Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/17.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_dataset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_reader.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_writer.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/builder.bak.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/builder.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/combine.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/data_files.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/dataset_dict.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/distributed.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/exceptions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/fingerprint.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/info.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/inspect.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/iterable_dataset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/keyhash.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/load.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/metric.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/naming.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/search.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/splits.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/streaming.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/__pycache__/table.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__init__.py +13 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/datasets_cli.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/dummy_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/env.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/run_beam.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/convert.py +195 -0
- venv/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py +156 -0
- venv/lib/python3.10/site-packages/datasets/commands/datasets_cli.py +45 -0
- venv/lib/python3.10/site-packages/datasets/commands/dummy_data.py +468 -0
- venv/lib/python3.10/site-packages/datasets/commands/env.py +41 -0
- venv/lib/python3.10/site-packages/datasets/commands/run_beam.py +168 -0
- venv/lib/python3.10/site-packages/datasets/commands/test.py +201 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__init__.py +139 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/formatting.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/jax_formatter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/np_formatter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/polars_formatter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/tf_formatter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/torch_formatter.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/formatting/formatting.py +653 -0
ckpts/universal/global_step20/zero/17.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8289f624651c26b48ff5a21d447fab47c63817b5433b361bf73f3038133ac12f
|
3 |
+
size 50332843
|
ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ba335e43797248a530e3eb0108f602b6d515f1c55ae0ec0bbc572f8f75e4cf8
|
3 |
+
size 9372
|
ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:af4d642574c5598700c678b71beb624e99a140212daab615bc5b243295baa3cb
|
3 |
+
size 9387
|
ckpts/universal/global_step20/zero/24.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:953100e3eaba559ce7382929b9d52d98680a68054aeb16930fdc0278b8db52af
|
3 |
+
size 9293
|
venv/lib/python3.10/site-packages/datasets/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.91 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_dataset.cpython-310.pyc
ADDED
Binary file (232 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_reader.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/arrow_writer.cpython-310.pyc
ADDED
Binary file (24.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/builder.bak.cpython-310.pyc
ADDED
Binary file (73.6 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/builder.cpython-310.pyc
ADDED
Binary file (78 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/combine.cpython-310.pyc
ADDED
Binary file (9.12 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/config.cpython-310.pyc
ADDED
Binary file (6.79 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/data_files.cpython-310.pyc
ADDED
Binary file (28.1 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/dataset_dict.cpython-310.pyc
ADDED
Binary file (98.9 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/distributed.cpython-310.pyc
ADDED
Binary file (1.69 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/exceptions.cpython-310.pyc
ADDED
Binary file (3.55 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/fingerprint.cpython-310.pyc
ADDED
Binary file (17.7 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/info.cpython-310.pyc
ADDED
Binary file (22.9 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/inspect.cpython-310.pyc
ADDED
Binary file (23.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/iterable_dataset.cpython-310.pyc
ADDED
Binary file (91.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/keyhash.cpython-310.pyc
ADDED
Binary file (3.42 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/load.cpython-310.pyc
ADDED
Binary file (86.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/metric.cpython-310.pyc
ADDED
Binary file (23.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/naming.cpython-310.pyc
ADDED
Binary file (2.86 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/search.cpython-310.pyc
ADDED
Binary file (33.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/splits.cpython-310.pyc
ADDED
Binary file (23.1 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/streaming.cpython-310.pyc
ADDED
Binary file (4.93 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/__pycache__/table.cpython-310.pyc
ADDED
Binary file (75.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__init__.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
|
5 |
+
class BaseDatasetsCLICommand(ABC):
|
6 |
+
@staticmethod
|
7 |
+
@abstractmethod
|
8 |
+
def register_subcommand(parser: ArgumentParser):
|
9 |
+
raise NotImplementedError()
|
10 |
+
|
11 |
+
@abstractmethod
|
12 |
+
def run(self):
|
13 |
+
raise NotImplementedError()
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (812 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/datasets_cli.cpython-310.pyc
ADDED
Binary file (1.71 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/dummy_data.cpython-310.pyc
ADDED
Binary file (16.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/env.cpython-310.pyc
ADDED
Binary file (1.86 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/run_beam.cpython-310.pyc
ADDED
Binary file (5.12 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/convert.py
ADDED
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import re
|
3 |
+
import shutil
|
4 |
+
from argparse import ArgumentParser, Namespace
|
5 |
+
|
6 |
+
from datasets.commands import BaseDatasetsCLICommand
|
7 |
+
from datasets.utils.logging import get_logger
|
8 |
+
|
9 |
+
|
10 |
+
HIGHLIGHT_MESSAGE_PRE = """<<<<<<< This should probably be modified because it mentions: """
|
11 |
+
|
12 |
+
HIGHLIGHT_MESSAGE_POST = """=======
|
13 |
+
>>>>>>>
|
14 |
+
"""
|
15 |
+
|
16 |
+
TO_HIGHLIGHT = [
|
17 |
+
"TextEncoderConfig",
|
18 |
+
"ByteTextEncoder",
|
19 |
+
"SubwordTextEncoder",
|
20 |
+
"encoder_config",
|
21 |
+
"maybe_build_from_corpus",
|
22 |
+
"manual_dir",
|
23 |
+
]
|
24 |
+
|
25 |
+
TO_CONVERT = [
|
26 |
+
# (pattern, replacement)
|
27 |
+
# Order is important here for some replacements
|
28 |
+
(r"tfds\.core", r"datasets"),
|
29 |
+
(r"tf\.io\.gfile\.GFile", r"open"),
|
30 |
+
(r"tf\.([\w\d]+)", r"datasets.Value('\1')"),
|
31 |
+
(r"tfds\.features\.Text\(\)", r"datasets.Value('string')"),
|
32 |
+
(r"tfds\.features\.Text\(", r"datasets.Value('string'),"),
|
33 |
+
(r"features\s*=\s*tfds.features.FeaturesDict\(", r"features=datasets.Features("),
|
34 |
+
(r"tfds\.features\.FeaturesDict\(", r"dict("),
|
35 |
+
(r"The TensorFlow Datasets Authors", r"The TensorFlow Datasets Authors and the HuggingFace Datasets Authors"),
|
36 |
+
(r"tfds\.", r"datasets."),
|
37 |
+
(r"dl_manager\.manual_dir", r"self.config.data_dir"),
|
38 |
+
(r"self\.builder_config", r"self.config"),
|
39 |
+
]
|
40 |
+
|
41 |
+
|
42 |
+
def convert_command_factory(args: Namespace):
|
43 |
+
"""
|
44 |
+
Factory function used to convert a model TF 1.0 checkpoint in a PyTorch checkpoint.
|
45 |
+
|
46 |
+
Returns: ConvertCommand
|
47 |
+
"""
|
48 |
+
return ConvertCommand(args.tfds_path, args.datasets_directory)
|
49 |
+
|
50 |
+
|
51 |
+
class ConvertCommand(BaseDatasetsCLICommand):
|
52 |
+
@staticmethod
|
53 |
+
def register_subcommand(parser: ArgumentParser):
|
54 |
+
"""
|
55 |
+
Register this command to argparse so it's available for the datasets-cli
|
56 |
+
|
57 |
+
Args:
|
58 |
+
parser: Root parser to register command-specific arguments
|
59 |
+
"""
|
60 |
+
train_parser = parser.add_parser(
|
61 |
+
"convert",
|
62 |
+
help="Convert a TensorFlow Datasets dataset to a HuggingFace Datasets dataset.",
|
63 |
+
)
|
64 |
+
train_parser.add_argument(
|
65 |
+
"--tfds_path",
|
66 |
+
type=str,
|
67 |
+
required=True,
|
68 |
+
help="Path to a TensorFlow Datasets folder to convert or a single tfds file to convert.",
|
69 |
+
)
|
70 |
+
train_parser.add_argument(
|
71 |
+
"--datasets_directory", type=str, required=True, help="Path to the HuggingFace Datasets folder."
|
72 |
+
)
|
73 |
+
train_parser.set_defaults(func=convert_command_factory)
|
74 |
+
|
75 |
+
def __init__(self, tfds_path: str, datasets_directory: str, *args):
|
76 |
+
self._logger = get_logger("datasets-cli/converting")
|
77 |
+
|
78 |
+
self._tfds_path = tfds_path
|
79 |
+
self._datasets_directory = datasets_directory
|
80 |
+
|
81 |
+
def run(self):
|
82 |
+
if os.path.isdir(self._tfds_path):
|
83 |
+
abs_tfds_path = os.path.abspath(self._tfds_path)
|
84 |
+
elif os.path.isfile(self._tfds_path):
|
85 |
+
abs_tfds_path = os.path.dirname(self._tfds_path)
|
86 |
+
else:
|
87 |
+
raise ValueError("--tfds_path is neither a directory nor a file. Please check path.")
|
88 |
+
|
89 |
+
abs_datasets_path = os.path.abspath(self._datasets_directory)
|
90 |
+
|
91 |
+
self._logger.info(f"Converting datasets from {abs_tfds_path} to {abs_datasets_path}")
|
92 |
+
|
93 |
+
utils_files = []
|
94 |
+
with_manual_update = []
|
95 |
+
imports_to_builder_map = {}
|
96 |
+
|
97 |
+
if os.path.isdir(self._tfds_path):
|
98 |
+
file_names = os.listdir(abs_tfds_path)
|
99 |
+
else:
|
100 |
+
file_names = [os.path.basename(self._tfds_path)]
|
101 |
+
|
102 |
+
for f_name in file_names:
|
103 |
+
self._logger.info(f"Looking at file {f_name}")
|
104 |
+
input_file = os.path.join(abs_tfds_path, f_name)
|
105 |
+
output_file = os.path.join(abs_datasets_path, f_name)
|
106 |
+
|
107 |
+
if not os.path.isfile(input_file) or "__init__" in f_name or "_test" in f_name or ".py" not in f_name:
|
108 |
+
self._logger.info("Skipping file")
|
109 |
+
continue
|
110 |
+
|
111 |
+
with open(input_file, encoding="utf-8") as f:
|
112 |
+
lines = f.readlines()
|
113 |
+
|
114 |
+
out_lines = []
|
115 |
+
is_builder = False
|
116 |
+
needs_manual_update = False
|
117 |
+
tfds_imports = []
|
118 |
+
for line in lines:
|
119 |
+
out_line = line
|
120 |
+
|
121 |
+
# Convert imports
|
122 |
+
if "import tensorflow.compat.v2 as tf" in out_line:
|
123 |
+
continue
|
124 |
+
elif "@tfds.core" in out_line:
|
125 |
+
continue
|
126 |
+
elif "builder=self" in out_line:
|
127 |
+
continue
|
128 |
+
elif "import tensorflow_datasets.public_api as tfds" in out_line:
|
129 |
+
out_line = "import datasets\n"
|
130 |
+
elif "import tensorflow" in out_line:
|
131 |
+
# order is important here
|
132 |
+
out_line = ""
|
133 |
+
continue
|
134 |
+
elif "from absl import logging" in out_line:
|
135 |
+
out_line = "from datasets import logging\n"
|
136 |
+
elif "getLogger" in out_line:
|
137 |
+
out_line = out_line.replace("getLogger", "get_logger")
|
138 |
+
elif any(expression in out_line for expression in TO_HIGHLIGHT):
|
139 |
+
needs_manual_update = True
|
140 |
+
to_remove = list(filter(lambda e: e in out_line, TO_HIGHLIGHT))
|
141 |
+
out_lines.append(HIGHLIGHT_MESSAGE_PRE + str(to_remove) + "\n")
|
142 |
+
out_lines.append(out_line)
|
143 |
+
out_lines.append(HIGHLIGHT_MESSAGE_POST)
|
144 |
+
continue
|
145 |
+
else:
|
146 |
+
for pattern, replacement in TO_CONVERT:
|
147 |
+
out_line = re.sub(pattern, replacement, out_line)
|
148 |
+
|
149 |
+
# Take care of saving utilities (to later move them together with main script)
|
150 |
+
if "tensorflow_datasets" in out_line:
|
151 |
+
match = re.match(r"from\stensorflow_datasets.*import\s([^\.\r\n]+)", out_line)
|
152 |
+
tfds_imports.extend(imp.strip() for imp in match.group(1).split(","))
|
153 |
+
out_line = "from . import " + match.group(1)
|
154 |
+
|
155 |
+
# Check we have not forget anything
|
156 |
+
if "tf." in out_line or "tfds." in out_line or "tensorflow_datasets" in out_line:
|
157 |
+
raise ValueError(f"Error converting {out_line.strip()}")
|
158 |
+
|
159 |
+
if "GeneratorBasedBuilder" in out_line or "BeamBasedBuilder" in out_line:
|
160 |
+
is_builder = True
|
161 |
+
out_lines.append(out_line)
|
162 |
+
|
163 |
+
if is_builder or "wmt" in f_name:
|
164 |
+
# We create a new directory for each dataset
|
165 |
+
dir_name = f_name.replace(".py", "")
|
166 |
+
output_dir = os.path.join(abs_datasets_path, dir_name)
|
167 |
+
output_file = os.path.join(output_dir, f_name)
|
168 |
+
os.makedirs(output_dir, exist_ok=True)
|
169 |
+
self._logger.info(f"Adding directory {output_dir}")
|
170 |
+
imports_to_builder_map.update({imp: output_dir for imp in tfds_imports})
|
171 |
+
else:
|
172 |
+
# Utilities will be moved at the end
|
173 |
+
utils_files.append(output_file)
|
174 |
+
|
175 |
+
if needs_manual_update:
|
176 |
+
with_manual_update.append(output_file)
|
177 |
+
|
178 |
+
with open(output_file, "w", encoding="utf-8") as f:
|
179 |
+
f.writelines(out_lines)
|
180 |
+
self._logger.info(f"Converted in {output_file}")
|
181 |
+
|
182 |
+
for utils_file in utils_files:
|
183 |
+
try:
|
184 |
+
f_name = os.path.basename(utils_file)
|
185 |
+
dest_folder = imports_to_builder_map[f_name.replace(".py", "")]
|
186 |
+
self._logger.info(f"Moving {dest_folder} to {utils_file}")
|
187 |
+
shutil.copy(utils_file, dest_folder)
|
188 |
+
except KeyError:
|
189 |
+
self._logger.error(f"Cannot find destination folder for {utils_file}. Please copy manually.")
