Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step60/zero/19.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step60/zero/19.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step60/zero/29.vocab_parallel_projection.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/numpy/lib/arraypad.py +882 -0
- venv/lib/python3.10/site-packages/numpy/lib/arraysetops.py +981 -0
- venv/lib/python3.10/site-packages/numpy/lib/arrayterator.pyi +49 -0
- venv/lib/python3.10/site-packages/numpy/lib/format.pyi +22 -0
- venv/lib/python3.10/site-packages/numpy/lib/function_base.py +0 -0
- venv/lib/python3.10/site-packages/numpy/lib/histograms.py +1072 -0
- venv/lib/python3.10/site-packages/numpy/lib/index_tricks.pyi +162 -0
- venv/lib/python3.10/site-packages/numpy/lib/mixins.py +177 -0
- venv/lib/python3.10/site-packages/numpy/lib/nanfunctions.pyi +38 -0
- venv/lib/python3.10/site-packages/numpy/lib/recfunctions.py +1673 -0
- venv/lib/python3.10/site-packages/numpy/lib/shape_base.py +1274 -0
- venv/lib/python3.10/site-packages/numpy/lib/utils.py +1211 -0
- venv/lib/python3.10/site-packages/numpy/testing/__init__.py +22 -0
- venv/lib/python3.10/site-packages/numpy/testing/__init__.pyi +50 -0
- venv/lib/python3.10/site-packages/numpy/testing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/__pycache__/overrides.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/__pycache__/setup.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/extbuild.py +248 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/utils.py +2509 -0
- venv/lib/python3.10/site-packages/numpy/testing/_private/utils.pyi +402 -0
- venv/lib/python3.10/site-packages/numpy/testing/overrides.py +83 -0
- venv/lib/python3.10/site-packages/numpy/testing/print_coercion_tables.py +200 -0
- venv/lib/python3.10/site-packages/numpy/testing/setup.py +21 -0
- venv/lib/python3.10/site-packages/numpy/testing/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/testing/tests/test_utils.py +1626 -0
- venv/lib/python3.10/site-packages/numpy/typing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/__pycache__/setup.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi +25 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi +516 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi +221 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi +28 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi +68 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi +33 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi +135 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/chararray.pyi +140 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi +270 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/dtype.pyi +85 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi +45 -0
- venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi +31 -0
ckpts/universal/global_step60/zero/19.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb77f9077a8a5d2a3838d546b6a42040f062b8b4f864cc3c6e0959d88fa22e34
|
3 |
+
size 33555612
|
ckpts/universal/global_step60/zero/19.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0743e9c2dd1684f844eb6ebaf24b788422d644099a0db3dd2c88088697165915
|
3 |
+
size 33555627
|
ckpts/universal/global_step60/zero/29.vocab_parallel_projection.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c4331b38c8bd16658359526c6911d055c81827507aef930f4aeab92f2b5fee9d
|
3 |
+
size 415237197
|
venv/lib/python3.10/site-packages/numpy/lib/arraypad.py
ADDED
@@ -0,0 +1,882 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
The arraypad module contains a group of functions to pad values onto the edges
|
3 |
+
of an n-dimensional array.
|
4 |
+
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
from numpy.core.overrides import array_function_dispatch
|
8 |
+
from numpy.lib.index_tricks import ndindex
|
9 |
+
|
10 |
+
|
11 |
+
__all__ = ['pad']
|
12 |
+
|
13 |
+
|
14 |
+
###############################################################################
|
15 |
+
# Private utility functions.
|
16 |
+
|
17 |
+
|
18 |
+
def _round_if_needed(arr, dtype):
|
19 |
+
"""
|
20 |
+
Rounds arr inplace if destination dtype is integer.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
arr : ndarray
|
25 |
+
Input array.
|
26 |
+
dtype : dtype
|
27 |
+
The dtype of the destination array.
|
28 |
+
"""
|
29 |
+
if np.issubdtype(dtype, np.integer):
|
30 |
+
arr.round(out=arr)
|
31 |
+
|
32 |
+
|
33 |
+
def _slice_at_axis(sl, axis):
|
34 |
+
"""
|
35 |
+
Construct tuple of slices to slice an array in the given dimension.
|
36 |
+
|
37 |
+
Parameters
|
38 |
+
----------
|
39 |
+
sl : slice
|
40 |
+
The slice for the given dimension.
|
41 |
+
axis : int
|
42 |
+
The axis to which `sl` is applied. All other dimensions are left
|
43 |
+
"unsliced".
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
sl : tuple of slices
|
48 |
+
A tuple with slices matching `shape` in length.
|
49 |
+
|
50 |
+
Examples
|
51 |
+
--------
|
52 |
+
>>> _slice_at_axis(slice(None, 3, -1), 1)
|
53 |
+
(slice(None, None, None), slice(None, 3, -1), (...,))
|
54 |
+
"""
|
55 |
+
return (slice(None),) * axis + (sl,) + (...,)
|
56 |
+
|
57 |
+
|
58 |
+
def _view_roi(array, original_area_slice, axis):
|
59 |
+
"""
|
60 |
+
Get a view of the current region of interest during iterative padding.
|
61 |
+
|
62 |
+
When padding multiple dimensions iteratively corner values are
|
63 |
+
unnecessarily overwritten multiple times. This function reduces the
|
64 |
+
working area for the first dimensions so that corners are excluded.
|
65 |
+
|
66 |
+
Parameters
|
67 |
+
----------
|
68 |
+
array : ndarray
|
69 |
+
The array with the region of interest.
|
70 |
+
original_area_slice : tuple of slices
|
71 |
+
Denotes the area with original values of the unpadded array.
|
72 |
+
axis : int
|
73 |
+
The currently padded dimension assuming that `axis` is padded before
|
74 |
+
`axis` + 1.
|
75 |
+
|
76 |
+
Returns
|
77 |
+
-------
|
78 |
+
roi : ndarray
|
79 |
+
The region of interest of the original `array`.
|
80 |
+
"""
|
81 |
+
axis += 1
|
82 |
+
sl = (slice(None),) * axis + original_area_slice[axis:]
|
83 |
+
return array[sl]
|
84 |
+
|
85 |
+
|
86 |
+
def _pad_simple(array, pad_width, fill_value=None):
|
87 |
+
"""
|
88 |
+
Pad array on all sides with either a single value or undefined values.
|
89 |
+
|
90 |
+
Parameters
|
91 |
+
----------
|
92 |
+
array : ndarray
|
93 |
+
Array to grow.
|
94 |
+
pad_width : sequence of tuple[int, int]
|
95 |
+
Pad width on both sides for each dimension in `arr`.
|
96 |
+
fill_value : scalar, optional
|
97 |
+
If provided the padded area is filled with this value, otherwise
|
98 |
+
the pad area left undefined.
|
99 |
+
|
100 |
+
Returns
|
101 |
+
-------
|
102 |
+
padded : ndarray
|
103 |
+
The padded array with the same dtype as`array`. Its order will default
|
104 |
+
to C-style if `array` is not F-contiguous.
|
105 |
+
original_area_slice : tuple
|
106 |
+
A tuple of slices pointing to the area of the original array.
|
107 |
+
"""
|
108 |
+
# Allocate grown array
|
109 |
+
new_shape = tuple(
|
110 |
+
left + size + right
|
111 |
+
for size, (left, right) in zip(array.shape, pad_width)
|
112 |
+
)
|
113 |
+
order = 'F' if array.flags.fnc else 'C' # Fortran and not also C-order
|
114 |
+
padded = np.empty(new_shape, dtype=array.dtype, order=order)
|
115 |
+
|
116 |
+
if fill_value is not None:
|
117 |
+
padded.fill(fill_value)
|
118 |
+
|
119 |
+
# Copy old array into correct space
|
120 |
+
original_area_slice = tuple(
|
121 |
+
slice(left, left + size)
|
122 |
+
for size, (left, right) in zip(array.shape, pad_width)
|
123 |
+
)
|
124 |
+
padded[original_area_slice] = array
|
125 |
+
|
126 |
+
return padded, original_area_slice
|
127 |
+
|
128 |
+
|
129 |
+
def _set_pad_area(padded, axis, width_pair, value_pair):
|
130 |
+
"""
|
131 |
+
Set empty-padded area in given dimension.
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
----------
|
135 |
+
padded : ndarray
|
136 |
+
Array with the pad area which is modified inplace.
|
137 |
+
axis : int
|
138 |
+
Dimension with the pad area to set.
|
139 |
+
width_pair : (int, int)
|
140 |
+
Pair of widths that mark the pad area on both sides in the given
|
141 |
+
dimension.
|
142 |
+
value_pair : tuple of scalars or ndarrays
|
143 |
+
Values inserted into the pad area on each side. It must match or be
|
144 |
+
broadcastable to the shape of `arr`.
|
145 |
+
"""
|
146 |
+
left_slice = _slice_at_axis(slice(None, width_pair[0]), axis)
|
147 |
+
padded[left_slice] = value_pair[0]
|
148 |
+
|
149 |
+
right_slice = _slice_at_axis(
|
150 |
+
slice(padded.shape[axis] - width_pair[1], None), axis)
|
151 |
+
padded[right_slice] = value_pair[1]
|
152 |
+
|
153 |
+
|
154 |
+
def _get_edges(padded, axis, width_pair):
|
155 |
+
"""
|
156 |
+
Retrieve edge values from empty-padded array in given dimension.
|
157 |
+
|
158 |
+
Parameters
|
159 |
+
----------
|
160 |
+
padded : ndarray
|
161 |
+
Empty-padded array.
|
162 |
+
axis : int
|
163 |
+
Dimension in which the edges are considered.
|
164 |
+
width_pair : (int, int)
|
165 |
+
Pair of widths that mark the pad area on both sides in the given
|
166 |
+
dimension.
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
left_edge, right_edge : ndarray
|
171 |
+
Edge values of the valid area in `padded` in the given dimension. Its
|
172 |
+
shape will always match `padded` except for the dimension given by
|
173 |
+
`axis` which will have a length of 1.
|
174 |
+
"""
|
175 |
+
left_index = width_pair[0]
|
176 |
+
left_slice = _slice_at_axis(slice(left_index, left_index + 1), axis)
|
177 |
+
left_edge = padded[left_slice]
|
178 |
+
|
179 |
+
right_index = padded.shape[axis] - width_pair[1]
|
180 |
+
right_slice = _slice_at_axis(slice(right_index - 1, right_index), axis)
|
181 |
+
right_edge = padded[right_slice]
|
182 |
+
|
183 |
+
return left_edge, right_edge
|
184 |
+
|
185 |
+
|
186 |
+
def _get_linear_ramps(padded, axis, width_pair, end_value_pair):
|
187 |
+
"""
|
188 |
+
Construct linear ramps for empty-padded array in given dimension.
|
189 |
+
|
190 |
+
Parameters
|
191 |
+
----------
|
192 |
+
padded : ndarray
|
193 |
+
Empty-padded array.
|
194 |
+
axis : int
|
195 |
+
Dimension in which the ramps are constructed.
|
196 |
+
width_pair : (int, int)
|
197 |
+
Pair of widths that mark the pad area on both sides in the given
|
198 |
+
dimension.
|
199 |
+
end_value_pair : (scalar, scalar)
|
200 |
+
End values for the linear ramps which form the edge of the fully padded
|
201 |
+
array. These values are included in the linear ramps.
|
202 |
+
|
203 |
+
Returns
|
204 |
+
-------
|
205 |
+
left_ramp, right_ramp : ndarray
|
206 |
+
Linear ramps to set on both sides of `padded`.
|
207 |
+
"""
|
208 |
+
edge_pair = _get_edges(padded, axis, width_pair)
|
209 |
+
|
210 |
+
left_ramp, right_ramp = (
|
211 |
+
np.linspace(
|
212 |
+
start=end_value,
|
213 |
+
stop=edge.squeeze(axis), # Dimension is replaced by linspace
|
214 |
+
num=width,
|
215 |
+
endpoint=False,
|
216 |
+
dtype=padded.dtype,
|
217 |
+
axis=axis
|
218 |
+
)
|
219 |
+
for end_value, edge, width in zip(
|
220 |
+
end_value_pair, edge_pair, width_pair
|
221 |
+
)
|
222 |
+
)
|
223 |
+
|
224 |
+
# Reverse linear space in appropriate dimension
|
225 |
+
right_ramp = right_ramp[_slice_at_axis(slice(None, None, -1), axis)]
|
226 |
+
|
227 |
+
return left_ramp, right_ramp
|
228 |
+
|
229 |
+
|
230 |
+
def _get_stats(padded, axis, width_pair, length_pair, stat_func):
|
231 |
+
"""
|
232 |
+
Calculate statistic for the empty-padded array in given dimension.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
padded : ndarray
|
237 |
+
Empty-padded array.
|
238 |
+
axis : int
|
239 |
+
Dimension in which the statistic is calculated.
|
240 |
+
width_pair : (int, int)
|
241 |
+
Pair of widths that mark the pad area on both sides in the given
|
242 |
+
dimension.
|
243 |
+
length_pair : 2-element sequence of None or int
|
244 |
+
Gives the number of values in valid area from each side that is
|
245 |
+
taken into account when calculating the statistic. If None the entire
|
246 |
+
valid area in `padded` is considered.
|
247 |
+
stat_func : function
|
248 |
+
Function to compute statistic. The expected signature is
|
249 |
+
``stat_func(x: ndarray, axis: int, keepdims: bool) -> ndarray``.
|
250 |
+
|
251 |
+
Returns
|
252 |
+
-------
|
253 |
+
left_stat, right_stat : ndarray
|
254 |
+
Calculated statistic for both sides of `padded`.
|
255 |
+
"""
|
256 |
+
# Calculate indices of the edges of the area with original values
|
257 |
+
left_index = width_pair[0]
|
258 |
+
right_index = padded.shape[axis] - width_pair[1]
|
259 |
+
# as well as its length
|
260 |
+
max_length = right_index - left_index
|
261 |
+
|
262 |
+
# Limit stat_lengths to max_length
|
263 |
+
left_length, right_length = length_pair
|
264 |
+
if left_length is None or max_length < left_length:
|
265 |
+
left_length = max_length
|
266 |
+
if right_length is None or max_length < right_length:
|
267 |
+
right_length = max_length
|
268 |
+
|
269 |
+
if (left_length == 0 or right_length == 0) \
|
270 |
+
and stat_func in {np.amax, np.amin}:
|
271 |
+
# amax and amin can't operate on an empty array,
|
272 |
+
# raise a more descriptive warning here instead of the default one
|
273 |
+
raise ValueError("stat_length of 0 yields no value for padding")
|
274 |
+
|
275 |
+
# Calculate statistic for the left side
|
276 |
+
left_slice = _slice_at_axis(
|
277 |
+
slice(left_index, left_index + left_length), axis)
|
278 |
+
left_chunk = padded[left_slice]
|
279 |
+
left_stat = stat_func(left_chunk, axis=axis, keepdims=True)
|
280 |
+
_round_if_needed(left_stat, padded.dtype)
|
281 |
+
|
282 |
+
if left_length == right_length == max_length:
|
283 |
+
# return early as right_stat must be identical to left_stat
|
284 |
+
return left_stat, left_stat
|
285 |
+
|
286 |
+
# Calculate statistic for the right side
|
287 |
+
right_slice = _slice_at_axis(
|
288 |
+
slice(right_index - right_length, right_index), axis)
|
289 |
+
right_chunk = padded[right_slice]
|
290 |
+
right_stat = stat_func(right_chunk, axis=axis, keepdims=True)
|
291 |
+
_round_if_needed(right_stat, padded.dtype)
|
292 |
+
|
293 |
+
return left_stat, right_stat
|
294 |
+
|
295 |
+
|
296 |
+
def _set_reflect_both(padded, axis, width_pair, method, include_edge=False):
|
297 |
+
"""
|
298 |
+
Pad `axis` of `arr` with reflection.
|
299 |
+
|
300 |
+
Parameters
|
301 |
+
----------
|
302 |
+
padded : ndarray
|
303 |
+
Input array of arbitrary shape.
|
304 |
+
axis : int
|
305 |
+
Axis along which to pad `arr`.
|
306 |
+
width_pair : (int, int)
|
307 |
+
Pair of widths that mark the pad area on both sides in the given
|
308 |
+
dimension.
|
309 |
+
method : str
|
310 |
+
Controls method of reflection; options are 'even' or 'odd'.
|
311 |
+
include_edge : bool
|
312 |
+
If true, edge value is included in reflection, otherwise the edge
|
313 |
+
value forms the symmetric axis to the reflection.
|
314 |
+
|
315 |
+
Returns
|
316 |
+
-------
|
317 |
+
pad_amt : tuple of ints, length 2
|
318 |
+
New index positions of padding to do along the `axis`. If these are
|
319 |
+
both 0, padding is done in this dimension.
|
320 |
+
"""
|
321 |
+
left_pad, right_pad = width_pair
|
322 |
+
old_length = padded.shape[axis] - right_pad - left_pad
|
323 |
+
|
324 |
+
if include_edge:
|
325 |
+
# Edge is included, we need to offset the pad amount by 1
|
326 |
+
edge_offset = 1
|
327 |
+
else:
|
328 |
+
edge_offset = 0 # Edge is not included, no need to offset pad amount
|
329 |
+
old_length -= 1 # but must be omitted from the chunk
|
330 |
+
|
331 |
+
if left_pad > 0:
|
332 |
+
# Pad with reflected values on left side:
|
333 |
+
# First limit chunk size which can't be larger than pad area
|
334 |
+
chunk_length = min(old_length, left_pad)
|
335 |
+
# Slice right to left, stop on or next to edge, start relative to stop
|
336 |
+
stop = left_pad - edge_offset
|
337 |
+
start = stop + chunk_length
|
338 |
+
left_slice = _slice_at_axis(slice(start, stop, -1), axis)
|
339 |
+
left_chunk = padded[left_slice]
|
340 |
+
|
341 |
+
if method == "odd":
|
342 |
+
# Negate chunk and align with edge
|
343 |
+
edge_slice = _slice_at_axis(slice(left_pad, left_pad + 1), axis)
|
344 |
+
left_chunk = 2 * padded[edge_slice] - left_chunk
|
345 |
+
|
346 |
+
# Insert chunk into padded area
|
347 |
+
start = left_pad - chunk_length
|
348 |
+
stop = left_pad
|
349 |
+
pad_area = _slice_at_axis(slice(start, stop), axis)
|
350 |
+
padded[pad_area] = left_chunk
|
351 |
+
# Adjust pointer to left edge for next iteration
|
352 |
+
left_pad -= chunk_length
|
353 |
+
|
354 |
+
if right_pad > 0:
|
355 |
+
# Pad with reflected values on right side:
|
356 |
+
# First limit chunk size which can't be larger than pad area
|
357 |
+
chunk_length = min(old_length, right_pad)
|
358 |
+
# Slice right to left, start on or next to edge, stop relative to start
|
359 |
+
start = -right_pad + edge_offset - 2
|
360 |
+
stop = start - chunk_length
|
361 |
+
right_slice = _slice_at_axis(slice(start, stop, -1), axis)
|
362 |
+
right_chunk = padded[right_slice]
|
363 |
+
|
364 |
+
if method == "odd":
|
365 |
+
# Negate chunk and align with edge
|
366 |
+
edge_slice = _slice_at_axis(
|
367 |
+
slice(-right_pad - 1, -right_pad), axis)
|
368 |
+
right_chunk = 2 * padded[edge_slice] - right_chunk
|
369 |
+
|
370 |
+
# Insert chunk into padded area
|
371 |
+
start = padded.shape[axis] - right_pad
|
372 |
+
stop = start + chunk_length
|
373 |
+
pad_area = _slice_at_axis(slice(start, stop), axis)
|
374 |
+
padded[pad_area] = right_chunk
|
375 |
+
# Adjust pointer to right edge for next iteration
|
376 |
+
right_pad -= chunk_length
|
377 |
+
|
378 |
+
return left_pad, right_pad
|
379 |
+
|
380 |
+
|
381 |
+
def _set_wrap_both(padded, axis, width_pair, original_period):
|
382 |
+
"""
|
383 |
+
Pad `axis` of `arr` with wrapped values.
|
384 |
+
|
385 |
+
Parameters
|
386 |
+
----------
|
387 |
+
padded : ndarray
|
388 |
+
Input array of arbitrary shape.
|
389 |
+
axis : int
|
390 |
+
Axis along which to pad `arr`.
|
391 |
+
width_pair : (int, int)
|
392 |
+
Pair of widths that mark the pad area on both sides in the given
|
393 |
+
dimension.
|
394 |
+
original_period : int
|
395 |
+
Original length of data on `axis` of `arr`.
|
396 |
+
|
397 |
+
Returns
|
398 |
+
-------
|
399 |
+
pad_amt : tuple of ints, length 2
|
400 |
+
New index positions of padding to do along the `axis`. If these are
|
401 |
+
both 0, padding is done in this dimension.
|
402 |
+
"""
|
403 |
+
left_pad, right_pad = width_pair
|
404 |
+
period = padded.shape[axis] - right_pad - left_pad
|
405 |
+
# Avoid wrapping with only a subset of the original area by ensuring period
|
406 |
+
# can only be a multiple of the original area's length.
|
407 |
+
period = period // original_period * original_period
|
408 |
+
|
409 |
+
# If the current dimension of `arr` doesn't contain enough valid values
|
410 |
+
# (not part of the undefined pad area) we need to pad multiple times.
|
411 |
+
# Each time the pad area shrinks on both sides which is communicated with
|
412 |
+
# these variables.
|
413 |
+
new_left_pad = 0
|
414 |
+
new_right_pad = 0
|
415 |
+
|
416 |
+
if left_pad > 0:
|
417 |
+
# Pad with wrapped values on left side
|
418 |
+
# First slice chunk from left side of the non-pad area.
|
419 |
+
# Use min(period, left_pad) to ensure that chunk is not larger than
|
420 |
+
# pad area.
|
421 |
+
slice_end = left_pad + period
|
422 |
+
slice_start = slice_end - min(period, left_pad)
|
423 |
+
right_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
|
424 |
+
right_chunk = padded[right_slice]
|
425 |
+
|
426 |
+
if left_pad > period:
|
427 |
+
# Chunk is smaller than pad area
|
428 |
+
pad_area = _slice_at_axis(slice(left_pad - period, left_pad), axis)
|
429 |
+
new_left_pad = left_pad - period
|
430 |
+
else:
|
431 |
+
# Chunk matches pad area
|
432 |
+
pad_area = _slice_at_axis(slice(None, left_pad), axis)
|
433 |
+
padded[pad_area] = right_chunk
|
434 |
+
|
435 |
+
if right_pad > 0:
|
436 |
+
# Pad with wrapped values on right side
|
437 |
+
# First slice chunk from right side of the non-pad area.
|
438 |
+
# Use min(period, right_pad) to ensure that chunk is not larger than
|
439 |
+
# pad area.
|
440 |
+
slice_start = -right_pad - period
|
441 |
+
slice_end = slice_start + min(period, right_pad)
|
442 |
+
left_slice = _slice_at_axis(slice(slice_start, slice_end), axis)
|
443 |
+
left_chunk = padded[left_slice]
|
444 |
+
|
445 |
+
if right_pad > period:
|
446 |
+
# Chunk is smaller than pad area
|
447 |
+
pad_area = _slice_at_axis(
|
448 |
+
slice(-right_pad, -right_pad + period), axis)
|
449 |
+
new_right_pad = right_pad - period
|
450 |
+
else:
|
451 |
+
# Chunk matches pad area
|
452 |
+
pad_area = _slice_at_axis(slice(-right_pad, None), axis)
|
453 |
+
padded[pad_area] = left_chunk
|
454 |
+
|
455 |
+
return new_left_pad, new_right_pad
|
456 |
+
|
457 |
+
|
458 |
+
def _as_pairs(x, ndim, as_index=False):
|
459 |
+
"""
|
460 |
+
Broadcast `x` to an array with the shape (`ndim`, 2).
|
461 |
+
|
462 |
+
A helper function for `pad` that prepares and validates arguments like
|
463 |
+
`pad_width` for iteration in pairs.
|
464 |
+
|
465 |
+
Parameters
|
466 |
+
----------
|
467 |
+
x : {None, scalar, array-like}
|
468 |
+
The object to broadcast to the shape (`ndim`, 2).
|
469 |
+
ndim : int
|
470 |
+
Number of pairs the broadcasted `x` will have.
|
471 |
+
as_index : bool, optional
|
472 |
+
If `x` is not None, try to round each element of `x` to an integer
|
473 |
+
(dtype `np.intp`) and ensure every element is positive.
|
474 |
+
|
475 |
+
Returns
|
476 |
+
-------
|
477 |
+
pairs : nested iterables, shape (`ndim`, 2)
|
478 |
+
The broadcasted version of `x`.
|
479 |
+
|
480 |
+
Raises
|
481 |
+
------
|
482 |
+
ValueError
|
483 |
+
If `as_index` is True and `x` contains negative elements.
|
484 |
+
Or if `x` is not broadcastable to the shape (`ndim`, 2).
|
485 |
+
"""
|
486 |
+
if x is None:
|
487 |
+
# Pass through None as a special case, otherwise np.round(x) fails
|
488 |
+
# with an AttributeError
|
489 |
+
return ((None, None),) * ndim
|
490 |
+
|
491 |
+
x = np.array(x)
|
492 |
+
if as_index:
|
493 |
+
x = np.round(x).astype(np.intp, copy=False)
|
494 |
+
|
495 |
+
if x.ndim < 3:
|
496 |
+
# Optimization: Possibly use faster paths for cases where `x` has
|
497 |
+
# only 1 or 2 elements. `np.broadcast_to` could handle these as well
|
498 |
+
# but is currently slower
|
499 |
+
|
500 |
+
if x.size == 1:
|
501 |
+
# x was supplied as a single value
|
502 |
+
x = x.ravel() # Ensure x[0] works for x.ndim == 0, 1, 2
|
503 |
+
if as_index and x < 0:
|
504 |
+
raise ValueError("index can't contain negative values")
|
505 |
+
return ((x[0], x[0]),) * ndim
|
506 |
+
|
507 |
+
if x.size == 2 and x.shape != (2, 1):
|
508 |
+
# x was supplied with a single value for each side
|
509 |
+
# but except case when each dimension has a single value
|
510 |
+
# which should be broadcasted to a pair,
|
511 |
+
# e.g. [[1], [2]] -> [[1, 1], [2, 2]] not [[1, 2], [1, 2]]
|
512 |
+
x = x.ravel() # Ensure x[0], x[1] works
|
513 |
+
if as_index and (x[0] < 0 or x[1] < 0):
|
514 |
+
raise ValueError("index can't contain negative values")
|
515 |
+
return ((x[0], x[1]),) * ndim
|
516 |
+
|
517 |
+
if as_index and x.min() < 0:
|
518 |
+
raise ValueError("index can't contain negative values")
|
519 |
+
|
520 |
+
# Converting the array with `tolist` seems to improve performance
|
521 |
+
# when iterating and indexing the result (see usage in `pad`)
|
522 |
+
return np.broadcast_to(x, (ndim, 2)).tolist()
|
523 |
+
|
524 |
+
|
525 |
+
def _pad_dispatcher(array, pad_width, mode=None, **kwargs):
|
526 |
+
return (array,)
|
527 |
+
|
528 |
+
|
529 |
+
###############################################################################
|
530 |
+
# Public functions
|
531 |
+
|
532 |
+
|
533 |
+
@array_function_dispatch(_pad_dispatcher, module='numpy')
|
534 |
+
def pad(array, pad_width, mode='constant', **kwargs):
|
535 |
+
"""
|
536 |
+
Pad an array.
|
537 |
+
|
538 |
+
Parameters
|
539 |
+
----------
|
540 |
+
array : array_like of rank N
|
541 |
+
The array to pad.
|
542 |
+
pad_width : {sequence, array_like, int}
|
543 |
+
Number of values padded to the edges of each axis.
|
544 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique pad widths
|
545 |
+
for each axis.
|
546 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
547 |
+
and after pad for each axis.
|
548 |
+
``(pad,)`` or ``int`` is a shortcut for before = after = pad width
|
549 |
+
for all axes.
|
550 |
+
mode : str or function, optional
|
551 |
+
One of the following string values or a user supplied function.
|
552 |
+
|
553 |
+
'constant' (default)
|
554 |
+
Pads with a constant value.
|
555 |
+
'edge'
|
556 |
+
Pads with the edge values of array.
|
557 |
+
'linear_ramp'
|
558 |
+
Pads with the linear ramp between end_value and the
|
559 |
+
array edge value.
|
560 |
+
'maximum'
|
561 |
+
Pads with the maximum value of all or part of the
|
562 |
+
vector along each axis.
|
563 |
+
'mean'
|
564 |
+
Pads with the mean value of all or part of the
|
565 |
+
vector along each axis.
|
566 |
+
'median'
|
567 |
+
Pads with the median value of all or part of the
|
568 |
+
vector along each axis.
|
569 |
+
'minimum'
|
570 |
+
Pads with the minimum value of all or part of the
|
571 |
+
vector along each axis.
|
572 |
+
'reflect'
|
573 |
+
Pads with the reflection of the vector mirrored on
|
574 |
+
the first and last values of the vector along each
|
575 |
+
axis.
|
576 |
+
'symmetric'
|
577 |
+
Pads with the reflection of the vector mirrored
|
578 |
+
along the edge of the array.
|
579 |
+
'wrap'
|
580 |
+
Pads with the wrap of the vector along the axis.
|
581 |
+
The first values are used to pad the end and the
|
582 |
+
end values are used to pad the beginning.
|
583 |
+
'empty'
|
584 |
+
Pads with undefined values.
|
585 |
+
|
586 |
+
.. versionadded:: 1.17
|
587 |
+
|
588 |
+
<function>
|
589 |
+
Padding function, see Notes.
|
590 |
+
stat_length : sequence or int, optional
|
591 |
+
Used in 'maximum', 'mean', 'median', and 'minimum'. Number of
|
592 |
+
values at edge of each axis used to calculate the statistic value.
|
593 |
+
|
594 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique statistic
|
595 |
+
lengths for each axis.
|
596 |
+
|
597 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
598 |
+
and after statistic lengths for each axis.
|
599 |
+
|
600 |
+
``(stat_length,)`` or ``int`` is a shortcut for
|
601 |
+
``before = after = statistic`` length for all axes.
|
602 |
+
|
603 |
+
Default is ``None``, to use the entire axis.
|
604 |
+
constant_values : sequence or scalar, optional
|
605 |
+
Used in 'constant'. The values to set the padded values for each
|
606 |
+
axis.
|
607 |
+
|
608 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique pad constants
|
609 |
+
for each axis.
|
610 |
+
|
611 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
612 |
+
and after constants for each axis.
|
613 |
+
|
614 |
+
``(constant,)`` or ``constant`` is a shortcut for
|
615 |
+
``before = after = constant`` for all axes.
|
616 |
+
|
617 |
+
Default is 0.
|
618 |
+
end_values : sequence or scalar, optional
|
619 |
+
Used in 'linear_ramp'. The values used for the ending value of the
|
620 |
+
linear_ramp and that will form the edge of the padded array.
|
621 |
+
|
622 |
+
``((before_1, after_1), ... (before_N, after_N))`` unique end values
|
623 |
+
for each axis.
|
624 |
+
|
625 |
+
``(before, after)`` or ``((before, after),)`` yields same before
|
626 |
+
and after end values for each axis.
|
627 |
+
|
628 |
+
``(constant,)`` or ``constant`` is a shortcut for
|
629 |
+
``before = after = constant`` for all axes.
|
630 |
+
|
631 |
+
Default is 0.
|
632 |
+
reflect_type : {'even', 'odd'}, optional
|
633 |
+
Used in 'reflect', and 'symmetric'. The 'even' style is the
|
634 |
+
default with an unaltered reflection around the edge value. For
|
635 |
+
the 'odd' style, the extended part of the array is created by
|
636 |
+
subtracting the reflected values from two times the edge value.
|
637 |
+
|
638 |
+
Returns
|
639 |
+
-------
|
640 |
+
pad : ndarray
|
641 |
+
Padded array of rank equal to `array` with shape increased
|
642 |
+
according to `pad_width`.
|
643 |
+
|
644 |
+
Notes
|
645 |
+
-----
|
646 |
+
.. versionadded:: 1.7.0
|
647 |
+
|
648 |
+
For an array with rank greater than 1, some of the padding of later
|
649 |
+
axes is calculated from padding of previous axes. This is easiest to
|
650 |
+
think about with a rank 2 array where the corners of the padded array
|
651 |
+
are calculated by using padded values from the first axis.
|
652 |
+
|
653 |
+
The padding function, if used, should modify a rank 1 array in-place. It
|
654 |
+
has the following signature::
|
655 |
+
|
656 |
+
padding_func(vector, iaxis_pad_width, iaxis, kwargs)
|
657 |
+
|
658 |
+
where
|
659 |
+
|
660 |
+
vector : ndarray
|
661 |
+
A rank 1 array already padded with zeros. Padded values are
|
662 |
+
vector[:iaxis_pad_width[0]] and vector[-iaxis_pad_width[1]:].
|
663 |
+
iaxis_pad_width : tuple
|
664 |
+
A 2-tuple of ints, iaxis_pad_width[0] represents the number of
|
665 |
+
values padded at the beginning of vector where
|
666 |
+
iaxis_pad_width[1] represents the number of values padded at
|
667 |
+
the end of vector.
|
668 |
+
iaxis : int
|
669 |
+
The axis currently being calculated.
|
670 |
+
kwargs : dict
|
671 |
+
Any keyword arguments the function requires.
|
672 |
+
|
673 |
+
Examples
|
674 |
+
--------
|
675 |
+
>>> a = [1, 2, 3, 4, 5]
|
676 |
+
>>> np.pad(a, (2, 3), 'constant', constant_values=(4, 6))
|
677 |
+
array([4, 4, 1, ..., 6, 6, 6])
|
678 |
+
|
679 |
+
>>> np.pad(a, (2, 3), 'edge')
|
680 |
+
array([1, 1, 1, ..., 5, 5, 5])
|
681 |
+
|
682 |
+
>>> np.pad(a, (2, 3), 'linear_ramp', end_values=(5, -4))
|
683 |
+
array([ 5, 3, 1, 2, 3, 4, 5, 2, -1, -4])
|
684 |
+
|
685 |
+
>>> np.pad(a, (2,), 'maximum')
|
686 |
+
array([5, 5, 1, 2, 3, 4, 5, 5, 5])
|
687 |
+
|
688 |
+
>>> np.pad(a, (2,), 'mean')
|
689 |
+
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
690 |
+
|
691 |
+
>>> np.pad(a, (2,), 'median')
|
692 |
+
array([3, 3, 1, 2, 3, 4, 5, 3, 3])
|
693 |
+
|
694 |
+
>>> a = [[1, 2], [3, 4]]
|
695 |
+
>>> np.pad(a, ((3, 2), (2, 3)), 'minimum')
|
696 |
+
array([[1, 1, 1, 2, 1, 1, 1],
|
697 |
+
[1, 1, 1, 2, 1, 1, 1],
|
698 |
+
[1, 1, 1, 2, 1, 1, 1],
|
699 |
+
[1, 1, 1, 2, 1, 1, 1],
|
700 |
+
[3, 3, 3, 4, 3, 3, 3],
|
701 |
+
[1, 1, 1, 2, 1, 1, 1],
|
702 |
+
[1, 1, 1, 2, 1, 1, 1]])
|
703 |
+
|
704 |
+
>>> a = [1, 2, 3, 4, 5]
|
705 |
+
>>> np.pad(a, (2, 3), 'reflect')
|
706 |
+
array([3, 2, 1, 2, 3, 4, 5, 4, 3, 2])
|
707 |
+
|
708 |
+
>>> np.pad(a, (2, 3), 'reflect', reflect_type='odd')
|
709 |
+
array([-1, 0, 1, 2, 3, 4, 5, 6, 7, 8])
|
710 |
+
|
711 |
+
>>> np.pad(a, (2, 3), 'symmetric')
|
712 |
+
array([2, 1, 1, 2, 3, 4, 5, 5, 4, 3])
|
713 |
+
|
714 |
+
>>> np.pad(a, (2, 3), 'symmetric', reflect_type='odd')
|
715 |
+
array([0, 1, 1, 2, 3, 4, 5, 5, 6, 7])
|
716 |
+
|
717 |
+
>>> np.pad(a, (2, 3), 'wrap')
|
718 |
+
array([4, 5, 1, 2, 3, 4, 5, 1, 2, 3])
|
719 |
+
|
720 |
+
>>> def pad_with(vector, pad_width, iaxis, kwargs):
|
721 |
+
... pad_value = kwargs.get('padder', 10)
|
722 |
+
... vector[:pad_width[0]] = pad_value
|
723 |
+
... vector[-pad_width[1]:] = pad_value
|
724 |
+
>>> a = np.arange(6)
|
725 |
+
>>> a = a.reshape((2, 3))
|
726 |
+
>>> np.pad(a, 2, pad_with)
|
727 |
+
array([[10, 10, 10, 10, 10, 10, 10],
|
728 |
+
[10, 10, 10, 10, 10, 10, 10],
|
729 |
+
[10, 10, 0, 1, 2, 10, 10],
|
730 |
+
[10, 10, 3, 4, 5, 10, 10],
|
731 |
+
[10, 10, 10, 10, 10, 10, 10],
|
732 |
+
[10, 10, 10, 10, 10, 10, 10]])
|
733 |
+
>>> np.pad(a, 2, pad_with, padder=100)
|
734 |
+
array([[100, 100, 100, 100, 100, 100, 100],
|
735 |
+
[100, 100, 100, 100, 100, 100, 100],
|
736 |
+
[100, 100, 0, 1, 2, 100, 100],
|
737 |
+
[100, 100, 3, 4, 5, 100, 100],
|
738 |
+
[100, 100, 100, 100, 100, 100, 100],
|
739 |
+
[100, 100, 100, 100, 100, 100, 100]])
|
740 |
+
"""
|
741 |
+
array = np.asarray(array)
|
742 |
+
pad_width = np.asarray(pad_width)
|
743 |
+
|
744 |
+
if not pad_width.dtype.kind == 'i':
|
745 |
+
raise TypeError('`pad_width` must be of integral type.')
|
746 |
+
|
747 |
+
# Broadcast to shape (array.ndim, 2)
|
748 |
+
pad_width = _as_pairs(pad_width, array.ndim, as_index=True)
|
749 |
+
|
750 |
+
if callable(mode):
|
751 |
+
# Old behavior: Use user-supplied function with np.apply_along_axis
|
752 |
+
function = mode
|
753 |
+
# Create a new zero padded array
|
754 |
+
padded, _ = _pad_simple(array, pad_width, fill_value=0)
|
755 |
+
# And apply along each axis
|
756 |
+
|
757 |
+
for axis in range(padded.ndim):
|
758 |
+
# Iterate using ndindex as in apply_along_axis, but assuming that
|
759 |
+
# function operates inplace on the padded array.
|
760 |
+
|
761 |
+
# view with the iteration axis at the end
|
762 |
+
view = np.moveaxis(padded, axis, -1)
|
763 |
+
|
764 |
+
# compute indices for the iteration axes, and append a trailing
|
765 |
+
# ellipsis to prevent 0d arrays decaying to scalars (gh-8642)
|
766 |
+
inds = ndindex(view.shape[:-1])
|
767 |
+
inds = (ind + (Ellipsis,) for ind in inds)
|
768 |
+
for ind in inds:
|
769 |
+
function(view[ind], pad_width[axis], axis, kwargs)
|
770 |
+
|
771 |
+
return padded
|
772 |
+
|
773 |
+
# Make sure that no unsupported keywords were passed for the current mode
|
774 |
+
allowed_kwargs = {
|
775 |
+
'empty': [], 'edge': [], 'wrap': [],
|
776 |
+
'constant': ['constant_values'],
|
777 |
+
'linear_ramp': ['end_values'],
|
778 |
+
'maximum': ['stat_length'],
|
779 |
+
'mean': ['stat_length'],
|
780 |
+
'median': ['stat_length'],
|
781 |
+
'minimum': ['stat_length'],
|
782 |
+
'reflect': ['reflect_type'],
|
783 |
+
'symmetric': ['reflect_type'],
|
784 |
+
}
|
785 |
+
try:
|
786 |
+
unsupported_kwargs = set(kwargs) - set(allowed_kwargs[mode])
|
787 |
+
except KeyError:
|
788 |
+
raise ValueError("mode '{}' is not supported".format(mode)) from None
|
789 |
+
if unsupported_kwargs:
|
790 |
+
raise ValueError("unsupported keyword arguments for mode '{}': {}"
|
791 |
+
.format(mode, unsupported_kwargs))
|
792 |
+
|
793 |
+
stat_functions = {"maximum": np.amax, "minimum": np.amin,
|
794 |
+
"mean": np.mean, "median": np.median}
|
795 |
+
|
796 |
+
# Create array with final shape and original values
|
797 |
+
# (padded area is undefined)
|
798 |
+
padded, original_area_slice = _pad_simple(array, pad_width)
|
799 |
+
# And prepare iteration over all dimensions
|
800 |
+
# (zipping may be more readable than using enumerate)
|
801 |
+
axes = range(padded.ndim)
|
802 |
+
|
803 |
+
if mode == "constant":
|
804 |
+
values = kwargs.get("constant_values", 0)
|
805 |
+
values = _as_pairs(values, padded.ndim)
|
806 |
+
for axis, width_pair, value_pair in zip(axes, pad_width, values):
|
807 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
808 |
+
_set_pad_area(roi, axis, width_pair, value_pair)
|
809 |
+
|
810 |
+
elif mode == "empty":
|
811 |
+
pass # Do nothing as _pad_simple already returned the correct result
|
812 |
+
|
813 |
+
elif array.size == 0:
|
814 |
+
# Only modes "constant" and "empty" can extend empty axes, all other
|
815 |
+
# modes depend on `array` not being empty
|
816 |
+
# -> ensure every empty axis is only "padded with 0"
|
817 |
+
for axis, width_pair in zip(axes, pad_width):
|
818 |
+
if array.shape[axis] == 0 and any(width_pair):
|
819 |
+
raise ValueError(
|
820 |
+
"can't extend empty axis {} using modes other than "
|
821 |
+
"'constant' or 'empty'".format(axis)
|
822 |
+
)
|
823 |
+
# passed, don't need to do anything more as _pad_simple already
|
824 |
+
# returned the correct result
|
825 |
+
|
826 |
+
elif mode == "edge":
|
827 |
+
for axis, width_pair in zip(axes, pad_width):
|
828 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
829 |
+
edge_pair = _get_edges(roi, axis, width_pair)
|
830 |
+
_set_pad_area(roi, axis, width_pair, edge_pair)
|
831 |
+
|
832 |
+
elif mode == "linear_ramp":
|
833 |
+
end_values = kwargs.get("end_values", 0)
|
834 |
+
end_values = _as_pairs(end_values, padded.ndim)
|
835 |
+
for axis, width_pair, value_pair in zip(axes, pad_width, end_values):
|
836 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
837 |
+
ramp_pair = _get_linear_ramps(roi, axis, width_pair, value_pair)
|
838 |
+
_set_pad_area(roi, axis, width_pair, ramp_pair)
|
839 |
+
|
840 |
+
elif mode in stat_functions:
|
841 |
+
func = stat_functions[mode]
|
842 |
+
length = kwargs.get("stat_length", None)
|
843 |
+
length = _as_pairs(length, padded.ndim, as_index=True)
|
844 |
+
for axis, width_pair, length_pair in zip(axes, pad_width, length):
|
845 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
846 |
+
stat_pair = _get_stats(roi, axis, width_pair, length_pair, func)
|
847 |
+
_set_pad_area(roi, axis, width_pair, stat_pair)
|
848 |
+
|
849 |
+
elif mode in {"reflect", "symmetric"}:
|
850 |
+
method = kwargs.get("reflect_type", "even")
|
851 |
+
include_edge = True if mode == "symmetric" else False
|
852 |
+
for axis, (left_index, right_index) in zip(axes, pad_width):
|
853 |
+
if array.shape[axis] == 1 and (left_index > 0 or right_index > 0):
|
854 |
+
# Extending singleton dimension for 'reflect' is legacy
|
855 |
+
# behavior; it really should raise an error.
|
856 |
+
edge_pair = _get_edges(padded, axis, (left_index, right_index))
|
857 |
+
_set_pad_area(
|
858 |
+
padded, axis, (left_index, right_index), edge_pair)
|
859 |
+
continue
|
860 |
+
|
861 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
862 |
+
while left_index > 0 or right_index > 0:
|
863 |
+
# Iteratively pad until dimension is filled with reflected
|
864 |
+
# values. This is necessary if the pad area is larger than
|
865 |
+
# the length of the original values in the current dimension.
|
866 |
+
left_index, right_index = _set_reflect_both(
|
867 |
+
roi, axis, (left_index, right_index),
|
868 |
+
method, include_edge
|
869 |
+
)
|
870 |
+
|
871 |
+
elif mode == "wrap":
|
872 |
+
for axis, (left_index, right_index) in zip(axes, pad_width):
|
873 |
+
roi = _view_roi(padded, original_area_slice, axis)
|
874 |
+
original_period = padded.shape[axis] - right_index - left_index
|
875 |
+
while left_index > 0 or right_index > 0:
|
876 |
+
# Iteratively pad until dimension is filled with wrapped
|
877 |
+
# values. This is necessary if the pad area is larger than
|
878 |
+
# the length of the original values in the current dimension.
|
879 |
+
left_index, right_index = _set_wrap_both(
|
880 |
+
roi, axis, (left_index, right_index), original_period)
|
881 |
+
|
882 |
+
return padded
|
venv/lib/python3.10/site-packages/numpy/lib/arraysetops.py
ADDED
@@ -0,0 +1,981 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Set operations for arrays based on sorting.
|
3 |
+
|
4 |
+
Notes
|
5 |
+
-----
|
6 |
+
|
7 |
+
For floating point arrays, inaccurate results may appear due to usual round-off
|
8 |
+
and floating point comparison issues.
|
9 |
+
|
10 |
+
Speed could be gained in some operations by an implementation of
|
11 |
+
`numpy.sort`, that can provide directly the permutation vectors, thus avoiding
|
12 |
+
calls to `numpy.argsort`.
|
13 |
+
|
14 |
+
Original author: Robert Cimrman
|
15 |
+
|
16 |
+
"""
|
17 |
+
import functools
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
from numpy.core import overrides
|
21 |
+
|
22 |
+
|
23 |
+
array_function_dispatch = functools.partial(
|
24 |
+
overrides.array_function_dispatch, module='numpy')
|
25 |
+
|
26 |
+
|
27 |
+
__all__ = [
|
28 |
+
'ediff1d', 'intersect1d', 'setxor1d', 'union1d', 'setdiff1d', 'unique',
|
29 |
+
'in1d', 'isin'
|
30 |
+
]
|
31 |
+
|
32 |
+
|
33 |
+
def _ediff1d_dispatcher(ary, to_end=None, to_begin=None):
|
34 |
+
return (ary, to_end, to_begin)
|
35 |
+
|
36 |
+
|
37 |
+
@array_function_dispatch(_ediff1d_dispatcher)
|
38 |
+
def ediff1d(ary, to_end=None, to_begin=None):
|
39 |
+
"""
|
40 |
+
The differences between consecutive elements of an array.
|
41 |
+
|
42 |
+
Parameters
|
43 |
+
----------
|
44 |
+
ary : array_like
|
45 |
+
If necessary, will be flattened before the differences are taken.
|
46 |
+
to_end : array_like, optional
|
47 |
+
Number(s) to append at the end of the returned differences.
|
48 |
+
to_begin : array_like, optional
|
49 |
+
Number(s) to prepend at the beginning of the returned differences.
|
50 |
+
|
51 |
+
Returns
|
52 |
+
-------
|
53 |
+
ediff1d : ndarray
|
54 |
+
The differences. Loosely, this is ``ary.flat[1:] - ary.flat[:-1]``.
|
55 |
+
|
56 |
+
See Also
|
57 |
+
--------
|
58 |
+
diff, gradient
|
59 |
+
|
60 |
+
Notes
|
61 |
+
-----
|
62 |
+
When applied to masked arrays, this function drops the mask information
|
63 |
+
if the `to_begin` and/or `to_end` parameters are used.
|
64 |
+
|
65 |
+
Examples
|
66 |
+
--------
|
67 |
+
>>> x = np.array([1, 2, 4, 7, 0])
|
68 |
+
>>> np.ediff1d(x)
|
69 |
+
array([ 1, 2, 3, -7])
|
70 |
+
|
71 |
+
>>> np.ediff1d(x, to_begin=-99, to_end=np.array([88, 99]))
|
72 |
+
array([-99, 1, 2, ..., -7, 88, 99])
|
73 |
+
|
74 |
+
The returned array is always 1D.
|
75 |
+
|
76 |
+
>>> y = [[1, 2, 4], [1, 6, 24]]
|
77 |
+
>>> np.ediff1d(y)
|
78 |
+
array([ 1, 2, -3, 5, 18])
|
79 |
+
|
80 |
+
"""
|
81 |
+
# force a 1d array
|
82 |
+
ary = np.asanyarray(ary).ravel()
|
83 |
+
|
84 |
+
# enforce that the dtype of `ary` is used for the output
|
85 |
+
dtype_req = ary.dtype
|
86 |
+
|
87 |
+
# fast track default case
|
88 |
+
if to_begin is None and to_end is None:
|
89 |
+
return ary[1:] - ary[:-1]
|
90 |
+
|
91 |
+
if to_begin is None:
|
92 |
+
l_begin = 0
|
93 |
+
else:
|
94 |
+
to_begin = np.asanyarray(to_begin)
|
95 |
+
if not np.can_cast(to_begin, dtype_req, casting="same_kind"):
|
96 |
+
raise TypeError("dtype of `to_begin` must be compatible "
|
97 |
+
"with input `ary` under the `same_kind` rule.")
|
98 |
+
|
99 |
+
to_begin = to_begin.ravel()
|
100 |
+
l_begin = len(to_begin)
|
101 |
+
|
102 |
+
if to_end is None:
|
103 |
+
l_end = 0
|
104 |
+
else:
|
105 |
+
to_end = np.asanyarray(to_end)
|
106 |
+
if not np.can_cast(to_end, dtype_req, casting="same_kind"):
|
107 |
+
raise TypeError("dtype of `to_end` must be compatible "
|
108 |
+
"with input `ary` under the `same_kind` rule.")
|
109 |
+
|
110 |
+
to_end = to_end.ravel()
|
111 |
+
l_end = len(to_end)
|
112 |
+
|
113 |
+
# do the calculation in place and copy to_begin and to_end
|
114 |
+
l_diff = max(len(ary) - 1, 0)
|
115 |
+
result = np.empty(l_diff + l_begin + l_end, dtype=ary.dtype)
|
116 |
+
result = ary.__array_wrap__(result)
|
117 |
+
if l_begin > 0:
|
118 |
+
result[:l_begin] = to_begin
|
119 |
+
if l_end > 0:
|
120 |
+
result[l_begin + l_diff:] = to_end
|
121 |
+
np.subtract(ary[1:], ary[:-1], result[l_begin:l_begin + l_diff])
|
122 |
+
return result
|
123 |
+
|
124 |
+
|
125 |
+
def _unpack_tuple(x):
|
126 |
+
""" Unpacks one-element tuples for use as return values """
|
127 |
+
if len(x) == 1:
|
128 |
+
return x[0]
|
129 |
+
else:
|
130 |
+
return x
|
131 |
+
|
132 |
+
|
133 |
+
def _unique_dispatcher(ar, return_index=None, return_inverse=None,
|
134 |
+
return_counts=None, axis=None, *, equal_nan=None):
|
135 |
+
return (ar,)
|
136 |
+
|
137 |
+
|
138 |
+
@array_function_dispatch(_unique_dispatcher)
|
139 |
+
def unique(ar, return_index=False, return_inverse=False,
|
140 |
+
return_counts=False, axis=None, *, equal_nan=True):
|
141 |
+
"""
|
142 |
+
Find the unique elements of an array.
|
143 |
+
|
144 |
+
Returns the sorted unique elements of an array. There are three optional
|
145 |
+
outputs in addition to the unique elements:
|
146 |
+
|
147 |
+
* the indices of the input array that give the unique values
|
148 |
+
* the indices of the unique array that reconstruct the input array
|
149 |
+
* the number of times each unique value comes up in the input array
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
ar : array_like
|
154 |
+
Input array. Unless `axis` is specified, this will be flattened if it
|
155 |
+
is not already 1-D.
|
156 |
+
return_index : bool, optional
|
157 |
+
If True, also return the indices of `ar` (along the specified axis,
|
158 |
+
if provided, or in the flattened array) that result in the unique array.
|
159 |
+
return_inverse : bool, optional
|
160 |
+
If True, also return the indices of the unique array (for the specified
|
161 |
+
axis, if provided) that can be used to reconstruct `ar`.
|
162 |
+
return_counts : bool, optional
|
163 |
+
If True, also return the number of times each unique item appears
|
164 |
+
in `ar`.
|
165 |
+
axis : int or None, optional
|
166 |
+
The axis to operate on. If None, `ar` will be flattened. If an integer,
|
167 |
+
the subarrays indexed by the given axis will be flattened and treated
|
168 |
+
as the elements of a 1-D array with the dimension of the given axis,
|
169 |
+
see the notes for more details. Object arrays or structured arrays
|
170 |
+
that contain objects are not supported if the `axis` kwarg is used. The
|
171 |
+
default is None.
|
172 |
+
|
173 |
+
.. versionadded:: 1.13.0
|
174 |
+
|
175 |
+
equal_nan : bool, optional
|
176 |
+
If True, collapses multiple NaN values in the return array into one.
|
177 |
+
|
178 |
+
.. versionadded:: 1.24
|
179 |
+
|
180 |
+
Returns
|
181 |
+
-------
|
182 |
+
unique : ndarray
|
183 |
+
The sorted unique values.
|
184 |
+
unique_indices : ndarray, optional
|
185 |
+
The indices of the first occurrences of the unique values in the
|
186 |
+
original array. Only provided if `return_index` is True.
|
187 |
+
unique_inverse : ndarray, optional
|
188 |
+
The indices to reconstruct the original array from the
|
189 |
+
unique array. Only provided if `return_inverse` is True.
|
190 |
+
unique_counts : ndarray, optional
|
191 |
+
The number of times each of the unique values comes up in the
|
192 |
+
original array. Only provided if `return_counts` is True.
|
193 |
+
|
194 |
+
.. versionadded:: 1.9.0
|
195 |
+
|
196 |
+
See Also
|
197 |
+
--------
|
198 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
199 |
+
performing set operations on arrays.
|
200 |
+
repeat : Repeat elements of an array.
|
201 |
+
|
202 |
+
Notes
|
203 |
+
-----
|
204 |
+
When an axis is specified the subarrays indexed by the axis are sorted.
|
205 |
+
This is done by making the specified axis the first dimension of the array
|
206 |
+
(move the axis to the first dimension to keep the order of the other axes)
|
207 |
+
and then flattening the subarrays in C order. The flattened subarrays are
|
208 |
+
then viewed as a structured type with each element given a label, with the
|
209 |
+
effect that we end up with a 1-D array of structured types that can be
|
210 |
+
treated in the same way as any other 1-D array. The result is that the
|
211 |
+
flattened subarrays are sorted in lexicographic order starting with the
|
212 |
+
first element.
|
213 |
+
|
214 |
+
.. versionchanged: NumPy 1.21
|
215 |
+
If nan values are in the input array, a single nan is put
|
216 |
+
to the end of the sorted unique values.
|
217 |
+
|
218 |
+
Also for complex arrays all NaN values are considered equivalent
|
219 |
+
(no matter whether the NaN is in the real or imaginary part).
|
220 |
+
As the representant for the returned array the smallest one in the
|
221 |
+
lexicographical order is chosen - see np.sort for how the lexicographical
|
222 |
+
order is defined for complex arrays.
|
223 |
+
|
224 |
+
Examples
|
225 |
+
--------
|
226 |
+
>>> np.unique([1, 1, 2, 2, 3, 3])
|
227 |
+
array([1, 2, 3])
|
228 |
+
>>> a = np.array([[1, 1], [2, 3]])
|
229 |
+
>>> np.unique(a)
|
230 |
+
array([1, 2, 3])
|
231 |
+
|
232 |
+
Return the unique rows of a 2D array
|
233 |
+
|
234 |
+
>>> a = np.array([[1, 0, 0], [1, 0, 0], [2, 3, 4]])
|
235 |
+
>>> np.unique(a, axis=0)
|
236 |
+
array([[1, 0, 0], [2, 3, 4]])
|
237 |
+
|
238 |
+
Return the indices of the original array that give the unique values:
|
239 |
+
|
240 |
+
>>> a = np.array(['a', 'b', 'b', 'c', 'a'])
|
241 |
+
>>> u, indices = np.unique(a, return_index=True)
|
242 |
+
>>> u
|
243 |
+
array(['a', 'b', 'c'], dtype='<U1')
|
244 |
+
>>> indices
|
245 |
+
array([0, 1, 3])
|
246 |
+
>>> a[indices]
|
247 |
+
array(['a', 'b', 'c'], dtype='<U1')
|
248 |
+
|
249 |
+
Reconstruct the input array from the unique values and inverse:
|
250 |
+
|
251 |
+
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
|
252 |
+
>>> u, indices = np.unique(a, return_inverse=True)
|
253 |
+
>>> u
|
254 |
+
array([1, 2, 3, 4, 6])
|
255 |
+
>>> indices
|
256 |
+
array([0, 1, 4, 3, 1, 2, 1])
|
257 |
+
>>> u[indices]
|
258 |
+
array([1, 2, 6, 4, 2, 3, 2])
|
259 |
+
|
260 |
+
Reconstruct the input values from the unique values and counts:
|
261 |
+
|
262 |
+
>>> a = np.array([1, 2, 6, 4, 2, 3, 2])
|
263 |
+
>>> values, counts = np.unique(a, return_counts=True)
|
264 |
+
>>> values
|
265 |
+
array([1, 2, 3, 4, 6])
|
266 |
+
>>> counts
|
267 |
+
array([1, 3, 1, 1, 1])
|
268 |
+
>>> np.repeat(values, counts)
|
269 |
+
array([1, 2, 2, 2, 3, 4, 6]) # original order not preserved
|
270 |
+
|
271 |
+
"""
|
272 |
+
ar = np.asanyarray(ar)
|
273 |
+
if axis is None:
|
274 |
+
ret = _unique1d(ar, return_index, return_inverse, return_counts,
|
275 |
+
equal_nan=equal_nan)
|
276 |
+
return _unpack_tuple(ret)
|
277 |
+
|
278 |
+
# axis was specified and not None
|
279 |
+
try:
|
280 |
+
ar = np.moveaxis(ar, axis, 0)
|
281 |
+
except np.AxisError:
|
282 |
+
# this removes the "axis1" or "axis2" prefix from the error message
|
283 |
+
raise np.AxisError(axis, ar.ndim) from None
|
284 |
+
|
285 |
+
# Must reshape to a contiguous 2D array for this to work...
|
286 |
+
orig_shape, orig_dtype = ar.shape, ar.dtype
|
287 |
+
ar = ar.reshape(orig_shape[0], np.prod(orig_shape[1:], dtype=np.intp))
|
288 |
+
ar = np.ascontiguousarray(ar)
|
289 |
+
dtype = [('f{i}'.format(i=i), ar.dtype) for i in range(ar.shape[1])]
|
290 |
+
|
291 |
+
# At this point, `ar` has shape `(n, m)`, and `dtype` is a structured
|
292 |
+
# data type with `m` fields where each field has the data type of `ar`.
|
293 |
+
# In the following, we create the array `consolidated`, which has
|
294 |
+
# shape `(n,)` with data type `dtype`.
|
295 |
+
try:
|
296 |
+
if ar.shape[1] > 0:
|
297 |
+
consolidated = ar.view(dtype)
|
298 |
+
else:
|
299 |
+
# If ar.shape[1] == 0, then dtype will be `np.dtype([])`, which is
|
300 |
+
# a data type with itemsize 0, and the call `ar.view(dtype)` will
|
301 |
+
# fail. Instead, we'll use `np.empty` to explicitly create the
|
302 |
+
# array with shape `(len(ar),)`. Because `dtype` in this case has
|
303 |
+
# itemsize 0, the total size of the result is still 0 bytes.
|
304 |
+
consolidated = np.empty(len(ar), dtype=dtype)
|
305 |
+
except TypeError as e:
|
306 |
+
# There's no good way to do this for object arrays, etc...
|
307 |
+
msg = 'The axis argument to unique is not supported for dtype {dt}'
|
308 |
+
raise TypeError(msg.format(dt=ar.dtype)) from e
|
309 |
+
|
310 |
+
def reshape_uniq(uniq):
|
311 |
+
n = len(uniq)
|
312 |
+
uniq = uniq.view(orig_dtype)
|
313 |
+
uniq = uniq.reshape(n, *orig_shape[1:])
|
314 |
+
uniq = np.moveaxis(uniq, 0, axis)
|
315 |
+
return uniq
|
316 |
+
|
317 |
+
output = _unique1d(consolidated, return_index,
|
318 |
+
return_inverse, return_counts, equal_nan=equal_nan)
|
319 |
+
output = (reshape_uniq(output[0]),) + output[1:]
|
320 |
+
return _unpack_tuple(output)
|
321 |
+
|
322 |
+
|
323 |
+
def _unique1d(ar, return_index=False, return_inverse=False,
|
324 |
+
return_counts=False, *, equal_nan=True):
|
325 |
+
"""
|
326 |
+
Find the unique elements of an array, ignoring shape.
|
327 |
+
"""
|
328 |
+
ar = np.asanyarray(ar).flatten()
|
329 |
+
|
330 |
+
optional_indices = return_index or return_inverse
|
331 |
+
|
332 |
+
if optional_indices:
|
333 |
+
perm = ar.argsort(kind='mergesort' if return_index else 'quicksort')
|
334 |
+
aux = ar[perm]
|
335 |
+
else:
|
336 |
+
ar.sort()
|
337 |
+
aux = ar
|
338 |
+
mask = np.empty(aux.shape, dtype=np.bool_)
|
339 |
+
mask[:1] = True
|
340 |
+
if (equal_nan and aux.shape[0] > 0 and aux.dtype.kind in "cfmM" and
|
341 |
+
np.isnan(aux[-1])):
|
342 |
+
if aux.dtype.kind == "c": # for complex all NaNs are considered equivalent
|
343 |
+
aux_firstnan = np.searchsorted(np.isnan(aux), True, side='left')
|
344 |
+
else:
|
345 |
+
aux_firstnan = np.searchsorted(aux, aux[-1], side='left')
|
346 |
+
if aux_firstnan > 0:
|
347 |
+
mask[1:aux_firstnan] = (
|
348 |
+
aux[1:aux_firstnan] != aux[:aux_firstnan - 1])
|
349 |
+
mask[aux_firstnan] = True
|
350 |
+
mask[aux_firstnan + 1:] = False
|
351 |
+
else:
|
352 |
+
mask[1:] = aux[1:] != aux[:-1]
|
353 |
+
|
354 |
+
ret = (aux[mask],)
|
355 |
+
if return_index:
|
356 |
+
ret += (perm[mask],)
|
357 |
+
if return_inverse:
|
358 |
+
imask = np.cumsum(mask) - 1
|
359 |
+
inv_idx = np.empty(mask.shape, dtype=np.intp)
|
360 |
+
inv_idx[perm] = imask
|
361 |
+
ret += (inv_idx,)
|
362 |
+
if return_counts:
|
363 |
+
idx = np.concatenate(np.nonzero(mask) + ([mask.size],))
|
364 |
+
ret += (np.diff(idx),)
|
365 |
+
return ret
|
366 |
+
|
367 |
+
|
368 |
+
def _intersect1d_dispatcher(
|
369 |
+
ar1, ar2, assume_unique=None, return_indices=None):
|
370 |
+
return (ar1, ar2)
|
371 |
+
|
372 |
+
|
373 |
+
@array_function_dispatch(_intersect1d_dispatcher)
|
374 |
+
def intersect1d(ar1, ar2, assume_unique=False, return_indices=False):
|
375 |
+
"""
|
376 |
+
Find the intersection of two arrays.
|
377 |
+
|
378 |
+
Return the sorted, unique values that are in both of the input arrays.
|
379 |
+
|
380 |
+
Parameters
|
381 |
+
----------
|
382 |
+
ar1, ar2 : array_like
|
383 |
+
Input arrays. Will be flattened if not already 1D.
|
384 |
+
assume_unique : bool
|
385 |
+
If True, the input arrays are both assumed to be unique, which
|
386 |
+
can speed up the calculation. If True but ``ar1`` or ``ar2`` are not
|
387 |
+
unique, incorrect results and out-of-bounds indices could result.
|
388 |
+
Default is False.
|
389 |
+
return_indices : bool
|
390 |
+
If True, the indices which correspond to the intersection of the two
|
391 |
+
arrays are returned. The first instance of a value is used if there are
|
392 |
+
multiple. Default is False.
|
393 |
+
|
394 |
+
.. versionadded:: 1.15.0
|
395 |
+
|
396 |
+
Returns
|
397 |
+
-------
|
398 |
+
intersect1d : ndarray
|
399 |
+
Sorted 1D array of common and unique elements.
|
400 |
+
comm1 : ndarray
|
401 |
+
The indices of the first occurrences of the common values in `ar1`.
|
402 |
+
Only provided if `return_indices` is True.
|
403 |
+
comm2 : ndarray
|
404 |
+
The indices of the first occurrences of the common values in `ar2`.
|
405 |
+
Only provided if `return_indices` is True.
|
406 |
+
|
407 |
+
|
408 |
+
See Also
|
409 |
+
--------
|
410 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
411 |
+
performing set operations on arrays.
|
412 |
+
|
413 |
+
Examples
|
414 |
+
--------
|
415 |
+
>>> np.intersect1d([1, 3, 4, 3], [3, 1, 2, 1])
|
416 |
+
array([1, 3])
|
417 |
+
|
418 |
+
To intersect more than two arrays, use functools.reduce:
|
419 |
+
|
420 |
+
>>> from functools import reduce
|
421 |
+
>>> reduce(np.intersect1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
|
422 |
+
array([3])
|
423 |
+
|
424 |
+
To return the indices of the values common to the input arrays
|
425 |
+
along with the intersected values:
|
426 |
+
|
427 |
+
>>> x = np.array([1, 1, 2, 3, 4])
|
428 |
+
>>> y = np.array([2, 1, 4, 6])
|
429 |
+
>>> xy, x_ind, y_ind = np.intersect1d(x, y, return_indices=True)
|
430 |
+
>>> x_ind, y_ind
|
431 |
+
(array([0, 2, 4]), array([1, 0, 2]))
|
432 |
+
>>> xy, x[x_ind], y[y_ind]
|
433 |
+
(array([1, 2, 4]), array([1, 2, 4]), array([1, 2, 4]))
|
434 |
+
|
435 |
+
"""
|
436 |
+
ar1 = np.asanyarray(ar1)
|
437 |
+
ar2 = np.asanyarray(ar2)
|
438 |
+
|
439 |
+
if not assume_unique:
|
440 |
+
if return_indices:
|
441 |
+
ar1, ind1 = unique(ar1, return_index=True)
|
442 |
+
ar2, ind2 = unique(ar2, return_index=True)
|
443 |
+
else:
|
444 |
+
ar1 = unique(ar1)
|
445 |
+
ar2 = unique(ar2)
|
446 |
+
else:
|
447 |
+
ar1 = ar1.ravel()
|
448 |
+
ar2 = ar2.ravel()
|
449 |
+
|
450 |
+
aux = np.concatenate((ar1, ar2))
|
451 |
+
if return_indices:
|
452 |
+
aux_sort_indices = np.argsort(aux, kind='mergesort')
|
453 |
+
aux = aux[aux_sort_indices]
|
454 |
+
else:
|
455 |
+
aux.sort()
|
456 |
+
|
457 |
+
mask = aux[1:] == aux[:-1]
|
458 |
+
int1d = aux[:-1][mask]
|
459 |
+
|
460 |
+
if return_indices:
|
461 |
+
ar1_indices = aux_sort_indices[:-1][mask]
|
462 |
+
ar2_indices = aux_sort_indices[1:][mask] - ar1.size
|
463 |
+
if not assume_unique:
|
464 |
+
ar1_indices = ind1[ar1_indices]
|
465 |
+
ar2_indices = ind2[ar2_indices]
|
466 |
+
|
467 |
+
return int1d, ar1_indices, ar2_indices
|
468 |
+
else:
|
469 |
+
return int1d
|
470 |
+
|
471 |
+
|
472 |
+
def _setxor1d_dispatcher(ar1, ar2, assume_unique=None):
|
473 |
+
return (ar1, ar2)
|
474 |
+
|
475 |
+
|
476 |
+
@array_function_dispatch(_setxor1d_dispatcher)
|
477 |
+
def setxor1d(ar1, ar2, assume_unique=False):
|
478 |
+
"""
|
479 |
+
Find the set exclusive-or of two arrays.
|
480 |
+
|
481 |
+
Return the sorted, unique values that are in only one (not both) of the
|
482 |
+
input arrays.
|
483 |
+
|
484 |
+
Parameters
|
485 |
+
----------
|
486 |
+
ar1, ar2 : array_like
|
487 |
+
Input arrays.
|
488 |
+
assume_unique : bool
|
489 |
+
If True, the input arrays are both assumed to be unique, which
|
490 |
+
can speed up the calculation. Default is False.
|
491 |
+
|
492 |
+
Returns
|
493 |
+
-------
|
494 |
+
setxor1d : ndarray
|
495 |
+
Sorted 1D array of unique values that are in only one of the input
|
496 |
+
arrays.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
--------
|
500 |
+
>>> a = np.array([1, 2, 3, 2, 4])
|
501 |
+
>>> b = np.array([2, 3, 5, 7, 5])
|
502 |
+
>>> np.setxor1d(a,b)
|
503 |
+
array([1, 4, 5, 7])
|
504 |
+
|
505 |
+
"""
|
506 |
+
if not assume_unique:
|
507 |
+
ar1 = unique(ar1)
|
508 |
+
ar2 = unique(ar2)
|
509 |
+
|
510 |
+
aux = np.concatenate((ar1, ar2))
|
511 |
+
if aux.size == 0:
|
512 |
+
return aux
|
513 |
+
|
514 |
+
aux.sort()
|
515 |
+
flag = np.concatenate(([True], aux[1:] != aux[:-1], [True]))
|
516 |
+
return aux[flag[1:] & flag[:-1]]
|
517 |
+
|
518 |
+
|
519 |
+
def _in1d_dispatcher(ar1, ar2, assume_unique=None, invert=None, *,
|
520 |
+
kind=None):
|
521 |
+
return (ar1, ar2)
|
522 |
+
|
523 |
+
|
524 |
+
@array_function_dispatch(_in1d_dispatcher)
|
525 |
+
def in1d(ar1, ar2, assume_unique=False, invert=False, *, kind=None):
|
526 |
+
"""
|
527 |
+
Test whether each element of a 1-D array is also present in a second array.
|
528 |
+
|
529 |
+
Returns a boolean array the same length as `ar1` that is True
|
530 |
+
where an element of `ar1` is in `ar2` and False otherwise.
|
531 |
+
|
532 |
+
We recommend using :func:`isin` instead of `in1d` for new code.
|
533 |
+
|
534 |
+
Parameters
|
535 |
+
----------
|
536 |
+
ar1 : (M,) array_like
|
537 |
+
Input array.
|
538 |
+
ar2 : array_like
|
539 |
+
The values against which to test each value of `ar1`.
|
540 |
+
assume_unique : bool, optional
|
541 |
+
If True, the input arrays are both assumed to be unique, which
|
542 |
+
can speed up the calculation. Default is False.
|
543 |
+
invert : bool, optional
|
544 |
+
If True, the values in the returned array are inverted (that is,
|
545 |
+
False where an element of `ar1` is in `ar2` and True otherwise).
|
546 |
+
Default is False. ``np.in1d(a, b, invert=True)`` is equivalent
|
547 |
+
to (but is faster than) ``np.invert(in1d(a, b))``.
|
548 |
+
kind : {None, 'sort', 'table'}, optional
|
549 |
+
The algorithm to use. This will not affect the final result,
|
550 |
+
but will affect the speed and memory use. The default, None,
|
551 |
+
will select automatically based on memory considerations.
|
552 |
+
|
553 |
+
* If 'sort', will use a mergesort-based approach. This will have
|
554 |
+
a memory usage of roughly 6 times the sum of the sizes of
|
555 |
+
`ar1` and `ar2`, not accounting for size of dtypes.
|
556 |
+
* If 'table', will use a lookup table approach similar
|
557 |
+
to a counting sort. This is only available for boolean and
|
558 |
+
integer arrays. This will have a memory usage of the
|
559 |
+
size of `ar1` plus the max-min value of `ar2`. `assume_unique`
|
560 |
+
has no effect when the 'table' option is used.
|
561 |
+
* If None, will automatically choose 'table' if
|
562 |
+
the required memory allocation is less than or equal to
|
563 |
+
6 times the sum of the sizes of `ar1` and `ar2`,
|
564 |
+
otherwise will use 'sort'. This is done to not use
|
565 |
+
a large amount of memory by default, even though
|
566 |
+
'table' may be faster in most cases. If 'table' is chosen,
|
567 |
+
`assume_unique` will have no effect.
|
568 |
+
|
569 |
+
.. versionadded:: 1.8.0
|
570 |
+
|
571 |
+
Returns
|
572 |
+
-------
|
573 |
+
in1d : (M,) ndarray, bool
|
574 |
+
The values `ar1[in1d]` are in `ar2`.
|
575 |
+
|
576 |
+
See Also
|
577 |
+
--------
|
578 |
+
isin : Version of this function that preserves the
|
579 |
+
shape of ar1.
|
580 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
581 |
+
performing set operations on arrays.
|
582 |
+
|
583 |
+
Notes
|
584 |
+
-----
|
585 |
+
`in1d` can be considered as an element-wise function version of the
|
586 |
+
python keyword `in`, for 1-D sequences. ``in1d(a, b)`` is roughly
|
587 |
+
equivalent to ``np.array([item in b for item in a])``.
|
588 |
+
However, this idea fails if `ar2` is a set, or similar (non-sequence)
|
589 |
+
container: As ``ar2`` is converted to an array, in those cases
|
590 |
+
``asarray(ar2)`` is an object array rather than the expected array of
|
591 |
+
contained values.
|
592 |
+
|
593 |
+
Using ``kind='table'`` tends to be faster than `kind='sort'` if the
|
594 |
+
following relationship is true:
|
595 |
+
``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
|
596 |
+
but may use greater memory. The default value for `kind` will
|
597 |
+
be automatically selected based only on memory usage, so one may
|
598 |
+
manually set ``kind='table'`` if memory constraints can be relaxed.
|
599 |
+
|
600 |
+
.. versionadded:: 1.4.0
|
601 |
+
|
602 |
+
Examples
|
603 |
+
--------
|
604 |
+
>>> test = np.array([0, 1, 2, 5, 0])
|
605 |
+
>>> states = [0, 2]
|
606 |
+
>>> mask = np.in1d(test, states)
|
607 |
+
>>> mask
|
608 |
+
array([ True, False, True, False, True])
|
609 |
+
>>> test[mask]
|
610 |
+
array([0, 2, 0])
|
611 |
+
>>> mask = np.in1d(test, states, invert=True)
|
612 |
+
>>> mask
|
613 |
+
array([False, True, False, True, False])
|
614 |
+
>>> test[mask]
|
615 |
+
array([1, 5])
|
616 |
+
"""
|
617 |
+
# Ravel both arrays, behavior for the first array could be different
|
618 |
+
ar1 = np.asarray(ar1).ravel()
|
619 |
+
ar2 = np.asarray(ar2).ravel()
|
620 |
+
|
621 |
+
# Ensure that iteration through object arrays yields size-1 arrays
|
622 |
+
if ar2.dtype == object:
|
623 |
+
ar2 = ar2.reshape(-1, 1)
|
624 |
+
|
625 |
+
if kind not in {None, 'sort', 'table'}:
|
626 |
+
raise ValueError(
|
627 |
+
f"Invalid kind: '{kind}'. Please use None, 'sort' or 'table'.")
|
628 |
+
|
629 |
+
# Can use the table method if all arrays are integers or boolean:
|
630 |
+
is_int_arrays = all(ar.dtype.kind in ("u", "i", "b") for ar in (ar1, ar2))
|
631 |
+
use_table_method = is_int_arrays and kind in {None, 'table'}
|
632 |
+
|
633 |
+
if use_table_method:
|
634 |
+
if ar2.size == 0:
|
635 |
+
if invert:
|
636 |
+
return np.ones_like(ar1, dtype=bool)
|
637 |
+
else:
|
638 |
+
return np.zeros_like(ar1, dtype=bool)
|
639 |
+
|
640 |
+
# Convert booleans to uint8 so we can use the fast integer algorithm
|
641 |
+
if ar1.dtype == bool:
|
642 |
+
ar1 = ar1.astype(np.uint8)
|
643 |
+
if ar2.dtype == bool:
|
644 |
+
ar2 = ar2.astype(np.uint8)
|
645 |
+
|
646 |
+
ar2_min = np.min(ar2)
|
647 |
+
ar2_max = np.max(ar2)
|
648 |
+
|
649 |
+
ar2_range = int(ar2_max) - int(ar2_min)
|
650 |
+
|
651 |
+
# Constraints on whether we can actually use the table method:
|
652 |
+
# 1. Assert memory usage is not too large
|
653 |
+
below_memory_constraint = ar2_range <= 6 * (ar1.size + ar2.size)
|
654 |
+
# 2. Check overflows for (ar2 - ar2_min); dtype=ar2.dtype
|
655 |
+
range_safe_from_overflow = ar2_range <= np.iinfo(ar2.dtype).max
|
656 |
+
# 3. Check overflows for (ar1 - ar2_min); dtype=ar1.dtype
|
657 |
+
if ar1.size > 0:
|
658 |
+
ar1_min = np.min(ar1)
|
659 |
+
ar1_max = np.max(ar1)
|
660 |
+
|
661 |
+
# After masking, the range of ar1 is guaranteed to be
|
662 |
+
# within the range of ar2:
|
663 |
+
ar1_upper = min(int(ar1_max), int(ar2_max))
|
664 |
+
ar1_lower = max(int(ar1_min), int(ar2_min))
|
665 |
+
|
666 |
+
range_safe_from_overflow &= all((
|
667 |
+
ar1_upper - int(ar2_min) <= np.iinfo(ar1.dtype).max,
|
668 |
+
ar1_lower - int(ar2_min) >= np.iinfo(ar1.dtype).min
|
669 |
+
))
|
670 |
+
|
671 |
+
# Optimal performance is for approximately
|
672 |
+
# log10(size) > (log10(range) - 2.27) / 0.927.
|
673 |
+
# However, here we set the requirement that by default
|
674 |
+
# the intermediate array can only be 6x
|
675 |
+
# the combined memory allocation of the original
|
676 |
+
# arrays. See discussion on
|
677 |
+
# https://github.com/numpy/numpy/pull/12065.
|
678 |
+
|
679 |
+
if (
|
680 |
+
range_safe_from_overflow and
|
681 |
+
(below_memory_constraint or kind == 'table')
|
682 |
+
):
|
683 |
+
|
684 |
+
if invert:
|
685 |
+
outgoing_array = np.ones_like(ar1, dtype=bool)
|
686 |
+
else:
|
687 |
+
outgoing_array = np.zeros_like(ar1, dtype=bool)
|
688 |
+
|
689 |
+
# Make elements 1 where the integer exists in ar2
|
690 |
+
if invert:
|
691 |
+
isin_helper_ar = np.ones(ar2_range + 1, dtype=bool)
|
692 |
+
isin_helper_ar[ar2 - ar2_min] = 0
|
693 |
+
else:
|
694 |
+
isin_helper_ar = np.zeros(ar2_range + 1, dtype=bool)
|
695 |
+
isin_helper_ar[ar2 - ar2_min] = 1
|
696 |
+
|
697 |
+
# Mask out elements we know won't work
|
698 |
+
basic_mask = (ar1 <= ar2_max) & (ar1 >= ar2_min)
|
699 |
+
outgoing_array[basic_mask] = isin_helper_ar[ar1[basic_mask] -
|
700 |
+
ar2_min]
|
701 |
+
|
702 |
+
return outgoing_array
|
703 |
+
elif kind == 'table': # not range_safe_from_overflow
|
704 |
+
raise RuntimeError(
|
705 |
+
"You have specified kind='table', "
|
706 |
+
"but the range of values in `ar2` or `ar1` exceed the "
|
707 |
+
"maximum integer of the datatype. "
|
708 |
+
"Please set `kind` to None or 'sort'."
|
709 |
+
)
|
710 |
+
elif kind == 'table':
|
711 |
+
raise ValueError(
|
712 |
+
"The 'table' method is only "
|
713 |
+
"supported for boolean or integer arrays. "
|
714 |
+
"Please select 'sort' or None for kind."
|
715 |
+
)
|
716 |
+
|
717 |
+
|
718 |
+
# Check if one of the arrays may contain arbitrary objects
|
719 |
+
contains_object = ar1.dtype.hasobject or ar2.dtype.hasobject
|
720 |
+
|
721 |
+
# This code is run when
|
722 |
+
# a) the first condition is true, making the code significantly faster
|
723 |
+
# b) the second condition is true (i.e. `ar1` or `ar2` may contain
|
724 |
+
# arbitrary objects), since then sorting is not guaranteed to work
|
725 |
+
if len(ar2) < 10 * len(ar1) ** 0.145 or contains_object:
|
726 |
+
if invert:
|
727 |
+
mask = np.ones(len(ar1), dtype=bool)
|
728 |
+
for a in ar2:
|
729 |
+
mask &= (ar1 != a)
|
730 |
+
else:
|
731 |
+
mask = np.zeros(len(ar1), dtype=bool)
|
732 |
+
for a in ar2:
|
733 |
+
mask |= (ar1 == a)
|
734 |
+
return mask
|
735 |
+
|
736 |
+
# Otherwise use sorting
|
737 |
+
if not assume_unique:
|
738 |
+
ar1, rev_idx = np.unique(ar1, return_inverse=True)
|
739 |
+
ar2 = np.unique(ar2)
|
740 |
+
|
741 |
+
ar = np.concatenate((ar1, ar2))
|
742 |
+
# We need this to be a stable sort, so always use 'mergesort'
|
743 |
+
# here. The values from the first array should always come before
|
744 |
+
# the values from the second array.
|
745 |
+
order = ar.argsort(kind='mergesort')
|
746 |
+
sar = ar[order]
|
747 |
+
if invert:
|
748 |
+
bool_ar = (sar[1:] != sar[:-1])
|
749 |
+
else:
|
750 |
+
bool_ar = (sar[1:] == sar[:-1])
|
751 |
+
flag = np.concatenate((bool_ar, [invert]))
|
752 |
+
ret = np.empty(ar.shape, dtype=bool)
|
753 |
+
ret[order] = flag
|
754 |
+
|
755 |
+
if assume_unique:
|
756 |
+
return ret[:len(ar1)]
|
757 |
+
else:
|
758 |
+
return ret[rev_idx]
|
759 |
+
|
760 |
+
|
761 |
+
def _isin_dispatcher(element, test_elements, assume_unique=None, invert=None,
|
762 |
+
*, kind=None):
|
763 |
+
return (element, test_elements)
|
764 |
+
|
765 |
+
|
766 |
+
@array_function_dispatch(_isin_dispatcher)
|
767 |
+
def isin(element, test_elements, assume_unique=False, invert=False, *,
|
768 |
+
kind=None):
|
769 |
+
"""
|
770 |
+
Calculates ``element in test_elements``, broadcasting over `element` only.
|
771 |
+
Returns a boolean array of the same shape as `element` that is True
|
772 |
+
where an element of `element` is in `test_elements` and False otherwise.
|
773 |
+
|
774 |
+
Parameters
|
775 |
+
----------
|
776 |
+
element : array_like
|
777 |
+
Input array.
|
778 |
+
test_elements : array_like
|
779 |
+
The values against which to test each value of `element`.
|
780 |
+
This argument is flattened if it is an array or array_like.
|
781 |
+
See notes for behavior with non-array-like parameters.
|
782 |
+
assume_unique : bool, optional
|
783 |
+
If True, the input arrays are both assumed to be unique, which
|
784 |
+
can speed up the calculation. Default is False.
|
785 |
+
invert : bool, optional
|
786 |
+
If True, the values in the returned array are inverted, as if
|
787 |
+
calculating `element not in test_elements`. Default is False.
|
788 |
+
``np.isin(a, b, invert=True)`` is equivalent to (but faster
|
789 |
+
than) ``np.invert(np.isin(a, b))``.
|
790 |
+
kind : {None, 'sort', 'table'}, optional
|
791 |
+
The algorithm to use. This will not affect the final result,
|
792 |
+
but will affect the speed and memory use. The default, None,
|
793 |
+
will select automatically based on memory considerations.
|
794 |
+
|
795 |
+
* If 'sort', will use a mergesort-based approach. This will have
|
796 |
+
a memory usage of roughly 6 times the sum of the sizes of
|
797 |
+
`ar1` and `ar2`, not accounting for size of dtypes.
|
798 |
+
* If 'table', will use a lookup table approach similar
|
799 |
+
to a counting sort. This is only available for boolean and
|
800 |
+
integer arrays. This will have a memory usage of the
|
801 |
+
size of `ar1` plus the max-min value of `ar2`. `assume_unique`
|
802 |
+
has no effect when the 'table' option is used.
|
803 |
+
* If None, will automatically choose 'table' if
|
804 |
+
the required memory allocation is less than or equal to
|
805 |
+
6 times the sum of the sizes of `ar1` and `ar2`,
|
806 |
+
otherwise will use 'sort'. This is done to not use
|
807 |
+
a large amount of memory by default, even though
|
808 |
+
'table' may be faster in most cases. If 'table' is chosen,
|
809 |
+
`assume_unique` will have no effect.
|
810 |
+
|
811 |
+
|
812 |
+
Returns
|
813 |
+
-------
|
814 |
+
isin : ndarray, bool
|
815 |
+
Has the same shape as `element`. The values `element[isin]`
|
816 |
+
are in `test_elements`.
|
817 |
+
|
818 |
+
See Also
|
819 |
+
--------
|
820 |
+
in1d : Flattened version of this function.
|
821 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
822 |
+
performing set operations on arrays.
|
823 |
+
|
824 |
+
Notes
|
825 |
+
-----
|
826 |
+
|
827 |
+
`isin` is an element-wise function version of the python keyword `in`.
|
828 |
+
``isin(a, b)`` is roughly equivalent to
|
829 |
+
``np.array([item in b for item in a])`` if `a` and `b` are 1-D sequences.
