applied-ai-018 commited on
Commit
b12a627
·
verified ·
1 Parent(s): 73a1699

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  3. venv/lib/python3.10/site-packages/networkx/algorithms/components/__init__.py +6 -0
  4. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc +0 -0
  5. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc +0 -0
  6. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc +0 -0
  7. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/networkx/algorithms/components/attracting.py +114 -0
  12. venv/lib/python3.10/site-packages/networkx/algorithms/components/biconnected.py +393 -0
  13. venv/lib/python3.10/site-packages/networkx/algorithms/components/connected.py +214 -0
  14. venv/lib/python3.10/site-packages/networkx/algorithms/components/semiconnected.py +70 -0
  15. venv/lib/python3.10/site-packages/networkx/algorithms/components/strongly_connected.py +430 -0
  16. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__init__.py +0 -0
  17. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc +0 -0
  18. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc +0 -0
  19. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc +0 -0
  20. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-310.pyc +0 -0
  21. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-310.pyc +0 -0
  22. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc +0 -0
  23. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-310.pyc +0 -0
  24. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_attracting.py +70 -0
  25. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py +248 -0
  26. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py +117 -0
  27. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_semiconnected.py +55 -0
  28. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py +203 -0
  29. venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py +96 -0
  30. venv/lib/python3.10/site-packages/networkx/algorithms/components/weakly_connected.py +193 -0
  31. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__init__.py +11 -0
  32. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc +0 -0
  33. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc +0 -0
  38. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc +0 -0
  39. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc +0 -0
  40. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc +0 -0
  41. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc +0 -0
  42. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/connectivity.py +816 -0
  43. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/cuts.py +611 -0
  44. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/disjoint_paths.py +407 -0
  45. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_augmentation.py +1269 -0
  46. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py +591 -0
  47. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcomponents.py +222 -0
  48. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcutsets.py +234 -0
  49. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/stoerwagner.py +151 -0
  50. venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/utils.py +87 -0
ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04729a2ba6dc6371490aa348054e62bc8ce50113d5128d0ad9ec41ca048e550e
3
+ size 33555612
ckpts/universal/global_step80/zero/10.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f3c052af163bac33c1c7feee85a6f4b5a9e419c2c2a013ef6c64e5d27703351e
3
+ size 33555533
venv/lib/python3.10/site-packages/networkx/algorithms/components/__init__.py ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ from .connected import *
2
+ from .strongly_connected import *
3
+ from .weakly_connected import *
4
+ from .attracting import *
5
+ from .biconnected import *
6
+ from .semiconnected import *
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (352 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/attracting.cpython-310.pyc ADDED
Binary file (3.11 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/biconnected.cpython-310.pyc ADDED
Binary file (11.4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/connected.cpython-310.pyc ADDED
Binary file (4.82 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/semiconnected.cpython-310.pyc ADDED
Binary file (2.42 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/strongly_connected.cpython-310.pyc ADDED
Binary file (11.5 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/__pycache__/weakly_connected.cpython-310.pyc ADDED
Binary file (4.47 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/attracting.py ADDED
@@ -0,0 +1,114 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Attracting components."""
2
+ import networkx as nx
3
+ from networkx.utils.decorators import not_implemented_for
4
+
5
+ __all__ = [
6
+ "number_attracting_components",
7
+ "attracting_components",
8
+ "is_attracting_component",
9
+ ]
10
+
11
+
12
+ @not_implemented_for("undirected")
13
+ @nx._dispatchable
14
+ def attracting_components(G):
15
+ """Generates the attracting components in `G`.
16
+
17
+ An attracting component in a directed graph `G` is a strongly connected
18
+ component with the property that a random walker on the graph will never
19
+ leave the component, once it enters the component.
20
+
21
+ The nodes in attracting components can also be thought of as recurrent
22
+ nodes. If a random walker enters the attractor containing the node, then
23
+ the node will be visited infinitely often.
24
+
25
+ To obtain induced subgraphs on each component use:
26
+ ``(G.subgraph(c).copy() for c in attracting_components(G))``
27
+
28
+ Parameters
29
+ ----------
30
+ G : DiGraph, MultiDiGraph
31
+ The graph to be analyzed.
32
+
33
+ Returns
34
+ -------
35
+ attractors : generator of sets
36
+ A generator of sets of nodes, one for each attracting component of G.
37
+
38
+ Raises
39
+ ------
40
+ NetworkXNotImplemented
41
+ If the input graph is undirected.
42
+
43
+ See Also
44
+ --------
45
+ number_attracting_components
46
+ is_attracting_component
47
+
48
+ """
49
+ scc = list(nx.strongly_connected_components(G))
50
+ cG = nx.condensation(G, scc)
51
+ for n in cG:
52
+ if cG.out_degree(n) == 0:
53
+ yield scc[n]
54
+
55
+
56
+ @not_implemented_for("undirected")
57
+ @nx._dispatchable
58
+ def number_attracting_components(G):
59
+ """Returns the number of attracting components in `G`.
60
+
61
+ Parameters
62
+ ----------
63
+ G : DiGraph, MultiDiGraph
64
+ The graph to be analyzed.
65
+
66
+ Returns
67
+ -------
68
+ n : int
69
+ The number of attracting components in G.
70
+
71
+ Raises
72
+ ------
73
+ NetworkXNotImplemented
74
+ If the input graph is undirected.
75
+
76
+ See Also
77
+ --------
78
+ attracting_components
79
+ is_attracting_component
80
+
81
+ """
82
+ return sum(1 for ac in attracting_components(G))
83
+
84
+
85
+ @not_implemented_for("undirected")
86
+ @nx._dispatchable
87
+ def is_attracting_component(G):
88
+ """Returns True if `G` consists of a single attracting component.
89
+
90
+ Parameters
91
+ ----------
92
+ G : DiGraph, MultiDiGraph
93
+ The graph to be analyzed.
94
+
95
+ Returns
96
+ -------
97
+ attracting : bool
98
+ True if `G` has a single attracting component. Otherwise, False.
99
+
100
+ Raises
101
+ ------
102
+ NetworkXNotImplemented
103
+ If the input graph is undirected.
104
+
105
+ See Also
106
+ --------
107
+ attracting_components
108
+ number_attracting_components
109
+
110
+ """
111
+ ac = list(attracting_components(G))
112
+ if len(ac) == 1:
113
+ return len(ac[0]) == len(G)
114
+ return False
venv/lib/python3.10/site-packages/networkx/algorithms/components/biconnected.py ADDED
@@ -0,0 +1,393 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Biconnected components and articulation points."""
2
+ from itertools import chain
3
+
4
+ import networkx as nx
5
+ from networkx.utils.decorators import not_implemented_for
6
+
7
+ __all__ = [
8
+ "biconnected_components",
9
+ "biconnected_component_edges",
10
+ "is_biconnected",
11
+ "articulation_points",
12
+ ]
13
+
14
+
15
+ @not_implemented_for("directed")
16
+ @nx._dispatchable
17
+ def is_biconnected(G):
18
+ """Returns True if the graph is biconnected, False otherwise.
19
+
20
+ A graph is biconnected if, and only if, it cannot be disconnected by
21
+ removing only one node (and all edges incident on that node). If
22
+ removing a node increases the number of disconnected components
23
+ in the graph, that node is called an articulation point, or cut
24
+ vertex. A biconnected graph has no articulation points.
25
+
26
+ Parameters
27
+ ----------
28
+ G : NetworkX Graph
29
+ An undirected graph.
30
+
31
+ Returns
32
+ -------
33
+ biconnected : bool
34
+ True if the graph is biconnected, False otherwise.
35
+
36
+ Raises
37
+ ------
38
+ NetworkXNotImplemented
39
+ If the input graph is not undirected.
40
+
41
+ Examples
42
+ --------
43
+ >>> G = nx.path_graph(4)
44
+ >>> print(nx.is_biconnected(G))
45
+ False
46
+ >>> G.add_edge(0, 3)
47
+ >>> print(nx.is_biconnected(G))
48
+ True
49
+
50
+ See Also
51
+ --------
52
+ biconnected_components
53
+ articulation_points
54
+ biconnected_component_edges
55
+ is_strongly_connected
56
+ is_weakly_connected
57
+ is_connected
58
+ is_semiconnected
59
+
60
+ Notes
61
+ -----
62
+ The algorithm to find articulation points and biconnected
63
+ components is implemented using a non-recursive depth-first-search
64
+ (DFS) that keeps track of the highest level that back edges reach
65
+ in the DFS tree. A node `n` is an articulation point if, and only
66
+ if, there exists a subtree rooted at `n` such that there is no
67
+ back edge from any successor of `n` that links to a predecessor of
68
+ `n` in the DFS tree. By keeping track of all the edges traversed
69
+ by the DFS we can obtain the biconnected components because all
70
+ edges of a bicomponent will be traversed consecutively between
71
+ articulation points.
72
+
73
+ References
74
+ ----------
75
+ .. [1] Hopcroft, J.; Tarjan, R. (1973).
76
+ "Efficient algorithms for graph manipulation".
77
+ Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
78
+
79
+ """
80
+ bccs = biconnected_components(G)
81
+ try:
82
+ bcc = next(bccs)
83
+ except StopIteration:
84
+ # No bicomponents (empty graph?)
85
+ return False
86
+ try:
87
+ next(bccs)
88
+ except StopIteration:
89
+ # Only one bicomponent
90
+ return len(bcc) == len(G)
91
+ else:
92
+ # Multiple bicomponents
93
+ return False
94
+
95
+
96
+ @not_implemented_for("directed")
97
+ @nx._dispatchable
98
+ def biconnected_component_edges(G):
99
+ """Returns a generator of lists of edges, one list for each biconnected
100
+ component of the input graph.
101
+
102
+ Biconnected components are maximal subgraphs such that the removal of a
103
+ node (and all edges incident on that node) will not disconnect the
104
+ subgraph. Note that nodes may be part of more than one biconnected
105
+ component. Those nodes are articulation points, or cut vertices.
106
+ However, each edge belongs to one, and only one, biconnected component.
107
+
108
+ Notice that by convention a dyad is considered a biconnected component.
109
+
110
+ Parameters
111
+ ----------
112
+ G : NetworkX Graph
113
+ An undirected graph.
114
+
115
+ Returns
116
+ -------
117
+ edges : generator of lists
118
+ Generator of lists of edges, one list for each bicomponent.
119
+
120
+ Raises
121
+ ------
122
+ NetworkXNotImplemented
123
+ If the input graph is not undirected.
124
+
125
+ Examples
126
+ --------
127
+ >>> G = nx.barbell_graph(4, 2)
128
+ >>> print(nx.is_biconnected(G))
129
+ False
130
+ >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
131
+ >>> len(bicomponents_edges)
132
+ 5
133
+ >>> G.add_edge(2, 8)
134
+ >>> print(nx.is_biconnected(G))
135
+ True
136
+ >>> bicomponents_edges = list(nx.biconnected_component_edges(G))
137
+ >>> len(bicomponents_edges)
138
+ 1
139
+
140
+ See Also
141
+ --------
142
+ is_biconnected,
143
+ biconnected_components,
144
+ articulation_points,
145
+
146
+ Notes
147
+ -----
148
+ The algorithm to find articulation points and biconnected
149
+ components is implemented using a non-recursive depth-first-search
150
+ (DFS) that keeps track of the highest level that back edges reach
151
+ in the DFS tree. A node `n` is an articulation point if, and only
152
+ if, there exists a subtree rooted at `n` such that there is no
153
+ back edge from any successor of `n` that links to a predecessor of
154
+ `n` in the DFS tree. By keeping track of all the edges traversed
155
+ by the DFS we can obtain the biconnected components because all
156
+ edges of a bicomponent will be traversed consecutively between
157
+ articulation points.
158
+
159
+ References
160
+ ----------
161
+ .. [1] Hopcroft, J.; Tarjan, R. (1973).
162
+ "Efficient algorithms for graph manipulation".
163
+ Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
164
+
165
+ """
166
+ yield from _biconnected_dfs(G, components=True)
167
+
168
+
169
+ @not_implemented_for("directed")
170
+ @nx._dispatchable
171
+ def biconnected_components(G):
172
+ """Returns a generator of sets of nodes, one set for each biconnected
173
+ component of the graph
174
+
175
+ Biconnected components are maximal subgraphs such that the removal of a
176
+ node (and all edges incident on that node) will not disconnect the
177
+ subgraph. Note that nodes may be part of more than one biconnected
178
+ component. Those nodes are articulation points, or cut vertices. The
179
+ removal of articulation points will increase the number of connected
180
+ components of the graph.
181
+
182
+ Notice that by convention a dyad is considered a biconnected component.
183
+
184
+ Parameters
185
+ ----------
186
+ G : NetworkX Graph
187
+ An undirected graph.
188
+
189
+ Returns
190
+ -------
191
+ nodes : generator
192
+ Generator of sets of nodes, one set for each biconnected component.
193
+
194
+ Raises
195
+ ------
196
+ NetworkXNotImplemented
197
+ If the input graph is not undirected.
198
+
199
+ Examples
200
+ --------
201
+ >>> G = nx.lollipop_graph(5, 1)
202
+ >>> print(nx.is_biconnected(G))
203
+ False
204
+ >>> bicomponents = list(nx.biconnected_components(G))
205
+ >>> len(bicomponents)
206
+ 2
207
+ >>> G.add_edge(0, 5)
208
+ >>> print(nx.is_biconnected(G))
209
+ True
210
+ >>> bicomponents = list(nx.biconnected_components(G))
211
+ >>> len(bicomponents)
212
+ 1
213
+
214
+ You can generate a sorted list of biconnected components, largest
215
+ first, using sort.
216
+
217
+ >>> G.remove_edge(0, 5)
218
+ >>> [len(c) for c in sorted(nx.biconnected_components(G), key=len, reverse=True)]
219
+ [5, 2]
220
+
221
+ If you only want the largest connected component, it's more
222
+ efficient to use max instead of sort.
223
+
224
+ >>> Gc = max(nx.biconnected_components(G), key=len)
225
+
226
+ To create the components as subgraphs use:
227
+ ``(G.subgraph(c).copy() for c in biconnected_components(G))``
228
+
229
+ See Also
230
+ --------
231
+ is_biconnected
232
+ articulation_points
233
+ biconnected_component_edges
234
+ k_components : this function is a special case where k=2
235
+ bridge_components : similar to this function, but is defined using
236
+ 2-edge-connectivity instead of 2-node-connectivity.
237
+
238
+ Notes
239
+ -----
240
+ The algorithm to find articulation points and biconnected
241
+ components is implemented using a non-recursive depth-first-search
242
+ (DFS) that keeps track of the highest level that back edges reach
243
+ in the DFS tree. A node `n` is an articulation point if, and only
244
+ if, there exists a subtree rooted at `n` such that there is no
245
+ back edge from any successor of `n` that links to a predecessor of
246
+ `n` in the DFS tree. By keeping track of all the edges traversed
247
+ by the DFS we can obtain the biconnected components because all
248
+ edges of a bicomponent will be traversed consecutively between
249
+ articulation points.
250
+
251
+ References
252
+ ----------
253
+ .. [1] Hopcroft, J.; Tarjan, R. (1973).
254
+ "Efficient algorithms for graph manipulation".
255
+ Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
256
+
257
+ """
258
+ for comp in _biconnected_dfs(G, components=True):
259
+ yield set(chain.from_iterable(comp))
260
+
261
+
262
+ @not_implemented_for("directed")
263
+ @nx._dispatchable
264
+ def articulation_points(G):
265
+ """Yield the articulation points, or cut vertices, of a graph.
266
+
267
+ An articulation point or cut vertex is any node whose removal (along with
268
+ all its incident edges) increases the number of connected components of
269
+ a graph. An undirected connected graph without articulation points is
270
+ biconnected. Articulation points belong to more than one biconnected
271
+ component of a graph.
272
+
273
+ Notice that by convention a dyad is considered a biconnected component.
274
+
275
+ Parameters
276
+ ----------
277
+ G : NetworkX Graph
278
+ An undirected graph.
279
+
280
+ Yields
281
+ ------
282
+ node
283
+ An articulation point in the graph.
284
+
285
+ Raises
286
+ ------
287
+ NetworkXNotImplemented
288
+ If the input graph is not undirected.
289
+
290
+ Examples
291
+ --------
292
+
293
+ >>> G = nx.barbell_graph(4, 2)
294
+ >>> print(nx.is_biconnected(G))
295
+ False
296
+ >>> len(list(nx.articulation_points(G)))
297
+ 4
298
+ >>> G.add_edge(2, 8)
299
+ >>> print(nx.is_biconnected(G))
300
+ True
301
+ >>> len(list(nx.articulation_points(G)))
302
+ 0
303
+
304
+ See Also
305
+ --------
306
+ is_biconnected
307
+ biconnected_components
308
+ biconnected_component_edges
309
+
310
+ Notes
311
+ -----
312
+ The algorithm to find articulation points and biconnected
313
+ components is implemented using a non-recursive depth-first-search
314
+ (DFS) that keeps track of the highest level that back edges reach
315
+ in the DFS tree. A node `n` is an articulation point if, and only
316
+ if, there exists a subtree rooted at `n` such that there is no
317
+ back edge from any successor of `n` that links to a predecessor of
318
+ `n` in the DFS tree. By keeping track of all the edges traversed
319
+ by the DFS we can obtain the biconnected components because all
320
+ edges of a bicomponent will be traversed consecutively between
321
+ articulation points.
322
+
323
+ References
324
+ ----------
325
+ .. [1] Hopcroft, J.; Tarjan, R. (1973).
326
+ "Efficient algorithms for graph manipulation".
327
+ Communications of the ACM 16: 372–378. doi:10.1145/362248.362272
328
+
329
+ """
330
+ seen = set()
331
+ for articulation in _biconnected_dfs(G, components=False):
332
+ if articulation not in seen:
333
+ seen.add(articulation)
334
+ yield articulation
335
+
336
+
337
+ @not_implemented_for("directed")
338
+ def _biconnected_dfs(G, components=True):
339
+ # depth-first search algorithm to generate articulation points
340
+ # and biconnected components
341
+ visited = set()
342
+ for start in G:
343
+ if start in visited:
344
+ continue
345
+ discovery = {start: 0} # time of first discovery of node during search
346
+ low = {start: 0}
347
+ root_children = 0
348
+ visited.add(start)
349
+ edge_stack = []
350
+ stack = [(start, start, iter(G[start]))]
351
+ edge_index = {}
352
+ while stack:
353
+ grandparent, parent, children = stack[-1]
354
+ try:
355
+ child = next(children)
356
+ if grandparent == child:
357
+ continue
358
+ if child in visited:
359
+ if discovery[child] <= discovery[parent]: # back edge
360
+ low[parent] = min(low[parent], discovery[child])
361
+ if components:
362
+ edge_index[parent, child] = len(edge_stack)
363
+ edge_stack.append((parent, child))
364
+ else:
365
+ low[child] = discovery[child] = len(discovery)
366
+ visited.add(child)
367
+ stack.append((parent, child, iter(G[child])))
368
+ if components:
369
+ edge_index[parent, child] = len(edge_stack)
370
+ edge_stack.append((parent, child))
371
+
372
+ except StopIteration:
373
+ stack.pop()
374
+ if len(stack) > 1:
375
+ if low[parent] >= discovery[grandparent]:
376
+ if components:
377
+ ind = edge_index[grandparent, parent]
378
+ yield edge_stack[ind:]
379
+ del edge_stack[ind:]
380
+
381
+ else:
382
+ yield grandparent
383
+ low[grandparent] = min(low[parent], low[grandparent])
384
+ elif stack: # length 1 so grandparent is root
385
+ root_children += 1
386
+ if components:
387
+ ind = edge_index[grandparent, parent]
388
+ yield edge_stack[ind:]
389
+ del edge_stack[ind:]
390
+ if not components:
391
+ # root node is articulation point if it has more than 1 child
392
+ if root_children > 1:
393
+ yield start
venv/lib/python3.10/site-packages/networkx/algorithms/components/connected.py ADDED
@@ -0,0 +1,214 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Connected components."""
2
+ import networkx as nx
3
+ from networkx.utils.decorators import not_implemented_for
4
+
5
+ from ...utils import arbitrary_element
6
+
7
+ __all__ = [
8
+ "number_connected_components",
9
+ "connected_components",
10
+ "is_connected",
11
+ "node_connected_component",
12
+ ]
13
+
14
+
15
+ @not_implemented_for("directed")
16
+ @nx._dispatchable
17
+ def connected_components(G):
18
+ """Generate connected components.
19
+
20
+ Parameters
21
+ ----------
22
+ G : NetworkX graph
23
+ An undirected graph
24
+
25
+ Returns
26
+ -------
27
+ comp : generator of sets
28
+ A generator of sets of nodes, one for each component of G.
29
+
30
+ Raises
31
+ ------
32
+ NetworkXNotImplemented
33
+ If G is directed.
34
+
35
+ Examples
36
+ --------
37
+ Generate a sorted list of connected components, largest first.
38
+
39
+ >>> G = nx.path_graph(4)
40
+ >>> nx.add_path(G, [10, 11, 12])
41
+ >>> [len(c) for c in sorted(nx.connected_components(G), key=len, reverse=True)]
42
+ [4, 3]
43
+
44
+ If you only want the largest connected component, it's more
45
+ efficient to use max instead of sort.
46
+
47
+ >>> largest_cc = max(nx.connected_components(G), key=len)
48
+
49
+ To create the induced subgraph of each component use:
50
+
51
+ >>> S = [G.subgraph(c).copy() for c in nx.connected_components(G)]
52
+
53
+ See Also
54
+ --------
55
+ strongly_connected_components
56
+ weakly_connected_components
57
+
58
+ Notes
59
+ -----
60
+ For undirected graphs only.
61
+
62
+ """
63
+ seen = set()
64
+ for v in G:
65
+ if v not in seen:
66
+ c = _plain_bfs(G, v)
67
+ seen.update(c)
68
+ yield c
69
+
70
+
71
+ @not_implemented_for("directed")
72
+ @nx._dispatchable
73
+ def number_connected_components(G):
74
+ """Returns the number of connected components.
75
+
76
+ Parameters
77
+ ----------
78
+ G : NetworkX graph
79
+ An undirected graph.
80
+
81
+ Returns
82
+ -------
83
+ n : integer
84
+ Number of connected components
85
+
86
+ Raises
87
+ ------
88
+ NetworkXNotImplemented
89
+ If G is directed.
90
+
91
+ Examples
92
+ --------
93
+ >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
94
+ >>> nx.number_connected_components(G)
95
+ 3
96
+
97
+ See Also
98
+ --------
99
+ connected_components
100
+ number_weakly_connected_components
101
+ number_strongly_connected_components
102
+
103
+ Notes
104
+ -----
105
+ For undirected graphs only.
106
+
107
+ """
108
+ return sum(1 for cc in connected_components(G))
109
+
110
+
111
+ @not_implemented_for("directed")
112
+ @nx._dispatchable
113
+ def is_connected(G):
114
+ """Returns True if the graph is connected, False otherwise.
115
+
116
+ Parameters
117
+ ----------
118
+ G : NetworkX Graph
119
+ An undirected graph.
120
+
121
+ Returns
122
+ -------
123
+ connected : bool
124
+ True if the graph is connected, false otherwise.
125
+
126
+ Raises
127
+ ------
128
+ NetworkXNotImplemented
129
+ If G is directed.
130
+
131
+ Examples
132
+ --------
133
+ >>> G = nx.path_graph(4)
134
+ >>> print(nx.is_connected(G))
135
+ True
136
+
137
+ See Also
138
+ --------
139
+ is_strongly_connected
140
+ is_weakly_connected
141
+ is_semiconnected
142
+ is_biconnected
143
+ connected_components
144
+
145
+ Notes
146
+ -----
147
+ For undirected graphs only.
148
+
149
+ """
150
+ if len(G) == 0:
151
+ raise nx.NetworkXPointlessConcept(
152
+ "Connectivity is undefined for the null graph."
153
+ )
154
+ return sum(1 for node in _plain_bfs(G, arbitrary_element(G))) == len(G)
155
+
156
+
157
+ @not_implemented_for("directed")
158
+ @nx._dispatchable
159
+ def node_connected_component(G, n):
160
+ """Returns the set of nodes in the component of graph containing node n.
161
+
162
+ Parameters
163
+ ----------
164
+ G : NetworkX Graph
165
+ An undirected graph.
166
+
167
+ n : node label
168
+ A node in G
169
+
170
+ Returns
171
+ -------
172
+ comp : set
173
+ A set of nodes in the component of G containing node n.
174
+
175
+ Raises
176
+ ------
177
+ NetworkXNotImplemented
178
+ If G is directed.
179
+
180
+ Examples
181
+ --------
182
+ >>> G = nx.Graph([(0, 1), (1, 2), (5, 6), (3, 4)])
183
+ >>> nx.node_connected_component(G, 0) # nodes of component that contains node 0
184
+ {0, 1, 2}
185
+
186
+ See Also
187
+ --------
188
+ connected_components
189
+
190
+ Notes
191
+ -----
192
+ For undirected graphs only.
193
+
194
+ """
195
+ return _plain_bfs(G, n)
196
+
197
+
198
+ def _plain_bfs(G, source):
199
+ """A fast BFS node generator"""
200
+ adj = G._adj
201
+ n = len(adj)
202
+ seen = {source}
203
+ nextlevel = [source]
204
+ while nextlevel:
205
+ thislevel = nextlevel
206
+ nextlevel = []
207
+ for v in thislevel:
208
+ for w in adj[v]:
209
+ if w not in seen:
210
+ seen.add(w)
211
+ nextlevel.append(w)
212
+ if len(seen) == n:
213
+ return seen
214
+ return seen
venv/lib/python3.10/site-packages/networkx/algorithms/components/semiconnected.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Semiconnectedness."""
2
+ import networkx as nx
3
+ from networkx.utils import not_implemented_for, pairwise
4
+
5
+ __all__ = ["is_semiconnected"]
6
+
7
+
8
+ @not_implemented_for("undirected")
9
+ @nx._dispatchable
10
+ def is_semiconnected(G):
11
+ r"""Returns True if the graph is semiconnected, False otherwise.
12
+
13
+ A graph is semiconnected if and only if for any pair of nodes, either one
14
+ is reachable from the other, or they are mutually reachable.
15
+
16
+ This function uses a theorem that states that a DAG is semiconnected
17
+ if for any topological sort, for node $v_n$ in that sort, there is an
18
+ edge $(v_i, v_{i+1})$. That allows us to check if a non-DAG `G` is
19
+ semiconnected by condensing the graph: i.e. constructing a new graph `H`
20
+ with nodes being the strongly connected components of `G`, and edges
21
+ (scc_1, scc_2) if there is a edge $(v_1, v_2)$ in `G` for some
22
+ $v_1 \in scc_1$ and $v_2 \in scc_2$. That results in a DAG, so we compute
23
+ the topological sort of `H` and check if for every $n$ there is an edge
24
+ $(scc_n, scc_{n+1})$.
25
+
26
+ Parameters
27
+ ----------
28
+ G : NetworkX graph
29
+ A directed graph.
30
+
31
+ Returns
32
+ -------
33
+ semiconnected : bool
34
+ True if the graph is semiconnected, False otherwise.
35
+
36
+ Raises
37
+ ------
38
+ NetworkXNotImplemented
39
+ If the input graph is undirected.
40
+
41
+ NetworkXPointlessConcept
42
+ If the graph is empty.
43
+
44
+ Examples
45
+ --------
46
+ >>> G = nx.path_graph(4, create_using=nx.DiGraph())
47
+ >>> print(nx.is_semiconnected(G))
48
+ True
49
+ >>> G = nx.DiGraph([(1, 2), (3, 2)])
50
+ >>> print(nx.is_semiconnected(G))
51
+ False
52
+
53
+ See Also
54
+ --------
55
+ is_strongly_connected
56
+ is_weakly_connected
57
+ is_connected
58
+ is_biconnected
59
+ """
60
+ if len(G) == 0:
61
+ raise nx.NetworkXPointlessConcept(
62
+ "Connectivity is undefined for the null graph."
63
+ )
64
+
65
+ if not nx.is_weakly_connected(G):
66
+ return False
67
+
68
+ H = nx.condensation(G)
69
+
70
+ return all(H.has_edge(u, v) for u, v in pairwise(nx.topological_sort(H)))
venv/lib/python3.10/site-packages/networkx/algorithms/components/strongly_connected.py ADDED
@@ -0,0 +1,430 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Strongly connected components."""
2
+ import networkx as nx
3
+ from networkx.utils.decorators import not_implemented_for
4
+
5
+ __all__ = [
6
+ "number_strongly_connected_components",
7
+ "strongly_connected_components",
8
+ "is_strongly_connected",
9
+ "strongly_connected_components_recursive",
10
+ "kosaraju_strongly_connected_components",
11
+ "condensation",
12
+ ]
13
+
14
+
15
+ @not_implemented_for("undirected")
16
+ @nx._dispatchable
17
+ def strongly_connected_components(G):
18
+ """Generate nodes in strongly connected components of graph.
19
+
20
+ Parameters
21
+ ----------
22
+ G : NetworkX Graph
23
+ A directed graph.
24
+
25
+ Returns
26
+ -------
27
+ comp : generator of sets
28
+ A generator of sets of nodes, one for each strongly connected
29
+ component of G.
30
+
31
+ Raises
32
+ ------
33
+ NetworkXNotImplemented
34
+ If G is undirected.
35
+
36
+ Examples
37
+ --------
38
+ Generate a sorted list of strongly connected components, largest first.
39
+
40
+ >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
41
+ >>> nx.add_cycle(G, [10, 11, 12])
42
+ >>> [len(c) for c in sorted(nx.strongly_connected_components(G), key=len, reverse=True)]
43
+ [4, 3]
44
+
45
+ If you only want the largest component, it's more efficient to
46
+ use max instead of sort.
47
+
48
+ >>> largest = max(nx.strongly_connected_components(G), key=len)
49
+
50
+ See Also
51
+ --------
52
+ connected_components
53
+ weakly_connected_components
54
+ kosaraju_strongly_connected_components
55
+
56
+ Notes
57
+ -----
58
+ Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.
59
+ Nonrecursive version of algorithm.
60
+
61
+ References
62
+ ----------
63
+ .. [1] Depth-first search and linear graph algorithms, R. Tarjan
64
+ SIAM Journal of Computing 1(2):146-160, (1972).
65
+
66
+ .. [2] On finding the strongly connected components in a directed graph.
67
+ E. Nuutila and E. Soisalon-Soinen
68
+ Information Processing Letters 49(1): 9-14, (1994)..
69
+
70
+ """
71
+ preorder = {}
72
+ lowlink = {}
73
+ scc_found = set()
74
+ scc_queue = []
75
+ i = 0 # Preorder counter
76
+ neighbors = {v: iter(G[v]) for v in G}
77
+ for source in G:
78
+ if source not in scc_found:
79
+ queue = [source]
80
+ while queue:
81
+ v = queue[-1]
82
+ if v not in preorder:
83
+ i = i + 1
84
+ preorder[v] = i
85
+ done = True
86
+ for w in neighbors[v]:
87
+ if w not in preorder:
88
+ queue.append(w)
89
+ done = False
90
+ break
91
+ if done:
92
+ lowlink[v] = preorder[v]
93
+ for w in G[v]:
94
+ if w not in scc_found:
95
+ if preorder[w] > preorder[v]:
96
+ lowlink[v] = min([lowlink[v], lowlink[w]])
97
+ else:
98
+ lowlink[v] = min([lowlink[v], preorder[w]])
99
+ queue.pop()
100
+ if lowlink[v] == preorder[v]:
101
+ scc = {v}
102
+ while scc_queue and preorder[scc_queue[-1]] > preorder[v]:
103
+ k = scc_queue.pop()
104
+ scc.add(k)
105
+ scc_found.update(scc)
106
+ yield scc
107
+ else:
108
+ scc_queue.append(v)
109
+
110
+
111
+ @not_implemented_for("undirected")
112
+ @nx._dispatchable
113
+ def kosaraju_strongly_connected_components(G, source=None):
114
+ """Generate nodes in strongly connected components of graph.