|
190 |
+
|
191 |
+
if with_manual_update:
|
192 |
+
for file_path in with_manual_update:
|
193 |
+
self._logger.warning(
|
194 |
+
f"You need to manually update file {file_path} to remove configurations using 'TextEncoderConfig'."
|
195 |
+
)
|
venv/lib/python3.10/site-packages/datasets/commands/convert_to_parquet.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from typing import Optional
|
4 |
+
|
5 |
+
from huggingface_hub import HfApi, create_branch, get_repo_discussions
|
6 |
+
|
7 |
+
from datasets import get_dataset_config_names, get_dataset_default_config_name, load_dataset
|
8 |
+
from datasets.commands import BaseDatasetsCLICommand
|
9 |
+
|
10 |
+
|
11 |
+
def _command_factory(args):
|
12 |
+
return ConvertToParquetCommand(
|
13 |
+
args.dataset_id,
|
14 |
+
args.token,
|
15 |
+
args.revision,
|
16 |
+
args.trust_remote_code,
|
17 |
+
)
|
18 |
+
|
19 |
+
|
20 |
+
class ConvertToParquetCommand(BaseDatasetsCLICommand):
|
21 |
+
@staticmethod
|
22 |
+
def register_subcommand(parser):
|
23 |
+
parser: ArgumentParser = parser.add_parser("convert_to_parquet", help="Convert dataset to Parquet")
|
24 |
+
parser.add_argument("dataset_id", help="source dataset ID")
|
25 |
+
parser.add_argument("--token", help="access token to the Hugging Face Hub")
|
26 |
+
parser.add_argument("--revision", help="source revision")
|
27 |
+
parser.add_argument(
|
28 |
+
"--trust_remote_code", action="store_true", help="whether to trust the code execution of the load script"
|
29 |
+
)
|
30 |
+
parser.set_defaults(func=_command_factory)
|
31 |
+
|
32 |
+
def __init__(
|
33 |
+
self,
|
34 |
+
dataset_id: str,
|
35 |
+
token: Optional[str],
|
36 |
+
revision: Optional[str],
|
37 |
+
trust_remote_code: bool,
|
38 |
+
):
|
39 |
+
self._dataset_id = dataset_id
|
40 |
+
self._token = token
|
41 |
+
self._revision = revision
|
42 |
+
self._trust_remote_code = trust_remote_code
|
43 |
+
|
44 |
+
def run(self) -> None:
|
45 |
+
dataset_id = self._dataset_id
|
46 |
+
token = self._token
|
47 |
+
revision = self._revision
|
48 |
+
trust_remote_code = self._trust_remote_code
|
49 |
+
print(f"{dataset_id}")
|
50 |
+
configs = get_dataset_config_names(
|
51 |
+
dataset_id, token=token, revision=revision, trust_remote_code=trust_remote_code
|
52 |
+
)
|
53 |
+
print(f"{configs = }")
|
54 |
+
default_config = get_dataset_default_config_name(
|
55 |
+
dataset_id, token=token, revision=revision, trust_remote_code=trust_remote_code
|
56 |
+
)
|
57 |
+
print(f"{default_config = }")
|
58 |
+
if default_config:
|
59 |
+
config = default_config
|
60 |
+
configs.remove(default_config)
|
61 |
+
else:
|
62 |
+
config = configs.pop(0)
|
63 |
+
print(f"{config = }")
|
64 |
+
dataset = load_dataset(dataset_id, config, revision=revision, trust_remote_code=trust_remote_code)
|
65 |
+
commit_info = dataset.push_to_hub(
|
66 |
+
dataset_id,
|
67 |
+
config_name=config,
|
68 |
+
commit_message="Convert dataset to Parquet",
|
69 |
+
commit_description="Convert dataset to Parquet.",
|
70 |
+
create_pr=True,
|
71 |
+
token=token,
|
72 |
+
set_default=default_config is not None,
|
73 |
+
)
|
74 |
+
time.sleep(5)
|
75 |
+
if commit_info:
|
76 |
+
pr_revision, pr_url = commit_info.pr_revision, commit_info.pr_url
|
77 |
+
else:
|
78 |
+
pr_revision, pr_url = infer_pr(dataset_id, token=token)
|
79 |
+
for config in configs:
|
80 |
+
print(f"{config = }")
|
81 |
+
dataset = load_dataset(dataset_id, config, revision=revision, trust_remote_code=trust_remote_code)
|
82 |
+
dataset.push_to_hub(
|
83 |
+
dataset_id,
|
84 |
+
config_name=config,
|
85 |
+
commit_message=f"Add {config} data files",
|
86 |
+
revision=pr_revision,
|
87 |
+
token=token,
|
88 |
+
)
|
89 |
+
time.sleep(5)
|
90 |
+
delete_files(dataset_id, revision=pr_revision, token=token)
|
91 |
+
if not revision:
|
92 |
+
create_branch(dataset_id, branch="script", repo_type="dataset", token=token, exist_ok=True)
|
93 |
+
print(f"You can find your PR to convert the dataset to Parquet at: {pr_url}")
|
94 |
+
|
95 |
+
|
96 |
+
def infer_pr(dataset_id, token=None):
|
97 |
+
discussions = get_repo_discussions(dataset_id, repo_type="dataset", token=token)
|
98 |
+
prs = [discussion for discussion in discussions if discussion.is_pull_request and discussion.status == "open"]
|
99 |
+
pr = sorted(prs, key=lambda pr: pr.num)[-1]
|
100 |
+
return pr.git_reference, pr.url
|
101 |
+
|
102 |
+
|
103 |
+
def delete_files(dataset_id, revision=None, token=None):
|
104 |
+
dataset_name = dataset_id.split("/")[-1]
|
105 |
+
hf_api = HfApi(token=token)
|
106 |
+
repo_files = hf_api.list_repo_files(
|
107 |
+
dataset_id,
|
108 |
+
repo_type="dataset",
|
109 |
+
)
|
110 |
+
if repo_files:
|
111 |
+
legacy_json_file = []
|
112 |
+
python_files = []
|
113 |
+
data_files = []
|
114 |
+
for filename in repo_files:
|
115 |
+
if filename in {".gitattributes", "README.md"}:
|
116 |
+
continue
|
117 |
+
elif filename == f"{dataset_name}.py":
|
118 |
+
hf_api.delete_file(
|
119 |
+
filename,
|
120 |
+
dataset_id,
|
121 |
+
repo_type="dataset",
|
122 |
+
revision=revision,
|
123 |
+
commit_message="Delete loading script",
|
124 |
+
)
|
125 |
+
elif filename == "dataset_infos.json":
|
126 |
+
legacy_json_file.append(filename)
|
127 |
+
elif filename.endswith(".py"):
|
128 |
+
python_files.append(filename)
|
129 |
+
else:
|
130 |
+
data_files.append(filename)
|
131 |
+
if legacy_json_file:
|
132 |
+
hf_api.delete_file(
|
133 |
+
"dataset_infos.json",
|
134 |
+
dataset_id,
|
135 |
+
repo_type="dataset",
|
136 |
+
revision=revision,
|
137 |
+
commit_message="Delete legacy dataset_infos.json",
|
138 |
+
)
|
139 |
+
if python_files:
|
140 |
+
for filename in python_files:
|
141 |
+
hf_api.delete_file(
|
142 |
+
filename,
|
143 |
+
dataset_id,
|
144 |
+
repo_type="dataset",
|
145 |
+
revision=revision,
|
146 |
+
commit_message="Delete loading script auxiliary file",
|
147 |
+
)
|
148 |
+
if data_files:
|
149 |
+
for filename in data_files:
|
150 |
+
hf_api.delete_file(
|
151 |
+
filename,
|
152 |
+
dataset_id,
|
153 |
+
repo_type="dataset",
|
154 |
+
revision=revision,
|
155 |
+
commit_message="Delete data file",
|
156 |
+
)
|
venv/lib/python3.10/site-packages/datasets/commands/datasets_cli.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
from datasets.commands.convert import ConvertCommand
|
5 |
+
from datasets.commands.convert_to_parquet import ConvertToParquetCommand
|
6 |
+
from datasets.commands.dummy_data import DummyDataCommand
|
7 |
+
from datasets.commands.env import EnvironmentCommand
|
8 |
+
from datasets.commands.run_beam import RunBeamCommand
|
9 |
+
from datasets.commands.test import TestCommand
|
10 |
+
from datasets.utils.logging import set_verbosity_info
|
11 |
+
|
12 |
+
|
13 |
+
def parse_unknown_args(unknown_args):
|
14 |
+
return {key.lstrip("-"): value for key, value in zip(unknown_args[::2], unknown_args[1::2])}
|
15 |
+
|
16 |
+
|
17 |
+
def main():
|
18 |
+
parser = ArgumentParser(
|
19 |
+
"HuggingFace Datasets CLI tool", usage="datasets-cli <command> [<args>]", allow_abbrev=False
|
20 |
+
)
|
21 |
+
commands_parser = parser.add_subparsers(help="datasets-cli command helpers")
|
22 |
+
set_verbosity_info()
|
23 |
+
|
24 |
+
# Register commands
|
25 |
+
ConvertCommand.register_subcommand(commands_parser)
|
26 |
+
EnvironmentCommand.register_subcommand(commands_parser)
|
27 |
+
TestCommand.register_subcommand(commands_parser)
|
28 |
+
RunBeamCommand.register_subcommand(commands_parser)
|
29 |
+
DummyDataCommand.register_subcommand(commands_parser)
|
30 |
+
ConvertToParquetCommand.register_subcommand(commands_parser)
|
31 |
+
|
32 |
+
# Parse args
|
33 |
+
args, unknown_args = parser.parse_known_args()
|
34 |
+
if not hasattr(args, "func"):
|
35 |
+
parser.print_help()
|
36 |
+
exit(1)
|
37 |
+
kwargs = parse_unknown_args(unknown_args)
|
38 |
+
|
39 |
+
# Run
|
40 |
+
service = args.func(args, **kwargs)
|
41 |
+
service.run()
|
42 |
+
|
43 |
+
|
44 |
+
if __name__ == "__main__":
|
45 |
+
main()
|
venv/lib/python3.10/site-packages/datasets/commands/dummy_data.py
ADDED
@@ -0,0 +1,468 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import fnmatch
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import tempfile
|
6 |
+
import xml.etree.ElementTree as ET
|
7 |
+
from argparse import ArgumentParser
|
8 |
+
from pathlib import Path
|
9 |
+
from typing import Optional
|
10 |
+
|
11 |
+
from datasets import config
|
12 |
+
from datasets.commands import BaseDatasetsCLICommand
|
13 |
+
from datasets.download.download_config import DownloadConfig
|
14 |
+
from datasets.download.download_manager import DownloadManager
|
15 |
+
from datasets.download.mock_download_manager import MockDownloadManager
|
16 |
+
from datasets.load import dataset_module_factory, import_main_class
|
17 |
+
from datasets.utils.deprecation_utils import deprecated
|
18 |
+
from datasets.utils.logging import get_logger, set_verbosity_warning
|
19 |
+
from datasets.utils.py_utils import map_nested
|
20 |
+
|
21 |
+
|
22 |
+
logger = get_logger(__name__)
|
23 |
+
|
24 |
+
DEFAULT_ENCODING = "utf-8"
|
25 |
+
|
26 |
+
|
27 |
+
def dummy_data_command_factory(args):
|
28 |
+
return DummyDataCommand(
|
29 |
+
args.path_to_dataset,
|
30 |
+
args.auto_generate,
|
31 |
+
args.n_lines,
|
32 |
+
args.json_field,
|
33 |
+
args.xml_tag,
|
34 |
+
args.match_text_files,
|
35 |
+
args.keep_uncompressed,
|
36 |
+
args.cache_dir,
|
37 |
+
args.encoding,
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
class DummyDataGeneratorDownloadManager(DownloadManager):
|
42 |
+
def __init__(self, mock_download_manager, *args, **kwargs):
|
43 |
+
super().__init__(*args, **kwargs)
|
44 |
+
self.mock_download_manager = mock_download_manager
|
45 |
+
self.downloaded_dummy_paths = []
|
46 |
+
self.expected_dummy_paths = []
|
47 |
+
|
48 |
+
def download(self, url_or_urls):
|
49 |
+
output = super().download(url_or_urls)
|
50 |
+
dummy_output = self.mock_download_manager.download(url_or_urls)
|
51 |
+
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
|
52 |
+
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
|
53 |
+
return output
|
54 |
+
|
55 |
+
def download_and_extract(self, url_or_urls):
|
56 |
+
output = super().extract(super().download(url_or_urls))
|
57 |
+
dummy_output = self.mock_download_manager.download(url_or_urls)
|
58 |
+
map_nested(self.downloaded_dummy_paths.append, output, map_tuple=True)
|
59 |
+
map_nested(self.expected_dummy_paths.append, dummy_output, map_tuple=True)
|
60 |
+
return output
|
61 |
+
|
62 |
+
def auto_generate_dummy_data_folder(
|
63 |
+
self,
|
64 |
+
n_lines: int = 5,
|
65 |
+
json_field: Optional[str] = None,
|
66 |
+
xml_tag: Optional[str] = None,
|
67 |
+
match_text_files: Optional[str] = None,
|
68 |
+
encoding: Optional[str] = None,
|
69 |
+
) -> bool:
|
70 |
+
os.makedirs(
|
71 |
+
os.path.join(
|
72 |
+
self.mock_download_manager.datasets_scripts_dir,
|
73 |
+
self.mock_download_manager.dataset_name,
|
74 |
+
self.mock_download_manager.dummy_data_folder,
|
75 |
+
"dummy_data",
|
76 |
+
),
|
77 |
+
exist_ok=True,
|
78 |
+
)
|
79 |
+
total = 0
|
80 |
+
self.mock_download_manager.load_existing_dummy_data = False
|
81 |
+
for src_path, relative_dst_path in zip(self.downloaded_dummy_paths, self.expected_dummy_paths):
|
82 |
+
dst_path = os.path.join(
|
83 |
+
self.mock_download_manager.datasets_scripts_dir,
|
84 |
+
self.mock_download_manager.dataset_name,
|
85 |
+
self.mock_download_manager.dummy_data_folder,
|
86 |
+
relative_dst_path,
|
87 |
+
)
|
88 |
+
total += self._create_dummy_data(
|
89 |
+
src_path,
|
90 |
+
dst_path,
|
91 |
+
n_lines=n_lines,
|
92 |
+
json_field=json_field,
|
93 |
+
xml_tag=xml_tag,
|
94 |
+
match_text_files=match_text_files,
|
95 |
+
encoding=encoding,
|
96 |
+
)
|
97 |
+
if total == 0:
|
98 |
+
logger.error(
|
99 |
+
"Dummy data generation failed: no dummy files were created. "
|
100 |
+
"Make sure the data files format is supported by the auto-generation."