|
830 |
+
|
831 |
+
`element` and `test_elements` are converted to arrays if they are not
|
832 |
+
already. If `test_elements` is a set (or other non-sequence collection)
|
833 |
+
it will be converted to an object array with one element, rather than an
|
834 |
+
array of the values contained in `test_elements`. This is a consequence
|
835 |
+
of the `array` constructor's way of handling non-sequence collections.
|
836 |
+
Converting the set to a list usually gives the desired behavior.
|
837 |
+
|
838 |
+
Using ``kind='table'`` tends to be faster than `kind='sort'` if the
|
839 |
+
following relationship is true:
|
840 |
+
``log10(len(ar2)) > (log10(max(ar2)-min(ar2)) - 2.27) / 0.927``,
|
841 |
+
but may use greater memory. The default value for `kind` will
|
842 |
+
be automatically selected based only on memory usage, so one may
|
843 |
+
manually set ``kind='table'`` if memory constraints can be relaxed.
|
844 |
+
|
845 |
+
.. versionadded:: 1.13.0
|
846 |
+
|
847 |
+
Examples
|
848 |
+
--------
|
849 |
+
>>> element = 2*np.arange(4).reshape((2, 2))
|
850 |
+
>>> element
|
851 |
+
array([[0, 2],
|
852 |
+
[4, 6]])
|
853 |
+
>>> test_elements = [1, 2, 4, 8]
|
854 |
+
>>> mask = np.isin(element, test_elements)
|
855 |
+
>>> mask
|
856 |
+
array([[False, True],
|
857 |
+
[ True, False]])
|
858 |
+
>>> element[mask]
|
859 |
+
array([2, 4])
|
860 |
+
|
861 |
+
The indices of the matched values can be obtained with `nonzero`:
|
862 |
+
|
863 |
+
>>> np.nonzero(mask)
|
864 |
+
(array([0, 1]), array([1, 0]))
|
865 |
+
|
866 |
+
The test can also be inverted:
|
867 |
+
|
868 |
+
>>> mask = np.isin(element, test_elements, invert=True)
|
869 |
+
>>> mask
|
870 |
+
array([[ True, False],
|
871 |
+
[False, True]])
|
872 |
+
>>> element[mask]
|
873 |
+
array([0, 6])
|
874 |
+
|
875 |
+
Because of how `array` handles sets, the following does not
|
876 |
+
work as expected:
|
877 |
+
|
878 |
+
>>> test_set = {1, 2, 4, 8}
|
879 |
+
>>> np.isin(element, test_set)
|
880 |
+
array([[False, False],
|
881 |
+
[False, False]])
|
882 |
+
|
883 |
+
Casting the set to a list gives the expected result:
|
884 |
+
|
885 |
+
>>> np.isin(element, list(test_set))
|
886 |
+
array([[False, True],
|
887 |
+
[ True, False]])
|
888 |
+
"""
|
889 |
+
element = np.asarray(element)
|
890 |
+
return in1d(element, test_elements, assume_unique=assume_unique,
|
891 |
+
invert=invert, kind=kind).reshape(element.shape)
|
892 |
+
|
893 |
+
|
894 |
+
def _union1d_dispatcher(ar1, ar2):
|
895 |
+
return (ar1, ar2)
|
896 |
+
|
897 |
+
|
898 |
+
@array_function_dispatch(_union1d_dispatcher)
|
899 |
+
def union1d(ar1, ar2):
|
900 |
+
"""
|
901 |
+
Find the union of two arrays.
|
902 |
+
|
903 |
+
Return the unique, sorted array of values that are in either of the two
|
904 |
+
input arrays.
|
905 |
+
|
906 |
+
Parameters
|
907 |
+
----------
|
908 |
+
ar1, ar2 : array_like
|
909 |
+
Input arrays. They are flattened if they are not already 1D.
|
910 |
+
|
911 |
+
Returns
|
912 |
+
-------
|
913 |
+
union1d : ndarray
|
914 |
+
Unique, sorted union of the input arrays.
|
915 |
+
|
916 |
+
See Also
|
917 |
+
--------
|
918 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
919 |
+
performing set operations on arrays.
|
920 |
+
|
921 |
+
Examples
|
922 |
+
--------
|
923 |
+
>>> np.union1d([-1, 0, 1], [-2, 0, 2])
|
924 |
+
array([-2, -1, 0, 1, 2])
|
925 |
+
|
926 |
+
To find the union of more than two arrays, use functools.reduce:
|
927 |
+
|
928 |
+
>>> from functools import reduce
|
929 |
+
>>> reduce(np.union1d, ([1, 3, 4, 3], [3, 1, 2, 1], [6, 3, 4, 2]))
|
930 |
+
array([1, 2, 3, 4, 6])
|
931 |
+
"""
|
932 |
+
return unique(np.concatenate((ar1, ar2), axis=None))
|
933 |
+
|
934 |
+
|
935 |
+
def _setdiff1d_dispatcher(ar1, ar2, assume_unique=None):
|
936 |
+
return (ar1, ar2)
|
937 |
+
|
938 |
+
|
939 |
+
@array_function_dispatch(_setdiff1d_dispatcher)
|
940 |
+
def setdiff1d(ar1, ar2, assume_unique=False):
|
941 |
+
"""
|
942 |
+
Find the set difference of two arrays.
|
943 |
+
|
944 |
+
Return the unique values in `ar1` that are not in `ar2`.
|
945 |
+
|
946 |
+
Parameters
|
947 |
+
----------
|
948 |
+
ar1 : array_like
|
949 |
+
Input array.
|
950 |
+
ar2 : array_like
|
951 |
+
Input comparison array.
|
952 |
+
assume_unique : bool
|
953 |
+
If True, the input arrays are both assumed to be unique, which
|
954 |
+
can speed up the calculation. Default is False.
|
955 |
+
|
956 |
+
Returns
|
957 |
+
-------
|
958 |
+
setdiff1d : ndarray
|
959 |
+
1D array of values in `ar1` that are not in `ar2`. The result
|
960 |
+
is sorted when `assume_unique=False`, but otherwise only sorted
|
961 |
+
if the input is sorted.
|
962 |
+
|
963 |
+
See Also
|
964 |
+
--------
|
965 |
+
numpy.lib.arraysetops : Module with a number of other functions for
|
966 |
+
performing set operations on arrays.
|
967 |
+
|
968 |
+
Examples
|
969 |
+
--------
|
970 |
+
>>> a = np.array([1, 2, 3, 2, 4, 1])
|
971 |
+
>>> b = np.array([3, 4, 5, 6])
|
972 |
+
>>> np.setdiff1d(a, b)
|
973 |
+
array([1, 2])
|
974 |
+
|
975 |
+
"""
|
976 |
+
if assume_unique:
|
977 |
+
ar1 = np.asarray(ar1).ravel()
|
978 |
+
else:
|
979 |
+
ar1 = unique(ar1)
|
980 |
+
ar2 = unique(ar2)
|
981 |
+
return ar1[in1d(ar1, ar2, assume_unique=True, invert=True)]
|
venv/lib/python3.10/site-packages/numpy/lib/arrayterator.pyi
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Generator
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
TypeVar,
|
5 |
+
Union,
|
6 |
+
overload,
|
7 |
+
)
|
8 |
+
|
9 |
+
from numpy import ndarray, dtype, generic
|
10 |
+
from numpy._typing import DTypeLike
|
11 |
+
|
12 |
+
# TODO: Set a shape bound once we've got proper shape support
|
13 |
+
_Shape = TypeVar("_Shape", bound=Any)
|
14 |
+
_DType = TypeVar("_DType", bound=dtype[Any])
|
15 |
+
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
16 |
+
|
17 |
+
_Index = Union[
|
18 |
+
Union[ellipsis, int, slice],
|
19 |
+
tuple[Union[ellipsis, int, slice], ...],
|
20 |
+
]
|
21 |
+
|
22 |
+
__all__: list[str]
|
23 |
+
|
24 |
+
# NOTE: In reality `Arrayterator` does not actually inherit from `ndarray`,
|
25 |
+
# but its ``__getattr__` method does wrap around the former and thus has
|
26 |
+
# access to all its methods
|
27 |
+
|
28 |
+
class Arrayterator(ndarray[_Shape, _DType]):
|
29 |
+
var: ndarray[_Shape, _DType] # type: ignore[assignment]
|
30 |
+
buf_size: None | int
|
31 |
+
start: list[int]
|
32 |
+
stop: list[int]
|
33 |
+
step: list[int]
|
34 |
+
|
35 |
+
@property # type: ignore[misc]
|
36 |
+
def shape(self) -> tuple[int, ...]: ...
|
37 |
+
@property
|
38 |
+
def flat( # type: ignore[override]
|
39 |
+
self: ndarray[Any, dtype[_ScalarType]]
|
40 |
+
) -> Generator[_ScalarType, None, None]: ...
|
41 |
+
def __init__(
|
42 |
+
self, var: ndarray[_Shape, _DType], buf_size: None | int = ...
|
43 |
+
) -> None: ...
|
44 |
+
@overload
|
45 |
+
def __array__(self, dtype: None = ...) -> ndarray[Any, _DType]: ...
|
46 |
+
@overload
|
47 |
+
def __array__(self, dtype: DTypeLike) -> ndarray[Any, dtype[Any]]: ...
|
48 |
+
def __getitem__(self, index: _Index) -> Arrayterator[Any, _DType]: ...
|
49 |
+
def __iter__(self) -> Generator[ndarray[Any, _DType], None, None]: ...
|
venv/lib/python3.10/site-packages/numpy/lib/format.pyi
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, Literal, Final
|
2 |
+
|
3 |
+
__all__: list[str]
|
4 |
+
|
5 |
+
EXPECTED_KEYS: Final[set[str]]
|
6 |
+
MAGIC_PREFIX: Final[bytes]
|
7 |
+
MAGIC_LEN: Literal[8]
|
8 |
+
ARRAY_ALIGN: Literal[64]
|
9 |
+
BUFFER_SIZE: Literal[262144] # 2**18
|
10 |
+
|
11 |
+
def magic(major, minor): ...
|
12 |
+
def read_magic(fp): ...
|
13 |
+
def dtype_to_descr(dtype): ...
|
14 |
+
def descr_to_dtype(descr): ...
|
15 |
+
def header_data_from_array_1_0(array): ...
|
16 |
+
def write_array_header_1_0(fp, d): ...
|
17 |
+
def write_array_header_2_0(fp, d): ...
|
18 |
+
def read_array_header_1_0(fp): ...
|
19 |
+
def read_array_header_2_0(fp): ...
|
20 |
+
def write_array(fp, array, version=..., allow_pickle=..., pickle_kwargs=...): ...
|
21 |
+
def read_array(fp, allow_pickle=..., pickle_kwargs=...): ...
|
22 |
+
def open_memmap(filename, mode=..., dtype=..., shape=..., fortran_order=..., version=...): ...
|
venv/lib/python3.10/site-packages/numpy/lib/function_base.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/numpy/lib/histograms.py
ADDED
@@ -0,0 +1,1072 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Histogram-related functions
|
3 |
+
"""
|
4 |
+
import contextlib
|
5 |
+
import functools
|
6 |
+
import operator
|
7 |
+
import warnings
|
8 |
+
|
9 |
+
import numpy as np
|
10 |
+
from numpy.core import overrides
|
11 |
+
|
12 |
+
__all__ = ['histogram', 'histogramdd', 'histogram_bin_edges']
|
13 |
+
|
14 |
+
array_function_dispatch = functools.partial(
|
15 |
+
overrides.array_function_dispatch, module='numpy')
|
16 |
+
|
17 |
+
# range is a keyword argument to many functions, so save the builtin so they can
|
18 |
+
# use it.
|
19 |
+
_range = range
|
20 |
+
|
21 |
+
|
22 |
+
def _ptp(x):
|
23 |
+
"""Peak-to-peak value of x.
|
24 |
+
|
25 |
+
This implementation avoids the problem of signed integer arrays having a
|
26 |
+
peak-to-peak value that cannot be represented with the array's data type.
|
27 |
+
This function returns an unsigned value for signed integer arrays.
|
28 |
+
"""
|
29 |
+
return _unsigned_subtract(x.max(), x.min())
|
30 |
+
|
31 |
+
|
32 |
+
def _hist_bin_sqrt(x, range):
|
33 |
+
"""
|
34 |
+
Square root histogram bin estimator.
|
35 |
+
|
36 |
+
Bin width is inversely proportional to the data size. Used by many
|
37 |
+
programs for its simplicity.
|
38 |
+
|
39 |
+
Parameters
|
40 |
+
----------
|
41 |
+
x : array_like
|
42 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
43 |
+
be empty.
|
44 |
+
|
45 |
+
Returns
|
46 |
+
-------
|
47 |
+
h : An estimate of the optimal bin width for the given data.
|
48 |
+
"""
|
49 |
+
del range # unused
|
50 |
+
return _ptp(x) / np.sqrt(x.size)
|
51 |
+
|
52 |
+
|
53 |
+
def _hist_bin_sturges(x, range):
|
54 |
+
"""
|
55 |
+
Sturges histogram bin estimator.
|
56 |
+
|
57 |
+
A very simplistic estimator based on the assumption of normality of
|
58 |
+
the data. This estimator has poor performance for non-normal data,
|
59 |
+
which becomes especially obvious for large data sets. The estimate
|
60 |
+
depends only on size of the data.
|
61 |
+
|
62 |
+
Parameters
|
63 |
+
----------
|
64 |
+
x : array_like
|
65 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
66 |
+
be empty.
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
h : An estimate of the optimal bin width for the given data.
|
71 |
+
"""
|
72 |
+
del range # unused
|
73 |
+
return _ptp(x) / (np.log2(x.size) + 1.0)
|
74 |
+
|
75 |
+
|
76 |
+
def _hist_bin_rice(x, range):
|
77 |
+
"""
|
78 |
+
Rice histogram bin estimator.
|
79 |
+
|
80 |
+
Another simple estimator with no normality assumption. It has better
|
81 |
+
performance for large data than Sturges, but tends to overestimate
|
82 |
+
the number of bins. The number of bins is proportional to the cube
|
83 |
+
root of data size (asymptotically optimal). The estimate depends
|
84 |
+
only on size of the data.
|
85 |
+
|
86 |
+
Parameters
|
87 |
+
----------
|
88 |
+
x : array_like
|
89 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
90 |
+
be empty.
|
91 |
+
|
92 |
+
Returns
|
93 |
+
-------
|
94 |
+
h : An estimate of the optimal bin width for the given data.
|
95 |
+
"""
|
96 |
+
del range # unused
|
97 |
+
return _ptp(x) / (2.0 * x.size ** (1.0 / 3))
|
98 |
+
|
99 |
+
|
100 |
+
def _hist_bin_scott(x, range):
|
101 |
+
"""
|
102 |
+
Scott histogram bin estimator.
|
103 |
+
|
104 |
+
The binwidth is proportional to the standard deviation of the data
|
105 |
+
and inversely proportional to the cube root of data size
|
106 |
+
(asymptotically optimal).
|
107 |
+
|
108 |
+
Parameters
|
109 |
+
----------
|
110 |
+
x : array_like
|
111 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
112 |
+
be empty.
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
h : An estimate of the optimal bin width for the given data.
|
117 |
+
"""
|
118 |
+
del range # unused
|
119 |
+
return (24.0 * np.pi**0.5 / x.size)**(1.0 / 3.0) * np.std(x)
|
120 |
+
|
121 |
+
|
122 |
+
def _hist_bin_stone(x, range):
|
123 |
+
"""
|
124 |
+
Histogram bin estimator based on minimizing the estimated integrated squared error (ISE).
|
125 |
+
|
126 |
+
The number of bins is chosen by minimizing the estimated ISE against the unknown true distribution.
|
127 |
+
The ISE is estimated using cross-validation and can be regarded as a generalization of Scott's rule.
|
128 |
+
https://en.wikipedia.org/wiki/Histogram#Scott.27s_normal_reference_rule
|
129 |
+
|
130 |
+
This paper by Stone appears to be the origination of this rule.
|
131 |
+
http://digitalassets.lib.berkeley.edu/sdtr/ucb/text/34.pdf
|
132 |
+
|
133 |
+
Parameters
|
134 |
+
----------
|
135 |
+
x : array_like
|
136 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
137 |
+
be empty.
|
138 |
+
range : (float, float)
|
139 |
+
The lower and upper range of the bins.
|
140 |
+
|
141 |
+
Returns
|
142 |
+
-------
|
143 |
+
h : An estimate of the optimal bin width for the given data.
|
144 |
+
"""
|
145 |
+
|
146 |
+
n = x.size
|
147 |
+
ptp_x = _ptp(x)
|
148 |
+
if n <= 1 or ptp_x == 0:
|
149 |
+
return 0
|
150 |
+
|
151 |
+
def jhat(nbins):
|
152 |
+
hh = ptp_x / nbins
|
153 |
+
p_k = np.histogram(x, bins=nbins, range=range)[0] / n
|
154 |
+
return (2 - (n + 1) * p_k.dot(p_k)) / hh
|
155 |
+
|
156 |
+
nbins_upper_bound = max(100, int(np.sqrt(n)))
|
157 |
+
nbins = min(_range(1, nbins_upper_bound + 1), key=jhat)
|
158 |
+
if nbins == nbins_upper_bound:
|
159 |
+
warnings.warn("The number of bins estimated may be suboptimal.",
|
160 |
+
RuntimeWarning, stacklevel=3)
|
161 |
+
return ptp_x / nbins
|
162 |
+
|
163 |
+
|
164 |
+
def _hist_bin_doane(x, range):
|
165 |
+
"""
|
166 |
+
Doane's histogram bin estimator.
|
167 |
+
|
168 |
+
Improved version of Sturges' formula which works better for
|
169 |
+
non-normal data. See
|
170 |
+
stats.stackexchange.com/questions/55134/doanes-formula-for-histogram-binning
|
171 |
+
|
172 |
+
Parameters
|
173 |
+
----------
|
174 |
+
x : array_like
|
175 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
176 |
+
be empty.
|
177 |
+
|
178 |
+
Returns
|
179 |
+
-------
|
180 |
+
h : An estimate of the optimal bin width for the given data.
|
181 |
+
"""
|
182 |
+
del range # unused
|
183 |
+
if x.size > 2:
|
184 |
+
sg1 = np.sqrt(6.0 * (x.size - 2) / ((x.size + 1.0) * (x.size + 3)))
|
185 |
+
sigma = np.std(x)
|
186 |
+
if sigma > 0.0:
|
187 |
+
# These three operations add up to
|
188 |
+
# g1 = np.mean(((x - np.mean(x)) / sigma)**3)
|
189 |
+
# but use only one temp array instead of three
|
190 |
+
temp = x - np.mean(x)
|
191 |
+
np.true_divide(temp, sigma, temp)
|
192 |
+
np.power(temp, 3, temp)
|
193 |
+
g1 = np.mean(temp)
|
194 |
+
return _ptp(x) / (1.0 + np.log2(x.size) +
|
195 |
+
np.log2(1.0 + np.absolute(g1) / sg1))
|
196 |
+
return 0.0
|
197 |
+
|
198 |
+
|
199 |
+
def _hist_bin_fd(x, range):
|
200 |
+
"""
|
201 |
+
The Freedman-Diaconis histogram bin estimator.
|
202 |
+
|
203 |
+
The Freedman-Diaconis rule uses interquartile range (IQR) to
|
204 |
+
estimate binwidth. It is considered a variation of the Scott rule
|
205 |
+
with more robustness as the IQR is less affected by outliers than
|
206 |
+
the standard deviation. However, the IQR depends on fewer points
|
207 |
+
than the standard deviation, so it is less accurate, especially for
|
208 |
+
long tailed distributions.
|
209 |
+
|
210 |
+
If the IQR is 0, this function returns 0 for the bin width.
|
211 |
+
Binwidth is inversely proportional to the cube root of data size
|
212 |
+
(asymptotically optimal).
|
213 |
+
|
214 |
+
Parameters
|
215 |
+
----------
|
216 |
+
x : array_like
|
217 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
218 |
+
be empty.
|
219 |
+
|
220 |
+
Returns
|
221 |
+
-------
|
222 |
+
h : An estimate of the optimal bin width for the given data.
|
223 |
+
"""
|
224 |
+
del range # unused
|
225 |
+
iqr = np.subtract(*np.percentile(x, [75, 25]))
|
226 |
+
return 2.0 * iqr * x.size ** (-1.0 / 3.0)
|
227 |
+
|
228 |
+
|
229 |
+
def _hist_bin_auto(x, range):
|
230 |
+
"""
|
231 |
+
Histogram bin estimator that uses the minimum width of the
|
232 |
+
Freedman-Diaconis and Sturges estimators if the FD bin width is non-zero.
|
233 |
+
If the bin width from the FD estimator is 0, the Sturges estimator is used.
|
234 |
+
|
235 |
+
The FD estimator is usually the most robust method, but its width
|
236 |
+
estimate tends to be too large for small `x` and bad for data with limited
|
237 |
+
variance. The Sturges estimator is quite good for small (<1000) datasets
|
238 |
+
and is the default in the R language. This method gives good off-the-shelf
|
239 |
+
behaviour.
|
240 |
+
|
241 |
+
.. versionchanged:: 1.15.0
|
242 |
+
If there is limited variance the IQR can be 0, which results in the
|
243 |
+
FD bin width being 0 too. This is not a valid bin width, so
|
244 |
+
``np.histogram_bin_edges`` chooses 1 bin instead, which may not be optimal.
|
245 |
+
If the IQR is 0, it's unlikely any variance-based estimators will be of
|
246 |
+
use, so we revert to the Sturges estimator, which only uses the size of the
|
247 |
+
dataset in its calculation.
|
248 |
+
|
249 |
+
Parameters
|
250 |
+
----------
|
251 |
+
x : array_like
|
252 |
+
Input data that is to be histogrammed, trimmed to range. May not
|
253 |
+
be empty.
|
254 |
+
|
255 |
+
Returns
|
256 |
+
-------
|
257 |
+
h : An estimate of the optimal bin width for the given data.
|
258 |
+
|
259 |
+
See Also
|
260 |
+
--------
|
261 |
+
_hist_bin_fd, _hist_bin_sturges
|
262 |
+
"""
|
263 |
+
fd_bw = _hist_bin_fd(x, range)
|
264 |
+
sturges_bw = _hist_bin_sturges(x, range)
|
265 |
+
del range # unused
|
266 |
+
if fd_bw:
|
267 |
+
return min(fd_bw, sturges_bw)
|
268 |
+
else:
|
269 |
+
# limited variance, so we return a len dependent bw estimator
|
270 |
+
return sturges_bw
|
271 |
+
|
272 |
+
# Private dict initialized at module load time
|
273 |
+
_hist_bin_selectors = {'stone': _hist_bin_stone,
|
274 |
+
'auto': _hist_bin_auto,
|
275 |
+
'doane': _hist_bin_doane,
|
276 |
+
'fd': _hist_bin_fd,
|
277 |
+
'rice': _hist_bin_rice,
|
278 |
+
'scott': _hist_bin_scott,
|
279 |
+
'sqrt': _hist_bin_sqrt,
|
280 |
+
'sturges': _hist_bin_sturges}
|
281 |
+
|
282 |
+
|
283 |
+
def _ravel_and_check_weights(a, weights):
|
284 |
+
""" Check a and weights have matching shapes, and ravel both """
|
285 |
+
a = np.asarray(a)
|
286 |
+
|
287 |
+
# Ensure that the array is a "subtractable" dtype
|
288 |
+
if a.dtype == np.bool_:
|
289 |
+
warnings.warn("Converting input from {} to {} for compatibility."
|
290 |
+
.format(a.dtype, np.uint8),
|
291 |
+
RuntimeWarning, stacklevel=3)
|
292 |
+
a = a.astype(np.uint8)
|
293 |
+
|
294 |
+
if weights is not None:
|
295 |
+
weights = np.asarray(weights)
|
296 |
+
if weights.shape != a.shape:
|
297 |
+
raise ValueError(
|
298 |
+
'weights should have the same shape as a.')
|
299 |
+
weights = weights.ravel()
|
300 |
+
a = a.ravel()
|
301 |
+
return a, weights
|
302 |
+
|
303 |
+
|
304 |
+
def _get_outer_edges(a, range):
|
305 |
+
"""
|
306 |
+
Determine the outer bin edges to use, from either the data or the range
|
307 |
+
argument
|
308 |
+
"""
|
309 |
+
if range is not None:
|
310 |
+
first_edge, last_edge = range
|
311 |
+
if first_edge > last_edge:
|
312 |
+
raise ValueError(
|
313 |
+
'max must be larger than min in range parameter.')
|
314 |
+
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
|
315 |
+
raise ValueError(
|
316 |
+
"supplied range of [{}, {}] is not finite".format(first_edge, last_edge))
|
317 |
+
elif a.size == 0:
|
318 |
+
# handle empty arrays. Can't determine range, so use 0-1.
|
319 |
+
first_edge, last_edge = 0, 1
|
320 |
+
else:
|
321 |
+
first_edge, last_edge = a.min(), a.max()
|
322 |
+
if not (np.isfinite(first_edge) and np.isfinite(last_edge)):
|
323 |
+
raise ValueError(
|
324 |
+
"autodetected range of [{}, {}] is not finite".format(first_edge, last_edge))
|
325 |
+
|
326 |
+
# expand empty range to avoid divide by zero
|
327 |
+
if first_edge == last_edge:
|
328 |
+
first_edge = first_edge - 0.5
|
329 |
+
last_edge = last_edge + 0.5
|
330 |
+
|
331 |
+
return first_edge, last_edge
|
332 |
+
|
333 |
+
|
334 |
+
def _unsigned_subtract(a, b):
|
335 |
+
"""
|
336 |
+
Subtract two values where a >= b, and produce an unsigned result
|
337 |
+
|
338 |
+
This is needed when finding the difference between the upper and lower
|
339 |
+
bound of an int16 histogram
|
340 |
+
"""
|
341 |
+
# coerce to a single type
|
342 |
+
signed_to_unsigned = {
|
343 |
+
np.byte: np.ubyte,
|
344 |
+
np.short: np.ushort,
|
345 |
+
np.intc: np.uintc,
|
346 |
+
np.int_: np.uint,
|
347 |
+
np.longlong: np.ulonglong
|
348 |
+
}
|
349 |
+
dt = np.result_type(a, b)
|
350 |
+
try:
|
351 |
+
dt = signed_to_unsigned[dt.type]
|
352 |
+
except KeyError:
|
353 |
+
return np.subtract(a, b, dtype=dt)
|
354 |
+
else:
|
355 |
+
# we know the inputs are integers, and we are deliberately casting
|
356 |
+
# signed to unsigned
|
357 |
+
return np.subtract(a, b, casting='unsafe', dtype=dt)
|
358 |
+
|
359 |
+
|
360 |
+
def _get_bin_edges(a, bins, range, weights):
|
361 |
+
"""
|
362 |
+
Computes the bins used internally by `histogram`.
|
363 |
+
|
364 |
+
Parameters
|
365 |
+
==========
|
366 |
+
a : ndarray
|
367 |
+
Ravelled data array
|
368 |
+
bins, range
|
369 |
+
Forwarded arguments from `histogram`.
|
370 |
+
weights : ndarray, optional
|
371 |
+
Ravelled weights array, or None
|
372 |
+
|
373 |
+
Returns
|
374 |
+
=======
|
375 |
+
bin_edges : ndarray
|
376 |
+
Array of bin edges
|
377 |
+
uniform_bins : (Number, Number, int):
|
378 |
+
The upper bound, lowerbound, and number of bins, used in the optimized
|
379 |
+
implementation of `histogram` that works on uniform bins.
|
380 |
+
"""
|
381 |
+
# parse the overloaded bins argument
|
382 |
+
n_equal_bins = None
|
383 |
+
bin_edges = None
|
384 |
+
|
385 |
+
if isinstance(bins, str):
|
386 |
+
bin_name = bins
|
387 |
+
# if `bins` is a string for an automatic method,
|
388 |
+
# this will replace it with the number of bins calculated
|
389 |
+
if bin_name not in _hist_bin_selectors:
|
390 |
+
raise ValueError(
|
391 |
+
"{!r} is not a valid estimator for `bins`".format(bin_name))
|
392 |
+
if weights is not None:
|
393 |
+
raise TypeError("Automated estimation of the number of "
|
394 |
+
"bins is not supported for weighted data")
|
395 |
+
|
396 |
+
first_edge, last_edge = _get_outer_edges(a, range)
|
397 |
+
|
398 |
+
# truncate the range if needed
|
399 |
+
if range is not None:
|
400 |
+
keep = (a >= first_edge)
|
401 |
+
keep &= (a <= last_edge)
|
402 |
+
if not np.logical_and.reduce(keep):
|
403 |
+
a = a[keep]
|
404 |
+
|
405 |
+
if a.size == 0:
|
406 |
+
n_equal_bins = 1
|
407 |
+
else:
|
408 |
+
# Do not call selectors on empty arrays
|
409 |
+
width = _hist_bin_selectors[bin_name](a, (first_edge, last_edge))
|
410 |
+
if width:
|
411 |
+
n_equal_bins = int(np.ceil(_unsigned_subtract(last_edge, first_edge) / width))
|
412 |
+
else:
|
413 |
+
# Width can be zero for some estimators, e.g. FD when
|
414 |
+
# the IQR of the data is zero.
|
415 |
+
n_equal_bins = 1
|
416 |
+
|
417 |
+
elif np.ndim(bins) == 0:
|
418 |
+
try:
|
419 |
+
n_equal_bins = operator.index(bins)
|
420 |
+
except TypeError as e:
|
421 |
+
raise TypeError(
|
422 |
+
'`bins` must be an integer, a string, or an array') from e
|
423 |
+
if n_equal_bins < 1:
|
424 |
+
raise ValueError('`bins` must be positive, when an integer')
|
425 |
+
|
426 |
+
first_edge, last_edge = _get_outer_edges(a, range)
|
427 |
+
|
428 |
+
elif np.ndim(bins) == 1:
|
429 |
+
bin_edges = np.asarray(bins)
|
430 |
+
if np.any(bin_edges[:-1] > bin_edges[1:]):
|
431 |
+
raise ValueError(
|
432 |
+
'`bins` must increase monotonically, when an array')
|
433 |
+
|
434 |
+
else:
|
435 |
+
raise ValueError('`bins` must be 1d, when an array')
|
436 |
+
|
437 |
+
if n_equal_bins is not None:
|
438 |
+
# gh-10322 means that type resolution rules are dependent on array
|
439 |
+
# shapes. To avoid this causing problems, we pick a type now and stick
|
440 |
+
# with it throughout.
|
441 |
+
bin_type = np.result_type(first_edge, last_edge, a)
|
442 |
+
if np.issubdtype(bin_type, np.integer):
|
443 |
+
bin_type = np.result_type(bin_type, float)
|
444 |
+
|
445 |
+
# bin edges must be computed
|
446 |
+
bin_edges = np.linspace(
|
447 |
+
first_edge, last_edge, n_equal_bins + 1,
|
448 |
+
endpoint=True, dtype=bin_type)
|
449 |
+
return bin_edges, (first_edge, last_edge, n_equal_bins)
|
450 |
+
else:
|
451 |
+
return bin_edges, None
|
452 |
+
|
453 |
+
|
454 |
+
def _search_sorted_inclusive(a, v):
|
455 |
+
"""
|
456 |
+
Like `searchsorted`, but where the last item in `v` is placed on the right.
|
457 |
+
|
458 |
+
In the context of a histogram, this makes the last bin edge inclusive
|
459 |
+
"""
|
460 |
+
return np.concatenate((
|
461 |
+
a.searchsorted(v[:-1], 'left'),
|
462 |
+
a.searchsorted(v[-1:], 'right')
|
463 |
+
))
|
464 |
+
|
465 |
+
|
466 |
+
def _histogram_bin_edges_dispatcher(a, bins=None, range=None, weights=None):
|
467 |
+
return (a, bins, weights)
|
468 |
+
|
469 |
+
|
470 |
+
@array_function_dispatch(_histogram_bin_edges_dispatcher)
|
471 |
+
def histogram_bin_edges(a, bins=10, range=None, weights=None):
|
472 |
+
r"""
|
473 |
+
Function to calculate only the edges of the bins used by the `histogram`
|
474 |
+
function.
|
475 |
+
|
476 |
+
Parameters
|
477 |
+
----------
|
478 |
+
a : array_like
|
479 |
+
Input data. The histogram is computed over the flattened array.
|
480 |
+
bins : int or sequence of scalars or str, optional
|
481 |
+
If `bins` is an int, it defines the number of equal-width
|
482 |
+
bins in the given range (10, by default). If `bins` is a
|
483 |
+
sequence, it defines the bin edges, including the rightmost
|
484 |
+
edge, allowing for non-uniform bin widths.
|
485 |
+
|
486 |
+
If `bins` is a string from the list below, `histogram_bin_edges` will use
|
487 |
+
the method chosen to calculate the optimal bin width and
|
488 |
+
consequently the number of bins (see `Notes` for more detail on
|
489 |
+
the estimators) from the data that falls within the requested
|
490 |
+
range. While the bin width will be optimal for the actual data
|
491 |
+
in the range, the number of bins will be computed to fill the
|
492 |
+
entire range, including the empty portions. For visualisation,
|
493 |
+
using the 'auto' option is suggested. Weighted data is not
|
494 |
+
supported for automated bin size selection.
|
495 |
+
|
496 |
+
'auto'
|
497 |
+
Maximum of the 'sturges' and 'fd' estimators. Provides good
|
498 |
+
all around performance.
|
499 |
+
|
500 |
+
'fd' (Freedman Diaconis Estimator)
|
501 |
+
Robust (resilient to outliers) estimator that takes into
|
502 |
+
account data variability and data size.
|
503 |
+
|
504 |
+
'doane'
|
505 |
+
An improved version of Sturges' estimator that works better
|
506 |
+
with non-normal datasets.
|
507 |
+
|
508 |
+
'scott'
|
509 |
+
Less robust estimator that takes into account data variability
|
510 |
+
and data size.
|
511 |
+
|
512 |
+
'stone'
|
513 |
+
Estimator based on leave-one-out cross-validation estimate of
|
514 |
+
the integrated squared error. Can be regarded as a generalization
|
515 |
+
of Scott's rule.
|
516 |
+
|
517 |
+
'rice'
|
518 |
+
Estimator does not take variability into account, only data
|
519 |
+
size. Commonly overestimates number of bins required.
|
520 |
+
|
521 |
+
'sturges'
|
522 |
+
R's default method, only accounts for data size. Only
|
523 |
+
optimal for gaussian data and underestimates number of bins
|
524 |
+
for large non-gaussian datasets.
|
525 |
+
|
526 |
+
'sqrt'
|
527 |
+
Square root (of data size) estimator, used by Excel and
|
528 |
+
other programs for its speed and simplicity.
|
529 |
+
|
530 |
+
range : (float, float), optional
|
531 |
+
The lower and upper range of the bins. If not provided, range
|
532 |
+
is simply ``(a.min(), a.max())``. Values outside the range are
|
533 |
+
ignored. The first element of the range must be less than or
|
534 |
+
equal to the second. `range` affects the automatic bin
|
535 |
+
computation as well. While bin width is computed to be optimal
|
536 |
+
based on the actual data within `range`, the bin count will fill
|
537 |
+
the entire range including portions containing no data.
|
538 |
+
|
539 |
+
weights : array_like, optional
|
540 |
+
An array of weights, of the same shape as `a`. Each value in
|
541 |
+
`a` only contributes its associated weight towards the bin count
|
542 |
+
(instead of 1). This is currently not used by any of the bin estimators,
|
543 |
+
but may be in the future.
|
544 |
+
|
545 |
+
Returns
|
546 |
+
-------
|
547 |
+
bin_edges : array of dtype float
|
548 |
+
The edges to pass into `histogram`
|
549 |
+
|
550 |
+
See Also
|
551 |
+
--------
|
552 |
+
histogram
|
553 |
+
|
554 |
+
Notes
|
555 |
+
-----
|
556 |
+
The methods to estimate the optimal number of bins are well founded
|
557 |
+
in literature, and are inspired by the choices R provides for
|
558 |
+
histogram visualisation. Note that having the number of bins
|
559 |
+
proportional to :math:`n^{1/3}` is asymptotically optimal, which is
|
560 |
+
why it appears in most estimators. These are simply plug-in methods
|
561 |
+
that give good starting points for number of bins. In the equations
|
562 |
+
below, :math:`h` is the binwidth and :math:`n_h` is the number of
|
563 |
+
bins. All estimators that compute bin counts are recast to bin width
|
564 |
+
using the `ptp` of the data. The final bin count is obtained from
|
565 |
+
``np.round(np.ceil(range / h))``. The final bin width is often less
|
566 |
+
than what is returned by the estimators below.
|
567 |
+
|
568 |
+
'auto' (maximum of the 'sturges' and 'fd' estimators)
|
569 |
+
A compromise to get a good value. For small datasets the Sturges
|
570 |
+
value will usually be chosen, while larger datasets will usually
|
571 |
+
default to FD. Avoids the overly conservative behaviour of FD
|
572 |
+
and Sturges for small and large datasets respectively.
|
573 |
+
Switchover point is usually :math:`a.size \approx 1000`.
|
574 |
+
|
575 |
+
'fd' (Freedman Diaconis Estimator)
|
576 |
+
.. math:: h = 2 \frac{IQR}{n^{1/3}}
|
577 |
+
|
578 |
+
The binwidth is proportional to the interquartile range (IQR)
|
579 |
+
and inversely proportional to cube root of a.size. Can be too
|
580 |
+
conservative for small datasets, but is quite good for large
|
581 |
+
datasets. The IQR is very robust to outliers.
|
582 |
+
|
583 |
+
'scott'
|
584 |
+
.. math:: h = \sigma \sqrt[3]{\frac{24 \sqrt{\pi}}{n}}
|
585 |
+
|
586 |
+
The binwidth is proportional to the standard deviation of the
|
587 |
+
data and inversely proportional to cube root of ``x.size``. Can
|
588 |
+
be too conservative for small datasets, but is quite good for
|
589 |
+
large datasets. The standard deviation is not very robust to
|
590 |
+
outliers. Values are very similar to the Freedman-Diaconis
|
591 |
+
estimator in the absence of outliers.
|
592 |
+
|
593 |
+
'rice'
|
594 |
+
.. math:: n_h = 2n^{1/3}
|
595 |
+
|
596 |
+
The number of bins is only proportional to cube root of
|
597 |
+
``a.size``. It tends to overestimate the number of bins and it
|
598 |
+
does not take into account data variability.
|
599 |
+
|
600 |
+
'sturges'
|
601 |
+
.. math:: n_h = \log _{2}(n) + 1
|
602 |
+
|
603 |
+
The number of bins is the base 2 log of ``a.size``. This
|
604 |
+
estimator assumes normality of data and is too conservative for
|
605 |
+
larger, non-normal datasets. This is the default method in R's
|
606 |
+
``hist`` method.
|
607 |
+
|
608 |
+
'doane'
|
609 |
+
.. math:: n_h = 1 + \log_{2}(n) +
|
610 |
+
\log_{2}\left(1 + \frac{|g_1|}{\sigma_{g_1}}\right)
|
611 |
+
|
612 |
+
g_1 = mean\left[\left(\frac{x - \mu}{\sigma}\right)^3\right]
|
613 |
+
|
614 |
+
\sigma_{g_1} = \sqrt{\frac{6(n - 2)}{(n + 1)(n + 3)}}
|
615 |
+
|
616 |
+
An improved version of Sturges' formula that produces better
|
617 |
+
estimates for non-normal datasets. This estimator attempts to
|
618 |
+
account for the skew of the data.
|
619 |
+
|
620 |
+
'sqrt'
|
621 |
+
.. math:: n_h = \sqrt n
|
622 |
+
|
623 |
+
The simplest and fastest estimator. Only takes into account the
|
624 |
+
data size.
|
625 |
+
|
626 |
+
Examples
|
627 |
+
--------
|
628 |
+
>>> arr = np.array([0, 0, 0, 1, 2, 3, 3, 4, 5])
|
629 |
+
>>> np.histogram_bin_edges(arr, bins='auto', range=(0, 1))
|
630 |
+
array([0. , 0.25, 0.5 , 0.75, 1. ])
|
631 |
+
>>> np.histogram_bin_edges(arr, bins=2)
|
632 |
+
array([0. , 2.5, 5. ])
|
633 |
+
|
634 |
+
For consistency with histogram, an array of pre-computed bins is
|
635 |
+
passed through unmodified:
|
636 |
+
|
637 |
+
>>> np.histogram_bin_edges(arr, [1, 2])
|
638 |
+
array([1, 2])
|
639 |
+
|
640 |
+
This function allows one set of bins to be computed, and reused across
|
641 |
+
multiple histograms:
|
642 |
+
|
643 |
+
>>> shared_bins = np.histogram_bin_edges(arr, bins='auto')
|
644 |
+
>>> shared_bins
|
645 |
+
array([0., 1., 2., 3., 4., 5.])
|
646 |
+
|
647 |
+
>>> group_id = np.array([0, 1, 1, 0, 1, 1, 0, 1, 1])
|
648 |
+
>>> hist_0, _ = np.histogram(arr[group_id == 0], bins=shared_bins)
|
649 |
+
>>> hist_1, _ = np.histogram(arr[group_id == 1], bins=shared_bins)
|
650 |
+
|
651 |
+
>>> hist_0; hist_1
|
652 |
+
array([1, 1, 0, 1, 0])
|
653 |
+
array([2, 0, 1, 1, 2])
|
654 |
+
|
655 |
+
Which gives more easily comparable results than using separate bins for
|
656 |
+
each histogram:
|
657 |
+
|
658 |
+
>>> hist_0, bins_0 = np.histogram(arr[group_id == 0], bins='auto')
|
659 |
+
>>> hist_1, bins_1 = np.histogram(arr[group_id == 1], bins='auto')
|
660 |
+
>>> hist_0; hist_1
|
661 |
+
array([1, 1, 1])
|
662 |
+
array([2, 1, 1, 2])
|
663 |
+
>>> bins_0; bins_1
|
664 |
+
array([0., 1., 2., 3.])
|
665 |
+
array([0. , 1.25, 2.5 , 3.75, 5. ])
|
666 |
+
|
667 |
+
"""
|
668 |
+
a, weights = _ravel_and_check_weights(a, weights)
|
669 |
+
bin_edges, _ = _get_bin_edges(a, bins, range, weights)
|
670 |
+
return bin_edges
|
671 |
+
|
672 |
+
|
673 |
+
def _histogram_dispatcher(
|
674 |
+
a, bins=None, range=None, density=None, weights=None):
|
675 |
+
return (a, bins, weights)
|
676 |
+
|
677 |
+
|
678 |
+
@array_function_dispatch(_histogram_dispatcher)
|
679 |
+
def histogram(a, bins=10, range=None, density=None, weights=None):
|
680 |
+
r"""
|
681 |
+
Compute the histogram of a dataset.
|
682 |
+
|
683 |
+
Parameters
|
684 |
+
----------
|
685 |
+
a : array_like
|
686 |
+
Input data. The histogram is computed over the flattened array.
|
687 |
+
bins : int or sequence of scalars or str, optional
|
688 |
+
If `bins` is an int, it defines the number of equal-width
|
689 |
+
bins in the given range (10, by default). If `bins` is a
|
690 |
+
sequence, it defines a monotonically increasing array of bin edges,
|
691 |
+
including the rightmost edge, allowing for non-uniform bin widths.
|
692 |
+
|
693 |
+
.. versionadded:: 1.11.0
|
694 |
+
|
695 |
+
If `bins` is a string, it defines the method used to calculate the
|
696 |
+
optimal bin width, as defined by `histogram_bin_edges`.
|
697 |
+
|
698 |
+
range : (float, float), optional
|
699 |
+
The lower and upper range of the bins. If not provided, range
|
700 |
+
is simply ``(a.min(), a.max())``. Values outside the range are
|
701 |
+
ignored. The first element of the range must be less than or
|
702 |
+
equal to the second. `range` affects the automatic bin
|
703 |
+
computation as well. While bin width is computed to be optimal
|
704 |
+
based on the actual data within `range`, the bin count will fill
|
705 |
+
the entire range including portions containing no data.
|
706 |
+
weights : array_like, optional
|
707 |
+
An array of weights, of the same shape as `a`. Each value in
|
708 |
+
`a` only contributes its associated weight towards the bin count
|
709 |
+
(instead of 1). If `density` is True, the weights are
|
710 |
+
normalized, so that the integral of the density over the range
|
711 |
+
remains 1.
|
712 |
+
density : bool, optional
|
713 |
+
If ``False``, the result will contain the number of samples in
|
714 |
+
each bin. If ``True``, the result is the value of the
|
715 |
+
probability *density* function at the bin, normalized such that
|
716 |
+
the *integral* over the range is 1. Note that the sum of the
|
717 |
+
histogram values will not be equal to 1 unless bins of unity
|
718 |
+
width are chosen; it is not a probability *mass* function.
|
719 |
+
|
720 |
+
Returns
|
721 |
+
-------
|
722 |
+
hist : array
|
723 |
+
The values of the histogram. See `density` and `weights` for a
|
724 |
+
description of the possible semantics.
|
725 |
+
bin_edges : array of dtype float
|
726 |
+
Return the bin edges ``(length(hist)+1)``.
|
727 |
+
|
728 |
+
|
729 |
+
See Also
|
730 |
+
--------
|
731 |
+
histogramdd, bincount, searchsorted, digitize, histogram_bin_edges
|
732 |
+
|
733 |
+
Notes
|
734 |
+
-----
|
735 |
+
All but the last (righthand-most) bin is half-open. In other words,
|
736 |
+
if `bins` is::
|
737 |
+
|
738 |
+
[1, 2, 3, 4]
|
739 |
+
|
740 |
+
then the first bin is ``[1, 2)`` (including 1, but excluding 2) and
|
741 |
+
the second ``[2, 3)``. The last bin, however, is ``[3, 4]``, which
|
742 |
+
*includes* 4.
|
743 |
+
|
744 |
+
|
745 |
+
Examples
|
746 |
+
--------
|
747 |
+
>>> np.histogram([1, 2, 1], bins=[0, 1, 2, 3])
|
748 |
+
(array([0, 2, 1]), array([0, 1, 2, 3]))
|
749 |
+
>>> np.histogram(np.arange(4), bins=np.arange(5), density=True)
|
750 |
+
(array([0.25, 0.25, 0.25, 0.25]), array([0, 1, 2, 3, 4]))
|
751 |
+
>>> np.histogram([[1, 2, 1], [1, 0, 1]], bins=[0,1,2,3])
|
752 |
+
(array([1, 4, 1]), array([0, 1, 2, 3]))
|
753 |
+
|
754 |
+
>>> a = np.arange(5)
|
755 |
+
>>> hist, bin_edges = np.histogram(a, density=True)
|
756 |
+
>>> hist
|
757 |
+
array([0.5, 0. , 0.5, 0. , 0. , 0.5, 0. , 0.5, 0. , 0.5])
|
758 |
+
>>> hist.sum()
|
759 |
+
2.4999999999999996
|
760 |
+
>>> np.sum(hist * np.diff(bin_edges))
|
761 |
+
1.0
|
762 |
+
|
763 |
+
.. versionadded:: 1.11.0
|
764 |
+
|
765 |
+
Automated Bin Selection Methods example, using 2 peak random data
|
766 |
+
with 2000 points:
|
767 |
+
|
768 |
+
>>> import matplotlib.pyplot as plt
|
769 |
+
>>> rng = np.random.RandomState(10) # deterministic random data
|
770 |
+
>>> a = np.hstack((rng.normal(size=1000),
|
771 |
+
... rng.normal(loc=5, scale=2, size=1000)))
|
772 |
+
>>> _ = plt.hist(a, bins='auto') # arguments are passed to np.histogram
|
773 |
+
>>> plt.title("Histogram with 'auto' bins")
|
774 |
+
Text(0.5, 1.0, "Histogram with 'auto' bins")
|
775 |
+
>>> plt.show()
|
776 |
+
|
777 |
+
"""
|
778 |
+
a, weights = _ravel_and_check_weights(a, weights)
|
779 |
+
|
780 |
+
bin_edges, uniform_bins = _get_bin_edges(a, bins, range, weights)
|
781 |
+
|
782 |
+
# Histogram is an integer or a float array depending on the weights.
|
783 |
+
if weights is None:
|
784 |
+
ntype = np.dtype(np.intp)
|
785 |
+
else:
|
786 |
+
ntype = weights.dtype
|
787 |
+
|
788 |
+
# We set a block size, as this allows us to iterate over chunks when
|
789 |
+
# computing histograms, to minimize memory usage.
|
790 |
+
BLOCK = 65536
|
791 |
+
|
792 |
+
# The fast path uses bincount, but that only works for certain types
|
793 |
+
# of weight
|
794 |
+
simple_weights = (
|
795 |
+
weights is None or
|
796 |
+
np.can_cast(weights.dtype, np.double) or
|
797 |
+
np.can_cast(weights.dtype, complex)
|
798 |
+
)
|
799 |
+
|
800 |
+
if uniform_bins is not None and simple_weights:
|
801 |
+
# Fast algorithm for equal bins
|
802 |
+
# We now convert values of a to bin indices, under the assumption of
|
803 |
+
# equal bin widths (which is valid here).
|
804 |
+
first_edge, last_edge, n_equal_bins = uniform_bins
|
805 |
+
|
806 |
+
# Initialize empty histogram
|
807 |
+
n = np.zeros(n_equal_bins, ntype)
|
808 |
+
|
809 |
+
# Pre-compute histogram scaling factor
|
810 |
+
norm_numerator = n_equal_bins
|
811 |
+
norm_denom = _unsigned_subtract(last_edge, first_edge)
|
812 |
+
|
813 |
+
# We iterate over blocks here for two reasons: the first is that for
|
814 |
+
# large arrays, it is actually faster (for example for a 10^8 array it
|
815 |
+
# is 2x as fast) and it results in a memory footprint 3x lower in the
|
816 |
+
# limit of large arrays.
|
817 |
+
for i in _range(0, len(a), BLOCK):
|
818 |
+
tmp_a = a[i:i+BLOCK]
|
819 |
+
if weights is None:
|
820 |
+
tmp_w = None
|
821 |
+
else:
|
822 |
+
tmp_w = weights[i:i + BLOCK]
|
823 |
+
|
824 |
+
# Only include values in the right range
|
825 |
+
keep = (tmp_a >= first_edge)
|
826 |
+
keep &= (tmp_a <= last_edge)
|
827 |
+
if not np.logical_and.reduce(keep):
|
828 |
+
tmp_a = tmp_a[keep]
|
829 |
+
if tmp_w is not None:
|
830 |
+
tmp_w = tmp_w[keep]
|
831 |
+
|
832 |
+
# This cast ensures no type promotions occur below, which gh-10322
|
833 |
+
# make unpredictable. Getting it wrong leads to precision errors
|
834 |
+
# like gh-8123.
|
835 |
+
tmp_a = tmp_a.astype(bin_edges.dtype, copy=False)
|
836 |
+
|
837 |
+
# Compute the bin indices, and for values that lie exactly on
|
838 |
+
# last_edge we need to subtract one
|
839 |
+
f_indices = ((_unsigned_subtract(tmp_a, first_edge) / norm_denom)
|
840 |
+
* norm_numerator)
|
841 |
+
indices = f_indices.astype(np.intp)
|
842 |
+
indices[indices == n_equal_bins] -= 1
|
843 |
+
|
844 |
+
# The index computation is not guaranteed to give exactly
|
845 |
+
# consistent results within ~1 ULP of the bin edges.
|
846 |
+
decrement = tmp_a < bin_edges[indices]
|
847 |
+
indices[decrement] -= 1
|
848 |
+
# The last bin includes the right edge. The other bins do not.
|
849 |
+
increment = ((tmp_a >= bin_edges[indices + 1])
|
850 |
+
& (indices != n_equal_bins - 1))
|
851 |
+
indices[increment] += 1
|
852 |
+
|
853 |
+
# We now compute the histogram using bincount
|
854 |
+
if ntype.kind == 'c':
|
855 |
+
n.real += np.bincount(indices, weights=tmp_w.real,
|
856 |
+
minlength=n_equal_bins)
|
857 |
+
n.imag += np.bincount(indices, weights=tmp_w.imag,
|
858 |
+
minlength=n_equal_bins)
|
859 |
+
else:
|
860 |
+
n += np.bincount(indices, weights=tmp_w,
|
861 |
+
minlength=n_equal_bins).astype(ntype)
|
862 |
+
else:
|
863 |
+
# Compute via cumulative histogram
|
864 |
+
cum_n = np.zeros(bin_edges.shape, ntype)
|
865 |
+
if weights is None:
|
866 |
+
for i in _range(0, len(a), BLOCK):
|
867 |
+
sa = np.sort(a[i:i+BLOCK])
|
868 |
+
cum_n += _search_sorted_inclusive(sa, bin_edges)
|
869 |
+
else:
|
870 |
+
zero = np.zeros(1, dtype=ntype)
|
871 |
+
for i in _range(0, len(a), BLOCK):
|
872 |
+
tmp_a = a[i:i+BLOCK]
|
873 |
+
tmp_w = weights[i:i+BLOCK]
|
874 |
+
sorting_index = np.argsort(tmp_a)
|
875 |
+
sa = tmp_a[sorting_index]
|
876 |
+
sw = tmp_w[sorting_index]
|
877 |
+
cw = np.concatenate((zero, sw.cumsum()))
|
878 |
+
bin_index = _search_sorted_inclusive(sa, bin_edges)
|
879 |
+
cum_n += cw[bin_index]
|
880 |
+
|
881 |
+
n = np.diff(cum_n)
|
882 |
+
|
883 |
+
if density:
|
884 |
+
db = np.array(np.diff(bin_edges), float)
|
885 |
+
return n/db/n.sum(), bin_edges
|
886 |
+
|
887 |
+
return n, bin_edges
|
888 |
+
|
889 |
+
|
890 |
+
def _histogramdd_dispatcher(sample, bins=None, range=None, density=None,
|
891 |
+
weights=None):
|
892 |
+
if hasattr(sample, 'shape'): # same condition as used in histogramdd
|
893 |
+
yield sample
|
894 |
+
else:
|
895 |
+
yield from sample
|
896 |
+
with contextlib.suppress(TypeError):
|
897 |
+
yield from bins
|
898 |
+
yield weights
|
899 |
+
|
900 |
+
|
901 |
+
@array_function_dispatch(_histogramdd_dispatcher)
|
902 |
+
def histogramdd(sample, bins=10, range=None, density=None, weights=None):
|
903 |
+
"""
|
904 |
+
Compute the multidimensional histogram of some data.
|
905 |
+
|
906 |
+
Parameters
|
907 |
+
----------
|
908 |
+
sample : (N, D) array, or (N, D) array_like
|
909 |
+
The data to be histogrammed.
|
910 |
+
|
911 |
+
Note the unusual interpretation of sample when an array_like:
|
912 |
+
|
913 |
+
* When an array, each row is a coordinate in a D-dimensional space -
|
914 |
+
such as ``histogramdd(np.array([p1, p2, p3]))``.
|
915 |
+
* When an array_like, each element is the list of values for single
|
916 |
+
coordinate - such as ``histogramdd((X, Y, Z))``.
|
917 |
+
|
918 |
+
The first form should be preferred.
|
919 |
+
|
920 |
+
bins : sequence or int, optional
|
921 |
+
The bin specification:
|
922 |
+
|
923 |
+
* A sequence of arrays describing the monotonically increasing bin
|
924 |
+
edges along each dimension.
|
925 |
+
* The number of bins for each dimension (nx, ny, ... =bins)
|
926 |
+
* The number of bins for all dimensions (nx=ny=...=bins).
|
927 |
+
|
928 |
+
range : sequence, optional
|
929 |
+
A sequence of length D, each an optional (lower, upper) tuple giving
|
930 |
+
the outer bin edges to be used if the edges are not given explicitly in
|
931 |
+
`bins`.
|
932 |
+
An entry of None in the sequence results in the minimum and maximum
|
933 |
+
values being used for the corresponding dimension.
|
934 |
+
The default, None, is equivalent to passing a tuple of D None values.
|
935 |
+
density : bool, optional
|
936 |
+
If False, the default, returns the number of samples in each bin.
|
937 |
+
If True, returns the probability *density* function at the bin,
|
938 |
+
``bin_count / sample_count / bin_volume``.
|
939 |
+
weights : (N,) array_like, optional
|
940 |
+
An array of values `w_i` weighing each sample `(x_i, y_i, z_i, ...)`.
|
941 |
+
Weights are normalized to 1 if density is True. If density is False,
|
942 |
+
the values of the returned histogram are equal to the sum of the
|
943 |
+
weights belonging to the samples falling into each bin.
|
944 |
+
|
945 |
+
Returns
|
946 |
+
-------
|
947 |
+
H : ndarray
|
948 |
+
The multidimensional histogram of sample x. See density and weights
|
949 |
+
for the different possible semantics.
|
950 |
+
edges : list
|
951 |
+
A list of D arrays describing the bin edges for each dimension.
|
952 |
+
|
953 |
+
See Also
|
954 |
+
--------
|
955 |
+
histogram: 1-D histogram
|
956 |
+
histogram2d: 2-D histogram
|
957 |
+
|
958 |
+
Examples
|
959 |
+
--------
|
960 |
+
>>> r = np.random.randn(100,3)
|
961 |
+
>>> H, edges = np.histogramdd(r, bins = (5, 8, 4))
|
962 |
+
>>> H.shape, edges[0].size, edges[1].size, edges[2].size
|
963 |
+
((5, 8, 4), 6, 9, 5)
|
964 |
+
|
965 |
+
"""
|
966 |
+
|
967 |
+
try:
|
968 |
+
# Sample is an ND-array.
|
969 |
+
N, D = sample.shape
|
970 |
+
except (AttributeError, ValueError):
|
971 |
+
# Sample is a sequence of 1D arrays.
|
972 |
+
sample = np.atleast_2d(sample).T
|
973 |
+
N, D = sample.shape
|
974 |
+
|
975 |
+
nbin = np.empty(D, np.intp)
|
976 |
+
edges = D*[None]
|
977 |
+
dedges = D*[None]
|
978 |
+
if weights is not None:
|
979 |
+
weights = np.asarray(weights)
|
980 |
+
|
981 |
+
try:
|
982 |
+
M = len(bins)
|
983 |
+
if M != D:
|
984 |
+
raise ValueError(
|
985 |
+
'The dimension of bins must be equal to the dimension of the '
|
986 |
+
'sample x.')
|
987 |
+
except TypeError:
|
988 |
+
# bins is an integer
|
989 |
+
bins = D*[bins]
|
990 |
+
|
991 |
+
# normalize the range argument
|
992 |
+
if range is None:
|
993 |
+
range = (None,) * D
|
994 |
+
elif len(range) != D:
|
995 |
+
raise ValueError('range argument must have one entry per dimension')
|
996 |
+
|
997 |
+
# Create edge arrays
|
998 |
+
for i in _range(D):
|
999 |
+
if np.ndim(bins[i]) == 0:
|
1000 |
+
if bins[i] < 1:
|
1001 |
+
raise ValueError(
|
1002 |
+
'`bins[{}]` must be positive, when an integer'.format(i))
|
1003 |
+
smin, smax = _get_outer_edges(sample[:,i], range[i])
|
1004 |
+
try:
|
1005 |
+
n = operator.index(bins[i])
|
1006 |
+
|
1007 |
+
except TypeError as e:
|
1008 |
+
raise TypeError(
|
1009 |
+
"`bins[{}]` must be an integer, when a scalar".format(i)
|
1010 |
+
) from e
|
1011 |
+
|
1012 |
+
edges[i] = np.linspace(smin, smax, n + 1)
|
1013 |
+
elif np.ndim(bins[i]) == 1:
|
1014 |
+
edges[i] = np.asarray(bins[i])
|
1015 |
+
if np.any(edges[i][:-1] > edges[i][1:]):
|
1016 |
+
raise ValueError(
|
1017 |
+
'`bins[{}]` must be monotonically increasing, when an array'
|
1018 |
+
.format(i))
|
1019 |
+
else:
|
1020 |
+
raise ValueError(
|
1021 |
+
'`bins[{}]` must be a scalar or 1d array'.format(i))
|
1022 |
+
|
1023 |
+
nbin[i] = len(edges[i]) + 1 # includes an outlier on each end
|
1024 |
+
dedges[i] = np.diff(edges[i])
|
1025 |
+
|
1026 |
+
# Compute the bin number each sample falls into.
|
1027 |
+
Ncount = tuple(
|
1028 |
+
# avoid np.digitize to work around gh-11022
|
1029 |
+
np.searchsorted(edges[i], sample[:, i], side='right')
|
1030 |
+
for i in _range(D)
|
1031 |
+
)
|
1032 |
+
|
1033 |
+
# Using digitize, values that fall on an edge are put in the right bin.
|
1034 |
+
# For the rightmost bin, we want values equal to the right edge to be
|
1035 |
+
# counted in the last bin, and not as an outlier.
|
1036 |
+
for i in _range(D):
|
1037 |
+
# Find which points are on the rightmost edge.
|
1038 |
+
on_edge = (sample[:, i] == edges[i][-1])
|
1039 |
+
# Shift these points one bin to the left.
|
1040 |
+
Ncount[i][on_edge] -= 1
|
1041 |
+
|
1042 |
+
# Compute the sample indices in the flattened histogram matrix.
|
1043 |
+
# This raises an error if the array is too large.
|
1044 |
+
xy = np.ravel_multi_index(Ncount, nbin)
|
1045 |
+
|
1046 |
+
# Compute the number of repetitions in xy and assign it to the
|
1047 |
+
# flattened histmat.
|
1048 |
+
hist = np.bincount(xy, weights, minlength=nbin.prod())
|
1049 |
+
|
1050 |
+
# Shape into a proper matrix
|
1051 |
+
hist = hist.reshape(nbin)
|
1052 |
+
|
1053 |
+
# This preserves the (bad) behavior observed in gh-7845, for now.
|
1054 |
+
hist = hist.astype(float, casting='safe')
|
1055 |
+
|
1056 |
+
# Remove outliers (indices 0 and -1 for each dimension).
|
1057 |
+
core = D*(slice(1, -1),)
|
1058 |
+
hist = hist[core]
|
1059 |
+
|
1060 |
+
if density:
|
1061 |
+
# calculate the probability density function
|
1062 |
+
s = hist.sum()
|
1063 |
+
for i in _range(D):
|
1064 |
+
shape = np.ones(D, int)
|
1065 |
+
shape[i] = nbin[i] - 2
|
1066 |
+
hist = hist / dedges[i].reshape(shape)
|
1067 |
+
hist /= s
|
1068 |
+
|
1069 |
+
if (hist.shape != nbin - 2).any():
|
1070 |
+
raise RuntimeError(
|
1071 |
+
"Internal Shape Error")
|
1072 |
+
return hist, edges
|
venv/lib/python3.10/site-packages/numpy/lib/index_tricks.pyi
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import (
|
3 |
+
Any,
|
4 |
+
TypeVar,
|
5 |
+
Generic,
|
6 |
+
overload,
|
7 |
+
Literal,
|
8 |
+
SupportsIndex,
|
9 |
+
)
|
10 |
+
|
11 |
+
from numpy import (
|
12 |
+
# Circumvent a naming conflict with `AxisConcatenator.matrix`
|
13 |
+
matrix as _Matrix,
|
14 |
+
ndenumerate as ndenumerate,
|
15 |
+
ndindex as ndindex,
|
16 |
+
ndarray,
|
17 |
+
dtype,
|
18 |
+
integer,
|
19 |
+
str_,
|
20 |
+
bytes_,
|
21 |
+
bool_,
|
22 |
+
int_,
|
23 |
+
float_,
|
24 |
+
complex_,
|
25 |
+
intp,
|
26 |
+
_OrderCF,
|
27 |
+
_ModeKind,
|
28 |
+
)
|
29 |
+
from numpy._typing import (
|
30 |
+
# Arrays
|
31 |
+
ArrayLike,
|
32 |
+
_NestedSequence,
|
33 |
+
_FiniteNestedSequence,
|
34 |
+
NDArray,
|
35 |
+
_ArrayLikeInt,
|
36 |
+
|
37 |
+
# DTypes
|
38 |
+
DTypeLike,
|
39 |
+
_SupportsDType,
|
40 |
+
|
41 |
+
# Shapes
|
42 |
+
_ShapeLike,
|
43 |
+
)
|
44 |
+
|
45 |
+
from numpy.core.multiarray import (
|
46 |
+
unravel_index as unravel_index,
|
47 |
+
ravel_multi_index as ravel_multi_index,
|
48 |
+
)
|
49 |
+
|
50 |
+
_T = TypeVar("_T")
|
51 |
+
_DType = TypeVar("_DType", bound=dtype[Any])
|
52 |
+
_BoolType = TypeVar("_BoolType", Literal[True], Literal[False])
|
53 |
+
_TupType = TypeVar("_TupType", bound=tuple[Any, ...])
|
54 |
+
_ArrayType = TypeVar("_ArrayType", bound=ndarray[Any, Any])
|
55 |
+
|
56 |
+
__all__: list[str]
|
57 |
+
|
58 |
+
@overload
|
59 |
+
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DType]]) -> tuple[ndarray[Any, _DType], ...]: ...
|
60 |
+
@overload
|
61 |
+
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[str_], ...]: ...
|
62 |
+
@overload
|
63 |
+
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[bytes_], ...]: ...
|
64 |
+
@overload
|
65 |
+
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[bool_], ...]: ...
|
66 |
+
@overload
|
67 |
+
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[int_], ...]: ...
|
68 |
+
@overload
|
69 |
+
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[float_], ...]: ...
|
70 |
+
@overload
|
71 |
+
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[complex_], ...]: ...
|
72 |
+
|
73 |
+
class nd_grid(Generic[_BoolType]):
|
74 |
+
sparse: _BoolType
|
75 |
+
def __init__(self, sparse: _BoolType = ...) -> None: ...
|
76 |
+
@overload
|
77 |
+
def __getitem__(
|
78 |
+
self: nd_grid[Literal[False]],
|
79 |
+
key: slice | Sequence[slice],
|
80 |
+
) -> NDArray[Any]: ...
|
81 |
+
@overload
|
82 |
+
def __getitem__(
|
83 |
+
self: nd_grid[Literal[True]],
|
84 |
+
key: slice | Sequence[slice],
|
85 |
+
) -> list[NDArray[Any]]: ...
|
86 |
+
|
87 |
+
class MGridClass(nd_grid[Literal[False]]):
|
88 |
+
def __init__(self) -> None: ...
|
89 |
+
|
90 |
+
mgrid: MGridClass
|
91 |
+
|
92 |
+
class OGridClass(nd_grid[Literal[True]]):
|
93 |
+
def __init__(self) -> None: ...
|
94 |
+
|
95 |
+
ogrid: OGridClass
|
96 |
+
|
97 |
+
class AxisConcatenator:
|
98 |
+
axis: int
|
99 |
+
matrix: bool
|
100 |
+
ndmin: int
|
101 |
+
trans1d: int
|
102 |
+
def __init__(
|
103 |
+
self,
|
104 |
+
axis: int = ...,
|
105 |
+
matrix: bool = ...,
|
106 |
+
ndmin: int = ...,
|
107 |
+
trans1d: int = ...,
|
108 |
+
) -> None: ...
|
109 |
+
@staticmethod
|
110 |
+
@overload
|
111 |
+
def concatenate( # type: ignore[misc]
|
112 |
+
*a: ArrayLike, axis: SupportsIndex = ..., out: None = ...
|
113 |
+
) -> NDArray[Any]: ...
|
114 |
+
@staticmethod
|
115 |
+
@overload
|
116 |
+
def concatenate(
|
117 |
+
*a: ArrayLike, axis: SupportsIndex = ..., out: _ArrayType = ...
|
118 |
+
) -> _ArrayType: ...
|
119 |
+
@staticmethod
|
120 |
+
def makemat(
|
121 |
+
data: ArrayLike, dtype: DTypeLike = ..., copy: bool = ...
|
122 |
+
) -> _Matrix[Any, Any]: ...
|
123 |
+
|
124 |
+
# TODO: Sort out this `__getitem__` method
|
125 |
+
def __getitem__(self, key: Any) -> Any: ...
|
126 |
+
|
127 |
+
class RClass(AxisConcatenator):
|
128 |
+
axis: Literal[0]
|
129 |
+
matrix: Literal[False]
|
130 |
+
ndmin: Literal[1]
|
131 |
+
trans1d: Literal[-1]
|
132 |
+
def __init__(self) -> None: ...
|
133 |
+
|
134 |
+
r_: RClass
|
135 |
+
|
136 |
+
class CClass(AxisConcatenator):
|
137 |
+
axis: Literal[-1]
|
138 |
+
matrix: Literal[False]
|
139 |
+
ndmin: Literal[2]
|
140 |
+
trans1d: Literal[0]
|
141 |
+
def __init__(self) -> None: ...
|
142 |
+
|
143 |
+
c_: CClass
|
144 |
+
|
145 |
+
class IndexExpression(Generic[_BoolType]):
|
146 |
+
maketuple: _BoolType
|
147 |
+
def __init__(self, maketuple: _BoolType) -> None: ...
|
148 |
+
@overload
|
149 |
+
def __getitem__(self, item: _TupType) -> _TupType: ... # type: ignore[misc]
|
150 |
+
@overload
|
151 |
+
def __getitem__(self: IndexExpression[Literal[True]], item: _T) -> tuple[_T]: ...
|
152 |
+
@overload
|
153 |
+
def __getitem__(self: IndexExpression[Literal[False]], item: _T) -> _T: ...
|
154 |
+
|
155 |
+
index_exp: IndexExpression[Literal[True]]
|
156 |
+
s_: IndexExpression[Literal[False]]
|
157 |
+
|
158 |
+
def fill_diagonal(a: ndarray[Any, Any], val: Any, wrap: bool = ...) -> None: ...
|
159 |
+
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[int_], ...]: ...
|
160 |
+
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[int_], ...]: ...
|
161 |
+
|
162 |
+
# NOTE: see `numpy/__init__.pyi` for `ndenumerate` and `ndindex`
|
venv/lib/python3.10/site-packages/numpy/lib/mixins.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Mixin classes for custom array types that don't inherit from ndarray."""
|
2 |
+
from numpy.core import umath as um
|
3 |
+
|
4 |
+
|
5 |
+
__all__ = ['NDArrayOperatorsMixin']
|
6 |
+
|
7 |
+
|
8 |
+
def _disables_array_ufunc(obj):
|
9 |
+
"""True when __array_ufunc__ is set to None."""
|
10 |
+
try:
|
11 |
+
return obj.__array_ufunc__ is None
|
12 |
+
except AttributeError:
|
13 |
+
return False
|
14 |
+
|
15 |
+
|
16 |
+
def _binary_method(ufunc, name):
|
17 |
+
"""Implement a forward binary method with a ufunc, e.g., __add__."""
|
18 |
+
def func(self, other):
|
19 |
+
if _disables_array_ufunc(other):
|
20 |
+
return NotImplemented
|
21 |
+
return ufunc(self, other)
|
22 |
+
func.__name__ = '__{}__'.format(name)
|
23 |
+
return func
|
24 |
+
|
25 |
+
|
26 |
+
def _reflected_binary_method(ufunc, name):
|
27 |
+
"""Implement a reflected binary method with a ufunc, e.g., __radd__."""
|
28 |
+
def func(self, other):
|
29 |
+
if _disables_array_ufunc(other):
|
30 |
+
return NotImplemented
|
31 |
+
return ufunc(other, self)
|
32 |
+
func.__name__ = '__r{}__'.format(name)
|
33 |
+
return func
|
34 |
+
|
35 |
+
|
36 |
+
def _inplace_binary_method(ufunc, name):
|
37 |
+
"""Implement an in-place binary method with a ufunc, e.g., __iadd__."""
|
38 |
+
def func(self, other):
|
39 |
+
return ufunc(self, other, out=(self,))
|
40 |
+
func.__name__ = '__i{}__'.format(name)
|
41 |
+
return func
|
42 |
+
|
43 |
+
|
44 |
+
def _numeric_methods(ufunc, name):
|
45 |
+
"""Implement forward, reflected and inplace binary methods with a ufunc."""
|
46 |
+
return (_binary_method(ufunc, name),
|
47 |
+
_reflected_binary_method(ufunc, name),
|
48 |
+
_inplace_binary_method(ufunc, name))
|
49 |
+
|
50 |
+
|
51 |
+
def _unary_method(ufunc, name):
|
52 |
+
"""Implement a unary special method with a ufunc."""
|
53 |
+
def func(self):
|
54 |
+
return ufunc(self)
|
55 |
+
func.__name__ = '__{}__'.format(name)
|
56 |
+
return func
|
57 |
+
|
58 |
+
|
59 |
+
class NDArrayOperatorsMixin:
|
60 |
+
"""Mixin defining all operator special methods using __array_ufunc__.
|
61 |
+
|
62 |
+
This class implements the special methods for almost all of Python's
|
63 |
+
builtin operators defined in the `operator` module, including comparisons
|
64 |
+
(``==``, ``>``, etc.) and arithmetic (``+``, ``*``, ``-``, etc.), by
|
65 |
+
deferring to the ``__array_ufunc__`` method, which subclasses must
|
66 |
+
implement.
|
67 |
+
|
68 |
+
It is useful for writing classes that do not inherit from `numpy.ndarray`,
|
69 |
+
but that should support arithmetic and numpy universal functions like
|
70 |
+
arrays as described in `A Mechanism for Overriding Ufuncs
|
71 |
+
<https://numpy.org/neps/nep-0013-ufunc-overrides.html>`_.
|
72 |
+
|
73 |
+
As an trivial example, consider this implementation of an ``ArrayLike``
|
74 |
+
class that simply wraps a NumPy array and ensures that the result of any
|
75 |
+
arithmetic operation is also an ``ArrayLike`` object::
|
76 |
+
|
77 |
+
class ArrayLike(np.lib.mixins.NDArrayOperatorsMixin):
|
78 |
+
def __init__(self, value):
|
79 |
+
self.value = np.asarray(value)
|
80 |
+
|
81 |
+
# One might also consider adding the built-in list type to this
|
82 |
+
# list, to support operations like np.add(array_like, list)
|
83 |
+
_HANDLED_TYPES = (np.ndarray, numbers.Number)
|
84 |
+
|
85 |
+
def __array_ufunc__(self, ufunc, method, *inputs, **kwargs):
|
86 |
+
out = kwargs.get('out', ())
|
87 |
+
for x in inputs + out:
|
88 |
+
# Only support operations with instances of _HANDLED_TYPES.
|
89 |
+
# Use ArrayLike instead of type(self) for isinstance to
|
90 |
+
# allow subclasses that don't override __array_ufunc__ to
|
91 |
+
# handle ArrayLike objects.
|
92 |
+
if not isinstance(x, self._HANDLED_TYPES + (ArrayLike,)):
|
93 |
+
return NotImplemented
|
94 |
+
|
95 |
+
# Defer to the implementation of the ufunc on unwrapped values.
|
96 |
+
inputs = tuple(x.value if isinstance(x, ArrayLike) else x
|
97 |
+
for x in inputs)
|
98 |
+
if out:
|
99 |
+
kwargs['out'] = tuple(
|
100 |
+
x.value if isinstance(x, ArrayLike) else x
|
101 |
+
for x in out)
|
102 |
+
result = getattr(ufunc, method)(*inputs, **kwargs)
|
103 |
+
|
104 |
+
if type(result) is tuple:
|
105 |
+
# multiple return values
|
106 |
+
return tuple(type(self)(x) for x in result)
|
107 |
+
elif method == 'at':
|
108 |
+
# no return value
|
109 |
+
return None
|
110 |
+
else:
|
111 |
+
# one return value
|
112 |
+
return type(self)(result)
|
113 |
+
|
114 |
+
def __repr__(self):
|
115 |
+
return '%s(%r)' % (type(self).__name__, self.value)
|
116 |
+
|
117 |
+
In interactions between ``ArrayLike`` objects and numbers or numpy arrays,
|
118 |
+
the result is always another ``ArrayLike``:
|
119 |
+
|
120 |
+
>>> x = ArrayLike([1, 2, 3])
|
121 |
+
>>> x - 1
|
122 |
+
ArrayLike(array([0, 1, 2]))
|
123 |
+
>>> 1 - x
|
124 |
+
ArrayLike(array([ 0, -1, -2]))
|
125 |
+
>>> np.arange(3) - x
|
126 |
+
ArrayLike(array([-1, -1, -1]))
|
127 |
+
>>> x - np.arange(3)
|
128 |
+
ArrayLike(array([1, 1, 1]))
|
129 |
+
|
130 |
+
Note that unlike ``numpy.ndarray``, ``ArrayLike`` does not allow operations
|
131 |
+
with arbitrary, unrecognized types. This ensures that interactions with
|
132 |
+
ArrayLike preserve a well-defined casting hierarchy.
|
133 |
+
|
134 |
+
.. versionadded:: 1.13
|
135 |
+
"""
|
136 |
+
__slots__ = ()
|
137 |
+
# Like np.ndarray, this mixin class implements "Option 1" from the ufunc
|
138 |
+
# overrides NEP.
|
139 |
+
|
140 |
+
# comparisons don't have reflected and in-place versions
|
141 |
+
__lt__ = _binary_method(um.less, 'lt')
|
142 |
+
__le__ = _binary_method(um.less_equal, 'le')
|
143 |
+
__eq__ = _binary_method(um.equal, 'eq')
|
144 |
+
__ne__ = _binary_method(um.not_equal, 'ne')
|
145 |
+
__gt__ = _binary_method(um.greater, 'gt')
|
146 |
+
__ge__ = _binary_method(um.greater_equal, 'ge')
|
147 |
+
|
148 |
+
# numeric methods
|
149 |
+
__add__, __radd__, __iadd__ = _numeric_methods(um.add, 'add')
|
150 |
+
__sub__, __rsub__, __isub__ = _numeric_methods(um.subtract, 'sub')
|
151 |
+
__mul__, __rmul__, __imul__ = _numeric_methods(um.multiply, 'mul')
|
152 |
+
__matmul__, __rmatmul__, __imatmul__ = _numeric_methods(
|
153 |
+
um.matmul, 'matmul')
|
154 |
+
# Python 3 does not use __div__, __rdiv__, or __idiv__
|
155 |
+
__truediv__, __rtruediv__, __itruediv__ = _numeric_methods(
|
156 |
+
um.true_divide, 'truediv')
|
157 |
+
__floordiv__, __rfloordiv__, __ifloordiv__ = _numeric_methods(
|
158 |
+
um.floor_divide, 'floordiv')
|
159 |
+
__mod__, __rmod__, __imod__ = _numeric_methods(um.remainder, 'mod')
|
160 |
+
__divmod__ = _binary_method(um.divmod, 'divmod')
|
161 |
+
__rdivmod__ = _reflected_binary_method(um.divmod, 'divmod')
|
162 |
+
# __idivmod__ does not exist
|
163 |
+
# TODO: handle the optional third argument for __pow__?
|
164 |
+
__pow__, __rpow__, __ipow__ = _numeric_methods(um.power, 'pow')
|
165 |
+
__lshift__, __rlshift__, __ilshift__ = _numeric_methods(
|
166 |
+
um.left_shift, 'lshift')
|
167 |
+
__rshift__, __rrshift__, __irshift__ = _numeric_methods(
|
168 |
+
um.right_shift, 'rshift')
|
169 |
+
__and__, __rand__, __iand__ = _numeric_methods(um.bitwise_and, 'and')
|
170 |
+
__xor__, __rxor__, __ixor__ = _numeric_methods(um.bitwise_xor, 'xor')
|
171 |
+
__or__, __ror__, __ior__ = _numeric_methods(um.bitwise_or, 'or')
|
172 |
+
|
173 |
+
# unary methods
|
174 |
+
__neg__ = _unary_method(um.negative, 'neg')
|
175 |
+
__pos__ = _unary_method(um.positive, 'pos')
|
176 |
+
__abs__ = _unary_method(um.absolute, 'abs')
|
177 |
+
__invert__ = _unary_method(um.invert, 'invert')
|
venv/lib/python3.10/site-packages/numpy/lib/nanfunctions.pyi
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy.core.fromnumeric import (
|
2 |
+
amin,
|
3 |
+
amax,
|
4 |
+
argmin,
|
5 |
+
argmax,
|
6 |
+
sum,
|
7 |
+
prod,
|
8 |
+
cumsum,
|
9 |
+
cumprod,
|
10 |
+
mean,
|
11 |
+
var,
|
12 |
+
std
|
13 |
+
)
|
14 |
+
|
15 |
+
from numpy.lib.function_base import (
|
16 |
+
median,
|
17 |
+
percentile,
|
18 |
+
quantile,
|
19 |
+
)
|
20 |
+
|
21 |
+
__all__: list[str]
|
22 |
+
|
23 |
+
# NOTE: In reaility these functions are not aliases but distinct functions
|
24 |
+
# with identical signatures.
|
25 |
+
nanmin = amin
|
26 |
+
nanmax = amax
|
27 |
+
nanargmin = argmin
|
28 |
+
nanargmax = argmax
|
29 |
+
nansum = sum
|
30 |
+
nanprod = prod
|
31 |
+
nancumsum = cumsum
|
32 |
+
nancumprod = cumprod
|
33 |
+
nanmean = mean
|
34 |
+
nanvar = var
|
35 |
+
nanstd = std
|
36 |
+
nanmedian = median
|
37 |
+
nanpercentile = percentile
|
38 |
+
nanquantile = quantile
|
venv/lib/python3.10/site-packages/numpy/lib/recfunctions.py
ADDED
@@ -0,0 +1,1673 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Collection of utilities to manipulate structured arrays.
|
3 |
+
|
4 |
+
Most of these functions were initially implemented by John Hunter for
|
5 |
+
matplotlib. They have been rewritten and extended for convenience.
|
6 |
+
|
7 |
+
"""
|
8 |
+
import itertools
|
9 |
+
import numpy as np
|
10 |
+
import numpy.ma as ma
|
11 |
+
from numpy import ndarray, recarray
|
12 |
+
from numpy.ma import MaskedArray
|
13 |
+
from numpy.ma.mrecords import MaskedRecords
|
14 |
+
from numpy.core.overrides import array_function_dispatch
|
15 |
+
from numpy.lib._iotools import _is_string_like
|
16 |
+
|
17 |
+
_check_fill_value = np.ma.core._check_fill_value
|
18 |
+
|
19 |
+
|
20 |
+
__all__ = [
|
21 |
+
'append_fields', 'apply_along_fields', 'assign_fields_by_name',
|
22 |
+
'drop_fields', 'find_duplicates', 'flatten_descr',
|
23 |
+
'get_fieldstructure', 'get_names', 'get_names_flat',
|
24 |
+
'join_by', 'merge_arrays', 'rec_append_fields',
|
25 |
+
'rec_drop_fields', 'rec_join', 'recursive_fill_fields',
|
26 |
+
'rename_fields', 'repack_fields', 'require_fields',
|
27 |
+
'stack_arrays', 'structured_to_unstructured', 'unstructured_to_structured',
|
28 |
+
]
|
29 |
+
|
30 |
+
|
31 |
+
def _recursive_fill_fields_dispatcher(input, output):
|
32 |
+
return (input, output)
|
33 |
+
|
34 |
+
|
35 |
+
@array_function_dispatch(_recursive_fill_fields_dispatcher)
|
36 |
+
def recursive_fill_fields(input, output):
|
37 |
+
"""
|
38 |
+
Fills fields from output with fields from input,
|
39 |
+
with support for nested structures.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
input : ndarray
|
44 |
+
Input array.
|
45 |
+
output : ndarray
|
46 |
+
Output array.
|
47 |
+
|
48 |
+
Notes
|
49 |
+
-----
|
50 |
+
* `output` should be at least the same size as `input`
|
51 |
+
|
52 |
+
Examples
|
53 |
+
--------
|
54 |
+
>>> from numpy.lib import recfunctions as rfn
|
55 |
+
>>> a = np.array([(1, 10.), (2, 20.)], dtype=[('A', np.int64), ('B', np.float64)])
|
56 |
+
>>> b = np.zeros((3,), dtype=a.dtype)
|
57 |
+
>>> rfn.recursive_fill_fields(a, b)
|
58 |
+
array([(1, 10.), (2, 20.), (0, 0.)], dtype=[('A', '<i8'), ('B', '<f8')])
|
59 |
+
|
60 |
+
"""
|
61 |
+
newdtype = output.dtype
|
62 |
+
for field in newdtype.names:
|
63 |
+
try:
|
64 |
+
current = input[field]
|
65 |
+
except ValueError:
|
66 |
+
continue
|
67 |
+
if current.dtype.names is not None:
|
68 |
+
recursive_fill_fields(current, output[field])
|
69 |
+
else:
|
70 |
+
output[field][:len(current)] = current
|
71 |
+
return output
|
72 |
+
|
73 |
+
|
74 |
+
def _get_fieldspec(dtype):
|
75 |
+
"""
|
76 |
+
Produce a list of name/dtype pairs corresponding to the dtype fields
|
77 |
+
|
78 |
+
Similar to dtype.descr, but the second item of each tuple is a dtype, not a
|
79 |
+
string. As a result, this handles subarray dtypes
|
80 |
+
|
81 |
+
Can be passed to the dtype constructor to reconstruct the dtype, noting that
|
82 |
+
this (deliberately) discards field offsets.
|
83 |
+
|
84 |
+
Examples
|
85 |
+
--------
|
86 |
+
>>> dt = np.dtype([(('a', 'A'), np.int64), ('b', np.double, 3)])
|
87 |
+
>>> dt.descr
|
88 |
+
[(('a', 'A'), '<i8'), ('b', '<f8', (3,))]
|
89 |
+
>>> _get_fieldspec(dt)
|
90 |
+
[(('a', 'A'), dtype('int64')), ('b', dtype(('<f8', (3,))))]
|
91 |
+
|
92 |
+
"""
|
93 |
+
if dtype.names is None:
|
94 |
+
# .descr returns a nameless field, so we should too
|
95 |
+
return [('', dtype)]
|
96 |
+
else:
|
97 |
+
fields = ((name, dtype.fields[name]) for name in dtype.names)
|
98 |
+
# keep any titles, if present
|
99 |
+
return [
|
100 |
+
(name if len(f) == 2 else (f[2], name), f[0])
|
101 |
+
for name, f in fields
|
102 |
+
]
|
103 |
+
|
104 |
+
|
105 |
+
def get_names(adtype):
|
106 |
+
"""
|
107 |
+
Returns the field names of the input datatype as a tuple. Input datatype
|
108 |
+
must have fields otherwise error is raised.