115
+
116
+ Parameters
117
+ ----------
118
+ G : NetworkX Graph
119
+ A directed graph.
120
+
121
+ Returns
122
+ -------
123
+ comp : generator of sets
124
+ A generator of sets of nodes, one for each strongly connected
125
+ component of G.
126
+
127
+ Raises
128
+ ------
129
+ NetworkXNotImplemented
130
+ If G is undirected.
131
+
132
+ Examples
133
+ --------
134
+ Generate a sorted list of strongly connected components, largest first.
135
+
136
+ >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
137
+ >>> nx.add_cycle(G, [10, 11, 12])
138
+ >>> [
139
+ ... len(c)
140
+ ... for c in sorted(
141
+ ... nx.kosaraju_strongly_connected_components(G), key=len, reverse=True
142
+ ... )
143
+ ... ]
144
+ [4, 3]
145
+
146
+ If you only want the largest component, it's more efficient to
147
+ use max instead of sort.
148
+
149
+ >>> largest = max(nx.kosaraju_strongly_connected_components(G), key=len)
150
+
151
+ See Also
152
+ --------
153
+ strongly_connected_components
154
+
155
+ Notes
156
+ -----
157
+ Uses Kosaraju's algorithm.
158
+
159
+ """
160
+ post = list(nx.dfs_postorder_nodes(G.reverse(copy=False), source=source))
161
+
162
+ seen = set()
163
+ while post:
164
+ r = post.pop()
165
+ if r in seen:
166
+ continue
167
+ c = nx.dfs_preorder_nodes(G, r)
168
+ new = {v for v in c if v not in seen}
169
+ seen.update(new)
170
+ yield new
171
+
172
+
173
+ @not_implemented_for("undirected")
174
+ @nx._dispatchable
175
+ def strongly_connected_components_recursive(G):
176
+ """Generate nodes in strongly connected components of graph.
177
+
178
+ .. deprecated:: 3.2
179
+
180
+ This function is deprecated and will be removed in a future version of
181
+ NetworkX. Use `strongly_connected_components` instead.
182
+
183
+ Recursive version of algorithm.
184
+
185
+ Parameters
186
+ ----------
187
+ G : NetworkX Graph
188
+ A directed graph.
189
+
190
+ Returns
191
+ -------
192
+ comp : generator of sets
193
+ A generator of sets of nodes, one for each strongly connected
194
+ component of G.
195
+
196
+ Raises
197
+ ------
198
+ NetworkXNotImplemented
199
+ If G is undirected.
200
+
201
+ Examples
202
+ --------
203
+ Generate a sorted list of strongly connected components, largest first.
204
+
205
+ >>> G = nx.cycle_graph(4, create_using=nx.DiGraph())
206
+ >>> nx.add_cycle(G, [10, 11, 12])
207
+ >>> [
208
+ ... len(c)
209
+ ... for c in sorted(
210
+ ... nx.strongly_connected_components_recursive(G), key=len, reverse=True
211
+ ... )
212
+ ... ]
213
+ [4, 3]
214
+
215
+ If you only want the largest component, it's more efficient to
216
+ use max instead of sort.
217
+
218
+ >>> largest = max(nx.strongly_connected_components_recursive(G), key=len)
219
+
220
+ To create the induced subgraph of the components use:
221
+ >>> S = [G.subgraph(c).copy() for c in nx.weakly_connected_components(G)]
222
+
223
+ See Also
224
+ --------
225
+ connected_components
226
+
227
+ Notes
228
+ -----
229
+ Uses Tarjan's algorithm[1]_ with Nuutila's modifications[2]_.
230
+
231
+ References
232
+ ----------
233
+ .. [1] Depth-first search and linear graph algorithms, R. Tarjan
234
+ SIAM Journal of Computing 1(2):146-160, (1972).
235
+
236
+ .. [2] On finding the strongly connected components in a directed graph.
237
+ E. Nuutila and E. Soisalon-Soinen
238
+ Information Processing Letters 49(1): 9-14, (1994)..
239
+
240
+ """
241
+ import warnings
242
+
243
+ warnings.warn(
244
+ (
245
+ "\n\nstrongly_connected_components_recursive is deprecated and will be\n"
246
+ "removed in the future. Use strongly_connected_components instead."
247
+ ),
248
+ category=DeprecationWarning,
249
+ stacklevel=2,
250
+ )
251
+
252
+ yield from strongly_connected_components(G)
253
+
254
+
255
+ @not_implemented_for("undirected")
256
+ @nx._dispatchable
257
+ def number_strongly_connected_components(G):
258
+ """Returns number of strongly connected components in graph.
259
+
260
+ Parameters
261
+ ----------
262
+ G : NetworkX graph
263
+ A directed graph.
264
+
265
+ Returns
266
+ -------
267
+ n : integer
268
+ Number of strongly connected components
269
+
270
+ Raises
271
+ ------
272
+ NetworkXNotImplemented
273
+ If G is undirected.
274
+
275
+ Examples
276
+ --------
277
+ >>> G = nx.DiGraph(
278
+ ... [(0, 1), (1, 2), (2, 0), (2, 3), (4, 5), (3, 4), (5, 6), (6, 3), (6, 7)]
279
+ ... )
280
+ >>> nx.number_strongly_connected_components(G)
281
+ 3
282
+
283
+ See Also
284
+ --------
285
+ strongly_connected_components
286
+ number_connected_components
287
+ number_weakly_connected_components
288
+
289
+ Notes
290
+ -----
291
+ For directed graphs only.
292
+ """
293
+ return sum(1 for scc in strongly_connected_components(G))
294
+
295
+
296
+ @not_implemented_for("undirected")
297
+ @nx._dispatchable
298
+ def is_strongly_connected(G):
299
+ """Test directed graph for strong connectivity.
300
+
301
+ A directed graph is strongly connected if and only if every vertex in
302
+ the graph is reachable from every other vertex.
303
+
304
+ Parameters
305
+ ----------
306
+ G : NetworkX Graph
307
+ A directed graph.
308
+
309
+ Returns
310
+ -------
311
+ connected : bool
312
+ True if the graph is strongly connected, False otherwise.
313
+
314
+ Examples
315
+ --------
316
+ >>> G = nx.DiGraph([(0, 1), (1, 2), (2, 3), (3, 0), (2, 4), (4, 2)])
317
+ >>> nx.is_strongly_connected(G)
318
+ True
319
+ >>> G.remove_edge(2, 3)
320
+ >>> nx.is_strongly_connected(G)
321
+ False
322
+
323
+ Raises
324
+ ------
325
+ NetworkXNotImplemented
326
+ If G is undirected.
327
+
328
+ See Also
329
+ --------
330
+ is_weakly_connected
331
+ is_semiconnected
332
+ is_connected
333
+ is_biconnected
334
+ strongly_connected_components
335
+
336
+ Notes
337
+ -----
338
+ For directed graphs only.
339
+ """
340
+ if len(G) == 0:
341
+ raise nx.NetworkXPointlessConcept(
342
+ """Connectivity is undefined for the null graph."""
343
+ )
344
+
345
+ return len(next(strongly_connected_components(G))) == len(G)
346
+
347
+
348
+ @not_implemented_for("undirected")
349
+ @nx._dispatchable(returns_graph=True)
350
+ def condensation(G, scc=None):
351
+ """Returns the condensation of G.
352
+
353
+ The condensation of G is the graph with each of the strongly connected
354
+ components contracted into a single node.
355
+
356
+ Parameters
357
+ ----------
358
+ G : NetworkX DiGraph
359
+ A directed graph.
360
+
361
+ scc: list or generator (optional, default=None)
362
+ Strongly connected components. If provided, the elements in
363
+ `scc` must partition the nodes in `G`. If not provided, it will be
364
+ calculated as scc=nx.strongly_connected_components(G).
365
+
366
+ Returns
367
+ -------
368
+ C : NetworkX DiGraph
369
+ The condensation graph C of G. The node labels are integers
370
+ corresponding to the index of the component in the list of
371
+ strongly connected components of G. C has a graph attribute named
372
+ 'mapping' with a dictionary mapping the original nodes to the
373
+ nodes in C to which they belong. Each node in C also has a node
374
+ attribute 'members' with the set of original nodes in G that
375
+ form the SCC that the node in C represents.
376
+
377
+ Raises
378
+ ------
379
+ NetworkXNotImplemented
380
+ If G is undirected.
381
+
382
+ Examples
383
+ --------
384
+ Contracting two sets of strongly connected nodes into two distinct SCC
385
+ using the barbell graph.
386
+
387
+ >>> G = nx.barbell_graph(4, 0)
388
+ >>> G.remove_edge(3, 4)
389
+ >>> G = nx.DiGraph(G)
390
+ >>> H = nx.condensation(G)
391
+ >>> H.nodes.data()
392
+ NodeDataView({0: {'members': {0, 1, 2, 3}}, 1: {'members': {4, 5, 6, 7}}})
393
+ >>> H.graph["mapping"]
394
+ {0: 0, 1: 0, 2: 0, 3: 0, 4: 1, 5: 1, 6: 1, 7: 1}
395
+
396
+ Contracting a complete graph into one single SCC.
397
+
398
+ >>> G = nx.complete_graph(7, create_using=nx.DiGraph)
399
+ >>> H = nx.condensation(G)
400
+ >>> H.nodes
401
+ NodeView((0,))
402
+ >>> H.nodes.data()
403
+ NodeDataView({0: {'members': {0, 1, 2, 3, 4, 5, 6}}})
404
+
405
+ Notes
406
+ -----
407
+ After contracting all strongly connected components to a single node,
408
+ the resulting graph is a directed acyclic graph.
409
+
410
+ """
411
+ if scc is None:
412
+ scc = nx.strongly_connected_components(G)
413
+ mapping = {}
414
+ members = {}
415
+ C = nx.DiGraph()
416
+ # Add mapping dict as graph attribute
417
+ C.graph["mapping"] = mapping
418
+ if len(G) == 0:
419
+ return C
420
+ for i, component in enumerate(scc):
421
+ members[i] = component
422
+ mapping.update((n, i) for n in component)
423
+ number_of_components = i + 1
424
+ C.add_nodes_from(range(number_of_components))
425
+ C.add_edges_from(
426
+ (mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v]
427
+ )
428
+ # Add a list of members (ie original nodes) to each node (ie scc) in C.
429
+ nx.set_node_attributes(C, members, "members")
430
+ return C
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (204 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_attracting.cpython-310.pyc ADDED
Binary file (2.76 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_biconnected.cpython-310.pyc ADDED
Binary file (6.72 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_connected.cpython-310.pyc ADDED
Binary file (4.8 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_semiconnected.cpython-310.pyc ADDED
Binary file (3.01 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_strongly_connected.cpython-310.pyc ADDED
Binary file (7.21 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/__pycache__/test_weakly_connected.cpython-310.pyc ADDED
Binary file (4 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_attracting.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import NetworkXNotImplemented
5
+
6
+
7
+ class TestAttractingComponents:
8
+ @classmethod
9
+ def setup_class(cls):
10
+ cls.G1 = nx.DiGraph()
11
+ cls.G1.add_edges_from(
12
+ [
13
+ (5, 11),
14
+ (11, 2),
15
+ (11, 9),
16
+ (11, 10),
17
+ (7, 11),
18
+ (7, 8),
19
+ (8, 9),
20
+ (3, 8),
21
+ (3, 10),
22
+ ]
23
+ )
24
+ cls.G2 = nx.DiGraph()
25
+ cls.G2.add_edges_from([(0, 1), (0, 2), (1, 1), (1, 2), (2, 1)])
26
+
27
+ cls.G3 = nx.DiGraph()
28
+ cls.G3.add_edges_from([(0, 1), (1, 2), (2, 1), (0, 3), (3, 4), (4, 3)])
29
+
30
+ cls.G4 = nx.DiGraph()
31
+
32
+ def test_attracting_components(self):
33
+ ac = list(nx.attracting_components(self.G1))
34
+ assert {2} in ac
35
+ assert {9} in ac
36
+ assert {10} in ac
37
+
38
+ ac = list(nx.attracting_components(self.G2))
39
+ ac = [tuple(sorted(x)) for x in ac]
40
+ assert ac == [(1, 2)]
41
+
42
+ ac = list(nx.attracting_components(self.G3))
43
+ ac = [tuple(sorted(x)) for x in ac]
44
+ assert (1, 2) in ac
45
+ assert (3, 4) in ac
46
+ assert len(ac) == 2
47
+
48
+ ac = list(nx.attracting_components(self.G4))
49
+ assert ac == []
50
+
51
+ def test_number_attacting_components(self):
52
+ assert nx.number_attracting_components(self.G1) == 3
53
+ assert nx.number_attracting_components(self.G2) == 1
54
+ assert nx.number_attracting_components(self.G3) == 2
55
+ assert nx.number_attracting_components(self.G4) == 0
56
+
57
+ def test_is_attracting_component(self):
58
+ assert not nx.is_attracting_component(self.G1)
59
+ assert not nx.is_attracting_component(self.G2)
60
+ assert not nx.is_attracting_component(self.G3)
61
+ g2 = self.G3.subgraph([1, 2])
62
+ assert nx.is_attracting_component(g2)
63
+ assert not nx.is_attracting_component(self.G4)
64
+
65
+ def test_connected_raise(self):
66
+ G = nx.Graph()
67
+ with pytest.raises(NetworkXNotImplemented):
68
+ next(nx.attracting_components(G))
69
+ pytest.raises(NetworkXNotImplemented, nx.number_attracting_components, G)
70
+ pytest.raises(NetworkXNotImplemented, nx.is_attracting_component, G)
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_biconnected.py ADDED
@@ -0,0 +1,248 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import NetworkXNotImplemented
5
+
6
+
7
+ def assert_components_edges_equal(x, y):
8
+ sx = {frozenset(frozenset(e) for e in c) for c in x}
9
+ sy = {frozenset(frozenset(e) for e in c) for c in y}
10
+ assert sx == sy
11
+
12
+
13
+ def assert_components_equal(x, y):
14
+ sx = {frozenset(c) for c in x}
15
+ sy = {frozenset(c) for c in y}
16
+ assert sx == sy
17
+
18
+
19
+ def test_barbell():
20
+ G = nx.barbell_graph(8, 4)
21
+ nx.add_path(G, [7, 20, 21, 22])
22
+ nx.add_cycle(G, [22, 23, 24, 25])
23
+ pts = set(nx.articulation_points(G))
24
+ assert pts == {7, 8, 9, 10, 11, 12, 20, 21, 22}
25
+
26
+ answer = [
27
+ {12, 13, 14, 15, 16, 17, 18, 19},
28
+ {0, 1, 2, 3, 4, 5, 6, 7},
29
+ {22, 23, 24, 25},
30
+ {11, 12},
31
+ {10, 11},
32
+ {9, 10},
33
+ {8, 9},
34
+ {7, 8},
35
+ {21, 22},
36
+ {20, 21},
37
+ {7, 20},
38
+ ]
39
+ assert_components_equal(list(nx.biconnected_components(G)), answer)
40
+
41
+ G.add_edge(2, 17)
42
+ pts = set(nx.articulation_points(G))
43
+ assert pts == {7, 20, 21, 22}
44
+
45
+
46
+ def test_articulation_points_repetitions():
47
+ G = nx.Graph()
48
+ G.add_edges_from([(0, 1), (1, 2), (1, 3)])
49
+ assert list(nx.articulation_points(G)) == [1]
50
+
51
+
52
+ def test_articulation_points_cycle():
53
+ G = nx.cycle_graph(3)
54
+ nx.add_cycle(G, [1, 3, 4])
55
+ pts = set(nx.articulation_points(G))
56
+ assert pts == {1}
57
+
58
+
59
+ def test_is_biconnected():
60
+ G = nx.cycle_graph(3)
61
+ assert nx.is_biconnected(G)
62
+ nx.add_cycle(G, [1, 3, 4])
63
+ assert not nx.is_biconnected(G)
64
+
65
+
66
+ def test_empty_is_biconnected():
67
+ G = nx.empty_graph(5)
68
+ assert not nx.is_biconnected(G)
69
+ G.add_edge(0, 1)
70
+ assert not nx.is_biconnected(G)
71
+
72
+
73
+ def test_biconnected_components_cycle():
74
+ G = nx.cycle_graph(3)
75
+ nx.add_cycle(G, [1, 3, 4])
76
+ answer = [{0, 1, 2}, {1, 3, 4}]
77
+ assert_components_equal(list(nx.biconnected_components(G)), answer)
78
+
79
+
80
+ def test_biconnected_components1():
81
+ # graph example from
82
+ # https://web.archive.org/web/20121229123447/http://www.ibluemojo.com/school/articul_algorithm.html
83
+ edges = [
84
+ (0, 1),
85
+ (0, 5),
86
+ (0, 6),
87
+ (0, 14),
88
+ (1, 5),
89
+ (1, 6),
90
+ (1, 14),
91
+ (2, 4),
92
+ (2, 10),
93
+ (3, 4),
94
+ (3, 15),
95
+ (4, 6),
96
+ (4, 7),
97
+ (4, 10),
98
+ (5, 14),
99
+ (6, 14),
100
+ (7, 9),
101
+ (8, 9),
102
+ (8, 12),
103
+ (8, 13),
104
+ (10, 15),
105
+ (11, 12),
106
+ (11, 13),
107
+ (12, 13),
108
+ ]
109
+ G = nx.Graph(edges)
110
+ pts = set(nx.articulation_points(G))
111
+ assert pts == {4, 6, 7, 8, 9}
112
+ comps = list(nx.biconnected_component_edges(G))
113
+ answer = [
114
+ [(3, 4), (15, 3), (10, 15), (10, 4), (2, 10), (4, 2)],
115
+ [(13, 12), (13, 8), (11, 13), (12, 11), (8, 12)],
116
+ [(9, 8)],
117
+ [(7, 9)],
118
+ [(4, 7)],
119
+ [(6, 4)],
120
+ [(14, 0), (5, 1), (5, 0), (14, 5), (14, 1), (6, 14), (6, 0), (1, 6), (0, 1)],
121
+ ]
122
+ assert_components_edges_equal(comps, answer)
123
+
124
+
125
+ def test_biconnected_components2():
126
+ G = nx.Graph()
127
+ nx.add_cycle(G, "ABC")
128
+ nx.add_cycle(G, "CDE")
129
+ nx.add_cycle(G, "FIJHG")
130
+ nx.add_cycle(G, "GIJ")
131
+ G.add_edge("E", "G")
132
+ comps = list(nx.biconnected_component_edges(G))
133
+ answer = [
134
+ [
135
+ tuple("GF"),
136
+ tuple("FI"),
137
+ tuple("IG"),
138
+ tuple("IJ"),
139
+ tuple("JG"),
140
+ tuple("JH"),
141
+ tuple("HG"),
142
+ ],
143
+ [tuple("EG")],
144
+ [tuple("CD"), tuple("DE"), tuple("CE")],
145
+ [tuple("AB"), tuple("BC"), tuple("AC")],
146
+ ]
147
+ assert_components_edges_equal(comps, answer)
148
+
149
+
150
+ def test_biconnected_davis():
151
+ D = nx.davis_southern_women_graph()
152
+ bcc = list(nx.biconnected_components(D))[0]
153
+ assert set(D) == bcc # All nodes in a giant bicomponent
154
+ # So no articulation points
155
+ assert len(list(nx.articulation_points(D))) == 0
156
+
157
+
158
+ def test_biconnected_karate():
159
+ K = nx.karate_club_graph()
160
+ answer = [
161
+ {
162
+ 0,
163
+ 1,
164
+ 2,
165
+ 3,
166
+ 7,
167
+ 8,
168
+ 9,
169
+ 12,
170
+ 13,
171
+ 14,
172
+ 15,
173
+ 17,
174
+ 18,
175
+ 19,
176
+ 20,
177
+ 21,
178
+ 22,
179
+ 23,
180
+ 24,
181
+ 25,
182
+ 26,
183
+ 27,
184
+ 28,
185
+ 29,
186
+ 30,
187
+ 31,
188
+ 32,
189
+ 33,
190
+ },
191
+ {0, 4, 5, 6, 10, 16},
192
+ {0, 11},
193
+ ]
194
+ bcc = list(nx.biconnected_components(K))
195
+ assert_components_equal(bcc, answer)
196
+ assert set(nx.articulation_points(K)) == {0}
197
+
198
+
199
+ def test_biconnected_eppstein():
200
+ # tests from http://www.ics.uci.edu/~eppstein/PADS/Biconnectivity.py
201
+ G1 = nx.Graph(
202
+ {
203
+ 0: [1, 2, 5],
204
+ 1: [0, 5],
205
+ 2: [0, 3, 4],
206
+ 3: [2, 4, 5, 6],
207
+ 4: [2, 3, 5, 6],
208
+ 5: [0, 1, 3, 4],
209
+ 6: [3, 4],
210
+ }
211
+ )
212
+ G2 = nx.Graph(
213
+ {
214
+ 0: [2, 5],
215
+ 1: [3, 8],
216
+ 2: [0, 3, 5],
217
+ 3: [1, 2, 6, 8],
218
+ 4: [7],
219
+ 5: [0, 2],
220
+ 6: [3, 8],
221
+ 7: [4],
222
+ 8: [1, 3, 6],
223
+ }
224
+ )
225
+ assert nx.is_biconnected(G1)
226
+ assert not nx.is_biconnected(G2)
227
+ answer_G2 = [{1, 3, 6, 8}, {0, 2, 5}, {2, 3}, {4, 7}]
228
+ bcc = list(nx.biconnected_components(G2))
229
+ assert_components_equal(bcc, answer_G2)
230
+
231
+
232
+ def test_null_graph():
233
+ G = nx.Graph()
234
+ assert not nx.is_biconnected(G)
235
+ assert list(nx.biconnected_components(G)) == []
236
+ assert list(nx.biconnected_component_edges(G)) == []
237
+ assert list(nx.articulation_points(G)) == []
238
+
239
+
240
+ def test_connected_raise():
241
+ DG = nx.DiGraph()
242
+ with pytest.raises(NetworkXNotImplemented):
243
+ next(nx.biconnected_components(DG))
244
+ with pytest.raises(NetworkXNotImplemented):
245
+ next(nx.biconnected_component_edges(DG))
246
+ with pytest.raises(NetworkXNotImplemented):
247
+ next(nx.articulation_points(DG))
248
+ pytest.raises(NetworkXNotImplemented, nx.is_biconnected, DG)
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_connected.py ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import NetworkXNotImplemented
5
+ from networkx import convert_node_labels_to_integers as cnlti
6
+ from networkx.classes.tests import dispatch_interface
7
+
8
+
9
+ class TestConnected:
10
+ @classmethod
11
+ def setup_class(cls):
12
+ G1 = cnlti(nx.grid_2d_graph(2, 2), first_label=0, ordering="sorted")
13
+ G2 = cnlti(nx.lollipop_graph(3, 3), first_label=4, ordering="sorted")
14
+ G3 = cnlti(nx.house_graph(), first_label=10, ordering="sorted")
15
+ cls.G = nx.union(G1, G2)
16
+ cls.G = nx.union(cls.G, G3)
17
+ cls.DG = nx.DiGraph([(1, 2), (1, 3), (2, 3)])
18
+ cls.grid = cnlti(nx.grid_2d_graph(4, 4), first_label=1)
19
+
20
+ cls.gc = []
21
+ G = nx.DiGraph()
22
+ G.add_edges_from(
23
+ [
24
+ (1, 2),
25
+ (2, 3),
26
+ (2, 8),
27
+ (3, 4),
28
+ (3, 7),
29
+ (4, 5),
30
+ (5, 3),
31
+ (5, 6),
32
+ (7, 4),
33
+ (7, 6),
34
+ (8, 1),
35
+ (8, 7),
36
+ ]
37
+ )
38
+ C = [[3, 4, 5, 7], [1, 2, 8], [6]]
39
+ cls.gc.append((G, C))
40
+
41
+ G = nx.DiGraph()
42
+ G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
43
+ C = [[2, 3, 4], [1]]
44
+ cls.gc.append((G, C))
45
+
46
+ G = nx.DiGraph()
47
+ G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
48
+ C = [[1, 2, 3]]
49
+ cls.gc.append((G, C))
50
+
51
+ # Eppstein's tests
52
+ G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
53
+ C = [[0], [1], [2], [3], [4], [5], [6]]
54
+ cls.gc.append((G, C))
55
+
56
+ G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
57
+ C = [[0, 1, 2], [3, 4]]
58
+ cls.gc.append((G, C))
59
+
60
+ G = nx.DiGraph()
61
+ C = []
62
+ cls.gc.append((G, C))
63
+
64
+ # This additionally tests the @nx._dispatchable mechanism, treating
65
+ # nx.connected_components as if it were a re-implementation from another package
66
+ @pytest.mark.parametrize("wrapper", [lambda x: x, dispatch_interface.convert])
67
+ def test_connected_components(self, wrapper):
68
+ cc = nx.connected_components
69
+ G = wrapper(self.G)
70
+ C = {
71
+ frozenset([0, 1, 2, 3]),
72
+ frozenset([4, 5, 6, 7, 8, 9]),
73
+ frozenset([10, 11, 12, 13, 14]),
74
+ }
75
+ assert {frozenset(g) for g in cc(G)} == C
76
+
77
+ def test_number_connected_components(self):
78
+ ncc = nx.number_connected_components
79
+ assert ncc(self.G) == 3
80
+
81
+ def test_number_connected_components2(self):
82
+ ncc = nx.number_connected_components
83
+ assert ncc(self.grid) == 1
84
+
85
+ def test_connected_components2(self):
86
+ cc = nx.connected_components
87
+ G = self.grid
88
+ C = {frozenset([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])}
89
+ assert {frozenset(g) for g in cc(G)} == C
90
+
91
+ def test_node_connected_components(self):
92
+ ncc = nx.node_connected_component
93
+ G = self.grid
94
+ C = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16}
95
+ assert ncc(G, 1) == C
96
+
97
+ def test_is_connected(self):
98
+ assert nx.is_connected(self.grid)
99
+ G = nx.Graph()
100
+ G.add_nodes_from([1, 2])
101
+ assert not nx.is_connected(G)
102
+
103
+ def test_connected_raise(self):
104
+ with pytest.raises(NetworkXNotImplemented):
105
+ next(nx.connected_components(self.DG))
106
+ pytest.raises(NetworkXNotImplemented, nx.number_connected_components, self.DG)
107
+ pytest.raises(NetworkXNotImplemented, nx.node_connected_component, self.DG, 1)
108
+ pytest.raises(NetworkXNotImplemented, nx.is_connected, self.DG)
109
+ pytest.raises(nx.NetworkXPointlessConcept, nx.is_connected, nx.Graph())
110
+
111
+ def test_connected_mutability(self):
112
+ G = self.grid
113
+ seen = set()
114
+ for component in nx.connected_components(G):
115
+ assert len(seen & component) == 0
116
+ seen.update(component)
117
+ component.clear()
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_semiconnected.py ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from itertools import chain
2
+
3
+ import pytest
4
+
5
+ import networkx as nx
6
+
7
+
8
+ class TestIsSemiconnected:
9
+ def test_undirected(self):
10
+ pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.Graph())
11
+ pytest.raises(nx.NetworkXNotImplemented, nx.is_semiconnected, nx.MultiGraph())
12
+
13
+ def test_empty(self):
14
+ pytest.raises(nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.DiGraph())
15
+ pytest.raises(
16
+ nx.NetworkXPointlessConcept, nx.is_semiconnected, nx.MultiDiGraph()
17
+ )
18
+
19
+ def test_single_node_graph(self):
20
+ G = nx.DiGraph()
21
+ G.add_node(0)
22
+ assert nx.is_semiconnected(G)
23
+
24
+ def test_path(self):
25
+ G = nx.path_graph(100, create_using=nx.DiGraph())
26
+ assert nx.is_semiconnected(G)
27
+ G.add_edge(100, 99)
28
+ assert not nx.is_semiconnected(G)
29
+
30
+ def test_cycle(self):
31
+ G = nx.cycle_graph(100, create_using=nx.DiGraph())
32
+ assert nx.is_semiconnected(G)
33
+ G = nx.path_graph(100, create_using=nx.DiGraph())
34
+ G.add_edge(0, 99)
35
+ assert nx.is_semiconnected(G)
36
+
37
+ def test_tree(self):
38
+ G = nx.DiGraph()
39
+ G.add_edges_from(
40
+ chain.from_iterable([(i, 2 * i + 1), (i, 2 * i + 2)] for i in range(100))
41
+ )
42
+ assert not nx.is_semiconnected(G)
43
+
44
+ def test_dumbbell(self):
45
+ G = nx.cycle_graph(100, create_using=nx.DiGraph())
46
+ G.add_edges_from((i + 100, (i + 1) % 100 + 100) for i in range(100))
47
+ assert not nx.is_semiconnected(G) # G is disconnected.
48
+ G.add_edge(100, 99)
49
+ assert nx.is_semiconnected(G)
50
+
51
+ def test_alternating_path(self):
52
+ G = nx.DiGraph(
53
+ chain.from_iterable([(i, i - 1), (i, i + 1)] for i in range(0, 100, 2))
54
+ )
55
+ assert not nx.is_semiconnected(G)
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_strongly_connected.py ADDED
@@ -0,0 +1,203 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import NetworkXNotImplemented
5
+
6
+
7
+ class TestStronglyConnected:
8
+ @classmethod
9
+ def setup_class(cls):
10
+ cls.gc = []
11
+ G = nx.DiGraph()
12
+ G.add_edges_from(
13
+ [
14
+ (1, 2),
15
+ (2, 3),
16
+ (2, 8),
17
+ (3, 4),
18
+ (3, 7),
19
+ (4, 5),
20
+ (5, 3),
21
+ (5, 6),
22
+ (7, 4),
23
+ (7, 6),
24
+ (8, 1),
25
+ (8, 7),
26
+ ]
27
+ )
28
+ C = {frozenset([3, 4, 5, 7]), frozenset([1, 2, 8]), frozenset([6])}
29
+ cls.gc.append((G, C))
30
+
31
+ G = nx.DiGraph()
32
+ G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
33
+ C = {frozenset([2, 3, 4]), frozenset([1])}
34
+ cls.gc.append((G, C))
35
+
36
+ G = nx.DiGraph()
37
+ G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
38
+ C = {frozenset([1, 2, 3])}
39
+ cls.gc.append((G, C))
40
+
41
+ # Eppstein's tests
42
+ G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
43
+ C = {
44
+ frozenset([0]),
45
+ frozenset([1]),
46
+ frozenset([2]),
47
+ frozenset([3]),
48
+ frozenset([4]),
49
+ frozenset([5]),
50
+ frozenset([6]),
51
+ }
52
+ cls.gc.append((G, C))
53
+
54
+ G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
55
+ C = {frozenset([0, 1, 2]), frozenset([3, 4])}
56
+ cls.gc.append((G, C))
57
+
58
+ def test_tarjan(self):
59
+ scc = nx.strongly_connected_components
60
+ for G, C in self.gc:
61
+ assert {frozenset(g) for g in scc(G)} == C
62
+
63
+ def test_tarjan_recursive(self):
64
+ scc = nx.strongly_connected_components_recursive
65
+ for G, C in self.gc:
66
+ with pytest.deprecated_call():
67
+ assert {frozenset(g) for g in scc(G)} == C
68
+
69
+ def test_kosaraju(self):
70
+ scc = nx.kosaraju_strongly_connected_components
71
+ for G, C in self.gc:
72
+ assert {frozenset(g) for g in scc(G)} == C
73
+
74
+ def test_number_strongly_connected_components(self):
75
+ ncc = nx.number_strongly_connected_components
76
+ for G, C in self.gc:
77
+ assert ncc(G) == len(C)
78
+
79
+ def test_is_strongly_connected(self):
80
+ for G, C in self.gc:
81
+ if len(C) == 1:
82
+ assert nx.is_strongly_connected(G)
83
+ else:
84
+ assert not nx.is_strongly_connected(G)
85
+
86
+ def test_contract_scc1(self):
87
+ G = nx.DiGraph()
88
+ G.add_edges_from(
89
+ [
90
+ (1, 2),
91
+ (2, 3),
92
+ (2, 11),
93
+ (2, 12),
94
+ (3, 4),
95
+ (4, 3),
96
+ (4, 5),
97
+ (5, 6),
98
+ (6, 5),
99
+ (6, 7),
100
+ (7, 8),
101
+ (7, 9),
102
+ (7, 10),
103
+ (8, 9),
104
+ (9, 7),
105
+ (10, 6),
106
+ (11, 2),
107
+ (11, 4),
108
+ (11, 6),
109
+ (12, 6),
110
+ (12, 11),
111
+ ]
112
+ )
113
+ scc = list(nx.strongly_connected_components(G))
114
+ cG = nx.condensation(G, scc)
115
+ # DAG
116
+ assert nx.is_directed_acyclic_graph(cG)
117
+ # nodes
118
+ assert sorted(cG.nodes()) == [0, 1, 2, 3]
119
+ # edges
120
+ mapping = {}
121
+ for i, component in enumerate(scc):
122
+ for n in component:
123
+ mapping[n] = i
124
+ edge = (mapping[2], mapping[3])
125
+ assert cG.has_edge(*edge)
126
+ edge = (mapping[2], mapping[5])
127
+ assert cG.has_edge(*edge)
128
+ edge = (mapping[3], mapping[5])
129
+ assert cG.has_edge(*edge)
130
+
131
+ def test_contract_scc_isolate(self):
132
+ # Bug found and fixed in [1687].