|
101 |
+
)
|
102 |
+
return total > 0
|
103 |
+
|
104 |
+
def _create_dummy_data(
|
105 |
+
self,
|
106 |
+
src_path: str,
|
107 |
+
dst_path: str,
|
108 |
+
n_lines: int,
|
109 |
+
json_field: Optional[str] = None,
|
110 |
+
xml_tag: Optional[str] = None,
|
111 |
+
match_text_files: Optional[str] = None,
|
112 |
+
encoding: Optional[str] = None,
|
113 |
+
) -> int:
|
114 |
+
encoding = encoding or DEFAULT_ENCODING
|
115 |
+
if os.path.isfile(src_path):
|
116 |
+
logger.debug(f"Trying to generate dummy data file {dst_path}")
|
117 |
+
dst_path_extensions = Path(dst_path).suffixes
|
118 |
+
line_by_line_extensions = [".txt", ".csv", ".jsonl", ".tsv"]
|
119 |
+
is_line_by_line_text_file = any(extension in dst_path_extensions for extension in line_by_line_extensions)
|
120 |
+
if match_text_files is not None:
|
121 |
+
file_name = os.path.basename(dst_path)
|
122 |
+
for pattern in match_text_files.split(","):
|
123 |
+
is_line_by_line_text_file |= fnmatch.fnmatch(file_name, pattern)
|
124 |
+
# Line by line text file (txt, csv etc.)
|
125 |
+
if is_line_by_line_text_file:
|
126 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
127 |
+
with open(src_path, encoding=encoding) as src_file:
|
128 |
+
with open(dst_path, "w", encoding=encoding) as dst_file:
|
129 |
+
first_lines = []
|
130 |
+
for i, line in enumerate(src_file):
|
131 |
+
if i >= n_lines:
|
132 |
+
break
|
133 |
+
first_lines.append(line)
|
134 |
+
dst_file.write("".join(first_lines).strip())
|
135 |
+
return 1
|
136 |
+
# json file
|
137 |
+
elif ".json" in dst_path_extensions:
|
138 |
+
with open(src_path, encoding=encoding) as src_file:
|
139 |
+
json_data = json.load(src_file)
|
140 |
+
if json_field is not None:
|
141 |
+
json_data = json_data[json_field]
|
142 |
+
if isinstance(json_data, dict):
|
143 |
+
if not all(isinstance(v, list) for v in json_data.values()):
|
144 |
+
raise ValueError(
|
145 |
+
f"Couldn't parse columns {list(json_data.keys())}. "
|
146 |
+
"Maybe specify which json field must be used "
|
147 |
+
"to read the data with --json_field <my_field>."
|
148 |
+
)
|
149 |
+
first_json_data = {k: v[:n_lines] for k, v in json_data.items()}
|
150 |
+
else:
|
151 |
+
first_json_data = json_data[:n_lines]
|
152 |
+
if json_field is not None:
|
153 |
+
first_json_data = {json_field: first_json_data}
|
154 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
155 |
+
with open(dst_path, "w", encoding=encoding) as dst_file:
|
156 |
+
json.dump(first_json_data, dst_file)
|
157 |
+
return 1
|
158 |
+
# xml file
|
159 |
+
elif any(extension in dst_path_extensions for extension in [".xml", ".txm"]):
|
160 |
+
if xml_tag is None:
|
161 |
+
logger.warning("Found xml file but 'xml_tag' is set to None. Please provide --xml_tag")
|
162 |
+
else:
|
163 |
+
self._create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=n_lines, encoding=encoding)
|
164 |
+
return 1
|
165 |
+
logger.warning(
|
166 |
+
f"Couldn't generate dummy file '{dst_path}'. " "Ignore that if this file is not useful for dummy data."
|
167 |
+
)
|
168 |
+
return 0
|
169 |
+
# directory, iterate through all files
|
170 |
+
elif os.path.isdir(src_path):
|
171 |
+
total = 0
|
172 |
+
for path, _, files in os.walk(src_path):
|
173 |
+
for name in files:
|
174 |
+
if not name.startswith("."): # ignore files like .DS_Store etc.
|
175 |
+
src_file_path = os.path.join(path, name)
|
176 |
+
dst_file_path = os.path.join(dst_path, Path(src_file_path).relative_to(src_path))
|
177 |
+
total += self._create_dummy_data(
|
178 |
+
src_file_path,
|
179 |
+
dst_file_path,
|
180 |
+
n_lines=n_lines,
|
181 |
+
json_field=json_field,
|
182 |
+
xml_tag=xml_tag,
|
183 |
+
match_text_files=match_text_files,
|
184 |
+
encoding=encoding,
|
185 |
+
)
|
186 |
+
return total
|
187 |
+
|
188 |
+
@staticmethod
|
189 |
+
def _create_xml_dummy_data(src_path, dst_path, xml_tag, n_lines=5, encoding=DEFAULT_ENCODING):
|
190 |
+
Path(dst_path).parent.mkdir(exist_ok=True, parents=True)
|
191 |
+
with open(src_path, encoding=encoding) as src_file:
|
192 |
+
n_line = 0
|
193 |
+
parents = []
|
194 |
+
for event, elem in ET.iterparse(src_file, events=("start", "end")):
|
195 |
+
if event == "start":
|
196 |
+
parents.append(elem)
|
197 |
+
else:
|
198 |
+
_ = parents.pop()
|
199 |
+
if elem.tag == xml_tag:
|
200 |
+
if n_line < n_lines:
|
201 |
+
n_line += 1
|
202 |
+
else:
|
203 |
+
if parents:
|
204 |
+
parents[-1].remove(elem)
|
205 |
+
ET.ElementTree(element=elem).write(dst_path, encoding=encoding)
|
206 |
+
|
207 |
+
def compress_autogenerated_dummy_data(self, path_to_dataset):
|
208 |
+
root_dir = os.path.join(path_to_dataset, self.mock_download_manager.dummy_data_folder)
|
209 |
+
base_name = os.path.join(root_dir, "dummy_data")
|
210 |
+
base_dir = "dummy_data"
|
211 |
+
logger.info(f"Compressing dummy data folder to '{base_name}.zip'")
|
212 |
+
shutil.make_archive(base_name, "zip", root_dir, base_dir)
|
213 |
+
shutil.rmtree(base_name)
|
214 |
+
|
215 |
+
|
216 |
+
@deprecated(
|
217 |
+
"The `datasets` repository does not host the dataset scripts anymore. Therefore, dummy data is no longer needed to test their loading with CI."
|
218 |
+
)
|
219 |
+
class DummyDataCommand(BaseDatasetsCLICommand):
|
220 |
+
@staticmethod
|
221 |
+
def register_subcommand(parser: ArgumentParser):
|
222 |
+
test_parser = parser.add_parser("dummy_data", help="Generate dummy data.")
|
223 |
+
test_parser.add_argument("--auto_generate", action="store_true", help="Automatically generate dummy data")
|
224 |
+
test_parser.add_argument(
|
225 |
+
"--n_lines", type=int, default=5, help="Number of lines or samples to keep when auto-generating dummy data"
|
226 |
+
)
|
227 |
+
test_parser.add_argument(
|
228 |
+
"--json_field",
|
229 |
+
type=str,
|
230 |
+
default=None,
|
231 |
+
help="Optional, json field to read the data from when auto-generating dummy data. In the json data files, this field must point to a list of samples as json objects (ex: the 'data' field for squad-like files)",
|
232 |
+
)
|
233 |
+
test_parser.add_argument(
|
234 |
+
"--xml_tag",
|
235 |
+
type=str,
|
236 |
+
default=None,
|
237 |
+
help="Optional, xml tag name of the samples inside the xml files when auto-generating dummy data.",
|
238 |
+
)
|
239 |
+
test_parser.add_argument(
|
240 |
+
"--match_text_files",
|
241 |
+
type=str,
|
242 |
+
default=None,
|
243 |
+
help="Optional, a comma separated list of file patterns that looks for line-by-line text files other than *.txt or *.csv. Example: --match_text_files *.label",
|
244 |
+
)
|
245 |
+
test_parser.add_argument(
|
246 |
+
"--keep_uncompressed",
|
247 |
+
action="store_true",
|
248 |
+
help="Whether to leave the dummy data folders uncompressed when auto-generating dummy data. Useful for debugging for to do manual adjustements before compressing.",
|
249 |
+
)
|
250 |
+
test_parser.add_argument(
|
251 |
+
"--cache_dir",
|
252 |
+
type=str,
|
253 |
+
default=None,
|
254 |
+
help="Cache directory to download and cache files when auto-generating dummy data",
|
255 |
+
)
|
256 |
+
test_parser.add_argument(
|
257 |
+
"--encoding",
|
258 |
+
type=str,
|
259 |
+
default=None,
|
260 |
+
help=f"Encoding to use when auto-generating dummy data. Defaults to {DEFAULT_ENCODING}",
|
261 |
+
)
|
262 |
+
test_parser.add_argument("path_to_dataset", type=str, help="Path to the dataset (example: ./datasets/squad)")
|
263 |
+
test_parser.set_defaults(func=dummy_data_command_factory)
|
264 |
+
|
265 |
+
def __init__(
|
266 |
+
self,
|
267 |
+
path_to_dataset: str,
|
268 |
+
auto_generate: bool,
|
269 |
+
n_lines: int,
|
270 |
+
json_field: Optional[str],
|
271 |
+
xml_tag: Optional[str],
|
272 |
+
match_text_files: Optional[str],
|
273 |
+
keep_uncompressed: bool,
|
274 |
+
cache_dir: Optional[str],
|
275 |
+
encoding: Optional[str],
|
276 |
+
):
|
277 |
+
self._path_to_dataset = path_to_dataset
|
278 |
+
if os.path.isdir(path_to_dataset):
|
279 |
+
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-1]
|
280 |
+
else:
|
281 |
+
self._dataset_name = path_to_dataset.replace(os.sep, "/").split("/")[-2]
|
282 |
+
cache_dir = os.path.expanduser(cache_dir or config.HF_DATASETS_CACHE)
|
283 |
+
self._auto_generate = auto_generate
|
284 |
+
self._n_lines = n_lines
|
285 |
+
self._json_field = json_field
|
286 |
+
self._xml_tag = xml_tag
|
287 |
+
self._match_text_files = match_text_files
|
288 |
+
self._keep_uncompressed = keep_uncompressed
|
289 |
+
self._cache_dir = cache_dir
|
290 |
+
self._encoding = encoding
|
291 |
+
|
292 |
+
def run(self):
|
293 |
+
set_verbosity_warning()
|
294 |
+
dataset_module = dataset_module_factory(self._path_to_dataset)
|
295 |
+
builder_cls = import_main_class(dataset_module.module_path)
|
296 |
+
|
297 |
+
# use `None` as config if no configs
|
298 |
+
builder_configs = builder_cls.BUILDER_CONFIGS or [None]
|
299 |
+
auto_generate_results = []
|
300 |
+
with tempfile.TemporaryDirectory() as tmp_dir:
|
301 |
+
for builder_config in builder_configs:
|
302 |
+
config_name = builder_config.name if builder_config else None
|
303 |
+
dataset_builder = builder_cls(config_name=config_name, hash=dataset_module.hash, cache_dir=tmp_dir)
|
304 |
+
version = builder_config.version if builder_config else dataset_builder.config.version
|
305 |
+
mock_dl_manager = MockDownloadManager(
|
306 |
+
dataset_name=self._dataset_name,
|
307 |
+
config=builder_config,
|
308 |
+
version=version,
|
309 |
+
use_local_dummy_data=True,
|
310 |
+
load_existing_dummy_data=False,
|
311 |
+
)
|
312 |
+
|
313 |
+
if self._auto_generate:
|
314 |
+
auto_generate_results.append(
|
315 |
+
self._autogenerate_dummy_data(
|
316 |
+
dataset_builder=dataset_builder,
|
317 |
+
mock_dl_manager=mock_dl_manager,
|
318 |
+
keep_uncompressed=self._keep_uncompressed,
|
319 |
+
)
|
320 |
+
)
|
321 |
+
else:
|
322 |
+
self._print_dummy_data_instructions(
|
323 |
+
dataset_builder=dataset_builder, mock_dl_manager=mock_dl_manager
|
324 |
+
)
|
325 |
+
if self._auto_generate and not self._keep_uncompressed:
|
326 |
+
if all(auto_generate_results):
|
327 |
+
print(f"Automatic dummy data generation succeeded for all configs of '{self._path_to_dataset}'")
|
328 |
+
else:
|
329 |
+
print(f"Automatic dummy data generation failed for some configs of '{self._path_to_dataset}'")
|
330 |
+
|
331 |
+
def _autogenerate_dummy_data(self, dataset_builder, mock_dl_manager, keep_uncompressed) -> Optional[bool]:
|
332 |
+
dl_cache_dir = (
|
333 |
+
os.path.join(self._cache_dir, config.DOWNLOADED_DATASETS_DIR)
|
334 |
+
if self._cache_dir
|
335 |
+
else config.DOWNLOADED_DATASETS_PATH
|
336 |
+
)
|
337 |
+
download_config = DownloadConfig(cache_dir=dl_cache_dir)
|
338 |
+
dl_manager = DummyDataGeneratorDownloadManager(
|
339 |
+
dataset_name=self._dataset_name, mock_download_manager=mock_dl_manager, download_config=download_config
|
340 |
+
)
|
341 |
+
dataset_builder._split_generators(dl_manager)
|
342 |
+
mock_dl_manager.load_existing_dummy_data = False # don't use real dummy data
|
343 |
+
dl_manager.auto_generate_dummy_data_folder(
|
344 |
+
n_lines=self._n_lines,
|
345 |
+
json_field=self._json_field,
|
346 |
+
xml_tag=self._xml_tag,
|
347 |
+
match_text_files=self._match_text_files,
|
348 |
+
encoding=self._encoding,
|
349 |
+
)
|
350 |
+
if not keep_uncompressed:
|
351 |
+
path_do_dataset = os.path.join(mock_dl_manager.datasets_scripts_dir, mock_dl_manager.dataset_name)
|
352 |
+
dl_manager.compress_autogenerated_dummy_data(path_do_dataset)
|
353 |
+
# now test that the dummy_data.zip file actually works
|
354 |
+
mock_dl_manager.load_existing_dummy_data = True # use real dummy data
|
355 |
+
n_examples_per_split = {}
|
356 |
+
os.makedirs(dataset_builder._cache_dir, exist_ok=True)
|
357 |
+
try:
|
358 |
+
split_generators = dataset_builder._split_generators(mock_dl_manager)
|
359 |
+
for split_generator in split_generators:
|
360 |
+
dataset_builder._prepare_split(split_generator, check_duplicate_keys=False)
|
361 |
+
n_examples_per_split[split_generator.name] = split_generator.split_info.num_examples
|
362 |
+
except OSError as e:
|
363 |
+
logger.error(
|
364 |
+
f"Failed to load dummy data for config '{dataset_builder.config.name}''.\nOriginal error:\n"
|
365 |
+
+ str(e)
|
366 |
+
)
|
367 |
+
return False
|
368 |
+
else:
|
369 |
+
if all(n_examples > 0 for n_examples in n_examples_per_split.values()):
|
370 |
+
logger.warning(
|
371 |
+
f"Dummy data generation done and dummy data test succeeded for config '{dataset_builder.config.name}''."