|
109 |
+
|
110 |
+
Parameters
|
111 |
+
----------
|
112 |
+
adtype : dtype
|
113 |
+
Input datatype
|
114 |
+
|
115 |
+
Examples
|
116 |
+
--------
|
117 |
+
>>> from numpy.lib import recfunctions as rfn
|
118 |
+
>>> rfn.get_names(np.empty((1,), dtype=[('A', int)]).dtype)
|
119 |
+
('A',)
|
120 |
+
>>> rfn.get_names(np.empty((1,), dtype=[('A',int), ('B', float)]).dtype)
|
121 |
+
('A', 'B')
|
122 |
+
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
|
123 |
+
>>> rfn.get_names(adtype)
|
124 |
+
('a', ('b', ('ba', 'bb')))
|
125 |
+
"""
|
126 |
+
listnames = []
|
127 |
+
names = adtype.names
|
128 |
+
for name in names:
|
129 |
+
current = adtype[name]
|
130 |
+
if current.names is not None:
|
131 |
+
listnames.append((name, tuple(get_names(current))))
|
132 |
+
else:
|
133 |
+
listnames.append(name)
|
134 |
+
return tuple(listnames)
|
135 |
+
|
136 |
+
|
137 |
+
def get_names_flat(adtype):
|
138 |
+
"""
|
139 |
+
Returns the field names of the input datatype as a tuple. Input datatype
|
140 |
+
must have fields otherwise error is raised.
|
141 |
+
Nested structure are flattened beforehand.
|
142 |
+
|
143 |
+
Parameters
|
144 |
+
----------
|
145 |
+
adtype : dtype
|
146 |
+
Input datatype
|
147 |
+
|
148 |
+
Examples
|
149 |
+
--------
|
150 |
+
>>> from numpy.lib import recfunctions as rfn
|
151 |
+
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A', int)]).dtype) is None
|
152 |
+
False
|
153 |
+
>>> rfn.get_names_flat(np.empty((1,), dtype=[('A',int), ('B', str)]).dtype)
|
154 |
+
('A', 'B')
|
155 |
+
>>> adtype = np.dtype([('a', int), ('b', [('ba', int), ('bb', int)])])
|
156 |
+
>>> rfn.get_names_flat(adtype)
|
157 |
+
('a', 'b', 'ba', 'bb')
|
158 |
+
"""
|
159 |
+
listnames = []
|
160 |
+
names = adtype.names
|
161 |
+
for name in names:
|
162 |
+
listnames.append(name)
|
163 |
+
current = adtype[name]
|
164 |
+
if current.names is not None:
|
165 |
+
listnames.extend(get_names_flat(current))
|
166 |
+
return tuple(listnames)
|
167 |
+
|
168 |
+
|
169 |
+
def flatten_descr(ndtype):
|
170 |
+
"""
|
171 |
+
Flatten a structured data-type description.
|
172 |
+
|
173 |
+
Examples
|
174 |
+
--------
|
175 |
+
>>> from numpy.lib import recfunctions as rfn
|
176 |
+
>>> ndtype = np.dtype([('a', '<i4'), ('b', [('ba', '<f8'), ('bb', '<i4')])])
|
177 |
+
>>> rfn.flatten_descr(ndtype)
|
178 |
+
(('a', dtype('int32')), ('ba', dtype('float64')), ('bb', dtype('int32')))
|
179 |
+
|
180 |
+
"""
|
181 |
+
names = ndtype.names
|
182 |
+
if names is None:
|
183 |
+
return (('', ndtype),)
|
184 |
+
else:
|
185 |
+
descr = []
|
186 |
+
for field in names:
|
187 |
+
(typ, _) = ndtype.fields[field]
|
188 |
+
if typ.names is not None:
|
189 |
+
descr.extend(flatten_descr(typ))
|
190 |
+
else:
|
191 |
+
descr.append((field, typ))
|
192 |
+
return tuple(descr)
|
193 |
+
|
194 |
+
|
195 |
+
def _zip_dtype(seqarrays, flatten=False):
|
196 |
+
newdtype = []
|
197 |
+
if flatten:
|
198 |
+
for a in seqarrays:
|
199 |
+
newdtype.extend(flatten_descr(a.dtype))
|
200 |
+
else:
|
201 |
+
for a in seqarrays:
|
202 |
+
current = a.dtype
|
203 |
+
if current.names is not None and len(current.names) == 1:
|
204 |
+
# special case - dtypes of 1 field are flattened
|
205 |
+
newdtype.extend(_get_fieldspec(current))
|
206 |
+
else:
|
207 |
+
newdtype.append(('', current))
|
208 |
+
return np.dtype(newdtype)
|
209 |
+
|
210 |
+
|
211 |
+
def _zip_descr(seqarrays, flatten=False):
|
212 |
+
"""
|
213 |
+
Combine the dtype description of a series of arrays.
|
214 |
+
|
215 |
+
Parameters
|
216 |
+
----------
|
217 |
+
seqarrays : sequence of arrays
|
218 |
+
Sequence of arrays
|
219 |
+
flatten : {boolean}, optional
|
220 |
+
Whether to collapse nested descriptions.
|
221 |
+
"""
|
222 |
+
return _zip_dtype(seqarrays, flatten=flatten).descr
|
223 |
+
|
224 |
+
|
225 |
+
def get_fieldstructure(adtype, lastname=None, parents=None,):
|
226 |
+
"""
|
227 |
+
Returns a dictionary with fields indexing lists of their parent fields.
|
228 |
+
|
229 |
+
This function is used to simplify access to fields nested in other fields.
|
230 |
+
|
231 |
+
Parameters
|
232 |
+
----------
|
233 |
+
adtype : np.dtype
|
234 |
+
Input datatype
|
235 |
+
lastname : optional
|
236 |
+
Last processed field name (used internally during recursion).
|
237 |
+
parents : dictionary
|
238 |
+
Dictionary of parent fields (used interbally during recursion).
|
239 |
+
|
240 |
+
Examples
|
241 |
+
--------
|
242 |
+
>>> from numpy.lib import recfunctions as rfn
|
243 |
+
>>> ndtype = np.dtype([('A', int),
|
244 |
+
... ('B', [('BA', int),
|
245 |
+
... ('BB', [('BBA', int), ('BBB', int)])])])
|
246 |
+
>>> rfn.get_fieldstructure(ndtype)
|
247 |
+
... # XXX: possible regression, order of BBA and BBB is swapped
|
248 |
+
{'A': [], 'B': [], 'BA': ['B'], 'BB': ['B'], 'BBA': ['B', 'BB'], 'BBB': ['B', 'BB']}
|
249 |
+
|
250 |
+
"""
|
251 |
+
if parents is None:
|
252 |
+
parents = {}
|
253 |
+
names = adtype.names
|
254 |
+
for name in names:
|
255 |
+
current = adtype[name]
|
256 |
+
if current.names is not None:
|
257 |
+
if lastname:
|
258 |
+
parents[name] = [lastname, ]
|
259 |
+
else:
|
260 |
+
parents[name] = []
|
261 |
+
parents.update(get_fieldstructure(current, name, parents))
|
262 |
+
else:
|
263 |
+
lastparent = [_ for _ in (parents.get(lastname, []) or [])]
|
264 |
+
if lastparent:
|
265 |
+
lastparent.append(lastname)
|
266 |
+
elif lastname:
|
267 |
+
lastparent = [lastname, ]
|
268 |
+
parents[name] = lastparent or []
|
269 |
+
return parents
|
270 |
+
|
271 |
+
|
272 |
+
def _izip_fields_flat(iterable):
|
273 |
+
"""
|
274 |
+
Returns an iterator of concatenated fields from a sequence of arrays,
|
275 |
+
collapsing any nested structure.
|
276 |
+
|
277 |
+
"""
|
278 |
+
for element in iterable:
|
279 |
+
if isinstance(element, np.void):
|
280 |
+
yield from _izip_fields_flat(tuple(element))
|
281 |
+
else:
|
282 |
+
yield element
|
283 |
+
|
284 |
+
|
285 |
+
def _izip_fields(iterable):
|
286 |
+
"""
|
287 |
+
Returns an iterator of concatenated fields from a sequence of arrays.
|
288 |
+
|
289 |
+
"""
|
290 |
+
for element in iterable:
|
291 |
+
if (hasattr(element, '__iter__') and
|
292 |
+
not isinstance(element, str)):
|
293 |
+
yield from _izip_fields(element)
|
294 |
+
elif isinstance(element, np.void) and len(tuple(element)) == 1:
|
295 |
+
# this statement is the same from the previous expression
|
296 |
+
yield from _izip_fields(element)
|
297 |
+
else:
|
298 |
+
yield element
|
299 |
+
|
300 |
+
|
301 |
+
def _izip_records(seqarrays, fill_value=None, flatten=True):
|
302 |
+
"""
|
303 |
+
Returns an iterator of concatenated items from a sequence of arrays.
|
304 |
+
|
305 |
+
Parameters
|
306 |
+
----------
|
307 |
+
seqarrays : sequence of arrays
|
308 |
+
Sequence of arrays.
|
309 |
+
fill_value : {None, integer}
|
310 |
+
Value used to pad shorter iterables.
|
311 |
+
flatten : {True, False},
|
312 |
+
Whether to
|
313 |
+
"""
|
314 |
+
|
315 |
+
# Should we flatten the items, or just use a nested approach
|
316 |
+
if flatten:
|
317 |
+
zipfunc = _izip_fields_flat
|
318 |
+
else:
|
319 |
+
zipfunc = _izip_fields
|
320 |
+
|
321 |
+
for tup in itertools.zip_longest(*seqarrays, fillvalue=fill_value):
|
322 |
+
yield tuple(zipfunc(tup))
|
323 |
+
|
324 |
+
|
325 |
+
def _fix_output(output, usemask=True, asrecarray=False):
|
326 |
+
"""
|
327 |
+
Private function: return a recarray, a ndarray, a MaskedArray
|
328 |
+
or a MaskedRecords depending on the input parameters
|
329 |
+
"""
|
330 |
+
if not isinstance(output, MaskedArray):
|
331 |
+
usemask = False
|
332 |
+
if usemask:
|
333 |
+
if asrecarray:
|
334 |
+
output = output.view(MaskedRecords)
|
335 |
+
else:
|
336 |
+
output = ma.filled(output)
|
337 |
+
if asrecarray:
|
338 |
+
output = output.view(recarray)
|
339 |
+
return output
|
340 |
+
|
341 |
+
|
342 |
+
def _fix_defaults(output, defaults=None):
|
343 |
+
"""
|
344 |
+
Update the fill_value and masked data of `output`
|
345 |
+
from the default given in a dictionary defaults.
|
346 |
+
"""
|
347 |
+
names = output.dtype.names
|
348 |
+
(data, mask, fill_value) = (output.data, output.mask, output.fill_value)
|
349 |
+
for (k, v) in (defaults or {}).items():
|
350 |
+
if k in names:
|
351 |
+
fill_value[k] = v
|
352 |
+
data[k][mask[k]] = v
|
353 |
+
return output
|
354 |
+
|
355 |
+
|
356 |
+
def _merge_arrays_dispatcher(seqarrays, fill_value=None, flatten=None,
|
357 |
+
usemask=None, asrecarray=None):
|
358 |
+
return seqarrays
|
359 |
+
|
360 |
+
|
361 |
+
@array_function_dispatch(_merge_arrays_dispatcher)
|
362 |
+
def merge_arrays(seqarrays, fill_value=-1, flatten=False,
|
363 |
+
usemask=False, asrecarray=False):
|
364 |
+
"""
|
365 |
+
Merge arrays field by field.
|
366 |
+
|
367 |
+
Parameters
|
368 |
+
----------
|
369 |
+
seqarrays : sequence of ndarrays
|
370 |
+
Sequence of arrays
|
371 |
+
fill_value : {float}, optional
|
372 |
+
Filling value used to pad missing data on the shorter arrays.
|
373 |
+
flatten : {False, True}, optional
|
374 |
+
Whether to collapse nested fields.
|
375 |
+
usemask : {False, True}, optional
|
376 |
+
Whether to return a masked array or not.
|
377 |
+
asrecarray : {False, True}, optional
|
378 |
+
Whether to return a recarray (MaskedRecords) or not.
|
379 |
+
|
380 |
+
Examples
|
381 |
+
--------
|
382 |
+
>>> from numpy.lib import recfunctions as rfn
|
383 |
+
>>> rfn.merge_arrays((np.array([1, 2]), np.array([10., 20., 30.])))
|
384 |
+
array([( 1, 10.), ( 2, 20.), (-1, 30.)],
|
385 |
+
dtype=[('f0', '<i8'), ('f1', '<f8')])
|
386 |
+
|
387 |
+
>>> rfn.merge_arrays((np.array([1, 2], dtype=np.int64),
|
388 |
+
... np.array([10., 20., 30.])), usemask=False)
|
389 |
+
array([(1, 10.0), (2, 20.0), (-1, 30.0)],
|
390 |
+
dtype=[('f0', '<i8'), ('f1', '<f8')])
|
391 |
+
>>> rfn.merge_arrays((np.array([1, 2]).view([('a', np.int64)]),
|
392 |
+
... np.array([10., 20., 30.])),
|
393 |
+
... usemask=False, asrecarray=True)
|
394 |
+
rec.array([( 1, 10.), ( 2, 20.), (-1, 30.)],
|
395 |
+
dtype=[('a', '<i8'), ('f1', '<f8')])
|
396 |
+
|
397 |
+
Notes
|
398 |
+
-----
|
399 |
+
* Without a mask, the missing value will be filled with something,
|
400 |
+
depending on what its corresponding type:
|
401 |
+
|
402 |
+
* ``-1`` for integers
|
403 |
+
* ``-1.0`` for floating point numbers
|
404 |
+
* ``'-'`` for characters
|
405 |
+
* ``'-1'`` for strings
|
406 |
+
* ``True`` for boolean values
|
407 |
+
* XXX: I just obtained these values empirically
|
408 |
+
"""
|
409 |
+
# Only one item in the input sequence ?
|
410 |
+
if (len(seqarrays) == 1):
|
411 |
+
seqarrays = np.asanyarray(seqarrays[0])
|
412 |
+
# Do we have a single ndarray as input ?
|
413 |
+
if isinstance(seqarrays, (ndarray, np.void)):
|
414 |
+
seqdtype = seqarrays.dtype
|
415 |
+
# Make sure we have named fields
|
416 |
+
if seqdtype.names is None:
|
417 |
+
seqdtype = np.dtype([('', seqdtype)])
|
418 |
+
if not flatten or _zip_dtype((seqarrays,), flatten=True) == seqdtype:
|
419 |
+
# Minimal processing needed: just make sure everything's a-ok
|
420 |
+
seqarrays = seqarrays.ravel()
|
421 |
+
# Find what type of array we must return
|
422 |
+
if usemask:
|
423 |
+
if asrecarray:
|
424 |
+
seqtype = MaskedRecords
|
425 |
+
else:
|
426 |
+
seqtype = MaskedArray
|
427 |
+
elif asrecarray:
|
428 |
+
seqtype = recarray
|
429 |
+
else:
|
430 |
+
seqtype = ndarray
|
431 |
+
return seqarrays.view(dtype=seqdtype, type=seqtype)
|
432 |
+
else:
|
433 |
+
seqarrays = (seqarrays,)
|
434 |
+
else:
|
435 |
+
# Make sure we have arrays in the input sequence
|
436 |
+
seqarrays = [np.asanyarray(_m) for _m in seqarrays]
|
437 |
+
# Find the sizes of the inputs and their maximum
|
438 |
+
sizes = tuple(a.size for a in seqarrays)
|
439 |
+
maxlength = max(sizes)
|
440 |
+
# Get the dtype of the output (flattening if needed)
|
441 |
+
newdtype = _zip_dtype(seqarrays, flatten=flatten)
|
442 |
+
# Initialize the sequences for data and mask
|
443 |
+
seqdata = []
|
444 |
+
seqmask = []
|
445 |
+
# If we expect some kind of MaskedArray, make a special loop.
|
446 |
+
if usemask:
|
447 |
+
for (a, n) in zip(seqarrays, sizes):
|
448 |
+
nbmissing = (maxlength - n)
|
449 |
+
# Get the data and mask
|
450 |
+
data = a.ravel().__array__()
|
451 |
+
mask = ma.getmaskarray(a).ravel()
|
452 |
+
# Get the filling value (if needed)
|
453 |
+
if nbmissing:
|
454 |
+
fval = _check_fill_value(fill_value, a.dtype)
|
455 |
+
if isinstance(fval, (ndarray, np.void)):
|
456 |
+
if len(fval.dtype) == 1:
|
457 |
+
fval = fval.item()[0]
|
458 |
+
fmsk = True
|
459 |
+
else:
|
460 |
+
fval = np.array(fval, dtype=a.dtype, ndmin=1)
|
461 |
+
fmsk = np.ones((1,), dtype=mask.dtype)
|
462 |
+
else:
|
463 |
+
fval = None
|
464 |
+
fmsk = True
|
465 |
+
# Store an iterator padding the input to the expected length
|
466 |
+
seqdata.append(itertools.chain(data, [fval] * nbmissing))
|
467 |
+
seqmask.append(itertools.chain(mask, [fmsk] * nbmissing))
|
468 |
+
# Create an iterator for the data
|
469 |
+
data = tuple(_izip_records(seqdata, flatten=flatten))
|
470 |
+
output = ma.array(np.fromiter(data, dtype=newdtype, count=maxlength),
|
471 |
+
mask=list(_izip_records(seqmask, flatten=flatten)))
|
472 |
+
if asrecarray:
|
473 |
+
output = output.view(MaskedRecords)
|
474 |
+
else:
|
475 |
+
# Same as before, without the mask we don't need...
|
476 |
+
for (a, n) in zip(seqarrays, sizes):
|
477 |
+
nbmissing = (maxlength - n)
|
478 |
+
data = a.ravel().__array__()
|
479 |
+
if nbmissing:
|
480 |
+
fval = _check_fill_value(fill_value, a.dtype)
|
481 |
+
if isinstance(fval, (ndarray, np.void)):
|
482 |
+
if len(fval.dtype) == 1:
|
483 |
+
fval = fval.item()[0]
|
484 |
+
else:
|
485 |
+
fval = np.array(fval, dtype=a.dtype, ndmin=1)
|
486 |
+
else:
|
487 |
+
fval = None
|
488 |
+
seqdata.append(itertools.chain(data, [fval] * nbmissing))
|
489 |
+
output = np.fromiter(tuple(_izip_records(seqdata, flatten=flatten)),
|
490 |
+
dtype=newdtype, count=maxlength)
|
491 |
+
if asrecarray:
|
492 |
+
output = output.view(recarray)
|
493 |
+
# And we're done...
|
494 |
+
return output
|
495 |
+
|
496 |
+
|
497 |
+
def _drop_fields_dispatcher(base, drop_names, usemask=None, asrecarray=None):
|
498 |
+
return (base,)
|
499 |
+
|
500 |
+
|
501 |
+
@array_function_dispatch(_drop_fields_dispatcher)
|
502 |
+
def drop_fields(base, drop_names, usemask=True, asrecarray=False):
|
503 |
+
"""
|
504 |
+
Return a new array with fields in `drop_names` dropped.
|
505 |
+
|
506 |
+
Nested fields are supported.
|
507 |
+
|
508 |
+
.. versionchanged:: 1.18.0
|
509 |
+
`drop_fields` returns an array with 0 fields if all fields are dropped,
|
510 |
+
rather than returning ``None`` as it did previously.
|
511 |
+
|
512 |
+
Parameters
|
513 |
+
----------
|
514 |
+
base : array
|
515 |
+
Input array
|
516 |
+
drop_names : string or sequence
|
517 |
+
String or sequence of strings corresponding to the names of the
|
518 |
+
fields to drop.
|
519 |
+
usemask : {False, True}, optional
|
520 |
+
Whether to return a masked array or not.
|
521 |
+
asrecarray : string or sequence, optional
|
522 |
+
Whether to return a recarray or a mrecarray (`asrecarray=True`) or
|
523 |
+
a plain ndarray or masked array with flexible dtype. The default
|
524 |
+
is False.
|
525 |
+
|
526 |
+
Examples
|
527 |
+
--------
|
528 |
+
>>> from numpy.lib import recfunctions as rfn
|
529 |
+
>>> a = np.array([(1, (2, 3.0)), (4, (5, 6.0))],
|
530 |
+
... dtype=[('a', np.int64), ('b', [('ba', np.double), ('bb', np.int64)])])
|
531 |
+
>>> rfn.drop_fields(a, 'a')
|
532 |
+
array([((2., 3),), ((5., 6),)],
|
533 |
+
dtype=[('b', [('ba', '<f8'), ('bb', '<i8')])])
|
534 |
+
>>> rfn.drop_fields(a, 'ba')
|
535 |
+
array([(1, (3,)), (4, (6,))], dtype=[('a', '<i8'), ('b', [('bb', '<i8')])])
|
536 |
+
>>> rfn.drop_fields(a, ['ba', 'bb'])
|
537 |
+
array([(1,), (4,)], dtype=[('a', '<i8')])
|
538 |
+
"""
|
539 |
+
if _is_string_like(drop_names):
|
540 |
+
drop_names = [drop_names]
|
541 |
+
else:
|
542 |
+
drop_names = set(drop_names)
|
543 |
+
|
544 |
+
def _drop_descr(ndtype, drop_names):
|
545 |
+
names = ndtype.names
|
546 |
+
newdtype = []
|
547 |
+
for name in names:
|
548 |
+
current = ndtype[name]
|
549 |
+
if name in drop_names:
|
550 |
+
continue
|
551 |
+
if current.names is not None:
|
552 |
+
descr = _drop_descr(current, drop_names)
|
553 |
+
if descr:
|
554 |
+
newdtype.append((name, descr))
|
555 |
+
else:
|
556 |
+
newdtype.append((name, current))
|
557 |
+
return newdtype
|
558 |
+
|
559 |
+
newdtype = _drop_descr(base.dtype, drop_names)
|
560 |
+
|
561 |
+
output = np.empty(base.shape, dtype=newdtype)
|
562 |
+
output = recursive_fill_fields(base, output)
|
563 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
564 |
+
|
565 |
+
|
566 |
+
def _keep_fields(base, keep_names, usemask=True, asrecarray=False):
|
567 |
+
"""
|
568 |
+
Return a new array keeping only the fields in `keep_names`,
|
569 |
+
and preserving the order of those fields.
|
570 |
+
|
571 |
+
Parameters
|
572 |
+
----------
|
573 |
+
base : array
|
574 |
+
Input array
|
575 |
+
keep_names : string or sequence
|
576 |
+
String or sequence of strings corresponding to the names of the
|
577 |
+
fields to keep. Order of the names will be preserved.
|
578 |
+
usemask : {False, True}, optional
|
579 |
+
Whether to return a masked array or not.
|
580 |
+
asrecarray : string or sequence, optional
|
581 |
+
Whether to return a recarray or a mrecarray (`asrecarray=True`) or
|
582 |
+
a plain ndarray or masked array with flexible dtype. The default
|
583 |
+
is False.
|
584 |
+
"""
|
585 |
+
newdtype = [(n, base.dtype[n]) for n in keep_names]
|
586 |
+
output = np.empty(base.shape, dtype=newdtype)
|
587 |
+
output = recursive_fill_fields(base, output)
|
588 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
589 |
+
|
590 |
+
|
591 |
+
def _rec_drop_fields_dispatcher(base, drop_names):
|
592 |
+
return (base,)
|
593 |
+
|
594 |
+
|
595 |
+
@array_function_dispatch(_rec_drop_fields_dispatcher)
|
596 |
+
def rec_drop_fields(base, drop_names):
|
597 |
+
"""
|
598 |
+
Returns a new numpy.recarray with fields in `drop_names` dropped.
|
599 |
+
"""
|
600 |
+
return drop_fields(base, drop_names, usemask=False, asrecarray=True)
|
601 |
+
|
602 |
+
|
603 |
+
def _rename_fields_dispatcher(base, namemapper):
|
604 |
+
return (base,)
|
605 |
+
|
606 |
+
|
607 |
+
@array_function_dispatch(_rename_fields_dispatcher)
|
608 |
+
def rename_fields(base, namemapper):
|
609 |
+
"""
|
610 |
+
Rename the fields from a flexible-datatype ndarray or recarray.
|
611 |
+
|
612 |
+
Nested fields are supported.
|
613 |
+
|
614 |
+
Parameters
|
615 |
+
----------
|
616 |
+
base : ndarray
|
617 |
+
Input array whose fields must be modified.
|
618 |
+
namemapper : dictionary
|
619 |
+
Dictionary mapping old field names to their new version.
|
620 |
+
|
621 |
+
Examples
|
622 |
+
--------
|
623 |
+
>>> from numpy.lib import recfunctions as rfn
|
624 |
+
>>> a = np.array([(1, (2, [3.0, 30.])), (4, (5, [6.0, 60.]))],
|
625 |
+
... dtype=[('a', int),('b', [('ba', float), ('bb', (float, 2))])])
|
626 |
+
>>> rfn.rename_fields(a, {'a':'A', 'bb':'BB'})
|
627 |
+
array([(1, (2., [ 3., 30.])), (4, (5., [ 6., 60.]))],
|
628 |
+
dtype=[('A', '<i8'), ('b', [('ba', '<f8'), ('BB', '<f8', (2,))])])
|
629 |
+
|
630 |
+
"""
|
631 |
+
def _recursive_rename_fields(ndtype, namemapper):
|
632 |
+
newdtype = []
|
633 |
+
for name in ndtype.names:
|
634 |
+
newname = namemapper.get(name, name)
|
635 |
+
current = ndtype[name]
|
636 |
+
if current.names is not None:
|
637 |
+
newdtype.append(
|
638 |
+
(newname, _recursive_rename_fields(current, namemapper))
|
639 |
+
)
|
640 |
+
else:
|
641 |
+
newdtype.append((newname, current))
|
642 |
+
return newdtype
|
643 |
+
newdtype = _recursive_rename_fields(base.dtype, namemapper)
|
644 |
+
return base.view(newdtype)
|
645 |
+
|
646 |
+
|
647 |
+
def _append_fields_dispatcher(base, names, data, dtypes=None,
|
648 |
+
fill_value=None, usemask=None, asrecarray=None):
|
649 |
+
yield base
|
650 |
+
yield from data
|
651 |
+
|
652 |
+
|
653 |
+
@array_function_dispatch(_append_fields_dispatcher)
|
654 |
+
def append_fields(base, names, data, dtypes=None,
|
655 |
+
fill_value=-1, usemask=True, asrecarray=False):
|
656 |
+
"""
|
657 |
+
Add new fields to an existing array.
|
658 |
+
|
659 |
+
The names of the fields are given with the `names` arguments,
|
660 |
+
the corresponding values with the `data` arguments.
|
661 |
+
If a single field is appended, `names`, `data` and `dtypes` do not have
|
662 |
+
to be lists but just values.
|
663 |
+
|
664 |
+
Parameters
|
665 |
+
----------
|
666 |
+
base : array
|
667 |
+
Input array to extend.
|
668 |
+
names : string, sequence
|
669 |
+
String or sequence of strings corresponding to the names
|
670 |
+
of the new fields.
|
671 |
+
data : array or sequence of arrays
|
672 |
+
Array or sequence of arrays storing the fields to add to the base.
|
673 |
+
dtypes : sequence of datatypes, optional
|
674 |
+
Datatype or sequence of datatypes.
|
675 |
+
If None, the datatypes are estimated from the `data`.
|
676 |
+
fill_value : {float}, optional
|
677 |
+
Filling value used to pad missing data on the shorter arrays.
|
678 |
+
usemask : {False, True}, optional
|
679 |
+
Whether to return a masked array or not.
|
680 |
+
asrecarray : {False, True}, optional
|
681 |
+
Whether to return a recarray (MaskedRecords) or not.
|
682 |
+
|
683 |
+
"""
|
684 |
+
# Check the names
|
685 |
+
if isinstance(names, (tuple, list)):
|
686 |
+
if len(names) != len(data):
|
687 |
+
msg = "The number of arrays does not match the number of names"
|
688 |
+
raise ValueError(msg)
|
689 |
+
elif isinstance(names, str):
|
690 |
+
names = [names, ]
|
691 |
+
data = [data, ]
|
692 |
+
#
|
693 |
+
if dtypes is None:
|
694 |
+
data = [np.array(a, copy=False, subok=True) for a in data]
|
695 |
+
data = [a.view([(name, a.dtype)]) for (name, a) in zip(names, data)]
|
696 |
+
else:
|
697 |
+
if not isinstance(dtypes, (tuple, list)):
|
698 |
+
dtypes = [dtypes, ]
|
699 |
+
if len(data) != len(dtypes):
|
700 |
+
if len(dtypes) == 1:
|
701 |
+
dtypes = dtypes * len(data)
|
702 |
+
else:
|
703 |
+
msg = "The dtypes argument must be None, a dtype, or a list."
|
704 |
+
raise ValueError(msg)
|
705 |
+
data = [np.array(a, copy=False, subok=True, dtype=d).view([(n, d)])
|
706 |
+
for (a, n, d) in zip(data, names, dtypes)]
|
707 |
+
#
|
708 |
+
base = merge_arrays(base, usemask=usemask, fill_value=fill_value)
|
709 |
+
if len(data) > 1:
|
710 |
+
data = merge_arrays(data, flatten=True, usemask=usemask,
|
711 |
+
fill_value=fill_value)
|
712 |
+
else:
|
713 |
+
data = data.pop()
|
714 |
+
#
|
715 |
+
output = ma.masked_all(
|
716 |
+
max(len(base), len(data)),
|
717 |
+
dtype=_get_fieldspec(base.dtype) + _get_fieldspec(data.dtype))
|
718 |
+
output = recursive_fill_fields(base, output)
|
719 |
+
output = recursive_fill_fields(data, output)
|
720 |
+
#
|
721 |
+
return _fix_output(output, usemask=usemask, asrecarray=asrecarray)
|
722 |
+
|
723 |
+
|
724 |
+
def _rec_append_fields_dispatcher(base, names, data, dtypes=None):
|
725 |
+
yield base
|
726 |
+
yield from data
|
727 |
+
|
728 |
+
|
729 |
+
@array_function_dispatch(_rec_append_fields_dispatcher)
|
730 |
+
def rec_append_fields(base, names, data, dtypes=None):
|
731 |
+
"""
|
732 |
+
Add new fields to an existing array.
|
733 |
+
|
734 |
+
The names of the fields are given with the `names` arguments,
|
735 |
+
the corresponding values with the `data` arguments.
|
736 |
+
If a single field is appended, `names`, `data` and `dtypes` do not have
|
737 |
+
to be lists but just values.
|
738 |
+
|
739 |
+
Parameters
|
740 |
+
----------
|
741 |
+
base : array
|
742 |
+
Input array to extend.
|
743 |
+
names : string, sequence
|
744 |
+
String or sequence of strings corresponding to the names
|
745 |
+
of the new fields.
|
746 |
+
data : array or sequence of arrays
|
747 |
+
Array or sequence of arrays storing the fields to add to the base.
|
748 |
+
dtypes : sequence of datatypes, optional
|
749 |
+
Datatype or sequence of datatypes.
|
750 |
+
If None, the datatypes are estimated from the `data`.
|
751 |
+
|
752 |
+
See Also
|
753 |
+
--------
|
754 |
+
append_fields
|
755 |
+
|
756 |
+
Returns
|
757 |
+
-------
|
758 |
+
appended_array : np.recarray
|
759 |
+
"""
|
760 |
+
return append_fields(base, names, data=data, dtypes=dtypes,
|
761 |
+
asrecarray=True, usemask=False)
|
762 |
+
|
763 |
+
|
764 |
+
def _repack_fields_dispatcher(a, align=None, recurse=None):
|
765 |
+
return (a,)
|
766 |
+
|
767 |
+
|
768 |
+
@array_function_dispatch(_repack_fields_dispatcher)
|
769 |
+
def repack_fields(a, align=False, recurse=False):
|
770 |
+
"""
|
771 |
+
Re-pack the fields of a structured array or dtype in memory.
|
772 |
+
|
773 |
+
The memory layout of structured datatypes allows fields at arbitrary
|
774 |
+
byte offsets. This means the fields can be separated by padding bytes,
|
775 |
+
their offsets can be non-monotonically increasing, and they can overlap.
|
776 |
+
|
777 |
+
This method removes any overlaps and reorders the fields in memory so they
|
778 |
+
have increasing byte offsets, and adds or removes padding bytes depending
|
779 |
+
on the `align` option, which behaves like the `align` option to
|
780 |
+
`numpy.dtype`.
|
781 |
+
|
782 |
+
If `align=False`, this method produces a "packed" memory layout in which
|
783 |
+
each field starts at the byte the previous field ended, and any padding
|
784 |
+
bytes are removed.
|
785 |
+
|
786 |
+
If `align=True`, this methods produces an "aligned" memory layout in which
|
787 |
+
each field's offset is a multiple of its alignment, and the total itemsize
|
788 |
+
is a multiple of the largest alignment, by adding padding bytes as needed.
|
789 |
+
|
790 |
+
Parameters
|
791 |
+
----------
|
792 |
+
a : ndarray or dtype
|
793 |
+
array or dtype for which to repack the fields.
|
794 |
+
align : boolean
|
795 |
+
If true, use an "aligned" memory layout, otherwise use a "packed" layout.
|
796 |
+
recurse : boolean
|
797 |
+
If True, also repack nested structures.
|
798 |
+
|
799 |
+
Returns
|
800 |
+
-------
|
801 |
+
repacked : ndarray or dtype
|
802 |
+
Copy of `a` with fields repacked, or `a` itself if no repacking was
|
803 |
+
needed.
|
804 |
+
|
805 |
+
Examples
|
806 |
+
--------
|
807 |
+
|
808 |
+
>>> from numpy.lib import recfunctions as rfn
|
809 |
+
>>> def print_offsets(d):
|
810 |
+
... print("offsets:", [d.fields[name][1] for name in d.names])
|
811 |
+
... print("itemsize:", d.itemsize)
|
812 |
+
...
|
813 |
+
>>> dt = np.dtype('u1, <i8, <f8', align=True)
|
814 |
+
>>> dt
|
815 |
+
dtype({'names': ['f0', 'f1', 'f2'], 'formats': ['u1', '<i8', '<f8'], \
|
816 |
+
'offsets': [0, 8, 16], 'itemsize': 24}, align=True)
|
817 |
+
>>> print_offsets(dt)
|
818 |
+
offsets: [0, 8, 16]
|
819 |
+
itemsize: 24
|
820 |
+
>>> packed_dt = rfn.repack_fields(dt)
|
821 |
+
>>> packed_dt
|
822 |
+
dtype([('f0', 'u1'), ('f1', '<i8'), ('f2', '<f8')])
|
823 |
+
>>> print_offsets(packed_dt)
|
824 |
+
offsets: [0, 1, 9]
|
825 |
+
itemsize: 17
|
826 |
+
|
827 |
+
"""
|
828 |
+
if not isinstance(a, np.dtype):
|
829 |
+
dt = repack_fields(a.dtype, align=align, recurse=recurse)
|
830 |
+
return a.astype(dt, copy=False)
|
831 |
+
|
832 |
+
if a.names is None:
|
833 |
+
return a
|
834 |
+
|
835 |
+
fieldinfo = []
|
836 |
+
for name in a.names:
|
837 |
+
tup = a.fields[name]
|
838 |
+
if recurse:
|
839 |
+
fmt = repack_fields(tup[0], align=align, recurse=True)
|
840 |
+
else:
|
841 |
+
fmt = tup[0]
|
842 |
+
|
843 |
+
if len(tup) == 3:
|
844 |
+
name = (tup[2], name)
|
845 |
+
|
846 |
+
fieldinfo.append((name, fmt))
|
847 |
+
|
848 |
+
dt = np.dtype(fieldinfo, align=align)
|
849 |
+
return np.dtype((a.type, dt))
|
850 |
+
|
851 |
+
def _get_fields_and_offsets(dt, offset=0):
|
852 |
+
"""
|
853 |
+
Returns a flat list of (dtype, count, offset) tuples of all the
|
854 |
+
scalar fields in the dtype "dt", including nested fields, in left
|
855 |
+
to right order.
|
856 |
+
"""
|
857 |
+
|
858 |
+
# counts up elements in subarrays, including nested subarrays, and returns
|
859 |
+
# base dtype and count
|
860 |
+
def count_elem(dt):
|
861 |
+
count = 1
|
862 |
+
while dt.shape != ():
|
863 |
+
for size in dt.shape:
|
864 |
+
count *= size
|
865 |
+
dt = dt.base
|
866 |
+
return dt, count
|
867 |
+
|
868 |
+
fields = []
|
869 |
+
for name in dt.names:
|
870 |
+
field = dt.fields[name]
|
871 |
+
f_dt, f_offset = field[0], field[1]
|
872 |
+
f_dt, n = count_elem(f_dt)
|
873 |
+
|
874 |
+
if f_dt.names is None:
|
875 |
+
fields.append((np.dtype((f_dt, (n,))), n, f_offset + offset))
|
876 |
+
else:
|
877 |
+
subfields = _get_fields_and_offsets(f_dt, f_offset + offset)
|
878 |
+
size = f_dt.itemsize
|
879 |
+
|
880 |
+
for i in range(n):
|
881 |
+
if i == 0:
|
882 |
+
# optimization: avoid list comprehension if no subarray
|
883 |
+
fields.extend(subfields)
|
884 |
+
else:
|
885 |
+
fields.extend([(d, c, o + i*size) for d, c, o in subfields])
|
886 |
+
return fields
|
887 |
+
|
888 |
+
def _common_stride(offsets, counts, itemsize):
|
889 |
+
"""
|
890 |
+
Returns the stride between the fields, or None if the stride is not
|
891 |
+
constant. The values in "counts" designate the lengths of
|
892 |
+
subarrays. Subarrays are treated as many contiguous fields, with
|
893 |
+
always positive stride.
|
894 |
+
"""
|
895 |
+
if len(offsets) <= 1:
|
896 |
+
return itemsize
|
897 |
+
|
898 |
+
negative = offsets[1] < offsets[0] # negative stride
|
899 |
+
if negative:
|
900 |
+
# reverse, so offsets will be ascending
|
901 |
+
it = zip(reversed(offsets), reversed(counts))
|
902 |
+
else:
|
903 |
+
it = zip(offsets, counts)
|
904 |
+
|
905 |
+
prev_offset = None
|
906 |
+
stride = None
|
907 |
+
for offset, count in it:
|
908 |
+
if count != 1: # subarray: always c-contiguous
|
909 |
+
if negative:
|
910 |
+
return None # subarrays can never have a negative stride
|
911 |
+
if stride is None:
|
912 |
+
stride = itemsize
|
913 |
+
if stride != itemsize:
|
914 |
+
return None
|
915 |
+
end_offset = offset + (count - 1) * itemsize
|
916 |
+
else:
|
917 |
+
end_offset = offset
|
918 |
+
|
919 |
+
if prev_offset is not None:
|
920 |
+
new_stride = offset - prev_offset
|
921 |
+
if stride is None:
|
922 |
+
stride = new_stride
|
923 |
+
if stride != new_stride:
|
924 |
+
return None
|
925 |
+
|
926 |
+
prev_offset = end_offset
|
927 |
+
|
928 |
+
if negative:
|
929 |
+
return -stride
|
930 |
+
return stride
|
931 |
+
|
932 |
+
|
933 |
+
def _structured_to_unstructured_dispatcher(arr, dtype=None, copy=None,
|
934 |
+
casting=None):
|
935 |
+
return (arr,)
|
936 |
+
|
937 |
+
@array_function_dispatch(_structured_to_unstructured_dispatcher)
|
938 |
+
def structured_to_unstructured(arr, dtype=None, copy=False, casting='unsafe'):
|
939 |
+
"""
|
940 |
+
Converts an n-D structured array into an (n+1)-D unstructured array.
|
941 |
+
|
942 |
+
The new array will have a new last dimension equal in size to the
|
943 |
+
number of field-elements of the input array. If not supplied, the output
|
944 |
+
datatype is determined from the numpy type promotion rules applied to all
|
945 |
+
the field datatypes.
|
946 |
+
|
947 |
+
Nested fields, as well as each element of any subarray fields, all count
|
948 |
+
as a single field-elements.
|
949 |
+
|
950 |
+
Parameters
|
951 |
+
----------
|
952 |
+
arr : ndarray
|
953 |
+
Structured array or dtype to convert. Cannot contain object datatype.
|
954 |
+
dtype : dtype, optional
|
955 |
+
The dtype of the output unstructured array.
|
956 |
+
copy : bool, optional
|
957 |
+
If true, always return a copy. If false, a view is returned if
|
958 |
+
possible, such as when the `dtype` and strides of the fields are
|
959 |
+
suitable and the array subtype is one of `np.ndarray`, `np.recarray`
|
960 |
+
or `np.memmap`.
|
961 |
+
|
962 |
+
.. versionchanged:: 1.25.0
|
963 |
+
A view can now be returned if the fields are separated by a
|
964 |
+
uniform stride.
|
965 |
+
|
966 |
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
967 |
+
See casting argument of `numpy.ndarray.astype`. Controls what kind of
|
968 |
+
data casting may occur.
|
969 |
+
|
970 |
+
Returns
|
971 |
+
-------
|
972 |
+
unstructured : ndarray
|
973 |
+
Unstructured array with one more dimension.
|
974 |
+
|
975 |
+
Examples
|
976 |
+
--------
|
977 |
+
|
978 |
+
>>> from numpy.lib import recfunctions as rfn
|
979 |
+
>>> a = np.zeros(4, dtype=[('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
|
980 |
+
>>> a
|
981 |
+
array([(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.]),
|
982 |
+
(0, (0., 0), [0., 0.]), (0, (0., 0), [0., 0.])],
|
983 |
+
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
|
984 |
+
>>> rfn.structured_to_unstructured(a)
|
985 |
+
array([[0., 0., 0., 0., 0.],
|
986 |
+
[0., 0., 0., 0., 0.],
|
987 |
+
[0., 0., 0., 0., 0.],
|
988 |
+
[0., 0., 0., 0., 0.]])
|
989 |
+
|
990 |
+
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
|
991 |
+
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
|
992 |
+
>>> np.mean(rfn.structured_to_unstructured(b[['x', 'z']]), axis=-1)
|
993 |
+
array([ 3. , 5.5, 9. , 11. ])
|
994 |
+
|
995 |
+
"""
|
996 |
+
if arr.dtype.names is None:
|
997 |
+
raise ValueError('arr must be a structured array')
|
998 |
+
|
999 |
+
fields = _get_fields_and_offsets(arr.dtype)
|
1000 |
+
n_fields = len(fields)
|
1001 |
+
if n_fields == 0 and dtype is None:
|
1002 |
+
raise ValueError("arr has no fields. Unable to guess dtype")
|
1003 |
+
elif n_fields == 0:
|
1004 |
+
# too many bugs elsewhere for this to work now
|
1005 |
+
raise NotImplementedError("arr with no fields is not supported")
|
1006 |
+
|
1007 |
+
dts, counts, offsets = zip(*fields)
|
1008 |
+
names = ['f{}'.format(n) for n in range(n_fields)]
|
1009 |
+
|
1010 |
+
if dtype is None:
|
1011 |
+
out_dtype = np.result_type(*[dt.base for dt in dts])
|
1012 |
+
else:
|
1013 |
+
out_dtype = np.dtype(dtype)
|
1014 |
+
|
1015 |
+
# Use a series of views and casts to convert to an unstructured array:
|
1016 |
+
|
1017 |
+
# first view using flattened fields (doesn't work for object arrays)
|
1018 |
+
# Note: dts may include a shape for subarrays
|
1019 |
+
flattened_fields = np.dtype({'names': names,
|
1020 |
+
'formats': dts,
|
1021 |
+
'offsets': offsets,
|
1022 |
+
'itemsize': arr.dtype.itemsize})
|
1023 |
+
arr = arr.view(flattened_fields)
|
1024 |
+
|
1025 |
+
# we only allow a few types to be unstructured by manipulating the
|
1026 |
+
# strides, because we know it won't work with, for example, np.matrix nor
|
1027 |
+
# np.ma.MaskedArray.
|
1028 |
+
can_view = type(arr) in (np.ndarray, np.recarray, np.memmap)
|
1029 |
+
if (not copy) and can_view and all(dt.base == out_dtype for dt in dts):
|
1030 |
+
# all elements have the right dtype already; if they have a common
|
1031 |
+
# stride, we can just return a view
|
1032 |
+
common_stride = _common_stride(offsets, counts, out_dtype.itemsize)
|
1033 |
+
if common_stride is not None:
|
1034 |
+
wrap = arr.__array_wrap__
|
1035 |
+
|
1036 |
+
new_shape = arr.shape + (sum(counts), out_dtype.itemsize)
|
1037 |
+
new_strides = arr.strides + (abs(common_stride), 1)
|
1038 |
+
|
1039 |
+
arr = arr[..., np.newaxis].view(np.uint8) # view as bytes
|
1040 |
+
arr = arr[..., min(offsets):] # remove the leading unused data
|
1041 |
+
arr = np.lib.stride_tricks.as_strided(arr,
|
1042 |
+
new_shape,
|
1043 |
+
new_strides,
|
1044 |
+
subok=True)
|
1045 |
+
|
1046 |
+
# cast and drop the last dimension again
|
1047 |
+
arr = arr.view(out_dtype)[..., 0]
|
1048 |
+
|
1049 |
+
if common_stride < 0:
|
1050 |
+
arr = arr[..., ::-1] # reverse, if the stride was negative
|
1051 |
+
if type(arr) is not type(wrap.__self__):
|
1052 |
+
# Some types (e.g. recarray) turn into an ndarray along the
|
1053 |
+
# way, so we have to wrap it again in order to match the
|
1054 |
+
# behavior with copy=True.
|
1055 |
+
arr = wrap(arr)
|
1056 |
+
return arr
|
1057 |
+
|
1058 |
+
# next cast to a packed format with all fields converted to new dtype
|
1059 |
+
packed_fields = np.dtype({'names': names,
|
1060 |
+
'formats': [(out_dtype, dt.shape) for dt in dts]})
|
1061 |
+
arr = arr.astype(packed_fields, copy=copy, casting=casting)
|
1062 |
+
|
1063 |
+
# finally is it safe to view the packed fields as the unstructured type
|
1064 |
+
return arr.view((out_dtype, (sum(counts),)))
|
1065 |
+
|
1066 |
+
|
1067 |
+
def _unstructured_to_structured_dispatcher(arr, dtype=None, names=None,
|
1068 |
+
align=None, copy=None, casting=None):
|
1069 |
+
return (arr,)
|
1070 |
+
|
1071 |
+
@array_function_dispatch(_unstructured_to_structured_dispatcher)
|
1072 |
+
def unstructured_to_structured(arr, dtype=None, names=None, align=False,
|
1073 |
+
copy=False, casting='unsafe'):
|
1074 |
+
"""
|
1075 |
+
Converts an n-D unstructured array into an (n-1)-D structured array.
|
1076 |
+
|
1077 |
+
The last dimension of the input array is converted into a structure, with
|
1078 |
+
number of field-elements equal to the size of the last dimension of the
|
1079 |
+
input array. By default all output fields have the input array's dtype, but
|
1080 |
+
an output structured dtype with an equal number of fields-elements can be
|
1081 |
+
supplied instead.
|
1082 |
+
|
1083 |
+
Nested fields, as well as each element of any subarray fields, all count
|
1084 |
+
towards the number of field-elements.
|
1085 |
+
|
1086 |
+
Parameters
|
1087 |
+
----------
|
1088 |
+
arr : ndarray
|
1089 |
+
Unstructured array or dtype to convert.
|
1090 |
+
dtype : dtype, optional
|
1091 |
+
The structured dtype of the output array
|
1092 |
+
names : list of strings, optional
|
1093 |
+
If dtype is not supplied, this specifies the field names for the output
|
1094 |
+
dtype, in order. The field dtypes will be the same as the input array.
|
1095 |
+
align : boolean, optional
|
1096 |
+
Whether to create an aligned memory layout.
|
1097 |
+
copy : bool, optional
|
1098 |
+
See copy argument to `numpy.ndarray.astype`. If true, always return a
|
1099 |
+
copy. If false, and `dtype` requirements are satisfied, a view is
|
1100 |
+
returned.
|
1101 |
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
1102 |
+
See casting argument of `numpy.ndarray.astype`. Controls what kind of
|
1103 |
+
data casting may occur.
|
1104 |
+
|
1105 |
+
Returns
|
1106 |
+
-------
|
1107 |
+
structured : ndarray
|
1108 |
+
Structured array with fewer dimensions.
|
1109 |
+
|
1110 |
+
Examples
|
1111 |
+
--------
|
1112 |
+
|
1113 |
+
>>> from numpy.lib import recfunctions as rfn
|
1114 |
+
>>> dt = np.dtype([('a', 'i4'), ('b', 'f4,u2'), ('c', 'f4', 2)])
|
1115 |
+
>>> a = np.arange(20).reshape((4,5))
|
1116 |
+
>>> a
|
1117 |
+
array([[ 0, 1, 2, 3, 4],
|
1118 |
+
[ 5, 6, 7, 8, 9],
|
1119 |
+
[10, 11, 12, 13, 14],
|
1120 |
+
[15, 16, 17, 18, 19]])
|
1121 |
+
>>> rfn.unstructured_to_structured(a, dt)
|
1122 |
+
array([( 0, ( 1., 2), [ 3., 4.]), ( 5, ( 6., 7), [ 8., 9.]),
|
1123 |
+
(10, (11., 12), [13., 14.]), (15, (16., 17), [18., 19.])],
|
1124 |
+
dtype=[('a', '<i4'), ('b', [('f0', '<f4'), ('f1', '<u2')]), ('c', '<f4', (2,))])
|
1125 |
+
|
1126 |
+
"""
|
1127 |
+
if arr.shape == ():
|
1128 |
+
raise ValueError('arr must have at least one dimension')
|
1129 |
+
n_elem = arr.shape[-1]
|
1130 |
+
if n_elem == 0:
|
1131 |
+
# too many bugs elsewhere for this to work now
|
1132 |
+
raise NotImplementedError("last axis with size 0 is not supported")
|
1133 |
+
|
1134 |
+
if dtype is None:
|
1135 |
+
if names is None:
|
1136 |
+
names = ['f{}'.format(n) for n in range(n_elem)]
|
1137 |
+
out_dtype = np.dtype([(n, arr.dtype) for n in names], align=align)
|
1138 |
+
fields = _get_fields_and_offsets(out_dtype)
|
1139 |
+
dts, counts, offsets = zip(*fields)
|
1140 |
+
else:
|
1141 |
+
if names is not None:
|
1142 |
+
raise ValueError("don't supply both dtype and names")
|
1143 |
+
# if dtype is the args of np.dtype, construct it
|
1144 |
+
dtype = np.dtype(dtype)
|
1145 |
+
# sanity check of the input dtype
|
1146 |
+
fields = _get_fields_and_offsets(dtype)
|
1147 |
+
if len(fields) == 0:
|
1148 |
+
dts, counts, offsets = [], [], []
|
1149 |
+
else:
|
1150 |
+
dts, counts, offsets = zip(*fields)
|
1151 |
+
|
1152 |
+
if n_elem != sum(counts):
|
1153 |
+
raise ValueError('The length of the last dimension of arr must '
|
1154 |
+
'be equal to the number of fields in dtype')
|
1155 |
+
out_dtype = dtype
|
1156 |
+
if align and not out_dtype.isalignedstruct:
|
1157 |
+
raise ValueError("align was True but dtype is not aligned")
|
1158 |
+
|
1159 |
+
names = ['f{}'.format(n) for n in range(len(fields))]
|
1160 |
+
|
1161 |
+
# Use a series of views and casts to convert to a structured array:
|
1162 |
+
|
1163 |
+
# first view as a packed structured array of one dtype
|
1164 |
+
packed_fields = np.dtype({'names': names,
|
1165 |
+
'formats': [(arr.dtype, dt.shape) for dt in dts]})
|
1166 |
+
arr = np.ascontiguousarray(arr).view(packed_fields)
|
1167 |
+
|
1168 |
+
# next cast to an unpacked but flattened format with varied dtypes
|
1169 |
+
flattened_fields = np.dtype({'names': names,
|
1170 |
+
'formats': dts,
|
1171 |
+
'offsets': offsets,
|
1172 |
+
'itemsize': out_dtype.itemsize})
|
1173 |
+
arr = arr.astype(flattened_fields, copy=copy, casting=casting)
|
1174 |
+
|
1175 |
+
# finally view as the final nested dtype and remove the last axis
|
1176 |
+
return arr.view(out_dtype)[..., 0]
|
1177 |
+
|
1178 |
+
def _apply_along_fields_dispatcher(func, arr):
|
1179 |
+
return (arr,)
|
1180 |
+
|
1181 |
+
@array_function_dispatch(_apply_along_fields_dispatcher)
|
1182 |
+
def apply_along_fields(func, arr):
|
1183 |
+
"""
|
1184 |
+
Apply function 'func' as a reduction across fields of a structured array.
|
1185 |
+
|
1186 |
+
This is similar to `apply_along_axis`, but treats the fields of a
|
1187 |
+
structured array as an extra axis. The fields are all first cast to a
|
1188 |
+
common type following the type-promotion rules from `numpy.result_type`
|
1189 |
+
applied to the field's dtypes.
|
1190 |
+
|
1191 |
+
Parameters
|
1192 |
+
----------
|
1193 |
+
func : function
|
1194 |
+
Function to apply on the "field" dimension. This function must
|
1195 |
+
support an `axis` argument, like np.mean, np.sum, etc.
|
1196 |
+
arr : ndarray
|
1197 |
+
Structured array for which to apply func.
|
1198 |
+
|
1199 |
+
Returns
|
1200 |
+
-------
|
1201 |
+
out : ndarray
|
1202 |
+
Result of the recution operation
|
1203 |
+
|
1204 |
+
Examples
|
1205 |
+
--------
|
1206 |
+
|
1207 |
+
>>> from numpy.lib import recfunctions as rfn
|
1208 |
+
>>> b = np.array([(1, 2, 5), (4, 5, 7), (7, 8 ,11), (10, 11, 12)],
|
1209 |
+
... dtype=[('x', 'i4'), ('y', 'f4'), ('z', 'f8')])
|
1210 |
+
>>> rfn.apply_along_fields(np.mean, b)
|
1211 |
+
array([ 2.66666667, 5.33333333, 8.66666667, 11. ])
|
1212 |
+
>>> rfn.apply_along_fields(np.mean, b[['x', 'z']])
|
1213 |
+
array([ 3. , 5.5, 9. , 11. ])
|
1214 |
+
|
1215 |
+
"""
|
1216 |
+
if arr.dtype.names is None:
|
1217 |
+
raise ValueError('arr must be a structured array')
|
1218 |
+
|
1219 |
+
uarr = structured_to_unstructured(arr)
|
1220 |
+
return func(uarr, axis=-1)
|
1221 |
+
# works and avoids axis requirement, but very, very slow:
|
1222 |
+
#return np.apply_along_axis(func, -1, uarr)
|
1223 |
+
|
1224 |
+
def _assign_fields_by_name_dispatcher(dst, src, zero_unassigned=None):
|
1225 |
+
return dst, src
|
1226 |
+
|
1227 |
+
@array_function_dispatch(_assign_fields_by_name_dispatcher)
|
1228 |
+
def assign_fields_by_name(dst, src, zero_unassigned=True):
|
1229 |
+
"""
|
1230 |
+
Assigns values from one structured array to another by field name.
|
1231 |
+
|
1232 |
+
Normally in numpy >= 1.14, assignment of one structured array to another
|
1233 |
+
copies fields "by position", meaning that the first field from the src is
|
1234 |
+
copied to the first field of the dst, and so on, regardless of field name.
|
1235 |
+
|
1236 |
+
This function instead copies "by field name", such that fields in the dst
|
1237 |
+
are assigned from the identically named field in the src. This applies
|
1238 |
+
recursively for nested structures. This is how structure assignment worked
|
1239 |
+
in numpy >= 1.6 to <= 1.13.
|
1240 |
+
|
1241 |
+
Parameters
|
1242 |
+
----------
|
1243 |
+
dst : ndarray
|
1244 |
+
src : ndarray
|
1245 |
+
The source and destination arrays during assignment.
|
1246 |
+
zero_unassigned : bool, optional
|
1247 |
+
If True, fields in the dst for which there was no matching
|
1248 |
+
field in the src are filled with the value 0 (zero). This
|
1249 |
+
was the behavior of numpy <= 1.13. If False, those fields
|
1250 |
+
are not modified.
|
1251 |
+
"""
|
1252 |
+
|
1253 |
+
if dst.dtype.names is None:
|
1254 |
+
dst[...] = src
|
1255 |
+
return
|
1256 |
+
|
1257 |
+
for name in dst.dtype.names:
|
1258 |
+
if name not in src.dtype.names:
|
1259 |
+
if zero_unassigned:
|
1260 |
+
dst[name] = 0
|
1261 |
+
else:
|
1262 |
+
assign_fields_by_name(dst[name], src[name],
|
1263 |
+
zero_unassigned)
|
1264 |
+
|
1265 |
+
def _require_fields_dispatcher(array, required_dtype):
|
1266 |
+
return (array,)
|
1267 |
+
|
1268 |
+
@array_function_dispatch(_require_fields_dispatcher)
|
1269 |
+
def require_fields(array, required_dtype):
|
1270 |
+
"""
|
1271 |
+
Casts a structured array to a new dtype using assignment by field-name.
|
1272 |
+
|
1273 |
+
This function assigns from the old to the new array by name, so the
|
1274 |
+
value of a field in the output array is the value of the field with the
|
1275 |
+
same name in the source array. This has the effect of creating a new
|
1276 |
+
ndarray containing only the fields "required" by the required_dtype.
|
1277 |
+
|
1278 |
+
If a field name in the required_dtype does not exist in the
|
1279 |
+
input array, that field is created and set to 0 in the output array.
|
1280 |
+
|
1281 |
+
Parameters
|
1282 |
+
----------
|
1283 |
+
a : ndarray
|
1284 |
+
array to cast
|
1285 |
+
required_dtype : dtype
|
1286 |
+
datatype for output array
|
1287 |
+
|
1288 |
+
Returns
|
1289 |
+
-------
|
1290 |
+
out : ndarray
|
1291 |
+
array with the new dtype, with field values copied from the fields in
|
1292 |
+
the input array with the same name
|
1293 |
+
|
1294 |
+
Examples
|
1295 |
+
--------
|
1296 |
+
|
1297 |
+
>>> from numpy.lib import recfunctions as rfn
|
1298 |
+
>>> a = np.ones(4, dtype=[('a', 'i4'), ('b', 'f8'), ('c', 'u1')])
|
1299 |
+
>>> rfn.require_fields(a, [('b', 'f4'), ('c', 'u1')])
|
1300 |
+
array([(1., 1), (1., 1), (1., 1), (1., 1)],
|
1301 |
+
dtype=[('b', '<f4'), ('c', 'u1')])
|
1302 |
+
>>> rfn.require_fields(a, [('b', 'f4'), ('newf', 'u1')])
|
1303 |
+
array([(1., 0), (1., 0), (1., 0), (1., 0)],
|
1304 |
+
dtype=[('b', '<f4'), ('newf', 'u1')])
|
1305 |
+
|
1306 |
+
"""
|
1307 |
+
out = np.empty(array.shape, dtype=required_dtype)
|
1308 |
+
assign_fields_by_name(out, array)
|
1309 |
+
return out
|
1310 |
+
|
1311 |
+
|
1312 |
+
def _stack_arrays_dispatcher(arrays, defaults=None, usemask=None,
|
1313 |
+
asrecarray=None, autoconvert=None):
|
1314 |
+
return arrays
|
1315 |
+
|
1316 |
+
|
1317 |
+
@array_function_dispatch(_stack_arrays_dispatcher)
|
1318 |
+
def stack_arrays(arrays, defaults=None, usemask=True, asrecarray=False,
|
1319 |
+
autoconvert=False):
|
1320 |
+
"""
|
1321 |
+
Superposes arrays fields by fields
|
1322 |
+
|
1323 |
+
Parameters
|
1324 |
+
----------
|
1325 |
+
arrays : array or sequence
|
1326 |
+
Sequence of input arrays.
|
1327 |
+
defaults : dictionary, optional
|
1328 |
+
Dictionary mapping field names to the corresponding default values.
|
1329 |
+
usemask : {True, False}, optional
|
1330 |
+
Whether to return a MaskedArray (or MaskedRecords is
|
1331 |
+
`asrecarray==True`) or a ndarray.
|
1332 |
+
asrecarray : {False, True}, optional
|
1333 |
+
Whether to return a recarray (or MaskedRecords if `usemask==True`)
|
1334 |
+
or just a flexible-type ndarray.
|
1335 |
+
autoconvert : {False, True}, optional
|
1336 |
+
Whether automatically cast the type of the field to the maximum.
|
1337 |
+
|
1338 |
+
Examples
|
1339 |
+
--------
|
1340 |
+
>>> from numpy.lib import recfunctions as rfn
|
1341 |
+
>>> x = np.array([1, 2,])
|
1342 |
+
>>> rfn.stack_arrays(x) is x
|
1343 |
+
True
|
1344 |
+
>>> z = np.array([('A', 1), ('B', 2)], dtype=[('A', '|S3'), ('B', float)])
|
1345 |
+
>>> zz = np.array([('a', 10., 100.), ('b', 20., 200.), ('c', 30., 300.)],
|
1346 |
+
... dtype=[('A', '|S3'), ('B', np.double), ('C', np.double)])
|
1347 |
+
>>> test = rfn.stack_arrays((z,zz))
|
1348 |
+
>>> test
|
1349 |
+
masked_array(data=[(b'A', 1.0, --), (b'B', 2.0, --), (b'a', 10.0, 100.0),
|
1350 |
+
(b'b', 20.0, 200.0), (b'c', 30.0, 300.0)],
|
1351 |
+
mask=[(False, False, True), (False, False, True),
|
1352 |
+
(False, False, False), (False, False, False),
|
1353 |
+
(False, False, False)],
|
1354 |
+
fill_value=(b'N/A', 1.e+20, 1.e+20),
|
1355 |
+
dtype=[('A', 'S3'), ('B', '<f8'), ('C', '<f8')])
|
1356 |
+
|
1357 |
+
"""
|
1358 |
+
if isinstance(arrays, ndarray):
|
1359 |
+
return arrays
|
1360 |
+
elif len(arrays) == 1:
|
1361 |
+
return arrays[0]
|
1362 |
+
seqarrays = [np.asanyarray(a).ravel() for a in arrays]
|
1363 |
+
nrecords = [len(a) for a in seqarrays]
|
1364 |
+
ndtype = [a.dtype for a in seqarrays]
|
1365 |
+
fldnames = [d.names for d in ndtype]
|
1366 |
+
#
|
1367 |
+
dtype_l = ndtype[0]
|
1368 |
+
newdescr = _get_fieldspec(dtype_l)
|
1369 |
+
names = [n for n, d in newdescr]
|
1370 |
+
for dtype_n in ndtype[1:]:
|
1371 |
+
for fname, fdtype in _get_fieldspec(dtype_n):
|
1372 |
+
if fname not in names:
|
1373 |
+
newdescr.append((fname, fdtype))
|
1374 |
+
names.append(fname)
|
1375 |
+
else:
|
1376 |
+
nameidx = names.index(fname)
|
1377 |
+
_, cdtype = newdescr[nameidx]
|
1378 |
+
if autoconvert:
|
1379 |
+
newdescr[nameidx] = (fname, max(fdtype, cdtype))
|
1380 |
+
elif fdtype != cdtype:
|
1381 |
+
raise TypeError("Incompatible type '%s' <> '%s'" %
|
1382 |
+
(cdtype, fdtype))
|
1383 |
+
# Only one field: use concatenate
|
1384 |
+
if len(newdescr) == 1:
|
1385 |
+
output = ma.concatenate(seqarrays)
|
1386 |
+
else:
|
1387 |
+
#
|
1388 |
+
output = ma.masked_all((np.sum(nrecords),), newdescr)
|
1389 |
+
offset = np.cumsum(np.r_[0, nrecords])
|
1390 |
+
seen = []
|
1391 |
+
for (a, n, i, j) in zip(seqarrays, fldnames, offset[:-1], offset[1:]):
|
1392 |
+
names = a.dtype.names
|
1393 |
+
if names is None:
|
1394 |
+
output['f%i' % len(seen)][i:j] = a
|
1395 |
+
else:
|
1396 |
+
for name in n:
|
1397 |
+
output[name][i:j] = a[name]
|
1398 |
+
if name not in seen:
|
1399 |
+
seen.append(name)
|
1400 |
+
#
|
1401 |
+
return _fix_output(_fix_defaults(output, defaults),
|
1402 |
+
usemask=usemask, asrecarray=asrecarray)
|
1403 |
+
|
1404 |
+
|
1405 |
+
def _find_duplicates_dispatcher(
|
1406 |
+
a, key=None, ignoremask=None, return_index=None):
|
1407 |
+
return (a,)
|
1408 |
+
|
1409 |
+
|
1410 |
+
@array_function_dispatch(_find_duplicates_dispatcher)
|
1411 |
+
def find_duplicates(a, key=None, ignoremask=True, return_index=False):
|
1412 |
+
"""
|
1413 |
+
Find the duplicates in a structured array along a given key
|
1414 |
+
|
1415 |
+
Parameters
|
1416 |
+
----------
|
1417 |
+
a : array-like
|
1418 |
+
Input array
|
1419 |
+
key : {string, None}, optional
|
1420 |
+
Name of the fields along which to check the duplicates.
|
1421 |
+
If None, the search is performed by records
|
1422 |
+
ignoremask : {True, False}, optional
|
1423 |
+
Whether masked data should be discarded or considered as duplicates.
|
1424 |
+
return_index : {False, True}, optional
|
1425 |
+
Whether to return the indices of the duplicated values.
|
1426 |
+
|
1427 |
+
Examples
|
1428 |
+
--------
|
1429 |
+
>>> from numpy.lib import recfunctions as rfn
|
1430 |
+
>>> ndtype = [('a', int)]
|
1431 |
+
>>> a = np.ma.array([1, 1, 1, 2, 2, 3, 3],
|
1432 |
+
... mask=[0, 0, 1, 0, 0, 0, 1]).view(ndtype)
|
1433 |
+
>>> rfn.find_duplicates(a, ignoremask=True, return_index=True)
|
1434 |
+
(masked_array(data=[(1,), (1,), (2,), (2,)],
|
1435 |
+
mask=[(False,), (False,), (False,), (False,)],
|
1436 |
+
fill_value=(999999,),
|
1437 |
+
dtype=[('a', '<i8')]), array([0, 1, 3, 4]))
|
1438 |
+
"""
|
1439 |
+
a = np.asanyarray(a).ravel()
|
1440 |
+
# Get a dictionary of fields
|
1441 |
+
fields = get_fieldstructure(a.dtype)
|
1442 |
+
# Get the sorting data (by selecting the corresponding field)
|
1443 |
+
base = a
|
1444 |
+
if key:
|
1445 |
+
for f in fields[key]:
|
1446 |
+
base = base[f]
|
1447 |
+
base = base[key]
|
1448 |
+
# Get the sorting indices and the sorted data
|
1449 |
+
sortidx = base.argsort()
|
1450 |
+
sortedbase = base[sortidx]
|
1451 |
+
sorteddata = sortedbase.filled()
|
1452 |
+
# Compare the sorting data
|
1453 |
+
flag = (sorteddata[:-1] == sorteddata[1:])
|
1454 |
+
# If masked data must be ignored, set the flag to false where needed
|
1455 |
+
if ignoremask:
|
1456 |
+
sortedmask = sortedbase.recordmask
|
1457 |
+
flag[sortedmask[1:]] = False
|
1458 |
+
flag = np.concatenate(([False], flag))
|
1459 |
+
# We need to take the point on the left as well (else we're missing it)
|
1460 |
+
flag[:-1] = flag[:-1] + flag[1:]
|
1461 |
+
duplicates = a[sortidx][flag]
|
1462 |
+
if return_index:
|
1463 |
+
return (duplicates, sortidx[flag])
|
1464 |
+
else:
|
1465 |
+
return duplicates
|
1466 |
+
|
1467 |
+
|
1468 |
+
def _join_by_dispatcher(
|
1469 |
+
key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
|
1470 |
+
defaults=None, usemask=None, asrecarray=None):
|
1471 |
+
return (r1, r2)
|
1472 |
+
|
1473 |
+
|
1474 |
+
@array_function_dispatch(_join_by_dispatcher)
|
1475 |
+
def join_by(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
|
1476 |
+
defaults=None, usemask=True, asrecarray=False):
|
1477 |
+
"""
|
1478 |
+
Join arrays `r1` and `r2` on key `key`.
|
1479 |
+
|
1480 |
+
The key should be either a string or a sequence of string corresponding
|
1481 |
+
to the fields used to join the array. An exception is raised if the
|
1482 |
+
`key` field cannot be found in the two input arrays. Neither `r1` nor
|
1483 |
+
`r2` should have any duplicates along `key`: the presence of duplicates
|
1484 |
+
will make the output quite unreliable. Note that duplicates are not
|
1485 |
+
looked for by the algorithm.
|
1486 |
+
|
1487 |
+
Parameters
|
1488 |
+
----------
|
1489 |
+
key : {string, sequence}
|
1490 |
+
A string or a sequence of strings corresponding to the fields used
|
1491 |
+
for comparison.
|
1492 |
+
r1, r2 : arrays
|
1493 |
+
Structured arrays.
|
1494 |
+
jointype : {'inner', 'outer', 'leftouter'}, optional
|
1495 |
+
If 'inner', returns the elements common to both r1 and r2.
|
1496 |
+
If 'outer', returns the common elements as well as the elements of
|
1497 |
+
r1 not in r2 and the elements of not in r2.
|
1498 |
+
If 'leftouter', returns the common elements and the elements of r1
|
1499 |
+
not in r2.
|
1500 |
+
r1postfix : string, optional
|
1501 |
+
String appended to the names of the fields of r1 that are present
|
1502 |
+
in r2 but absent of the key.
|
1503 |
+
r2postfix : string, optional
|
1504 |
+
String appended to the names of the fields of r2 that are present
|
1505 |
+
in r1 but absent of the key.
|
1506 |
+
defaults : {dictionary}, optional
|
1507 |
+
Dictionary mapping field names to the corresponding default values.
|
1508 |
+
usemask : {True, False}, optional
|
1509 |
+
Whether to return a MaskedArray (or MaskedRecords is
|
1510 |
+
`asrecarray==True`) or a ndarray.
|
1511 |
+
asrecarray : {False, True}, optional
|
1512 |
+
Whether to return a recarray (or MaskedRecords if `usemask==True`)
|
1513 |
+
or just a flexible-type ndarray.
|
1514 |
+
|
1515 |
+
Notes
|
1516 |
+
-----
|
1517 |
+
* The output is sorted along the key.
|
1518 |
+
* A temporary array is formed by dropping the fields not in the key for
|
1519 |
+
the two arrays and concatenating the result. This array is then
|
1520 |
+
sorted, and the common entries selected. The output is constructed by
|
1521 |
+
filling the fields with the selected entries. Matching is not
|
1522 |
+
preserved if there are some duplicates...
|
1523 |
+
|
1524 |
+
"""
|
1525 |
+
# Check jointype
|
1526 |
+
if jointype not in ('inner', 'outer', 'leftouter'):
|
1527 |
+
raise ValueError(
|
1528 |
+
"The 'jointype' argument should be in 'inner', "
|
1529 |
+
"'outer' or 'leftouter' (got '%s' instead)" % jointype
|
1530 |
+
)
|
1531 |
+
# If we have a single key, put it in a tuple
|
1532 |
+
if isinstance(key, str):
|
1533 |
+
key = (key,)
|
1534 |
+
|
1535 |
+
# Check the keys
|
1536 |
+
if len(set(key)) != len(key):
|
1537 |
+
dup = next(x for n,x in enumerate(key) if x in key[n+1:])
|
1538 |
+
raise ValueError("duplicate join key %r" % dup)
|
1539 |
+
for name in key:
|
1540 |
+
if name not in r1.dtype.names:
|
1541 |
+
raise ValueError('r1 does not have key field %r' % name)
|
1542 |
+
if name not in r2.dtype.names:
|
1543 |
+
raise ValueError('r2 does not have key field %r' % name)
|
1544 |
+
|
1545 |
+
# Make sure we work with ravelled arrays
|
1546 |
+
r1 = r1.ravel()
|
1547 |
+
r2 = r2.ravel()
|
1548 |
+
# Fixme: nb2 below is never used. Commenting out for pyflakes.
|
1549 |
+
# (nb1, nb2) = (len(r1), len(r2))
|
1550 |
+
nb1 = len(r1)
|
1551 |
+
(r1names, r2names) = (r1.dtype.names, r2.dtype.names)
|
1552 |
+
|
1553 |
+
# Check the names for collision
|
1554 |
+
collisions = (set(r1names) & set(r2names)) - set(key)
|
1555 |
+
if collisions and not (r1postfix or r2postfix):
|
1556 |
+
msg = "r1 and r2 contain common names, r1postfix and r2postfix "
|
1557 |
+
msg += "can't both be empty"
|
1558 |
+
raise ValueError(msg)
|
1559 |
+
|
1560 |
+
# Make temporary arrays of just the keys
|
1561 |
+
# (use order of keys in `r1` for back-compatibility)
|
1562 |
+
key1 = [ n for n in r1names if n in key ]
|
1563 |
+
r1k = _keep_fields(r1, key1)
|
1564 |
+
r2k = _keep_fields(r2, key1)
|
1565 |
+
|
1566 |
+
# Concatenate the two arrays for comparison
|
1567 |
+
aux = ma.concatenate((r1k, r2k))
|
1568 |
+
idx_sort = aux.argsort(order=key)
|
1569 |
+
aux = aux[idx_sort]
|
1570 |
+
#
|
1571 |
+
# Get the common keys
|
1572 |
+
flag_in = ma.concatenate(([False], aux[1:] == aux[:-1]))
|
1573 |
+
flag_in[:-1] = flag_in[1:] + flag_in[:-1]
|
1574 |
+
idx_in = idx_sort[flag_in]
|
1575 |
+
idx_1 = idx_in[(idx_in < nb1)]
|
1576 |
+
idx_2 = idx_in[(idx_in >= nb1)] - nb1
|
1577 |
+
(r1cmn, r2cmn) = (len(idx_1), len(idx_2))
|
1578 |
+
if jointype == 'inner':
|
1579 |
+
(r1spc, r2spc) = (0, 0)
|
1580 |
+
elif jointype == 'outer':
|
1581 |
+
idx_out = idx_sort[~flag_in]
|
1582 |
+
idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
|
1583 |
+
idx_2 = np.concatenate((idx_2, idx_out[(idx_out >= nb1)] - nb1))
|
1584 |
+
(r1spc, r2spc) = (len(idx_1) - r1cmn, len(idx_2) - r2cmn)
|
1585 |
+
elif jointype == 'leftouter':
|
1586 |
+
idx_out = idx_sort[~flag_in]
|
1587 |
+
idx_1 = np.concatenate((idx_1, idx_out[(idx_out < nb1)]))
|
1588 |
+
(r1spc, r2spc) = (len(idx_1) - r1cmn, 0)
|
1589 |
+
# Select the entries from each input
|
1590 |
+
(s1, s2) = (r1[idx_1], r2[idx_2])
|
1591 |
+
#
|
1592 |
+
# Build the new description of the output array .......
|
1593 |
+
# Start with the key fields
|
1594 |
+
ndtype = _get_fieldspec(r1k.dtype)
|
1595 |
+
|
1596 |
+
# Add the fields from r1
|
1597 |
+
for fname, fdtype in _get_fieldspec(r1.dtype):
|
1598 |
+
if fname not in key:
|
1599 |
+
ndtype.append((fname, fdtype))
|
1600 |
+
|
1601 |
+
# Add the fields from r2
|
1602 |
+
for fname, fdtype in _get_fieldspec(r2.dtype):
|
1603 |
+
# Have we seen the current name already ?
|
1604 |
+
# we need to rebuild this list every time
|
1605 |
+
names = list(name for name, dtype in ndtype)
|
1606 |
+
try:
|
1607 |
+
nameidx = names.index(fname)
|
1608 |
+
except ValueError:
|
1609 |
+
#... we haven't: just add the description to the current list
|
1610 |
+
ndtype.append((fname, fdtype))
|
1611 |
+
else:
|
1612 |
+
# collision
|
1613 |
+
_, cdtype = ndtype[nameidx]
|
1614 |
+
if fname in key:
|
1615 |
+
# The current field is part of the key: take the largest dtype
|
1616 |
+
ndtype[nameidx] = (fname, max(fdtype, cdtype))
|
1617 |
+
else:
|
1618 |
+
# The current field is not part of the key: add the suffixes,
|
1619 |
+
# and place the new field adjacent to the old one
|
1620 |
+
ndtype[nameidx:nameidx + 1] = [
|
1621 |
+
(fname + r1postfix, cdtype),
|
1622 |
+
(fname + r2postfix, fdtype)
|
1623 |
+
]
|
1624 |
+
# Rebuild a dtype from the new fields
|
1625 |
+
ndtype = np.dtype(ndtype)
|
1626 |
+
# Find the largest nb of common fields :
|
1627 |
+
# r1cmn and r2cmn should be equal, but...
|
1628 |
+
cmn = max(r1cmn, r2cmn)
|
1629 |
+
# Construct an empty array
|
1630 |
+
output = ma.masked_all((cmn + r1spc + r2spc,), dtype=ndtype)
|
1631 |
+
names = output.dtype.names
|
1632 |
+
for f in r1names:
|
1633 |
+
selected = s1[f]
|
1634 |
+
if f not in names or (f in r2names and not r2postfix and f not in key):
|
1635 |
+
f += r1postfix
|
1636 |
+
current = output[f]
|
1637 |
+
current[:r1cmn] = selected[:r1cmn]
|
1638 |
+
if jointype in ('outer', 'leftouter'):
|
1639 |
+
current[cmn:cmn + r1spc] = selected[r1cmn:]
|
1640 |
+
for f in r2names:
|
1641 |
+
selected = s2[f]
|
1642 |
+
if f not in names or (f in r1names and not r1postfix and f not in key):
|
1643 |
+
f += r2postfix
|
1644 |
+
current = output[f]
|
1645 |
+
current[:r2cmn] = selected[:r2cmn]
|
1646 |
+
if (jointype == 'outer') and r2spc:
|
1647 |
+
current[-r2spc:] = selected[r2cmn:]
|
1648 |
+
# Sort and finalize the output
|
1649 |
+
output.sort(order=key)
|
1650 |
+
kwargs = dict(usemask=usemask, asrecarray=asrecarray)
|
1651 |
+
return _fix_output(_fix_defaults(output, defaults), **kwargs)
|
1652 |
+
|
1653 |
+
|
1654 |
+
def _rec_join_dispatcher(
|
1655 |
+
key, r1, r2, jointype=None, r1postfix=None, r2postfix=None,
|
1656 |
+
defaults=None):
|
1657 |
+
return (r1, r2)
|
1658 |
+
|
1659 |
+
|
1660 |
+
@array_function_dispatch(_rec_join_dispatcher)
|
1661 |
+
def rec_join(key, r1, r2, jointype='inner', r1postfix='1', r2postfix='2',
|
1662 |
+
defaults=None):
|
1663 |
+
"""
|
1664 |
+
Join arrays `r1` and `r2` on keys.
|
1665 |
+
Alternative to join_by, that always returns a np.recarray.
|
1666 |
+
|
1667 |
+
See Also
|
1668 |
+
--------
|
1669 |
+
join_by : equivalent function
|
1670 |
+
"""
|
1671 |
+
kwargs = dict(jointype=jointype, r1postfix=r1postfix, r2postfix=r2postfix,
|
1672 |
+
defaults=defaults, usemask=False, asrecarray=True)
|
1673 |
+
return join_by(key, r1, r2, **kwargs)
|
venv/lib/python3.10/site-packages/numpy/lib/shape_base.py
ADDED
@@ -0,0 +1,1274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import functools
|
2 |
+
|
3 |
+
import numpy.core.numeric as _nx
|
4 |
+
from numpy.core.numeric import asarray, zeros, array, asanyarray
|
5 |
+
from numpy.core.fromnumeric import reshape, transpose
|
6 |
+
from numpy.core.multiarray import normalize_axis_index
|
7 |
+
from numpy.core import overrides
|
8 |
+
from numpy.core import vstack, atleast_3d
|
9 |
+
from numpy.core.numeric import normalize_axis_tuple
|
10 |
+
from numpy.core.shape_base import _arrays_for_stack_dispatcher
|
11 |
+
from numpy.lib.index_tricks import ndindex
|
12 |
+
from numpy.matrixlib.defmatrix import matrix # this raises all the right alarm bells
|
13 |
+
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'column_stack', 'row_stack', 'dstack', 'array_split', 'split',
|
17 |
+
'hsplit', 'vsplit', 'dsplit', 'apply_over_axes', 'expand_dims',
|
18 |
+
'apply_along_axis', 'kron', 'tile', 'get_array_wrap', 'take_along_axis',
|
19 |
+
'put_along_axis'
|
20 |
+
]
|
21 |
+
|
22 |
+
|
23 |
+
array_function_dispatch = functools.partial(
|
24 |
+
overrides.array_function_dispatch, module='numpy')
|
25 |
+
|
26 |
+
|
27 |
+
def _make_along_axis_idx(arr_shape, indices, axis):
|
28 |
+
# compute dimensions to iterate over
|
29 |
+
if not _nx.issubdtype(indices.dtype, _nx.integer):
|
30 |
+
raise IndexError('`indices` must be an integer array')
|
31 |
+
if len(arr_shape) != indices.ndim:
|
32 |
+
raise ValueError(
|
33 |
+
"`indices` and `arr` must have the same number of dimensions")
|
34 |
+
shape_ones = (1,) * indices.ndim
|
35 |
+
dest_dims = list(range(axis)) + [None] + list(range(axis+1, indices.ndim))
|
36 |
+
|
37 |
+
# build a fancy index, consisting of orthogonal aranges, with the
|
38 |
+
# requested index inserted at the right location
|
39 |
+
fancy_index = []
|
40 |
+
for dim, n in zip(dest_dims, arr_shape):
|
41 |
+
if dim is None:
|
42 |
+
fancy_index.append(indices)
|
43 |
+
else:
|
44 |
+
ind_shape = shape_ones[:dim] + (-1,) + shape_ones[dim+1:]
|
45 |
+
fancy_index.append(_nx.arange(n).reshape(ind_shape))
|
46 |
+
|
47 |
+
return tuple(fancy_index)
|
48 |
+
|
49 |
+
|
50 |
+
def _take_along_axis_dispatcher(arr, indices, axis):
|
51 |
+
return (arr, indices)
|
52 |
+
|
53 |
+
|
54 |
+
@array_function_dispatch(_take_along_axis_dispatcher)
|
55 |
+
def take_along_axis(arr, indices, axis):
|
56 |
+
"""
|
57 |
+
Take values from the input array by matching 1d index and data slices.
|
58 |
+
|
59 |
+
This iterates over matching 1d slices oriented along the specified axis in
|
60 |
+
the index and data arrays, and uses the former to look up values in the
|
61 |
+
latter. These slices can be different lengths.
|
62 |
+
|
63 |
+
Functions returning an index along an axis, like `argsort` and
|
64 |
+
`argpartition`, produce suitable indices for this function.
|
65 |
+
|
66 |
+
.. versionadded:: 1.15.0
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
arr : ndarray (Ni..., M, Nk...)
|
71 |
+
Source array
|
72 |
+
indices : ndarray (Ni..., J, Nk...)
|
73 |
+
Indices to take along each 1d slice of `arr`. This must match the
|
74 |
+
dimension of arr, but dimensions Ni and Nj only need to broadcast
|
75 |
+
against `arr`.
|
76 |
+
axis : int
|
77 |
+
The axis to take 1d slices along. If axis is None, the input array is
|
78 |
+
treated as if it had first been flattened to 1d, for consistency with
|
79 |
+
`sort` and `argsort`.
|
80 |
+
|
81 |
+
Returns
|
82 |
+
-------
|
83 |
+
out: ndarray (Ni..., J, Nk...)
|
84 |
+
The indexed result.
|
85 |
+
|
86 |
+
Notes
|
87 |
+
-----
|
88 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
89 |
+
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
90 |
+
|
91 |
+
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
92 |
+
J = indices.shape[axis] # Need not equal M
|
93 |
+
out = np.empty(Ni + (J,) + Nk)
|
94 |
+
|
95 |
+
for ii in ndindex(Ni):
|
96 |
+
for kk in ndindex(Nk):
|
97 |
+
a_1d = a [ii + s_[:,] + kk]
|
98 |
+
indices_1d = indices[ii + s_[:,] + kk]
|
99 |
+
out_1d = out [ii + s_[:,] + kk]
|
100 |
+
for j in range(J):
|
101 |
+
out_1d[j] = a_1d[indices_1d[j]]
|
102 |
+
|
103 |
+
Equivalently, eliminating the inner loop, the last two lines would be::
|
104 |
+
|
105 |
+
out_1d[:] = a_1d[indices_1d]
|
106 |
+
|
107 |
+
See Also
|
108 |
+
--------
|
109 |
+
take : Take along an axis, using the same indices for every 1d slice
|
110 |
+
put_along_axis :
|
111 |
+
Put values into the destination array by matching 1d index and data slices
|
112 |
+
|
113 |
+
Examples
|
114 |
+
--------
|
115 |
+
|
116 |
+
For this sample array
|
117 |
+
|
118 |
+
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
119 |
+
|
120 |
+
We can sort either by using sort directly, or argsort and this function
|
121 |
+
|
122 |
+
>>> np.sort(a, axis=1)
|
123 |
+
array([[10, 20, 30],
|
124 |
+
[40, 50, 60]])
|
125 |
+
>>> ai = np.argsort(a, axis=1)
|
126 |
+
>>> ai
|
127 |
+
array([[0, 2, 1],
|
128 |
+
[1, 2, 0]])
|
129 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
130 |
+
array([[10, 20, 30],
|
131 |
+
[40, 50, 60]])
|
132 |
+
|
133 |
+
The same works for max and min, if you maintain the trivial dimension
|
134 |
+
with ``keepdims``:
|
135 |
+
|
136 |
+
>>> np.max(a, axis=1, keepdims=True)
|
137 |
+
array([[30],
|
138 |
+
[60]])
|
139 |
+
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
140 |
+
>>> ai
|
141 |
+
array([[1],
|
142 |
+
[0]])
|
143 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
144 |
+
array([[30],
|
145 |
+
[60]])
|
146 |
+
|
147 |
+
If we want to get the max and min at the same time, we can stack the
|
148 |
+
indices first
|
149 |
+
|
150 |
+
>>> ai_min = np.argmin(a, axis=1, keepdims=True)
|
151 |
+
>>> ai_max = np.argmax(a, axis=1, keepdims=True)
|
152 |
+
>>> ai = np.concatenate([ai_min, ai_max], axis=1)
|
153 |
+
>>> ai
|
154 |
+
array([[0, 1],
|
155 |
+
[1, 0]])
|
156 |
+
>>> np.take_along_axis(a, ai, axis=1)
|
157 |
+
array([[10, 30],
|
158 |
+
[40, 60]])
|
159 |
+
"""
|
160 |
+
# normalize inputs
|
161 |
+
if axis is None:
|
162 |
+
arr = arr.flat
|
163 |
+
arr_shape = (len(arr),) # flatiter has no .shape
|
164 |
+
axis = 0
|
165 |
+
else:
|
166 |
+
axis = normalize_axis_index(axis, arr.ndim)
|
167 |
+
arr_shape = arr.shape
|
168 |
+
|
169 |
+
# use the fancy index
|
170 |
+
return arr[_make_along_axis_idx(arr_shape, indices, axis)]
|
171 |
+
|
172 |
+
|
173 |
+
def _put_along_axis_dispatcher(arr, indices, values, axis):
|
174 |
+
return (arr, indices, values)
|
175 |
+
|
176 |
+
|
177 |
+
@array_function_dispatch(_put_along_axis_dispatcher)
|
178 |
+
def put_along_axis(arr, indices, values, axis):
|
179 |
+
"""
|
180 |
+
Put values into the destination array by matching 1d index and data slices.