133
+ G = nx.DiGraph()
134
+ G.add_edge(1, 2)
135
+ G.add_edge(2, 1)
136
+ scc = list(nx.strongly_connected_components(G))
137
+ cG = nx.condensation(G, scc)
138
+ assert list(cG.nodes()) == [0]
139
+ assert list(cG.edges()) == []
140
+
141
+ def test_contract_scc_edge(self):
142
+ G = nx.DiGraph()
143
+ G.add_edge(1, 2)
144
+ G.add_edge(2, 1)
145
+ G.add_edge(2, 3)
146
+ G.add_edge(3, 4)
147
+ G.add_edge(4, 3)
148
+ scc = list(nx.strongly_connected_components(G))
149
+ cG = nx.condensation(G, scc)
150
+ assert sorted(cG.nodes()) == [0, 1]
151
+ if 1 in scc[0]:
152
+ edge = (0, 1)
153
+ else:
154
+ edge = (1, 0)
155
+ assert list(cG.edges()) == [edge]
156
+
157
+ def test_condensation_mapping_and_members(self):
158
+ G, C = self.gc[1]
159
+ C = sorted(C, key=len, reverse=True)
160
+ cG = nx.condensation(G)
161
+ mapping = cG.graph["mapping"]
162
+ assert all(n in G for n in mapping)
163
+ assert all(0 == cN for n, cN in mapping.items() if n in C[0])
164
+ assert all(1 == cN for n, cN in mapping.items() if n in C[1])
165
+ for n, d in cG.nodes(data=True):
166
+ assert set(C[n]) == cG.nodes[n]["members"]
167
+
168
+ def test_null_graph(self):
169
+ G = nx.DiGraph()
170
+ assert list(nx.strongly_connected_components(G)) == []
171
+ assert list(nx.kosaraju_strongly_connected_components(G)) == []
172
+ with pytest.deprecated_call():
173
+ assert list(nx.strongly_connected_components_recursive(G)) == []
174
+ assert len(nx.condensation(G)) == 0
175
+ pytest.raises(
176
+ nx.NetworkXPointlessConcept, nx.is_strongly_connected, nx.DiGraph()
177
+ )
178
+
179
+ def test_connected_raise(self):
180
+ G = nx.Graph()
181
+ with pytest.raises(NetworkXNotImplemented):
182
+ next(nx.strongly_connected_components(G))
183
+ with pytest.raises(NetworkXNotImplemented):
184
+ next(nx.kosaraju_strongly_connected_components(G))
185
+ with pytest.raises(NetworkXNotImplemented):
186
+ next(nx.strongly_connected_components_recursive(G))
187
+ pytest.raises(NetworkXNotImplemented, nx.is_strongly_connected, G)
188
+ pytest.raises(NetworkXNotImplemented, nx.condensation, G)
189
+
190
+ strong_cc_methods = (
191
+ nx.strongly_connected_components,
192
+ nx.kosaraju_strongly_connected_components,
193
+ )
194
+
195
+ @pytest.mark.parametrize("get_components", strong_cc_methods)
196
+ def test_connected_mutability(self, get_components):
197
+ DG = nx.path_graph(5, create_using=nx.DiGraph)
198
+ G = nx.disjoint_union(DG, DG)
199
+ seen = set()
200
+ for component in get_components(G):
201
+ assert len(seen & component) == 0
202
+ seen.update(component)
203
+ component.clear()
venv/lib/python3.10/site-packages/networkx/algorithms/components/tests/test_weakly_connected.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pytest
2
+
3
+ import networkx as nx
4
+ from networkx import NetworkXNotImplemented
5
+
6
+
7
+ class TestWeaklyConnected:
8
+ @classmethod
9
+ def setup_class(cls):
10
+ cls.gc = []
11
+ G = nx.DiGraph()
12
+ G.add_edges_from(
13
+ [
14
+ (1, 2),
15
+ (2, 3),
16
+ (2, 8),
17
+ (3, 4),
18
+ (3, 7),
19
+ (4, 5),
20
+ (5, 3),
21
+ (5, 6),
22
+ (7, 4),
23
+ (7, 6),
24
+ (8, 1),
25
+ (8, 7),
26
+ ]
27
+ )
28
+ C = [[3, 4, 5, 7], [1, 2, 8], [6]]
29
+ cls.gc.append((G, C))
30
+
31
+ G = nx.DiGraph()
32
+ G.add_edges_from([(1, 2), (1, 3), (1, 4), (4, 2), (3, 4), (2, 3)])
33
+ C = [[2, 3, 4], [1]]
34
+ cls.gc.append((G, C))
35
+
36
+ G = nx.DiGraph()
37
+ G.add_edges_from([(1, 2), (2, 3), (3, 2), (2, 1)])
38
+ C = [[1, 2, 3]]
39
+ cls.gc.append((G, C))
40
+
41
+ # Eppstein's tests
42
+ G = nx.DiGraph({0: [1], 1: [2, 3], 2: [4, 5], 3: [4, 5], 4: [6], 5: [], 6: []})
43
+ C = [[0], [1], [2], [3], [4], [5], [6]]
44
+ cls.gc.append((G, C))
45
+
46
+ G = nx.DiGraph({0: [1], 1: [2, 3, 4], 2: [0, 3], 3: [4], 4: [3]})
47
+ C = [[0, 1, 2], [3, 4]]
48
+ cls.gc.append((G, C))
49
+
50
+ def test_weakly_connected_components(self):
51
+ for G, C in self.gc:
52
+ U = G.to_undirected()
53
+ w = {frozenset(g) for g in nx.weakly_connected_components(G)}
54
+ c = {frozenset(g) for g in nx.connected_components(U)}
55
+ assert w == c
56
+
57
+ def test_number_weakly_connected_components(self):
58
+ for G, C in self.gc:
59
+ U = G.to_undirected()
60
+ w = nx.number_weakly_connected_components(G)
61
+ c = nx.number_connected_components(U)
62
+ assert w == c
63
+
64
+ def test_is_weakly_connected(self):
65
+ for G, C in self.gc:
66
+ U = G.to_undirected()
67
+ assert nx.is_weakly_connected(G) == nx.is_connected(U)
68
+
69
+ def test_null_graph(self):
70
+ G = nx.DiGraph()
71
+ assert list(nx.weakly_connected_components(G)) == []
72
+ assert nx.number_weakly_connected_components(G) == 0
73
+ with pytest.raises(nx.NetworkXPointlessConcept):
74
+ next(nx.is_weakly_connected(G))
75
+
76
+ def test_connected_raise(self):
77
+ G = nx.Graph()
78
+ with pytest.raises(NetworkXNotImplemented):
79
+ next(nx.weakly_connected_components(G))
80
+ pytest.raises(NetworkXNotImplemented, nx.number_weakly_connected_components, G)
81
+ pytest.raises(NetworkXNotImplemented, nx.is_weakly_connected, G)
82
+
83
+ def test_connected_mutability(self):
84
+ DG = nx.path_graph(5, create_using=nx.DiGraph)
85
+ G = nx.disjoint_union(DG, DG)
86
+ seen = set()
87
+ for component in nx.weakly_connected_components(G):
88
+ assert len(seen & component) == 0
89
+ seen.update(component)
90
+ component.clear()
91
+
92
+
93
+ def test_is_weakly_connected_empty_graph_raises():
94
+ G = nx.DiGraph()
95
+ with pytest.raises(nx.NetworkXPointlessConcept, match="Connectivity is undefined"):
96
+ nx.is_weakly_connected(G)
venv/lib/python3.10/site-packages/networkx/algorithms/components/weakly_connected.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Weakly connected components."""
2
+ import networkx as nx
3
+ from networkx.utils.decorators import not_implemented_for
4
+
5
+ __all__ = [
6
+ "number_weakly_connected_components",
7
+ "weakly_connected_components",
8
+ "is_weakly_connected",
9
+ ]
10
+
11
+
12
+ @not_implemented_for("undirected")
13
+ @nx._dispatchable
14
+ def weakly_connected_components(G):
15
+ """Generate weakly connected components of G.
16
+
17
+ Parameters
18
+ ----------
19
+ G : NetworkX graph
20
+ A directed graph
21
+
22
+ Returns
23
+ -------
24
+ comp : generator of sets
25
+ A generator of sets of nodes, one for each weakly connected
26
+ component of G.
27
+
28
+ Raises
29
+ ------
30
+ NetworkXNotImplemented
31
+ If G is undirected.
32
+
33
+ Examples
34
+ --------
35
+ Generate a sorted list of weakly connected components, largest first.
36
+
37
+ >>> G = nx.path_graph(4, create_using=nx.DiGraph())
38
+ >>> nx.add_path(G, [10, 11, 12])
39
+ >>> [len(c) for c in sorted(nx.weakly_connected_components(G), key=len, reverse=True)]
40
+ [4, 3]
41
+
42
+ If you only want the largest component, it's more efficient to
43
+ use max instead of sort:
44
+
45
+ >>> largest_cc = max(nx.weakly_connected_components(G), key=len)
46
+
47
+ See Also
48
+ --------
49
+ connected_components
50
+ strongly_connected_components
51
+
52
+ Notes
53
+ -----
54
+ For directed graphs only.
55
+
56
+ """
57
+ seen = set()
58
+ for v in G:
59
+ if v not in seen:
60
+ c = set(_plain_bfs(G, v))
61
+ seen.update(c)
62
+ yield c
63
+
64
+
65
+ @not_implemented_for("undirected")
66
+ @nx._dispatchable
67
+ def number_weakly_connected_components(G):
68
+ """Returns the number of weakly connected components in G.
69
+
70
+ Parameters
71
+ ----------
72
+ G : NetworkX graph
73
+ A directed graph.
74
+
75
+ Returns
76
+ -------
77
+ n : integer
78
+ Number of weakly connected components
79
+
80
+ Raises
81
+ ------
82
+ NetworkXNotImplemented
83
+ If G is undirected.
84
+
85
+ Examples
86
+ --------
87
+ >>> G = nx.DiGraph([(0, 1), (2, 1), (3, 4)])
88
+ >>> nx.number_weakly_connected_components(G)
89
+ 2
90
+
91
+ See Also
92
+ --------
93
+ weakly_connected_components
94
+ number_connected_components
95
+ number_strongly_connected_components
96
+
97
+ Notes
98
+ -----
99
+ For directed graphs only.
100
+
101
+ """
102
+ return sum(1 for wcc in weakly_connected_components(G))
103
+
104
+
105
+ @not_implemented_for("undirected")
106
+ @nx._dispatchable
107
+ def is_weakly_connected(G):
108
+ """Test directed graph for weak connectivity.
109
+
110
+ A directed graph is weakly connected if and only if the graph
111
+ is connected when the direction of the edge between nodes is ignored.
112
+
113
+ Note that if a graph is strongly connected (i.e. the graph is connected
114
+ even when we account for directionality), it is by definition weakly
115
+ connected as well.
116
+
117
+ Parameters
118
+ ----------
119
+ G : NetworkX Graph
120
+ A directed graph.
121
+
122
+ Returns
123
+ -------
124
+ connected : bool
125
+ True if the graph is weakly connected, False otherwise.
126
+
127
+ Raises
128
+ ------
129
+ NetworkXNotImplemented
130
+ If G is undirected.
131
+
132
+ Examples
133
+ --------
134
+ >>> G = nx.DiGraph([(0, 1), (2, 1)])
135
+ >>> G.add_node(3)
136
+ >>> nx.is_weakly_connected(G) # node 3 is not connected to the graph
137
+ False
138
+ >>> G.add_edge(2, 3)
139
+ >>> nx.is_weakly_connected(G)
140
+ True
141
+
142
+ See Also
143
+ --------
144
+ is_strongly_connected
145
+ is_semiconnected
146
+ is_connected
147
+ is_biconnected
148
+ weakly_connected_components
149
+
150
+ Notes
151
+ -----
152
+ For directed graphs only.
153
+
154
+ """
155
+ if len(G) == 0:
156
+ raise nx.NetworkXPointlessConcept(
157
+ """Connectivity is undefined for the null graph."""
158
+ )
159
+
160
+ return len(next(weakly_connected_components(G))) == len(G)
161
+
162
+
163
+ def _plain_bfs(G, source):
164
+ """A fast BFS node generator
165
+
166
+ The direction of the edge between nodes is ignored.
167
+
168
+ For directed graphs only.
169
+
170
+ """
171
+ n = len(G)
172
+ Gsucc = G._succ
173
+ Gpred = G._pred
174
+ seen = {source}
175
+ nextlevel = [source]
176
+
177
+ yield source
178
+ while nextlevel:
179
+ thislevel = nextlevel
180
+ nextlevel = []
181
+ for v in thislevel:
182
+ for w in Gsucc[v]:
183
+ if w not in seen:
184
+ seen.add(w)
185
+ nextlevel.append(w)
186
+ yield w
187
+ for w in Gpred[v]:
188
+ if w not in seen:
189
+ seen.add(w)
190
+ nextlevel.append(w)
191
+ yield w
192
+ if len(seen) == n:
193
+ return
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Connectivity and cut algorithms
2
+ """
3
+ from .connectivity import *
4
+ from .cuts import *
5
+ from .edge_augmentation import *
6
+ from .edge_kcomponents import *
7
+ from .disjoint_paths import *
8
+ from .kcomponents import *
9
+ from .kcutsets import *
10
+ from .stoerwagner import *
11
+ from .utils import *
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (460 Bytes). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/connectivity.cpython-310.pyc ADDED
Binary file (26.8 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/cuts.cpython-310.pyc ADDED
Binary file (20.3 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/disjoint_paths.cpython-310.pyc ADDED
Binary file (13.2 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_augmentation.cpython-310.pyc ADDED
Binary file (37.9 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/edge_kcomponents.cpython-310.pyc ADDED
Binary file (18.1 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcomponents.cpython-310.pyc ADDED
Binary file (7.93 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/kcutsets.cpython-310.pyc ADDED
Binary file (6.32 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/stoerwagner.cpython-310.pyc ADDED
Binary file (4.51 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/__pycache__/utils.cpython-310.pyc ADDED
Binary file (3.19 kB). View file
 
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/connectivity.py ADDED
@@ -0,0 +1,816 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Flow based connectivity algorithms
3
+ """
4
+
5
+ import itertools
6
+ from operator import itemgetter
7
+
8
+ import networkx as nx
9
+
10
+ # Define the default maximum flow function to use in all flow based
11
+ # connectivity algorithms.
12
+ from networkx.algorithms.flow import (
13
+ boykov_kolmogorov,
14
+ build_residual_network,
15
+ dinitz,
16
+ edmonds_karp,
17
+ shortest_augmenting_path,
18
+ )
19
+
20
+ default_flow_func = edmonds_karp
21
+
22
+ from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
23
+
24
+ __all__ = [
25
+ "average_node_connectivity",
26
+ "local_node_connectivity",
27
+ "node_connectivity",
28
+ "local_edge_connectivity",
29
+ "edge_connectivity",
30
+ "all_pairs_node_connectivity",
31
+ ]
32
+
33
+
34
+ @nx._dispatchable(graphs={"G": 0, "auxiliary?": 4}, preserve_graph_attrs={"auxiliary"})
35
+ def local_node_connectivity(
36
+ G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
37
+ ):
38
+ r"""Computes local node connectivity for nodes s and t.
39
+
40
+ Local node connectivity for two non adjacent nodes s and t is the
41
+ minimum number of nodes that must be removed (along with their incident
42
+ edges) to disconnect them.
43
+
44
+ This is a flow based implementation of node connectivity. We compute the
45
+ maximum flow on an auxiliary digraph build from the original input
46
+ graph (see below for details).
47
+
48
+ Parameters
49
+ ----------
50
+ G : NetworkX graph
51
+ Undirected graph
52
+
53
+ s : node
54
+ Source node
55
+
56
+ t : node
57
+ Target node
58
+
59
+ flow_func : function
60
+ A function for computing the maximum flow among a pair of nodes.
61
+ The function has to accept at least three parameters: a Digraph,
62
+ a source node, and a target node. And return a residual network
63
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
64
+ details). If flow_func is None, the default maximum flow function
65
+ (:meth:`edmonds_karp`) is used. See below for details. The choice
66
+ of the default function may change from version to version and
67
+ should not be relied on. Default value: None.
68
+
69
+ auxiliary : NetworkX DiGraph
70
+ Auxiliary digraph to compute flow based node connectivity. It has
71
+ to have a graph attribute called mapping with a dictionary mapping
72
+ node names in G and in the auxiliary digraph. If provided
73
+ it will be reused instead of recreated. Default value: None.
74
+
75
+ residual : NetworkX DiGraph
76
+ Residual network to compute maximum flow. If provided it will be
77
+ reused instead of recreated. Default value: None.
78
+
79
+ cutoff : integer, float, or None (default: None)
80
+ If specified, the maximum flow algorithm will terminate when the
81
+ flow value reaches or exceeds the cutoff. This only works for flows
82
+ that support the cutoff parameter (most do) and is ignored otherwise.
83
+
84
+ Returns
85
+ -------
86
+ K : integer
87
+ local node connectivity for nodes s and t
88
+
89
+ Examples
90
+ --------
91
+ This function is not imported in the base NetworkX namespace, so you
92
+ have to explicitly import it from the connectivity package:
93
+
94
+ >>> from networkx.algorithms.connectivity import local_node_connectivity
95
+
96
+ We use in this example the platonic icosahedral graph, which has node
97
+ connectivity 5.
98
+
99
+ >>> G = nx.icosahedral_graph()
100
+ >>> local_node_connectivity(G, 0, 6)
101
+ 5
102
+
103
+ If you need to compute local connectivity on several pairs of
104
+ nodes in the same graph, it is recommended that you reuse the
105
+ data structures that NetworkX uses in the computation: the
106
+ auxiliary digraph for node connectivity, and the residual
107
+ network for the underlying maximum flow computation.
108
+
109
+ Example of how to compute local node connectivity among
110
+ all pairs of nodes of the platonic icosahedral graph reusing
111
+ the data structures.
112
+
113
+ >>> import itertools
114
+ >>> # You also have to explicitly import the function for
115
+ >>> # building the auxiliary digraph from the connectivity package
116
+ >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
117
+ >>> H = build_auxiliary_node_connectivity(G)
118
+ >>> # And the function for building the residual network from the
119
+ >>> # flow package
120
+ >>> from networkx.algorithms.flow import build_residual_network
121
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
122
+ >>> R = build_residual_network(H, "capacity")
123
+ >>> result = dict.fromkeys(G, dict())
124
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
125
+ >>> # as parameters
126
+ >>> for u, v in itertools.combinations(G, 2):
127
+ ... k = local_node_connectivity(G, u, v, auxiliary=H, residual=R)
128
+ ... result[u][v] = k
129
+ >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
130
+ True
131
+
132
+ You can also use alternative flow algorithms for computing node
133
+ connectivity. For instance, in dense networks the algorithm
134
+ :meth:`shortest_augmenting_path` will usually perform better than
135
+ the default :meth:`edmonds_karp` which is faster for sparse
136
+ networks with highly skewed degree distributions. Alternative flow
137
+ functions have to be explicitly imported from the flow package.
138
+
139
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
140
+ >>> local_node_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
141
+ 5
142
+
143
+ Notes
144
+ -----
145
+ This is a flow based implementation of node connectivity. We compute the
146
+ maximum flow using, by default, the :meth:`edmonds_karp` algorithm (see:
147
+ :meth:`maximum_flow`) on an auxiliary digraph build from the original
148
+ input graph:
149
+
150
+ For an undirected graph G having `n` nodes and `m` edges we derive a
151
+ directed graph H with `2n` nodes and `2m+n` arcs by replacing each
152
+ original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
153
+ arc in H. Then for each edge (`u`, `v`) in G we add two arcs
154
+ (`u_B`, `v_A`) and (`v_B`, `u_A`) in H. Finally we set the attribute
155
+ capacity = 1 for each arc in H [1]_ .
156
+
157
+ For a directed graph G having `n` nodes and `m` arcs we derive a
158
+ directed graph H with `2n` nodes and `m+n` arcs by replacing each
159
+ original node `v` with two nodes `v_A`, `v_B` linked by an (internal)
160
+ arc (`v_A`, `v_B`) in H. Then for each arc (`u`, `v`) in G we add one arc
161
+ (`u_B`, `v_A`) in H. Finally we set the attribute capacity = 1 for
162
+ each arc in H.
163
+
164
+ This is equal to the local node connectivity because the value of
165
+ a maximum s-t-flow is equal to the capacity of a minimum s-t-cut.
166
+
167
+ See also
168
+ --------
169
+ :meth:`local_edge_connectivity`
170
+ :meth:`node_connectivity`
171
+ :meth:`minimum_node_cut`
172
+ :meth:`maximum_flow`
173
+ :meth:`edmonds_karp`
174
+ :meth:`preflow_push`
175
+ :meth:`shortest_augmenting_path`
176
+
177
+ References
178
+ ----------
179
+ .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
180
+ Erlebach, 'Network Analysis: Methodological Foundations', Lecture
181
+ Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
182
+ http://www.informatik.uni-augsburg.de/thi/personen/kammer/Graph_Connectivity.pdf
183
+
184
+ """
185
+ if flow_func is None:
186
+ flow_func = default_flow_func
187
+
188
+ if auxiliary is None:
189
+ H = build_auxiliary_node_connectivity(G)
190
+ else:
191
+ H = auxiliary
192
+
193
+ mapping = H.graph.get("mapping", None)
194
+ if mapping is None:
195
+ raise nx.NetworkXError("Invalid auxiliary digraph.")
196
+
197
+ kwargs = {"flow_func": flow_func, "residual": residual}
198
+ if flow_func is shortest_augmenting_path:
199
+ kwargs["cutoff"] = cutoff
200
+ kwargs["two_phase"] = True
201
+ elif flow_func is edmonds_karp:
202
+ kwargs["cutoff"] = cutoff
203
+ elif flow_func is dinitz:
204
+ kwargs["cutoff"] = cutoff
205
+ elif flow_func is boykov_kolmogorov:
206
+ kwargs["cutoff"] = cutoff
207
+
208
+ return nx.maximum_flow_value(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
209
+
210
+
211
+ @nx._dispatchable
212
+ def node_connectivity(G, s=None, t=None, flow_func=None):
213
+ r"""Returns node connectivity for a graph or digraph G.
214
+
215
+ Node connectivity is equal to the minimum number of nodes that
216
+ must be removed to disconnect G or render it trivial. If source
217
+ and target nodes are provided, this function returns the local node
218
+ connectivity: the minimum number of nodes that must be removed to break
219
+ all paths from source to target in G.
220
+
221
+ Parameters
222
+ ----------
223
+ G : NetworkX graph
224
+ Undirected graph
225
+
226
+ s : node
227
+ Source node. Optional. Default value: None.
228
+
229
+ t : node
230
+ Target node. Optional. Default value: None.
231
+
232
+ flow_func : function
233
+ A function for computing the maximum flow among a pair of nodes.
234
+ The function has to accept at least three parameters: a Digraph,
235
+ a source node, and a target node. And return a residual network
236
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
237
+ details). If flow_func is None, the default maximum flow function
238
+ (:meth:`edmonds_karp`) is used. See below for details. The
239
+ choice of the default function may change from version
240
+ to version and should not be relied on. Default value: None.
241
+
242
+ Returns
243
+ -------
244
+ K : integer
245
+ Node connectivity of G, or local node connectivity if source
246
+ and target are provided.
247
+
248
+ Examples
249
+ --------
250
+ >>> # Platonic icosahedral graph is 5-node-connected
251
+ >>> G = nx.icosahedral_graph()
252
+ >>> nx.node_connectivity(G)
253
+ 5
254
+
255
+ You can use alternative flow algorithms for the underlying maximum
256
+ flow computation. In dense networks the algorithm
257
+ :meth:`shortest_augmenting_path` will usually perform better
258
+ than the default :meth:`edmonds_karp`, which is faster for
259
+ sparse networks with highly skewed degree distributions. Alternative
260
+ flow functions have to be explicitly imported from the flow package.
261
+
262
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
263
+ >>> nx.node_connectivity(G, flow_func=shortest_augmenting_path)
264
+ 5
265
+
266
+ If you specify a pair of nodes (source and target) as parameters,
267
+ this function returns the value of local node connectivity.
268
+
269
+ >>> nx.node_connectivity(G, 3, 7)
270
+ 5
271
+
272
+ If you need to perform several local computations among different
273
+ pairs of nodes on the same graph, it is recommended that you reuse
274
+ the data structures used in the maximum flow computations. See
275
+ :meth:`local_node_connectivity` for details.
276
+
277
+ Notes
278
+ -----
279
+ This is a flow based implementation of node connectivity. The
280
+ algorithm works by solving $O((n-\delta-1+\delta(\delta-1)/2))$
281
+ maximum flow problems on an auxiliary digraph. Where $\delta$
282
+ is the minimum degree of G. For details about the auxiliary
283
+ digraph and the computation of local node connectivity see
284
+ :meth:`local_node_connectivity`. This implementation is based
285
+ on algorithm 11 in [1]_.
286
+
287
+ See also
288
+ --------
289
+ :meth:`local_node_connectivity`
290
+ :meth:`edge_connectivity`
291
+ :meth:`maximum_flow`
292
+ :meth:`edmonds_karp`
293
+ :meth:`preflow_push`
294
+ :meth:`shortest_augmenting_path`
295
+
296
+ References
297
+ ----------
298
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
299
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
300
+
301
+ """
302
+ if (s is not None and t is None) or (s is None and t is not None):
303
+ raise nx.NetworkXError("Both source and target must be specified.")
304
+
305
+ # Local node connectivity
306
+ if s is not None and t is not None:
307
+ if s not in G:
308
+ raise nx.NetworkXError(f"node {s} not in graph")
309
+ if t not in G:
310
+ raise nx.NetworkXError(f"node {t} not in graph")
311
+ return local_node_connectivity(G, s, t, flow_func=flow_func)
312
+
313
+ # Global node connectivity
314
+ if G.is_directed():
315
+ if not nx.is_weakly_connected(G):
316
+ return 0
317
+ iter_func = itertools.permutations
318
+ # It is necessary to consider both predecessors
319
+ # and successors for directed graphs
320
+
321
+ def neighbors(v):
322
+ return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)])
323
+
324
+ else:
325
+ if not nx.is_connected(G):
326
+ return 0
327
+ iter_func = itertools.combinations
328
+ neighbors = G.neighbors
329
+
330
+ # Reuse the auxiliary digraph and the residual network
331
+ H = build_auxiliary_node_connectivity(G)
332
+ R = build_residual_network(H, "capacity")
333
+ kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
334
+
335
+ # Pick a node with minimum degree
336
+ # Node connectivity is bounded by degree.
337
+ v, K = min(G.degree(), key=itemgetter(1))
338
+ # compute local node connectivity with all its non-neighbors nodes
339
+ for w in set(G) - set(neighbors(v)) - {v}:
340
+ kwargs["cutoff"] = K
341
+ K = min(K, local_node_connectivity(G, v, w, **kwargs))
342
+ # Also for non adjacent pairs of neighbors of v
343
+ for x, y in iter_func(neighbors(v), 2):
344
+ if y in G[x]:
345
+ continue
346
+ kwargs["cutoff"] = K
347
+ K = min(K, local_node_connectivity(G, x, y, **kwargs))
348
+
349
+ return K
350
+
351
+
352
+ @nx._dispatchable
353
+ def average_node_connectivity(G, flow_func=None):
354
+ r"""Returns the average connectivity of a graph G.
355
+
356
+ The average connectivity `\bar{\kappa}` of a graph G is the average
357
+ of local node connectivity over all pairs of nodes of G [1]_ .
358
+
359
+ .. math::
360
+
361
+ \bar{\kappa}(G) = \frac{\sum_{u,v} \kappa_{G}(u,v)}{{n \choose 2}}
362
+
363
+ Parameters
364
+ ----------
365
+
366
+ G : NetworkX graph
367
+ Undirected graph
368
+
369
+ flow_func : function
370
+ A function for computing the maximum flow among a pair of nodes.
371
+ The function has to accept at least three parameters: a Digraph,
372
+ a source node, and a target node. And return a residual network
373
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
374
+ details). If flow_func is None, the default maximum flow function
375
+ (:meth:`edmonds_karp`) is used. See :meth:`local_node_connectivity`
376
+ for details. The choice of the default function may change from
377
+ version to version and should not be relied on. Default value: None.
378
+
379
+ Returns
380
+ -------
381
+ K : float
382
+ Average node connectivity
383
+
384
+ See also
385
+ --------
386
+ :meth:`local_node_connectivity`
387
+ :meth:`node_connectivity`
388
+ :meth:`edge_connectivity`
389
+ :meth:`maximum_flow`
390
+ :meth:`edmonds_karp`
391
+ :meth:`preflow_push`
392
+ :meth:`shortest_augmenting_path`
393
+
394
+ References
395
+ ----------
396
+ .. [1] Beineke, L., O. Oellermann, and R. Pippert (2002). The average
397
+ connectivity of a graph. Discrete mathematics 252(1-3), 31-45.
398
+ http://www.sciencedirect.com/science/article/pii/S0012365X01001807
399
+
400
+ """
401
+ if G.is_directed():
402
+ iter_func = itertools.permutations
403
+ else:
404
+ iter_func = itertools.combinations
405
+
406
+ # Reuse the auxiliary digraph and the residual network
407
+ H = build_auxiliary_node_connectivity(G)
408
+ R = build_residual_network(H, "capacity")
409
+ kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
410
+
411
+ num, den = 0, 0
412
+ for u, v in iter_func(G, 2):
413
+ num += local_node_connectivity(G, u, v, **kwargs)
414
+ den += 1
415
+
416
+ if den == 0: # Null Graph
417
+ return 0
418
+ return num / den
419
+
420
+
421
+ @nx._dispatchable
422
+ def all_pairs_node_connectivity(G, nbunch=None, flow_func=None):
423
+ """Compute node connectivity between all pairs of nodes of G.
424
+
425
+ Parameters
426
+ ----------
427
+ G : NetworkX graph
428
+ Undirected graph
429
+
430
+ nbunch: container
431
+ Container of nodes. If provided node connectivity will be computed
432
+ only over pairs of nodes in nbunch.
433
+
434
+ flow_func : function
435
+ A function for computing the maximum flow among a pair of nodes.
436
+ The function has to accept at least three parameters: a Digraph,
437
+ a source node, and a target node. And return a residual network
438
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
439
+ details). If flow_func is None, the default maximum flow function
440
+ (:meth:`edmonds_karp`) is used. See below for details. The
441
+ choice of the default function may change from version
442
+ to version and should not be relied on. Default value: None.