|
372 |
+
)
|
373 |
+
return True
|
374 |
+
else:
|
375 |
+
empty_splits = [
|
376 |
+
split_name for split_name in n_examples_per_split if n_examples_per_split[split_name] == 0
|
377 |
+
]
|
378 |
+
logger.warning(
|
379 |
+
f"Dummy data generation done but dummy data test failed since splits {empty_splits} have 0 examples for config '{dataset_builder.config.name}''."
|
380 |
+
)
|
381 |
+
return False
|
382 |
+
else:
|
383 |
+
generated_dummy_data_dir = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
|
384 |
+
logger.info(
|
385 |
+
f"Dummy data generated in directory '{generated_dummy_data_dir}' but kept uncompressed. "
|
386 |
+
"Please compress this directory into a zip file to use it for dummy data tests."
|
387 |
+
)
|
388 |
+
|
389 |
+
def _print_dummy_data_instructions(self, dataset_builder, mock_dl_manager):
|
390 |
+
dummy_data_folder = os.path.join(self._path_to_dataset, mock_dl_manager.dummy_data_folder)
|
391 |
+
logger.info(f"Creating dummy folder structure for {dummy_data_folder}... ")
|
392 |
+
os.makedirs(dummy_data_folder, exist_ok=True)
|
393 |
+
|
394 |
+
try:
|
395 |
+
generator_splits = dataset_builder._split_generators(mock_dl_manager)
|
396 |
+
except FileNotFoundError as e:
|
397 |
+
print(
|
398 |
+
f"Dataset {self._dataset_name} with config {mock_dl_manager.config} seems to already open files in the method `_split_generators(...)`. You might consider to instead only open files in the method `_generate_examples(...)` instead. If this is not possible the dummy data has to be created with less guidance. Make sure you create the file {e.filename}."
|
399 |
+
)
|
400 |
+
|
401 |
+
files_to_create = set()
|
402 |
+
split_names = []
|
403 |
+
dummy_file_name = mock_dl_manager.dummy_file_name
|
404 |
+
|
405 |
+
for split in generator_splits:
|
406 |
+
logger.info(f"Collecting dummy data file paths to create for {split.name}")
|
407 |
+
split_names.append(split.name)
|
408 |
+
gen_kwargs = split.gen_kwargs
|
409 |
+
generator = dataset_builder._generate_examples(**gen_kwargs)
|
410 |
+
|
411 |
+
try:
|
412 |
+
dummy_data_guidance_print = "\n" + 30 * "=" + "DUMMY DATA INSTRUCTIONS" + 30 * "=" + "\n"
|
413 |
+
config_string = (
|
414 |
+
f"config {mock_dl_manager.config.name} of " if mock_dl_manager.config is not None else ""
|
415 |
+
)
|
416 |
+
dummy_data_guidance_print += (
|
417 |
+
"- In order to create the dummy data for "
|
418 |
+
+ config_string
|
419 |
+
+ f"{self._dataset_name}, please go into the folder '{dummy_data_folder}' with `cd {dummy_data_folder}` . \n\n"
|
420 |
+
)
|
421 |
+
|
422 |
+
# trigger generate function
|
423 |
+
for key, record in generator:
|
424 |
+
pass
|
425 |
+
|
426 |
+
dummy_data_guidance_print += f"- It appears that the function `_generate_examples(...)` expects one or more files in the folder {dummy_file_name} using the function `glob.glob(...)`. In this case, please refer to the `_generate_examples(...)` method to see under which filename the dummy data files should be created. \n\n"
|
427 |
+
|
428 |
+
except FileNotFoundError as e:
|
429 |
+
files_to_create.add(e.filename)
|
430 |
+
|
431 |
+
split_names = ", ".join(split_names)
|
432 |
+
if len(files_to_create) > 0:
|
433 |
+
# no glob.glob(...) in `_generate_examples(...)`
|
434 |
+
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
|
435 |
+
dummy_data_guidance_print += f"- Please create a single dummy data file called '{next(iter(files_to_create))}' from the folder '{dummy_data_folder}'. Make sure that the dummy data file provides at least one example for the split(s) '{split_names}' \n\n"
|
436 |
+
files_string = dummy_file_name
|
437 |
+
else:
|
438 |
+
files_string = ", ".join(files_to_create)
|
439 |
+
dummy_data_guidance_print += f"- Please create the following dummy data files '{files_string}' from the folder '{dummy_data_folder}'\n\n"
|
440 |
+
|
441 |
+
dummy_data_guidance_print += f"- For each of the splits '{split_names}', make sure that one or more of the dummy data files provide at least one example \n\n"
|
442 |
+
|
443 |
+
dummy_data_guidance_print += f"- If the method `_generate_examples(...)` includes multiple `open()` statements, you might have to create other files in addition to '{files_string}'. In this case please refer to the `_generate_examples(...)` method \n\n"
|
444 |
+
|
445 |
+
if len(files_to_create) == 1 and next(iter(files_to_create)) == dummy_file_name:
|
446 |
+
dummy_data_guidance_print += f"- After the dummy data file is created, it should be zipped to '{dummy_file_name}.zip' with the command `zip {dummy_file_name}.zip {dummy_file_name}` \n\n"
|
447 |
+
|
448 |
+
dummy_data_guidance_print += (
|
449 |
+
f"- You can now delete the file '{dummy_file_name}' with the command `rm {dummy_file_name}` \n\n"
|
450 |
+
)
|
451 |
+
|
452 |
+
dummy_data_guidance_print += f"- To get the file '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
|
453 |
+
else:
|
454 |
+
dummy_data_guidance_print += f"- After all dummy data files are created, they should be zipped recursively to '{dummy_file_name}.zip' with the command `zip -r {dummy_file_name}.zip {dummy_file_name}/` \n\n"
|
455 |
+
|
456 |
+
dummy_data_guidance_print += (
|
457 |
+
f"- You can now delete the folder '{dummy_file_name}' with the command `rm -r {dummy_file_name}` \n\n"
|
458 |
+
)
|
459 |
+
|
460 |
+
dummy_data_guidance_print += f"- To get the folder '{dummy_file_name}' back for further changes to the dummy data, simply unzip {dummy_file_name}.zip with the command `unzip {dummy_file_name}.zip` \n\n"
|
461 |
+
|
462 |
+
dummy_data_guidance_print += (
|
463 |
+
f"- Make sure you have created the file '{dummy_file_name}.zip' in '{dummy_data_folder}' \n"
|
464 |
+
)
|
465 |
+
|
466 |
+
dummy_data_guidance_print += 83 * "=" + "\n"
|
467 |
+
|
468 |
+
print(dummy_data_guidance_print)
|
venv/lib/python3.10/site-packages/datasets/commands/env.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import platform
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
|
4 |
+
import fsspec
|
5 |
+
import huggingface_hub
|
6 |
+
import pandas
|
7 |
+
import pyarrow
|
8 |
+
|
9 |
+
from datasets import __version__ as version
|
10 |
+
from datasets.commands import BaseDatasetsCLICommand
|
11 |
+
|
12 |
+
|
13 |
+
def info_command_factory(_):
|
14 |
+
return EnvironmentCommand()
|
15 |
+
|
16 |
+
|
17 |
+
class EnvironmentCommand(BaseDatasetsCLICommand):
|
18 |
+
@staticmethod
|
19 |
+
def register_subcommand(parser: ArgumentParser):
|
20 |
+
download_parser = parser.add_parser("env", help="Print relevant system environment info.")
|
21 |
+
download_parser.set_defaults(func=info_command_factory)
|
22 |
+
|
23 |
+
def run(self):
|
24 |
+
info = {
|
25 |
+
"`datasets` version": version,
|
26 |
+
"Platform": platform.platform(),
|
27 |
+
"Python version": platform.python_version(),
|
28 |
+
"`huggingface_hub` version": huggingface_hub.__version__,
|
29 |
+
"PyArrow version": pyarrow.__version__,
|
30 |
+
"Pandas version": pandas.__version__,
|
31 |
+
"`fsspec` version": fsspec.__version__,
|
32 |
+
}
|
33 |
+
|
34 |
+
print("\nCopy-and-paste the text below in your GitHub issue.\n")
|
35 |
+
print(self.format_dict(info))
|
36 |
+
|
37 |
+
return info
|
38 |
+
|
39 |
+
@staticmethod
|
40 |
+
def format_dict(d):
|
41 |
+
return "\n".join([f"- {prop}: {val}" for prop, val in d.items()]) + "\n"
|
venv/lib/python3.10/site-packages/datasets/commands/run_beam.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from argparse import ArgumentParser
|
3 |
+
from pathlib import Path
|
4 |
+
from shutil import copyfile
|
5 |
+
from typing import List
|
6 |
+
|
7 |
+
from datasets import config
|
8 |
+
from datasets.builder import DatasetBuilder
|
9 |
+
from datasets.commands import BaseDatasetsCLICommand
|
10 |
+
from datasets.download.download_config import DownloadConfig
|
11 |
+
from datasets.download.download_manager import DownloadMode
|
12 |
+
from datasets.load import dataset_module_factory, import_main_class
|
13 |
+
from datasets.utils.deprecation_utils import deprecated
|
14 |
+
from datasets.utils.info_utils import VerificationMode
|
15 |
+
|
16 |
+
|
17 |
+
def run_beam_command_factory(args, **kwargs):
|
18 |
+
return RunBeamCommand(
|
19 |
+
args.dataset,
|
20 |
+
args.name,
|
21 |
+
args.cache_dir,
|
22 |
+
args.beam_pipeline_options,
|
23 |
+
args.data_dir,
|
24 |
+
args.all_configs,
|
25 |
+
args.save_info or args.save_infos,
|
26 |
+
args.ignore_verifications,
|
27 |
+
args.force_redownload,
|
28 |
+
**kwargs,
|
29 |
+
)
|
30 |
+
|
31 |
+
|
32 |
+
@deprecated(
|
33 |
+
"`BeamBasedBuilder` and `datasets-cli run_beam` are deprecated and will be removed in v3.0.0. Please use `GeneratorBasedBuilder` or `ArrowBasedBuilder` instead."
|
34 |
+
)
|
35 |
+
class RunBeamCommand(BaseDatasetsCLICommand):
|
36 |
+
@staticmethod
|
37 |
+
def register_subcommand(parser: ArgumentParser):
|
38 |
+
run_beam_parser = parser.add_parser("run_beam", help="Run a Beam dataset processing pipeline")
|
39 |
+
run_beam_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
|
40 |
+
run_beam_parser.add_argument("--name", type=str, default=None, help="Dataset config name")
|
41 |
+
run_beam_parser.add_argument(
|
42 |
+
"--cache_dir",
|
43 |
+
type=str,
|
44 |
+
default=None,
|
45 |
+
help="Cache directory where the datasets are stored",
|
46 |
+
)
|
47 |
+
run_beam_parser.add_argument(
|
48 |
+
"--beam_pipeline_options",
|
49 |
+
type=str,
|
50 |
+
default="",
|
51 |
+
help="Beam pipeline options, separated by commas. Example:: `--beam_pipeline_options=job_name=my-job,project=my-project`",
|
52 |
+
)
|
53 |
+
run_beam_parser.add_argument(
|
54 |
+
"--data_dir",
|
55 |
+
type=str,
|
56 |
+
default=None,
|
57 |
+
help="Can be used to specify a manual directory to get the files from",
|
58 |
+
)
|
59 |
+
run_beam_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
|
60 |
+
run_beam_parser.add_argument("--save_info", action="store_true", help="Save the dataset infos file")
|
61 |
+
run_beam_parser.add_argument(
|
62 |
+
"--ignore_verifications", action="store_true", help="Run the test without checksums and splits checks"
|
63 |
+
)
|
64 |
+
run_beam_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
|
65 |
+
# aliases
|
66 |
+
run_beam_parser.add_argument("--save_infos", action="store_true", help="alias for save_info")
|
67 |
+
run_beam_parser.set_defaults(func=run_beam_command_factory)
|
68 |
+
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
dataset: str,
|
72 |
+
name: str,
|
73 |
+
cache_dir: str,
|
74 |
+
beam_pipeline_options: str,
|
75 |
+
data_dir: str,
|
76 |
+
all_configs: bool,
|
77 |
+
save_infos: bool,
|
78 |
+
ignore_verifications: bool,
|
79 |
+
force_redownload: bool,
|
80 |
+
**config_kwargs,
|
81 |
+
):
|
82 |
+
self._dataset = dataset
|
83 |
+
self._name = name
|
84 |
+
self._cache_dir = cache_dir
|
85 |
+
self._beam_pipeline_options = beam_pipeline_options
|
86 |
+
self._data_dir = data_dir
|
87 |
+
self._all_configs = all_configs
|
88 |
+
self._save_infos = save_infos
|
89 |
+
self._ignore_verifications = ignore_verifications
|
90 |
+
self._force_redownload = force_redownload
|
91 |
+
self._config_kwargs = config_kwargs
|
92 |
+
|
93 |
+
def run(self):
|
94 |
+
import apache_beam as beam
|
95 |
+
|
96 |
+
if self._name is not None and self._all_configs:
|
97 |
+
print("Both parameters `name` and `all_configs` can't be used at once.")
