ OrExpression,
29
+ Variable,
30
+ VariableExpression,
31
+ unique_variable,
32
+ )
33
+
34
+ _counter = Counter()
35
+
36
+
37
+ class ProverParseError(Exception):
38
+ pass
39
+
40
+
41
+ class TableauProver(Prover):
42
+ _assume_false = False
43
+
44
+ def _prove(self, goal=None, assumptions=None, verbose=False):
45
+ if not assumptions:
46
+ assumptions = []
47
+
48
+ result = None
49
+ try:
50
+ agenda = Agenda()
51
+ if goal:
52
+ agenda.put(-goal)
53
+ agenda.put_all(assumptions)
54
+ debugger = Debug(verbose)
55
+ result = self._attempt_proof(agenda, set(), set(), debugger)
56
+ except RuntimeError as e:
57
+ if self._assume_false and str(e).startswith(
58
+ "maximum recursion depth exceeded"
59
+ ):
60
+ result = False
61
+ else:
62
+ if verbose:
63
+ print(e)
64
+ else:
65
+ raise e
66
+ return (result, "\n".join(debugger.lines))
67
+
68
+ def _attempt_proof(self, agenda, accessible_vars, atoms, debug):
69
+ (current, context), category = agenda.pop_first()
70
+
71
+ # if there's nothing left in the agenda, and we haven't closed the path
72
+ if not current:
73
+ debug.line("AGENDA EMPTY")
74
+ return False
75
+
76
+ proof_method = {
77
+ Categories.ATOM: self._attempt_proof_atom,
78
+ Categories.PROP: self._attempt_proof_prop,
79
+ Categories.N_ATOM: self._attempt_proof_n_atom,
80
+ Categories.N_PROP: self._attempt_proof_n_prop,
81
+ Categories.APP: self._attempt_proof_app,
82
+ Categories.N_APP: self._attempt_proof_n_app,
83
+ Categories.N_EQ: self._attempt_proof_n_eq,
84
+ Categories.D_NEG: self._attempt_proof_d_neg,
85
+ Categories.N_ALL: self._attempt_proof_n_all,
86
+ Categories.N_EXISTS: self._attempt_proof_n_some,
87
+ Categories.AND: self._attempt_proof_and,
88
+ Categories.N_OR: self._attempt_proof_n_or,
89
+ Categories.N_IMP: self._attempt_proof_n_imp,
90
+ Categories.OR: self._attempt_proof_or,
91
+ Categories.IMP: self._attempt_proof_imp,
92
+ Categories.N_AND: self._attempt_proof_n_and,
93
+ Categories.IFF: self._attempt_proof_iff,
94
+ Categories.N_IFF: self._attempt_proof_n_iff,
95
+ Categories.EQ: self._attempt_proof_eq,
96
+ Categories.EXISTS: self._attempt_proof_some,
97
+ Categories.ALL: self._attempt_proof_all,
98
+ }[category]
99
+
100
+ debug.line((current, context))
101
+ return proof_method(current, context, agenda, accessible_vars, atoms, debug)
102
+
103
+ def _attempt_proof_atom(
104
+ self, current, context, agenda, accessible_vars, atoms, debug
105
+ ):
106
+ # Check if the branch is closed. Return 'True' if it is
107
+ if (current, True) in atoms:
108
+ debug.line("CLOSED", 1)
109
+ return True
110
+
111
+ if context:
112
+ if isinstance(context.term, NegatedExpression):
113
+ current = current.negate()
114
+ agenda.put(context(current).simplify())
115
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
116
+ else:
117
+ # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
118
+ agenda.mark_alls_fresh()
119
+ return self._attempt_proof(
120
+ agenda,
121
+ accessible_vars | set(current.args),
122
+ atoms | {(current, False)},
123
+ debug + 1,
124
+ )
125
+
126
+ def _attempt_proof_n_atom(
127
+ self, current, context, agenda, accessible_vars, atoms, debug
128
+ ):
129
+ # Check if the branch is closed. Return 'True' if it is
130
+ if (current.term, False) in atoms:
131
+ debug.line("CLOSED", 1)
132
+ return True
133
+
134
+ if context:
135
+ if isinstance(context.term, NegatedExpression):
136
+ current = current.negate()
137
+ agenda.put(context(current).simplify())
138
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
139
+ else:
140
+ # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
141
+ agenda.mark_alls_fresh()
142
+ return self._attempt_proof(
143
+ agenda,
144
+ accessible_vars | set(current.term.args),
145
+ atoms | {(current.term, True)},
146
+ debug + 1,
147
+ )
148
+
149
+ def _attempt_proof_prop(
150
+ self, current, context, agenda, accessible_vars, atoms, debug
151
+ ):
152
+ # Check if the branch is closed. Return 'True' if it is
153
+ if (current, True) in atoms:
154
+ debug.line("CLOSED", 1)
155
+ return True
156
+
157
+ # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
158
+ agenda.mark_alls_fresh()
159
+ return self._attempt_proof(
160
+ agenda, accessible_vars, atoms | {(current, False)}, debug + 1
161
+ )
162
+
163
+ def _attempt_proof_n_prop(
164
+ self, current, context, agenda, accessible_vars, atoms, debug
165
+ ):
166
+ # Check if the branch is closed. Return 'True' if it is
167
+ if (current.term, False) in atoms:
168
+ debug.line("CLOSED", 1)
169
+ return True
170
+
171
+ # mark all AllExpressions as 'not exhausted' into the agenda since we are (potentially) adding new accessible vars
172
+ agenda.mark_alls_fresh()
173
+ return self._attempt_proof(
174
+ agenda, accessible_vars, atoms | {(current.term, True)}, debug + 1
175
+ )
176
+
177
+ def _attempt_proof_app(
178
+ self, current, context, agenda, accessible_vars, atoms, debug
179
+ ):
180
+ f, args = current.uncurry()
181
+ for i, arg in enumerate(args):
182
+ if not TableauProver.is_atom(arg):
183
+ ctx = f
184
+ nv = Variable("X%s" % _counter.get())
185
+ for j, a in enumerate(args):
186
+ ctx = ctx(VariableExpression(nv)) if i == j else ctx(a)
187
+ if context:
188
+ ctx = context(ctx).simplify()
189
+ ctx = LambdaExpression(nv, ctx)
190
+ agenda.put(arg, ctx)
191
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
192
+ raise Exception("If this method is called, there must be a non-atomic argument")
193
+
194
+ def _attempt_proof_n_app(
195
+ self, current, context, agenda, accessible_vars, atoms, debug
196
+ ):
197
+ f, args = current.term.uncurry()
198
+ for i, arg in enumerate(args):
199
+ if not TableauProver.is_atom(arg):
200
+ ctx = f
201
+ nv = Variable("X%s" % _counter.get())
202
+ for j, a in enumerate(args):
203
+ ctx = ctx(VariableExpression(nv)) if i == j else ctx(a)
204
+ if context:
205
+ # combine new context with existing
206
+ ctx = context(ctx).simplify()
207
+ ctx = LambdaExpression(nv, -ctx)
208
+ agenda.put(-arg, ctx)
209
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
210
+ raise Exception("If this method is called, there must be a non-atomic argument")
211
+
212
+ def _attempt_proof_n_eq(
213
+ self, current, context, agenda, accessible_vars, atoms, debug
214
+ ):
215
+ ###########################################################################
216
+ # Since 'current' is of type '~(a=b)', the path is closed if 'a' == 'b'
217
+ ###########################################################################
218
+ if current.term.first == current.term.second:
219
+ debug.line("CLOSED", 1)
220
+ return True
221
+
222
+ agenda[Categories.N_EQ].add((current, context))
223
+ current._exhausted = True
224
+ return self._attempt_proof(
225
+ agenda,
226
+ accessible_vars | {current.term.first, current.term.second},
227
+ atoms,
228
+ debug + 1,
229
+ )
230
+
231
+ def _attempt_proof_d_neg(
232
+ self, current, context, agenda, accessible_vars, atoms, debug
233
+ ):
234
+ agenda.put(current.term.term, context)
235
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
236
+
237
+ def _attempt_proof_n_all(
238
+ self, current, context, agenda, accessible_vars, atoms, debug
239
+ ):
240
+ agenda[Categories.EXISTS].add(
241
+ (ExistsExpression(current.term.variable, -current.term.term), context)
242
+ )
243
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
244
+
245
+ def _attempt_proof_n_some(
246
+ self, current, context, agenda, accessible_vars, atoms, debug
247
+ ):
248
+ agenda[Categories.ALL].add(
249
+ (AllExpression(current.term.variable, -current.term.term), context)
250
+ )
251
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
252
+
253
+ def _attempt_proof_and(
254
+ self, current, context, agenda, accessible_vars, atoms, debug
255
+ ):
256
+ agenda.put(current.first, context)
257
+ agenda.put(current.second, context)
258
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
259
+
260
+ def _attempt_proof_n_or(
261
+ self, current, context, agenda, accessible_vars, atoms, debug
262
+ ):
263
+ agenda.put(-current.term.first, context)
264
+ agenda.put(-current.term.second, context)
265
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
266
+
267
+ def _attempt_proof_n_imp(
268
+ self, current, context, agenda, accessible_vars, atoms, debug
269
+ ):
270
+ agenda.put(current.term.first, context)
271
+ agenda.put(-current.term.second, context)
272
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
273
+
274
+ def _attempt_proof_or(
275
+ self, current, context, agenda, accessible_vars, atoms, debug
276
+ ):
277
+ new_agenda = agenda.clone()
278
+ agenda.put(current.first, context)
279
+ new_agenda.put(current.second, context)
280
+ return self._attempt_proof(
281
+ agenda, accessible_vars, atoms, debug + 1
282
+ ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)
283
+
284
+ def _attempt_proof_imp(
285
+ self, current, context, agenda, accessible_vars, atoms, debug
286
+ ):
287
+ new_agenda = agenda.clone()
288
+ agenda.put(-current.first, context)
289
+ new_agenda.put(current.second, context)
290
+ return self._attempt_proof(
291
+ agenda, accessible_vars, atoms, debug + 1
292
+ ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)
293
+
294
+ def _attempt_proof_n_and(
295
+ self, current, context, agenda, accessible_vars, atoms, debug
296
+ ):
297
+ new_agenda = agenda.clone()
298
+ agenda.put(-current.term.first, context)
299
+ new_agenda.put(-current.term.second, context)
300
+ return self._attempt_proof(
301
+ agenda, accessible_vars, atoms, debug + 1
302
+ ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)
303
+
304
+ def _attempt_proof_iff(
305
+ self, current, context, agenda, accessible_vars, atoms, debug
306
+ ):
307
+ new_agenda = agenda.clone()
308
+ agenda.put(current.first, context)
309
+ agenda.put(current.second, context)
310
+ new_agenda.put(-current.first, context)
311
+ new_agenda.put(-current.second, context)
312
+ return self._attempt_proof(
313
+ agenda, accessible_vars, atoms, debug + 1
314
+ ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)
315
+
316
+ def _attempt_proof_n_iff(
317
+ self, current, context, agenda, accessible_vars, atoms, debug
318
+ ):
319
+ new_agenda = agenda.clone()
320
+ agenda.put(current.term.first, context)
321
+ agenda.put(-current.term.second, context)
322
+ new_agenda.put(-current.term.first, context)
323
+ new_agenda.put(current.term.second, context)
324
+ return self._attempt_proof(
325
+ agenda, accessible_vars, atoms, debug + 1
326
+ ) and self._attempt_proof(new_agenda, accessible_vars, atoms, debug + 1)
327
+
328
+ def _attempt_proof_eq(
329
+ self, current, context, agenda, accessible_vars, atoms, debug
330
+ ):
331
+ #########################################################################
332
+ # Since 'current' is of the form '(a = b)', replace ALL free instances
333
+ # of 'a' with 'b'
334
+ #########################################################################
335
+ agenda.put_atoms(atoms)
336
+ agenda.replace_all(current.first, current.second)
337
+ accessible_vars.discard(current.first)
338
+ agenda.mark_neqs_fresh()
339
+ return self._attempt_proof(agenda, accessible_vars, set(), debug + 1)
340
+
341
+ def _attempt_proof_some(
342
+ self, current, context, agenda, accessible_vars, atoms, debug
343
+ ):
344
+ new_unique_variable = VariableExpression(unique_variable())
345
+ agenda.put(current.term.replace(current.variable, new_unique_variable), context)
346
+ agenda.mark_alls_fresh()
347
+ return self._attempt_proof(
348
+ agenda, accessible_vars | {new_unique_variable}, atoms, debug + 1
349
+ )
350
+
351
+ def _attempt_proof_all(
352
+ self, current, context, agenda, accessible_vars, atoms, debug
353
+ ):
354
+ try:
355
+ current._used_vars
356
+ except AttributeError:
357
+ current._used_vars = set()
358
+
359
+ # if there are accessible_vars on the path
360
+ if accessible_vars:
361
+ # get the set of bound variables that have not be used by this AllExpression
362
+ bv_available = accessible_vars - current._used_vars
363
+
364
+ if bv_available:
365
+ variable_to_use = list(bv_available)[0]
366
+ debug.line("--> Using '%s'" % variable_to_use, 2)
367
+ current._used_vars |= {variable_to_use}
368
+ agenda.put(
369
+ current.term.replace(current.variable, variable_to_use), context
370
+ )
371
+ agenda[Categories.ALL].add((current, context))
372
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
373
+
374
+ else:
375
+ # no more available variables to substitute
376
+ debug.line("--> Variables Exhausted", 2)
377
+ current._exhausted = True
378
+ agenda[Categories.ALL].add((current, context))
379
+ return self._attempt_proof(agenda, accessible_vars, atoms, debug + 1)
380
+
381
+ else:
382
+ new_unique_variable = VariableExpression(unique_variable())
383
+ debug.line("--> Using '%s'" % new_unique_variable, 2)
384
+ current._used_vars |= {new_unique_variable}
385
+ agenda.put(
386
+ current.term.replace(current.variable, new_unique_variable), context
387
+ )
388
+ agenda[Categories.ALL].add((current, context))
389
+ agenda.mark_alls_fresh()
390
+ return self._attempt_proof(
391
+ agenda, accessible_vars | {new_unique_variable}, atoms, debug + 1
392
+ )
393
+
394
+ @staticmethod
395
+ def is_atom(e):
396
+ if isinstance(e, NegatedExpression):
397
+ e = e.term
398
+
399
+ if isinstance(e, ApplicationExpression):
400
+ for arg in e.args:
401
+ if not TableauProver.is_atom(arg):
402
+ return False
403
+ return True
404
+ elif isinstance(e, AbstractVariableExpression) or isinstance(
405
+ e, LambdaExpression
406
+ ):
407
+ return True
408
+ else:
409
+ return False
410
+
411
+
412
+ class TableauProverCommand(BaseProverCommand):
413
+ def __init__(self, goal=None, assumptions=None, prover=None):
414
+ """
415
+ :param goal: Input expression to prove
416
+ :type goal: sem.Expression
417
+ :param assumptions: Input expressions to use as assumptions in
418
+ the proof.
419
+ :type assumptions: list(sem.Expression)
420
+ """
421
+ if prover is not None:
422
+ assert isinstance(prover, TableauProver)
423
+ else:
424
+ prover = TableauProver()
425
+
426
+ BaseProverCommand.__init__(self, prover, goal, assumptions)
427
+
428
+
429
+ class Agenda:
430
+ def __init__(self):
431
+ self.sets = tuple(set() for i in range(21))
432
+
433
+ def clone(self):
434
+ new_agenda = Agenda()
435
+ set_list = [s.copy() for s in self.sets]
436
+
437
+ new_allExs = set()
438
+ for allEx, _ in set_list[Categories.ALL]:
439
+ new_allEx = AllExpression(allEx.variable, allEx.term)
440
+ try:
441
+ new_allEx._used_vars = {used for used in allEx._used_vars}
442
+ except AttributeError:
443
+ new_allEx._used_vars = set()
444
+ new_allExs.add((new_allEx, None))
445
+ set_list[Categories.ALL] = new_allExs
446
+
447
+ set_list[Categories.N_EQ] = {
448
+ (NegatedExpression(n_eq.term), ctx)
449
+ for (n_eq, ctx) in set_list[Categories.N_EQ]
450
+ }
451
+
452
+ new_agenda.sets = tuple(set_list)
453
+ return new_agenda
454
+
455
+ def __getitem__(self, index):
456
+ return self.sets[index]
457
+
458
+ def put(self, expression, context=None):
459
+ if isinstance(expression, AllExpression):
460
+ ex_to_add = AllExpression(expression.variable, expression.term)
461
+ try:
462
+ ex_to_add._used_vars = {used for used in expression._used_vars}
463
+ except AttributeError:
464
+ ex_to_add._used_vars = set()
465
+ else:
466
+ ex_to_add = expression
467
+ self.sets[self._categorize_expression(ex_to_add)].add((ex_to_add, context))
468
+
469
+ def put_all(self, expressions):
470
+ for expression in expressions:
471
+ self.put(expression)
472
+
473
+ def put_atoms(self, atoms):
474
+ for atom, neg in atoms:
475
+ if neg:
476
+ self[Categories.N_ATOM].add((-atom, None))
477
+ else:
478
+ self[Categories.ATOM].add((atom, None))
479
+
480
+ def pop_first(self):
481
+ """Pop the first expression that appears in the agenda"""
482
+ for i, s in enumerate(self.sets):
483
+ if s:
484
+ if i in [Categories.N_EQ, Categories.ALL]:
485
+ for ex in s:
486
+ try:
487
+ if not ex[0]._exhausted:
488
+ s.remove(ex)
489
+ return (ex, i)
490
+ except AttributeError:
491
+ s.remove(ex)
492
+ return (ex, i)
493
+ else:
494
+ return (s.pop(), i)
495
+ return ((None, None), None)
496
+
497
+ def replace_all(self, old, new):
498
+ for s in self.sets:
499
+ for ex, ctx in s:
500
+ ex.replace(old.variable, new)
501
+ if ctx is not None:
502
+ ctx.replace(old.variable, new)
503
+
504
+ def mark_alls_fresh(self):
505
+ for u, _ in self.sets[Categories.ALL]:
506
+ u._exhausted = False
507
+
508
+ def mark_neqs_fresh(self):
509
+ for neq, _ in self.sets[Categories.N_EQ]:
510
+ neq._exhausted = False
511
+
512
+ def _categorize_expression(self, current):
513
+ if isinstance(current, NegatedExpression):
514
+ return self._categorize_NegatedExpression(current)
515
+ elif isinstance(current, FunctionVariableExpression):
516
+ return Categories.PROP
517
+ elif TableauProver.is_atom(current):
518
+ return Categories.ATOM
519
+ elif isinstance(current, AllExpression):
520
+ return Categories.ALL
521
+ elif isinstance(current, AndExpression):
522
+ return Categories.AND
523
+ elif isinstance(current, OrExpression):
524
+ return Categories.OR
525
+ elif isinstance(current, ImpExpression):
526
+ return Categories.IMP
527
+ elif isinstance(current, IffExpression):
528
+ return Categories.IFF
529
+ elif isinstance(current, EqualityExpression):
530
+ return Categories.EQ
531
+ elif isinstance(current, ExistsExpression):
532
+ return Categories.EXISTS
533
+ elif isinstance(current, ApplicationExpression):
534
+ return Categories.APP
535
+ else:
536
+ raise ProverParseError("cannot categorize %s" % current.__class__.__name__)
537
+
538
+ def _categorize_NegatedExpression(self, current):
539
+ negated = current.term
540
+
541
+ if isinstance(negated, NegatedExpression):
542
+ return Categories.D_NEG
543
+ elif isinstance(negated, FunctionVariableExpression):
544
+ return Categories.N_PROP
545
+ elif TableauProver.is_atom(negated):
546
+ return Categories.N_ATOM
547
+ elif isinstance(negated, AllExpression):
548
+ return Categories.N_ALL
549
+ elif isinstance(negated, AndExpression):
550
+ return Categories.N_AND
551
+ elif isinstance(negated, OrExpression):
552
+ return Categories.N_OR
553
+ elif isinstance(negated, ImpExpression):
554
+ return Categories.N_IMP
555
+ elif isinstance(negated, IffExpression):
556
+ return Categories.N_IFF
557
+ elif isinstance(negated, EqualityExpression):
558
+ return Categories.N_EQ
559
+ elif isinstance(negated, ExistsExpression):
560
+ return Categories.N_EXISTS
561
+ elif isinstance(negated, ApplicationExpression):
562
+ return Categories.N_APP
563
+ else:
564
+ raise ProverParseError("cannot categorize %s" % negated.__class__.__name__)
565
+
566
+
567
+ class Debug:
568
+ def __init__(self, verbose, indent=0, lines=None):
569
+ self.verbose = verbose
570
+ self.indent = indent
571
+
572
+ if not lines:
573
+ lines = []
574
+ self.lines = lines
575
+
576
+ def __add__(self, increment):
577
+ return Debug(self.verbose, self.indent + 1, self.lines)
578
+
579
+ def line(self, data, indent=0):
580
+ if isinstance(data, tuple):
581
+ ex, ctx = data
582
+ if ctx:
583
+ data = f"{ex}, {ctx}"
584
+ else:
585
+ data = "%s" % ex
586
+
587
+ if isinstance(ex, AllExpression):
588
+ try:
589
+ used_vars = "[%s]" % (
590
+ ",".join("%s" % ve.variable.name for ve in ex._used_vars)
591
+ )
592
+ data += ": %s" % used_vars
593
+ except AttributeError:
594
+ data += ": []"
595
+
596
+ newline = "{}{}".format(" " * (self.indent + indent), data)
597
+ self.lines.append(newline)
598
+
599
+ if self.verbose:
600
+ print(newline)
601
+
602
+
603
+ class Categories:
604
+ ATOM = 0
605
+ PROP = 1
606
+ N_ATOM = 2
607
+ N_PROP = 3
608
+ APP = 4
609
+ N_APP = 5
610
+ N_EQ = 6
611
+ D_NEG = 7
612
+ N_ALL = 8
613
+ N_EXISTS = 9
614
+ AND = 10
615
+ N_OR = 11
616
+ N_IMP = 12
617
+ OR = 13
618
+ IMP = 14
619
+ N_AND = 15
620
+ IFF = 16
621
+ N_IFF = 17
622
+ EQ = 18
623
+ EXISTS = 19
624
+ ALL = 20
625
+
626
+
627
+ def testTableauProver():
628
+ tableau_test("P | -P")
629
+ tableau_test("P & -P")
630
+ tableau_test("Q", ["P", "(P -> Q)"])
631
+ tableau_test("man(x)")
632
+ tableau_test("(man(x) -> man(x))")
633
+ tableau_test("(man(x) -> --man(x))")
634
+ tableau_test("-(man(x) and -man(x))")
635
+ tableau_test("(man(x) or -man(x))")
636
+ tableau_test("(man(x) -> man(x))")
637
+ tableau_test("-(man(x) and -man(x))")
638
+ tableau_test("(man(x) or -man(x))")
639
+ tableau_test("(man(x) -> man(x))")
640
+ tableau_test("(man(x) iff man(x))")
641
+ tableau_test("-(man(x) iff -man(x))")
642
+ tableau_test("all x.man(x)")
643
+ tableau_test("all x.all y.((x = y) -> (y = x))")
644
+ tableau_test("all x.all y.all z.(((x = y) & (y = z)) -> (x = z))")
645
+ # tableau_test('-all x.some y.F(x,y) & some x.all y.(-F(x,y))')
646
+ # tableau_test('some x.all y.sees(x,y)')
647
+
648
+ p1 = "all x.(man(x) -> mortal(x))"
649
+ p2 = "man(Socrates)"
650
+ c = "mortal(Socrates)"
651
+ tableau_test(c, [p1, p2])
652
+
653
+ p1 = "all x.(man(x) -> walks(x))"
654
+ p2 = "man(John)"
655
+ c = "some y.walks(y)"
656
+ tableau_test(c, [p1, p2])
657
+
658
+ p = "((x = y) & walks(y))"
659
+ c = "walks(x)"
660
+ tableau_test(c, [p])
661
+
662
+ p = "((x = y) & ((y = z) & (z = w)))"
663
+ c = "(x = w)"
664
+ tableau_test(c, [p])
665
+
666
+ p = "some e1.some e2.(believe(e1,john,e2) & walk(e2,mary))"
667
+ c = "some e0.walk(e0,mary)"
668
+ tableau_test(c, [p])
669
+
670
+ c = "(exists x.exists z3.((x = Mary) & ((z3 = John) & sees(z3,x))) <-> exists x.exists z4.((x = John) & ((z4 = Mary) & sees(x,z4))))"
671
+ tableau_test(c)
672
+
673
+
674
+ # p = 'some e1.some e2.((believe e1 john e2) and (walk e2 mary))'
675
+ # c = 'some x.some e3.some e4.((believe e3 x e4) and (walk e4 mary))'
676
+ # tableau_test(c, [p])
677
+
678
+
679
+ def testHigherOrderTableauProver():
680
+ tableau_test("believe(j, -lie(b))", ["believe(j, -lie(b) & -cheat(b))"])
681
+ tableau_test("believe(j, lie(b) & cheat(b))", ["believe(j, lie(b))"])
682
+ tableau_test(
683
+ "believe(j, lie(b))", ["lie(b)"]
684
+ ) # how do we capture that John believes all things that are true
685
+ tableau_test(
686
+ "believe(j, know(b, cheat(b)))",
687
+ ["believe(j, know(b, lie(b)) & know(b, steals(b) & cheat(b)))"],
688
+ )
689
+ tableau_test("P(Q(y), R(y) & R(z))", ["P(Q(x) & Q(y), R(y) & R(z))"])
690
+
691
+ tableau_test("believe(j, cheat(b) & lie(b))", ["believe(j, lie(b) & cheat(b))"])
692
+ tableau_test("believe(j, -cheat(b) & -lie(b))", ["believe(j, -lie(b) & -cheat(b))"])
693
+
694
+
695
+ def tableau_test(c, ps=None, verbose=False):
696
+ pc = Expression.fromstring(c)
697
+ pps = [Expression.fromstring(p) for p in ps] if ps else []
698
+ if not ps:
699
+ ps = []
700
+ print(
701
+ "%s |- %s: %s"
702
+ % (", ".join(ps), pc, TableauProver().prove(pc, pps, verbose=verbose))
703
+ )
704
+
705
+
706
+ def demo():
707
+ testTableauProver()
708
+ testHigherOrderTableauProver()
709
+
710
+
711
+ if __name__ == "__main__":
712
+ demo()
venv/lib/python3.10/site-packages/nltk/test/__init__.py ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Natural Language Toolkit: Unit Tests
2
+ #
3
+ # Copyright (C) 2001-2023 NLTK Project
4
+ # Author: Edward Loper <[email protected]>
5
+ # URL: <https://www.nltk.org/>
6
+ # For license information, see LICENSE.TXT
7
+
8
+ """
9
+ Unit tests for the NLTK modules. These tests are intended to ensure
10
+ that source code changes don't accidentally introduce bugs.
11
+ For instructions, please see:
12
+
13
+ ../../web/dev/local_testing.rst
14
+
15
+ https://github.com/nltk/nltk/blob/develop/web/dev/local_testing.rst
16
+
17
+
18
+ """
venv/lib/python3.10/site-packages/nltk/test/all.py ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Test suite that runs all NLTK tests.
2
+
3
+ This module, `nltk.test.all`, is named as the NLTK ``test_suite`` in the
4
+ project's ``setup-eggs.py`` file. Here, we create a test suite that
5
+ runs all of our doctests, and return it for processing by the setuptools
6
+ test harness.
7
+
8
+ """
9
+ import doctest
10
+ import os.path
11
+ import unittest
12
+ from glob import glob
13
+
14
+
15
+ def additional_tests():
16
+ # print("here-000000000000000")
17
+ # print("-----", glob(os.path.join(os.path.dirname(__file__), '*.doctest')))
18
+ dir = os.path.dirname(__file__)
19
+ paths = glob(os.path.join(dir, "*.doctest"))
20
+ files = [os.path.basename(path) for path in paths]
21
+ return unittest.TestSuite([doctest.DocFileSuite(file) for file in files])
22
+
23
+
24
+ # if os.path.split(path)[-1] != 'index.rst'
25
+ # skips time-dependent doctest in index.rst
venv/lib/python3.10/site-packages/nltk/test/bleu.doctest ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ==========
2
+ BLEU tests
3
+ ==========
4
+
5
+ >>> from nltk.translate import bleu
6
+
7
+ If the candidate has no alignment to any of the references, the BLEU score is 0.
8
+
9
+ >>> bleu(
10
+ ... ['The candidate has no alignment to any of the references'.split()],
11
+ ... 'John loves Mary'.split(),
12
+ ... (1,),
13
+ ... )
14
+ 0
15
+
16
+ This is an implementation of the smoothing techniques
17
+ for segment-level BLEU scores that was presented in
18
+ Boxing Chen and Collin Cherry (2014) A Systematic Comparison of
19
+ Smoothing Techniques for Sentence-Level BLEU. In WMT14.
20
+ http://acl2014.org/acl2014/W14-33/pdf/W14-3346.pdf
21
+ >>> from nltk.translate.bleu_score import sentence_bleu,SmoothingFunction
22
+
23
+
24
+ >>> sentence_bleu(
25
+ ... ['It is a place of quiet contemplation .'.split()],
26
+ ... 'It is .'.split(),
27
+ ... smoothing_function=SmoothingFunction().method4,
28
+ ... )*100
29
+ 4.4267...
venv/lib/python3.10/site-packages/nltk/test/bnc.doctest ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ >>> import os.path
5
+
6
+ >>> from nltk.corpus.reader import BNCCorpusReader
7
+ >>> import nltk.test
8
+
9
+ >>> root = os.path.dirname(nltk.test.__file__)
10
+ >>> bnc = BNCCorpusReader(root=root, fileids='FX8.xml')
11
+
12
+ Checking the word access.
13
+ -------------------------
14
+
15
+ >>> len(bnc.words())
16
+ 151
17
+
18
+ >>> bnc.words()[:6]
19
+ ['Ah', 'there', 'we', 'are', ',', '.']
20
+ >>> bnc.words(stem=True)[:6]
21
+ ['ah', 'there', 'we', 'be', ',', '.']
22
+
23
+ >>> bnc.tagged_words()[:6]
24
+ [('Ah', 'INTERJ'), ('there', 'ADV'), ('we', 'PRON'), ('are', 'VERB'), (',', 'PUN'), ('.', 'PUN')]
25
+
26
+ >>> bnc.tagged_words(c5=True)[:6]
27
+ [('Ah', 'ITJ'), ('there', 'AV0'), ('we', 'PNP'), ('are', 'VBB'), (',', 'PUN'), ('.', 'PUN')]
28
+
29
+ Testing access to the sentences.
30
+ --------------------------------
31
+
32
+ >>> len(bnc.sents())
33
+ 15
34
+
35
+ >>> bnc.sents()[0]
36
+ ['Ah', 'there', 'we', 'are', ',', '.']
37
+ >>> bnc.sents(stem=True)[0]
38
+ ['ah', 'there', 'we', 'be', ',', '.']
39
+
40
+ >>> bnc.tagged_sents()[0]
41
+ [('Ah', 'INTERJ'), ('there', 'ADV'), ('we', 'PRON'), ('are', 'VERB'), (',', 'PUN'), ('.', 'PUN')]
42
+ >>> bnc.tagged_sents(c5=True)[0]
43
+ [('Ah', 'ITJ'), ('there', 'AV0'), ('we', 'PNP'), ('are', 'VBB'), (',', 'PUN'), ('.', 'PUN')]
44
+
45
+ A not lazy loader.
46
+ ------------------
47
+
48
+ >>> eager = BNCCorpusReader(root=root, fileids=r'FX8.xml', lazy=False)
49
+
50
+ >>> len(eager.words())
51
+ 151
52
+ >>> eager.words(stem=True)[6:17]
53
+ ['right', 'abdominal', 'wound', ',', 'she', 'be', 'a', 'wee', 'bit', 'confuse', '.']
54
+
55
+ >>> eager.tagged_words()[6:11]
56
+ [('Right', 'ADV'), ('abdominal', 'ADJ'), ('wound', 'SUBST'), (',', 'PUN'), ('she', 'PRON')]
57
+ >>> eager.tagged_words(c5=True)[6:17]
58
+ [('Right', 'AV0'), ('abdominal', 'AJ0'), ('wound', 'NN1'), (',', 'PUN'), ('she', 'PNP'), ("'s", 'VBZ'), ('a', 'AT0'), ('wee', 'AJ0-NN1'), ('bit', 'NN1'), ('confused', 'VVN-AJ0'), ('.', 'PUN')]
59
+ >>> len(eager.sents())
60
+ 15
venv/lib/python3.10/site-packages/nltk/test/ccg.doctest ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============================
5
+ Combinatory Categorial Grammar
6
+ ==============================
7
+
8
+ Relative Clauses
9
+ ----------------
10
+
11
+ >>> from nltk.ccg import chart, lexicon
12
+
13
+ Construct a lexicon:
14
+
15
+ >>> lex = lexicon.fromstring('''
16
+ ... :- S, NP, N, VP
17
+ ...
18
+ ... Det :: NP/N
19
+ ... Pro :: NP
20
+ ... Modal :: S\\NP/VP
21
+ ...
22
+ ... TV :: VP/NP
23
+ ... DTV :: TV/NP
24
+ ...
25
+ ... the => Det
26
+ ...
27
+ ... that => Det
28
+ ... that => NP
29
+ ...
30
+ ... I => Pro
31
+ ... you => Pro
32
+ ... we => Pro
33
+ ...
34
+ ... chef => N
35
+ ... cake => N
36
+ ... children => N
37
+ ... dough => N
38
+ ...
39
+ ... will => Modal
40
+ ... should => Modal
41
+ ... might => Modal
42
+ ... must => Modal
43
+ ...
44
+ ... and => var\\.,var/.,var
45
+ ...
46
+ ... to => VP[to]/VP
47
+ ...
48
+ ... without => (VP\\VP)/VP[ing]
49
+ ...
50
+ ... be => TV
51
+ ... cook => TV
52
+ ... eat => TV
53
+ ...
54
+ ... cooking => VP[ing]/NP
55
+ ...
56
+ ... give => DTV
57
+ ...
58
+ ... is => (S\\NP)/NP
59
+ ... prefer => (S\\NP)/NP
60
+ ...
61
+ ... which => (N\\N)/(S/NP)
62
+ ...
63
+ ... persuade => (VP/VP[to])/NP
64
+ ... ''')
65
+
66
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
67
+ >>> for parse in parser.parse("you prefer that cake".split()):
68
+ ... chart.printCCGDerivation(parse)
69
+ ... break
70
+ ...
71
+ you prefer that cake
72
+ NP ((S\NP)/NP) (NP/N) N
73
+ -------------->
74
+ NP
75
+ --------------------------->
76
+ (S\NP)
77
+ --------------------------------<
78
+ S
79
+
80
+ >>> for parse in parser.parse("that is the cake which you prefer".split()):
81
+ ... chart.printCCGDerivation(parse)
82
+ ... break
83
+ ...
84
+ that is the cake which you prefer
85
+ NP ((S\NP)/NP) (NP/N) N ((N\N)/(S/NP)) NP ((S\NP)/NP)
86
+ ----->T
87
+ (S/(S\NP))
88
+ ------------------>B
89
+ (S/NP)
90
+ ---------------------------------->
91
+ (N\N)
92
+ ----------------------------------------<
93
+ N
94
+ ------------------------------------------------>
95
+ NP
96
+ ------------------------------------------------------------->
97
+ (S\NP)
98
+ -------------------------------------------------------------------<
99
+ S
100
+
101
+
102
+ Some other sentences to try:
103
+ "that is the cake which we will persuade the chef to cook"
104
+ "that is the cake which we will persuade the chef to give the children"
105
+
106
+ >>> sent = "that is the dough which you will eat without cooking".split()
107
+ >>> nosub_parser = chart.CCGChartParser(lex, chart.ApplicationRuleSet +
108
+ ... chart.CompositionRuleSet + chart.TypeRaiseRuleSet)
109
+
110
+ Without Substitution (no output)
111
+
112
+ >>> for parse in nosub_parser.parse(sent):
113
+ ... chart.printCCGDerivation(parse)
114
+
115
+ With Substitution:
116
+
117
+ >>> for parse in parser.parse(sent):
118
+ ... chart.printCCGDerivation(parse)
119
+ ... break
120
+ ...
121
+ that is the dough which you will eat without cooking
122
+ NP ((S\NP)/NP) (NP/N) N ((N\N)/(S/NP)) NP ((S\NP)/VP) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
123
+ ----->T
124
+ (S/(S\NP))
125
+ ------------------------------------->B
126
+ ((VP\VP)/NP)
127
+ ----------------------------------------------<Sx
128
+ (VP/NP)
129
+ ----------------------------------------------------------->B
130
+ ((S\NP)/NP)
131
+ ---------------------------------------------------------------->B
132
+ (S/NP)
133
+ -------------------------------------------------------------------------------->
134
+ (N\N)
135
+ ---------------------------------------------------------------------------------------<
136
+ N
137
+ ----------------------------------------------------------------------------------------------->
138
+ NP
139
+ ------------------------------------------------------------------------------------------------------------>
140
+ (S\NP)
141
+ ------------------------------------------------------------------------------------------------------------------<
142
+ S
143
+
144
+
145
+ Conjunction
146
+ -----------
147
+
148
+ >>> from nltk.ccg.chart import CCGChartParser, ApplicationRuleSet, CompositionRuleSet
149
+ >>> from nltk.ccg.chart import SubstitutionRuleSet, TypeRaiseRuleSet, printCCGDerivation
150
+ >>> from nltk.ccg import lexicon
151
+
152
+ Lexicons for the tests:
153
+
154
+ >>> test1_lex = '''
155
+ ... :- S,N,NP,VP
156
+ ... I => NP
157
+ ... you => NP
158
+ ... will => S\\NP/VP
159
+ ... cook => VP/NP
160
+ ... which => (N\\N)/(S/NP)
161
+ ... and => var\\.,var/.,var
162
+ ... might => S\\NP/VP
163
+ ... eat => VP/NP
164
+ ... the => NP/N
165
+ ... mushrooms => N
166
+ ... parsnips => N'''
167
+ >>> test2_lex = '''
168
+ ... :- N, S, NP, VP
169
+ ... articles => N
170
+ ... the => NP/N
171
+ ... and => var\\.,var/.,var
172
+ ... which => (N\\N)/(S/NP)
173
+ ... I => NP
174
+ ... anyone => NP
175
+ ... will => (S/VP)\\NP
176
+ ... file => VP/NP
177
+ ... without => (VP\\VP)/VP[ing]
178
+ ... forget => VP/NP
179
+ ... reading => VP[ing]/NP
180
+ ... '''
181
+
182
+ Tests handling of conjunctions.
183
+ Note that while the two derivations are different, they are semantically equivalent.
184
+
185
+ >>> lex = lexicon.fromstring(test1_lex)
186
+ >>> parser = CCGChartParser(lex, ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet)
187
+ >>> for parse in parser.parse("I will cook and might eat the mushrooms and parsnips".split()):
188
+ ... printCCGDerivation(parse)
189
+ I will cook and might eat the mushrooms and parsnips
190
+ NP ((S\NP)/VP) (VP/NP) ((_var0\.,_var0)/.,_var0) ((S\NP)/VP) (VP/NP) (NP/N) N ((_var0\.,_var0)/.,_var0) N
191
+ ---------------------->B
192
+ ((S\NP)/NP)
193
+ ---------------------->B
194
+ ((S\NP)/NP)
195
+ ------------------------------------------------->
196
+ (((S\NP)/NP)\.,((S\NP)/NP))
197
+ -----------------------------------------------------------------------<
198
+ ((S\NP)/NP)
199
+ ------------------------------------->
200
+ (N\.,N)
201
+ ------------------------------------------------<
202
+ N
203
+ -------------------------------------------------------->
204
+ NP
205
+ ------------------------------------------------------------------------------------------------------------------------------->
206
+ (S\NP)
207
+ -----------------------------------------------------------------------------------------------------------------------------------<
208
+ S
209
+ I will cook and might eat the mushrooms and parsnips
210
+ NP ((S\NP)/VP) (VP/NP) ((_var0\.,_var0)/.,_var0) ((S\NP)/VP) (VP/NP) (NP/N) N ((_var0\.,_var0)/.,_var0) N
211
+ ---------------------->B
212
+ ((S\NP)/NP)
213
+ ---------------------->B
214
+ ((S\NP)/NP)
215
+ ------------------------------------------------->
216
+ (((S\NP)/NP)\.,((S\NP)/NP))
217
+ -----------------------------------------------------------------------<
218
+ ((S\NP)/NP)
219
+ ------------------------------------------------------------------------------->B
220
+ ((S\NP)/N)
221
+ ------------------------------------->
222
+ (N\.,N)
223
+ ------------------------------------------------<
224
+ N
225
+ ------------------------------------------------------------------------------------------------------------------------------->
226
+ (S\NP)
227
+ -----------------------------------------------------------------------------------------------------------------------------------<
228
+ S
229
+
230
+
231
+ Tests handling subject extraction.
232
+ Interesting to point that the two parses are clearly semantically different.
233
+
234
+ >>> lex = lexicon.fromstring(test2_lex)
235
+ >>> parser = CCGChartParser(lex, ApplicationRuleSet + CompositionRuleSet + SubstitutionRuleSet)
236
+ >>> for parse in parser.parse("articles which I will file and forget without reading".split()):
237
+ ... printCCGDerivation(parse)
238
+ articles which I will file and forget without reading
239
+ N ((N\N)/(S/NP)) NP ((S/VP)\NP) (VP/NP) ((_var0\.,_var0)/.,_var0) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
240
+ -----------------<
241
+ (S/VP)
242
+ ------------------------------------->B
243
+ ((VP\VP)/NP)
244
+ ----------------------------------------------<Sx
245
+ (VP/NP)
246
+ ------------------------------------------------------------------------->
247
+ ((VP/NP)\.,(VP/NP))
248
+ ----------------------------------------------------------------------------------<
249
+ (VP/NP)
250
+ --------------------------------------------------------------------------------------------------->B
251
+ (S/NP)
252
+ ------------------------------------------------------------------------------------------------------------------->
253
+ (N\N)
254
+ -----------------------------------------------------------------------------------------------------------------------------<
255
+ N
256
+ articles which I will file and forget without reading
257
+ N ((N\N)/(S/NP)) NP ((S/VP)\NP) (VP/NP) ((_var0\.,_var0)/.,_var0) (VP/NP) ((VP\VP)/VP['ing']) (VP['ing']/NP)
258
+ -----------------<
259
+ (S/VP)
260
+ ------------------------------------>
261
+ ((VP/NP)\.,(VP/NP))
262
+ ---------------------------------------------<
263
+ (VP/NP)
264
+ ------------------------------------->B
265
+ ((VP\VP)/NP)
266
+ ----------------------------------------------------------------------------------<Sx
267
+ (VP/NP)
268
+ --------------------------------------------------------------------------------------------------->B
269
+ (S/NP)
270
+ ------------------------------------------------------------------------------------------------------------------->
271
+ (N\N)
272
+ -----------------------------------------------------------------------------------------------------------------------------<
273
+ N
274
+
275
+
276
+ Unicode support
277
+ ---------------
278
+
279
+ Unicode words are supported.
280
+
281
+ >>> from nltk.ccg import chart, lexicon
282
+
283
+ Lexicons for the tests:
284
+
285
+ >>> lex = lexicon.fromstring('''
286
+ ... :- S, N, NP, PP
287
+ ...
288
+ ... AdjI :: N\\N
289
+ ... AdjD :: N/N
290
+ ... AdvD :: S/S
291
+ ... AdvI :: S\\S
292
+ ... Det :: NP/N
293
+ ... PrepNPCompl :: PP/NP
294
+ ... PrepNAdjN :: S\\S/N
295
+ ... PrepNAdjNP :: S\\S/NP
296
+ ... VPNP :: S\\NP/NP
297
+ ... VPPP :: S\\NP/PP
298
+ ... VPser :: S\\NP/AdjI
299
+ ...
300
+ ... auto => N
301
+ ... bebidas => N
302
+ ... cine => N
303
+ ... ley => N
304
+ ... libro => N
305
+ ... ministro => N
306
+ ... panadería => N
307
+ ... presidente => N
308
+ ... super => N
309
+ ...
310
+ ... el => Det
311
+ ... la => Det
312
+ ... las => Det
313
+ ... un => Det
314
+ ...
315
+ ... Ana => NP
316
+ ... Pablo => NP
317
+ ...
318
+ ... y => var\\.,var/.,var
319
+ ...
320
+ ... pero => (S/NP)\\(S/NP)/(S/NP)
321
+ ...
322
+ ... anunció => VPNP
323
+ ... compró => VPNP
324
+ ... cree => S\\NP/S[dep]
325
+ ... desmintió => VPNP
326
+ ... lee => VPNP
327
+ ... fueron => VPPP
328
+ ...
329
+ ... es => VPser
330
+ ...
331
+ ... interesante => AdjD
332
+ ... interesante => AdjI
333
+ ... nueva => AdjD
334
+ ... nueva => AdjI
335
+ ...
336
+ ... a => PrepNPCompl
337
+ ... en => PrepNAdjN
338
+ ... en => PrepNAdjNP
339
+ ...
340
+ ... ayer => AdvI
341
+ ...