443
+
444
+ Returns
445
+ -------
446
+ all_pairs : dict
447
+ A dictionary with node connectivity between all pairs of nodes
448
+ in G, or in nbunch if provided.
449
+
450
+ See also
451
+ --------
452
+ :meth:`local_node_connectivity`
453
+ :meth:`edge_connectivity`
454
+ :meth:`local_edge_connectivity`
455
+ :meth:`maximum_flow`
456
+ :meth:`edmonds_karp`
457
+ :meth:`preflow_push`
458
+ :meth:`shortest_augmenting_path`
459
+
460
+ """
461
+ if nbunch is None:
462
+ nbunch = G
463
+ else:
464
+ nbunch = set(nbunch)
465
+
466
+ directed = G.is_directed()
467
+ if directed:
468
+ iter_func = itertools.permutations
469
+ else:
470
+ iter_func = itertools.combinations
471
+
472
+ all_pairs = {n: {} for n in nbunch}
473
+
474
+ # Reuse auxiliary digraph and residual network
475
+ H = build_auxiliary_node_connectivity(G)
476
+ mapping = H.graph["mapping"]
477
+ R = build_residual_network(H, "capacity")
478
+ kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
479
+
480
+ for u, v in iter_func(nbunch, 2):
481
+ K = local_node_connectivity(G, u, v, **kwargs)
482
+ all_pairs[u][v] = K
483
+ if not directed:
484
+ all_pairs[v][u] = K
485
+
486
+ return all_pairs
487
+
488
+
489
+ @nx._dispatchable(graphs={"G": 0, "auxiliary?": 4})
490
+ def local_edge_connectivity(
491
+ G, s, t, flow_func=None, auxiliary=None, residual=None, cutoff=None
492
+ ):
493
+ r"""Returns local edge connectivity for nodes s and t in G.
494
+
495
+ Local edge connectivity for two nodes s and t is the minimum number
496
+ of edges that must be removed to disconnect them.
497
+
498
+ This is a flow based implementation of edge connectivity. We compute the
499
+ maximum flow on an auxiliary digraph build from the original
500
+ network (see below for details). This is equal to the local edge
501
+ connectivity because the value of a maximum s-t-flow is equal to the
502
+ capacity of a minimum s-t-cut (Ford and Fulkerson theorem) [1]_ .
503
+
504
+ Parameters
505
+ ----------
506
+ G : NetworkX graph
507
+ Undirected or directed graph
508
+
509
+ s : node
510
+ Source node
511
+
512
+ t : node
513
+ Target node
514
+
515
+ flow_func : function
516
+ A function for computing the maximum flow among a pair of nodes.
517
+ The function has to accept at least three parameters: a Digraph,
518
+ a source node, and a target node. And return a residual network
519
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
520
+ details). If flow_func is None, the default maximum flow function
521
+ (:meth:`edmonds_karp`) is used. See below for details. The
522
+ choice of the default function may change from version
523
+ to version and should not be relied on. Default value: None.
524
+
525
+ auxiliary : NetworkX DiGraph
526
+ Auxiliary digraph for computing flow based edge connectivity. If
527
+ provided it will be reused instead of recreated. Default value: None.
528
+
529
+ residual : NetworkX DiGraph
530
+ Residual network to compute maximum flow. If provided it will be
531
+ reused instead of recreated. Default value: None.
532
+
533
+ cutoff : integer, float, or None (default: None)
534
+ If specified, the maximum flow algorithm will terminate when the
535
+ flow value reaches or exceeds the cutoff. This only works for flows
536
+ that support the cutoff parameter (most do) and is ignored otherwise.
537
+
538
+ Returns
539
+ -------
540
+ K : integer
541
+ local edge connectivity for nodes s and t.
542
+
543
+ Examples
544
+ --------
545
+ This function is not imported in the base NetworkX namespace, so you
546
+ have to explicitly import it from the connectivity package:
547
+
548
+ >>> from networkx.algorithms.connectivity import local_edge_connectivity
549
+
550
+ We use in this example the platonic icosahedral graph, which has edge
551
+ connectivity 5.
552
+
553
+ >>> G = nx.icosahedral_graph()
554
+ >>> local_edge_connectivity(G, 0, 6)
555
+ 5
556
+
557
+ If you need to compute local connectivity on several pairs of
558
+ nodes in the same graph, it is recommended that you reuse the
559
+ data structures that NetworkX uses in the computation: the
560
+ auxiliary digraph for edge connectivity, and the residual
561
+ network for the underlying maximum flow computation.
562
+
563
+ Example of how to compute local edge connectivity among
564
+ all pairs of nodes of the platonic icosahedral graph reusing
565
+ the data structures.
566
+
567
+ >>> import itertools
568
+ >>> # You also have to explicitly import the function for
569
+ >>> # building the auxiliary digraph from the connectivity package
570
+ >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
571
+ >>> H = build_auxiliary_edge_connectivity(G)
572
+ >>> # And the function for building the residual network from the
573
+ >>> # flow package
574
+ >>> from networkx.algorithms.flow import build_residual_network
575
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
576
+ >>> R = build_residual_network(H, "capacity")
577
+ >>> result = dict.fromkeys(G, dict())
578
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
579
+ >>> # as parameters
580
+ >>> for u, v in itertools.combinations(G, 2):
581
+ ... k = local_edge_connectivity(G, u, v, auxiliary=H, residual=R)
582
+ ... result[u][v] = k
583
+ >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
584
+ True
585
+
586
+ You can also use alternative flow algorithms for computing edge
587
+ connectivity. For instance, in dense networks the algorithm
588
+ :meth:`shortest_augmenting_path` will usually perform better than
589
+ the default :meth:`edmonds_karp` which is faster for sparse
590
+ networks with highly skewed degree distributions. Alternative flow
591
+ functions have to be explicitly imported from the flow package.
592
+
593
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
594
+ >>> local_edge_connectivity(G, 0, 6, flow_func=shortest_augmenting_path)
595
+ 5
596
+
597
+ Notes
598
+ -----
599
+ This is a flow based implementation of edge connectivity. We compute the
600
+ maximum flow using, by default, the :meth:`edmonds_karp` algorithm on an
601
+ auxiliary digraph build from the original input graph:
602
+
603
+ If the input graph is undirected, we replace each edge (`u`,`v`) with
604
+ two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute
605
+ 'capacity' for each arc to 1. If the input graph is directed we simply
606
+ add the 'capacity' attribute. This is an implementation of algorithm 1
607
+ in [1]_.
608
+
609
+ The maximum flow in the auxiliary network is equal to the local edge
610
+ connectivity because the value of a maximum s-t-flow is equal to the
611
+ capacity of a minimum s-t-cut (Ford and Fulkerson theorem).
612
+
613
+ See also
614
+ --------
615
+ :meth:`edge_connectivity`
616
+ :meth:`local_node_connectivity`
617
+ :meth:`node_connectivity`
618
+ :meth:`maximum_flow`
619
+ :meth:`edmonds_karp`
620
+ :meth:`preflow_push`
621
+ :meth:`shortest_augmenting_path`
622
+
623
+ References
624
+ ----------
625
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
626
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
627
+
628
+ """
629
+ if flow_func is None:
630
+ flow_func = default_flow_func
631
+
632
+ if auxiliary is None:
633
+ H = build_auxiliary_edge_connectivity(G)
634
+ else:
635
+ H = auxiliary
636
+
637
+ kwargs = {"flow_func": flow_func, "residual": residual}
638
+ if flow_func is shortest_augmenting_path:
639
+ kwargs["cutoff"] = cutoff
640
+ kwargs["two_phase"] = True
641
+ elif flow_func is edmonds_karp:
642
+ kwargs["cutoff"] = cutoff
643
+ elif flow_func is dinitz:
644
+ kwargs["cutoff"] = cutoff
645
+ elif flow_func is boykov_kolmogorov:
646
+ kwargs["cutoff"] = cutoff
647
+
648
+ return nx.maximum_flow_value(H, s, t, **kwargs)
649
+
650
+
651
+ @nx._dispatchable
652
+ def edge_connectivity(G, s=None, t=None, flow_func=None, cutoff=None):
653
+ r"""Returns the edge connectivity of the graph or digraph G.
654
+
655
+ The edge connectivity is equal to the minimum number of edges that
656
+ must be removed to disconnect G or render it trivial. If source
657
+ and target nodes are provided, this function returns the local edge
658
+ connectivity: the minimum number of edges that must be removed to
659
+ break all paths from source to target in G.
660
+
661
+ Parameters
662
+ ----------
663
+ G : NetworkX graph
664
+ Undirected or directed graph
665
+
666
+ s : node
667
+ Source node. Optional. Default value: None.
668
+
669
+ t : node
670
+ Target node. Optional. Default value: None.
671
+
672
+ flow_func : function
673
+ A function for computing the maximum flow among a pair of nodes.
674
+ The function has to accept at least three parameters: a Digraph,
675
+ a source node, and a target node. And return a residual network
676
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
677
+ details). If flow_func is None, the default maximum flow function
678
+ (:meth:`edmonds_karp`) is used. See below for details. The
679
+ choice of the default function may change from version
680
+ to version and should not be relied on. Default value: None.
681
+
682
+ cutoff : integer, float, or None (default: None)
683
+ If specified, the maximum flow algorithm will terminate when the
684
+ flow value reaches or exceeds the cutoff. This only works for flows
685
+ that support the cutoff parameter (most do) and is ignored otherwise.
686
+
687
+ Returns
688
+ -------
689
+ K : integer
690
+ Edge connectivity for G, or local edge connectivity if source
691
+ and target were provided
692
+
693
+ Examples
694
+ --------
695
+ >>> # Platonic icosahedral graph is 5-edge-connected
696
+ >>> G = nx.icosahedral_graph()
697
+ >>> nx.edge_connectivity(G)
698
+ 5
699
+
700
+ You can use alternative flow algorithms for the underlying
701
+ maximum flow computation. In dense networks the algorithm
702
+ :meth:`shortest_augmenting_path` will usually perform better
703
+ than the default :meth:`edmonds_karp`, which is faster for
704
+ sparse networks with highly skewed degree distributions.
705
+ Alternative flow functions have to be explicitly imported
706
+ from the flow package.
707
+
708
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
709
+ >>> nx.edge_connectivity(G, flow_func=shortest_augmenting_path)
710
+ 5
711
+
712
+ If you specify a pair of nodes (source and target) as parameters,
713
+ this function returns the value of local edge connectivity.
714
+
715
+ >>> nx.edge_connectivity(G, 3, 7)
716
+ 5
717
+
718
+ If you need to perform several local computations among different
719
+ pairs of nodes on the same graph, it is recommended that you reuse
720
+ the data structures used in the maximum flow computations. See
721
+ :meth:`local_edge_connectivity` for details.
722
+
723
+ Notes
724
+ -----
725
+ This is a flow based implementation of global edge connectivity.
726
+ For undirected graphs the algorithm works by finding a 'small'
727
+ dominating set of nodes of G (see algorithm 7 in [1]_ ) and
728
+ computing local maximum flow (see :meth:`local_edge_connectivity`)
729
+ between an arbitrary node in the dominating set and the rest of
730
+ nodes in it. This is an implementation of algorithm 6 in [1]_ .
731
+ For directed graphs, the algorithm does n calls to the maximum
732
+ flow function. This is an implementation of algorithm 8 in [1]_ .
733
+
734
+ See also
735
+ --------
736
+ :meth:`local_edge_connectivity`
737
+ :meth:`local_node_connectivity`
738
+ :meth:`node_connectivity`
739
+ :meth:`maximum_flow`
740
+ :meth:`edmonds_karp`
741
+ :meth:`preflow_push`
742
+ :meth:`shortest_augmenting_path`
743
+ :meth:`k_edge_components`
744
+ :meth:`k_edge_subgraphs`
745
+
746
+ References
747
+ ----------
748
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
749
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
750
+
751
+ """
752
+ if (s is not None and t is None) or (s is None and t is not None):
753
+ raise nx.NetworkXError("Both source and target must be specified.")
754
+
755
+ # Local edge connectivity
756
+ if s is not None and t is not None:
757
+ if s not in G:
758
+ raise nx.NetworkXError(f"node {s} not in graph")
759
+ if t not in G:
760
+ raise nx.NetworkXError(f"node {t} not in graph")
761
+ return local_edge_connectivity(G, s, t, flow_func=flow_func, cutoff=cutoff)
762
+
763
+ # Global edge connectivity
764
+ # reuse auxiliary digraph and residual network
765
+ H = build_auxiliary_edge_connectivity(G)
766
+ R = build_residual_network(H, "capacity")
767
+ kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
768
+
769
+ if G.is_directed():
770
+ # Algorithm 8 in [1]
771
+ if not nx.is_weakly_connected(G):
772
+ return 0
773
+
774
+ # initial value for \lambda is minimum degree
775
+ L = min(d for n, d in G.degree())
776
+ nodes = list(G)
777
+ n = len(nodes)
778
+
779
+ if cutoff is not None:
780
+ L = min(cutoff, L)
781
+
782
+ for i in range(n):
783
+ kwargs["cutoff"] = L
784
+ try:
785
+ L = min(L, local_edge_connectivity(G, nodes[i], nodes[i + 1], **kwargs))
786
+ except IndexError: # last node!
787
+ L = min(L, local_edge_connectivity(G, nodes[i], nodes[0], **kwargs))
788
+ return L
789
+ else: # undirected
790
+ # Algorithm 6 in [1]
791
+ if not nx.is_connected(G):
792
+ return 0
793
+
794
+ # initial value for \lambda is minimum degree
795
+ L = min(d for n, d in G.degree())
796
+
797
+ if cutoff is not None:
798
+ L = min(cutoff, L)
799
+
800
+ # A dominating set is \lambda-covering
801
+ # We need a dominating set with at least two nodes
802
+ for node in G:
803
+ D = nx.dominating_set(G, start_with=node)
804
+ v = D.pop()
805
+ if D:
806
+ break
807
+ else:
808
+ # in complete graphs the dominating sets will always be of one node
809
+ # thus we return min degree
810
+ return L
811
+
812
+ for w in D:
813
+ kwargs["cutoff"] = L
814
+ L = min(L, local_edge_connectivity(G, v, w, **kwargs))
815
+
816
+ return L
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/cuts.py ADDED
@@ -0,0 +1,611 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Flow based cut algorithms
3
+ """
4
+ import itertools
5
+
6
+ import networkx as nx
7
+
8
+ # Define the default maximum flow function to use in all flow based
9
+ # cut algorithms.
10
+ from networkx.algorithms.flow import build_residual_network, edmonds_karp
11
+
12
+ default_flow_func = edmonds_karp
13
+
14
+ from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
15
+
16
+ __all__ = [
17
+ "minimum_st_node_cut",
18
+ "minimum_node_cut",
19
+ "minimum_st_edge_cut",
20
+ "minimum_edge_cut",
21
+ ]
22
+
23
+
24
+ @nx._dispatchable(
25
+ graphs={"G": 0, "auxiliary?": 4},
26
+ preserve_edge_attrs={"auxiliary": {"capacity": float("inf")}},
27
+ preserve_graph_attrs={"auxiliary"},
28
+ )
29
+ def minimum_st_edge_cut(G, s, t, flow_func=None, auxiliary=None, residual=None):
30
+ """Returns the edges of the cut-set of a minimum (s, t)-cut.
31
+
32
+ This function returns the set of edges of minimum cardinality that,
33
+ if removed, would destroy all paths among source and target in G.
34
+ Edge weights are not considered. See :meth:`minimum_cut` for
35
+ computing minimum cuts considering edge weights.
36
+
37
+ Parameters
38
+ ----------
39
+ G : NetworkX graph
40
+
41
+ s : node
42
+ Source node for the flow.
43
+
44
+ t : node
45
+ Sink node for the flow.
46
+
47
+ auxiliary : NetworkX DiGraph
48
+ Auxiliary digraph to compute flow based node connectivity. It has
49
+ to have a graph attribute called mapping with a dictionary mapping
50
+ node names in G and in the auxiliary digraph. If provided
51
+ it will be reused instead of recreated. Default value: None.
52
+
53
+ flow_func : function
54
+ A function for computing the maximum flow among a pair of nodes.
55
+ The function has to accept at least three parameters: a Digraph,
56
+ a source node, and a target node. And return a residual network
57
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
58
+ details). If flow_func is None, the default maximum flow function
59
+ (:meth:`edmonds_karp`) is used. See :meth:`node_connectivity` for
60
+ details. The choice of the default function may change from version
61
+ to version and should not be relied on. Default value: None.
62
+
63
+ residual : NetworkX DiGraph
64
+ Residual network to compute maximum flow. If provided it will be
65
+ reused instead of recreated. Default value: None.
66
+
67
+ Returns
68
+ -------
69
+ cutset : set
70
+ Set of edges that, if removed from the graph, will disconnect it.
71
+
72
+ See also
73
+ --------
74
+ :meth:`minimum_cut`
75
+ :meth:`minimum_node_cut`
76
+ :meth:`minimum_edge_cut`
77
+ :meth:`stoer_wagner`
78
+ :meth:`node_connectivity`
79
+ :meth:`edge_connectivity`
80
+ :meth:`maximum_flow`
81
+ :meth:`edmonds_karp`
82
+ :meth:`preflow_push`
83
+ :meth:`shortest_augmenting_path`
84
+
85
+ Examples
86
+ --------
87
+ This function is not imported in the base NetworkX namespace, so you
88
+ have to explicitly import it from the connectivity package:
89
+
90
+ >>> from networkx.algorithms.connectivity import minimum_st_edge_cut
91
+
92
+ We use in this example the platonic icosahedral graph, which has edge
93
+ connectivity 5.
94
+
95
+ >>> G = nx.icosahedral_graph()
96
+ >>> len(minimum_st_edge_cut(G, 0, 6))
97
+ 5
98
+
99
+ If you need to compute local edge cuts on several pairs of
100
+ nodes in the same graph, it is recommended that you reuse the
101
+ data structures that NetworkX uses in the computation: the
102
+ auxiliary digraph for edge connectivity, and the residual
103
+ network for the underlying maximum flow computation.
104
+
105
+ Example of how to compute local edge cuts among all pairs of
106
+ nodes of the platonic icosahedral graph reusing the data
107
+ structures.
108
+
109
+ >>> import itertools
110
+ >>> # You also have to explicitly import the function for
111
+ >>> # building the auxiliary digraph from the connectivity package
112
+ >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
113
+ >>> H = build_auxiliary_edge_connectivity(G)
114
+ >>> # And the function for building the residual network from the
115
+ >>> # flow package
116
+ >>> from networkx.algorithms.flow import build_residual_network
117
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
118
+ >>> R = build_residual_network(H, "capacity")
119
+ >>> result = dict.fromkeys(G, dict())
120
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
121
+ >>> # as parameters
122
+ >>> for u, v in itertools.combinations(G, 2):
123
+ ... k = len(minimum_st_edge_cut(G, u, v, auxiliary=H, residual=R))
124
+ ... result[u][v] = k
125
+ >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
126
+ True
127
+
128
+ You can also use alternative flow algorithms for computing edge
129
+ cuts. For instance, in dense networks the algorithm
130
+ :meth:`shortest_augmenting_path` will usually perform better than
131
+ the default :meth:`edmonds_karp` which is faster for sparse
132
+ networks with highly skewed degree distributions. Alternative flow
133
+ functions have to be explicitly imported from the flow package.
134
+
135
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
136
+ >>> len(minimum_st_edge_cut(G, 0, 6, flow_func=shortest_augmenting_path))
137
+ 5
138
+
139
+ """
140
+ if flow_func is None:
141
+ flow_func = default_flow_func
142
+
143
+ if auxiliary is None:
144
+ H = build_auxiliary_edge_connectivity(G)
145
+ else:
146
+ H = auxiliary
147
+
148
+ kwargs = {"capacity": "capacity", "flow_func": flow_func, "residual": residual}
149
+
150
+ cut_value, partition = nx.minimum_cut(H, s, t, **kwargs)
151
+ reachable, non_reachable = partition
152
+ # Any edge in the original graph linking the two sets in the
153
+ # partition is part of the edge cutset
154
+ cutset = set()
155
+ for u, nbrs in ((n, G[n]) for n in reachable):
156
+ cutset.update((u, v) for v in nbrs if v in non_reachable)
157
+
158
+ return cutset
159
+
160
+
161
+ @nx._dispatchable(
162
+ graphs={"G": 0, "auxiliary?": 4},
163
+ preserve_node_attrs={"auxiliary": {"id": None}},
164
+ preserve_graph_attrs={"auxiliary"},
165
+ )
166
+ def minimum_st_node_cut(G, s, t, flow_func=None, auxiliary=None, residual=None):
167
+ r"""Returns a set of nodes of minimum cardinality that disconnect source
168
+ from target in G.
169
+
170
+ This function returns the set of nodes of minimum cardinality that,
171
+ if removed, would destroy all paths among source and target in G.
172
+
173
+ Parameters
174
+ ----------
175
+ G : NetworkX graph
176
+
177
+ s : node
178
+ Source node.
179
+
180
+ t : node
181
+ Target node.
182
+
183
+ flow_func : function
184
+ A function for computing the maximum flow among a pair of nodes.
185
+ The function has to accept at least three parameters: a Digraph,
186
+ a source node, and a target node. And return a residual network
187
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
188
+ details). If flow_func is None, the default maximum flow function
189
+ (:meth:`edmonds_karp`) is used. See below for details. The choice
190
+ of the default function may change from version to version and
191
+ should not be relied on. Default value: None.
192
+
193
+ auxiliary : NetworkX DiGraph
194
+ Auxiliary digraph to compute flow based node connectivity. It has
195
+ to have a graph attribute called mapping with a dictionary mapping
196
+ node names in G and in the auxiliary digraph. If provided
197
+ it will be reused instead of recreated. Default value: None.
198
+
199
+ residual : NetworkX DiGraph
200
+ Residual network to compute maximum flow. If provided it will be
201
+ reused instead of recreated. Default value: None.
202
+
203
+ Returns
204
+ -------
205
+ cutset : set
206
+ Set of nodes that, if removed, would destroy all paths between
207
+ source and target in G.
208
+
209
+ Examples
210
+ --------
211
+ This function is not imported in the base NetworkX namespace, so you
212
+ have to explicitly import it from the connectivity package:
213
+
214
+ >>> from networkx.algorithms.connectivity import minimum_st_node_cut
215
+
216
+ We use in this example the platonic icosahedral graph, which has node
217
+ connectivity 5.
218
+
219
+ >>> G = nx.icosahedral_graph()
220
+ >>> len(minimum_st_node_cut(G, 0, 6))
221
+ 5
222
+
223
+ If you need to compute local st cuts between several pairs of
224
+ nodes in the same graph, it is recommended that you reuse the
225
+ data structures that NetworkX uses in the computation: the
226
+ auxiliary digraph for node connectivity and node cuts, and the
227
+ residual network for the underlying maximum flow computation.
228
+
229
+ Example of how to compute local st node cuts reusing the data
230
+ structures:
231
+
232
+ >>> # You also have to explicitly import the function for
233
+ >>> # building the auxiliary digraph from the connectivity package
234
+ >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
235
+ >>> H = build_auxiliary_node_connectivity(G)
236
+ >>> # And the function for building the residual network from the
237
+ >>> # flow package
238
+ >>> from networkx.algorithms.flow import build_residual_network
239
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
240
+ >>> R = build_residual_network(H, "capacity")
241
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
242
+ >>> # as parameters
243
+ >>> len(minimum_st_node_cut(G, 0, 6, auxiliary=H, residual=R))
244
+ 5
245
+
246
+ You can also use alternative flow algorithms for computing minimum st
247
+ node cuts. For instance, in dense networks the algorithm
248
+ :meth:`shortest_augmenting_path` will usually perform better than
249
+ the default :meth:`edmonds_karp` which is faster for sparse
250
+ networks with highly skewed degree distributions. Alternative flow
251
+ functions have to be explicitly imported from the flow package.
252
+
253
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
254
+ >>> len(minimum_st_node_cut(G, 0, 6, flow_func=shortest_augmenting_path))
255
+ 5
256
+
257
+ Notes
258
+ -----
259
+ This is a flow based implementation of minimum node cut. The algorithm
260
+ is based in solving a number of maximum flow computations to determine
261
+ the capacity of the minimum cut on an auxiliary directed network that
262
+ corresponds to the minimum node cut of G. It handles both directed
263
+ and undirected graphs. This implementation is based on algorithm 11
264
+ in [1]_.
265
+
266
+ See also
267
+ --------
268
+ :meth:`minimum_node_cut`
269
+ :meth:`minimum_edge_cut`
270
+ :meth:`stoer_wagner`
271
+ :meth:`node_connectivity`
272
+ :meth:`edge_connectivity`
273
+ :meth:`maximum_flow`
274
+ :meth:`edmonds_karp`
275
+ :meth:`preflow_push`
276
+ :meth:`shortest_augmenting_path`
277
+
278
+ References
279
+ ----------
280
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
281
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
282
+
283
+ """
284
+ if auxiliary is None:
285
+ H = build_auxiliary_node_connectivity(G)
286
+ else:
287
+ H = auxiliary
288
+
289
+ mapping = H.graph.get("mapping", None)
290
+ if mapping is None:
291
+ raise nx.NetworkXError("Invalid auxiliary digraph.")
292
+ if G.has_edge(s, t) or G.has_edge(t, s):
293
+ return {}
294
+ kwargs = {"flow_func": flow_func, "residual": residual, "auxiliary": H}
295
+
296
+ # The edge cut in the auxiliary digraph corresponds to the node cut in the
297
+ # original graph.
298
+ edge_cut = minimum_st_edge_cut(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
299
+ # Each node in the original graph maps to two nodes of the auxiliary graph
300
+ node_cut = {H.nodes[node]["id"] for edge in edge_cut for node in edge}
301
+ return node_cut - {s, t}
302
+
303
+
304
+ @nx._dispatchable
305
+ def minimum_node_cut(G, s=None, t=None, flow_func=None):
306
+ r"""Returns a set of nodes of minimum cardinality that disconnects G.
307
+
308
+ If source and target nodes are provided, this function returns the
309
+ set of nodes of minimum cardinality that, if removed, would destroy
310
+ all paths among source and target in G. If not, it returns a set
311
+ of nodes of minimum cardinality that disconnects G.
312
+
313
+ Parameters
314
+ ----------
315
+ G : NetworkX graph
316
+
317
+ s : node
318
+ Source node. Optional. Default value: None.
319
+
320
+ t : node
321
+ Target node. Optional. Default value: None.
322
+
323
+ flow_func : function
324
+ A function for computing the maximum flow among a pair of nodes.
325
+ The function has to accept at least three parameters: a Digraph,
326
+ a source node, and a target node. And return a residual network
327
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
328
+ details). If flow_func is None, the default maximum flow function
329
+ (:meth:`edmonds_karp`) is used. See below for details. The
330
+ choice of the default function may change from version
331
+ to version and should not be relied on. Default value: None.
332
+
333
+ Returns
334
+ -------
335
+ cutset : set
336
+ Set of nodes that, if removed, would disconnect G. If source
337
+ and target nodes are provided, the set contains the nodes that
338
+ if removed, would destroy all paths between source and target.
339
+
340
+ Examples
341
+ --------
342
+ >>> # Platonic icosahedral graph has node connectivity 5
343
+ >>> G = nx.icosahedral_graph()
344
+ >>> node_cut = nx.minimum_node_cut(G)
345
+ >>> len(node_cut)
346
+ 5
347
+
348
+ You can use alternative flow algorithms for the underlying maximum
349
+ flow computation. In dense networks the algorithm
350
+ :meth:`shortest_augmenting_path` will usually perform better
351
+ than the default :meth:`edmonds_karp`, which is faster for
352
+ sparse networks with highly skewed degree distributions. Alternative
353
+ flow functions have to be explicitly imported from the flow package.
354
+
355
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
356
+ >>> node_cut == nx.minimum_node_cut(G, flow_func=shortest_augmenting_path)
357
+ True
358
+
359
+ If you specify a pair of nodes (source and target) as parameters,
360
+ this function returns a local st node cut.
361
+
362
+ >>> len(nx.minimum_node_cut(G, 3, 7))
363
+ 5
364
+
365
+ If you need to perform several local st cuts among different
366
+ pairs of nodes on the same graph, it is recommended that you reuse
367
+ the data structures used in the maximum flow computations. See
368
+ :meth:`minimum_st_node_cut` for details.
369
+
370
+ Notes
371
+ -----
372
+ This is a flow based implementation of minimum node cut. The algorithm
373
+ is based in solving a number of maximum flow computations to determine
374
+ the capacity of the minimum cut on an auxiliary directed network that
375
+ corresponds to the minimum node cut of G. It handles both directed
376
+ and undirected graphs. This implementation is based on algorithm 11
377
+ in [1]_.
378
+
379
+ See also
380
+ --------
381
+ :meth:`minimum_st_node_cut`
382
+ :meth:`minimum_cut`
383
+ :meth:`minimum_edge_cut`
384
+ :meth:`stoer_wagner`
385
+ :meth:`node_connectivity`
386
+ :meth:`edge_connectivity`
387
+ :meth:`maximum_flow`
388
+ :meth:`edmonds_karp`
389
+ :meth:`preflow_push`
390
+ :meth:`shortest_augmenting_path`
391
+
392
+ References
393
+ ----------
394
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
395
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
396
+
397
+ """
398
+ if (s is not None and t is None) or (s is None and t is not None):
399
+ raise nx.NetworkXError("Both source and target must be specified.")
400
+
401
+ # Local minimum node cut.
402
+ if s is not None and t is not None:
403
+ if s not in G:
404
+ raise nx.NetworkXError(f"node {s} not in graph")
405
+ if t not in G:
406
+ raise nx.NetworkXError(f"node {t} not in graph")
407
+ return minimum_st_node_cut(G, s, t, flow_func=flow_func)
408
+
409
+ # Global minimum node cut.
410
+ # Analog to the algorithm 11 for global node connectivity in [1].
411
+ if G.is_directed():
412
+ if not nx.is_weakly_connected(G):
413
+ raise nx.NetworkXError("Input graph is not connected")
414
+ iter_func = itertools.permutations
415
+
416
+ def neighbors(v):
417
+ return itertools.chain.from_iterable([G.predecessors(v), G.successors(v)])
418
+
419
+ else:
420
+ if not nx.is_connected(G):
421
+ raise nx.NetworkXError("Input graph is not connected")
422
+ iter_func = itertools.combinations
423
+ neighbors = G.neighbors
424
+
425
+ # Reuse the auxiliary digraph and the residual network.
426
+ H = build_auxiliary_node_connectivity(G)
427
+ R = build_residual_network(H, "capacity")
428
+ kwargs = {"flow_func": flow_func, "auxiliary": H, "residual": R}
429
+
430
+ # Choose a node with minimum degree.
431
+ v = min(G, key=G.degree)
432
+ # Initial node cutset is all neighbors of the node with minimum degree.
433
+ min_cut = set(G[v])
434
+ # Compute st node cuts between v and all its non-neighbors nodes in G.
435
+ for w in set(G) - set(neighbors(v)) - {v}:
436
+ this_cut = minimum_st_node_cut(G, v, w, **kwargs)
437
+ if len(min_cut) >= len(this_cut):
438
+ min_cut = this_cut
439
+ # Also for non adjacent pairs of neighbors of v.
440
+ for x, y in iter_func(neighbors(v), 2):
441
+ if y in G[x]:
442
+ continue
443
+ this_cut = minimum_st_node_cut(G, x, y, **kwargs)
444
+ if len(min_cut) >= len(this_cut):
445
+ min_cut = this_cut
446
+
447
+ return min_cut
448
+
449
+
450
+ @nx._dispatchable
451
+ def minimum_edge_cut(G, s=None, t=None, flow_func=None):
452
+ r"""Returns a set of edges of minimum cardinality that disconnects G.
453
+
454
+ If source and target nodes are provided, this function returns the
455
+ set of edges of minimum cardinality that, if removed, would break
456
+ all paths among source and target in G. If not, it returns a set of
457
+ edges of minimum cardinality that disconnects G.