|
98 |
+
exit(1)
|
99 |
+
path, config_name = self._dataset, self._name
|
100 |
+
dataset_module = dataset_module_factory(path)
|
101 |
+
builder_cls = import_main_class(dataset_module.module_path)
|
102 |
+
builders: List[DatasetBuilder] = []
|
103 |
+
if self._beam_pipeline_options:
|
104 |
+
beam_options = beam.options.pipeline_options.PipelineOptions(
|
105 |
+
flags=[f"--{opt.strip()}" for opt in self._beam_pipeline_options.split(",") if opt]
|
106 |
+
)
|
107 |
+
else:
|
108 |
+
beam_options = None
|
109 |
+
if self._all_configs and len(builder_cls.BUILDER_CONFIGS) > 0:
|
110 |
+
for builder_config in builder_cls.BUILDER_CONFIGS:
|
111 |
+
builders.append(
|
112 |
+
builder_cls(
|
113 |
+
config_name=builder_config.name,
|
114 |
+
data_dir=self._data_dir,
|
115 |
+
hash=dataset_module.hash,
|
116 |
+
beam_options=beam_options,
|
117 |
+
cache_dir=self._cache_dir,
|
118 |
+
base_path=dataset_module.builder_kwargs.get("base_path"),
|
119 |
+
)
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
builders.append(
|
123 |
+
builder_cls(
|
124 |
+
config_name=config_name,
|
125 |
+
data_dir=self._data_dir,
|
126 |
+
beam_options=beam_options,
|
127 |
+
cache_dir=self._cache_dir,
|
128 |
+
base_path=dataset_module.builder_kwargs.get("base_path"),
|
129 |
+
**self._config_kwargs,
|
130 |
+
)
|
131 |
+
)
|
132 |
+
|
133 |
+
for builder in builders:
|
134 |
+
builder.download_and_prepare(
|
135 |
+
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
|
136 |
+
if not self._force_redownload
|
137 |
+
else DownloadMode.FORCE_REDOWNLOAD,
|
138 |
+
download_config=DownloadConfig(cache_dir=config.DOWNLOADED_DATASETS_PATH),
|
139 |
+
verification_mode=VerificationMode.NO_CHECKS
|
140 |
+
if self._ignore_verifications
|
141 |
+
else VerificationMode.ALL_CHECKS,
|
142 |
+
)
|
143 |
+
if self._save_infos:
|
144 |
+
builder._save_infos()
|
145 |
+
|
146 |
+
print("Apache beam run successful.")
|
147 |
+
|
148 |
+
# If save_infos=True, the dataset infos file is created next to the loaded module file.
|
149 |
+
# Let's move it to the original directory of the dataset script, to allow the user to
|
150 |
+
# upload them on S3 at the same time afterwards.
|
151 |
+
if self._save_infos:
|
152 |
+
dataset_infos_path = os.path.join(builder_cls.get_imported_module_dir(), config.DATASETDICT_INFOS_FILENAME)
|
153 |
+
|
154 |
+
name = Path(path).name + ".py"
|
155 |
+
|
156 |
+
combined_path = os.path.join(path, name)
|
157 |
+
if os.path.isfile(path):
|
158 |
+
dataset_dir = os.path.dirname(path)
|
159 |
+
elif os.path.isfile(combined_path):
|
160 |
+
dataset_dir = path
|
161 |
+
else: # in case of a remote dataset
|
162 |
+
print(f"Dataset Infos file saved at {dataset_infos_path}")
|
163 |
+
exit(1)
|
164 |
+
|
165 |
+
# Move datasetinfo back to the user
|
166 |
+
user_dataset_infos_path = os.path.join(dataset_dir, config.DATASETDICT_INFOS_FILENAME)
|
167 |
+
copyfile(dataset_infos_path, user_dataset_infos_path)
|
168 |
+
print(f"Dataset Infos file saved at {user_dataset_infos_path}")
|
venv/lib/python3.10/site-packages/datasets/commands/test.py
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
from argparse import ArgumentParser
|
4 |
+
from pathlib import Path
|
5 |
+
from shutil import copyfile, rmtree
|
6 |
+
from typing import Generator
|
7 |
+
|
8 |
+
import datasets.config
|
9 |
+
from datasets.builder import DatasetBuilder
|
10 |
+
from datasets.commands import BaseDatasetsCLICommand
|
11 |
+
from datasets.download.download_manager import DownloadMode
|
12 |
+
from datasets.load import dataset_module_factory, import_main_class
|
13 |
+
from datasets.utils.info_utils import VerificationMode
|
14 |
+
from datasets.utils.logging import ERROR, get_logger
|
15 |
+
|
16 |
+
|
17 |
+
logger = get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
def _test_command_factory(args):
|
21 |
+
return TestCommand(
|
22 |
+
args.dataset,
|
23 |
+
args.name,
|
24 |
+
args.cache_dir,
|
25 |
+
args.data_dir,
|
26 |
+
args.all_configs,
|
27 |
+
args.save_info or args.save_infos,
|
28 |
+
args.ignore_verifications,
|
29 |
+
args.force_redownload,
|
30 |
+
args.clear_cache,
|
31 |
+
args.num_proc,
|
32 |
+
)
|
33 |
+
|
34 |
+
|
35 |
+
class TestCommand(BaseDatasetsCLICommand):
|
36 |
+
__test__ = False # to tell pytest it's not a test class
|
37 |
+
|
38 |
+
@staticmethod
|
39 |
+
def register_subcommand(parser: ArgumentParser):
|
40 |
+
test_parser = parser.add_parser("test", help="Test dataset implementation.")
|
41 |
+
test_parser.add_argument("--name", type=str, default=None, help="Dataset processing name")
|
42 |
+
test_parser.add_argument(
|
43 |
+
"--cache_dir",
|
44 |
+
type=str,
|
45 |
+
default=None,
|
46 |
+
help="Cache directory where the datasets are stored.",
|
47 |
+
)
|
48 |
+
test_parser.add_argument(
|
49 |
+
"--data_dir",
|
50 |
+
type=str,
|
51 |
+
default=None,
|
52 |
+
help="Can be used to specify a manual directory to get the files from.",
|
53 |
+
)
|
54 |
+
test_parser.add_argument("--all_configs", action="store_true", help="Test all dataset configurations")
|
55 |
+
test_parser.add_argument(
|
56 |
+
"--save_info", action="store_true", help="Save the dataset infos in the dataset card (README.md)"
|
57 |
+
)
|
58 |
+
test_parser.add_argument(
|
59 |
+
"--ignore_verifications",
|
60 |
+
action="store_true",
|
61 |
+
help="Run the test without checksums and splits checks.",
|
62 |
+
)
|
63 |
+
test_parser.add_argument("--force_redownload", action="store_true", help="Force dataset redownload")
|
64 |
+
test_parser.add_argument(
|
65 |
+
"--clear_cache",
|
66 |
+
action="store_true",
|
67 |
+
help="Remove downloaded files and cached datasets after each config test",
|
68 |
+
)
|
69 |
+
test_parser.add_argument("--num_proc", type=int, default=None, help="Number of processes")
|
70 |
+
# aliases
|
71 |
+
test_parser.add_argument("--save_infos", action="store_true", help="alias to save_info")
|
72 |
+
test_parser.add_argument("dataset", type=str, help="Name of the dataset to download")
|
73 |
+
test_parser.set_defaults(func=_test_command_factory)
|
74 |
+
|
75 |
+
def __init__(
|
76 |
+
self,
|
77 |
+
dataset: str,
|
78 |
+
name: str,
|
79 |
+
cache_dir: str,
|
80 |
+
data_dir: str,
|
81 |
+
all_configs: bool,
|
82 |
+
save_infos: bool,
|
83 |
+
ignore_verifications: bool,
|
84 |
+
force_redownload: bool,
|
85 |
+
clear_cache: bool,
|
86 |
+
num_proc: int,
|
87 |
+
):
|
88 |
+
self._dataset = dataset
|
89 |
+
self._name = name
|
90 |
+
self._cache_dir = cache_dir
|
91 |
+
self._data_dir = data_dir
|
92 |
+
self._all_configs = all_configs
|
93 |
+
self._save_infos = save_infos
|
94 |
+
self._ignore_verifications = ignore_verifications
|
95 |
+
self._force_redownload = force_redownload
|
96 |
+
self._clear_cache = clear_cache
|
97 |
+
self._num_proc = num_proc
|
98 |
+
if clear_cache and not cache_dir:
|
99 |
+
print(
|
100 |
+
"When --clear_cache is used, specifying a cache directory is mandatory.\n"
|
101 |
+
"The 'download' folder of the cache directory and the dataset builder cache will be deleted after each configuration test.\n"
|
102 |
+
"Please provide a --cache_dir that will be used to test the dataset script."
|
103 |
+
)
|
104 |
+
exit(1)
|
105 |
+
if save_infos:
|
106 |
+
self._ignore_verifications = True
|
107 |
+
|
108 |
+
def run(self):
|
109 |
+
logging.getLogger("filelock").setLevel(ERROR)
|
110 |
+
if self._name is not None and self._all_configs:
|
111 |
+
print("Both parameters `config` and `all_configs` can't be used at once.")
|
112 |
+
exit(1)
|
113 |
+
path, config_name = self._dataset, self._name
|
114 |
+
module = dataset_module_factory(path)
|
115 |
+
builder_cls = import_main_class(module.module_path)
|
116 |
+
n_builders = len(builder_cls.BUILDER_CONFIGS) if self._all_configs and builder_cls.BUILDER_CONFIGS else 1
|
117 |
+
|
118 |
+
def get_builders() -> Generator[DatasetBuilder, None, None]:
|
119 |
+
if self._all_configs and builder_cls.BUILDER_CONFIGS:
|
120 |
+
for i, config in enumerate(builder_cls.BUILDER_CONFIGS):
|
121 |
+
if "config_name" in module.builder_kwargs:
|
122 |
+
yield builder_cls(
|
123 |
+
cache_dir=self._cache_dir,
|
124 |
+
data_dir=self._data_dir,
|
125 |
+
**module.builder_kwargs,
|
126 |
+
)
|
127 |
+
else:
|
128 |
+
yield builder_cls(
|
129 |
+
config_name=config.name,
|
130 |
+
cache_dir=self._cache_dir,
|
131 |
+
data_dir=self._data_dir,
|
132 |
+
**module.builder_kwargs,
|
133 |
+
)
|
134 |
+
else:
|
135 |
+
if "config_name" in module.builder_kwargs:
|
136 |
+
yield builder_cls(cache_dir=self._cache_dir, data_dir=self._data_dir, **module.builder_kwargs)
|
137 |
+
else:
|
138 |
+
yield builder_cls(
|
139 |
+
config_name=config_name,
|
140 |
+
cache_dir=self._cache_dir,
|
141 |
+
data_dir=self._data_dir,
|
142 |
+
**module.builder_kwargs,
|
143 |
+
)
|
144 |
+
|
145 |
+
for j, builder in enumerate(get_builders()):
|
146 |
+
print(f"Testing builder '{builder.config.name}' ({j + 1}/{n_builders})")
|
147 |
+
builder._record_infos = os.path.exists(
|
148 |
+
os.path.join(builder.get_imported_module_dir(), datasets.config.DATASETDICT_INFOS_FILENAME)
|
149 |
+
) # record checksums only if we need to update a (deprecated) dataset_infos.json
|
150 |
+
builder.download_and_prepare(
|
151 |
+
download_mode=DownloadMode.REUSE_CACHE_IF_EXISTS
|
152 |
+
if not self._force_redownload
|
153 |
+
else DownloadMode.FORCE_REDOWNLOAD,
|
154 |
+
verification_mode=VerificationMode.NO_CHECKS
|
155 |
+
if self._ignore_verifications
|
156 |
+
else VerificationMode.ALL_CHECKS,
|
157 |
+
try_from_hf_gcs=False,
|
158 |
+
num_proc=self._num_proc,
|
159 |
+
)
|
160 |
+
builder.as_dataset()
|
161 |
+
if self._save_infos:
|
162 |
+
builder._save_infos()
|
163 |
+
|
164 |
+
# If save_infos=True, the dataset card (README.md) is created next to the loaded module file.
|
165 |
+
# The dataset_infos are saved in the YAML part of the README.md
|
166 |
+
|
167 |
+
# Let's move it to the original directory of the dataset script, to allow the user to
|
168 |
+
# upload them on S3 at the same time afterwards.
|
169 |
+
if self._save_infos:
|
170 |
+
dataset_readme_path = os.path.join(
|
171 |
+
builder_cls.get_imported_module_dir(), datasets.config.REPOCARD_FILENAME
|
172 |
+
)
|
173 |
+
name = Path(path).name + ".py"
|
174 |
+
combined_path = os.path.join(path, name)
|
175 |
+
if os.path.isfile(path):
|
176 |
+
dataset_dir = os.path.dirname(path)
|
177 |
+
elif os.path.isfile(combined_path):
|
178 |
+
dataset_dir = path
|
179 |
+
elif os.path.isdir(path): # for local directories containing only data files
|
180 |
+
dataset_dir = path
|
181 |
+
else: # in case of a remote dataset
|
182 |
+
dataset_dir = None
|
183 |
+
print(f"Dataset card saved at {dataset_readme_path}")
|
184 |
+
|
185 |
+
# Move dataset_info back to the user
|
186 |
+
if dataset_dir is not None:
|
187 |
+
user_dataset_readme_path = os.path.join(dataset_dir, datasets.config.REPOCARD_FILENAME)
|
188 |
+
copyfile(dataset_readme_path, user_dataset_readme_path)
|
189 |
+
print(f"Dataset card saved at {user_dataset_readme_path}")
|
190 |
+
|
191 |
+
# If clear_cache=True, the download folder and the dataset builder cache directory are deleted
|
192 |
+
if self._clear_cache:
|
193 |
+
if os.path.isdir(builder._cache_dir):
|
194 |
+
logger.warning(f"Clearing cache at {builder._cache_dir}")
|
195 |
+
rmtree(builder._cache_dir)
|
196 |
+
download_dir = os.path.join(self._cache_dir, datasets.config.DOWNLOADED_DATASETS_DIR)
|
197 |
+
if os.path.isdir(download_dir):
|
198 |
+
logger.warning(f"Clearing cache at {download_dir}")
|
199 |
+
rmtree(download_dir)
|
200 |
+
|
201 |
+
print("Test successful.")