342
+ ... que => (NP\\NP)/(S/NP)
343
+ ... que => S[dep]/S
344
+ ... ''')
345
+
346
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
347
+ >>> for parse in parser.parse(u"el ministro anunció pero el presidente desmintió la nueva ley".split()):
348
+ ... printCCGDerivation(parse) # doctest: +SKIP
349
+ ... # it fails on python2.7 because of the unicode problem explained in https://github.com/nltk/nltk/pull/1354
350
+ ... break
351
+ el ministro anunció pero el presidente desmintió la nueva ley
352
+ (NP/N) N ((S\NP)/NP) (((S/NP)\(S/NP))/(S/NP)) (NP/N) N ((S\NP)/NP) (NP/N) (N/N) N
353
+ ------------------>
354
+ NP
355
+ ------------------>T
356
+ (S/(S\NP))
357
+ -------------------->
358
+ NP
359
+ -------------------->T
360
+ (S/(S\NP))
361
+ --------------------------------->B
362
+ (S/NP)
363
+ ----------------------------------------------------------->
364
+ ((S/NP)\(S/NP))
365
+ ------------>
366
+ N
367
+ -------------------->
368
+ NP
369
+ --------------------<T
370
+ (S\(S/NP))
371
+ -------------------------------------------------------------------------------<B
372
+ (S\(S/NP))
373
+ --------------------------------------------------------------------------------------------<B
374
+ (S/NP)
375
+ -------------------------------------------------------------------------------------------------------------->
376
+ S
venv/lib/python3.10/site-packages/nltk/test/ccg_semantics.doctest ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============================================
5
+ Combinatory Categorial Grammar with semantics
6
+ ==============================================
7
+
8
+ -----
9
+ Chart
10
+ -----
11
+
12
+
13
+ >>> from nltk.ccg import chart, lexicon
14
+ >>> from nltk.ccg.chart import printCCGDerivation
15
+
16
+ No semantics
17
+ -------------------
18
+
19
+ >>> lex = lexicon.fromstring('''
20
+ ... :- S, NP, N
21
+ ... She => NP
22
+ ... has => (S\\NP)/NP
23
+ ... books => NP
24
+ ... ''',
25
+ ... False)
26
+
27
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
28
+ >>> parses = list(parser.parse("She has books".split()))
29
+ >>> print(str(len(parses)) + " parses")
30
+ 3 parses
31
+
32
+ >>> printCCGDerivation(parses[0])
33
+ She has books
34
+ NP ((S\NP)/NP) NP
35
+ -------------------->
36
+ (S\NP)
37
+ -------------------------<
38
+ S
39
+
40
+ >>> printCCGDerivation(parses[1])
41
+ She has books
42
+ NP ((S\NP)/NP) NP
43
+ ----->T
44
+ (S/(S\NP))
45
+ -------------------->
46
+ (S\NP)
47
+ ------------------------->
48
+ S
49
+
50
+
51
+ >>> printCCGDerivation(parses[2])
52
+ She has books
53
+ NP ((S\NP)/NP) NP
54
+ ----->T
55
+ (S/(S\NP))
56
+ ------------------>B
57
+ (S/NP)
58
+ ------------------------->
59
+ S
60
+
61
+ Simple semantics
62
+ -------------------
63
+
64
+ >>> lex = lexicon.fromstring('''
65
+ ... :- S, NP, N
66
+ ... She => NP {she}
67
+ ... has => (S\\NP)/NP {\\x y.have(y, x)}
68
+ ... a => NP/N {\\P.exists z.P(z)}
69
+ ... book => N {book}
70
+ ... ''',
71
+ ... True)
72
+
73
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
74
+ >>> parses = list(parser.parse("She has a book".split()))
75
+ >>> print(str(len(parses)) + " parses")
76
+ 7 parses
77
+
78
+ >>> printCCGDerivation(parses[0])
79
+ She has a book
80
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
81
+ ------------------------------------->
82
+ NP {exists z.book(z)}
83
+ ------------------------------------------------------------------->
84
+ (S\NP) {\y.have(y,exists z.book(z))}
85
+ -----------------------------------------------------------------------------<
86
+ S {have(she,exists z.book(z))}
87
+
88
+ >>> printCCGDerivation(parses[1])
89
+ She has a book
90
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
91
+ --------------------------------------------------------->B
92
+ ((S\NP)/N) {\P y.have(y,exists z.P(z))}
93
+ ------------------------------------------------------------------->
94
+ (S\NP) {\y.have(y,exists z.book(z))}
95
+ -----------------------------------------------------------------------------<
96
+ S {have(she,exists z.book(z))}
97
+
98
+ >>> printCCGDerivation(parses[2])
99
+ She has a book
100
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
101
+ ---------->T
102
+ (S/(S\NP)) {\F.F(she)}
103
+ ------------------------------------->
104
+ NP {exists z.book(z)}
105
+ ------------------------------------------------------------------->
106
+ (S\NP) {\y.have(y,exists z.book(z))}
107
+ ----------------------------------------------------------------------------->
108
+ S {have(she,exists z.book(z))}
109
+
110
+ >>> printCCGDerivation(parses[3])
111
+ She has a book
112
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
113
+ ---------->T
114
+ (S/(S\NP)) {\F.F(she)}
115
+ --------------------------------------------------------->B
116
+ ((S\NP)/N) {\P y.have(y,exists z.P(z))}
117
+ ------------------------------------------------------------------->
118
+ (S\NP) {\y.have(y,exists z.book(z))}
119
+ ----------------------------------------------------------------------------->
120
+ S {have(she,exists z.book(z))}
121
+
122
+ >>> printCCGDerivation(parses[4])
123
+ She has a book
124
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
125
+ ---------->T
126
+ (S/(S\NP)) {\F.F(she)}
127
+ ---------------------------------------->B
128
+ (S/NP) {\x.have(she,x)}
129
+ ------------------------------------->
130
+ NP {exists z.book(z)}
131
+ ----------------------------------------------------------------------------->
132
+ S {have(she,exists z.book(z))}
133
+
134
+ >>> printCCGDerivation(parses[5])
135
+ She has a book
136
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
137
+ ---------->T
138
+ (S/(S\NP)) {\F.F(she)}
139
+ --------------------------------------------------------->B
140
+ ((S\NP)/N) {\P y.have(y,exists z.P(z))}
141
+ ------------------------------------------------------------------->B
142
+ (S/N) {\P.have(she,exists z.P(z))}
143
+ ----------------------------------------------------------------------------->
144
+ S {have(she,exists z.book(z))}
145
+
146
+ >>> printCCGDerivation(parses[6])
147
+ She has a book
148
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (NP/N) {\P.exists z.P(z)} N {book}
149
+ ---------->T
150
+ (S/(S\NP)) {\F.F(she)}
151
+ ---------------------------------------->B
152
+ (S/NP) {\x.have(she,x)}
153
+ ------------------------------------------------------------------->B
154
+ (S/N) {\P.have(she,exists z.P(z))}
155
+ ----------------------------------------------------------------------------->
156
+ S {have(she,exists z.book(z))}
157
+
158
+ Complex semantics
159
+ -------------------
160
+
161
+ >>> lex = lexicon.fromstring('''
162
+ ... :- S, NP, N
163
+ ... She => NP {she}
164
+ ... has => (S\\NP)/NP {\\x y.have(y, x)}
165
+ ... a => ((S\\NP)\\((S\\NP)/NP))/N {\\P R x.(exists z.P(z) & R(z,x))}
166
+ ... book => N {book}
167
+ ... ''',
168
+ ... True)
169
+
170
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
171
+ >>> parses = list(parser.parse("She has a book".split()))
172
+ >>> print(str(len(parses)) + " parses")
173
+ 2 parses
174
+
175
+ >>> printCCGDerivation(parses[0])
176
+ She has a book
177
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
178
+ ---------------------------------------------------------------------->
179
+ ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
180
+ ----------------------------------------------------------------------------------------------------<
181
+ (S\NP) {\x.(exists z.book(z) & have(x,z))}
182
+ --------------------------------------------------------------------------------------------------------------<
183
+ S {(exists z.book(z) & have(she,z))}
184
+
185
+ >>> printCCGDerivation(parses[1])
186
+ She has a book
187
+ NP {she} ((S\NP)/NP) {\x y.have(y,x)} (((S\NP)\((S\NP)/NP))/N) {\P R x.(exists z.P(z) & R(z,x))} N {book}
188
+ ---------->T
189
+ (S/(S\NP)) {\F.F(she)}
190
+ ---------------------------------------------------------------------->
191
+ ((S\NP)\((S\NP)/NP)) {\R x.(exists z.book(z) & R(z,x))}
192
+ ----------------------------------------------------------------------------------------------------<
193
+ (S\NP) {\x.(exists z.book(z) & have(x,z))}
194
+ -------------------------------------------------------------------------------------------------------------->
195
+ S {(exists z.book(z) & have(she,z))}
196
+
197
+ Using conjunctions
198
+ ---------------------
199
+
200
+ # TODO: The semantics of "and" should have been more flexible
201
+ >>> lex = lexicon.fromstring('''
202
+ ... :- S, NP, N
203
+ ... I => NP {I}
204
+ ... cook => (S\\NP)/NP {\\x y.cook(x,y)}
205
+ ... and => var\\.,var/.,var {\\P Q x y.(P(x,y) & Q(x,y))}
206
+ ... eat => (S\\NP)/NP {\\x y.eat(x,y)}
207
+ ... the => NP/N {\\x.the(x)}
208
+ ... bacon => N {bacon}
209
+ ... ''',
210
+ ... True)
211
+
212
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
213
+ >>> parses = list(parser.parse("I cook and eat the bacon".split()))
214
+ >>> print(str(len(parses)) + " parses")
215
+ 7 parses
216
+
217
+ >>> printCCGDerivation(parses[0])
218
+ I cook and eat the bacon
219
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
220
+ ------------------------------------------------------------------------------------->
221
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
222
+ -------------------------------------------------------------------------------------------------------------------<
223
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
224
+ ------------------------------->
225
+ NP {the(bacon)}
226
+ -------------------------------------------------------------------------------------------------------------------------------------------------->
227
+ (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
228
+ ----------------------------------------------------------------------------------------------------------------------------------------------------------<
229
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
230
+
231
+ >>> printCCGDerivation(parses[1])
232
+ I cook and eat the bacon
233
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
234
+ ------------------------------------------------------------------------------------->
235
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
236
+ -------------------------------------------------------------------------------------------------------------------<
237
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
238
+ --------------------------------------------------------------------------------------------------------------------------------------->B
239
+ ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
240
+ -------------------------------------------------------------------------------------------------------------------------------------------------->
241
+ (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
242
+ ----------------------------------------------------------------------------------------------------------------------------------------------------------<
243
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
244
+
245
+ >>> printCCGDerivation(parses[2])
246
+ I cook and eat the bacon
247
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
248
+ -------->T
249
+ (S/(S\NP)) {\F.F(I)}
250
+ ------------------------------------------------------------------------------------->
251
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
252
+ -------------------------------------------------------------------------------------------------------------------<
253
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
254
+ ------------------------------->
255
+ NP {the(bacon)}
256
+ -------------------------------------------------------------------------------------------------------------------------------------------------->
257
+ (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
258
+ ---------------------------------------------------------------------------------------------------------------------------------------------------------->
259
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
260
+
261
+ >>> printCCGDerivation(parses[3])
262
+ I cook and eat the bacon
263
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
264
+ -------->T
265
+ (S/(S\NP)) {\F.F(I)}
266
+ ------------------------------------------------------------------------------------->
267
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
268
+ -------------------------------------------------------------------------------------------------------------------<
269
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
270
+ --------------------------------------------------------------------------------------------------------------------------------------->B
271
+ ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
272
+ -------------------------------------------------------------------------------------------------------------------------------------------------->
273
+ (S\NP) {\y.(eat(the(bacon),y) & cook(the(bacon),y))}
274
+ ---------------------------------------------------------------------------------------------------------------------------------------------------------->
275
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
276
+
277
+ >>> printCCGDerivation(parses[4])
278
+ I cook and eat the bacon
279
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
280
+ -------->T
281
+ (S/(S\NP)) {\F.F(I)}
282
+ ------------------------------------------------------------------------------------->
283
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
284
+ -------------------------------------------------------------------------------------------------------------------<
285
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
286
+ --------------------------------------------------------------------------------------------------------------------------->B
287
+ (S/NP) {\x.(eat(x,I) & cook(x,I))}
288
+ ------------------------------->
289
+ NP {the(bacon)}
290
+ ---------------------------------------------------------------------------------------------------------------------------------------------------------->
291
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
292
+
293
+ >>> printCCGDerivation(parses[5])
294
+ I cook and eat the bacon
295
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
296
+ -------->T
297
+ (S/(S\NP)) {\F.F(I)}
298
+ ------------------------------------------------------------------------------------->
299
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
300
+ -------------------------------------------------------------------------------------------------------------------<
301
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
302
+ --------------------------------------------------------------------------------------------------------------------------------------->B
303
+ ((S\NP)/N) {\x y.(eat(the(x),y) & cook(the(x),y))}
304
+ ----------------------------------------------------------------------------------------------------------------------------------------------->B
305
+ (S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
306
+ ---------------------------------------------------------------------------------------------------------------------------------------------------------->
307
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
308
+
309
+ >>> printCCGDerivation(parses[6])
310
+ I cook and eat the bacon
311
+ NP {I} ((S\NP)/NP) {\x y.cook(x,y)} ((_var0\.,_var0)/.,_var0) {\P Q x y.(P(x,y) & Q(x,y))} ((S\NP)/NP) {\x y.eat(x,y)} (NP/N) {\x.the(x)} N {bacon}
312
+ -------->T
313
+ (S/(S\NP)) {\F.F(I)}
314
+ ------------------------------------------------------------------------------------->
315
+ (((S\NP)/NP)\.,((S\NP)/NP)) {\Q x y.(eat(x,y) & Q(x,y))}
316
+ -------------------------------------------------------------------------------------------------------------------<
317
+ ((S\NP)/NP) {\x y.(eat(x,y) & cook(x,y))}
318
+ --------------------------------------------------------------------------------------------------------------------------->B
319
+ (S/NP) {\x.(eat(x,I) & cook(x,I))}
320
+ ----------------------------------------------------------------------------------------------------------------------------------------------->B
321
+ (S/N) {\x.(eat(the(x),I) & cook(the(x),I))}
322
+ ---------------------------------------------------------------------------------------------------------------------------------------------------------->
323
+ S {(eat(the(bacon),I) & cook(the(bacon),I))}
324
+
325
+ Tests from published papers
326
+ ------------------------------
327
+
328
+ An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
329
+
330
+ >>> lex = lexicon.fromstring('''
331
+ ... :- S, NP
332
+ ... I => NP {I}
333
+ ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
334
+ ... them => NP {them}
335
+ ... money => NP {money}
336
+ ... ''',
337
+ ... True)
338
+
339
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
340
+ >>> parses = list(parser.parse("I give them money".split()))
341
+ >>> print(str(len(parses)) + " parses")
342
+ 3 parses
343
+
344
+ >>> printCCGDerivation(parses[0])
345
+ I give them money
346
+ NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
347
+ -------------------------------------------------->
348
+ ((S\NP)/NP) {\y z.give(y,them,z)}
349
+ -------------------------------------------------------------->
350
+ (S\NP) {\z.give(money,them,z)}
351
+ ----------------------------------------------------------------------<
352
+ S {give(money,them,I)}
353
+
354
+ >>> printCCGDerivation(parses[1])
355
+ I give them money
356
+ NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
357
+ -------->T
358
+ (S/(S\NP)) {\F.F(I)}
359
+ -------------------------------------------------->
360
+ ((S\NP)/NP) {\y z.give(y,them,z)}
361
+ -------------------------------------------------------------->
362
+ (S\NP) {\z.give(money,them,z)}
363
+ ---------------------------------------------------------------------->
364
+ S {give(money,them,I)}
365
+
366
+
367
+ >>> printCCGDerivation(parses[2])
368
+ I give them money
369
+ NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them} NP {money}
370
+ -------->T
371
+ (S/(S\NP)) {\F.F(I)}
372
+ -------------------------------------------------->
373
+ ((S\NP)/NP) {\y z.give(y,them,z)}
374
+ ---------------------------------------------------------->B
375
+ (S/NP) {\y.give(y,them,I)}
376
+ ---------------------------------------------------------------------->
377
+ S {give(money,them,I)}
378
+
379
+
380
+ An example from "CCGbank: A Corpus of CCG Derivations and Dependency Structures Extracted from the Penn Treebank", Hockenmaier and Steedman, 2007, Page 359, https://www.aclweb.org/anthology/J/J07/J07-3004.pdf
381
+
382
+ >>> lex = lexicon.fromstring('''
383
+ ... :- N, NP, S
384
+ ... money => N {money}
385
+ ... that => (N\\N)/(S/NP) {\\P Q x.(P(x) & Q(x))}
386
+ ... I => NP {I}
387
+ ... give => ((S\\NP)/NP)/NP {\\x y z.give(y,x,z)}
388
+ ... them => NP {them}
389
+ ... ''',
390
+ ... True)
391
+
392
+ >>> parser = chart.CCGChartParser(lex, chart.DefaultRuleSet)
393
+ >>> parses = list(parser.parse("money that I give them".split()))
394
+ >>> print(str(len(parses)) + " parses")
395
+ 3 parses
396
+
397
+ >>> printCCGDerivation(parses[0])
398
+ money that I give them
399
+ N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
400
+ -------->T
401
+ (S/(S\NP)) {\F.F(I)}
402
+ -------------------------------------------------->
403
+ ((S\NP)/NP) {\y z.give(y,them,z)}
404
+ ---------------------------------------------------------->B
405
+ (S/NP) {\y.give(y,them,I)}
406
+ ------------------------------------------------------------------------------------------------->
407
+ (N\N) {\Q x.(give(x,them,I) & Q(x))}
408
+ ------------------------------------------------------------------------------------------------------------<
409
+ N {\x.(give(x,them,I) & money(x))}
410
+
411
+ >>> printCCGDerivation(parses[1])
412
+ money that I give them
413
+ N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
414
+ ----------->T
415
+ (N/(N\N)) {\F.F(money)}
416
+ -------->T
417
+ (S/(S\NP)) {\F.F(I)}
418
+ -------------------------------------------------->
419
+ ((S\NP)/NP) {\y z.give(y,them,z)}
420
+ ---------------------------------------------------------->B
421
+ (S/NP) {\y.give(y,them,I)}
422
+ ------------------------------------------------------------------------------------------------->
423
+ (N\N) {\Q x.(give(x,them,I) & Q(x))}
424
+ ------------------------------------------------------------------------------------------------------------>
425
+ N {\x.(give(x,them,I) & money(x))}
426
+
427
+ >>> printCCGDerivation(parses[2])
428
+ money that I give them
429
+ N {money} ((N\N)/(S/NP)) {\P Q x.(P(x) & Q(x))} NP {I} (((S\NP)/NP)/NP) {\x y z.give(y,x,z)} NP {them}
430
+ ----------->T
431
+ (N/(N\N)) {\F.F(money)}
432
+ -------------------------------------------------->B
433
+ (N/(S/NP)) {\P x.(P(x) & money(x))}
434
+ -------->T
435
+ (S/(S\NP)) {\F.F(I)}
436
+ -------------------------------------------------->
437
+ ((S\NP)/NP) {\y z.give(y,them,z)}
438
+ ---------------------------------------------------------->B
439
+ (S/NP) {\y.give(y,them,I)}
440
+ ------------------------------------------------------------------------------------------------------------>
441
+ N {\x.(give(x,them,I) & money(x))}
442
+
443
+
444
+ -------
445
+ Lexicon
446
+ -------
447
+
448
+ >>> from nltk.ccg import lexicon
449
+
450
+ Parse lexicon with semantics
451
+
452
+ >>> print(str(lexicon.fromstring(
453
+ ... '''
454
+ ... :- S,NP
455
+ ...
456
+ ... IntransVsg :: S\\NP[sg]
457
+ ...
458
+ ... sleeps => IntransVsg {\\x.sleep(x)}
459
+ ... eats => S\\NP[sg]/NP {\\x y.eat(x,y)}
460
+ ...
461
+ ... and => var\\var/var {\\x y.x & y}
462
+ ... ''',
463
+ ... True
464
+ ... )))
465
+ and => ((_var0\_var0)/_var0) {(\x y.x & y)}
466
+ eats => ((S\NP['sg'])/NP) {\x y.eat(x,y)}
467
+ sleeps => (S\NP['sg']) {\x.sleep(x)}
468
+
469
+ Parse lexicon without semantics
470
+
471
+ >>> print(str(lexicon.fromstring(
472
+ ... '''
473
+ ... :- S,NP
474
+ ...
475
+ ... IntransVsg :: S\\NP[sg]
476
+ ...
477
+ ... sleeps => IntransVsg
478
+ ... eats => S\\NP[sg]/NP {sem=\\x y.eat(x,y)}
479
+ ...
480
+ ... and => var\\var/var
481
+ ... ''',
482
+ ... False
483
+ ... )))
484
+ and => ((_var0\_var0)/_var0)
485
+ eats => ((S\NP['sg'])/NP)
486
+ sleeps => (S\NP['sg'])
487
+
488
+ Semantics are missing
489
+
490
+ >>> print(str(lexicon.fromstring(
491
+ ... '''
492
+ ... :- S,NP
493
+ ...
494
+ ... eats => S\\NP[sg]/NP
495
+ ... ''',
496
+ ... True
497
+ ... )))
498
+ Traceback (most recent call last):
499
+ ...
500
+ AssertionError: eats => S\NP[sg]/NP must contain semantics because include_semantics is set to True
501
+
502
+
503
+ ------------------------------------
504
+ CCG combinator semantics computation
505
+ ------------------------------------
506
+
507
+ >>> from nltk.sem.logic import *
508
+ >>> from nltk.ccg.logic import *
509
+
510
+ >>> read_expr = Expression.fromstring
511
+
512
+ Compute semantics from function application
513
+
514
+ >>> print(str(compute_function_semantics(read_expr(r'\x.P(x)'), read_expr(r'book'))))
515
+ P(book)
516
+
517
+ >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'read'))))
518
+ read(book)
519
+
520
+ >>> print(str(compute_function_semantics(read_expr(r'\P.P(book)'), read_expr(r'\x.read(x)'))))
521
+ read(book)
522
+
523
+ Compute semantics from composition
524
+
525
+ >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'\x.Q(x)'))))
526
+ \x.P(Q(x))
527
+
528
+ >>> print(str(compute_composition_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
529
+ Traceback (most recent call last):
530
+ ...
531
+ AssertionError: `read` must be a lambda expression
532
+
533
+ Compute semantics from substitution
534
+
535
+ >>> print(str(compute_substitution_semantics(read_expr(r'\x y.P(x,y)'), read_expr(r'\x.Q(x)'))))
536
+ \x.P(x,Q(x))
537
+
538
+ >>> print(str(compute_substitution_semantics(read_expr(r'\x.P(x)'), read_expr(r'read'))))
539
+ Traceback (most recent call last):
540
+ ...
541
+ AssertionError: `\x.P(x)` must be a lambda expression with 2 arguments
542
+
543
+ Compute type-raise semantics
544
+
545
+ >>> print(str(compute_type_raised_semantics(read_expr(r'\x.P(x)'))))
546
+ \F x.F(P(x))
547
+
548
+ >>> print(str(compute_type_raised_semantics(read_expr(r'\x.F(x)'))))
549
+ \F1 x.F1(F(x))
550
+
551
+ >>> print(str(compute_type_raised_semantics(read_expr(r'\x y z.P(x,y,z)'))))
552
+ \F x y z.F(P(x,y,z))
venv/lib/python3.10/site-packages/nltk/test/chat80.doctest ADDED
@@ -0,0 +1,232 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =======
5
+ Chat-80
6
+ =======
7
+
8
+ Chat-80 was a natural language system which allowed the user to
9
+ interrogate a Prolog knowledge base in the domain of world
10
+ geography. It was developed in the early '80s by Warren and Pereira; see
11
+ `<https://aclanthology.org/J82-3002.pdf>`_ for a description and
12
+ `<http://www.cis.upenn.edu/~pereira/oldies.html>`_ for the source
13
+ files.
14
+
15
+ The ``chat80`` module contains functions to extract data from the Chat-80
16
+ relation files ('the world database'), and convert then into a format
17
+ that can be incorporated in the FOL models of
18
+ ``nltk.sem.evaluate``. The code assumes that the Prolog
19
+ input files are available in the NLTK corpora directory.
20
+
21
+ The Chat-80 World Database consists of the following files::
22
+
23
+ world0.pl
24
+ rivers.pl
25
+ cities.pl
26
+ countries.pl
27
+ contain.pl
28
+ borders.pl
29
+
30
+ This module uses a slightly modified version of ``world0.pl``, in which
31
+ a set of Prolog rules have been omitted. The modified file is named
32
+ ``world1.pl``. Currently, the file ``rivers.pl`` is not read in, since
33
+ it uses a list rather than a string in the second field.
34
+
35
+ Reading Chat-80 Files
36
+ =====================
37
+
38
+ Chat-80 relations are like tables in a relational database. The
39
+ relation acts as the name of the table; the first argument acts as the
40
+ 'primary key'; and subsequent arguments are further fields in the
41
+ table. In general, the name of the table provides a label for a unary
42
+ predicate whose extension is all the primary keys. For example,
43
+ relations in ``cities.pl`` are of the following form::
44
+
45
+ 'city(athens,greece,1368).'
46
+
47
+ Here, ``'athens'`` is the key, and will be mapped to a member of the
48
+ unary predicate *city*.
49
+
50
+ By analogy with NLTK corpora, ``chat80`` defines a number of 'items'
51
+ which correspond to the relations.
52
+
53
+ >>> from nltk.sem import chat80
54
+ >>> print(chat80.items)
55
+ ('borders', 'circle_of_lat', 'circle_of_long', 'city', ...)
56
+
57
+ The fields in the table are mapped to binary predicates. The first
58
+ argument of the predicate is the primary key, while the second
59
+ argument is the data in the relevant field. Thus, in the above
60
+ example, the third field is mapped to the binary predicate
61
+ *population_of*, whose extension is a set of pairs such as
62
+ ``'(athens, 1368)'``.
63
+
64
+ An exception to this general framework is required by the relations in
65
+ the files ``borders.pl`` and ``contains.pl``. These contain facts of the
66
+ following form::
67
+
68
+ 'borders(albania,greece).'
69
+
70
+ 'contains0(africa,central_africa).'
71
+
72
+ We do not want to form a unary concept out the element in
73
+ the first field of these records, and we want the label of the binary
74
+ relation just to be ``'border'``/``'contain'`` respectively.
75
+
76
+ In order to drive the extraction process, we use 'relation metadata bundles'
77
+ which are Python dictionaries such as the following::
78
+
79
+ city = {'label': 'city',
80
+ 'closures': [],
81
+ 'schema': ['city', 'country', 'population'],
82
+ 'filename': 'cities.pl'}
83
+
84
+ According to this, the file ``city['filename']`` contains a list of
85
+ relational tuples (or more accurately, the corresponding strings in
86
+ Prolog form) whose predicate symbol is ``city['label']`` and whose
87
+ relational schema is ``city['schema']``. The notion of a ``closure`` is
88
+ discussed in the next section.
89
+
90
+ Concepts
91
+ ========
92
+ In order to encapsulate the results of the extraction, a class of
93
+ ``Concept``\ s is introduced. A ``Concept`` object has a number of
94
+ attributes, in particular a ``prefLabel``, an arity and ``extension``.
95
+
96
+ >>> c1 = chat80.Concept('dog', arity=1, extension=set(['d1', 'd2']))
97
+ >>> print(c1)
98
+ Label = 'dog'
99
+ Arity = 1
100
+ Extension = ['d1', 'd2']
101
+
102
+
103
+
104
+ The ``extension`` attribute makes it easier to inspect the output of
105
+ the extraction.
106
+
107
+ >>> schema = ['city', 'country', 'population']
108
+ >>> concepts = chat80.clause2concepts('cities.pl', 'city', schema)
109
+ >>> concepts
110
+ [Concept('city'), Concept('country_of'), Concept('population_of')]
111
+ >>> for c in concepts:
112
+ ... print("%s:\n\t%s" % (c.prefLabel, c.extension[:4]))
113
+ city:
114
+ ['athens', 'bangkok', 'barcelona', 'berlin']
115
+ country_of:
116
+ [('athens', 'greece'), ('bangkok', 'thailand'), ('barcelona', 'spain'), ('berlin', 'east_germany')]
117
+ population_of:
118
+ [('athens', '1368'), ('bangkok', '1178'), ('barcelona', '1280'), ('berlin', '3481')]
119
+
120
+ In addition, the ``extension`` can be further
121
+ processed: in the case of the ``'border'`` relation, we check that the
122
+ relation is **symmetric**, and in the case of the ``'contain'``
123
+ relation, we carry out the **transitive closure**. The closure
124
+ properties associated with a concept is indicated in the relation
125
+ metadata, as indicated earlier.
126
+
127
+ >>> borders = set([('a1', 'a2'), ('a2', 'a3')])
128
+ >>> c2 = chat80.Concept('borders', arity=2, extension=borders)
129
+ >>> print(c2)
130
+ Label = 'borders'
131
+ Arity = 2
132
+ Extension = [('a1', 'a2'), ('a2', 'a3')]
133
+ >>> c3 = chat80.Concept('borders', arity=2, closures=['symmetric'], extension=borders)
134
+ >>> c3.close()
135
+ >>> print(c3)
136
+ Label = 'borders'
137
+ Arity = 2
138
+ Extension = [('a1', 'a2'), ('a2', 'a1'), ('a2', 'a3'), ('a3', 'a2')]
139
+
140
+ The ``extension`` of a ``Concept`` object is then incorporated into a
141
+ ``Valuation`` object.
142
+
143
+ Persistence
144
+ ===========
145
+ The functions ``val_dump`` and ``val_load`` are provided to allow a
146
+ valuation to be stored in a persistent database and re-loaded, rather
147
+ than having to be re-computed each time.
148
+
149
+ Individuals and Lexical Items
150
+ =============================
151
+ As well as deriving relations from the Chat-80 data, we also create a
152
+ set of individual constants, one for each entity in the domain. The
153
+ individual constants are string-identical to the entities. For
154
+ example, given a data item such as ``'zloty'``, we add to the valuation
155
+ a pair ``('zloty', 'zloty')``. In order to parse English sentences that
156
+ refer to these entities, we also create a lexical item such as the
157
+ following for each individual constant::
158
+
159
+ PropN[num=sg, sem=<\P.(P zloty)>] -> 'Zloty'
160
+
161
+ The set of rules is written to the file ``chat_pnames.fcfg`` in the
162
+ current directory.
163
+
164
+ SQL Query
165
+ =========
166
+
167
+ The ``city`` relation is also available in RDB form and can be queried
168
+ using SQL statements.
169
+
170
+ >>> import nltk
171
+ >>> q = "SELECT City, Population FROM city_table WHERE Country = 'china' and Population > 1000"
172
+ >>> for answer in chat80.sql_query('corpora/city_database/city.db', q):
173
+ ... print("%-10s %4s" % answer)
174
+ canton 1496
175
+ chungking 1100
176
+ mukden 1551
177
+ peking 2031
178
+ shanghai 5407
179
+ tientsin 1795
180
+
181
+ The (deliberately naive) grammar ``sql.fcfg`` translates from English
182
+ to SQL:
183
+
184
+ >>> nltk.data.show_cfg('grammars/book_grammars/sql0.fcfg')
185
+ % start S
186
+ S[SEM=(?np + WHERE + ?vp)] -> NP[SEM=?np] VP[SEM=?vp]
187
+ VP[SEM=(?v + ?pp)] -> IV[SEM=?v] PP[SEM=?pp]
188
+ VP[SEM=(?v + ?ap)] -> IV[SEM=?v] AP[SEM=?ap]
189
+ NP[SEM=(?det + ?n)] -> Det[SEM=?det] N[SEM=?n]
190
+ PP[SEM=(?p + ?np)] -> P[SEM=?p] NP[SEM=?np]
191
+ AP[SEM=?pp] -> A[SEM=?a] PP[SEM=?pp]
192
+ NP[SEM='Country="greece"'] -> 'Greece'
193
+ NP[SEM='Country="china"'] -> 'China'
194
+ Det[SEM='SELECT'] -> 'Which' | 'What'
195
+ N[SEM='City FROM city_table'] -> 'cities'
196
+ IV[SEM=''] -> 'are'
197
+ A[SEM=''] -> 'located'
198
+ P[SEM=''] -> 'in'
199
+
200
+ Given this grammar, we can express, and then execute, queries in English.
201
+
202
+ >>> cp = nltk.parse.load_parser('grammars/book_grammars/sql0.fcfg')
203
+ >>> query = 'What cities are in China'
204
+ >>> for tree in cp.parse(query.split()):
205
+ ... answer = tree.label()['SEM']
206
+ ... q = " ".join(answer)
207
+ ... print(q)
208
+ ...
209
+ SELECT City FROM city_table WHERE Country="china"
210
+
211
+ >>> rows = chat80.sql_query('corpora/city_database/city.db', q)
212
+ >>> for r in rows: print("%s" % r, end=' ')
213
+ canton chungking dairen harbin kowloon mukden peking shanghai sian tientsin
214
+
215
+
216
+ Using Valuations
217
+ -----------------
218
+
219
+ In order to convert such an extension into a valuation, we use the
220
+ ``make_valuation()`` method; setting ``read=True`` creates and returns
221
+ a new ``Valuation`` object which contains the results.
222
+
223
+ >>> val = chat80.make_valuation(concepts, read=True)
224
+ >>> 'calcutta' in val['city']
225
+ True
226
+ >>> [town for (town, country) in val['country_of'] if country == 'india']
227
+ ['bombay', 'calcutta', 'delhi', 'hyderabad', 'madras']
228
+ >>> dom = val.domain
229
+ >>> g = nltk.sem.Assignment(dom)
230
+ >>> m = nltk.sem.Model(dom, val)
231
+ >>> m.evaluate(r'population_of(jakarta, 533)', g)
232
+ True
venv/lib/python3.10/site-packages/nltk/test/childes.doctest ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ =======================
2
+ CHILDES Corpus Readers
3
+ =======================
4
+
5
+ Read the XML version of the CHILDES corpus.
6
+
7
+ Setup
8
+ =====
9
+
10
+ >>> from nltk.test.childes_fixt import setup_module
11
+ >>> setup_module()
12
+
13
+ How to use CHILDESCorpusReader
14
+ ==============================
15
+
16
+ Read the CHILDESCorpusReader class and read the CHILDES corpus saved in
17
+ the nltk_data directory.
18
+
19
+ >>> import nltk
20
+ >>> from nltk.corpus.reader import CHILDESCorpusReader
21
+ >>> corpus_root = nltk.data.find('corpora/childes/data-xml/Eng-USA-MOR/')
22
+
23
+ Reading files in the Valian corpus (Valian, 1991).
24
+
25
+ >>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
26
+ >>> valian.fileids()
27
+ ['Valian/01a.xml', 'Valian/01b.xml', 'Valian/02a.xml', 'Valian/02b.xml',...
28
+
29
+ Count the number of files
30
+
31
+ >>> len(valian.fileids())
32
+ 43
33
+
34
+ Printing properties of the corpus files.
35
+
36
+ >>> corpus_data = valian.corpus(valian.fileids())
37
+ >>> print(corpus_data[0]['Lang'])
38
+ eng
39
+ >>> for key in sorted(corpus_data[0].keys()):
40
+ ... print(key, ": ", corpus_data[0][key])
41
+ Corpus : valian
42
+ Date : 1986-03-04
43
+ Id : 01a
44
+ Lang : eng
45
+ Version : 2.0.1
46
+ {http://www.w3.org/2001/XMLSchema-instance}schemaLocation : http://www.talkbank.org/ns/talkbank http://talkbank.org/software/talkbank.xsd
47
+
48
+ Printing information of participants of the corpus. The most common codes for
49
+ the participants are 'CHI' (target child), 'MOT' (mother), and 'INV' (investigator).
50
+
51
+ >>> corpus_participants = valian.participants(valian.fileids())
52
+ >>> for this_corpus_participants in corpus_participants[:2]:
53
+ ... for key in sorted(this_corpus_participants.keys()):
54
+ ... dct = this_corpus_participants[key]
55
+ ... print(key, ": ", [(k, dct[k]) for k in sorted(dct.keys())])
56
+ CHI : [('age', 'P2Y1M3D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
57
+ INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
58
+ MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
59
+ CHI : [('age', 'P2Y1M12D'), ('group', 'normal'), ('id', 'CHI'), ('language', 'eng'), ('role', 'Target_Child'), ('sex', 'female')]
60
+ INV : [('id', 'INV'), ('language', 'eng'), ('role', 'Investigator')]
61
+ MOT : [('id', 'MOT'), ('language', 'eng'), ('role', 'Mother')]
62
+
63
+ printing words.
64
+
65
+ >>> valian.words('Valian/01a.xml')
66
+ ['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
67
+
68
+ printing sentences.
69
+
70
+ >>> valian.sents('Valian/01a.xml')
71
+ [['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname',
72
+ 'and', 'it', 'is', 'March', 'fourth', 'I', 'believe', 'and', 'when',
73
+ 'was', "Parent's", 'birthday'], ["Child's"], ['oh', "I'm", 'sorry'],
74
+ ["that's", 'okay'], ...
75
+
76
+ You can specify the participants with the argument *speaker*.
77
+
78
+ >>> valian.words('Valian/01a.xml',speaker=['INV'])
79
+ ['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', ...
80
+ >>> valian.words('Valian/01a.xml',speaker=['MOT'])
81
+ ["Child's", "that's", 'okay', 'February', 'first', 'nineteen', ...
82
+ >>> valian.words('Valian/01a.xml',speaker=['CHI'])
83
+ ['tape', 'it', 'up', 'and', 'two', 'tape', 'players', 'have',...
84
+
85
+
86
+ tagged_words() and tagged_sents() return the usual (word,pos) tuple lists.
87
+ POS tags in the CHILDES are automatically assigned by MOR and POST programs
88
+ (MacWhinney, 2000).
89
+
90
+ >>> valian.tagged_words('Valian/01a.xml')[:30]
91
+ [('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
92
+ ('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
93
+ ('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
94
+ ('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
95
+ ('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n'), ("Child's", 'n:prop'),
96
+ ('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj'), ("that's", 'pro:dem'),
97
+ ('okay', 'adj'), ('February', 'n:prop'), ('first', 'adj'),
98
+ ('nineteen', 'det:num'), ('eighty', 'det:num'), ('four', 'det:num')]
99
+
100
+ >>> valian.tagged_sents('Valian/01a.xml')[:10]
101
+ [[('at', 'prep'), ('Parent', 'n:prop'), ("Lastname's", 'n:prop'), ('house', 'n'),
102
+ ('with', 'prep'), ('Child', 'n:prop'), ('Lastname', 'n:prop'), ('and', 'coord'),
103
+ ('it', 'pro'), ('is', 'v:cop'), ('March', 'n:prop'), ('fourth', 'adj'),
104
+ ('I', 'pro:sub'), ('believe', 'v'), ('and', 'coord'), ('when', 'adv:wh'),
105
+ ('was', 'v:cop'), ("Parent's", 'n:prop'), ('birthday', 'n')],
106
+ [("Child's", 'n:prop')], [('oh', 'co'), ("I'm", 'pro:sub'), ('sorry', 'adj')],
107
+ [("that's", 'pro:dem'), ('okay', 'adj')],
108
+ [('February', 'n:prop'), ('first', 'adj'), ('nineteen', 'det:num'),
109
+ ('eighty', 'det:num'), ('four', 'det:num')],
110
+ [('great', 'adj')],
111
+ [('and', 'coord'), ("she's", 'pro:sub'), ('two', 'det:num'), ('years', 'n'), ('old', 'adj')],
112
+ [('correct', 'adj')],
113
+ [('okay', 'co')], [('she', 'pro:sub'), ('just', 'adv:int'), ('turned', 'part'), ('two', 'det:num'),
114
+ ('a', 'det'), ('month', 'n'), ('ago', 'adv')]]
115
+
116
+ When the argument *stem* is true, the word stems (e.g., 'is' -> 'be-3PS') are
117
+ used instead of the original words.
118
+
119
+ >>> valian.words('Valian/01a.xml')[:30]
120
+ ['at', 'Parent', "Lastname's", 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'is', ...
121
+ >>> valian.words('Valian/01a.xml',stem=True)[:30]
122
+ ['at', 'Parent', 'Lastname', 's', 'house', 'with', 'Child', 'Lastname', 'and', 'it', 'be-3S', ...
123
+
124
+ When the argument *replace* is true, the replaced words are used instead of
125
+ the original words.
126
+
127
+ >>> valian.words('Valian/01a.xml',speaker='CHI')[247]
128
+ 'tikteat'
129
+ >>> valian.words('Valian/01a.xml',speaker='CHI',replace=True)[247]
130
+ 'trick'
131
+
132
+ When the argument *relation* is true, the relational relationships in the
133
+ sentence are returned. See Sagae et al. (2010) for details of the relational
134
+ structure adopted in the CHILDES.
135
+
136
+ >>> valian.words('Valian/01a.xml',relation=True)[:10]
137
+ [[('at', 'prep', '1|0|ROOT'), ('Parent', 'n', '2|5|VOC'), ('Lastname', 'n', '3|5|MOD'), ('s', 'poss', '4|5|MOD'), ('house', 'n', '5|1|POBJ'), ('with', 'prep', '6|1|JCT'), ('Child', 'n', '7|8|NAME'), ('Lastname', 'n', '8|6|POBJ'), ('and', 'coord', '9|8|COORD'), ('it', 'pro', '10|11|SUBJ'), ('be-3S', 'v', '11|9|COMP'), ('March', 'n', '12|11|PRED'), ('fourth', 'adj', '13|12|MOD'), ('I', 'pro', '15|16|SUBJ'), ('believe', 'v', '16|14|ROOT'), ('and', 'coord', '18|17|ROOT'), ('when', 'adv', '19|20|PRED'), ('be-PAST', 'v', '20|18|COMP'), ('Parent', 'n', '21|23|MOD'), ('s', 'poss', '22|23|MOD'), ('birth', 'n', '23|20|SUBJ')], [('Child', 'n', '1|2|MOD'), ('s', 'poss', '2|0|ROOT')], [('oh', 'co', '1|4|COM'), ('I', 'pro', '3|4|SUBJ'), ('be', 'v', '4|0|ROOT'), ('sorry', 'adj', '5|4|PRED')], [('that', 'pro', '1|2|SUBJ'), ('be', 'v', '2|0|ROOT'), ('okay', 'adj', '3|2|PRED')], [('February', 'n', '1|6|VOC'), ('first', 'adj', '2|6|ENUM'), ('nineteen', 'det', '4|6|ENUM'), ('eighty', 'det', '5|6|ENUM'), ('four', 'det', '6|0|ROOT')], [('great', 'adj', '1|0|ROOT')], [('and', 'coord', '1|0|ROOT'), ('she', 'pro', '2|1|ROOT'), ('be', 'aux', '3|5|AUX'), ('two', 'det', '4|5|QUANT'), ('year-PL', 'n', '5|2|ROOT'), ('old', 'adj', '6|5|MOD')], [('correct', 'adj', '1|0|ROOT')], [('okay', 'co', '1|0|ROOT')], [('she', 'pro', '1|0|ROOT'), ('just', 'adv', '2|3|JCT'), ('turn-PERF', 'part', '3|1|XCOMP'), ('two', 'det', '4|6|QUANT'), ('a', 'det', '5|6|DET'), ('month', 'n', '6|3|OBJ'), ('ago', 'adv', '7|3|JCT')]]
138
+
139
+ Printing age. When the argument *month* is true, the age information in
140
+ the CHILDES format is converted into the number of months.
141
+
142
+ >>> valian.age()
143
+ ['P2Y1M3D', 'P2Y1M12D', 'P1Y9M21D', 'P1Y9M28D', 'P2Y1M23D', ...
144
+ >>> valian.age('Valian/01a.xml')
145
+ ['P2Y1M3D']
146
+ >>> valian.age('Valian/01a.xml',month=True)
147
+ [25]
148
+
149
+ Printing MLU. The criteria for the MLU computation is broadly based on
150
+ Brown (1973).
151
+
152
+ >>> valian.MLU()
153
+ [2.3574660633484..., 2.292682926829..., 3.492857142857..., 2.961783439490...,
154
+ 2.0842696629213..., 3.169811320754..., 3.137404580152..., 3.0578034682080...,
155
+ 4.090163934426..., 3.488372093023..., 2.8773584905660..., 3.4792899408284...,
156
+ 4.0111940298507..., 3.456790123456..., 4.487603305785..., 4.007936507936...,
157
+ 5.25, 5.154696132596..., ...]
158
+
159
+ >>> valian.MLU('Valian/01a.xml')
160
+ [2.35746606334...]
161
+
162
+
163
+ Basic stuff
164
+ ==============================
165
+
166
+ Count the number of words and sentences of each file.
167
+
168
+ >>> valian = CHILDESCorpusReader(corpus_root, 'Valian/.*.xml')
169
+ >>> for this_file in valian.fileids()[:6]:
170
+ ... print(valian.corpus(this_file)[0]['Corpus'], valian.corpus(this_file)[0]['Id'])
171
+ ... print("num of words: %i" % len(valian.words(this_file)))
172
+ ... print("num of sents: %i" % len(valian.sents(this_file)))
173
+ valian 01a
174
+ num of words: 3606
175
+ num of sents: 1027
176
+ valian 01b
177
+ num of words: 4376
178
+ num of sents: 1274
179
+ valian 02a
180
+ num of words: 2673
181
+ num of sents: 801
182
+ valian 02b
183
+ num of words: 5020
184
+ num of sents: 1583
185
+ valian 03a
186
+ num of words: 2743
187
+ num of sents: 988
188
+ valian 03b
189
+ num of words: 4409
190
+ num of sents: 1397
venv/lib/python3.10/site-packages/nltk/test/childes_fixt.py ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ def setup_module():
2
+ import pytest
3
+
4
+ import nltk.data
5
+
6
+ try:
7
+ nltk.data.find("corpora/childes/data-xml/Eng-USA-MOR/")
8
+ except LookupError as e:
9
+ pytest.skip(
10
+ "The CHILDES corpus is not found. "
11
+ "It should be manually downloaded and saved/unpacked "
12
+ "to [NLTK_Data_Dir]/corpora/childes/"
13
+ )
venv/lib/python3.10/site-packages/nltk/test/chunk.doctest ADDED
@@ -0,0 +1,372 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==========
5
+ Chunking
6
+ ==========
7
+
8
+ >>> from nltk.chunk import *
9
+ >>> from nltk.chunk.util import *
10
+ >>> from nltk.chunk.regexp import *
11
+ >>> from nltk import Tree
12
+
13
+ >>> tagged_text = "[ The/DT cat/NN ] sat/VBD on/IN [ the/DT mat/NN ] [ the/DT dog/NN ] chewed/VBD ./."
14
+ >>> gold_chunked_text = tagstr2tree(tagged_text)
15
+ >>> unchunked_text = gold_chunked_text.flatten()
16
+
17
+ Chunking uses a special regexp syntax for rules that delimit the chunks. These
18
+ rules must be converted to 'regular' regular expressions before a sentence can
19
+ be chunked.
20
+
21
+ >>> tag_pattern = "<DT>?<JJ>*<NN.*>"
22
+ >>> regexp_pattern = tag_pattern2re_pattern(tag_pattern)
23
+ >>> regexp_pattern
24
+ '(<(DT)>)?(<(JJ)>)*(<(NN[^\\{\\}<>]*)>)'
25
+
26
+ Construct some new chunking rules.
27
+
28
+ >>> chunk_rule = ChunkRule(r"<.*>+", "Chunk everything")
29
+ >>> strip_rule = StripRule(r"<VBD|IN|\.>", "Strip on verbs/prepositions")
30
+ >>> split_rule = SplitRule("<DT><NN>", "<DT><NN>",
31
+ ... "Split successive determiner/noun pairs")
32
+
33
+
34
+ Create and score a series of chunk parsers, successively more complex.
35
+
36
+ >>> chunk_parser = RegexpChunkParser([chunk_rule], chunk_label='NP')
37
+ >>> chunked_text = chunk_parser.parse(unchunked_text)
38
+ >>> print(chunked_text)
39
+ (S
40
+ (NP
41
+ The/DT
42
+ cat/NN
43
+ sat/VBD
44
+ on/IN
45
+ the/DT
46
+ mat/NN
47
+ the/DT
48
+ dog/NN
49
+ chewed/VBD
50
+ ./.))
51
+
52
+ >>> chunkscore = ChunkScore()
53
+ >>> chunkscore.score(gold_chunked_text, chunked_text)
54
+ >>> print(chunkscore.precision())
55
+ 0.0
56
+
57
+ >>> print(chunkscore.recall())
58
+ 0.0
59
+
60
+ >>> print(chunkscore.f_measure())
61
+ 0
62
+
63
+ >>> for chunk in sorted(chunkscore.missed()): print(chunk)
64
+ (NP The/DT cat/NN)
65
+ (NP the/DT dog/NN)
66
+ (NP the/DT mat/NN)
67
+
68
+ >>> for chunk in chunkscore.incorrect(): print(chunk)
69
+ (NP
70
+ The/DT
71
+ cat/NN
72
+ sat/VBD
73
+ on/IN
74
+ the/DT
75
+ mat/NN
76
+ the/DT
77
+ dog/NN
78
+ chewed/VBD
79
+ ./.)