458
+
459
+ Parameters
460
+ ----------
461
+ G : NetworkX graph
462
+
463
+ s : node
464
+ Source node. Optional. Default value: None.
465
+
466
+ t : node
467
+ Target node. Optional. Default value: None.
468
+
469
+ flow_func : function
470
+ A function for computing the maximum flow among a pair of nodes.
471
+ The function has to accept at least three parameters: a Digraph,
472
+ a source node, and a target node. And return a residual network
473
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
474
+ details). If flow_func is None, the default maximum flow function
475
+ (:meth:`edmonds_karp`) is used. See below for details. The
476
+ choice of the default function may change from version
477
+ to version and should not be relied on. Default value: None.
478
+
479
+ Returns
480
+ -------
481
+ cutset : set
482
+ Set of edges that, if removed, would disconnect G. If source
483
+ and target nodes are provided, the set contains the edges that
484
+ if removed, would destroy all paths between source and target.
485
+
486
+ Examples
487
+ --------
488
+ >>> # Platonic icosahedral graph has edge connectivity 5
489
+ >>> G = nx.icosahedral_graph()
490
+ >>> len(nx.minimum_edge_cut(G))
491
+ 5
492
+
493
+ You can use alternative flow algorithms for the underlying
494
+ maximum flow computation. In dense networks the algorithm
495
+ :meth:`shortest_augmenting_path` will usually perform better
496
+ than the default :meth:`edmonds_karp`, which is faster for
497
+ sparse networks with highly skewed degree distributions.
498
+ Alternative flow functions have to be explicitly imported
499
+ from the flow package.
500
+
501
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
502
+ >>> len(nx.minimum_edge_cut(G, flow_func=shortest_augmenting_path))
503
+ 5
504
+
505
+ If you specify a pair of nodes (source and target) as parameters,
506
+ this function returns the value of local edge connectivity.
507
+
508
+ >>> nx.edge_connectivity(G, 3, 7)
509
+ 5
510
+
511
+ If you need to perform several local computations among different
512
+ pairs of nodes on the same graph, it is recommended that you reuse
513
+ the data structures used in the maximum flow computations. See
514
+ :meth:`local_edge_connectivity` for details.
515
+
516
+ Notes
517
+ -----
518
+ This is a flow based implementation of minimum edge cut. For
519
+ undirected graphs the algorithm works by finding a 'small' dominating
520
+ set of nodes of G (see algorithm 7 in [1]_) and computing the maximum
521
+ flow between an arbitrary node in the dominating set and the rest of
522
+ nodes in it. This is an implementation of algorithm 6 in [1]_. For
523
+ directed graphs, the algorithm does n calls to the max flow function.
524
+ The function raises an error if the directed graph is not weakly
525
+ connected and returns an empty set if it is weakly connected.
526
+ It is an implementation of algorithm 8 in [1]_.
527
+
528
+ See also
529
+ --------
530
+ :meth:`minimum_st_edge_cut`
531
+ :meth:`minimum_node_cut`
532
+ :meth:`stoer_wagner`
533
+ :meth:`node_connectivity`
534
+ :meth:`edge_connectivity`
535
+ :meth:`maximum_flow`
536
+ :meth:`edmonds_karp`
537
+ :meth:`preflow_push`
538
+ :meth:`shortest_augmenting_path`
539
+
540
+ References
541
+ ----------
542
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms.
543
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
544
+
545
+ """
546
+ if (s is not None and t is None) or (s is None and t is not None):
547
+ raise nx.NetworkXError("Both source and target must be specified.")
548
+
549
+ # reuse auxiliary digraph and residual network
550
+ H = build_auxiliary_edge_connectivity(G)
551
+ R = build_residual_network(H, "capacity")
552
+ kwargs = {"flow_func": flow_func, "residual": R, "auxiliary": H}
553
+
554
+ # Local minimum edge cut if s and t are not None
555
+ if s is not None and t is not None:
556
+ if s not in G:
557
+ raise nx.NetworkXError(f"node {s} not in graph")
558
+ if t not in G:
559
+ raise nx.NetworkXError(f"node {t} not in graph")
560
+ return minimum_st_edge_cut(H, s, t, **kwargs)
561
+
562
+ # Global minimum edge cut
563
+ # Analog to the algorithm for global edge connectivity
564
+ if G.is_directed():
565
+ # Based on algorithm 8 in [1]
566
+ if not nx.is_weakly_connected(G):
567
+ raise nx.NetworkXError("Input graph is not connected")
568
+
569
+ # Initial cutset is all edges of a node with minimum degree
570
+ node = min(G, key=G.degree)
571
+ min_cut = set(G.edges(node))
572
+ nodes = list(G)
573
+ n = len(nodes)
574
+ for i in range(n):
575
+ try:
576
+ this_cut = minimum_st_edge_cut(H, nodes[i], nodes[i + 1], **kwargs)
577
+ if len(this_cut) <= len(min_cut):
578
+ min_cut = this_cut
579
+ except IndexError: # Last node!
580
+ this_cut = minimum_st_edge_cut(H, nodes[i], nodes[0], **kwargs)
581
+ if len(this_cut) <= len(min_cut):
582
+ min_cut = this_cut
583
+
584
+ return min_cut
585
+
586
+ else: # undirected
587
+ # Based on algorithm 6 in [1]
588
+ if not nx.is_connected(G):
589
+ raise nx.NetworkXError("Input graph is not connected")
590
+
591
+ # Initial cutset is all edges of a node with minimum degree
592
+ node = min(G, key=G.degree)
593
+ min_cut = set(G.edges(node))
594
+ # A dominating set is \lambda-covering
595
+ # We need a dominating set with at least two nodes
596
+ for node in G:
597
+ D = nx.dominating_set(G, start_with=node)
598
+ v = D.pop()
599
+ if D:
600
+ break
601
+ else:
602
+ # in complete graphs the dominating set will always be of one node
603
+ # thus we return min_cut, which now contains the edges of a node
604
+ # with minimum degree
605
+ return min_cut
606
+ for w in D:
607
+ this_cut = minimum_st_edge_cut(H, v, w, **kwargs)
608
+ if len(this_cut) <= len(min_cut):
609
+ min_cut = this_cut
610
+
611
+ return min_cut
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/disjoint_paths.py ADDED
@@ -0,0 +1,407 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Flow based node and edge disjoint paths."""
2
+ import networkx as nx
3
+
4
+ # Define the default maximum flow function to use for the underlying
5
+ # maximum flow computations
6
+ from networkx.algorithms.flow import (
7
+ edmonds_karp,
8
+ preflow_push,
9
+ shortest_augmenting_path,
10
+ )
11
+ from networkx.exception import NetworkXNoPath
12
+
13
+ default_flow_func = edmonds_karp
14
+ from itertools import filterfalse as _filterfalse
15
+
16
+ # Functions to build auxiliary data structures.
17
+ from .utils import build_auxiliary_edge_connectivity, build_auxiliary_node_connectivity
18
+
19
+ __all__ = ["edge_disjoint_paths", "node_disjoint_paths"]
20
+
21
+
22
+ @nx._dispatchable(
23
+ graphs={"G": 0, "auxiliary?": 5},
24
+ preserve_edge_attrs={"auxiliary": {"capacity": float("inf")}},
25
+ )
26
+ def edge_disjoint_paths(
27
+ G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None
28
+ ):
29
+ """Returns the edges disjoint paths between source and target.
30
+
31
+ Edge disjoint paths are paths that do not share any edge. The
32
+ number of edge disjoint paths between source and target is equal
33
+ to their edge connectivity.
34
+
35
+ Parameters
36
+ ----------
37
+ G : NetworkX graph
38
+
39
+ s : node
40
+ Source node for the flow.
41
+
42
+ t : node
43
+ Sink node for the flow.
44
+
45
+ flow_func : function
46
+ A function for computing the maximum flow among a pair of nodes.
47
+ The function has to accept at least three parameters: a Digraph,
48
+ a source node, and a target node. And return a residual network
49
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
50
+ details). If flow_func is None, the default maximum flow function
51
+ (:meth:`edmonds_karp`) is used. The choice of the default function
52
+ may change from version to version and should not be relied on.
53
+ Default value: None.
54
+
55
+ cutoff : integer or None (default: None)
56
+ Maximum number of paths to yield. If specified, the maximum flow
57
+ algorithm will terminate when the flow value reaches or exceeds the
58
+ cutoff. This only works for flows that support the cutoff parameter
59
+ (most do) and is ignored otherwise.
60
+
61
+ auxiliary : NetworkX DiGraph
62
+ Auxiliary digraph to compute flow based edge connectivity. It has
63
+ to have a graph attribute called mapping with a dictionary mapping
64
+ node names in G and in the auxiliary digraph. If provided
65
+ it will be reused instead of recreated. Default value: None.
66
+
67
+ residual : NetworkX DiGraph
68
+ Residual network to compute maximum flow. If provided it will be
69
+ reused instead of recreated. Default value: None.
70
+
71
+ Returns
72
+ -------
73
+ paths : generator
74
+ A generator of edge independent paths.
75
+
76
+ Raises
77
+ ------
78
+ NetworkXNoPath
79
+ If there is no path between source and target.
80
+
81
+ NetworkXError
82
+ If source or target are not in the graph G.
83
+
84
+ See also
85
+ --------
86
+ :meth:`node_disjoint_paths`
87
+ :meth:`edge_connectivity`
88
+ :meth:`maximum_flow`
89
+ :meth:`edmonds_karp`
90
+ :meth:`preflow_push`
91
+ :meth:`shortest_augmenting_path`
92
+
93
+ Examples
94
+ --------
95
+ We use in this example the platonic icosahedral graph, which has node
96
+ edge connectivity 5, thus there are 5 edge disjoint paths between any
97
+ pair of nodes.
98
+
99
+ >>> G = nx.icosahedral_graph()
100
+ >>> len(list(nx.edge_disjoint_paths(G, 0, 6)))
101
+ 5
102
+
103
+
104
+ If you need to compute edge disjoint paths on several pairs of
105
+ nodes in the same graph, it is recommended that you reuse the
106
+ data structures that NetworkX uses in the computation: the
107
+ auxiliary digraph for edge connectivity, and the residual
108
+ network for the underlying maximum flow computation.
109
+
110
+ Example of how to compute edge disjoint paths among all pairs of
111
+ nodes of the platonic icosahedral graph reusing the data
112
+ structures.
113
+
114
+ >>> import itertools
115
+ >>> # You also have to explicitly import the function for
116
+ >>> # building the auxiliary digraph from the connectivity package
117
+ >>> from networkx.algorithms.connectivity import build_auxiliary_edge_connectivity
118
+ >>> H = build_auxiliary_edge_connectivity(G)
119
+ >>> # And the function for building the residual network from the
120
+ >>> # flow package
121
+ >>> from networkx.algorithms.flow import build_residual_network
122
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
123
+ >>> R = build_residual_network(H, "capacity")
124
+ >>> result = {n: {} for n in G}
125
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
126
+ >>> # as arguments
127
+ >>> for u, v in itertools.combinations(G, 2):
128
+ ... k = len(list(nx.edge_disjoint_paths(G, u, v, auxiliary=H, residual=R)))
129
+ ... result[u][v] = k
130
+ >>> all(result[u][v] == 5 for u, v in itertools.combinations(G, 2))
131
+ True
132
+
133
+ You can also use alternative flow algorithms for computing edge disjoint
134
+ paths. For instance, in dense networks the algorithm
135
+ :meth:`shortest_augmenting_path` will usually perform better than
136
+ the default :meth:`edmonds_karp` which is faster for sparse
137
+ networks with highly skewed degree distributions. Alternative flow
138
+ functions have to be explicitly imported from the flow package.
139
+
140
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
141
+ >>> len(list(nx.edge_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path)))
142
+ 5
143
+
144
+ Notes
145
+ -----
146
+ This is a flow based implementation of edge disjoint paths. We compute
147
+ the maximum flow between source and target on an auxiliary directed
148
+ network. The saturated edges in the residual network after running the
149
+ maximum flow algorithm correspond to edge disjoint paths between source
150
+ and target in the original network. This function handles both directed
151
+ and undirected graphs, and can use all flow algorithms from NetworkX flow
152
+ package.
153
+
154
+ """
155
+ if s not in G:
156
+ raise nx.NetworkXError(f"node {s} not in graph")
157
+ if t not in G:
158
+ raise nx.NetworkXError(f"node {t} not in graph")
159
+
160
+ if flow_func is None:
161
+ flow_func = default_flow_func
162
+
163
+ if auxiliary is None:
164
+ H = build_auxiliary_edge_connectivity(G)
165
+ else:
166
+ H = auxiliary
167
+
168
+ # Maximum possible edge disjoint paths
169
+ possible = min(H.out_degree(s), H.in_degree(t))
170
+ if not possible:
171
+ raise NetworkXNoPath
172
+
173
+ if cutoff is None:
174
+ cutoff = possible
175
+ else:
176
+ cutoff = min(cutoff, possible)
177
+
178
+ # Compute maximum flow between source and target. Flow functions in
179
+ # NetworkX return a residual network.
180
+ kwargs = {
181
+ "capacity": "capacity",
182
+ "residual": residual,
183
+ "cutoff": cutoff,
184
+ "value_only": True,
185
+ }
186
+ if flow_func is preflow_push:
187
+ del kwargs["cutoff"]
188
+ if flow_func is shortest_augmenting_path:
189
+ kwargs["two_phase"] = True
190
+ R = flow_func(H, s, t, **kwargs)
191
+
192
+ if R.graph["flow_value"] == 0:
193
+ raise NetworkXNoPath
194
+
195
+ # Saturated edges in the residual network form the edge disjoint paths
196
+ # between source and target
197
+ cutset = [
198
+ (u, v)
199
+ for u, v, d in R.edges(data=True)
200
+ if d["capacity"] == d["flow"] and d["flow"] > 0
201
+ ]
202
+ # This is equivalent of what flow.utils.build_flow_dict returns, but
203
+ # only for the nodes with saturated edges and without reporting 0 flows.
204
+ flow_dict = {n: {} for edge in cutset for n in edge}
205
+ for u, v in cutset:
206
+ flow_dict[u][v] = 1
207
+
208
+ # Rebuild the edge disjoint paths from the flow dictionary.
209
+ paths_found = 0
210
+ for v in list(flow_dict[s]):
211
+ if paths_found >= cutoff:
212
+ # preflow_push does not support cutoff: we have to
213
+ # keep track of the paths founds and stop at cutoff.
214
+ break
215
+ path = [s]
216
+ if v == t:
217
+ path.append(v)
218
+ yield path
219
+ continue
220
+ u = v
221
+ while u != t:
222
+ path.append(u)
223
+ try:
224
+ u, _ = flow_dict[u].popitem()
225
+ except KeyError:
226
+ break
227
+ else:
228
+ path.append(t)
229
+ yield path
230
+ paths_found += 1
231
+
232
+
233
+ @nx._dispatchable(
234
+ graphs={"G": 0, "auxiliary?": 5},
235
+ preserve_node_attrs={"auxiliary": {"id": None}},
236
+ preserve_graph_attrs={"auxiliary"},
237
+ )
238
+ def node_disjoint_paths(
239
+ G, s, t, flow_func=None, cutoff=None, auxiliary=None, residual=None
240
+ ):
241
+ r"""Computes node disjoint paths between source and target.
242
+
243
+ Node disjoint paths are paths that only share their first and last
244
+ nodes. The number of node independent paths between two nodes is
245
+ equal to their local node connectivity.
246
+
247
+ Parameters
248
+ ----------
249
+ G : NetworkX graph
250
+
251
+ s : node
252
+ Source node.
253
+
254
+ t : node
255
+ Target node.
256
+
257
+ flow_func : function
258
+ A function for computing the maximum flow among a pair of nodes.
259
+ The function has to accept at least three parameters: a Digraph,
260
+ a source node, and a target node. And return a residual network
261
+ that follows NetworkX conventions (see :meth:`maximum_flow` for
262
+ details). If flow_func is None, the default maximum flow function
263
+ (:meth:`edmonds_karp`) is used. See below for details. The choice
264
+ of the default function may change from version to version and
265
+ should not be relied on. Default value: None.
266
+
267
+ cutoff : integer or None (default: None)
268
+ Maximum number of paths to yield. If specified, the maximum flow
269
+ algorithm will terminate when the flow value reaches or exceeds the
270
+ cutoff. This only works for flows that support the cutoff parameter
271
+ (most do) and is ignored otherwise.
272
+
273
+ auxiliary : NetworkX DiGraph
274
+ Auxiliary digraph to compute flow based node connectivity. It has
275
+ to have a graph attribute called mapping with a dictionary mapping
276
+ node names in G and in the auxiliary digraph. If provided
277
+ it will be reused instead of recreated. Default value: None.
278
+
279
+ residual : NetworkX DiGraph
280
+ Residual network to compute maximum flow. If provided it will be
281
+ reused instead of recreated. Default value: None.
282
+
283
+ Returns
284
+ -------
285
+ paths : generator
286
+ Generator of node disjoint paths.
287
+
288
+ Raises
289
+ ------
290
+ NetworkXNoPath
291
+ If there is no path between source and target.
292
+
293
+ NetworkXError
294
+ If source or target are not in the graph G.
295
+
296
+ Examples
297
+ --------
298
+ We use in this example the platonic icosahedral graph, which has node
299
+ connectivity 5, thus there are 5 node disjoint paths between any pair
300
+ of non neighbor nodes.
301
+
302
+ >>> G = nx.icosahedral_graph()
303
+ >>> len(list(nx.node_disjoint_paths(G, 0, 6)))
304
+ 5
305
+
306
+ If you need to compute node disjoint paths between several pairs of
307
+ nodes in the same graph, it is recommended that you reuse the
308
+ data structures that NetworkX uses in the computation: the
309
+ auxiliary digraph for node connectivity and node cuts, and the
310
+ residual network for the underlying maximum flow computation.
311
+
312
+ Example of how to compute node disjoint paths reusing the data
313
+ structures:
314
+
315
+ >>> # You also have to explicitly import the function for
316
+ >>> # building the auxiliary digraph from the connectivity package
317
+ >>> from networkx.algorithms.connectivity import build_auxiliary_node_connectivity
318
+ >>> H = build_auxiliary_node_connectivity(G)
319
+ >>> # And the function for building the residual network from the
320
+ >>> # flow package
321
+ >>> from networkx.algorithms.flow import build_residual_network
322
+ >>> # Note that the auxiliary digraph has an edge attribute named capacity
323
+ >>> R = build_residual_network(H, "capacity")
324
+ >>> # Reuse the auxiliary digraph and the residual network by passing them
325
+ >>> # as arguments
326
+ >>> len(list(nx.node_disjoint_paths(G, 0, 6, auxiliary=H, residual=R)))
327
+ 5
328
+
329
+ You can also use alternative flow algorithms for computing node disjoint
330
+ paths. For instance, in dense networks the algorithm
331
+ :meth:`shortest_augmenting_path` will usually perform better than
332
+ the default :meth:`edmonds_karp` which is faster for sparse
333
+ networks with highly skewed degree distributions. Alternative flow
334
+ functions have to be explicitly imported from the flow package.
335
+
336
+ >>> from networkx.algorithms.flow import shortest_augmenting_path
337
+ >>> len(list(nx.node_disjoint_paths(G, 0, 6, flow_func=shortest_augmenting_path)))
338
+ 5
339
+
340
+ Notes
341
+ -----
342
+ This is a flow based implementation of node disjoint paths. We compute
343
+ the maximum flow between source and target on an auxiliary directed
344
+ network. The saturated edges in the residual network after running the
345
+ maximum flow algorithm correspond to node disjoint paths between source
346
+ and target in the original network. This function handles both directed
347
+ and undirected graphs, and can use all flow algorithms from NetworkX flow
348
+ package.
349
+
350
+ See also
351
+ --------
352
+ :meth:`edge_disjoint_paths`
353
+ :meth:`node_connectivity`
354
+ :meth:`maximum_flow`
355
+ :meth:`edmonds_karp`
356
+ :meth:`preflow_push`
357
+ :meth:`shortest_augmenting_path`
358
+
359
+ """
360
+ if s not in G:
361
+ raise nx.NetworkXError(f"node {s} not in graph")
362
+ if t not in G:
363
+ raise nx.NetworkXError(f"node {t} not in graph")
364
+
365
+ if auxiliary is None:
366
+ H = build_auxiliary_node_connectivity(G)
367
+ else:
368
+ H = auxiliary
369
+
370
+ mapping = H.graph.get("mapping", None)
371
+ if mapping is None:
372
+ raise nx.NetworkXError("Invalid auxiliary digraph.")
373
+
374
+ # Maximum possible edge disjoint paths
375
+ possible = min(H.out_degree(f"{mapping[s]}B"), H.in_degree(f"{mapping[t]}A"))
376
+ if not possible:
377
+ raise NetworkXNoPath
378
+
379
+ if cutoff is None:
380
+ cutoff = possible
381
+ else:
382
+ cutoff = min(cutoff, possible)
383
+
384
+ kwargs = {
385
+ "flow_func": flow_func,
386
+ "residual": residual,
387
+ "auxiliary": H,
388
+ "cutoff": cutoff,
389
+ }
390
+
391
+ # The edge disjoint paths in the auxiliary digraph correspond to the node
392
+ # disjoint paths in the original graph.
393
+ paths_edges = edge_disjoint_paths(H, f"{mapping[s]}B", f"{mapping[t]}A", **kwargs)
394
+ for path in paths_edges:
395
+ # Each node in the original graph maps to two nodes in auxiliary graph
396
+ yield list(_unique_everseen(H.nodes[node]["id"] for node in path))
397
+
398
+
399
+ def _unique_everseen(iterable):
400
+ # Adapted from https://docs.python.org/3/library/itertools.html examples
401
+ "List unique elements, preserving order. Remember all elements ever seen."
402
+ # unique_everseen('AAAABBBCCDAABBB') --> A B C D
403
+ seen = set()
404
+ seen_add = seen.add
405
+ for element in _filterfalse(seen.__contains__, iterable):
406
+ seen_add(element)
407
+ yield element
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_augmentation.py ADDED
@@ -0,0 +1,1269 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Algorithms for finding k-edge-augmentations
3
+
4
+ A k-edge-augmentation is a set of edges, that once added to a graph, ensures
5
+ that the graph is k-edge-connected; i.e. the graph cannot be disconnected
6
+ unless k or more edges are removed. Typically, the goal is to find the
7
+ augmentation with minimum weight. In general, it is not guaranteed that a
8
+ k-edge-augmentation exists.
9
+
10
+ See Also
11
+ --------
12
+ :mod:`edge_kcomponents` : algorithms for finding k-edge-connected components
13
+ :mod:`connectivity` : algorithms for determining edge connectivity.
14
+ """
15
+ import itertools as it
16
+ import math
17
+ from collections import defaultdict, namedtuple
18
+
19
+ import networkx as nx
20
+ from networkx.utils import not_implemented_for, py_random_state
21
+
22
+ __all__ = ["k_edge_augmentation", "is_k_edge_connected", "is_locally_k_edge_connected"]
23
+
24
+
25
+ @not_implemented_for("directed")
26
+ @not_implemented_for("multigraph")
27
+ @nx._dispatchable
28
+ def is_k_edge_connected(G, k):
29
+ """Tests to see if a graph is k-edge-connected.
30
+
31
+ Is it impossible to disconnect the graph by removing fewer than k edges?
32
+ If so, then G is k-edge-connected.
33
+
34
+ Parameters
35
+ ----------
36
+ G : NetworkX graph
37
+ An undirected graph.
38
+
39
+ k : integer
40
+ edge connectivity to test for
41
+
42
+ Returns
43
+ -------
44
+ boolean
45
+ True if G is k-edge-connected.
46
+
47
+ See Also
48
+ --------
49
+ :func:`is_locally_k_edge_connected`
50
+
51
+ Examples
52
+ --------
53
+ >>> G = nx.barbell_graph(10, 0)
54
+ >>> nx.is_k_edge_connected(G, k=1)
55
+ True
56
+ >>> nx.is_k_edge_connected(G, k=2)
57
+ False
58
+ """
59
+ if k < 1:
60
+ raise ValueError(f"k must be positive, not {k}")
61
+ # First try to quickly determine if G is not k-edge-connected
62
+ if G.number_of_nodes() < k + 1:
63
+ return False
64
+ elif any(d < k for n, d in G.degree()):
65
+ return False
66
+ else:
67
+ # Otherwise perform the full check
68
+ if k == 1:
69
+ return nx.is_connected(G)
70
+ elif k == 2:
71
+ return nx.is_connected(G) and not nx.has_bridges(G)
72
+ else:
73
+ return nx.edge_connectivity(G, cutoff=k) >= k
74
+
75
+
76
+ @not_implemented_for("directed")
77
+ @not_implemented_for("multigraph")
78
+ @nx._dispatchable
79
+ def is_locally_k_edge_connected(G, s, t, k):
80
+ """Tests to see if an edge in a graph is locally k-edge-connected.
81
+
82
+ Is it impossible to disconnect s and t by removing fewer than k edges?
83
+ If so, then s and t are locally k-edge-connected in G.
84
+
85
+ Parameters
86
+ ----------
87
+ G : NetworkX graph
88
+ An undirected graph.
89
+
90
+ s : node
91
+ Source node
92
+
93
+ t : node
94
+ Target node
95
+
96
+ k : integer
97
+ local edge connectivity for nodes s and t
98
+
99
+ Returns
100
+ -------
101
+ boolean
102
+ True if s and t are locally k-edge-connected in G.
103
+
104
+ See Also
105
+ --------
106
+ :func:`is_k_edge_connected`
107
+
108
+ Examples
109
+ --------
110
+ >>> from networkx.algorithms.connectivity import is_locally_k_edge_connected
111
+ >>> G = nx.barbell_graph(10, 0)
112
+ >>> is_locally_k_edge_connected(G, 5, 15, k=1)
113
+ True
114
+ >>> is_locally_k_edge_connected(G, 5, 15, k=2)
115
+ False
116
+ >>> is_locally_k_edge_connected(G, 1, 5, k=2)
117
+ True
118
+ """
119
+ if k < 1:
120
+ raise ValueError(f"k must be positive, not {k}")
121
+
122
+ # First try to quickly determine s, t is not k-locally-edge-connected in G
123
+ if G.degree(s) < k or G.degree(t) < k:
124
+ return False
125
+ else:
126
+ # Otherwise perform the full check
127
+ if k == 1:
128
+ return nx.has_path(G, s, t)
129
+ else:
130
+ localk = nx.connectivity.local_edge_connectivity(G, s, t, cutoff=k)
131
+ return localk >= k
132
+
133
+
134
+ @not_implemented_for("directed")
135
+ @not_implemented_for("multigraph")
136
+ @nx._dispatchable
137
+ def k_edge_augmentation(G, k, avail=None, weight=None, partial=False):
138
+ """Finds set of edges to k-edge-connect G.
139
+
140
+ Adding edges from the augmentation to G make it impossible to disconnect G
141
+ unless k or more edges are removed. This function uses the most efficient
142
+ function available (depending on the value of k and if the problem is
143
+ weighted or unweighted) to search for a minimum weight subset of available
144
+ edges that k-edge-connects G. In general, finding a k-edge-augmentation is
145
+ NP-hard, so solutions are not guaranteed to be minimal. Furthermore, a
146
+ k-edge-augmentation may not exist.
147
+
148
+ Parameters
149
+ ----------
150
+ G : NetworkX graph
151
+ An undirected graph.
152
+
153
+ k : integer
154
+ Desired edge connectivity
155
+
156
+ avail : dict or a set of 2 or 3 tuples
157
+ The available edges that can be used in the augmentation.
158
+
159
+ If unspecified, then all edges in the complement of G are available.
160
+ Otherwise, each item is an available edge (with an optional weight).
161
+
162
+ In the unweighted case, each item is an edge ``(u, v)``.
163
+
164
+ In the weighted case, each item is a 3-tuple ``(u, v, d)`` or a dict
165
+ with items ``(u, v): d``. The third item, ``d``, can be a dictionary
166
+ or a real number. If ``d`` is a dictionary ``d[weight]``
167
+ correspondings to the weight.
168
+
169
+ weight : string
170
+ key to use to find weights if ``avail`` is a set of 3-tuples where the
171
+ third item in each tuple is a dictionary.
172
+
173
+ partial : boolean
174
+ If partial is True and no feasible k-edge-augmentation exists, then all
175
+ a partial k-edge-augmentation is generated. Adding the edges in a
176
+ partial augmentation to G, minimizes the number of k-edge-connected
177
+ components and maximizes the edge connectivity between those
178
+ components. For details, see :func:`partial_k_edge_augmentation`.
179
+
180
+ Yields
181
+ ------
182
+ edge : tuple
183
+ Edges that, once added to G, would cause G to become k-edge-connected.
184
+ If partial is False, an error is raised if this is not possible.
185
+ Otherwise, generated edges form a partial augmentation, which
186
+ k-edge-connects any part of G where it is possible, and maximally
187
+ connects the remaining parts.
188
+
189
+ Raises
190
+ ------
191
+ NetworkXUnfeasible
192
+ If partial is False and no k-edge-augmentation exists.
193
+
194
+ NetworkXNotImplemented
195
+ If the input graph is directed or a multigraph.
196
+
197
+ ValueError:
198
+ If k is less than 1
199
+
200
+ Notes
201
+ -----
202
+ When k=1 this returns an optimal solution.
203
+
204
+ When k=2 and ``avail`` is None, this returns an optimal solution.
205
+ Otherwise when k=2, this returns a 2-approximation of the optimal solution.
206
+
207
+ For k>3, this problem is NP-hard and this uses a randomized algorithm that
208
+ produces a feasible solution, but provides no guarantees on the
209
+ solution weight.
210
+
211
+ Examples
212
+ --------
213
+ >>> # Unweighted cases
214
+ >>> G = nx.path_graph((1, 2, 3, 4))
215
+ >>> G.add_node(5)
216
+ >>> sorted(nx.k_edge_augmentation(G, k=1))
217
+ [(1, 5)]
218
+ >>> sorted(nx.k_edge_augmentation(G, k=2))
219
+ [(1, 5), (5, 4)]
220
+ >>> sorted(nx.k_edge_augmentation(G, k=3))
221
+ [(1, 4), (1, 5), (2, 5), (3, 5), (4, 5)]
222
+ >>> complement = list(nx.k_edge_augmentation(G, k=5, partial=True))
223
+ >>> G.add_edges_from(complement)
224
+ >>> nx.edge_connectivity(G)
225
+ 4
226
+
227
+ >>> # Weighted cases
228
+ >>> G = nx.path_graph((1, 2, 3, 4))
229
+ >>> G.add_node(5)
230
+ >>> # avail can be a tuple with a dict
231
+ >>> avail = [(1, 5, {"weight": 11}), (2, 5, {"weight": 10})]
232
+ >>> sorted(nx.k_edge_augmentation(G, k=1, avail=avail, weight="weight"))
233
+ [(2, 5)]
234
+ >>> # or avail can be a 3-tuple with a real number
235
+ >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]
236
+ >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))
237
+ [(1, 5), (2, 5), (4, 5)]
238
+ >>> # or avail can be a dict
239
+ >>> avail = {(1, 5): 11, (2, 5): 10, (4, 3): 1, (4, 5): 51}
240
+ >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail))
241
+ [(1, 5), (2, 5), (4, 5)]
242
+ >>> # If augmentation is infeasible, then a partial solution can be found
243
+ >>> avail = {(1, 5): 11}
244
+ >>> sorted(nx.k_edge_augmentation(G, k=2, avail=avail, partial=True))
245
+ [(1, 5)]
246
+ """
247
+ try:
248
+ if k <= 0:
249
+ raise ValueError(f"k must be a positive integer, not {k}")
250
+ elif G.number_of_nodes() < k + 1:
251
+ msg = f"impossible to {k} connect in graph with less than {k + 1} nodes"
252
+ raise nx.NetworkXUnfeasible(msg)
253
+ elif avail is not None and len(avail) == 0:
254
+ if not nx.is_k_edge_connected(G, k):
255
+ raise nx.NetworkXUnfeasible("no available edges")
256
+ aug_edges = []
257
+ elif k == 1:
258
+ aug_edges = one_edge_augmentation(
259
+ G, avail=avail, weight=weight, partial=partial
260
+ )
261
+ elif k == 2:
262
+ aug_edges = bridge_augmentation(G, avail=avail, weight=weight)
263
+ else:
264
+ # raise NotImplementedError(f'not implemented for k>2. k={k}')
265
+ aug_edges = greedy_k_edge_augmentation(
266
+ G, k=k, avail=avail, weight=weight, seed=0
267
+ )
268
+ # Do eager evaluation so we can catch any exceptions
269
+ # Before executing partial code.