|
venv/lib/python3.10/site-packages/datasets/formatting/__init__.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# ruff: noqa
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Type
|
18 |
+
|
19 |
+
from .. import config
|
20 |
+
from ..utils import logging
|
21 |
+
from .formatting import (
|
22 |
+
ArrowFormatter,
|
23 |
+
CustomFormatter,
|
24 |
+
Formatter,
|
25 |
+
PandasFormatter,
|
26 |
+
PythonFormatter,
|
27 |
+
TensorFormatter,
|
28 |
+
format_table,
|
29 |
+
query_table,
|
30 |
+
)
|
31 |
+
from .np_formatter import NumpyFormatter
|
32 |
+
|
33 |
+
|
34 |
+
logger = logging.get_logger(__name__)
|
35 |
+
|
36 |
+
_FORMAT_TYPES: Dict[Optional[str], Type[Formatter]] = {}
|
37 |
+
_FORMAT_TYPES_ALIASES: Dict[Optional[str], str] = {}
|
38 |
+
_FORMAT_TYPES_ALIASES_UNAVAILABLE: Dict[Optional[str], Exception] = {}
|
39 |
+
|
40 |
+
|
41 |
+
def _register_formatter(
|
42 |
+
formatter_cls: type,
|
43 |
+
format_type: Optional[str],
|
44 |
+
aliases: Optional[List[str]] = None,
|
45 |
+
):
|
46 |
+
"""
|
47 |
+
Register a Formatter object using a name and optional aliases.
|
48 |
+
This function must be used on a Formatter class.
|
49 |
+
"""
|
50 |
+
aliases = aliases if aliases is not None else []
|
51 |
+
if format_type in _FORMAT_TYPES:
|
52 |
+
logger.warning(
|
53 |
+
f"Overwriting format type '{format_type}' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})"
|
54 |
+
)
|
55 |
+
_FORMAT_TYPES[format_type] = formatter_cls
|
56 |
+
for alias in set(aliases + [format_type]):
|
57 |
+
if alias in _FORMAT_TYPES_ALIASES:
|
58 |
+
logger.warning(
|
59 |
+
f"Overwriting format type alias '{alias}' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})"
|
60 |
+
)
|
61 |
+
_FORMAT_TYPES_ALIASES[alias] = format_type
|
62 |
+
|
63 |
+
|
64 |
+
def _register_unavailable_formatter(
|
65 |
+
unavailable_error: Exception, format_type: Optional[str], aliases: Optional[List[str]] = None
|
66 |
+
):
|
67 |
+
"""
|
68 |
+
Register an unavailable Formatter object using a name and optional aliases.
|
69 |
+
This function must be used on an Exception object that is raised when trying to get the unavailable formatter.
|
70 |
+
"""
|
71 |
+
aliases = aliases if aliases is not None else []
|
72 |
+
for alias in set(aliases + [format_type]):
|
73 |
+
_FORMAT_TYPES_ALIASES_UNAVAILABLE[alias] = unavailable_error
|
74 |
+
|
75 |
+
|
76 |
+
# Here we define all the available formatting functions that can be used by `Dataset.set_format`
|
77 |
+
_register_formatter(PythonFormatter, None, aliases=["python"])
|
78 |
+
_register_formatter(ArrowFormatter, "arrow", aliases=["pa", "pyarrow"])
|
79 |
+
_register_formatter(NumpyFormatter, "numpy", aliases=["np"])
|
80 |
+
_register_formatter(PandasFormatter, "pandas", aliases=["pd"])
|
81 |
+
_register_formatter(CustomFormatter, "custom")
|
82 |
+
|
83 |
+
if config.POLARS_AVAILABLE:
|
84 |
+
from .polars_formatter import PolarsFormatter
|
85 |
+
|
86 |
+
_register_formatter(PolarsFormatter, "polars", aliases=["pl"])
|
87 |
+
else:
|
88 |
+
_polars_error = ValueError("Polars needs to be installed to be able to return Polars dataframes.")
|
89 |
+
_register_unavailable_formatter(_polars_error, "polars", aliases=["pl"])
|
90 |
+
|
91 |
+
if config.TORCH_AVAILABLE:
|
92 |
+
from .torch_formatter import TorchFormatter
|
93 |
+
|
94 |
+
_register_formatter(TorchFormatter, "torch", aliases=["pt", "pytorch"])
|
95 |
+
else:
|
96 |
+
_torch_error = ValueError("PyTorch needs to be installed to be able to return PyTorch tensors.")
|
97 |
+
_register_unavailable_formatter(_torch_error, "torch", aliases=["pt", "pytorch"])
|
98 |
+
|
99 |
+
if config.TF_AVAILABLE:
|
100 |
+
from .tf_formatter import TFFormatter
|
101 |
+
|
102 |
+
_register_formatter(TFFormatter, "tensorflow", aliases=["tf"])
|
103 |
+
else:
|
104 |
+
_tf_error = ValueError("Tensorflow needs to be installed to be able to return Tensorflow tensors.")
|
105 |
+
_register_unavailable_formatter(_tf_error, "tensorflow", aliases=["tf"])
|
106 |
+
|
107 |
+
if config.JAX_AVAILABLE:
|
108 |
+
from .jax_formatter import JaxFormatter
|
109 |
+
|
110 |
+
_register_formatter(JaxFormatter, "jax", aliases=[])
|
111 |
+
else:
|
112 |
+
_jax_error = ValueError("JAX needs to be installed to be able to return JAX arrays.")
|
113 |
+
_register_unavailable_formatter(_jax_error, "jax", aliases=[])
|
114 |
+
|
115 |
+
|
116 |
+
def get_format_type_from_alias(format_type: Optional[str]) -> Optional[str]:
|
117 |
+
"""If the given format type is a known alias, then return its main type name. Otherwise return the type with no change."""
|
118 |
+
if format_type in _FORMAT_TYPES_ALIASES:
|
119 |
+
return _FORMAT_TYPES_ALIASES[format_type]
|
120 |
+
else:
|
121 |
+
return format_type
|
122 |
+
|
123 |
+
|
124 |
+
def get_formatter(format_type: Optional[str], **format_kwargs) -> Formatter:
|
125 |
+
"""
|
126 |
+
Factory function to get a Formatter given its type name and keyword arguments.
|
127 |
+
A formatter is an object that extracts and formats data from pyarrow table.
|
128 |
+
It defines the formatting for rows, colums and batches.
|
129 |
+
If the formatter for a given type name doesn't exist or is not available, an error is raised.
|
130 |
+
"""
|
131 |
+
format_type = get_format_type_from_alias(format_type)
|
132 |
+
if format_type in _FORMAT_TYPES:
|
133 |
+
return _FORMAT_TYPES[format_type](**format_kwargs)
|
134 |
+
if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE:
|
135 |
+
raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type]
|
136 |
+
else:
|
137 |
+
raise ValueError(
|
138 |
+
f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None)}, but got '{format_type}'"
|
139 |
+
)
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (4.09 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/formatting.cpython-310.pyc
ADDED
Binary file (26.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/jax_formatter.cpython-310.pyc
ADDED
Binary file (5.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/np_formatter.cpython-310.pyc
ADDED
Binary file (3.88 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/polars_formatter.cpython-310.pyc
ADDED
Binary file (4.37 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/tf_formatter.cpython-310.pyc
ADDED
Binary file (4.07 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/__pycache__/torch_formatter.cpython-310.pyc
ADDED
Binary file (3.97 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/formatting/formatting.py
ADDED
@@ -0,0 +1,653 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import operator
|
16 |
+
from collections.abc import Mapping, MutableMapping
|
17 |
+
from functools import partial
|
18 |
+
|
19 |
+
# Lint as: python3
|
20 |
+
from typing import Any, Callable, Dict, Generic, Iterable, List, Optional, TypeVar, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import pandas as pd
|
24 |
+
import pyarrow as pa
|
25 |
+
from packaging import version
|
26 |
+
|
27 |
+
from .. import config
|
28 |
+
from ..features import Features
|
29 |
+
from ..features.features import _ArrayXDExtensionType, _is_zero_copy_only, decode_nested_example, pandas_types_mapper
|
30 |
+
from ..table import Table
|
31 |
+
from ..utils.py_utils import no_op_if_value_is_null
|
32 |
+
|
33 |
+
|
34 |
+
T = TypeVar("T")
|
35 |
+
|
36 |
+
RowFormat = TypeVar("RowFormat")
|
37 |
+
ColumnFormat = TypeVar("ColumnFormat")
|
38 |
+
BatchFormat = TypeVar("BatchFormat")
|
39 |
+
|
40 |
+
|
41 |
+
def _is_range_contiguous(key: range) -> bool:
|
42 |
+
return key.step == 1 and key.stop >= key.start
|
43 |
+
|
44 |
+
|
45 |
+
def _raise_bad_key_type(key: Any):
|
46 |
+
raise TypeError(
|
47 |
+
f"Wrong key type: '{key}' of type '{type(key)}'. Expected one of int, slice, range, str or Iterable."
|
48 |
+
)
|
49 |
+
|
50 |
+
|
51 |
+
def _query_table_with_indices_mapping(
|
52 |
+
table: Table, key: Union[int, slice, range, str, Iterable], indices: Table
|
53 |
+
) -> pa.Table:
|
54 |
+
"""
|
55 |
+
Query a pyarrow Table to extract the subtable that correspond to the given key.
|
56 |
+
The :obj:`indices` parameter corresponds to the indices mapping in case we cant to take into
|
57 |
+
account a shuffling or an indices selection for example.
|
58 |
+
The indices table must contain one column named "indices" of type uint64.
|
59 |
+
"""
|
60 |
+
if isinstance(key, int):
|
61 |
+
key = indices.fast_slice(key % indices.num_rows, 1).column(0)[0].as_py()
|
62 |
+
return _query_table(table, key)
|
63 |
+
if isinstance(key, slice):
|
64 |
+
key = range(*key.indices(indices.num_rows))
|
65 |
+
if isinstance(key, range):
|
66 |
+
if _is_range_contiguous(key) and key.start >= 0:
|
67 |
+
return _query_table(
|
68 |
+
table, [i.as_py() for i in indices.fast_slice(key.start, key.stop - key.start).column(0)]
|
69 |
+
)
|
70 |
+
else:
|
71 |
+
pass # treat as an iterable
|
72 |
+
if isinstance(key, str):
|
73 |
+
table = table.select([key])
|
74 |
+
return _query_table(table, indices.column(0).to_pylist())
|
75 |
+
if isinstance(key, Iterable):
|
76 |
+
return _query_table(table, [indices.fast_slice(i, 1).column(0)[0].as_py() for i in key])
|
77 |
+
|
78 |
+
_raise_bad_key_type(key)
|
79 |
+
|
80 |
+
|
81 |
+
def _query_table(table: Table, key: Union[int, slice, range, str, Iterable]) -> pa.Table:
|
82 |
+
"""
|
83 |
+
Query a pyarrow Table to extract the subtable that correspond to the given key.
|
84 |
+
"""
|
85 |
+
if isinstance(key, int):
|
86 |
+
return table.fast_slice(key % table.num_rows, 1)
|
87 |
+
if isinstance(key, slice):
|
88 |
+
key = range(*key.indices(table.num_rows))
|
89 |
+
if isinstance(key, range):
|
90 |
+
if _is_range_contiguous(key) and key.start >= 0:
|
91 |
+
return table.fast_slice(key.start, key.stop - key.start)
|
92 |
+
else:
|
93 |
+
pass # treat as an iterable
|
94 |
+
if isinstance(key, str):
|
95 |
+
return table.table.drop([column for column in table.column_names if column != key])
|
96 |
+
if isinstance(key, Iterable):
|
97 |
+
key = np.fromiter(key, np.int64)
|
98 |
+
if len(key) == 0:
|
99 |
+
return table.table.slice(0, 0)
|
100 |
+
# don't use pyarrow.Table.take even for pyarrow >=1.0 (see https://issues.apache.org/jira/browse/ARROW-9773)
|
101 |
+
return table.fast_gather(key % table.num_rows)
|
102 |
+
|
103 |
+
_raise_bad_key_type(key)
|
104 |
+
|
105 |
+
|
106 |
+
def _is_array_with_nulls(pa_array: pa.Array) -> bool:
|
107 |
+
return pa_array.null_count > 0
|
108 |
+
|
109 |
+
|
110 |
+
class BaseArrowExtractor(Generic[RowFormat, ColumnFormat, BatchFormat]):
|
111 |
+
"""
|
112 |
+
Arrow extractor are used to extract data from pyarrow tables.
|
113 |
+
It makes it possible to extract rows, columns and batches.
|
114 |
+
These three extractions types have to be implemented.