80
+
81
+ >>> chunk_parser = RegexpChunkParser([chunk_rule, strip_rule],
82
+ ... chunk_label='NP')
83
+ >>> chunked_text = chunk_parser.parse(unchunked_text)
84
+ >>> print(chunked_text)
85
+ (S
86
+ (NP The/DT cat/NN)
87
+ sat/VBD
88
+ on/IN
89
+ (NP the/DT mat/NN the/DT dog/NN)
90
+ chewed/VBD
91
+ ./.)
92
+ >>> assert chunked_text == chunk_parser.parse(list(unchunked_text))
93
+
94
+ >>> chunkscore = ChunkScore()
95
+ >>> chunkscore.score(gold_chunked_text, chunked_text)
96
+ >>> chunkscore.precision()
97
+ 0.5
98
+
99
+ >>> print(chunkscore.recall())
100
+ 0.33333333...
101
+
102
+ >>> print(chunkscore.f_measure())
103
+ 0.4
104
+
105
+ >>> for chunk in sorted(chunkscore.missed()): print(chunk)
106
+ (NP the/DT dog/NN)
107
+ (NP the/DT mat/NN)
108
+
109
+ >>> for chunk in chunkscore.incorrect(): print(chunk)
110
+ (NP the/DT mat/NN the/DT dog/NN)
111
+
112
+ >>> chunk_parser = RegexpChunkParser([chunk_rule, strip_rule, split_rule],
113
+ ... chunk_label='NP')
114
+ >>> chunked_text = chunk_parser.parse(unchunked_text, trace=True)
115
+ # Input:
116
+ <DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>
117
+ # Chunk everything:
118
+ {<DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>}
119
+ # Strip on verbs/prepositions:
120
+ {<DT> <NN>} <VBD> <IN> {<DT> <NN> <DT> <NN>} <VBD> <.>
121
+ # Split successive determiner/noun pairs:
122
+ {<DT> <NN>} <VBD> <IN> {<DT> <NN>}{<DT> <NN>} <VBD> <.>
123
+ >>> print(chunked_text)
124
+ (S
125
+ (NP The/DT cat/NN)
126
+ sat/VBD
127
+ on/IN
128
+ (NP the/DT mat/NN)
129
+ (NP the/DT dog/NN)
130
+ chewed/VBD
131
+ ./.)
132
+
133
+ >>> chunkscore = ChunkScore()
134
+ >>> chunkscore.score(gold_chunked_text, chunked_text)
135
+ >>> chunkscore.precision()
136
+ 1.0
137
+
138
+ >>> chunkscore.recall()
139
+ 1.0
140
+
141
+ >>> chunkscore.f_measure()
142
+ 1.0
143
+
144
+ >>> chunkscore.missed()
145
+ []
146
+
147
+ >>> chunkscore.incorrect()
148
+ []
149
+
150
+ >>> chunk_parser.rules()
151
+ [<ChunkRule: '<.*>+'>, <StripRule: '<VBD|IN|\\.>'>,
152
+ <SplitRule: '<DT><NN>', '<DT><NN>'>]
153
+
154
+ Printing parsers:
155
+
156
+ >>> print(repr(chunk_parser))
157
+ <RegexpChunkParser with 3 rules>
158
+ >>> print(chunk_parser)
159
+ RegexpChunkParser with 3 rules:
160
+ Chunk everything
161
+ <ChunkRule: '<.*>+'>
162
+ Strip on verbs/prepositions
163
+ <StripRule: '<VBD|IN|\\.>'>
164
+ Split successive determiner/noun pairs
165
+ <SplitRule: '<DT><NN>', '<DT><NN>'>
166
+
167
+ Regression Tests
168
+ ~~~~~~~~~~~~~~~~
169
+ ChunkParserI
170
+ ------------
171
+ `ChunkParserI` is an abstract interface -- it is not meant to be
172
+ instantiated directly.
173
+
174
+ >>> ChunkParserI().parse([])
175
+ Traceback (most recent call last):
176
+ . . .
177
+ NotImplementedError
178
+
179
+
180
+ ChunkString
181
+ -----------
182
+ ChunkString can be built from a tree of tagged tuples, a tree of
183
+ trees, or a mixed list of both:
184
+
185
+ >>> t1 = Tree('S', [('w%d' % i, 't%d' % i) for i in range(10)])
186
+ >>> t2 = Tree('S', [Tree('t0', []), Tree('t1', ['c1'])])
187
+ >>> t3 = Tree('S', [('w0', 't0'), Tree('t1', ['c1'])])
188
+ >>> ChunkString(t1)
189
+ <ChunkString: '<t0><t1><t2><t3><t4><t5><t6><t7><t8><t9>'>
190
+ >>> ChunkString(t2)
191
+ <ChunkString: '<t0><t1>'>
192
+ >>> ChunkString(t3)
193
+ <ChunkString: '<t0><t1>'>
194
+
195
+ Other values generate an error:
196
+
197
+ >>> ChunkString(Tree('S', ['x']))
198
+ Traceback (most recent call last):
199
+ . . .
200
+ ValueError: chunk structures must contain tagged tokens or trees
201
+
202
+ The `str()` for a chunk string adds spaces to it, which makes it line
203
+ up with `str()` output for other chunk strings over the same
204
+ underlying input.
205
+
206
+ >>> cs = ChunkString(t1)
207
+ >>> print(cs)
208
+ <t0> <t1> <t2> <t3> <t4> <t5> <t6> <t7> <t8> <t9>
209
+ >>> cs.xform('<t3>', '{<t3>}')
210
+ >>> print(cs)
211
+ <t0> <t1> <t2> {<t3>} <t4> <t5> <t6> <t7> <t8> <t9>
212
+
213
+ The `_verify()` method makes sure that our transforms don't corrupt
214
+ the chunk string. By setting debug_level=2, `_verify()` will be
215
+ called at the end of every call to `xform`.
216
+
217
+ >>> cs = ChunkString(t1, debug_level=3)
218
+
219
+ >>> # tag not marked with <...>:
220
+ >>> cs.xform('<t3>', 't3')
221
+ Traceback (most recent call last):
222
+ . . .
223
+ ValueError: Transformation generated invalid chunkstring:
224
+ <t0><t1><t2>t3<t4><t5><t6><t7><t8><t9>
225
+
226
+ >>> # brackets not balanced:
227
+ >>> cs.xform('<t3>', '{<t3>')
228
+ Traceback (most recent call last):
229
+ . . .
230
+ ValueError: Transformation generated invalid chunkstring:
231
+ <t0><t1><t2>{<t3><t4><t5><t6><t7><t8><t9>
232
+
233
+ >>> # nested brackets:
234
+ >>> cs.xform('<t3><t4><t5>', '{<t3>{<t4>}<t5>}')
235
+ Traceback (most recent call last):
236
+ . . .
237
+ ValueError: Transformation generated invalid chunkstring:
238
+ <t0><t1><t2>{<t3>{<t4>}<t5>}<t6><t7><t8><t9>
239
+
240
+ >>> # modified tags:
241
+ >>> cs.xform('<t3>', '<t9>')
242
+ Traceback (most recent call last):
243
+ . . .
244
+ ValueError: Transformation generated invalid chunkstring: tag changed
245
+
246
+ >>> # added tags:
247
+ >>> cs.xform('<t9>', '<t9><t10>')
248
+ Traceback (most recent call last):
249
+ . . .
250
+ ValueError: Transformation generated invalid chunkstring: tag changed
251
+
252
+ Chunking Rules
253
+ --------------
254
+
255
+ Test the different rule constructors & __repr__ methods:
256
+
257
+ >>> r1 = RegexpChunkRule('<a|b>'+ChunkString.IN_STRIP_PATTERN,
258
+ ... '{<a|b>}', 'chunk <a> and <b>')
259
+ >>> r2 = RegexpChunkRule(re.compile('<a|b>'+ChunkString.IN_STRIP_PATTERN),
260
+ ... '{<a|b>}', 'chunk <a> and <b>')
261
+ >>> r3 = ChunkRule('<a|b>', 'chunk <a> and <b>')
262
+ >>> r4 = StripRule('<a|b>', 'strip <a> and <b>')
263
+ >>> r5 = UnChunkRule('<a|b>', 'unchunk <a> and <b>')
264
+ >>> r6 = MergeRule('<a>', '<b>', 'merge <a> w/ <b>')
265
+ >>> r7 = SplitRule('<a>', '<b>', 'split <a> from <b>')
266
+ >>> r8 = ExpandLeftRule('<a>', '<b>', 'expand left <a> <b>')
267
+ >>> r9 = ExpandRightRule('<a>', '<b>', 'expand right <a> <b>')
268
+ >>> for rule in r1, r2, r3, r4, r5, r6, r7, r8, r9:
269
+ ... print(rule)
270
+ <RegexpChunkRule: '<a|b>(?=[^\\}]*(\\{|$))'->'{<a|b>}'>
271
+ <RegexpChunkRule: '<a|b>(?=[^\\}]*(\\{|$))'->'{<a|b>}'>
272
+ <ChunkRule: '<a|b>'>
273
+ <StripRule: '<a|b>'>
274
+ <UnChunkRule: '<a|b>'>
275
+ <MergeRule: '<a>', '<b>'>
276
+ <SplitRule: '<a>', '<b>'>
277
+ <ExpandLeftRule: '<a>', '<b>'>
278
+ <ExpandRightRule: '<a>', '<b>'>
279
+
280
+ `tag_pattern2re_pattern()` complains if the tag pattern looks problematic:
281
+
282
+ >>> tag_pattern2re_pattern('{}')
283
+ Traceback (most recent call last):
284
+ . . .
285
+ ValueError: Bad tag pattern: '{}'
286
+
287
+ RegexpChunkParser
288
+ -----------------
289
+
290
+ A warning is printed when parsing an empty sentence:
291
+
292
+ >>> parser = RegexpChunkParser([ChunkRule('<a>', '')])
293
+ >>> parser.parse(Tree('S', []))
294
+ Warning: parsing empty text
295
+ Tree('S', [])
296
+
297
+ RegexpParser
298
+ ------------
299
+
300
+ >>> parser = RegexpParser('''
301
+ ... NP: {<DT>? <JJ>* <NN>*} # NP
302
+ ... P: {<IN>} # Preposition
303
+ ... V: {<V.*>} # Verb
304
+ ... PP: {<P> <NP>} # PP -> P NP
305
+ ... VP: {<V> <NP|PP>*} # VP -> V (NP|PP)*
306
+ ... ''')
307
+ >>> print(repr(parser))
308
+ <chunk.RegexpParser with 5 stages>
309
+ >>> print(parser)
310
+ chunk.RegexpParser with 5 stages:
311
+ RegexpChunkParser with 1 rules:
312
+ NP <ChunkRule: '<DT>? <JJ>* <NN>*'>
313
+ RegexpChunkParser with 1 rules:
314
+ Preposition <ChunkRule: '<IN>'>
315
+ RegexpChunkParser with 1 rules:
316
+ Verb <ChunkRule: '<V.*>'>
317
+ RegexpChunkParser with 1 rules:
318
+ PP -> P NP <ChunkRule: '<P> <NP>'>
319
+ RegexpChunkParser with 1 rules:
320
+ VP -> V (NP|PP)* <ChunkRule: '<V> <NP|PP>*'>
321
+ >>> print(parser.parse(unchunked_text, trace=True))
322
+ # Input:
323
+ <DT> <NN> <VBD> <IN> <DT> <NN> <DT> <NN> <VBD> <.>
324
+ # NP:
325
+ {<DT> <NN>} <VBD> <IN> {<DT> <NN>}{<DT> <NN>} <VBD> <.>
326
+ # Input:
327
+ <NP> <VBD> <IN> <NP> <NP> <VBD> <.>
328
+ # Preposition:
329
+ <NP> <VBD> {<IN>} <NP> <NP> <VBD> <.>
330
+ # Input:
331
+ <NP> <VBD> <P> <NP> <NP> <VBD> <.>
332
+ # Verb:
333
+ <NP> {<VBD>} <P> <NP> <NP> {<VBD>} <.>
334
+ # Input:
335
+ <NP> <V> <P> <NP> <NP> <V> <.>
336
+ # PP -> P NP:
337
+ <NP> <V> {<P> <NP>} <NP> <V> <.>
338
+ # Input:
339
+ <NP> <V> <PP> <NP> <V> <.>
340
+ # VP -> V (NP|PP)*:
341
+ <NP> {<V> <PP> <NP>}{<V>} <.>
342
+ (S
343
+ (NP The/DT cat/NN)
344
+ (VP
345
+ (V sat/VBD)
346
+ (PP (P on/IN) (NP the/DT mat/NN))
347
+ (NP the/DT dog/NN))
348
+ (VP (V chewed/VBD))
349
+ ./.)
350
+
351
+ Test parsing of other rule types:
352
+
353
+ >>> print(RegexpParser('''
354
+ ... X:
355
+ ... }<a><b>{ # strip rule
356
+ ... <a>}{<b> # split rule
357
+ ... <a>{}<b> # merge rule
358
+ ... <a>{<b>}<c> # chunk rule w/ context
359
+ ... '''))
360
+ chunk.RegexpParser with 1 stages:
361
+ RegexpChunkParser with 4 rules:
362
+ strip rule <StripRule: '<a><b>'>
363
+ split rule <SplitRule: '<a>', '<b>'>
364
+ merge rule <MergeRule: '<a>', '<b>'>
365
+ chunk rule w/ context <ChunkRuleWithContext: '<a>', '<b>', '<c>'>
366
+
367
+ Illegal patterns give an error message:
368
+
369
+ >>> print(RegexpParser('X: {<foo>} {<bar>}'))
370
+ Traceback (most recent call last):
371
+ . . .
372
+ ValueError: Illegal chunk pattern: {<foo>} {<bar>}
venv/lib/python3.10/site-packages/nltk/test/classify.doctest ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =============
5
+ Classifiers
6
+ =============
7
+
8
+ >>> from nltk.test.classify_fixt import setup_module
9
+ >>> setup_module()
10
+
11
+ Classifiers label tokens with category labels (or *class labels*).
12
+ Typically, labels are represented with strings (such as ``"health"``
13
+ or ``"sports"``. In NLTK, classifiers are defined using classes that
14
+ implement the `ClassifierI` interface, which supports the following operations:
15
+
16
+ - self.classify(featureset)
17
+ - self.classify_many(featuresets)
18
+ - self.labels()
19
+ - self.prob_classify(featureset)
20
+ - self.prob_classify_many(featuresets)
21
+
22
+ NLTK defines several classifier classes:
23
+
24
+ - `ConditionalExponentialClassifier`
25
+ - `DecisionTreeClassifier`
26
+ - `MaxentClassifier`
27
+ - `NaiveBayesClassifier`
28
+ - `WekaClassifier`
29
+
30
+ Classifiers are typically created by training them on a training
31
+ corpus.
32
+
33
+
34
+ Regression Tests
35
+ ~~~~~~~~~~~~~~~~
36
+
37
+ We define a very simple training corpus with 3 binary features: ['a',
38
+ 'b', 'c'], and are two labels: ['x', 'y']. We use a simple feature set so
39
+ that the correct answers can be calculated analytically (although we
40
+ haven't done this yet for all tests).
41
+
42
+ >>> import nltk
43
+ >>> train = [
44
+ ... (dict(a=1,b=1,c=1), 'y'),
45
+ ... (dict(a=1,b=1,c=1), 'x'),
46
+ ... (dict(a=1,b=1,c=0), 'y'),
47
+ ... (dict(a=0,b=1,c=1), 'x'),
48
+ ... (dict(a=0,b=1,c=1), 'y'),
49
+ ... (dict(a=0,b=0,c=1), 'y'),
50
+ ... (dict(a=0,b=1,c=0), 'x'),
51
+ ... (dict(a=0,b=0,c=0), 'x'),
52
+ ... (dict(a=0,b=1,c=1), 'y'),
53
+ ... (dict(a=None,b=1,c=0), 'x'),
54
+ ... ]
55
+ >>> test = [
56
+ ... (dict(a=1,b=0,c=1)), # unseen
57
+ ... (dict(a=1,b=0,c=0)), # unseen
58
+ ... (dict(a=0,b=1,c=1)), # seen 3 times, labels=y,y,x
59
+ ... (dict(a=0,b=1,c=0)), # seen 1 time, label=x
60
+ ... ]
61
+
62
+ Test the Naive Bayes classifier:
63
+
64
+ >>> classifier = nltk.classify.NaiveBayesClassifier.train(train)
65
+ >>> sorted(classifier.labels())
66
+ ['x', 'y']
67
+ >>> classifier.classify_many(test)
68
+ ['y', 'x', 'y', 'x']
69
+ >>> for pdist in classifier.prob_classify_many(test):
70
+ ... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')))
71
+ 0.2500 0.7500
72
+ 0.5833 0.4167
73
+ 0.3571 0.6429
74
+ 0.7000 0.3000
75
+ >>> classifier.show_most_informative_features()
76
+ Most Informative Features
77
+ c = 0 x : y = 2.3 : 1.0
78
+ c = 1 y : x = 1.8 : 1.0
79
+ a = 1 y : x = 1.7 : 1.0
80
+ a = 0 x : y = 1.0 : 1.0
81
+ b = 0 x : y = 1.0 : 1.0
82
+ b = 1 x : y = 1.0 : 1.0
83
+
84
+ Test the Decision Tree classifier (without None):
85
+
86
+ >>> classifier = nltk.classify.DecisionTreeClassifier.train(
87
+ ... train[:-1], entropy_cutoff=0,
88
+ ... support_cutoff=0)
89
+ >>> sorted(classifier.labels())
90
+ ['x', 'y']
91
+ >>> print(classifier)
92
+ c=0? .................................................. x
93
+ a=0? ................................................ x
94
+ a=1? ................................................ y
95
+ c=1? .................................................. y
96
+ <BLANKLINE>
97
+ >>> classifier.classify_many(test)
98
+ ['y', 'y', 'y', 'x']
99
+ >>> for pdist in classifier.prob_classify_many(test):
100
+ ... print('%.4f %.4f' % (pdist.prob('x'), pdist.prob('y')))
101
+ Traceback (most recent call last):
102
+ . . .
103
+ NotImplementedError
104
+
105
+
106
+ Test the Decision Tree classifier (with None):
107
+
108
+ >>> classifier = nltk.classify.DecisionTreeClassifier.train(
109
+ ... train, entropy_cutoff=0,
110
+ ... support_cutoff=0)
111
+ >>> sorted(classifier.labels())
112
+ ['x', 'y']
113
+ >>> print(classifier)
114
+ c=0? .................................................. x
115
+ a=0? ................................................ x
116
+ a=1? ................................................ y
117
+ a=None? ............................................. x
118
+ c=1? .................................................. y
119
+ <BLANKLINE>
120
+
121
+
122
+ Test SklearnClassifier, which requires the scikit-learn package.
123
+
124
+ >>> from nltk.classify import SklearnClassifier
125
+ >>> from sklearn.naive_bayes import BernoulliNB
126
+ >>> from sklearn.svm import SVC
127
+ >>> train_data = [({"a": 4, "b": 1, "c": 0}, "ham"),
128
+ ... ({"a": 5, "b": 2, "c": 1}, "ham"),
129
+ ... ({"a": 0, "b": 3, "c": 4}, "spam"),
130
+ ... ({"a": 5, "b": 1, "c": 1}, "ham"),
131
+ ... ({"a": 1, "b": 4, "c": 3}, "spam")]
132
+ >>> classif = SklearnClassifier(BernoulliNB()).train(train_data)
133
+ >>> test_data = [{"a": 3, "b": 2, "c": 1},
134
+ ... {"a": 0, "b": 3, "c": 7}]
135
+ >>> classif.classify_many(test_data)
136
+ ['ham', 'spam']
137
+ >>> classif = SklearnClassifier(SVC(), sparse=False).train(train_data)
138
+ >>> classif.classify_many(test_data)
139
+ ['ham', 'spam']
140
+
141
+ Test the Maximum Entropy classifier training algorithms; they should all
142
+ generate the same results.
143
+
144
+ >>> def print_maxent_test_header():
145
+ ... print(' '*11+''.join([' test[%s] ' % i
146
+ ... for i in range(len(test))]))
147
+ ... print(' '*11+' p(x) p(y)'*len(test))
148
+ ... print('-'*(11+15*len(test)))
149
+
150
+ >>> def test_maxent(algorithm):
151
+ ... print('%11s' % algorithm, end=' ')
152
+ ... try:
153
+ ... classifier = nltk.classify.MaxentClassifier.train(
154
+ ... train, algorithm, trace=0, max_iter=1000)
155
+ ... except Exception as e:
156
+ ... print('Error: %r' % e)
157
+ ... return
158
+ ...
159
+ ... for featureset in test:
160
+ ... pdist = classifier.prob_classify(featureset)
161
+ ... print('%8.2f%6.2f' % (pdist.prob('x'), pdist.prob('y')), end=' ')
162
+ ... print()
163
+
164
+ >>> print_maxent_test_header(); test_maxent('GIS'); test_maxent('IIS')
165
+ test[0] test[1] test[2] test[3]
166
+ p(x) p(y) p(x) p(y) p(x) p(y) p(x) p(y)
167
+ -----------------------------------------------------------------------
168
+ GIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
169
+ IIS 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
170
+
171
+ >>> test_maxent('MEGAM'); test_maxent('TADM') # doctest: +SKIP
172
+ MEGAM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
173
+ TADM 0.16 0.84 0.46 0.54 0.41 0.59 0.76 0.24
174
+
175
+
176
+
177
+ Regression tests for TypedMaxentFeatureEncoding
178
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
179
+
180
+ >>> from nltk.classify import maxent
181
+ >>> train = [
182
+ ... ({'a': 1, 'b': 1, 'c': 1}, 'y'),
183
+ ... ({'a': 5, 'b': 5, 'c': 5}, 'x'),
184
+ ... ({'a': 0.9, 'b': 0.9, 'c': 0.9}, 'y'),
185
+ ... ({'a': 5.5, 'b': 5.4, 'c': 5.3}, 'x'),
186
+ ... ({'a': 0.8, 'b': 1.2, 'c': 1}, 'y'),
187
+ ... ({'a': 5.1, 'b': 4.9, 'c': 5.2}, 'x')
188
+ ... ]
189
+
190
+ >>> test = [
191
+ ... {'a': 1, 'b': 0.8, 'c': 1.2},
192
+ ... {'a': 5.2, 'b': 5.1, 'c': 5}
193
+ ... ]
194
+
195
+ >>> encoding = maxent.TypedMaxentFeatureEncoding.train(
196
+ ... train, count_cutoff=3, alwayson_features=True)
197
+
198
+ >>> classifier = maxent.MaxentClassifier.train(
199
+ ... train, bernoulli=False, encoding=encoding, trace=0)
200
+
201
+ >>> classifier.classify_many(test)
202
+ ['y', 'x']
venv/lib/python3.10/site-packages/nltk/test/classify_fixt.py ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ # most of classify.doctest requires numpy
2
+ def setup_module():
3
+ import pytest
4
+
5
+ pytest.importorskip("numpy")
venv/lib/python3.10/site-packages/nltk/test/collections.doctest ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===========
5
+ Collections
6
+ ===========
7
+
8
+ >>> import nltk
9
+ >>> from nltk.collections import *
10
+
11
+ Trie
12
+ ----
13
+
14
+ Trie can be pickled:
15
+
16
+ >>> import pickle
17
+ >>> trie = nltk.collections.Trie(['a'])
18
+ >>> s = pickle.dumps(trie)
19
+ >>> pickle.loads(s)
20
+ {'a': {True: None}}
21
+
22
+ LazyIteratorList
23
+ ----------------
24
+
25
+ Fetching the length of a LazyIteratorList object does not throw a StopIteration exception:
26
+
27
+ >>> lil = LazyIteratorList(i for i in range(1, 11))
28
+ >>> lil[-1]
29
+ 10
30
+ >>> len(lil)
31
+ 10
venv/lib/python3.10/site-packages/nltk/test/collocations.doctest ADDED
@@ -0,0 +1,307 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============
5
+ Collocations
6
+ ==============
7
+
8
+ Overview
9
+ ~~~~~~~~
10
+
11
+ Collocations are expressions of multiple words which commonly co-occur. For
12
+ example, the top ten bigram collocations in Genesis are listed below, as
13
+ measured using Pointwise Mutual Information.
14
+
15
+ >>> import nltk
16
+ >>> from nltk.collocations import *
17
+ >>> bigram_measures = nltk.collocations.BigramAssocMeasures()
18
+ >>> trigram_measures = nltk.collocations.TrigramAssocMeasures()
19
+ >>> fourgram_measures = nltk.collocations.QuadgramAssocMeasures()
20
+ >>> finder = BigramCollocationFinder.from_words(
21
+ ... nltk.corpus.genesis.words('english-web.txt'))
22
+ >>> finder.nbest(bigram_measures.pmi, 10)
23
+ [('Allon', 'Bacuth'), ('Ashteroth', 'Karnaim'), ('Ben', 'Ammi'),
24
+ ('En', 'Mishpat'), ('Jegar', 'Sahadutha'), ('Salt', 'Sea'),
25
+ ('Whoever', 'sheds'), ('appoint', 'overseers'), ('aromatic', 'resin'),
26
+ ('cutting', 'instrument')]
27
+
28
+ While these words are highly collocated, the expressions are also very
29
+ infrequent. Therefore it is useful to apply filters, such as ignoring all
30
+ bigrams which occur less than three times in the corpus:
31
+
32
+ >>> finder.apply_freq_filter(3)
33
+ >>> finder.nbest(bigram_measures.pmi, 10)
34
+ [('Beer', 'Lahai'), ('Lahai', 'Roi'), ('gray', 'hairs'),
35
+ ('ewe', 'lambs'), ('Most', 'High'), ('many', 'colors'),
36
+ ('burnt', 'offering'), ('Paddan', 'Aram'), ('east', 'wind'),
37
+ ('living', 'creature')]
38
+
39
+ We may similarly find collocations among tagged words:
40
+
41
+ >>> finder = BigramCollocationFinder.from_words(
42
+ ... nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
43
+ >>> finder.nbest(bigram_measures.pmi, 5)
44
+ [(('1,119', 'NUM'), ('votes', 'NOUN')),
45
+ (('1962', 'NUM'), ("governor's", 'NOUN')),
46
+ (('637', 'NUM'), ('E.', 'NOUN')),
47
+ (('Alpharetta', 'NOUN'), ('prison', 'NOUN')),
48
+ (('Bar', 'NOUN'), ('Association', 'NOUN'))]
49
+
50
+ Or tags alone:
51
+
52
+ >>> finder = BigramCollocationFinder.from_words(t for w, t in
53
+ ... nltk.corpus.brown.tagged_words('ca01', tagset='universal'))
54
+ >>> finder.nbest(bigram_measures.pmi, 10)
55
+ [('PRT', 'VERB'), ('PRON', 'VERB'), ('ADP', 'DET'), ('.', 'PRON'), ('DET', 'ADJ'),
56
+ ('CONJ', 'PRON'), ('ADP', 'NUM'), ('NUM', '.'), ('ADV', 'ADV'), ('VERB', 'ADV')]
57
+
58
+ Or spanning intervening words:
59
+
60
+ >>> finder = BigramCollocationFinder.from_words(
61
+ ... nltk.corpus.genesis.words('english-web.txt'),
62
+ ... window_size = 20)
63
+ >>> finder.apply_freq_filter(2)
64
+ >>> ignored_words = nltk.corpus.stopwords.words('english')
65
+ >>> finder.apply_word_filter(lambda w: len(w) < 3 or w.lower() in ignored_words)
66
+ >>> finder.nbest(bigram_measures.likelihood_ratio, 10)
67
+ [('chief', 'chief'), ('became', 'father'), ('years', 'became'),
68
+ ('hundred', 'years'), ('lived', 'became'), ('king', 'king'),
69
+ ('lived', 'years'), ('became', 'became'), ('chief', 'chiefs'),
70
+ ('hundred', 'became')]
71
+
72
+ Finders
73
+ ~~~~~~~
74
+
75
+ The collocations package provides collocation finders which by default
76
+ consider all ngrams in a text as candidate collocations:
77
+
78
+ >>> text = "I do not like green eggs and ham, I do not like them Sam I am!"
79
+ >>> tokens = nltk.wordpunct_tokenize(text)
80
+ >>> finder = BigramCollocationFinder.from_words(tokens)
81
+ >>> scored = finder.score_ngrams(bigram_measures.raw_freq)
82
+ >>> sorted(bigram for bigram, score in scored)
83
+ [(',', 'I'), ('I', 'am'), ('I', 'do'), ('Sam', 'I'), ('am', '!'),
84
+ ('and', 'ham'), ('do', 'not'), ('eggs', 'and'), ('green', 'eggs'),
85
+ ('ham', ','), ('like', 'green'), ('like', 'them'), ('not', 'like'),
86
+ ('them', 'Sam')]
87
+
88
+ We could otherwise construct the collocation finder from manually-derived
89
+ FreqDists:
90
+
91
+ >>> word_fd = nltk.FreqDist(tokens)
92
+ >>> bigram_fd = nltk.FreqDist(nltk.bigrams(tokens))
93
+ >>> finder = BigramCollocationFinder(word_fd, bigram_fd)
94
+ >>> scored == finder.score_ngrams(bigram_measures.raw_freq)
95
+ True
96
+
97
+ A similar interface is provided for trigrams:
98
+
99
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
100
+ >>> scored = finder.score_ngrams(trigram_measures.raw_freq)
101
+ >>> set(trigram for trigram, score in scored) == set(nltk.trigrams(tokens))
102
+ True
103
+
104
+ We may want to select only the top n results:
105
+
106
+ >>> sorted(finder.nbest(trigram_measures.raw_freq, 2))
107
+ [('I', 'do', 'not'), ('do', 'not', 'like')]
108
+
109
+ Alternatively, we can select those above a minimum score value:
110
+
111
+ >>> sorted(finder.above_score(trigram_measures.raw_freq,
112
+ ... 1.0 / len(tuple(nltk.trigrams(tokens)))))
113
+ [('I', 'do', 'not'), ('do', 'not', 'like')]
114
+
115
+ Now spanning intervening words:
116
+
117
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
118
+ >>> finder = TrigramCollocationFinder.from_words(tokens, window_size=4)
119
+ >>> sorted(finder.nbest(trigram_measures.raw_freq, 4))
120
+ [('I', 'do', 'like'), ('I', 'do', 'not'), ('I', 'not', 'like'), ('do', 'not', 'like')]
121
+
122
+ A closer look at the finder's ngram frequencies:
123
+
124
+ >>> sorted(finder.ngram_fd.items(), key=lambda t: (-t[1], t[0]))[:10]
125
+ [(('I', 'do', 'like'), 2), (('I', 'do', 'not'), 2), (('I', 'not', 'like'), 2),
126
+ (('do', 'not', 'like'), 2), ((',', 'I', 'do'), 1), ((',', 'I', 'not'), 1),
127
+ ((',', 'do', 'not'), 1), (('I', 'am', '!'), 1), (('Sam', 'I', '!'), 1),
128
+ (('Sam', 'I', 'am'), 1)]
129
+
130
+ A similar interface is provided for fourgrams:
131
+
132
+ >>> finder_4grams = QuadgramCollocationFinder.from_words(tokens)
133
+ >>> scored_4grams = finder_4grams.score_ngrams(fourgram_measures.raw_freq)
134
+ >>> set(fourgram for fourgram, score in scored_4grams) == set(nltk.ngrams(tokens, n=4))
135
+ True
136
+
137
+ Filtering candidates
138
+ ~~~~~~~~~~~~~~~~~~~~
139
+
140
+ All the ngrams in a text are often too many to be useful when finding
141
+ collocations. It is generally useful to remove some words or punctuation,
142
+ and to require a minimum frequency for candidate collocations.
143
+
144
+ Given our sample text above, if we remove all trigrams containing personal
145
+ pronouns from candidature, score_ngrams should return 6 less results, and
146
+ 'do not like' will be the only candidate which occurs more than once:
147
+
148
+ >>> finder = TrigramCollocationFinder.from_words(tokens)
149
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
150
+ 14
151
+ >>> finder.apply_word_filter(lambda w: w in ('I', 'me'))
152
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
153
+ 8
154
+ >>> sorted(finder.above_score(trigram_measures.raw_freq,
155
+ ... 1.0 / len(tuple(nltk.trigrams(tokens)))))
156
+ [('do', 'not', 'like')]
157
+
158
+ Sometimes a filter is a function on the whole ngram, rather than each word,
159
+ such as if we may permit 'and' to appear in the middle of a trigram, but
160
+ not on either edge:
161
+
162
+ >>> finder.apply_ngram_filter(lambda w1, w2, w3: 'and' in (w1, w3))
163
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
164
+ 6
165
+
166
+ Finally, it is often important to remove low frequency candidates, as we
167
+ lack sufficient evidence about their significance as collocations:
168
+
169
+ >>> finder.apply_freq_filter(2)
170
+ >>> len(finder.score_ngrams(trigram_measures.raw_freq))
171
+ 1
172
+
173
+ Association measures
174
+ ~~~~~~~~~~~~~~~~~~~~
175
+
176
+ A number of measures are available to score collocations or other associations.
177
+ The arguments to measure functions are marginals of a contingency table, in the
178
+ bigram case (n_ii, (n_ix, n_xi), n_xx)::
179
+
180
+ w1 ~w1
181
+ ------ ------
182
+ w2 | n_ii | n_oi | = n_xi
183
+ ------ ------
184
+ ~w2 | n_io | n_oo |
185
+ ------ ------
186
+ = n_ix TOTAL = n_xx
187
+
188
+ We test their calculation using some known values presented in Manning and
189
+ Schutze's text and other papers.
190
+
191
+ Student's t: examples from Manning and Schutze 5.3.2
192
+
193
+ >>> print('%0.4f' % bigram_measures.student_t(8, (15828, 4675), 14307668))
194
+ 0.9999
195
+ >>> print('%0.4f' % bigram_measures.student_t(20, (42, 20), 14307668))
196
+ 4.4721
197
+
198
+ Chi-square: examples from Manning and Schutze 5.3.3
199
+
200
+ >>> print('%0.2f' % bigram_measures.chi_sq(8, (15828, 4675), 14307668))
201
+ 1.55
202
+ >>> print('%0.0f' % bigram_measures.chi_sq(59, (67, 65), 571007))
203
+ 456400
204
+
205
+ Likelihood ratios: examples from Dunning, CL, 1993
206
+
207
+ >>> print('%0.2f' % bigram_measures.likelihood_ratio(110, (2552, 221), 31777))
208
+ 270.72
209
+ >>> print('%0.2f' % bigram_measures.likelihood_ratio(8, (13, 32), 31777))
210
+ 95.29
211
+
212
+ Pointwise Mutual Information: examples from Manning and Schutze 5.4
213
+
214
+ >>> print('%0.2f' % bigram_measures.pmi(20, (42, 20), 14307668))
215
+ 18.38
216
+ >>> print('%0.2f' % bigram_measures.pmi(20, (15019, 15629), 14307668))
217
+ 0.29
218
+
219
+ TODO: Find authoritative results for trigrams.
220
+
221
+ Using contingency table values
222
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
223
+
224
+ While frequency counts make marginals readily available for collocation
225
+ finding, it is common to find published contingency table values. The
226
+ collocations package therefore provides a wrapper, ContingencyMeasures, which
227
+ wraps an association measures class, providing association measures which
228
+ take contingency values as arguments, (n_ii, n_io, n_oi, n_oo) in the
229
+ bigram case.
230
+
231
+ >>> from nltk.metrics import ContingencyMeasures
232
+ >>> cont_bigram_measures = ContingencyMeasures(bigram_measures)
233
+ >>> print('%0.2f' % cont_bigram_measures.likelihood_ratio(8, 5, 24, 31740))
234
+ 95.29
235
+ >>> print('%0.2f' % cont_bigram_measures.chi_sq(8, 15820, 4667, 14287173))
236
+ 1.55
237
+
238
+ Ranking and correlation
239
+ ~~~~~~~~~~~~~~~~~~~~~~~
240
+
241
+ It is useful to consider the results of finding collocations as a ranking, and
242
+ the rankings output using different association measures can be compared using
243
+ the Spearman correlation coefficient.
244
+
245
+ Ranks can be assigned to a sorted list of results trivially by assigning
246
+ strictly increasing ranks to each result:
247
+
248
+ >>> from nltk.metrics.spearman import *
249
+ >>> results_list = ['item1', 'item2', 'item3', 'item4', 'item5']
250
+ >>> print(list(ranks_from_sequence(results_list)))
251
+ [('item1', 0), ('item2', 1), ('item3', 2), ('item4', 3), ('item5', 4)]
252
+
253
+ If scores are available for each result, we may allow sufficiently similar
254
+ results (differing by no more than rank_gap) to be assigned the same rank:
255
+
256
+ >>> results_scored = [('item1', 50.0), ('item2', 40.0), ('item3', 38.0),
257
+ ... ('item4', 35.0), ('item5', 14.0)]
258
+ >>> print(list(ranks_from_scores(results_scored, rank_gap=5)))
259
+ [('item1', 0), ('item2', 1), ('item3', 1), ('item4', 1), ('item5', 4)]
260
+
261
+ The Spearman correlation coefficient gives a number from -1.0 to 1.0 comparing
262
+ two rankings. A coefficient of 1.0 indicates identical rankings; -1.0 indicates
263
+ exact opposite rankings.
264
+
265
+ >>> print('%0.1f' % spearman_correlation(
266
+ ... ranks_from_sequence(results_list),
267
+ ... ranks_from_sequence(results_list)))
268
+ 1.0
269
+ >>> print('%0.1f' % spearman_correlation(
270
+ ... ranks_from_sequence(reversed(results_list)),
271
+ ... ranks_from_sequence(results_list)))
272
+ -1.0
273
+ >>> results_list2 = ['item2', 'item3', 'item1', 'item5', 'item4']
274
+ >>> print('%0.1f' % spearman_correlation(
275
+ ... ranks_from_sequence(results_list),
276
+ ... ranks_from_sequence(results_list2)))
277
+ 0.6
278
+ >>> print('%0.1f' % spearman_correlation(
279
+ ... ranks_from_sequence(reversed(results_list)),
280
+ ... ranks_from_sequence(results_list2)))
281
+ -0.6
282
+
283
+ Keywords
284
+ ~~~~~~~~
285
+
286
+ Bigram association metrics can also be used to perform keyword analysis. . For example, this finds the keywords
287
+ associated with the "romance" section of the Brown corpus as measured by likelihood ratio:
288
+
289
+ >>> romance = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words(categories='romance') if w.isalpha())
290
+ >>> freq = nltk.FreqDist(w.lower() for w in nltk.corpus.brown.words() if w.isalpha())
291
+
292
+ >>> key = nltk.FreqDist()
293
+ >>> for w in romance:
294
+ ... key[w] = bigram_measures.likelihood_ratio(romance[w], (freq[w], romance.N()), freq.N())
295
+
296
+ >>> for k,v in key.most_common(10):
297
+ ... print(f'{k:10s} {v:9.3f}')
298
+ she 1163.325
299
+ i 995.961
300
+ her 930.528
301
+ you 513.149
302
+ of 501.891
303
+ is 463.386
304
+ had 421.615
305
+ he 411.000
306
+ the 347.632
307
+ said 300.811
venv/lib/python3.10/site-packages/nltk/test/concordance.doctest ADDED
@@ -0,0 +1,75 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2016 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==================================
5
+ Concordance Example
6
+ ==================================
7
+
8
+ A concordance view shows us every occurrence of a given
9
+ word, together with some context. Here we look up the word monstrous
10
+ in Moby Dick by entering text1 followed by a period, then the term
11
+ concordance, and then placing "monstrous" in parentheses:
12
+
13
+ >>> from nltk.corpus import gutenberg
14
+ >>> from nltk.text import Text
15
+ >>> corpus = gutenberg.words('melville-moby_dick.txt')
16
+ >>> text = Text(corpus)
17
+
18
+ >>> text.concordance("monstrous")
19
+ Displaying 11 of 11 matches:
20
+ ong the former , one was of a most monstrous size . ... This came towards us ,
21
+ ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
22
+ ll over with a heathenish array of monstrous clubs and spears . Some were thick
23
+ d as you gazed , and wondered what monstrous cannibal and savage could ever hav
24
+ that has survived the flood ; most monstrous and most mountainous ! That Himmal
25
+ they might scout at Moby Dick as a monstrous fable , or still worse and more de
26
+ th of Radney .'" CHAPTER 55 Of the Monstrous Pictures of Whales . I shall ere l
27
+ ing Scenes . In connexion with the monstrous pictures of whales , I am strongly
28
+ ere to enter upon those still more monstrous stories of them which are to be fo
29
+ ght have been rummaged out of this monstrous cabinet there is no telling . But
30
+ of Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead u
31
+
32
+ >>> text.concordance("monstrous")
33
+ Displaying 11 of 11 matches:
34
+ ong the former , one was of a most monstrous size . ... This came towards us ,
35
+ ON OF THE PSALMS . " Touching that monstrous bulk of the whale or ork we have r
36
+ ll over with a heathenish array of monstrous clubs and spears . Some were thick
37
+ ...
38
+
39
+ We can also search for a multi-word phrase by passing a list of strings:
40
+
41
+ >>> text.concordance(["monstrous", "size"])
42
+ Displaying 2 of 2 matches:
43
+ the former , one was of a most monstrous size . ... This came towards us , op
44
+ Whale - Bones ; for Whales of a monstrous size are oftentimes cast up dead upo
45
+
46
+ =================================
47
+ Concordance List
48
+ =================================
49
+
50
+ Often we need to store the results of concordance for further usage.
51
+ To do so, call the concordance function with the stdout argument set
52
+ to false:
53
+
54
+ >>> from nltk.corpus import gutenberg
55
+ >>> from nltk.text import Text
56
+ >>> corpus = gutenberg.words('melville-moby_dick.txt')
57
+ >>> text = Text(corpus)
58
+ >>> con_list = text.concordance_list("monstrous")
59
+ >>> con_list[2].line
60
+ 'll over with a heathenish array of monstrous clubs and spears . Some were thick'
61
+ >>> len(con_list)
62
+ 11
63
+
64
+ =================================
65
+ Patching Issue #2088
66
+ =================================
67
+
68
+ Patching https://github.com/nltk/nltk/issues/2088
69
+ The left slice of the left context should be clip to 0 if the `i-context` < 0.
70
+
71
+ >>> from nltk import Text, word_tokenize
72
+ >>> jane_eyre = 'Chapter 1\nTHERE was no possibility of taking a walk that day. We had been wandering, indeed, in the leafless shrubbery an hour in the morning; but since dinner (Mrs. Reed, when there was no company, dined early) the cold winter wind had brought with it clouds so sombre, and a rain so penetrating, that further outdoor exercise was now out of the question.'
73
+ >>> text = Text(word_tokenize(jane_eyre))
74
+ >>> text.concordance_list('taking')[0].left
75
+ ['Chapter', '1', 'THERE', 'was', 'no', 'possibility', 'of']
venv/lib/python3.10/site-packages/nltk/test/conftest.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ from nltk.corpus.reader import CorpusReader
4
+
5
+
6
+ @pytest.fixture(autouse=True)
7
+ def mock_plot(mocker):
8
+ """Disable matplotlib plotting in test code"""
9
+
10
+ try:
11
+ import matplotlib.pyplot as plt
12
+
13
+ mocker.patch.object(plt, "gca")
14
+ mocker.patch.object(plt, "show")
15
+ except ImportError:
16
+ pass
17
+
18
+
19
+ @pytest.fixture(scope="module", autouse=True)
20
+ def teardown_loaded_corpora():
21
+ """
22
+ After each test session ends (either doctest or unit test),
23
+ unload any loaded corpora
24
+ """
25
+
26
+ yield # first, wait for the test to end
27
+
28
+ import nltk.corpus
29
+
30
+ for name in dir(nltk.corpus):
31
+ obj = getattr(nltk.corpus, name, None)
32
+ if isinstance(obj, CorpusReader) and hasattr(obj, "_unload"):
33
+ obj._unload()
venv/lib/python3.10/site-packages/nltk/test/corpus.doctest ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/nltk/test/crubadan.doctest ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ Crubadan Corpus Reader
5
+ ======================
6
+
7
+ Crubadan is an NLTK corpus reader for ngram files provided
8
+ by the Crubadan project. It supports several languages.
9
+
10
+ >>> from nltk.corpus import crubadan
11
+ >>> crubadan.langs()
12
+ ['abk', 'abn',..., 'zpa', 'zul']
13
+
14
+ ----------------------------------------
15
+ Language code mapping and helper methods
16
+ ----------------------------------------
17
+
18
+ The web crawler that generates the 3-gram frequencies works at the
19
+ level of "writing systems" rather than languages. Writing systems
20
+ are assigned internal 2-3 letter codes that require mapping to the
21
+ standard ISO 639-3 codes. For more information, please refer to
22
+ the README in nltk_data/crubadan folder after installing it.
23
+
24
+ To translate ISO 639-3 codes to "Crubadan Code":
25
+
26
+ >>> crubadan.iso_to_crubadan('eng')
27
+ 'en'
28
+ >>> crubadan.iso_to_crubadan('fra')
29
+ 'fr'
30
+ >>> crubadan.iso_to_crubadan('aaa')
31
+
32
+ In reverse, print ISO 639-3 code if we have the Crubadan Code:
33
+
34
+ >>> crubadan.crubadan_to_iso('en')
35
+ 'eng'
36
+ >>> crubadan.crubadan_to_iso('fr')
37
+ 'fra'
38
+ >>> crubadan.crubadan_to_iso('aa')
39
+
40
+ ---------------------------
41
+ Accessing ngram frequencies
42
+ ---------------------------
43
+
44
+ On initialization the reader will create a dictionary of every
45
+ language supported by the Crubadan project, mapping the ISO 639-3
46
+ language code to its corresponding ngram frequency.
47
+
48
+ You can access individual language FreqDist and the ngrams within them as follows:
49
+
50
+ >>> english_fd = crubadan.lang_freq('eng')
51
+ >>> english_fd['the']
52
+ 728135
53
+
54
+ Above accesses the FreqDist of English and returns the frequency of the ngram 'the'.
55
+ A ngram that isn't found within the language will return 0:
56
+
57
+ >>> english_fd['sometest']
58
+ 0
59
+
60
+ A language that isn't supported will raise an exception:
61
+
62
+ >>> crubadan.lang_freq('elvish')
63
+ Traceback (most recent call last):
64
+ ...
65
+ RuntimeError: Unsupported language.
venv/lib/python3.10/site-packages/nltk/test/data.doctest ADDED
@@ -0,0 +1,387 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =========================================
5
+ Loading Resources From the Data Package
6
+ =========================================
7
+
8
+ >>> import nltk.data
9
+
10
+ Overview
11
+ ~~~~~~~~
12
+ The `nltk.data` module contains functions that can be used to load
13
+ NLTK resource files, such as corpora, grammars, and saved processing
14
+ objects.
15
+
16
+ Loading Data Files
17
+ ~~~~~~~~~~~~~~~~~~
18
+ Resources are loaded using the function `nltk.data.load()`, which
19
+ takes as its first argument a URL specifying what file should be
20
+ loaded. The ``nltk:`` protocol loads files from the NLTK data
21
+ distribution:
22
+
23
+ >>> tokenizer = nltk.data.load('nltk:tokenizers/punkt/english.pickle')
24
+ >>> tokenizer.tokenize('Hello. This is a test. It works!')