|
181 |
+
|
182 |
+
This iterates over matching 1d slices oriented along the specified axis in
|
183 |
+
the index and data arrays, and uses the former to place values into the
|
184 |
+
latter. These slices can be different lengths.
|
185 |
+
|
186 |
+
Functions returning an index along an axis, like `argsort` and
|
187 |
+
`argpartition`, produce suitable indices for this function.
|
188 |
+
|
189 |
+
.. versionadded:: 1.15.0
|
190 |
+
|
191 |
+
Parameters
|
192 |
+
----------
|
193 |
+
arr : ndarray (Ni..., M, Nk...)
|
194 |
+
Destination array.
|
195 |
+
indices : ndarray (Ni..., J, Nk...)
|
196 |
+
Indices to change along each 1d slice of `arr`. This must match the
|
197 |
+
dimension of arr, but dimensions in Ni and Nj may be 1 to broadcast
|
198 |
+
against `arr`.
|
199 |
+
values : array_like (Ni..., J, Nk...)
|
200 |
+
values to insert at those indices. Its shape and dimension are
|
201 |
+
broadcast to match that of `indices`.
|
202 |
+
axis : int
|
203 |
+
The axis to take 1d slices along. If axis is None, the destination
|
204 |
+
array is treated as if a flattened 1d view had been created of it.
|
205 |
+
|
206 |
+
Notes
|
207 |
+
-----
|
208 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
209 |
+
`s_`, which sets each of ``ii`` and ``kk`` to a tuple of indices::
|
210 |
+
|
211 |
+
Ni, M, Nk = a.shape[:axis], a.shape[axis], a.shape[axis+1:]
|
212 |
+
J = indices.shape[axis] # Need not equal M
|
213 |
+
|
214 |
+
for ii in ndindex(Ni):
|
215 |
+
for kk in ndindex(Nk):
|
216 |
+
a_1d = a [ii + s_[:,] + kk]
|
217 |
+
indices_1d = indices[ii + s_[:,] + kk]
|
218 |
+
values_1d = values [ii + s_[:,] + kk]
|
219 |
+
for j in range(J):
|
220 |
+
a_1d[indices_1d[j]] = values_1d[j]
|
221 |
+
|
222 |
+
Equivalently, eliminating the inner loop, the last two lines would be::
|
223 |
+
|
224 |
+
a_1d[indices_1d] = values_1d
|
225 |
+
|
226 |
+
See Also
|
227 |
+
--------
|
228 |
+
take_along_axis :
|
229 |
+
Take values from the input array by matching 1d index and data slices
|
230 |
+
|
231 |
+
Examples
|
232 |
+
--------
|
233 |
+
|
234 |
+
For this sample array
|
235 |
+
|
236 |
+
>>> a = np.array([[10, 30, 20], [60, 40, 50]])
|
237 |
+
|
238 |
+
We can replace the maximum values with:
|
239 |
+
|
240 |
+
>>> ai = np.argmax(a, axis=1, keepdims=True)
|
241 |
+
>>> ai
|
242 |
+
array([[1],
|
243 |
+
[0]])
|
244 |
+
>>> np.put_along_axis(a, ai, 99, axis=1)
|
245 |
+
>>> a
|
246 |
+
array([[10, 99, 20],
|
247 |
+
[99, 40, 50]])
|
248 |
+
|
249 |
+
"""
|
250 |
+
# normalize inputs
|
251 |
+
if axis is None:
|
252 |
+
arr = arr.flat
|
253 |
+
axis = 0
|
254 |
+
arr_shape = (len(arr),) # flatiter has no .shape
|
255 |
+
else:
|
256 |
+
axis = normalize_axis_index(axis, arr.ndim)
|
257 |
+
arr_shape = arr.shape
|
258 |
+
|
259 |
+
# use the fancy index
|
260 |
+
arr[_make_along_axis_idx(arr_shape, indices, axis)] = values
|
261 |
+
|
262 |
+
|
263 |
+
def _apply_along_axis_dispatcher(func1d, axis, arr, *args, **kwargs):
|
264 |
+
return (arr,)
|
265 |
+
|
266 |
+
|
267 |
+
@array_function_dispatch(_apply_along_axis_dispatcher)
|
268 |
+
def apply_along_axis(func1d, axis, arr, *args, **kwargs):
|
269 |
+
"""
|
270 |
+
Apply a function to 1-D slices along the given axis.
|
271 |
+
|
272 |
+
Execute `func1d(a, *args, **kwargs)` where `func1d` operates on 1-D arrays
|
273 |
+
and `a` is a 1-D slice of `arr` along `axis`.
|
274 |
+
|
275 |
+
This is equivalent to (but faster than) the following use of `ndindex` and
|
276 |
+
`s_`, which sets each of ``ii``, ``jj``, and ``kk`` to a tuple of indices::
|
277 |
+
|
278 |
+
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
279 |
+
for ii in ndindex(Ni):
|
280 |
+
for kk in ndindex(Nk):
|
281 |
+
f = func1d(arr[ii + s_[:,] + kk])
|
282 |
+
Nj = f.shape
|
283 |
+
for jj in ndindex(Nj):
|
284 |
+
out[ii + jj + kk] = f[jj]
|
285 |
+
|
286 |
+
Equivalently, eliminating the inner loop, this can be expressed as::
|
287 |
+
|
288 |
+
Ni, Nk = a.shape[:axis], a.shape[axis+1:]
|
289 |
+
for ii in ndindex(Ni):
|
290 |
+
for kk in ndindex(Nk):
|
291 |
+
out[ii + s_[...,] + kk] = func1d(arr[ii + s_[:,] + kk])
|
292 |
+
|
293 |
+
Parameters
|
294 |
+
----------
|
295 |
+
func1d : function (M,) -> (Nj...)
|
296 |
+
This function should accept 1-D arrays. It is applied to 1-D
|
297 |
+
slices of `arr` along the specified axis.
|
298 |
+
axis : integer
|
299 |
+
Axis along which `arr` is sliced.
|
300 |
+
arr : ndarray (Ni..., M, Nk...)
|
301 |
+
Input array.
|
302 |
+
args : any
|
303 |
+
Additional arguments to `func1d`.
|
304 |
+
kwargs : any
|
305 |
+
Additional named arguments to `func1d`.
|
306 |
+
|
307 |
+
.. versionadded:: 1.9.0
|
308 |
+
|
309 |
+
|
310 |
+
Returns
|
311 |
+
-------
|
312 |
+
out : ndarray (Ni..., Nj..., Nk...)
|
313 |
+
The output array. The shape of `out` is identical to the shape of
|
314 |
+
`arr`, except along the `axis` dimension. This axis is removed, and
|
315 |
+
replaced with new dimensions equal to the shape of the return value
|
316 |
+
of `func1d`. So if `func1d` returns a scalar `out` will have one
|
317 |
+
fewer dimensions than `arr`.
|
318 |
+
|
319 |
+
See Also
|
320 |
+
--------
|
321 |
+
apply_over_axes : Apply a function repeatedly over multiple axes.
|
322 |
+
|
323 |
+
Examples
|
324 |
+
--------
|
325 |
+
>>> def my_func(a):
|
326 |
+
... \"\"\"Average first and last element of a 1-D array\"\"\"
|
327 |
+
... return (a[0] + a[-1]) * 0.5
|
328 |
+
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
329 |
+
>>> np.apply_along_axis(my_func, 0, b)
|
330 |
+
array([4., 5., 6.])
|
331 |
+
>>> np.apply_along_axis(my_func, 1, b)
|
332 |
+
array([2., 5., 8.])
|
333 |
+
|
334 |
+
For a function that returns a 1D array, the number of dimensions in
|
335 |
+
`outarr` is the same as `arr`.
|
336 |
+
|
337 |
+
>>> b = np.array([[8,1,7], [4,3,9], [5,2,6]])
|
338 |
+
>>> np.apply_along_axis(sorted, 1, b)
|
339 |
+
array([[1, 7, 8],
|
340 |
+
[3, 4, 9],
|
341 |
+
[2, 5, 6]])
|
342 |
+
|
343 |
+
For a function that returns a higher dimensional array, those dimensions
|
344 |
+
are inserted in place of the `axis` dimension.
|
345 |
+
|
346 |
+
>>> b = np.array([[1,2,3], [4,5,6], [7,8,9]])
|
347 |
+
>>> np.apply_along_axis(np.diag, -1, b)
|
348 |
+
array([[[1, 0, 0],
|
349 |
+
[0, 2, 0],
|
350 |
+
[0, 0, 3]],
|
351 |
+
[[4, 0, 0],
|
352 |
+
[0, 5, 0],
|
353 |
+
[0, 0, 6]],
|
354 |
+
[[7, 0, 0],
|
355 |
+
[0, 8, 0],
|
356 |
+
[0, 0, 9]]])
|
357 |
+
"""
|
358 |
+
# handle negative axes
|
359 |
+
arr = asanyarray(arr)
|
360 |
+
nd = arr.ndim
|
361 |
+
axis = normalize_axis_index(axis, nd)
|
362 |
+
|
363 |
+
# arr, with the iteration axis at the end
|
364 |
+
in_dims = list(range(nd))
|
365 |
+
inarr_view = transpose(arr, in_dims[:axis] + in_dims[axis+1:] + [axis])
|
366 |
+
|
367 |
+
# compute indices for the iteration axes, and append a trailing ellipsis to
|
368 |
+
# prevent 0d arrays decaying to scalars, which fixes gh-8642
|
369 |
+
inds = ndindex(inarr_view.shape[:-1])
|
370 |
+
inds = (ind + (Ellipsis,) for ind in inds)
|
371 |
+
|
372 |
+
# invoke the function on the first item
|
373 |
+
try:
|
374 |
+
ind0 = next(inds)
|
375 |
+
except StopIteration:
|
376 |
+
raise ValueError(
|
377 |
+
'Cannot apply_along_axis when any iteration dimensions are 0'
|
378 |
+
) from None
|
379 |
+
res = asanyarray(func1d(inarr_view[ind0], *args, **kwargs))
|
380 |
+
|
381 |
+
# build a buffer for storing evaluations of func1d.
|
382 |
+
# remove the requested axis, and add the new ones on the end.
|
383 |
+
# laid out so that each write is contiguous.
|
384 |
+
# for a tuple index inds, buff[inds] = func1d(inarr_view[inds])
|
385 |
+
buff = zeros(inarr_view.shape[:-1] + res.shape, res.dtype)
|
386 |
+
|
387 |
+
# permutation of axes such that out = buff.transpose(buff_permute)
|
388 |
+
buff_dims = list(range(buff.ndim))
|
389 |
+
buff_permute = (
|
390 |
+
buff_dims[0 : axis] +
|
391 |
+
buff_dims[buff.ndim-res.ndim : buff.ndim] +
|
392 |
+
buff_dims[axis : buff.ndim-res.ndim]
|
393 |
+
)
|
394 |
+
|
395 |
+
# matrices have a nasty __array_prepare__ and __array_wrap__
|
396 |
+
if not isinstance(res, matrix):
|
397 |
+
buff = res.__array_prepare__(buff)
|
398 |
+
|
399 |
+
# save the first result, then compute and save all remaining results
|
400 |
+
buff[ind0] = res
|
401 |
+
for ind in inds:
|
402 |
+
buff[ind] = asanyarray(func1d(inarr_view[ind], *args, **kwargs))
|
403 |
+
|
404 |
+
if not isinstance(res, matrix):
|
405 |
+
# wrap the array, to preserve subclasses
|
406 |
+
buff = res.__array_wrap__(buff)
|
407 |
+
|
408 |
+
# finally, rotate the inserted axes back to where they belong
|
409 |
+
return transpose(buff, buff_permute)
|
410 |
+
|
411 |
+
else:
|
412 |
+
# matrices have to be transposed first, because they collapse dimensions!
|
413 |
+
out_arr = transpose(buff, buff_permute)
|
414 |
+
return res.__array_wrap__(out_arr)
|
415 |
+
|
416 |
+
|
417 |
+
def _apply_over_axes_dispatcher(func, a, axes):
|
418 |
+
return (a,)
|
419 |
+
|
420 |
+
|
421 |
+
@array_function_dispatch(_apply_over_axes_dispatcher)
|
422 |
+
def apply_over_axes(func, a, axes):
|
423 |
+
"""
|
424 |
+
Apply a function repeatedly over multiple axes.
|
425 |
+
|
426 |
+
`func` is called as `res = func(a, axis)`, where `axis` is the first
|
427 |
+
element of `axes`. The result `res` of the function call must have
|
428 |
+
either the same dimensions as `a` or one less dimension. If `res`
|
429 |
+
has one less dimension than `a`, a dimension is inserted before
|
430 |
+
`axis`. The call to `func` is then repeated for each axis in `axes`,
|
431 |
+
with `res` as the first argument.
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
func : function
|
436 |
+
This function must take two arguments, `func(a, axis)`.
|
437 |
+
a : array_like
|
438 |
+
Input array.
|
439 |
+
axes : array_like
|
440 |
+
Axes over which `func` is applied; the elements must be integers.
|
441 |
+
|
442 |
+
Returns
|
443 |
+
-------
|
444 |
+
apply_over_axis : ndarray
|
445 |
+
The output array. The number of dimensions is the same as `a`,
|
446 |
+
but the shape can be different. This depends on whether `func`
|
447 |
+
changes the shape of its output with respect to its input.
|
448 |
+
|
449 |
+
See Also
|
450 |
+
--------
|
451 |
+
apply_along_axis :
|
452 |
+
Apply a function to 1-D slices of an array along the given axis.
|
453 |
+
|
454 |
+
Notes
|
455 |
+
-----
|
456 |
+
This function is equivalent to tuple axis arguments to reorderable ufuncs
|
457 |
+
with keepdims=True. Tuple axis arguments to ufuncs have been available since
|
458 |
+
version 1.7.0.
|
459 |
+
|
460 |
+
Examples
|
461 |
+
--------
|
462 |
+
>>> a = np.arange(24).reshape(2,3,4)
|
463 |
+
>>> a
|
464 |
+
array([[[ 0, 1, 2, 3],
|
465 |
+
[ 4, 5, 6, 7],
|
466 |
+
[ 8, 9, 10, 11]],
|
467 |
+
[[12, 13, 14, 15],
|
468 |
+
[16, 17, 18, 19],
|
469 |
+
[20, 21, 22, 23]]])
|
470 |
+
|
471 |
+
Sum over axes 0 and 2. The result has same number of dimensions
|
472 |
+
as the original array:
|
473 |
+
|
474 |
+
>>> np.apply_over_axes(np.sum, a, [0,2])
|
475 |
+
array([[[ 60],
|
476 |
+
[ 92],
|
477 |
+
[124]]])
|
478 |
+
|
479 |
+
Tuple axis arguments to ufuncs are equivalent:
|
480 |
+
|
481 |
+
>>> np.sum(a, axis=(0,2), keepdims=True)
|
482 |
+
array([[[ 60],
|
483 |
+
[ 92],
|
484 |
+
[124]]])
|
485 |
+
|
486 |
+
"""
|
487 |
+
val = asarray(a)
|
488 |
+
N = a.ndim
|
489 |
+
if array(axes).ndim == 0:
|
490 |
+
axes = (axes,)
|
491 |
+
for axis in axes:
|
492 |
+
if axis < 0:
|
493 |
+
axis = N + axis
|
494 |
+
args = (val, axis)
|
495 |
+
res = func(*args)
|
496 |
+
if res.ndim == val.ndim:
|
497 |
+
val = res
|
498 |
+
else:
|
499 |
+
res = expand_dims(res, axis)
|
500 |
+
if res.ndim == val.ndim:
|
501 |
+
val = res
|
502 |
+
else:
|
503 |
+
raise ValueError("function is not returning "
|
504 |
+
"an array of the correct shape")
|
505 |
+
return val
|
506 |
+
|
507 |
+
|
508 |
+
def _expand_dims_dispatcher(a, axis):
|
509 |
+
return (a,)
|
510 |
+
|
511 |
+
|
512 |
+
@array_function_dispatch(_expand_dims_dispatcher)
|
513 |
+
def expand_dims(a, axis):
|
514 |
+
"""
|
515 |
+
Expand the shape of an array.
|
516 |
+
|
517 |
+
Insert a new axis that will appear at the `axis` position in the expanded
|
518 |
+
array shape.
|
519 |
+
|
520 |
+
Parameters
|
521 |
+
----------
|
522 |
+
a : array_like
|
523 |
+
Input array.
|
524 |
+
axis : int or tuple of ints
|
525 |
+
Position in the expanded axes where the new axis (or axes) is placed.
|
526 |
+
|
527 |
+
.. deprecated:: 1.13.0
|
528 |
+
Passing an axis where ``axis > a.ndim`` will be treated as
|
529 |
+
``axis == a.ndim``, and passing ``axis < -a.ndim - 1`` will
|
530 |
+
be treated as ``axis == 0``. This behavior is deprecated.
|
531 |
+
|
532 |
+
.. versionchanged:: 1.18.0
|
533 |
+
A tuple of axes is now supported. Out of range axes as
|
534 |
+
described above are now forbidden and raise an `AxisError`.
|
535 |
+
|
536 |
+
Returns
|
537 |
+
-------
|
538 |
+
result : ndarray
|
539 |
+
View of `a` with the number of dimensions increased.
|
540 |
+
|
541 |
+
See Also
|
542 |
+
--------
|
543 |
+
squeeze : The inverse operation, removing singleton dimensions
|
544 |
+
reshape : Insert, remove, and combine dimensions, and resize existing ones
|
545 |
+
doc.indexing, atleast_1d, atleast_2d, atleast_3d
|
546 |
+
|
547 |
+
Examples
|
548 |
+
--------
|
549 |
+
>>> x = np.array([1, 2])
|
550 |
+
>>> x.shape
|
551 |
+
(2,)
|
552 |
+
|
553 |
+
The following is equivalent to ``x[np.newaxis, :]`` or ``x[np.newaxis]``:
|
554 |
+
|
555 |
+
>>> y = np.expand_dims(x, axis=0)
|
556 |
+
>>> y
|
557 |
+
array([[1, 2]])
|
558 |
+
>>> y.shape
|
559 |
+
(1, 2)
|
560 |
+
|
561 |
+
The following is equivalent to ``x[:, np.newaxis]``:
|
562 |
+
|
563 |
+
>>> y = np.expand_dims(x, axis=1)
|
564 |
+
>>> y
|
565 |
+
array([[1],
|
566 |
+
[2]])
|
567 |
+
>>> y.shape
|
568 |
+
(2, 1)
|
569 |
+
|
570 |
+
``axis`` may also be a tuple:
|
571 |
+
|
572 |
+
>>> y = np.expand_dims(x, axis=(0, 1))
|
573 |
+
>>> y
|
574 |
+
array([[[1, 2]]])
|
575 |
+
|
576 |
+
>>> y = np.expand_dims(x, axis=(2, 0))
|
577 |
+
>>> y
|
578 |
+
array([[[1],
|
579 |
+
[2]]])
|
580 |
+
|
581 |
+
Note that some examples may use ``None`` instead of ``np.newaxis``. These
|
582 |
+
are the same objects:
|
583 |
+
|
584 |
+
>>> np.newaxis is None
|
585 |
+
True
|
586 |
+
|
587 |
+
"""
|
588 |
+
if isinstance(a, matrix):
|
589 |
+
a = asarray(a)
|
590 |
+
else:
|
591 |
+
a = asanyarray(a)
|
592 |
+
|
593 |
+
if type(axis) not in (tuple, list):
|
594 |
+
axis = (axis,)
|
595 |
+
|
596 |
+
out_ndim = len(axis) + a.ndim
|
597 |
+
axis = normalize_axis_tuple(axis, out_ndim)
|
598 |
+
|
599 |
+
shape_it = iter(a.shape)
|
600 |
+
shape = [1 if ax in axis else next(shape_it) for ax in range(out_ndim)]
|
601 |
+
|
602 |
+
return a.reshape(shape)
|
603 |
+
|
604 |
+
|
605 |
+
row_stack = vstack
|
606 |
+
|
607 |
+
|
608 |
+
def _column_stack_dispatcher(tup):
|
609 |
+
return _arrays_for_stack_dispatcher(tup)
|
610 |
+
|
611 |
+
|
612 |
+
@array_function_dispatch(_column_stack_dispatcher)
|
613 |
+
def column_stack(tup):
|
614 |
+
"""
|
615 |
+
Stack 1-D arrays as columns into a 2-D array.
|
616 |
+
|
617 |
+
Take a sequence of 1-D arrays and stack them as columns
|
618 |
+
to make a single 2-D array. 2-D arrays are stacked as-is,
|
619 |
+
just like with `hstack`. 1-D arrays are turned into 2-D columns
|
620 |
+
first.
|
621 |
+
|
622 |
+
Parameters
|
623 |
+
----------
|
624 |
+
tup : sequence of 1-D or 2-D arrays.
|
625 |
+
Arrays to stack. All of them must have the same first dimension.
|
626 |
+
|
627 |
+
Returns
|
628 |
+
-------
|
629 |
+
stacked : 2-D array
|
630 |
+
The array formed by stacking the given arrays.
|
631 |
+
|
632 |
+
See Also
|
633 |
+
--------
|
634 |
+
stack, hstack, vstack, concatenate
|
635 |
+
|
636 |
+
Examples
|
637 |
+
--------
|
638 |
+
>>> a = np.array((1,2,3))
|
639 |
+
>>> b = np.array((2,3,4))
|
640 |
+
>>> np.column_stack((a,b))
|
641 |
+
array([[1, 2],
|
642 |
+
[2, 3],
|
643 |
+
[3, 4]])
|
644 |
+
|
645 |
+
"""
|
646 |
+
arrays = []
|
647 |
+
for v in tup:
|
648 |
+
arr = asanyarray(v)
|
649 |
+
if arr.ndim < 2:
|
650 |
+
arr = array(arr, copy=False, subok=True, ndmin=2).T
|
651 |
+
arrays.append(arr)
|
652 |
+
return _nx.concatenate(arrays, 1)
|
653 |
+
|
654 |
+
|
655 |
+
def _dstack_dispatcher(tup):
|
656 |
+
return _arrays_for_stack_dispatcher(tup)
|
657 |
+
|
658 |
+
|
659 |
+
@array_function_dispatch(_dstack_dispatcher)
|
660 |
+
def dstack(tup):
|
661 |
+
"""
|
662 |
+
Stack arrays in sequence depth wise (along third axis).
|
663 |
+
|
664 |
+
This is equivalent to concatenation along the third axis after 2-D arrays
|
665 |
+
of shape `(M,N)` have been reshaped to `(M,N,1)` and 1-D arrays of shape
|
666 |
+
`(N,)` have been reshaped to `(1,N,1)`. Rebuilds arrays divided by
|
667 |
+
`dsplit`.
|
668 |
+
|
669 |
+
This function makes most sense for arrays with up to 3 dimensions. For
|
670 |
+
instance, for pixel-data with a height (first axis), width (second axis),
|
671 |
+
and r/g/b channels (third axis). The functions `concatenate`, `stack` and
|
672 |
+
`block` provide more general stacking and concatenation operations.
|
673 |
+
|
674 |
+
Parameters
|
675 |
+
----------
|
676 |
+
tup : sequence of arrays
|
677 |
+
The arrays must have the same shape along all but the third axis.
|
678 |
+
1-D or 2-D arrays must have the same shape.
|
679 |
+
|
680 |
+
Returns
|
681 |
+
-------
|
682 |
+
stacked : ndarray
|
683 |
+
The array formed by stacking the given arrays, will be at least 3-D.
|
684 |
+
|
685 |
+
See Also
|
686 |
+
--------
|
687 |
+
concatenate : Join a sequence of arrays along an existing axis.
|
688 |
+
stack : Join a sequence of arrays along a new axis.
|
689 |
+
block : Assemble an nd-array from nested lists of blocks.
|
690 |
+
vstack : Stack arrays in sequence vertically (row wise).
|
691 |
+
hstack : Stack arrays in sequence horizontally (column wise).
|
692 |
+
column_stack : Stack 1-D arrays as columns into a 2-D array.
|
693 |
+
dsplit : Split array along third axis.
|
694 |
+
|
695 |
+
Examples
|
696 |
+
--------
|
697 |
+
>>> a = np.array((1,2,3))
|
698 |
+
>>> b = np.array((2,3,4))
|
699 |
+
>>> np.dstack((a,b))
|
700 |
+
array([[[1, 2],
|
701 |
+
[2, 3],
|
702 |
+
[3, 4]]])
|
703 |
+
|
704 |
+
>>> a = np.array([[1],[2],[3]])
|
705 |
+
>>> b = np.array([[2],[3],[4]])
|
706 |
+
>>> np.dstack((a,b))
|
707 |
+
array([[[1, 2]],
|
708 |
+
[[2, 3]],
|
709 |
+
[[3, 4]]])
|
710 |
+
|
711 |
+
"""
|
712 |
+
arrs = atleast_3d(*tup)
|
713 |
+
if not isinstance(arrs, list):
|
714 |
+
arrs = [arrs]
|
715 |
+
return _nx.concatenate(arrs, 2)
|
716 |
+
|
717 |
+
|
718 |
+
def _replace_zero_by_x_arrays(sub_arys):
|
719 |
+
for i in range(len(sub_arys)):
|
720 |
+
if _nx.ndim(sub_arys[i]) == 0:
|
721 |
+
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
722 |
+
elif _nx.sometrue(_nx.equal(_nx.shape(sub_arys[i]), 0)):
|
723 |
+
sub_arys[i] = _nx.empty(0, dtype=sub_arys[i].dtype)
|
724 |
+
return sub_arys
|
725 |
+
|
726 |
+
|
727 |
+
def _array_split_dispatcher(ary, indices_or_sections, axis=None):
|
728 |
+
return (ary, indices_or_sections)
|
729 |
+
|
730 |
+
|
731 |
+
@array_function_dispatch(_array_split_dispatcher)
|
732 |
+
def array_split(ary, indices_or_sections, axis=0):
|
733 |
+
"""
|
734 |
+
Split an array into multiple sub-arrays.
|
735 |
+
|
736 |
+
Please refer to the ``split`` documentation. The only difference
|
737 |
+
between these functions is that ``array_split`` allows
|
738 |
+
`indices_or_sections` to be an integer that does *not* equally
|
739 |
+
divide the axis. For an array of length l that should be split
|
740 |
+
into n sections, it returns l % n sub-arrays of size l//n + 1
|
741 |
+
and the rest of size l//n.
|
742 |
+
|
743 |
+
See Also
|
744 |
+
--------
|
745 |
+
split : Split array into multiple sub-arrays of equal size.
|
746 |
+
|
747 |
+
Examples
|
748 |
+
--------
|
749 |
+
>>> x = np.arange(8.0)
|
750 |
+
>>> np.array_split(x, 3)
|
751 |
+
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7.])]
|
752 |
+
|
753 |
+
>>> x = np.arange(9)
|
754 |
+
>>> np.array_split(x, 4)
|
755 |
+
[array([0, 1, 2]), array([3, 4]), array([5, 6]), array([7, 8])]
|
756 |
+
|
757 |
+
"""
|
758 |
+
try:
|
759 |
+
Ntotal = ary.shape[axis]
|
760 |
+
except AttributeError:
|
761 |
+
Ntotal = len(ary)
|
762 |
+
try:
|
763 |
+
# handle array case.
|
764 |
+
Nsections = len(indices_or_sections) + 1
|
765 |
+
div_points = [0] + list(indices_or_sections) + [Ntotal]
|
766 |
+
except TypeError:
|
767 |
+
# indices_or_sections is a scalar, not an array.
|
768 |
+
Nsections = int(indices_or_sections)
|
769 |
+
if Nsections <= 0:
|
770 |
+
raise ValueError('number sections must be larger than 0.') from None
|
771 |
+
Neach_section, extras = divmod(Ntotal, Nsections)
|
772 |
+
section_sizes = ([0] +
|
773 |
+
extras * [Neach_section+1] +
|
774 |
+
(Nsections-extras) * [Neach_section])
|
775 |
+
div_points = _nx.array(section_sizes, dtype=_nx.intp).cumsum()
|
776 |
+
|
777 |
+
sub_arys = []
|
778 |
+
sary = _nx.swapaxes(ary, axis, 0)
|
779 |
+
for i in range(Nsections):
|
780 |
+
st = div_points[i]
|
781 |
+
end = div_points[i + 1]
|
782 |
+
sub_arys.append(_nx.swapaxes(sary[st:end], axis, 0))
|
783 |
+
|
784 |
+
return sub_arys
|
785 |
+
|
786 |
+
|
787 |
+
def _split_dispatcher(ary, indices_or_sections, axis=None):
|
788 |
+
return (ary, indices_or_sections)
|
789 |
+
|
790 |
+
|
791 |
+
@array_function_dispatch(_split_dispatcher)
|
792 |
+
def split(ary, indices_or_sections, axis=0):
|
793 |
+
"""
|
794 |
+
Split an array into multiple sub-arrays as views into `ary`.
|
795 |
+
|
796 |
+
Parameters
|
797 |
+
----------
|
798 |
+
ary : ndarray
|
799 |
+
Array to be divided into sub-arrays.
|
800 |
+
indices_or_sections : int or 1-D array
|
801 |
+
If `indices_or_sections` is an integer, N, the array will be divided
|
802 |
+
into N equal arrays along `axis`. If such a split is not possible,
|
803 |
+
an error is raised.
|
804 |
+
|
805 |
+
If `indices_or_sections` is a 1-D array of sorted integers, the entries
|
806 |
+
indicate where along `axis` the array is split. For example,
|
807 |
+
``[2, 3]`` would, for ``axis=0``, result in
|
808 |
+
|
809 |
+
- ary[:2]
|
810 |
+
- ary[2:3]
|
811 |
+
- ary[3:]
|
812 |
+
|
813 |
+
If an index exceeds the dimension of the array along `axis`,
|
814 |
+
an empty sub-array is returned correspondingly.
|
815 |
+
axis : int, optional
|
816 |
+
The axis along which to split, default is 0.
|
817 |
+
|
818 |
+
Returns
|
819 |
+
-------
|
820 |
+
sub-arrays : list of ndarrays
|
821 |
+
A list of sub-arrays as views into `ary`.
|
822 |
+
|
823 |
+
Raises
|
824 |
+
------
|
825 |
+
ValueError
|
826 |
+
If `indices_or_sections` is given as an integer, but
|
827 |
+
a split does not result in equal division.
|
828 |
+
|
829 |
+
See Also
|
830 |
+
--------
|
831 |
+
array_split : Split an array into multiple sub-arrays of equal or
|
832 |
+
near-equal size. Does not raise an exception if
|
833 |
+
an equal division cannot be made.
|
834 |
+
hsplit : Split array into multiple sub-arrays horizontally (column-wise).
|
835 |
+
vsplit : Split array into multiple sub-arrays vertically (row wise).
|
836 |
+
dsplit : Split array into multiple sub-arrays along the 3rd axis (depth).
|
837 |
+
concatenate : Join a sequence of arrays along an existing axis.
|
838 |
+
stack : Join a sequence of arrays along a new axis.
|
839 |
+
hstack : Stack arrays in sequence horizontally (column wise).
|
840 |
+
vstack : Stack arrays in sequence vertically (row wise).
|
841 |
+
dstack : Stack arrays in sequence depth wise (along third dimension).
|
842 |
+
|
843 |
+
Examples
|
844 |
+
--------
|
845 |
+
>>> x = np.arange(9.0)
|
846 |
+
>>> np.split(x, 3)
|
847 |
+
[array([0., 1., 2.]), array([3., 4., 5.]), array([6., 7., 8.])]
|
848 |
+
|
849 |
+
>>> x = np.arange(8.0)
|
850 |
+
>>> np.split(x, [3, 5, 6, 10])
|
851 |
+
[array([0., 1., 2.]),
|
852 |
+
array([3., 4.]),
|
853 |
+
array([5.]),
|
854 |
+
array([6., 7.]),
|
855 |
+
array([], dtype=float64)]
|
856 |
+
|
857 |
+
"""
|
858 |
+
try:
|
859 |
+
len(indices_or_sections)
|
860 |
+
except TypeError:
|
861 |
+
sections = indices_or_sections
|
862 |
+
N = ary.shape[axis]
|
863 |
+
if N % sections:
|
864 |
+
raise ValueError(
|
865 |
+
'array split does not result in an equal division') from None
|
866 |
+
return array_split(ary, indices_or_sections, axis)
|
867 |
+
|
868 |
+
|
869 |
+
def _hvdsplit_dispatcher(ary, indices_or_sections):
|
870 |
+
return (ary, indices_or_sections)
|
871 |
+
|
872 |
+
|
873 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
874 |
+
def hsplit(ary, indices_or_sections):
|
875 |
+
"""
|
876 |
+
Split an array into multiple sub-arrays horizontally (column-wise).
|
877 |
+
|
878 |
+
Please refer to the `split` documentation. `hsplit` is equivalent
|
879 |
+
to `split` with ``axis=1``, the array is always split along the second
|
880 |
+
axis except for 1-D arrays, where it is split at ``axis=0``.
|
881 |
+
|
882 |
+
See Also
|
883 |
+
--------
|
884 |
+
split : Split an array into multiple sub-arrays of equal size.
|
885 |
+
|
886 |
+
Examples
|
887 |
+
--------
|
888 |
+
>>> x = np.arange(16.0).reshape(4, 4)
|
889 |
+
>>> x
|
890 |
+
array([[ 0., 1., 2., 3.],
|
891 |
+
[ 4., 5., 6., 7.],
|
892 |
+
[ 8., 9., 10., 11.],
|
893 |
+
[12., 13., 14., 15.]])
|
894 |
+
>>> np.hsplit(x, 2)
|
895 |
+
[array([[ 0., 1.],
|
896 |
+
[ 4., 5.],
|
897 |
+
[ 8., 9.],
|
898 |
+
[12., 13.]]),
|
899 |
+
array([[ 2., 3.],
|
900 |
+
[ 6., 7.],
|
901 |
+
[10., 11.],
|
902 |
+
[14., 15.]])]
|
903 |
+
>>> np.hsplit(x, np.array([3, 6]))
|
904 |
+
[array([[ 0., 1., 2.],
|
905 |
+
[ 4., 5., 6.],
|
906 |
+
[ 8., 9., 10.],
|
907 |
+
[12., 13., 14.]]),
|
908 |
+
array([[ 3.],
|
909 |
+
[ 7.],
|
910 |
+
[11.],
|
911 |
+
[15.]]),
|
912 |
+
array([], shape=(4, 0), dtype=float64)]
|
913 |
+
|
914 |
+
With a higher dimensional array the split is still along the second axis.
|
915 |
+
|
916 |
+
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
917 |
+
>>> x
|
918 |
+
array([[[0., 1.],
|
919 |
+
[2., 3.]],
|
920 |
+
[[4., 5.],
|
921 |
+
[6., 7.]]])
|
922 |
+
>>> np.hsplit(x, 2)
|
923 |
+
[array([[[0., 1.]],
|
924 |
+
[[4., 5.]]]),
|
925 |
+
array([[[2., 3.]],
|
926 |
+
[[6., 7.]]])]
|
927 |
+
|
928 |
+
With a 1-D array, the split is along axis 0.
|
929 |
+
|
930 |
+
>>> x = np.array([0, 1, 2, 3, 4, 5])
|
931 |
+
>>> np.hsplit(x, 2)
|
932 |
+
[array([0, 1, 2]), array([3, 4, 5])]
|
933 |
+
|
934 |
+
"""
|
935 |
+
if _nx.ndim(ary) == 0:
|
936 |
+
raise ValueError('hsplit only works on arrays of 1 or more dimensions')
|
937 |
+
if ary.ndim > 1:
|
938 |
+
return split(ary, indices_or_sections, 1)
|
939 |
+
else:
|
940 |
+
return split(ary, indices_or_sections, 0)
|
941 |
+
|
942 |
+
|
943 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
944 |
+
def vsplit(ary, indices_or_sections):
|
945 |
+
"""
|
946 |
+
Split an array into multiple sub-arrays vertically (row-wise).
|
947 |
+
|
948 |
+
Please refer to the ``split`` documentation. ``vsplit`` is equivalent
|
949 |
+
to ``split`` with `axis=0` (default), the array is always split along the
|
950 |
+
first axis regardless of the array dimension.
|
951 |
+
|
952 |
+
See Also
|
953 |
+
--------
|
954 |
+
split : Split an array into multiple sub-arrays of equal size.
|
955 |
+
|
956 |
+
Examples
|
957 |
+
--------
|
958 |
+
>>> x = np.arange(16.0).reshape(4, 4)
|
959 |
+
>>> x
|
960 |
+
array([[ 0., 1., 2., 3.],
|
961 |
+
[ 4., 5., 6., 7.],
|
962 |
+
[ 8., 9., 10., 11.],
|
963 |
+
[12., 13., 14., 15.]])
|
964 |
+
>>> np.vsplit(x, 2)
|
965 |
+
[array([[0., 1., 2., 3.],
|
966 |
+
[4., 5., 6., 7.]]), array([[ 8., 9., 10., 11.],
|
967 |
+
[12., 13., 14., 15.]])]
|
968 |
+
>>> np.vsplit(x, np.array([3, 6]))
|
969 |
+
[array([[ 0., 1., 2., 3.],
|
970 |
+
[ 4., 5., 6., 7.],
|
971 |
+
[ 8., 9., 10., 11.]]), array([[12., 13., 14., 15.]]), array([], shape=(0, 4), dtype=float64)]
|
972 |
+
|
973 |
+
With a higher dimensional array the split is still along the first axis.
|
974 |
+
|
975 |
+
>>> x = np.arange(8.0).reshape(2, 2, 2)
|
976 |
+
>>> x
|
977 |
+
array([[[0., 1.],
|
978 |
+
[2., 3.]],
|
979 |
+
[[4., 5.],
|
980 |
+
[6., 7.]]])
|
981 |
+
>>> np.vsplit(x, 2)
|
982 |
+
[array([[[0., 1.],
|
983 |
+
[2., 3.]]]), array([[[4., 5.],
|
984 |
+
[6., 7.]]])]
|
985 |
+
|
986 |
+
"""
|
987 |
+
if _nx.ndim(ary) < 2:
|
988 |
+
raise ValueError('vsplit only works on arrays of 2 or more dimensions')
|
989 |
+
return split(ary, indices_or_sections, 0)
|
990 |
+
|
991 |
+
|
992 |
+
@array_function_dispatch(_hvdsplit_dispatcher)
|
993 |
+
def dsplit(ary, indices_or_sections):
|
994 |
+
"""
|
995 |
+
Split array into multiple sub-arrays along the 3rd axis (depth).
|
996 |
+
|
997 |
+
Please refer to the `split` documentation. `dsplit` is equivalent
|
998 |
+
to `split` with ``axis=2``, the array is always split along the third
|
999 |
+
axis provided the array dimension is greater than or equal to 3.
|
1000 |
+
|
1001 |
+
See Also
|
1002 |
+
--------
|
1003 |
+
split : Split an array into multiple sub-arrays of equal size.
|
1004 |
+
|
1005 |
+
Examples
|
1006 |
+
--------
|
1007 |
+
>>> x = np.arange(16.0).reshape(2, 2, 4)
|
1008 |
+
>>> x
|
1009 |
+
array([[[ 0., 1., 2., 3.],
|
1010 |
+
[ 4., 5., 6., 7.]],
|
1011 |
+
[[ 8., 9., 10., 11.],
|
1012 |
+
[12., 13., 14., 15.]]])
|
1013 |
+
>>> np.dsplit(x, 2)
|
1014 |
+
[array([[[ 0., 1.],
|
1015 |
+
[ 4., 5.]],
|
1016 |
+
[[ 8., 9.],
|
1017 |
+
[12., 13.]]]), array([[[ 2., 3.],
|
1018 |
+
[ 6., 7.]],
|
1019 |
+
[[10., 11.],
|
1020 |
+
[14., 15.]]])]
|
1021 |
+
>>> np.dsplit(x, np.array([3, 6]))
|
1022 |
+
[array([[[ 0., 1., 2.],
|
1023 |
+
[ 4., 5., 6.]],
|
1024 |
+
[[ 8., 9., 10.],
|
1025 |
+
[12., 13., 14.]]]),
|
1026 |
+
array([[[ 3.],
|
1027 |
+
[ 7.]],
|
1028 |
+
[[11.],
|
1029 |
+
[15.]]]),
|
1030 |
+
array([], shape=(2, 2, 0), dtype=float64)]
|
1031 |
+
"""
|
1032 |
+
if _nx.ndim(ary) < 3:
|
1033 |
+
raise ValueError('dsplit only works on arrays of 3 or more dimensions')
|
1034 |
+
return split(ary, indices_or_sections, 2)
|
1035 |
+
|
1036 |
+
|
1037 |
+
def get_array_prepare(*args):
|
1038 |
+
"""Find the wrapper for the array with the highest priority.
|
1039 |
+
|
1040 |
+
In case of ties, leftmost wins. If no wrapper is found, return None
|
1041 |
+
"""
|
1042 |
+
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
1043 |
+
x.__array_prepare__) for i, x in enumerate(args)
|
1044 |
+
if hasattr(x, '__array_prepare__'))
|
1045 |
+
if wrappers:
|
1046 |
+
return wrappers[-1][-1]
|
1047 |
+
return None
|
1048 |
+
|
1049 |
+
|
1050 |
+
def get_array_wrap(*args):
|
1051 |
+
"""Find the wrapper for the array with the highest priority.
|
1052 |
+
|
1053 |
+
In case of ties, leftmost wins. If no wrapper is found, return None
|
1054 |
+
"""
|
1055 |
+
wrappers = sorted((getattr(x, '__array_priority__', 0), -i,
|
1056 |
+
x.__array_wrap__) for i, x in enumerate(args)
|
1057 |
+
if hasattr(x, '__array_wrap__'))
|
1058 |
+
if wrappers:
|
1059 |
+
return wrappers[-1][-1]
|
1060 |
+
return None
|
1061 |
+
|
1062 |
+
|
1063 |
+
def _kron_dispatcher(a, b):
|
1064 |
+
return (a, b)
|
1065 |
+
|
1066 |
+
|
1067 |
+
@array_function_dispatch(_kron_dispatcher)
|
1068 |
+
def kron(a, b):
|
1069 |
+
"""
|
1070 |
+
Kronecker product of two arrays.
|
1071 |
+
|
1072 |
+
Computes the Kronecker product, a composite array made of blocks of the
|
1073 |
+
second array scaled by the first.
|
1074 |
+
|
1075 |
+
Parameters
|
1076 |
+
----------
|
1077 |
+
a, b : array_like
|
1078 |
+
|
1079 |
+
Returns
|
1080 |
+
-------
|
1081 |
+
out : ndarray
|
1082 |
+
|
1083 |
+
See Also
|
1084 |
+
--------
|
1085 |
+
outer : The outer product
|
1086 |
+
|
1087 |
+
Notes
|
1088 |
+
-----
|
1089 |
+
The function assumes that the number of dimensions of `a` and `b`
|
1090 |
+
are the same, if necessary prepending the smallest with ones.
|
1091 |
+
If ``a.shape = (r0,r1,..,rN)`` and ``b.shape = (s0,s1,...,sN)``,
|
1092 |
+
the Kronecker product has shape ``(r0*s0, r1*s1, ..., rN*SN)``.
|
1093 |
+
The elements are products of elements from `a` and `b`, organized
|
1094 |
+
explicitly by::
|
1095 |
+
|
1096 |
+
kron(a,b)[k0,k1,...,kN] = a[i0,i1,...,iN] * b[j0,j1,...,jN]
|
1097 |
+
|
1098 |
+
where::
|
1099 |
+
|
1100 |
+
kt = it * st + jt, t = 0,...,N
|
1101 |
+
|
1102 |
+
In the common 2-D case (N=1), the block structure can be visualized::
|
1103 |
+
|
1104 |
+
[[ a[0,0]*b, a[0,1]*b, ... , a[0,-1]*b ],
|
1105 |
+
[ ... ... ],
|
1106 |
+
[ a[-1,0]*b, a[-1,1]*b, ... , a[-1,-1]*b ]]
|
1107 |
+
|
1108 |
+
|
1109 |
+
Examples
|
1110 |
+
--------
|
1111 |
+
>>> np.kron([1,10,100], [5,6,7])
|
1112 |
+
array([ 5, 6, 7, ..., 500, 600, 700])
|
1113 |
+
>>> np.kron([5,6,7], [1,10,100])
|
1114 |
+
array([ 5, 50, 500, ..., 7, 70, 700])
|
1115 |
+
|
1116 |
+
>>> np.kron(np.eye(2), np.ones((2,2)))
|
1117 |
+
array([[1., 1., 0., 0.],
|
1118 |
+
[1., 1., 0., 0.],
|
1119 |
+
[0., 0., 1., 1.],
|
1120 |
+
[0., 0., 1., 1.]])
|
1121 |
+
|
1122 |
+
>>> a = np.arange(100).reshape((2,5,2,5))
|
1123 |
+
>>> b = np.arange(24).reshape((2,3,4))
|
1124 |
+
>>> c = np.kron(a,b)
|
1125 |
+
>>> c.shape
|
1126 |
+
(2, 10, 6, 20)
|
1127 |
+
>>> I = (1,3,0,2)
|
1128 |
+
>>> J = (0,2,1)
|
1129 |
+
>>> J1 = (0,) + J # extend to ndim=4
|
1130 |
+
>>> S1 = (1,) + b.shape
|
1131 |
+
>>> K = tuple(np.array(I) * np.array(S1) + np.array(J1))
|
1132 |
+
>>> c[K] == a[I]*b[J]
|
1133 |
+
True
|
1134 |
+
|
1135 |
+
"""
|
1136 |
+
# Working:
|
1137 |
+
# 1. Equalise the shapes by prepending smaller array with 1s
|
1138 |
+
# 2. Expand shapes of both the arrays by adding new axes at
|
1139 |
+
# odd positions for 1st array and even positions for 2nd
|
1140 |
+
# 3. Compute the product of the modified array
|
1141 |
+
# 4. The inner most array elements now contain the rows of
|
1142 |
+
# the Kronecker product
|
1143 |
+
# 5. Reshape the result to kron's shape, which is same as
|
1144 |
+
# product of shapes of the two arrays.
|
1145 |
+
b = asanyarray(b)
|
1146 |
+
a = array(a, copy=False, subok=True, ndmin=b.ndim)
|
1147 |
+
is_any_mat = isinstance(a, matrix) or isinstance(b, matrix)
|
1148 |
+
ndb, nda = b.ndim, a.ndim
|
1149 |
+
nd = max(ndb, nda)
|
1150 |
+
|
1151 |
+
if (nda == 0 or ndb == 0):
|
1152 |
+
return _nx.multiply(a, b)
|
1153 |
+
|
1154 |
+
as_ = a.shape
|
1155 |
+
bs = b.shape
|
1156 |
+
if not a.flags.contiguous:
|
1157 |
+
a = reshape(a, as_)
|
1158 |
+
if not b.flags.contiguous:
|
1159 |
+
b = reshape(b, bs)
|
1160 |
+
|
1161 |
+
# Equalise the shapes by prepending smaller one with 1s
|
1162 |
+
as_ = (1,)*max(0, ndb-nda) + as_
|
1163 |
+
bs = (1,)*max(0, nda-ndb) + bs
|
1164 |
+
|
1165 |
+
# Insert empty dimensions
|
1166 |
+
a_arr = expand_dims(a, axis=tuple(range(ndb-nda)))
|
1167 |
+
b_arr = expand_dims(b, axis=tuple(range(nda-ndb)))
|
1168 |
+
|
1169 |
+
# Compute the product
|
1170 |
+
a_arr = expand_dims(a_arr, axis=tuple(range(1, nd*2, 2)))
|
1171 |
+
b_arr = expand_dims(b_arr, axis=tuple(range(0, nd*2, 2)))
|
1172 |
+
# In case of `mat`, convert result to `array`
|
1173 |
+
result = _nx.multiply(a_arr, b_arr, subok=(not is_any_mat))
|
1174 |
+
|
1175 |
+
# Reshape back
|
1176 |
+
result = result.reshape(_nx.multiply(as_, bs))
|
1177 |
+
|
1178 |
+
return result if not is_any_mat else matrix(result, copy=False)
|
1179 |
+
|
1180 |
+
|
1181 |
+
def _tile_dispatcher(A, reps):
|
1182 |
+
return (A, reps)
|
1183 |
+
|
1184 |
+
|
1185 |
+
@array_function_dispatch(_tile_dispatcher)
|
1186 |
+
def tile(A, reps):
|
1187 |
+
"""
|
1188 |
+
Construct an array by repeating A the number of times given by reps.
|
1189 |
+
|
1190 |
+
If `reps` has length ``d``, the result will have dimension of
|
1191 |
+
``max(d, A.ndim)``.
|
1192 |
+
|
1193 |
+
If ``A.ndim < d``, `A` is promoted to be d-dimensional by prepending new
|
1194 |
+
axes. So a shape (3,) array is promoted to (1, 3) for 2-D replication,
|
1195 |
+
or shape (1, 1, 3) for 3-D replication. If this is not the desired
|
1196 |
+
behavior, promote `A` to d-dimensions manually before calling this
|
1197 |
+
function.
|
1198 |
+
|
1199 |
+
If ``A.ndim > d``, `reps` is promoted to `A`.ndim by pre-pending 1's to it.
|
1200 |
+
Thus for an `A` of shape (2, 3, 4, 5), a `reps` of (2, 2) is treated as
|
1201 |
+
(1, 1, 2, 2).
|
1202 |
+
|
1203 |
+
Note : Although tile may be used for broadcasting, it is strongly
|
1204 |
+
recommended to use numpy's broadcasting operations and functions.
|
1205 |
+
|
1206 |
+
Parameters
|
1207 |
+
----------
|
1208 |
+
A : array_like
|
1209 |
+
The input array.
|
1210 |
+
reps : array_like
|
1211 |
+
The number of repetitions of `A` along each axis.
|
1212 |
+
|
1213 |
+
Returns
|
1214 |
+
-------
|
1215 |
+
c : ndarray
|
1216 |
+
The tiled output array.
|
1217 |
+
|
1218 |
+
See Also
|
1219 |
+
--------
|
1220 |
+
repeat : Repeat elements of an array.
|
1221 |
+
broadcast_to : Broadcast an array to a new shape
|
1222 |
+
|
1223 |
+
Examples
|
1224 |
+
--------
|
1225 |
+
>>> a = np.array([0, 1, 2])
|
1226 |
+
>>> np.tile(a, 2)
|
1227 |
+
array([0, 1, 2, 0, 1, 2])
|
1228 |
+
>>> np.tile(a, (2, 2))
|
1229 |
+
array([[0, 1, 2, 0, 1, 2],
|
1230 |
+
[0, 1, 2, 0, 1, 2]])
|
1231 |
+
>>> np.tile(a, (2, 1, 2))
|
1232 |
+
array([[[0, 1, 2, 0, 1, 2]],
|
1233 |
+
[[0, 1, 2, 0, 1, 2]]])
|
1234 |
+
|
1235 |
+
>>> b = np.array([[1, 2], [3, 4]])
|
1236 |
+
>>> np.tile(b, 2)
|
1237 |
+
array([[1, 2, 1, 2],
|
1238 |
+
[3, 4, 3, 4]])
|
1239 |
+
>>> np.tile(b, (2, 1))
|
1240 |
+
array([[1, 2],
|
1241 |
+
[3, 4],
|
1242 |
+
[1, 2],
|
1243 |
+
[3, 4]])
|
1244 |
+
|
1245 |
+
>>> c = np.array([1,2,3,4])
|
1246 |
+
>>> np.tile(c,(4,1))
|
1247 |
+
array([[1, 2, 3, 4],
|
1248 |
+
[1, 2, 3, 4],
|
1249 |
+
[1, 2, 3, 4],
|
1250 |
+
[1, 2, 3, 4]])
|
1251 |
+
"""
|
1252 |
+
try:
|
1253 |
+
tup = tuple(reps)
|
1254 |
+
except TypeError:
|
1255 |
+
tup = (reps,)
|
1256 |
+
d = len(tup)
|
1257 |
+
if all(x == 1 for x in tup) and isinstance(A, _nx.ndarray):
|
1258 |
+
# Fixes the problem that the function does not make a copy if A is a
|
1259 |
+
# numpy array and the repetitions are 1 in all dimensions
|
1260 |
+
return _nx.array(A, copy=True, subok=True, ndmin=d)
|
1261 |
+
else:
|
1262 |
+
# Note that no copy of zero-sized arrays is made. However since they
|
1263 |
+
# have no data there is no risk of an inadvertent overwrite.
|
1264 |
+
c = _nx.array(A, copy=False, subok=True, ndmin=d)
|
1265 |
+
if (d < c.ndim):
|
1266 |
+
tup = (1,)*(c.ndim-d) + tup
|
1267 |
+
shape_out = tuple(s*t for s, t in zip(c.shape, tup))
|
1268 |
+
n = c.size
|
1269 |
+
if n > 0:
|
1270 |
+
for dim_in, nrep in zip(c.shape, tup):
|
1271 |
+
if nrep != 1:
|
1272 |
+
c = c.reshape(-1, n).repeat(nrep, 0)
|
1273 |
+
n //= dim_in
|
1274 |
+
return c.reshape(shape_out)
|
venv/lib/python3.10/site-packages/numpy/lib/utils.py
ADDED
@@ -0,0 +1,1211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import textwrap
|
4 |
+
import types
|
5 |
+
import re
|
6 |
+
import warnings
|
7 |
+
import functools
|
8 |
+
import platform
|
9 |
+
|
10 |
+
from .._utils import set_module
|
11 |
+
from numpy.core.numerictypes import issubclass_, issubsctype, issubdtype
|
12 |
+
from numpy.core import ndarray, ufunc, asarray
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
__all__ = [
|
16 |
+
'issubclass_', 'issubsctype', 'issubdtype', 'deprecate',
|
17 |
+
'deprecate_with_doc', 'get_include', 'info', 'source', 'who',
|
18 |
+
'lookfor', 'byte_bounds', 'safe_eval', 'show_runtime'
|
19 |
+
]
|
20 |
+
|
21 |
+
|
22 |
+
def show_runtime():
|
23 |
+
"""
|
24 |
+
Print information about various resources in the system
|
25 |
+
including available intrinsic support and BLAS/LAPACK library
|
26 |
+
in use
|
27 |
+
|
28 |
+
.. versionadded:: 1.24.0
|
29 |
+
|
30 |
+
See Also
|
31 |
+
--------
|
32 |
+
show_config : Show libraries in the system on which NumPy was built.
|
33 |
+
|
34 |
+
Notes
|
35 |
+
-----
|
36 |
+
1. Information is derived with the help of `threadpoolctl <https://pypi.org/project/threadpoolctl/>`_
|
37 |
+
library if available.
|
38 |
+
2. SIMD related information is derived from ``__cpu_features__``,
|
39 |
+
``__cpu_baseline__`` and ``__cpu_dispatch__``
|
40 |
+
|
41 |
+
"""
|
42 |
+
from numpy.core._multiarray_umath import (
|
43 |
+
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
44 |
+
)
|
45 |
+
from pprint import pprint
|
46 |
+
config_found = [{
|
47 |
+
"numpy_version": np.__version__,
|
48 |
+
"python": sys.version,
|
49 |
+
"uname": platform.uname(),
|
50 |
+
}]
|
51 |
+
features_found, features_not_found = [], []
|
52 |
+
for feature in __cpu_dispatch__:
|
53 |
+
if __cpu_features__[feature]:
|
54 |
+
features_found.append(feature)
|
55 |
+
else:
|
56 |
+
features_not_found.append(feature)
|
57 |
+
config_found.append({
|
58 |
+
"simd_extensions": {
|
59 |
+
"baseline": __cpu_baseline__,
|
60 |
+
"found": features_found,
|
61 |
+
"not_found": features_not_found
|
62 |
+
}
|
63 |
+
})
|
64 |
+
try:
|
65 |
+
from threadpoolctl import threadpool_info
|
66 |
+
config_found.extend(threadpool_info())
|
67 |
+
except ImportError:
|
68 |
+
print("WARNING: `threadpoolctl` not found in system!"
|
69 |
+
" Install it by `pip install threadpoolctl`."
|
70 |
+
" Once installed, try `np.show_runtime` again"
|
71 |
+
" for more detailed build information")
|
72 |
+
pprint(config_found)
|
73 |
+
|
74 |
+
|
75 |
+
def get_include():
|
76 |
+
"""
|
77 |
+
Return the directory that contains the NumPy \\*.h header files.
|
78 |
+
|
79 |
+
Extension modules that need to compile against NumPy should use this
|
80 |
+
function to locate the appropriate include directory.
|
81 |
+
|
82 |
+
Notes
|
83 |
+
-----
|
84 |
+
When using ``distutils``, for example in ``setup.py``::
|
85 |
+
|
86 |
+
import numpy as np
|
87 |
+
...
|
88 |
+
Extension('extension_name', ...
|
89 |
+
include_dirs=[np.get_include()])
|
90 |
+
...
|
91 |
+
|
92 |
+
"""
|
93 |
+
import numpy
|
94 |
+
if numpy.show_config is None:
|
95 |
+
# running from numpy source directory
|
96 |
+
d = os.path.join(os.path.dirname(numpy.__file__), 'core', 'include')
|
97 |
+
else:
|
98 |
+
# using installed numpy core headers
|
99 |
+
import numpy.core as core
|
100 |
+
d = os.path.join(os.path.dirname(core.__file__), 'include')
|
101 |
+
return d
|
102 |
+
|
103 |
+
|
104 |
+
class _Deprecate:
|
105 |
+
"""
|
106 |
+
Decorator class to deprecate old functions.
|
107 |
+
|
108 |
+
Refer to `deprecate` for details.
|
109 |
+
|
110 |
+
See Also
|
111 |
+
--------
|
112 |
+
deprecate
|
113 |
+
|
114 |
+
"""
|
115 |
+
|
116 |
+
def __init__(self, old_name=None, new_name=None, message=None):
|
117 |
+
self.old_name = old_name
|
118 |
+
self.new_name = new_name
|
119 |
+
self.message = message
|
120 |
+
|
121 |
+
def __call__(self, func, *args, **kwargs):
|
122 |
+
"""
|
123 |
+
Decorator call. Refer to ``decorate``.
|
124 |
+
|
125 |
+
"""
|
126 |
+
old_name = self.old_name
|
127 |
+
new_name = self.new_name
|
128 |
+
message = self.message
|
129 |
+
|
130 |
+
if old_name is None:
|
131 |
+
old_name = func.__name__
|
132 |
+
if new_name is None:
|
133 |
+
depdoc = "`%s` is deprecated!" % old_name
|
134 |
+
else:
|
135 |
+
depdoc = "`%s` is deprecated, use `%s` instead!" % \
|
136 |
+
(old_name, new_name)
|
137 |
+
|
138 |
+
if message is not None:
|
139 |
+
depdoc += "\n" + message
|
140 |
+
|
141 |
+
@functools.wraps(func)
|
142 |
+
def newfunc(*args, **kwds):
|
143 |
+
warnings.warn(depdoc, DeprecationWarning, stacklevel=2)
|
144 |
+
return func(*args, **kwds)
|
145 |
+
|
146 |
+
newfunc.__name__ = old_name
|
147 |
+
doc = func.__doc__
|
148 |
+
if doc is None:
|
149 |
+
doc = depdoc
|
150 |
+
else:
|
151 |
+
lines = doc.expandtabs().split('\n')
|
152 |
+
indent = _get_indent(lines[1:])
|
153 |
+
if lines[0].lstrip():
|
154 |
+
# Indent the original first line to let inspect.cleandoc()
|
155 |
+
# dedent the docstring despite the deprecation notice.
|
156 |
+
doc = indent * ' ' + doc
|
157 |
+
else:
|
158 |
+
# Remove the same leading blank lines as cleandoc() would.
|
159 |
+
skip = len(lines[0]) + 1
|
160 |
+
for line in lines[1:]:
|
161 |
+
if len(line) > indent:
|
162 |
+
break
|
163 |
+
skip += len(line) + 1
|
164 |
+
doc = doc[skip:]
|
165 |
+
depdoc = textwrap.indent(depdoc, ' ' * indent)
|
166 |
+
doc = '\n\n'.join([depdoc, doc])
|
167 |
+
newfunc.__doc__ = doc
|
168 |
+
|
169 |
+
return newfunc
|
170 |
+
|
171 |
+
|
172 |
+
def _get_indent(lines):
|
173 |
+
"""
|
174 |
+
Determines the leading whitespace that could be removed from all the lines.
|
175 |
+
"""
|
176 |
+
indent = sys.maxsize
|
177 |
+
for line in lines:
|
178 |
+
content = len(line.lstrip())
|
179 |
+
if content:
|
180 |
+
indent = min(indent, len(line) - content)
|
181 |
+
if indent == sys.maxsize:
|
182 |
+
indent = 0
|
183 |
+
return indent
|
184 |
+
|
185 |
+
|
186 |
+
def deprecate(*args, **kwargs):
|
187 |
+
"""
|
188 |
+
Issues a DeprecationWarning, adds warning to `old_name`'s
|
189 |
+
docstring, rebinds ``old_name.__name__`` and returns the new
|
190 |
+
function object.
|
191 |
+
|
192 |
+
This function may also be used as a decorator.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
func : function
|
197 |
+
The function to be deprecated.
|
198 |
+
old_name : str, optional
|
199 |
+
The name of the function to be deprecated. Default is None, in
|
200 |
+
which case the name of `func` is used.
|
201 |
+
new_name : str, optional
|
202 |
+
The new name for the function. Default is None, in which case the
|
203 |
+
deprecation message is that `old_name` is deprecated. If given, the
|
204 |
+
deprecation message is that `old_name` is deprecated and `new_name`
|
205 |
+
should be used instead.
|
206 |
+
message : str, optional
|
207 |
+
Additional explanation of the deprecation. Displayed in the
|
208 |
+
docstring after the warning.
|
209 |
+
|
210 |
+
Returns
|
211 |
+
-------
|
212 |
+
old_func : function
|
213 |
+
The deprecated function.
|
214 |
+
|
215 |
+
Examples
|
216 |
+
--------
|
217 |
+
Note that ``olduint`` returns a value after printing Deprecation
|
218 |
+
Warning:
|
219 |
+
|
220 |
+
>>> olduint = np.deprecate(np.uint)
|
221 |
+
DeprecationWarning: `uint64` is deprecated! # may vary
|
222 |
+
>>> olduint(6)
|
223 |
+
6
|
224 |
+
|
225 |
+
"""
|
226 |
+
# Deprecate may be run as a function or as a decorator
|
227 |
+
# If run as a function, we initialise the decorator class
|
228 |
+
# and execute its __call__ method.
|
229 |
+
|
230 |
+
if args:
|
231 |
+
fn = args[0]
|
232 |
+
args = args[1:]
|
233 |
+
|
234 |
+
return _Deprecate(*args, **kwargs)(fn)
|
235 |
+
else:
|
236 |
+
return _Deprecate(*args, **kwargs)
|
237 |
+
|
238 |
+
|
239 |
+
def deprecate_with_doc(msg):
|
240 |
+
"""
|
241 |
+
Deprecates a function and includes the deprecation in its docstring.
|
242 |
+
|
243 |
+
This function is used as a decorator. It returns an object that can be
|
244 |
+
used to issue a DeprecationWarning, by passing the to-be decorated
|
245 |
+
function as argument, this adds warning to the to-be decorated function's
|
246 |
+
docstring and returns the new function object.
|
247 |
+
|
248 |
+
See Also
|
249 |
+
--------
|
250 |
+
deprecate : Decorate a function such that it issues a `DeprecationWarning`
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
msg : str
|
255 |
+
Additional explanation of the deprecation. Displayed in the
|
256 |
+
docstring after the warning.
|
257 |
+
|
258 |
+
Returns
|
259 |
+
-------
|
260 |
+
obj : object
|
261 |
+
|
262 |
+
"""
|
263 |
+
return _Deprecate(message=msg)
|
264 |
+
|
265 |
+
|
266 |
+
#--------------------------------------------
|
267 |
+
# Determine if two arrays can share memory
|
268 |
+
#--------------------------------------------
|
269 |
+
|
270 |
+
def byte_bounds(a):
|
271 |
+
"""
|
272 |
+
Returns pointers to the end-points of an array.
|
273 |
+
|
274 |
+
Parameters
|
275 |
+
----------
|
276 |
+
a : ndarray
|
277 |
+
Input array. It must conform to the Python-side of the array
|
278 |
+
interface.
|
279 |
+
|
280 |
+
Returns
|
281 |
+
-------
|
282 |
+
(low, high) : tuple of 2 integers
|
283 |
+
The first integer is the first byte of the array, the second
|
284 |
+
integer is just past the last byte of the array. If `a` is not
|
285 |
+
contiguous it will not use every byte between the (`low`, `high`)
|
286 |
+
values.
|
287 |
+
|
288 |
+
Examples
|
289 |
+
--------
|
290 |
+
>>> I = np.eye(2, dtype='f'); I.dtype
|
291 |
+
dtype('float32')
|
292 |
+
>>> low, high = np.byte_bounds(I)
|
293 |
+
>>> high - low == I.size*I.itemsize
|
294 |
+
True
|
295 |
+
>>> I = np.eye(2); I.dtype
|
296 |
+
dtype('float64')
|
297 |
+
>>> low, high = np.byte_bounds(I)
|
298 |
+
>>> high - low == I.size*I.itemsize
|
299 |
+
True
|
300 |
+
|
301 |
+
"""
|
302 |
+
ai = a.__array_interface__
|
303 |
+
a_data = ai['data'][0]
|
304 |
+
astrides = ai['strides']
|
305 |
+
ashape = ai['shape']
|
306 |
+
bytes_a = asarray(a).dtype.itemsize
|
307 |
+
|
308 |
+
a_low = a_high = a_data
|
309 |
+
if astrides is None:
|
310 |
+
# contiguous case
|
311 |
+
a_high += a.size * bytes_a
|
312 |
+
else:
|
313 |
+
for shape, stride in zip(ashape, astrides):
|
314 |
+
if stride < 0:
|
315 |
+
a_low += (shape-1)*stride
|
316 |
+
else:
|
317 |
+
a_high += (shape-1)*stride
|
318 |
+
a_high += bytes_a
|
319 |
+
return a_low, a_high
|
320 |
+
|
321 |
+
|
322 |
+
#-----------------------------------------------------------------------------
|
323 |
+
# Function for output and information on the variables used.
|
324 |
+
#-----------------------------------------------------------------------------
|
325 |
+
|
326 |
+
|
327 |
+
def who(vardict=None):
|
328 |
+
"""
|
329 |
+
Print the NumPy arrays in the given dictionary.
|
330 |
+
|
331 |
+
If there is no dictionary passed in or `vardict` is None then returns
|
332 |
+
NumPy arrays in the globals() dictionary (all NumPy arrays in the
|
333 |
+
namespace).
|
334 |
+
|
335 |
+
Parameters
|
336 |
+
----------
|
337 |
+
vardict : dict, optional
|
338 |
+
A dictionary possibly containing ndarrays. Default is globals().
|
339 |
+
|
340 |
+
Returns
|
341 |
+
-------
|
342 |
+
out : None
|
343 |
+
Returns 'None'.
|
344 |
+
|
345 |
+
Notes
|
346 |
+
-----
|
347 |
+
Prints out the name, shape, bytes and type of all of the ndarrays
|
348 |
+
present in `vardict`.
|
349 |
+
|
350 |
+
Examples
|
351 |
+
--------
|
352 |
+
>>> a = np.arange(10)
|
353 |
+
>>> b = np.ones(20)
|
354 |
+
>>> np.who()
|
355 |
+
Name Shape Bytes Type
|
356 |
+
===========================================================
|
357 |
+
a 10 80 int64
|
358 |
+
b 20 160 float64
|
359 |
+
Upper bound on total bytes = 240
|
360 |
+
|
361 |
+
>>> d = {'x': np.arange(2.0), 'y': np.arange(3.0), 'txt': 'Some str',
|
362 |
+
... 'idx':5}
|
363 |
+
>>> np.who(d)
|
364 |
+
Name Shape Bytes Type
|
365 |
+
===========================================================
|
366 |
+
x 2 16 float64
|
367 |
+
y 3 24 float64
|
368 |
+
Upper bound on total bytes = 40
|
369 |
+
|
370 |
+
"""
|
371 |
+
if vardict is None:
|
372 |
+
frame = sys._getframe().f_back
|
373 |
+
vardict = frame.f_globals
|
374 |
+
sta = []
|
375 |
+
cache = {}
|
376 |
+
for name in vardict.keys():
|
377 |
+
if isinstance(vardict[name], ndarray):
|
378 |
+
var = vardict[name]
|
379 |
+
idv = id(var)
|
380 |
+
if idv in cache.keys():
|
381 |
+
namestr = name + " (%s)" % cache[idv]
|
382 |
+
original = 0
|
383 |
+
else:
|
384 |
+
cache[idv] = name
|
385 |
+
namestr = name
|
386 |
+
original = 1
|
387 |
+
shapestr = " x ".join(map(str, var.shape))
|
388 |
+
bytestr = str(var.nbytes)
|
389 |
+
sta.append([namestr, shapestr, bytestr, var.dtype.name,
|
390 |
+
original])
|
391 |
+
|
392 |
+
maxname = 0
|
393 |
+
maxshape = 0
|
394 |
+
maxbyte = 0
|
395 |
+
totalbytes = 0
|
396 |
+
for val in sta:
|
397 |
+
if maxname < len(val[0]):
|
398 |
+
maxname = len(val[0])
|
399 |
+
if maxshape < len(val[1]):
|
400 |
+
maxshape = len(val[1])
|
401 |
+
if maxbyte < len(val[2]):
|
402 |
+
maxbyte = len(val[2])
|
403 |
+
if val[4]:
|
404 |
+
totalbytes += int(val[2])
|
405 |
+
|
406 |
+
if len(sta) > 0:
|
407 |
+
sp1 = max(10, maxname)
|
408 |
+
sp2 = max(10, maxshape)
|
409 |
+
sp3 = max(10, maxbyte)
|
410 |
+
prval = "Name %s Shape %s Bytes %s Type" % (sp1*' ', sp2*' ', sp3*' ')
|
411 |
+
print(prval + "\n" + "="*(len(prval)+5) + "\n")
|
412 |
+
|
413 |
+
for val in sta:
|
414 |
+
print("%s %s %s %s %s %s %s" % (val[0], ' '*(sp1-len(val[0])+4),
|
415 |
+
val[1], ' '*(sp2-len(val[1])+5),
|
416 |
+
val[2], ' '*(sp3-len(val[2])+5),
|
417 |
+
val[3]))
|
418 |
+
print("\nUpper bound on total bytes = %d" % totalbytes)
|
419 |
+
return
|
420 |
+
|
421 |
+
#-----------------------------------------------------------------------------
|
422 |
+
|
423 |
+
|
424 |
+
# NOTE: pydoc defines a help function which works similarly to this
|
425 |
+
# except it uses a pager to take over the screen.
|
426 |
+
|
427 |
+
# combine name and arguments and split to multiple lines of width
|
428 |
+
# characters. End lines on a comma and begin argument list indented with
|
429 |
+
# the rest of the arguments.
|
430 |
+
def _split_line(name, arguments, width):
|
431 |
+
firstwidth = len(name)
|
432 |
+
k = firstwidth
|
433 |
+
newstr = name
|
434 |
+
sepstr = ", "
|
435 |
+
arglist = arguments.split(sepstr)
|
436 |
+
for argument in arglist:
|
437 |
+
if k == firstwidth:
|
438 |
+
addstr = ""
|
439 |
+
else:
|
440 |
+
addstr = sepstr
|
441 |
+
k = k + len(argument) + len(addstr)
|
442 |
+
if k > width:
|
443 |
+
k = firstwidth + 1 + len(argument)
|
444 |
+
newstr = newstr + ",\n" + " "*(firstwidth+2) + argument
|
445 |
+
else:
|
446 |
+
newstr = newstr + addstr + argument
|
447 |
+
return newstr
|
448 |
+
|
449 |
+
_namedict = None
|
450 |
+
_dictlist = None
|
451 |
+
|
452 |
+
# Traverse all module directories underneath globals
|
453 |
+
# to see if something is defined
|
454 |
+
def _makenamedict(module='numpy'):
|
455 |
+
module = __import__(module, globals(), locals(), [])
|
456 |
+
thedict = {module.__name__:module.__dict__}
|
457 |
+
dictlist = [module.__name__]
|
458 |
+
totraverse = [module.__dict__]
|
459 |
+
while True:
|
460 |
+
if len(totraverse) == 0:
|
461 |
+
break
|
462 |
+
thisdict = totraverse.pop(0)
|
463 |
+
for x in thisdict.keys():
|
464 |
+
if isinstance(thisdict[x], types.ModuleType):
|
465 |
+
modname = thisdict[x].__name__
|
466 |
+
if modname not in dictlist:
|
467 |
+
moddict = thisdict[x].__dict__
|
468 |
+
dictlist.append(modname)
|
469 |
+
totraverse.append(moddict)
|
470 |
+
thedict[modname] = moddict
|
471 |
+
return thedict, dictlist
|
472 |
+
|
473 |
+
|
474 |
+
def _info(obj, output=None):
|
475 |
+
"""Provide information about ndarray obj.
|
476 |
+
|
477 |
+
Parameters
|
478 |
+
----------
|
479 |
+
obj : ndarray
|
480 |
+
Must be ndarray, not checked.
|
481 |
+
output
|
482 |
+
Where printed output goes.
|
483 |
+
|
484 |
+
Notes
|
485 |
+
-----
|
486 |
+
Copied over from the numarray module prior to its removal.
|
487 |
+
Adapted somewhat as only numpy is an option now.
|
488 |
+
|
489 |
+
Called by info.
|
490 |
+
|
491 |
+
"""
|
492 |
+
extra = ""
|
493 |
+
tic = ""
|
494 |
+
bp = lambda x: x
|
495 |
+
cls = getattr(obj, '__class__', type(obj))
|
496 |
+
nm = getattr(cls, '__name__', cls)
|
497 |
+
strides = obj.strides
|
498 |
+
endian = obj.dtype.byteorder
|
499 |
+
|
500 |
+
if output is None:
|
501 |
+
output = sys.stdout
|
502 |
+
|
503 |
+
print("class: ", nm, file=output)
|
504 |
+
print("shape: ", obj.shape, file=output)
|
505 |
+
print("strides: ", strides, file=output)
|
506 |
+
print("itemsize: ", obj.itemsize, file=output)
|
507 |
+
print("aligned: ", bp(obj.flags.aligned), file=output)
|
508 |
+
print("contiguous: ", bp(obj.flags.contiguous), file=output)
|
509 |
+
print("fortran: ", obj.flags.fortran, file=output)
|
510 |
+
print(
|
511 |
+
"data pointer: %s%s" % (hex(obj.ctypes._as_parameter_.value), extra),
|
512 |
+
file=output
|
513 |
+
)
|
514 |
+
print("byteorder: ", end=' ', file=output)
|
515 |
+
if endian in ['|', '=']:
|
516 |
+
print("%s%s%s" % (tic, sys.byteorder, tic), file=output)
|
517 |
+
byteswap = False
|
518 |
+
elif endian == '>':
|
519 |
+
print("%sbig%s" % (tic, tic), file=output)
|
520 |
+
byteswap = sys.byteorder != "big"
|
521 |
+
else:
|
522 |
+
print("%slittle%s" % (tic, tic), file=output)
|
523 |
+
byteswap = sys.byteorder != "little"
|
524 |
+
print("byteswap: ", bp(byteswap), file=output)
|
525 |
+
print("type: %s" % obj.dtype, file=output)
|
526 |
+
|
527 |
+
|
528 |
+
@set_module('numpy')
|
529 |
+
def info(object=None, maxwidth=76, output=None, toplevel='numpy'):
|
530 |
+
"""
|
531 |
+
Get help information for an array, function, class, or module.
|
532 |
+
|
533 |
+
Parameters
|
534 |
+
----------
|
535 |
+
object : object or str, optional
|
536 |
+
Input object or name to get information about. If `object` is
|
537 |
+
an `ndarray` instance, information about the array is printed.
|
538 |
+
If `object` is a numpy object, its docstring is given. If it is
|
539 |
+
a string, available modules are searched for matching objects.
|
540 |
+
If None, information about `info` itself is returned.
|
541 |
+
maxwidth : int, optional
|
542 |
+
Printing width.
|
543 |
+
output : file like object, optional
|
544 |
+
File like object that the output is written to, default is
|
545 |
+
``None``, in which case ``sys.stdout`` will be used.
|
546 |
+
The object has to be opened in 'w' or 'a' mode.
|
547 |
+
toplevel : str, optional
|
548 |
+
Start search at this level.
|
549 |
+
|
550 |
+
See Also
|
551 |
+
--------
|
552 |
+
source, lookfor
|
553 |
+
|
554 |
+
Notes
|
555 |
+
-----
|
556 |
+
When used interactively with an object, ``np.info(obj)`` is equivalent
|
557 |
+
to ``help(obj)`` on the Python prompt or ``obj?`` on the IPython
|
558 |
+
prompt.
|
559 |
+
|
560 |
+
Examples
|
561 |
+
--------
|
562 |
+
>>> np.info(np.polyval) # doctest: +SKIP
|
563 |
+
polyval(p, x)
|
564 |
+
Evaluate the polynomial p at x.
|
565 |
+
...
|
566 |
+
|
567 |
+
When using a string for `object` it is possible to get multiple results.
|
568 |
+
|
569 |
+
>>> np.info('fft') # doctest: +SKIP
|
570 |
+
*** Found in numpy ***
|
571 |
+
Core FFT routines
|
572 |
+
...
|
573 |
+
*** Found in numpy.fft ***
|
574 |
+
fft(a, n=None, axis=-1)
|
575 |
+
...
|
576 |
+
*** Repeat reference found in numpy.fft.fftpack ***
|
577 |
+
*** Total of 3 references found. ***
|
578 |
+
|
579 |
+
When the argument is an array, information about the array is printed.
|
580 |
+
|
581 |
+
>>> a = np.array([[1 + 2j, 3, -4], [-5j, 6, 0]], dtype=np.complex64)
|
582 |
+
>>> np.info(a)
|
583 |
+
class: ndarray
|
584 |
+
shape: (2, 3)
|
585 |
+
strides: (24, 8)
|
586 |
+
itemsize: 8
|
587 |
+
aligned: True
|
588 |
+
contiguous: True
|
589 |
+
fortran: False
|
590 |
+
data pointer: 0x562b6e0d2860 # may vary
|
591 |
+
byteorder: little
|
592 |
+
byteswap: False
|
593 |
+
type: complex64
|
594 |
+
|
595 |
+
"""
|
596 |
+
global _namedict, _dictlist
|
597 |
+
# Local import to speed up numpy's import time.
|
598 |
+
import pydoc
|
599 |
+
import inspect
|
600 |
+
|
601 |
+
if (hasattr(object, '_ppimport_importer') or
|
602 |
+
hasattr(object, '_ppimport_module')):
|
603 |
+
object = object._ppimport_module
|
604 |
+
elif hasattr(object, '_ppimport_attr'):
|
605 |
+
object = object._ppimport_attr
|
606 |
+
|
607 |
+
if output is None:
|
608 |
+
output = sys.stdout
|
609 |
+
|
610 |
+
if object is None:
|
611 |
+
info(info)
|
612 |
+
elif isinstance(object, ndarray):
|
613 |
+
_info(object, output=output)
|
614 |
+
elif isinstance(object, str):
|
615 |
+
if _namedict is None:
|
616 |
+
_namedict, _dictlist = _makenamedict(toplevel)
|
617 |
+
numfound = 0
|
618 |
+
objlist = []
|
619 |
+
for namestr in _dictlist:
|
620 |
+
try:
|
621 |
+
obj = _namedict[namestr][object]
|
622 |
+
if id(obj) in objlist:
|
623 |
+
print("\n "
|
624 |
+
"*** Repeat reference found in %s *** " % namestr,
|
625 |
+
file=output
|
626 |
+
)
|
627 |
+
else:
|
628 |
+
objlist.append(id(obj))
|
629 |
+
print(" *** Found in %s ***" % namestr, file=output)
|
630 |
+
info(obj)
|
631 |
+
print("-"*maxwidth, file=output)
|
632 |
+
numfound += 1
|
633 |
+
except KeyError:
|
634 |
+
pass
|
635 |
+
if numfound == 0:
|
636 |
+
print("Help for %s not found." % object, file=output)
|
637 |
+
else:
|
638 |
+
print("\n "
|
639 |
+
"*** Total of %d references found. ***" % numfound,
|
640 |
+
file=output
|
641 |
+
)
|
642 |
+
|
643 |
+
elif inspect.isfunction(object) or inspect.ismethod(object):
|
644 |
+
name = object.__name__
|
645 |
+
try:
|
646 |
+
arguments = str(inspect.signature(object))
|
647 |
+
except Exception:
|
648 |
+
arguments = "()"
|
649 |
+
|
650 |
+
if len(name+arguments) > maxwidth:
|
651 |
+
argstr = _split_line(name, arguments, maxwidth)
|
652 |
+
else:
|
653 |
+
argstr = name + arguments
|
654 |
+
|
655 |
+
print(" " + argstr + "\n", file=output)
|
656 |
+
print(inspect.getdoc(object), file=output)
|
657 |
+
|
658 |
+
elif inspect.isclass(object):
|
659 |
+
name = object.__name__
|
660 |
+
try:
|
661 |
+
arguments = str(inspect.signature(object))
|
662 |
+
except Exception:
|
663 |
+
arguments = "()"
|
664 |
+
|
665 |
+
if len(name+arguments) > maxwidth:
|
666 |
+
argstr = _split_line(name, arguments, maxwidth)
|
667 |
+
else:
|
668 |
+
argstr = name + arguments
|
669 |
+
|
670 |
+
print(" " + argstr + "\n", file=output)
|
671 |
+
doc1 = inspect.getdoc(object)
|
672 |
+
if doc1 is None:
|
673 |
+
if hasattr(object, '__init__'):
|
674 |
+
print(inspect.getdoc(object.__init__), file=output)
|
675 |
+
else:
|
676 |
+
print(inspect.getdoc(object), file=output)
|
677 |
+
|
678 |
+
methods = pydoc.allmethods(object)
|
679 |
+
|
680 |
+
public_methods = [meth for meth in methods if meth[0] != '_']
|
681 |
+
if public_methods:
|
682 |
+
print("\n\nMethods:\n", file=output)
|
683 |
+
for meth in public_methods:
|
684 |
+
thisobj = getattr(object, meth, None)
|
685 |
+
if thisobj is not None:
|
686 |
+
methstr, other = pydoc.splitdoc(
|
687 |
+
inspect.getdoc(thisobj) or "None"
|
688 |
+
)
|
689 |
+
print(" %s -- %s" % (meth, methstr), file=output)
|
690 |
+
|
691 |
+
elif hasattr(object, '__doc__'):
|
692 |
+
print(inspect.getdoc(object), file=output)
|
693 |
+
|
694 |
+
|
695 |
+
@set_module('numpy')
|
696 |
+
def source(object, output=sys.stdout):
|
697 |
+
"""
|
698 |
+
Print or write to a file the source code for a NumPy object.
|
699 |
+
|
700 |
+
The source code is only returned for objects written in Python. Many
|
701 |
+
functions and classes are defined in C and will therefore not return
|
702 |
+
useful information.
|
703 |
+
|
704 |
+
Parameters
|
705 |
+
----------
|
706 |
+
object : numpy object
|
707 |
+
Input object. This can be any object (function, class, module,
|
708 |
+
...).
|
709 |
+
output : file object, optional
|
710 |
+
If `output` not supplied then source code is printed to screen
|
711 |
+
(sys.stdout). File object must be created with either write 'w' or
|
712 |
+
append 'a' modes.
|
713 |
+
|
714 |
+
See Also
|
715 |
+
--------
|
716 |
+
lookfor, info
|
717 |
+
|
718 |
+
Examples
|
719 |
+
--------
|
720 |
+
>>> np.source(np.interp) #doctest: +SKIP
|
721 |
+
In file: /usr/lib/python2.6/dist-packages/numpy/lib/function_base.py
|
722 |
+
def interp(x, xp, fp, left=None, right=None):
|
723 |
+
\"\"\".... (full docstring printed)\"\"\"
|
724 |
+
if isinstance(x, (float, int, number)):
|
725 |
+
return compiled_interp([x], xp, fp, left, right).item()
|
726 |
+
else:
|
727 |
+
return compiled_interp(x, xp, fp, left, right)
|
728 |
+
|
729 |
+
The source code is only returned for objects written in Python.
|
730 |
+
|
731 |
+
>>> np.source(np.array) #doctest: +SKIP
|
732 |
+
Not available for this object.
|
733 |
+
|
734 |
+
"""
|
735 |
+
# Local import to speed up numpy's import time.
|
736 |
+
import inspect
|
737 |
+
try:
|
738 |
+
print("In file: %s\n" % inspect.getsourcefile(object), file=output)
|
739 |
+
print(inspect.getsource(object), file=output)
|
740 |
+
except Exception:
|
741 |
+
print("Not available for this object.", file=output)
|
742 |
+
|
743 |
+
|
744 |
+
# Cache for lookfor: {id(module): {name: (docstring, kind, index), ...}...}
|
745 |
+
# where kind: "func", "class", "module", "object"
|
746 |
+
# and index: index in breadth-first namespace traversal
|
747 |
+
_lookfor_caches = {}
|
748 |
+
|
749 |
+
# regexp whose match indicates that the string may contain a function
|
750 |
+
# signature
|
751 |
+
_function_signature_re = re.compile(r"[a-z0-9_]+\(.*[,=].*\)", re.I)
|
752 |
+
|
753 |
+
|
754 |
+
@set_module('numpy')
|
755 |
+
def lookfor(what, module=None, import_modules=True, regenerate=False,
|
756 |
+
output=None):
|
757 |
+
"""
|
758 |
+
Do a keyword search on docstrings.
|
759 |
+
|
760 |
+
A list of objects that matched the search is displayed,
|
761 |
+
sorted by relevance. All given keywords need to be found in the
|
762 |
+
docstring for it to be returned as a result, but the order does
|
763 |
+
not matter.