|
115 |
+
"""
|
116 |
+
|
117 |
+
def extract_row(self, pa_table: pa.Table) -> RowFormat:
|
118 |
+
raise NotImplementedError
|
119 |
+
|
120 |
+
def extract_column(self, pa_table: pa.Table) -> ColumnFormat:
|
121 |
+
raise NotImplementedError
|
122 |
+
|
123 |
+
def extract_batch(self, pa_table: pa.Table) -> BatchFormat:
|
124 |
+
raise NotImplementedError
|
125 |
+
|
126 |
+
|
127 |
+
def _unnest(py_dict: Dict[str, List[T]]) -> Dict[str, T]:
|
128 |
+
"""Return the first element of a batch (dict) as a row (dict)"""
|
129 |
+
return {key: array[0] for key, array in py_dict.items()}
|
130 |
+
|
131 |
+
|
132 |
+
class SimpleArrowExtractor(BaseArrowExtractor[pa.Table, pa.Array, pa.Table]):
|
133 |
+
def extract_row(self, pa_table: pa.Table) -> pa.Table:
|
134 |
+
return pa_table
|
135 |
+
|
136 |
+
def extract_column(self, pa_table: pa.Table) -> pa.Array:
|
137 |
+
return pa_table.column(0)
|
138 |
+
|
139 |
+
def extract_batch(self, pa_table: pa.Table) -> pa.Table:
|
140 |
+
return pa_table
|
141 |
+
|
142 |
+
|
143 |
+
class PythonArrowExtractor(BaseArrowExtractor[dict, list, dict]):
|
144 |
+
def extract_row(self, pa_table: pa.Table) -> dict:
|
145 |
+
return _unnest(pa_table.to_pydict())
|
146 |
+
|
147 |
+
def extract_column(self, pa_table: pa.Table) -> list:
|
148 |
+
return pa_table.column(0).to_pylist()
|
149 |
+
|
150 |
+
def extract_batch(self, pa_table: pa.Table) -> dict:
|
151 |
+
return pa_table.to_pydict()
|
152 |
+
|
153 |
+
|
154 |
+
class NumpyArrowExtractor(BaseArrowExtractor[dict, np.ndarray, dict]):
|
155 |
+
def __init__(self, **np_array_kwargs):
|
156 |
+
self.np_array_kwargs = np_array_kwargs
|
157 |
+
|
158 |
+
def extract_row(self, pa_table: pa.Table) -> dict:
|
159 |
+
return _unnest(self.extract_batch(pa_table))
|
160 |
+
|
161 |
+
def extract_column(self, pa_table: pa.Table) -> np.ndarray:
|
162 |
+
return self._arrow_array_to_numpy(pa_table[pa_table.column_names[0]])
|
163 |
+
|
164 |
+
def extract_batch(self, pa_table: pa.Table) -> dict:
|
165 |
+
return {col: self._arrow_array_to_numpy(pa_table[col]) for col in pa_table.column_names}
|
166 |
+
|
167 |
+
def _arrow_array_to_numpy(self, pa_array: pa.Array) -> np.ndarray:
|
168 |
+
if isinstance(pa_array, pa.ChunkedArray):
|
169 |
+
if isinstance(pa_array.type, _ArrayXDExtensionType):
|
170 |
+
# don't call to_pylist() to preserve dtype of the fixed-size array
|
171 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
|
172 |
+
array: List = [
|
173 |
+
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
|
174 |
+
]
|
175 |
+
else:
|
176 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type) and all(
|
177 |
+
not _is_array_with_nulls(chunk) for chunk in pa_array.chunks
|
178 |
+
)
|
179 |
+
array: List = [
|
180 |
+
row for chunk in pa_array.chunks for row in chunk.to_numpy(zero_copy_only=zero_copy_only)
|
181 |
+
]
|
182 |
+
else:
|
183 |
+
if isinstance(pa_array.type, _ArrayXDExtensionType):
|
184 |
+
# don't call to_pylist() to preserve dtype of the fixed-size array
|
185 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type.storage_dtype, unnest=True)
|
186 |
+
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only)
|
187 |
+
else:
|
188 |
+
zero_copy_only = _is_zero_copy_only(pa_array.type) and not _is_array_with_nulls(pa_array)
|
189 |
+
array: List = pa_array.to_numpy(zero_copy_only=zero_copy_only).tolist()
|
190 |
+
if len(array) > 0:
|
191 |
+
if any(
|
192 |
+
(isinstance(x, np.ndarray) and (x.dtype == object or x.shape != array[0].shape))
|
193 |
+
or (isinstance(x, float) and np.isnan(x))
|
194 |
+
for x in array
|
195 |
+
):
|
196 |
+
return np.array(array, copy=False, dtype=object)
|
197 |
+
return np.array(array, copy=False)
|
198 |
+
|
199 |
+
|
200 |
+
class PandasArrowExtractor(BaseArrowExtractor[pd.DataFrame, pd.Series, pd.DataFrame]):
|
201 |
+
def extract_row(self, pa_table: pa.Table) -> pd.DataFrame:
|
202 |
+
return pa_table.slice(length=1).to_pandas(types_mapper=pandas_types_mapper)
|
203 |
+
|
204 |
+
def extract_column(self, pa_table: pa.Table) -> pd.Series:
|
205 |
+
return pa_table.select([0]).to_pandas(types_mapper=pandas_types_mapper)[pa_table.column_names[0]]
|
206 |
+
|
207 |
+
def extract_batch(self, pa_table: pa.Table) -> pd.DataFrame:
|
208 |
+
return pa_table.to_pandas(types_mapper=pandas_types_mapper)
|
209 |
+
|
210 |
+
|
211 |
+
class PythonFeaturesDecoder:
|
212 |
+
def __init__(self, features: Optional[Features]):
|
213 |
+
self.features = features
|
214 |
+
|
215 |
+
def decode_row(self, row: dict) -> dict:
|
216 |
+
return self.features.decode_example(row) if self.features else row
|
217 |
+
|
218 |
+
def decode_column(self, column: list, column_name: str) -> list:
|
219 |
+
return self.features.decode_column(column, column_name) if self.features else column
|
220 |
+
|
221 |
+
def decode_batch(self, batch: dict) -> dict:
|
222 |
+
return self.features.decode_batch(batch) if self.features else batch
|
223 |
+
|
224 |
+
|
225 |
+
class PandasFeaturesDecoder:
|
226 |
+
def __init__(self, features: Optional[Features]):
|
227 |
+
self.features = features
|
228 |
+
|
229 |
+
def decode_row(self, row: pd.DataFrame) -> pd.DataFrame:
|
230 |
+
decode = (
|
231 |
+
{
|
232 |
+
column_name: no_op_if_value_is_null(partial(decode_nested_example, feature))
|
233 |
+
for column_name, feature in self.features.items()
|
234 |
+
if self.features._column_requires_decoding[column_name]
|
235 |
+
}
|
236 |
+
if self.features
|
237 |
+
else {}
|
238 |
+
)
|
239 |
+
if decode:
|
240 |
+
row[list(decode.keys())] = row.transform(decode)
|
241 |
+
return row
|
242 |
+
|
243 |
+
def decode_column(self, column: pd.Series, column_name: str) -> pd.Series:
|
244 |
+
decode = (
|
245 |
+
no_op_if_value_is_null(partial(decode_nested_example, self.features[column_name]))
|
246 |
+
if self.features and column_name in self.features and self.features._column_requires_decoding[column_name]
|
247 |
+
else None
|
248 |
+
)
|
249 |
+
if decode:
|
250 |
+
column = column.transform(decode)
|
251 |
+
return column
|
252 |
+
|
253 |
+
def decode_batch(self, batch: pd.DataFrame) -> pd.DataFrame:
|
254 |
+
return self.decode_row(batch)
|
255 |
+
|
256 |
+
|
257 |
+
class LazyDict(MutableMapping):
|
258 |
+
"""A dictionary backed by Arrow data. The values are formatted on-the-fly when accessing the dictionary."""
|
259 |
+
|
260 |
+
def __init__(self, pa_table: pa.Table, formatter: "Formatter"):
|
261 |
+
self.pa_table = pa_table
|
262 |
+
self.formatter = formatter
|
263 |
+
|
264 |
+
self.data = {key: None for key in pa_table.column_names}
|
265 |
+
self.keys_to_format = set(self.data.keys())
|
266 |
+
|
267 |
+
def __len__(self):
|
268 |
+
return len(self.data)
|
269 |
+
|
270 |
+
def __getitem__(self, key):
|
271 |
+
value = self.data[key]
|
272 |
+
if key in self.keys_to_format:
|
273 |
+
value = self.format(key)
|
274 |
+
self.data[key] = value
|
275 |
+
self.keys_to_format.remove(key)
|
276 |
+
return value
|
277 |
+
|
278 |
+
def __setitem__(self, key, value):
|
279 |
+
if key in self.keys_to_format:
|
280 |
+
self.keys_to_format.remove(key)
|
281 |
+
self.data[key] = value
|
282 |
+
|
283 |
+
def __delitem__(self, key) -> None:
|
284 |
+
if key in self.keys_to_format:
|
285 |
+
self.keys_to_format.remove(key)
|
286 |
+
del self.data[key]
|
287 |
+
|
288 |
+
def __iter__(self):
|
289 |
+
return iter(self.data)
|
290 |
+
|
291 |
+
def __contains__(self, key):
|
292 |
+
return key in self.data
|
293 |
+
|
294 |
+
def __repr__(self):
|
295 |
+
self._format_all()
|
296 |
+
return repr(self.data)
|
297 |
+
|
298 |
+
if config.PY_VERSION >= version.parse("3.9"):
|
299 |
+
# merging with the union ("|") operator is supported in Python 3.9+
|
300 |
+
|
301 |
+
def __or__(self, other):
|
302 |
+
if isinstance(other, LazyDict):
|
303 |
+
inst = self.copy()
|
304 |
+
other = other.copy()
|
305 |
+
other._format_all()
|
306 |
+
inst.keys_to_format -= other.data.keys()
|
307 |
+
inst.data = inst.data | other.data
|
308 |
+
return inst
|
309 |
+
if isinstance(other, dict):
|
310 |
+
inst = self.copy()
|
311 |
+
inst.keys_to_format -= other.keys()
|
312 |
+
inst.data = inst.data | other
|
313 |
+
return inst
|
314 |
+
return NotImplemented
|
315 |
+
|
316 |
+
def __ror__(self, other):
|
317 |
+
if isinstance(other, LazyDict):
|
318 |
+
inst = self.copy()
|
319 |
+
other = other.copy()
|
320 |
+
other._format_all()
|
321 |
+
inst.keys_to_format -= other.data.keys()
|
322 |
+
inst.data = other.data | inst.data
|
323 |
+
return inst
|
324 |
+
if isinstance(other, dict):
|
325 |
+
inst = self.copy()
|
326 |
+
inst.keys_to_format -= other.keys()
|
327 |
+
inst.data = other | inst.data
|
328 |
+
return inst
|
329 |
+
return NotImplemented
|
330 |
+
|
331 |
+
def __ior__(self, other):
|
332 |
+
if isinstance(other, LazyDict):
|
333 |
+
other = other.copy()
|
334 |
+
other._format_all()
|
335 |
+
self.keys_to_format -= other.data.keys()
|
336 |
+
self.data |= other.data
|
337 |
+
else:
|
338 |
+
self.keys_to_format -= other.keys()
|
339 |
+
self.data |= other
|
340 |
+
return self
|
341 |
+
|
342 |
+
def __copy__(self):
|
343 |
+
# Identical to `UserDict.__copy__`
|
344 |
+
inst = self.__class__.__new__(self.__class__)
|
345 |
+
inst.__dict__.update(self.__dict__)
|
346 |
+
# Create a copy and avoid triggering descriptors
|
347 |
+
inst.__dict__["data"] = self.__dict__["data"].copy()
|
348 |
+
inst.__dict__["keys_to_format"] = self.__dict__["keys_to_format"].copy()
|
349 |
+
return inst
|
350 |
+
|
351 |
+
def copy(self):
|
352 |
+
import copy
|
353 |
+
|
354 |
+
return copy.copy(self)
|
355 |
+
|
356 |
+
@classmethod
|
357 |
+
def fromkeys(cls, iterable, value=None):
|
358 |
+
raise NotImplementedError
|
359 |
+
|
360 |
+
def format(self, key):
|
361 |
+
raise NotImplementedError
|
362 |
+
|
363 |
+
def _format_all(self):
|
364 |
+
for key in self.keys_to_format:
|
365 |
+
self.data[key] = self.format(key)
|
366 |
+
self.keys_to_format.clear()
|
367 |
+
|
368 |
+
|
369 |
+
class LazyRow(LazyDict):
|
370 |
+
def format(self, key):
|
371 |
+
return self.formatter.format_column(self.pa_table.select([key]))[0]
|
372 |
+
|
373 |
+
|
374 |
+
class LazyBatch(LazyDict):
|
375 |
+
def format(self, key):
|
376 |
+
return self.formatter.format_column(self.pa_table.select([key]))
|
377 |
+
|
378 |
+
|
379 |
+
class Formatter(Generic[RowFormat, ColumnFormat, BatchFormat]):
|
380 |
+
"""
|
381 |
+
A formatter is an object that extracts and formats data from pyarrow tables.
|
382 |
+
It defines the formatting for rows, columns and batches.