25
+ ['Hello.', 'This is a test.', 'It works!']
26
+
27
+ It is important to note that there should be no space following the
28
+ colon (':') in the URL; 'nltk: tokenizers/punkt/english.pickle' will
29
+ not work!
30
+
31
+ The ``nltk:`` protocol is used by default if no protocol is specified:
32
+
33
+ >>> nltk.data.load('tokenizers/punkt/english.pickle')
34
+ <nltk.tokenize.punkt.PunktSentenceTokenizer object at ...>
35
+
36
+ But it is also possible to load resources from ``http:``, ``ftp:``,
37
+ and ``file:`` URLs:
38
+
39
+ >>> # Load a grammar from the NLTK webpage.
40
+ >>> cfg = nltk.data.load('https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg')
41
+ >>> print(cfg) # doctest: +ELLIPSIS
42
+ Grammar with 14 productions (start state = S)
43
+ S -> NP VP
44
+ PP -> P NP
45
+ ...
46
+ P -> 'on'
47
+ P -> 'in'
48
+
49
+ >>> # Load a grammar using an absolute path.
50
+ >>> url = 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg')
51
+ >>> url.replace('\\', '/')
52
+ 'file:...toy.cfg'
53
+ >>> print(nltk.data.load(url))
54
+ Grammar with 14 productions (start state = S)
55
+ S -> NP VP
56
+ PP -> P NP
57
+ ...
58
+ P -> 'on'
59
+ P -> 'in'
60
+
61
+ The second argument to the `nltk.data.load()` function specifies the
62
+ file format, which determines how the file's contents are processed
63
+ before they are returned by ``load()``. The formats that are
64
+ currently supported by the data module are described by the dictionary
65
+ `nltk.data.FORMATS`:
66
+
67
+ >>> for format, descr in sorted(nltk.data.FORMATS.items()):
68
+ ... print('{0:<7} {1:}'.format(format, descr))
69
+ cfg A context free grammar.
70
+ fcfg A feature CFG.
71
+ fol A list of first order logic expressions, parsed with
72
+ nltk.sem.logic.Expression.fromstring.
73
+ json A serialized python object, stored using the json module.
74
+ logic A list of first order logic expressions, parsed with
75
+ nltk.sem.logic.LogicParser. Requires an additional logic_parser
76
+ parameter
77
+ pcfg A probabilistic CFG.
78
+ pickle A serialized python object, stored using the pickle
79
+ module.
80
+ raw The raw (byte string) contents of a file.
81
+ text The raw (unicode string) contents of a file.
82
+ val A semantic valuation, parsed by
83
+ nltk.sem.Valuation.fromstring.
84
+ yaml A serialized python object, stored using the yaml module.
85
+
86
+ `nltk.data.load()` will raise a ValueError if a bad format name is
87
+ specified:
88
+
89
+ >>> nltk.data.load('grammars/sample_grammars/toy.cfg', 'bar')
90
+ Traceback (most recent call last):
91
+ . . .
92
+ ValueError: Unknown format type!
93
+
94
+ By default, the ``"auto"`` format is used, which chooses a format
95
+ based on the filename's extension. The mapping from file extensions
96
+ to format names is specified by `nltk.data.AUTO_FORMATS`:
97
+
98
+ >>> for ext, format in sorted(nltk.data.AUTO_FORMATS.items()):
99
+ ... print('.%-7s -> %s' % (ext, format))
100
+ .cfg -> cfg
101
+ .fcfg -> fcfg
102
+ .fol -> fol
103
+ .json -> json
104
+ .logic -> logic
105
+ .pcfg -> pcfg
106
+ .pickle -> pickle
107
+ .text -> text
108
+ .txt -> text
109
+ .val -> val
110
+ .yaml -> yaml
111
+
112
+ If `nltk.data.load()` is unable to determine the format based on the
113
+ filename's extension, it will raise a ValueError:
114
+
115
+ >>> nltk.data.load('foo.bar')
116
+ Traceback (most recent call last):
117
+ . . .
118
+ ValueError: Could not determine format for foo.bar based on its file
119
+ extension; use the "format" argument to specify the format explicitly.
120
+
121
+ Note that by explicitly specifying the ``format`` argument, you can
122
+ override the load method's default processing behavior. For example,
123
+ to get the raw contents of any file, simply use ``format="raw"``:
124
+
125
+ >>> s = nltk.data.load('grammars/sample_grammars/toy.cfg', 'text')
126
+ >>> print(s)
127
+ S -> NP VP
128
+ PP -> P NP
129
+ NP -> Det N | NP PP
130
+ VP -> V NP | VP PP
131
+ ...
132
+
133
+ Making Local Copies
134
+ ~~~~~~~~~~~~~~~~~~~
135
+ .. This will not be visible in the html output: create a tempdir to
136
+ play in.
137
+ >>> import tempfile, os
138
+ >>> tempdir = tempfile.mkdtemp()
139
+ >>> old_dir = os.path.abspath('.')
140
+ >>> os.chdir(tempdir)
141
+
142
+ The function `nltk.data.retrieve()` copies a given resource to a local
143
+ file. This can be useful, for example, if you want to edit one of the
144
+ sample grammars.
145
+
146
+ >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg')
147
+ Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy.cfg'
148
+
149
+ >>> # Simulate editing the grammar.
150
+ >>> with open('toy.cfg') as inp:
151
+ ... s = inp.read().replace('NP', 'DP')
152
+ >>> with open('toy.cfg', 'w') as out:
153
+ ... _bytes_written = out.write(s)
154
+
155
+ >>> # Load the edited grammar, & display it.
156
+ >>> cfg = nltk.data.load('file:///' + os.path.abspath('toy.cfg'))
157
+ >>> print(cfg)
158
+ Grammar with 14 productions (start state = S)
159
+ S -> DP VP
160
+ PP -> P DP
161
+ ...
162
+ P -> 'on'
163
+ P -> 'in'
164
+
165
+ The second argument to `nltk.data.retrieve()` specifies the filename
166
+ for the new copy of the file. By default, the source file's filename
167
+ is used.
168
+
169
+ >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg', 'mytoy.cfg')
170
+ Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'mytoy.cfg'
171
+ >>> os.path.isfile('./mytoy.cfg')
172
+ True
173
+ >>> nltk.data.retrieve('grammars/sample_grammars/np.fcfg')
174
+ Retrieving 'nltk:grammars/sample_grammars/np.fcfg', saving to 'np.fcfg'
175
+ >>> os.path.isfile('./np.fcfg')
176
+ True
177
+
178
+ If a file with the specified (or default) filename already exists in
179
+ the current directory, then `nltk.data.retrieve()` will raise a
180
+ ValueError exception. It will *not* overwrite the file:
181
+
182
+ >>> os.path.isfile('./toy.cfg')
183
+ True
184
+ >>> nltk.data.retrieve('grammars/sample_grammars/toy.cfg')
185
+ Traceback (most recent call last):
186
+ . . .
187
+ ValueError: File '...toy.cfg' already exists!
188
+
189
+ .. This will not be visible in the html output: clean up the tempdir.
190
+ >>> os.chdir(old_dir)
191
+ >>> for f in os.listdir(tempdir):
192
+ ... os.remove(os.path.join(tempdir, f))
193
+ >>> os.rmdir(tempdir)
194
+
195
+ Finding Files in the NLTK Data Package
196
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
197
+ The `nltk.data.find()` function searches the NLTK data package for a
198
+ given file, and returns a pointer to that file. This pointer can
199
+ either be a `FileSystemPathPointer` (whose `path` attribute gives the
200
+ absolute path of the file); or a `ZipFilePathPointer`, specifying a
201
+ zipfile and the name of an entry within that zipfile. Both pointer
202
+ types define the `open()` method, which can be used to read the string
203
+ contents of the file.
204
+
205
+ >>> path = nltk.data.find('corpora/abc/rural.txt')
206
+ >>> str(path)
207
+ '...rural.txt'
208
+ >>> print(path.open().read(60).decode())
209
+ PM denies knowledge of AWB kickbacks
210
+ The Prime Minister has
211
+
212
+ Alternatively, the `nltk.data.load()` function can be used with the
213
+ keyword argument ``format="raw"``:
214
+
215
+ >>> s = nltk.data.load('corpora/abc/rural.txt', format='raw')[:60]
216
+ >>> print(s.decode())
217
+ PM denies knowledge of AWB kickbacks
218
+ The Prime Minister has
219
+
220
+ Alternatively, you can use the keyword argument ``format="text"``:
221
+
222
+ >>> s = nltk.data.load('corpora/abc/rural.txt', format='text')[:60]
223
+ >>> print(s)
224
+ PM denies knowledge of AWB kickbacks
225
+ The Prime Minister has
226
+
227
+ Resource Caching
228
+ ~~~~~~~~~~~~~~~~
229
+
230
+ NLTK uses a weakref dictionary to maintain a cache of resources that
231
+ have been loaded. If you load a resource that is already stored in
232
+ the cache, then the cached copy will be returned. This behavior can
233
+ be seen by the trace output generated when verbose=True:
234
+
235
+ >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
236
+ <<Loading nltk:grammars/book_grammars/feat0.fcfg>>
237
+ >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg', verbose=True)
238
+ <<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
239
+
240
+ If you wish to load a resource from its source, bypassing the cache,
241
+ use the ``cache=False`` argument to `nltk.data.load()`. This can be
242
+ useful, for example, if the resource is loaded from a local file, and
243
+ you are actively editing that file:
244
+
245
+ >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',cache=False,verbose=True)
246
+ <<Loading nltk:grammars/book_grammars/feat0.fcfg>>
247
+
248
+ The cache *no longer* uses weak references. A resource will not be
249
+ automatically expunged from the cache when no more objects are using
250
+ it. In the following example, when we clear the variable ``feat0``,
251
+ the reference count for the feature grammar object drops to zero.
252
+ However, the object remains cached:
253
+
254
+ >>> del feat0
255
+ >>> feat0 = nltk.data.load('grammars/book_grammars/feat0.fcfg',
256
+ ... verbose=True)
257
+ <<Using cached copy of nltk:grammars/book_grammars/feat0.fcfg>>
258
+
259
+ You can clear the entire contents of the cache, using
260
+ `nltk.data.clear_cache()`:
261
+
262
+ >>> nltk.data.clear_cache()
263
+
264
+ Retrieving other Data Sources
265
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
266
+ >>> formulas = nltk.data.load('grammars/book_grammars/background.fol')
267
+ >>> for f in formulas: print(str(f))
268
+ all x.(boxerdog(x) -> dog(x))
269
+ all x.(boxer(x) -> person(x))
270
+ all x.-(dog(x) & person(x))
271
+ all x.(married(x) <-> exists y.marry(x,y))
272
+ all x.(bark(x) -> dog(x))
273
+ all x y.(marry(x,y) -> (person(x) & person(y)))
274
+ -(Vincent = Mia)
275
+ -(Vincent = Fido)
276
+ -(Mia = Fido)
277
+
278
+ Regression Tests
279
+ ~~~~~~~~~~~~~~~~
280
+ Create a temp dir for tests that write files:
281
+
282
+ >>> import tempfile, os
283
+ >>> tempdir = tempfile.mkdtemp()
284
+ >>> old_dir = os.path.abspath('.')
285
+ >>> os.chdir(tempdir)
286
+
287
+ The `retrieve()` function accepts all url types:
288
+
289
+ >>> urls = ['https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg',
290
+ ... 'file:%s' % nltk.data.find('grammars/sample_grammars/toy.cfg'),
291
+ ... 'nltk:grammars/sample_grammars/toy.cfg',
292
+ ... 'grammars/sample_grammars/toy.cfg']
293
+ >>> for i, url in enumerate(urls):
294
+ ... nltk.data.retrieve(url, 'toy-%d.cfg' % i)
295
+ Retrieving 'https://raw.githubusercontent.com/nltk/nltk/develop/nltk/test/toy.cfg', saving to 'toy-0.cfg'
296
+ Retrieving 'file:...toy.cfg', saving to 'toy-1.cfg'
297
+ Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-2.cfg'
298
+ Retrieving 'nltk:grammars/sample_grammars/toy.cfg', saving to 'toy-3.cfg'
299
+
300
+ Clean up the temp dir:
301
+
302
+ >>> os.chdir(old_dir)
303
+ >>> for f in os.listdir(tempdir):
304
+ ... os.remove(os.path.join(tempdir, f))
305
+ >>> os.rmdir(tempdir)
306
+
307
+ Lazy Loader
308
+ -----------
309
+ A lazy loader is a wrapper object that defers loading a resource until
310
+ it is accessed or used in any way. This is mainly intended for
311
+ internal use by NLTK's corpus readers.
312
+
313
+ >>> # Create a lazy loader for toy.cfg.
314
+ >>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
315
+
316
+ >>> # Show that it's not loaded yet:
317
+ >>> object.__repr__(ll)
318
+ '<nltk.data.LazyLoader object at ...>'
319
+
320
+ >>> # printing it is enough to cause it to be loaded:
321
+ >>> print(ll)
322
+ <Grammar with 14 productions>
323
+
324
+ >>> # Show that it's now been loaded:
325
+ >>> object.__repr__(ll)
326
+ '<nltk.grammar.CFG object at ...>'
327
+
328
+
329
+ >>> # Test that accessing an attribute also loads it:
330
+ >>> ll = nltk.data.LazyLoader('grammars/sample_grammars/toy.cfg')
331
+ >>> ll.start()
332
+ S
333
+ >>> object.__repr__(ll)
334
+ '<nltk.grammar.CFG object at ...>'
335
+
336
+ Buffered Gzip Reading and Writing
337
+ ---------------------------------
338
+ Write performance to gzip-compressed is extremely poor when the files become large.
339
+ File creation can become a bottleneck in those cases.
340
+
341
+ Read performance from large gzipped pickle files was improved in data.py by
342
+ buffering the reads. A similar fix can be applied to writes by buffering
343
+ the writes to a StringIO object first.
344
+
345
+ This is mainly intended for internal use. The test simply tests that reading
346
+ and writing work as intended and does not test how much improvement buffering
347
+ provides.
348
+
349
+ >>> from io import StringIO
350
+ >>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'wb', size=2**10)
351
+ >>> ans = []
352
+ >>> for i in range(10000):
353
+ ... ans.append(str(i).encode('ascii'))
354
+ ... test.write(str(i).encode('ascii'))
355
+ >>> test.close()
356
+ >>> test = nltk.data.BufferedGzipFile('testbuf.gz', 'rb')
357
+ >>> test.read() == b''.join(ans)
358
+ True
359
+ >>> test.close()
360
+ >>> import os
361
+ >>> os.unlink('testbuf.gz')
362
+
363
+ JSON Encoding and Decoding
364
+ --------------------------
365
+ JSON serialization is used instead of pickle for some classes.
366
+
367
+ >>> from nltk import jsontags
368
+ >>> from nltk.jsontags import JSONTaggedEncoder, JSONTaggedDecoder, register_tag
369
+ >>> @jsontags.register_tag
370
+ ... class JSONSerializable:
371
+ ... json_tag = 'JSONSerializable'
372
+ ...
373
+ ... def __init__(self, n):
374
+ ... self.n = n
375
+ ...
376
+ ... def encode_json_obj(self):
377
+ ... return self.n
378
+ ...
379
+ ... @classmethod
380
+ ... def decode_json_obj(cls, obj):
381
+ ... n = obj
382
+ ... return cls(n)
383
+ ...
384
+ >>> JSONTaggedEncoder().encode(JSONSerializable(1))
385
+ '{"!JSONSerializable": 1}'
386
+ >>> JSONTaggedDecoder().decode('{"!JSONSerializable": 1}').n
387
+ 1
venv/lib/python3.10/site-packages/nltk/test/dependency.doctest ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===================
5
+ Dependency Grammars
6
+ ===================
7
+
8
+ >>> from nltk.grammar import DependencyGrammar
9
+ >>> from nltk.parse import (
10
+ ... DependencyGraph,
11
+ ... ProjectiveDependencyParser,
12
+ ... NonprojectiveDependencyParser,
13
+ ... )
14
+
15
+ CoNLL Data
16
+ ----------
17
+
18
+ >>> treebank_data = """Pierre NNP 2 NMOD
19
+ ... Vinken NNP 8 SUB
20
+ ... , , 2 P
21
+ ... 61 CD 5 NMOD
22
+ ... years NNS 6 AMOD
23
+ ... old JJ 2 NMOD
24
+ ... , , 2 P
25
+ ... will MD 0 ROOT
26
+ ... join VB 8 VC
27
+ ... the DT 11 NMOD
28
+ ... board NN 9 OBJ
29
+ ... as IN 9 VMOD
30
+ ... a DT 15 NMOD
31
+ ... nonexecutive JJ 15 NMOD
32
+ ... director NN 12 PMOD
33
+ ... Nov. NNP 9 VMOD
34
+ ... 29 CD 16 NMOD
35
+ ... . . 9 VMOD
36
+ ... """
37
+
38
+ >>> dg = DependencyGraph(treebank_data)
39
+ >>> dg.tree().pprint()
40
+ (will
41
+ (Vinken Pierre , (old (years 61)) ,)
42
+ (join (board the) (as (director a nonexecutive)) (Nov. 29) .))
43
+ >>> for head, rel, dep in dg.triples():
44
+ ... print(
45
+ ... '({h[0]}, {h[1]}), {r}, ({d[0]}, {d[1]})'
46
+ ... .format(h=head, r=rel, d=dep)
47
+ ... )
48
+ (will, MD), SUB, (Vinken, NNP)
49
+ (Vinken, NNP), NMOD, (Pierre, NNP)
50
+ (Vinken, NNP), P, (,, ,)
51
+ (Vinken, NNP), NMOD, (old, JJ)
52
+ (old, JJ), AMOD, (years, NNS)
53
+ (years, NNS), NMOD, (61, CD)
54
+ (Vinken, NNP), P, (,, ,)
55
+ (will, MD), VC, (join, VB)
56
+ (join, VB), OBJ, (board, NN)
57
+ (board, NN), NMOD, (the, DT)
58
+ (join, VB), VMOD, (as, IN)
59
+ (as, IN), PMOD, (director, NN)
60
+ (director, NN), NMOD, (a, DT)
61
+ (director, NN), NMOD, (nonexecutive, JJ)
62
+ (join, VB), VMOD, (Nov., NNP)
63
+ (Nov., NNP), NMOD, (29, CD)
64
+ (join, VB), VMOD, (., .)
65
+
66
+ Using a custom cell extractor.
67
+
68
+ >>> def custom_extractor(cells):
69
+ ... _, tag, head, rel = cells
70
+ ... return 'spam', 'spam', tag, tag, '', head, rel
71
+ >>> dg = DependencyGraph(treebank_data, cell_extractor=custom_extractor)
72
+ >>> dg.tree().pprint()
73
+ (spam
74
+ (spam spam spam (spam (spam spam)) spam)
75
+ (spam (spam spam) (spam (spam spam spam)) (spam spam) spam))
76
+
77
+ Custom cell extractors can take in and return an index.
78
+
79
+ >>> def custom_extractor(cells, index):
80
+ ... word, tag, head, rel = cells
81
+ ... return (index, '{}-{}'.format(word, index), word,
82
+ ... tag, tag, '', head, rel)
83
+ >>> dg = DependencyGraph(treebank_data, cell_extractor=custom_extractor)
84
+ >>> dg.tree().pprint()
85
+ (will-8
86
+ (Vinken-2 Pierre-1 ,-3 (old-6 (years-5 61-4)) ,-7)
87
+ (join-9
88
+ (board-11 the-10)
89
+ (as-12 (director-15 a-13 nonexecutive-14))
90
+ (Nov.-16 29-17)
91
+ .-18))
92
+
93
+ Using the dependency-parsed version of the Penn Treebank corpus sample.
94
+
95
+ >>> from nltk.corpus import dependency_treebank
96
+ >>> t = dependency_treebank.parsed_sents()[0]
97
+ >>> print(t.to_conll(3))
98
+ Pierre NNP 2
99
+ Vinken NNP 8
100
+ , , 2
101
+ 61 CD 5
102
+ years NNS 6
103
+ old JJ 2
104
+ , , 2
105
+ will MD 0
106
+ join VB 8
107
+ the DT 11
108
+ board NN 9
109
+ as IN 9
110
+ a DT 15
111
+ nonexecutive JJ 15
112
+ director NN 12
113
+ Nov. NNP 9
114
+ 29 CD 16
115
+ . . 8
116
+
117
+ Using the output of zpar (like Malt-TAB but with zero-based indexing)
118
+
119
+ >>> zpar_data = """
120
+ ... Pierre NNP 1 NMOD
121
+ ... Vinken NNP 7 SUB
122
+ ... , , 1 P
123
+ ... 61 CD 4 NMOD
124
+ ... years NNS 5 AMOD
125
+ ... old JJ 1 NMOD
126
+ ... , , 1 P
127
+ ... will MD -1 ROOT
128
+ ... join VB 7 VC
129
+ ... the DT 10 NMOD
130
+ ... board NN 8 OBJ
131
+ ... as IN 8 VMOD
132
+ ... a DT 14 NMOD
133
+ ... nonexecutive JJ 14 NMOD
134
+ ... director NN 11 PMOD
135
+ ... Nov. NNP 8 VMOD
136
+ ... 29 CD 15 NMOD
137
+ ... . . 7 P
138
+ ... """
139
+
140
+ >>> zdg = DependencyGraph(zpar_data, zero_based=True)
141
+ >>> print(zdg.tree())
142
+ (will
143
+ (Vinken Pierre , (old (years 61)) ,)
144
+ (join (board the) (as (director a nonexecutive)) (Nov. 29))
145
+ .)
146
+
147
+
148
+ Projective Dependency Parsing
149
+ -----------------------------
150
+
151
+ >>> grammar = DependencyGrammar.fromstring("""
152
+ ... 'fell' -> 'price' | 'stock'
153
+ ... 'price' -> 'of' 'the'
154
+ ... 'of' -> 'stock'
155
+ ... 'stock' -> 'the'
156
+ ... """)
157
+ >>> print(grammar)
158
+ Dependency grammar with 5 productions
159
+ 'fell' -> 'price'
160
+ 'fell' -> 'stock'
161
+ 'price' -> 'of' 'the'
162
+ 'of' -> 'stock'
163
+ 'stock' -> 'the'
164
+
165
+ >>> dp = ProjectiveDependencyParser(grammar)
166
+ >>> for t in sorted(dp.parse(['the', 'price', 'of', 'the', 'stock', 'fell'])):
167
+ ... print(t)
168
+ (fell (price the (of (stock the))))
169
+ (fell (price the of) (stock the))
170
+ (fell (price the of the) stock)
171
+
172
+ Non-Projective Dependency Parsing
173
+ ---------------------------------
174
+
175
+ >>> grammar = DependencyGrammar.fromstring("""
176
+ ... 'taught' -> 'play' | 'man'
177
+ ... 'man' -> 'the'
178
+ ... 'play' -> 'golf' | 'dog' | 'to'
179
+ ... 'dog' -> 'his'
180
+ ... """)
181
+ >>> print(grammar)
182
+ Dependency grammar with 7 productions
183
+ 'taught' -> 'play'
184
+ 'taught' -> 'man'
185
+ 'man' -> 'the'
186
+ 'play' -> 'golf'
187
+ 'play' -> 'dog'
188
+ 'play' -> 'to'
189
+ 'dog' -> 'his'
190
+
191
+ >>> dp = NonprojectiveDependencyParser(grammar)
192
+ >>> g, = dp.parse(['the', 'man', 'taught', 'his', 'dog', 'to', 'play', 'golf'])
193
+
194
+ >>> print(g.root['word'])
195
+ taught
196
+
197
+ >>> for _, node in sorted(g.nodes.items()):
198
+ ... if node['word'] is not None:
199
+ ... print('{address} {word}: {d}'.format(d=node['deps'][''], **node))
200
+ 1 the: []
201
+ 2 man: [1]
202
+ 3 taught: [2, 7]
203
+ 4 his: []
204
+ 5 dog: [4]
205
+ 6 to: []
206
+ 7 play: [5, 6, 8]
207
+ 8 golf: []
208
+
209
+ >>> print(g.tree())
210
+ (taught (man the) (play (dog his) to golf))
211
+
212
+ Integration with MALT parser
213
+ ============================
214
+
215
+ In case the top relation is different from the default, we can set it. In case
216
+ of MALT parser, it's set to `'null'`.
217
+
218
+ >>> dg_str = """1 I _ NN NN _ 2 nn _ _
219
+ ... 2 shot _ NN NN _ 0 null _ _
220
+ ... 3 an _ AT AT _ 2 dep _ _
221
+ ... 4 elephant _ NN NN _ 7 nn _ _
222
+ ... 5 in _ NN NN _ 7 nn _ _
223
+ ... 6 my _ NN NN _ 7 nn _ _
224
+ ... 7 pajamas _ NNS NNS _ 3 dobj _ _
225
+ ... """
226
+ >>> dg = DependencyGraph(dg_str, top_relation_label='null')
227
+
228
+ >>> len(dg.nodes)
229
+ 8
230
+
231
+ >>> dg.root['word'], dg.root['address']
232
+ ('shot', 2)
233
+
234
+ >>> print(dg.to_conll(10))
235
+ 1 I _ NN NN _ 2 nn _ _
236
+ 2 shot _ NN NN _ 0 null _ _
237
+ 3 an _ AT AT _ 2 dep _ _
238
+ 4 elephant _ NN NN _ 7 nn _ _
239
+ 5 in _ NN NN _ 7 nn _ _
240
+ 6 my _ NN NN _ 7 nn _ _
241
+ 7 pajamas _ NNS NNS _ 3 dobj _ _
venv/lib/python3.10/site-packages/nltk/test/discourse.doctest ADDED
@@ -0,0 +1,552 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==================
5
+ Discourse Checking
6
+ ==================
7
+
8
+ >>> from nltk import *
9
+ >>> from nltk.sem import logic
10
+ >>> logic._counter._value = 0
11
+
12
+ Setup
13
+ =====
14
+
15
+ >>> from nltk.test.childes_fixt import setup_module
16
+ >>> setup_module()
17
+
18
+ Introduction
19
+ ============
20
+
21
+ The NLTK discourse module makes it possible to test consistency and
22
+ redundancy of simple discourses, using theorem-proving and
23
+ model-building from `nltk.inference`.
24
+
25
+ The ``DiscourseTester`` constructor takes a list of sentences as a
26
+ parameter.
27
+
28
+ >>> dt = DiscourseTester(['a boxer walks', 'every boxer chases a girl'])
29
+
30
+ The ``DiscourseTester`` parses each sentence into a list of logical
31
+ forms. Once we have created ``DiscourseTester`` object, we can
32
+ inspect various properties of the discourse. First off, we might want
33
+ to double-check what sentences are currently stored as the discourse.
34
+
35
+ >>> dt.sentences()
36
+ s0: a boxer walks
37
+ s1: every boxer chases a girl
38
+
39
+ As you will see, each sentence receives an identifier `s`\ :subscript:`i`.
40
+ We might also want to check what grammar the ``DiscourseTester`` is
41
+ using (by default, ``book_grammars/discourse.fcfg``):
42
+
43
+ >>> dt.grammar()
44
+ % start S
45
+ # Grammar Rules
46
+ S[SEM = <app(?subj,?vp)>] -> NP[NUM=?n,SEM=?subj] VP[NUM=?n,SEM=?vp]
47
+ NP[NUM=?n,SEM=<app(?det,?nom)> ] -> Det[NUM=?n,SEM=?det] Nom[NUM=?n,SEM=?nom]
48
+ NP[LOC=?l,NUM=?n,SEM=?np] -> PropN[LOC=?l,NUM=?n,SEM=?np]
49
+ ...
50
+
51
+ A different grammar can be invoked by using the optional ``gramfile``
52
+ parameter when a ``DiscourseTester`` object is created.
53
+
54
+ Readings and Threads
55
+ ====================
56
+
57
+ Depending on
58
+ the grammar used, we may find some sentences have more than one
59
+ logical form. To check this, use the ``readings()`` method. Given a
60
+ sentence identifier of the form `s`\ :subscript:`i`, each reading of
61
+ that sentence is given an identifier `s`\ :sub:`i`-`r`\ :sub:`j`.
62
+
63
+
64
+ >>> dt.readings()
65
+ <BLANKLINE>
66
+ s0 readings:
67
+ <BLANKLINE>
68
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
69
+ s0-r1: exists z1.(boxerdog(z1) & walk(z1))
70
+ <BLANKLINE>
71
+ s1 readings:
72
+ <BLANKLINE>
73
+ s1-r0: all z2.(boxer(z2) -> exists z3.(girl(z3) & chase(z2,z3)))
74
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
75
+
76
+
77
+ In this case, the only source of ambiguity lies in the word *boxer*,
78
+ which receives two translations: ``boxer`` and ``boxerdog``. The
79
+ intention is that one of these corresponds to the ``person`` sense and
80
+ one to the ``dog`` sense. In principle, we would also expect to see a
81
+ quantifier scope ambiguity in ``s1``. However, the simple grammar we
82
+ are using, namely `sem4.fcfg <sem4.fcfg>`_, doesn't support quantifier
83
+ scope ambiguity.
84
+
85
+ We can also investigate the readings of a specific sentence:
86
+
87
+ >>> dt.readings('a boxer walks')
88
+ The sentence 'a boxer walks' has these readings:
89
+ exists x.(boxer(x) & walk(x))
90
+ exists x.(boxerdog(x) & walk(x))
91
+
92
+ Given that each sentence is two-ways ambiguous, we potentially have
93
+ four different discourse 'threads', taking all combinations of
94
+ readings. To see these, specify the ``threaded=True`` parameter on
95
+ the ``readings()`` method. Again, each thread is assigned an
96
+ identifier of the form `d`\ :sub:`i`. Following the identifier is a
97
+ list of the readings that constitute that thread.
98
+
99
+ >>> dt.readings(threaded=True)
100
+ d0: ['s0-r0', 's1-r0']
101
+ d1: ['s0-r0', 's1-r1']
102
+ d2: ['s0-r1', 's1-r0']
103
+ d3: ['s0-r1', 's1-r1']
104
+
105
+ Of course, this simple-minded approach doesn't scale: a discourse with, say, three
106
+ sentences, each of which has 3 readings, will generate 27 different
107
+ threads. It is an interesting exercise to consider how to manage
108
+ discourse ambiguity more efficiently.
109
+
110
+ Checking Consistency
111
+ ====================
112
+
113
+ Now, we can check whether some or all of the discourse threads are
114
+ consistent, using the ``models()`` method. With no parameter, this
115
+ method will try to find a model for every discourse thread in the
116
+ current discourse. However, we can also specify just one thread, say ``d1``.
117
+
118
+ >>> dt.models('d1')
119
+ --------------------------------------------------------------------------------
120
+ Model for Discourse Thread d1
121
+ --------------------------------------------------------------------------------
122
+ % number = 1
123
+ % seconds = 0
124
+ <BLANKLINE>
125
+ % Interpretation of size 2
126
+ <BLANKLINE>
127
+ c1 = 0.
128
+ <BLANKLINE>
129
+ f1(0) = 0.
130
+ f1(1) = 0.
131
+ <BLANKLINE>
132
+ boxer(0).
133
+ - boxer(1).
134
+ <BLANKLINE>
135
+ - boxerdog(0).
136
+ - boxerdog(1).
137
+ <BLANKLINE>
138
+ - girl(0).
139
+ - girl(1).
140
+ <BLANKLINE>
141
+ walk(0).
142
+ - walk(1).
143
+ <BLANKLINE>
144
+ - chase(0,0).
145
+ - chase(0,1).
146
+ - chase(1,0).
147
+ - chase(1,1).
148
+ <BLANKLINE>
149
+ Consistent discourse: d1 ['s0-r0', 's1-r1']:
150
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
151
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
152
+ <BLANKLINE>
153
+
154
+ There are various formats for rendering **Mace4** models --- here,
155
+ we have used the 'cooked' format (which is intended to be
156
+ human-readable). There are a number of points to note.
157
+
158
+ #. The entities in the domain are all treated as non-negative
159
+ integers. In this case, there are only two entities, ``0`` and
160
+ ``1``.
161
+
162
+ #. The ``-`` symbol indicates negation. So ``0`` is the only
163
+ ``boxerdog`` and the only thing that ``walk``\ s. Nothing is a
164
+ ``boxer``, or a ``girl`` or in the ``chase`` relation. Thus the
165
+ universal sentence is vacuously true.
166
+
167
+ #. ``c1`` is an introduced constant that denotes ``0``.
168
+
169
+ #. ``f1`` is a Skolem function, but it plays no significant role in
170
+ this model.
171
+
172
+
173
+ We might want to now add another sentence to the discourse, and there
174
+ is method ``add_sentence()`` for doing just this.
175
+
176
+ >>> dt.add_sentence('John is a boxer')
177
+ >>> dt.sentences()
178
+ s0: a boxer walks
179
+ s1: every boxer chases a girl
180
+ s2: John is a boxer
181
+
182
+ We can now test all the properties as before; here, we just show a
183
+ couple of them.
184
+
185
+ >>> dt.readings()
186
+ <BLANKLINE>
187
+ s0 readings:
188
+ <BLANKLINE>
189
+ s0-r0: exists z1.(boxer(z1) & walk(z1))
190
+ s0-r1: exists z1.(boxerdog(z1) & walk(z1))
191
+ <BLANKLINE>
192
+ s1 readings:
193
+ <BLANKLINE>
194
+ s1-r0: all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
195
+ s1-r1: all z1.(boxerdog(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
196
+ <BLANKLINE>
197
+ s2 readings:
198
+ <BLANKLINE>
199
+ s2-r0: boxer(John)
200
+ s2-r1: boxerdog(John)
201
+ >>> dt.readings(threaded=True)
202
+ d0: ['s0-r0', 's1-r0', 's2-r0']
203
+ d1: ['s0-r0', 's1-r0', 's2-r1']
204
+ d2: ['s0-r0', 's1-r1', 's2-r0']
205
+ d3: ['s0-r0', 's1-r1', 's2-r1']
206
+ d4: ['s0-r1', 's1-r0', 's2-r0']
207
+ d5: ['s0-r1', 's1-r0', 's2-r1']
208
+ d6: ['s0-r1', 's1-r1', 's2-r0']
209
+ d7: ['s0-r1', 's1-r1', 's2-r1']
210
+
211
+ If you are interested in a particular thread, the ``expand_threads()``
212
+ method will remind you of what readings it consists of:
213
+
214
+ >>> thread = dt.expand_threads('d1')
215
+ >>> for rid, reading in thread:
216
+ ... print(rid, str(reading.normalize()))
217
+ s0-r0 exists z1.(boxer(z1) & walk(z1))
218
+ s1-r0 all z1.(boxer(z1) -> exists z2.(girl(z2) & chase(z1,z2)))
219
+ s2-r1 boxerdog(John)
220
+
221
+ Suppose we have already defined a discourse, as follows:
222
+
223
+ >>> dt = DiscourseTester(['A student dances', 'Every student is a person'])
224
+
225
+ Now, when we add a new sentence, is it consistent with what we already
226
+ have? The `` consistchk=True`` parameter of ``add_sentence()`` allows
227
+ us to check:
228
+
229
+ >>> dt.add_sentence('No person dances', consistchk=True)
230
+ Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
231
+ s0-r0: exists z1.(student(z1) & dance(z1))
232
+ s1-r0: all z1.(student(z1) -> person(z1))
233
+ s2-r0: -exists z1.(person(z1) & dance(z1))
234
+ <BLANKLINE>
235
+ >>> dt.readings()
236
+ <BLANKLINE>
237
+ s0 readings:
238
+ <BLANKLINE>
239
+ s0-r0: exists z1.(student(z1) & dance(z1))
240
+ <BLANKLINE>
241
+ s1 readings:
242
+ <BLANKLINE>
243
+ s1-r0: all z1.(student(z1) -> person(z1))
244
+ <BLANKLINE>
245
+ s2 readings:
246
+ <BLANKLINE>
247
+ s2-r0: -exists z1.(person(z1) & dance(z1))
248
+
249
+ So let's retract the inconsistent sentence:
250
+
251
+ >>> dt.retract_sentence('No person dances', verbose=True)
252
+ Current sentences are
253
+ s0: A student dances
254
+ s1: Every student is a person
255
+
256
+ We can now verify that result is consistent.
257
+
258
+ >>> dt.models()
259
+ --------------------------------------------------------------------------------
260
+ Model for Discourse Thread d0
261
+ --------------------------------------------------------------------------------
262
+ % number = 1
263
+ % seconds = 0
264
+ <BLANKLINE>
265
+ % Interpretation of size 2
266
+ <BLANKLINE>
267
+ c1 = 0.
268
+ <BLANKLINE>
269
+ dance(0).
270
+ - dance(1).
271
+ <BLANKLINE>
272
+ person(0).
273
+ - person(1).
274
+ <BLANKLINE>
275
+ student(0).
276
+ - student(1).
277
+ <BLANKLINE>
278
+ Consistent discourse: d0 ['s0-r0', 's1-r0']:
279
+ s0-r0: exists z1.(student(z1) & dance(z1))
280
+ s1-r0: all z1.(student(z1) -> person(z1))
281
+ <BLANKLINE>
282
+
283
+ Checking Informativity
284
+ ======================
285
+
286
+ Let's assume that we are still trying to extend the discourse *A
287
+ student dances.* *Every student is a person.* We add a new sentence,
288
+ but this time, we check whether it is informative with respect to what
289
+ has gone before.
290
+
291
+ >>> dt.add_sentence('A person dances', informchk=True)
292
+ Sentence 'A person dances' under reading 'exists x.(person(x) & dance(x))':
293
+ Not informative relative to thread 'd0'
294
+
295
+ In fact, we are just checking whether the new sentence is entailed by
296
+ the preceding discourse.
297
+
298
+ >>> dt.models()
299
+ --------------------------------------------------------------------------------
300
+ Model for Discourse Thread d0
301
+ --------------------------------------------------------------------------------
302
+ % number = 1
303
+ % seconds = 0
304
+ <BLANKLINE>
305
+ % Interpretation of size 2
306
+ <BLANKLINE>
307
+ c1 = 0.
308
+ <BLANKLINE>
309
+ c2 = 0.
310
+ <BLANKLINE>
311
+ dance(0).
312
+ - dance(1).
313
+ <BLANKLINE>
314
+ person(0).
315
+ - person(1).
316
+ <BLANKLINE>
317
+ student(0).
318
+ - student(1).
319
+ <BLANKLINE>
320
+ Consistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0']:
321
+ s0-r0: exists z1.(student(z1) & dance(z1))
322
+ s1-r0: all z1.(student(z1) -> person(z1))
323
+ s2-r0: exists z1.(person(z1) & dance(z1))
324
+ <BLANKLINE>
325
+
326
+
327
+
328
+ Adding Background Knowledge
329
+ ===========================
330
+
331
+ Let's build a new discourse, and look at the readings of the component sentences:
332
+
333
+ >>> dt = DiscourseTester(['Vincent is a boxer', 'Fido is a boxer', 'Vincent is married', 'Fido barks'])
334
+ >>> dt.readings()
335
+ <BLANKLINE>
336
+ s0 readings:
337
+ <BLANKLINE>
338
+ s0-r0: boxer(Vincent)
339
+ s0-r1: boxerdog(Vincent)
340
+ <BLANKLINE>
341
+ s1 readings:
342
+ <BLANKLINE>
343
+ s1-r0: boxer(Fido)
344
+ s1-r1: boxerdog(Fido)
345
+ <BLANKLINE>
346
+ s2 readings:
347
+ <BLANKLINE>
348
+ s2-r0: married(Vincent)
349
+ <BLANKLINE>
350
+ s3 readings:
351
+ <BLANKLINE>
352
+ s3-r0: bark(Fido)
353
+
354
+ This gives us a lot of threads:
355
+
356
+ >>> dt.readings(threaded=True)
357
+ d0: ['s0-r0', 's1-r0', 's2-r0', 's3-r0']
358
+ d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
359
+ d2: ['s0-r1', 's1-r0', 's2-r0', 's3-r0']
360
+ d3: ['s0-r1', 's1-r1', 's2-r0', 's3-r0']
361
+
362
+
363
+ We can eliminate some of the readings, and hence some of the threads,
364
+ by adding background information.
365
+
366
+ >>> import nltk.data
367
+ >>> bg = nltk.data.load('grammars/book_grammars/background.fol')
368
+ >>> dt.add_background(bg)
369
+ >>> dt.background()
370
+ all x.(boxerdog(x) -> dog(x))
371
+ all x.(boxer(x) -> person(x))
372
+ all x.-(dog(x) & person(x))
373
+ all x.(married(x) <-> exists y.marry(x,y))
374
+ all x.(bark(x) -> dog(x))
375
+ all x y.(marry(x,y) -> (person(x) & person(y)))
376
+ -(Vincent = Mia)
377
+ -(Vincent = Fido)
378
+ -(Mia = Fido)
379
+
380
+ The background information allows us to reject three of the threads as
381
+ inconsistent. To see what remains, use the ``filter=True`` parameter
382
+ on ``readings()``.
383
+
384
+ >>> dt.readings(filter=True)
385
+ d1: ['s0-r0', 's1-r1', 's2-r0', 's3-r0']
386
+
387
+ The ``models()`` method gives us more information about the surviving thread.
388
+
389
+ >>> dt.models()
390
+ --------------------------------------------------------------------------------
391
+ Model for Discourse Thread d0
392
+ --------------------------------------------------------------------------------
393
+ No model found!
394
+ <BLANKLINE>
395
+ --------------------------------------------------------------------------------
396
+ Model for Discourse Thread d1
397
+ --------------------------------------------------------------------------------
398
+ % number = 1
399
+ % seconds = 0
400
+ <BLANKLINE>
401
+ % Interpretation of size 3
402
+ <BLANKLINE>
403
+ Fido = 0.
404
+ <BLANKLINE>
405
+ Mia = 1.
406
+ <BLANKLINE>
407
+ Vincent = 2.
408
+ <BLANKLINE>
409
+ f1(0) = 0.
410
+ f1(1) = 0.
411
+ f1(2) = 2.
412
+ <BLANKLINE>
413
+ bark(0).
414
+ - bark(1).
415
+ - bark(2).
416
+ <BLANKLINE>
417
+ - boxer(0).
418
+ - boxer(1).
419
+ boxer(2).
420
+ <BLANKLINE>
421
+ boxerdog(0).
422
+ - boxerdog(1).
423
+ - boxerdog(2).
424
+ <BLANKLINE>
425
+ dog(0).
426
+ - dog(1).
427
+ - dog(2).
428
+ <BLANKLINE>
429
+ - married(0).
430
+ - married(1).
431
+ married(2).
432
+ <BLANKLINE>
433
+ - person(0).
434
+ - person(1).
435
+ person(2).
436
+ <BLANKLINE>
437
+ - marry(0,0).
438
+ - marry(0,1).
439
+ - marry(0,2).
440
+ - marry(1,0).
441
+ - marry(1,1).
442
+ - marry(1,2).
443
+ - marry(2,0).
444
+ - marry(2,1).
445
+ marry(2,2).
446
+ <BLANKLINE>
447
+ --------------------------------------------------------------------------------
448
+ Model for Discourse Thread d2
449
+ --------------------------------------------------------------------------------
450
+ No model found!
451
+ <BLANKLINE>
452
+ --------------------------------------------------------------------------------
453
+ Model for Discourse Thread d3
454
+ --------------------------------------------------------------------------------
455
+ No model found!
456
+ <BLANKLINE>
457
+ Inconsistent discourse: d0 ['s0-r0', 's1-r0', 's2-r0', 's3-r0']:
458
+ s0-r0: boxer(Vincent)
459
+ s1-r0: boxer(Fido)
460
+ s2-r0: married(Vincent)
461
+ s3-r0: bark(Fido)
462
+ <BLANKLINE>
463
+ Consistent discourse: d1 ['s0-r0', 's1-r1', 's2-r0', 's3-r0']:
464
+ s0-r0: boxer(Vincent)
465
+ s1-r1: boxerdog(Fido)
466
+ s2-r0: married(Vincent)
467
+ s3-r0: bark(Fido)
468
+ <BLANKLINE>
469
+ Inconsistent discourse: d2 ['s0-r1', 's1-r0', 's2-r0', 's3-r0']:
470
+ s0-r1: boxerdog(Vincent)
471
+ s1-r0: boxer(Fido)
472
+ s2-r0: married(Vincent)
473
+ s3-r0: bark(Fido)
474
+ <BLANKLINE>
475
+ Inconsistent discourse: d3 ['s0-r1', 's1-r1', 's2-r0', 's3-r0']:
476
+ s0-r1: boxerdog(Vincent)
477
+ s1-r1: boxerdog(Fido)
478
+ s2-r0: married(Vincent)
479
+ s3-r0: bark(Fido)
480
+ <BLANKLINE>
481
+
482
+
483
+ .. This will not be visible in the html output: create a tempdir to
484
+ play in.
485
+ >>> import tempfile, os
486
+ >>> tempdir = tempfile.mkdtemp()
487
+ >>> old_dir = os.path.abspath('.')
488
+ >>> os.chdir(tempdir)
489
+
490
+ In order to play around with your own version of background knowledge,
491
+ you might want to start off with a local copy of ``background.fol``:
492
+
493
+ >>> nltk.data.retrieve('grammars/book_grammars/background.fol')
494
+ Retrieving 'nltk:grammars/book_grammars/background.fol', saving to 'background.fol'
495
+
496
+ After you have modified the file, the ``load_fol()`` function will parse
497
+ the strings in the file into expressions of ``nltk.sem.logic``.
498
+
499
+ >>> from nltk.inference.discourse import load_fol
500
+ >>> mybg = load_fol(open('background.fol').read())
501
+
502
+ The result can be loaded as an argument of ``add_background()`` in the
503
+ manner shown earlier.
504
+
505
+ .. This will not be visible in the html output: clean up the tempdir.