|
764 |
+
|
765 |
+
Parameters
|
766 |
+
----------
|
767 |
+
what : str
|
768 |
+
String containing words to look for.
|
769 |
+
module : str or list, optional
|
770 |
+
Name of module(s) whose docstrings to go through.
|
771 |
+
import_modules : bool, optional
|
772 |
+
Whether to import sub-modules in packages. Default is True.
|
773 |
+
regenerate : bool, optional
|
774 |
+
Whether to re-generate the docstring cache. Default is False.
|
775 |
+
output : file-like, optional
|
776 |
+
File-like object to write the output to. If omitted, use a pager.
|
777 |
+
|
778 |
+
See Also
|
779 |
+
--------
|
780 |
+
source, info
|
781 |
+
|
782 |
+
Notes
|
783 |
+
-----
|
784 |
+
Relevance is determined only roughly, by checking if the keywords occur
|
785 |
+
in the function name, at the start of a docstring, etc.
|
786 |
+
|
787 |
+
Examples
|
788 |
+
--------
|
789 |
+
>>> np.lookfor('binary representation') # doctest: +SKIP
|
790 |
+
Search results for 'binary representation'
|
791 |
+
------------------------------------------
|
792 |
+
numpy.binary_repr
|
793 |
+
Return the binary representation of the input number as a string.
|
794 |
+
numpy.core.setup_common.long_double_representation
|
795 |
+
Given a binary dump as given by GNU od -b, look for long double
|
796 |
+
numpy.base_repr
|
797 |
+
Return a string representation of a number in the given base system.
|
798 |
+
...
|
799 |
+
|
800 |
+
"""
|
801 |
+
import pydoc
|
802 |
+
|
803 |
+
# Cache
|
804 |
+
cache = _lookfor_generate_cache(module, import_modules, regenerate)
|
805 |
+
|
806 |
+
# Search
|
807 |
+
# XXX: maybe using a real stemming search engine would be better?
|
808 |
+
found = []
|
809 |
+
whats = str(what).lower().split()
|
810 |
+
if not whats:
|
811 |
+
return
|
812 |
+
|
813 |
+
for name, (docstring, kind, index) in cache.items():
|
814 |
+
if kind in ('module', 'object'):
|
815 |
+
# don't show modules or objects
|
816 |
+
continue
|
817 |
+
doc = docstring.lower()
|
818 |
+
if all(w in doc for w in whats):
|
819 |
+
found.append(name)
|
820 |
+
|
821 |
+
# Relevance sort
|
822 |
+
# XXX: this is full Harrison-Stetson heuristics now,
|
823 |
+
# XXX: it probably could be improved
|
824 |
+
|
825 |
+
kind_relevance = {'func': 1000, 'class': 1000,
|
826 |
+
'module': -1000, 'object': -1000}
|
827 |
+
|
828 |
+
def relevance(name, docstr, kind, index):
|
829 |
+
r = 0
|
830 |
+
# do the keywords occur within the start of the docstring?
|
831 |
+
first_doc = "\n".join(docstr.lower().strip().split("\n")[:3])
|
832 |
+
r += sum([200 for w in whats if w in first_doc])
|
833 |
+
# do the keywords occur in the function name?
|
834 |
+
r += sum([30 for w in whats if w in name])
|
835 |
+
# is the full name long?
|
836 |
+
r += -len(name) * 5
|
837 |
+
# is the object of bad type?
|
838 |
+
r += kind_relevance.get(kind, -1000)
|
839 |
+
# is the object deep in namespace hierarchy?
|
840 |
+
r += -name.count('.') * 10
|
841 |
+
r += max(-index / 100, -100)
|
842 |
+
return r
|
843 |
+
|
844 |
+
def relevance_value(a):
|
845 |
+
return relevance(a, *cache[a])
|
846 |
+
found.sort(key=relevance_value)
|
847 |
+
|
848 |
+
# Pretty-print
|
849 |
+
s = "Search results for '%s'" % (' '.join(whats))
|
850 |
+
help_text = [s, "-"*len(s)]
|
851 |
+
for name in found[::-1]:
|
852 |
+
doc, kind, ix = cache[name]
|
853 |
+
|
854 |
+
doclines = [line.strip() for line in doc.strip().split("\n")
|
855 |
+
if line.strip()]
|
856 |
+
|
857 |
+
# find a suitable short description
|
858 |
+
try:
|
859 |
+
first_doc = doclines[0].strip()
|
860 |
+
if _function_signature_re.search(first_doc):
|
861 |
+
first_doc = doclines[1].strip()
|
862 |
+
except IndexError:
|
863 |
+
first_doc = ""
|
864 |
+
help_text.append("%s\n %s" % (name, first_doc))
|
865 |
+
|
866 |
+
if not found:
|
867 |
+
help_text.append("Nothing found.")
|
868 |
+
|
869 |
+
# Output
|
870 |
+
if output is not None:
|
871 |
+
output.write("\n".join(help_text))
|
872 |
+
elif len(help_text) > 10:
|
873 |
+
pager = pydoc.getpager()
|
874 |
+
pager("\n".join(help_text))
|
875 |
+
else:
|
876 |
+
print("\n".join(help_text))
|
877 |
+
|
878 |
+
def _lookfor_generate_cache(module, import_modules, regenerate):
|
879 |
+
"""
|
880 |
+
Generate docstring cache for given module.
|
881 |
+
|
882 |
+
Parameters
|
883 |
+
----------
|
884 |
+
module : str, None, module
|
885 |
+
Module for which to generate docstring cache
|
886 |
+
import_modules : bool
|
887 |
+
Whether to import sub-modules in packages.
|
888 |
+
regenerate : bool
|
889 |
+
Re-generate the docstring cache
|
890 |
+
|
891 |
+
Returns
|
892 |
+
-------
|
893 |
+
cache : dict {obj_full_name: (docstring, kind, index), ...}
|
894 |
+
Docstring cache for the module, either cached one (regenerate=False)
|
895 |
+
or newly generated.
|
896 |
+
|
897 |
+
"""
|
898 |
+
# Local import to speed up numpy's import time.
|
899 |
+
import inspect
|
900 |
+
|
901 |
+
from io import StringIO
|
902 |
+
|
903 |
+
if module is None:
|
904 |
+
module = "numpy"
|
905 |
+
|
906 |
+
if isinstance(module, str):
|
907 |
+
try:
|
908 |
+
__import__(module)
|
909 |
+
except ImportError:
|
910 |
+
return {}
|
911 |
+
module = sys.modules[module]
|
912 |
+
elif isinstance(module, list) or isinstance(module, tuple):
|
913 |
+
cache = {}
|
914 |
+
for mod in module:
|
915 |
+
cache.update(_lookfor_generate_cache(mod, import_modules,
|
916 |
+
regenerate))
|
917 |
+
return cache
|
918 |
+
|
919 |
+
if id(module) in _lookfor_caches and not regenerate:
|
920 |
+
return _lookfor_caches[id(module)]
|
921 |
+
|
922 |
+
# walk items and collect docstrings
|
923 |
+
cache = {}
|
924 |
+
_lookfor_caches[id(module)] = cache
|
925 |
+
seen = {}
|
926 |
+
index = 0
|
927 |
+
stack = [(module.__name__, module)]
|
928 |
+
while stack:
|
929 |
+
name, item = stack.pop(0)
|
930 |
+
if id(item) in seen:
|
931 |
+
continue
|
932 |
+
seen[id(item)] = True
|
933 |
+
|
934 |
+
index += 1
|
935 |
+
kind = "object"
|
936 |
+
|
937 |
+
if inspect.ismodule(item):
|
938 |
+
kind = "module"
|
939 |
+
try:
|
940 |
+
_all = item.__all__
|
941 |
+
except AttributeError:
|
942 |
+
_all = None
|
943 |
+
|
944 |
+
# import sub-packages
|
945 |
+
if import_modules and hasattr(item, '__path__'):
|
946 |
+
for pth in item.__path__:
|
947 |
+
for mod_path in os.listdir(pth):
|
948 |
+
this_py = os.path.join(pth, mod_path)
|
949 |
+
init_py = os.path.join(pth, mod_path, '__init__.py')
|
950 |
+
if (os.path.isfile(this_py) and
|
951 |
+
mod_path.endswith('.py')):
|
952 |
+
to_import = mod_path[:-3]
|
953 |
+
elif os.path.isfile(init_py):
|
954 |
+
to_import = mod_path
|
955 |
+
else:
|
956 |
+
continue
|
957 |
+
if to_import == '__init__':
|
958 |
+
continue
|
959 |
+
|
960 |
+
try:
|
961 |
+
old_stdout = sys.stdout
|
962 |
+
old_stderr = sys.stderr
|
963 |
+
try:
|
964 |
+
sys.stdout = StringIO()
|
965 |
+
sys.stderr = StringIO()
|
966 |
+
__import__("%s.%s" % (name, to_import))
|
967 |
+
finally:
|
968 |
+
sys.stdout = old_stdout
|
969 |
+
sys.stderr = old_stderr
|
970 |
+
except KeyboardInterrupt:
|
971 |
+
# Assume keyboard interrupt came from a user
|
972 |
+
raise
|
973 |
+
except BaseException:
|
974 |
+
# Ignore also SystemExit and pytests.importorskip
|
975 |
+
# `Skipped` (these are BaseExceptions; gh-22345)
|
976 |
+
continue
|
977 |
+
|
978 |
+
for n, v in _getmembers(item):
|
979 |
+
try:
|
980 |
+
item_name = getattr(v, '__name__', "%s.%s" % (name, n))
|
981 |
+
mod_name = getattr(v, '__module__', None)
|
982 |
+
except NameError:
|
983 |
+
# ref. SWIG's global cvars
|
984 |
+
# NameError: Unknown C global variable
|
985 |
+
item_name = "%s.%s" % (name, n)
|
986 |
+
mod_name = None
|
987 |
+
if '.' not in item_name and mod_name:
|
988 |
+
item_name = "%s.%s" % (mod_name, item_name)
|
989 |
+
|
990 |
+
if not item_name.startswith(name + '.'):
|
991 |
+
# don't crawl "foreign" objects
|
992 |
+
if isinstance(v, ufunc):
|
993 |
+
# ... unless they are ufuncs
|
994 |
+
pass
|
995 |
+
else:
|
996 |
+
continue
|
997 |
+
elif not (inspect.ismodule(v) or _all is None or n in _all):
|
998 |
+
continue
|
999 |
+
stack.append(("%s.%s" % (name, n), v))
|
1000 |
+
elif inspect.isclass(item):
|
1001 |
+
kind = "class"
|
1002 |
+
for n, v in _getmembers(item):
|
1003 |
+
stack.append(("%s.%s" % (name, n), v))
|
1004 |
+
elif hasattr(item, "__call__"):
|
1005 |
+
kind = "func"
|
1006 |
+
|
1007 |
+
try:
|
1008 |
+
doc = inspect.getdoc(item)
|
1009 |
+
except NameError:
|
1010 |
+
# ref SWIG's NameError: Unknown C global variable
|
1011 |
+
doc = None
|
1012 |
+
if doc is not None:
|
1013 |
+
cache[name] = (doc, kind, index)
|
1014 |
+
|
1015 |
+
return cache
|
1016 |
+
|
1017 |
+
def _getmembers(item):
|
1018 |
+
import inspect
|
1019 |
+
try:
|
1020 |
+
members = inspect.getmembers(item)
|
1021 |
+
except Exception:
|
1022 |
+
members = [(x, getattr(item, x)) for x in dir(item)
|
1023 |
+
if hasattr(item, x)]
|
1024 |
+
return members
|
1025 |
+
|
1026 |
+
|
1027 |
+
def safe_eval(source):
|
1028 |
+
"""
|
1029 |
+
Protected string evaluation.
|
1030 |
+
|
1031 |
+
Evaluate a string containing a Python literal expression without
|
1032 |
+
allowing the execution of arbitrary non-literal code.
|
1033 |
+
|
1034 |
+
.. warning::
|
1035 |
+
|
1036 |
+
This function is identical to :py:meth:`ast.literal_eval` and
|
1037 |
+
has the same security implications. It may not always be safe
|
1038 |
+
to evaluate large input strings.
|
1039 |
+
|
1040 |
+
Parameters
|
1041 |
+
----------
|
1042 |
+
source : str
|
1043 |
+
The string to evaluate.
|
1044 |
+
|
1045 |
+
Returns
|
1046 |
+
-------
|
1047 |
+
obj : object
|
1048 |
+
The result of evaluating `source`.
|
1049 |
+
|
1050 |
+
Raises
|
1051 |
+
------
|
1052 |
+
SyntaxError
|
1053 |
+
If the code has invalid Python syntax, or if it contains
|
1054 |
+
non-literal code.
|
1055 |
+
|
1056 |
+
Examples
|
1057 |
+
--------
|
1058 |
+
>>> np.safe_eval('1')
|
1059 |
+
1
|
1060 |
+
>>> np.safe_eval('[1, 2, 3]')
|
1061 |
+
[1, 2, 3]
|
1062 |
+
>>> np.safe_eval('{"foo": ("bar", 10.0)}')
|
1063 |
+
{'foo': ('bar', 10.0)}
|
1064 |
+
|
1065 |
+
>>> np.safe_eval('import os')
|
1066 |
+
Traceback (most recent call last):
|
1067 |
+
...
|
1068 |
+
SyntaxError: invalid syntax
|
1069 |
+
|
1070 |
+
>>> np.safe_eval('open("/home/user/.ssh/id_dsa").read()')
|
1071 |
+
Traceback (most recent call last):
|
1072 |
+
...
|
1073 |
+
ValueError: malformed node or string: <_ast.Call object at 0x...>
|
1074 |
+
|
1075 |
+
"""
|
1076 |
+
# Local import to speed up numpy's import time.
|
1077 |
+
import ast
|
1078 |
+
return ast.literal_eval(source)
|
1079 |
+
|
1080 |
+
|
1081 |
+
def _median_nancheck(data, result, axis):
|
1082 |
+
"""
|
1083 |
+
Utility function to check median result from data for NaN values at the end
|
1084 |
+
and return NaN in that case. Input result can also be a MaskedArray.
|
1085 |
+
|
1086 |
+
Parameters
|
1087 |
+
----------
|
1088 |
+
data : array
|
1089 |
+
Sorted input data to median function
|
1090 |
+
result : Array or MaskedArray
|
1091 |
+
Result of median function.
|
1092 |
+
axis : int
|
1093 |
+
Axis along which the median was computed.
|
1094 |
+
|
1095 |
+
Returns
|
1096 |
+
-------
|
1097 |
+
result : scalar or ndarray
|
1098 |
+
Median or NaN in axes which contained NaN in the input. If the input
|
1099 |
+
was an array, NaN will be inserted in-place. If a scalar, either the
|
1100 |
+
input itself or a scalar NaN.
|
1101 |
+
"""
|
1102 |
+
if data.size == 0:
|
1103 |
+
return result
|
1104 |
+
potential_nans = data.take(-1, axis=axis)
|
1105 |
+
n = np.isnan(potential_nans)
|
1106 |
+
# masked NaN values are ok, although for masked the copyto may fail for
|
1107 |
+
# unmasked ones (this was always broken) when the result is a scalar.
|
1108 |
+
if np.ma.isMaskedArray(n):
|
1109 |
+
n = n.filled(False)
|
1110 |
+
|
1111 |
+
if not n.any():
|
1112 |
+
return result
|
1113 |
+
|
1114 |
+
# Without given output, it is possible that the current result is a
|
1115 |
+
# numpy scalar, which is not writeable. If so, just return nan.
|
1116 |
+
if isinstance(result, np.generic):
|
1117 |
+
return potential_nans
|
1118 |
+
|
1119 |
+
# Otherwise copy NaNs (if there are any)
|
1120 |
+
np.copyto(result, potential_nans, where=n)
|
1121 |
+
return result
|
1122 |
+
|
1123 |
+
def _opt_info():
|
1124 |
+
"""
|
1125 |
+
Returns a string contains the supported CPU features by the current build.
|
1126 |
+
|
1127 |
+
The string format can be explained as follows:
|
1128 |
+
- dispatched features that are supported by the running machine
|
1129 |
+
end with `*`.
|
1130 |
+
- dispatched features that are "not" supported by the running machine
|
1131 |
+
end with `?`.
|
1132 |
+
- remained features are representing the baseline.
|
1133 |
+
"""
|
1134 |
+
from numpy.core._multiarray_umath import (
|
1135 |
+
__cpu_features__, __cpu_baseline__, __cpu_dispatch__
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
if len(__cpu_baseline__) == 0 and len(__cpu_dispatch__) == 0:
|
1139 |
+
return ''
|
1140 |
+
|
1141 |
+
enabled_features = ' '.join(__cpu_baseline__)
|
1142 |
+
for feature in __cpu_dispatch__:
|
1143 |
+
if __cpu_features__[feature]:
|
1144 |
+
enabled_features += f" {feature}*"
|
1145 |
+
else:
|
1146 |
+
enabled_features += f" {feature}?"
|
1147 |
+
|
1148 |
+
return enabled_features
|
1149 |
+
|
1150 |
+
|
1151 |
+
def drop_metadata(dtype, /):
|
1152 |
+
"""
|
1153 |
+
Returns the dtype unchanged if it contained no metadata or a copy of the
|
1154 |
+
dtype if it (or any of its structure dtypes) contained metadata.
|
1155 |
+
|
1156 |
+
This utility is used by `np.save` and `np.savez` to drop metadata before
|
1157 |
+
saving.
|
1158 |
+
|
1159 |
+
.. note::
|
1160 |
+
|
1161 |
+
Due to its limitation this function may move to a more appropriate
|
1162 |
+
home or change in the future and is considered semi-public API only.
|
1163 |
+
|
1164 |
+
.. warning::
|
1165 |
+
|
1166 |
+
This function does not preserve more strange things like record dtypes
|
1167 |
+
and user dtypes may simply return the wrong thing. If you need to be
|
1168 |
+
sure about the latter, check the result with:
|
1169 |
+
``np.can_cast(new_dtype, dtype, casting="no")``.
|
1170 |
+
|
1171 |
+
"""
|
1172 |
+
if dtype.fields is not None:
|
1173 |
+
found_metadata = dtype.metadata is not None
|
1174 |
+
|
1175 |
+
names = []
|
1176 |
+
formats = []
|
1177 |
+
offsets = []
|
1178 |
+
titles = []
|
1179 |
+
for name, field in dtype.fields.items():
|
1180 |
+
field_dt = drop_metadata(field[0])
|
1181 |
+
if field_dt is not field[0]:
|
1182 |
+
found_metadata = True
|
1183 |
+
|
1184 |
+
names.append(name)
|
1185 |
+
formats.append(field_dt)
|
1186 |
+
offsets.append(field[1])
|
1187 |
+
titles.append(None if len(field) < 3 else field[2])
|
1188 |
+
|
1189 |
+
if not found_metadata:
|
1190 |
+
return dtype
|
1191 |
+
|
1192 |
+
structure = dict(
|
1193 |
+
names=names, formats=formats, offsets=offsets, titles=titles,
|
1194 |
+
itemsize=dtype.itemsize)
|
1195 |
+
|
1196 |
+
# NOTE: Could pass (dtype.type, structure) to preserve record dtypes...
|
1197 |
+
return np.dtype(structure, align=dtype.isalignedstruct)
|
1198 |
+
elif dtype.subdtype is not None:
|
1199 |
+
# subarray dtype
|
1200 |
+
subdtype, shape = dtype.subdtype
|
1201 |
+
new_subdtype = drop_metadata(subdtype)
|
1202 |
+
if dtype.metadata is None and new_subdtype is subdtype:
|
1203 |
+
return dtype
|
1204 |
+
|
1205 |
+
return np.dtype((new_subdtype, shape))
|
1206 |
+
else:
|
1207 |
+
# Normal unstructured dtype
|
1208 |
+
if dtype.metadata is None:
|
1209 |
+
return dtype
|
1210 |
+
# Note that `dt.str` doesn't round-trip e.g. for user-dtypes.
|
1211 |
+
return np.dtype(dtype.str)
|
venv/lib/python3.10/site-packages/numpy/testing/__init__.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Common test support for all numpy test scripts.
|
2 |
+
|
3 |
+
This single module should provide all the common functionality for numpy tests
|
4 |
+
in a single location, so that test scripts can just import it and work right
|
5 |
+
away.
|
6 |
+
|
7 |
+
"""
|
8 |
+
from unittest import TestCase
|
9 |
+
|
10 |
+
from . import _private
|
11 |
+
from ._private.utils import *
|
12 |
+
from ._private.utils import (_assert_valid_refcount, _gen_alignment_data)
|
13 |
+
from ._private import extbuild
|
14 |
+
from . import overrides
|
15 |
+
|
16 |
+
__all__ = (
|
17 |
+
_private.utils.__all__ + ['TestCase', 'overrides']
|
18 |
+
)
|
19 |
+
|
20 |
+
from numpy._pytesttester import PytestTester
|
21 |
+
test = PytestTester(__name__)
|
22 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/testing/__init__.pyi
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from numpy._pytesttester import PytestTester
|
2 |
+
|
3 |
+
from unittest import (
|
4 |
+
TestCase as TestCase,
|
5 |
+
)
|
6 |
+
|
7 |
+
from numpy.testing._private.utils import (
|
8 |
+
assert_equal as assert_equal,
|
9 |
+
assert_almost_equal as assert_almost_equal,
|
10 |
+
assert_approx_equal as assert_approx_equal,
|
11 |
+
assert_array_equal as assert_array_equal,
|
12 |
+
assert_array_less as assert_array_less,
|
13 |
+
assert_string_equal as assert_string_equal,
|
14 |
+
assert_array_almost_equal as assert_array_almost_equal,
|
15 |
+
assert_raises as assert_raises,
|
16 |
+
build_err_msg as build_err_msg,
|
17 |
+
decorate_methods as decorate_methods,
|
18 |
+
jiffies as jiffies,
|
19 |
+
memusage as memusage,
|
20 |
+
print_assert_equal as print_assert_equal,
|
21 |
+
rundocs as rundocs,
|
22 |
+
runstring as runstring,
|
23 |
+
verbose as verbose,
|
24 |
+
measure as measure,
|
25 |
+
assert_ as assert_,
|
26 |
+
assert_array_almost_equal_nulp as assert_array_almost_equal_nulp,
|
27 |
+
assert_raises_regex as assert_raises_regex,
|
28 |
+
assert_array_max_ulp as assert_array_max_ulp,
|
29 |
+
assert_warns as assert_warns,
|
30 |
+
assert_no_warnings as assert_no_warnings,
|
31 |
+
assert_allclose as assert_allclose,
|
32 |
+
IgnoreException as IgnoreException,
|
33 |
+
clear_and_catch_warnings as clear_and_catch_warnings,
|
34 |
+
SkipTest as SkipTest,
|
35 |
+
KnownFailureException as KnownFailureException,
|
36 |
+
temppath as temppath,
|
37 |
+
tempdir as tempdir,
|
38 |
+
IS_PYPY as IS_PYPY,
|
39 |
+
IS_PYSTON as IS_PYSTON,
|
40 |
+
HAS_REFCOUNT as HAS_REFCOUNT,
|
41 |
+
suppress_warnings as suppress_warnings,
|
42 |
+
assert_array_compare as assert_array_compare,
|
43 |
+
assert_no_gc_cycles as assert_no_gc_cycles,
|
44 |
+
break_cycles as break_cycles,
|
45 |
+
HAS_LAPACK64 as HAS_LAPACK64,
|
46 |
+
)
|
47 |
+
|
48 |
+
__all__: list[str]
|
49 |
+
__path__: list[str]
|
50 |
+
test: PytestTester
|
venv/lib/python3.10/site-packages/numpy/testing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (790 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/__pycache__/overrides.cpython-310.pyc
ADDED
Binary file (2.58 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/__pycache__/print_coercion_tables.cpython-310.pyc
ADDED
Binary file (4.81 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/__pycache__/setup.cpython-310.pyc
ADDED
Binary file (834 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/_private/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/extbuild.cpython-310.pyc
ADDED
Binary file (7.29 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/_private/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (70.3 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/_private/extbuild.py
ADDED
@@ -0,0 +1,248 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Build a c-extension module on-the-fly in tests.
|
3 |
+
See build_and_import_extensions for usage hints
|
4 |
+
|
5 |
+
"""
|
6 |
+
|
7 |
+
import os
|
8 |
+
import pathlib
|
9 |
+
import subprocess
|
10 |
+
import sys
|
11 |
+
import sysconfig
|
12 |
+
import textwrap
|
13 |
+
|
14 |
+
__all__ = ['build_and_import_extension', 'compile_extension_module']
|
15 |
+
|
16 |
+
|
17 |
+
def build_and_import_extension(
|
18 |
+
modname, functions, *, prologue="", build_dir=None,
|
19 |
+
include_dirs=[], more_init=""):
|
20 |
+
"""
|
21 |
+
Build and imports a c-extension module `modname` from a list of function
|
22 |
+
fragments `functions`.
|
23 |
+
|
24 |
+
|
25 |
+
Parameters
|
26 |
+
----------
|
27 |
+
functions : list of fragments
|
28 |
+
Each fragment is a sequence of func_name, calling convention, snippet.
|
29 |
+
prologue : string
|
30 |
+
Code to precede the rest, usually extra ``#include`` or ``#define``
|
31 |
+
macros.
|
32 |
+
build_dir : pathlib.Path
|
33 |
+
Where to build the module, usually a temporary directory
|
34 |
+
include_dirs : list
|
35 |
+
Extra directories to find include files when compiling
|
36 |
+
more_init : string
|
37 |
+
Code to appear in the module PyMODINIT_FUNC
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
out: module
|
42 |
+
The module will have been loaded and is ready for use
|
43 |
+
|
44 |
+
Examples
|
45 |
+
--------
|
46 |
+
>>> functions = [("test_bytes", "METH_O", \"\"\"
|
47 |
+
if ( !PyBytesCheck(args)) {
|
48 |
+
Py_RETURN_FALSE;
|
49 |
+
}
|
50 |
+
Py_RETURN_TRUE;
|
51 |
+
\"\"\")]
|
52 |
+
>>> mod = build_and_import_extension("testme", functions)
|
53 |
+
>>> assert not mod.test_bytes(u'abc')
|
54 |
+
>>> assert mod.test_bytes(b'abc')
|
55 |
+
"""
|
56 |
+
body = prologue + _make_methods(functions, modname)
|
57 |
+
init = """PyObject *mod = PyModule_Create(&moduledef);
|
58 |
+
"""
|
59 |
+
if not build_dir:
|
60 |
+
build_dir = pathlib.Path('.')
|
61 |
+
if more_init:
|
62 |
+
init += """#define INITERROR return NULL
|
63 |
+
"""
|
64 |
+
init += more_init
|
65 |
+
init += "\nreturn mod;"
|
66 |
+
source_string = _make_source(modname, init, body)
|
67 |
+
try:
|
68 |
+
mod_so = compile_extension_module(
|
69 |
+
modname, build_dir, include_dirs, source_string)
|
70 |
+
except Exception as e:
|
71 |
+
# shorten the exception chain
|
72 |
+
raise RuntimeError(f"could not compile in {build_dir}:") from e
|
73 |
+
import importlib.util
|
74 |
+
spec = importlib.util.spec_from_file_location(modname, mod_so)
|
75 |
+
foo = importlib.util.module_from_spec(spec)
|
76 |
+
spec.loader.exec_module(foo)
|
77 |
+
return foo
|
78 |
+
|
79 |
+
|
80 |
+
def compile_extension_module(
|
81 |
+
name, builddir, include_dirs,
|
82 |
+
source_string, libraries=[], library_dirs=[]):
|
83 |
+
"""
|
84 |
+
Build an extension module and return the filename of the resulting
|
85 |
+
native code file.
|
86 |
+
|
87 |
+
Parameters
|
88 |
+
----------
|
89 |
+
name : string
|
90 |
+
name of the module, possibly including dots if it is a module inside a
|
91 |
+
package.
|
92 |
+
builddir : pathlib.Path
|
93 |
+
Where to build the module, usually a temporary directory
|
94 |
+
include_dirs : list
|
95 |
+
Extra directories to find include files when compiling
|
96 |
+
libraries : list
|
97 |
+
Libraries to link into the extension module
|
98 |
+
library_dirs: list
|
99 |
+
Where to find the libraries, ``-L`` passed to the linker
|
100 |
+
"""
|
101 |
+
modname = name.split('.')[-1]
|
102 |
+
dirname = builddir / name
|
103 |
+
dirname.mkdir(exist_ok=True)
|
104 |
+
cfile = _convert_str_to_file(source_string, dirname)
|
105 |
+
include_dirs = include_dirs + [sysconfig.get_config_var('INCLUDEPY')]
|
106 |
+
|
107 |
+
return _c_compile(
|
108 |
+
cfile, outputfilename=dirname / modname,
|
109 |
+
include_dirs=include_dirs, libraries=[], library_dirs=[],
|
110 |
+
)
|
111 |
+
|
112 |
+
|
113 |
+
def _convert_str_to_file(source, dirname):
|
114 |
+
"""Helper function to create a file ``source.c`` in `dirname` that contains
|
115 |
+
the string in `source`. Returns the file name
|
116 |
+
"""
|
117 |
+
filename = dirname / 'source.c'
|
118 |
+
with filename.open('w') as f:
|
119 |
+
f.write(str(source))
|
120 |
+
return filename
|
121 |
+
|
122 |
+
|
123 |
+
def _make_methods(functions, modname):
|
124 |
+
""" Turns the name, signature, code in functions into complete functions
|
125 |
+
and lists them in a methods_table. Then turns the methods_table into a
|
126 |
+
``PyMethodDef`` structure and returns the resulting code fragment ready
|
127 |
+
for compilation
|
128 |
+
"""
|
129 |
+
methods_table = []
|
130 |
+
codes = []
|
131 |
+
for funcname, flags, code in functions:
|
132 |
+
cfuncname = "%s_%s" % (modname, funcname)
|
133 |
+
if 'METH_KEYWORDS' in flags:
|
134 |
+
signature = '(PyObject *self, PyObject *args, PyObject *kwargs)'
|
135 |
+
else:
|
136 |
+
signature = '(PyObject *self, PyObject *args)'
|
137 |
+
methods_table.append(
|
138 |
+
"{\"%s\", (PyCFunction)%s, %s}," % (funcname, cfuncname, flags))
|
139 |
+
func_code = """
|
140 |
+
static PyObject* {cfuncname}{signature}
|
141 |
+
{{
|
142 |
+
{code}
|
143 |
+
}}
|
144 |
+
""".format(cfuncname=cfuncname, signature=signature, code=code)
|
145 |
+
codes.append(func_code)
|
146 |
+
|
147 |
+
body = "\n".join(codes) + """
|
148 |
+
static PyMethodDef methods[] = {
|
149 |
+
%(methods)s
|
150 |
+
{ NULL }
|
151 |
+
};
|
152 |
+
static struct PyModuleDef moduledef = {
|
153 |
+
PyModuleDef_HEAD_INIT,
|
154 |
+
"%(modname)s", /* m_name */
|
155 |
+
NULL, /* m_doc */
|
156 |
+
-1, /* m_size */
|
157 |
+
methods, /* m_methods */
|
158 |
+
};
|
159 |
+
""" % dict(methods='\n'.join(methods_table), modname=modname)
|
160 |
+
return body
|
161 |
+
|
162 |
+
|
163 |
+
def _make_source(name, init, body):
|
164 |
+
""" Combines the code fragments into source code ready to be compiled
|
165 |
+
"""
|
166 |
+
code = """
|
167 |
+
#include <Python.h>
|
168 |
+
|
169 |
+
%(body)s
|
170 |
+
|
171 |
+
PyMODINIT_FUNC
|
172 |
+
PyInit_%(name)s(void) {
|
173 |
+
%(init)s
|
174 |
+
}
|
175 |
+
""" % dict(
|
176 |
+
name=name, init=init, body=body,
|
177 |
+
)
|
178 |
+
return code
|
179 |
+
|
180 |
+
|
181 |
+
def _c_compile(cfile, outputfilename, include_dirs=[], libraries=[],
|
182 |
+
library_dirs=[]):
|
183 |
+
if sys.platform == 'win32':
|
184 |
+
compile_extra = ["/we4013"]
|
185 |
+
link_extra = ["/LIBPATH:" + os.path.join(sys.base_prefix, 'libs')]
|
186 |
+
elif sys.platform.startswith('linux'):
|
187 |
+
compile_extra = [
|
188 |
+
"-O0", "-g", "-Werror=implicit-function-declaration", "-fPIC"]
|
189 |
+
link_extra = []
|
190 |
+
else:
|
191 |
+
compile_extra = link_extra = []
|
192 |
+
pass
|
193 |
+
if sys.platform == 'win32':
|
194 |
+
link_extra = link_extra + ['/DEBUG'] # generate .pdb file
|
195 |
+
if sys.platform == 'darwin':
|
196 |
+
# support Fink & Darwinports
|
197 |
+
for s in ('/sw/', '/opt/local/'):
|
198 |
+
if (s + 'include' not in include_dirs
|
199 |
+
and os.path.exists(s + 'include')):
|
200 |
+
include_dirs.append(s + 'include')
|
201 |
+
if s + 'lib' not in library_dirs and os.path.exists(s + 'lib'):
|
202 |
+
library_dirs.append(s + 'lib')
|
203 |
+
|
204 |
+
outputfilename = outputfilename.with_suffix(get_so_suffix())
|
205 |
+
build(
|
206 |
+
cfile, outputfilename,
|
207 |
+
compile_extra, link_extra,
|
208 |
+
include_dirs, libraries, library_dirs)
|
209 |
+
return outputfilename
|
210 |
+
|
211 |
+
|
212 |
+
def build(cfile, outputfilename, compile_extra, link_extra,
|
213 |
+
include_dirs, libraries, library_dirs):
|
214 |
+
"use meson to build"
|
215 |
+
|
216 |
+
build_dir = cfile.parent / "build"
|
217 |
+
os.makedirs(build_dir, exist_ok=True)
|
218 |
+
so_name = outputfilename.parts[-1]
|
219 |
+
with open(cfile.parent / "meson.build", "wt") as fid:
|
220 |
+
includes = ['-I' + d for d in include_dirs]
|
221 |
+
link_dirs = ['-L' + d for d in library_dirs]
|
222 |
+
fid.write(textwrap.dedent(f"""\
|
223 |
+
project('foo', 'c')
|
224 |
+
shared_module('{so_name}', '{cfile.parts[-1]}',
|
225 |
+
c_args: {includes} + {compile_extra},
|
226 |
+
link_args: {link_dirs} + {link_extra},
|
227 |
+
link_with: {libraries},
|
228 |
+
name_prefix: '',
|
229 |
+
name_suffix: 'dummy',
|
230 |
+
)
|
231 |
+
"""))
|
232 |
+
if sys.platform == "win32":
|
233 |
+
subprocess.check_call(["meson", "setup",
|
234 |
+
"--buildtype=release",
|
235 |
+
"--vsenv", ".."],
|
236 |
+
cwd=build_dir,
|
237 |
+
)
|
238 |
+
else:
|
239 |
+
subprocess.check_call(["meson", "setup", "--vsenv", ".."],
|
240 |
+
cwd=build_dir
|
241 |
+
)
|
242 |
+
subprocess.check_call(["meson", "compile"], cwd=build_dir)
|
243 |
+
os.rename(str(build_dir / so_name) + ".dummy", cfile.parent / so_name)
|
244 |
+
|
245 |
+
def get_so_suffix():
|
246 |
+
ret = sysconfig.get_config_var('EXT_SUFFIX')
|
247 |
+
assert ret
|
248 |
+
return ret
|
venv/lib/python3.10/site-packages/numpy/testing/_private/utils.py
ADDED
@@ -0,0 +1,2509 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utility function to facilitate testing.
|
3 |
+
|
4 |
+
"""
|
5 |
+
import os
|
6 |
+
import sys
|
7 |
+
import platform
|
8 |
+
import re
|
9 |
+
import gc
|
10 |
+
import operator
|
11 |
+
import warnings
|
12 |
+
from functools import partial, wraps
|
13 |
+
import shutil
|
14 |
+
import contextlib
|
15 |
+
from tempfile import mkdtemp, mkstemp
|
16 |
+
from unittest.case import SkipTest
|
17 |
+
from warnings import WarningMessage
|
18 |
+
import pprint
|
19 |
+
import sysconfig
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
from numpy.core import (
|
23 |
+
intp, float32, empty, arange, array_repr, ndarray, isnat, array)
|
24 |
+
from numpy import isfinite, isnan, isinf
|
25 |
+
import numpy.linalg._umath_linalg
|
26 |
+
|
27 |
+
from io import StringIO
|
28 |
+
|
29 |
+
__all__ = [
|
30 |
+
'assert_equal', 'assert_almost_equal', 'assert_approx_equal',
|
31 |
+
'assert_array_equal', 'assert_array_less', 'assert_string_equal',
|
32 |
+
'assert_array_almost_equal', 'assert_raises', 'build_err_msg',
|
33 |
+
'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal',
|
34 |
+
'rundocs', 'runstring', 'verbose', 'measure',
|
35 |
+
'assert_', 'assert_array_almost_equal_nulp', 'assert_raises_regex',
|
36 |
+
'assert_array_max_ulp', 'assert_warns', 'assert_no_warnings',
|
37 |
+
'assert_allclose', 'IgnoreException', 'clear_and_catch_warnings',
|
38 |
+
'SkipTest', 'KnownFailureException', 'temppath', 'tempdir', 'IS_PYPY',
|
39 |
+
'HAS_REFCOUNT', "IS_WASM", 'suppress_warnings', 'assert_array_compare',
|
40 |
+
'assert_no_gc_cycles', 'break_cycles', 'HAS_LAPACK64', 'IS_PYSTON',
|
41 |
+
'_OLD_PROMOTION', 'IS_MUSL', '_SUPPORTS_SVE'
|
42 |
+
]
|
43 |
+
|
44 |
+
|
45 |
+
class KnownFailureException(Exception):
|
46 |
+
'''Raise this exception to mark a test as a known failing test.'''
|
47 |
+
pass
|
48 |
+
|
49 |
+
|
50 |
+
KnownFailureTest = KnownFailureException # backwards compat
|
51 |
+
verbose = 0
|
52 |
+
|
53 |
+
IS_WASM = platform.machine() in ["wasm32", "wasm64"]
|
54 |
+
IS_PYPY = sys.implementation.name == 'pypy'
|
55 |
+
IS_PYSTON = hasattr(sys, "pyston_version_info")
|
56 |
+
HAS_REFCOUNT = getattr(sys, 'getrefcount', None) is not None and not IS_PYSTON
|
57 |
+
HAS_LAPACK64 = numpy.linalg._umath_linalg._ilp64
|
58 |
+
|
59 |
+
_OLD_PROMOTION = lambda: np._get_promotion_state() == 'legacy'
|
60 |
+
|
61 |
+
IS_MUSL = False
|
62 |
+
# alternate way is
|
63 |
+
# from packaging.tags import sys_tags
|
64 |
+
# _tags = list(sys_tags())
|
65 |
+
# if 'musllinux' in _tags[0].platform:
|
66 |
+
_v = sysconfig.get_config_var('HOST_GNU_TYPE') or ''
|
67 |
+
if 'musl' in _v:
|
68 |
+
IS_MUSL = True
|
69 |
+
|
70 |
+
|
71 |
+
def assert_(val, msg=''):
|
72 |
+
"""
|
73 |
+
Assert that works in release mode.
|
74 |
+
Accepts callable msg to allow deferring evaluation until failure.
|
75 |
+
|
76 |
+
The Python built-in ``assert`` does not work when executing code in
|
77 |
+
optimized mode (the ``-O`` flag) - no byte-code is generated for it.
|
78 |
+
|
79 |
+
For documentation on usage, refer to the Python documentation.
|
80 |
+
|
81 |
+
"""
|
82 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
83 |
+
if not val:
|
84 |
+
try:
|
85 |
+
smsg = msg()
|
86 |
+
except TypeError:
|
87 |
+
smsg = msg
|
88 |
+
raise AssertionError(smsg)
|
89 |
+
|
90 |
+
|
91 |
+
if os.name == 'nt':
|
92 |
+
# Code "stolen" from enthought/debug/memusage.py
|
93 |
+
def GetPerformanceAttributes(object, counter, instance=None,
|
94 |
+
inum=-1, format=None, machine=None):
|
95 |
+
# NOTE: Many counters require 2 samples to give accurate results,
|
96 |
+
# including "% Processor Time" (as by definition, at any instant, a
|
97 |
+
# thread's CPU usage is either 0 or 100). To read counters like this,
|
98 |
+
# you should copy this function, but keep the counter open, and call
|
99 |
+
# CollectQueryData() each time you need to know.
|
100 |
+
# See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp (dead link)
|
101 |
+
# My older explanation for this was that the "AddCounter" process
|
102 |
+
# forced the CPU to 100%, but the above makes more sense :)
|
103 |
+
import win32pdh
|
104 |
+
if format is None:
|
105 |
+
format = win32pdh.PDH_FMT_LONG
|
106 |
+
path = win32pdh.MakeCounterPath( (machine, object, instance, None,
|
107 |
+
inum, counter))
|
108 |
+
hq = win32pdh.OpenQuery()
|
109 |
+
try:
|
110 |
+
hc = win32pdh.AddCounter(hq, path)
|
111 |
+
try:
|
112 |
+
win32pdh.CollectQueryData(hq)
|
113 |
+
type, val = win32pdh.GetFormattedCounterValue(hc, format)
|
114 |
+
return val
|
115 |
+
finally:
|
116 |
+
win32pdh.RemoveCounter(hc)
|
117 |
+
finally:
|
118 |
+
win32pdh.CloseQuery(hq)
|
119 |
+
|
120 |
+
def memusage(processName="python", instance=0):
|
121 |
+
# from win32pdhutil, part of the win32all package
|
122 |
+
import win32pdh
|
123 |
+
return GetPerformanceAttributes("Process", "Virtual Bytes",
|
124 |
+
processName, instance,
|
125 |
+
win32pdh.PDH_FMT_LONG, None)
|
126 |
+
elif sys.platform[:5] == 'linux':
|
127 |
+
|
128 |
+
def memusage(_proc_pid_stat=f'/proc/{os.getpid()}/stat'):
|
129 |
+
"""
|
130 |
+
Return virtual memory size in bytes of the running python.
|
131 |
+
|
132 |
+
"""
|
133 |
+
try:
|
134 |
+
with open(_proc_pid_stat) as f:
|
135 |
+
l = f.readline().split(' ')
|
136 |
+
return int(l[22])
|
137 |
+
except Exception:
|
138 |
+
return
|
139 |
+
else:
|
140 |
+
def memusage():
|
141 |
+
"""
|
142 |
+
Return memory usage of running python. [Not implemented]
|
143 |
+
|
144 |
+
"""
|
145 |
+
raise NotImplementedError
|
146 |
+
|
147 |
+
|
148 |
+
if sys.platform[:5] == 'linux':
|
149 |
+
def jiffies(_proc_pid_stat=f'/proc/{os.getpid()}/stat', _load_time=[]):
|
150 |
+
"""
|
151 |
+
Return number of jiffies elapsed.
|
152 |
+
|
153 |
+
Return number of jiffies (1/100ths of a second) that this
|
154 |
+
process has been scheduled in user mode. See man 5 proc.
|
155 |
+
|
156 |
+
"""
|
157 |
+
import time
|
158 |
+
if not _load_time:
|
159 |
+
_load_time.append(time.time())
|
160 |
+
try:
|
161 |
+
with open(_proc_pid_stat) as f:
|
162 |
+
l = f.readline().split(' ')
|
163 |
+
return int(l[13])
|
164 |
+
except Exception:
|
165 |
+
return int(100*(time.time()-_load_time[0]))
|
166 |
+
else:
|
167 |
+
# os.getpid is not in all platforms available.
|
168 |
+
# Using time is safe but inaccurate, especially when process
|
169 |
+
# was suspended or sleeping.
|
170 |
+
def jiffies(_load_time=[]):
|
171 |
+
"""
|
172 |
+
Return number of jiffies elapsed.
|
173 |
+
|
174 |
+
Return number of jiffies (1/100ths of a second) that this
|
175 |
+
process has been scheduled in user mode. See man 5 proc.
|
176 |
+
|
177 |
+
"""
|
178 |
+
import time
|
179 |
+
if not _load_time:
|
180 |
+
_load_time.append(time.time())
|
181 |
+
return int(100*(time.time()-_load_time[0]))
|
182 |
+
|
183 |
+
|
184 |
+
def build_err_msg(arrays, err_msg, header='Items are not equal:',
|
185 |
+
verbose=True, names=('ACTUAL', 'DESIRED'), precision=8):
|
186 |
+
msg = ['\n' + header]
|
187 |
+
if err_msg:
|
188 |
+
if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header):
|
189 |
+
msg = [msg[0] + ' ' + err_msg]
|
190 |
+
else:
|
191 |
+
msg.append(err_msg)
|
192 |
+
if verbose:
|
193 |
+
for i, a in enumerate(arrays):
|
194 |
+
|
195 |
+
if isinstance(a, ndarray):
|
196 |
+
# precision argument is only needed if the objects are ndarrays
|
197 |
+
r_func = partial(array_repr, precision=precision)
|
198 |
+
else:
|
199 |
+
r_func = repr
|
200 |
+
|
201 |
+
try:
|
202 |
+
r = r_func(a)
|
203 |
+
except Exception as exc:
|
204 |
+
r = f'[repr failed for <{type(a).__name__}>: {exc}]'
|
205 |
+
if r.count('\n') > 3:
|
206 |
+
r = '\n'.join(r.splitlines()[:3])
|
207 |
+
r += '...'
|
208 |
+
msg.append(f' {names[i]}: {r}')
|
209 |
+
return '\n'.join(msg)
|
210 |
+
|
211 |
+
|
212 |
+
def assert_equal(actual, desired, err_msg='', verbose=True):
|
213 |
+
"""
|
214 |
+
Raises an AssertionError if two objects are not equal.
|
215 |
+
|
216 |
+
Given two objects (scalars, lists, tuples, dictionaries or numpy arrays),
|
217 |
+
check that all elements of these objects are equal. An exception is raised
|
218 |
+
at the first conflicting values.
|
219 |
+
|
220 |
+
When one of `actual` and `desired` is a scalar and the other is array_like,
|
221 |
+
the function checks that each element of the array_like object is equal to
|
222 |
+
the scalar.
|
223 |
+
|
224 |
+
This function handles NaN comparisons as if NaN was a "normal" number.
|
225 |
+
That is, AssertionError is not raised if both objects have NaNs in the same
|
226 |
+
positions. This is in contrast to the IEEE standard on NaNs, which says
|
227 |
+
that NaN compared to anything must return False.
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
----------
|
231 |
+
actual : array_like
|
232 |
+
The object to check.
|
233 |
+
desired : array_like
|
234 |
+
The expected object.
|
235 |
+
err_msg : str, optional
|
236 |
+
The error message to be printed in case of failure.
|
237 |
+
verbose : bool, optional
|
238 |
+
If True, the conflicting values are appended to the error message.
|
239 |
+
|
240 |
+
Raises
|
241 |
+
------
|
242 |
+
AssertionError
|
243 |
+
If actual and desired are not equal.
|
244 |
+
|
245 |
+
Examples
|
246 |
+
--------
|
247 |
+
>>> np.testing.assert_equal([4,5], [4,6])
|
248 |
+
Traceback (most recent call last):
|
249 |
+
...
|
250 |
+
AssertionError:
|
251 |
+
Items are not equal:
|
252 |
+
item=1
|
253 |
+
ACTUAL: 5
|
254 |
+
DESIRED: 6
|
255 |
+
|
256 |
+
The following comparison does not raise an exception. There are NaNs
|
257 |
+
in the inputs, but they are in the same positions.
|
258 |
+
|
259 |
+
>>> np.testing.assert_equal(np.array([1.0, 2.0, np.nan]), [1, 2, np.nan])
|
260 |
+
|
261 |
+
"""
|
262 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
263 |
+
if isinstance(desired, dict):
|
264 |
+
if not isinstance(actual, dict):
|
265 |
+
raise AssertionError(repr(type(actual)))
|
266 |
+
assert_equal(len(actual), len(desired), err_msg, verbose)
|
267 |
+
for k, i in desired.items():
|
268 |
+
if k not in actual:
|
269 |
+
raise AssertionError(repr(k))
|
270 |
+
assert_equal(actual[k], desired[k], f'key={k!r}\n{err_msg}',
|
271 |
+
verbose)
|
272 |
+
return
|
273 |
+
if isinstance(desired, (list, tuple)) and isinstance(actual, (list, tuple)):
|
274 |
+
assert_equal(len(actual), len(desired), err_msg, verbose)
|
275 |
+
for k in range(len(desired)):
|
276 |
+
assert_equal(actual[k], desired[k], f'item={k!r}\n{err_msg}',
|
277 |
+
verbose)
|
278 |
+
return
|
279 |
+
from numpy.core import ndarray, isscalar, signbit
|
280 |
+
from numpy.lib import iscomplexobj, real, imag
|
281 |
+
if isinstance(actual, ndarray) or isinstance(desired, ndarray):
|
282 |
+
return assert_array_equal(actual, desired, err_msg, verbose)
|
283 |
+
msg = build_err_msg([actual, desired], err_msg, verbose=verbose)
|
284 |
+
|
285 |
+
# Handle complex numbers: separate into real/imag to handle
|
286 |
+
# nan/inf/negative zero correctly
|
287 |
+
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
|
288 |
+
try:
|
289 |
+
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
|
290 |
+
except (ValueError, TypeError):
|
291 |
+
usecomplex = False
|
292 |
+
|
293 |
+
if usecomplex:
|
294 |
+
if iscomplexobj(actual):
|
295 |
+
actualr = real(actual)
|
296 |
+
actuali = imag(actual)
|
297 |
+
else:
|
298 |
+
actualr = actual
|
299 |
+
actuali = 0
|
300 |
+
if iscomplexobj(desired):
|
301 |
+
desiredr = real(desired)
|
302 |
+
desiredi = imag(desired)
|
303 |
+
else:
|
304 |
+
desiredr = desired
|
305 |
+
desiredi = 0
|
306 |
+
try:
|
307 |
+
assert_equal(actualr, desiredr)
|
308 |
+
assert_equal(actuali, desiredi)
|
309 |
+
except AssertionError:
|
310 |
+
raise AssertionError(msg)
|
311 |
+
|
312 |
+
# isscalar test to check cases such as [np.nan] != np.nan
|
313 |
+
if isscalar(desired) != isscalar(actual):
|
314 |
+
raise AssertionError(msg)
|
315 |
+
|
316 |
+
try:
|
317 |
+
isdesnat = isnat(desired)
|
318 |
+
isactnat = isnat(actual)
|
319 |
+
dtypes_match = (np.asarray(desired).dtype.type ==
|
320 |
+
np.asarray(actual).dtype.type)
|
321 |
+
if isdesnat and isactnat:
|
322 |
+
# If both are NaT (and have the same dtype -- datetime or
|
323 |
+
# timedelta) they are considered equal.
|
324 |
+
if dtypes_match:
|
325 |
+
return
|
326 |
+
else:
|
327 |
+
raise AssertionError(msg)
|
328 |
+
|
329 |
+
except (TypeError, ValueError, NotImplementedError):
|
330 |
+
pass
|
331 |
+
|
332 |
+
# Inf/nan/negative zero handling
|
333 |
+
try:
|
334 |
+
isdesnan = isnan(desired)
|
335 |
+
isactnan = isnan(actual)
|
336 |
+
if isdesnan and isactnan:
|
337 |
+
return # both nan, so equal
|
338 |
+
|
339 |
+
# handle signed zero specially for floats
|
340 |
+
array_actual = np.asarray(actual)
|
341 |
+
array_desired = np.asarray(desired)
|
342 |
+
if (array_actual.dtype.char in 'Mm' or
|
343 |
+
array_desired.dtype.char in 'Mm'):
|
344 |
+
# version 1.18
|
345 |
+
# until this version, isnan failed for datetime64 and timedelta64.
|
346 |
+
# Now it succeeds but comparison to scalar with a different type
|
347 |
+
# emits a DeprecationWarning.
|
348 |
+
# Avoid that by skipping the next check
|
349 |
+
raise NotImplementedError('cannot compare to a scalar '
|
350 |
+
'with a different type')
|
351 |
+
|
352 |
+
if desired == 0 and actual == 0:
|
353 |
+
if not signbit(desired) == signbit(actual):
|
354 |
+
raise AssertionError(msg)
|
355 |
+
|
356 |
+
except (TypeError, ValueError, NotImplementedError):
|
357 |
+
pass
|
358 |
+
|
359 |
+
try:
|
360 |
+
# Explicitly use __eq__ for comparison, gh-2552
|
361 |
+
if not (desired == actual):
|
362 |
+
raise AssertionError(msg)
|
363 |
+
|
364 |
+
except (DeprecationWarning, FutureWarning) as e:
|
365 |
+
# this handles the case when the two types are not even comparable
|
366 |
+
if 'elementwise == comparison' in e.args[0]:
|
367 |
+
raise AssertionError(msg)
|
368 |
+
else:
|
369 |
+
raise
|
370 |
+
|
371 |
+
|
372 |
+
def print_assert_equal(test_string, actual, desired):
|
373 |
+
"""
|
374 |
+
Test if two objects are equal, and print an error message if test fails.
|
375 |
+
|
376 |
+
The test is performed with ``actual == desired``.
|
377 |
+
|
378 |
+
Parameters
|
379 |
+
----------
|
380 |
+
test_string : str
|
381 |
+
The message supplied to AssertionError.
|
382 |
+
actual : object
|
383 |
+
The object to test for equality against `desired`.
|
384 |
+
desired : object
|
385 |
+
The expected result.
|
386 |
+
|
387 |
+
Examples
|
388 |
+
--------
|
389 |
+
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1])
|
390 |
+
>>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2])
|
391 |
+
Traceback (most recent call last):
|
392 |
+
...
|
393 |
+
AssertionError: Test XYZ of func xyz failed
|
394 |
+
ACTUAL:
|
395 |
+
[0, 1]
|
396 |
+
DESIRED:
|
397 |
+
[0, 2]
|
398 |
+
|
399 |
+
"""
|
400 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
401 |
+
import pprint
|
402 |
+
|
403 |
+
if not (actual == desired):
|
404 |
+
msg = StringIO()
|
405 |
+
msg.write(test_string)
|
406 |
+
msg.write(' failed\nACTUAL: \n')
|
407 |
+
pprint.pprint(actual, msg)
|
408 |
+
msg.write('DESIRED: \n')
|
409 |
+
pprint.pprint(desired, msg)
|
410 |
+
raise AssertionError(msg.getvalue())
|
411 |
+
|
412 |
+
|
413 |
+
@np._no_nep50_warning()
|
414 |
+
def assert_almost_equal(actual, desired, decimal=7, err_msg='', verbose=True):
|
415 |
+
"""
|
416 |
+
Raises an AssertionError if two items are not equal up to desired
|
417 |
+
precision.
|
418 |
+
|
419 |
+
.. note:: It is recommended to use one of `assert_allclose`,
|
420 |
+
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
|
421 |
+
instead of this function for more consistent floating point
|
422 |
+
comparisons.
|
423 |
+
|
424 |
+
The test verifies that the elements of `actual` and `desired` satisfy.
|
425 |
+
|
426 |
+
``abs(desired-actual) < float64(1.5 * 10**(-decimal))``
|
427 |
+
|
428 |
+
That is a looser test than originally documented, but agrees with what the
|
429 |
+
actual implementation in `assert_array_almost_equal` did up to rounding
|
430 |
+
vagaries. An exception is raised at conflicting values. For ndarrays this
|
431 |
+
delegates to assert_array_almost_equal
|
432 |
+
|
433 |
+
Parameters
|
434 |
+
----------
|
435 |
+
actual : array_like
|
436 |
+
The object to check.
|
437 |
+
desired : array_like
|
438 |
+
The expected object.
|
439 |
+
decimal : int, optional
|
440 |
+
Desired precision, default is 7.
|
441 |
+
err_msg : str, optional
|
442 |
+
The error message to be printed in case of failure.
|
443 |
+
verbose : bool, optional
|
444 |
+
If True, the conflicting values are appended to the error message.
|
445 |
+
|
446 |
+
Raises
|
447 |
+
------
|
448 |
+
AssertionError
|
449 |
+
If actual and desired are not equal up to specified precision.
|
450 |
+
|
451 |
+
See Also
|
452 |
+
--------
|
453 |
+
assert_allclose: Compare two array_like objects for equality with desired
|
454 |
+
relative and/or absolute precision.
|
455 |
+
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
|
456 |
+
|
457 |
+
Examples
|
458 |
+
--------
|
459 |
+
>>> from numpy.testing import assert_almost_equal
|
460 |
+
>>> assert_almost_equal(2.3333333333333, 2.33333334)
|
461 |
+
>>> assert_almost_equal(2.3333333333333, 2.33333334, decimal=10)
|
462 |
+
Traceback (most recent call last):
|
463 |
+
...
|
464 |
+
AssertionError:
|
465 |
+
Arrays are not almost equal to 10 decimals
|
466 |
+
ACTUAL: 2.3333333333333
|
467 |
+
DESIRED: 2.33333334
|
468 |
+
|
469 |
+
>>> assert_almost_equal(np.array([1.0,2.3333333333333]),
|
470 |
+
... np.array([1.0,2.33333334]), decimal=9)
|
471 |
+
Traceback (most recent call last):
|
472 |
+
...
|
473 |
+
AssertionError:
|
474 |
+
Arrays are not almost equal to 9 decimals
|
475 |
+
<BLANKLINE>
|
476 |
+
Mismatched elements: 1 / 2 (50%)
|
477 |
+
Max absolute difference: 6.66669964e-09
|
478 |
+
Max relative difference: 2.85715698e-09
|
479 |
+
x: array([1. , 2.333333333])
|
480 |
+
y: array([1. , 2.33333334])
|
481 |
+
|
482 |
+
"""
|
483 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
484 |
+
from numpy.core import ndarray
|
485 |
+
from numpy.lib import iscomplexobj, real, imag
|
486 |
+
|
487 |
+
# Handle complex numbers: separate into real/imag to handle
|
488 |
+
# nan/inf/negative zero correctly
|
489 |
+
# XXX: catch ValueError for subclasses of ndarray where iscomplex fail
|
490 |
+
try:
|
491 |
+
usecomplex = iscomplexobj(actual) or iscomplexobj(desired)
|
492 |
+
except ValueError:
|
493 |
+
usecomplex = False
|
494 |
+
|
495 |
+
def _build_err_msg():
|
496 |
+
header = ('Arrays are not almost equal to %d decimals' % decimal)
|
497 |
+
return build_err_msg([actual, desired], err_msg, verbose=verbose,
|
498 |
+
header=header)
|
499 |
+
|
500 |
+
if usecomplex:
|
501 |
+
if iscomplexobj(actual):
|
502 |
+
actualr = real(actual)
|
503 |
+
actuali = imag(actual)
|
504 |
+
else:
|
505 |
+
actualr = actual
|
506 |
+
actuali = 0
|
507 |
+
if iscomplexobj(desired):
|
508 |
+
desiredr = real(desired)
|
509 |
+
desiredi = imag(desired)
|
510 |
+
else:
|
511 |
+
desiredr = desired
|
512 |
+
desiredi = 0
|
513 |
+
try:
|
514 |
+
assert_almost_equal(actualr, desiredr, decimal=decimal)
|
515 |
+
assert_almost_equal(actuali, desiredi, decimal=decimal)
|
516 |
+
except AssertionError:
|
517 |
+
raise AssertionError(_build_err_msg())
|
518 |
+
|
519 |
+
if isinstance(actual, (ndarray, tuple, list)) \
|
520 |
+
or isinstance(desired, (ndarray, tuple, list)):
|
521 |
+
return assert_array_almost_equal(actual, desired, decimal, err_msg)
|
522 |
+
try:
|
523 |
+
# If one of desired/actual is not finite, handle it specially here:
|
524 |
+
# check that both are nan if any is a nan, and test for equality
|
525 |
+
# otherwise
|
526 |
+
if not (isfinite(desired) and isfinite(actual)):
|
527 |
+
if isnan(desired) or isnan(actual):
|
528 |
+
if not (isnan(desired) and isnan(actual)):
|
529 |
+
raise AssertionError(_build_err_msg())
|
530 |
+
else:
|
531 |
+
if not desired == actual:
|
532 |
+
raise AssertionError(_build_err_msg())
|
533 |
+
return
|
534 |
+
except (NotImplementedError, TypeError):
|
535 |
+
pass
|
536 |
+
if abs(desired - actual) >= np.float64(1.5 * 10.0**(-decimal)):
|
537 |
+
raise AssertionError(_build_err_msg())
|
538 |
+
|
539 |
+
|
540 |
+
@np._no_nep50_warning()
|
541 |
+
def assert_approx_equal(actual, desired, significant=7, err_msg='',
|
542 |
+
verbose=True):
|
543 |
+
"""
|
544 |
+
Raises an AssertionError if two items are not equal up to significant
|
545 |
+
digits.
|
546 |
+
|
547 |
+
.. note:: It is recommended to use one of `assert_allclose`,
|
548 |
+
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
|
549 |
+
instead of this function for more consistent floating point
|
550 |
+
comparisons.
|
551 |
+
|
552 |
+
Given two numbers, check that they are approximately equal.
|
553 |
+
Approximately equal is defined as the number of significant digits
|
554 |
+
that agree.
|
555 |
+
|
556 |
+
Parameters
|
557 |
+
----------
|
558 |
+
actual : scalar
|
559 |
+
The object to check.
|
560 |
+
desired : scalar
|
561 |
+
The expected object.
|
562 |
+
significant : int, optional
|
563 |
+
Desired precision, default is 7.
|
564 |
+
err_msg : str, optional
|
565 |
+
The error message to be printed in case of failure.
|
566 |
+
verbose : bool, optional
|
567 |
+
If True, the conflicting values are appended to the error message.
|
568 |
+
|
569 |
+
Raises
|
570 |
+
------
|
571 |
+
AssertionError
|
572 |
+
If actual and desired are not equal up to specified precision.
|
573 |
+
|
574 |
+
See Also
|
575 |
+
--------
|
576 |
+
assert_allclose: Compare two array_like objects for equality with desired
|
577 |
+
relative and/or absolute precision.
|
578 |
+
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
|
579 |
+
|
580 |
+
Examples
|
581 |
+
--------
|
582 |
+
>>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20)
|
583 |
+
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20,
|
584 |
+
... significant=8)
|
585 |
+
>>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20,
|
586 |
+
... significant=8)
|
587 |
+
Traceback (most recent call last):
|
588 |
+
...
|
589 |
+
AssertionError:
|
590 |
+
Items are not equal to 8 significant digits:
|
591 |
+
ACTUAL: 1.234567e-21
|
592 |
+
DESIRED: 1.2345672e-21
|
593 |
+
|
594 |
+
the evaluated condition that raises the exception is
|
595 |
+
|
596 |
+
>>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1)
|
597 |
+
True
|
598 |
+
|
599 |
+
"""
|
600 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
601 |
+
import numpy as np
|
602 |
+
|
603 |
+
(actual, desired) = map(float, (actual, desired))
|
604 |
+
if desired == actual:
|
605 |
+
return
|
606 |
+
# Normalized the numbers to be in range (-10.0,10.0)
|
607 |
+
# scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual))))))
|
608 |
+
with np.errstate(invalid='ignore'):
|
609 |
+
scale = 0.5*(np.abs(desired) + np.abs(actual))
|
610 |
+
scale = np.power(10, np.floor(np.log10(scale)))
|
611 |
+
try:
|
612 |
+
sc_desired = desired/scale
|
613 |
+
except ZeroDivisionError:
|
614 |
+
sc_desired = 0.0
|
615 |
+
try:
|
616 |
+
sc_actual = actual/scale
|
617 |
+
except ZeroDivisionError:
|
618 |
+
sc_actual = 0.0
|
619 |
+
msg = build_err_msg(
|
620 |
+
[actual, desired], err_msg,
|
621 |
+
header='Items are not equal to %d significant digits:' % significant,
|
622 |
+
verbose=verbose)
|
623 |
+
try:
|
624 |
+
# If one of desired/actual is not finite, handle it specially here:
|
625 |
+
# check that both are nan if any is a nan, and test for equality
|
626 |
+
# otherwise
|
627 |
+
if not (isfinite(desired) and isfinite(actual)):
|
628 |
+
if isnan(desired) or isnan(actual):
|
629 |
+
if not (isnan(desired) and isnan(actual)):
|
630 |
+
raise AssertionError(msg)
|
631 |
+
else:
|
632 |
+
if not desired == actual:
|
633 |
+
raise AssertionError(msg)
|
634 |
+
return
|
635 |
+
except (TypeError, NotImplementedError):
|
636 |
+
pass
|
637 |
+
if np.abs(sc_desired - sc_actual) >= np.power(10., -(significant-1)):
|
638 |
+
raise AssertionError(msg)
|
639 |
+
|
640 |
+
|
641 |
+
@np._no_nep50_warning()
|
642 |
+
def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header='',
|
643 |
+
precision=6, equal_nan=True, equal_inf=True,
|
644 |
+
*, strict=False):
|
645 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
646 |
+
from numpy.core import (array2string, isnan, inf, bool_, errstate,
|
647 |
+
all, max, object_)
|
648 |
+
|
649 |
+
x = np.asanyarray(x)
|
650 |
+
y = np.asanyarray(y)
|
651 |
+
|
652 |
+
# original array for output formatting
|
653 |
+
ox, oy = x, y
|
654 |
+
|
655 |
+
def isnumber(x):
|
656 |
+
return x.dtype.char in '?bhilqpBHILQPefdgFDG'
|
657 |
+
|
658 |
+
def istime(x):
|
659 |
+
return x.dtype.char in "Mm"
|
660 |
+
|
661 |
+
def func_assert_same_pos(x, y, func=isnan, hasval='nan'):
|
662 |
+
"""Handling nan/inf.
|
663 |
+
|
664 |
+
Combine results of running func on x and y, checking that they are True
|
665 |
+
at the same locations.
|
666 |
+
|
667 |
+
"""
|
668 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
669 |
+
|
670 |
+
x_id = func(x)
|
671 |
+
y_id = func(y)
|
672 |
+
# We include work-arounds here to handle three types of slightly
|
673 |
+
# pathological ndarray subclasses:
|
674 |
+
# (1) all() on `masked` array scalars can return masked arrays, so we
|
675 |
+
# use != True
|
676 |
+
# (2) __eq__ on some ndarray subclasses returns Python booleans
|
677 |
+
# instead of element-wise comparisons, so we cast to bool_() and
|
678 |
+
# use isinstance(..., bool) checks
|
679 |
+
# (3) subclasses with bare-bones __array_function__ implementations may
|
680 |
+
# not implement np.all(), so favor using the .all() method
|
681 |
+
# We are not committed to supporting such subclasses, but it's nice to
|
682 |
+
# support them if possible.
|
683 |
+
if bool_(x_id == y_id).all() != True:
|
684 |
+
msg = build_err_msg([x, y],
|
685 |
+
err_msg + '\nx and y %s location mismatch:'
|
686 |
+
% (hasval), verbose=verbose, header=header,
|
687 |
+
names=('x', 'y'), precision=precision)
|
688 |
+
raise AssertionError(msg)
|
689 |
+
# If there is a scalar, then here we know the array has the same
|
690 |
+
# flag as it everywhere, so we should return the scalar flag.
|
691 |
+
if isinstance(x_id, bool) or x_id.ndim == 0:
|
692 |
+
return bool_(x_id)
|
693 |
+
elif isinstance(y_id, bool) or y_id.ndim == 0:
|
694 |
+
return bool_(y_id)
|
695 |
+
else:
|
696 |
+
return y_id
|
697 |
+
|
698 |
+
try:
|
699 |
+
if strict:
|
700 |
+
cond = x.shape == y.shape and x.dtype == y.dtype
|
701 |
+
else:
|
702 |
+
cond = (x.shape == () or y.shape == ()) or x.shape == y.shape
|
703 |
+
if not cond:
|
704 |
+
if x.shape != y.shape:
|
705 |
+
reason = f'\n(shapes {x.shape}, {y.shape} mismatch)'
|
706 |
+
else:
|
707 |
+
reason = f'\n(dtypes {x.dtype}, {y.dtype} mismatch)'
|
708 |
+
msg = build_err_msg([x, y],
|
709 |
+
err_msg
|
710 |
+
+ reason,
|
711 |
+
verbose=verbose, header=header,
|
712 |
+
names=('x', 'y'), precision=precision)
|
713 |
+
raise AssertionError(msg)
|
714 |
+
|
715 |
+
flagged = bool_(False)
|
716 |
+
if isnumber(x) and isnumber(y):
|
717 |
+
if equal_nan:
|
718 |
+
flagged = func_assert_same_pos(x, y, func=isnan, hasval='nan')
|
719 |
+
|
720 |
+
if equal_inf:
|
721 |
+
flagged |= func_assert_same_pos(x, y,
|
722 |
+
func=lambda xy: xy == +inf,
|
723 |
+
hasval='+inf')
|
724 |
+
flagged |= func_assert_same_pos(x, y,
|
725 |
+
func=lambda xy: xy == -inf,
|
726 |
+
hasval='-inf')
|
727 |
+
|
728 |
+
elif istime(x) and istime(y):
|
729 |
+
# If one is datetime64 and the other timedelta64 there is no point
|
730 |
+
if equal_nan and x.dtype.type == y.dtype.type:
|
731 |
+
flagged = func_assert_same_pos(x, y, func=isnat, hasval="NaT")
|
732 |
+
|
733 |
+
if flagged.ndim > 0:
|
734 |
+
x, y = x[~flagged], y[~flagged]
|
735 |
+
# Only do the comparison if actual values are left
|
736 |
+
if x.size == 0:
|
737 |
+
return
|
738 |
+
elif flagged:
|
739 |
+
# no sense doing comparison if everything is flagged.
|
740 |
+
return
|
741 |
+
|
742 |
+
val = comparison(x, y)
|
743 |
+
|
744 |
+
if isinstance(val, bool):
|
745 |
+
cond = val
|
746 |
+
reduced = array([val])
|
747 |
+
else:
|
748 |
+
reduced = val.ravel()
|
749 |
+
cond = reduced.all()
|
750 |
+
|
751 |
+
# The below comparison is a hack to ensure that fully masked
|
752 |
+
# results, for which val.ravel().all() returns np.ma.masked,
|
753 |
+
# do not trigger a failure (np.ma.masked != True evaluates as
|
754 |
+
# np.ma.masked, which is falsy).
|
755 |
+
if cond != True:
|
756 |
+
n_mismatch = reduced.size - reduced.sum(dtype=intp)
|
757 |
+
n_elements = flagged.size if flagged.ndim != 0 else reduced.size
|
758 |
+
percent_mismatch = 100 * n_mismatch / n_elements
|
759 |
+
remarks = [
|
760 |
+
'Mismatched elements: {} / {} ({:.3g}%)'.format(
|
761 |
+
n_mismatch, n_elements, percent_mismatch)]
|
762 |
+
|
763 |
+
with errstate(all='ignore'):
|
764 |
+
# ignore errors for non-numeric types
|
765 |
+
with contextlib.suppress(TypeError):
|
766 |
+
error = abs(x - y)
|
767 |
+
if np.issubdtype(x.dtype, np.unsignedinteger):
|
768 |
+
error2 = abs(y - x)
|
769 |
+
np.minimum(error, error2, out=error)
|
770 |
+
max_abs_error = max(error)
|
771 |
+
if getattr(error, 'dtype', object_) == object_:
|
772 |
+
remarks.append('Max absolute difference: '
|
773 |
+
+ str(max_abs_error))
|
774 |
+
else:
|
775 |
+
remarks.append('Max absolute difference: '
|
776 |
+
+ array2string(max_abs_error))
|
777 |
+
|
778 |
+
# note: this definition of relative error matches that one
|
779 |
+
# used by assert_allclose (found in np.isclose)
|
780 |
+
# Filter values where the divisor would be zero
|
781 |
+
nonzero = bool_(y != 0)
|
782 |
+
if all(~nonzero):
|
783 |
+
max_rel_error = array(inf)
|
784 |
+
else:
|
785 |
+
max_rel_error = max(error[nonzero] / abs(y[nonzero]))
|
786 |
+
if getattr(error, 'dtype', object_) == object_:
|
787 |
+
remarks.append('Max relative difference: '
|
788 |
+
+ str(max_rel_error))
|
789 |
+
else:
|
790 |
+
remarks.append('Max relative difference: '
|
791 |
+
+ array2string(max_rel_error))
|
792 |
+
|
793 |
+
err_msg += '\n' + '\n'.join(remarks)
|
794 |
+
msg = build_err_msg([ox, oy], err_msg,
|
795 |
+
verbose=verbose, header=header,
|
796 |
+
names=('x', 'y'), precision=precision)
|
797 |
+
raise AssertionError(msg)
|
798 |
+
except ValueError:
|
799 |
+
import traceback
|
800 |
+
efmt = traceback.format_exc()
|
801 |
+
header = f'error during assertion:\n\n{efmt}\n\n{header}'
|
802 |
+
|
803 |
+
msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header,
|
804 |
+
names=('x', 'y'), precision=precision)
|
805 |
+
raise ValueError(msg)
|
806 |
+
|
807 |
+
|
808 |
+
def assert_array_equal(x, y, err_msg='', verbose=True, *, strict=False):
|
809 |
+
"""
|
810 |
+
Raises an AssertionError if two array_like objects are not equal.
|
811 |
+
|
812 |
+
Given two array_like objects, check that the shape is equal and all
|
813 |
+
elements of these objects are equal (but see the Notes for the special
|
814 |
+
handling of a scalar). An exception is raised at shape mismatch or
|
815 |
+
conflicting values. In contrast to the standard usage in numpy, NaNs
|
816 |
+
are compared like numbers, no assertion is raised if both objects have
|
817 |
+
NaNs in the same positions.
|
818 |
+
|
819 |
+
The usual caution for verifying equality with floating point numbers is
|
820 |
+
advised.
|
821 |
+
|
822 |
+
Parameters
|
823 |
+
----------
|
824 |
+
x : array_like
|
825 |
+
The actual object to check.
|
826 |
+
y : array_like
|
827 |
+
The desired, expected object.
|
828 |
+
err_msg : str, optional
|
829 |
+
The error message to be printed in case of failure.
|
830 |
+
verbose : bool, optional
|
831 |
+
If True, the conflicting values are appended to the error message.
|
832 |
+
strict : bool, optional
|
833 |
+
If True, raise an AssertionError when either the shape or the data
|
834 |
+
type of the array_like objects does not match. The special
|
835 |
+
handling for scalars mentioned in the Notes section is disabled.
|
836 |
+
|
837 |
+
.. versionadded:: 1.24.0
|
838 |
+
|
839 |
+
Raises
|
840 |
+
------
|
841 |
+
AssertionError
|
842 |
+
If actual and desired objects are not equal.
|
843 |
+
|
844 |
+
See Also
|
845 |
+
--------
|
846 |
+
assert_allclose: Compare two array_like objects for equality with desired
|
847 |
+
relative and/or absolute precision.
|
848 |
+
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
|
849 |
+
|
850 |
+
Notes
|
851 |
+
-----
|
852 |
+
When one of `x` and `y` is a scalar and the other is array_like, the
|
853 |
+
function checks that each element of the array_like object is equal to
|
854 |
+
the scalar. This behaviour can be disabled with the `strict` parameter.
|
855 |
+
|
856 |
+
Examples
|
857 |
+
--------
|
858 |
+
The first assert does not raise an exception:
|
859 |
+
|
860 |
+
>>> np.testing.assert_array_equal([1.0,2.33333,np.nan],
|
861 |
+
... [np.exp(0),2.33333, np.nan])
|
862 |
+
|
863 |
+
Assert fails with numerical imprecision with floats:
|
864 |
+
|
865 |
+
>>> np.testing.assert_array_equal([1.0,np.pi,np.nan],
|
866 |
+
... [1, np.sqrt(np.pi)**2, np.nan])
|
867 |
+
Traceback (most recent call last):
|
868 |
+
...
|
869 |
+
AssertionError:
|
870 |
+
Arrays are not equal
|
871 |
+
<BLANKLINE>
|
872 |
+
Mismatched elements: 1 / 3 (33.3%)
|
873 |
+
Max absolute difference: 4.4408921e-16
|
874 |
+
Max relative difference: 1.41357986e-16
|
875 |
+
x: array([1. , 3.141593, nan])
|
876 |
+
y: array([1. , 3.141593, nan])
|
877 |
+
|
878 |
+
Use `assert_allclose` or one of the nulp (number of floating point values)
|
879 |
+
functions for these cases instead:
|
880 |
+
|
881 |
+
>>> np.testing.assert_allclose([1.0,np.pi,np.nan],
|
882 |
+
... [1, np.sqrt(np.pi)**2, np.nan],
|
883 |
+
... rtol=1e-10, atol=0)
|
884 |
+
|
885 |
+
As mentioned in the Notes section, `assert_array_equal` has special
|
886 |
+
handling for scalars. Here the test checks that each value in `x` is 3:
|
887 |
+
|
888 |
+
>>> x = np.full((2, 5), fill_value=3)
|
889 |
+
>>> np.testing.assert_array_equal(x, 3)
|
890 |
+
|
891 |
+
Use `strict` to raise an AssertionError when comparing a scalar with an
|
892 |
+
array:
|
893 |
+
|
894 |
+
>>> np.testing.assert_array_equal(x, 3, strict=True)
|
895 |
+
Traceback (most recent call last):
|
896 |
+
...
|
897 |
+
AssertionError:
|
898 |
+
Arrays are not equal
|
899 |
+
<BLANKLINE>
|
900 |
+
(shapes (2, 5), () mismatch)
|
901 |
+
x: array([[3, 3, 3, 3, 3],
|
902 |
+
[3, 3, 3, 3, 3]])
|
903 |
+
y: array(3)
|
904 |
+
|
905 |
+
The `strict` parameter also ensures that the array data types match:
|
906 |
+
|
907 |
+
>>> x = np.array([2, 2, 2])
|
908 |
+
>>> y = np.array([2., 2., 2.], dtype=np.float32)
|
909 |
+
>>> np.testing.assert_array_equal(x, y, strict=True)
|
910 |
+
Traceback (most recent call last):
|
911 |
+
...
|
912 |
+
AssertionError:
|
913 |
+
Arrays are not equal
|
914 |
+
<BLANKLINE>
|
915 |
+
(dtypes int64, float32 mismatch)
|
916 |
+
x: array([2, 2, 2])
|
917 |
+
y: array([2., 2., 2.], dtype=float32)
|
918 |
+
"""
|
919 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
920 |
+
assert_array_compare(operator.__eq__, x, y, err_msg=err_msg,
|
921 |
+
verbose=verbose, header='Arrays are not equal',
|
922 |
+
strict=strict)
|
923 |
+
|
924 |
+
|
925 |
+
@np._no_nep50_warning()
|
926 |
+
def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True):
|
927 |
+
"""
|
928 |
+
Raises an AssertionError if two objects are not equal up to desired
|
929 |
+
precision.
|
930 |
+
|
931 |
+
.. note:: It is recommended to use one of `assert_allclose`,
|
932 |
+
`assert_array_almost_equal_nulp` or `assert_array_max_ulp`
|
933 |
+
instead of this function for more consistent floating point
|
934 |
+
comparisons.
|
935 |
+
|
936 |
+
The test verifies identical shapes and that the elements of ``actual`` and
|
937 |
+
``desired`` satisfy.
|
938 |
+
|
939 |
+
``abs(desired-actual) < 1.5 * 10**(-decimal)``
|
940 |
+
|
941 |
+
That is a looser test than originally documented, but agrees with what the
|
942 |
+
actual implementation did up to rounding vagaries. An exception is raised
|
943 |
+
at shape mismatch or conflicting values. In contrast to the standard usage
|
944 |
+
in numpy, NaNs are compared like numbers, no assertion is raised if both
|
945 |
+
objects have NaNs in the same positions.
|
946 |
+
|
947 |
+
Parameters
|
948 |
+
----------
|
949 |
+
x : array_like
|
950 |
+
The actual object to check.
|
951 |
+
y : array_like
|
952 |
+
The desired, expected object.
|
953 |
+
decimal : int, optional
|
954 |
+
Desired precision, default is 6.
|
955 |
+
err_msg : str, optional
|
956 |
+
The error message to be printed in case of failure.
|
957 |
+
verbose : bool, optional
|
958 |
+
If True, the conflicting values are appended to the error message.
|
959 |
+
|
960 |
+
Raises
|
961 |
+
------
|
962 |
+
AssertionError
|
963 |
+
If actual and desired are not equal up to specified precision.
|
964 |
+
|
965 |
+
See Also
|
966 |
+
--------
|
967 |
+
assert_allclose: Compare two array_like objects for equality with desired
|
968 |
+
relative and/or absolute precision.
|
969 |
+
assert_array_almost_equal_nulp, assert_array_max_ulp, assert_equal
|
970 |
+
|
971 |
+
Examples
|
972 |
+
--------
|
973 |
+
the first assert does not raise an exception
|
974 |
+
|
975 |
+
>>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan],
|
976 |
+
... [1.0,2.333,np.nan])
|
977 |
+
|
978 |
+
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
|
979 |
+
... [1.0,2.33339,np.nan], decimal=5)
|
980 |
+
Traceback (most recent call last):
|
981 |
+
...
|
982 |
+
AssertionError:
|
983 |
+
Arrays are not almost equal to 5 decimals
|
984 |
+
<BLANKLINE>
|
985 |
+
Mismatched elements: 1 / 3 (33.3%)
|
986 |
+
Max absolute difference: 6.e-05
|
987 |
+
Max relative difference: 2.57136612e-05
|
988 |
+
x: array([1. , 2.33333, nan])
|
989 |
+
y: array([1. , 2.33339, nan])
|
990 |
+
|
991 |
+
>>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan],
|
992 |
+
... [1.0,2.33333, 5], decimal=5)
|
993 |
+
Traceback (most recent call last):
|
994 |
+
...
|
995 |
+
AssertionError:
|
996 |
+
Arrays are not almost equal to 5 decimals
|
997 |
+
<BLANKLINE>
|
998 |
+
x and y nan location mismatch:
|
999 |
+
x: array([1. , 2.33333, nan])
|
1000 |
+
y: array([1. , 2.33333, 5. ])
|
1001 |
+
|
1002 |
+
"""
|
1003 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1004 |
+
from numpy.core import number, float_, result_type
|
1005 |
+
from numpy.core.numerictypes import issubdtype
|
1006 |
+
from numpy.core.fromnumeric import any as npany
|
1007 |
+
|
1008 |
+
def compare(x, y):
|
1009 |
+
try:
|
1010 |
+
if npany(isinf(x)) or npany(isinf(y)):
|
1011 |
+
xinfid = isinf(x)
|
1012 |
+
yinfid = isinf(y)
|
1013 |
+
if not (xinfid == yinfid).all():
|
1014 |
+
return False
|
1015 |
+
# if one item, x and y is +- inf
|
1016 |
+
if x.size == y.size == 1:
|
1017 |
+
return x == y
|
1018 |
+
x = x[~xinfid]
|
1019 |
+
y = y[~yinfid]
|
1020 |
+
except (TypeError, NotImplementedError):
|
1021 |
+
pass
|
1022 |
+
|
1023 |
+
# make sure y is an inexact type to avoid abs(MIN_INT); will cause
|
1024 |
+
# casting of x later.
|
1025 |
+
dtype = result_type(y, 1.)
|
1026 |
+
y = np.asanyarray(y, dtype)
|
1027 |
+
z = abs(x - y)
|
1028 |
+
|
1029 |
+
if not issubdtype(z.dtype, number):
|
1030 |
+
z = z.astype(float_) # handle object arrays
|
1031 |
+
|
1032 |
+
return z < 1.5 * 10.0**(-decimal)
|
1033 |
+
|
1034 |
+
assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose,
|
1035 |
+
header=('Arrays are not almost equal to %d decimals' % decimal),
|
1036 |
+
precision=decimal)
|
1037 |
+
|
1038 |
+
|
1039 |
+
def assert_array_less(x, y, err_msg='', verbose=True):
|
1040 |
+
"""
|
1041 |
+
Raises an AssertionError if two array_like objects are not ordered by less
|
1042 |
+
than.
|
1043 |
+
|
1044 |
+
Given two array_like objects, check that the shape is equal and all
|
1045 |
+
elements of the first object are strictly smaller than those of the
|
1046 |
+
second object. An exception is raised at shape mismatch or incorrectly
|
1047 |
+
ordered values. Shape mismatch does not raise if an object has zero
|
1048 |
+
dimension. In contrast to the standard usage in numpy, NaNs are
|
1049 |
+
compared, no assertion is raised if both objects have NaNs in the same
|
1050 |
+
positions.
|
1051 |
+
|
1052 |
+
Parameters
|
1053 |
+
----------
|
1054 |
+
x : array_like
|
1055 |
+
The smaller object to check.
|
1056 |
+
y : array_like
|
1057 |
+
The larger object to compare.
|
1058 |
+
err_msg : string
|
1059 |
+
The error message to be printed in case of failure.
|
1060 |
+
verbose : bool
|
1061 |
+
If True, the conflicting values are appended to the error message.
|
1062 |
+
|
1063 |
+
Raises
|
1064 |
+
------
|
1065 |
+
AssertionError
|
1066 |
+
If x is not strictly smaller than y, element-wise.
|
1067 |
+
|
1068 |
+
See Also
|
1069 |
+
--------
|
1070 |
+
assert_array_equal: tests objects for equality
|
1071 |
+
assert_array_almost_equal: test objects for equality up to precision
|
1072 |
+
|
1073 |
+
Examples
|
1074 |
+
--------
|
1075 |
+
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan])
|
1076 |
+
>>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan])
|
1077 |
+
Traceback (most recent call last):
|
1078 |
+
...
|
1079 |
+
AssertionError:
|
1080 |
+
Arrays are not less-ordered
|
1081 |
+
<BLANKLINE>
|
1082 |
+
Mismatched elements: 1 / 3 (33.3%)
|
1083 |
+
Max absolute difference: 1.
|
1084 |
+
Max relative difference: 0.5
|
1085 |
+
x: array([ 1., 1., nan])
|
1086 |
+
y: array([ 1., 2., nan])
|
1087 |
+
|
1088 |
+
>>> np.testing.assert_array_less([1.0, 4.0], 3)
|
1089 |
+
Traceback (most recent call last):
|
1090 |
+
...
|
1091 |
+
AssertionError:
|
1092 |
+
Arrays are not less-ordered
|
1093 |
+
<BLANKLINE>
|
1094 |
+
Mismatched elements: 1 / 2 (50%)
|
1095 |
+
Max absolute difference: 2.
|
1096 |
+
Max relative difference: 0.66666667
|
1097 |
+
x: array([1., 4.])