270
+ yield from list(aug_edges)
271
+ except nx.NetworkXUnfeasible:
272
+ if partial:
273
+ # Return all available edges
274
+ if avail is None:
275
+ aug_edges = complement_edges(G)
276
+ else:
277
+ # If we can't k-edge-connect the entire graph, try to
278
+ # k-edge-connect as much as possible
279
+ aug_edges = partial_k_edge_augmentation(
280
+ G, k=k, avail=avail, weight=weight
281
+ )
282
+ yield from aug_edges
283
+ else:
284
+ raise
285
+
286
+
287
+ @nx._dispatchable
288
+ def partial_k_edge_augmentation(G, k, avail, weight=None):
289
+ """Finds augmentation that k-edge-connects as much of the graph as possible.
290
+
291
+ When a k-edge-augmentation is not possible, we can still try to find a
292
+ small set of edges that partially k-edge-connects as much of the graph as
293
+ possible. All possible edges are generated between remaining parts.
294
+ This minimizes the number of k-edge-connected subgraphs in the resulting
295
+ graph and maximizes the edge connectivity between those subgraphs.
296
+
297
+ Parameters
298
+ ----------
299
+ G : NetworkX graph
300
+ An undirected graph.
301
+
302
+ k : integer
303
+ Desired edge connectivity
304
+
305
+ avail : dict or a set of 2 or 3 tuples
306
+ For more details, see :func:`k_edge_augmentation`.
307
+
308
+ weight : string
309
+ key to use to find weights if ``avail`` is a set of 3-tuples.
310
+ For more details, see :func:`k_edge_augmentation`.
311
+
312
+ Yields
313
+ ------
314
+ edge : tuple
315
+ Edges in the partial augmentation of G. These edges k-edge-connect any
316
+ part of G where it is possible, and maximally connects the remaining
317
+ parts. In other words, all edges from avail are generated except for
318
+ those within subgraphs that have already become k-edge-connected.
319
+
320
+ Notes
321
+ -----
322
+ Construct H that augments G with all edges in avail.
323
+ Find the k-edge-subgraphs of H.
324
+ For each k-edge-subgraph, if the number of nodes is more than k, then find
325
+ the k-edge-augmentation of that graph and add it to the solution. Then add
326
+ all edges in avail between k-edge subgraphs to the solution.
327
+
328
+ See Also
329
+ --------
330
+ :func:`k_edge_augmentation`
331
+
332
+ Examples
333
+ --------
334
+ >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
335
+ >>> G.add_node(8)
336
+ >>> avail = [(1, 3), (1, 4), (1, 5), (2, 4), (2, 5), (3, 5), (1, 8)]
337
+ >>> sorted(partial_k_edge_augmentation(G, k=2, avail=avail))
338
+ [(1, 5), (1, 8)]
339
+ """
340
+
341
+ def _edges_between_disjoint(H, only1, only2):
342
+ """finds edges between disjoint nodes"""
343
+ only1_adj = {u: set(H.adj[u]) for u in only1}
344
+ for u, neighbs in only1_adj.items():
345
+ # Find the neighbors of u in only1 that are also in only2
346
+ neighbs12 = neighbs.intersection(only2)
347
+ for v in neighbs12:
348
+ yield (u, v)
349
+
350
+ avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
351
+
352
+ # Find which parts of the graph can be k-edge-connected
353
+ H = G.copy()
354
+ H.add_edges_from(
355
+ (
356
+ (u, v, {"weight": w, "generator": (u, v)})
357
+ for (u, v), w in zip(avail, avail_w)
358
+ )
359
+ )
360
+ k_edge_subgraphs = list(nx.k_edge_subgraphs(H, k=k))
361
+
362
+ # Generate edges to k-edge-connect internal subgraphs
363
+ for nodes in k_edge_subgraphs:
364
+ if len(nodes) > 1:
365
+ # Get the k-edge-connected subgraph
366
+ C = H.subgraph(nodes).copy()
367
+ # Find the internal edges that were available
368
+ sub_avail = {
369
+ d["generator"]: d["weight"]
370
+ for (u, v, d) in C.edges(data=True)
371
+ if "generator" in d
372
+ }
373
+ # Remove potential augmenting edges
374
+ C.remove_edges_from(sub_avail.keys())
375
+ # Find a subset of these edges that makes the component
376
+ # k-edge-connected and ignore the rest
377
+ yield from nx.k_edge_augmentation(C, k=k, avail=sub_avail)
378
+
379
+ # Generate all edges between CCs that could not be k-edge-connected
380
+ for cc1, cc2 in it.combinations(k_edge_subgraphs, 2):
381
+ for u, v in _edges_between_disjoint(H, cc1, cc2):
382
+ d = H.get_edge_data(u, v)
383
+ edge = d.get("generator", None)
384
+ if edge is not None:
385
+ yield edge
386
+
387
+
388
+ @not_implemented_for("multigraph")
389
+ @not_implemented_for("directed")
390
+ @nx._dispatchable
391
+ def one_edge_augmentation(G, avail=None, weight=None, partial=False):
392
+ """Finds minimum weight set of edges to connect G.
393
+
394
+ Equivalent to :func:`k_edge_augmentation` when k=1. Adding the resulting
395
+ edges to G will make it 1-edge-connected. The solution is optimal for both
396
+ weighted and non-weighted variants.
397
+
398
+ Parameters
399
+ ----------
400
+ G : NetworkX graph
401
+ An undirected graph.
402
+
403
+ avail : dict or a set of 2 or 3 tuples
404
+ For more details, see :func:`k_edge_augmentation`.
405
+
406
+ weight : string
407
+ key to use to find weights if ``avail`` is a set of 3-tuples.
408
+ For more details, see :func:`k_edge_augmentation`.
409
+
410
+ partial : boolean
411
+ If partial is True and no feasible k-edge-augmentation exists, then the
412
+ augmenting edges minimize the number of connected components.
413
+
414
+ Yields
415
+ ------
416
+ edge : tuple
417
+ Edges in the one-augmentation of G
418
+
419
+ Raises
420
+ ------
421
+ NetworkXUnfeasible
422
+ If partial is False and no one-edge-augmentation exists.
423
+
424
+ Notes
425
+ -----
426
+ Uses either :func:`unconstrained_one_edge_augmentation` or
427
+ :func:`weighted_one_edge_augmentation` depending on whether ``avail`` is
428
+ specified. Both algorithms are based on finding a minimum spanning tree.
429
+ As such both algorithms find optimal solutions and run in linear time.
430
+
431
+ See Also
432
+ --------
433
+ :func:`k_edge_augmentation`
434
+ """
435
+ if avail is None:
436
+ return unconstrained_one_edge_augmentation(G)
437
+ else:
438
+ return weighted_one_edge_augmentation(
439
+ G, avail=avail, weight=weight, partial=partial
440
+ )
441
+
442
+
443
+ @not_implemented_for("multigraph")
444
+ @not_implemented_for("directed")
445
+ @nx._dispatchable
446
+ def bridge_augmentation(G, avail=None, weight=None):
447
+ """Finds the a set of edges that bridge connects G.
448
+
449
+ Equivalent to :func:`k_edge_augmentation` when k=2, and partial=False.
450
+ Adding the resulting edges to G will make it 2-edge-connected. If no
451
+ constraints are specified the returned set of edges is minimum an optimal,
452
+ otherwise the solution is approximated.
453
+
454
+ Parameters
455
+ ----------
456
+ G : NetworkX graph
457
+ An undirected graph.
458
+
459
+ avail : dict or a set of 2 or 3 tuples
460
+ For more details, see :func:`k_edge_augmentation`.
461
+
462
+ weight : string
463
+ key to use to find weights if ``avail`` is a set of 3-tuples.
464
+ For more details, see :func:`k_edge_augmentation`.
465
+
466
+ Yields
467
+ ------
468
+ edge : tuple
469
+ Edges in the bridge-augmentation of G
470
+
471
+ Raises
472
+ ------
473
+ NetworkXUnfeasible
474
+ If no bridge-augmentation exists.
475
+
476
+ Notes
477
+ -----
478
+ If there are no constraints the solution can be computed in linear time
479
+ using :func:`unconstrained_bridge_augmentation`. Otherwise, the problem
480
+ becomes NP-hard and is the solution is approximated by
481
+ :func:`weighted_bridge_augmentation`.
482
+
483
+ See Also
484
+ --------
485
+ :func:`k_edge_augmentation`
486
+ """
487
+ if G.number_of_nodes() < 3:
488
+ raise nx.NetworkXUnfeasible("impossible to bridge connect less than 3 nodes")
489
+ if avail is None:
490
+ return unconstrained_bridge_augmentation(G)
491
+ else:
492
+ return weighted_bridge_augmentation(G, avail, weight=weight)
493
+
494
+
495
+ # --- Algorithms and Helpers ---
496
+
497
+
498
+ def _ordered(u, v):
499
+ """Returns the nodes in an undirected edge in lower-triangular order"""
500
+ return (u, v) if u < v else (v, u)
501
+
502
+
503
+ def _unpack_available_edges(avail, weight=None, G=None):
504
+ """Helper to separate avail into edges and corresponding weights"""
505
+ if weight is None:
506
+ weight = "weight"
507
+ if isinstance(avail, dict):
508
+ avail_uv = list(avail.keys())
509
+ avail_w = list(avail.values())
510
+ else:
511
+
512
+ def _try_getitem(d):
513
+ try:
514
+ return d[weight]
515
+ except TypeError:
516
+ return d
517
+
518
+ avail_uv = [tup[0:2] for tup in avail]
519
+ avail_w = [1 if len(tup) == 2 else _try_getitem(tup[-1]) for tup in avail]
520
+
521
+ if G is not None:
522
+ # Edges already in the graph are filtered
523
+ flags = [not G.has_edge(u, v) for u, v in avail_uv]
524
+ avail_uv = list(it.compress(avail_uv, flags))
525
+ avail_w = list(it.compress(avail_w, flags))
526
+ return avail_uv, avail_w
527
+
528
+
529
+ MetaEdge = namedtuple("MetaEdge", ("meta_uv", "uv", "w"))
530
+
531
+
532
+ def _lightest_meta_edges(mapping, avail_uv, avail_w):
533
+ """Maps available edges in the original graph to edges in the metagraph.
534
+
535
+ Parameters
536
+ ----------
537
+ mapping : dict
538
+ mapping produced by :func:`collapse`, that maps each node in the
539
+ original graph to a node in the meta graph
540
+
541
+ avail_uv : list
542
+ list of edges
543
+
544
+ avail_w : list
545
+ list of edge weights
546
+
547
+ Notes
548
+ -----
549
+ Each node in the metagraph is a k-edge-connected component in the original
550
+ graph. We don't care about any edge within the same k-edge-connected
551
+ component, so we ignore self edges. We also are only interested in the
552
+ minimum weight edge bridging each k-edge-connected component so, we group
553
+ the edges by meta-edge and take the lightest in each group.
554
+
555
+ Examples
556
+ --------
557
+ >>> # Each group represents a meta-node
558
+ >>> groups = ([1, 2, 3], [4, 5], [6])
559
+ >>> mapping = {n: meta_n for meta_n, ns in enumerate(groups) for n in ns}
560
+ >>> avail_uv = [(1, 2), (3, 6), (1, 4), (5, 2), (6, 1), (2, 6), (3, 1)]
561
+ >>> avail_w = [20, 99, 20, 15, 50, 99, 20]
562
+ >>> sorted(_lightest_meta_edges(mapping, avail_uv, avail_w))
563
+ [MetaEdge(meta_uv=(0, 1), uv=(5, 2), w=15), MetaEdge(meta_uv=(0, 2), uv=(6, 1), w=50)]
564
+ """
565
+ grouped_wuv = defaultdict(list)
566
+ for w, (u, v) in zip(avail_w, avail_uv):
567
+ # Order the meta-edge so it can be used as a dict key
568
+ meta_uv = _ordered(mapping[u], mapping[v])
569
+ # Group each available edge using the meta-edge as a key
570
+ grouped_wuv[meta_uv].append((w, u, v))
571
+
572
+ # Now that all available edges are grouped, choose one per group
573
+ for (mu, mv), choices_wuv in grouped_wuv.items():
574
+ # Ignore available edges within the same meta-node
575
+ if mu != mv:
576
+ # Choose the lightest available edge belonging to each meta-edge
577
+ w, u, v = min(choices_wuv)
578
+ yield MetaEdge((mu, mv), (u, v), w)
579
+
580
+
581
+ @nx._dispatchable
582
+ def unconstrained_one_edge_augmentation(G):
583
+ """Finds the smallest set of edges to connect G.
584
+
585
+ This is a variant of the unweighted MST problem.
586
+ If G is not empty, a feasible solution always exists.
587
+
588
+ Parameters
589
+ ----------
590
+ G : NetworkX graph
591
+ An undirected graph.
592
+
593
+ Yields
594
+ ------
595
+ edge : tuple
596
+ Edges in the one-edge-augmentation of G
597
+
598
+ See Also
599
+ --------
600
+ :func:`one_edge_augmentation`
601
+ :func:`k_edge_augmentation`
602
+
603
+ Examples
604
+ --------
605
+ >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
606
+ >>> G.add_nodes_from([6, 7, 8])
607
+ >>> sorted(unconstrained_one_edge_augmentation(G))
608
+ [(1, 4), (4, 6), (6, 7), (7, 8)]
609
+ """
610
+ ccs1 = list(nx.connected_components(G))
611
+ C = collapse(G, ccs1)
612
+ # When we are not constrained, we can just make a meta graph tree.
613
+ meta_nodes = list(C.nodes())
614
+ # build a path in the metagraph
615
+ meta_aug = list(zip(meta_nodes, meta_nodes[1:]))
616
+ # map that path to the original graph
617
+ inverse = defaultdict(list)
618
+ for k, v in C.graph["mapping"].items():
619
+ inverse[v].append(k)
620
+ for mu, mv in meta_aug:
621
+ yield (inverse[mu][0], inverse[mv][0])
622
+
623
+
624
+ @nx._dispatchable
625
+ def weighted_one_edge_augmentation(G, avail, weight=None, partial=False):
626
+ """Finds the minimum weight set of edges to connect G if one exists.
627
+
628
+ This is a variant of the weighted MST problem.
629
+
630
+ Parameters
631
+ ----------
632
+ G : NetworkX graph
633
+ An undirected graph.
634
+
635
+ avail : dict or a set of 2 or 3 tuples
636
+ For more details, see :func:`k_edge_augmentation`.
637
+
638
+ weight : string
639
+ key to use to find weights if ``avail`` is a set of 3-tuples.
640
+ For more details, see :func:`k_edge_augmentation`.
641
+
642
+ partial : boolean
643
+ If partial is True and no feasible k-edge-augmentation exists, then the
644
+ augmenting edges minimize the number of connected components.
645
+
646
+ Yields
647
+ ------
648
+ edge : tuple
649
+ Edges in the subset of avail chosen to connect G.
650
+
651
+ See Also
652
+ --------
653
+ :func:`one_edge_augmentation`
654
+ :func:`k_edge_augmentation`
655
+
656
+ Examples
657
+ --------
658
+ >>> G = nx.Graph([(1, 2), (2, 3), (4, 5)])
659
+ >>> G.add_nodes_from([6, 7, 8])
660
+ >>> # any edge not in avail has an implicit weight of infinity
661
+ >>> avail = [(1, 3), (1, 5), (4, 7), (4, 8), (6, 1), (8, 1), (8, 2)]
662
+ >>> sorted(weighted_one_edge_augmentation(G, avail))
663
+ [(1, 5), (4, 7), (6, 1), (8, 1)]
664
+ >>> # find another solution by giving large weights to edges in the
665
+ >>> # previous solution (note some of the old edges must be used)
666
+ >>> avail = [(1, 3), (1, 5, 99), (4, 7, 9), (6, 1, 99), (8, 1, 99), (8, 2)]
667
+ >>> sorted(weighted_one_edge_augmentation(G, avail))
668
+ [(1, 5), (4, 7), (6, 1), (8, 2)]
669
+ """
670
+ avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
671
+ # Collapse CCs in the original graph into nodes in a metagraph
672
+ # Then find an MST of the metagraph instead of the original graph
673
+ C = collapse(G, nx.connected_components(G))
674
+ mapping = C.graph["mapping"]
675
+ # Assign each available edge to an edge in the metagraph
676
+ candidate_mapping = _lightest_meta_edges(mapping, avail_uv, avail_w)
677
+ # nx.set_edge_attributes(C, name='weight', values=0)
678
+ C.add_edges_from(
679
+ (mu, mv, {"weight": w, "generator": uv})
680
+ for (mu, mv), uv, w in candidate_mapping
681
+ )
682
+ # Find MST of the meta graph
683
+ meta_mst = nx.minimum_spanning_tree(C)
684
+ if not partial and not nx.is_connected(meta_mst):
685
+ raise nx.NetworkXUnfeasible("Not possible to connect G with available edges")
686
+ # Yield the edge that generated the meta-edge
687
+ for mu, mv, d in meta_mst.edges(data=True):
688
+ if "generator" in d:
689
+ edge = d["generator"]
690
+ yield edge
691
+
692
+
693
+ @nx._dispatchable
694
+ def unconstrained_bridge_augmentation(G):
695
+ """Finds an optimal 2-edge-augmentation of G using the fewest edges.
696
+
697
+ This is an implementation of the algorithm detailed in [1]_.
698
+ The basic idea is to construct a meta-graph of bridge-ccs, connect leaf
699
+ nodes of the trees to connect the entire graph, and finally connect the
700
+ leafs of the tree in dfs-preorder to bridge connect the entire graph.
701
+
702
+ Parameters
703
+ ----------
704
+ G : NetworkX graph
705
+ An undirected graph.
706
+
707
+ Yields
708
+ ------
709
+ edge : tuple
710
+ Edges in the bridge augmentation of G
711
+
712
+ Notes
713
+ -----
714
+ Input: a graph G.
715
+ First find the bridge components of G and collapse each bridge-cc into a
716
+ node of a metagraph graph C, which is guaranteed to be a forest of trees.
717
+
718
+ C contains p "leafs" --- nodes with exactly one incident edge.
719
+ C contains q "isolated nodes" --- nodes with no incident edges.
720
+
721
+ Theorem: If p + q > 1, then at least :math:`ceil(p / 2) + q` edges are
722
+ needed to bridge connect C. This algorithm achieves this min number.
723
+
724
+ The method first adds enough edges to make G into a tree and then pairs
725
+ leafs in a simple fashion.
726
+
727
+ Let n be the number of trees in C. Let v(i) be an isolated vertex in the
728
+ i-th tree if one exists, otherwise it is a pair of distinct leafs nodes
729
+ in the i-th tree. Alternating edges from these sets (i.e. adding edges
730
+ A1 = [(v(i)[0], v(i + 1)[1]), v(i + 1)[0], v(i + 2)[1])...]) connects C
731
+ into a tree T. This tree has p' = p + 2q - 2(n -1) leafs and no isolated
732
+ vertices. A1 has n - 1 edges. The next step finds ceil(p' / 2) edges to
733
+ biconnect any tree with p' leafs.
734
+
735
+ Convert T into an arborescence T' by picking an arbitrary root node with
736
+ degree >= 2 and directing all edges away from the root. Note the
737
+ implementation implicitly constructs T'.
738
+
739
+ The leafs of T are the nodes with no existing edges in T'.
740
+ Order the leafs of T' by DFS preorder. Then break this list in half
741
+ and add the zipped pairs to A2.
742
+
743
+ The set A = A1 + A2 is the minimum augmentation in the metagraph.
744
+
745
+ To convert this to edges in the original graph
746
+
747
+ References
748
+ ----------
749
+ .. [1] Eswaran, Kapali P., and R. Endre Tarjan. (1975) Augmentation problems.
750
+ http://epubs.siam.org/doi/abs/10.1137/0205044
751
+
752
+ See Also
753
+ --------
754
+ :func:`bridge_augmentation`
755
+ :func:`k_edge_augmentation`
756
+
757
+ Examples
758
+ --------
759
+ >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
760
+ >>> sorted(unconstrained_bridge_augmentation(G))
761
+ [(1, 7)]
762
+ >>> G = nx.path_graph((1, 2, 3, 2, 4, 5, 6, 7))
763
+ >>> sorted(unconstrained_bridge_augmentation(G))
764
+ [(1, 3), (3, 7)]
765
+ >>> G = nx.Graph([(0, 1), (0, 2), (1, 2)])
766
+ >>> G.add_node(4)
767
+ >>> sorted(unconstrained_bridge_augmentation(G))
768
+ [(1, 4), (4, 0)]
769
+ """
770
+ # -----
771
+ # Mapping of terms from (Eswaran and Tarjan):
772
+ # G = G_0 - the input graph
773
+ # C = G_0' - the bridge condensation of G. (This is a forest of trees)
774
+ # A1 = A_1 - the edges to connect the forest into a tree
775
+ # leaf = pendant - a node with degree of 1
776
+
777
+ # alpha(v) = maps the node v in G to its meta-node in C
778
+ # beta(x) = maps the meta-node x in C to any node in the bridge
779
+ # component of G corresponding to x.
780
+
781
+ # find the 2-edge-connected components of G
782
+ bridge_ccs = list(nx.connectivity.bridge_components(G))
783
+ # condense G into an forest C
784
+ C = collapse(G, bridge_ccs)
785
+
786
+ # Choose pairs of distinct leaf nodes in each tree. If this is not
787
+ # possible then make a pair using the single isolated node in the tree.
788
+ vset1 = [
789
+ tuple(cc) * 2 # case1: an isolated node
790
+ if len(cc) == 1
791
+ else sorted(cc, key=C.degree)[0:2] # case2: pair of leaf nodes
792
+ for cc in nx.connected_components(C)
793
+ ]
794
+ if len(vset1) > 1:
795
+ # Use this set to construct edges that connect C into a tree.
796
+ nodes1 = [vs[0] for vs in vset1]
797
+ nodes2 = [vs[1] for vs in vset1]
798
+ A1 = list(zip(nodes1[1:], nodes2))
799
+ else:
800
+ A1 = []
801
+ # Connect each tree in the forest to construct an arborescence
802
+ T = C.copy()
803
+ T.add_edges_from(A1)
804
+
805
+ # If there are only two leaf nodes, we simply connect them.
806
+ leafs = [n for n, d in T.degree() if d == 1]
807
+ if len(leafs) == 1:
808
+ A2 = []
809
+ if len(leafs) == 2:
810
+ A2 = [tuple(leafs)]
811
+ else:
812
+ # Choose an arbitrary non-leaf root
813
+ try:
814
+ root = next(n for n, d in T.degree() if d > 1)
815
+ except StopIteration: # no nodes found with degree > 1
816
+ return
817
+ # order the leaves of C by (induced directed) preorder
818
+ v2 = [n for n in nx.dfs_preorder_nodes(T, root) if T.degree(n) == 1]
819
+ # connecting first half of the leafs in pre-order to the second
820
+ # half will bridge connect the tree with the fewest edges.
821
+ half = math.ceil(len(v2) / 2)
822
+ A2 = list(zip(v2[:half], v2[-half:]))
823
+
824
+ # collect the edges used to augment the original forest
825
+ aug_tree_edges = A1 + A2
826
+
827
+ # Construct the mapping (beta) from meta-nodes to regular nodes
828
+ inverse = defaultdict(list)
829
+ for k, v in C.graph["mapping"].items():
830
+ inverse[v].append(k)
831
+ # sort so we choose minimum degree nodes first
832
+ inverse = {
833
+ mu: sorted(mapped, key=lambda u: (G.degree(u), u))
834
+ for mu, mapped in inverse.items()
835
+ }
836
+
837
+ # For each meta-edge, map back to an arbitrary pair in the original graph
838
+ G2 = G.copy()
839
+ for mu, mv in aug_tree_edges:
840
+ # Find the first available edge that doesn't exist and return it
841
+ for u, v in it.product(inverse[mu], inverse[mv]):
842
+ if not G2.has_edge(u, v):
843
+ G2.add_edge(u, v)
844
+ yield u, v
845
+ break
846
+
847
+
848
+ @nx._dispatchable
849
+ def weighted_bridge_augmentation(G, avail, weight=None):
850
+ """Finds an approximate min-weight 2-edge-augmentation of G.
851
+
852
+ This is an implementation of the approximation algorithm detailed in [1]_.
853
+ It chooses a set of edges from avail to add to G that renders it
854
+ 2-edge-connected if such a subset exists. This is done by finding a
855
+ minimum spanning arborescence of a specially constructed metagraph.
856
+
857
+ Parameters
858
+ ----------
859
+ G : NetworkX graph
860
+ An undirected graph.
861
+
862
+ avail : set of 2 or 3 tuples.
863
+ candidate edges (with optional weights) to choose from
864
+
865
+ weight : string
866
+ key to use to find weights if avail is a set of 3-tuples where the
867
+ third item in each tuple is a dictionary.
868
+
869
+ Yields
870
+ ------
871
+ edge : tuple
872
+ Edges in the subset of avail chosen to bridge augment G.
873
+
874
+ Notes
875
+ -----
876
+ Finding a weighted 2-edge-augmentation is NP-hard.
877
+ Any edge not in ``avail`` is considered to have a weight of infinity.
878
+ The approximation factor is 2 if ``G`` is connected and 3 if it is not.
879
+ Runs in :math:`O(m + n log(n))` time
880
+
881
+ References
882
+ ----------
883
+ .. [1] Khuller, Samir, and Ramakrishna Thurimella. (1993) Approximation
884
+ algorithms for graph augmentation.
885
+ http://www.sciencedirect.com/science/article/pii/S0196677483710102
886
+
887
+ See Also
888
+ --------
889
+ :func:`bridge_augmentation`
890
+ :func:`k_edge_augmentation`
891
+
892
+ Examples
893
+ --------
894
+ >>> G = nx.path_graph((1, 2, 3, 4))
895
+ >>> # When the weights are equal, (1, 4) is the best
896
+ >>> avail = [(1, 4, 1), (1, 3, 1), (2, 4, 1)]
897
+ >>> sorted(weighted_bridge_augmentation(G, avail))
898
+ [(1, 4)]
899
+ >>> # Giving (1, 4) a high weight makes the two edge solution the best.
900
+ >>> avail = [(1, 4, 1000), (1, 3, 1), (2, 4, 1)]
901
+ >>> sorted(weighted_bridge_augmentation(G, avail))
902
+ [(1, 3), (2, 4)]
903
+ >>> # ------
904
+ >>> G = nx.path_graph((1, 2, 3, 4))
905
+ >>> G.add_node(5)
906
+ >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 1)]
907
+ >>> sorted(weighted_bridge_augmentation(G, avail=avail))
908
+ [(1, 5), (4, 5)]
909
+ >>> avail = [(1, 5, 11), (2, 5, 10), (4, 3, 1), (4, 5, 51)]
910
+ >>> sorted(weighted_bridge_augmentation(G, avail=avail))
911
+ [(1, 5), (2, 5), (4, 5)]
912
+ """
913
+
914
+ if weight is None:
915
+ weight = "weight"
916
+
917
+ # If input G is not connected the approximation factor increases to 3
918
+ if not nx.is_connected(G):
919
+ H = G.copy()
920
+ connectors = list(one_edge_augmentation(H, avail=avail, weight=weight))
921
+ H.add_edges_from(connectors)
922
+
923
+ yield from connectors
924
+ else:
925
+ connectors = []
926
+ H = G
927
+
928
+ if len(avail) == 0:
929
+ if nx.has_bridges(H):
930
+ raise nx.NetworkXUnfeasible("no augmentation possible")
931
+
932
+ avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=H)
933
+
934
+ # Collapse input into a metagraph. Meta nodes are bridge-ccs
935
+ bridge_ccs = nx.connectivity.bridge_components(H)
936
+ C = collapse(H, bridge_ccs)
937
+
938
+ # Use the meta graph to shrink avail to a small feasible subset
939
+ mapping = C.graph["mapping"]
940
+ # Choose the minimum weight feasible edge in each group
941
+ meta_to_wuv = {
942
+ (mu, mv): (w, uv)
943
+ for (mu, mv), uv, w in _lightest_meta_edges(mapping, avail_uv, avail_w)
944
+ }
945
+
946
+ # Mapping of terms from (Khuller and Thurimella):
947
+ # C : G_0 = (V, E^0)
948
+ # This is the metagraph where each node is a 2-edge-cc in G.
949
+ # The edges in C represent bridges in the original graph.
950
+ # (mu, mv) : E - E^0 # they group both avail and given edges in E
951
+ # T : \Gamma
952
+ # D : G^D = (V, E_D)
953
+
954
+ # The paper uses ancestor because children point to parents, which is
955
+ # contrary to networkx standards. So, we actually need to run
956
+ # nx.least_common_ancestor on the reversed Tree.
957
+
958
+ # Pick an arbitrary leaf from C as the root
959
+ try:
960
+ root = next(n for n, d in C.degree() if d == 1)
961
+ except StopIteration: # no nodes found with degree == 1
962
+ return
963
+ # Root C into a tree TR by directing all edges away from the root
964
+ # Note in their paper T directs edges towards the root
965
+ TR = nx.dfs_tree(C, root)
966
+
967
+ # Add to D the directed edges of T and set their weight to zero
968
+ # This indicates that it costs nothing to use edges that were given.
969
+ D = nx.reverse(TR).copy()
970
+
971
+ nx.set_edge_attributes(D, name="weight", values=0)
972
+
973
+ # The LCA of mu and mv in T is the shared ancestor of mu and mv that is
974
+ # located farthest from the root.
975
+ lca_gen = nx.tree_all_pairs_lowest_common_ancestor(
976
+ TR, root=root, pairs=meta_to_wuv.keys()
977
+ )
978
+
979
+ for (mu, mv), lca in lca_gen:
980
+ w, uv = meta_to_wuv[(mu, mv)]
981
+ if lca == mu:
982
+ # If u is an ancestor of v in TR, then add edge u->v to D
983
+ D.add_edge(lca, mv, weight=w, generator=uv)
984
+ elif lca == mv:
985
+ # If v is an ancestor of u in TR, then add edge v->u to D
986
+ D.add_edge(lca, mu, weight=w, generator=uv)
987
+ else:
988
+ # If neither u nor v is a ancestor of the other in TR
989
+ # let t = lca(TR, u, v) and add edges t->u and t->v
990
+ # Track the original edge that GENERATED these edges.
991
+ D.add_edge(lca, mu, weight=w, generator=uv)
992
+ D.add_edge(lca, mv, weight=w, generator=uv)
993
+
994
+ # Then compute a minimum rooted branching
995
+ try:
996
+ # Note the original edges must be directed towards to root for the
997
+ # branching to give us a bridge-augmentation.
998
+ A = _minimum_rooted_branching(D, root)
999
+ except nx.NetworkXException as err:
1000
+ # If there is no branching then augmentation is not possible
1001
+ raise nx.NetworkXUnfeasible("no 2-edge-augmentation possible") from err
1002
+
1003
+ # For each edge e, in the branching that did not belong to the directed
1004
+ # tree T, add the corresponding edge that **GENERATED** it (this is not
1005
+ # necessarily e itself!)
1006
+
1007
+ # ensure the third case does not generate edges twice
1008
+ bridge_connectors = set()
1009
+ for mu, mv in A.edges():
1010
+ data = D.get_edge_data(mu, mv)
1011
+ if "generator" in data:
1012
+ # Add the avail edge that generated the branching edge.