506
+ >>> os.chdir(old_dir)
507
+ >>> for f in os.listdir(tempdir):
508
+ ... os.remove(os.path.join(tempdir, f))
509
+ >>> os.rmdir(tempdir)
510
+ >>> nltk.data.clear_cache()
511
+
512
+
513
+ Regression Testing from book
514
+ ============================
515
+
516
+ >>> logic._counter._value = 0
517
+
518
+ >>> from nltk.tag import RegexpTagger
519
+ >>> tagger = RegexpTagger(
520
+ ... [('^(chases|runs)$', 'VB'),
521
+ ... ('^(a)$', 'ex_quant'),
522
+ ... ('^(every)$', 'univ_quant'),
523
+ ... ('^(dog|boy)$', 'NN'),
524
+ ... ('^(He)$', 'PRP')
525
+ ... ])
526
+ >>> rc = DrtGlueReadingCommand(depparser=MaltParser(tagger=tagger))
527
+ >>> dt = DiscourseTester(map(str.split, ['Every dog chases a boy', 'He runs']), rc)
528
+ >>> dt.readings()
529
+ <BLANKLINE>
530
+ s0 readings:
531
+ <BLANKLINE>
532
+ s0-r0: ([z2],[boy(z2), (([z5],[dog(z5)]) -> ([],[chases(z5,z2)]))])
533
+ s0-r1: ([],[(([z1],[dog(z1)]) -> ([z2],[boy(z2), chases(z1,z2)]))])
534
+ <BLANKLINE>
535
+ s1 readings:
536
+ <BLANKLINE>
537
+ s1-r0: ([z1],[PRO(z1), runs(z1)])
538
+ >>> dt.readings(show_thread_readings=True)
539
+ d0: ['s0-r0', 's1-r0'] : ([z1,z2],[boy(z1), (([z3],[dog(z3)]) -> ([],[chases(z3,z1)])), (z2 = z1), runs(z2)])
540
+ d1: ['s0-r1', 's1-r0'] : INVALID: AnaphoraResolutionException
541
+ >>> dt.readings(filter=True, show_thread_readings=True)
542
+ d0: ['s0-r0', 's1-r0'] : ([z1,z3],[boy(z1), (([z2],[dog(z2)]) -> ([],[chases(z2,z1)])), (z3 = z1), runs(z3)])
543
+
544
+ >>> logic._counter._value = 0
545
+
546
+ >>> from nltk.parse import FeatureEarleyChartParser
547
+ >>> from nltk.sem.drt import DrtParser
548
+ >>> grammar = nltk.data.load('grammars/book_grammars/drt.fcfg', logic_parser=DrtParser())
549
+ >>> parser = FeatureEarleyChartParser(grammar, trace=0)
550
+ >>> trees = parser.parse('Angus owns a dog'.split())
551
+ >>> print(list(trees)[0].label()['SEM'].simplify().normalize())
552
+ ([z1,z2],[Angus(z1), dog(z2), own(z1,z2)])
venv/lib/python3.10/site-packages/nltk/test/drt.doctest ADDED
@@ -0,0 +1,515 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ================================
5
+ Discourse Representation Theory
6
+ ================================
7
+
8
+ >>> from nltk.sem import logic
9
+ >>> from nltk.inference import TableauProver
10
+
11
+ Overview
12
+ ========
13
+
14
+ A DRS can be created with the ``DRS()`` constructor. This takes two arguments: a list of
15
+ discourse referents and list of conditions. .
16
+
17
+ >>> from nltk.sem.drt import *
18
+ >>> dexpr = DrtExpression.fromstring
19
+ >>> man_x = dexpr('man(x)')
20
+ >>> walk_x = dexpr('walk(x)')
21
+ >>> x = dexpr('x')
22
+ >>> print(DRS([x], [man_x, walk_x]))
23
+ ([x],[man(x), walk(x)])
24
+
25
+ The ``parse()`` method can also be applied directly to DRS
26
+ expressions, which allows them to be specified more
27
+ easily.
28
+
29
+ >>> drs1 = dexpr('([x],[man(x),walk(x)])')
30
+ >>> print(drs1)
31
+ ([x],[man(x), walk(x)])
32
+
33
+ DRSs can be *merged* using the ``+`` operator.
34
+
35
+ >>> drs2 = dexpr('([y],[woman(y),stop(y)])')
36
+ >>> drs3 = drs1 + drs2
37
+ >>> print(drs3)
38
+ (([x],[man(x), walk(x)]) + ([y],[woman(y), stop(y)]))
39
+ >>> print(drs3.simplify())
40
+ ([x,y],[man(x), walk(x), woman(y), stop(y)])
41
+
42
+ We can embed DRSs as components of an ``implies`` condition.
43
+
44
+ >>> s = '([], [(%s -> %s)])' % (drs1, drs2)
45
+ >>> print(dexpr(s))
46
+ ([],[(([x],[man(x), walk(x)]) -> ([y],[woman(y), stop(y)]))])
47
+
48
+ The ``fol()`` method converts DRSs into FOL formulae.
49
+
50
+ >>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
51
+ exists x.(man(x) & walks(x))
52
+ >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
53
+ all x.(man(x) -> walks(x))
54
+
55
+ In order to visualize a DRS, the ``pretty_format()`` method can be used.
56
+
57
+ >>> print(drs3.pretty_format())
58
+ _________ __________
59
+ | x | | y |
60
+ (|---------| + |----------|)
61
+ | man(x) | | woman(y) |
62
+ | walk(x) | | stop(y) |
63
+ |_________| |__________|
64
+
65
+
66
+ Parse to semantics
67
+ ------------------
68
+
69
+ ..
70
+ >>> logic._counter._value = 0
71
+
72
+ DRSs can be used for building compositional semantics in a feature
73
+ based grammar. To specify that we want to use DRSs, the appropriate
74
+ logic parser needs be passed as a parameter to ``load_earley()``
75
+
76
+ >>> from nltk.parse import load_parser
77
+ >>> from nltk.sem.drt import DrtParser
78
+ >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, logic_parser=DrtParser())
79
+ >>> for tree in parser.parse('a dog barks'.split()):
80
+ ... print(tree.label()['SEM'].simplify())
81
+ ...
82
+ ([x],[dog(x), bark(x)])
83
+
84
+ Alternatively, a ``FeatStructReader`` can be passed with the ``logic_parser`` set on it
85
+
86
+ >>> from nltk.featstruct import FeatStructReader
87
+ >>> from nltk.grammar import FeatStructNonterminal
88
+ >>> parser = load_parser('grammars/book_grammars/drt.fcfg', trace=0, fstruct_reader=FeatStructReader(fdict_class=FeatStructNonterminal, logic_parser=DrtParser()))
89
+ >>> for tree in parser.parse('every girl chases a dog'.split()):
90
+ ... print(tree.label()['SEM'].simplify().normalize())
91
+ ...
92
+ ([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chase(z1,z2)]))])
93
+
94
+
95
+
96
+ Unit Tests
97
+ ==========
98
+
99
+ Parser
100
+ ------
101
+
102
+ >>> print(dexpr(r'([x,y],[sees(x,y)])'))
103
+ ([x,y],[sees(x,y)])
104
+ >>> print(dexpr(r'([x],[man(x), walks(x)])'))
105
+ ([x],[man(x), walks(x)])
106
+ >>> print(dexpr(r'\x.([],[man(x), walks(x)])'))
107
+ \x.([],[man(x), walks(x)])
108
+ >>> print(dexpr(r'\x.\y.([],[sees(x,y)])'))
109
+ \x y.([],[sees(x,y)])
110
+
111
+ >>> print(dexpr(r'([x,y],[(x = y)])'))
112
+ ([x,y],[(x = y)])
113
+ >>> print(dexpr(r'([x,y],[(x != y)])'))
114
+ ([x,y],[-(x = y)])
115
+
116
+ >>> print(dexpr(r'\x.([],[walks(x)])(john)'))
117
+ (\x.([],[walks(x)]))(john)
118
+ >>> print(dexpr(r'\R.\x.([],[big(x,R)])(\y.([],[mouse(y)]))'))
119
+ (\R x.([],[big(x,R)]))(\y.([],[mouse(y)]))
120
+
121
+ >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))'))
122
+ (([x],[walks(x)]) + ([y],[runs(y)]))
123
+ >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))'))
124
+ (([x,y],[walks(x), jumps(y)]) + ([z],[twos(z)]) + ([w],[runs(w)]))
125
+ >>> print(dexpr(r'((([],[walks(x)]) + ([],[twos(x)])) + ([],[runs(x)]))'))
126
+ (([],[walks(x)]) + ([],[twos(x)]) + ([],[runs(x)]))
127
+ >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)])) + (([],[threes(x)]) + ([],[fours(x)])))'))
128
+ (([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)]))
129
+
130
+ >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))'))
131
+ (([],[walks(x)]) -> ([],[runs(x)]))
132
+
133
+ >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])'))
134
+ ([x],[PRO(x), sees(John,x)])
135
+ >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])'))
136
+ ([x],[man(x), -([],[walks(x)])])
137
+ >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])'))
138
+ ([],[(([x],[man(x)]) -> ([],[walks(x)]))])
139
+
140
+ >>> print(dexpr(r'DRS([x],[walk(x)])'))
141
+ ([x],[walk(x)])
142
+ >>> print(dexpr(r'DRS([x][walk(x)])'))
143
+ ([x],[walk(x)])
144
+ >>> print(dexpr(r'([x][walk(x)])'))
145
+ ([x],[walk(x)])
146
+
147
+ ``simplify()``
148
+ --------------
149
+
150
+ >>> print(dexpr(r'\x.([],[man(x), walks(x)])(john)').simplify())
151
+ ([],[man(john), walks(john)])
152
+ >>> print(dexpr(r'\x.\y.([z],[dog(z),sees(x,y)])(john)(mary)').simplify())
153
+ ([z],[dog(z), sees(john,mary)])
154
+ >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').simplify())
155
+ \x.([],[big(x,\y.([],[mouse(y)]))])
156
+
157
+ >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').simplify())
158
+ ([x,y],[walks(x), runs(y)])
159
+ >>> print(dexpr(r'(([x,y],[walks(x), jumps(y)]) + (([z],[twos(z)]) + ([w],[runs(w)])))').simplify())
160
+ ([w,x,y,z],[walks(x), jumps(y), twos(z), runs(w)])
161
+ >>> print(dexpr(r'((([],[walks(x)]) + ([],[runs(x)]) + ([],[threes(x)]) + ([],[fours(x)])))').simplify())
162
+ ([],[walks(x), runs(x), threes(x), fours(x)])
163
+ >>> dexpr(r'([x],[man(x)])+([x],[walks(x)])').simplify() == \
164
+ ... dexpr(r'([x,z1],[man(x), walks(z1)])')
165
+ True
166
+ >>> dexpr(r'([y],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)]))])+([x],[run(x)])').simplify() == \
167
+ ... dexpr(r'([y,z1],[boy(y), (([x],[dog(x)]) -> ([],[chase(x,y)])), run(z1)])')
168
+ True
169
+
170
+ >>> dexpr(r'\Q.(([x],[john(x),walks(x)]) + Q)(([x],[PRO(x),leaves(x)]))').simplify() == \
171
+ ... dexpr(r'([x,z1],[john(x), walks(x), PRO(z1), leaves(z1)])')
172
+ True
173
+
174
+ >>> logic._counter._value = 0
175
+ >>> print(dexpr('([],[(([x],[dog(x)]) -> ([e,y],[boy(y), chase(e), subj(e,x), obj(e,y)]))])+([e,x],[PRO(x), run(e), subj(e,x)])').simplify().normalize().normalize())
176
+ ([e02,z5],[(([z3],[dog(z3)]) -> ([e01,z4],[boy(z4), chase(e01), subj(e01,z3), obj(e01,z4)])), PRO(z5), run(e02), subj(e02,z5)])
177
+
178
+ ``fol()``
179
+ -----------
180
+
181
+ >>> print(dexpr(r'([x,y],[sees(x,y)])').fol())
182
+ exists x y.sees(x,y)
183
+ >>> print(dexpr(r'([x],[man(x), walks(x)])').fol())
184
+ exists x.(man(x) & walks(x))
185
+ >>> print(dexpr(r'\x.([],[man(x), walks(x)])').fol())
186
+ \x.(man(x) & walks(x))
187
+ >>> print(dexpr(r'\x y.([],[sees(x,y)])').fol())
188
+ \x y.sees(x,y)
189
+
190
+ >>> print(dexpr(r'\x.([],[walks(x)])(john)').fol())
191
+ \x.walks(x)(john)
192
+ >>> print(dexpr(r'\R x.([],[big(x,R)])(\y.([],[mouse(y)]))').fol())
193
+ (\R x.big(x,R))(\y.mouse(y))
194
+
195
+ >>> print(dexpr(r'(([x],[walks(x)]) + ([y],[runs(y)]))').fol())
196
+ (exists x.walks(x) & exists y.runs(y))
197
+
198
+ >>> print(dexpr(r'(([],[walks(x)]) -> ([],[runs(x)]))').fol())
199
+ (walks(x) -> runs(x))
200
+
201
+ >>> print(dexpr(r'([x],[PRO(x), sees(John,x)])').fol())
202
+ exists x.(PRO(x) & sees(John,x))
203
+ >>> print(dexpr(r'([x],[man(x), -([],[walks(x)])])').fol())
204
+ exists x.(man(x) & -walks(x))
205
+ >>> print(dexpr(r'([],[(([x],[man(x)]) -> ([],[walks(x)]))])').fol())
206
+ all x.(man(x) -> walks(x))
207
+
208
+ >>> print(dexpr(r'([x],[man(x) | walks(x)])').fol())
209
+ exists x.(man(x) | walks(x))
210
+ >>> print(dexpr(r'P(x) + ([x],[walks(x)])').fol())
211
+ (P(x) & exists x.walks(x))
212
+
213
+ ``resolve_anaphora()``
214
+ ----------------------
215
+
216
+ >>> from nltk.sem.drt import AnaphoraResolutionException
217
+
218
+ >>> print(resolve_anaphora(dexpr(r'([x,y,z],[dog(x), cat(y), walks(z), PRO(z)])')))
219
+ ([x,y,z],[dog(x), cat(y), walks(z), (z = [x,y])])
220
+ >>> print(resolve_anaphora(dexpr(r'([],[(([x],[dog(x)]) -> ([y],[walks(y), PRO(y)]))])')))
221
+ ([],[(([x],[dog(x)]) -> ([y],[walks(y), (y = x)]))])
222
+ >>> print(resolve_anaphora(dexpr(r'(([x,y],[]) + ([],[PRO(x)]))')).simplify())
223
+ ([x,y],[(x = y)])
224
+ >>> try: print(resolve_anaphora(dexpr(r'([x],[walks(x), PRO(x)])')))
225
+ ... except AnaphoraResolutionException as e: print(e)
226
+ Variable 'x' does not resolve to anything.
227
+ >>> print(resolve_anaphora(dexpr('([e01,z6,z7],[boy(z6), PRO(z7), run(e01), subj(e01,z7)])')))
228
+ ([e01,z6,z7],[boy(z6), (z7 = z6), run(e01), subj(e01,z7)])
229
+
230
+ ``equiv()``:
231
+ ----------------
232
+
233
+ >>> a = dexpr(r'([x],[man(x), walks(x)])')
234
+ >>> b = dexpr(r'([x],[walks(x), man(x)])')
235
+ >>> print(a.equiv(b, TableauProver()))
236
+ True
237
+
238
+
239
+ ``replace()``:
240
+ --------------
241
+
242
+ >>> a = dexpr(r'a')
243
+ >>> w = dexpr(r'w')
244
+ >>> x = dexpr(r'x')
245
+ >>> y = dexpr(r'y')
246
+ >>> z = dexpr(r'z')
247
+
248
+
249
+ replace bound
250
+ -------------
251
+
252
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, False))
253
+ ([x],[give(x,y,z)])
254
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(x.variable, a, True))
255
+ ([a],[give(a,y,z)])
256
+
257
+ replace unbound
258
+ ---------------
259
+
260
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, False))
261
+ ([x],[give(x,a,z)])
262
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, a, True))
263
+ ([x],[give(x,a,z)])
264
+
265
+ replace unbound with bound
266
+ --------------------------
267
+
268
+ >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, False) == \
269
+ ... dexpr('([z1],[give(z1,x,z)])')
270
+ True
271
+ >>> dexpr(r'([x],[give(x,y,z)])').replace(y.variable, x, True) == \
272
+ ... dexpr('([z1],[give(z1,x,z)])')
273
+ True
274
+
275
+ replace unbound with unbound
276
+ ----------------------------
277
+
278
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, False))
279
+ ([x],[give(x,z,z)])
280
+ >>> print(dexpr(r'([x],[give(x,y,z)])').replace(y.variable, z, True))
281
+ ([x],[give(x,z,z)])
282
+
283
+
284
+ replace unbound
285
+ ---------------
286
+
287
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
288
+ (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
289
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
290
+ (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
291
+
292
+ replace bound
293
+ -------------
294
+
295
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, False))
296
+ (([x],[P(x,y,z)]) + ([y],[Q(x,y,z)]))
297
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(x.variable, a, True))
298
+ (([a],[P(a,y,z)]) + ([y],[Q(a,y,z)]))
299
+
300
+ replace unbound with unbound
301
+ ----------------------------
302
+
303
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, False))
304
+ (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
305
+ >>> print(dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,z)])').replace(z.variable, a, True))
306
+ (([x],[P(x,y,a)]) + ([y],[Q(x,y,a)]))
307
+
308
+ replace unbound with bound on same side
309
+ ---------------------------------------
310
+
311
+ >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, False) == \
312
+ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
313
+ True
314
+ >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(z.variable, x, True) == \
315
+ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([y],[Q(z1,y,w)]))')
316
+ True
317
+
318
+ replace unbound with bound on other side
319
+ ----------------------------------------
320
+
321
+ >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, False) == \
322
+ ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
323
+ True
324
+ >>> dexpr(r'([x],[P(x,y,z)])+([y],[Q(x,y,w)])').replace(w.variable, x, True) == \
325
+ ... dexpr(r'(([z1],[P(z1,y,z)]) + ([y],[Q(z1,y,x)]))')
326
+ True
327
+
328
+ replace unbound with double bound
329
+ ---------------------------------
330
+
331
+ >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, False) == \
332
+ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
333
+ True
334
+ >>> dexpr(r'([x],[P(x,y,z)])+([x],[Q(x,y,w)])').replace(z.variable, x, True) == \
335
+ ... dexpr(r'(([z1],[P(z1,y,x)]) + ([z1],[Q(z1,y,w)]))')
336
+ True
337
+
338
+
339
+ regression tests
340
+ ----------------
341
+
342
+ >>> d = dexpr('([x],[A(c), ([y],[B(x,y,z,a)])->([z],[C(x,y,z,a)])])')
343
+ >>> print(d)
344
+ ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
345
+ >>> print(d.pretty_format())
346
+ ____________________________________
347
+ | x |
348
+ |------------------------------------|
349
+ | A(c) |
350
+ | ____________ ____________ |
351
+ | | y | | z | |
352
+ | (|------------| -> |------------|) |
353
+ | | B(x,y,z,a) | | C(x,y,z,a) | |
354
+ | |____________| |____________| |
355
+ |____________________________________|
356
+ >>> print(str(d))
357
+ ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
358
+ >>> print(d.fol())
359
+ exists x.(A(c) & all y.(B(x,y,z,a) -> exists z.C(x,y,z,a)))
360
+ >>> print(d.replace(Variable('a'), DrtVariableExpression(Variable('r'))))
361
+ ([x],[A(c), (([y],[B(x,y,z,r)]) -> ([z],[C(x,y,z,r)]))])
362
+ >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r'))))
363
+ ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
364
+ >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r'))))
365
+ ([x],[A(c), (([y],[B(x,y,z,a)]) -> ([z],[C(x,y,z,a)]))])
366
+ >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r'))))
367
+ ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([z],[C(x,y,z,a)]))])
368
+ >>> print(d.replace(Variable('x'), DrtVariableExpression(Variable('r')), True))
369
+ ([r],[A(c), (([y],[B(r,y,z,a)]) -> ([z],[C(r,y,z,a)]))])
370
+ >>> print(d.replace(Variable('y'), DrtVariableExpression(Variable('r')), True))
371
+ ([x],[A(c), (([r],[B(x,r,z,a)]) -> ([z],[C(x,r,z,a)]))])
372
+ >>> print(d.replace(Variable('z'), DrtVariableExpression(Variable('r')), True))
373
+ ([x],[A(c), (([y],[B(x,y,r,a)]) -> ([r],[C(x,y,r,a)]))])
374
+ >>> print(d == dexpr('([l],[A(c), ([m],[B(l,m,z,a)])->([n],[C(l,m,n,a)])])'))
375
+ True
376
+ >>> d = dexpr('([],[([x,y],[B(x,y,h), ([a,b],[dee(x,a,g)])])->([z,w],[cee(x,y,f), ([c,d],[E(x,c,d,e)])])])')
377
+ >>> sorted(d.free())
378
+ [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
379
+ >>> sorted(d.variables())
380
+ [Variable('B'), Variable('E'), Variable('e'), Variable('f'), Variable('g'), Variable('h')]
381
+ >>> sorted(d.get_refs(True))
382
+ [Variable('a'), Variable('b'), Variable('c'), Variable('d'), Variable('w'), Variable('x'), Variable('y'), Variable('z')]
383
+ >>> sorted(d.conds[0].get_refs(False))
384
+ [Variable('x'), Variable('y')]
385
+ >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])->([],[C(x,y)]), ([x,y],[D(x,y)])->([],[E(x,y)]), ([],[F(x,y)])->([x,y],[G(x,y)])])').eliminate_equality())
386
+ ([x],[A(x,x), (([],[B(x,x)]) -> ([],[C(x,x)])), (([x,y],[D(x,y)]) -> ([],[E(x,y)])), (([],[F(x,x)]) -> ([x,y],[G(x,y)]))])
387
+ >>> print(dexpr('([x,y],[A(x,y), (x=y)]) -> ([],[B(x,y)])').eliminate_equality())
388
+ (([x],[A(x,x)]) -> ([],[B(x,x)]))
389
+ >>> print(dexpr('([x,y],[A(x,y)]) -> ([],[B(x,y), (x=y)])').eliminate_equality())
390
+ (([x,y],[A(x,y)]) -> ([],[B(x,x)]))
391
+ >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)])])').eliminate_equality())
392
+ ([x],[A(x,x), ([],[B(x,x)])])
393
+ >>> print(dexpr('([x,y],[A(x,y), ([],[B(x,y), (x=y)])])').eliminate_equality())
394
+ ([x,y],[A(x,y), ([],[B(x,x)])])
395
+ >>> print(dexpr('([z8 z9 z10],[A(z8), z8=z10, z9=z10, B(z9), C(z10), D(z10)])').eliminate_equality())
396
+ ([z9],[A(z9), B(z9), C(z9), D(z9)])
397
+
398
+ >>> print(dexpr('([x,y],[A(x,y), (x=y), ([],[B(x,y)]), ([x,y],[C(x,y)])])').eliminate_equality())
399
+ ([x],[A(x,x), ([],[B(x,x)]), ([x,y],[C(x,y)])])
400
+ >>> print(dexpr('([x,y],[A(x,y)]) + ([],[B(x,y), (x=y)]) + ([],[C(x,y)])').eliminate_equality())
401
+ ([x],[A(x,x), B(x,x), C(x,x)])
402
+ >>> print(dexpr('([x,y],[B(x,y)])+([x,y],[C(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
403
+ (([x,y],[B(x,y)]) + ([x,y],[C(x,y)]))
404
+ >>> print(dexpr('(([x,y],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
405
+ (([x,y],[B(x,y)]) + ([],[C(x,y)]) + ([],[D(x,y)]))
406
+ >>> print(dexpr('(([],[B(x,y)])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))))
407
+ (([],[B(x,x)]) + ([],[C(x,x)]) + ([],[D(x,x)]))
408
+ >>> print(dexpr('(([],[B(x,y), ([x,y],[A(x,y)])])+([],[C(x,y)]))+([],[D(x,y)])').replace(Variable('y'), DrtVariableExpression(Variable('x'))).normalize())
409
+ (([],[B(z3,z1), ([z2,z3],[A(z3,z2)])]) + ([],[C(z3,z1)]) + ([],[D(z3,z1)]))
410
+
411
+
412
+ Parse errors
413
+ ============
414
+
415
+ >>> def parse_error(drtstring):
416
+ ... try: dexpr(drtstring)
417
+ ... except logic.LogicalExpressionException as e: print(e)
418
+
419
+ >>> parse_error(r'')
420
+ End of input found. Expression expected.
421
+ <BLANKLINE>
422
+ ^
423
+ >>> parse_error(r'(')
424
+ End of input found. Expression expected.
425
+ (
426
+ ^
427
+ >>> parse_error(r'()')
428
+ Unexpected token: ')'. Expression expected.
429
+ ()
430
+ ^
431
+ >>> parse_error(r'([')
432
+ End of input found. Expected token ']'.
433
+ ([
434
+ ^
435
+ >>> parse_error(r'([,')
436
+ ',' is an illegal variable name. Constants may not be quantified.
437
+ ([,
438
+ ^
439
+ >>> parse_error(r'([x,')
440
+ End of input found. Variable expected.
441
+ ([x,
442
+ ^
443
+ >>> parse_error(r'([]')
444
+ End of input found. Expected token '['.
445
+ ([]
446
+ ^
447
+ >>> parse_error(r'([][')
448
+ End of input found. Expected token ']'.
449
+ ([][
450
+ ^
451
+ >>> parse_error(r'([][,')
452
+ Unexpected token: ','. Expression expected.
453
+ ([][,
454
+ ^
455
+ >>> parse_error(r'([][]')
456
+ End of input found. Expected token ')'.
457
+ ([][]
458
+ ^
459
+ >>> parse_error(r'([x][man(x)]) |')
460
+ End of input found. Expression expected.
461
+ ([x][man(x)]) |
462
+ ^
463
+
464
+ Pretty Printing
465
+ ===============
466
+
467
+ >>> dexpr(r"([],[])").pretty_print()
468
+ __
469
+ | |
470
+ |--|
471
+ |__|
472
+
473
+ >>> dexpr(r"([],[([x],[big(x), dog(x)]) -> ([],[bark(x)]) -([x],[walk(x)])])").pretty_print()
474
+ _____________________________
475
+ | |
476
+ |-----------------------------|
477
+ | ________ _________ |
478
+ | | x | | | |
479
+ | (|--------| -> |---------|) |
480
+ | | big(x) | | bark(x) | |
481
+ | | dog(x) | |_________| |
482
+ | |________| |
483
+ | _________ |
484
+ | | x | |
485
+ | __ |---------| |
486
+ | | | walk(x) | |
487
+ | |_________| |
488
+ |_____________________________|
489
+
490
+ >>> dexpr(r"([x,y],[x=y]) + ([z],[dog(z), walk(z)])").pretty_print()
491
+ _________ _________
492
+ | x y | | z |
493
+ (|---------| + |---------|)
494
+ | (x = y) | | dog(z) |
495
+ |_________| | walk(z) |
496
+ |_________|
497
+
498
+ >>> dexpr(r"([],[([x],[]) | ([y],[]) | ([z],[dog(z), walk(z)])])").pretty_print()
499
+ _______________________________
500
+ | |
501
+ |-------------------------------|
502
+ | ___ ___ _________ |
503
+ | | x | | y | | z | |
504
+ | (|---| | |---| | |---------|) |
505
+ | |___| |___| | dog(z) | |
506
+ | | walk(z) | |
507
+ | |_________| |
508
+ |_______________________________|
509
+
510
+ >>> dexpr(r"\P.\Q.(([x],[]) + P(x) + Q(x))(\x.([],[dog(x)]))").pretty_print()
511
+ ___ ________
512
+ \ | x | \ | |
513
+ /\ P Q.(|---| + P(x) + Q(x))( /\ x.|--------|)
514
+ |___| | dog(x) |
515
+ |________|
venv/lib/python3.10/site-packages/nltk/test/featgram.doctest ADDED
@@ -0,0 +1,610 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =========================
5
+ Feature Grammar Parsing
6
+ =========================
7
+
8
+ .. definitions from nltk_book/definitions.rst
9
+
10
+ .. role:: feat
11
+ :class: feature
12
+ .. role:: fval
13
+ :class: fval
14
+ .. |rarr| unicode:: U+2192 .. right arrow
15
+ .. |dot| unicode:: U+2022 .. bullet
16
+ .. |pi| unicode:: U+03C0
17
+
18
+ Grammars can be parsed from strings.
19
+
20
+ >>> import nltk
21
+ >>> from nltk import grammar, parse
22
+ >>> g = """
23
+ ... % start DP
24
+ ... DP[AGR=?a] -> D[AGR=?a] N[AGR=?a]
25
+ ... D[AGR=[NUM='sg', PERS=3]] -> 'this' | 'that'
26
+ ... D[AGR=[NUM='pl', PERS=3]] -> 'these' | 'those'
27
+ ... D[AGR=[NUM='pl', PERS=1]] -> 'we'
28
+ ... D[AGR=[PERS=2]] -> 'you'
29
+ ... N[AGR=[NUM='sg', GND='m']] -> 'boy'
30
+ ... N[AGR=[NUM='pl', GND='m']] -> 'boys'
31
+ ... N[AGR=[NUM='sg', GND='f']] -> 'girl'
32
+ ... N[AGR=[NUM='pl', GND='f']] -> 'girls'
33
+ ... N[AGR=[NUM='sg']] -> 'student'
34
+ ... N[AGR=[NUM='pl']] -> 'students'
35
+ ... """
36
+ >>> grammar = grammar.FeatureGrammar.fromstring(g)
37
+ >>> tokens = 'these girls'.split()
38
+ >>> parser = parse.FeatureEarleyChartParser(grammar)
39
+ >>> trees = parser.parse(tokens)
40
+ >>> for tree in trees: print(tree)
41
+ (DP[AGR=[GND='f', NUM='pl', PERS=3]]
42
+ (D[AGR=[NUM='pl', PERS=3]] these)
43
+ (N[AGR=[GND='f', NUM='pl']] girls))
44
+
45
+ In general, when we are trying to develop even a very small grammar,
46
+ it is convenient to put the rules in a file where they can be edited,
47
+ tested and revised. Let's assume that we have saved feat0cfg as a file named
48
+ ``'feat0.fcfg'`` and placed it in the NLTK ``data`` directory. We can
49
+ inspect it as follows:
50
+
51
+ >>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
52
+ % start S
53
+ # ###################
54
+ # Grammar Productions
55
+ # ###################
56
+ # S expansion productions
57
+ S -> NP[NUM=?n] VP[NUM=?n]
58
+ # NP expansion productions
59
+ NP[NUM=?n] -> N[NUM=?n]
60
+ NP[NUM=?n] -> PropN[NUM=?n]
61
+ NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
62
+ NP[NUM=pl] -> N[NUM=pl]
63
+ # VP expansion productions
64
+ VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
65
+ VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
66
+ # ###################
67
+ # Lexical Productions
68
+ # ###################
69
+ Det[NUM=sg] -> 'this' | 'every'
70
+ Det[NUM=pl] -> 'these' | 'all'
71
+ Det -> 'the' | 'some' | 'several'
72
+ PropN[NUM=sg]-> 'Kim' | 'Jody'
73
+ N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
74
+ N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
75
+ IV[TENSE=pres, NUM=sg] -> 'disappears' | 'walks'
76
+ TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
77
+ IV[TENSE=pres, NUM=pl] -> 'disappear' | 'walk'
78
+ TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
79
+ IV[TENSE=past] -> 'disappeared' | 'walked'
80
+ TV[TENSE=past] -> 'saw' | 'liked'
81
+
82
+ Assuming we have saved feat0cfg as a file named
83
+ ``'feat0.fcfg'``, the function ``parse.load_parser`` allows us to
84
+ read the grammar into NLTK, ready for use in parsing.
85
+
86
+
87
+ >>> cp = parse.load_parser('grammars/book_grammars/feat0.fcfg', trace=1)
88
+ >>> sent = 'Kim likes children'
89
+ >>> tokens = sent.split()
90
+ >>> tokens
91
+ ['Kim', 'likes', 'children']
92
+ >>> trees = cp.parse(tokens)
93
+ |.Kim .like.chil.|
94
+ |[----] . .| [0:1] 'Kim'
95
+ |. [----] .| [1:2] 'likes'
96
+ |. . [----]| [2:3] 'children'
97
+ |[----] . .| [0:1] PropN[NUM='sg'] -> 'Kim' *
98
+ |[----] . .| [0:1] NP[NUM='sg'] -> PropN[NUM='sg'] *
99
+ |[----> . .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
100
+ |. [----] .| [1:2] TV[NUM='sg', TENSE='pres'] -> 'likes' *
101
+ |. [----> .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: 'sg', ?t: 'pres'}
102
+ |. . [----]| [2:3] N[NUM='pl'] -> 'children' *
103
+ |. . [----]| [2:3] NP[NUM='pl'] -> N[NUM='pl'] *
104
+ |. . [---->| [2:3] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
105
+ |. [---------]| [1:3] VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] *
106
+ |[==============]| [0:3] S[] -> NP[NUM='sg'] VP[NUM='sg'] *
107
+ >>> for tree in trees: print(tree)
108
+ (S[]
109
+ (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
110
+ (VP[NUM='sg', TENSE='pres']
111
+ (TV[NUM='sg', TENSE='pres'] likes)
112
+ (NP[NUM='pl'] (N[NUM='pl'] children))))
113
+
114
+ The parser works directly with
115
+ the underspecified productions given by the grammar. That is, the
116
+ Predictor rule does not attempt to compile out all admissible feature
117
+ combinations before trying to expand the non-terminals on the left hand
118
+ side of a production. However, when the Scanner matches an input word
119
+ against a lexical production that has been predicted, the new edge will
120
+ typically contain fully specified features; e.g., the edge
121
+ [PropN[`num`:feat: = `sg`:fval:] |rarr| 'Kim', (0, 1)]. Recall from
122
+ Chapter 8 that the Fundamental (or Completer) Rule in
123
+ standard CFGs is used to combine an incomplete edge that's expecting a
124
+ nonterminal *B* with a following, complete edge whose left hand side
125
+ matches *B*. In our current setting, rather than checking for a
126
+ complete match, we test whether the expected category *B* will
127
+ unify with the left hand side *B'* of a following complete
128
+ edge. We will explain in more detail in Section 9.2 how
129
+ unification works; for the moment, it is enough to know that as a
130
+ result of unification, any variable values of features in *B* will be
131
+ instantiated by constant values in the corresponding feature structure
132
+ in *B'*, and these instantiated values will be used in the new edge
133
+ added by the Completer. This instantiation can be seen, for example,
134
+ in the edge
135
+ [NP [`num`:feat:\ =\ `sg`:fval:] |rarr| PropN[`num`:feat:\ =\ `sg`:fval:] |dot|, (0, 1)]
136
+ in Example 9.2, where the feature `num`:feat: has been assigned the value `sg`:fval:.
137
+
138
+ Feature structures in NLTK are ... Atomic feature values can be strings or
139
+ integers.
140
+
141
+ >>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
142
+ >>> print(fs1)
143
+ [ NUM = 'sg' ]
144
+ [ TENSE = 'past' ]
145
+
146
+ We can think of a feature structure as being like a Python dictionary,
147
+ and access its values by indexing in the usual way.
148
+
149
+ >>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
150
+ >>> print(fs1['GND'])
151
+ fem
152
+
153
+ We can also define feature structures which have complex values, as
154
+ discussed earlier.
155
+
156
+ >>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
157
+ >>> print(fs2)
158
+ [ [ GND = 'fem' ] ]
159
+ [ AGR = [ NUM = 'pl' ] ]
160
+ [ [ PER = 3 ] ]
161
+ [ ]
162
+ [ POS = 'N' ]
163
+ >>> print(fs2['AGR'])
164
+ [ GND = 'fem' ]
165
+ [ NUM = 'pl' ]
166
+ [ PER = 3 ]
167
+ >>> print(fs2['AGR']['PER'])
168
+ 3
169
+
170
+ Feature structures can also be constructed using the ``parse()``
171
+ method of the ``nltk.FeatStruct`` class. Note that in this case, atomic
172
+ feature values do not need to be enclosed in quotes.
173
+
174
+ >>> f1 = nltk.FeatStruct("[NUMBER = sg]")
175
+ >>> f2 = nltk.FeatStruct("[PERSON = 3]")
176
+ >>> print(nltk.unify(f1, f2))
177
+ [ NUMBER = 'sg' ]
178
+ [ PERSON = 3 ]
179
+
180
+ >>> f1 = nltk.FeatStruct("[A = [B = b, D = d]]")
181
+ >>> f2 = nltk.FeatStruct("[A = [C = c, D = d]]")
182
+ >>> print(nltk.unify(f1, f2))
183
+ [ [ B = 'b' ] ]
184
+ [ A = [ C = 'c' ] ]
185
+ [ [ D = 'd' ] ]
186
+
187
+
188
+ Feature Structures as Graphs
189
+ ----------------------------
190
+
191
+ Feature structures are not inherently tied to linguistic objects; they are
192
+ general purpose structures for representing knowledge. For example, we
193
+ could encode information about a person in a feature structure:
194
+
195
+ >>> person01 = nltk.FeatStruct("[NAME=Lee, TELNO='01 27 86 42 96',AGE=33]")
196
+ >>> print(person01)
197
+ [ AGE = 33 ]
198
+ [ NAME = 'Lee' ]
199
+ [ TELNO = '01 27 86 42 96' ]
200
+
201
+ There are a number of notations for representing reentrancy in
202
+ matrix-style representations of feature structures. In NLTK, we adopt
203
+ the following convention: the first occurrence of a shared feature structure
204
+ is prefixed with an integer in parentheses, such as ``(1)``, and any
205
+ subsequent reference to that structure uses the notation
206
+ ``->(1)``, as shown below.
207
+
208
+
209
+ >>> fs = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
210
+ ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
211
+ >>> print(fs)
212
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
213
+ [ [ STREET = 'rue Pascal' ] ]
214
+ [ ]
215
+ [ NAME = 'Lee' ]
216
+ [ ]
217
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
218
+ [ [ NAME = 'Kim' ] ]
219
+
220
+ There can be any number of tags within a single feature structure.
221
+
222
+ >>> fs3 = nltk.FeatStruct("[A=(1)[B=b], C=(2)[], D->(1), E->(2)]")
223
+ >>> print(fs3)
224
+ [ A = (1) [ B = 'b' ] ]
225
+ [ ]
226
+ [ C = (2) [] ]
227
+ [ ]
228
+ [ D -> (1) ]
229
+ [ E -> (2) ]
230
+ >>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
231
+ >>> fs2 = nltk.FeatStruct(CITY='Paris')
232
+ >>> print(nltk.unify(fs1, fs2))
233
+ [ CITY = 'Paris' ]
234
+ [ NUMBER = 74 ]
235
+ [ STREET = 'rue Pascal' ]
236
+
237
+ Unification is symmetric:
238
+
239
+ >>> nltk.unify(fs1, fs2) == nltk.unify(fs2, fs1)
240
+ True
241
+
242
+ Unification is commutative:
243
+
244
+ >>> fs3 = nltk.FeatStruct(TELNO='01 27 86 42 96')
245
+ >>> nltk.unify(nltk.unify(fs1, fs2), fs3) == nltk.unify(fs1, nltk.unify(fs2, fs3))
246
+ True
247
+
248
+ Unification between *FS*:math:`_0` and *FS*:math:`_1` will fail if the
249
+ two feature structures share a path |pi|,
250
+ but the value of |pi| in *FS*:math:`_0` is a distinct
251
+ atom from the value of |pi| in *FS*:math:`_1`. In NLTK,
252
+ this is implemented by setting the result of unification to be
253
+ ``None``.
254
+
255
+ >>> fs0 = nltk.FeatStruct(A='a')
256
+ >>> fs1 = nltk.FeatStruct(A='b')
257
+ >>> print(nltk.unify(fs0, fs1))
258
+ None
259
+
260
+ Now, if we look at how unification interacts with structure-sharing,
261
+ things become really interesting.
262
+
263
+
264
+
265
+ >>> fs0 = nltk.FeatStruct("""[NAME=Lee,
266
+ ... ADDRESS=[NUMBER=74,
267
+ ... STREET='rue Pascal'],
268
+ ... SPOUSE= [NAME=Kim,
269
+ ... ADDRESS=[NUMBER=74,
270
+ ... STREET='rue Pascal']]]""")
271
+ >>> print(fs0)
272
+ [ ADDRESS = [ NUMBER = 74 ] ]
273
+ [ [ STREET = 'rue Pascal' ] ]
274
+ [ ]
275
+ [ NAME = 'Lee' ]
276
+ [ ]
277
+ [ [ ADDRESS = [ NUMBER = 74 ] ] ]
278
+ [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ]
279
+ [ [ ] ]
280
+ [ [ NAME = 'Kim' ] ]
281
+
282
+
283
+ >>> fs1 = nltk.FeatStruct("[SPOUSE=[ADDRESS=[CITY=Paris]]]")
284
+ >>> print(nltk.unify(fs0, fs1))
285
+ [ ADDRESS = [ NUMBER = 74 ] ]
286
+ [ [ STREET = 'rue Pascal' ] ]
287
+ [ ]
288
+ [ NAME = 'Lee' ]
289
+ [ ]
290
+ [ [ [ CITY = 'Paris' ] ] ]
291
+ [ [ ADDRESS = [ NUMBER = 74 ] ] ]
292
+ [ SPOUSE = [ [ STREET = 'rue Pascal' ] ] ]
293
+ [ [ ] ]
294
+ [ [ NAME = 'Kim' ] ]
295
+
296
+ >>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
297
+ ... SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
298
+
299
+
300
+ >>> print(fs2)
301
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
302
+ [ [ STREET = 'rue Pascal' ] ]
303
+ [ ]
304
+ [ NAME = 'Lee' ]
305
+ [ ]
306
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
307
+ [ [ NAME = 'Kim' ] ]
308
+
309
+
310
+ >>> print(nltk.unify(fs2, fs1))
311
+ [ [ CITY = 'Paris' ] ]
312
+ [ ADDRESS = (1) [ NUMBER = 74 ] ]
313
+ [ [ STREET = 'rue Pascal' ] ]
314
+ [ ]
315
+ [ NAME = 'Lee' ]
316
+ [ ]
317
+ [ SPOUSE = [ ADDRESS -> (1) ] ]
318
+ [ [ NAME = 'Kim' ] ]
319
+
320
+
321
+ >>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
322
+ >>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
323
+ >>> print(fs2)
324
+ [ ADDRESS1 = ?x ]
325
+ [ ADDRESS2 = ?x ]
326
+ >>> print(nltk.unify(fs1, fs2))
327
+ [ ADDRESS1 = (1) [ NUMBER = 74 ] ]
328
+ [ [ STREET = 'rue Pascal' ] ]
329
+ [ ]
330
+ [ ADDRESS2 -> (1) ]
331
+
332
+
333
+
334
+
335
+ >>> sent = 'who do you claim that you like'
336
+ >>> tokens = sent.split()
337
+ >>> cp = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1)
338
+ >>> trees = cp.parse(tokens)
339
+ |.w.d.y.c.t.y.l.|
340
+ |[-] . . . . . .| [0:1] 'who'
341
+ |. [-] . . . . .| [1:2] 'do'
342
+ |. . [-] . . . .| [2:3] 'you'
343
+ |. . . [-] . . .| [3:4] 'claim'
344
+ |. . . . [-] . .| [4:5] 'that'
345
+ |. . . . . [-] .| [5:6] 'you'
346
+ |. . . . . . [-]| [6:7] 'like'
347
+ |# . . . . . . .| [0:0] NP[]/NP[] -> *
348
+ |. # . . . . . .| [1:1] NP[]/NP[] -> *
349
+ |. . # . . . . .| [2:2] NP[]/NP[] -> *
350
+ |. . . # . . . .| [3:3] NP[]/NP[] -> *
351
+ |. . . . # . . .| [4:4] NP[]/NP[] -> *
352
+ |. . . . . # . .| [5:5] NP[]/NP[] -> *
353
+ |. . . . . . # .| [6:6] NP[]/NP[] -> *
354
+ |. . . . . . . #| [7:7] NP[]/NP[] -> *
355
+ |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
356
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
357
+ |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
358
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
359
+ |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
360
+ |. [-> . . . . .| [1:2] S[+INV] -> V[+AUX] * NP[] VP[] {}
361
+ |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
362
+ |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
363
+ |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
364
+ |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
365
+ |. . [-> . . . .| [2:3] S[-INV] -> NP[] * VP[] {}
366
+ |. . [-> . . . .| [2:3] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
367
+ |. . [-> . . . .| [2:3] S[-INV] -> NP[] * S[]/NP[] {}
368
+ |. [---> . . . .| [1:3] S[+INV] -> V[+AUX] NP[] * VP[] {}
369
+ |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
370
+ |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
371
+ |. . . [-> . . .| [3:4] VP[] -> V[-AUX, SUBCAT='clause'] * SBar[] {}
372
+ |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
373
+ |. . . . [-] . .| [4:5] Comp[] -> 'that' *
374
+ |. . . . [-> . .| [4:5] SBar[] -> Comp[] * S[-INV] {}
375
+ |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
376
+ |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
377
+ |. . . . . [-> .| [5:6] S[-INV] -> NP[] * VP[] {}
378
+ |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
379
+ |. . . . . [-> .| [5:6] S[-INV] -> NP[] * S[]/NP[] {}
380
+ |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
381
+ |. . . . . . [->| [6:7] VP[] -> V[-AUX, SUBCAT='trans'] * NP[] {}
382
+ |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
383
+ |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
384
+ |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
385
+ |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
386
+ |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
387
+ |. . [---------]| [2:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
388
+ |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
389
+ |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
390
+
391
+ >>> trees = list(trees)
392
+ >>> for tree in trees: print(tree)
393
+ (S[-INV]
394
+ (NP[+WH] who)
395
+ (S[+INV]/NP[]
396
+ (V[+AUX] do)
397
+ (NP[-WH] you)
398
+ (VP[]/NP[]
399
+ (V[-AUX, SUBCAT='clause'] claim)
400
+ (SBar[]/NP[]
401
+ (Comp[] that)
402
+ (S[-INV]/NP[]
403
+ (NP[-WH] you)
404
+ (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))
405
+
406
+ A different parser should give the same parse trees, but perhaps in a different order:
407
+
408
+ >>> cp2 = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1,
409
+ ... parser=parse.FeatureEarleyChartParser)
410
+ >>> trees2 = cp2.parse(tokens)
411
+ |.w.d.y.c.t.y.l.|
412
+ |[-] . . . . . .| [0:1] 'who'
413
+ |. [-] . . . . .| [1:2] 'do'
414
+ |. . [-] . . . .| [2:3] 'you'
415
+ |. . . [-] . . .| [3:4] 'claim'
416
+ |. . . . [-] . .| [4:5] 'that'
417
+ |. . . . . [-] .| [5:6] 'you'
418
+ |. . . . . . [-]| [6:7] 'like'
419
+ |> . . . . . . .| [0:0] S[-INV] -> * NP[] VP[] {}
420
+ |> . . . . . . .| [0:0] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
421
+ |> . . . . . . .| [0:0] S[-INV] -> * NP[] S[]/NP[] {}
422
+ |> . . . . . . .| [0:0] S[-INV] -> * Adv[+NEG] S[+INV] {}
423
+ |> . . . . . . .| [0:0] S[+INV] -> * V[+AUX] NP[] VP[] {}
424
+ |> . . . . . . .| [0:0] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
425
+ |> . . . . . . .| [0:0] NP[+WH] -> * 'who' {}
426
+ |[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
427
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
428
+ |[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
429
+ |[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
430
+ |. > . . . . . .| [1:1] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
431
+ |. > . . . . . .| [1:1] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
432
+ |. > . . . . . .| [1:1] V[+AUX] -> * 'do' {}
433
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
434
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
435
+ |. > . . . . . .| [1:1] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
436
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
437
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
438
+ |. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
439
+ |. > . . . . . .| [1:1] VP[] -> * V[+AUX] VP[] {}
440
+ |. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
441
+ |. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
442
+ |. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
443
+ |. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
444
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
445
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
446
+ |. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
447
+ |. . > . . . . .| [2:2] VP[] -> * V[+AUX] VP[] {}
448
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
449
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
450
+ |. . > . . . . .| [2:2] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
451
+ |. . > . . . . .| [2:2] NP[-WH] -> * 'you' {}
452
+ |. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
453
+ |. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
454
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
455
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
456
+ |. . . > . . . .| [3:3] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
457
+ |. . . > . . . .| [3:3] V[-AUX, SUBCAT='clause'] -> * 'claim' {}
458
+ |. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
459
+ |. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
460
+ |. . . . > . . .| [4:4] SBar[]/?x[] -> * Comp[] S[-INV]/?x[] {}
461
+ |. . . . > . . .| [4:4] Comp[] -> * 'that' {}
462
+ |. . . . [-] . .| [4:5] Comp[] -> 'that' *
463
+ |. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
464
+ |. . . . . > . .| [5:5] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
465
+ |. . . . . > . .| [5:5] NP[-WH] -> * 'you' {}
466
+ |. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
467
+ |. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
468
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
469
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
470
+ |. . . . . . > .| [6:6] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
471
+ |. . . . . . > .| [6:6] V[-AUX, SUBCAT='trans'] -> * 'like' {}
472
+ |. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
473
+ |. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
474
+ |. . . . . . . #| [7:7] NP[]/NP[] -> *
475
+ |. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
476
+ |. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
477
+ |. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
478
+ |. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
479
+ |. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
480
+ |[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
481
+
482
+ >>> sorted(trees) == sorted(trees2)
483
+ True
484
+
485
+
486
+ Let's load a German grammar:
487
+
488
+ >>> cp = parse.load_parser('grammars/book_grammars/german.fcfg', trace=0)
489
+ >>> sent = 'die Katze sieht den Hund'
490
+ >>> tokens = sent.split()
491
+ >>> trees = cp.parse(tokens)
492
+ >>> for tree in trees: print(tree)
493
+ (S[]
494
+ (NP[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom']
495
+ (Det[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] die)
496
+ (N[AGR=[GND='fem', NUM='sg', PER=3]] Katze))
497
+ (VP[AGR=[NUM='sg', PER=3]]
498
+ (TV[AGR=[NUM='sg', PER=3], OBJCASE='acc'] sieht)
499
+ (NP[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc']
500
+ (Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] den)
501
+ (N[AGR=[GND='masc', NUM='sg', PER=3]] Hund))))
502
+
503
+ Grammar with Binding Operators
504
+ ------------------------------
505
+ The bindop.fcfg grammar is a semantic grammar that uses lambda
506
+ calculus. Each element has a core semantics, which is a single lambda
507
+ calculus expression; and a set of binding operators, which bind
508
+ variables.