|
383 |
+
"""
|
384 |
+
|
385 |
+
simple_arrow_extractor = SimpleArrowExtractor
|
386 |
+
python_arrow_extractor = PythonArrowExtractor
|
387 |
+
numpy_arrow_extractor = NumpyArrowExtractor
|
388 |
+
pandas_arrow_extractor = PandasArrowExtractor
|
389 |
+
|
390 |
+
def __init__(self, features: Optional[Features] = None):
|
391 |
+
self.features = features
|
392 |
+
self.python_features_decoder = PythonFeaturesDecoder(self.features)
|
393 |
+
self.pandas_features_decoder = PandasFeaturesDecoder(self.features)
|
394 |
+
|
395 |
+
def __call__(self, pa_table: pa.Table, query_type: str) -> Union[RowFormat, ColumnFormat, BatchFormat]:
|
396 |
+
if query_type == "row":
|
397 |
+
return self.format_row(pa_table)
|
398 |
+
elif query_type == "column":
|
399 |
+
return self.format_column(pa_table)
|
400 |
+
elif query_type == "batch":
|
401 |
+
return self.format_batch(pa_table)
|
402 |
+
|
403 |
+
def format_row(self, pa_table: pa.Table) -> RowFormat:
|
404 |
+
raise NotImplementedError
|
405 |
+
|
406 |
+
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
|
407 |
+
raise NotImplementedError
|
408 |
+
|
409 |
+
def format_batch(self, pa_table: pa.Table) -> BatchFormat:
|
410 |
+
raise NotImplementedError
|
411 |
+
|
412 |
+
|
413 |
+
class TensorFormatter(Formatter[RowFormat, ColumnFormat, BatchFormat]):
|
414 |
+
def recursive_tensorize(self, data_struct: dict):
|
415 |
+
raise NotImplementedError
|
416 |
+
|
417 |
+
|
418 |
+
class ArrowFormatter(Formatter[pa.Table, pa.Array, pa.Table]):
|
419 |
+
def format_row(self, pa_table: pa.Table) -> pa.Table:
|
420 |
+
return self.simple_arrow_extractor().extract_row(pa_table)
|
421 |
+
|
422 |
+
def format_column(self, pa_table: pa.Table) -> pa.Array:
|
423 |
+
return self.simple_arrow_extractor().extract_column(pa_table)
|
424 |
+
|
425 |
+
def format_batch(self, pa_table: pa.Table) -> pa.Table:
|
426 |
+
return self.simple_arrow_extractor().extract_batch(pa_table)
|
427 |
+
|
428 |
+
|
429 |
+
class PythonFormatter(Formatter[Mapping, list, Mapping]):
|
430 |
+
def __init__(self, features=None, lazy=False):
|
431 |
+
super().__init__(features)
|
432 |
+
self.lazy = lazy
|
433 |
+
|
434 |
+
def format_row(self, pa_table: pa.Table) -> Mapping:
|
435 |
+
if self.lazy:
|
436 |
+
return LazyRow(pa_table, self)
|
437 |
+
row = self.python_arrow_extractor().extract_row(pa_table)
|
438 |
+
row = self.python_features_decoder.decode_row(row)
|
439 |
+
return row
|
440 |
+
|
441 |
+
def format_column(self, pa_table: pa.Table) -> list:
|
442 |
+
column = self.python_arrow_extractor().extract_column(pa_table)
|
443 |
+
column = self.python_features_decoder.decode_column(column, pa_table.column_names[0])
|
444 |
+
return column
|
445 |
+
|
446 |
+
def format_batch(self, pa_table: pa.Table) -> Mapping:
|
447 |
+
if self.lazy:
|
448 |
+
return LazyBatch(pa_table, self)
|
449 |
+
batch = self.python_arrow_extractor().extract_batch(pa_table)
|
450 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
451 |
+
return batch
|
452 |
+
|
453 |
+
|
454 |
+
class PandasFormatter(Formatter[pd.DataFrame, pd.Series, pd.DataFrame]):
|
455 |
+
def format_row(self, pa_table: pa.Table) -> pd.DataFrame:
|
456 |
+
row = self.pandas_arrow_extractor().extract_row(pa_table)
|
457 |
+
row = self.pandas_features_decoder.decode_row(row)
|
458 |
+
return row
|
459 |
+
|
460 |
+
def format_column(self, pa_table: pa.Table) -> pd.Series:
|
461 |
+
column = self.pandas_arrow_extractor().extract_column(pa_table)
|
462 |
+
column = self.pandas_features_decoder.decode_column(column, pa_table.column_names[0])
|
463 |
+
return column
|
464 |
+
|
465 |
+
def format_batch(self, pa_table: pa.Table) -> pd.DataFrame:
|
466 |
+
row = self.pandas_arrow_extractor().extract_batch(pa_table)
|
467 |
+
row = self.pandas_features_decoder.decode_batch(row)
|
468 |
+
return row
|
469 |
+
|
470 |
+
|
471 |
+
class CustomFormatter(Formatter[dict, ColumnFormat, dict]):
|
472 |
+
"""
|
473 |
+
A user-defined custom formatter function defined by a ``transform``.
|
474 |
+
The transform must take as input a batch of data extracted for an arrow table using the python extractor,
|
475 |
+
and return a batch.
|
476 |
+
If the output batch is not a dict, then output_all_columns won't work.
|
477 |
+
If the ouput batch has several fields, then querying a single column won't work since we don't know which field
|
478 |
+
to return.
|
479 |
+
"""
|
480 |
+
|
481 |
+
def __init__(self, transform: Callable[[dict], dict], features=None, **kwargs):
|
482 |
+
super().__init__(features=features)
|
483 |
+
self.transform = transform
|
484 |
+
|
485 |
+
def format_row(self, pa_table: pa.Table) -> dict:
|
486 |
+
formatted_batch = self.format_batch(pa_table)
|
487 |
+
try:
|
488 |
+
return _unnest(formatted_batch)
|
489 |
+
except Exception as exc:
|
490 |
+
raise TypeError(
|
491 |
+
f"Custom formatting function must return a dict of sequences to be able to pick a row, but got {formatted_batch}"
|
492 |
+
) from exc
|
493 |
+
|
494 |
+
def format_column(self, pa_table: pa.Table) -> ColumnFormat:
|
495 |
+
formatted_batch = self.format_batch(pa_table)
|
496 |
+
if hasattr(formatted_batch, "keys"):
|
497 |
+
if len(formatted_batch.keys()) > 1:
|
498 |
+
raise TypeError(
|
499 |
+
"Tried to query a column but the custom formatting function returns too many columns. "
|
500 |
+
f"Only one column was expected but got columns {list(formatted_batch.keys())}."
|
501 |
+
)
|
502 |
+
else:
|
503 |
+
raise TypeError(
|
504 |
+
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
|
505 |
+
)
|
506 |
+
try:
|
507 |
+
return formatted_batch[pa_table.column_names[0]]
|
508 |
+
except Exception as exc:
|
509 |
+
raise TypeError(
|
510 |
+
f"Custom formatting function must return a dict to be able to pick a row, but got {formatted_batch}"
|
511 |
+
) from exc
|
512 |
+
|
513 |
+
def format_batch(self, pa_table: pa.Table) -> dict:
|
514 |
+
batch = self.python_arrow_extractor().extract_batch(pa_table)
|
515 |
+
batch = self.python_features_decoder.decode_batch(batch)
|
516 |
+
return self.transform(batch)
|
517 |
+
|
518 |
+
|
519 |
+
def _check_valid_column_key(key: str, columns: List[str]) -> None:
|
520 |
+
if key not in columns:
|
521 |
+
raise KeyError(f"Column {key} not in the dataset. Current columns in the dataset: {columns}")
|
522 |
+
|
523 |
+
|
524 |
+
def _check_valid_index_key(key: Union[int, slice, range, Iterable], size: int) -> None:
|
525 |
+
if isinstance(key, int):
|
526 |
+
if (key < 0 and key + size < 0) or (key >= size):
|
527 |
+
raise IndexError(f"Invalid key: {key} is out of bounds for size {size}")
|
528 |
+
return
|
529 |
+
elif isinstance(key, slice):
|
530 |
+
pass
|
531 |
+
elif isinstance(key, range):
|
532 |
+
if len(key) > 0:
|
533 |
+
_check_valid_index_key(max(key), size=size)
|
534 |
+
_check_valid_index_key(min(key), size=size)
|
535 |
+
elif isinstance(key, Iterable):
|
536 |
+
if len(key) > 0:
|
537 |
+
_check_valid_index_key(int(max(key)), size=size)
|
538 |
+
_check_valid_index_key(int(min(key)), size=size)
|
539 |
+
else:
|
540 |
+
_raise_bad_key_type(key)
|
541 |
+
|
542 |
+
|
543 |
+
def key_to_query_type(key: Union[int, slice, range, str, Iterable]) -> str:
|
544 |
+
if isinstance(key, int):
|
545 |
+
return "row"
|
546 |
+
elif isinstance(key, str):
|
547 |
+
return "column"
|
548 |
+
elif isinstance(key, (slice, range, Iterable)):
|
549 |
+
return "batch"
|
550 |
+
_raise_bad_key_type(key)
|
551 |
+
|
552 |
+
|
553 |
+
def query_table(
|
554 |
+
table: Table,
|
555 |
+
key: Union[int, slice, range, str, Iterable],
|
556 |
+
indices: Optional[Table] = None,
|
557 |
+
) -> pa.Table:
|
558 |
+
"""
|
559 |
+
Query a Table to extract the subtable that correspond to the given key.
|
560 |
+
|
561 |
+
Args:
|
562 |
+
table (``datasets.table.Table``): The input Table to query from
|
563 |
+
key (``Union[int, slice, range, str, Iterable]``): The key can be of different types:
|
564 |
+
- an integer i: the subtable containing only the i-th row
|
565 |
+
- a slice [i:j:k]: the subtable containing the rows that correspond to this slice
|
566 |
+
- a range(i, j, k): the subtable containing the rows that correspond to this range
|
567 |
+
- a string c: the subtable containing all the rows but only the column c
|
568 |
+
- an iterable l: the subtable that is the concatenation of all the i-th rows for all i in the iterable
|
569 |
+
indices (Optional ``datasets.table.Table``): If not None, it is used to re-map the given key to the table rows.
|
570 |
+
The indices table must contain one column named "indices" of type uint64.
|
571 |
+
This is used in case of shuffling or rows selection.
|
572 |
+
|
573 |
+
|
574 |
+
Returns:
|
575 |
+
``pyarrow.Table``: the result of the query on the input table
|
576 |
+
"""
|
577 |
+
# Check if key is valid
|
578 |
+
if not isinstance(key, (int, slice, range, str, Iterable)):
|
579 |
+
try:
|
580 |
+
key = operator.index(key)
|
581 |
+
except TypeError:
|
582 |
+
_raise_bad_key_type(key)
|
583 |
+
if isinstance(key, str):
|
584 |
+
_check_valid_column_key(key, table.column_names)
|
585 |
+
else:
|
586 |
+
size = indices.num_rows if indices is not None else table.num_rows
|
587 |
+
_check_valid_index_key(key, size)
|
588 |
+
# Query the main table
|
589 |
+
if indices is None:
|
590 |
+
pa_subtable = _query_table(table, key)
|
591 |
+
else:
|
592 |
+
pa_subtable = _query_table_with_indices_mapping(table, key, indices=indices)
|
593 |
+
return pa_subtable
|
594 |
+
|
595 |
+
|
596 |
+
def format_table(
|
597 |
+
table: Table,
|
598 |
+
key: Union[int, slice, range, str, Iterable],
|
599 |
+
formatter: Formatter,
|
600 |
+
format_columns: Optional[list] = None,
|
601 |
+
output_all_columns=False,
|
602 |
+
):
|
603 |
+
"""
|
604 |
+
Format a Table depending on the key that was used and a Formatter object.
|
605 |
+
|
606 |
+
Args:
|
607 |
+
table (``datasets.table.Table``): The input Table to format
|
608 |
+
key (``Union[int, slice, range, str, Iterable]``): Depending on the key that was used, the formatter formats
|
609 |
+
the table as either a row, a column or a batch.
|
610 |
+
formatter (``datasets.formatting.formatting.Formatter``): Any subclass of a Formatter such as
|
611 |
+
PythonFormatter, NumpyFormatter, etc.
|
612 |
+
format_columns (:obj:`List[str]`, optional): if not None, it defines the columns that will be formatted using the
|
613 |
+
given formatter. Other columns are discarded (unless ``output_all_columns`` is True)
|
614 |
+
output_all_columns (:obj:`bool`, defaults to False). If True, the formatted output is completed using the columns
|
615 |
+
that are not in the ``format_columns`` list. For these columns, the PythonFormatter is used.
|
616 |
+
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
A row, column or batch formatted object defined by the Formatter:
|
620 |
+
- the PythonFormatter returns a dictionary for a row or a batch, and a list for a column.
|
621 |
+
- the NumpyFormatter returns a dictionary for a row or a batch, and a np.array for a column.
|
622 |
+
- the PandasFormatter returns a pd.DataFrame for a row or a batch, and a pd.Series for a column.
|
623 |
+
- the TorchFormatter returns a dictionary for a row or a batch, and a torch.Tensor for a column.
|
624 |
+
- the TFFormatter returns a dictionary for a row or a batch, and a tf.Tensor for a column.
|
625 |
+
"""
|
626 |
+
if isinstance(table, Table):
|
627 |
+
pa_table = table.table
|
628 |
+
else:
|
629 |
+
pa_table = table
|
630 |
+
query_type = key_to_query_type(key)
|
631 |
+
python_formatter = PythonFormatter(features=formatter.features)
|
632 |
+
if format_columns is None:
|
633 |
+
return formatter(pa_table, query_type=query_type)
|
634 |
+
elif query_type == "column":
|
635 |
+
if key in format_columns:
|
636 |
+
return formatter(pa_table, query_type)
|
637 |
+
else:
|
638 |
+
return python_formatter(pa_table, query_type=query_type)
|
639 |
+
else:
|
640 |
+
pa_table_to_format = pa_table.drop(col for col in pa_table.column_names if col not in format_columns)
|
641 |
+
formatted_output = formatter(pa_table_to_format, query_type=query_type)
|
642 |
+
if output_all_columns:
|
643 |
+
if isinstance(formatted_output, MutableMapping):
|
644 |
+
pa_table_with_remaining_columns = pa_table.drop(
|
645 |
+
col for col in pa_table.column_names if col in format_columns
|
646 |
+
)
|
647 |
+
remaining_columns_dict = python_formatter(pa_table_with_remaining_columns, query_type=query_type)
|
648 |
+
formatted_output.update(remaining_columns_dict)
|
649 |
+
else:
|
650 |
+
raise TypeError(
|
651 |
+
f"Custom formatting function must return a dict to work with output_all_columns=True, but got {formatted_output}"
|
652 |
+
)
|
653 |
+
return formatted_output
|