|
1098 |
+
y: array(3)
|
1099 |
+
|
1100 |
+
>>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4])
|
1101 |
+
Traceback (most recent call last):
|
1102 |
+
...
|
1103 |
+
AssertionError:
|
1104 |
+
Arrays are not less-ordered
|
1105 |
+
<BLANKLINE>
|
1106 |
+
(shapes (3,), (1,) mismatch)
|
1107 |
+
x: array([1., 2., 3.])
|
1108 |
+
y: array([4])
|
1109 |
+
|
1110 |
+
"""
|
1111 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1112 |
+
assert_array_compare(operator.__lt__, x, y, err_msg=err_msg,
|
1113 |
+
verbose=verbose,
|
1114 |
+
header='Arrays are not less-ordered',
|
1115 |
+
equal_inf=False)
|
1116 |
+
|
1117 |
+
|
1118 |
+
def runstring(astr, dict):
|
1119 |
+
exec(astr, dict)
|
1120 |
+
|
1121 |
+
|
1122 |
+
def assert_string_equal(actual, desired):
|
1123 |
+
"""
|
1124 |
+
Test if two strings are equal.
|
1125 |
+
|
1126 |
+
If the given strings are equal, `assert_string_equal` does nothing.
|
1127 |
+
If they are not equal, an AssertionError is raised, and the diff
|
1128 |
+
between the strings is shown.
|
1129 |
+
|
1130 |
+
Parameters
|
1131 |
+
----------
|
1132 |
+
actual : str
|
1133 |
+
The string to test for equality against the expected string.
|
1134 |
+
desired : str
|
1135 |
+
The expected string.
|
1136 |
+
|
1137 |
+
Examples
|
1138 |
+
--------
|
1139 |
+
>>> np.testing.assert_string_equal('abc', 'abc')
|
1140 |
+
>>> np.testing.assert_string_equal('abc', 'abcd')
|
1141 |
+
Traceback (most recent call last):
|
1142 |
+
File "<stdin>", line 1, in <module>
|
1143 |
+
...
|
1144 |
+
AssertionError: Differences in strings:
|
1145 |
+
- abc+ abcd? +
|
1146 |
+
|
1147 |
+
"""
|
1148 |
+
# delay import of difflib to reduce startup time
|
1149 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1150 |
+
import difflib
|
1151 |
+
|
1152 |
+
if not isinstance(actual, str):
|
1153 |
+
raise AssertionError(repr(type(actual)))
|
1154 |
+
if not isinstance(desired, str):
|
1155 |
+
raise AssertionError(repr(type(desired)))
|
1156 |
+
if desired == actual:
|
1157 |
+
return
|
1158 |
+
|
1159 |
+
diff = list(difflib.Differ().compare(actual.splitlines(True),
|
1160 |
+
desired.splitlines(True)))
|
1161 |
+
diff_list = []
|
1162 |
+
while diff:
|
1163 |
+
d1 = diff.pop(0)
|
1164 |
+
if d1.startswith(' '):
|
1165 |
+
continue
|
1166 |
+
if d1.startswith('- '):
|
1167 |
+
l = [d1]
|
1168 |
+
d2 = diff.pop(0)
|
1169 |
+
if d2.startswith('? '):
|
1170 |
+
l.append(d2)
|
1171 |
+
d2 = diff.pop(0)
|
1172 |
+
if not d2.startswith('+ '):
|
1173 |
+
raise AssertionError(repr(d2))
|
1174 |
+
l.append(d2)
|
1175 |
+
if diff:
|
1176 |
+
d3 = diff.pop(0)
|
1177 |
+
if d3.startswith('? '):
|
1178 |
+
l.append(d3)
|
1179 |
+
else:
|
1180 |
+
diff.insert(0, d3)
|
1181 |
+
if d2[2:] == d1[2:]:
|
1182 |
+
continue
|
1183 |
+
diff_list.extend(l)
|
1184 |
+
continue
|
1185 |
+
raise AssertionError(repr(d1))
|
1186 |
+
if not diff_list:
|
1187 |
+
return
|
1188 |
+
msg = f"Differences in strings:\n{''.join(diff_list).rstrip()}"
|
1189 |
+
if actual != desired:
|
1190 |
+
raise AssertionError(msg)
|
1191 |
+
|
1192 |
+
|
1193 |
+
def rundocs(filename=None, raise_on_error=True):
|
1194 |
+
"""
|
1195 |
+
Run doctests found in the given file.
|
1196 |
+
|
1197 |
+
By default `rundocs` raises an AssertionError on failure.
|
1198 |
+
|
1199 |
+
Parameters
|
1200 |
+
----------
|
1201 |
+
filename : str
|
1202 |
+
The path to the file for which the doctests are run.
|
1203 |
+
raise_on_error : bool
|
1204 |
+
Whether to raise an AssertionError when a doctest fails. Default is
|
1205 |
+
True.
|
1206 |
+
|
1207 |
+
Notes
|
1208 |
+
-----
|
1209 |
+
The doctests can be run by the user/developer by adding the ``doctests``
|
1210 |
+
argument to the ``test()`` call. For example, to run all tests (including
|
1211 |
+
doctests) for `numpy.lib`:
|
1212 |
+
|
1213 |
+
>>> np.lib.test(doctests=True) # doctest: +SKIP
|
1214 |
+
"""
|
1215 |
+
from numpy.distutils.misc_util import exec_mod_from_location
|
1216 |
+
import doctest
|
1217 |
+
if filename is None:
|
1218 |
+
f = sys._getframe(1)
|
1219 |
+
filename = f.f_globals['__file__']
|
1220 |
+
name = os.path.splitext(os.path.basename(filename))[0]
|
1221 |
+
m = exec_mod_from_location(name, filename)
|
1222 |
+
|
1223 |
+
tests = doctest.DocTestFinder().find(m)
|
1224 |
+
runner = doctest.DocTestRunner(verbose=False)
|
1225 |
+
|
1226 |
+
msg = []
|
1227 |
+
if raise_on_error:
|
1228 |
+
out = lambda s: msg.append(s)
|
1229 |
+
else:
|
1230 |
+
out = None
|
1231 |
+
|
1232 |
+
for test in tests:
|
1233 |
+
runner.run(test, out=out)
|
1234 |
+
|
1235 |
+
if runner.failures > 0 and raise_on_error:
|
1236 |
+
raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg))
|
1237 |
+
|
1238 |
+
|
1239 |
+
def check_support_sve():
|
1240 |
+
"""
|
1241 |
+
gh-22982
|
1242 |
+
"""
|
1243 |
+
|
1244 |
+
import subprocess
|
1245 |
+
cmd = 'lscpu'
|
1246 |
+
try:
|
1247 |
+
output = subprocess.run(cmd, capture_output=True, text=True)
|
1248 |
+
return 'sve' in output.stdout
|
1249 |
+
except OSError:
|
1250 |
+
return False
|
1251 |
+
|
1252 |
+
|
1253 |
+
_SUPPORTS_SVE = check_support_sve()
|
1254 |
+
|
1255 |
+
#
|
1256 |
+
# assert_raises and assert_raises_regex are taken from unittest.
|
1257 |
+
#
|
1258 |
+
import unittest
|
1259 |
+
|
1260 |
+
|
1261 |
+
class _Dummy(unittest.TestCase):
|
1262 |
+
def nop(self):
|
1263 |
+
pass
|
1264 |
+
|
1265 |
+
|
1266 |
+
_d = _Dummy('nop')
|
1267 |
+
|
1268 |
+
|
1269 |
+
def assert_raises(*args, **kwargs):
|
1270 |
+
"""
|
1271 |
+
assert_raises(exception_class, callable, *args, **kwargs)
|
1272 |
+
assert_raises(exception_class)
|
1273 |
+
|
1274 |
+
Fail unless an exception of class exception_class is thrown
|
1275 |
+
by callable when invoked with arguments args and keyword
|
1276 |
+
arguments kwargs. If a different type of exception is
|
1277 |
+
thrown, it will not be caught, and the test case will be
|
1278 |
+
deemed to have suffered an error, exactly as for an
|
1279 |
+
unexpected exception.
|
1280 |
+
|
1281 |
+
Alternatively, `assert_raises` can be used as a context manager:
|
1282 |
+
|
1283 |
+
>>> from numpy.testing import assert_raises
|
1284 |
+
>>> with assert_raises(ZeroDivisionError):
|
1285 |
+
... 1 / 0
|
1286 |
+
|
1287 |
+
is equivalent to
|
1288 |
+
|
1289 |
+
>>> def div(x, y):
|
1290 |
+
... return x / y
|
1291 |
+
>>> assert_raises(ZeroDivisionError, div, 1, 0)
|
1292 |
+
|
1293 |
+
"""
|
1294 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1295 |
+
return _d.assertRaises(*args, **kwargs)
|
1296 |
+
|
1297 |
+
|
1298 |
+
def assert_raises_regex(exception_class, expected_regexp, *args, **kwargs):
|
1299 |
+
"""
|
1300 |
+
assert_raises_regex(exception_class, expected_regexp, callable, *args,
|
1301 |
+
**kwargs)
|
1302 |
+
assert_raises_regex(exception_class, expected_regexp)
|
1303 |
+
|
1304 |
+
Fail unless an exception of class exception_class and with message that
|
1305 |
+
matches expected_regexp is thrown by callable when invoked with arguments
|
1306 |
+
args and keyword arguments kwargs.
|
1307 |
+
|
1308 |
+
Alternatively, can be used as a context manager like `assert_raises`.
|
1309 |
+
|
1310 |
+
Notes
|
1311 |
+
-----
|
1312 |
+
.. versionadded:: 1.9.0
|
1313 |
+
|
1314 |
+
"""
|
1315 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1316 |
+
return _d.assertRaisesRegex(exception_class, expected_regexp, *args, **kwargs)
|
1317 |
+
|
1318 |
+
|
1319 |
+
def decorate_methods(cls, decorator, testmatch=None):
|
1320 |
+
"""
|
1321 |
+
Apply a decorator to all methods in a class matching a regular expression.
|
1322 |
+
|
1323 |
+
The given decorator is applied to all public methods of `cls` that are
|
1324 |
+
matched by the regular expression `testmatch`
|
1325 |
+
(``testmatch.search(methodname)``). Methods that are private, i.e. start
|
1326 |
+
with an underscore, are ignored.
|
1327 |
+
|
1328 |
+
Parameters
|
1329 |
+
----------
|
1330 |
+
cls : class
|
1331 |
+
Class whose methods to decorate.
|
1332 |
+
decorator : function
|
1333 |
+
Decorator to apply to methods
|
1334 |
+
testmatch : compiled regexp or str, optional
|
1335 |
+
The regular expression. Default value is None, in which case the
|
1336 |
+
nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``)
|
1337 |
+
is used.
|
1338 |
+
If `testmatch` is a string, it is compiled to a regular expression
|
1339 |
+
first.
|
1340 |
+
|
1341 |
+
"""
|
1342 |
+
if testmatch is None:
|
1343 |
+
testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)
|
1344 |
+
else:
|
1345 |
+
testmatch = re.compile(testmatch)
|
1346 |
+
cls_attr = cls.__dict__
|
1347 |
+
|
1348 |
+
# delayed import to reduce startup time
|
1349 |
+
from inspect import isfunction
|
1350 |
+
|
1351 |
+
methods = [_m for _m in cls_attr.values() if isfunction(_m)]
|
1352 |
+
for function in methods:
|
1353 |
+
try:
|
1354 |
+
if hasattr(function, 'compat_func_name'):
|
1355 |
+
funcname = function.compat_func_name
|
1356 |
+
else:
|
1357 |
+
funcname = function.__name__
|
1358 |
+
except AttributeError:
|
1359 |
+
# not a function
|
1360 |
+
continue
|
1361 |
+
if testmatch.search(funcname) and not funcname.startswith('_'):
|
1362 |
+
setattr(cls, funcname, decorator(function))
|
1363 |
+
return
|
1364 |
+
|
1365 |
+
|
1366 |
+
def measure(code_str, times=1, label=None):
|
1367 |
+
"""
|
1368 |
+
Return elapsed time for executing code in the namespace of the caller.
|
1369 |
+
|
1370 |
+
The supplied code string is compiled with the Python builtin ``compile``.
|
1371 |
+
The precision of the timing is 10 milli-seconds. If the code will execute
|
1372 |
+
fast on this timescale, it can be executed many times to get reasonable
|
1373 |
+
timing accuracy.
|
1374 |
+
|
1375 |
+
Parameters
|
1376 |
+
----------
|
1377 |
+
code_str : str
|
1378 |
+
The code to be timed.
|
1379 |
+
times : int, optional
|
1380 |
+
The number of times the code is executed. Default is 1. The code is
|
1381 |
+
only compiled once.
|
1382 |
+
label : str, optional
|
1383 |
+
A label to identify `code_str` with. This is passed into ``compile``
|
1384 |
+
as the second argument (for run-time error messages).
|
1385 |
+
|
1386 |
+
Returns
|
1387 |
+
-------
|
1388 |
+
elapsed : float
|
1389 |
+
Total elapsed time in seconds for executing `code_str` `times` times.
|
1390 |
+
|
1391 |
+
Examples
|
1392 |
+
--------
|
1393 |
+
>>> times = 10
|
1394 |
+
>>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', times=times)
|
1395 |
+
>>> print("Time for a single execution : ", etime / times, "s") # doctest: +SKIP
|
1396 |
+
Time for a single execution : 0.005 s
|
1397 |
+
|
1398 |
+
"""
|
1399 |
+
frame = sys._getframe(1)
|
1400 |
+
locs, globs = frame.f_locals, frame.f_globals
|
1401 |
+
|
1402 |
+
code = compile(code_str, f'Test name: {label} ', 'exec')
|
1403 |
+
i = 0
|
1404 |
+
elapsed = jiffies()
|
1405 |
+
while i < times:
|
1406 |
+
i += 1
|
1407 |
+
exec(code, globs, locs)
|
1408 |
+
elapsed = jiffies() - elapsed
|
1409 |
+
return 0.01*elapsed
|
1410 |
+
|
1411 |
+
|
1412 |
+
def _assert_valid_refcount(op):
|
1413 |
+
"""
|
1414 |
+
Check that ufuncs don't mishandle refcount of object `1`.
|
1415 |
+
Used in a few regression tests.
|
1416 |
+
"""
|
1417 |
+
if not HAS_REFCOUNT:
|
1418 |
+
return True
|
1419 |
+
|
1420 |
+
import gc
|
1421 |
+
import numpy as np
|
1422 |
+
|
1423 |
+
b = np.arange(100*100).reshape(100, 100)
|
1424 |
+
c = b
|
1425 |
+
i = 1
|
1426 |
+
|
1427 |
+
gc.disable()
|
1428 |
+
try:
|
1429 |
+
rc = sys.getrefcount(i)
|
1430 |
+
for j in range(15):
|
1431 |
+
d = op(b, c)
|
1432 |
+
assert_(sys.getrefcount(i) >= rc)
|
1433 |
+
finally:
|
1434 |
+
gc.enable()
|
1435 |
+
del d # for pyflakes
|
1436 |
+
|
1437 |
+
|
1438 |
+
def assert_allclose(actual, desired, rtol=1e-7, atol=0, equal_nan=True,
|
1439 |
+
err_msg='', verbose=True):
|
1440 |
+
"""
|
1441 |
+
Raises an AssertionError if two objects are not equal up to desired
|
1442 |
+
tolerance.
|
1443 |
+
|
1444 |
+
Given two array_like objects, check that their shapes and all elements
|
1445 |
+
are equal (but see the Notes for the special handling of a scalar). An
|
1446 |
+
exception is raised if the shapes mismatch or any values conflict. In
|
1447 |
+
contrast to the standard usage in numpy, NaNs are compared like numbers,
|
1448 |
+
no assertion is raised if both objects have NaNs in the same positions.
|
1449 |
+
|
1450 |
+
The test is equivalent to ``allclose(actual, desired, rtol, atol)`` (note
|
1451 |
+
that ``allclose`` has different default values). It compares the difference
|
1452 |
+
between `actual` and `desired` to ``atol + rtol * abs(desired)``.
|
1453 |
+
|
1454 |
+
.. versionadded:: 1.5.0
|
1455 |
+
|
1456 |
+
Parameters
|
1457 |
+
----------
|
1458 |
+
actual : array_like
|
1459 |
+
Array obtained.
|
1460 |
+
desired : array_like
|
1461 |
+
Array desired.
|
1462 |
+
rtol : float, optional
|
1463 |
+
Relative tolerance.
|
1464 |
+
atol : float, optional
|
1465 |
+
Absolute tolerance.
|
1466 |
+
equal_nan : bool, optional.
|
1467 |
+
If True, NaNs will compare equal.
|
1468 |
+
err_msg : str, optional
|
1469 |
+
The error message to be printed in case of failure.
|
1470 |
+
verbose : bool, optional
|
1471 |
+
If True, the conflicting values are appended to the error message.
|
1472 |
+
|
1473 |
+
Raises
|
1474 |
+
------
|
1475 |
+
AssertionError
|
1476 |
+
If actual and desired are not equal up to specified precision.
|
1477 |
+
|
1478 |
+
See Also
|
1479 |
+
--------
|
1480 |
+
assert_array_almost_equal_nulp, assert_array_max_ulp
|
1481 |
+
|
1482 |
+
Notes
|
1483 |
+
-----
|
1484 |
+
When one of `actual` and `desired` is a scalar and the other is
|
1485 |
+
array_like, the function checks that each element of the array_like
|
1486 |
+
object is equal to the scalar.
|
1487 |
+
|
1488 |
+
Examples
|
1489 |
+
--------
|
1490 |
+
>>> x = [1e-5, 1e-3, 1e-1]
|
1491 |
+
>>> y = np.arccos(np.cos(x))
|
1492 |
+
>>> np.testing.assert_allclose(x, y, rtol=1e-5, atol=0)
|
1493 |
+
|
1494 |
+
"""
|
1495 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1496 |
+
import numpy as np
|
1497 |
+
|
1498 |
+
def compare(x, y):
|
1499 |
+
return np.core.numeric.isclose(x, y, rtol=rtol, atol=atol,
|
1500 |
+
equal_nan=equal_nan)
|
1501 |
+
|
1502 |
+
actual, desired = np.asanyarray(actual), np.asanyarray(desired)
|
1503 |
+
header = f'Not equal to tolerance rtol={rtol:g}, atol={atol:g}'
|
1504 |
+
assert_array_compare(compare, actual, desired, err_msg=str(err_msg),
|
1505 |
+
verbose=verbose, header=header, equal_nan=equal_nan)
|
1506 |
+
|
1507 |
+
|
1508 |
+
def assert_array_almost_equal_nulp(x, y, nulp=1):
|
1509 |
+
"""
|
1510 |
+
Compare two arrays relatively to their spacing.
|
1511 |
+
|
1512 |
+
This is a relatively robust method to compare two arrays whose amplitude
|
1513 |
+
is variable.
|
1514 |
+
|
1515 |
+
Parameters
|
1516 |
+
----------
|
1517 |
+
x, y : array_like
|
1518 |
+
Input arrays.
|
1519 |
+
nulp : int, optional
|
1520 |
+
The maximum number of unit in the last place for tolerance (see Notes).
|
1521 |
+
Default is 1.
|
1522 |
+
|
1523 |
+
Returns
|
1524 |
+
-------
|
1525 |
+
None
|
1526 |
+
|
1527 |
+
Raises
|
1528 |
+
------
|
1529 |
+
AssertionError
|
1530 |
+
If the spacing between `x` and `y` for one or more elements is larger
|
1531 |
+
than `nulp`.
|
1532 |
+
|
1533 |
+
See Also
|
1534 |
+
--------
|
1535 |
+
assert_array_max_ulp : Check that all items of arrays differ in at most
|
1536 |
+
N Units in the Last Place.
|
1537 |
+
spacing : Return the distance between x and the nearest adjacent number.
|
1538 |
+
|
1539 |
+
Notes
|
1540 |
+
-----
|
1541 |
+
An assertion is raised if the following condition is not met::
|
1542 |
+
|
1543 |
+
abs(x - y) <= nulp * spacing(maximum(abs(x), abs(y)))
|
1544 |
+
|
1545 |
+
Examples
|
1546 |
+
--------
|
1547 |
+
>>> x = np.array([1., 1e-10, 1e-20])
|
1548 |
+
>>> eps = np.finfo(x.dtype).eps
|
1549 |
+
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x)
|
1550 |
+
|
1551 |
+
>>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x)
|
1552 |
+
Traceback (most recent call last):
|
1553 |
+
...
|
1554 |
+
AssertionError: X and Y are not equal to 1 ULP (max is 2)
|
1555 |
+
|
1556 |
+
"""
|
1557 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1558 |
+
import numpy as np
|
1559 |
+
ax = np.abs(x)
|
1560 |
+
ay = np.abs(y)
|
1561 |
+
ref = nulp * np.spacing(np.where(ax > ay, ax, ay))
|
1562 |
+
if not np.all(np.abs(x-y) <= ref):
|
1563 |
+
if np.iscomplexobj(x) or np.iscomplexobj(y):
|
1564 |
+
msg = "X and Y are not equal to %d ULP" % nulp
|
1565 |
+
else:
|
1566 |
+
max_nulp = np.max(nulp_diff(x, y))
|
1567 |
+
msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp)
|
1568 |
+
raise AssertionError(msg)
|
1569 |
+
|
1570 |
+
|
1571 |
+
def assert_array_max_ulp(a, b, maxulp=1, dtype=None):
|
1572 |
+
"""
|
1573 |
+
Check that all items of arrays differ in at most N Units in the Last Place.
|
1574 |
+
|
1575 |
+
Parameters
|
1576 |
+
----------
|
1577 |
+
a, b : array_like
|
1578 |
+
Input arrays to be compared.
|
1579 |
+
maxulp : int, optional
|
1580 |
+
The maximum number of units in the last place that elements of `a` and
|
1581 |
+
`b` can differ. Default is 1.
|
1582 |
+
dtype : dtype, optional
|
1583 |
+
Data-type to convert `a` and `b` to if given. Default is None.
|
1584 |
+
|
1585 |
+
Returns
|
1586 |
+
-------
|
1587 |
+
ret : ndarray
|
1588 |
+
Array containing number of representable floating point numbers between
|
1589 |
+
items in `a` and `b`.
|
1590 |
+
|
1591 |
+
Raises
|
1592 |
+
------
|
1593 |
+
AssertionError
|
1594 |
+
If one or more elements differ by more than `maxulp`.
|
1595 |
+
|
1596 |
+
Notes
|
1597 |
+
-----
|
1598 |
+
For computing the ULP difference, this API does not differentiate between
|
1599 |
+
various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
|
1600 |
+
is zero).
|
1601 |
+
|
1602 |
+
See Also
|
1603 |
+
--------
|
1604 |
+
assert_array_almost_equal_nulp : Compare two arrays relatively to their
|
1605 |
+
spacing.
|
1606 |
+
|
1607 |
+
Examples
|
1608 |
+
--------
|
1609 |
+
>>> a = np.linspace(0., 1., 100)
|
1610 |
+
>>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a)))
|
1611 |
+
|
1612 |
+
"""
|
1613 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1614 |
+
import numpy as np
|
1615 |
+
ret = nulp_diff(a, b, dtype)
|
1616 |
+
if not np.all(ret <= maxulp):
|
1617 |
+
raise AssertionError("Arrays are not almost equal up to %g "
|
1618 |
+
"ULP (max difference is %g ULP)" %
|
1619 |
+
(maxulp, np.max(ret)))
|
1620 |
+
return ret
|
1621 |
+
|
1622 |
+
|
1623 |
+
def nulp_diff(x, y, dtype=None):
|
1624 |
+
"""For each item in x and y, return the number of representable floating
|
1625 |
+
points between them.
|
1626 |
+
|
1627 |
+
Parameters
|
1628 |
+
----------
|
1629 |
+
x : array_like
|
1630 |
+
first input array
|
1631 |
+
y : array_like
|
1632 |
+
second input array
|
1633 |
+
dtype : dtype, optional
|
1634 |
+
Data-type to convert `x` and `y` to if given. Default is None.
|
1635 |
+
|
1636 |
+
Returns
|
1637 |
+
-------
|
1638 |
+
nulp : array_like
|
1639 |
+
number of representable floating point numbers between each item in x
|
1640 |
+
and y.
|
1641 |
+
|
1642 |
+
Notes
|
1643 |
+
-----
|
1644 |
+
For computing the ULP difference, this API does not differentiate between
|
1645 |
+
various representations of NAN (ULP difference between 0x7fc00000 and 0xffc00000
|
1646 |
+
is zero).
|
1647 |
+
|
1648 |
+
Examples
|
1649 |
+
--------
|
1650 |
+
# By definition, epsilon is the smallest number such as 1 + eps != 1, so
|
1651 |
+
# there should be exactly one ULP between 1 and 1 + eps
|
1652 |
+
>>> nulp_diff(1, 1 + np.finfo(x.dtype).eps)
|
1653 |
+
1.0
|
1654 |
+
"""
|
1655 |
+
import numpy as np
|
1656 |
+
if dtype:
|
1657 |
+
x = np.asarray(x, dtype=dtype)
|
1658 |
+
y = np.asarray(y, dtype=dtype)
|
1659 |
+
else:
|
1660 |
+
x = np.asarray(x)
|
1661 |
+
y = np.asarray(y)
|
1662 |
+
|
1663 |
+
t = np.common_type(x, y)
|
1664 |
+
if np.iscomplexobj(x) or np.iscomplexobj(y):
|
1665 |
+
raise NotImplementedError("_nulp not implemented for complex array")
|
1666 |
+
|
1667 |
+
x = np.array([x], dtype=t)
|
1668 |
+
y = np.array([y], dtype=t)
|
1669 |
+
|
1670 |
+
x[np.isnan(x)] = np.nan
|
1671 |
+
y[np.isnan(y)] = np.nan
|
1672 |
+
|
1673 |
+
if not x.shape == y.shape:
|
1674 |
+
raise ValueError("x and y do not have the same shape: %s - %s" %
|
1675 |
+
(x.shape, y.shape))
|
1676 |
+
|
1677 |
+
def _diff(rx, ry, vdt):
|
1678 |
+
diff = np.asarray(rx-ry, dtype=vdt)
|
1679 |
+
return np.abs(diff)
|
1680 |
+
|
1681 |
+
rx = integer_repr(x)
|
1682 |
+
ry = integer_repr(y)
|
1683 |
+
return _diff(rx, ry, t)
|
1684 |
+
|
1685 |
+
|
1686 |
+
def _integer_repr(x, vdt, comp):
|
1687 |
+
# Reinterpret binary representation of the float as sign-magnitude:
|
1688 |
+
# take into account two-complement representation
|
1689 |
+
# See also
|
1690 |
+
# https://randomascii.wordpress.com/2012/02/25/comparing-floating-point-numbers-2012-edition/
|
1691 |
+
rx = x.view(vdt)
|
1692 |
+
if not (rx.size == 1):
|
1693 |
+
rx[rx < 0] = comp - rx[rx < 0]
|
1694 |
+
else:
|
1695 |
+
if rx < 0:
|
1696 |
+
rx = comp - rx
|
1697 |
+
|
1698 |
+
return rx
|
1699 |
+
|
1700 |
+
|
1701 |
+
def integer_repr(x):
|
1702 |
+
"""Return the signed-magnitude interpretation of the binary representation
|
1703 |
+
of x."""
|
1704 |
+
import numpy as np
|
1705 |
+
if x.dtype == np.float16:
|
1706 |
+
return _integer_repr(x, np.int16, np.int16(-2**15))
|
1707 |
+
elif x.dtype == np.float32:
|
1708 |
+
return _integer_repr(x, np.int32, np.int32(-2**31))
|
1709 |
+
elif x.dtype == np.float64:
|
1710 |
+
return _integer_repr(x, np.int64, np.int64(-2**63))
|
1711 |
+
else:
|
1712 |
+
raise ValueError(f'Unsupported dtype {x.dtype}')
|
1713 |
+
|
1714 |
+
|
1715 |
+
@contextlib.contextmanager
|
1716 |
+
def _assert_warns_context(warning_class, name=None):
|
1717 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1718 |
+
with suppress_warnings() as sup:
|
1719 |
+
l = sup.record(warning_class)
|
1720 |
+
yield
|
1721 |
+
if not len(l) > 0:
|
1722 |
+
name_str = f' when calling {name}' if name is not None else ''
|
1723 |
+
raise AssertionError("No warning raised" + name_str)
|
1724 |
+
|
1725 |
+
|
1726 |
+
def assert_warns(warning_class, *args, **kwargs):
|
1727 |
+
"""
|
1728 |
+
Fail unless the given callable throws the specified warning.
|
1729 |
+
|
1730 |
+
A warning of class warning_class should be thrown by the callable when
|
1731 |
+
invoked with arguments args and keyword arguments kwargs.
|
1732 |
+
If a different type of warning is thrown, it will not be caught.
|
1733 |
+
|
1734 |
+
If called with all arguments other than the warning class omitted, may be
|
1735 |
+
used as a context manager:
|
1736 |
+
|
1737 |
+
with assert_warns(SomeWarning):
|
1738 |
+
do_something()
|
1739 |
+
|
1740 |
+
The ability to be used as a context manager is new in NumPy v1.11.0.
|
1741 |
+
|
1742 |
+
.. versionadded:: 1.4.0
|
1743 |
+
|
1744 |
+
Parameters
|
1745 |
+
----------
|
1746 |
+
warning_class : class
|
1747 |
+
The class defining the warning that `func` is expected to throw.
|
1748 |
+
func : callable, optional
|
1749 |
+
Callable to test
|
1750 |
+
*args : Arguments
|
1751 |
+
Arguments for `func`.
|
1752 |
+
**kwargs : Kwargs
|
1753 |
+
Keyword arguments for `func`.
|
1754 |
+
|
1755 |
+
Returns
|
1756 |
+
-------
|
1757 |
+
The value returned by `func`.
|
1758 |
+
|
1759 |
+
Examples
|
1760 |
+
--------
|
1761 |
+
>>> import warnings
|
1762 |
+
>>> def deprecated_func(num):
|
1763 |
+
... warnings.warn("Please upgrade", DeprecationWarning)
|
1764 |
+
... return num*num
|
1765 |
+
>>> with np.testing.assert_warns(DeprecationWarning):
|
1766 |
+
... assert deprecated_func(4) == 16
|
1767 |
+
>>> # or passing a func
|
1768 |
+
>>> ret = np.testing.assert_warns(DeprecationWarning, deprecated_func, 4)
|
1769 |
+
>>> assert ret == 16
|
1770 |
+
"""
|
1771 |
+
if not args:
|
1772 |
+
return _assert_warns_context(warning_class)
|
1773 |
+
|
1774 |
+
func = args[0]
|
1775 |
+
args = args[1:]
|
1776 |
+
with _assert_warns_context(warning_class, name=func.__name__):
|
1777 |
+
return func(*args, **kwargs)
|
1778 |
+
|
1779 |
+
|
1780 |
+
@contextlib.contextmanager
|
1781 |
+
def _assert_no_warnings_context(name=None):
|
1782 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
1783 |
+
with warnings.catch_warnings(record=True) as l:
|
1784 |
+
warnings.simplefilter('always')
|
1785 |
+
yield
|
1786 |
+
if len(l) > 0:
|
1787 |
+
name_str = f' when calling {name}' if name is not None else ''
|
1788 |
+
raise AssertionError(f'Got warnings{name_str}: {l}')
|
1789 |
+
|
1790 |
+
|
1791 |
+
def assert_no_warnings(*args, **kwargs):
|
1792 |
+
"""
|
1793 |
+
Fail if the given callable produces any warnings.
|
1794 |
+
|
1795 |
+
If called with all arguments omitted, may be used as a context manager:
|
1796 |
+
|
1797 |
+
with assert_no_warnings():
|
1798 |
+
do_something()
|
1799 |
+
|
1800 |
+
The ability to be used as a context manager is new in NumPy v1.11.0.
|
1801 |
+
|
1802 |
+
.. versionadded:: 1.7.0
|
1803 |
+
|
1804 |
+
Parameters
|
1805 |
+
----------
|
1806 |
+
func : callable
|
1807 |
+
The callable to test.
|
1808 |
+
\\*args : Arguments
|
1809 |
+
Arguments passed to `func`.
|
1810 |
+
\\*\\*kwargs : Kwargs
|
1811 |
+
Keyword arguments passed to `func`.
|
1812 |
+
|
1813 |
+
Returns
|
1814 |
+
-------
|
1815 |
+
The value returned by `func`.
|
1816 |
+
|
1817 |
+
"""
|
1818 |
+
if not args:
|
1819 |
+
return _assert_no_warnings_context()
|
1820 |
+
|
1821 |
+
func = args[0]
|
1822 |
+
args = args[1:]
|
1823 |
+
with _assert_no_warnings_context(name=func.__name__):
|
1824 |
+
return func(*args, **kwargs)
|
1825 |
+
|
1826 |
+
|
1827 |
+
def _gen_alignment_data(dtype=float32, type='binary', max_size=24):
|
1828 |
+
"""
|
1829 |
+
generator producing data with different alignment and offsets
|
1830 |
+
to test simd vectorization
|
1831 |
+
|
1832 |
+
Parameters
|
1833 |
+
----------
|
1834 |
+
dtype : dtype
|
1835 |
+
data type to produce
|
1836 |
+
type : string
|
1837 |
+
'unary': create data for unary operations, creates one input
|
1838 |
+
and output array
|
1839 |
+
'binary': create data for unary operations, creates two input
|
1840 |
+
and output array
|
1841 |
+
max_size : integer
|
1842 |
+
maximum size of data to produce
|
1843 |
+
|
1844 |
+
Returns
|
1845 |
+
-------
|
1846 |
+
if type is 'unary' yields one output, one input array and a message
|
1847 |
+
containing information on the data
|
1848 |
+
if type is 'binary' yields one output array, two input array and a message
|
1849 |
+
containing information on the data
|
1850 |
+
|
1851 |
+
"""
|
1852 |
+
ufmt = 'unary offset=(%d, %d), size=%d, dtype=%r, %s'
|
1853 |
+
bfmt = 'binary offset=(%d, %d, %d), size=%d, dtype=%r, %s'
|
1854 |
+
for o in range(3):
|
1855 |
+
for s in range(o + 2, max(o + 3, max_size)):
|
1856 |
+
if type == 'unary':
|
1857 |
+
inp = lambda: arange(s, dtype=dtype)[o:]
|
1858 |
+
out = empty((s,), dtype=dtype)[o:]
|
1859 |
+
yield out, inp(), ufmt % (o, o, s, dtype, 'out of place')
|
1860 |
+
d = inp()
|
1861 |
+
yield d, d, ufmt % (o, o, s, dtype, 'in place')
|
1862 |
+
yield out[1:], inp()[:-1], ufmt % \
|
1863 |
+
(o + 1, o, s - 1, dtype, 'out of place')
|
1864 |
+
yield out[:-1], inp()[1:], ufmt % \
|
1865 |
+
(o, o + 1, s - 1, dtype, 'out of place')
|
1866 |
+
yield inp()[:-1], inp()[1:], ufmt % \
|
1867 |
+
(o, o + 1, s - 1, dtype, 'aliased')
|
1868 |
+
yield inp()[1:], inp()[:-1], ufmt % \
|
1869 |
+
(o + 1, o, s - 1, dtype, 'aliased')
|
1870 |
+
if type == 'binary':
|
1871 |
+
inp1 = lambda: arange(s, dtype=dtype)[o:]
|
1872 |
+
inp2 = lambda: arange(s, dtype=dtype)[o:]
|
1873 |
+
out = empty((s,), dtype=dtype)[o:]
|
1874 |
+
yield out, inp1(), inp2(), bfmt % \
|
1875 |
+
(o, o, o, s, dtype, 'out of place')
|
1876 |
+
d = inp1()
|
1877 |
+
yield d, d, inp2(), bfmt % \
|
1878 |
+
(o, o, o, s, dtype, 'in place1')
|
1879 |
+
d = inp2()
|
1880 |
+
yield d, inp1(), d, bfmt % \
|
1881 |
+
(o, o, o, s, dtype, 'in place2')
|
1882 |
+
yield out[1:], inp1()[:-1], inp2()[:-1], bfmt % \
|
1883 |
+
(o + 1, o, o, s - 1, dtype, 'out of place')
|
1884 |
+
yield out[:-1], inp1()[1:], inp2()[:-1], bfmt % \
|
1885 |
+
(o, o + 1, o, s - 1, dtype, 'out of place')
|
1886 |
+
yield out[:-1], inp1()[:-1], inp2()[1:], bfmt % \
|
1887 |
+
(o, o, o + 1, s - 1, dtype, 'out of place')
|
1888 |
+
yield inp1()[1:], inp1()[:-1], inp2()[:-1], bfmt % \
|
1889 |
+
(o + 1, o, o, s - 1, dtype, 'aliased')
|
1890 |
+
yield inp1()[:-1], inp1()[1:], inp2()[:-1], bfmt % \
|
1891 |
+
(o, o + 1, o, s - 1, dtype, 'aliased')
|
1892 |
+
yield inp1()[:-1], inp1()[:-1], inp2()[1:], bfmt % \
|
1893 |
+
(o, o, o + 1, s - 1, dtype, 'aliased')
|
1894 |
+
|
1895 |
+
|
1896 |
+
class IgnoreException(Exception):
|
1897 |
+
"Ignoring this exception due to disabled feature"
|
1898 |
+
pass
|
1899 |
+
|
1900 |
+
|
1901 |
+
@contextlib.contextmanager
|
1902 |
+
def tempdir(*args, **kwargs):
|
1903 |
+
"""Context manager to provide a temporary test folder.
|
1904 |
+
|
1905 |
+
All arguments are passed as this to the underlying tempfile.mkdtemp
|
1906 |
+
function.
|
1907 |
+
|
1908 |
+
"""
|
1909 |
+
tmpdir = mkdtemp(*args, **kwargs)
|
1910 |
+
try:
|
1911 |
+
yield tmpdir
|
1912 |
+
finally:
|
1913 |
+
shutil.rmtree(tmpdir)
|
1914 |
+
|
1915 |
+
|
1916 |
+
@contextlib.contextmanager
|
1917 |
+
def temppath(*args, **kwargs):
|
1918 |
+
"""Context manager for temporary files.
|
1919 |
+
|
1920 |
+
Context manager that returns the path to a closed temporary file. Its
|
1921 |
+
parameters are the same as for tempfile.mkstemp and are passed directly
|
1922 |
+
to that function. The underlying file is removed when the context is
|
1923 |
+
exited, so it should be closed at that time.
|
1924 |
+
|
1925 |
+
Windows does not allow a temporary file to be opened if it is already
|
1926 |
+
open, so the underlying file must be closed after opening before it
|
1927 |
+
can be opened again.
|
1928 |
+
|
1929 |
+
"""
|
1930 |
+
fd, path = mkstemp(*args, **kwargs)
|
1931 |
+
os.close(fd)
|
1932 |
+
try:
|
1933 |
+
yield path
|
1934 |
+
finally:
|
1935 |
+
os.remove(path)
|
1936 |
+
|
1937 |
+
|
1938 |
+
class clear_and_catch_warnings(warnings.catch_warnings):
|
1939 |
+
""" Context manager that resets warning registry for catching warnings
|
1940 |
+
|
1941 |
+
Warnings can be slippery, because, whenever a warning is triggered, Python
|
1942 |
+
adds a ``__warningregistry__`` member to the *calling* module. This makes
|
1943 |
+
it impossible to retrigger the warning in this module, whatever you put in
|
1944 |
+
the warnings filters. This context manager accepts a sequence of `modules`
|
1945 |
+
as a keyword argument to its constructor and:
|
1946 |
+
|
1947 |
+
* stores and removes any ``__warningregistry__`` entries in given `modules`
|
1948 |
+
on entry;
|
1949 |
+
* resets ``__warningregistry__`` to its previous state on exit.
|
1950 |
+
|
1951 |
+
This makes it possible to trigger any warning afresh inside the context
|
1952 |
+
manager without disturbing the state of warnings outside.
|
1953 |
+
|
1954 |
+
For compatibility with Python 3.0, please consider all arguments to be
|
1955 |
+
keyword-only.
|
1956 |
+
|
1957 |
+
Parameters
|
1958 |
+
----------
|
1959 |
+
record : bool, optional
|
1960 |
+
Specifies whether warnings should be captured by a custom
|
1961 |
+
implementation of ``warnings.showwarning()`` and be appended to a list
|
1962 |
+
returned by the context manager. Otherwise None is returned by the
|
1963 |
+
context manager. The objects appended to the list are arguments whose
|
1964 |
+
attributes mirror the arguments to ``showwarning()``.
|
1965 |
+
modules : sequence, optional
|
1966 |
+
Sequence of modules for which to reset warnings registry on entry and
|
1967 |
+
restore on exit. To work correctly, all 'ignore' filters should
|
1968 |
+
filter by one of these modules.
|
1969 |
+
|
1970 |
+
Examples
|
1971 |
+
--------
|
1972 |
+
>>> import warnings
|
1973 |
+
>>> with np.testing.clear_and_catch_warnings(
|
1974 |
+
... modules=[np.core.fromnumeric]):
|
1975 |
+
... warnings.simplefilter('always')
|
1976 |
+
... warnings.filterwarnings('ignore', module='np.core.fromnumeric')
|
1977 |
+
... # do something that raises a warning but ignore those in
|
1978 |
+
... # np.core.fromnumeric
|
1979 |
+
"""
|
1980 |
+
class_modules = ()
|
1981 |
+
|
1982 |
+
def __init__(self, record=False, modules=()):
|
1983 |
+
self.modules = set(modules).union(self.class_modules)
|
1984 |
+
self._warnreg_copies = {}
|
1985 |
+
super().__init__(record=record)
|
1986 |
+
|
1987 |
+
def __enter__(self):
|
1988 |
+
for mod in self.modules:
|
1989 |
+
if hasattr(mod, '__warningregistry__'):
|
1990 |
+
mod_reg = mod.__warningregistry__
|
1991 |
+
self._warnreg_copies[mod] = mod_reg.copy()
|
1992 |
+
mod_reg.clear()
|
1993 |
+
return super().__enter__()
|
1994 |
+
|
1995 |
+
def __exit__(self, *exc_info):
|
1996 |
+
super().__exit__(*exc_info)
|
1997 |
+
for mod in self.modules:
|
1998 |
+
if hasattr(mod, '__warningregistry__'):
|
1999 |
+
mod.__warningregistry__.clear()
|
2000 |
+
if mod in self._warnreg_copies:
|
2001 |
+
mod.__warningregistry__.update(self._warnreg_copies[mod])
|
2002 |
+
|
2003 |
+
|
2004 |
+
class suppress_warnings:
|
2005 |
+
"""
|
2006 |
+
Context manager and decorator doing much the same as
|
2007 |
+
``warnings.catch_warnings``.
|
2008 |
+
|
2009 |
+
However, it also provides a filter mechanism to work around
|
2010 |
+
https://bugs.python.org/issue4180.
|
2011 |
+
|
2012 |
+
This bug causes Python before 3.4 to not reliably show warnings again
|
2013 |
+
after they have been ignored once (even within catch_warnings). It
|
2014 |
+
means that no "ignore" filter can be used easily, since following
|
2015 |
+
tests might need to see the warning. Additionally it allows easier
|
2016 |
+
specificity for testing warnings and can be nested.
|
2017 |
+
|
2018 |
+
Parameters
|
2019 |
+
----------
|
2020 |
+
forwarding_rule : str, optional
|
2021 |
+
One of "always", "once", "module", or "location". Analogous to
|
2022 |
+
the usual warnings module filter mode, it is useful to reduce
|
2023 |
+
noise mostly on the outmost level. Unsuppressed and unrecorded
|
2024 |
+
warnings will be forwarded based on this rule. Defaults to "always".
|
2025 |
+
"location" is equivalent to the warnings "default", match by exact
|
2026 |
+
location the warning warning originated from.
|
2027 |
+
|
2028 |
+
Notes
|
2029 |
+
-----
|
2030 |
+
Filters added inside the context manager will be discarded again
|
2031 |
+
when leaving it. Upon entering all filters defined outside a
|
2032 |
+
context will be applied automatically.
|
2033 |
+
|
2034 |
+
When a recording filter is added, matching warnings are stored in the
|
2035 |
+
``log`` attribute as well as in the list returned by ``record``.
|
2036 |
+
|
2037 |
+
If filters are added and the ``module`` keyword is given, the
|
2038 |
+
warning registry of this module will additionally be cleared when
|
2039 |
+
applying it, entering the context, or exiting it. This could cause
|
2040 |
+
warnings to appear a second time after leaving the context if they
|
2041 |
+
were configured to be printed once (default) and were already
|
2042 |
+
printed before the context was entered.
|
2043 |
+
|
2044 |
+
Nesting this context manager will work as expected when the
|
2045 |
+
forwarding rule is "always" (default). Unfiltered and unrecorded
|
2046 |
+
warnings will be passed out and be matched by the outer level.
|
2047 |
+
On the outmost level they will be printed (or caught by another
|
2048 |
+
warnings context). The forwarding rule argument can modify this
|
2049 |
+
behaviour.
|
2050 |
+
|
2051 |
+
Like ``catch_warnings`` this context manager is not threadsafe.
|
2052 |
+
|
2053 |
+
Examples
|
2054 |
+
--------
|
2055 |
+
|
2056 |
+
With a context manager::
|
2057 |
+
|
2058 |
+
with np.testing.suppress_warnings() as sup:
|
2059 |
+
sup.filter(DeprecationWarning, "Some text")
|
2060 |
+
sup.filter(module=np.ma.core)
|
2061 |
+
log = sup.record(FutureWarning, "Does this occur?")
|
2062 |
+
command_giving_warnings()
|
2063 |
+
# The FutureWarning was given once, the filtered warnings were
|
2064 |
+
# ignored. All other warnings abide outside settings (may be
|
2065 |
+
# printed/error)
|
2066 |
+
assert_(len(log) == 1)
|
2067 |
+
assert_(len(sup.log) == 1) # also stored in log attribute
|
2068 |
+
|
2069 |
+
Or as a decorator::
|
2070 |
+
|
2071 |
+
sup = np.testing.suppress_warnings()
|
2072 |
+
sup.filter(module=np.ma.core) # module must match exactly
|
2073 |
+
@sup
|
2074 |
+
def some_function():
|
2075 |
+
# do something which causes a warning in np.ma.core
|
2076 |
+
pass
|
2077 |
+
"""
|
2078 |
+
def __init__(self, forwarding_rule="always"):
|
2079 |
+
self._entered = False
|
2080 |
+
|
2081 |
+
# Suppressions are either instance or defined inside one with block:
|
2082 |
+
self._suppressions = []
|
2083 |
+
|
2084 |
+
if forwarding_rule not in {"always", "module", "once", "location"}:
|
2085 |
+
raise ValueError("unsupported forwarding rule.")
|
2086 |
+
self._forwarding_rule = forwarding_rule
|
2087 |
+
|
2088 |
+
def _clear_registries(self):
|
2089 |
+
if hasattr(warnings, "_filters_mutated"):
|
2090 |
+
# clearing the registry should not be necessary on new pythons,
|
2091 |
+
# instead the filters should be mutated.
|
2092 |
+
warnings._filters_mutated()
|
2093 |
+
return
|
2094 |
+
# Simply clear the registry, this should normally be harmless,
|
2095 |
+
# note that on new pythons it would be invalidated anyway.
|
2096 |
+
for module in self._tmp_modules:
|
2097 |
+
if hasattr(module, "__warningregistry__"):
|
2098 |
+
module.__warningregistry__.clear()
|
2099 |
+
|
2100 |
+
def _filter(self, category=Warning, message="", module=None, record=False):
|
2101 |
+
if record:
|
2102 |
+
record = [] # The log where to store warnings
|
2103 |
+
else:
|
2104 |
+
record = None
|
2105 |
+
if self._entered:
|
2106 |
+
if module is None:
|
2107 |
+
warnings.filterwarnings(
|
2108 |
+
"always", category=category, message=message)
|
2109 |
+
else:
|
2110 |
+
module_regex = module.__name__.replace('.', r'\.') + '$'
|
2111 |
+
warnings.filterwarnings(
|
2112 |
+
"always", category=category, message=message,
|
2113 |
+
module=module_regex)
|
2114 |
+
self._tmp_modules.add(module)
|
2115 |
+
self._clear_registries()
|
2116 |
+
|
2117 |
+
self._tmp_suppressions.append(
|
2118 |
+
(category, message, re.compile(message, re.I), module, record))
|
2119 |
+
else:
|
2120 |
+
self._suppressions.append(
|
2121 |
+
(category, message, re.compile(message, re.I), module, record))
|
2122 |
+
|
2123 |
+
return record
|
2124 |
+
|
2125 |
+
def filter(self, category=Warning, message="", module=None):
|
2126 |
+
"""
|
2127 |
+
Add a new suppressing filter or apply it if the state is entered.
|
2128 |
+
|
2129 |
+
Parameters
|
2130 |
+
----------
|
2131 |
+
category : class, optional
|
2132 |
+
Warning class to filter
|
2133 |
+
message : string, optional
|
2134 |
+
Regular expression matching the warning message.
|
2135 |
+
module : module, optional
|
2136 |
+
Module to filter for. Note that the module (and its file)
|
2137 |
+
must match exactly and cannot be a submodule. This may make
|
2138 |
+
it unreliable for external modules.
|
2139 |
+
|
2140 |
+
Notes
|
2141 |
+
-----
|
2142 |
+
When added within a context, filters are only added inside
|
2143 |
+
the context and will be forgotten when the context is exited.
|
2144 |
+
"""
|
2145 |
+
self._filter(category=category, message=message, module=module,
|
2146 |
+
record=False)
|
2147 |
+
|
2148 |
+
def record(self, category=Warning, message="", module=None):
|
2149 |
+
"""
|
2150 |
+
Append a new recording filter or apply it if the state is entered.
|
2151 |
+
|
2152 |
+
All warnings matching will be appended to the ``log`` attribute.
|
2153 |
+
|
2154 |
+
Parameters
|
2155 |
+
----------
|
2156 |
+
category : class, optional
|
2157 |
+
Warning class to filter
|
2158 |
+
message : string, optional
|
2159 |
+
Regular expression matching the warning message.
|
2160 |
+
module : module, optional
|
2161 |
+
Module to filter for. Note that the module (and its file)
|
2162 |
+
must match exactly and cannot be a submodule. This may make
|
2163 |
+
it unreliable for external modules.
|
2164 |
+
|
2165 |
+
Returns
|
2166 |
+
-------
|
2167 |
+
log : list
|
2168 |
+
A list which will be filled with all matched warnings.
|
2169 |
+
|
2170 |
+
Notes
|
2171 |
+
-----
|
2172 |
+
When added within a context, filters are only added inside
|
2173 |
+
the context and will be forgotten when the context is exited.
|
2174 |
+
"""
|
2175 |
+
return self._filter(category=category, message=message, module=module,
|
2176 |
+
record=True)
|
2177 |
+
|
2178 |
+
def __enter__(self):
|
2179 |
+
if self._entered:
|
2180 |
+
raise RuntimeError("cannot enter suppress_warnings twice.")
|
2181 |
+
|
2182 |
+
self._orig_show = warnings.showwarning
|
2183 |
+
self._filters = warnings.filters
|
2184 |
+
warnings.filters = self._filters[:]
|
2185 |
+
|
2186 |
+
self._entered = True
|
2187 |
+
self._tmp_suppressions = []
|
2188 |
+
self._tmp_modules = set()
|
2189 |
+
self._forwarded = set()
|
2190 |
+
|
2191 |
+
self.log = [] # reset global log (no need to keep same list)
|
2192 |
+
|
2193 |
+
for cat, mess, _, mod, log in self._suppressions:
|
2194 |
+
if log is not None:
|
2195 |
+
del log[:] # clear the log
|
2196 |
+
if mod is None:
|
2197 |
+
warnings.filterwarnings(
|
2198 |
+
"always", category=cat, message=mess)
|
2199 |
+
else:
|
2200 |
+
module_regex = mod.__name__.replace('.', r'\.') + '$'
|
2201 |
+
warnings.filterwarnings(
|
2202 |
+
"always", category=cat, message=mess,
|
2203 |
+
module=module_regex)
|
2204 |
+
self._tmp_modules.add(mod)
|
2205 |
+
warnings.showwarning = self._showwarning
|
2206 |
+
self._clear_registries()
|
2207 |
+
|
2208 |
+
return self
|
2209 |
+
|
2210 |
+
def __exit__(self, *exc_info):
|
2211 |
+
warnings.showwarning = self._orig_show
|
2212 |
+
warnings.filters = self._filters
|
2213 |
+
self._clear_registries()
|
2214 |
+
self._entered = False
|
2215 |
+
del self._orig_show
|
2216 |
+
del self._filters
|
2217 |
+
|
2218 |
+
def _showwarning(self, message, category, filename, lineno,
|
2219 |
+
*args, use_warnmsg=None, **kwargs):
|
2220 |
+
for cat, _, pattern, mod, rec in (
|
2221 |
+
self._suppressions + self._tmp_suppressions)[::-1]:
|
2222 |
+
if (issubclass(category, cat) and
|
2223 |
+
pattern.match(message.args[0]) is not None):
|
2224 |
+
if mod is None:
|
2225 |
+
# Message and category match, either recorded or ignored
|
2226 |
+
if rec is not None:
|
2227 |
+
msg = WarningMessage(message, category, filename,
|
2228 |
+
lineno, **kwargs)
|
2229 |
+
self.log.append(msg)
|
2230 |
+
rec.append(msg)
|
2231 |
+
return
|
2232 |
+
# Use startswith, because warnings strips the c or o from
|
2233 |
+
# .pyc/.pyo files.
|
2234 |
+
elif mod.__file__.startswith(filename):
|
2235 |
+
# The message and module (filename) match
|
2236 |
+
if rec is not None:
|
2237 |
+
msg = WarningMessage(message, category, filename,
|
2238 |
+
lineno, **kwargs)
|
2239 |
+
self.log.append(msg)
|
2240 |
+
rec.append(msg)
|
2241 |
+
return
|
2242 |
+
|
2243 |
+
# There is no filter in place, so pass to the outside handler
|
2244 |
+
# unless we should only pass it once
|
2245 |
+
if self._forwarding_rule == "always":
|
2246 |
+
if use_warnmsg is None:
|
2247 |
+
self._orig_show(message, category, filename, lineno,
|
2248 |
+
*args, **kwargs)
|
2249 |
+
else:
|
2250 |
+
self._orig_showmsg(use_warnmsg)
|
2251 |
+
return
|
2252 |
+
|
2253 |
+
if self._forwarding_rule == "once":
|
2254 |
+
signature = (message.args, category)
|
2255 |
+
elif self._forwarding_rule == "module":
|
2256 |
+
signature = (message.args, category, filename)
|
2257 |
+
elif self._forwarding_rule == "location":
|
2258 |
+
signature = (message.args, category, filename, lineno)
|
2259 |
+
|
2260 |
+
if signature in self._forwarded:
|
2261 |
+
return
|
2262 |
+
self._forwarded.add(signature)
|
2263 |
+
if use_warnmsg is None:
|
2264 |
+
self._orig_show(message, category, filename, lineno, *args,
|
2265 |
+
**kwargs)
|
2266 |
+
else:
|
2267 |
+
self._orig_showmsg(use_warnmsg)
|
2268 |
+
|
2269 |
+
def __call__(self, func):
|
2270 |
+
"""
|
2271 |
+
Function decorator to apply certain suppressions to a whole
|
2272 |
+
function.
|
2273 |
+
"""
|
2274 |
+
@wraps(func)
|
2275 |
+
def new_func(*args, **kwargs):
|
2276 |
+
with self:
|
2277 |
+
return func(*args, **kwargs)
|
2278 |
+
|
2279 |
+
return new_func
|
2280 |
+
|
2281 |
+
|
2282 |
+
@contextlib.contextmanager
|
2283 |
+
def _assert_no_gc_cycles_context(name=None):
|
2284 |
+
__tracebackhide__ = True # Hide traceback for py.test
|
2285 |
+
|
2286 |
+
# not meaningful to test if there is no refcounting
|
2287 |
+
if not HAS_REFCOUNT:
|
2288 |
+
yield
|
2289 |
+
return
|
2290 |
+
|
2291 |
+
assert_(gc.isenabled())
|
2292 |
+
gc.disable()
|
2293 |
+
gc_debug = gc.get_debug()
|
2294 |
+
try:
|
2295 |
+
for i in range(100):
|
2296 |
+
if gc.collect() == 0:
|
2297 |
+
break
|
2298 |
+
else:
|
2299 |
+
raise RuntimeError(
|
2300 |
+
"Unable to fully collect garbage - perhaps a __del__ method "
|
2301 |
+
"is creating more reference cycles?")
|
2302 |
+
|
2303 |
+
gc.set_debug(gc.DEBUG_SAVEALL)
|
2304 |
+
yield
|
2305 |
+
# gc.collect returns the number of unreachable objects in cycles that
|
2306 |
+
# were found -- we are checking that no cycles were created in the context
|
2307 |
+
n_objects_in_cycles = gc.collect()
|
2308 |
+
objects_in_cycles = gc.garbage[:]
|
2309 |
+
finally:
|
2310 |
+
del gc.garbage[:]
|
2311 |
+
gc.set_debug(gc_debug)
|
2312 |
+
gc.enable()
|
2313 |
+
|
2314 |
+
if n_objects_in_cycles:
|
2315 |
+
name_str = f' when calling {name}' if name is not None else ''
|
2316 |
+
raise AssertionError(
|
2317 |
+
"Reference cycles were found{}: {} objects were collected, "
|
2318 |
+
"of which {} are shown below:{}"
|
2319 |
+
.format(
|
2320 |
+
name_str,
|
2321 |
+
n_objects_in_cycles,
|
2322 |
+
len(objects_in_cycles),
|
2323 |
+
''.join(
|
2324 |
+
"\n {} object with id={}:\n {}".format(
|
2325 |
+
type(o).__name__,
|
2326 |
+
id(o),
|
2327 |
+
pprint.pformat(o).replace('\n', '\n ')
|
2328 |
+
) for o in objects_in_cycles
|
2329 |
+
)
|
2330 |
+
)
|
2331 |
+
)
|
2332 |
+
|
2333 |
+
|
2334 |
+
def assert_no_gc_cycles(*args, **kwargs):
|
2335 |
+
"""
|
2336 |
+
Fail if the given callable produces any reference cycles.
|
2337 |
+
|
2338 |
+
If called with all arguments omitted, may be used as a context manager:
|
2339 |
+
|
2340 |
+
with assert_no_gc_cycles():
|
2341 |
+
do_something()
|
2342 |
+
|
2343 |
+
.. versionadded:: 1.15.0
|
2344 |
+
|
2345 |
+
Parameters
|
2346 |
+
----------
|
2347 |
+
func : callable
|
2348 |
+
The callable to test.
|
2349 |
+
\\*args : Arguments
|
2350 |
+
Arguments passed to `func`.
|
2351 |
+
\\*\\*kwargs : Kwargs
|
2352 |
+
Keyword arguments passed to `func`.
|
2353 |
+
|
2354 |
+
Returns
|
2355 |
+
-------
|
2356 |
+
Nothing. The result is deliberately discarded to ensure that all cycles
|
2357 |
+
are found.
|
2358 |
+
|
2359 |
+
"""
|
2360 |
+
if not args:
|
2361 |
+
return _assert_no_gc_cycles_context()
|
2362 |
+
|
2363 |
+
func = args[0]
|
2364 |
+
args = args[1:]
|
2365 |
+
with _assert_no_gc_cycles_context(name=func.__name__):
|
2366 |
+
func(*args, **kwargs)
|
2367 |
+
|
2368 |
+
|
2369 |
+
def break_cycles():
|
2370 |
+
"""
|
2371 |
+
Break reference cycles by calling gc.collect
|
2372 |
+
Objects can call other objects' methods (for instance, another object's
|
2373 |
+
__del__) inside their own __del__. On PyPy, the interpreter only runs
|
2374 |
+
between calls to gc.collect, so multiple calls are needed to completely
|
2375 |
+
release all cycles.
|
2376 |
+
"""
|
2377 |
+
|
2378 |
+
gc.collect()
|
2379 |
+
if IS_PYPY:
|
2380 |
+
# a few more, just to make sure all the finalizers are called
|
2381 |
+
gc.collect()
|
2382 |
+
gc.collect()
|
2383 |
+
gc.collect()
|
2384 |
+
gc.collect()
|
2385 |
+
|
2386 |
+
|
2387 |
+
def requires_memory(free_bytes):
|
2388 |
+
"""Decorator to skip a test if not enough memory is available"""
|
2389 |
+
import pytest
|
2390 |
+
|
2391 |
+
def decorator(func):
|
2392 |
+
@wraps(func)
|
2393 |
+
def wrapper(*a, **kw):
|
2394 |
+
msg = check_free_memory(free_bytes)
|
2395 |
+
if msg is not None:
|
2396 |
+
pytest.skip(msg)
|
2397 |
+
|
2398 |
+
try:
|
2399 |
+
return func(*a, **kw)
|
2400 |
+
except MemoryError:
|
2401 |
+
# Probably ran out of memory regardless: don't regard as failure
|
2402 |
+
pytest.xfail("MemoryError raised")
|
2403 |
+
|
2404 |
+
return wrapper
|
2405 |
+
|
2406 |
+
return decorator
|
2407 |
+
|
2408 |
+
|
2409 |
+
def check_free_memory(free_bytes):
|
2410 |
+
"""
|
2411 |
+
Check whether `free_bytes` amount of memory is currently free.
|
2412 |
+
Returns: None if enough memory available, otherwise error message
|
2413 |
+
"""
|
2414 |
+
env_var = 'NPY_AVAILABLE_MEM'
|
2415 |
+
env_value = os.environ.get(env_var)
|
2416 |
+
if env_value is not None:
|
2417 |
+
try:
|
2418 |
+
mem_free = _parse_size(env_value)
|
2419 |
+
except ValueError as exc:
|
2420 |
+
raise ValueError(f'Invalid environment variable {env_var}: {exc}')
|
2421 |
+
|
2422 |
+
msg = (f'{free_bytes/1e9} GB memory required, but environment variable '
|
2423 |
+
f'NPY_AVAILABLE_MEM={env_value} set')
|
2424 |
+
else:
|
2425 |
+
mem_free = _get_mem_available()
|
2426 |
+
|
2427 |
+
if mem_free is None:
|
2428 |
+
msg = ("Could not determine available memory; set NPY_AVAILABLE_MEM "
|
2429 |
+
"environment variable (e.g. NPY_AVAILABLE_MEM=16GB) to run "
|
2430 |
+
"the test.")
|
2431 |
+
mem_free = -1
|
2432 |
+
else:
|
2433 |
+
msg = f'{free_bytes/1e9} GB memory required, but {mem_free/1e9} GB available'
|
2434 |
+
|
2435 |
+
return msg if mem_free < free_bytes else None
|
2436 |
+
|
2437 |
+
|
2438 |
+
def _parse_size(size_str):
|
2439 |
+
"""Convert memory size strings ('12 GB' etc.) to float"""
|
2440 |
+
suffixes = {'': 1, 'b': 1,
|
2441 |
+
'k': 1000, 'm': 1000**2, 'g': 1000**3, 't': 1000**4,
|
2442 |
+
'kb': 1000, 'mb': 1000**2, 'gb': 1000**3, 'tb': 1000**4,
|
2443 |
+
'kib': 1024, 'mib': 1024**2, 'gib': 1024**3, 'tib': 1024**4}
|
2444 |
+
|
2445 |
+
size_re = re.compile(r'^\s*(\d+|\d+\.\d+)\s*({0})\s*$'.format(
|
2446 |
+
'|'.join(suffixes.keys())), re.I)
|
2447 |
+
|
2448 |
+
m = size_re.match(size_str.lower())
|
2449 |
+
if not m or m.group(2) not in suffixes:
|
2450 |
+
raise ValueError(f'value {size_str!r} not a valid size')
|
2451 |
+
return int(float(m.group(1)) * suffixes[m.group(2)])
|
2452 |
+
|
2453 |
+
|
2454 |
+
def _get_mem_available():
|
2455 |
+
"""Return available memory in bytes, or None if unknown."""
|
2456 |
+
try:
|
2457 |
+
import psutil
|
2458 |
+
return psutil.virtual_memory().available
|
2459 |
+
except (ImportError, AttributeError):
|
2460 |
+
pass
|
2461 |
+
|
2462 |
+
if sys.platform.startswith('linux'):
|
2463 |
+
info = {}
|
2464 |
+
with open('/proc/meminfo') as f:
|
2465 |
+
for line in f:
|
2466 |
+
p = line.split()
|
2467 |
+
info[p[0].strip(':').lower()] = int(p[1]) * 1024
|
2468 |
+
|
2469 |
+
if 'memavailable' in info:
|
2470 |
+
# Linux >= 3.14
|
2471 |
+
return info['memavailable']
|
2472 |
+
else:
|
2473 |
+
return info['memfree'] + info['cached']
|
2474 |
+
|
2475 |
+
return None
|
2476 |
+
|
2477 |
+
|
2478 |
+
def _no_tracing(func):
|
2479 |
+
"""
|
2480 |
+
Decorator to temporarily turn off tracing for the duration of a test.
|
2481 |
+
Needed in tests that check refcounting, otherwise the tracing itself
|
2482 |
+
influences the refcounts
|
2483 |
+
"""
|
2484 |
+
if not hasattr(sys, 'gettrace'):
|
2485 |
+
return func
|
2486 |
+
else:
|
2487 |
+
@wraps(func)
|
2488 |
+
def wrapper(*args, **kwargs):
|
2489 |
+
original_trace = sys.gettrace()
|
2490 |
+
try:
|
2491 |
+
sys.settrace(None)
|
2492 |
+
return func(*args, **kwargs)
|
2493 |
+
finally:
|
2494 |
+
sys.settrace(original_trace)
|
2495 |
+
return wrapper
|
2496 |
+
|
2497 |
+
|
2498 |
+
def _get_glibc_version():
|
2499 |
+
try:
|
2500 |
+
ver = os.confstr('CS_GNU_LIBC_VERSION').rsplit(' ')[1]
|
2501 |
+
except Exception:
|
2502 |
+
ver = '0.0'
|
2503 |
+
|
2504 |
+
return ver
|
2505 |
+
|
2506 |
+
|
2507 |
+
_glibcver = _get_glibc_version()
|
2508 |
+
_glibc_older_than = lambda x: (_glibcver != '0.0' and _glibcver < x)
|
2509 |
+
|
venv/lib/python3.10/site-packages/numpy/testing/_private/utils.pyi
ADDED
@@ -0,0 +1,402 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sys
|
3 |
+
import ast
|
4 |
+
import types
|
5 |
+
import warnings
|
6 |
+
import unittest
|
7 |
+
import contextlib
|
8 |
+
from re import Pattern
|
9 |
+
from collections.abc import Callable, Iterable, Sequence
|
10 |
+
from typing import (
|
11 |
+
Literal as L,
|
12 |
+
Any,
|
13 |
+
AnyStr,
|
14 |
+
ClassVar,
|
15 |
+
NoReturn,
|
16 |
+
overload,
|
17 |
+
type_check_only,
|
18 |
+
TypeVar,
|
19 |
+
Union,
|
20 |
+
Final,
|
21 |
+
SupportsIndex,
|
22 |
+
)
|
23 |
+
if sys.version_info >= (3, 10):
|
24 |
+
from typing import ParamSpec
|
25 |
+
else:
|
26 |
+
from typing_extensions import ParamSpec
|
27 |
+
|
28 |
+
from numpy import generic, dtype, number, object_, bool_, _FloatValue
|
29 |
+
from numpy._typing import (
|
30 |
+
NDArray,
|
31 |
+
ArrayLike,
|
32 |
+
DTypeLike,
|
33 |
+
_ArrayLikeNumber_co,
|
34 |
+
_ArrayLikeObject_co,
|
35 |
+
_ArrayLikeTD64_co,
|
36 |
+
_ArrayLikeDT64_co,
|
37 |
+
)
|
38 |
+
|
39 |
+
from unittest.case import (
|
40 |
+
SkipTest as SkipTest,
|
41 |
+
)
|
42 |
+
|
43 |
+
_P = ParamSpec("_P")
|
44 |
+
_T = TypeVar("_T")
|
45 |
+
_ET = TypeVar("_ET", bound=BaseException)
|
46 |
+
_FT = TypeVar("_FT", bound=Callable[..., Any])
|
47 |
+
|
48 |
+
# Must return a bool or an ndarray/generic type
|
49 |
+
# that is supported by `np.logical_and.reduce`
|
50 |
+
_ComparisonFunc = Callable[
|
51 |
+
[NDArray[Any], NDArray[Any]],
|
52 |
+
Union[
|
53 |
+
bool,
|
54 |
+
bool_,
|
55 |
+
number[Any],
|
56 |
+
NDArray[Union[bool_, number[Any], object_]],
|
57 |
+
],
|
58 |
+
]
|
59 |
+
|
60 |
+
__all__: list[str]
|
61 |
+
|
62 |
+
class KnownFailureException(Exception): ...
|
63 |
+
class IgnoreException(Exception): ...
|
64 |
+
|
65 |
+
class clear_and_catch_warnings(warnings.catch_warnings):
|
66 |
+
class_modules: ClassVar[tuple[types.ModuleType, ...]]
|
67 |
+
modules: set[types.ModuleType]
|
68 |
+
@overload
|
69 |
+
def __new__(
|
70 |
+
cls,
|
71 |
+
record: L[False] = ...,
|
72 |
+
modules: Iterable[types.ModuleType] = ...,
|
73 |
+
) -> _clear_and_catch_warnings_without_records: ...
|
74 |
+
@overload
|
75 |
+
def __new__(
|
76 |
+
cls,
|
77 |
+
record: L[True],
|
78 |
+
modules: Iterable[types.ModuleType] = ...,
|
79 |
+
) -> _clear_and_catch_warnings_with_records: ...
|
80 |
+
@overload
|
81 |
+
def __new__(
|
82 |
+
cls,
|
83 |
+
record: bool,
|
84 |
+
modules: Iterable[types.ModuleType] = ...,
|
85 |
+
) -> clear_and_catch_warnings: ...
|
86 |
+
def __enter__(self) -> None | list[warnings.WarningMessage]: ...
|
87 |
+
def __exit__(
|
88 |
+
self,
|
89 |
+
__exc_type: None | type[BaseException] = ...,
|
90 |
+
__exc_val: None | BaseException = ...,
|
91 |
+
__exc_tb: None | types.TracebackType = ...,
|
92 |
+
) -> None: ...
|
93 |
+
|
94 |
+
# Type-check only `clear_and_catch_warnings` subclasses for both values of the
|
95 |
+
# `record` parameter. Copied from the stdlib `warnings` stubs.
|
96 |
+
|
97 |
+
@type_check_only
|
98 |
+
class _clear_and_catch_warnings_with_records(clear_and_catch_warnings):
|
99 |
+
def __enter__(self) -> list[warnings.WarningMessage]: ...
|
100 |
+
|
101 |
+
@type_check_only
|
102 |
+
class _clear_and_catch_warnings_without_records(clear_and_catch_warnings):
|
103 |
+
def __enter__(self) -> None: ...
|
104 |
+
|
105 |
+
class suppress_warnings:
|
106 |
+
log: list[warnings.WarningMessage]
|
107 |
+
def __init__(
|
108 |
+
self,
|
109 |
+
forwarding_rule: L["always", "module", "once", "location"] = ...,
|
110 |
+
) -> None: ...
|
111 |
+
def filter(
|
112 |
+
self,
|
113 |
+
category: type[Warning] = ...,
|
114 |
+
message: str = ...,
|
115 |
+
module: None | types.ModuleType = ...,
|
116 |
+
) -> None: ...
|
117 |
+
def record(
|
118 |
+
self,
|
119 |
+
category: type[Warning] = ...,
|
120 |
+
message: str = ...,
|
121 |
+
module: None | types.ModuleType = ...,
|
122 |
+
) -> list[warnings.WarningMessage]: ...
|
123 |
+
def __enter__(self: _T) -> _T: ...
|
124 |
+
def __exit__(
|
125 |
+
self,
|
126 |
+
__exc_type: None | type[BaseException] = ...,
|
127 |
+
__exc_val: None | BaseException = ...,
|
128 |
+
__exc_tb: None | types.TracebackType = ...,
|
129 |
+
) -> None: ...
|
130 |
+
def __call__(self, func: _FT) -> _FT: ...
|
131 |
+
|
132 |
+
verbose: int
|
133 |
+
IS_PYPY: Final[bool]
|
134 |
+
IS_PYSTON: Final[bool]
|
135 |
+
HAS_REFCOUNT: Final[bool]
|
136 |
+
HAS_LAPACK64: Final[bool]
|
137 |
+
|
138 |
+
def assert_(val: object, msg: str | Callable[[], str] = ...) -> None: ...
|
139 |
+
|
140 |
+
# Contrary to runtime we can't do `os.name` checks while type checking,
|
141 |
+
# only `sys.platform` checks
|
142 |
+
if sys.platform == "win32" or sys.platform == "cygwin":
|
143 |
+
def memusage(processName: str = ..., instance: int = ...) -> int: ...
|
144 |
+
elif sys.platform == "linux":
|
145 |
+
def memusage(_proc_pid_stat: str | bytes | os.PathLike[Any] = ...) -> None | int: ...
|
146 |
+
else:
|
147 |
+
def memusage() -> NoReturn: ...
|
148 |
+
|
149 |
+
if sys.platform == "linux":
|
150 |
+
def jiffies(
|
151 |
+
_proc_pid_stat: str | bytes | os.PathLike[Any] = ...,
|
152 |
+
_load_time: list[float] = ...,
|
153 |
+
) -> int: ...
|
154 |
+
else:
|
155 |
+
def jiffies(_load_time: list[float] = ...) -> int: ...
|
156 |
+
|
157 |
+
def build_err_msg(
|
158 |
+
arrays: Iterable[object],
|
159 |
+
err_msg: str,
|
160 |
+
header: str = ...,
|
161 |
+
verbose: bool = ...,
|
162 |
+
names: Sequence[str] = ...,
|
163 |
+
precision: None | SupportsIndex = ...,
|
164 |
+
) -> str: ...
|
165 |
+
|
166 |
+
def assert_equal(
|
167 |
+
actual: object,
|
168 |
+
desired: object,
|
169 |
+
err_msg: str = ...,
|
170 |
+
verbose: bool = ...,
|
171 |
+
) -> None: ...
|
172 |
+
|
173 |
+
def print_assert_equal(
|
174 |
+
test_string: str,
|
175 |
+
actual: object,
|
176 |
+
desired: object,
|
177 |
+
) -> None: ...
|
178 |
+
|
179 |
+
def assert_almost_equal(
|
180 |
+
actual: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
181 |
+
desired: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
182 |
+
decimal: int = ...,
|
183 |
+
err_msg: str = ...,
|
184 |
+
verbose: bool = ...,
|
185 |
+
) -> None: ...
|
186 |
+
|
187 |
+
# Anything that can be coerced into `builtins.float`
|
188 |
+
def assert_approx_equal(
|
189 |
+
actual: _FloatValue,
|
190 |
+
desired: _FloatValue,
|
191 |
+
significant: int = ...,
|
192 |
+
err_msg: str = ...,
|
193 |
+
verbose: bool = ...,
|
194 |
+
) -> None: ...
|
195 |
+
|
196 |
+
def assert_array_compare(
|
197 |
+
comparison: _ComparisonFunc,
|
198 |
+
x: ArrayLike,
|
199 |
+
y: ArrayLike,
|
200 |
+
err_msg: str = ...,
|
201 |
+
verbose: bool = ...,
|
202 |
+
header: str = ...,
|
203 |
+
precision: SupportsIndex = ...,
|
204 |
+
equal_nan: bool = ...,
|
205 |
+
equal_inf: bool = ...,
|
206 |
+
*,
|
207 |
+
strict: bool = ...
|
208 |
+
) -> None: ...
|
209 |
+
|
210 |
+
def assert_array_equal(
|
211 |
+
x: ArrayLike,
|
212 |
+
y: ArrayLike,
|
213 |
+
err_msg: str = ...,
|
214 |
+
verbose: bool = ...,
|
215 |
+
*,
|
216 |
+
strict: bool = ...
|
217 |
+
) -> None: ...
|
218 |
+
|
219 |
+
def assert_array_almost_equal(
|
220 |
+
x: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
221 |
+
y: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
222 |
+
decimal: float = ...,
|
223 |
+
err_msg: str = ...,
|
224 |
+
verbose: bool = ...,
|
225 |
+
) -> None: ...
|
226 |
+
|
227 |
+
@overload
|
228 |
+
def assert_array_less(
|
229 |
+
x: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
230 |
+
y: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
231 |
+
err_msg: str = ...,
|
232 |
+
verbose: bool = ...,
|
233 |
+
) -> None: ...
|
234 |
+
@overload
|
235 |
+
def assert_array_less(
|
236 |
+
x: _ArrayLikeTD64_co,
|
237 |
+
y: _ArrayLikeTD64_co,
|
238 |
+
err_msg: str = ...,
|
239 |
+
verbose: bool = ...,
|
240 |
+
) -> None: ...
|
241 |
+
@overload
|
242 |
+
def assert_array_less(
|
243 |
+
x: _ArrayLikeDT64_co,
|
244 |
+
y: _ArrayLikeDT64_co,
|
245 |
+
err_msg: str = ...,
|
246 |
+
verbose: bool = ...,
|
247 |
+
) -> None: ...
|
248 |
+
|
249 |
+
def runstring(
|
250 |
+
astr: str | bytes | types.CodeType,
|
251 |
+
dict: None | dict[str, Any],
|
252 |
+
) -> Any: ...
|
253 |
+
|
254 |
+
def assert_string_equal(actual: str, desired: str) -> None: ...
|
255 |
+
|
256 |
+
def rundocs(
|
257 |
+
filename: None | str | os.PathLike[str] = ...,
|
258 |
+
raise_on_error: bool = ...,
|
259 |
+
) -> None: ...
|
260 |
+
|
261 |
+
def raises(*args: type[BaseException]) -> Callable[[_FT], _FT]: ...
|
262 |
+
|
263 |
+
@overload
|
264 |
+
def assert_raises( # type: ignore
|
265 |
+
expected_exception: type[BaseException] | tuple[type[BaseException], ...],
|
266 |
+
callable: Callable[_P, Any],
|
267 |
+
/,
|
268 |
+
*args: _P.args,
|
269 |
+
**kwargs: _P.kwargs,
|
270 |
+
) -> None: ...
|
271 |
+
@overload
|
272 |
+
def assert_raises(
|
273 |
+
expected_exception: type[_ET] | tuple[type[_ET], ...],
|
274 |
+
*,
|
275 |
+
msg: None | str = ...,
|
276 |
+
) -> unittest.case._AssertRaisesContext[_ET]: ...
|
277 |
+
|
278 |
+
@overload
|
279 |
+
def assert_raises_regex(
|
280 |
+
expected_exception: type[BaseException] | tuple[type[BaseException], ...],
|
281 |
+
expected_regex: str | bytes | Pattern[Any],
|
282 |
+
callable: Callable[_P, Any],
|
283 |
+
/,
|
284 |
+
*args: _P.args,
|
285 |
+
**kwargs: _P.kwargs,
|
286 |
+
) -> None: ...
|
287 |
+
@overload
|
288 |
+
def assert_raises_regex(
|
289 |
+
expected_exception: type[_ET] | tuple[type[_ET], ...],
|
290 |
+
expected_regex: str | bytes | Pattern[Any],
|
291 |
+
*,
|
292 |
+
msg: None | str = ...,
|
293 |
+
) -> unittest.case._AssertRaisesContext[_ET]: ...
|
294 |
+
|
295 |
+
def decorate_methods(
|
296 |
+
cls: type[Any],
|
297 |
+
decorator: Callable[[Callable[..., Any]], Any],
|
298 |
+
testmatch: None | str | bytes | Pattern[Any] = ...,
|
299 |
+
) -> None: ...
|
300 |
+
|
301 |
+
def measure(
|
302 |
+
code_str: str | bytes | ast.mod | ast.AST,
|
303 |
+
times: int = ...,
|
304 |
+
label: None | str = ...,
|
305 |
+
) -> float: ...
|
306 |
+
|
307 |
+
@overload
|
308 |
+
def assert_allclose(
|
309 |
+
actual: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
310 |
+
desired: _ArrayLikeNumber_co | _ArrayLikeObject_co,
|
311 |
+
rtol: float = ...,
|
312 |
+
atol: float = ...,
|
313 |
+
equal_nan: bool = ...,
|
314 |
+
err_msg: str = ...,
|
315 |
+
verbose: bool = ...,
|
316 |
+
) -> None: ...
|
317 |
+
@overload
|
318 |
+
def assert_allclose(
|
319 |
+
actual: _ArrayLikeTD64_co,
|
320 |
+
desired: _ArrayLikeTD64_co,
|
321 |
+
rtol: float = ...,
|
322 |
+
atol: float = ...,
|
323 |
+
equal_nan: bool = ...,
|
324 |
+
err_msg: str = ...,
|
325 |
+
verbose: bool = ...,
|
326 |
+
) -> None: ...
|
327 |
+
|
328 |
+
def assert_array_almost_equal_nulp(
|
329 |
+
x: _ArrayLikeNumber_co,
|
330 |
+
y: _ArrayLikeNumber_co,
|
331 |
+
nulp: float = ...,
|
332 |
+
) -> None: ...
|
333 |
+
|
334 |
+
def assert_array_max_ulp(
|
335 |
+
a: _ArrayLikeNumber_co,
|
336 |
+
b: _ArrayLikeNumber_co,
|
337 |
+
maxulp: float = ...,
|
338 |
+
dtype: DTypeLike = ...,
|
339 |
+
) -> NDArray[Any]: ...
|
340 |
+
|
341 |
+
@overload
|
342 |
+
def assert_warns(
|
343 |
+
warning_class: type[Warning],
|
344 |
+
) -> contextlib._GeneratorContextManager[None]: ...
|
345 |
+
@overload
|
346 |
+
def assert_warns(
|
347 |
+
warning_class: type[Warning],
|
348 |
+
func: Callable[_P, _T],
|
349 |
+
/,
|
350 |
+
*args: _P.args,
|
351 |
+
**kwargs: _P.kwargs,
|
352 |
+
) -> _T: ...
|
353 |
+
|
354 |
+
@overload
|
355 |
+
def assert_no_warnings() -> contextlib._GeneratorContextManager[None]: ...
|
356 |
+
@overload
|
357 |
+
def assert_no_warnings(
|
358 |
+
func: Callable[_P, _T],
|
359 |
+
/,
|
360 |
+
*args: _P.args,
|
361 |
+
**kwargs: _P.kwargs,
|
362 |
+
) -> _T: ...
|
363 |
+
|
364 |
+
@overload
|
365 |
+
def tempdir(
|
366 |
+
suffix: None = ...,
|
367 |
+
prefix: None = ...,
|
368 |
+
dir: None = ...,
|
369 |
+
) -> contextlib._GeneratorContextManager[str]: ...
|
370 |
+
@overload
|
371 |
+
def tempdir(
|
372 |
+
suffix: None | AnyStr = ...,
|
373 |
+
prefix: None | AnyStr = ...,
|
374 |
+
dir: None | AnyStr | os.PathLike[AnyStr] = ...,
|
375 |
+
) -> contextlib._GeneratorContextManager[AnyStr]: ...
|
376 |
+
|
377 |
+
@overload
|
378 |
+
def temppath(
|
379 |
+
suffix: None = ...,
|
380 |
+
prefix: None = ...,
|
381 |
+
dir: None = ...,
|
382 |
+
text: bool = ...,
|
383 |
+
) -> contextlib._GeneratorContextManager[str]: ...
|
384 |
+
@overload
|
385 |
+
def temppath(
|
386 |
+
suffix: None | AnyStr = ...,
|
387 |
+
prefix: None | AnyStr = ...,
|
388 |
+
dir: None | AnyStr | os.PathLike[AnyStr] = ...,
|
389 |
+
text: bool = ...,
|
390 |
+
) -> contextlib._GeneratorContextManager[AnyStr]: ...
|
391 |
+
|
392 |
+
@overload
|
393 |
+
def assert_no_gc_cycles() -> contextlib._GeneratorContextManager[None]: ...
|
394 |
+
@overload
|
395 |
+
def assert_no_gc_cycles(
|
396 |
+
func: Callable[_P, Any],
|
397 |
+
/,
|
398 |
+
*args: _P.args,
|
399 |
+
**kwargs: _P.kwargs,
|
400 |
+
) -> None: ...
|
401 |
+
|
402 |
+
def break_cycles() -> None: ...
|
venv/lib/python3.10/site-packages/numpy/testing/overrides.py
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Tools for testing implementations of __array_function__ and ufunc overrides
|
2 |
+
|
3 |
+
|
4 |
+
"""
|
5 |
+
|
6 |
+
from numpy.core.overrides import ARRAY_FUNCTIONS as _array_functions
|
7 |
+
from numpy import ufunc as _ufunc
|
8 |
+
import numpy.core.umath as _umath
|
9 |
+
|
10 |
+
def get_overridable_numpy_ufuncs():
|
11 |
+
"""List all numpy ufuncs overridable via `__array_ufunc__`
|
12 |
+
|
13 |
+
Parameters
|
14 |
+
----------
|
15 |
+
None
|
16 |
+
|
17 |
+
Returns
|
18 |
+
-------
|
19 |
+
set
|
20 |
+
A set containing all overridable ufuncs in the public numpy API.
|
21 |
+
"""
|
22 |
+
ufuncs = {obj for obj in _umath.__dict__.values()
|
23 |
+
if isinstance(obj, _ufunc)}
|
24 |
+
return ufuncs
|
25 |
+
|
26 |
+
|
27 |
+
def allows_array_ufunc_override(func):
|
28 |
+
"""Determine if a function can be overridden via `__array_ufunc__`
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
func : callable
|
33 |
+
Function that may be overridable via `__array_ufunc__`
|
34 |
+
|
35 |
+
Returns
|
36 |
+
-------
|
37 |
+
bool
|
38 |
+
`True` if `func` is overridable via `__array_ufunc__` and
|
39 |
+
`False` otherwise.
|
40 |
+
|
41 |
+
Notes
|
42 |
+
-----
|
43 |
+
This function is equivalent to ``isinstance(func, np.ufunc)`` and
|
44 |
+
will work correctly for ufuncs defined outside of Numpy.
|
45 |
+
|
46 |
+
"""
|
47 |
+
return isinstance(func, np.ufunc)
|
48 |
+
|
49 |
+
|
50 |
+
def get_overridable_numpy_array_functions():
|
51 |
+
"""List all numpy functions overridable via `__array_function__`
|
52 |
+
|
53 |
+
Parameters
|
54 |
+
----------
|
55 |
+
None
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
set
|
60 |
+
A set containing all functions in the public numpy API that are
|
61 |
+
overridable via `__array_function__`.