509
+
510
+ In order to make the binding operators work right, they need to
511
+ instantiate their bound variable every time they are added to the
512
+ chart. To do this, we use a special subclass of `Chart`, called
513
+ `InstantiateVarsChart`.
514
+
515
+ >>> from nltk.parse.featurechart import InstantiateVarsChart
516
+ >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=1,
517
+ ... chart_class=InstantiateVarsChart)
518
+ >>> print(cp.grammar())
519
+ Grammar with 15 productions (start state = S[])
520
+ S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] VP[SEM=[BO=?b2, CORE=?vp]]
521
+ VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] NP[SEM=[BO=?b2, CORE=?obj]]
522
+ VP[SEM=?s] -> IV[SEM=?s]
523
+ NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] N[SEM=[BO=?b2, CORE=?n]]
524
+ Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a'
525
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'dog'
526
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'cat'
527
+ N[SEM=[BO={/}, CORE=<dog>]] -> 'mouse'
528
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks'
529
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'eats'
530
+ IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'walks'
531
+ TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds'
532
+ TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'walks'
533
+ NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'john'
534
+ NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'alex'
535
+
536
+ A simple intransitive sentence:
537
+
538
+ >>> from nltk.sem import logic
539
+ >>> logic._counter._value = 100
540
+
541
+ >>> trees = cp.parse('john barks'.split())
542
+ |. john.barks.|
543
+ |[-----] .| [0:1] 'john'
544
+ |. [-----]| [1:2] 'barks'
545
+ |[-----] .| [0:1] NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] -> 'john' *
546
+ |[-----> .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
547
+ |. [-----]| [1:2] IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' *
548
+ |. [-----]| [1:2] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
549
+ |[===========]| [0:2] S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
550
+ >>> for tree in trees: print(tree)
551
+ (S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]]
552
+ (NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] john)
553
+ (VP[SEM=[BO={/}, CORE=<\x.bark(x)>]]
554
+ (IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] barks)))
555
+
556
+ A transitive sentence:
557
+
558
+ >>> trees = cp.parse('john feeds a dog'.split())
559
+ |.joh.fee. a .dog.|
560
+ |[---] . . .| [0:1] 'john'
561
+ |. [---] . .| [1:2] 'feeds'
562
+ |. . [---] .| [2:3] 'a'
563
+ |. . . [---]| [3:4] 'dog'
564
+ |[---] . . .| [0:1] NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] -> 'john' *
565
+ |[---> . . .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
566
+ |. [---] . .| [1:2] TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' *
567
+ |. [---> . .| [1:2] VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] * NP[SEM=[BO=?b2, CORE=?obj]] {?b1: {/}, ?v: <LambdaExpression \x y.feed(y,x)>}
568
+ |. . [---] .| [2:3] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' *
569
+ |. . [---> .| [2:3] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] * N[SEM=[BO=?b2, CORE=?n]] {?b1: {/}, ?det: <LambdaExpression \Q P.exists x.(Q(x) & P(x))>}
570
+ |. . . [---]| [3:4] N[SEM=[BO={/}, CORE=<dog>]] -> 'dog' *
571
+ |. . [-------]| [2:4] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]] -> Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] N[SEM=[BO={/}, CORE=<dog>]] *
572
+ |. . [------->| [2:4] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.exists x.(dog(x) & P(x)),z2)}, ?subj: <IndividualVariableExpression z2>}
573
+ |. [-----------]| [1:4] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] -> TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<z2>]] *
574
+ |[===============]| [0:4] S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<\y.feed(y,z3)>]] *
575
+
576
+ >>> for tree in trees: print(tree)
577
+ (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
578
+ (NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] john)
579
+ (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
580
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
581
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]]
582
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
583
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))))
584
+
585
+ Turn down the verbosity:
586
+
587
+ >>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=0,
588
+ ... chart_class=InstantiateVarsChart)
589
+
590
+ Reuse the same lexical item twice:
591
+
592
+ >>> trees = cp.parse('john feeds john'.split())
593
+ >>> for tree in trees: print(tree)
594
+ (S[SEM=[BO={bo(\P.P(John),z2), bo(\P.P(John),z3)}, CORE=<feed(z2,z3)>]]
595
+ (NP[SEM=[BO={bo(\P.P(John),z104)}, CORE=<z104>]] john)
596
+ (VP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<\y.feed(y,z2)>]]
597
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
598
+ (NP[SEM=[BO={bo(\P.P(John),z105)}, CORE=<z105>]] john)))
599
+
600
+ >>> trees = cp.parse('a dog feeds a dog'.split())
601
+ >>> for tree in trees: print(tree)
602
+ (S[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
603
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z106)}, CORE=<z106>]]
604
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
605
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))
606
+ (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
607
+ (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
608
+ (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z107)}, CORE=<z107>]]
609
+ (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
610
+ (N[SEM=[BO={/}, CORE=<dog>]] dog))))
venv/lib/python3.10/site-packages/nltk/test/featstruct.doctest ADDED
@@ -0,0 +1,1229 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==================================
5
+ Feature Structures & Unification
6
+ ==================================
7
+ >>> from nltk.featstruct import FeatStruct
8
+ >>> from nltk.sem.logic import Variable, VariableExpression, Expression
9
+
10
+ .. note:: For now, featstruct uses the older lambdalogic semantics
11
+ module. Eventually, it should be updated to use the new first
12
+ order predicate logic module.
13
+
14
+ Overview
15
+ ~~~~~~~~
16
+ A feature structure is a mapping from feature identifiers to feature
17
+ values, where feature values can be simple values (like strings or
18
+ ints), nested feature structures, or variables:
19
+
20
+ >>> fs1 = FeatStruct(number='singular', person=3)
21
+ >>> print(fs1)
22
+ [ number = 'singular' ]
23
+ [ person = 3 ]
24
+
25
+ Feature structure may be nested:
26
+
27
+ >>> fs2 = FeatStruct(type='NP', agr=fs1)
28
+ >>> print(fs2)
29
+ [ agr = [ number = 'singular' ] ]
30
+ [ [ person = 3 ] ]
31
+ [ ]
32
+ [ type = 'NP' ]
33
+
34
+ Variables are used to indicate that two features should be assigned
35
+ the same value. For example, the following feature structure requires
36
+ that the feature fs3['agr']['number'] be bound to the same value as the
37
+ feature fs3['subj']['number'].
38
+
39
+ >>> fs3 = FeatStruct(agr=FeatStruct(number=Variable('?n')),
40
+ ... subj=FeatStruct(number=Variable('?n')))
41
+ >>> print(fs3)
42
+ [ agr = [ number = ?n ] ]
43
+ [ ]
44
+ [ subj = [ number = ?n ] ]
45
+
46
+ Feature structures are typically used to represent partial information
47
+ about objects. A feature name that is not mapped to a value stands
48
+ for a feature whose value is unknown (*not* a feature without a
49
+ value). Two feature structures that represent (potentially
50
+ overlapping) information about the same object can be combined by
51
+ *unification*.
52
+
53
+ >>> print(fs2.unify(fs3))
54
+ [ agr = [ number = 'singular' ] ]
55
+ [ [ person = 3 ] ]
56
+ [ ]
57
+ [ subj = [ number = 'singular' ] ]
58
+ [ ]
59
+ [ type = 'NP' ]
60
+
61
+ When two inconsistent feature structures are unified, the unification
62
+ fails and returns ``None``.
63
+
64
+ >>> fs4 = FeatStruct(agr=FeatStruct(person=1))
65
+ >>> print(fs4.unify(fs2))
66
+ None
67
+ >>> print(fs2.unify(fs4))
68
+ None
69
+
70
+ ..
71
+ >>> del fs1, fs2, fs3, fs4 # clean-up
72
+
73
+ Feature Structure Types
74
+ -----------------------
75
+ There are actually two types of feature structure:
76
+
77
+ - *feature dictionaries*, implemented by `FeatDict`, act like
78
+ Python dictionaries. Feature identifiers may be strings or
79
+ instances of the `Feature` class.
80
+ - *feature lists*, implemented by `FeatList`, act like Python
81
+ lists. Feature identifiers are integers.
82
+
83
+ When you construct a feature structure using the `FeatStruct`
84
+ constructor, it will automatically decide which type is appropriate:
85
+
86
+ >>> type(FeatStruct(number='singular'))
87
+ <class 'nltk.featstruct.FeatDict'>
88
+ >>> type(FeatStruct([1,2,3]))
89
+ <class 'nltk.featstruct.FeatList'>
90
+
91
+ Usually, we will just use feature dictionaries; but sometimes feature
92
+ lists can be useful too. Two feature lists will unify with each other
93
+ only if they have equal lengths, and all of their feature values
94
+ match. If you wish to write a feature list that contains 'unknown'
95
+ values, you must use variables:
96
+
97
+ >>> fs1 = FeatStruct([1,2,Variable('?y')])
98
+ >>> fs2 = FeatStruct([1,Variable('?x'),3])
99
+ >>> fs1.unify(fs2)
100
+ [1, 2, 3]
101
+
102
+ ..
103
+ >>> del fs1, fs2 # clean-up
104
+
105
+ Parsing Feature Structure Strings
106
+ ---------------------------------
107
+ Feature structures can be constructed directly from strings. Often,
108
+ this is more convenient than constructing them directly. NLTK can
109
+ parse most feature strings to produce the corresponding feature
110
+ structures. (But you must restrict your base feature values to
111
+ strings, ints, logic expressions (`nltk.sem.logic.Expression`), and a
112
+ few other types discussed below).
113
+
114
+ Feature dictionaries are written like Python dictionaries, except that
115
+ keys are not put in quotes; and square brackets (``[]``) are used
116
+ instead of braces (``{}``):
117
+
118
+ >>> FeatStruct('[tense="past", agr=[number="sing", person=3]]')
119
+ [agr=[number='sing', person=3], tense='past']
120
+
121
+ If a feature value is a single alphanumeric word, then it does not
122
+ need to be quoted -- it will be automatically treated as a string:
123
+
124
+ >>> FeatStruct('[tense=past, agr=[number=sing, person=3]]')
125
+ [agr=[number='sing', person=3], tense='past']
126
+
127
+ Feature lists are written like python lists:
128
+
129
+ >>> FeatStruct('[1, 2, 3]')
130
+ [1, 2, 3]
131
+
132
+ The expression ``[]`` is treated as an empty feature dictionary, not
133
+ an empty feature list:
134
+
135
+ >>> type(FeatStruct('[]'))
136
+ <class 'nltk.featstruct.FeatDict'>
137
+
138
+ Feature Paths
139
+ -------------
140
+ Features can be specified using *feature paths*, or tuples of feature
141
+ identifiers that specify path through the nested feature structures to
142
+ a value.
143
+
144
+ >>> fs1 = FeatStruct('[x=1, y=[1,2,[z=3]]]')
145
+ >>> fs1['y']
146
+ [1, 2, [z=3]]
147
+ >>> fs1['y', 2]
148
+ [z=3]
149
+ >>> fs1['y', 2, 'z']
150
+ 3
151
+
152
+ ..
153
+ >>> del fs1 # clean-up
154
+
155
+ Reentrance
156
+ ----------
157
+ Feature structures may contain reentrant feature values. A *reentrant
158
+ feature value* is a single feature structure that can be accessed via
159
+ multiple feature paths.
160
+
161
+ >>> fs1 = FeatStruct(x='val')
162
+ >>> fs2 = FeatStruct(a=fs1, b=fs1)
163
+ >>> print(fs2)
164
+ [ a = (1) [ x = 'val' ] ]
165
+ [ ]
166
+ [ b -> (1) ]
167
+ >>> fs2
168
+ [a=(1)[x='val'], b->(1)]
169
+
170
+ As you can see, reentrane is displayed by marking a feature structure
171
+ with a unique identifier, in this case ``(1)``, the first time it is
172
+ encountered; and then using the special form ``var -> id`` whenever it
173
+ is encountered again. You can use the same notation to directly
174
+ create reentrant feature structures from strings.
175
+
176
+ >>> FeatStruct('[a=(1)[], b->(1), c=[d->(1)]]')
177
+ [a=(1)[], b->(1), c=[d->(1)]]
178
+
179
+ Reentrant feature structures may contain cycles:
180
+
181
+ >>> fs3 = FeatStruct('(1)[a->(1)]')
182
+ >>> fs3['a', 'a', 'a', 'a']
183
+ (1)[a->(1)]
184
+ >>> fs3['a', 'a', 'a', 'a'] is fs3
185
+ True
186
+
187
+ Unification preserves the reentrance relations imposed by both of the
188
+ unified feature structures. In the feature structure resulting from
189
+ unification, any modifications to a reentrant feature value will be
190
+ visible using any of its feature paths.
191
+
192
+ >>> fs3.unify(FeatStruct('[a=[b=12], c=33]'))
193
+ (1)[a->(1), b=12, c=33]
194
+
195
+ ..
196
+ >>> del fs1, fs2, fs3 # clean-up
197
+
198
+ Feature Structure Equality
199
+ --------------------------
200
+ Two feature structures are considered equal if they assign the same
201
+ values to all features, *and* they contain the same reentrances.
202
+
203
+ >>> fs1 = FeatStruct('[a=(1)[x=1], b->(1)]')
204
+ >>> fs2 = FeatStruct('[a=(1)[x=1], b->(1)]')
205
+ >>> fs3 = FeatStruct('[a=[x=1], b=[x=1]]')
206
+ >>> fs1 == fs1, fs1 is fs1
207
+ (True, True)
208
+ >>> fs1 == fs2, fs1 is fs2
209
+ (True, False)
210
+ >>> fs1 == fs3, fs1 is fs3
211
+ (False, False)
212
+
213
+ Note that this differs from how Python dictionaries and lists define
214
+ equality -- in particular, Python dictionaries and lists ignore
215
+ reentrance relations. To test two feature structures for equality
216
+ while ignoring reentrance relations, use the `equal_values()` method:
217
+
218
+ >>> fs1.equal_values(fs1)
219
+ True
220
+ >>> fs1.equal_values(fs2)
221
+ True
222
+ >>> fs1.equal_values(fs3)
223
+ True
224
+
225
+ ..
226
+ >>> del fs1, fs2, fs3 # clean-up
227
+
228
+ Feature Value Sets & Feature Value Tuples
229
+ -----------------------------------------
230
+ `nltk.featstruct` defines two new data types that are intended to be
231
+ used as feature values: `FeatureValueTuple` and `FeatureValueSet`.
232
+ Both of these types are considered base values -- i.e., unification
233
+ does *not* apply to them. However, variable binding *does* apply to
234
+ any values that they contain.
235
+
236
+ Feature value tuples are written with parentheses:
237
+
238
+ >>> fs1 = FeatStruct('[x=(?x, ?y)]')
239
+ >>> fs1
240
+ [x=(?x, ?y)]
241
+ >>> fs1.substitute_bindings({Variable('?x'): 1, Variable('?y'): 2})
242
+ [x=(1, 2)]
243
+
244
+ Feature sets are written with braces:
245
+
246
+ >>> fs1 = FeatStruct('[x={?x, ?y}]')
247
+ >>> fs1
248
+ [x={?x, ?y}]
249
+ >>> fs1.substitute_bindings({Variable('?x'): 1, Variable('?y'): 2})
250
+ [x={1, 2}]
251
+
252
+ In addition to the basic feature value tuple & set classes, nltk
253
+ defines feature value unions (for sets) and feature value
254
+ concatenations (for tuples). These are written using '+', and can be
255
+ used to combine sets & tuples:
256
+
257
+ >>> fs1 = FeatStruct('[x=((1, 2)+?z), z=?z]')
258
+ >>> fs1
259
+ [x=((1, 2)+?z), z=?z]
260
+ >>> fs1.unify(FeatStruct('[z=(3, 4, 5)]'))
261
+ [x=(1, 2, 3, 4, 5), z=(3, 4, 5)]
262
+
263
+ Thus, feature value tuples and sets can be used to build up tuples
264
+ and sets of values over the course of unification. For example, when
265
+ parsing sentences using a semantic feature grammar, feature sets or
266
+ feature tuples can be used to build a list of semantic predicates as
267
+ the sentence is parsed.
268
+
269
+ As was mentioned above, unification does not apply to feature value
270
+ tuples and sets. One reason for this that it's impossible to define a
271
+ single correct answer for unification when concatenation is used.
272
+ Consider the following example:
273
+
274
+ >>> fs1 = FeatStruct('[x=(1, 2, 3, 4)]')
275
+ >>> fs2 = FeatStruct('[x=(?a+?b), a=?a, b=?b]')
276
+
277
+ If unification applied to feature tuples, then the unification
278
+ algorithm would have to arbitrarily choose how to divide the tuple
279
+ (1,2,3,4) into two parts. Instead, the unification algorithm refuses
280
+ to make this decision, and simply unifies based on value. Because
281
+ (1,2,3,4) is not equal to (?a+?b), fs1 and fs2 will not unify:
282
+
283
+ >>> print(fs1.unify(fs2))
284
+ None
285
+
286
+ If you need a list-like structure that unification does apply to, use
287
+ `FeatList`.
288
+
289
+ ..
290
+ >>> del fs1, fs2 # clean-up
291
+
292
+ Light-weight Feature Structures
293
+ -------------------------------
294
+ Many of the functions defined by `nltk.featstruct` can be applied
295
+ directly to simple Python dictionaries and lists, rather than to
296
+ full-fledged `FeatDict` and `FeatList` objects. In other words,
297
+ Python ``dicts`` and ``lists`` can be used as "light-weight" feature
298
+ structures.
299
+
300
+ >>> # Note: pprint prints dicts sorted
301
+ >>> from pprint import pprint
302
+ >>> from nltk.featstruct import unify
303
+ >>> pprint(unify(dict(x=1, y=dict()), dict(a='a', y=dict(b='b'))))
304
+ {'a': 'a', 'x': 1, 'y': {'b': 'b'}}
305
+
306
+ However, you should keep in mind the following caveats:
307
+
308
+ - Python dictionaries & lists ignore reentrance when checking for
309
+ equality between values. But two FeatStructs with different
310
+ reentrances are considered nonequal, even if all their base
311
+ values are equal.
312
+
313
+ - FeatStructs can be easily frozen, allowing them to be used as
314
+ keys in hash tables. Python dictionaries and lists can not.
315
+
316
+ - FeatStructs display reentrance in their string representations;
317
+ Python dictionaries and lists do not.
318
+
319
+ - FeatStructs may *not* be mixed with Python dictionaries and lists
320
+ (e.g., when performing unification).
321
+
322
+ - FeatStructs provide a number of useful methods, such as `walk()`
323
+ and `cyclic()`, which are not available for Python dicts & lists.
324
+
325
+ In general, if your feature structures will contain any reentrances,
326
+ or if you plan to use them as dictionary keys, it is strongly
327
+ recommended that you use full-fledged `FeatStruct` objects.
328
+
329
+ Custom Feature Values
330
+ ---------------------
331
+ The abstract base class `CustomFeatureValue` can be used to define new
332
+ base value types that have custom unification methods. For example,
333
+ the following feature value type encodes a range, and defines
334
+ unification as taking the intersection on the ranges:
335
+
336
+ >>> from functools import total_ordering
337
+ >>> from nltk.featstruct import CustomFeatureValue, UnificationFailure
338
+ >>> @total_ordering
339
+ ... class Range(CustomFeatureValue):
340
+ ... def __init__(self, low, high):
341
+ ... assert low <= high
342
+ ... self.low = low
343
+ ... self.high = high
344
+ ... def unify(self, other):
345
+ ... if not isinstance(other, Range):
346
+ ... return UnificationFailure
347
+ ... low = max(self.low, other.low)
348
+ ... high = min(self.high, other.high)
349
+ ... if low <= high: return Range(low, high)
350
+ ... else: return UnificationFailure
351
+ ... def __repr__(self):
352
+ ... return '(%s<x<%s)' % (self.low, self.high)
353
+ ... def __eq__(self, other):
354
+ ... if not isinstance(other, Range):
355
+ ... return False
356
+ ... return (self.low == other.low) and (self.high == other.high)
357
+ ... def __lt__(self, other):
358
+ ... if not isinstance(other, Range):
359
+ ... return True
360
+ ... return (self.low, self.high) < (other.low, other.high)
361
+
362
+ >>> fs1 = FeatStruct(x=Range(5,8), y=FeatStruct(z=Range(7,22)))
363
+ >>> print(fs1.unify(FeatStruct(x=Range(6, 22))))
364
+ [ x = (6<x<8) ]
365
+ [ ]
366
+ [ y = [ z = (7<x<22) ] ]
367
+ >>> print(fs1.unify(FeatStruct(x=Range(9, 12))))
368
+ None
369
+ >>> print(fs1.unify(FeatStruct(x=12)))
370
+ None
371
+ >>> print(fs1.unify(FeatStruct('[x=?x, y=[z=?x]]')))
372
+ [ x = (7<x<8) ]
373
+ [ ]
374
+ [ y = [ z = (7<x<8) ] ]
375
+
376
+ Regression Tests
377
+ ~~~~~~~~~~~~~~~~
378
+
379
+ Dictionary access methods (non-mutating)
380
+ ----------------------------------------
381
+
382
+ >>> fs1 = FeatStruct(a=1, b=2, c=3)
383
+ >>> fs2 = FeatStruct(x=fs1, y='x')
384
+
385
+ Feature structures support all dictionary methods (excluding the class
386
+ method `dict.fromkeys()`). Non-mutating methods:
387
+
388
+ >>> sorted(fs2.keys()) # keys()
389
+ ['x', 'y']
390
+ >>> sorted(fs2.values()) # values()
391
+ [[a=1, b=2, c=3], 'x']
392
+ >>> sorted(fs2.items()) # items()
393
+ [('x', [a=1, b=2, c=3]), ('y', 'x')]
394
+ >>> sorted(fs2) # __iter__()
395
+ ['x', 'y']
396
+ >>> 'a' in fs2, 'x' in fs2 # __contains__()
397
+ (False, True)
398
+ >>> fs2.has_key('a'), fs2.has_key('x') # has_key()
399
+ (False, True)
400
+ >>> fs2['x'], fs2['y'] # __getitem__()
401
+ ([a=1, b=2, c=3], 'x')
402
+ >>> fs2['a'] # __getitem__()
403
+ Traceback (most recent call last):
404
+ . . .
405
+ KeyError: 'a'
406
+ >>> fs2.get('x'), fs2.get('y'), fs2.get('a') # get()
407
+ ([a=1, b=2, c=3], 'x', None)
408
+ >>> fs2.get('x', 'hello'), fs2.get('a', 'hello') # get()
409
+ ([a=1, b=2, c=3], 'hello')
410
+ >>> len(fs1), len(fs2) # __len__
411
+ (3, 2)
412
+ >>> fs2.copy() # copy()
413
+ [x=[a=1, b=2, c=3], y='x']
414
+ >>> fs2.copy() is fs2 # copy()
415
+ False
416
+
417
+ Note: by default, `FeatStruct.copy()` does a deep copy. Use
418
+ `FeatStruct.copy(deep=False)` for a shallow copy.
419
+
420
+ ..
421
+ >>> del fs1, fs2 # clean-up.
422
+
423
+ Dictionary access methods (mutating)
424
+ ------------------------------------
425
+ >>> fs1 = FeatStruct(a=1, b=2, c=3)
426
+ >>> fs2 = FeatStruct(x=fs1, y='x')
427
+
428
+ Setting features (`__setitem__()`)
429
+
430
+ >>> fs1['c'] = 5
431
+ >>> fs1
432
+ [a=1, b=2, c=5]
433
+ >>> fs1['x'] = 12
434
+ >>> fs1
435
+ [a=1, b=2, c=5, x=12]
436
+ >>> fs2['x', 'a'] = 2
437
+ >>> fs2
438
+ [x=[a=2, b=2, c=5, x=12], y='x']
439
+ >>> fs1
440
+ [a=2, b=2, c=5, x=12]
441
+
442
+ Deleting features (`__delitem__()`)
443
+
444
+ >>> del fs1['x']
445
+ >>> fs1
446
+ [a=2, b=2, c=5]
447
+ >>> del fs2['x', 'a']
448
+ >>> fs1
449
+ [b=2, c=5]
450
+
451
+ `setdefault()`:
452
+
453
+ >>> fs1.setdefault('b', 99)
454
+ 2
455
+ >>> fs1
456
+ [b=2, c=5]
457
+ >>> fs1.setdefault('x', 99)
458
+ 99
459
+ >>> fs1
460
+ [b=2, c=5, x=99]
461
+
462
+ `update()`:
463
+
464
+ >>> fs2.update({'a':'A', 'b':'B'}, c='C')
465
+ >>> fs2
466
+ [a='A', b='B', c='C', x=[b=2, c=5, x=99], y='x']
467
+
468
+ `pop()`:
469
+
470
+ >>> fs2.pop('a')
471
+ 'A'
472
+ >>> fs2
473
+ [b='B', c='C', x=[b=2, c=5, x=99], y='x']
474
+ >>> fs2.pop('a')
475
+ Traceback (most recent call last):
476
+ . . .
477
+ KeyError: 'a'
478
+ >>> fs2.pop('a', 'foo')
479
+ 'foo'
480
+ >>> fs2
481
+ [b='B', c='C', x=[b=2, c=5, x=99], y='x']
482
+
483
+ `clear()`:
484
+
485
+ >>> fs1.clear()
486
+ >>> fs1
487
+ []
488
+ >>> fs2
489
+ [b='B', c='C', x=[], y='x']
490
+
491
+ `popitem()`:
492
+
493
+ >>> sorted([fs2.popitem() for i in range(len(fs2))])
494
+ [('b', 'B'), ('c', 'C'), ('x', []), ('y', 'x')]
495
+ >>> fs2
496
+ []
497
+
498
+ Once a feature structure has been frozen, it may not be mutated.
499
+
500
+ >>> fs1 = FeatStruct('[x=1, y=2, z=[a=3]]')
501
+ >>> fs1.freeze()
502
+ >>> fs1.frozen()
503
+ True
504
+ >>> fs1['z'].frozen()
505
+ True
506
+
507
+ >>> fs1['x'] = 5
508
+ Traceback (most recent call last):
509
+ . . .
510
+ ValueError: Frozen FeatStructs may not be modified.
511
+ >>> del fs1['x']
512
+ Traceback (most recent call last):
513
+ . . .
514
+ ValueError: Frozen FeatStructs may not be modified.
515
+ >>> fs1.clear()
516
+ Traceback (most recent call last):
517
+ . . .
518
+ ValueError: Frozen FeatStructs may not be modified.
519
+ >>> fs1.pop('x')
520
+ Traceback (most recent call last):
521
+ . . .
522
+ ValueError: Frozen FeatStructs may not be modified.
523
+ >>> fs1.popitem()
524
+ Traceback (most recent call last):
525
+ . . .
526
+ ValueError: Frozen FeatStructs may not be modified.
527
+ >>> fs1.setdefault('x')
528
+ Traceback (most recent call last):
529
+ . . .
530
+ ValueError: Frozen FeatStructs may not be modified.
531
+ >>> fs1.update(z=22)
532
+ Traceback (most recent call last):
533
+ . . .
534
+ ValueError: Frozen FeatStructs may not be modified.
535
+
536
+ ..
537
+ >>> del fs1, fs2 # clean-up.
538
+
539
+ Feature Paths
540
+ -------------
541
+ Make sure that __getitem__ with feature paths works as intended:
542
+
543
+ >>> fs1 = FeatStruct(a=1, b=2,
544
+ ... c=FeatStruct(
545
+ ... d=FeatStruct(e=12),
546
+ ... f=FeatStruct(g=55, h='hello')))
547
+ >>> fs1[()]
548
+ [a=1, b=2, c=[d=[e=12], f=[g=55, h='hello']]]
549
+ >>> fs1['a'], fs1[('a',)]
550
+ (1, 1)
551
+ >>> fs1['c','d','e']
552
+ 12
553
+ >>> fs1['c','f','g']
554
+ 55
555
+
556
+ Feature paths that select unknown features raise KeyError:
557
+
558
+ >>> fs1['c', 'f', 'e']
559
+ Traceback (most recent call last):
560
+ . . .
561
+ KeyError: ('c', 'f', 'e')
562
+ >>> fs1['q', 'p']
563
+ Traceback (most recent call last):
564
+ . . .
565
+ KeyError: ('q', 'p')
566
+
567
+ Feature paths that try to go 'through' a feature that's not a feature
568
+ structure raise KeyError:
569
+
570
+ >>> fs1['a', 'b']
571
+ Traceback (most recent call last):
572
+ . . .
573
+ KeyError: ('a', 'b')
574
+
575
+ Feature paths can go through reentrant structures:
576
+
577
+ >>> fs2 = FeatStruct('(1)[a=[b=[c->(1), d=5], e=11]]')
578
+ >>> fs2['a', 'b', 'c', 'a', 'e']
579
+ 11
580
+ >>> fs2['a', 'b', 'c', 'a', 'b', 'd']
581
+ 5
582
+ >>> fs2[tuple('abcabcabcabcabcabcabcabcabcabca')]
583
+ (1)[b=[c=[a->(1)], d=5], e=11]
584
+
585
+ Indexing requires strings, `Feature`\s, or tuples; other types raise a
586
+ TypeError:
587
+
588
+ >>> fs2[12]
589
+ Traceback (most recent call last):
590
+ . . .
591
+ TypeError: Expected feature name or path. Got 12.
592
+ >>> fs2[list('abc')]
593
+ Traceback (most recent call last):
594
+ . . .
595
+ TypeError: Expected feature name or path. Got ['a', 'b', 'c'].
596
+
597
+ Feature paths can also be used with `get()`, `has_key()`, and
598
+ `__contains__()`.
599
+
600
+ >>> fpath1 = tuple('abcabc')
601
+ >>> fpath2 = tuple('abcabz')
602
+ >>> fs2.get(fpath1), fs2.get(fpath2)
603
+ ((1)[a=[b=[c->(1), d=5], e=11]], None)
604
+ >>> fpath1 in fs2, fpath2 in fs2
605
+ (True, False)
606
+ >>> fs2.has_key(fpath1), fs2.has_key(fpath2)
607
+ (True, False)
608
+
609
+ ..
610
+ >>> del fs1, fs2 # clean-up
611
+
612
+ Reading Feature Structures
613
+ --------------------------
614
+
615
+ Empty feature struct:
616
+
617
+ >>> FeatStruct('[]')
618
+ []
619
+
620
+ Test features with integer values:
621
+
622
+ >>> FeatStruct('[a=12, b=-33, c=0]')
623
+ [a=12, b=-33, c=0]
624
+
625
+ Test features with string values. Either single or double quotes may
626
+ be used. Strings are evaluated just like python strings -- in
627
+ particular, you can use escape sequences and 'u' and 'r' prefixes, and
628
+ triple-quoted strings.
629
+
630
+ >>> FeatStruct('[a="", b="hello", c="\'", d=\'\', e=\'"\']')
631
+ [a='', b='hello', c="'", d='', e='"']
632
+ >>> FeatStruct(r'[a="\\", b="\"", c="\x6f\\y", d="12"]')
633
+ [a='\\', b='"', c='o\\y', d='12']
634
+ >>> FeatStruct(r'[b=r"a\b\c"]')
635
+ [b='a\\b\\c']
636
+ >>> FeatStruct('[x="""a"""]')
637
+ [x='a']
638
+
639
+ Test parsing of reentrant feature structures.
640
+
641
+ >>> FeatStruct('[a=(1)[], b->(1)]')
642
+ [a=(1)[], b->(1)]
643
+ >>> FeatStruct('[a=(1)[x=1, y=2], b->(1)]')
644
+ [a=(1)[x=1, y=2], b->(1)]
645
+
646
+ Test parsing of cyclic feature structures.
647
+
648
+ >>> FeatStruct('[a=(1)[b->(1)]]')
649
+ [a=(1)[b->(1)]]
650
+ >>> FeatStruct('(1)[a=[b=[c->(1)]]]')
651
+ (1)[a=[b=[c->(1)]]]
652
+
653
+ Strings of the form "+name" and "-name" may be used to specify boolean
654
+ values.
655
+
656
+ >>> FeatStruct('[-bar, +baz, +foo]')
657
+ [-bar, +baz, +foo]
658
+
659
+ None, True, and False are recognized as values:
660
+
661
+ >>> FeatStruct('[bar=True, baz=False, foo=None]')
662
+ [+bar, -baz, foo=None]
663
+
664
+ Special features:
665
+
666
+ >>> FeatStruct('NP/VP')
667
+ NP[]/VP[]
668
+ >>> FeatStruct('?x/?x')
669
+ ?x[]/?x[]
670
+ >>> print(FeatStruct('VP[+fin, agr=?x, tense=past]/NP[+pl, agr=?x]'))
671
+ [ *type* = 'VP' ]
672
+ [ ]
673
+ [ [ *type* = 'NP' ] ]
674
+ [ *slash* = [ agr = ?x ] ]
675
+ [ [ pl = True ] ]
676
+ [ ]
677
+ [ agr = ?x ]
678
+ [ fin = True ]
679
+ [ tense = 'past' ]
680
+
681
+ Here the slash feature gets coerced:
682
+
683
+ >>> FeatStruct('[*slash*=a, x=b, *type*="NP"]')
684
+ NP[x='b']/a[]
685
+
686
+ >>> FeatStruct('NP[sem=<bob>]/NP')
687
+ NP[sem=<bob>]/NP[]
688
+ >>> FeatStruct('S[sem=<walk(bob)>]')
689
+ S[sem=<walk(bob)>]
690
+ >>> print(FeatStruct('NP[sem=<bob>]/NP'))
691
+ [ *type* = 'NP' ]
692
+ [ ]
693
+ [ *slash* = [ *type* = 'NP' ] ]
694
+ [ ]
695
+ [ sem = <bob> ]
696
+
697
+ Playing with ranges:
698
+
699
+ >>> from nltk.featstruct import RangeFeature, FeatStructReader
700
+ >>> width = RangeFeature('width')
701
+ >>> reader = FeatStructReader([width])
702
+ >>> fs1 = reader.fromstring('[*width*=-5:12]')
703
+ >>> fs2 = reader.fromstring('[*width*=2:123]')
704
+ >>> fs3 = reader.fromstring('[*width*=-7:-2]')
705
+ >>> fs1.unify(fs2)
706
+ [*width*=(2, 12)]
707
+ >>> fs1.unify(fs3)
708
+ [*width*=(-5, -2)]
709
+ >>> print(fs2.unify(fs3)) # no overlap in width.
710
+ None
711
+
712
+ The slash feature has a default value of 'False':
713
+
714
+ >>> print(FeatStruct('NP[]/VP').unify(FeatStruct('NP[]'), trace=1))
715
+ <BLANKLINE>
716
+ Unification trace:
717
+ / NP[]/VP[]
718
+ |\ NP[]
719
+ |
720
+ | Unify feature: *type*
721
+ | / 'NP'
722
+ | |\ 'NP'
723
+ | |
724
+ | +-->'NP'
725
+ |
726
+ | Unify feature: *slash*
727
+ | / VP[]
728
+ | |\ False
729
+ | |
730
+ X X <-- FAIL
731
+ None
732
+
733
+ The demo structures from category.py. They all parse, but they don't
734
+ do quite the right thing, -- ?x vs x.
735
+
736
+ >>> FeatStruct(pos='n', agr=FeatStruct(number='pl', gender='f'))
737
+ [agr=[gender='f', number='pl'], pos='n']
738
+ >>> FeatStruct(r'NP[sem=<bob>]/NP')
739
+ NP[sem=<bob>]/NP[]
740
+ >>> FeatStruct(r'S[sem=<app(?x, ?y)>]')
741
+ S[sem=<?x(?y)>]
742
+ >>> FeatStruct('?x/?x')
743
+ ?x[]/?x[]
744
+ >>> FeatStruct('VP[+fin, agr=?x, tense=past]/NP[+pl, agr=?x]')
745
+ VP[agr=?x, +fin, tense='past']/NP[agr=?x, +pl]
746
+ >>> FeatStruct('S[sem = <app(?subj, ?vp)>]')
747
+ S[sem=<?subj(?vp)>]
748
+
749
+ >>> FeatStruct('S')
750
+ S[]
751
+
752
+ The parser also includes support for reading sets and tuples.
753
+
754
+ >>> FeatStruct('[x={1,2,2,2}, y={/}]')
755
+ [x={1, 2}, y={/}]
756
+ >>> FeatStruct('[x=(1,2,2,2), y=()]')
757
+ [x=(1, 2, 2, 2), y=()]
758
+ >>> print(FeatStruct('[x=(1,[z=(1,2,?x)],?z,{/})]'))
759
+ [ x = (1, [ z = (1, 2, ?x) ], ?z, {/}) ]
760
+
761
+ Note that we can't put a featstruct inside a tuple, because doing so
762
+ would hash it, and it's not frozen yet:
763
+
764
+ >>> print(FeatStruct('[x={[]}]'))
765
+ Traceback (most recent call last):
766
+ . . .
767
+ TypeError: FeatStructs must be frozen before they can be hashed.
768
+
769
+ There's a special syntax for taking the union of sets: "{...+...}".
770
+ The elements should only be variables or sets.
771
+
772
+ >>> FeatStruct('[x={?a+?b+{1,2,3}}]')
773
+ [x={?a+?b+{1, 2, 3}}]
774
+
775
+ There's a special syntax for taking the concatenation of tuples:
776
+ "(...+...)". The elements should only be variables or tuples.
777
+
778
+ >>> FeatStruct('[x=(?a+?b+(1,2,3))]')
779
+ [x=(?a+?b+(1, 2, 3))]
780
+
781
+ Parsing gives helpful messages if your string contains an error.
782
+
783
+ >>> FeatStruct('[a=, b=5]]')
784
+ Traceback (most recent call last):
785
+ . . .
786
+ ValueError: Error parsing feature structure
787
+ [a=, b=5]]
788
+ ^ Expected value
789
+ >>> FeatStruct('[a=12 22, b=33]')
790
+ Traceback (most recent call last):
791
+ . . .
792
+ ValueError: Error parsing feature structure
793
+ [a=12 22, b=33]
794
+ ^ Expected comma
795
+ >>> FeatStruct('[a=5] [b=6]')
796
+ Traceback (most recent call last):
797
+ . . .
798
+ ValueError: Error parsing feature structure
799
+ [a=5] [b=6]
800
+ ^ Expected end of string
801
+ >>> FeatStruct(' *++*')
802
+ Traceback (most recent call last):
803
+ . . .
804
+ ValueError: Error parsing feature structure
805
+ *++*
806
+ ^ Expected open bracket or identifier
807
+ >>> FeatStruct('[x->(1)]')
808
+ Traceback (most recent call last):
809
+ . . .
810
+ ValueError: Error parsing feature structure
811
+ [x->(1)]
812
+ ^ Expected bound identifier
813
+ >>> FeatStruct('[x->y]')
814
+ Traceback (most recent call last):
815
+ . . .
816
+ ValueError: Error parsing feature structure
817
+ [x->y]
818
+ ^ Expected identifier
819
+ >>> FeatStruct('')
820
+ Traceback (most recent call last):
821
+ . . .
822
+ ValueError: Error parsing feature structure
823
+ <BLANKLINE>
824
+ ^ Expected open bracket or identifier
825
+
826
+
827
+ Unification
828
+ -----------
829
+ Very simple unifications give the expected results:
830
+
831
+ >>> FeatStruct().unify(FeatStruct())
832
+ []
833
+ >>> FeatStruct(number='singular').unify(FeatStruct())
834
+ [number='singular']
835
+ >>> FeatStruct().unify(FeatStruct(number='singular'))
836
+ [number='singular']
837
+ >>> FeatStruct(number='singular').unify(FeatStruct(person=3))
838
+ [number='singular', person=3]
839
+
840
+ Merging nested structures:
841
+
842
+ >>> fs1 = FeatStruct('[A=[B=b]]')
843
+ >>> fs2 = FeatStruct('[A=[C=c]]')
844
+ >>> fs1.unify(fs2)
845
+ [A=[B='b', C='c']]
846
+ >>> fs2.unify(fs1)
847
+ [A=[B='b', C='c']]
848
+
849
+ A basic case of reentrant unification
850
+
851
+ >>> fs4 = FeatStruct('[A=(1)[B=b], E=[F->(1)]]')
852
+ >>> fs5 = FeatStruct("[A=[C='c'], E=[F=[D='d']]]")
853
+ >>> fs4.unify(fs5)
854
+ [A=(1)[B='b', C='c', D='d'], E=[F->(1)]]
855
+ >>> fs5.unify(fs4)
856
+ [A=(1)[B='b', C='c', D='d'], E=[F->(1)]]
857
+
858
+ More than 2 paths to a value
859
+
860
+ >>> fs1 = FeatStruct("[a=[],b=[],c=[],d=[]]")
861
+ >>> fs2 = FeatStruct('[a=(1)[], b->(1), c->(1), d->(1)]')
862
+ >>> fs1.unify(fs2)
863
+ [a=(1)[], b->(1), c->(1), d->(1)]
864
+
865
+ fs1[a] gets unified with itself
866
+
867
+ >>> fs1 = FeatStruct('[x=(1)[], y->(1)]')
868
+ >>> fs2 = FeatStruct('[x=(1)[], y->(1)]')
869
+ >>> fs1.unify(fs2)
870
+ [x=(1)[], y->(1)]
871
+
872
+ Bound variables should get forwarded appropriately
873
+
874
+ >>> fs1 = FeatStruct('[A=(1)[X=x], B->(1), C=?cvar, D=?dvar]')
875
+ >>> fs2 = FeatStruct('[A=(1)[Y=y], B=(2)[Z=z], C->(1), D->(2)]')
876
+ >>> fs1.unify(fs2)
877
+ [A=(1)[X='x', Y='y', Z='z'], B->(1), C->(1), D->(1)]
878
+ >>> fs2.unify(fs1)
879
+ [A=(1)[X='x', Y='y', Z='z'], B->(1), C->(1), D->(1)]
880
+
881
+ Cyclic structure created by unification.
882
+
883
+ >>> fs1 = FeatStruct('[F=(1)[], G->(1)]')
884
+ >>> fs2 = FeatStruct('[F=[H=(2)[]], G->(2)]')
885
+ >>> fs3 = fs1.unify(fs2)
886
+ >>> fs3
887
+ [F=(1)[H->(1)], G->(1)]
888
+ >>> fs3['F'] is fs3['G']
889
+ True
890
+ >>> fs3['F'] is fs3['G']['H']
891
+ True
892
+ >>> fs3['F'] is fs3['G']['H']['H']
893
+ True
894
+ >>> fs3['F'] is fs3['F']['H']['H']['H']['H']['H']['H']['H']['H']
895
+ True
896
+
897
+ Cyclic structure created w/ variables.
898
+
899
+ >>> fs1 = FeatStruct('[F=[H=?x]]')
900
+ >>> fs2 = FeatStruct('[F=?x]')
901
+ >>> fs3 = fs1.unify(fs2, rename_vars=False)
902
+ >>> fs3
903
+ [F=(1)[H->(1)]]
904
+ >>> fs3['F'] is fs3['F']['H']
905
+ True
906
+ >>> fs3['F'] is fs3['F']['H']['H']
907
+ True
908
+ >>> fs3['F'] is fs3['F']['H']['H']['H']['H']['H']['H']['H']['H']
909
+ True
910
+
911
+ Unifying w/ a cyclic feature structure.
912
+
913
+ >>> fs4 = FeatStruct('[F=[H=[H=[H=(1)[]]]], K->(1)]')
914
+ >>> fs3.unify(fs4)
915
+ [F=(1)[H->(1)], K->(1)]
916
+ >>> fs4.unify(fs3)
917
+ [F=(1)[H->(1)], K->(1)]
918
+
919
+ Variable bindings should preserve reentrance.
920
+
921
+ >>> bindings = {}
922
+ >>> fs1 = FeatStruct("[a=?x]")
923
+ >>> fs2 = fs1.unify(FeatStruct("[a=[]]"), bindings)
924
+ >>> fs2['a'] is bindings[Variable('?x')]
925
+ True
926
+ >>> fs2.unify(FeatStruct("[b=?x]"), bindings)
927
+ [a=(1)[], b->(1)]
928
+
929
+ Aliased variable tests
930
+
931
+ >>> fs1 = FeatStruct("[a=?x, b=?x]")
932
+ >>> fs2 = FeatStruct("[b=?y, c=?y]")
933
+ >>> bindings = {}
934
+ >>> fs3 = fs1.unify(fs2, bindings)
935
+ >>> fs3
936
+ [a=?x, b=?x, c=?x]
937
+ >>> bindings
938
+ {Variable('?y'): Variable('?x')}
939
+ >>> fs3.unify(FeatStruct("[a=1]"))
940
+ [a=1, b=1, c=1]
941
+
942
+ If we keep track of the bindings, then we can use the same variable
943
+ over multiple calls to unify.
944
+
945
+ >>> bindings = {}
946
+ >>> fs1 = FeatStruct('[a=?x]')
947
+ >>> fs2 = fs1.unify(FeatStruct('[a=[]]'), bindings)
948
+ >>> fs2.unify(FeatStruct('[b=?x]'), bindings)
949
+ [a=(1)[], b->(1)]
950
+ >>> bindings
951
+ {Variable('?x'): []}
952
+
953
+ ..