1013
+ edge = data["generator"]
1014
+ bridge_connectors.add(edge)
1015
+
1016
+ yield from bridge_connectors
1017
+
1018
+
1019
+ def _minimum_rooted_branching(D, root):
1020
+ """Helper function to compute a minimum rooted branching (aka rooted
1021
+ arborescence)
1022
+
1023
+ Before the branching can be computed, the directed graph must be rooted by
1024
+ removing the predecessors of root.
1025
+
1026
+ A branching / arborescence of rooted graph G is a subgraph that contains a
1027
+ directed path from the root to every other vertex. It is the directed
1028
+ analog of the minimum spanning tree problem.
1029
+
1030
+ References
1031
+ ----------
1032
+ [1] Khuller, Samir (2002) Advanced Algorithms Lecture 24 Notes.
1033
+ https://web.archive.org/web/20121030033722/https://www.cs.umd.edu/class/spring2011/cmsc651/lec07.pdf
1034
+ """
1035
+ rooted = D.copy()
1036
+ # root the graph by removing all predecessors to `root`.
1037
+ rooted.remove_edges_from([(u, root) for u in D.predecessors(root)])
1038
+ # Then compute the branching / arborescence.
1039
+ A = nx.minimum_spanning_arborescence(rooted)
1040
+ return A
1041
+
1042
+
1043
+ @nx._dispatchable(returns_graph=True)
1044
+ def collapse(G, grouped_nodes):
1045
+ """Collapses each group of nodes into a single node.
1046
+
1047
+ This is similar to condensation, but works on undirected graphs.
1048
+
1049
+ Parameters
1050
+ ----------
1051
+ G : NetworkX Graph
1052
+
1053
+ grouped_nodes: list or generator
1054
+ Grouping of nodes to collapse. The grouping must be disjoint.
1055
+ If grouped_nodes are strongly_connected_components then this is
1056
+ equivalent to :func:`condensation`.
1057
+
1058
+ Returns
1059
+ -------
1060
+ C : NetworkX Graph
1061
+ The collapsed graph C of G with respect to the node grouping. The node
1062
+ labels are integers corresponding to the index of the component in the
1063
+ list of grouped_nodes. C has a graph attribute named 'mapping' with a
1064
+ dictionary mapping the original nodes to the nodes in C to which they
1065
+ belong. Each node in C also has a node attribute 'members' with the set
1066
+ of original nodes in G that form the group that the node in C
1067
+ represents.
1068
+
1069
+ Examples
1070
+ --------
1071
+ >>> # Collapses a graph using disjoint groups, but not necessarily connected
1072
+ >>> G = nx.Graph([(1, 0), (2, 3), (3, 1), (3, 4), (4, 5), (5, 6), (5, 7)])
1073
+ >>> G.add_node("A")
1074
+ >>> grouped_nodes = [{0, 1, 2, 3}, {5, 6, 7}]
1075
+ >>> C = collapse(G, grouped_nodes)
1076
+ >>> members = nx.get_node_attributes(C, "members")
1077
+ >>> sorted(members.keys())
1078
+ [0, 1, 2, 3]
1079
+ >>> member_values = set(map(frozenset, members.values()))
1080
+ >>> assert {0, 1, 2, 3} in member_values
1081
+ >>> assert {4} in member_values
1082
+ >>> assert {5, 6, 7} in member_values
1083
+ >>> assert {"A"} in member_values
1084
+ """
1085
+ mapping = {}
1086
+ members = {}
1087
+ C = G.__class__()
1088
+ i = 0 # required if G is empty
1089
+ remaining = set(G.nodes())
1090
+ for i, group in enumerate(grouped_nodes):
1091
+ group = set(group)
1092
+ assert remaining.issuperset(
1093
+ group
1094
+ ), "grouped nodes must exist in G and be disjoint"
1095
+ remaining.difference_update(group)
1096
+ members[i] = group
1097
+ mapping.update((n, i) for n in group)
1098
+ # remaining nodes are in their own group
1099
+ for i, node in enumerate(remaining, start=i + 1):
1100
+ group = {node}
1101
+ members[i] = group
1102
+ mapping.update((n, i) for n in group)
1103
+ number_of_groups = i + 1
1104
+ C.add_nodes_from(range(number_of_groups))
1105
+ C.add_edges_from(
1106
+ (mapping[u], mapping[v]) for u, v in G.edges() if mapping[u] != mapping[v]
1107
+ )
1108
+ # Add a list of members (ie original nodes) to each node (ie scc) in C.
1109
+ nx.set_node_attributes(C, name="members", values=members)
1110
+ # Add mapping dict as graph attribute
1111
+ C.graph["mapping"] = mapping
1112
+ return C
1113
+
1114
+
1115
+ @nx._dispatchable
1116
+ def complement_edges(G):
1117
+ """Returns only the edges in the complement of G
1118
+
1119
+ Parameters
1120
+ ----------
1121
+ G : NetworkX Graph
1122
+
1123
+ Yields
1124
+ ------
1125
+ edge : tuple
1126
+ Edges in the complement of G
1127
+
1128
+ Examples
1129
+ --------
1130
+ >>> G = nx.path_graph((1, 2, 3, 4))
1131
+ >>> sorted(complement_edges(G))
1132
+ [(1, 3), (1, 4), (2, 4)]
1133
+ >>> G = nx.path_graph((1, 2, 3, 4), nx.DiGraph())
1134
+ >>> sorted(complement_edges(G))
1135
+ [(1, 3), (1, 4), (2, 1), (2, 4), (3, 1), (3, 2), (4, 1), (4, 2), (4, 3)]
1136
+ >>> G = nx.complete_graph(1000)
1137
+ >>> sorted(complement_edges(G))
1138
+ []
1139
+ """
1140
+ G_adj = G._adj # Store as a variable to eliminate attribute lookup
1141
+ if G.is_directed():
1142
+ for u, v in it.combinations(G.nodes(), 2):
1143
+ if v not in G_adj[u]:
1144
+ yield (u, v)
1145
+ if u not in G_adj[v]:
1146
+ yield (v, u)
1147
+ else:
1148
+ for u, v in it.combinations(G.nodes(), 2):
1149
+ if v not in G_adj[u]:
1150
+ yield (u, v)
1151
+
1152
+
1153
+ def _compat_shuffle(rng, input):
1154
+ """wrapper around rng.shuffle for python 2 compatibility reasons"""
1155
+ rng.shuffle(input)
1156
+
1157
+
1158
+ @not_implemented_for("multigraph")
1159
+ @not_implemented_for("directed")
1160
+ @py_random_state(4)
1161
+ @nx._dispatchable
1162
+ def greedy_k_edge_augmentation(G, k, avail=None, weight=None, seed=None):
1163
+ """Greedy algorithm for finding a k-edge-augmentation
1164
+
1165
+ Parameters
1166
+ ----------
1167
+ G : NetworkX graph
1168
+ An undirected graph.
1169
+
1170
+ k : integer
1171
+ Desired edge connectivity
1172
+
1173
+ avail : dict or a set of 2 or 3 tuples
1174
+ For more details, see :func:`k_edge_augmentation`.
1175
+
1176
+ weight : string
1177
+ key to use to find weights if ``avail`` is a set of 3-tuples.
1178
+ For more details, see :func:`k_edge_augmentation`.
1179
+
1180
+ seed : integer, random_state, or None (default)
1181
+ Indicator of random number generation state.
1182
+ See :ref:`Randomness<randomness>`.
1183
+
1184
+ Yields
1185
+ ------
1186
+ edge : tuple
1187
+ Edges in the greedy augmentation of G
1188
+
1189
+ Notes
1190
+ -----
1191
+ The algorithm is simple. Edges are incrementally added between parts of the
1192
+ graph that are not yet locally k-edge-connected. Then edges are from the
1193
+ augmenting set are pruned as long as local-edge-connectivity is not broken.
1194
+
1195
+ This algorithm is greedy and does not provide optimality guarantees. It
1196
+ exists only to provide :func:`k_edge_augmentation` with the ability to
1197
+ generate a feasible solution for arbitrary k.
1198
+
1199
+ See Also
1200
+ --------
1201
+ :func:`k_edge_augmentation`
1202
+
1203
+ Examples
1204
+ --------
1205
+ >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
1206
+ >>> sorted(greedy_k_edge_augmentation(G, k=2))
1207
+ [(1, 7)]
1208
+ >>> sorted(greedy_k_edge_augmentation(G, k=1, avail=[]))
1209
+ []
1210
+ >>> G = nx.path_graph((1, 2, 3, 4, 5, 6, 7))
1211
+ >>> avail = {(u, v): 1 for (u, v) in complement_edges(G)}
1212
+ >>> # randomized pruning process can produce different solutions
1213
+ >>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=2))
1214
+ [(1, 3), (1, 4), (1, 5), (1, 6), (1, 7), (2, 4), (2, 6), (3, 7), (5, 7)]
1215
+ >>> sorted(greedy_k_edge_augmentation(G, k=4, avail=avail, seed=3))
1216
+ [(1, 3), (1, 5), (1, 6), (2, 4), (2, 6), (3, 7), (4, 7), (5, 7)]
1217
+ """
1218
+ # Result set
1219
+ aug_edges = []
1220
+
1221
+ done = is_k_edge_connected(G, k)
1222
+ if done:
1223
+ return
1224
+ if avail is None:
1225
+ # all edges are available
1226
+ avail_uv = list(complement_edges(G))
1227
+ avail_w = [1] * len(avail_uv)
1228
+ else:
1229
+ # Get the unique set of unweighted edges
1230
+ avail_uv, avail_w = _unpack_available_edges(avail, weight=weight, G=G)
1231
+
1232
+ # Greedy: order lightest edges. Use degree sum to tie-break
1233
+ tiebreaker = [sum(map(G.degree, uv)) for uv in avail_uv]
1234
+ avail_wduv = sorted(zip(avail_w, tiebreaker, avail_uv))
1235
+ avail_uv = [uv for w, d, uv in avail_wduv]
1236
+
1237
+ # Incrementally add edges in until we are k-connected
1238
+ H = G.copy()
1239
+ for u, v in avail_uv:
1240
+ done = False
1241
+ if not is_locally_k_edge_connected(H, u, v, k=k):
1242
+ # Only add edges in parts that are not yet locally k-edge-connected
1243
+ aug_edges.append((u, v))
1244
+ H.add_edge(u, v)
1245
+ # Did adding this edge help?
1246
+ if H.degree(u) >= k and H.degree(v) >= k:
1247
+ done = is_k_edge_connected(H, k)
1248
+ if done:
1249
+ break
1250
+
1251
+ # Check for feasibility
1252
+ if not done:
1253
+ raise nx.NetworkXUnfeasible("not able to k-edge-connect with available edges")
1254
+
1255
+ # Randomized attempt to reduce the size of the solution
1256
+ _compat_shuffle(seed, aug_edges)
1257
+ for u, v in list(aug_edges):
1258
+ # Don't remove if we know it would break connectivity
1259
+ if H.degree(u) <= k or H.degree(v) <= k:
1260
+ continue
1261
+ H.remove_edge(u, v)
1262
+ aug_edges.remove((u, v))
1263
+ if not is_k_edge_connected(H, k=k):
1264
+ # If removing this edge breaks feasibility, undo
1265
+ H.add_edge(u, v)
1266
+ aug_edges.append((u, v))
1267
+
1268
+ # Generate results
1269
+ yield from aug_edges
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/edge_kcomponents.py ADDED
@@ -0,0 +1,591 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Algorithms for finding k-edge-connected components and subgraphs.
3
+
4
+ A k-edge-connected component (k-edge-cc) is a maximal set of nodes in G, such
5
+ that all pairs of node have an edge-connectivity of at least k.
6
+
7
+ A k-edge-connected subgraph (k-edge-subgraph) is a maximal set of nodes in G,
8
+ such that the subgraph of G defined by the nodes has an edge-connectivity at
9
+ least k.
10
+ """
11
+ import itertools as it
12
+ from functools import partial
13
+
14
+ import networkx as nx
15
+ from networkx.utils import arbitrary_element, not_implemented_for
16
+
17
+ __all__ = [
18
+ "k_edge_components",
19
+ "k_edge_subgraphs",
20
+ "bridge_components",
21
+ "EdgeComponentAuxGraph",
22
+ ]
23
+
24
+
25
+ @not_implemented_for("multigraph")
26
+ @nx._dispatchable
27
+ def k_edge_components(G, k):
28
+ """Generates nodes in each maximal k-edge-connected component in G.
29
+
30
+ Parameters
31
+ ----------
32
+ G : NetworkX graph
33
+
34
+ k : Integer
35
+ Desired edge connectivity
36
+
37
+ Returns
38
+ -------
39
+ k_edge_components : a generator of k-edge-ccs. Each set of returned nodes
40
+ will have k-edge-connectivity in the graph G.
41
+
42
+ See Also
43
+ --------
44
+ :func:`local_edge_connectivity`
45
+ :func:`k_edge_subgraphs` : similar to this function, but the subgraph
46
+ defined by the nodes must also have k-edge-connectivity.
47
+ :func:`k_components` : similar to this function, but uses node-connectivity
48
+ instead of edge-connectivity
49
+
50
+ Raises
51
+ ------
52
+ NetworkXNotImplemented
53
+ If the input graph is a multigraph.
54
+
55
+ ValueError:
56
+ If k is less than 1
57
+
58
+ Notes
59
+ -----
60
+ Attempts to use the most efficient implementation available based on k.
61
+ If k=1, this is simply connected components for directed graphs and
62
+ connected components for undirected graphs.
63
+ If k=2 on an efficient bridge connected component algorithm from _[1] is
64
+ run based on the chain decomposition.
65
+ Otherwise, the algorithm from _[2] is used.
66
+
67
+ Examples
68
+ --------
69
+ >>> import itertools as it
70
+ >>> from networkx.utils import pairwise
71
+ >>> paths = [
72
+ ... (1, 2, 4, 3, 1, 4),
73
+ ... (5, 6, 7, 8, 5, 7, 8, 6),
74
+ ... ]
75
+ >>> G = nx.Graph()
76
+ >>> G.add_nodes_from(it.chain(*paths))
77
+ >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
78
+ >>> # note this returns {1, 4} unlike k_edge_subgraphs
79
+ >>> sorted(map(sorted, nx.k_edge_components(G, k=3)))
80
+ [[1, 4], [2], [3], [5, 6, 7, 8]]
81
+
82
+ References
83
+ ----------
84
+ .. [1] https://en.wikipedia.org/wiki/Bridge_%28graph_theory%29
85
+ .. [2] Wang, Tianhao, et al. (2015) A simple algorithm for finding all
86
+ k-edge-connected components.
87
+ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
88
+ """
89
+ # Compute k-edge-ccs using the most efficient algorithms available.
90
+ if k < 1:
91
+ raise ValueError("k cannot be less than 1")
92
+ if G.is_directed():
93
+ if k == 1:
94
+ return nx.strongly_connected_components(G)
95
+ else:
96
+ # TODO: investigate https://arxiv.org/abs/1412.6466 for k=2
97
+ aux_graph = EdgeComponentAuxGraph.construct(G)
98
+ return aux_graph.k_edge_components(k)
99
+ else:
100
+ if k == 1:
101
+ return nx.connected_components(G)
102
+ elif k == 2:
103
+ return bridge_components(G)
104
+ else:
105
+ aux_graph = EdgeComponentAuxGraph.construct(G)
106
+ return aux_graph.k_edge_components(k)
107
+
108
+
109
+ @not_implemented_for("multigraph")
110
+ @nx._dispatchable
111
+ def k_edge_subgraphs(G, k):
112
+ """Generates nodes in each maximal k-edge-connected subgraph in G.
113
+
114
+ Parameters
115
+ ----------
116
+ G : NetworkX graph
117
+
118
+ k : Integer
119
+ Desired edge connectivity
120
+
121
+ Returns
122
+ -------
123
+ k_edge_subgraphs : a generator of k-edge-subgraphs
124
+ Each k-edge-subgraph is a maximal set of nodes that defines a subgraph
125
+ of G that is k-edge-connected.
126
+
127
+ See Also
128
+ --------
129
+ :func:`edge_connectivity`
130
+ :func:`k_edge_components` : similar to this function, but nodes only
131
+ need to have k-edge-connectivity within the graph G and the subgraphs
132
+ might not be k-edge-connected.
133
+
134
+ Raises
135
+ ------
136
+ NetworkXNotImplemented
137
+ If the input graph is a multigraph.
138
+
139
+ ValueError:
140
+ If k is less than 1
141
+
142
+ Notes
143
+ -----
144
+ Attempts to use the most efficient implementation available based on k.
145
+ If k=1, or k=2 and the graph is undirected, then this simply calls
146
+ `k_edge_components`. Otherwise the algorithm from _[1] is used.
147
+
148
+ Examples
149
+ --------
150
+ >>> import itertools as it
151
+ >>> from networkx.utils import pairwise
152
+ >>> paths = [
153
+ ... (1, 2, 4, 3, 1, 4),
154
+ ... (5, 6, 7, 8, 5, 7, 8, 6),
155
+ ... ]
156
+ >>> G = nx.Graph()
157
+ >>> G.add_nodes_from(it.chain(*paths))
158
+ >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
159
+ >>> # note this does not return {1, 4} unlike k_edge_components
160
+ >>> sorted(map(sorted, nx.k_edge_subgraphs(G, k=3)))
161
+ [[1], [2], [3], [4], [5, 6, 7, 8]]
162
+
163
+ References
164
+ ----------
165
+ .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs
166
+ from a large graph. ACM International Conference on Extending Database
167
+ Technology 2012 480-–491.
168
+ https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf
169
+ """
170
+ if k < 1:
171
+ raise ValueError("k cannot be less than 1")
172
+ if G.is_directed():
173
+ if k <= 1:
174
+ # For directed graphs ,
175
+ # When k == 1, k-edge-ccs and k-edge-subgraphs are the same
176
+ return k_edge_components(G, k)
177
+ else:
178
+ return _k_edge_subgraphs_nodes(G, k)
179
+ else:
180
+ if k <= 2:
181
+ # For undirected graphs,
182
+ # when k <= 2, k-edge-ccs and k-edge-subgraphs are the same
183
+ return k_edge_components(G, k)
184
+ else:
185
+ return _k_edge_subgraphs_nodes(G, k)
186
+
187
+
188
+ def _k_edge_subgraphs_nodes(G, k):
189
+ """Helper to get the nodes from the subgraphs.
190
+
191
+ This allows k_edge_subgraphs to return a generator.
192
+ """
193
+ for C in general_k_edge_subgraphs(G, k):
194
+ yield set(C.nodes())
195
+
196
+
197
+ @not_implemented_for("directed")
198
+ @not_implemented_for("multigraph")
199
+ @nx._dispatchable
200
+ def bridge_components(G):
201
+ """Finds all bridge-connected components G.
202
+
203
+ Parameters
204
+ ----------
205
+ G : NetworkX undirected graph
206
+
207
+ Returns
208
+ -------
209
+ bridge_components : a generator of 2-edge-connected components
210
+
211
+
212
+ See Also
213
+ --------
214
+ :func:`k_edge_subgraphs` : this function is a special case for an
215
+ undirected graph where k=2.
216
+ :func:`biconnected_components` : similar to this function, but is defined
217
+ using 2-node-connectivity instead of 2-edge-connectivity.
218
+
219
+ Raises
220
+ ------
221
+ NetworkXNotImplemented
222
+ If the input graph is directed or a multigraph.
223
+
224
+ Notes
225
+ -----
226
+ Bridge-connected components are also known as 2-edge-connected components.
227
+
228
+ Examples
229
+ --------
230
+ >>> # The barbell graph with parameter zero has a single bridge
231
+ >>> G = nx.barbell_graph(5, 0)
232
+ >>> from networkx.algorithms.connectivity.edge_kcomponents import bridge_components
233
+ >>> sorted(map(sorted, bridge_components(G)))
234
+ [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9]]
235
+ """
236
+ H = G.copy()
237
+ H.remove_edges_from(nx.bridges(G))
238
+ yield from nx.connected_components(H)
239
+
240
+
241
+ class EdgeComponentAuxGraph:
242
+ r"""A simple algorithm to find all k-edge-connected components in a graph.
243
+
244
+ Constructing the auxiliary graph (which may take some time) allows for the
245
+ k-edge-ccs to be found in linear time for arbitrary k.
246
+
247
+ Notes
248
+ -----
249
+ This implementation is based on [1]_. The idea is to construct an auxiliary
250
+ graph from which the k-edge-ccs can be extracted in linear time. The
251
+ auxiliary graph is constructed in $O(|V|\cdot F)$ operations, where F is the
252
+ complexity of max flow. Querying the components takes an additional $O(|V|)$
253
+ operations. This algorithm can be slow for large graphs, but it handles an
254
+ arbitrary k and works for both directed and undirected inputs.
255
+
256
+ The undirected case for k=1 is exactly connected components.
257
+ The undirected case for k=2 is exactly bridge connected components.
258
+ The directed case for k=1 is exactly strongly connected components.
259
+
260
+ References
261
+ ----------
262
+ .. [1] Wang, Tianhao, et al. (2015) A simple algorithm for finding all
263
+ k-edge-connected components.
264
+ http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0136264
265
+
266
+ Examples
267
+ --------
268
+ >>> import itertools as it
269
+ >>> from networkx.utils import pairwise
270
+ >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph
271
+ >>> # Build an interesting graph with multiple levels of k-edge-ccs
272
+ >>> paths = [
273
+ ... (1, 2, 3, 4, 1, 3, 4, 2), # a 3-edge-cc (a 4 clique)
274
+ ... (5, 6, 7, 5), # a 2-edge-cc (a 3 clique)
275
+ ... (1, 5), # combine first two ccs into a 1-edge-cc
276
+ ... (0,), # add an additional disconnected 1-edge-cc
277
+ ... ]
278
+ >>> G = nx.Graph()
279
+ >>> G.add_nodes_from(it.chain(*paths))
280
+ >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
281
+ >>> # Constructing the AuxGraph takes about O(n ** 4)
282
+ >>> aux_graph = EdgeComponentAuxGraph.construct(G)
283
+ >>> # Once constructed, querying takes O(n)
284
+ >>> sorted(map(sorted, aux_graph.k_edge_components(k=1)))
285
+ [[0], [1, 2, 3, 4, 5, 6, 7]]
286
+ >>> sorted(map(sorted, aux_graph.k_edge_components(k=2)))
287
+ [[0], [1, 2, 3, 4], [5, 6, 7]]
288
+ >>> sorted(map(sorted, aux_graph.k_edge_components(k=3)))
289
+ [[0], [1, 2, 3, 4], [5], [6], [7]]
290
+ >>> sorted(map(sorted, aux_graph.k_edge_components(k=4)))
291
+ [[0], [1], [2], [3], [4], [5], [6], [7]]
292
+
293
+ The auxiliary graph is primarily used for k-edge-ccs but it
294
+ can also speed up the queries of k-edge-subgraphs by refining the
295
+ search space.
296
+
297
+ >>> import itertools as it
298
+ >>> from networkx.utils import pairwise
299
+ >>> from networkx.algorithms.connectivity import EdgeComponentAuxGraph
300
+ >>> paths = [
301
+ ... (1, 2, 4, 3, 1, 4),
302
+ ... ]
303
+ >>> G = nx.Graph()
304
+ >>> G.add_nodes_from(it.chain(*paths))
305
+ >>> G.add_edges_from(it.chain(*[pairwise(path) for path in paths]))
306
+ >>> aux_graph = EdgeComponentAuxGraph.construct(G)
307
+ >>> sorted(map(sorted, aux_graph.k_edge_subgraphs(k=3)))
308
+ [[1], [2], [3], [4]]
309
+ >>> sorted(map(sorted, aux_graph.k_edge_components(k=3)))
310
+ [[1, 4], [2], [3]]
311
+ """
312
+
313
+ # @not_implemented_for('multigraph') # TODO: fix decor for classmethods
314
+ @classmethod
315
+ def construct(EdgeComponentAuxGraph, G):
316
+ """Builds an auxiliary graph encoding edge-connectivity between nodes.
317
+
318
+ Notes
319
+ -----
320
+ Given G=(V, E), initialize an empty auxiliary graph A.
321
+ Choose an arbitrary source node s. Initialize a set N of available
322
+ nodes (that can be used as the sink). The algorithm picks an
323
+ arbitrary node t from N - {s}, and then computes the minimum st-cut
324
+ (S, T) with value w. If G is directed the minimum of the st-cut or
325
+ the ts-cut is used instead. Then, the edge (s, t) is added to the
326
+ auxiliary graph with weight w. The algorithm is called recursively
327
+ first using S as the available nodes and s as the source, and then
328
+ using T and t. Recursion stops when the source is the only available
329
+ node.
330
+
331
+ Parameters
332
+ ----------
333
+ G : NetworkX graph
334
+ """
335
+ # workaround for classmethod decorator
336
+ not_implemented_for("multigraph")(lambda G: G)(G)
337
+
338
+ def _recursive_build(H, A, source, avail):
339
+ # Terminate once the flow has been compute to every node.
340
+ if {source} == avail:
341
+ return
342
+ # pick an arbitrary node as the sink
343
+ sink = arbitrary_element(avail - {source})
344
+ # find the minimum cut and its weight
345
+ value, (S, T) = nx.minimum_cut(H, source, sink)
346
+ if H.is_directed():
347
+ # check if the reverse direction has a smaller cut
348
+ value_, (T_, S_) = nx.minimum_cut(H, sink, source)
349
+ if value_ < value:
350
+ value, S, T = value_, S_, T_
351
+ # add edge with weight of cut to the aux graph
352
+ A.add_edge(source, sink, weight=value)
353
+ # recursively call until all but one node is used
354
+ _recursive_build(H, A, source, avail.intersection(S))
355
+ _recursive_build(H, A, sink, avail.intersection(T))
356
+
357
+ # Copy input to ensure all edges have unit capacity
358
+ H = G.__class__()
359
+ H.add_nodes_from(G.nodes())
360
+ H.add_edges_from(G.edges(), capacity=1)
361
+
362
+ # A is the auxiliary graph to be constructed
363
+ # It is a weighted undirected tree
364
+ A = nx.Graph()
365
+
366
+ # Pick an arbitrary node as the source
367
+ if H.number_of_nodes() > 0:
368
+ source = arbitrary_element(H.nodes())
369
+ # Initialize a set of elements that can be chosen as the sink
370
+ avail = set(H.nodes())
371
+
372
+ # This constructs A
373
+ _recursive_build(H, A, source, avail)
374
+
375
+ # This class is a container the holds the auxiliary graph A and
376
+ # provides access the k_edge_components function.
377
+ self = EdgeComponentAuxGraph()
378
+ self.A = A
379
+ self.H = H
380
+ return self
381
+
382
+ def k_edge_components(self, k):
383
+ """Queries the auxiliary graph for k-edge-connected components.
384
+
385
+ Parameters
386
+ ----------
387
+ k : Integer
388
+ Desired edge connectivity
389
+
390
+ Returns
391
+ -------
392
+ k_edge_components : a generator of k-edge-ccs
393
+
394
+ Notes
395
+ -----
396
+ Given the auxiliary graph, the k-edge-connected components can be
397
+ determined in linear time by removing all edges with weights less than
398
+ k from the auxiliary graph. The resulting connected components are the
399
+ k-edge-ccs in the original graph.
400
+ """
401
+ if k < 1:
402
+ raise ValueError("k cannot be less than 1")
403
+ A = self.A
404
+ # "traverse the auxiliary graph A and delete all edges with weights less
405
+ # than k"
406
+ aux_weights = nx.get_edge_attributes(A, "weight")
407
+ # Create a relevant graph with the auxiliary edges with weights >= k
408
+ R = nx.Graph()
409
+ R.add_nodes_from(A.nodes())
410
+ R.add_edges_from(e for e, w in aux_weights.items() if w >= k)
411
+
412
+ # Return the nodes that are k-edge-connected in the original graph
413
+ yield from nx.connected_components(R)
414
+
415
+ def k_edge_subgraphs(self, k):
416
+ """Queries the auxiliary graph for k-edge-connected subgraphs.
417
+
418
+ Parameters
419
+ ----------
420
+ k : Integer
421
+ Desired edge connectivity
422
+
423
+ Returns
424
+ -------
425
+ k_edge_subgraphs : a generator of k-edge-subgraphs
426
+
427
+ Notes
428
+ -----
429
+ Refines the k-edge-ccs into k-edge-subgraphs. The running time is more
430
+ than $O(|V|)$.
431
+
432
+ For single values of k it is faster to use `nx.k_edge_subgraphs`.
433
+ But for multiple values of k, it can be faster to build AuxGraph and
434
+ then use this method.
435
+ """
436
+ if k < 1:
437
+ raise ValueError("k cannot be less than 1")
438
+ H = self.H
439
+ A = self.A
440
+ # "traverse the auxiliary graph A and delete all edges with weights less
441
+ # than k"
442
+ aux_weights = nx.get_edge_attributes(A, "weight")
443
+ # Create a relevant graph with the auxiliary edges with weights >= k
444
+ R = nx.Graph()
445
+ R.add_nodes_from(A.nodes())
446
+ R.add_edges_from(e for e, w in aux_weights.items() if w >= k)
447
+
448
+ # Return the components whose subgraphs are k-edge-connected
449
+ for cc in nx.connected_components(R):
450
+ if len(cc) < k:
451
+ # Early return optimization
452
+ for node in cc:
453
+ yield {node}
454
+ else:
455
+ # Call subgraph solution to refine the results
456
+ C = H.subgraph(cc)
457
+ yield from k_edge_subgraphs(C, k)
458
+
459
+
460
+ def _low_degree_nodes(G, k, nbunch=None):
461
+ """Helper for finding nodes with degree less than k."""
462
+ # Nodes with degree less than k cannot be k-edge-connected.
463
+ if G.is_directed():
464
+ # Consider both in and out degree in the directed case
465
+ seen = set()
466
+ for node, degree in G.out_degree(nbunch):
467
+ if degree < k:
468
+ seen.add(node)
469
+ yield node
470
+ for node, degree in G.in_degree(nbunch):
471
+ if node not in seen and degree < k:
472
+ seen.add(node)
473
+ yield node
474
+ else:
475
+ # Only the degree matters in the undirected case
476
+ for node, degree in G.degree(nbunch):
477
+ if degree < k:
478
+ yield node
479
+
480
+
481
+ def _high_degree_components(G, k):
482
+ """Helper for filtering components that can't be k-edge-connected.
483
+
484
+ Removes and generates each node with degree less than k. Then generates
485
+ remaining components where all nodes have degree at least k.
486
+ """
487
+ # Iteratively remove parts of the graph that are not k-edge-connected
488
+ H = G.copy()
489
+ singletons = set(_low_degree_nodes(H, k))
490
+ while singletons:
491
+ # Only search neighbors of removed nodes
492
+ nbunch = set(it.chain.from_iterable(map(H.neighbors, singletons)))
493
+ nbunch.difference_update(singletons)
494
+ H.remove_nodes_from(singletons)
495
+ for node in singletons:
496
+ yield {node}
497
+ singletons = set(_low_degree_nodes(H, k, nbunch))
498
+
499
+ # Note: remaining connected components may not be k-edge-connected
500
+ if G.is_directed():
501
+ yield from nx.strongly_connected_components(H)
502
+ else:
503
+ yield from nx.connected_components(H)
504
+
505
+
506
+ @nx._dispatchable(returns_graph=True)
507
+ def general_k_edge_subgraphs(G, k):
508
+ """General algorithm to find all maximal k-edge-connected subgraphs in `G`.
509
+
510
+ Parameters
511
+ ----------
512
+ G : nx.Graph
513
+ Graph in which all maximal k-edge-connected subgraphs will be found.
514
+
515
+ k : int
516
+
517
+ Yields
518
+ ------
519
+ k_edge_subgraphs : Graph instances that are k-edge-subgraphs
520
+ Each k-edge-subgraph contains a maximal set of nodes that defines a
521
+ subgraph of `G` that is k-edge-connected.