|
62 |
+
|
63 |
+
"""
|
64 |
+
# 'import numpy' doesn't import recfunctions, so make sure it's imported
|
65 |
+
# so ufuncs defined there show up in the ufunc listing
|
66 |
+
from numpy.lib import recfunctions
|
67 |
+
return _array_functions.copy()
|
68 |
+
|
69 |
+
def allows_array_function_override(func):
|
70 |
+
"""Determine if a Numpy function can be overridden via `__array_function__`
|
71 |
+
|
72 |
+
Parameters
|
73 |
+
----------
|
74 |
+
func : callable
|
75 |
+
Function that may be overridable via `__array_function__`
|
76 |
+
|
77 |
+
Returns
|
78 |
+
-------
|
79 |
+
bool
|
80 |
+
`True` if `func` is a function in the Numpy API that is
|
81 |
+
overridable via `__array_function__` and `False` otherwise.
|
82 |
+
"""
|
83 |
+
return func in _array_functions
|
venv/lib/python3.10/site-packages/numpy/testing/print_coercion_tables.py
ADDED
@@ -0,0 +1,200 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""Prints type-coercion tables for the built-in NumPy types
|
3 |
+
|
4 |
+
"""
|
5 |
+
import numpy as np
|
6 |
+
from collections import namedtuple
|
7 |
+
|
8 |
+
# Generic object that can be added, but doesn't do anything else
|
9 |
+
class GenericObject:
|
10 |
+
def __init__(self, v):
|
11 |
+
self.v = v
|
12 |
+
|
13 |
+
def __add__(self, other):
|
14 |
+
return self
|
15 |
+
|
16 |
+
def __radd__(self, other):
|
17 |
+
return self
|
18 |
+
|
19 |
+
dtype = np.dtype('O')
|
20 |
+
|
21 |
+
def print_cancast_table(ntypes):
|
22 |
+
print('X', end=' ')
|
23 |
+
for char in ntypes:
|
24 |
+
print(char, end=' ')
|
25 |
+
print()
|
26 |
+
for row in ntypes:
|
27 |
+
print(row, end=' ')
|
28 |
+
for col in ntypes:
|
29 |
+
if np.can_cast(row, col, "equiv"):
|
30 |
+
cast = "#"
|
31 |
+
elif np.can_cast(row, col, "safe"):
|
32 |
+
cast = "="
|
33 |
+
elif np.can_cast(row, col, "same_kind"):
|
34 |
+
cast = "~"
|
35 |
+
elif np.can_cast(row, col, "unsafe"):
|
36 |
+
cast = "."
|
37 |
+
else:
|
38 |
+
cast = " "
|
39 |
+
print(cast, end=' ')
|
40 |
+
print()
|
41 |
+
|
42 |
+
def print_coercion_table(ntypes, inputfirstvalue, inputsecondvalue, firstarray, use_promote_types=False):
|
43 |
+
print('+', end=' ')
|
44 |
+
for char in ntypes:
|
45 |
+
print(char, end=' ')
|
46 |
+
print()
|
47 |
+
for row in ntypes:
|
48 |
+
if row == 'O':
|
49 |
+
rowtype = GenericObject
|
50 |
+
else:
|
51 |
+
rowtype = np.obj2sctype(row)
|
52 |
+
|
53 |
+
print(row, end=' ')
|
54 |
+
for col in ntypes:
|
55 |
+
if col == 'O':
|
56 |
+
coltype = GenericObject
|
57 |
+
else:
|
58 |
+
coltype = np.obj2sctype(col)
|
59 |
+
try:
|
60 |
+
if firstarray:
|
61 |
+
rowvalue = np.array([rowtype(inputfirstvalue)], dtype=rowtype)
|
62 |
+
else:
|
63 |
+
rowvalue = rowtype(inputfirstvalue)
|
64 |
+
colvalue = coltype(inputsecondvalue)
|
65 |
+
if use_promote_types:
|
66 |
+
char = np.promote_types(rowvalue.dtype, colvalue.dtype).char
|
67 |
+
else:
|
68 |
+
value = np.add(rowvalue, colvalue)
|
69 |
+
if isinstance(value, np.ndarray):
|
70 |
+
char = value.dtype.char
|
71 |
+
else:
|
72 |
+
char = np.dtype(type(value)).char
|
73 |
+
except ValueError:
|
74 |
+
char = '!'
|
75 |
+
except OverflowError:
|
76 |
+
char = '@'
|
77 |
+
except TypeError:
|
78 |
+
char = '#'
|
79 |
+
print(char, end=' ')
|
80 |
+
print()
|
81 |
+
|
82 |
+
|
83 |
+
def print_new_cast_table(*, can_cast=True, legacy=False, flags=False):
|
84 |
+
"""Prints new casts, the values given are default "can-cast" values, not
|
85 |
+
actual ones.
|
86 |
+
"""
|
87 |
+
from numpy.core._multiarray_tests import get_all_cast_information
|
88 |
+
|
89 |
+
cast_table = {
|
90 |
+
-1: " ",
|
91 |
+
0: "#", # No cast (classify as equivalent here)
|
92 |
+
1: "#", # equivalent casting
|
93 |
+
2: "=", # safe casting
|
94 |
+
3: "~", # same-kind casting
|
95 |
+
4: ".", # unsafe casting
|
96 |
+
}
|
97 |
+
flags_table = {
|
98 |
+
0 : "▗", 7: "█",
|
99 |
+
1: "▚", 2: "▐", 4: "▄",
|
100 |
+
3: "▜", 5: "▙",
|
101 |
+
6: "▟",
|
102 |
+
}
|
103 |
+
|
104 |
+
cast_info = namedtuple("cast_info", ["can_cast", "legacy", "flags"])
|
105 |
+
no_cast_info = cast_info(" ", " ", " ")
|
106 |
+
|
107 |
+
casts = get_all_cast_information()
|
108 |
+
table = {}
|
109 |
+
dtypes = set()
|
110 |
+
for cast in casts:
|
111 |
+
dtypes.add(cast["from"])
|
112 |
+
dtypes.add(cast["to"])
|
113 |
+
|
114 |
+
if cast["from"] not in table:
|
115 |
+
table[cast["from"]] = {}
|
116 |
+
to_dict = table[cast["from"]]
|
117 |
+
|
118 |
+
can_cast = cast_table[cast["casting"]]
|
119 |
+
legacy = "L" if cast["legacy"] else "."
|
120 |
+
flags = 0
|
121 |
+
if cast["requires_pyapi"]:
|
122 |
+
flags |= 1
|
123 |
+
if cast["supports_unaligned"]:
|
124 |
+
flags |= 2
|
125 |
+
if cast["no_floatingpoint_errors"]:
|
126 |
+
flags |= 4
|
127 |
+
|
128 |
+
flags = flags_table[flags]
|
129 |
+
to_dict[cast["to"]] = cast_info(can_cast=can_cast, legacy=legacy, flags=flags)
|
130 |
+
|
131 |
+
# The np.dtype(x.type) is a bit strange, because dtype classes do
|
132 |
+
# not expose much yet.
|
133 |
+
types = np.typecodes["All"]
|
134 |
+
def sorter(x):
|
135 |
+
# This is a bit weird hack, to get a table as close as possible to
|
136 |
+
# the one printing all typecodes (but expecting user-dtypes).
|
137 |
+
dtype = np.dtype(x.type)
|
138 |
+
try:
|
139 |
+
indx = types.index(dtype.char)
|
140 |
+
except ValueError:
|
141 |
+
indx = np.inf
|
142 |
+
return (indx, dtype.char)
|
143 |
+
|
144 |
+
dtypes = sorted(dtypes, key=sorter)
|
145 |
+
|
146 |
+
def print_table(field="can_cast"):
|
147 |
+
print('X', end=' ')
|
148 |
+
for dt in dtypes:
|
149 |
+
print(np.dtype(dt.type).char, end=' ')
|
150 |
+
print()
|
151 |
+
for from_dt in dtypes:
|
152 |
+
print(np.dtype(from_dt.type).char, end=' ')
|
153 |
+
row = table.get(from_dt, {})
|
154 |
+
for to_dt in dtypes:
|
155 |
+
print(getattr(row.get(to_dt, no_cast_info), field), end=' ')
|
156 |
+
print()
|
157 |
+
|
158 |
+
if can_cast:
|
159 |
+
# Print the actual table:
|
160 |
+
print()
|
161 |
+
print("Casting: # is equivalent, = is safe, ~ is same-kind, and . is unsafe")
|
162 |
+
print()
|
163 |
+
print_table("can_cast")
|
164 |
+
|
165 |
+
if legacy:
|
166 |
+
print()
|
167 |
+
print("L denotes a legacy cast . a non-legacy one.")
|
168 |
+
print()
|
169 |
+
print_table("legacy")
|
170 |
+
|
171 |
+
if flags:
|
172 |
+
print()
|
173 |
+
print(f"{flags_table[0]}: no flags, {flags_table[1]}: PyAPI, "
|
174 |
+
f"{flags_table[2]}: supports unaligned, {flags_table[4]}: no-float-errors")
|
175 |
+
print()
|
176 |
+
print_table("flags")
|
177 |
+
|
178 |
+
|
179 |
+
if __name__ == '__main__':
|
180 |
+
print("can cast")
|
181 |
+
print_cancast_table(np.typecodes['All'])
|
182 |
+
print()
|
183 |
+
print("In these tables, ValueError is '!', OverflowError is '@', TypeError is '#'")
|
184 |
+
print()
|
185 |
+
print("scalar + scalar")
|
186 |
+
print_coercion_table(np.typecodes['All'], 0, 0, False)
|
187 |
+
print()
|
188 |
+
print("scalar + neg scalar")
|
189 |
+
print_coercion_table(np.typecodes['All'], 0, -1, False)
|
190 |
+
print()
|
191 |
+
print("array + scalar")
|
192 |
+
print_coercion_table(np.typecodes['All'], 0, 0, True)
|
193 |
+
print()
|
194 |
+
print("array + neg scalar")
|
195 |
+
print_coercion_table(np.typecodes['All'], 0, -1, True)
|
196 |
+
print()
|
197 |
+
print("promote_types")
|
198 |
+
print_coercion_table(np.typecodes['All'], 0, 0, False, True)
|
199 |
+
print("New casting type promotion:")
|
200 |
+
print_new_cast_table(can_cast=True, legacy=True, flags=True)
|
venv/lib/python3.10/site-packages/numpy/testing/setup.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
|
3 |
+
def configuration(parent_package='',top_path=None):
|
4 |
+
from numpy.distutils.misc_util import Configuration
|
5 |
+
config = Configuration('testing', parent_package, top_path)
|
6 |
+
|
7 |
+
config.add_subpackage('_private')
|
8 |
+
config.add_subpackage('tests')
|
9 |
+
config.add_data_files('*.pyi')
|
10 |
+
config.add_data_files('_private/*.pyi')
|
11 |
+
return config
|
12 |
+
|
13 |
+
if __name__ == '__main__':
|
14 |
+
from numpy.distutils.core import setup
|
15 |
+
setup(maintainer="NumPy Developers",
|
16 |
+
maintainer_email="[email protected]",
|
17 |
+
description="NumPy test module",
|
18 |
+
url="https://www.numpy.org",
|
19 |
+
license="NumPy License (BSD Style)",
|
20 |
+
configuration=configuration,
|
21 |
+
)
|
venv/lib/python3.10/site-packages/numpy/testing/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/numpy/testing/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/tests/__pycache__/test_utils.cpython-310.pyc
ADDED
Binary file (53.8 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/testing/tests/test_utils.py
ADDED
@@ -0,0 +1,1626 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import warnings
|
2 |
+
import sys
|
3 |
+
import os
|
4 |
+
import itertools
|
5 |
+
import pytest
|
6 |
+
import weakref
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from numpy.testing import (
|
10 |
+
assert_equal, assert_array_equal, assert_almost_equal,
|
11 |
+
assert_array_almost_equal, assert_array_less, build_err_msg,
|
12 |
+
assert_raises, assert_warns, assert_no_warnings, assert_allclose,
|
13 |
+
assert_approx_equal, assert_array_almost_equal_nulp, assert_array_max_ulp,
|
14 |
+
clear_and_catch_warnings, suppress_warnings, assert_string_equal, assert_,
|
15 |
+
tempdir, temppath, assert_no_gc_cycles, HAS_REFCOUNT
|
16 |
+
)
|
17 |
+
|
18 |
+
|
19 |
+
class _GenericTest:
|
20 |
+
|
21 |
+
def _test_equal(self, a, b):
|
22 |
+
self._assert_func(a, b)
|
23 |
+
|
24 |
+
def _test_not_equal(self, a, b):
|
25 |
+
with assert_raises(AssertionError):
|
26 |
+
self._assert_func(a, b)
|
27 |
+
|
28 |
+
def test_array_rank1_eq(self):
|
29 |
+
"""Test two equal array of rank 1 are found equal."""
|
30 |
+
a = np.array([1, 2])
|
31 |
+
b = np.array([1, 2])
|
32 |
+
|
33 |
+
self._test_equal(a, b)
|
34 |
+
|
35 |
+
def test_array_rank1_noteq(self):
|
36 |
+
"""Test two different array of rank 1 are found not equal."""
|
37 |
+
a = np.array([1, 2])
|
38 |
+
b = np.array([2, 2])
|
39 |
+
|
40 |
+
self._test_not_equal(a, b)
|
41 |
+
|
42 |
+
def test_array_rank2_eq(self):
|
43 |
+
"""Test two equal array of rank 2 are found equal."""
|
44 |
+
a = np.array([[1, 2], [3, 4]])
|
45 |
+
b = np.array([[1, 2], [3, 4]])
|
46 |
+
|
47 |
+
self._test_equal(a, b)
|
48 |
+
|
49 |
+
def test_array_diffshape(self):
|
50 |
+
"""Test two arrays with different shapes are found not equal."""
|
51 |
+
a = np.array([1, 2])
|
52 |
+
b = np.array([[1, 2], [1, 2]])
|
53 |
+
|
54 |
+
self._test_not_equal(a, b)
|
55 |
+
|
56 |
+
def test_objarray(self):
|
57 |
+
"""Test object arrays."""
|
58 |
+
a = np.array([1, 1], dtype=object)
|
59 |
+
self._test_equal(a, 1)
|
60 |
+
|
61 |
+
def test_array_likes(self):
|
62 |
+
self._test_equal([1, 2, 3], (1, 2, 3))
|
63 |
+
|
64 |
+
|
65 |
+
class TestArrayEqual(_GenericTest):
|
66 |
+
|
67 |
+
def setup_method(self):
|
68 |
+
self._assert_func = assert_array_equal
|
69 |
+
|
70 |
+
def test_generic_rank1(self):
|
71 |
+
"""Test rank 1 array for all dtypes."""
|
72 |
+
def foo(t):
|
73 |
+
a = np.empty(2, t)
|
74 |
+
a.fill(1)
|
75 |
+
b = a.copy()
|
76 |
+
c = a.copy()
|
77 |
+
c.fill(0)
|
78 |
+
self._test_equal(a, b)
|
79 |
+
self._test_not_equal(c, b)
|
80 |
+
|
81 |
+
# Test numeric types and object
|
82 |
+
for t in '?bhilqpBHILQPfdgFDG':
|
83 |
+
foo(t)
|
84 |
+
|
85 |
+
# Test strings
|
86 |
+
for t in ['S1', 'U1']:
|
87 |
+
foo(t)
|
88 |
+
|
89 |
+
def test_0_ndim_array(self):
|
90 |
+
x = np.array(473963742225900817127911193656584771)
|
91 |
+
y = np.array(18535119325151578301457182298393896)
|
92 |
+
assert_raises(AssertionError, self._assert_func, x, y)
|
93 |
+
|
94 |
+
y = x
|
95 |
+
self._assert_func(x, y)
|
96 |
+
|
97 |
+
x = np.array(43)
|
98 |
+
y = np.array(10)
|
99 |
+
assert_raises(AssertionError, self._assert_func, x, y)
|
100 |
+
|
101 |
+
y = x
|
102 |
+
self._assert_func(x, y)
|
103 |
+
|
104 |
+
def test_generic_rank3(self):
|
105 |
+
"""Test rank 3 array for all dtypes."""
|
106 |
+
def foo(t):
|
107 |
+
a = np.empty((4, 2, 3), t)
|
108 |
+
a.fill(1)
|
109 |
+
b = a.copy()
|
110 |
+
c = a.copy()
|
111 |
+
c.fill(0)
|
112 |
+
self._test_equal(a, b)
|
113 |
+
self._test_not_equal(c, b)
|
114 |
+
|
115 |
+
# Test numeric types and object
|
116 |
+
for t in '?bhilqpBHILQPfdgFDG':
|
117 |
+
foo(t)
|
118 |
+
|
119 |
+
# Test strings
|
120 |
+
for t in ['S1', 'U1']:
|
121 |
+
foo(t)
|
122 |
+
|
123 |
+
def test_nan_array(self):
|
124 |
+
"""Test arrays with nan values in them."""
|
125 |
+
a = np.array([1, 2, np.nan])
|
126 |
+
b = np.array([1, 2, np.nan])
|
127 |
+
|
128 |
+
self._test_equal(a, b)
|
129 |
+
|
130 |
+
c = np.array([1, 2, 3])
|
131 |
+
self._test_not_equal(c, b)
|
132 |
+
|
133 |
+
def test_string_arrays(self):
|
134 |
+
"""Test two arrays with different shapes are found not equal."""
|
135 |
+
a = np.array(['floupi', 'floupa'])
|
136 |
+
b = np.array(['floupi', 'floupa'])
|
137 |
+
|
138 |
+
self._test_equal(a, b)
|
139 |
+
|
140 |
+
c = np.array(['floupipi', 'floupa'])
|
141 |
+
|
142 |
+
self._test_not_equal(c, b)
|
143 |
+
|
144 |
+
def test_recarrays(self):
|
145 |
+
"""Test record arrays."""
|
146 |
+
a = np.empty(2, [('floupi', float), ('floupa', float)])
|
147 |
+
a['floupi'] = [1, 2]
|
148 |
+
a['floupa'] = [1, 2]
|
149 |
+
b = a.copy()
|
150 |
+
|
151 |
+
self._test_equal(a, b)
|
152 |
+
|
153 |
+
c = np.empty(2, [('floupipi', float),
|
154 |
+
('floupi', float), ('floupa', float)])
|
155 |
+
c['floupipi'] = a['floupi'].copy()
|
156 |
+
c['floupa'] = a['floupa'].copy()
|
157 |
+
|
158 |
+
with pytest.raises(TypeError):
|
159 |
+
self._test_not_equal(c, b)
|
160 |
+
|
161 |
+
def test_masked_nan_inf(self):
|
162 |
+
# Regression test for gh-11121
|
163 |
+
a = np.ma.MaskedArray([3., 4., 6.5], mask=[False, True, False])
|
164 |
+
b = np.array([3., np.nan, 6.5])
|
165 |
+
self._test_equal(a, b)
|
166 |
+
self._test_equal(b, a)
|
167 |
+
a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, False, False])
|
168 |
+
b = np.array([np.inf, 4., 6.5])
|
169 |
+
self._test_equal(a, b)
|
170 |
+
self._test_equal(b, a)
|
171 |
+
|
172 |
+
def test_subclass_that_overrides_eq(self):
|
173 |
+
# While we cannot guarantee testing functions will always work for
|
174 |
+
# subclasses, the tests should ideally rely only on subclasses having
|
175 |
+
# comparison operators, not on them being able to store booleans
|
176 |
+
# (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
|
177 |
+
class MyArray(np.ndarray):
|
178 |
+
def __eq__(self, other):
|
179 |
+
return bool(np.equal(self, other).all())
|
180 |
+
|
181 |
+
def __ne__(self, other):
|
182 |
+
return not self == other
|
183 |
+
|
184 |
+
a = np.array([1., 2.]).view(MyArray)
|
185 |
+
b = np.array([2., 3.]).view(MyArray)
|
186 |
+
assert_(type(a == a), bool)
|
187 |
+
assert_(a == a)
|
188 |
+
assert_(a != b)
|
189 |
+
self._test_equal(a, a)
|
190 |
+
self._test_not_equal(a, b)
|
191 |
+
self._test_not_equal(b, a)
|
192 |
+
|
193 |
+
def test_subclass_that_does_not_implement_npall(self):
|
194 |
+
class MyArray(np.ndarray):
|
195 |
+
def __array_function__(self, *args, **kwargs):
|
196 |
+
return NotImplemented
|
197 |
+
|
198 |
+
a = np.array([1., 2.]).view(MyArray)
|
199 |
+
b = np.array([2., 3.]).view(MyArray)
|
200 |
+
with assert_raises(TypeError):
|
201 |
+
np.all(a)
|
202 |
+
self._test_equal(a, a)
|
203 |
+
self._test_not_equal(a, b)
|
204 |
+
self._test_not_equal(b, a)
|
205 |
+
|
206 |
+
def test_suppress_overflow_warnings(self):
|
207 |
+
# Based on issue #18992
|
208 |
+
with pytest.raises(AssertionError):
|
209 |
+
with np.errstate(all="raise"):
|
210 |
+
np.testing.assert_array_equal(
|
211 |
+
np.array([1, 2, 3], np.float32),
|
212 |
+
np.array([1, 1e-40, 3], np.float32))
|
213 |
+
|
214 |
+
def test_array_vs_scalar_is_equal(self):
|
215 |
+
"""Test comparing an array with a scalar when all values are equal."""
|
216 |
+
a = np.array([1., 1., 1.])
|
217 |
+
b = 1.
|
218 |
+
|
219 |
+
self._test_equal(a, b)
|
220 |
+
|
221 |
+
def test_array_vs_scalar_not_equal(self):
|
222 |
+
"""Test comparing an array with a scalar when not all values equal."""
|
223 |
+
a = np.array([1., 2., 3.])
|
224 |
+
b = 1.
|
225 |
+
|
226 |
+
self._test_not_equal(a, b)
|
227 |
+
|
228 |
+
def test_array_vs_scalar_strict(self):
|
229 |
+
"""Test comparing an array with a scalar with strict option."""
|
230 |
+
a = np.array([1., 1., 1.])
|
231 |
+
b = 1.
|
232 |
+
|
233 |
+
with pytest.raises(AssertionError):
|
234 |
+
assert_array_equal(a, b, strict=True)
|
235 |
+
|
236 |
+
def test_array_vs_array_strict(self):
|
237 |
+
"""Test comparing two arrays with strict option."""
|
238 |
+
a = np.array([1., 1., 1.])
|
239 |
+
b = np.array([1., 1., 1.])
|
240 |
+
|
241 |
+
assert_array_equal(a, b, strict=True)
|
242 |
+
|
243 |
+
def test_array_vs_float_array_strict(self):
|
244 |
+
"""Test comparing two arrays with strict option."""
|
245 |
+
a = np.array([1, 1, 1])
|
246 |
+
b = np.array([1., 1., 1.])
|
247 |
+
|
248 |
+
with pytest.raises(AssertionError):
|
249 |
+
assert_array_equal(a, b, strict=True)
|
250 |
+
|
251 |
+
|
252 |
+
class TestBuildErrorMessage:
|
253 |
+
|
254 |
+
def test_build_err_msg_defaults(self):
|
255 |
+
x = np.array([1.00001, 2.00002, 3.00003])
|
256 |
+
y = np.array([1.00002, 2.00003, 3.00004])
|
257 |
+
err_msg = 'There is a mismatch'
|
258 |
+
|
259 |
+
a = build_err_msg([x, y], err_msg)
|
260 |
+
b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array(['
|
261 |
+
'1.00001, 2.00002, 3.00003])\n DESIRED: array([1.00002, '
|
262 |
+
'2.00003, 3.00004])')
|
263 |
+
assert_equal(a, b)
|
264 |
+
|
265 |
+
def test_build_err_msg_no_verbose(self):
|
266 |
+
x = np.array([1.00001, 2.00002, 3.00003])
|
267 |
+
y = np.array([1.00002, 2.00003, 3.00004])
|
268 |
+
err_msg = 'There is a mismatch'
|
269 |
+
|
270 |
+
a = build_err_msg([x, y], err_msg, verbose=False)
|
271 |
+
b = '\nItems are not equal: There is a mismatch'
|
272 |
+
assert_equal(a, b)
|
273 |
+
|
274 |
+
def test_build_err_msg_custom_names(self):
|
275 |
+
x = np.array([1.00001, 2.00002, 3.00003])
|
276 |
+
y = np.array([1.00002, 2.00003, 3.00004])
|
277 |
+
err_msg = 'There is a mismatch'
|
278 |
+
|
279 |
+
a = build_err_msg([x, y], err_msg, names=('FOO', 'BAR'))
|
280 |
+
b = ('\nItems are not equal: There is a mismatch\n FOO: array(['
|
281 |
+
'1.00001, 2.00002, 3.00003])\n BAR: array([1.00002, 2.00003, '
|
282 |
+
'3.00004])')
|
283 |
+
assert_equal(a, b)
|
284 |
+
|
285 |
+
def test_build_err_msg_custom_precision(self):
|
286 |
+
x = np.array([1.000000001, 2.00002, 3.00003])
|
287 |
+
y = np.array([1.000000002, 2.00003, 3.00004])
|
288 |
+
err_msg = 'There is a mismatch'
|
289 |
+
|
290 |
+
a = build_err_msg([x, y], err_msg, precision=10)
|
291 |
+
b = ('\nItems are not equal: There is a mismatch\n ACTUAL: array(['
|
292 |
+
'1.000000001, 2.00002 , 3.00003 ])\n DESIRED: array(['
|
293 |
+
'1.000000002, 2.00003 , 3.00004 ])')
|
294 |
+
assert_equal(a, b)
|
295 |
+
|
296 |
+
|
297 |
+
class TestEqual(TestArrayEqual):
|
298 |
+
|
299 |
+
def setup_method(self):
|
300 |
+
self._assert_func = assert_equal
|
301 |
+
|
302 |
+
def test_nan_items(self):
|
303 |
+
self._assert_func(np.nan, np.nan)
|
304 |
+
self._assert_func([np.nan], [np.nan])
|
305 |
+
self._test_not_equal(np.nan, [np.nan])
|
306 |
+
self._test_not_equal(np.nan, 1)
|
307 |
+
|
308 |
+
def test_inf_items(self):
|
309 |
+
self._assert_func(np.inf, np.inf)
|
310 |
+
self._assert_func([np.inf], [np.inf])
|
311 |
+
self._test_not_equal(np.inf, [np.inf])
|
312 |
+
|
313 |
+
def test_datetime(self):
|
314 |
+
self._test_equal(
|
315 |
+
np.datetime64("2017-01-01", "s"),
|
316 |
+
np.datetime64("2017-01-01", "s")
|
317 |
+
)
|
318 |
+
self._test_equal(
|
319 |
+
np.datetime64("2017-01-01", "s"),
|
320 |
+
np.datetime64("2017-01-01", "m")
|
321 |
+
)
|
322 |
+
|
323 |
+
# gh-10081
|
324 |
+
self._test_not_equal(
|
325 |
+
np.datetime64("2017-01-01", "s"),
|
326 |
+
np.datetime64("2017-01-02", "s")
|
327 |
+
)
|
328 |
+
self._test_not_equal(
|
329 |
+
np.datetime64("2017-01-01", "s"),
|
330 |
+
np.datetime64("2017-01-02", "m")
|
331 |
+
)
|
332 |
+
|
333 |
+
def test_nat_items(self):
|
334 |
+
# not a datetime
|
335 |
+
nadt_no_unit = np.datetime64("NaT")
|
336 |
+
nadt_s = np.datetime64("NaT", "s")
|
337 |
+
nadt_d = np.datetime64("NaT", "ns")
|
338 |
+
# not a timedelta
|
339 |
+
natd_no_unit = np.timedelta64("NaT")
|
340 |
+
natd_s = np.timedelta64("NaT", "s")
|
341 |
+
natd_d = np.timedelta64("NaT", "ns")
|
342 |
+
|
343 |
+
dts = [nadt_no_unit, nadt_s, nadt_d]
|
344 |
+
tds = [natd_no_unit, natd_s, natd_d]
|
345 |
+
for a, b in itertools.product(dts, dts):
|
346 |
+
self._assert_func(a, b)
|
347 |
+
self._assert_func([a], [b])
|
348 |
+
self._test_not_equal([a], b)
|
349 |
+
|
350 |
+
for a, b in itertools.product(tds, tds):
|
351 |
+
self._assert_func(a, b)
|
352 |
+
self._assert_func([a], [b])
|
353 |
+
self._test_not_equal([a], b)
|
354 |
+
|
355 |
+
for a, b in itertools.product(tds, dts):
|
356 |
+
self._test_not_equal(a, b)
|
357 |
+
self._test_not_equal(a, [b])
|
358 |
+
self._test_not_equal([a], [b])
|
359 |
+
self._test_not_equal([a], np.datetime64("2017-01-01", "s"))
|
360 |
+
self._test_not_equal([b], np.datetime64("2017-01-01", "s"))
|
361 |
+
self._test_not_equal([a], np.timedelta64(123, "s"))
|
362 |
+
self._test_not_equal([b], np.timedelta64(123, "s"))
|
363 |
+
|
364 |
+
def test_non_numeric(self):
|
365 |
+
self._assert_func('ab', 'ab')
|
366 |
+
self._test_not_equal('ab', 'abb')
|
367 |
+
|
368 |
+
def test_complex_item(self):
|
369 |
+
self._assert_func(complex(1, 2), complex(1, 2))
|
370 |
+
self._assert_func(complex(1, np.nan), complex(1, np.nan))
|
371 |
+
self._test_not_equal(complex(1, np.nan), complex(1, 2))
|
372 |
+
self._test_not_equal(complex(np.nan, 1), complex(1, np.nan))
|
373 |
+
self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2))
|
374 |
+
|
375 |
+
def test_negative_zero(self):
|
376 |
+
self._test_not_equal(np.PZERO, np.NZERO)
|
377 |
+
|
378 |
+
def test_complex(self):
|
379 |
+
x = np.array([complex(1, 2), complex(1, np.nan)])
|
380 |
+
y = np.array([complex(1, 2), complex(1, 2)])
|
381 |
+
self._assert_func(x, x)
|
382 |
+
self._test_not_equal(x, y)
|
383 |
+
|
384 |
+
def test_object(self):
|
385 |
+
#gh-12942
|
386 |
+
import datetime
|
387 |
+
a = np.array([datetime.datetime(2000, 1, 1),
|
388 |
+
datetime.datetime(2000, 1, 2)])
|
389 |
+
self._test_not_equal(a, a[::-1])
|
390 |
+
|
391 |
+
|
392 |
+
class TestArrayAlmostEqual(_GenericTest):
|
393 |
+
|
394 |
+
def setup_method(self):
|
395 |
+
self._assert_func = assert_array_almost_equal
|
396 |
+
|
397 |
+
def test_closeness(self):
|
398 |
+
# Note that in the course of time we ended up with
|
399 |
+
# `abs(x - y) < 1.5 * 10**(-decimal)`
|
400 |
+
# instead of the previously documented
|
401 |
+
# `abs(x - y) < 0.5 * 10**(-decimal)`
|
402 |
+
# so this check serves to preserve the wrongness.
|
403 |
+
|
404 |
+
# test scalars
|
405 |
+
self._assert_func(1.499999, 0.0, decimal=0)
|
406 |
+
assert_raises(AssertionError,
|
407 |
+
lambda: self._assert_func(1.5, 0.0, decimal=0))
|
408 |
+
|
409 |
+
# test arrays
|
410 |
+
self._assert_func([1.499999], [0.0], decimal=0)
|
411 |
+
assert_raises(AssertionError,
|
412 |
+
lambda: self._assert_func([1.5], [0.0], decimal=0))
|
413 |
+
|
414 |
+
def test_simple(self):
|
415 |
+
x = np.array([1234.2222])
|
416 |
+
y = np.array([1234.2223])
|
417 |
+
|
418 |
+
self._assert_func(x, y, decimal=3)
|
419 |
+
self._assert_func(x, y, decimal=4)
|
420 |
+
assert_raises(AssertionError,
|
421 |
+
lambda: self._assert_func(x, y, decimal=5))
|
422 |
+
|
423 |
+
def test_nan(self):
|
424 |
+
anan = np.array([np.nan])
|
425 |
+
aone = np.array([1])
|
426 |
+
ainf = np.array([np.inf])
|
427 |
+
self._assert_func(anan, anan)
|
428 |
+
assert_raises(AssertionError,
|
429 |
+
lambda: self._assert_func(anan, aone))
|
430 |
+
assert_raises(AssertionError,
|
431 |
+
lambda: self._assert_func(anan, ainf))
|
432 |
+
assert_raises(AssertionError,
|
433 |
+
lambda: self._assert_func(ainf, anan))
|
434 |
+
|
435 |
+
def test_inf(self):
|
436 |
+
a = np.array([[1., 2.], [3., 4.]])
|
437 |
+
b = a.copy()
|
438 |
+
a[0, 0] = np.inf
|
439 |
+
assert_raises(AssertionError,
|
440 |
+
lambda: self._assert_func(a, b))
|
441 |
+
b[0, 0] = -np.inf
|
442 |
+
assert_raises(AssertionError,
|
443 |
+
lambda: self._assert_func(a, b))
|
444 |
+
|
445 |
+
def test_subclass(self):
|
446 |
+
a = np.array([[1., 2.], [3., 4.]])
|
447 |
+
b = np.ma.masked_array([[1., 2.], [0., 4.]],
|
448 |
+
[[False, False], [True, False]])
|
449 |
+
self._assert_func(a, b)
|
450 |
+
self._assert_func(b, a)
|
451 |
+
self._assert_func(b, b)
|
452 |
+
|
453 |
+
# Test fully masked as well (see gh-11123).
|
454 |
+
a = np.ma.MaskedArray(3.5, mask=True)
|
455 |
+
b = np.array([3., 4., 6.5])
|
456 |
+
self._test_equal(a, b)
|
457 |
+
self._test_equal(b, a)
|
458 |
+
a = np.ma.masked
|
459 |
+
b = np.array([3., 4., 6.5])
|
460 |
+
self._test_equal(a, b)
|
461 |
+
self._test_equal(b, a)
|
462 |
+
a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True])
|
463 |
+
b = np.array([1., 2., 3.])
|
464 |
+
self._test_equal(a, b)
|
465 |
+
self._test_equal(b, a)
|
466 |
+
a = np.ma.MaskedArray([3., 4., 6.5], mask=[True, True, True])
|
467 |
+
b = np.array(1.)
|
468 |
+
self._test_equal(a, b)
|
469 |
+
self._test_equal(b, a)
|
470 |
+
|
471 |
+
def test_subclass_that_cannot_be_bool(self):
|
472 |
+
# While we cannot guarantee testing functions will always work for
|
473 |
+
# subclasses, the tests should ideally rely only on subclasses having
|
474 |
+
# comparison operators, not on them being able to store booleans
|
475 |
+
# (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
|
476 |
+
class MyArray(np.ndarray):
|
477 |
+
def __eq__(self, other):
|
478 |
+
return super().__eq__(other).view(np.ndarray)
|
479 |
+
|
480 |
+
def __lt__(self, other):
|
481 |
+
return super().__lt__(other).view(np.ndarray)
|
482 |
+
|
483 |
+
def all(self, *args, **kwargs):
|
484 |
+
raise NotImplementedError
|
485 |
+
|
486 |
+
a = np.array([1., 2.]).view(MyArray)
|
487 |
+
self._assert_func(a, a)
|
488 |
+
|
489 |
+
|
490 |
+
class TestAlmostEqual(_GenericTest):
|
491 |
+
|
492 |
+
def setup_method(self):
|
493 |
+
self._assert_func = assert_almost_equal
|
494 |
+
|
495 |
+
def test_closeness(self):
|
496 |
+
# Note that in the course of time we ended up with
|
497 |
+
# `abs(x - y) < 1.5 * 10**(-decimal)`
|
498 |
+
# instead of the previously documented
|
499 |
+
# `abs(x - y) < 0.5 * 10**(-decimal)`
|
500 |
+
# so this check serves to preserve the wrongness.
|
501 |
+
|
502 |
+
# test scalars
|
503 |
+
self._assert_func(1.499999, 0.0, decimal=0)
|
504 |
+
assert_raises(AssertionError,
|
505 |
+
lambda: self._assert_func(1.5, 0.0, decimal=0))
|
506 |
+
|
507 |
+
# test arrays
|
508 |
+
self._assert_func([1.499999], [0.0], decimal=0)
|
509 |
+
assert_raises(AssertionError,
|
510 |
+
lambda: self._assert_func([1.5], [0.0], decimal=0))
|
511 |
+
|
512 |
+
def test_nan_item(self):
|
513 |
+
self._assert_func(np.nan, np.nan)
|
514 |
+
assert_raises(AssertionError,
|
515 |
+
lambda: self._assert_func(np.nan, 1))
|
516 |
+
assert_raises(AssertionError,
|
517 |
+
lambda: self._assert_func(np.nan, np.inf))
|
518 |
+
assert_raises(AssertionError,
|
519 |
+
lambda: self._assert_func(np.inf, np.nan))
|
520 |
+
|
521 |
+
def test_inf_item(self):
|
522 |
+
self._assert_func(np.inf, np.inf)
|
523 |
+
self._assert_func(-np.inf, -np.inf)
|
524 |
+
assert_raises(AssertionError,
|
525 |
+
lambda: self._assert_func(np.inf, 1))
|
526 |
+
assert_raises(AssertionError,
|
527 |
+
lambda: self._assert_func(-np.inf, np.inf))
|
528 |
+
|
529 |
+
def test_simple_item(self):
|
530 |
+
self._test_not_equal(1, 2)
|
531 |
+
|
532 |
+
def test_complex_item(self):
|
533 |
+
self._assert_func(complex(1, 2), complex(1, 2))
|
534 |
+
self._assert_func(complex(1, np.nan), complex(1, np.nan))
|
535 |
+
self._assert_func(complex(np.inf, np.nan), complex(np.inf, np.nan))
|
536 |
+
self._test_not_equal(complex(1, np.nan), complex(1, 2))
|
537 |
+
self._test_not_equal(complex(np.nan, 1), complex(1, np.nan))
|
538 |
+
self._test_not_equal(complex(np.nan, np.inf), complex(np.nan, 2))
|
539 |
+
|
540 |
+
def test_complex(self):
|
541 |
+
x = np.array([complex(1, 2), complex(1, np.nan)])
|
542 |
+
z = np.array([complex(1, 2), complex(np.nan, 1)])
|
543 |
+
y = np.array([complex(1, 2), complex(1, 2)])
|
544 |
+
self._assert_func(x, x)
|
545 |
+
self._test_not_equal(x, y)
|
546 |
+
self._test_not_equal(x, z)
|
547 |
+
|
548 |
+
def test_error_message(self):
|
549 |
+
"""Check the message is formatted correctly for the decimal value.
|
550 |
+
Also check the message when input includes inf or nan (gh12200)"""
|
551 |
+
x = np.array([1.00000000001, 2.00000000002, 3.00003])
|
552 |
+
y = np.array([1.00000000002, 2.00000000003, 3.00004])
|
553 |
+
|
554 |
+
# Test with a different amount of decimal digits
|
555 |
+
with pytest.raises(AssertionError) as exc_info:
|
556 |
+
self._assert_func(x, y, decimal=12)
|
557 |
+
msgs = str(exc_info.value).split('\n')
|
558 |
+
assert_equal(msgs[3], 'Mismatched elements: 3 / 3 (100%)')
|
559 |
+
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
|
560 |
+
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
|
561 |
+
assert_equal(
|
562 |
+
msgs[6],
|
563 |
+
' x: array([1.00000000001, 2.00000000002, 3.00003 ])')
|
564 |
+
assert_equal(
|
565 |
+
msgs[7],
|
566 |
+
' y: array([1.00000000002, 2.00000000003, 3.00004 ])')
|
567 |
+
|
568 |
+
# With the default value of decimal digits, only the 3rd element
|
569 |
+
# differs. Note that we only check for the formatting of the arrays
|
570 |
+
# themselves.
|
571 |
+
with pytest.raises(AssertionError) as exc_info:
|
572 |
+
self._assert_func(x, y)
|
573 |
+
msgs = str(exc_info.value).split('\n')
|
574 |
+
assert_equal(msgs[3], 'Mismatched elements: 1 / 3 (33.3%)')
|
575 |
+
assert_equal(msgs[4], 'Max absolute difference: 1.e-05')
|
576 |
+
assert_equal(msgs[5], 'Max relative difference: 3.33328889e-06')
|
577 |
+
assert_equal(msgs[6], ' x: array([1. , 2. , 3.00003])')
|
578 |
+
assert_equal(msgs[7], ' y: array([1. , 2. , 3.00004])')
|
579 |
+
|
580 |
+
# Check the error message when input includes inf
|
581 |
+
x = np.array([np.inf, 0])
|
582 |
+
y = np.array([np.inf, 1])
|
583 |
+
with pytest.raises(AssertionError) as exc_info:
|
584 |
+
self._assert_func(x, y)
|
585 |
+
msgs = str(exc_info.value).split('\n')
|
586 |
+
assert_equal(msgs[3], 'Mismatched elements: 1 / 2 (50%)')
|
587 |
+
assert_equal(msgs[4], 'Max absolute difference: 1.')
|
588 |
+
assert_equal(msgs[5], 'Max relative difference: 1.')
|
589 |
+
assert_equal(msgs[6], ' x: array([inf, 0.])')
|
590 |
+
assert_equal(msgs[7], ' y: array([inf, 1.])')
|
591 |
+
|
592 |
+
# Check the error message when dividing by zero
|
593 |
+
x = np.array([1, 2])
|
594 |
+
y = np.array([0, 0])
|
595 |
+
with pytest.raises(AssertionError) as exc_info:
|
596 |
+
self._assert_func(x, y)
|
597 |
+
msgs = str(exc_info.value).split('\n')
|
598 |
+
assert_equal(msgs[3], 'Mismatched elements: 2 / 2 (100%)')
|
599 |
+
assert_equal(msgs[4], 'Max absolute difference: 2')
|
600 |
+
assert_equal(msgs[5], 'Max relative difference: inf')
|
601 |
+
|
602 |
+
def test_error_message_2(self):
|
603 |
+
"""Check the message is formatted correctly when either x or y is a scalar."""
|
604 |
+
x = 2
|
605 |
+
y = np.ones(20)
|
606 |
+
with pytest.raises(AssertionError) as exc_info:
|
607 |
+
self._assert_func(x, y)
|
608 |
+
msgs = str(exc_info.value).split('\n')
|
609 |
+
assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
|
610 |
+
assert_equal(msgs[4], 'Max absolute difference: 1.')
|
611 |
+
assert_equal(msgs[5], 'Max relative difference: 1.')
|
612 |
+
|
613 |
+
y = 2
|
614 |
+
x = np.ones(20)
|
615 |
+
with pytest.raises(AssertionError) as exc_info:
|
616 |
+
self._assert_func(x, y)
|
617 |
+
msgs = str(exc_info.value).split('\n')
|
618 |
+
assert_equal(msgs[3], 'Mismatched elements: 20 / 20 (100%)')
|
619 |
+
assert_equal(msgs[4], 'Max absolute difference: 1.')
|
620 |
+
assert_equal(msgs[5], 'Max relative difference: 0.5')
|
621 |
+
|
622 |
+
def test_subclass_that_cannot_be_bool(self):
|
623 |
+
# While we cannot guarantee testing functions will always work for
|
624 |
+
# subclasses, the tests should ideally rely only on subclasses having
|
625 |
+
# comparison operators, not on them being able to store booleans
|
626 |
+
# (which, e.g., astropy Quantity cannot usefully do). See gh-8452.
|
627 |
+
class MyArray(np.ndarray):
|
628 |
+
def __eq__(self, other):
|
629 |
+
return super().__eq__(other).view(np.ndarray)
|
630 |
+
|
631 |
+
def __lt__(self, other):
|
632 |
+
return super().__lt__(other).view(np.ndarray)
|
633 |
+
|
634 |
+
def all(self, *args, **kwargs):
|
635 |
+
raise NotImplementedError
|
636 |
+
|
637 |
+
a = np.array([1., 2.]).view(MyArray)
|
638 |
+
self._assert_func(a, a)
|
639 |
+
|
640 |
+
|
641 |
+
class TestApproxEqual:
|
642 |
+
|
643 |
+
def setup_method(self):
|
644 |
+
self._assert_func = assert_approx_equal
|
645 |
+
|
646 |
+
def test_simple_0d_arrays(self):
|
647 |
+
x = np.array(1234.22)
|
648 |
+
y = np.array(1234.23)
|
649 |
+
|
650 |
+
self._assert_func(x, y, significant=5)
|
651 |
+
self._assert_func(x, y, significant=6)
|
652 |
+
assert_raises(AssertionError,
|
653 |
+
lambda: self._assert_func(x, y, significant=7))
|
654 |
+
|
655 |
+
def test_simple_items(self):
|
656 |
+
x = 1234.22
|
657 |
+
y = 1234.23
|
658 |
+
|
659 |
+
self._assert_func(x, y, significant=4)
|
660 |
+
self._assert_func(x, y, significant=5)
|
661 |
+
self._assert_func(x, y, significant=6)
|
662 |
+
assert_raises(AssertionError,
|
663 |
+
lambda: self._assert_func(x, y, significant=7))
|
664 |
+
|
665 |
+
def test_nan_array(self):
|
666 |
+
anan = np.array(np.nan)
|
667 |
+
aone = np.array(1)
|
668 |
+
ainf = np.array(np.inf)
|
669 |
+
self._assert_func(anan, anan)
|
670 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
|
671 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
|
672 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
|
673 |
+
|
674 |
+
def test_nan_items(self):
|
675 |
+
anan = np.array(np.nan)
|
676 |
+
aone = np.array(1)
|
677 |
+
ainf = np.array(np.inf)
|
678 |
+
self._assert_func(anan, anan)
|
679 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
|
680 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
|
681 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
|
682 |
+
|
683 |
+
|
684 |
+
class TestArrayAssertLess:
|
685 |
+
|
686 |
+
def setup_method(self):
|
687 |
+
self._assert_func = assert_array_less
|
688 |
+
|
689 |
+
def test_simple_arrays(self):
|
690 |
+
x = np.array([1.1, 2.2])
|
691 |
+
y = np.array([1.2, 2.3])
|
692 |
+
|
693 |
+
self._assert_func(x, y)
|
694 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
695 |
+
|
696 |
+
y = np.array([1.0, 2.3])
|
697 |
+
|
698 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, y))
|
699 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
700 |
+
|
701 |
+
def test_rank2(self):
|
702 |
+
x = np.array([[1.1, 2.2], [3.3, 4.4]])
|
703 |
+
y = np.array([[1.2, 2.3], [3.4, 4.5]])
|
704 |
+
|
705 |
+
self._assert_func(x, y)
|
706 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
707 |
+
|
708 |
+
y = np.array([[1.0, 2.3], [3.4, 4.5]])
|
709 |
+
|
710 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, y))
|
711 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
712 |
+
|
713 |
+
def test_rank3(self):
|
714 |
+
x = np.ones(shape=(2, 2, 2))
|
715 |
+
y = np.ones(shape=(2, 2, 2))+1
|
716 |
+
|
717 |
+
self._assert_func(x, y)
|
718 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
719 |
+
|
720 |
+
y[0, 0, 0] = 0
|
721 |
+
|
722 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, y))
|
723 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
724 |
+
|
725 |
+
def test_simple_items(self):
|
726 |
+
x = 1.1
|
727 |
+
y = 2.2
|
728 |
+
|
729 |
+
self._assert_func(x, y)
|
730 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
731 |
+
|
732 |
+
y = np.array([2.2, 3.3])
|
733 |
+
|
734 |
+
self._assert_func(x, y)
|
735 |
+
assert_raises(AssertionError, lambda: self._assert_func(y, x))
|
736 |
+
|
737 |
+
y = np.array([1.0, 3.3])
|
738 |
+
|
739 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, y))
|
740 |
+
|
741 |
+
def test_nan_noncompare(self):
|
742 |
+
anan = np.array(np.nan)
|
743 |
+
aone = np.array(1)
|
744 |
+
ainf = np.array(np.inf)
|
745 |
+
self._assert_func(anan, anan)
|
746 |
+
assert_raises(AssertionError, lambda: self._assert_func(aone, anan))
|
747 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, aone))
|
748 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, ainf))
|
749 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, anan))
|
750 |
+
|
751 |
+
def test_nan_noncompare_array(self):
|
752 |
+
x = np.array([1.1, 2.2, 3.3])
|
753 |
+
anan = np.array(np.nan)
|
754 |
+
|
755 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, anan))
|
756 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, x))
|
757 |
+
|
758 |
+
x = np.array([1.1, 2.2, np.nan])
|
759 |
+
|
760 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, anan))
|
761 |
+
assert_raises(AssertionError, lambda: self._assert_func(anan, x))
|
762 |
+
|
763 |
+
y = np.array([1.0, 2.0, np.nan])
|
764 |
+
|
765 |
+
self._assert_func(y, x)
|
766 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, y))
|
767 |
+
|
768 |
+
def test_inf_compare(self):
|
769 |
+
aone = np.array(1)
|
770 |
+
ainf = np.array(np.inf)
|
771 |
+
|
772 |
+
self._assert_func(aone, ainf)
|
773 |
+
self._assert_func(-ainf, aone)
|
774 |
+
self._assert_func(-ainf, ainf)
|
775 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, aone))
|
776 |
+
assert_raises(AssertionError, lambda: self._assert_func(aone, -ainf))
|
777 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, ainf))
|
778 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, -ainf))
|
779 |
+
assert_raises(AssertionError, lambda: self._assert_func(-ainf, -ainf))
|
780 |
+
|
781 |
+
def test_inf_compare_array(self):
|
782 |
+
x = np.array([1.1, 2.2, np.inf])
|
783 |
+
ainf = np.array(np.inf)
|
784 |
+
|
785 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, ainf))
|
786 |
+
assert_raises(AssertionError, lambda: self._assert_func(ainf, x))
|
787 |
+
assert_raises(AssertionError, lambda: self._assert_func(x, -ainf))
|
788 |
+
assert_raises(AssertionError, lambda: self._assert_func(-x, -ainf))
|
789 |
+
assert_raises(AssertionError, lambda: self._assert_func(-ainf, -x))
|
790 |
+
self._assert_func(-ainf, x)
|
791 |
+
|
792 |
+
|
793 |
+
class TestWarns:
|
794 |
+
|
795 |
+
def test_warn(self):
|
796 |
+
def f():
|
797 |
+
warnings.warn("yo")
|
798 |
+
return 3
|
799 |
+
|
800 |
+
before_filters = sys.modules['warnings'].filters[:]
|
801 |
+
assert_equal(assert_warns(UserWarning, f), 3)
|
802 |
+
after_filters = sys.modules['warnings'].filters
|
803 |
+
|
804 |
+
assert_raises(AssertionError, assert_no_warnings, f)
|
805 |
+
assert_equal(assert_no_warnings(lambda x: x, 1), 1)
|
806 |
+
|
807 |
+
# Check that the warnings state is unchanged
|
808 |
+
assert_equal(before_filters, after_filters,
|
809 |
+
"assert_warns does not preserver warnings state")
|
810 |
+
|
811 |
+
def test_context_manager(self):
|
812 |
+
|
813 |
+
before_filters = sys.modules['warnings'].filters[:]
|
814 |
+
with assert_warns(UserWarning):
|
815 |
+
warnings.warn("yo")
|
816 |
+
after_filters = sys.modules['warnings'].filters
|
817 |
+
|
818 |
+
def no_warnings():
|
819 |
+
with assert_no_warnings():
|
820 |
+
warnings.warn("yo")
|
821 |
+
|
822 |
+
assert_raises(AssertionError, no_warnings)
|
823 |
+
assert_equal(before_filters, after_filters,
|
824 |
+
"assert_warns does not preserver warnings state")
|
825 |
+
|
826 |
+
def test_warn_wrong_warning(self):
|
827 |
+
def f():
|
828 |
+
warnings.warn("yo", DeprecationWarning)
|
829 |
+
|
830 |
+
failed = False
|
831 |
+
with warnings.catch_warnings():
|
832 |
+
warnings.simplefilter("error", DeprecationWarning)
|
833 |
+
try:
|
834 |
+
# Should raise a DeprecationWarning
|
835 |
+
assert_warns(UserWarning, f)
|
836 |
+
failed = True
|
837 |
+
except DeprecationWarning:
|
838 |
+
pass
|
839 |
+
|
840 |
+
if failed:
|
841 |
+
raise AssertionError("wrong warning caught by assert_warn")
|
842 |
+
|
843 |
+
|
844 |
+
class TestAssertAllclose:
|
845 |
+
|
846 |
+
def test_simple(self):
|
847 |
+
x = 1e-3
|
848 |
+
y = 1e-9
|
849 |
+
|
850 |
+
assert_allclose(x, y, atol=1)
|
851 |
+
assert_raises(AssertionError, assert_allclose, x, y)
|
852 |
+
|
853 |
+
a = np.array([x, y, x, y])
|
854 |
+
b = np.array([x, y, x, x])
|
855 |
+
|
856 |
+
assert_allclose(a, b, atol=1)
|
857 |
+
assert_raises(AssertionError, assert_allclose, a, b)
|
858 |
+
|
859 |
+
b[-1] = y * (1 + 1e-8)
|
860 |
+
assert_allclose(a, b)
|
861 |
+
assert_raises(AssertionError, assert_allclose, a, b, rtol=1e-9)
|
862 |
+
|
863 |
+
assert_allclose(6, 10, rtol=0.5)
|
864 |
+
assert_raises(AssertionError, assert_allclose, 10, 6, rtol=0.5)
|
865 |
+
|
866 |
+
def test_min_int(self):
|
867 |
+
a = np.array([np.iinfo(np.int_).min], dtype=np.int_)
|
868 |
+
# Should not raise:
|
869 |
+
assert_allclose(a, a)
|
870 |
+
|
871 |
+
def test_report_fail_percentage(self):
|
872 |
+
a = np.array([1, 1, 1, 1])
|
873 |
+
b = np.array([1, 1, 1, 2])
|
874 |
+
|
875 |
+
with pytest.raises(AssertionError) as exc_info:
|
876 |
+
assert_allclose(a, b)
|
877 |
+
msg = str(exc_info.value)
|
878 |
+
assert_('Mismatched elements: 1 / 4 (25%)\n'
|
879 |
+
'Max absolute difference: 1\n'
|
880 |
+
'Max relative difference: 0.5' in msg)
|
881 |
+
|
882 |
+
def test_equal_nan(self):
|
883 |
+
a = np.array([np.nan])
|
884 |
+
b = np.array([np.nan])
|
885 |
+
# Should not raise:
|
886 |
+
assert_allclose(a, b, equal_nan=True)
|
887 |
+
|
888 |
+
def test_not_equal_nan(self):
|
889 |
+
a = np.array([np.nan])
|
890 |
+
b = np.array([np.nan])
|
891 |
+
assert_raises(AssertionError, assert_allclose, a, b, equal_nan=False)
|
892 |
+
|
893 |
+
def test_equal_nan_default(self):
|
894 |
+
# Make sure equal_nan default behavior remains unchanged. (All
|
895 |
+
# of these functions use assert_array_compare under the hood.)
|
896 |
+
# None of these should raise.
|
897 |
+
a = np.array([np.nan])
|
898 |
+
b = np.array([np.nan])
|
899 |
+
assert_array_equal(a, b)
|
900 |
+
assert_array_almost_equal(a, b)
|
901 |
+
assert_array_less(a, b)
|
902 |
+
assert_allclose(a, b)
|
903 |
+
|
904 |
+
def test_report_max_relative_error(self):
|
905 |
+
a = np.array([0, 1])
|
906 |
+
b = np.array([0, 2])
|
907 |
+
|
908 |
+
with pytest.raises(AssertionError) as exc_info:
|
909 |
+
assert_allclose(a, b)
|
910 |
+
msg = str(exc_info.value)
|
911 |
+
assert_('Max relative difference: 0.5' in msg)
|
912 |
+
|
913 |
+
def test_timedelta(self):
|
914 |
+
# see gh-18286
|
915 |
+
a = np.array([[1, 2, 3, "NaT"]], dtype="m8[ns]")
|
916 |
+
assert_allclose(a, a)
|
917 |
+
|
918 |
+
def test_error_message_unsigned(self):
|
919 |
+
"""Check the the message is formatted correctly when overflow can occur
|
920 |
+
(gh21768)"""
|
921 |
+
# Ensure to test for potential overflow in the case of:
|
922 |
+
# x - y
|
923 |
+
# and
|
924 |
+
# y - x
|
925 |
+
x = np.asarray([0, 1, 8], dtype='uint8')
|
926 |
+
y = np.asarray([4, 4, 4], dtype='uint8')
|
927 |
+
with pytest.raises(AssertionError) as exc_info:
|
928 |
+
assert_allclose(x, y, atol=3)
|
929 |
+
msgs = str(exc_info.value).split('\n')
|
930 |
+
assert_equal(msgs[4], 'Max absolute difference: 4')
|
931 |
+
|
932 |
+
|
933 |
+
class TestArrayAlmostEqualNulp:
|
934 |
+
|
935 |
+
def test_float64_pass(self):
|
936 |
+
# The number of units of least precision
|
937 |
+
# In this case, use a few places above the lowest level (ie nulp=1)
|
938 |
+
nulp = 5
|
939 |
+
x = np.linspace(-20, 20, 50, dtype=np.float64)
|
940 |
+
x = 10**x
|
941 |
+
x = np.r_[-x, x]
|
942 |
+
|
943 |
+
# Addition
|
944 |
+
eps = np.finfo(x.dtype).eps
|
945 |
+
y = x + x*eps*nulp/2.
|
946 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
947 |
+
|
948 |
+
# Subtraction
|
949 |
+
epsneg = np.finfo(x.dtype).epsneg
|
950 |
+
y = x - x*epsneg*nulp/2.
|
951 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
952 |
+
|
953 |
+
def test_float64_fail(self):
|
954 |
+
nulp = 5
|
955 |
+
x = np.linspace(-20, 20, 50, dtype=np.float64)
|
956 |
+
x = 10**x
|
957 |
+
x = np.r_[-x, x]
|
958 |
+
|
959 |
+
eps = np.finfo(x.dtype).eps
|
960 |
+
y = x + x*eps*nulp*2.
|
961 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
962 |
+
x, y, nulp)
|
963 |
+
|
964 |
+
epsneg = np.finfo(x.dtype).epsneg
|
965 |
+
y = x - x*epsneg*nulp*2.
|
966 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
967 |
+
x, y, nulp)
|
968 |
+
|
969 |
+
def test_float64_ignore_nan(self):
|
970 |
+
# Ignore ULP differences between various NAN's
|
971 |
+
# Note that MIPS may reverse quiet and signaling nans
|
972 |
+
# so we use the builtin version as a base.
|
973 |
+
offset = np.uint64(0xffffffff)
|
974 |
+
nan1_i64 = np.array(np.nan, dtype=np.float64).view(np.uint64)
|
975 |
+
nan2_i64 = nan1_i64 ^ offset # nan payload on MIPS is all ones.
|
976 |
+
nan1_f64 = nan1_i64.view(np.float64)
|
977 |
+
nan2_f64 = nan2_i64.view(np.float64)
|
978 |
+
assert_array_max_ulp(nan1_f64, nan2_f64, 0)
|
979 |
+
|
980 |
+
def test_float32_pass(self):
|
981 |
+
nulp = 5
|
982 |
+
x = np.linspace(-20, 20, 50, dtype=np.float32)
|
983 |
+
x = 10**x
|
984 |
+
x = np.r_[-x, x]
|
985 |
+
|
986 |
+
eps = np.finfo(x.dtype).eps
|
987 |
+
y = x + x*eps*nulp/2.
|
988 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
989 |
+
|
990 |
+
epsneg = np.finfo(x.dtype).epsneg
|
991 |
+
y = x - x*epsneg*nulp/2.
|
992 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
993 |
+
|
994 |
+
def test_float32_fail(self):
|
995 |
+
nulp = 5
|
996 |
+
x = np.linspace(-20, 20, 50, dtype=np.float32)
|
997 |
+
x = 10**x
|
998 |
+
x = np.r_[-x, x]
|
999 |
+
|
1000 |
+
eps = np.finfo(x.dtype).eps
|
1001 |
+
y = x + x*eps*nulp*2.
|
1002 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1003 |
+
x, y, nulp)
|
1004 |
+
|
1005 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1006 |
+
y = x - x*epsneg*nulp*2.
|
1007 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1008 |
+
x, y, nulp)
|
1009 |
+
|
1010 |
+
def test_float32_ignore_nan(self):
|
1011 |
+
# Ignore ULP differences between various NAN's
|
1012 |
+
# Note that MIPS may reverse quiet and signaling nans
|
1013 |
+
# so we use the builtin version as a base.
|
1014 |
+
offset = np.uint32(0xffff)
|
1015 |
+
nan1_i32 = np.array(np.nan, dtype=np.float32).view(np.uint32)
|
1016 |
+
nan2_i32 = nan1_i32 ^ offset # nan payload on MIPS is all ones.
|
1017 |
+
nan1_f32 = nan1_i32.view(np.float32)
|
1018 |
+
nan2_f32 = nan2_i32.view(np.float32)
|
1019 |
+
assert_array_max_ulp(nan1_f32, nan2_f32, 0)
|
1020 |
+
|
1021 |
+
def test_float16_pass(self):
|
1022 |
+
nulp = 5
|
1023 |
+
x = np.linspace(-4, 4, 10, dtype=np.float16)
|
1024 |
+
x = 10**x
|
1025 |
+
x = np.r_[-x, x]
|
1026 |
+
|
1027 |
+
eps = np.finfo(x.dtype).eps
|
1028 |
+
y = x + x*eps*nulp/2.
|
1029 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
1030 |
+
|
1031 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1032 |
+
y = x - x*epsneg*nulp/2.
|
1033 |
+
assert_array_almost_equal_nulp(x, y, nulp)
|
1034 |
+
|
1035 |
+
def test_float16_fail(self):
|
1036 |
+
nulp = 5
|
1037 |
+
x = np.linspace(-4, 4, 10, dtype=np.float16)
|
1038 |
+
x = 10**x
|
1039 |
+
x = np.r_[-x, x]
|
1040 |
+
|
1041 |
+
eps = np.finfo(x.dtype).eps
|
1042 |
+
y = x + x*eps*nulp*2.
|
1043 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1044 |
+
x, y, nulp)
|
1045 |
+
|
1046 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1047 |
+
y = x - x*epsneg*nulp*2.
|
1048 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1049 |
+
x, y, nulp)
|
1050 |
+
|
1051 |
+
def test_float16_ignore_nan(self):
|
1052 |
+
# Ignore ULP differences between various NAN's
|
1053 |
+
# Note that MIPS may reverse quiet and signaling nans
|
1054 |
+
# so we use the builtin version as a base.
|
1055 |
+
offset = np.uint16(0xff)
|
1056 |
+
nan1_i16 = np.array(np.nan, dtype=np.float16).view(np.uint16)
|
1057 |
+
nan2_i16 = nan1_i16 ^ offset # nan payload on MIPS is all ones.
|
1058 |
+
nan1_f16 = nan1_i16.view(np.float16)
|
1059 |
+
nan2_f16 = nan2_i16.view(np.float16)
|
1060 |
+
assert_array_max_ulp(nan1_f16, nan2_f16, 0)
|
1061 |
+
|
1062 |
+
def test_complex128_pass(self):
|
1063 |
+
nulp = 5
|
1064 |
+
x = np.linspace(-20, 20, 50, dtype=np.float64)
|
1065 |
+
x = 10**x
|
1066 |
+
x = np.r_[-x, x]
|
1067 |
+
xi = x + x*1j
|
1068 |
+
|
1069 |
+
eps = np.finfo(x.dtype).eps
|
1070 |
+
y = x + x*eps*nulp/2.
|
1071 |
+
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
|
1072 |
+
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
|
1073 |
+
# The test condition needs to be at least a factor of sqrt(2) smaller
|
1074 |
+
# because the real and imaginary parts both change
|
1075 |
+
y = x + x*eps*nulp/4.
|
1076 |
+
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
|
1077 |
+
|
1078 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1079 |
+
y = x - x*epsneg*nulp/2.
|
1080 |
+
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
|
1081 |
+
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
|
1082 |
+
y = x - x*epsneg*nulp/4.
|
1083 |
+
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
|
1084 |
+
|
1085 |
+
def test_complex128_fail(self):
|
1086 |
+
nulp = 5
|
1087 |
+
x = np.linspace(-20, 20, 50, dtype=np.float64)
|
1088 |
+
x = 10**x
|
1089 |
+
x = np.r_[-x, x]
|
1090 |
+
xi = x + x*1j
|
1091 |
+
|
1092 |
+
eps = np.finfo(x.dtype).eps
|
1093 |
+
y = x + x*eps*nulp*2.
|
1094 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1095 |
+
xi, x + y*1j, nulp)
|
1096 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1097 |
+
xi, y + x*1j, nulp)
|
1098 |
+
# The test condition needs to be at least a factor of sqrt(2) smaller
|
1099 |
+
# because the real and imaginary parts both change
|
1100 |
+
y = x + x*eps*nulp
|
1101 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1102 |
+
xi, y + y*1j, nulp)
|
1103 |
+
|
1104 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1105 |
+
y = x - x*epsneg*nulp*2.
|
1106 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1107 |
+
xi, x + y*1j, nulp)
|
1108 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1109 |
+
xi, y + x*1j, nulp)
|
1110 |
+
y = x - x*epsneg*nulp
|
1111 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1112 |
+
xi, y + y*1j, nulp)
|
1113 |
+
|
1114 |
+
def test_complex64_pass(self):
|
1115 |
+
nulp = 5
|
1116 |
+
x = np.linspace(-20, 20, 50, dtype=np.float32)
|
1117 |
+
x = 10**x
|
1118 |
+
x = np.r_[-x, x]
|
1119 |
+
xi = x + x*1j
|
1120 |
+
|
1121 |
+
eps = np.finfo(x.dtype).eps
|
1122 |
+
y = x + x*eps*nulp/2.
|
1123 |
+
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
|
1124 |
+
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
|
1125 |
+
y = x + x*eps*nulp/4.
|
1126 |
+
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
|
1127 |
+
|
1128 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1129 |
+
y = x - x*epsneg*nulp/2.
|
1130 |
+
assert_array_almost_equal_nulp(xi, x + y*1j, nulp)
|
1131 |
+
assert_array_almost_equal_nulp(xi, y + x*1j, nulp)
|
1132 |
+
y = x - x*epsneg*nulp/4.
|
1133 |
+
assert_array_almost_equal_nulp(xi, y + y*1j, nulp)
|
1134 |
+
|
1135 |
+
def test_complex64_fail(self):
|
1136 |
+
nulp = 5
|
1137 |
+
x = np.linspace(-20, 20, 50, dtype=np.float32)
|
1138 |
+
x = 10**x
|
1139 |
+
x = np.r_[-x, x]
|
1140 |
+
xi = x + x*1j
|
1141 |
+
|
1142 |
+
eps = np.finfo(x.dtype).eps
|
1143 |
+
y = x + x*eps*nulp*2.
|
1144 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1145 |
+
xi, x + y*1j, nulp)
|
1146 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1147 |
+
xi, y + x*1j, nulp)
|
1148 |
+
y = x + x*eps*nulp
|
1149 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1150 |
+
xi, y + y*1j, nulp)
|
1151 |
+
|
1152 |
+
epsneg = np.finfo(x.dtype).epsneg
|
1153 |
+
y = x - x*epsneg*nulp*2.
|
1154 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1155 |
+
xi, x + y*1j, nulp)
|
1156 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1157 |
+
xi, y + x*1j, nulp)
|
1158 |
+
y = x - x*epsneg*nulp
|
1159 |
+
assert_raises(AssertionError, assert_array_almost_equal_nulp,
|
1160 |
+
xi, y + y*1j, nulp)
|
1161 |
+
|
1162 |
+
|
1163 |
+
class TestULP:
|
1164 |
+
|
1165 |
+
def test_equal(self):
|
1166 |
+
x = np.random.randn(10)
|
1167 |
+
assert_array_max_ulp(x, x, maxulp=0)
|
1168 |
+
|
1169 |
+
def test_single(self):
|
1170 |
+
# Generate 1 + small deviation, check that adding eps gives a few UNL
|
1171 |
+
x = np.ones(10).astype(np.float32)
|
1172 |
+
x += 0.01 * np.random.randn(10).astype(np.float32)
|
1173 |
+
eps = np.finfo(np.float32).eps
|
1174 |
+
assert_array_max_ulp(x, x+eps, maxulp=20)
|
1175 |
+
|
1176 |
+
def test_double(self):
|
1177 |
+
# Generate 1 + small deviation, check that adding eps gives a few UNL
|
1178 |
+
x = np.ones(10).astype(np.float64)
|
1179 |
+
x += 0.01 * np.random.randn(10).astype(np.float64)
|
1180 |
+
eps = np.finfo(np.float64).eps
|
1181 |
+
assert_array_max_ulp(x, x+eps, maxulp=200)
|
1182 |
+
|
1183 |
+
def test_inf(self):
|
1184 |
+
for dt in [np.float32, np.float64]:
|
1185 |
+
inf = np.array([np.inf]).astype(dt)
|
1186 |
+
big = np.array([np.finfo(dt).max])
|
1187 |
+
assert_array_max_ulp(inf, big, maxulp=200)
|
1188 |
+
|
1189 |
+
def test_nan(self):
|
1190 |
+
# Test that nan is 'far' from small, tiny, inf, max and min
|
1191 |
+
for dt in [np.float32, np.float64]:
|
1192 |
+
if dt == np.float32:
|
1193 |
+
maxulp = 1e6
|
1194 |
+
else:
|
1195 |
+
maxulp = 1e12
|
1196 |
+
inf = np.array([np.inf]).astype(dt)
|
1197 |
+
nan = np.array([np.nan]).astype(dt)
|
1198 |
+
big = np.array([np.finfo(dt).max])
|
1199 |
+
tiny = np.array([np.finfo(dt).tiny])
|
1200 |
+
zero = np.array([np.PZERO]).astype(dt)
|
1201 |
+
nzero = np.array([np.NZERO]).astype(dt)
|
1202 |
+
assert_raises(AssertionError,
|
1203 |
+
lambda: assert_array_max_ulp(nan, inf,
|
1204 |
+
maxulp=maxulp))
|
1205 |
+
assert_raises(AssertionError,
|
1206 |
+
lambda: assert_array_max_ulp(nan, big,
|
1207 |
+
maxulp=maxulp))
|
1208 |
+
assert_raises(AssertionError,
|
1209 |
+
lambda: assert_array_max_ulp(nan, tiny,
|
1210 |
+
maxulp=maxulp))
|
1211 |
+
assert_raises(AssertionError,
|
1212 |
+
lambda: assert_array_max_ulp(nan, zero,
|
1213 |
+
maxulp=maxulp))
|
1214 |
+
assert_raises(AssertionError,
|
1215 |
+
lambda: assert_array_max_ulp(nan, nzero,
|
1216 |
+
maxulp=maxulp))
|
1217 |
+
|
1218 |
+
|
1219 |
+
class TestStringEqual:
|
1220 |
+
def test_simple(self):
|
1221 |
+
assert_string_equal("hello", "hello")
|
1222 |
+
assert_string_equal("hello\nmultiline", "hello\nmultiline")
|
1223 |
+
|
1224 |
+
with pytest.raises(AssertionError) as exc_info:
|
1225 |
+
assert_string_equal("foo\nbar", "hello\nbar")
|
1226 |
+
msg = str(exc_info.value)
|
1227 |
+
assert_equal(msg, "Differences in strings:\n- foo\n+ hello")
|
1228 |
+
|
1229 |
+
assert_raises(AssertionError,
|
1230 |
+
lambda: assert_string_equal("foo", "hello"))
|
1231 |
+
|
1232 |
+
def test_regex(self):
|
1233 |
+
assert_string_equal("a+*b", "a+*b")
|
1234 |
+
|
1235 |
+
assert_raises(AssertionError,
|
1236 |
+
lambda: assert_string_equal("aaa", "a+b"))
|
1237 |
+
|
1238 |
+
|
1239 |
+
def assert_warn_len_equal(mod, n_in_context):
|
1240 |
+
try:
|
1241 |
+
mod_warns = mod.__warningregistry__
|
1242 |
+
except AttributeError:
|
1243 |
+
# the lack of a __warningregistry__
|
1244 |
+
# attribute means that no warning has
|
1245 |
+
# occurred; this can be triggered in
|
1246 |
+
# a parallel test scenario, while in
|
1247 |
+
# a serial test scenario an initial
|
1248 |
+
# warning (and therefore the attribute)
|
1249 |
+
# are always created first
|
1250 |
+
mod_warns = {}
|
1251 |
+
|
1252 |
+
num_warns = len(mod_warns)
|
1253 |
+
|
1254 |
+
if 'version' in mod_warns:
|
1255 |
+
# Python 3 adds a 'version' entry to the registry,
|
1256 |
+
# do not count it.
|
1257 |
+
num_warns -= 1
|
1258 |
+
|
1259 |
+
assert_equal(num_warns, n_in_context)
|
1260 |
+
|
1261 |
+
|
1262 |
+
def test_warn_len_equal_call_scenarios():
|
1263 |
+
# assert_warn_len_equal is called under
|
1264 |
+
# varying circumstances depending on serial
|
1265 |
+
# vs. parallel test scenarios; this test
|
1266 |
+
# simply aims to probe both code paths and
|
1267 |
+
# check that no assertion is uncaught
|
1268 |
+
|
1269 |
+
# parallel scenario -- no warning issued yet
|
1270 |
+
class mod:
|
1271 |
+
pass
|
1272 |
+
|
1273 |
+
mod_inst = mod()
|
1274 |
+
|
1275 |
+
assert_warn_len_equal(mod=mod_inst,
|
1276 |
+
n_in_context=0)
|
1277 |
+
|
1278 |
+
# serial test scenario -- the __warningregistry__
|
1279 |
+
# attribute should be present
|
1280 |
+
class mod:
|
1281 |
+
def __init__(self):
|
1282 |
+
self.__warningregistry__ = {'warning1':1,
|
1283 |
+
'warning2':2}
|
1284 |
+
|
1285 |
+
mod_inst = mod()
|
1286 |
+
assert_warn_len_equal(mod=mod_inst,
|
1287 |
+
n_in_context=2)
|
1288 |
+
|
1289 |
+
|
1290 |
+
def _get_fresh_mod():
|
1291 |
+
# Get this module, with warning registry empty
|
1292 |
+
my_mod = sys.modules[__name__]
|
1293 |
+
try:
|
1294 |
+
my_mod.__warningregistry__.clear()
|
1295 |
+
except AttributeError:
|
1296 |
+
# will not have a __warningregistry__ unless warning has been
|
1297 |
+
# raised in the module at some point
|
1298 |
+
pass
|
1299 |
+
return my_mod
|
1300 |
+
|
1301 |
+
|
1302 |
+
def test_clear_and_catch_warnings():
|
1303 |
+
# Initial state of module, no warnings
|
1304 |
+
my_mod = _get_fresh_mod()
|
1305 |
+
assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
|
1306 |
+
with clear_and_catch_warnings(modules=[my_mod]):
|
1307 |
+
warnings.simplefilter('ignore')
|
1308 |
+
warnings.warn('Some warning')
|
1309 |
+
assert_equal(my_mod.__warningregistry__, {})
|
1310 |
+
# Without specified modules, don't clear warnings during context.
|
1311 |
+
# catch_warnings doesn't make an entry for 'ignore'.
|
1312 |
+
with clear_and_catch_warnings():
|
1313 |
+
warnings.simplefilter('ignore')
|
1314 |
+
warnings.warn('Some warning')
|
1315 |
+
assert_warn_len_equal(my_mod, 0)
|
1316 |
+
|
1317 |
+
# Manually adding two warnings to the registry:
|
1318 |
+
my_mod.__warningregistry__ = {'warning1': 1,
|
1319 |
+
'warning2': 2}
|
1320 |
+
|
1321 |
+
# Confirm that specifying module keeps old warning, does not add new
|
1322 |
+
with clear_and_catch_warnings(modules=[my_mod]):
|
1323 |
+
warnings.simplefilter('ignore')
|
1324 |
+
warnings.warn('Another warning')
|
1325 |
+
assert_warn_len_equal(my_mod, 2)
|
1326 |
+
|
1327 |
+
# Another warning, no module spec it clears up registry
|
1328 |
+
with clear_and_catch_warnings():
|
1329 |
+
warnings.simplefilter('ignore')
|
1330 |
+
warnings.warn('Another warning')
|
1331 |
+
assert_warn_len_equal(my_mod, 0)
|
1332 |
+
|
1333 |
+
|
1334 |
+
def test_suppress_warnings_module():
|
1335 |
+
# Initial state of module, no warnings
|
1336 |
+
my_mod = _get_fresh_mod()
|
1337 |
+
assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
|
1338 |
+
|
1339 |
+
def warn_other_module():
|
1340 |
+
# Apply along axis is implemented in python; stacklevel=2 means
|
1341 |
+
# we end up inside its module, not ours.
|
1342 |
+
def warn(arr):
|
1343 |
+
warnings.warn("Some warning 2", stacklevel=2)
|
1344 |
+
return arr
|
1345 |
+
np.apply_along_axis(warn, 0, [0])
|
1346 |
+
|
1347 |
+
# Test module based warning suppression:
|
1348 |
+
assert_warn_len_equal(my_mod, 0)
|
1349 |
+
with suppress_warnings() as sup:
|
1350 |
+
sup.record(UserWarning)
|
1351 |
+
# suppress warning from other module (may have .pyc ending),
|
1352 |
+
# if apply_along_axis is moved, had to be changed.
|
1353 |
+
sup.filter(module=np.lib.shape_base)
|
1354 |
+
warnings.warn("Some warning")
|
1355 |
+
warn_other_module()
|
1356 |
+
# Check that the suppression did test the file correctly (this module
|
1357 |
+
# got filtered)
|
1358 |
+
assert_equal(len(sup.log), 1)
|
1359 |
+
assert_equal(sup.log[0].message.args[0], "Some warning")
|
1360 |
+
assert_warn_len_equal(my_mod, 0)
|
1361 |
+
sup = suppress_warnings()
|
1362 |
+
# Will have to be changed if apply_along_axis is moved:
|
1363 |
+
sup.filter(module=my_mod)
|
1364 |
+
with sup:
|
1365 |
+
warnings.warn('Some warning')
|
1366 |
+
assert_warn_len_equal(my_mod, 0)
|
1367 |
+
# And test repeat works:
|
1368 |
+
sup.filter(module=my_mod)
|
1369 |
+
with sup:
|
1370 |
+
warnings.warn('Some warning')
|
1371 |
+
assert_warn_len_equal(my_mod, 0)
|
1372 |
+
|
1373 |
+
# Without specified modules
|
1374 |
+
with suppress_warnings():
|
1375 |
+
warnings.simplefilter('ignore')
|
1376 |
+
warnings.warn('Some warning')
|
1377 |
+
assert_warn_len_equal(my_mod, 0)
|
1378 |
+
|
1379 |
+
|
1380 |
+
def test_suppress_warnings_type():
|
1381 |
+
# Initial state of module, no warnings
|
1382 |
+
my_mod = _get_fresh_mod()
|
1383 |
+
assert_equal(getattr(my_mod, '__warningregistry__', {}), {})
|
1384 |
+
|
1385 |
+
# Test module based warning suppression:
|
1386 |
+
with suppress_warnings() as sup:
|
1387 |
+
sup.filter(UserWarning)
|
1388 |
+
warnings.warn('Some warning')
|
1389 |
+
assert_warn_len_equal(my_mod, 0)
|
1390 |
+
sup = suppress_warnings()
|
1391 |
+
sup.filter(UserWarning)
|
1392 |
+
with sup:
|
1393 |
+
warnings.warn('Some warning')
|
1394 |
+
assert_warn_len_equal(my_mod, 0)
|
1395 |
+
# And test repeat works:
|
1396 |
+
sup.filter(module=my_mod)
|
1397 |
+
with sup:
|
1398 |
+
warnings.warn('Some warning')
|
1399 |
+
assert_warn_len_equal(my_mod, 0)
|
1400 |
+
|
1401 |
+
# Without specified modules
|
1402 |
+
with suppress_warnings():
|
1403 |
+
warnings.simplefilter('ignore')
|
1404 |
+
warnings.warn('Some warning')
|
1405 |
+
assert_warn_len_equal(my_mod, 0)
|
1406 |
+
|
1407 |
+
|
1408 |
+
def test_suppress_warnings_decorate_no_record():
|
1409 |
+
sup = suppress_warnings()
|
1410 |
+
sup.filter(UserWarning)
|
1411 |
+
|
1412 |
+
@sup
|
1413 |
+
def warn(category):
|
1414 |
+
warnings.warn('Some warning', category)
|
1415 |
+
|
1416 |
+
with warnings.catch_warnings(record=True) as w:
|
1417 |
+
warnings.simplefilter("always")
|
1418 |
+
warn(UserWarning) # should be supppressed
|
1419 |
+
warn(RuntimeWarning)
|
1420 |
+
assert_equal(len(w), 1)
|
1421 |
+
|
1422 |
+
|
1423 |
+
def test_suppress_warnings_record():
|
1424 |
+
sup = suppress_warnings()
|
1425 |
+
log1 = sup.record()
|
1426 |
+
|
1427 |
+
with sup:
|
1428 |
+
log2 = sup.record(message='Some other warning 2')
|
1429 |
+
sup.filter(message='Some warning')
|
1430 |
+
warnings.warn('Some warning')
|
1431 |
+
warnings.warn('Some other warning')
|
1432 |
+
warnings.warn('Some other warning 2')
|
1433 |
+
|
1434 |
+
assert_equal(len(sup.log), 2)
|
1435 |
+
assert_equal(len(log1), 1)
|
1436 |
+
assert_equal(len(log2),1)
|
1437 |
+
assert_equal(log2[0].message.args[0], 'Some other warning 2')
|
1438 |
+
|
1439 |
+
# Do it again, with the same context to see if some warnings survived:
|
1440 |
+
with sup:
|
1441 |
+
log2 = sup.record(message='Some other warning 2')
|
1442 |
+
sup.filter(message='Some warning')
|
1443 |
+
warnings.warn('Some warning')
|
1444 |
+
warnings.warn('Some other warning')
|
1445 |
+
warnings.warn('Some other warning 2')
|
1446 |
+
|
1447 |
+
assert_equal(len(sup.log), 2)
|
1448 |
+
assert_equal(len(log1), 1)
|
1449 |
+
assert_equal(len(log2), 1)
|
1450 |
+
assert_equal(log2[0].message.args[0], 'Some other warning 2')
|
1451 |
+
|
1452 |
+
# Test nested:
|
1453 |
+
with suppress_warnings() as sup:
|
1454 |
+
sup.record()
|
1455 |
+
with suppress_warnings() as sup2:
|
1456 |
+
sup2.record(message='Some warning')
|
1457 |
+
warnings.warn('Some warning')
|
1458 |
+
warnings.warn('Some other warning')
|
1459 |
+
assert_equal(len(sup2.log), 1)
|
1460 |
+
assert_equal(len(sup.log), 1)
|
1461 |
+
|
1462 |
+
|
1463 |
+
def test_suppress_warnings_forwarding():
|
1464 |
+
def warn_other_module():
|
1465 |
+
# Apply along axis is implemented in python; stacklevel=2 means
|
1466 |
+
# we end up inside its module, not ours.
|
1467 |
+
def warn(arr):
|
1468 |
+
warnings.warn("Some warning", stacklevel=2)
|
1469 |
+
return arr
|
1470 |
+
np.apply_along_axis(warn, 0, [0])
|
1471 |
+
|
1472 |
+
with suppress_warnings() as sup:
|
1473 |
+
sup.record()
|
1474 |
+
with suppress_warnings("always"):
|
1475 |
+
for i in range(2):
|
1476 |
+
warnings.warn("Some warning")
|
1477 |
+
|
1478 |
+
assert_equal(len(sup.log), 2)
|
1479 |
+
|
1480 |
+
with suppress_warnings() as sup:
|
1481 |
+
sup.record()
|
1482 |
+
with suppress_warnings("location"):
|
1483 |
+
for i in range(2):
|
1484 |
+
warnings.warn("Some warning")
|
1485 |
+
warnings.warn("Some warning")
|
1486 |
+
|
1487 |
+
assert_equal(len(sup.log), 2)
|
1488 |
+
|
1489 |
+
with suppress_warnings() as sup:
|
1490 |
+
sup.record()
|
1491 |
+
with suppress_warnings("module"):
|
1492 |
+
for i in range(2):
|
1493 |
+
warnings.warn("Some warning")
|
1494 |
+
warnings.warn("Some warning")
|
1495 |
+
warn_other_module()
|
1496 |
+
|
1497 |
+
assert_equal(len(sup.log), 2)
|
1498 |
+
|
1499 |
+
with suppress_warnings() as sup:
|
1500 |
+
sup.record()
|
1501 |
+
with suppress_warnings("once"):
|
1502 |
+
for i in range(2):
|
1503 |
+
warnings.warn("Some warning")
|
1504 |
+
warnings.warn("Some other warning")
|
1505 |
+
warn_other_module()
|
1506 |
+
|
1507 |
+
assert_equal(len(sup.log), 2)
|
1508 |
+
|
1509 |
+
|
1510 |
+
def test_tempdir():
|
1511 |
+
with tempdir() as tdir:
|
1512 |
+
fpath = os.path.join(tdir, 'tmp')
|
1513 |
+
with open(fpath, 'w'):
|
1514 |
+
pass
|
1515 |
+
assert_(not os.path.isdir(tdir))
|
1516 |
+
|
1517 |
+
raised = False
|
1518 |
+
try:
|
1519 |
+
with tempdir() as tdir:
|
1520 |
+
raise ValueError()
|
1521 |
+
except ValueError:
|
1522 |
+
raised = True
|
1523 |
+
assert_(raised)
|
1524 |
+
assert_(not os.path.isdir(tdir))
|
1525 |
+
|
1526 |
+
|
1527 |
+
def test_temppath():
|
1528 |
+
with temppath() as fpath:
|
1529 |
+
with open(fpath, 'w'):
|
1530 |
+
pass
|
1531 |
+
assert_(not os.path.isfile(fpath))
|
1532 |
+
|
1533 |
+
raised = False
|
1534 |
+
try:
|
1535 |
+
with temppath() as fpath:
|
1536 |
+
raise ValueError()
|
1537 |
+
except ValueError:
|
1538 |
+
raised = True
|
1539 |
+
assert_(raised)
|
1540 |
+
assert_(not os.path.isfile(fpath))
|
1541 |
+
|
1542 |
+
|
1543 |
+
class my_cacw(clear_and_catch_warnings):
|
1544 |
+
|
1545 |
+
class_modules = (sys.modules[__name__],)
|
1546 |
+
|
1547 |
+
|
1548 |
+
def test_clear_and_catch_warnings_inherit():
|
1549 |
+
# Test can subclass and add default modules
|
1550 |
+
my_mod = _get_fresh_mod()
|
1551 |
+
with my_cacw():
|
1552 |
+
warnings.simplefilter('ignore')
|
1553 |
+
warnings.warn('Some warning')
|
1554 |
+
assert_equal(my_mod.__warningregistry__, {})
|
1555 |
+
|
1556 |
+
|
1557 |
+
@pytest.mark.skipif(not HAS_REFCOUNT, reason="Python lacks refcounts")
|
1558 |
+
class TestAssertNoGcCycles:
|
1559 |
+
""" Test assert_no_gc_cycles """
|
1560 |
+
def test_passes(self):
|
1561 |
+
def no_cycle():
|
1562 |
+
b = []
|
1563 |
+
b.append([])
|
1564 |
+
return b
|
1565 |
+
|
1566 |
+
with assert_no_gc_cycles():
|
1567 |
+
no_cycle()
|
1568 |
+
|
1569 |
+
assert_no_gc_cycles(no_cycle)
|
1570 |
+
|
1571 |
+
def test_asserts(self):
|
1572 |
+
def make_cycle():
|
1573 |
+
a = []
|
1574 |
+
a.append(a)
|
1575 |
+
a.append(a)
|
1576 |
+
return a
|
1577 |
+
|
1578 |
+
with assert_raises(AssertionError):
|
1579 |
+
with assert_no_gc_cycles():
|
1580 |
+
make_cycle()
|
1581 |
+
|
1582 |
+
with assert_raises(AssertionError):
|
1583 |
+
assert_no_gc_cycles(make_cycle)
|
1584 |
+
|
1585 |
+
@pytest.mark.slow
|
1586 |
+
def test_fails(self):
|
1587 |
+
"""
|
1588 |
+
Test that in cases where the garbage cannot be collected, we raise an
|
1589 |
+
error, instead of hanging forever trying to clear it.