954
+ >>> del fs1, fs2, fs3, fs4, fs5 # clean-up
955
+
956
+ Unification Bindings
957
+ --------------------
958
+
959
+ >>> bindings = {}
960
+ >>> fs1 = FeatStruct('[a=?x]')
961
+ >>> fs2 = FeatStruct('[a=12]')
962
+ >>> fs3 = FeatStruct('[b=?x]')
963
+ >>> fs1.unify(fs2, bindings)
964
+ [a=12]
965
+ >>> bindings
966
+ {Variable('?x'): 12}
967
+ >>> fs3.substitute_bindings(bindings)
968
+ [b=12]
969
+ >>> fs3 # substitute_bindings didn't mutate fs3.
970
+ [b=?x]
971
+ >>> fs2.unify(fs3, bindings)
972
+ [a=12, b=12]
973
+
974
+ >>> bindings = {}
975
+ >>> fs1 = FeatStruct('[a=?x, b=1]')
976
+ >>> fs2 = FeatStruct('[a=5, b=?x]')
977
+ >>> fs1.unify(fs2, bindings)
978
+ [a=5, b=1]
979
+ >>> sorted(bindings.items())
980
+ [(Variable('?x'), 5), (Variable('?x2'), 1)]
981
+
982
+ ..
983
+ >>> del fs1, fs2, fs3 # clean-up
984
+
985
+ Expressions
986
+ -----------
987
+
988
+ >>> e = Expression.fromstring('\\P y.P(z,y)')
989
+ >>> fs1 = FeatStruct(x=e, y=Variable('z'))
990
+ >>> fs2 = FeatStruct(y=VariableExpression(Variable('John')))
991
+ >>> fs1.unify(fs2)
992
+ [x=<\P y.P(John,y)>, y=<John>]
993
+
994
+ Remove Variables
995
+ ----------------
996
+
997
+ >>> FeatStruct('[a=?x, b=12, c=[d=?y]]').remove_variables()
998
+ [b=12, c=[]]
999
+ >>> FeatStruct('(1)[a=[b=?x,c->(1)]]').remove_variables()
1000
+ (1)[a=[c->(1)]]
1001
+
1002
+ Equality & Hashing
1003
+ ------------------
1004
+ The `equal_values` method checks whether two feature structures assign
1005
+ the same value to every feature. If the optional argument
1006
+ ``check_reentrances`` is supplied, then it also returns false if there
1007
+ is any difference in the reentrances.
1008
+
1009
+ >>> a = FeatStruct('(1)[x->(1)]')
1010
+ >>> b = FeatStruct('(1)[x->(1)]')
1011
+ >>> c = FeatStruct('(1)[x=[x->(1)]]')
1012
+ >>> d = FeatStruct('[x=(1)[x->(1)]]')
1013
+ >>> e = FeatStruct('(1)[x=[x->(1), y=1], y=1]')
1014
+ >>> def compare(x,y):
1015
+ ... assert x.equal_values(y, True) == y.equal_values(x, True)
1016
+ ... assert x.equal_values(y, False) == y.equal_values(x, False)
1017
+ ... if x.equal_values(y, True):
1018
+ ... assert x.equal_values(y, False)
1019
+ ... print('equal values, same reentrance')
1020
+ ... elif x.equal_values(y, False):
1021
+ ... print('equal values, different reentrance')
1022
+ ... else:
1023
+ ... print('different values')
1024
+
1025
+ >>> compare(a, a)
1026
+ equal values, same reentrance
1027
+ >>> compare(a, b)
1028
+ equal values, same reentrance
1029
+ >>> compare(a, c)
1030
+ equal values, different reentrance
1031
+ >>> compare(a, d)
1032
+ equal values, different reentrance
1033
+ >>> compare(c, d)
1034
+ equal values, different reentrance
1035
+ >>> compare(a, e)
1036
+ different values
1037
+ >>> compare(c, e)
1038
+ different values
1039
+ >>> compare(d, e)
1040
+ different values
1041
+ >>> compare(e, e)
1042
+ equal values, same reentrance
1043
+
1044
+ Feature structures may not be hashed until they are frozen:
1045
+
1046
+ >>> hash(a)
1047
+ Traceback (most recent call last):
1048
+ . . .
1049
+ TypeError: FeatStructs must be frozen before they can be hashed.
1050
+ >>> a.freeze()
1051
+ >>> v = hash(a)
1052
+
1053
+ Feature structures define hash consistently. The following example
1054
+ looks at the hash value for each (fs1,fs2) pair; if their hash values
1055
+ are not equal, then they must not be equal. If their hash values are
1056
+ equal, then display a message, and indicate whether their values are
1057
+ indeed equal. Note that c and d currently have the same hash value,
1058
+ even though they are not equal. That is not a bug, strictly speaking,
1059
+ but it wouldn't be a bad thing if it changed.
1060
+
1061
+ >>> for fstruct in (a, b, c, d, e):
1062
+ ... fstruct.freeze()
1063
+ >>> for fs1_name in 'abcde':
1064
+ ... for fs2_name in 'abcde':
1065
+ ... fs1 = locals()[fs1_name]
1066
+ ... fs2 = locals()[fs2_name]
1067
+ ... if hash(fs1) != hash(fs2):
1068
+ ... assert fs1 != fs2
1069
+ ... else:
1070
+ ... print('%s and %s have the same hash value,' %
1071
+ ... (fs1_name, fs2_name))
1072
+ ... if fs1 == fs2: print('and are equal')
1073
+ ... else: print('and are not equal')
1074
+ a and a have the same hash value, and are equal
1075
+ a and b have the same hash value, and are equal
1076
+ b and a have the same hash value, and are equal
1077
+ b and b have the same hash value, and are equal
1078
+ c and c have the same hash value, and are equal
1079
+ c and d have the same hash value, and are not equal
1080
+ d and c have the same hash value, and are not equal
1081
+ d and d have the same hash value, and are equal
1082
+ e and e have the same hash value, and are equal
1083
+
1084
+ ..
1085
+ >>> del a, b, c, d, e, v # clean-up
1086
+
1087
+ Tracing
1088
+ -------
1089
+
1090
+ >>> fs1 = FeatStruct('[a=[b=(1)[], c=?x], d->(1), e=[f=?x]]')
1091
+ >>> fs2 = FeatStruct('[a=(1)[c="C"], e=[g->(1)]]')
1092
+ >>> fs1.unify(fs2, trace=True)
1093
+ <BLANKLINE>
1094
+ Unification trace:
1095
+ / [a=[b=(1)[], c=?x], d->(1), e=[f=?x]]
1096
+ |\ [a=(1)[c='C'], e=[g->(1)]]
1097
+ |
1098
+ | Unify feature: a
1099
+ | / [b=[], c=?x]
1100
+ | |\ [c='C']
1101
+ | |
1102
+ | | Unify feature: a.c
1103
+ | | / ?x
1104
+ | | |\ 'C'
1105
+ | | |
1106
+ | | +-->Variable('?x')
1107
+ | |
1108
+ | +-->[b=[], c=?x]
1109
+ | Bindings: {?x: 'C'}
1110
+ |
1111
+ | Unify feature: e
1112
+ | / [f=?x]
1113
+ | |\ [g=[c='C']]
1114
+ | |
1115
+ | +-->[f=?x, g=[b=[], c=?x]]
1116
+ | Bindings: {?x: 'C'}
1117
+ |
1118
+ +-->[a=(1)[b=(2)[], c='C'], d->(2), e=[f='C', g->(1)]]
1119
+ Bindings: {?x: 'C'}
1120
+ [a=(1)[b=(2)[], c='C'], d->(2), e=[f='C', g->(1)]]
1121
+ >>>
1122
+ >>> fs1 = FeatStruct('[a=?x, b=?z, c=?z]')
1123
+ >>> fs2 = FeatStruct('[a=?y, b=?y, c=?q]')
1124
+ >>> #fs1.unify(fs2, trace=True)
1125
+ >>>
1126
+
1127
+ ..
1128
+ >>> del fs1, fs2 # clean-up
1129
+
1130
+ Unification on Dicts & Lists
1131
+ ----------------------------
1132
+ It's possible to do unification on dictionaries:
1133
+
1134
+ >>> from nltk.featstruct import unify
1135
+ >>> pprint(unify(dict(x=1, y=dict(z=2)), dict(x=1, q=5)), width=1)
1136
+ {'q': 5, 'x': 1, 'y': {'z': 2}}
1137
+
1138
+ It's possible to do unification on lists as well:
1139
+
1140
+ >>> unify([1, 2, 3], [1, Variable('x'), 3])
1141
+ [1, 2, 3]
1142
+
1143
+ Mixing dicts and lists is fine:
1144
+
1145
+ >>> pprint(unify([dict(x=1, y=dict(z=2)),3], [dict(x=1, q=5),3]),
1146
+ ... width=1)
1147
+ [{'q': 5, 'x': 1, 'y': {'z': 2}}, 3]
1148
+
1149
+ Mixing dicts and FeatStructs is discouraged:
1150
+
1151
+ >>> unify(dict(x=1), FeatStruct(x=1))
1152
+ Traceback (most recent call last):
1153
+ . . .
1154
+ ValueError: Mixing FeatStruct objects with Python dicts and lists is not supported.
1155
+
1156
+ But you can do it if you really want, by explicitly stating that both
1157
+ dictionaries and FeatStructs should be treated as feature structures:
1158
+
1159
+ >>> unify(dict(x=1), FeatStruct(x=1), fs_class=(dict, FeatStruct))
1160
+ {'x': 1}
1161
+
1162
+ Finding Conflicts
1163
+ -----------------
1164
+
1165
+ >>> from nltk.featstruct import conflicts
1166
+ >>> fs1 = FeatStruct('[a=[b=(1)[c=2], d->(1), e=[f->(1)]]]')
1167
+ >>> fs2 = FeatStruct('[a=[b=[c=[x=5]], d=[c=2], e=[f=[c=3]]]]')
1168
+ >>> for path in conflicts(fs1, fs2):
1169
+ ... print('%-8s: %r vs %r' % ('.'.join(path), fs1[path], fs2[path]))
1170
+ a.b.c : 2 vs [x=5]
1171
+ a.e.f.c : 2 vs 3
1172
+
1173
+ ..
1174
+ >>> del fs1, fs2 # clean-up
1175
+
1176
+ Retracting Bindings
1177
+ -------------------
1178
+
1179
+ >>> from nltk.featstruct import retract_bindings
1180
+ >>> bindings = {}
1181
+ >>> fs1 = FeatStruct('[a=?x, b=[c=?y]]')
1182
+ >>> fs2 = FeatStruct('[a=(1)[c=[d=1]], b->(1)]')
1183
+ >>> fs3 = fs1.unify(fs2, bindings)
1184
+ >>> print(fs3)
1185
+ [ a = (1) [ c = [ d = 1 ] ] ]
1186
+ [ ]
1187
+ [ b -> (1) ]
1188
+ >>> pprint(bindings)
1189
+ {Variable('?x'): [c=[d=1]], Variable('?y'): [d=1]}
1190
+ >>> retract_bindings(fs3, bindings)
1191
+ [a=?x, b=?x]
1192
+ >>> pprint(bindings)
1193
+ {Variable('?x'): [c=?y], Variable('?y'): [d=1]}
1194
+
1195
+ Squashed Bugs
1196
+ ~~~~~~~~~~~~~
1197
+ In svn rev 5167, unifying two feature structures that used the same
1198
+ variable would cause those variables to become aliased in the output.
1199
+
1200
+ >>> fs1 = FeatStruct('[a=?x]')
1201
+ >>> fs2 = FeatStruct('[b=?x]')
1202
+ >>> fs1.unify(fs2)
1203
+ [a=?x, b=?x2]
1204
+
1205
+ There was a bug in svn revision 5172 that caused `rename_variables` to
1206
+ rename variables to names that are already used.
1207
+
1208
+ >>> FeatStruct('[a=?x, b=?x2]').rename_variables(
1209
+ ... vars=[Variable('?x')])
1210
+ [a=?x3, b=?x2]
1211
+ >>> fs1 = FeatStruct('[a=?x]')
1212
+ >>> fs2 = FeatStruct('[a=?x, b=?x2]')
1213
+ >>> fs1.unify(fs2)
1214
+ [a=?x, b=?x2]
1215
+
1216
+ There was a bug in svn rev 5167 that caused us to get the following
1217
+ example wrong. Basically the problem was that we only followed
1218
+ 'forward' pointers for other, not self, when unifying two feature
1219
+ structures. (nb: this test assumes that features are unified in
1220
+ alphabetical order -- if they are not, it might pass even if the bug
1221
+ is present.)
1222
+
1223
+ >>> fs1 = FeatStruct('[a=[x=1], b=?x, c=?x]')
1224
+ >>> fs2 = FeatStruct('[a=(1)[], b->(1), c=[x=2]]')
1225
+ >>> print(fs1.unify(fs2))
1226
+ None
1227
+
1228
+ ..
1229
+ >>> del fs1, fs2 # clean-up
venv/lib/python3.10/site-packages/nltk/test/framenet.doctest ADDED
@@ -0,0 +1,288 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ========
5
+ FrameNet
6
+ ========
7
+
8
+ The FrameNet corpus is a lexical database of English that is both human-
9
+ and machine-readable, based on annotating examples of how words are used
10
+ in actual texts. FrameNet is based on a theory of meaning called Frame
11
+ Semantics, deriving from the work of Charles J. Fillmore and colleagues.
12
+ The basic idea is straightforward: that the meanings of most words can
13
+ best be understood on the basis of a semantic frame: a description of a
14
+ type of event, relation, or entity and the participants in it. For
15
+ example, the concept of cooking typically involves a person doing the
16
+ cooking (Cook), the food that is to be cooked (Food), something to hold
17
+ the food while cooking (Container) and a source of heat
18
+ (Heating_instrument). In the FrameNet project, this is represented as a
19
+ frame called Apply_heat, and the Cook, Food, Heating_instrument and
20
+ Container are called frame elements (FEs). Words that evoke this frame,
21
+ such as fry, bake, boil, and broil, are called lexical units (LUs) of
22
+ the Apply_heat frame. The job of FrameNet is to define the frames
23
+ and to annotate sentences to show how the FEs fit syntactically around
24
+ the word that evokes the frame.
25
+
26
+ ------
27
+ Frames
28
+ ------
29
+
30
+ A Frame is a script-like conceptual structure that describes a
31
+ particular type of situation, object, or event along with the
32
+ participants and props that are needed for that Frame. For
33
+ example, the "Apply_heat" frame describes a common situation
34
+ involving a Cook, some Food, and a Heating_Instrument, and is
35
+ evoked by words such as bake, blanch, boil, broil, brown,
36
+ simmer, steam, etc.
37
+
38
+ We call the roles of a Frame "frame elements" (FEs) and the
39
+ frame-evoking words are called "lexical units" (LUs).
40
+
41
+ FrameNet includes relations between Frames. Several types of
42
+ relations are defined, of which the most important are:
43
+
44
+ - Inheritance: An IS-A relation. The child frame is a subtype
45
+ of the parent frame, and each FE in the parent is bound to
46
+ a corresponding FE in the child. An example is the
47
+ "Revenge" frame which inherits from the
48
+ "Rewards_and_punishments" frame.
49
+
50
+ - Using: The child frame presupposes the parent frame as
51
+ background, e.g the "Speed" frame "uses" (or presupposes)
52
+ the "Motion" frame; however, not all parent FEs need to be
53
+ bound to child FEs.
54
+
55
+ - Subframe: The child frame is a subevent of a complex event
56
+ represented by the parent, e.g. the "Criminal_process" frame
57
+ has subframes of "Arrest", "Arraignment", "Trial", and
58
+ "Sentencing".
59
+
60
+ - Perspective_on: The child frame provides a particular
61
+ perspective on an un-perspectivized parent frame. A pair of
62
+ examples consists of the "Hiring" and "Get_a_job" frames,
63
+ which perspectivize the "Employment_start" frame from the
64
+ Employer's and the Employee's point of view, respectively.
65
+
66
+ To get a list of all of the Frames in FrameNet, you can use the
67
+ `frames()` function. If you supply a regular expression pattern to the
68
+ `frames()` function, you will get a list of all Frames whose names match
69
+ that pattern:
70
+
71
+ >>> from pprint import pprint
72
+ >>> from operator import itemgetter
73
+ >>> from nltk.corpus import framenet as fn
74
+ >>> from nltk.corpus.reader.framenet import PrettyList
75
+ >>> x = fn.frames(r'(?i)crim')
76
+ >>> x.sort(key=itemgetter('ID'))
77
+ >>> x
78
+ [<frame ID=200 name=Criminal_process>, <frame ID=500 name=Criminal_investigation>, ...]
79
+ >>> PrettyList(sorted(x, key=itemgetter('ID')))
80
+ [<frame ID=200 name=Criminal_process>, <frame ID=500 name=Criminal_investigation>, ...]
81
+
82
+ To get the details of a particular Frame, you can use the `frame()`
83
+ function passing in the frame number:
84
+
85
+ >>> from pprint import pprint
86
+ >>> from nltk.corpus import framenet as fn
87
+ >>> f = fn.frame(202)
88
+ >>> f.ID
89
+ 202
90
+ >>> f.name
91
+ 'Arrest'
92
+ >>> f.definition
93
+ "Authorities charge a Suspect, who is under suspicion of having committed a crime..."
94
+ >>> len(f.lexUnit)
95
+ 11
96
+ >>> pprint(sorted([x for x in f.FE]))
97
+ ['Authorities',
98
+ 'Charges',
99
+ 'Co-participant',
100
+ 'Manner',
101
+ 'Means',
102
+ 'Offense',
103
+ 'Place',
104
+ 'Purpose',
105
+ 'Source_of_legal_authority',
106
+ 'Suspect',
107
+ 'Time',
108
+ 'Type']
109
+ >>> pprint(f.frameRelations)
110
+ [<Parent=Intentionally_affect -- Inheritance -> Child=Arrest>, <Complex=Criminal_process -- Subframe -> Component=Arrest>, ...]
111
+
112
+ The `frame()` function shown above returns a dict object containing
113
+ detailed information about the Frame. See the documentation on the
114
+ `frame()` function for the specifics.
115
+
116
+ You can also search for Frames by their Lexical Units (LUs). The
117
+ `frames_by_lemma()` function returns a list of all frames that contain
118
+ LUs in which the 'name' attribute of the LU matches the given regular
119
+ expression. Note that LU names are composed of "lemma.POS", where the
120
+ "lemma" part can be made up of either a single lexeme (e.g. 'run') or
121
+ multiple lexemes (e.g. 'a little') (see below).
122
+
123
+ >>> PrettyList(sorted(fn.frames_by_lemma(r'(?i)a little'), key=itemgetter('ID')))
124
+ [<frame ID=189 name=Quanti...>, <frame ID=2001 name=Degree>]
125
+
126
+ -------------
127
+ Lexical Units
128
+ -------------
129
+
130
+ A lexical unit (LU) is a pairing of a word with a meaning. For
131
+ example, the "Apply_heat" Frame describes a common situation
132
+ involving a Cook, some Food, and a Heating Instrument, and is
133
+ _evoked_ by words such as bake, blanch, boil, broil, brown,
134
+ simmer, steam, etc. These frame-evoking words are the LUs in the
135
+ Apply_heat frame. Each sense of a polysemous word is a different
136
+ LU.
137
+
138
+ We have used the word "word" in talking about LUs. The reality
139
+ is actually rather complex. When we say that the word "bake" is
140
+ polysemous, we mean that the lemma "bake.v" (which has the
141
+ word-forms "bake", "bakes", "baked", and "baking") is linked to
142
+ three different frames:
143
+
144
+ - Apply_heat: "Michelle baked the potatoes for 45 minutes."
145
+
146
+ - Cooking_creation: "Michelle baked her mother a cake for her birthday."
147
+
148
+ - Absorb_heat: "The potatoes have to bake for more than 30 minutes."
149
+
150
+ These constitute three different LUs, with different
151
+ definitions.
152
+
153
+ Multiword expressions such as "given name" and hyphenated words
154
+ like "shut-eye" can also be LUs. Idiomatic phrases such as
155
+ "middle of nowhere" and "give the slip (to)" are also defined as
156
+ LUs in the appropriate frames ("Isolated_places" and "Evading",
157
+ respectively), and their internal structure is not analyzed.
158
+
159
+ Framenet provides multiple annotated examples of each sense of a
160
+ word (i.e. each LU). Moreover, the set of examples
161
+ (approximately 20 per LU) illustrates all of the combinatorial
162
+ possibilities of the lexical unit.
163
+
164
+ Each LU is linked to a Frame, and hence to the other words which
165
+ evoke that Frame. This makes the FrameNet database similar to a
166
+ thesaurus, grouping together semantically similar words.
167
+
168
+ In the simplest case, frame-evoking words are verbs such as
169
+ "fried" in:
170
+
171
+ "Matilde fried the catfish in a heavy iron skillet."
172
+
173
+ Sometimes event nouns may evoke a Frame. For example,
174
+ "reduction" evokes "Cause_change_of_scalar_position" in:
175
+
176
+ "...the reduction of debt levels to $665 million from $2.6 billion."
177
+
178
+ Adjectives may also evoke a Frame. For example, "asleep" may
179
+ evoke the "Sleep" frame as in:
180
+
181
+ "They were asleep for hours."
182
+
183
+ Many common nouns, such as artifacts like "hat" or "tower",
184
+ typically serve as dependents rather than clearly evoking their
185
+ own frames.
186
+
187
+ Details for a specific lexical unit can be obtained using this class's
188
+ `lus()` function, which takes an optional regular expression
189
+ pattern that will be matched against the name of the lexical unit:
190
+
191
+ >>> from pprint import pprint
192
+ >>> PrettyList(sorted(fn.lus(r'(?i)a little'), key=itemgetter('ID')))
193
+ [<lu ID=14733 name=a little.n>, <lu ID=14743 name=a little.adv>, ...]
194
+
195
+ You can obtain detailed information on a particular LU by calling the
196
+ `lu()` function and passing in an LU's 'ID' number:
197
+
198
+ >>> from pprint import pprint
199
+ >>> from nltk.corpus import framenet as fn
200
+ >>> fn.lu(256).name
201
+ 'foresee.v'
202
+ >>> fn.lu(256).definition
203
+ 'COD: be aware of beforehand; predict.'
204
+ >>> fn.lu(256).frame.name
205
+ 'Expectation'
206
+ >>> fn.lu(256).lexemes[0].name
207
+ 'foresee'
208
+
209
+ Note that LU names take the form of a dotted string (e.g. "run.v" or "a
210
+ little.adv") in which a lemma precedes the "." and a part of speech
211
+ (POS) follows the dot. The lemma may be composed of a single lexeme
212
+ (e.g. "run") or of multiple lexemes (e.g. "a little"). The list of
213
+ POSs used in the LUs is:
214
+
215
+ v - verb
216
+ n - noun
217
+ a - adjective
218
+ adv - adverb
219
+ prep - preposition
220
+ num - numbers
221
+ intj - interjection
222
+ art - article
223
+ c - conjunction
224
+ scon - subordinating conjunction
225
+
226
+ For more detailed information about the info that is contained in the
227
+ dict that is returned by the `lu()` function, see the documentation on
228
+ the `lu()` function.
229
+
230
+ -------------------
231
+ Annotated Documents
232
+ -------------------
233
+
234
+ The FrameNet corpus contains a small set of annotated documents. A list
235
+ of these documents can be obtained by calling the `docs()` function:
236
+
237
+ >>> from pprint import pprint
238
+ >>> from nltk.corpus import framenet as fn
239
+ >>> d = fn.docs('BellRinging')[0]
240
+ >>> d.corpname
241
+ 'PropBank'
242
+ >>> d.sentence[49]
243
+ full-text sentence (...) in BellRinging:
244
+ <BLANKLINE>
245
+ <BLANKLINE>
246
+ [POS] 17 tags
247
+ <BLANKLINE>
248
+ [POS_tagset] PENN
249
+ <BLANKLINE>
250
+ [text] + [annotationSet]
251
+ <BLANKLINE>
252
+ `` I live in hopes that the ringers themselves will be drawn into
253
+ ***** ******* *****
254
+ Desir Cause_t Cause
255
+ [1] [3] [2]
256
+ <BLANKLINE>
257
+ that fuller life .
258
+ ******
259
+ Comple
260
+ [4]
261
+ (Desir=Desiring, Cause_t=Cause_to_make_noise, Cause=Cause_motion, Comple=Completeness)
262
+ <BLANKLINE>
263
+
264
+ >>> d.sentence[49].annotationSet[1]
265
+ annotation set (...):
266
+ <BLANKLINE>
267
+ [status] MANUAL
268
+ <BLANKLINE>
269
+ [LU] (6605) hope.n in Desiring
270
+ <BLANKLINE>
271
+ [frame] (366) Desiring
272
+ <BLANKLINE>
273
+ [GF] 2 relations
274
+ <BLANKLINE>
275
+ [PT] 2 phrases
276
+ <BLANKLINE>
277
+ [text] + [Target] + [FE] + [Noun]
278
+ <BLANKLINE>
279
+ `` I live in hopes that the ringers themselves will be drawn into
280
+ - ^^^^ ^^ ***** ----------------------------------------------
281
+ E supp su Event
282
+ <BLANKLINE>
283
+ that fuller life .
284
+ -----------------
285
+ <BLANKLINE>
286
+ (E=Experiencer, su=supp)
287
+ <BLANKLINE>
288
+ <BLANKLINE>
venv/lib/python3.10/site-packages/nltk/test/generate.doctest ADDED
@@ -0,0 +1,78 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===============================================
5
+ Generating sentences from context-free grammars
6
+ ===============================================
7
+
8
+ An example grammar:
9
+
10
+ >>> from nltk.parse.generate import generate, demo_grammar
11
+ >>> from nltk import CFG
12
+ >>> grammar = CFG.fromstring(demo_grammar)
13
+ >>> print(grammar)
14
+ Grammar with 13 productions (start state = S)
15
+ S -> NP VP
16
+ NP -> Det N
17
+ PP -> P NP
18
+ VP -> 'slept'
19
+ VP -> 'saw' NP
20
+ VP -> 'walked' PP
21
+ Det -> 'the'
22
+ Det -> 'a'
23
+ N -> 'man'
24
+ N -> 'park'
25
+ N -> 'dog'
26
+ P -> 'in'
27
+ P -> 'with'
28
+
29
+ The first 10 generated sentences:
30
+
31
+ >>> for sentence in generate(grammar, n=10):
32
+ ... print(' '.join(sentence))
33
+ the man slept
34
+ the man saw the man
35
+ the man saw the park
36
+ the man saw the dog
37
+ the man saw a man
38
+ the man saw a park
39
+ the man saw a dog
40
+ the man walked in the man
41
+ the man walked in the park
42
+ the man walked in the dog
43
+
44
+ All sentences of max depth 4:
45
+
46
+ >>> for sentence in generate(grammar, depth=4):
47
+ ... print(' '.join(sentence))
48
+ the man slept
49
+ the park slept
50
+ the dog slept
51
+ a man slept
52
+ a park slept
53
+ a dog slept
54
+
55
+ The number of sentences of different max depths:
56
+
57
+ >>> len(list(generate(grammar, depth=3)))
58
+ 0
59
+ >>> len(list(generate(grammar, depth=4)))
60
+ 6
61
+ >>> len(list(generate(grammar, depth=5)))
62
+ 42
63
+ >>> len(list(generate(grammar, depth=6)))
64
+ 114
65
+ >>> len(list(generate(grammar)))
66
+ 114
67
+
68
+ Infinite grammars will throw a RecursionError when not bounded by some ``depth``:
69
+
70
+ >>> grammar = CFG.fromstring("""
71
+ ... S -> A B
72
+ ... A -> B
73
+ ... B -> "b" | A
74
+ ... """)
75
+ >>> list(generate(grammar))
76
+ Traceback (most recent call last):
77
+ ...
78
+ RuntimeError: The grammar has rule(s) that yield infinite recursion!
venv/lib/python3.10/site-packages/nltk/test/gensim.doctest ADDED
@@ -0,0 +1,141 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ =======================================
5
+ Demonstrate word embedding using Gensim
6
+ =======================================
7
+
8
+ >>> from nltk.test.gensim_fixt import setup_module
9
+ >>> setup_module()
10
+
11
+ We demonstrate three functions:
12
+ - Train the word embeddings using brown corpus;
13
+ - Load the pre-trained model and perform simple tasks; and
14
+ - Pruning the pre-trained binary model.
15
+
16
+ >>> import gensim
17
+
18
+ ---------------
19
+ Train the model
20
+ ---------------
21
+
22
+ Here we train a word embedding using the Brown Corpus:
23
+
24
+ >>> from nltk.corpus import brown
25
+ >>> train_set = brown.sents()[:10000]
26
+ >>> model = gensim.models.Word2Vec(train_set)
27
+
28
+ It might take some time to train the model. So, after it is trained, it can be saved as follows:
29
+
30
+ >>> model.save('brown.embedding')
31
+ >>> new_model = gensim.models.Word2Vec.load('brown.embedding')
32
+
33
+ The model will be the list of words with their embedding. We can easily get the vector representation of a word.
34
+
35
+ >>> len(new_model.wv['university'])
36
+ 100
37
+
38
+ There are some supporting functions already implemented in Gensim to manipulate with word embeddings.
39
+ For example, to compute the cosine similarity between 2 words:
40
+
41
+ >>> new_model.wv.similarity('university','school') > 0.3
42
+ True
43
+
44
+ ---------------------------
45
+ Using the pre-trained model
46
+ ---------------------------
47
+
48
+ NLTK includes a pre-trained model which is part of a model that is trained on 100 billion words from the Google News Dataset.
49
+ The full model is from https://code.google.com/p/word2vec/ (about 3 GB).
50
+
51
+ >>> from nltk.data import find
52
+ >>> word2vec_sample = str(find('models/word2vec_sample/pruned.word2vec.txt'))
53
+ >>> model = gensim.models.KeyedVectors.load_word2vec_format(word2vec_sample, binary=False)
54
+
55
+ We pruned the model to only include the most common words (~44k words).
56
+
57
+ >>> len(model)
58
+ 43981
59
+
60
+ Each word is represented in the space of 300 dimensions:
61
+
62
+ >>> len(model['university'])
63
+ 300
64
+
65
+ Finding the top n words that are similar to a target word is simple. The result is the list of n words with the score.
66
+
67
+ >>> model.most_similar(positive=['university'], topn = 3)
68
+ [('universities', 0.70039...), ('faculty', 0.67809...), ('undergraduate', 0.65870...)]
69
+
70
+ Finding a word that is not in a list is also supported, although, implementing this by yourself is simple.
71
+
72
+ >>> model.doesnt_match('breakfast cereal dinner lunch'.split())
73
+ 'cereal'
74
+
75
+ Mikolov et al. (2013) figured out that word embedding captures much of syntactic and semantic regularities. For example,
76
+ the vector 'King - Man + Woman' is close to 'Queen' and 'Germany - Berlin + Paris' is close to 'France'.
77
+
78
+ >>> model.most_similar(positive=['woman','king'], negative=['man'], topn = 1)
79
+ [('queen', 0.71181...)]
80
+
81
+ >>> model.most_similar(positive=['Paris','Germany'], negative=['Berlin'], topn = 1)
82
+ [('France', 0.78840...)]
83
+
84
+ We can visualize the word embeddings using t-SNE (https://lvdmaaten.github.io/tsne/). For this demonstration, we visualize the first 1000 words.
85
+
86
+ | import numpy as np
87
+ | labels = []
88
+ | count = 0
89
+ | max_count = 1000
90
+ | X = np.zeros(shape=(max_count,len(model['university'])))
91
+ |
92
+ | for term in model.index_to_key:
93
+ | X[count] = model[term]
94
+ | labels.append(term)
95
+ | count+= 1
96
+ | if count >= max_count: break
97
+ |
98
+ | # It is recommended to use PCA first to reduce to ~50 dimensions
99
+ | from sklearn.decomposition import PCA
100
+ | pca = PCA(n_components=50)
101
+ | X_50 = pca.fit_transform(X)
102
+ |
103
+ | # Using TSNE to further reduce to 2 dimensions
104
+ | from sklearn.manifold import TSNE
105
+ | model_tsne = TSNE(n_components=2, random_state=0)
106
+ | Y = model_tsne.fit_transform(X_50)
107
+ |
108
+ | # Show the scatter plot
109
+ | import matplotlib.pyplot as plt
110
+ | plt.scatter(Y[:,0], Y[:,1], 20)
111
+ |
112
+ | # Add labels
113
+ | for label, x, y in zip(labels, Y[:, 0], Y[:, 1]):
114
+ | plt.annotate(label, xy = (x,y), xytext = (0, 0), textcoords = 'offset points', size = 10)
115
+ |
116
+ | plt.show()
117
+
118
+ ------------------------------
119
+ Prune the trained binary model
120
+ ------------------------------
121
+
122
+ Here is the supporting code to extract part of the binary model (GoogleNews-vectors-negative300.bin.gz) from https://code.google.com/p/word2vec/
123
+ We use this code to get the `word2vec_sample` model.
124
+
125
+ | import gensim
126
+ | # Load the binary model
127
+ | model = gensim.models.KeyedVectors.load_word2vec_format('GoogleNews-vectors-negative300.bin.gz', binary = True)
128
+ |
129
+ | # Only output word that appear in the Brown corpus
130
+ | from nltk.corpus import brown
131
+ | words = set(brown.words())
132
+ | print(len(words))
133
+ |
134
+ | # Output presented word to a temporary file
135
+ | out_file = 'pruned.word2vec.txt'
136
+ | with open(out_file,'w') as f:
137
+ | word_presented = words.intersection(model.index_to_key)
138
+ | f.write('{} {}\n'.format(len(word_presented),len(model['word'])))
139
+ |
140
+ | for word in word_presented:
141
+ | f.write('{} {}\n'.format(word, ' '.join(str(value) for value in model[word])))
venv/lib/python3.10/site-packages/nltk/test/gensim_fixt.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ def setup_module():
2
+ import pytest
3
+
4
+ pytest.importorskip("gensim")
venv/lib/python3.10/site-packages/nltk/test/gluesemantics.doctest ADDED
@@ -0,0 +1,383 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==============================================================================
5
+ Glue Semantics
6
+ ==============================================================================
7
+
8
+
9
+
10
+ ======================
11
+ Linear logic
12
+ ======================
13
+
14
+ >>> from nltk.sem import logic
15
+ >>> from nltk.sem.glue import *
16
+ >>> from nltk.sem.linearlogic import *
17
+
18
+ >>> from nltk.sem.linearlogic import Expression
19
+ >>> read_expr = Expression.fromstring
20
+
21
+ Parser
22
+
23
+ >>> print(read_expr(r'f'))
24
+ f
25
+ >>> print(read_expr(r'(g -o f)'))
26
+ (g -o f)
27
+ >>> print(read_expr(r'(g -o (h -o f))'))
28
+ (g -o (h -o f))
29
+ >>> print(read_expr(r'((g -o G) -o G)'))
30
+ ((g -o G) -o G)
31
+ >>> print(read_expr(r'(g -o f)(g)'))
32
+ (g -o f)(g)
33
+ >>> print(read_expr(r'((g -o G) -o G)((g -o f))'))
34
+ ((g -o G) -o G)((g -o f))
35
+
36
+ Simplify
37
+
38
+ >>> print(read_expr(r'f').simplify())
39
+ f
40
+ >>> print(read_expr(r'(g -o f)').simplify())
41
+ (g -o f)
42
+ >>> print(read_expr(r'((g -o G) -o G)').simplify())
43
+ ((g -o G) -o G)
44
+ >>> print(read_expr(r'(g -o f)(g)').simplify())
45
+ f
46
+ >>> try: read_expr(r'(g -o f)(f)').simplify()
47
+ ... except LinearLogicApplicationException as e: print(e)
48
+ ...
49
+ Cannot apply (g -o f) to f. Cannot unify g with f given {}
50
+ >>> print(read_expr(r'(G -o f)(g)').simplify())
51
+ f
52
+ >>> print(read_expr(r'((g -o G) -o G)((g -o f))').simplify())
53
+ f
54
+
55
+ Test BindingDict
56
+
57
+ >>> h = ConstantExpression('h')
58
+ >>> g = ConstantExpression('g')
59
+ >>> f = ConstantExpression('f')
60
+
61
+ >>> H = VariableExpression('H')
62
+ >>> G = VariableExpression('G')
63
+ >>> F = VariableExpression('F')
64
+
65
+ >>> d1 = BindingDict({H: h})
66
+ >>> d2 = BindingDict({F: f, G: F})
67
+ >>> d12 = d1 + d2
68
+ >>> all12 = ['%s: %s' % (v, d12[v]) for v in d12.d]
69
+ >>> all12.sort()
70
+ >>> print(all12)
71
+ ['F: f', 'G: f', 'H: h']
72
+
73
+ >>> BindingDict([(F,f),(G,g),(H,h)]) == BindingDict({F:f, G:g, H:h})
74
+ True
75
+
76
+ >>> d4 = BindingDict({F: f})
77
+ >>> try: d4[F] = g
78
+ ... except VariableBindingException as e: print(e)
79
+ Variable F already bound to another value
80
+
81
+ Test Unify
82
+
83
+ >>> try: f.unify(g, BindingDict())
84
+ ... except UnificationException as e: print(e)
85
+ ...
86
+ Cannot unify f with g given {}
87
+
88
+ >>> f.unify(G, BindingDict()) == BindingDict({G: f})
89
+ True
90
+ >>> try: f.unify(G, BindingDict({G: h}))
91
+ ... except UnificationException as e: print(e)
92
+ ...
93
+ Cannot unify f with G given {G: h}
94
+ >>> f.unify(G, BindingDict({G: f})) == BindingDict({G: f})
95
+ True
96
+ >>> f.unify(G, BindingDict({H: f})) == BindingDict({G: f, H: f})
97
+ True
98
+
99
+ >>> G.unify(f, BindingDict()) == BindingDict({G: f})
100
+ True
101
+ >>> try: G.unify(f, BindingDict({G: h}))
102
+ ... except UnificationException as e: print(e)
103
+ ...
104
+ Cannot unify G with f given {G: h}
105
+ >>> G.unify(f, BindingDict({G: f})) == BindingDict({G: f})
106
+ True
107
+ >>> G.unify(f, BindingDict({H: f})) == BindingDict({G: f, H: f})
108
+ True
109
+
110
+ >>> G.unify(F, BindingDict()) == BindingDict({G: F})
111
+ True
112
+ >>> try: G.unify(F, BindingDict({G: H}))
113
+ ... except UnificationException as e: print(e)
114
+ ...
115
+ Cannot unify G with F given {G: H}
116
+ >>> G.unify(F, BindingDict({G: F})) == BindingDict({G: F})
117
+ True
118
+ >>> G.unify(F, BindingDict({H: F})) == BindingDict({G: F, H: F})
119
+ True
120
+
121
+ Test Compile
122
+
123
+ >>> print(read_expr('g').compile_pos(Counter(), GlueFormula))
124
+ (<ConstantExpression g>, [])
125
+ >>> print(read_expr('(g -o f)').compile_pos(Counter(), GlueFormula))
126
+ (<ImpExpression (g -o f)>, [])
127
+ >>> print(read_expr('(g -o (h -o f))').compile_pos(Counter(), GlueFormula))
128
+ (<ImpExpression (g -o (h -o f))>, [])
129
+
130
+
131
+ ======================
132
+ Glue
133
+ ======================
134
+
135
+ Demo of "John walks"
136
+ --------------------
137
+
138
+ >>> john = GlueFormula("John", "g")
139
+ >>> print(john)
140
+ John : g
141
+ >>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
142
+ >>> print(walks)
143
+ \x.walks(x) : (g -o f)
144
+ >>> print(walks.applyto(john))
145
+ \x.walks(x)(John) : (g -o f)(g)
146
+ >>> print(walks.applyto(john).simplify())
147
+ walks(John) : f
148
+
149
+
150
+ Demo of "A dog walks"
151
+ ---------------------
152
+
153
+ >>> a = GlueFormula("\\P Q.some x.(P(x) and Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
154
+ >>> print(a)
155
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
156
+ >>> man = GlueFormula(r"\x.man(x)", "(gv -o gr)")
157
+ >>> print(man)
158
+ \x.man(x) : (gv -o gr)
159
+ >>> walks = GlueFormula(r"\x.walks(x)", "(g -o f)")
160
+ >>> print(walks)
161
+ \x.walks(x) : (g -o f)
162
+ >>> a_man = a.applyto(man)
163
+ >>> print(a_man.simplify())
164
+ \Q.exists x.(man(x) & Q(x)) : ((g -o G) -o G)
165
+ >>> a_man_walks = a_man.applyto(walks)
166
+ >>> print(a_man_walks.simplify())
167
+ exists x.(man(x) & walks(x)) : f
168
+
169
+
170
+ Demo of 'every girl chases a dog'
171
+ ---------------------------------
172
+
173
+ Individual words:
174
+
175
+ >>> every = GlueFormula("\\P Q.all x.(P(x) -> Q(x))", "((gv -o gr) -o ((g -o G) -o G))")
176
+ >>> print(every)
177
+ \P Q.all x.(P(x) -> Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
178
+ >>> girl = GlueFormula(r"\x.girl(x)", "(gv -o gr)")
179
+ >>> print(girl)
180
+ \x.girl(x) : (gv -o gr)
181
+ >>> chases = GlueFormula(r"\x y.chases(x,y)", "(g -o (h -o f))")
182
+ >>> print(chases)
183
+ \x y.chases(x,y) : (g -o (h -o f))
184
+ >>> a = GlueFormula("\\P Q.some x.(P(x) and Q(x))", "((hv -o hr) -o ((h -o H) -o H))")
185
+ >>> print(a)
186
+ \P Q.exists x.(P(x) & Q(x)) : ((hv -o hr) -o ((h -o H) -o H))
187
+ >>> dog = GlueFormula(r"\x.dog(x)", "(hv -o hr)")
188
+ >>> print(dog)
189
+ \x.dog(x) : (hv -o hr)
190
+
191
+ Noun Quantification can only be done one way:
192
+
193
+ >>> every_girl = every.applyto(girl)
194
+ >>> print(every_girl.simplify())
195
+ \Q.all x.(girl(x) -> Q(x)) : ((g -o G) -o G)
196
+ >>> a_dog = a.applyto(dog)
197
+ >>> print(a_dog.simplify())
198
+ \Q.exists x.(dog(x) & Q(x)) : ((h -o H) -o H)
199
+
200
+ The first reading is achieved by combining 'chases' with 'a dog' first.
201
+ Since 'a girl' requires something of the form '(h -o H)' we must
202
+ get rid of the 'g' in the glue of 'see'. We will do this with
203
+ the '-o elimination' rule. So, x1 will be our subject placeholder.
204
+
205
+ >>> xPrime = GlueFormula("x1", "g")
206
+ >>> print(xPrime)
207
+ x1 : g
208
+ >>> xPrime_chases = chases.applyto(xPrime)
209
+ >>> print(xPrime_chases.simplify())
210
+ \y.chases(x1,y) : (h -o f)
211
+ >>> xPrime_chases_a_dog = a_dog.applyto(xPrime_chases)
212
+ >>> print(xPrime_chases_a_dog.simplify())
213
+ exists x.(dog(x) & chases(x1,x)) : f
214
+
215
+ Now we can retract our subject placeholder using lambda-abstraction and
216
+ combine with the true subject.
217
+
218
+ >>> chases_a_dog = xPrime_chases_a_dog.lambda_abstract(xPrime)
219
+ >>> print(chases_a_dog.simplify())
220
+ \x1.exists x.(dog(x) & chases(x1,x)) : (g -o f)
221
+ >>> every_girl_chases_a_dog = every_girl.applyto(chases_a_dog)
222
+ >>> r1 = every_girl_chases_a_dog.simplify()
223
+ >>> r2 = GlueFormula(r'all x.(girl(x) -> exists z1.(dog(z1) & chases(x,z1)))', 'f')
224
+ >>> r1 == r2
225
+ True
226
+
227
+ The second reading is achieved by combining 'every girl' with 'chases' first.