522
+
523
+ Notes
524
+ -----
525
+ Implementation of the basic algorithm from [1]_. The basic idea is to find
526
+ a global minimum cut of the graph. If the cut value is at least k, then the
527
+ graph is a k-edge-connected subgraph and can be added to the results.
528
+ Otherwise, the cut is used to split the graph in two and the procedure is
529
+ applied recursively. If the graph is just a single node, then it is also
530
+ added to the results. At the end, each result is either guaranteed to be
531
+ a single node or a subgraph of G that is k-edge-connected.
532
+
533
+ This implementation contains optimizations for reducing the number of calls
534
+ to max-flow, but there are other optimizations in [1]_ that could be
535
+ implemented.
536
+
537
+ References
538
+ ----------
539
+ .. [1] Zhou, Liu, et al. (2012) Finding maximal k-edge-connected subgraphs
540
+ from a large graph. ACM International Conference on Extending Database
541
+ Technology 2012 480-–491.
542
+ https://openproceedings.org/2012/conf/edbt/ZhouLYLCL12.pdf
543
+
544
+ Examples
545
+ --------
546
+ >>> from networkx.utils import pairwise
547
+ >>> paths = [
548
+ ... (11, 12, 13, 14, 11, 13, 14, 12), # a 4-clique
549
+ ... (21, 22, 23, 24, 21, 23, 24, 22), # another 4-clique
550
+ ... # connect the cliques with high degree but low connectivity
551
+ ... (50, 13),
552
+ ... (12, 50, 22),
553
+ ... (13, 102, 23),
554
+ ... (14, 101, 24),
555
+ ... ]
556
+ >>> G = nx.Graph(it.chain(*[pairwise(path) for path in paths]))
557
+ >>> sorted(len(k_sg) for k_sg in k_edge_subgraphs(G, k=3))
558
+ [1, 1, 1, 4, 4]
559
+ """
560
+ if k < 1:
561
+ raise ValueError("k cannot be less than 1")
562
+
563
+ # Node pruning optimization (incorporates early return)
564
+ # find_ccs is either connected_components/strongly_connected_components
565
+ find_ccs = partial(_high_degree_components, k=k)
566
+
567
+ # Quick return optimization
568
+ if G.number_of_nodes() < k:
569
+ for node in G.nodes():
570
+ yield G.subgraph([node]).copy()
571
+ return
572
+
573
+ # Intermediate results
574
+ R0 = {G.subgraph(cc).copy() for cc in find_ccs(G)}
575
+ # Subdivide CCs in the intermediate results until they are k-conn
576
+ while R0:
577
+ G1 = R0.pop()
578
+ if G1.number_of_nodes() == 1:
579
+ yield G1
580
+ else:
581
+ # Find a global minimum cut
582
+ cut_edges = nx.minimum_edge_cut(G1)
583
+ cut_value = len(cut_edges)
584
+ if cut_value < k:
585
+ # G1 is not k-edge-connected, so subdivide it
586
+ G1.remove_edges_from(cut_edges)
587
+ for cc in find_ccs(G1):
588
+ R0.add(G1.subgraph(cc).copy())
589
+ else:
590
+ # Otherwise we found a k-edge-connected subgraph
591
+ yield G1
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcomponents.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Moody and White algorithm for k-components
3
+ """
4
+ from collections import defaultdict
5
+ from itertools import combinations
6
+ from operator import itemgetter
7
+
8
+ import networkx as nx
9
+
10
+ # Define the default maximum flow function.
11
+ from networkx.algorithms.flow import edmonds_karp
12
+ from networkx.utils import not_implemented_for
13
+
14
+ default_flow_func = edmonds_karp
15
+
16
+ __all__ = ["k_components"]
17
+
18
+
19
+ @not_implemented_for("directed")
20
+ @nx._dispatchable
21
+ def k_components(G, flow_func=None):
22
+ r"""Returns the k-component structure of a graph G.
23
+
24
+ A `k`-component is a maximal subgraph of a graph G that has, at least,
25
+ node connectivity `k`: we need to remove at least `k` nodes to break it
26
+ into more components. `k`-components have an inherent hierarchical
27
+ structure because they are nested in terms of connectivity: a connected
28
+ graph can contain several 2-components, each of which can contain
29
+ one or more 3-components, and so forth.
30
+
31
+ Parameters
32
+ ----------
33
+ G : NetworkX graph
34
+
35
+ flow_func : function
36
+ Function to perform the underlying flow computations. Default value
37
+ :meth:`edmonds_karp`. This function performs better in sparse graphs with
38
+ right tailed degree distributions. :meth:`shortest_augmenting_path` will
39
+ perform better in denser graphs.
40
+
41
+ Returns
42
+ -------
43
+ k_components : dict
44
+ Dictionary with all connectivity levels `k` in the input Graph as keys
45
+ and a list of sets of nodes that form a k-component of level `k` as
46
+ values.
47
+
48
+ Raises
49
+ ------
50
+ NetworkXNotImplemented
51
+ If the input graph is directed.
52
+
53
+ Examples
54
+ --------
55
+ >>> # Petersen graph has 10 nodes and it is triconnected, thus all
56
+ >>> # nodes are in a single component on all three connectivity levels
57
+ >>> G = nx.petersen_graph()
58
+ >>> k_components = nx.k_components(G)
59
+
60
+ Notes
61
+ -----
62
+ Moody and White [1]_ (appendix A) provide an algorithm for identifying
63
+ k-components in a graph, which is based on Kanevsky's algorithm [2]_
64
+ for finding all minimum-size node cut-sets of a graph (implemented in
65
+ :meth:`all_node_cuts` function):
66
+
67
+ 1. Compute node connectivity, k, of the input graph G.
68
+
69
+ 2. Identify all k-cutsets at the current level of connectivity using
70
+ Kanevsky's algorithm.
71
+
72
+ 3. Generate new graph components based on the removal of
73
+ these cutsets. Nodes in a cutset belong to both sides
74
+ of the induced cut.
75
+
76
+ 4. If the graph is neither complete nor trivial, return to 1;
77
+ else end.
78
+
79
+ This implementation also uses some heuristics (see [3]_ for details)
80
+ to speed up the computation.
81
+
82
+ See also
83
+ --------
84
+ node_connectivity
85
+ all_node_cuts
86
+ biconnected_components : special case of this function when k=2
87
+ k_edge_components : similar to this function, but uses edge-connectivity
88
+ instead of node-connectivity
89
+
90
+ References
91
+ ----------
92
+ .. [1] Moody, J. and D. White (2003). Social cohesion and embeddedness:
93
+ A hierarchical conception of social groups.
94
+ American Sociological Review 68(1), 103--28.
95
+ http://www2.asanet.org/journals/ASRFeb03MoodyWhite.pdf
96
+
97
+ .. [2] Kanevsky, A. (1993). Finding all minimum-size separating vertex
98
+ sets in a graph. Networks 23(6), 533--541.
99
+ http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
100
+
101
+ .. [3] Torrents, J. and F. Ferraro (2015). Structural Cohesion:
102
+ Visualization and Heuristics for Fast Computation.
103
+ https://arxiv.org/pdf/1503.04476v1
104
+
105
+ """
106
+ # Dictionary with connectivity level (k) as keys and a list of
107
+ # sets of nodes that form a k-component as values. Note that
108
+ # k-components can overlap (but only k - 1 nodes).
109
+ k_components = defaultdict(list)
110
+ # Define default flow function
111
+ if flow_func is None:
112
+ flow_func = default_flow_func
113
+ # Bicomponents as a base to check for higher order k-components
114
+ for component in nx.connected_components(G):
115
+ # isolated nodes have connectivity 0
116
+ comp = set(component)
117
+ if len(comp) > 1:
118
+ k_components[1].append(comp)
119
+ bicomponents = [G.subgraph(c) for c in nx.biconnected_components(G)]
120
+ for bicomponent in bicomponents:
121
+ bicomp = set(bicomponent)
122
+ # avoid considering dyads as bicomponents
123
+ if len(bicomp) > 2:
124
+ k_components[2].append(bicomp)
125
+ for B in bicomponents:
126
+ if len(B) <= 2:
127
+ continue
128
+ k = nx.node_connectivity(B, flow_func=flow_func)
129
+ if k > 2:
130
+ k_components[k].append(set(B))
131
+ # Perform cuts in a DFS like order.
132
+ cuts = list(nx.all_node_cuts(B, k=k, flow_func=flow_func))
133
+ stack = [(k, _generate_partition(B, cuts, k))]
134
+ while stack:
135
+ (parent_k, partition) = stack[-1]
136
+ try:
137
+ nodes = next(partition)
138
+ C = B.subgraph(nodes)
139
+ this_k = nx.node_connectivity(C, flow_func=flow_func)
140
+ if this_k > parent_k and this_k > 2:
141
+ k_components[this_k].append(set(C))
142
+ cuts = list(nx.all_node_cuts(C, k=this_k, flow_func=flow_func))
143
+ if cuts:
144
+ stack.append((this_k, _generate_partition(C, cuts, this_k)))
145
+ except StopIteration:
146
+ stack.pop()
147
+
148
+ # This is necessary because k-components may only be reported at their
149
+ # maximum k level. But we want to return a dictionary in which keys are
150
+ # connectivity levels and values list of sets of components, without
151
+ # skipping any connectivity level. Also, it's possible that subsets of
152
+ # an already detected k-component appear at a level k. Checking for this
153
+ # in the while loop above penalizes the common case. Thus we also have to
154
+ # _consolidate all connectivity levels in _reconstruct_k_components.
155
+ return _reconstruct_k_components(k_components)
156
+
157
+
158
+ def _consolidate(sets, k):
159
+ """Merge sets that share k or more elements.
160
+
161
+ See: http://rosettacode.org/wiki/Set_consolidation
162
+
163
+ The iterative python implementation posted there is
164
+ faster than this because of the overhead of building a
165
+ Graph and calling nx.connected_components, but it's not
166
+ clear for us if we can use it in NetworkX because there
167
+ is no licence for the code.
168
+
169
+ """
170
+ G = nx.Graph()
171
+ nodes = dict(enumerate(sets))
172
+ G.add_nodes_from(nodes)
173
+ G.add_edges_from(
174
+ (u, v) for u, v in combinations(nodes, 2) if len(nodes[u] & nodes[v]) >= k
175
+ )
176
+ for component in nx.connected_components(G):
177
+ yield set.union(*[nodes[n] for n in component])
178
+
179
+
180
+ def _generate_partition(G, cuts, k):
181
+ def has_nbrs_in_partition(G, node, partition):
182
+ return any(n in partition for n in G[node])
183
+
184
+ components = []
185
+ nodes = {n for n, d in G.degree() if d > k} - {n for cut in cuts for n in cut}
186
+ H = G.subgraph(nodes)
187
+ for cc in nx.connected_components(H):
188
+ component = set(cc)
189
+ for cut in cuts:
190
+ for node in cut:
191
+ if has_nbrs_in_partition(G, node, cc):
192
+ component.add(node)
193
+ if len(component) < G.order():
194
+ components.append(component)
195
+ yield from _consolidate(components, k + 1)
196
+
197
+
198
+ def _reconstruct_k_components(k_comps):
199
+ result = {}
200
+ max_k = max(k_comps)
201
+ for k in reversed(range(1, max_k + 1)):
202
+ if k == max_k:
203
+ result[k] = list(_consolidate(k_comps[k], k))
204
+ elif k not in k_comps:
205
+ result[k] = list(_consolidate(result[k + 1], k))
206
+ else:
207
+ nodes_at_k = set.union(*k_comps[k])
208
+ to_add = [c for c in result[k + 1] if any(n not in nodes_at_k for n in c)]
209
+ if to_add:
210
+ result[k] = list(_consolidate(k_comps[k] + to_add, k))
211
+ else:
212
+ result[k] = list(_consolidate(k_comps[k], k))
213
+ return result
214
+
215
+
216
+ def build_k_number_dict(kcomps):
217
+ result = {}
218
+ for k, comps in sorted(kcomps.items(), key=itemgetter(0)):
219
+ for comp in comps:
220
+ for node in comp:
221
+ result[node] = k
222
+ return result
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/kcutsets.py ADDED
@@ -0,0 +1,234 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Kanevsky all minimum node k cutsets algorithm.
3
+ """
4
+ import copy
5
+ from collections import defaultdict
6
+ from itertools import combinations
7
+ from operator import itemgetter
8
+
9
+ import networkx as nx
10
+ from networkx.algorithms.flow import (
11
+ build_residual_network,
12
+ edmonds_karp,
13
+ shortest_augmenting_path,
14
+ )
15
+
16
+ from .utils import build_auxiliary_node_connectivity
17
+
18
+ default_flow_func = edmonds_karp
19
+
20
+
21
+ __all__ = ["all_node_cuts"]
22
+
23
+
24
+ @nx._dispatchable
25
+ def all_node_cuts(G, k=None, flow_func=None):
26
+ r"""Returns all minimum k cutsets of an undirected graph G.
27
+
28
+ This implementation is based on Kanevsky's algorithm [1]_ for finding all
29
+ minimum-size node cut-sets of an undirected graph G; ie the set (or sets)
30
+ of nodes of cardinality equal to the node connectivity of G. Thus if
31
+ removed, would break G into two or more connected components.
32
+
33
+ Parameters
34
+ ----------
35
+ G : NetworkX graph
36
+ Undirected graph
37
+
38
+ k : Integer
39
+ Node connectivity of the input graph. If k is None, then it is
40
+ computed. Default value: None.
41
+
42
+ flow_func : function
43
+ Function to perform the underlying flow computations. Default value is
44
+ :func:`~networkx.algorithms.flow.edmonds_karp`. This function performs
45
+ better in sparse graphs with right tailed degree distributions.
46
+ :func:`~networkx.algorithms.flow.shortest_augmenting_path` will
47
+ perform better in denser graphs.
48
+
49
+
50
+ Returns
51
+ -------
52
+ cuts : a generator of node cutsets
53
+ Each node cutset has cardinality equal to the node connectivity of
54
+ the input graph.
55
+
56
+ Examples
57
+ --------
58
+ >>> # A two-dimensional grid graph has 4 cutsets of cardinality 2
59
+ >>> G = nx.grid_2d_graph(5, 5)
60
+ >>> cutsets = list(nx.all_node_cuts(G))
61
+ >>> len(cutsets)
62
+ 4
63
+ >>> all(2 == len(cutset) for cutset in cutsets)
64
+ True
65
+ >>> nx.node_connectivity(G)
66
+ 2
67
+
68
+ Notes
69
+ -----
70
+ This implementation is based on the sequential algorithm for finding all
71
+ minimum-size separating vertex sets in a graph [1]_. The main idea is to
72
+ compute minimum cuts using local maximum flow computations among a set
73
+ of nodes of highest degree and all other non-adjacent nodes in the Graph.
74
+ Once we find a minimum cut, we add an edge between the high degree
75
+ node and the target node of the local maximum flow computation to make
76
+ sure that we will not find that minimum cut again.
77
+
78
+ See also
79
+ --------
80
+ node_connectivity
81
+ edmonds_karp
82
+ shortest_augmenting_path
83
+
84
+ References
85
+ ----------
86
+ .. [1] Kanevsky, A. (1993). Finding all minimum-size separating vertex
87
+ sets in a graph. Networks 23(6), 533--541.
88
+ http://onlinelibrary.wiley.com/doi/10.1002/net.3230230604/abstract
89
+
90
+ """
91
+ if not nx.is_connected(G):
92
+ raise nx.NetworkXError("Input graph is disconnected.")
93
+
94
+ # Address some corner cases first.
95
+ # For complete Graphs
96
+
97
+ if nx.density(G) == 1:
98
+ yield from ()
99
+ return
100
+
101
+ # Initialize data structures.
102
+ # Keep track of the cuts already computed so we do not repeat them.
103
+ seen = []
104
+ # Even-Tarjan reduction is what we call auxiliary digraph
105
+ # for node connectivity.
106
+ H = build_auxiliary_node_connectivity(G)
107
+ H_nodes = H.nodes # for speed
108
+ mapping = H.graph["mapping"]
109
+ # Keep a copy of original predecessors, H will be modified later.
110
+ # Shallow copy is enough.
111
+ original_H_pred = copy.copy(H._pred)
112
+ R = build_residual_network(H, "capacity")
113
+ kwargs = {"capacity": "capacity", "residual": R}
114
+ # Define default flow function
115
+ if flow_func is None:
116
+ flow_func = default_flow_func
117
+ if flow_func is shortest_augmenting_path:
118
+ kwargs["two_phase"] = True
119
+ # Begin the actual algorithm
120
+ # step 1: Find node connectivity k of G
121
+ if k is None:
122
+ k = nx.node_connectivity(G, flow_func=flow_func)
123
+ # step 2:
124
+ # Find k nodes with top degree, call it X:
125
+ X = {n for n, d in sorted(G.degree(), key=itemgetter(1), reverse=True)[:k]}
126
+ # Check if X is a k-node-cutset
127
+ if _is_separating_set(G, X):
128
+ seen.append(X)
129
+ yield X
130
+
131
+ for x in X:
132
+ # step 3: Compute local connectivity flow of x with all other
133
+ # non adjacent nodes in G
134
+ non_adjacent = set(G) - {x} - set(G[x])
135
+ for v in non_adjacent:
136
+ # step 4: compute maximum flow in an Even-Tarjan reduction H of G
137
+ # and step 5: build the associated residual network R
138
+ R = flow_func(H, f"{mapping[x]}B", f"{mapping[v]}A", **kwargs)
139
+ flow_value = R.graph["flow_value"]
140
+
141
+ if flow_value == k:
142
+ # Find the nodes incident to the flow.
143
+ E1 = flowed_edges = [
144
+ (u, w) for (u, w, d) in R.edges(data=True) if d["flow"] != 0
145
+ ]
146
+ VE1 = incident_nodes = {n for edge in E1 for n in edge}
147
+ # Remove saturated edges form the residual network.
148
+ # Note that reversed edges are introduced with capacity 0
149
+ # in the residual graph and they need to be removed too.
150
+ saturated_edges = [
151
+ (u, w, d)
152
+ for (u, w, d) in R.edges(data=True)
153
+ if d["capacity"] == d["flow"] or d["capacity"] == 0
154
+ ]
155
+ R.remove_edges_from(saturated_edges)
156
+ R_closure = nx.transitive_closure(R)
157
+ # step 6: shrink the strongly connected components of
158
+ # residual flow network R and call it L.
159
+ L = nx.condensation(R)
160
+ cmap = L.graph["mapping"]
161
+ inv_cmap = defaultdict(list)
162
+ for n, scc in cmap.items():
163
+ inv_cmap[scc].append(n)
164
+ # Find the incident nodes in the condensed graph.
165
+ VE1 = {cmap[n] for n in VE1}
166
+ # step 7: Compute all antichains of L;
167
+ # they map to closed sets in H.
168
+ # Any edge in H that links a closed set is part of a cutset.
169
+ for antichain in nx.antichains(L):
170
+ # Only antichains that are subsets of incident nodes counts.
171
+ # Lemma 8 in reference.
172
+ if not set(antichain).issubset(VE1):
173
+ continue
174
+ # Nodes in an antichain of the condensation graph of
175
+ # the residual network map to a closed set of nodes that
176
+ # define a node partition of the auxiliary digraph H
177
+ # through taking all of antichain's predecessors in the
178
+ # transitive closure.
179
+ S = set()
180
+ for scc in antichain:
181
+ S.update(inv_cmap[scc])
182
+ S_ancestors = set()
183
+ for n in S:
184
+ S_ancestors.update(R_closure._pred[n])
185
+ S.update(S_ancestors)
186
+ if f"{mapping[x]}B" not in S or f"{mapping[v]}A" in S:
187
+ continue
188
+ # Find the cutset that links the node partition (S,~S) in H
189
+ cutset = set()
190
+ for u in S:
191
+ cutset.update((u, w) for w in original_H_pred[u] if w not in S)
192
+ # The edges in H that form the cutset are internal edges
193
+ # (ie edges that represent a node of the original graph G)
194
+ if any(H_nodes[u]["id"] != H_nodes[w]["id"] for u, w in cutset):
195
+ continue
196
+ node_cut = {H_nodes[u]["id"] for u, _ in cutset}
197
+
198
+ if len(node_cut) == k:
199
+ # The cut is invalid if it includes internal edges of
200
+ # end nodes. The other half of Lemma 8 in ref.
201
+ if x in node_cut or v in node_cut:
202
+ continue
203
+ if node_cut not in seen:
204
+ yield node_cut
205
+ seen.append(node_cut)
206
+
207
+ # Add an edge (x, v) to make sure that we do not
208
+ # find this cutset again. This is equivalent
209
+ # of adding the edge in the input graph
210
+ # G.add_edge(x, v) and then regenerate H and R:
211
+ # Add edges to the auxiliary digraph.
212
+ # See build_residual_network for convention we used
213
+ # in residual graphs.
214
+ H.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1)
215
+ H.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1)
216
+ # Add edges to the residual network.
217
+ R.add_edge(f"{mapping[x]}B", f"{mapping[v]}A", capacity=1)
218
+ R.add_edge(f"{mapping[v]}A", f"{mapping[x]}B", capacity=0)
219
+ R.add_edge(f"{mapping[v]}B", f"{mapping[x]}A", capacity=1)
220
+ R.add_edge(f"{mapping[x]}A", f"{mapping[v]}B", capacity=0)
221
+
222
+ # Add again the saturated edges to reuse the residual network
223
+ R.add_edges_from(saturated_edges)
224
+
225
+
226
+ def _is_separating_set(G, cut):
227
+ """Assumes that the input graph is connected"""
228
+ if len(cut) == len(G) - 1:
229
+ return True
230
+
231
+ H = nx.restricted_view(G, cut, [])
232
+ if nx.is_connected(H):
233
+ return False
234
+ return True
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/stoerwagner.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Stoer-Wagner minimum cut algorithm.
3
+ """
4
+ from itertools import islice
5
+
6
+ import networkx as nx
7
+
8
+ from ...utils import BinaryHeap, arbitrary_element, not_implemented_for
9
+
10
+ __all__ = ["stoer_wagner"]
11
+
12
+
13
+ @not_implemented_for("directed")
14
+ @not_implemented_for("multigraph")
15
+ @nx._dispatchable(edge_attrs="weight")
16
+ def stoer_wagner(G, weight="weight", heap=BinaryHeap):
17
+ r"""Returns the weighted minimum edge cut using the Stoer-Wagner algorithm.
18
+
19
+ Determine the minimum edge cut of a connected graph using the
20
+ Stoer-Wagner algorithm. In weighted cases, all weights must be
21
+ nonnegative.
22
+
23
+ The running time of the algorithm depends on the type of heaps used:
24
+
25
+ ============== =============================================
26
+ Type of heap Running time
27
+ ============== =============================================
28
+ Binary heap $O(n (m + n) \log n)$
29
+ Fibonacci heap $O(nm + n^2 \log n)$
30
+ Pairing heap $O(2^{2 \sqrt{\log \log n}} nm + n^2 \log n)$
31
+ ============== =============================================
32
+
33
+ Parameters
34
+ ----------
35
+ G : NetworkX graph
36
+ Edges of the graph are expected to have an attribute named by the
37
+ weight parameter below. If this attribute is not present, the edge is
38
+ considered to have unit weight.
39
+
40
+ weight : string
41
+ Name of the weight attribute of the edges. If the attribute is not
42
+ present, unit weight is assumed. Default value: 'weight'.
43
+
44
+ heap : class
45
+ Type of heap to be used in the algorithm. It should be a subclass of
46
+ :class:`MinHeap` or implement a compatible interface.
47
+
48
+ If a stock heap implementation is to be used, :class:`BinaryHeap` is
49
+ recommended over :class:`PairingHeap` for Python implementations without
50
+ optimized attribute accesses (e.g., CPython) despite a slower
51
+ asymptotic running time. For Python implementations with optimized
52
+ attribute accesses (e.g., PyPy), :class:`PairingHeap` provides better
53
+ performance. Default value: :class:`BinaryHeap`.
54
+
55
+ Returns
56
+ -------
57
+ cut_value : integer or float
58
+ The sum of weights of edges in a minimum cut.
59
+
60
+ partition : pair of node lists
61
+ A partitioning of the nodes that defines a minimum cut.
62
+
63
+ Raises
64
+ ------
65
+ NetworkXNotImplemented
66
+ If the graph is directed or a multigraph.
67
+
68
+ NetworkXError
69
+ If the graph has less than two nodes, is not connected or has a
70
+ negative-weighted edge.
71
+
72
+ Examples
73
+ --------
74
+ >>> G = nx.Graph()
75
+ >>> G.add_edge("x", "a", weight=3)
76
+ >>> G.add_edge("x", "b", weight=1)
77
+ >>> G.add_edge("a", "c", weight=3)
78
+ >>> G.add_edge("b", "c", weight=5)
79
+ >>> G.add_edge("b", "d", weight=4)
80
+ >>> G.add_edge("d", "e", weight=2)
81
+ >>> G.add_edge("c", "y", weight=2)
82
+ >>> G.add_edge("e", "y", weight=3)
83
+ >>> cut_value, partition = nx.stoer_wagner(G)
84
+ >>> cut_value
85
+ 4
86
+ """
87
+ n = len(G)
88
+ if n < 2:
89
+ raise nx.NetworkXError("graph has less than two nodes.")
90
+ if not nx.is_connected(G):
91
+ raise nx.NetworkXError("graph is not connected.")
92
+
93
+ # Make a copy of the graph for internal use.
94
+ G = nx.Graph(
95
+ (u, v, {"weight": e.get(weight, 1)}) for u, v, e in G.edges(data=True) if u != v
96
+ )
97
+ G.__networkx_cache__ = None # Disable caching
98
+
99
+ for u, v, e in G.edges(data=True):
100
+ if e["weight"] < 0:
101
+ raise nx.NetworkXError("graph has a negative-weighted edge.")
102
+
103
+ cut_value = float("inf")
104
+ nodes = set(G)
105
+ contractions = [] # contracted node pairs
106
+
107
+ # Repeatedly pick a pair of nodes to contract until only one node is left.
108
+ for i in range(n - 1):
109
+ # Pick an arbitrary node u and create a set A = {u}.
110
+ u = arbitrary_element(G)
111
+ A = {u}
112
+ # Repeatedly pick the node "most tightly connected" to A and add it to
113
+ # A. The tightness of connectivity of a node not in A is defined by the
114
+ # of edges connecting it to nodes in A.
115
+ h = heap() # min-heap emulating a max-heap
116
+ for v, e in G[u].items():
117
+ h.insert(v, -e["weight"])
118
+ # Repeat until all but one node has been added to A.
119
+ for j in range(n - i - 2):
120
+ u = h.pop()[0]
121
+ A.add(u)
122
+ for v, e in G[u].items():
123
+ if v not in A:
124
+ h.insert(v, h.get(v, 0) - e["weight"])
125
+ # A and the remaining node v define a "cut of the phase". There is a
126
+ # minimum cut of the original graph that is also a cut of the phase.
127
+ # Due to contractions in earlier phases, v may in fact represent
128
+ # multiple nodes in the original graph.
129
+ v, w = h.min()
130
+ w = -w
131
+ if w < cut_value:
132
+ cut_value = w
133
+ best_phase = i
134
+ # Contract v and the last node added to A.
135
+ contractions.append((u, v))
136
+ for w, e in G[v].items():
137
+ if w != u:
138
+ if w not in G[u]:
139
+ G.add_edge(u, w, weight=e["weight"])
140
+ else:
141
+ G[u][w]["weight"] += e["weight"]
142
+ G.remove_node(v)
143
+
144
+ # Recover the optimal partitioning from the contractions.
145
+ G = nx.Graph(islice(contractions, best_phase))
146
+ v = contractions[best_phase][1]
147
+ G.add_node(v)
148
+ reachable = set(nx.single_source_shortest_path_length(G, v))
149
+ partition = (list(reachable), list(nodes - reachable))
150
+
151
+ return cut_value, partition
venv/lib/python3.10/site-packages/networkx/algorithms/connectivity/utils.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Utilities for connectivity package
3
+ """
4
+ import networkx as nx
5
+
6
+ __all__ = ["build_auxiliary_node_connectivity", "build_auxiliary_edge_connectivity"]
7
+
8
+
9
+ @nx._dispatchable(returns_graph=True)
10
+ def build_auxiliary_node_connectivity(G):
11
+ r"""Creates a directed graph D from an undirected graph G to compute flow
12
+ based node connectivity.
13
+
14
+ For an undirected graph G having `n` nodes and `m` edges we derive a
15
+ directed graph D with `2n` nodes and `2m+n` arcs by replacing each
16
+ original node `v` with two nodes `vA`, `vB` linked by an (internal)
17
+ arc in D. Then for each edge (`u`, `v`) in G we add two arcs (`uB`, `vA`)
18
+ and (`vB`, `uA`) in D. Finally we set the attribute capacity = 1 for each
19
+ arc in D [1]_.
20
+
21
+ For a directed graph having `n` nodes and `m` arcs we derive a
22
+ directed graph D with `2n` nodes and `m+n` arcs by replacing each
23
+ original node `v` with two nodes `vA`, `vB` linked by an (internal)
24
+ arc (`vA`, `vB`) in D. Then for each arc (`u`, `v`) in G we add one
25
+ arc (`uB`, `vA`) in D. Finally we set the attribute capacity = 1 for
26
+ each arc in D.
27
+
28
+ A dictionary with a mapping between nodes in the original graph and the
29
+ auxiliary digraph is stored as a graph attribute: D.graph['mapping'].
30
+
31
+ References
32
+ ----------
33
+ .. [1] Kammer, Frank and Hanjo Taubig. Graph Connectivity. in Brandes and
34
+ Erlebach, 'Network Analysis: Methodological Foundations', Lecture
35
+ Notes in Computer Science, Volume 3418, Springer-Verlag, 2005.
36
+ https://doi.org/10.1007/978-3-540-31955-9_7
37
+
38
+ """
39
+ directed = G.is_directed()
40
+
41
+ mapping = {}
42
+ H = nx.DiGraph()
43
+
44
+ for i, node in enumerate(G):
45
+ mapping[node] = i
46
+ H.add_node(f"{i}A", id=node)
47
+ H.add_node(f"{i}B", id=node)
48
+ H.add_edge(f"{i}A", f"{i}B", capacity=1)
49
+
50
+ edges = []
51
+ for source, target in G.edges():
52
+ edges.append((f"{mapping[source]}B", f"{mapping[target]}A"))
53
+ if not directed:
54
+ edges.append((f"{mapping[target]}B", f"{mapping[source]}A"))
55
+ H.add_edges_from(edges, capacity=1)
56
+
57
+ # Store mapping as graph attribute
58
+ H.graph["mapping"] = mapping
59
+ return H
60
+
61
+
62
+ @nx._dispatchable(returns_graph=True)
63
+ def build_auxiliary_edge_connectivity(G):
64
+ """Auxiliary digraph for computing flow based edge connectivity
65
+
66
+ If the input graph is undirected, we replace each edge (`u`,`v`) with
67
+ two reciprocal arcs (`u`, `v`) and (`v`, `u`) and then we set the attribute
68
+ 'capacity' for each arc to 1. If the input graph is directed we simply
69
+ add the 'capacity' attribute. Part of algorithm 1 in [1]_ .
70
+
71
+ References
72
+ ----------
73
+ .. [1] Abdol-Hossein Esfahanian. Connectivity Algorithms. (this is a
74
+ chapter, look for the reference of the book).
75
+ http://www.cse.msu.edu/~cse835/Papers/Graph_connectivity_revised.pdf
76
+ """
77
+ if G.is_directed():
78
+ H = nx.DiGraph()
79
+ H.add_nodes_from(G.nodes())
80
+ H.add_edges_from(G.edges(), capacity=1)
81
+ return H
82
+ else:
83
+ H = nx.DiGraph()
84
+ H.add_nodes_from(G.nodes())
85
+ for source, target in G.edges():
86
+ H.add_edges_from([(source, target), (target, source)], capacity=1)
87
+ return H