228
+
229
+ >>> xPrime = GlueFormula("x1", "g")
230
+ >>> print(xPrime)
231
+ x1 : g
232
+ >>> xPrime_chases = chases.applyto(xPrime)
233
+ >>> print(xPrime_chases.simplify())
234
+ \y.chases(x1,y) : (h -o f)
235
+ >>> yPrime = GlueFormula("x2", "h")
236
+ >>> print(yPrime)
237
+ x2 : h
238
+ >>> xPrime_chases_yPrime = xPrime_chases.applyto(yPrime)
239
+ >>> print(xPrime_chases_yPrime.simplify())
240
+ chases(x1,x2) : f
241
+ >>> chases_yPrime = xPrime_chases_yPrime.lambda_abstract(xPrime)
242
+ >>> print(chases_yPrime.simplify())
243
+ \x1.chases(x1,x2) : (g -o f)
244
+ >>> every_girl_chases_yPrime = every_girl.applyto(chases_yPrime)
245
+ >>> print(every_girl_chases_yPrime.simplify())
246
+ all x.(girl(x) -> chases(x,x2)) : f
247
+ >>> every_girl_chases = every_girl_chases_yPrime.lambda_abstract(yPrime)
248
+ >>> print(every_girl_chases.simplify())
249
+ \x2.all x.(girl(x) -> chases(x,x2)) : (h -o f)
250
+ >>> every_girl_chases_a_dog = a_dog.applyto(every_girl_chases)
251
+ >>> r1 = every_girl_chases_a_dog.simplify()
252
+ >>> r2 = GlueFormula(r'exists x.(dog(x) & all z2.(girl(z2) -> chases(z2,x)))', 'f')
253
+ >>> r1 == r2
254
+ True
255
+
256
+
257
+ Compilation
258
+ -----------
259
+
260
+ >>> for cp in GlueFormula('m', '(b -o a)').compile(Counter()): print(cp)
261
+ m : (b -o a) : {1}
262
+ >>> for cp in GlueFormula('m', '((c -o b) -o a)').compile(Counter()): print(cp)
263
+ v1 : c : {1}
264
+ m : (b[1] -o a) : {2}
265
+ >>> for cp in GlueFormula('m', '((d -o (c -o b)) -o a)').compile(Counter()): print(cp)
266
+ v1 : c : {1}
267
+ v2 : d : {2}
268
+ m : (b[1, 2] -o a) : {3}
269
+ >>> for cp in GlueFormula('m', '((d -o e) -o ((c -o b) -o a))').compile(Counter()): print(cp)
270
+ v1 : d : {1}
271
+ v2 : c : {2}
272
+ m : (e[1] -o (b[2] -o a)) : {3}
273
+ >>> for cp in GlueFormula('m', '(((d -o c) -o b) -o a)').compile(Counter()): print(cp)
274
+ v1 : (d -o c) : {1}
275
+ m : (b[1] -o a) : {2}
276
+ >>> for cp in GlueFormula('m', '((((e -o d) -o c) -o b) -o a)').compile(Counter()): print(cp)
277
+ v1 : e : {1}
278
+ v2 : (d[1] -o c) : {2}
279
+ m : (b[2] -o a) : {3}
280
+
281
+
282
+ Demo of 'a man walks' using Compilation
283
+ ---------------------------------------
284
+
285
+ Premises
286
+
287
+ >>> a = GlueFormula('\\P Q.some x.(P(x) and Q(x))', '((gv -o gr) -o ((g -o G) -o G))')
288
+ >>> print(a)
289
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G) -o G))
290
+
291
+ >>> man = GlueFormula('\\x.man(x)', '(gv -o gr)')
292
+ >>> print(man)
293
+ \x.man(x) : (gv -o gr)
294
+
295
+ >>> walks = GlueFormula('\\x.walks(x)', '(g -o f)')
296
+ >>> print(walks)
297
+ \x.walks(x) : (g -o f)
298
+
299
+ Compiled Premises:
300
+
301
+ >>> counter = Counter()
302
+ >>> ahc = a.compile(counter)
303
+ >>> g1 = ahc[0]
304
+ >>> print(g1)
305
+ v1 : gv : {1}
306
+ >>> g2 = ahc[1]
307
+ >>> print(g2)
308
+ v2 : g : {2}
309
+ >>> g3 = ahc[2]
310
+ >>> print(g3)
311
+ \P Q.exists x.(P(x) & Q(x)) : (gr[1] -o (G[2] -o G)) : {3}
312
+ >>> g4 = man.compile(counter)[0]
313
+ >>> print(g4)
314
+ \x.man(x) : (gv -o gr) : {4}
315
+ >>> g5 = walks.compile(counter)[0]
316
+ >>> print(g5)
317
+ \x.walks(x) : (g -o f) : {5}
318
+
319
+ Derivation:
320
+
321
+ >>> g14 = g4.applyto(g1)
322
+ >>> print(g14.simplify())
323
+ man(v1) : gr : {1, 4}
324
+ >>> g134 = g3.applyto(g14)
325
+ >>> print(g134.simplify())
326
+ \Q.exists x.(man(x) & Q(x)) : (G[2] -o G) : {1, 3, 4}
327
+ >>> g25 = g5.applyto(g2)
328
+ >>> print(g25.simplify())
329
+ walks(v2) : f : {2, 5}
330
+ >>> g12345 = g134.applyto(g25)
331
+ >>> print(g12345.simplify())
332
+ exists x.(man(x) & walks(x)) : f : {1, 2, 3, 4, 5}
333
+
334
+ ---------------------------------
335
+ Dependency Graph to Glue Formulas
336
+ ---------------------------------
337
+ >>> from nltk.corpus.reader.dependency import DependencyGraph
338
+
339
+ >>> depgraph = DependencyGraph("""1 John _ NNP NNP _ 2 SUBJ _ _
340
+ ... 2 sees _ VB VB _ 0 ROOT _ _
341
+ ... 3 a _ ex_quant ex_quant _ 4 SPEC _ _
342
+ ... 4 dog _ NN NN _ 2 OBJ _ _
343
+ ... """)
344
+ >>> gfl = GlueDict('nltk:grammars/sample_grammars/glue.semtype').to_glueformula_list(depgraph)
345
+ >>> print(gfl) # doctest: +SKIP
346
+ [\x y.sees(x,y) : (f -o (i -o g)),
347
+ \x.dog(x) : (iv -o ir),
348
+ \P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I3) -o I3)),
349
+ \P Q.exists x.(P(x) & Q(x)) : ((fv -o fr) -o ((f -o F4) -o F4)),
350
+ \x.John(x) : (fv -o fr)]
351
+ >>> glue = Glue()
352
+ >>> for r in sorted([r.simplify().normalize() for r in glue.get_readings(glue.gfl_to_compiled(gfl))], key=str):
353
+ ... print(r)
354
+ exists z1.(John(z1) & exists z2.(dog(z2) & sees(z1,z2)))
355
+ exists z1.(dog(z1) & exists z2.(John(z2) & sees(z2,z1)))
356
+
357
+ -----------------------------------
358
+ Dependency Graph to LFG f-structure
359
+ -----------------------------------
360
+ >>> from nltk.sem.lfg import FStructure
361
+
362
+ >>> fstruct = FStructure.read_depgraph(depgraph)
363
+
364
+ >>> print(fstruct) # doctest: +SKIP
365
+ f:[pred 'sees'
366
+ obj h:[pred 'dog'
367
+ spec 'a']
368
+ subj g:[pred 'John']]
369
+
370
+ >>> fstruct.to_depgraph().tree().pprint()
371
+ (sees (dog a) John)
372
+
373
+ ---------------------------------
374
+ LFG f-structure to Glue
375
+ ---------------------------------
376
+ >>> fstruct.to_glueformula_list(GlueDict('nltk:grammars/sample_grammars/glue.semtype')) # doctest: +SKIP
377
+ [\x y.sees(x,y) : (i -o (g -o f)),
378
+ \x.dog(x) : (gv -o gr),
379
+ \P Q.exists x.(P(x) & Q(x)) : ((gv -o gr) -o ((g -o G3) -o G3)),
380
+ \P Q.exists x.(P(x) & Q(x)) : ((iv -o ir) -o ((i -o I4) -o I4)),
381
+ \x.John(x) : (iv -o ir)]
382
+
383
+ .. see gluesemantics_malt.doctest for more
venv/lib/python3.10/site-packages/nltk/test/gluesemantics_malt.doctest ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ .. see also: gluesemantics.doctest
5
+
6
+ ==============================================================================
7
+ Glue Semantics
8
+ ==============================================================================
9
+
10
+ >>> from nltk.test.gluesemantics_malt_fixt import setup_module
11
+ >>> setup_module()
12
+
13
+ >>> from nltk.sem.glue import *
14
+ >>> nltk.sem.logic._counter._value = 0
15
+
16
+ --------------------------------
17
+ Initialize the Dependency Parser
18
+ --------------------------------
19
+ >>> from nltk.parse.malt import MaltParser
20
+
21
+ >>> tagger = RegexpTagger(
22
+ ... [('^(John|Mary)$', 'NNP'),
23
+ ... ('^(sees|chases)$', 'VB'),
24
+ ... ('^(a)$', 'ex_quant'),
25
+ ... ('^(every)$', 'univ_quant'),
26
+ ... ('^(girl|dog)$', 'NN')
27
+ ... ]).tag
28
+ >>> depparser = MaltParser(tagger=tagger)
29
+
30
+ --------------------
31
+ Automated Derivation
32
+ --------------------
33
+ >>> glue = Glue(depparser=depparser)
34
+ >>> readings = glue.parse_to_meaning('every girl chases a dog'.split())
35
+ >>> for reading in sorted([r.simplify().normalize() for r in readings], key=str):
36
+ ... print(reading.normalize())
37
+ all z1.(girl(z1) -> exists z2.(dog(z2) & chases(z1,z2)))
38
+ exists z1.(dog(z1) & all z2.(girl(z2) -> chases(z2,z1)))
39
+
40
+ >>> drtglue = DrtGlue(depparser=depparser)
41
+ >>> readings = drtglue.parse_to_meaning('every girl chases a dog'.split())
42
+ >>> for reading in sorted([r.simplify().normalize() for r in readings], key=str):
43
+ ... print(reading)
44
+ ([],[(([z1],[girl(z1)]) -> ([z2],[dog(z2), chases(z1,z2)]))])
45
+ ([z1],[dog(z1), (([z2],[girl(z2)]) -> ([],[chases(z2,z1)]))])
46
+
47
+ --------------
48
+ With inference
49
+ --------------
50
+
51
+ Checking for equality of two DRSs is very useful when generating readings of a sentence.
52
+ For example, the ``glue`` module generates two readings for the sentence
53
+ *John sees Mary*:
54
+
55
+ >>> from nltk.sem.glue import DrtGlue
56
+ >>> readings = drtglue.parse_to_meaning('John sees Mary'.split())
57
+ >>> for drs in sorted([r.simplify().normalize() for r in readings], key=str):
58
+ ... print(drs)
59
+ ([z1,z2],[John(z1), Mary(z2), sees(z1,z2)])
60
+ ([z1,z2],[Mary(z1), John(z2), sees(z2,z1)])
61
+
62
+ However, it is easy to tell that these two readings are logically the
63
+ same, and therefore one of them is superfluous. We can use the theorem prover
64
+ to determine this equivalence, and then delete one of them. A particular
65
+ theorem prover may be specified, or the argument may be left off to use the
66
+ default.
67
+
68
+ >>> readings[0].equiv(readings[1])
69
+ True
venv/lib/python3.10/site-packages/nltk/test/gluesemantics_malt_fixt.py ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ def setup_module():
2
+ import pytest
3
+
4
+ from nltk.parse.malt import MaltParser
5
+
6
+ try:
7
+ depparser = MaltParser()
8
+ except (AssertionError, LookupError) as e:
9
+ pytest.skip("MaltParser is not available")
venv/lib/python3.10/site-packages/nltk/test/grammar.doctest ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ===============
5
+ Grammar Parsing
6
+ ===============
7
+
8
+ Grammars can be parsed from strings:
9
+
10
+ >>> from nltk import CFG
11
+ >>> grammar = CFG.fromstring("""
12
+ ... S -> NP VP
13
+ ... PP -> P NP
14
+ ... NP -> Det N | NP PP
15
+ ... VP -> V NP | VP PP
16
+ ... Det -> 'a' | 'the'
17
+ ... N -> 'dog' | 'cat'
18
+ ... V -> 'chased' | 'sat'
19
+ ... P -> 'on' | 'in'
20
+ ... """)
21
+ >>> grammar
22
+ <Grammar with 14 productions>
23
+ >>> grammar.start()
24
+ S
25
+ >>> grammar.productions()
26
+ [S -> NP VP, PP -> P NP, NP -> Det N, NP -> NP PP, VP -> V NP, VP -> VP PP,
27
+ Det -> 'a', Det -> 'the', N -> 'dog', N -> 'cat', V -> 'chased', V -> 'sat',
28
+ P -> 'on', P -> 'in']
29
+
30
+ Probabilistic CFGs:
31
+
32
+ >>> from nltk import PCFG
33
+ >>> toy_pcfg1 = PCFG.fromstring("""
34
+ ... S -> NP VP [1.0]
35
+ ... NP -> Det N [0.5] | NP PP [0.25] | 'John' [0.1] | 'I' [0.15]
36
+ ... Det -> 'the' [0.8] | 'my' [0.2]
37
+ ... N -> 'man' [0.5] | 'telescope' [0.5]
38
+ ... VP -> VP PP [0.1] | V NP [0.7] | V [0.2]
39
+ ... V -> 'ate' [0.35] | 'saw' [0.65]
40
+ ... PP -> P NP [1.0]
41
+ ... P -> 'with' [0.61] | 'under' [0.39]
42
+ ... """)
43
+
44
+ Chomsky Normal Form grammar (Test for bug 474)
45
+
46
+ >>> g = CFG.fromstring("VP^<TOP> -> VBP NP^<VP-TOP>")
47
+ >>> g.productions()[0].lhs()
48
+ VP^<TOP>
49
+
50
+ Grammars can contain both empty strings and empty productions:
51
+
52
+ >>> from nltk.grammar import CFG
53
+ >>> from nltk.parse.generate import generate
54
+ >>> grammar = CFG.fromstring("""
55
+ ... S -> A B
56
+ ... A -> 'a'
57
+ ... # An empty string:
58
+ ... B -> 'b' | ''
59
+ ... """)
60
+ >>> list(generate(grammar))
61
+ [['a', 'b'], ['a', '']]
62
+ >>> grammar = CFG.fromstring("""
63
+ ... S -> A B
64
+ ... A -> 'a'
65
+ ... # An empty production:
66
+ ... B -> 'b' |
67
+ ... """)
68
+ >>> list(generate(grammar))
69
+ [['a', 'b'], ['a']]
venv/lib/python3.10/site-packages/nltk/test/grammartestsuites.doctest ADDED
@@ -0,0 +1,109 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==========================
5
+ Test Suites for Grammars
6
+ ==========================
7
+
8
+ Sentences in the test suite are divided into two classes:
9
+
10
+ - grammatical (*accept*) and
11
+ - ungrammatical (*reject*).
12
+
13
+ If a sentence should parse according to the grammar, the value of
14
+ ``trees`` will be a non-empty list. If a sentence should be rejected
15
+ according to the grammar, then the value of ``trees`` will be ``None``.
16
+
17
+ >>> from nltk.parse import TestGrammar
18
+ >>> germantest1 = {}
19
+ >>> germantest1['doc'] = "Tests for person agreement"
20
+ >>> germantest1['accept'] = [
21
+ ... 'ich komme',
22
+ ... 'ich sehe mich',
23
+ ... 'du kommst',
24
+ ... 'du siehst mich',
25
+ ... 'sie kommt',
26
+ ... 'sie sieht mich',
27
+ ... 'ihr kommt',
28
+ ... 'wir kommen',
29
+ ... 'sie kommen',
30
+ ... 'du magst mich',
31
+ ... 'er mag mich',
32
+ ... 'du folgst mir',
33
+ ... 'sie hilft mir',
34
+ ... ]
35
+ >>> germantest1['reject'] = [
36
+ ... 'ich kommt',
37
+ ... 'ich kommst',
38
+ ... 'ich siehst mich',
39
+ ... 'du komme',
40
+ ... 'du sehe mich',
41
+ ... 'du kommt',
42
+ ... 'er komme',
43
+ ... 'er siehst mich',
44
+ ... 'wir komme',
45
+ ... 'wir kommst',
46
+ ... 'die Katzen kommst',
47
+ ... 'sie komme',
48
+ ... 'sie kommst',
49
+ ... 'du mag mich',
50
+ ... 'er magst mich',
51
+ ... 'du folgt mir',
52
+ ... 'sie hilfst mir',
53
+ ... ]
54
+ >>> germantest2 = {}
55
+ >>> germantest2['doc'] = "Tests for number agreement"
56
+ >>> germantest2['accept'] = [
57
+ ... 'der Hund kommt',
58
+ ... 'die Hunde kommen',
59
+ ... 'ich komme',
60
+ ... 'wir kommen',
61
+ ... 'ich sehe die Katzen',
62
+ ... 'ich folge den Katzen',
63
+ ... 'ich sehe die Katzen',
64
+ ... 'ich folge den Katzen',
65
+ ... 'wir sehen die Katzen',
66
+ ... 'wir folgen den Katzen'
67
+ ... ]
68
+ >>> germantest2['reject'] = [
69
+ ... 'ich kommen',
70
+ ... 'wir komme',
71
+ ... 'der Hunde kommt',
72
+ ... 'der Hunde kommen',
73
+ ... 'die Katzen kommt',
74
+ ... 'ich sehe der Hunde',
75
+ ... 'ich folge den Hund',
76
+ ... 'ich sehen der Hunde',
77
+ ... 'ich folgen den Hund',
78
+ ... 'wir sehe die Katzen',
79
+ ... 'wir folge den Katzen'
80
+ ... ]
81
+ >>> germantest3 = {}
82
+ >>> germantest3['doc'] = "Tests for case government and subcategorization"
83
+ >>> germantest3['accept'] = [
84
+ ... 'der Hund sieht mich',
85
+ ... 'der Hund kommt',
86
+ ... 'ich sehe den Hund',
87
+ ... 'ich helfe dem Hund',
88
+ ... ]
89
+ >>> germantest3['reject'] = [
90
+ ... 'ich sehe',
91
+ ... 'ich helfe',
92
+ ... 'ich komme den Hund',
93
+ ... 'ich sehe den Hund die Katzen',
94
+ ... 'du hilfst mich',
95
+ ... 'du siehst mir',
96
+ ... 'du siehst ich',
97
+ ... 'der Hunde kommt mich',
98
+ ... 'die Hunde sehe die Hunde',
99
+ ... 'der Hund sehe die Hunde',
100
+ ... 'ich hilft den Hund',
101
+ ... 'ich hilft der Hund',
102
+ ... 'ich sehe dem Hund',
103
+ ... ]
104
+ >>> germantestsuites = [germantest1, germantest2, germantest3]
105
+ >>> tester = TestGrammar('grammars/book_grammars/german.fcfg', germantestsuites)
106
+ >>> tester.run()
107
+ Tests for person agreement: All tests passed!
108
+ Tests for number agreement: All tests passed!
109
+ Tests for case government and subcategorization: All tests passed!
venv/lib/python3.10/site-packages/nltk/test/index.doctest ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ .. _align howto: align.html
5
+ .. _ccg howto: ccg.html
6
+ .. _chat80 howto: chat80.html
7
+ .. _childes howto: childes.html
8
+ .. _chunk howto: chunk.html
9
+ .. _classify howto: classify.html
10
+ .. _collocations howto: collocations.html
11
+ .. _compat howto: compat.html
12
+ .. _corpus howto: corpus.html
13
+ .. _data howto: data.html
14
+ .. _dependency howto: dependency.html
15
+ .. _discourse howto: discourse.html
16
+ .. _drt howto: drt.html
17
+ .. _featgram howto: featgram.html
18
+ .. _featstruct howto: featstruct.html
19
+ .. _framenet howto: framenet.html
20
+ .. _generate howto: generate.html
21
+ .. _gluesemantics howto: gluesemantics.html
22
+ .. _gluesemantics_malt howto: gluesemantics_malt.html
23
+ .. _grammar howto: grammar.html
24
+ .. _grammartestsuites howto: grammartestsuites.html
25
+ .. _index howto: index.html
26
+ .. _inference howto: inference.html
27
+ .. _internals howto: internals.html
28
+ .. _japanese howto: japanese.html
29
+ .. _logic howto: logic.html
30
+ .. _metrics howto: metrics.html
31
+ .. _misc howto: misc.html
32
+ .. _nonmonotonic howto: nonmonotonic.html
33
+ .. _parse howto: parse.html
34
+ .. _portuguese_en howto: portuguese_en.html
35
+ .. _probability howto: probability.html
36
+ .. _propbank howto: propbank.html
37
+ .. _relextract howto: relextract.html
38
+ .. _resolution howto: resolution.html
39
+ .. _semantics howto: semantics.html
40
+ .. _simple howto: simple.html
41
+ .. _stem howto: stem.html
42
+ .. _tag howto: tag.html
43
+ .. _tokenize howto: tokenize.html
44
+ .. _toolbox howto: toolbox.html
45
+ .. _tree howto: tree.html
46
+ .. _treetransforms howto: treetransforms.html
47
+ .. _util howto: util.html
48
+ .. _wordnet howto: wordnet.html
49
+ .. _wordnet_lch howto: wordnet_lch.html
50
+
51
+ ===========
52
+ NLTK HOWTOs
53
+ ===========
54
+
55
+ * `align HOWTO`_
56
+ * `ccg HOWTO`_
57
+ * `chat80 HOWTO`_
58
+ * `childes HOWTO`_
59
+ * `chunk HOWTO`_
60
+ * `classify HOWTO`_
61
+ * `collocations HOWTO`_
62
+ * `compat HOWTO`_
63
+ * `corpus HOWTO`_
64
+ * `data HOWTO`_
65
+ * `dependency HOWTO`_
66
+ * `discourse HOWTO`_
67
+ * `drt HOWTO`_
68
+ * `featgram HOWTO`_
69
+ * `featstruct HOWTO`_
70
+ * `framenet HOWTO`_
71
+ * `generate HOWTO`_
72
+ * `gluesemantics HOWTO`_
73
+ * `gluesemantics_malt HOWTO`_
74
+ * `grammar HOWTO`_
75
+ * `grammartestsuites HOWTO`_
76
+ * `index HOWTO`_
77
+ * `inference HOWTO`_
78
+ * `internals HOWTO`_
79
+ * `japanese HOWTO`_
80
+ * `logic HOWTO`_
81
+ * `metrics HOWTO`_
82
+ * `misc HOWTO`_
83
+ * `nonmonotonic HOWTO`_
84
+ * `parse HOWTO`_
85
+ * `portuguese_en HOWTO`_
86
+ * `probability HOWTO`_
87
+ * `propbank HOWTO`_
88
+ * `relextract HOWTO`_
89
+ * `resolution HOWTO`_
90
+ * `semantics HOWTO`_
91
+ * `simple HOWTO`_
92
+ * `stem HOWTO`_
93
+ * `tag HOWTO`_
94
+ * `tokenize HOWTO`_
95
+ * `toolbox HOWTO`_
96
+ * `tree HOWTO`_
97
+ * `treetransforms HOWTO`_
98
+ * `util HOWTO`_
99
+ * `wordnet HOWTO`_
100
+ * `wordnet_lch HOWTO`_
venv/lib/python3.10/site-packages/nltk/test/inference.doctest ADDED
@@ -0,0 +1,536 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ====================================
5
+ Logical Inference and Model Building
6
+ ====================================
7
+
8
+ >>> from nltk.test.setup_fixt import check_binary
9
+ >>> check_binary('mace4')
10
+
11
+ >>> from nltk import *
12
+ >>> from nltk.sem.drt import DrtParser
13
+ >>> from nltk.sem import logic
14
+ >>> logic._counter._value = 0
15
+
16
+ ------------
17
+ Introduction
18
+ ------------
19
+
20
+ Within the area of automated reasoning, first order theorem proving
21
+ and model building (or model generation) have both received much
22
+ attention, and have given rise to highly sophisticated techniques. We
23
+ focus therefore on providing an NLTK interface to third party tools
24
+ for these tasks. In particular, the module ``nltk.inference`` can be
25
+ used to access both theorem provers and model builders.
26
+
27
+ ---------------------------------
28
+ NLTK Interface to Theorem Provers
29
+ ---------------------------------
30
+
31
+ The main class used to interface with a theorem prover is the ``Prover``
32
+ class, found in ``nltk.api``. The ``prove()`` method takes three optional
33
+ arguments: a goal, a list of assumptions, and a ``verbose`` boolean to
34
+ indicate whether the proof should be printed to the console. The proof goal
35
+ and any assumptions need to be instances of the ``Expression`` class
36
+ specified by ``nltk.sem.logic``. There are currently three theorem provers
37
+ included with NLTK: ``Prover9``, ``TableauProver``, and
38
+ ``ResolutionProver``. The first is an off-the-shelf prover, while the other
39
+ two are written in Python and included in the ``nltk.inference`` package.
40
+
41
+ >>> from nltk.sem import Expression
42
+ >>> read_expr = Expression.fromstring
43
+ >>> p1 = read_expr('man(socrates)')
44
+ >>> p2 = read_expr('all x.(man(x) -> mortal(x))')
45
+ >>> c = read_expr('mortal(socrates)')
46
+ >>> Prover9().prove(c, [p1,p2])
47
+ True
48
+ >>> TableauProver().prove(c, [p1,p2])
49
+ True
50
+ >>> ResolutionProver().prove(c, [p1,p2], verbose=True)
51
+ [1] {-mortal(socrates)} A
52
+ [2] {man(socrates)} A
53
+ [3] {-man(z2), mortal(z2)} A
54
+ [4] {-man(socrates)} (1, 3)
55
+ [5] {mortal(socrates)} (2, 3)
56
+ [6] {} (1, 5)
57
+ <BLANKLINE>
58
+ True
59
+
60
+ ---------------------
61
+ The ``ProverCommand``
62
+ ---------------------
63
+
64
+ A ``ProverCommand`` is a stateful holder for a theorem
65
+ prover. The command stores a theorem prover instance (of type ``Prover``),
66
+ a goal, a list of assumptions, the result of the proof, and a string version
67
+ of the entire proof. Corresponding to the three included ``Prover``
68
+ implementations, there are three ``ProverCommand`` implementations:
69
+ ``Prover9Command``, ``TableauProverCommand``, and
70
+ ``ResolutionProverCommand``.
71
+
72
+ The ``ProverCommand``'s constructor takes its goal and assumptions. The
73
+ ``prove()`` command executes the ``Prover`` and ``proof()``
74
+ returns a String form of the proof
75
+ If the ``prove()`` method has not been called,
76
+ then the prover command will be unable to display a proof.
77
+
78
+ >>> prover = ResolutionProverCommand(c, [p1,p2])
79
+ >>> print(prover.proof())
80
+ Traceback (most recent call last):
81
+ File "...", line 1212, in __run
82
+ compileflags, 1) in test.globs
83
+ File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
84
+ File "...", line ..., in proof
85
+ raise LookupError("You have to call prove() first to get a proof!")
86
+ LookupError: You have to call prove() first to get a proof!
87
+ >>> prover.prove()
88
+ True
89
+ >>> print(prover.proof())
90
+ [1] {-mortal(socrates)} A
91
+ [2] {man(socrates)} A
92
+ [3] {-man(z4), mortal(z4)} A
93
+ [4] {-man(socrates)} (1, 3)
94
+ [5] {mortal(socrates)} (2, 3)
95
+ [6] {} (1, 5)
96
+ <BLANKLINE>
97
+
98
+ The prover command stores the result of proving so that if ``prove()`` is
99
+ called again, then the command can return the result without executing the
100
+ prover again. This allows the user to access the result of the proof without
101
+ wasting time re-computing what it already knows.
102
+
103
+ >>> prover.prove()
104
+ True
105
+ >>> prover.prove()
106
+ True
107
+
108
+ The assumptions and goal may be accessed using the ``assumptions()`` and
109
+ ``goal()`` methods, respectively.
110
+
111
+ >>> prover.assumptions()
112
+ [<ApplicationExpression man(socrates)>, <AllExpression all x.(man(x) -> mortal(x))>]
113
+ >>> prover.goal()
114
+ <ApplicationExpression mortal(socrates)>
115
+
116
+ The assumptions list may be modified using the ``add_assumptions()`` and
117
+ ``retract_assumptions()`` methods. Both methods take a list of ``Expression``
118
+ objects. Since adding or removing assumptions may change the result of the
119
+ proof, the stored result is cleared when either of these methods are called.
120
+ That means that ``proof()`` will be unavailable until ``prove()`` is called and
121
+ a call to ``prove()`` will execute the theorem prover.
122
+
123
+ >>> prover.retract_assumptions([read_expr('man(socrates)')])
124
+ >>> print(prover.proof())
125
+ Traceback (most recent call last):
126
+ File "...", line 1212, in __run
127
+ compileflags, 1) in test.globs
128
+ File "<doctest nltk/test/inference.doctest[10]>", line 1, in <module>
129
+ File "...", line ..., in proof
130
+ raise LookupError("You have to call prove() first to get a proof!")
131
+ LookupError: You have to call prove() first to get a proof!
132
+ >>> prover.prove()
133
+ False
134
+ >>> print(prover.proof())
135
+ [1] {-mortal(socrates)} A
136
+ [2] {-man(z6), mortal(z6)} A
137
+ [3] {-man(socrates)} (1, 2)
138
+ <BLANKLINE>
139
+ >>> prover.add_assumptions([read_expr('man(socrates)')])
140
+ >>> prover.prove()
141
+ True
142
+
143
+ -------
144
+ Prover9
145
+ -------
146
+
147
+ Prover9 Installation
148
+ ~~~~~~~~~~~~~~~~~~~~
149
+
150
+ You can download Prover9 from https://www.cs.unm.edu/~mccune/prover9/.
151
+
152
+ Extract the source code into a suitable directory and follow the
153
+ instructions in the Prover9 ``README.make`` file to compile the executables.
154
+ Install these into an appropriate location; the
155
+ ``prover9_search`` variable is currently configured to look in the
156
+ following locations:
157
+
158
+ >>> p = Prover9()
159
+ >>> p.binary_locations()
160
+ ['/usr/local/bin/prover9',
161
+ '/usr/local/bin/prover9/bin',
162
+ '/usr/local/bin',
163
+ '/usr/bin',
164
+ '/usr/local/prover9',
165
+ '/usr/local/share/prover9']
166
+
167
+ Alternatively, the environment variable ``PROVER9HOME`` may be configured with
168
+ the binary's location.
169
+
170
+ The path to the correct directory can be set manually in the following
171
+ manner:
172
+
173
+ >>> config_prover9(path='/usr/local/bin') # doctest: +SKIP
174
+ [Found prover9: /usr/local/bin/prover9]
175
+
176
+ If the executables cannot be found, ``Prover9`` will issue a warning message:
177
+
178
+ >>> p.prove() # doctest: +SKIP
179
+ Traceback (most recent call last):
180
+ ...
181
+ LookupError:
182
+ ===========================================================================
183
+ NLTK was unable to find the prover9 executable! Use config_prover9() or
184
+ set the PROVER9HOME environment variable.
185
+ <BLANKLINE>
186
+ >> config_prover9('/path/to/prover9')
187
+ <BLANKLINE>
188
+ For more information, on prover9, see:
189
+ <https://www.cs.unm.edu/~mccune/prover9/>
190
+ ===========================================================================
191
+
192
+
193
+ Using Prover9
194
+ ~~~~~~~~~~~~~
195
+
196
+ The general case in theorem proving is to determine whether ``S |- g``
197
+ holds, where ``S`` is a possibly empty set of assumptions, and ``g``
198
+ is a proof goal.
199
+
200
+ As mentioned earlier, NLTK input to ``Prover9`` must be
201
+ ``Expression``\ s of ``nltk.sem.logic``. A ``Prover9`` instance is
202
+ initialized with a proof goal and, possibly, some assumptions. The
203
+ ``prove()`` method attempts to find a proof of the goal, given the
204
+ list of assumptions (in this case, none).
205
+
206
+ >>> goal = read_expr('(man(x) <-> --man(x))')
207
+ >>> prover = Prover9Command(goal)
208
+ >>> prover.prove()
209
+ True
210
+
211
+ Given a ``ProverCommand`` instance ``prover``, the method
212
+ ``prover.proof()`` will return a String of the extensive proof information
213
+ provided by Prover9, shown in abbreviated form here::
214
+
215
+ ============================== Prover9 ===============================
216
+ Prover9 (32) version ...
217
+ Process ... was started by ... on ...
218
+ ...
219
+ The command was ".../prover9 -f ...".
220
+ ============================== end of head ===========================
221
+
222
+ ============================== INPUT =================================
223
+
224
+ % Reading from file /var/...
225
+
226
+
227
+ formulas(goals).
228
+ (all x (man(x) -> man(x))).
229
+ end_of_list.
230
+
231
+ ...
232
+ ============================== end of search =========================
233
+
234
+ THEOREM PROVED
235
+
236
+ Exiting with 1 proof.
237
+
238
+ Process 6317 exit (max_proofs) Mon Jan 21 15:23:28 2008
239
+
240
+
241
+ As mentioned earlier, we may want to list some assumptions for
242
+ the proof, as shown here.
243
+
244
+ >>> g = read_expr('mortal(socrates)')
245
+ >>> a1 = read_expr('all x.(man(x) -> mortal(x))')
246
+ >>> prover = Prover9Command(g, assumptions=[a1])
247
+ >>> prover.print_assumptions()
248
+ all x.(man(x) -> mortal(x))
249
+
250
+ However, the assumptions are not sufficient to derive the goal:
251
+
252
+ >>> print(prover.prove())
253
+ False
254
+
255
+ So let's add another assumption:
256
+
257
+ >>> a2 = read_expr('man(socrates)')
258
+ >>> prover.add_assumptions([a2])
259
+ >>> prover.print_assumptions()
260
+ all x.(man(x) -> mortal(x))
261
+ man(socrates)
262
+ >>> print(prover.prove())
263
+ True
264
+
265
+ We can also show the assumptions in ``Prover9`` format.
266
+
267
+ >>> prover.print_assumptions(output_format='Prover9')
268
+ all x (man(x) -> mortal(x))
269
+ man(socrates)
270
+
271
+ >>> prover.print_assumptions(output_format='Spass')
272
+ Traceback (most recent call last):
273
+ . . .
274
+ NameError: Unrecognized value for 'output_format': Spass
275
+
276
+ Assumptions can be retracted from the list of assumptions.
277
+
278
+ >>> prover.retract_assumptions([a1])
279
+ >>> prover.print_assumptions()
280
+ man(socrates)
281
+ >>> prover.retract_assumptions([a1])
282
+
283
+ Statements can be loaded from a file and parsed. We can then add these
284
+ statements as new assumptions.
285
+
286
+ >>> g = read_expr('all x.(boxer(x) -> -boxerdog(x))')
287
+ >>> prover = Prover9Command(g)
288
+ >>> prover.prove()
289
+ False
290
+ >>> import nltk.data
291
+ >>> new = nltk.data.load('grammars/sample_grammars/background0.fol')
292
+ >>> for a in new:
293
+ ... print(a)
294
+ all x.(boxerdog(x) -> dog(x))
295
+ all x.(boxer(x) -> person(x))
296
+ all x.-(dog(x) & person(x))
297
+ exists x.boxer(x)
298
+ exists x.boxerdog(x)
299
+ >>> prover.add_assumptions(new)
300
+ >>> print(prover.prove())
301
+ True
302
+ >>> print(prover.proof())
303
+ ============================== prooftrans ============================
304
+ Prover9 (...) version ...
305
+ Process ... was started by ... on ...
306
+ ...
307
+ The command was ".../prover9".
308
+ ============================== end of head ===========================
309
+ <BLANKLINE>
310
+ ============================== end of input ==========================
311
+ <BLANKLINE>
312
+ ============================== PROOF =================================
313
+ <BLANKLINE>
314
+ % -------- Comments from original proof --------
315
+ % Proof 1 at ... seconds.
316
+ % Length of proof is 13.
317
+ % Level of proof is 4.
318
+ % Maximum clause weight is 0.
319
+ % Given clauses 0.
320
+ <BLANKLINE>
321
+ 1 (all x (boxerdog(x) -> dog(x))). [assumption].
322
+ 2 (all x (boxer(x) -> person(x))). [assumption].
323
+ 3 (all x -(dog(x) & person(x))). [assumption].
324
+ 6 (all x (boxer(x) -> -boxerdog(x))). [goal].
325
+ 8 -boxerdog(x) | dog(x). [clausify(1)].
326
+ 9 boxerdog(c3). [deny(6)].
327
+ 11 -boxer(x) | person(x). [clausify(2)].
328
+ 12 boxer(c3). [deny(6)].
329
+ 14 -dog(x) | -person(x). [clausify(3)].
330
+ 15 dog(c3). [resolve(9,a,8,a)].
331
+ 18 person(c3). [resolve(12,a,11,a)].
332
+ 19 -person(c3). [resolve(15,a,14,a)].
333
+ 20 $F. [resolve(19,a,18,a)].
334
+ <BLANKLINE>
335
+ ============================== end of proof ==========================
336
+
337
+ ----------------------
338
+ The equiv() method
339
+ ----------------------
340
+
341
+ One application of the theorem prover functionality is to check if
342
+ two Expressions have the same meaning.
343
+ The ``equiv()`` method calls a theorem prover to determine whether two
344
+ Expressions are logically equivalent.
345
+
346
+ >>> a = read_expr(r'exists x.(man(x) & walks(x))')
347
+ >>> b = read_expr(r'exists x.(walks(x) & man(x))')
348
+ >>> print(a.equiv(b))
349
+ True
350
+
351
+ The same method can be used on Discourse Representation Structures (DRSs).
352
+ In this case, each DRS is converted to a first order logic form, and then
353
+ passed to the theorem prover.
354
+
355
+ >>> dp = DrtParser()
356
+ >>> a = dp.parse(r'([x],[man(x), walks(x)])')
357
+ >>> b = dp.parse(r'([x],[walks(x), man(x)])')
358
+ >>> print(a.equiv(b))
359
+ True
360
+
361
+
362
+ --------------------------------
363
+ NLTK Interface to Model Builders
364
+ --------------------------------
365
+
366
+ The top-level to model builders is parallel to that for
367
+ theorem-provers. The ``ModelBuilder`` interface is located
368
+ in ``nltk.inference.api``. It is currently only implemented by
369
+ ``Mace``, which interfaces with the Mace4 model builder.
370
+
371
+ Typically we use a model builder to show that some set of formulas has
372
+ a model, and is therefore consistent. One way of doing this is by
373
+ treating our candidate set of sentences as assumptions, and leaving
374
+ the goal unspecified.
375
+ Thus, the following interaction shows how both ``{a, c1}`` and ``{a, c2}``
376
+ are consistent sets, since Mace succeeds in a building a
377
+ model for each of them, while ``{c1, c2}`` is inconsistent.
378
+
379
+ >>> a3 = read_expr('exists x.(man(x) and walks(x))')
380
+ >>> c1 = read_expr('mortal(socrates)')
381
+ >>> c2 = read_expr('-mortal(socrates)')
382
+ >>> mace = Mace()
383
+ >>> print(mace.build_model(None, [a3, c1]))
384
+ True
385
+ >>> print(mace.build_model(None, [a3, c2]))
386
+ True
387
+
388
+ We can also use the model builder as an adjunct to theorem prover.
389
+ Let's suppose we are trying to prove ``S |- g``, i.e. that ``g``
390
+ is logically entailed by assumptions ``S = {s1, s2, ..., sn}``.
391
+ We can this same input to Mace4, and the model builder will try to
392
+ find a counterexample, that is, to show that ``g`` does *not* follow
393
+ from ``S``. So, given this input, Mace4 will try to find a model for
394
+ the set ``S' = {s1, s2, ..., sn, (not g)}``. If ``g`` fails to follow
395
+ from ``S``, then Mace4 may well return with a counterexample faster
396
+ than Prover9 concludes that it cannot find the required proof.
397
+ Conversely, if ``g`` *is* provable from ``S``, Mace4 may take a long
398
+ time unsuccessfully trying to find a counter model, and will eventually give up.
399
+
400
+ In the following example, we see that the model builder does succeed
401
+ in building a model of the assumptions together with the negation of
402
+ the goal. That is, it succeeds in finding a model
403
+ where there is a woman that every man loves; Adam is a man; Eve is a
404
+ woman; but Adam does not love Eve.
405
+
406
+ >>> a4 = read_expr('exists y. (woman(y) & all x. (man(x) -> love(x,y)))')
407
+ >>> a5 = read_expr('man(adam)')
408
+ >>> a6 = read_expr('woman(eve)')
409
+ >>> g = read_expr('love(adam,eve)')
410
+ >>> print(mace.build_model(g, [a4, a5, a6]))
411
+ True
412
+
413
+ The Model Builder will fail to find a model if the assumptions do entail
414
+ the goal. Mace will continue to look for models of ever-increasing sizes
415
+ until the end_size number is reached. By default, end_size is 500,
416
+ but it can be set manually for quicker response time.
417
+
418
+ >>> a7 = read_expr('all x.(man(x) -> mortal(x))')
419
+ >>> a8 = read_expr('man(socrates)')
420
+ >>> g2 = read_expr('mortal(socrates)')
421
+ >>> print(Mace(end_size=50).build_model(g2, [a7, a8]))
422
+ False
423
+
424
+ There is also a ``ModelBuilderCommand`` class that, like ``ProverCommand``,
425
+ stores a ``ModelBuilder``, a goal, assumptions, a result, and a model. The
426
+ only implementation in NLTK is ``MaceCommand``.
427
+
428
+
429
+ -----
430
+ Mace4
431
+ -----
432
+
433
+ Mace4 Installation
434
+ ~~~~~~~~~~~~~~~~~~
435
+
436
+ Mace4 is packaged with Prover9, and can be downloaded from the same
437
+ source, namely https://www.cs.unm.edu/~mccune/prover9/. It is installed
438
+ in the same manner as Prover9.
439
+
440
+ Using Mace4
441
+ ~~~~~~~~~~~
442
+
443
+ Check whether Mace4 can find a model.
444
+
445
+ >>> a = read_expr('(see(mary,john) & -(mary = john))')
446
+ >>> mb = MaceCommand(assumptions=[a])
447
+ >>> mb.build_model()
448
+ True
449
+
450
+ Show the model in 'tabular' format.
451
+
452
+ >>> print(mb.model(format='tabular'))
453
+ % number = 1
454
+ % seconds = 0
455
+ <BLANKLINE>
456
+ % Interpretation of size 2
457
+ <BLANKLINE>
458
+ john : 0
459
+ <BLANKLINE>
460
+ mary : 1
461
+ <BLANKLINE>
462
+ see :
463
+ | 0 1
464
+ ---+----
465
+ 0 | 0 0
466
+ 1 | 1 0
467
+ <BLANKLINE>
468
+
469
+ Show the model in 'tabular' format.
470
+
471
+ >>> print(mb.model(format='cooked'))
472
+ % number = 1
473
+ % seconds = 0
474
+ <BLANKLINE>
475
+ % Interpretation of size 2
476
+ <BLANKLINE>
477
+ john = 0.
478
+ <BLANKLINE>
479
+ mary = 1.
480
+ <BLANKLINE>
481
+ - see(0,0).
482
+ - see(0,1).
483
+ see(1,0).
484
+ - see(1,1).
485
+ <BLANKLINE>
486
+
487
+ The property ``valuation`` accesses the stored ``Valuation``.
488
+
489
+ >>> print(mb.valuation)
490
+ {'john': 'a', 'mary': 'b', 'see': {('b', 'a')}}
491
+
492
+ We can return to our earlier example and inspect the model:
493
+
494
+ >>> mb = MaceCommand(g, assumptions=[a4, a5, a6])
495
+ >>> m = mb.build_model()
496
+ >>> print(mb.model(format='cooked'))
497
+ % number = 1
498
+ % seconds = 0
499
+ <BLANKLINE>
500
+ % Interpretation of size 2
501
+ <BLANKLINE>
502
+ adam = 0.
503
+ <BLANKLINE>
504
+ eve = 0.
505
+ <BLANKLINE>
506
+ c1 = 1.
507
+ <BLANKLINE>
508
+ man(0).
509
+ - man(1).
510
+ <BLANKLINE>
511
+ woman(0).
512
+ woman(1).
513
+ <BLANKLINE>
514
+ - love(0,0).
515
+ love(0,1).
516
+ - love(1,0).
517
+ - love(1,1).
518
+ <BLANKLINE>
519
+
520
+ Here, we can see that ``adam`` and ``eve`` have been assigned the same
521
+ individual, namely ``0`` as value; ``0`` is both a man and a woman; a second
522
+ individual ``1`` is also a woman; and ``0`` loves ``1``. Thus, this is
523
+ an interpretation in which there is a woman that every man loves but
524
+ Adam doesn't love Eve.
525
+
526
+ Mace can also be used with propositional logic.
527
+
528
+ >>> p = read_expr('P')
529
+ >>> q = read_expr('Q')
530
+ >>> mb = MaceCommand(q, [p, p>-q])
531
+ >>> mb.build_model()
532
+ True
533
+ >>> mb.valuation['P']
534
+ True
535
+ >>> mb.valuation['Q']
536
+ False
venv/lib/python3.10/site-packages/nltk/test/internals.doctest ADDED
@@ -0,0 +1,161 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ .. Copyright (C) 2001-2023 NLTK Project
2
+ .. For license information, see LICENSE.TXT
3
+
4
+ ==========================================
5
+ Unit tests for the nltk.utilities module
6
+ ==========================================
7
+
8
+ overridden()
9
+ ~~~~~~~~~~~~
10
+ >>> from nltk.internals import overridden
11
+
12
+ The typical use case is in defining methods for an interface or
13
+ abstract base class, in such a way that subclasses don't have to
14
+ implement all of the methods:
15
+
16
+ >>> class EaterI(object):
17
+ ... '''Subclass must define eat() or batch_eat().'''
18
+ ... def eat(self, food):
19
+ ... if overridden(self.batch_eat):
20
+ ... return self.batch_eat([food])[0]
21
+ ... else:
22
+ ... raise NotImplementedError()
23
+ ... def batch_eat(self, foods):
24
+ ... return [self.eat(food) for food in foods]
25
+
26
+ As long as a subclass implements one method, it will be used to
27
+ perform the other method:
28
+
29
+ >>> class GoodEater1(EaterI):
30
+ ... def eat(self, food):
31
+ ... return 'yum'
32
+ >>> GoodEater1().eat('steak')
33
+ 'yum'
34
+ >>> GoodEater1().batch_eat(['steak', 'peas'])
35
+ ['yum', 'yum']
36
+
37
+ >>> class GoodEater2(EaterI):
38
+ ... def batch_eat(self, foods):
39
+ ... return ['yum' for food in foods]
40
+ >>> GoodEater2().eat('steak')
41
+ 'yum'
42
+ >>> GoodEater2().batch_eat(['steak', 'peas'])
43
+ ['yum', 'yum']
44
+
45
+ But if a subclass doesn't implement either one, then they'll get an
46
+ error when they try to call them. (nb this is better than infinite
47
+ recursion):
48
+
49
+ >>> class BadEater1(EaterI):
50
+ ... pass
51
+ >>> BadEater1().eat('steak')
52
+ Traceback (most recent call last):
53
+ . . .
54
+ NotImplementedError
55
+ >>> BadEater1().batch_eat(['steak', 'peas'])
56
+ Traceback (most recent call last):
57
+ . . .
58
+ NotImplementedError
59
+
60
+ Trying to use the abstract base class itself will also result in an
61
+ error:
62
+
63
+ >>> class EaterI(EaterI):
64
+ ... pass
65
+ >>> EaterI().eat('steak')
66
+ Traceback (most recent call last):
67
+ . . .
68
+ NotImplementedError
69
+ >>> EaterI().batch_eat(['steak', 'peas'])
70
+ Traceback (most recent call last):
71
+ . . .
72
+ NotImplementedError
73
+
74
+ It's ok to use intermediate abstract classes:
75
+
76
+ >>> class AbstractEater(EaterI):
77
+ ... pass
78
+
79
+ >>> class GoodEater3(AbstractEater):
80
+ ... def eat(self, food):
81
+ ... return 'yum'
82
+ ...
83
+ >>> GoodEater3().eat('steak')
84
+ 'yum'
85
+ >>> GoodEater3().batch_eat(['steak', 'peas'])
86
+ ['yum', 'yum']
87
+
88
+ >>> class GoodEater4(AbstractEater):
89
+ ... def batch_eat(self, foods):
90
+ ... return ['yum' for food in foods]
91
+ >>> GoodEater4().eat('steak')
92
+ 'yum'
93
+ >>> GoodEater4().batch_eat(['steak', 'peas'])
94
+ ['yum', 'yum']
95
+
96
+ >>> class BadEater2(AbstractEater):
97
+ ... pass
98
+ >>> BadEater2().eat('steak')
99
+ Traceback (most recent call last):
100
+ . . .
101
+ NotImplementedError
102
+ >>> BadEater2().batch_eat(['steak', 'peas'])
103
+ Traceback (most recent call last):
104
+ . . .
105
+ NotImplementedError
106
+
107
+ Here's some extra tests:
108
+
109
+ >>> class A(object):
110
+ ... def f(x): pass
111
+ >>> class B(A):
112
+ ... def f(x): pass
113
+ >>> class C(A): pass
114
+ >>> class D(B): pass
115
+
116
+ >>> overridden(A().f)
117
+ False
118
+ >>> overridden(B().f)
119
+ True
120
+ >>> overridden(C().f)
121
+ False
122
+ >>> overridden(D().f)
123
+ True
124
+
125
+ It works for classic classes, too:
126
+
127
+ >>> class A:
128
+ ... def f(x): pass
129
+ >>> class B(A):
130
+ ... def f(x): pass
131
+ >>> class C(A): pass
132
+ >>> class D(B): pass
133
+ >>> overridden(A().f)
134
+ False
135
+ >>> overridden(B().f)
136
+ True
137
+ >>> overridden(C().f)
138
+ False
139
+ >>> overridden(D().f)
140
+ True
141
+
142
+
143
+ read_str()
144
+ ~~~~~~~~~~~~
145
+ >>> from nltk.internals import read_str
146
+
147
+ Test valid scenarios
148
+
149
+ >>> read_str("'valid string'", 0)
150
+ ('valid string', 14)
151
+
152
+ Now test invalid scenarios
153
+
154
+ >>> read_str("should error", 0)
155
+ Traceback (most recent call last):
156
+ ...
157
+ nltk.internals.ReadError: Expected open quote at 0
158
+ >>> read_str("'should error", 0)
159
+ Traceback (most recent call last):
160
+ ...
161
+ nltk.internals.ReadError: Expected close quote at 1