|
1590 |
+
"""
|
1591 |
+
|
1592 |
+
class ReferenceCycleInDel:
|
1593 |
+
"""
|
1594 |
+
An object that not only contains a reference cycle, but creates new
|
1595 |
+
cycles whenever it's garbage-collected and its __del__ runs
|
1596 |
+
"""
|
1597 |
+
make_cycle = True
|
1598 |
+
|
1599 |
+
def __init__(self):
|
1600 |
+
self.cycle = self
|
1601 |
+
|
1602 |
+
def __del__(self):
|
1603 |
+
# break the current cycle so that `self` can be freed
|
1604 |
+
self.cycle = None
|
1605 |
+
|
1606 |
+
if ReferenceCycleInDel.make_cycle:
|
1607 |
+
# but create a new one so that the garbage collector has more
|
1608 |
+
# work to do.
|
1609 |
+
ReferenceCycleInDel()
|
1610 |
+
|
1611 |
+
try:
|
1612 |
+
w = weakref.ref(ReferenceCycleInDel())
|
1613 |
+
try:
|
1614 |
+
with assert_raises(RuntimeError):
|
1615 |
+
# this will be unable to get a baseline empty garbage
|
1616 |
+
assert_no_gc_cycles(lambda: None)
|
1617 |
+
except AssertionError:
|
1618 |
+
# the above test is only necessary if the GC actually tried to free
|
1619 |
+
# our object anyway, which python 2.7 does not.
|
1620 |
+
if w() is not None:
|
1621 |
+
pytest.skip("GC does not call __del__ on cyclic objects")
|
1622 |
+
raise
|
1623 |
+
|
1624 |
+
finally:
|
1625 |
+
# make sure that we stop creating reference cycles
|
1626 |
+
ReferenceCycleInDel.make_cycle = False
|
venv/lib/python3.10/site-packages/numpy/typing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (5.25 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/__pycache__/mypy_plugin.cpython-310.pyc
ADDED
Binary file (6.6 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/__pycache__/setup.cpython-310.pyc
ADDED
Binary file (598 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/misc/extended_precision.pyi
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
from numpy._typing import _80Bit, _96Bit, _128Bit, _256Bit
|
5 |
+
|
6 |
+
if sys.version_info >= (3, 11):
|
7 |
+
from typing import assert_type
|
8 |
+
else:
|
9 |
+
from typing_extensions import assert_type
|
10 |
+
|
11 |
+
assert_type(np.uint128(), np.unsignedinteger[_128Bit])
|
12 |
+
assert_type(np.uint256(), np.unsignedinteger[_256Bit])
|
13 |
+
|
14 |
+
assert_type(np.int128(), np.signedinteger[_128Bit])
|
15 |
+
assert_type(np.int256(), np.signedinteger[_256Bit])
|
16 |
+
|
17 |
+
assert_type(np.float80(), np.floating[_80Bit])
|
18 |
+
assert_type(np.float96(), np.floating[_96Bit])
|
19 |
+
assert_type(np.float128(), np.floating[_128Bit])
|
20 |
+
assert_type(np.float256(), np.floating[_256Bit])
|
21 |
+
|
22 |
+
assert_type(np.complex160(), np.complexfloating[_80Bit, _80Bit])
|
23 |
+
assert_type(np.complex192(), np.complexfloating[_96Bit, _96Bit])
|
24 |
+
assert_type(np.complex256(), np.complexfloating[_128Bit, _128Bit])
|
25 |
+
assert_type(np.complex512(), np.complexfloating[_256Bit, _256Bit])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arithmetic.pyi
ADDED
@@ -0,0 +1,516 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
from numpy._typing import _32Bit,_64Bit, _128Bit
|
7 |
+
|
8 |
+
if sys.version_info >= (3, 11):
|
9 |
+
from typing import assert_type
|
10 |
+
else:
|
11 |
+
from typing_extensions import assert_type
|
12 |
+
|
13 |
+
# Can't directly import `np.float128` as it is not available on all platforms
|
14 |
+
f16: np.floating[_128Bit]
|
15 |
+
|
16 |
+
c16 = np.complex128()
|
17 |
+
f8 = np.float64()
|
18 |
+
i8 = np.int64()
|
19 |
+
u8 = np.uint64()
|
20 |
+
|
21 |
+
c8 = np.complex64()
|
22 |
+
f4 = np.float32()
|
23 |
+
i4 = np.int32()
|
24 |
+
u4 = np.uint32()
|
25 |
+
|
26 |
+
dt = np.datetime64(0, "D")
|
27 |
+
td = np.timedelta64(0, "D")
|
28 |
+
|
29 |
+
b_ = np.bool_()
|
30 |
+
|
31 |
+
b = bool()
|
32 |
+
c = complex()
|
33 |
+
f = float()
|
34 |
+
i = int()
|
35 |
+
|
36 |
+
AR_b: npt.NDArray[np.bool_]
|
37 |
+
AR_u: npt.NDArray[np.uint32]
|
38 |
+
AR_i: npt.NDArray[np.int64]
|
39 |
+
AR_f: npt.NDArray[np.float64]
|
40 |
+
AR_c: npt.NDArray[np.complex128]
|
41 |
+
AR_m: npt.NDArray[np.timedelta64]
|
42 |
+
AR_M: npt.NDArray[np.datetime64]
|
43 |
+
AR_O: npt.NDArray[np.object_]
|
44 |
+
AR_number: npt.NDArray[np.number[Any]]
|
45 |
+
|
46 |
+
AR_LIKE_b: list[bool]
|
47 |
+
AR_LIKE_u: list[np.uint32]
|
48 |
+
AR_LIKE_i: list[int]
|
49 |
+
AR_LIKE_f: list[float]
|
50 |
+
AR_LIKE_c: list[complex]
|
51 |
+
AR_LIKE_m: list[np.timedelta64]
|
52 |
+
AR_LIKE_M: list[np.datetime64]
|
53 |
+
AR_LIKE_O: list[np.object_]
|
54 |
+
|
55 |
+
# Array subtraction
|
56 |
+
|
57 |
+
assert_type(AR_number - AR_number, npt.NDArray[np.number[Any]])
|
58 |
+
|
59 |
+
assert_type(AR_b - AR_LIKE_u, npt.NDArray[np.unsignedinteger[Any]])
|
60 |
+
assert_type(AR_b - AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
61 |
+
assert_type(AR_b - AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
62 |
+
assert_type(AR_b - AR_LIKE_c, npt.NDArray[np.complexfloating[Any, Any]])
|
63 |
+
assert_type(AR_b - AR_LIKE_m, npt.NDArray[np.timedelta64])
|
64 |
+
assert_type(AR_b - AR_LIKE_O, Any)
|
65 |
+
|
66 |
+
assert_type(AR_LIKE_u - AR_b, npt.NDArray[np.unsignedinteger[Any]])
|
67 |
+
assert_type(AR_LIKE_i - AR_b, npt.NDArray[np.signedinteger[Any]])
|
68 |
+
assert_type(AR_LIKE_f - AR_b, npt.NDArray[np.floating[Any]])
|
69 |
+
assert_type(AR_LIKE_c - AR_b, npt.NDArray[np.complexfloating[Any, Any]])
|
70 |
+
assert_type(AR_LIKE_m - AR_b, npt.NDArray[np.timedelta64])
|
71 |
+
assert_type(AR_LIKE_M - AR_b, npt.NDArray[np.datetime64])
|
72 |
+
assert_type(AR_LIKE_O - AR_b, Any)
|
73 |
+
|
74 |
+
assert_type(AR_u - AR_LIKE_b, npt.NDArray[np.unsignedinteger[Any]])
|
75 |
+
assert_type(AR_u - AR_LIKE_u, npt.NDArray[np.unsignedinteger[Any]])
|
76 |
+
assert_type(AR_u - AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
77 |
+
assert_type(AR_u - AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
78 |
+
assert_type(AR_u - AR_LIKE_c, npt.NDArray[np.complexfloating[Any, Any]])
|
79 |
+
assert_type(AR_u - AR_LIKE_m, npt.NDArray[np.timedelta64])
|
80 |
+
assert_type(AR_u - AR_LIKE_O, Any)
|
81 |
+
|
82 |
+
assert_type(AR_LIKE_b - AR_u, npt.NDArray[np.unsignedinteger[Any]])
|
83 |
+
assert_type(AR_LIKE_u - AR_u, npt.NDArray[np.unsignedinteger[Any]])
|
84 |
+
assert_type(AR_LIKE_i - AR_u, npt.NDArray[np.signedinteger[Any]])
|
85 |
+
assert_type(AR_LIKE_f - AR_u, npt.NDArray[np.floating[Any]])
|
86 |
+
assert_type(AR_LIKE_c - AR_u, npt.NDArray[np.complexfloating[Any, Any]])
|
87 |
+
assert_type(AR_LIKE_m - AR_u, npt.NDArray[np.timedelta64])
|
88 |
+
assert_type(AR_LIKE_M - AR_u, npt.NDArray[np.datetime64])
|
89 |
+
assert_type(AR_LIKE_O - AR_u, Any)
|
90 |
+
|
91 |
+
assert_type(AR_i - AR_LIKE_b, npt.NDArray[np.signedinteger[Any]])
|
92 |
+
assert_type(AR_i - AR_LIKE_u, npt.NDArray[np.signedinteger[Any]])
|
93 |
+
assert_type(AR_i - AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
94 |
+
assert_type(AR_i - AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
95 |
+
assert_type(AR_i - AR_LIKE_c, npt.NDArray[np.complexfloating[Any, Any]])
|
96 |
+
assert_type(AR_i - AR_LIKE_m, npt.NDArray[np.timedelta64])
|
97 |
+
assert_type(AR_i - AR_LIKE_O, Any)
|
98 |
+
|
99 |
+
assert_type(AR_LIKE_b - AR_i, npt.NDArray[np.signedinteger[Any]])
|
100 |
+
assert_type(AR_LIKE_u - AR_i, npt.NDArray[np.signedinteger[Any]])
|
101 |
+
assert_type(AR_LIKE_i - AR_i, npt.NDArray[np.signedinteger[Any]])
|
102 |
+
assert_type(AR_LIKE_f - AR_i, npt.NDArray[np.floating[Any]])
|
103 |
+
assert_type(AR_LIKE_c - AR_i, npt.NDArray[np.complexfloating[Any, Any]])
|
104 |
+
assert_type(AR_LIKE_m - AR_i, npt.NDArray[np.timedelta64])
|
105 |
+
assert_type(AR_LIKE_M - AR_i, npt.NDArray[np.datetime64])
|
106 |
+
assert_type(AR_LIKE_O - AR_i, Any)
|
107 |
+
|
108 |
+
assert_type(AR_f - AR_LIKE_b, npt.NDArray[np.floating[Any]])
|
109 |
+
assert_type(AR_f - AR_LIKE_u, npt.NDArray[np.floating[Any]])
|
110 |
+
assert_type(AR_f - AR_LIKE_i, npt.NDArray[np.floating[Any]])
|
111 |
+
assert_type(AR_f - AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
112 |
+
assert_type(AR_f - AR_LIKE_c, npt.NDArray[np.complexfloating[Any, Any]])
|
113 |
+
assert_type(AR_f - AR_LIKE_O, Any)
|
114 |
+
|
115 |
+
assert_type(AR_LIKE_b - AR_f, npt.NDArray[np.floating[Any]])
|
116 |
+
assert_type(AR_LIKE_u - AR_f, npt.NDArray[np.floating[Any]])
|
117 |
+
assert_type(AR_LIKE_i - AR_f, npt.NDArray[np.floating[Any]])
|
118 |
+
assert_type(AR_LIKE_f - AR_f, npt.NDArray[np.floating[Any]])
|
119 |
+
assert_type(AR_LIKE_c - AR_f, npt.NDArray[np.complexfloating[Any, Any]])
|
120 |
+
assert_type(AR_LIKE_O - AR_f, Any)
|
121 |
+
|
122 |
+
assert_type(AR_c - AR_LIKE_b, npt.NDArray[np.complexfloating[Any, Any]])
|
123 |
+
assert_type(AR_c - AR_LIKE_u, npt.NDArray[np.complexfloating[Any, Any]])
|
124 |
+
assert_type(AR_c - AR_LIKE_i, npt.NDArray[np.complexfloating[Any, Any]])
|
125 |
+
assert_type(AR_c - AR_LIKE_f, npt.NDArray[np.complexfloating[Any, Any]])
|
126 |
+
assert_type(AR_c - AR_LIKE_c, npt.NDArray[np.complexfloating[Any, Any]])
|
127 |
+
assert_type(AR_c - AR_LIKE_O, Any)
|
128 |
+
|
129 |
+
assert_type(AR_LIKE_b - AR_c, npt.NDArray[np.complexfloating[Any, Any]])
|
130 |
+
assert_type(AR_LIKE_u - AR_c, npt.NDArray[np.complexfloating[Any, Any]])
|
131 |
+
assert_type(AR_LIKE_i - AR_c, npt.NDArray[np.complexfloating[Any, Any]])
|
132 |
+
assert_type(AR_LIKE_f - AR_c, npt.NDArray[np.complexfloating[Any, Any]])
|
133 |
+
assert_type(AR_LIKE_c - AR_c, npt.NDArray[np.complexfloating[Any, Any]])
|
134 |
+
assert_type(AR_LIKE_O - AR_c, Any)
|
135 |
+
|
136 |
+
assert_type(AR_m - AR_LIKE_b, npt.NDArray[np.timedelta64])
|
137 |
+
assert_type(AR_m - AR_LIKE_u, npt.NDArray[np.timedelta64])
|
138 |
+
assert_type(AR_m - AR_LIKE_i, npt.NDArray[np.timedelta64])
|
139 |
+
assert_type(AR_m - AR_LIKE_m, npt.NDArray[np.timedelta64])
|
140 |
+
assert_type(AR_m - AR_LIKE_O, Any)
|
141 |
+
|
142 |
+
assert_type(AR_LIKE_b - AR_m, npt.NDArray[np.timedelta64])
|
143 |
+
assert_type(AR_LIKE_u - AR_m, npt.NDArray[np.timedelta64])
|
144 |
+
assert_type(AR_LIKE_i - AR_m, npt.NDArray[np.timedelta64])
|
145 |
+
assert_type(AR_LIKE_m - AR_m, npt.NDArray[np.timedelta64])
|
146 |
+
assert_type(AR_LIKE_M - AR_m, npt.NDArray[np.datetime64])
|
147 |
+
assert_type(AR_LIKE_O - AR_m, Any)
|
148 |
+
|
149 |
+
assert_type(AR_M - AR_LIKE_b, npt.NDArray[np.datetime64])
|
150 |
+
assert_type(AR_M - AR_LIKE_u, npt.NDArray[np.datetime64])
|
151 |
+
assert_type(AR_M - AR_LIKE_i, npt.NDArray[np.datetime64])
|
152 |
+
assert_type(AR_M - AR_LIKE_m, npt.NDArray[np.datetime64])
|
153 |
+
assert_type(AR_M - AR_LIKE_M, npt.NDArray[np.timedelta64])
|
154 |
+
assert_type(AR_M - AR_LIKE_O, Any)
|
155 |
+
|
156 |
+
assert_type(AR_LIKE_M - AR_M, npt.NDArray[np.timedelta64])
|
157 |
+
assert_type(AR_LIKE_O - AR_M, Any)
|
158 |
+
|
159 |
+
assert_type(AR_O - AR_LIKE_b, Any)
|
160 |
+
assert_type(AR_O - AR_LIKE_u, Any)
|
161 |
+
assert_type(AR_O - AR_LIKE_i, Any)
|
162 |
+
assert_type(AR_O - AR_LIKE_f, Any)
|
163 |
+
assert_type(AR_O - AR_LIKE_c, Any)
|
164 |
+
assert_type(AR_O - AR_LIKE_m, Any)
|
165 |
+
assert_type(AR_O - AR_LIKE_M, Any)
|
166 |
+
assert_type(AR_O - AR_LIKE_O, Any)
|
167 |
+
|
168 |
+
assert_type(AR_LIKE_b - AR_O, Any)
|
169 |
+
assert_type(AR_LIKE_u - AR_O, Any)
|
170 |
+
assert_type(AR_LIKE_i - AR_O, Any)
|
171 |
+
assert_type(AR_LIKE_f - AR_O, Any)
|
172 |
+
assert_type(AR_LIKE_c - AR_O, Any)
|
173 |
+
assert_type(AR_LIKE_m - AR_O, Any)
|
174 |
+
assert_type(AR_LIKE_M - AR_O, Any)
|
175 |
+
assert_type(AR_LIKE_O - AR_O, Any)
|
176 |
+
|
177 |
+
# Array floor division
|
178 |
+
|
179 |
+
assert_type(AR_b // AR_LIKE_b, npt.NDArray[np.int8])
|
180 |
+
assert_type(AR_b // AR_LIKE_u, npt.NDArray[np.unsignedinteger[Any]])
|
181 |
+
assert_type(AR_b // AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
182 |
+
assert_type(AR_b // AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
183 |
+
assert_type(AR_b // AR_LIKE_O, Any)
|
184 |
+
|
185 |
+
assert_type(AR_LIKE_b // AR_b, npt.NDArray[np.int8])
|
186 |
+
assert_type(AR_LIKE_u // AR_b, npt.NDArray[np.unsignedinteger[Any]])
|
187 |
+
assert_type(AR_LIKE_i // AR_b, npt.NDArray[np.signedinteger[Any]])
|
188 |
+
assert_type(AR_LIKE_f // AR_b, npt.NDArray[np.floating[Any]])
|
189 |
+
assert_type(AR_LIKE_O // AR_b, Any)
|
190 |
+
|
191 |
+
assert_type(AR_u // AR_LIKE_b, npt.NDArray[np.unsignedinteger[Any]])
|
192 |
+
assert_type(AR_u // AR_LIKE_u, npt.NDArray[np.unsignedinteger[Any]])
|
193 |
+
assert_type(AR_u // AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
194 |
+
assert_type(AR_u // AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
195 |
+
assert_type(AR_u // AR_LIKE_O, Any)
|
196 |
+
|
197 |
+
assert_type(AR_LIKE_b // AR_u, npt.NDArray[np.unsignedinteger[Any]])
|
198 |
+
assert_type(AR_LIKE_u // AR_u, npt.NDArray[np.unsignedinteger[Any]])
|
199 |
+
assert_type(AR_LIKE_i // AR_u, npt.NDArray[np.signedinteger[Any]])
|
200 |
+
assert_type(AR_LIKE_f // AR_u, npt.NDArray[np.floating[Any]])
|
201 |
+
assert_type(AR_LIKE_m // AR_u, npt.NDArray[np.timedelta64])
|
202 |
+
assert_type(AR_LIKE_O // AR_u, Any)
|
203 |
+
|
204 |
+
assert_type(AR_i // AR_LIKE_b, npt.NDArray[np.signedinteger[Any]])
|
205 |
+
assert_type(AR_i // AR_LIKE_u, npt.NDArray[np.signedinteger[Any]])
|
206 |
+
assert_type(AR_i // AR_LIKE_i, npt.NDArray[np.signedinteger[Any]])
|
207 |
+
assert_type(AR_i // AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
208 |
+
assert_type(AR_i // AR_LIKE_O, Any)
|
209 |
+
|
210 |
+
assert_type(AR_LIKE_b // AR_i, npt.NDArray[np.signedinteger[Any]])
|
211 |
+
assert_type(AR_LIKE_u // AR_i, npt.NDArray[np.signedinteger[Any]])
|
212 |
+
assert_type(AR_LIKE_i // AR_i, npt.NDArray[np.signedinteger[Any]])
|
213 |
+
assert_type(AR_LIKE_f // AR_i, npt.NDArray[np.floating[Any]])
|
214 |
+
assert_type(AR_LIKE_m // AR_i, npt.NDArray[np.timedelta64])
|
215 |
+
assert_type(AR_LIKE_O // AR_i, Any)
|
216 |
+
|
217 |
+
assert_type(AR_f // AR_LIKE_b, npt.NDArray[np.floating[Any]])
|
218 |
+
assert_type(AR_f // AR_LIKE_u, npt.NDArray[np.floating[Any]])
|
219 |
+
assert_type(AR_f // AR_LIKE_i, npt.NDArray[np.floating[Any]])
|
220 |
+
assert_type(AR_f // AR_LIKE_f, npt.NDArray[np.floating[Any]])
|
221 |
+
assert_type(AR_f // AR_LIKE_O, Any)
|
222 |
+
|
223 |
+
assert_type(AR_LIKE_b // AR_f, npt.NDArray[np.floating[Any]])
|
224 |
+
assert_type(AR_LIKE_u // AR_f, npt.NDArray[np.floating[Any]])
|
225 |
+
assert_type(AR_LIKE_i // AR_f, npt.NDArray[np.floating[Any]])
|
226 |
+
assert_type(AR_LIKE_f // AR_f, npt.NDArray[np.floating[Any]])
|
227 |
+
assert_type(AR_LIKE_m // AR_f, npt.NDArray[np.timedelta64])
|
228 |
+
assert_type(AR_LIKE_O // AR_f, Any)
|
229 |
+
|
230 |
+
assert_type(AR_m // AR_LIKE_u, npt.NDArray[np.timedelta64])
|
231 |
+
assert_type(AR_m // AR_LIKE_i, npt.NDArray[np.timedelta64])
|
232 |
+
assert_type(AR_m // AR_LIKE_f, npt.NDArray[np.timedelta64])
|
233 |
+
assert_type(AR_m // AR_LIKE_m, npt.NDArray[np.int64])
|
234 |
+
assert_type(AR_m // AR_LIKE_O, Any)
|
235 |
+
|
236 |
+
assert_type(AR_LIKE_m // AR_m, npt.NDArray[np.int64])
|
237 |
+
assert_type(AR_LIKE_O // AR_m, Any)
|
238 |
+
|
239 |
+
assert_type(AR_O // AR_LIKE_b, Any)
|
240 |
+
assert_type(AR_O // AR_LIKE_u, Any)
|
241 |
+
assert_type(AR_O // AR_LIKE_i, Any)
|
242 |
+
assert_type(AR_O // AR_LIKE_f, Any)
|
243 |
+
assert_type(AR_O // AR_LIKE_m, Any)
|
244 |
+
assert_type(AR_O // AR_LIKE_M, Any)
|
245 |
+
assert_type(AR_O // AR_LIKE_O, Any)
|
246 |
+
|
247 |
+
assert_type(AR_LIKE_b // AR_O, Any)
|
248 |
+
assert_type(AR_LIKE_u // AR_O, Any)
|
249 |
+
assert_type(AR_LIKE_i // AR_O, Any)
|
250 |
+
assert_type(AR_LIKE_f // AR_O, Any)
|
251 |
+
assert_type(AR_LIKE_m // AR_O, Any)
|
252 |
+
assert_type(AR_LIKE_M // AR_O, Any)
|
253 |
+
assert_type(AR_LIKE_O // AR_O, Any)
|
254 |
+
|
255 |
+
# unary ops
|
256 |
+
|
257 |
+
assert_type(-f16, np.floating[_128Bit])
|
258 |
+
assert_type(-c16, np.complex128)
|
259 |
+
assert_type(-c8, np.complex64)
|
260 |
+
assert_type(-f8, np.float64)
|
261 |
+
assert_type(-f4, np.float32)
|
262 |
+
assert_type(-i8, np.int64)
|
263 |
+
assert_type(-i4, np.int32)
|
264 |
+
assert_type(-u8, np.uint64)
|
265 |
+
assert_type(-u4, np.uint32)
|
266 |
+
assert_type(-td, np.timedelta64)
|
267 |
+
assert_type(-AR_f, npt.NDArray[np.float64])
|
268 |
+
|
269 |
+
assert_type(+f16, np.floating[_128Bit])
|
270 |
+
assert_type(+c16, np.complex128)
|
271 |
+
assert_type(+c8, np.complex64)
|
272 |
+
assert_type(+f8, np.float64)
|
273 |
+
assert_type(+f4, np.float32)
|
274 |
+
assert_type(+i8, np.int64)
|
275 |
+
assert_type(+i4, np.int32)
|
276 |
+
assert_type(+u8, np.uint64)
|
277 |
+
assert_type(+u4, np.uint32)
|
278 |
+
assert_type(+td, np.timedelta64)
|
279 |
+
assert_type(+AR_f, npt.NDArray[np.float64])
|
280 |
+
|
281 |
+
assert_type(abs(f16), np.floating[_128Bit])
|
282 |
+
assert_type(abs(c16), np.float64)
|
283 |
+
assert_type(abs(c8), np.float32)
|
284 |
+
assert_type(abs(f8), np.float64)
|
285 |
+
assert_type(abs(f4), np.float32)
|
286 |
+
assert_type(abs(i8), np.int64)
|
287 |
+
assert_type(abs(i4), np.int32)
|
288 |
+
assert_type(abs(u8), np.uint64)
|
289 |
+
assert_type(abs(u4), np.uint32)
|
290 |
+
assert_type(abs(td), np.timedelta64)
|
291 |
+
assert_type(abs(b_), np.bool_)
|
292 |
+
|
293 |
+
# Time structures
|
294 |
+
|
295 |
+
assert_type(dt + td, np.datetime64)
|
296 |
+
assert_type(dt + i, np.datetime64)
|
297 |
+
assert_type(dt + i4, np.datetime64)
|
298 |
+
assert_type(dt + i8, np.datetime64)
|
299 |
+
assert_type(dt - dt, np.timedelta64)
|
300 |
+
assert_type(dt - i, np.datetime64)
|
301 |
+
assert_type(dt - i4, np.datetime64)
|
302 |
+
assert_type(dt - i8, np.datetime64)
|
303 |
+
|
304 |
+
assert_type(td + td, np.timedelta64)
|
305 |
+
assert_type(td + i, np.timedelta64)
|
306 |
+
assert_type(td + i4, np.timedelta64)
|
307 |
+
assert_type(td + i8, np.timedelta64)
|
308 |
+
assert_type(td - td, np.timedelta64)
|
309 |
+
assert_type(td - i, np.timedelta64)
|
310 |
+
assert_type(td - i4, np.timedelta64)
|
311 |
+
assert_type(td - i8, np.timedelta64)
|
312 |
+
assert_type(td / f, np.timedelta64)
|
313 |
+
assert_type(td / f4, np.timedelta64)
|
314 |
+
assert_type(td / f8, np.timedelta64)
|
315 |
+
assert_type(td / td, np.float64)
|
316 |
+
assert_type(td // td, np.int64)
|
317 |
+
|
318 |
+
# boolean
|
319 |
+
|
320 |
+
assert_type(b_ / b, np.float64)
|
321 |
+
assert_type(b_ / b_, np.float64)
|
322 |
+
assert_type(b_ / i, np.float64)
|
323 |
+
assert_type(b_ / i8, np.float64)
|
324 |
+
assert_type(b_ / i4, np.float64)
|
325 |
+
assert_type(b_ / u8, np.float64)
|
326 |
+
assert_type(b_ / u4, np.float64)
|
327 |
+
assert_type(b_ / f, np.float64)
|
328 |
+
assert_type(b_ / f16, np.floating[_128Bit])
|
329 |
+
assert_type(b_ / f8, np.float64)
|
330 |
+
assert_type(b_ / f4, np.float32)
|
331 |
+
assert_type(b_ / c, np.complex128)
|
332 |
+
assert_type(b_ / c16, np.complex128)
|
333 |
+
assert_type(b_ / c8, np.complex64)
|
334 |
+
|
335 |
+
assert_type(b / b_, np.float64)
|
336 |
+
assert_type(b_ / b_, np.float64)
|
337 |
+
assert_type(i / b_, np.float64)
|
338 |
+
assert_type(i8 / b_, np.float64)
|
339 |
+
assert_type(i4 / b_, np.float64)
|
340 |
+
assert_type(u8 / b_, np.float64)
|
341 |
+
assert_type(u4 / b_, np.float64)
|
342 |
+
assert_type(f / b_, np.float64)
|
343 |
+
assert_type(f16 / b_, np.floating[_128Bit])
|
344 |
+
assert_type(f8 / b_, np.float64)
|
345 |
+
assert_type(f4 / b_, np.float32)
|
346 |
+
assert_type(c / b_, np.complex128)
|
347 |
+
assert_type(c16 / b_, np.complex128)
|
348 |
+
assert_type(c8 / b_, np.complex64)
|
349 |
+
|
350 |
+
# Complex
|
351 |
+
|
352 |
+
assert_type(c16 + f16, np.complexfloating[_64Bit | _128Bit, _64Bit | _128Bit])
|
353 |
+
assert_type(c16 + c16, np.complex128)
|
354 |
+
assert_type(c16 + f8, np.complex128)
|
355 |
+
assert_type(c16 + i8, np.complex128)
|
356 |
+
assert_type(c16 + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
357 |
+
assert_type(c16 + f4, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
358 |
+
assert_type(c16 + i4, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
359 |
+
assert_type(c16 + b_, np.complex128)
|
360 |
+
assert_type(c16 + b, np.complex128)
|
361 |
+
assert_type(c16 + c, np.complex128)
|
362 |
+
assert_type(c16 + f, np.complex128)
|
363 |
+
assert_type(c16 + AR_f, npt.NDArray[np.complexfloating[Any, Any]])
|
364 |
+
|
365 |
+
assert_type(f16 + c16, np.complexfloating[_64Bit | _128Bit, _64Bit | _128Bit])
|
366 |
+
assert_type(c16 + c16, np.complex128)
|
367 |
+
assert_type(f8 + c16, np.complex128)
|
368 |
+
assert_type(i8 + c16, np.complex128)
|
369 |
+
assert_type(c8 + c16, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
370 |
+
assert_type(f4 + c16, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
371 |
+
assert_type(i4 + c16, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
372 |
+
assert_type(b_ + c16, np.complex128)
|
373 |
+
assert_type(b + c16, np.complex128)
|
374 |
+
assert_type(c + c16, np.complex128)
|
375 |
+
assert_type(f + c16, np.complex128)
|
376 |
+
assert_type(AR_f + c16, npt.NDArray[np.complexfloating[Any, Any]])
|
377 |
+
|
378 |
+
assert_type(c8 + f16, np.complexfloating[_32Bit | _128Bit, _32Bit | _128Bit])
|
379 |
+
assert_type(c8 + c16, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
380 |
+
assert_type(c8 + f8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
381 |
+
assert_type(c8 + i8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
382 |
+
assert_type(c8 + c8, np.complex64)
|
383 |
+
assert_type(c8 + f4, np.complex64)
|
384 |
+
assert_type(c8 + i4, np.complex64)
|
385 |
+
assert_type(c8 + b_, np.complex64)
|
386 |
+
assert_type(c8 + b, np.complex64)
|
387 |
+
assert_type(c8 + c, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
388 |
+
assert_type(c8 + f, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
389 |
+
assert_type(c8 + AR_f, npt.NDArray[np.complexfloating[Any, Any]])
|
390 |
+
|
391 |
+
assert_type(f16 + c8, np.complexfloating[_32Bit | _128Bit, _32Bit | _128Bit])
|
392 |
+
assert_type(c16 + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
393 |
+
assert_type(f8 + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
394 |
+
assert_type(i8 + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
395 |
+
assert_type(c8 + c8, np.complex64)
|
396 |
+
assert_type(f4 + c8, np.complex64)
|
397 |
+
assert_type(i4 + c8, np.complex64)
|
398 |
+
assert_type(b_ + c8, np.complex64)
|
399 |
+
assert_type(b + c8, np.complex64)
|
400 |
+
assert_type(c + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
401 |
+
assert_type(f + c8, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
402 |
+
assert_type(AR_f + c8, npt.NDArray[np.complexfloating[Any, Any]])
|
403 |
+
|
404 |
+
# Float
|
405 |
+
|
406 |
+
assert_type(f8 + f16, np.floating[_64Bit | _128Bit])
|
407 |
+
assert_type(f8 + f8, np.float64)
|
408 |
+
assert_type(f8 + i8, np.float64)
|
409 |
+
assert_type(f8 + f4, np.floating[_32Bit | _64Bit])
|
410 |
+
assert_type(f8 + i4, np.floating[_32Bit | _64Bit])
|
411 |
+
assert_type(f8 + b_, np.float64)
|
412 |
+
assert_type(f8 + b, np.float64)
|
413 |
+
assert_type(f8 + c, np.complex128)
|
414 |
+
assert_type(f8 + f, np.float64)
|
415 |
+
assert_type(f8 + AR_f, npt.NDArray[np.floating[Any]])
|
416 |
+
|
417 |
+
assert_type(f16 + f8, np.floating[_64Bit | _128Bit])
|
418 |
+
assert_type(f8 + f8, np.float64)
|
419 |
+
assert_type(i8 + f8, np.float64)
|
420 |
+
assert_type(f4 + f8, np.floating[_32Bit | _64Bit])
|
421 |
+
assert_type(i4 + f8, np.floating[_32Bit | _64Bit])
|
422 |
+
assert_type(b_ + f8, np.float64)
|
423 |
+
assert_type(b + f8, np.float64)
|
424 |
+
assert_type(c + f8, np.complex128)
|
425 |
+
assert_type(f + f8, np.float64)
|
426 |
+
assert_type(AR_f + f8, npt.NDArray[np.floating[Any]])
|
427 |
+
|
428 |
+
assert_type(f4 + f16, np.floating[_32Bit | _128Bit])
|
429 |
+
assert_type(f4 + f8, np.floating[_32Bit | _64Bit])
|
430 |
+
assert_type(f4 + i8, np.floating[_32Bit | _64Bit])
|
431 |
+
assert_type(f4 + f4, np.float32)
|
432 |
+
assert_type(f4 + i4, np.float32)
|
433 |
+
assert_type(f4 + b_, np.float32)
|
434 |
+
assert_type(f4 + b, np.float32)
|
435 |
+
assert_type(f4 + c, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
436 |
+
assert_type(f4 + f, np.floating[_32Bit | _64Bit])
|
437 |
+
assert_type(f4 + AR_f, npt.NDArray[np.floating[Any]])
|
438 |
+
|
439 |
+
assert_type(f16 + f4, np.floating[_32Bit | _128Bit])
|
440 |
+
assert_type(f8 + f4, np.floating[_32Bit | _64Bit])
|
441 |
+
assert_type(i8 + f4, np.floating[_32Bit | _64Bit])
|
442 |
+
assert_type(f4 + f4, np.float32)
|
443 |
+
assert_type(i4 + f4, np.float32)
|
444 |
+
assert_type(b_ + f4, np.float32)
|
445 |
+
assert_type(b + f4, np.float32)
|
446 |
+
assert_type(c + f4, np.complexfloating[_32Bit | _64Bit, _32Bit | _64Bit])
|
447 |
+
assert_type(f + f4, np.floating[_32Bit | _64Bit])
|
448 |
+
assert_type(AR_f + f4, npt.NDArray[np.floating[Any]])
|
449 |
+
|
450 |
+
# Int
|
451 |
+
|
452 |
+
assert_type(i8 + i8, np.int64)
|
453 |
+
assert_type(i8 + u8, Any)
|
454 |
+
assert_type(i8 + i4, np.signedinteger[_32Bit | _64Bit])
|
455 |
+
assert_type(i8 + u4, Any)
|
456 |
+
assert_type(i8 + b_, np.int64)
|
457 |
+
assert_type(i8 + b, np.int64)
|
458 |
+
assert_type(i8 + c, np.complex128)
|
459 |
+
assert_type(i8 + f, np.float64)
|
460 |
+
assert_type(i8 + AR_f, npt.NDArray[np.floating[Any]])
|
461 |
+
|
462 |
+
assert_type(u8 + u8, np.uint64)
|
463 |
+
assert_type(u8 + i4, Any)
|
464 |
+
assert_type(u8 + u4, np.unsignedinteger[_32Bit | _64Bit])
|
465 |
+
assert_type(u8 + b_, np.uint64)
|
466 |
+
assert_type(u8 + b, np.uint64)
|
467 |
+
assert_type(u8 + c, np.complex128)
|
468 |
+
assert_type(u8 + f, np.float64)
|
469 |
+
assert_type(u8 + AR_f, npt.NDArray[np.floating[Any]])
|
470 |
+
|
471 |
+
assert_type(i8 + i8, np.int64)
|
472 |
+
assert_type(u8 + i8, Any)
|
473 |
+
assert_type(i4 + i8, np.signedinteger[_32Bit | _64Bit])
|
474 |
+
assert_type(u4 + i8, Any)
|
475 |
+
assert_type(b_ + i8, np.int64)
|
476 |
+
assert_type(b + i8, np.int64)
|
477 |
+
assert_type(c + i8, np.complex128)
|
478 |
+
assert_type(f + i8, np.float64)
|
479 |
+
assert_type(AR_f + i8, npt.NDArray[np.floating[Any]])
|
480 |
+
|
481 |
+
assert_type(u8 + u8, np.uint64)
|
482 |
+
assert_type(i4 + u8, Any)
|
483 |
+
assert_type(u4 + u8, np.unsignedinteger[_32Bit | _64Bit])
|
484 |
+
assert_type(b_ + u8, np.uint64)
|
485 |
+
assert_type(b + u8, np.uint64)
|
486 |
+
assert_type(c + u8, np.complex128)
|
487 |
+
assert_type(f + u8, np.float64)
|
488 |
+
assert_type(AR_f + u8, npt.NDArray[np.floating[Any]])
|
489 |
+
|
490 |
+
assert_type(i4 + i8, np.signedinteger[_32Bit | _64Bit])
|
491 |
+
assert_type(i4 + i4, np.int32)
|
492 |
+
assert_type(i4 + b_, np.int32)
|
493 |
+
assert_type(i4 + b, np.int32)
|
494 |
+
assert_type(i4 + AR_f, npt.NDArray[np.floating[Any]])
|
495 |
+
|
496 |
+
assert_type(u4 + i8, Any)
|
497 |
+
assert_type(u4 + i4, Any)
|
498 |
+
assert_type(u4 + u8, np.unsignedinteger[_32Bit | _64Bit])
|
499 |
+
assert_type(u4 + u4, np.uint32)
|
500 |
+
assert_type(u4 + b_, np.uint32)
|
501 |
+
assert_type(u4 + b, np.uint32)
|
502 |
+
assert_type(u4 + AR_f, npt.NDArray[np.floating[Any]])
|
503 |
+
|
504 |
+
assert_type(i8 + i4, np.signedinteger[_32Bit | _64Bit])
|
505 |
+
assert_type(i4 + i4, np.int32)
|
506 |
+
assert_type(b_ + i4, np.int32)
|
507 |
+
assert_type(b + i4, np.int32)
|
508 |
+
assert_type(AR_f + i4, npt.NDArray[np.floating[Any]])
|
509 |
+
|
510 |
+
assert_type(i8 + u4, Any)
|
511 |
+
assert_type(i4 + u4, Any)
|
512 |
+
assert_type(u8 + u4, np.unsignedinteger[_32Bit | _64Bit])
|
513 |
+
assert_type(u4 + u4, np.uint32)
|
514 |
+
assert_type(b_ + u4, np.uint32)
|
515 |
+
assert_type(b + u4, np.uint32)
|
516 |
+
assert_type(AR_f + u4, npt.NDArray[np.floating[Any]])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/array_constructors.pyi
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any, TypeVar
|
3 |
+
from pathlib import Path
|
4 |
+
from collections import deque
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import numpy.typing as npt
|
8 |
+
|
9 |
+
if sys.version_info >= (3, 11):
|
10 |
+
from typing import assert_type
|
11 |
+
else:
|
12 |
+
from typing_extensions import assert_type
|
13 |
+
|
14 |
+
_SCT = TypeVar("_SCT", bound=np.generic, covariant=True)
|
15 |
+
|
16 |
+
class SubClass(np.ndarray[Any, np.dtype[_SCT]]): ...
|
17 |
+
|
18 |
+
i8: np.int64
|
19 |
+
|
20 |
+
A: npt.NDArray[np.float64]
|
21 |
+
B: SubClass[np.float64]
|
22 |
+
C: list[int]
|
23 |
+
|
24 |
+
def func(i: int, j: int, **kwargs: Any) -> SubClass[np.float64]: ...
|
25 |
+
|
26 |
+
assert_type(np.empty_like(A), npt.NDArray[np.float64])
|
27 |
+
assert_type(np.empty_like(B), SubClass[np.float64])
|
28 |
+
assert_type(np.empty_like([1, 1.0]), npt.NDArray[Any])
|
29 |
+
assert_type(np.empty_like(A, dtype=np.int64), npt.NDArray[np.int64])
|
30 |
+
assert_type(np.empty_like(A, dtype='c16'), npt.NDArray[Any])
|
31 |
+
|
32 |
+
assert_type(np.array(A), npt.NDArray[np.float64])
|
33 |
+
assert_type(np.array(B), npt.NDArray[np.float64])
|
34 |
+
assert_type(np.array(B, subok=True), SubClass[np.float64])
|
35 |
+
assert_type(np.array([1, 1.0]), npt.NDArray[Any])
|
36 |
+
assert_type(np.array(deque([1, 2, 3])), npt.NDArray[Any])
|
37 |
+
assert_type(np.array(A, dtype=np.int64), npt.NDArray[np.int64])
|
38 |
+
assert_type(np.array(A, dtype='c16'), npt.NDArray[Any])
|
39 |
+
assert_type(np.array(A, like=A), npt.NDArray[np.float64])
|
40 |
+
|
41 |
+
assert_type(np.zeros([1, 5, 6]), npt.NDArray[np.float64])
|
42 |
+
assert_type(np.zeros([1, 5, 6], dtype=np.int64), npt.NDArray[np.int64])
|
43 |
+
assert_type(np.zeros([1, 5, 6], dtype='c16'), npt.NDArray[Any])
|
44 |
+
|
45 |
+
assert_type(np.empty([1, 5, 6]), npt.NDArray[np.float64])
|
46 |
+
assert_type(np.empty([1, 5, 6], dtype=np.int64), npt.NDArray[np.int64])
|
47 |
+
assert_type(np.empty([1, 5, 6], dtype='c16'), npt.NDArray[Any])
|
48 |
+
|
49 |
+
assert_type(np.concatenate(A), npt.NDArray[np.float64])
|
50 |
+
assert_type(np.concatenate([A, A]), Any)
|
51 |
+
assert_type(np.concatenate([[1], A]), npt.NDArray[Any])
|
52 |
+
assert_type(np.concatenate([[1], [1]]), npt.NDArray[Any])
|
53 |
+
assert_type(np.concatenate((A, A)), npt.NDArray[np.float64])
|
54 |
+
assert_type(np.concatenate(([1], [1])), npt.NDArray[Any])
|
55 |
+
assert_type(np.concatenate([1, 1.0]), npt.NDArray[Any])
|
56 |
+
assert_type(np.concatenate(A, dtype=np.int64), npt.NDArray[np.int64])
|
57 |
+
assert_type(np.concatenate(A, dtype='c16'), npt.NDArray[Any])
|
58 |
+
assert_type(np.concatenate([1, 1.0], out=A), npt.NDArray[np.float64])
|
59 |
+
|
60 |
+
assert_type(np.asarray(A), npt.NDArray[np.float64])
|
61 |
+
assert_type(np.asarray(B), npt.NDArray[np.float64])
|
62 |
+
assert_type(np.asarray([1, 1.0]), npt.NDArray[Any])
|
63 |
+
assert_type(np.asarray(A, dtype=np.int64), npt.NDArray[np.int64])
|
64 |
+
assert_type(np.asarray(A, dtype='c16'), npt.NDArray[Any])
|
65 |
+
|
66 |
+
assert_type(np.asanyarray(A), npt.NDArray[np.float64])
|
67 |
+
assert_type(np.asanyarray(B), SubClass[np.float64])
|
68 |
+
assert_type(np.asanyarray([1, 1.0]), npt.NDArray[Any])
|
69 |
+
assert_type(np.asanyarray(A, dtype=np.int64), npt.NDArray[np.int64])
|
70 |
+
assert_type(np.asanyarray(A, dtype='c16'), npt.NDArray[Any])
|
71 |
+
|
72 |
+
assert_type(np.ascontiguousarray(A), npt.NDArray[np.float64])
|
73 |
+
assert_type(np.ascontiguousarray(B), npt.NDArray[np.float64])
|
74 |
+
assert_type(np.ascontiguousarray([1, 1.0]), npt.NDArray[Any])
|
75 |
+
assert_type(np.ascontiguousarray(A, dtype=np.int64), npt.NDArray[np.int64])
|
76 |
+
assert_type(np.ascontiguousarray(A, dtype='c16'), npt.NDArray[Any])
|
77 |
+
|
78 |
+
assert_type(np.asfortranarray(A), npt.NDArray[np.float64])
|
79 |
+
assert_type(np.asfortranarray(B), npt.NDArray[np.float64])
|
80 |
+
assert_type(np.asfortranarray([1, 1.0]), npt.NDArray[Any])
|
81 |
+
assert_type(np.asfortranarray(A, dtype=np.int64), npt.NDArray[np.int64])
|
82 |
+
assert_type(np.asfortranarray(A, dtype='c16'), npt.NDArray[Any])
|
83 |
+
|
84 |
+
assert_type(np.fromstring("1 1 1", sep=" "), npt.NDArray[np.float64])
|
85 |
+
assert_type(np.fromstring(b"1 1 1", sep=" "), npt.NDArray[np.float64])
|
86 |
+
assert_type(np.fromstring("1 1 1", dtype=np.int64, sep=" "), npt.NDArray[np.int64])
|
87 |
+
assert_type(np.fromstring(b"1 1 1", dtype=np.int64, sep=" "), npt.NDArray[np.int64])
|
88 |
+
assert_type(np.fromstring("1 1 1", dtype="c16", sep=" "), npt.NDArray[Any])
|
89 |
+
assert_type(np.fromstring(b"1 1 1", dtype="c16", sep=" "), npt.NDArray[Any])
|
90 |
+
|
91 |
+
assert_type(np.fromfile("test.txt", sep=" "), npt.NDArray[np.float64])
|
92 |
+
assert_type(np.fromfile("test.txt", dtype=np.int64, sep=" "), npt.NDArray[np.int64])
|
93 |
+
assert_type(np.fromfile("test.txt", dtype="c16", sep=" "), npt.NDArray[Any])
|
94 |
+
with open("test.txt") as f:
|
95 |
+
assert_type(np.fromfile(f, sep=" "), npt.NDArray[np.float64])
|
96 |
+
assert_type(np.fromfile(b"test.txt", sep=" "), npt.NDArray[np.float64])
|
97 |
+
assert_type(np.fromfile(Path("test.txt"), sep=" "), npt.NDArray[np.float64])
|
98 |
+
|
99 |
+
assert_type(np.fromiter("12345", np.float64), npt.NDArray[np.float64])
|
100 |
+
assert_type(np.fromiter("12345", float), npt.NDArray[Any])
|
101 |
+
|
102 |
+
assert_type(np.frombuffer(A), npt.NDArray[np.float64])
|
103 |
+
assert_type(np.frombuffer(A, dtype=np.int64), npt.NDArray[np.int64])
|
104 |
+
assert_type(np.frombuffer(A, dtype="c16"), npt.NDArray[Any])
|
105 |
+
|
106 |
+
assert_type(np.arange(False, True), npt.NDArray[np.signedinteger[Any]])
|
107 |
+
assert_type(np.arange(10), npt.NDArray[np.signedinteger[Any]])
|
108 |
+
assert_type(np.arange(0, 10, step=2), npt.NDArray[np.signedinteger[Any]])
|
109 |
+
assert_type(np.arange(10.0), npt.NDArray[np.floating[Any]])
|
110 |
+
assert_type(np.arange(start=0, stop=10.0), npt.NDArray[np.floating[Any]])
|
111 |
+
assert_type(np.arange(np.timedelta64(0)), npt.NDArray[np.timedelta64])
|
112 |
+
assert_type(np.arange(0, np.timedelta64(10)), npt.NDArray[np.timedelta64])
|
113 |
+
assert_type(np.arange(np.datetime64("0"), np.datetime64("10")), npt.NDArray[np.datetime64])
|
114 |
+
assert_type(np.arange(10, dtype=np.float64), npt.NDArray[np.float64])
|
115 |
+
assert_type(np.arange(0, 10, step=2, dtype=np.int16), npt.NDArray[np.int16])
|
116 |
+
assert_type(np.arange(10, dtype=int), npt.NDArray[Any])
|
117 |
+
assert_type(np.arange(0, 10, dtype="f8"), npt.NDArray[Any])
|
118 |
+
|
119 |
+
assert_type(np.require(A), npt.NDArray[np.float64])
|
120 |
+
assert_type(np.require(B), SubClass[np.float64])
|
121 |
+
assert_type(np.require(B, requirements=None), SubClass[np.float64])
|
122 |
+
assert_type(np.require(B, dtype=int), np.ndarray[Any, Any])
|
123 |
+
assert_type(np.require(B, requirements="E"), np.ndarray[Any, Any])
|
124 |
+
assert_type(np.require(B, requirements=["ENSUREARRAY"]), np.ndarray[Any, Any])
|
125 |
+
assert_type(np.require(B, requirements={"F", "E"}), np.ndarray[Any, Any])
|
126 |
+
assert_type(np.require(B, requirements=["C", "OWNDATA"]), SubClass[np.float64])
|
127 |
+
assert_type(np.require(B, requirements="W"), SubClass[np.float64])
|
128 |
+
assert_type(np.require(B, requirements="A"), SubClass[np.float64])
|
129 |
+
assert_type(np.require(C), np.ndarray[Any, Any])
|
130 |
+
|
131 |
+
assert_type(np.linspace(0, 10), npt.NDArray[np.floating[Any]])
|
132 |
+
assert_type(np.linspace(0, 10j), npt.NDArray[np.complexfloating[Any, Any]])
|
133 |
+
assert_type(np.linspace(0, 10, dtype=np.int64), npt.NDArray[np.int64])
|
134 |
+
assert_type(np.linspace(0, 10, dtype=int), npt.NDArray[Any])
|
135 |
+
assert_type(np.linspace(0, 10, retstep=True), tuple[npt.NDArray[np.floating[Any]], np.floating[Any]])
|
136 |
+
assert_type(np.linspace(0j, 10, retstep=True), tuple[npt.NDArray[np.complexfloating[Any, Any]], np.complexfloating[Any, Any]])
|
137 |
+
assert_type(np.linspace(0, 10, retstep=True, dtype=np.int64), tuple[npt.NDArray[np.int64], np.int64])
|
138 |
+
assert_type(np.linspace(0j, 10, retstep=True, dtype=int), tuple[npt.NDArray[Any], Any])
|
139 |
+
|
140 |
+
assert_type(np.logspace(0, 10), npt.NDArray[np.floating[Any]])
|
141 |
+
assert_type(np.logspace(0, 10j), npt.NDArray[np.complexfloating[Any, Any]])
|
142 |
+
assert_type(np.logspace(0, 10, dtype=np.int64), npt.NDArray[np.int64])
|
143 |
+
assert_type(np.logspace(0, 10, dtype=int), npt.NDArray[Any])
|
144 |
+
|
145 |
+
assert_type(np.geomspace(0, 10), npt.NDArray[np.floating[Any]])
|
146 |
+
assert_type(np.geomspace(0, 10j), npt.NDArray[np.complexfloating[Any, Any]])
|
147 |
+
assert_type(np.geomspace(0, 10, dtype=np.int64), npt.NDArray[np.int64])
|
148 |
+
assert_type(np.geomspace(0, 10, dtype=int), npt.NDArray[Any])
|
149 |
+
|
150 |
+
assert_type(np.zeros_like(A), npt.NDArray[np.float64])
|
151 |
+
assert_type(np.zeros_like(C), npt.NDArray[Any])
|
152 |
+
assert_type(np.zeros_like(A, dtype=float), npt.NDArray[Any])
|
153 |
+
assert_type(np.zeros_like(B), SubClass[np.float64])
|
154 |
+
assert_type(np.zeros_like(B, dtype=np.int64), npt.NDArray[np.int64])
|
155 |
+
|
156 |
+
assert_type(np.ones_like(A), npt.NDArray[np.float64])
|
157 |
+
assert_type(np.ones_like(C), npt.NDArray[Any])
|
158 |
+
assert_type(np.ones_like(A, dtype=float), npt.NDArray[Any])
|
159 |
+
assert_type(np.ones_like(B), SubClass[np.float64])
|
160 |
+
assert_type(np.ones_like(B, dtype=np.int64), npt.NDArray[np.int64])
|
161 |
+
|
162 |
+
assert_type(np.full_like(A, i8), npt.NDArray[np.float64])
|
163 |
+
assert_type(np.full_like(C, i8), npt.NDArray[Any])
|
164 |
+
assert_type(np.full_like(A, i8, dtype=int), npt.NDArray[Any])
|
165 |
+
assert_type(np.full_like(B, i8), SubClass[np.float64])
|
166 |
+
assert_type(np.full_like(B, i8, dtype=np.int64), npt.NDArray[np.int64])
|
167 |
+
|
168 |
+
assert_type(np.ones(1), npt.NDArray[np.float64])
|
169 |
+
assert_type(np.ones([1, 1, 1]), npt.NDArray[np.float64])
|
170 |
+
assert_type(np.ones(5, dtype=np.int64), npt.NDArray[np.int64])
|
171 |
+
assert_type(np.ones(5, dtype=int), npt.NDArray[Any])
|
172 |
+
|
173 |
+
assert_type(np.full(1, i8), npt.NDArray[Any])
|
174 |
+
assert_type(np.full([1, 1, 1], i8), npt.NDArray[Any])
|
175 |
+
assert_type(np.full(1, i8, dtype=np.float64), npt.NDArray[np.float64])
|
176 |
+
assert_type(np.full(1, i8, dtype=float), npt.NDArray[Any])
|
177 |
+
|
178 |
+
assert_type(np.indices([1, 2, 3]), npt.NDArray[np.int_])
|
179 |
+
assert_type(np.indices([1, 2, 3], sparse=True), tuple[npt.NDArray[np.int_], ...])
|
180 |
+
|
181 |
+
assert_type(np.fromfunction(func, (3, 5)), SubClass[np.float64])
|
182 |
+
|
183 |
+
assert_type(np.identity(10), npt.NDArray[np.float64])
|
184 |
+
assert_type(np.identity(10, dtype=np.int64), npt.NDArray[np.int64])
|
185 |
+
assert_type(np.identity(10, dtype=int), npt.NDArray[Any])
|
186 |
+
|
187 |
+
assert_type(np.atleast_1d(A), npt.NDArray[np.float64])
|
188 |
+
assert_type(np.atleast_1d(C), npt.NDArray[Any])
|
189 |
+
assert_type(np.atleast_1d(A, A), list[npt.NDArray[Any]])
|
190 |
+
assert_type(np.atleast_1d(A, C), list[npt.NDArray[Any]])
|
191 |
+
assert_type(np.atleast_1d(C, C), list[npt.NDArray[Any]])
|
192 |
+
|
193 |
+
assert_type(np.atleast_2d(A), npt.NDArray[np.float64])
|
194 |
+
|
195 |
+
assert_type(np.atleast_3d(A), npt.NDArray[np.float64])
|
196 |
+
|
197 |
+
assert_type(np.vstack([A, A]), np.ndarray[Any, Any])
|
198 |
+
assert_type(np.vstack([A, A], dtype=np.float64), npt.NDArray[np.float64])
|
199 |
+
assert_type(np.vstack([A, C]), npt.NDArray[Any])
|
200 |
+
assert_type(np.vstack([C, C]), npt.NDArray[Any])
|
201 |
+
|
202 |
+
assert_type(np.hstack([A, A]), np.ndarray[Any, Any])
|
203 |
+
assert_type(np.hstack([A, A], dtype=np.float64), npt.NDArray[np.float64])
|
204 |
+
|
205 |
+
assert_type(np.stack([A, A]), Any)
|
206 |
+
assert_type(np.stack([A, A], dtype=np.float64), npt.NDArray[np.float64])
|
207 |
+
assert_type(np.stack([A, C]), npt.NDArray[Any])
|
208 |
+
assert_type(np.stack([C, C]), npt.NDArray[Any])
|
209 |
+
assert_type(np.stack([A, A], axis=0), Any)
|
210 |
+
assert_type(np.stack([A, A], out=B), SubClass[np.float64])
|
211 |
+
|
212 |
+
assert_type(np.block([[A, A], [A, A]]), npt.NDArray[Any])
|
213 |
+
assert_type(np.block(C), npt.NDArray[Any])
|
214 |
+
|
215 |
+
if sys.version_info >= (3, 12):
|
216 |
+
from collections.abc import Buffer
|
217 |
+
|
218 |
+
def create_array(obj: npt.ArrayLike) -> npt.NDArray[Any]: ...
|
219 |
+
|
220 |
+
buffer: Buffer
|
221 |
+
assert_type(create_array(buffer), npt.NDArray[Any])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arraypad.pyi
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from collections.abc import Mapping
|
3 |
+
from typing import Any, SupportsIndex
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
|
8 |
+
if sys.version_info >= (3, 11):
|
9 |
+
from typing import assert_type
|
10 |
+
else:
|
11 |
+
from typing_extensions import assert_type
|
12 |
+
|
13 |
+
def mode_func(
|
14 |
+
ar: npt.NDArray[np.number[Any]],
|
15 |
+
width: tuple[int, int],
|
16 |
+
iaxis: SupportsIndex,
|
17 |
+
kwargs: Mapping[str, Any],
|
18 |
+
) -> None: ...
|
19 |
+
|
20 |
+
AR_i8: npt.NDArray[np.int64]
|
21 |
+
AR_f8: npt.NDArray[np.float64]
|
22 |
+
AR_LIKE: list[int]
|
23 |
+
|
24 |
+
assert_type(np.pad(AR_i8, (2, 3), "constant"), npt.NDArray[np.int64])
|
25 |
+
assert_type(np.pad(AR_LIKE, (2, 3), "constant"), npt.NDArray[Any])
|
26 |
+
|
27 |
+
assert_type(np.pad(AR_f8, (2, 3), mode_func), npt.NDArray[np.float64])
|
28 |
+
assert_type(np.pad(AR_f8, (2, 3), mode_func, a=1, b=2), npt.NDArray[np.float64])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arraysetops.pyi
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
|
7 |
+
if sys.version_info >= (3, 11):
|
8 |
+
from typing import assert_type
|
9 |
+
else:
|
10 |
+
from typing_extensions import assert_type
|
11 |
+
|
12 |
+
AR_b: npt.NDArray[np.bool_]
|
13 |
+
AR_i8: npt.NDArray[np.int64]
|
14 |
+
AR_f8: npt.NDArray[np.float64]
|
15 |
+
AR_M: npt.NDArray[np.datetime64]
|
16 |
+
AR_O: npt.NDArray[np.object_]
|
17 |
+
|
18 |
+
AR_LIKE_f8: list[float]
|
19 |
+
|
20 |
+
assert_type(np.ediff1d(AR_b), npt.NDArray[np.int8])
|
21 |
+
assert_type(np.ediff1d(AR_i8, to_end=[1, 2, 3]), npt.NDArray[np.int64])
|
22 |
+
assert_type(np.ediff1d(AR_M), npt.NDArray[np.timedelta64])
|
23 |
+
assert_type(np.ediff1d(AR_O), npt.NDArray[np.object_])
|
24 |
+
assert_type(np.ediff1d(AR_LIKE_f8, to_begin=[1, 1.5]), npt.NDArray[Any])
|
25 |
+
|
26 |
+
assert_type(np.intersect1d(AR_i8, AR_i8), npt.NDArray[np.int64])
|
27 |
+
assert_type(np.intersect1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64])
|
28 |
+
assert_type(np.intersect1d(AR_f8, AR_i8), npt.NDArray[Any])
|
29 |
+
assert_type(np.intersect1d(AR_f8, AR_f8, return_indices=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
30 |
+
|
31 |
+
assert_type(np.setxor1d(AR_i8, AR_i8), npt.NDArray[np.int64])
|
32 |
+
assert_type(np.setxor1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64])
|
33 |
+
assert_type(np.setxor1d(AR_f8, AR_i8), npt.NDArray[Any])
|
34 |
+
|
35 |
+
assert_type(np.in1d(AR_i8, AR_i8), npt.NDArray[np.bool_])
|
36 |
+
assert_type(np.in1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.bool_])
|
37 |
+
assert_type(np.in1d(AR_f8, AR_i8), npt.NDArray[np.bool_])
|
38 |
+
assert_type(np.in1d(AR_f8, AR_LIKE_f8, invert=True), npt.NDArray[np.bool_])
|
39 |
+
|
40 |
+
assert_type(np.isin(AR_i8, AR_i8), npt.NDArray[np.bool_])
|
41 |
+
assert_type(np.isin(AR_M, AR_M, assume_unique=True), npt.NDArray[np.bool_])
|
42 |
+
assert_type(np.isin(AR_f8, AR_i8), npt.NDArray[np.bool_])
|
43 |
+
assert_type(np.isin(AR_f8, AR_LIKE_f8, invert=True), npt.NDArray[np.bool_])
|
44 |
+
|
45 |
+
assert_type(np.union1d(AR_i8, AR_i8), npt.NDArray[np.int64])
|
46 |
+
assert_type(np.union1d(AR_M, AR_M), npt.NDArray[np.datetime64])
|
47 |
+
assert_type(np.union1d(AR_f8, AR_i8), npt.NDArray[Any])
|
48 |
+
|
49 |
+
assert_type(np.setdiff1d(AR_i8, AR_i8), npt.NDArray[np.int64])
|
50 |
+
assert_type(np.setdiff1d(AR_M, AR_M, assume_unique=True), npt.NDArray[np.datetime64])
|
51 |
+
assert_type(np.setdiff1d(AR_f8, AR_i8), npt.NDArray[Any])
|
52 |
+
|
53 |
+
assert_type(np.unique(AR_f8), npt.NDArray[np.float64])
|
54 |
+
assert_type(np.unique(AR_LIKE_f8, axis=0), npt.NDArray[Any])
|
55 |
+
assert_type(np.unique(AR_f8, return_index=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]])
|
56 |
+
assert_type(np.unique(AR_LIKE_f8, return_index=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]])
|
57 |
+
assert_type(np.unique(AR_f8, return_inverse=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]])
|
58 |
+
assert_type(np.unique(AR_LIKE_f8, return_inverse=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]])
|
59 |
+
assert_type(np.unique(AR_f8, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp]])
|
60 |
+
assert_type(np.unique(AR_LIKE_f8, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp]])
|
61 |
+
assert_type(np.unique(AR_f8, return_index=True, return_inverse=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
62 |
+
assert_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
63 |
+
assert_type(np.unique(AR_f8, return_index=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
64 |
+
assert_type(np.unique(AR_LIKE_f8, return_index=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
65 |
+
assert_type(np.unique(AR_f8, return_inverse=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
66 |
+
assert_type(np.unique(AR_LIKE_f8, return_inverse=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
67 |
+
assert_type(np.unique(AR_f8, return_index=True, return_inverse=True, return_counts=True), tuple[npt.NDArray[np.float64], npt.NDArray[np.intp], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
68 |
+
assert_type(np.unique(AR_LIKE_f8, return_index=True, return_inverse=True, return_counts=True), tuple[npt.NDArray[Any], npt.NDArray[np.intp], npt.NDArray[np.intp], npt.NDArray[np.intp]])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/arrayterator.pyi
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
from collections.abc import Generator
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
import numpy.typing as npt
|
7 |
+
|
8 |
+
if sys.version_info >= (3, 11):
|
9 |
+
from typing import assert_type
|
10 |
+
else:
|
11 |
+
from typing_extensions import assert_type
|
12 |
+
|
13 |
+
AR_i8: np.ndarray[Any, np.dtype[np.int64]]
|
14 |
+
ar_iter = np.lib.Arrayterator(AR_i8)
|
15 |
+
|
16 |
+
assert_type(ar_iter.var, npt.NDArray[np.int64])
|
17 |
+
assert_type(ar_iter.buf_size, None | int)
|
18 |
+
assert_type(ar_iter.start, list[int])
|
19 |
+
assert_type(ar_iter.stop, list[int])
|
20 |
+
assert_type(ar_iter.step, list[int])
|
21 |
+
assert_type(ar_iter.shape, tuple[int, ...])
|
22 |
+
assert_type(ar_iter.flat, Generator[np.int64, None, None])
|
23 |
+
|
24 |
+
assert_type(ar_iter.__array__(), npt.NDArray[np.int64])
|
25 |
+
|
26 |
+
for i in ar_iter:
|
27 |
+
assert_type(i, npt.NDArray[np.int64])
|
28 |
+
|
29 |
+
assert_type(ar_iter[0], np.lib.Arrayterator[Any, np.dtype[np.int64]])
|
30 |
+
assert_type(ar_iter[...], np.lib.Arrayterator[Any, np.dtype[np.int64]])
|
31 |
+
assert_type(ar_iter[:], np.lib.Arrayterator[Any, np.dtype[np.int64]])
|
32 |
+
assert_type(ar_iter[0, 0, 0], np.lib.Arrayterator[Any, np.dtype[np.int64]])
|
33 |
+
assert_type(ar_iter[..., 0, :], np.lib.Arrayterator[Any, np.dtype[np.int64]])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/bitwise_ops.pyi
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
from numpy._typing import _64Bit, _32Bit
|
7 |
+
|
8 |
+
if sys.version_info >= (3, 11):
|
9 |
+
from typing import assert_type
|
10 |
+
else:
|
11 |
+
from typing_extensions import assert_type
|
12 |
+
|
13 |
+
i8 = np.int64(1)
|
14 |
+
u8 = np.uint64(1)
|
15 |
+
|
16 |
+
i4 = np.int32(1)
|
17 |
+
u4 = np.uint32(1)
|
18 |
+
|
19 |
+
b_ = np.bool_(1)
|
20 |
+
|
21 |
+
b = bool(1)
|
22 |
+
i = int(1)
|
23 |
+
|
24 |
+
AR = np.array([0, 1, 2], dtype=np.int32)
|
25 |
+
AR.setflags(write=False)
|
26 |
+
|
27 |
+
|
28 |
+
assert_type(i8 << i8, np.int64)
|
29 |
+
assert_type(i8 >> i8, np.int64)
|
30 |
+
assert_type(i8 | i8, np.int64)
|
31 |
+
assert_type(i8 ^ i8, np.int64)
|
32 |
+
assert_type(i8 & i8, np.int64)
|
33 |
+
|
34 |
+
assert_type(i8 << AR, npt.NDArray[np.signedinteger[Any]])
|
35 |
+
assert_type(i8 >> AR, npt.NDArray[np.signedinteger[Any]])
|
36 |
+
assert_type(i8 | AR, npt.NDArray[np.signedinteger[Any]])
|
37 |
+
assert_type(i8 ^ AR, npt.NDArray[np.signedinteger[Any]])
|
38 |
+
assert_type(i8 & AR, npt.NDArray[np.signedinteger[Any]])
|
39 |
+
|
40 |
+
assert_type(i4 << i4, np.int32)
|
41 |
+
assert_type(i4 >> i4, np.int32)
|
42 |
+
assert_type(i4 | i4, np.int32)
|
43 |
+
assert_type(i4 ^ i4, np.int32)
|
44 |
+
assert_type(i4 & i4, np.int32)
|
45 |
+
|
46 |
+
assert_type(i8 << i4, np.signedinteger[_32Bit | _64Bit])
|
47 |
+
assert_type(i8 >> i4, np.signedinteger[_32Bit | _64Bit])
|
48 |
+
assert_type(i8 | i4, np.signedinteger[_32Bit | _64Bit])
|
49 |
+
assert_type(i8 ^ i4, np.signedinteger[_32Bit | _64Bit])
|
50 |
+
assert_type(i8 & i4, np.signedinteger[_32Bit | _64Bit])
|
51 |
+
|
52 |
+
assert_type(i8 << b_, np.int64)
|
53 |
+
assert_type(i8 >> b_, np.int64)
|
54 |
+
assert_type(i8 | b_, np.int64)
|
55 |
+
assert_type(i8 ^ b_, np.int64)
|
56 |
+
assert_type(i8 & b_, np.int64)
|
57 |
+
|
58 |
+
assert_type(i8 << b, np.int64)
|
59 |
+
assert_type(i8 >> b, np.int64)
|
60 |
+
assert_type(i8 | b, np.int64)
|
61 |
+
assert_type(i8 ^ b, np.int64)
|
62 |
+
assert_type(i8 & b, np.int64)
|
63 |
+
|
64 |
+
assert_type(u8 << u8, np.uint64)
|
65 |
+
assert_type(u8 >> u8, np.uint64)
|
66 |
+
assert_type(u8 | u8, np.uint64)
|
67 |
+
assert_type(u8 ^ u8, np.uint64)
|
68 |
+
assert_type(u8 & u8, np.uint64)
|
69 |
+
|
70 |
+
assert_type(u8 << AR, npt.NDArray[np.signedinteger[Any]])
|
71 |
+
assert_type(u8 >> AR, npt.NDArray[np.signedinteger[Any]])
|
72 |
+
assert_type(u8 | AR, npt.NDArray[np.signedinteger[Any]])
|
73 |
+
assert_type(u8 ^ AR, npt.NDArray[np.signedinteger[Any]])
|
74 |
+
assert_type(u8 & AR, npt.NDArray[np.signedinteger[Any]])
|
75 |
+
|
76 |
+
assert_type(u4 << u4, np.uint32)
|
77 |
+
assert_type(u4 >> u4, np.uint32)
|
78 |
+
assert_type(u4 | u4, np.uint32)
|
79 |
+
assert_type(u4 ^ u4, np.uint32)
|
80 |
+
assert_type(u4 & u4, np.uint32)
|
81 |
+
|
82 |
+
assert_type(u4 << i4, np.signedinteger[Any])
|
83 |
+
assert_type(u4 >> i4, np.signedinteger[Any])
|
84 |
+
assert_type(u4 | i4, np.signedinteger[Any])
|
85 |
+
assert_type(u4 ^ i4, np.signedinteger[Any])
|
86 |
+
assert_type(u4 & i4, np.signedinteger[Any])
|
87 |
+
|
88 |
+
assert_type(u4 << i, np.signedinteger[Any])
|
89 |
+
assert_type(u4 >> i, np.signedinteger[Any])
|
90 |
+
assert_type(u4 | i, np.signedinteger[Any])
|
91 |
+
assert_type(u4 ^ i, np.signedinteger[Any])
|
92 |
+
assert_type(u4 & i, np.signedinteger[Any])
|
93 |
+
|
94 |
+
assert_type(u8 << b_, np.uint64)
|
95 |
+
assert_type(u8 >> b_, np.uint64)
|
96 |
+
assert_type(u8 | b_, np.uint64)
|
97 |
+
assert_type(u8 ^ b_, np.uint64)
|
98 |
+
assert_type(u8 & b_, np.uint64)
|
99 |
+
|
100 |
+
assert_type(u8 << b, np.uint64)
|
101 |
+
assert_type(u8 >> b, np.uint64)
|
102 |
+
assert_type(u8 | b, np.uint64)
|
103 |
+
assert_type(u8 ^ b, np.uint64)
|
104 |
+
assert_type(u8 & b, np.uint64)
|
105 |
+
|
106 |
+
assert_type(b_ << b_, np.int8)
|
107 |
+
assert_type(b_ >> b_, np.int8)
|
108 |
+
assert_type(b_ | b_, np.bool_)
|
109 |
+
assert_type(b_ ^ b_, np.bool_)
|
110 |
+
assert_type(b_ & b_, np.bool_)
|
111 |
+
|
112 |
+
assert_type(b_ << AR, npt.NDArray[np.signedinteger[Any]])
|
113 |
+
assert_type(b_ >> AR, npt.NDArray[np.signedinteger[Any]])
|
114 |
+
assert_type(b_ | AR, npt.NDArray[np.signedinteger[Any]])
|
115 |
+
assert_type(b_ ^ AR, npt.NDArray[np.signedinteger[Any]])
|
116 |
+
assert_type(b_ & AR, npt.NDArray[np.signedinteger[Any]])
|
117 |
+
|
118 |
+
assert_type(b_ << b, np.int8)
|
119 |
+
assert_type(b_ >> b, np.int8)
|
120 |
+
assert_type(b_ | b, np.bool_)
|
121 |
+
assert_type(b_ ^ b, np.bool_)
|
122 |
+
assert_type(b_ & b, np.bool_)
|
123 |
+
|
124 |
+
assert_type(b_ << i, np.int_)
|
125 |
+
assert_type(b_ >> i, np.int_)
|
126 |
+
assert_type(b_ | i, np.int_)
|
127 |
+
assert_type(b_ ^ i, np.int_)
|
128 |
+
assert_type(b_ & i, np.int_)
|
129 |
+
|
130 |
+
assert_type(~i8, np.int64)
|
131 |
+
assert_type(~i4, np.int32)
|
132 |
+
assert_type(~u8, np.uint64)
|
133 |
+
assert_type(~u4, np.uint32)
|
134 |
+
assert_type(~b_, np.bool_)
|
135 |
+
assert_type(~AR, npt.NDArray[np.int32])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/chararray.pyi
ADDED
@@ -0,0 +1,140 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
|
7 |
+
if sys.version_info >= (3, 11):
|
8 |
+
from typing import assert_type
|
9 |
+
else:
|
10 |
+
from typing_extensions import assert_type
|
11 |
+
|
12 |
+
AR_U: np.chararray[Any, np.dtype[np.str_]]
|
13 |
+
AR_S: np.chararray[Any, np.dtype[np.bytes_]]
|
14 |
+
|
15 |
+
assert_type(AR_U == AR_U, npt.NDArray[np.bool_])
|
16 |
+
assert_type(AR_S == AR_S, npt.NDArray[np.bool_])
|
17 |
+
|
18 |
+
assert_type(AR_U != AR_U, npt.NDArray[np.bool_])
|
19 |
+
assert_type(AR_S != AR_S, npt.NDArray[np.bool_])
|
20 |
+
|
21 |
+
assert_type(AR_U >= AR_U, npt.NDArray[np.bool_])
|
22 |
+
assert_type(AR_S >= AR_S, npt.NDArray[np.bool_])
|
23 |
+
|
24 |
+
assert_type(AR_U <= AR_U, npt.NDArray[np.bool_])
|
25 |
+
assert_type(AR_S <= AR_S, npt.NDArray[np.bool_])
|
26 |
+
|
27 |
+
assert_type(AR_U > AR_U, npt.NDArray[np.bool_])
|
28 |
+
assert_type(AR_S > AR_S, npt.NDArray[np.bool_])
|
29 |
+
|
30 |
+
assert_type(AR_U < AR_U, npt.NDArray[np.bool_])
|
31 |
+
assert_type(AR_S < AR_S, npt.NDArray[np.bool_])
|
32 |
+
|
33 |
+
assert_type(AR_U * 5, np.chararray[Any, np.dtype[np.str_]])
|
34 |
+
assert_type(AR_S * [5], np.chararray[Any, np.dtype[np.bytes_]])
|
35 |
+
|
36 |
+
assert_type(AR_U % "test", np.chararray[Any, np.dtype[np.str_]])
|
37 |
+
assert_type(AR_S % b"test", np.chararray[Any, np.dtype[np.bytes_]])
|
38 |
+
|
39 |
+
assert_type(AR_U.capitalize(), np.chararray[Any, np.dtype[np.str_]])
|
40 |
+
assert_type(AR_S.capitalize(), np.chararray[Any, np.dtype[np.bytes_]])
|
41 |
+
|
42 |
+
assert_type(AR_U.center(5), np.chararray[Any, np.dtype[np.str_]])
|
43 |
+
assert_type(AR_S.center([2, 3, 4], b"a"), np.chararray[Any, np.dtype[np.bytes_]])
|
44 |
+
|
45 |
+
assert_type(AR_U.encode(), np.chararray[Any, np.dtype[np.bytes_]])
|
46 |
+
assert_type(AR_S.decode(), np.chararray[Any, np.dtype[np.str_]])
|
47 |
+
|
48 |
+
assert_type(AR_U.expandtabs(), np.chararray[Any, np.dtype[np.str_]])
|
49 |
+
assert_type(AR_S.expandtabs(tabsize=4), np.chararray[Any, np.dtype[np.bytes_]])
|
50 |
+
|
51 |
+
assert_type(AR_U.join("_"), np.chararray[Any, np.dtype[np.str_]])
|
52 |
+
assert_type(AR_S.join([b"_", b""]), np.chararray[Any, np.dtype[np.bytes_]])
|
53 |
+
|
54 |
+
assert_type(AR_U.ljust(5), np.chararray[Any, np.dtype[np.str_]])
|
55 |
+
assert_type(AR_S.ljust([4, 3, 1], fillchar=[b"a", b"b", b"c"]), np.chararray[Any, np.dtype[np.bytes_]])
|
56 |
+
assert_type(AR_U.rjust(5), np.chararray[Any, np.dtype[np.str_]])
|
57 |
+
assert_type(AR_S.rjust([4, 3, 1], fillchar=[b"a", b"b", b"c"]), np.chararray[Any, np.dtype[np.bytes_]])
|
58 |
+
|
59 |
+
assert_type(AR_U.lstrip(), np.chararray[Any, np.dtype[np.str_]])
|
60 |
+
assert_type(AR_S.lstrip(chars=b"_"), np.chararray[Any, np.dtype[np.bytes_]])
|
61 |
+
assert_type(AR_U.rstrip(), np.chararray[Any, np.dtype[np.str_]])
|
62 |
+
assert_type(AR_S.rstrip(chars=b"_"), np.chararray[Any, np.dtype[np.bytes_]])
|
63 |
+
assert_type(AR_U.strip(), np.chararray[Any, np.dtype[np.str_]])
|
64 |
+
assert_type(AR_S.strip(chars=b"_"), np.chararray[Any, np.dtype[np.bytes_]])
|
65 |
+
|
66 |
+
assert_type(AR_U.partition("\n"), np.chararray[Any, np.dtype[np.str_]])
|
67 |
+
assert_type(AR_S.partition([b"a", b"b", b"c"]), np.chararray[Any, np.dtype[np.bytes_]])
|
68 |
+
assert_type(AR_U.rpartition("\n"), np.chararray[Any, np.dtype[np.str_]])
|
69 |
+
assert_type(AR_S.rpartition([b"a", b"b", b"c"]), np.chararray[Any, np.dtype[np.bytes_]])
|
70 |
+
|
71 |
+
assert_type(AR_U.replace("_", "-"), np.chararray[Any, np.dtype[np.str_]])
|
72 |
+
assert_type(AR_S.replace([b"_", b""], [b"a", b"b"]), np.chararray[Any, np.dtype[np.bytes_]])
|
73 |
+
|
74 |
+
assert_type(AR_U.split("_"), npt.NDArray[np.object_])
|
75 |
+
assert_type(AR_S.split(maxsplit=[1, 2, 3]), npt.NDArray[np.object_])
|
76 |
+
assert_type(AR_U.rsplit("_"), npt.NDArray[np.object_])
|
77 |
+
assert_type(AR_S.rsplit(maxsplit=[1, 2, 3]), npt.NDArray[np.object_])
|
78 |
+
|
79 |
+
assert_type(AR_U.splitlines(), npt.NDArray[np.object_])
|
80 |
+
assert_type(AR_S.splitlines(keepends=[True, True, False]), npt.NDArray[np.object_])
|
81 |
+
|
82 |
+
assert_type(AR_U.swapcase(), np.chararray[Any, np.dtype[np.str_]])
|
83 |
+
assert_type(AR_S.swapcase(), np.chararray[Any, np.dtype[np.bytes_]])
|
84 |
+
|
85 |
+
assert_type(AR_U.title(), np.chararray[Any, np.dtype[np.str_]])
|
86 |
+
assert_type(AR_S.title(), np.chararray[Any, np.dtype[np.bytes_]])
|
87 |
+
|
88 |
+
assert_type(AR_U.upper(), np.chararray[Any, np.dtype[np.str_]])
|
89 |
+
assert_type(AR_S.upper(), np.chararray[Any, np.dtype[np.bytes_]])
|
90 |
+
|
91 |
+
assert_type(AR_U.zfill(5), np.chararray[Any, np.dtype[np.str_]])
|
92 |
+
assert_type(AR_S.zfill([2, 3, 4]), np.chararray[Any, np.dtype[np.bytes_]])
|
93 |
+
|
94 |
+
assert_type(AR_U.count("a", start=[1, 2, 3]), npt.NDArray[np.int_])
|
95 |
+
assert_type(AR_S.count([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_])
|
96 |
+
|
97 |
+
assert_type(AR_U.endswith("a", start=[1, 2, 3]), npt.NDArray[np.bool_])
|
98 |
+
assert_type(AR_S.endswith([b"a", b"b", b"c"], end=9), npt.NDArray[np.bool_])
|
99 |
+
assert_type(AR_U.startswith("a", start=[1, 2, 3]), npt.NDArray[np.bool_])
|
100 |
+
assert_type(AR_S.startswith([b"a", b"b", b"c"], end=9), npt.NDArray[np.bool_])
|
101 |
+
|
102 |
+
assert_type(AR_U.find("a", start=[1, 2, 3]), npt.NDArray[np.int_])
|
103 |
+
assert_type(AR_S.find([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_])
|
104 |
+
assert_type(AR_U.rfind("a", start=[1, 2, 3]), npt.NDArray[np.int_])
|
105 |
+
assert_type(AR_S.rfind([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_])
|
106 |
+
|
107 |
+
assert_type(AR_U.index("a", start=[1, 2, 3]), npt.NDArray[np.int_])
|
108 |
+
assert_type(AR_S.index([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_])
|
109 |
+
assert_type(AR_U.rindex("a", start=[1, 2, 3]), npt.NDArray[np.int_])
|
110 |
+
assert_type(AR_S.rindex([b"a", b"b", b"c"], end=9), npt.NDArray[np.int_])
|
111 |
+
|
112 |
+
assert_type(AR_U.isalpha(), npt.NDArray[np.bool_])
|
113 |
+
assert_type(AR_S.isalpha(), npt.NDArray[np.bool_])
|
114 |
+
|
115 |
+
assert_type(AR_U.isalnum(), npt.NDArray[np.bool_])
|
116 |
+
assert_type(AR_S.isalnum(), npt.NDArray[np.bool_])
|
117 |
+
|
118 |
+
assert_type(AR_U.isdecimal(), npt.NDArray[np.bool_])
|
119 |
+
assert_type(AR_S.isdecimal(), npt.NDArray[np.bool_])
|
120 |
+
|
121 |
+
assert_type(AR_U.isdigit(), npt.NDArray[np.bool_])
|
122 |
+
assert_type(AR_S.isdigit(), npt.NDArray[np.bool_])
|
123 |
+
|
124 |
+
assert_type(AR_U.islower(), npt.NDArray[np.bool_])
|
125 |
+
assert_type(AR_S.islower(), npt.NDArray[np.bool_])
|
126 |
+
|
127 |
+
assert_type(AR_U.isnumeric(), npt.NDArray[np.bool_])
|
128 |
+
assert_type(AR_S.isnumeric(), npt.NDArray[np.bool_])
|
129 |
+
|
130 |
+
assert_type(AR_U.isspace(), npt.NDArray[np.bool_])
|
131 |
+
assert_type(AR_S.isspace(), npt.NDArray[np.bool_])
|
132 |
+
|
133 |
+
assert_type(AR_U.istitle(), npt.NDArray[np.bool_])
|
134 |
+
assert_type(AR_S.istitle(), npt.NDArray[np.bool_])
|
135 |
+
|
136 |
+
assert_type(AR_U.isupper(), npt.NDArray[np.bool_])
|
137 |
+
assert_type(AR_S.isupper(), npt.NDArray[np.bool_])
|
138 |
+
|
139 |
+
assert_type(AR_U.__array_finalize__(object()), None)
|
140 |
+
assert_type(AR_S.__array_finalize__(object()), None)
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/comparisons.pyi
ADDED
@@ -0,0 +1,270 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import fractions
|
3 |
+
import decimal
|
4 |
+
from typing import Any
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import numpy.typing as npt
|
8 |
+
|
9 |
+
if sys.version_info >= (3, 11):
|
10 |
+
from typing import assert_type
|
11 |
+
else:
|
12 |
+
from typing_extensions import assert_type
|
13 |
+
|
14 |
+
c16 = np.complex128()
|
15 |
+
f8 = np.float64()
|
16 |
+
i8 = np.int64()
|
17 |
+
u8 = np.uint64()
|
18 |
+
|
19 |
+
c8 = np.complex64()
|
20 |
+
f4 = np.float32()
|
21 |
+
i4 = np.int32()
|
22 |
+
u4 = np.uint32()
|
23 |
+
|
24 |
+
dt = np.datetime64(0, "D")
|
25 |
+
td = np.timedelta64(0, "D")
|
26 |
+
|
27 |
+
b_ = np.bool_()
|
28 |
+
|
29 |
+
b = bool()
|
30 |
+
c = complex()
|
31 |
+
f = float()
|
32 |
+
i = int()
|
33 |
+
|
34 |
+
AR = np.array([0], dtype=np.int64)
|
35 |
+
AR.setflags(write=False)
|
36 |
+
|
37 |
+
SEQ = (0, 1, 2, 3, 4)
|
38 |
+
|
39 |
+
# object-like comparisons
|
40 |
+
|
41 |
+
assert_type(i8 > fractions.Fraction(1, 5), Any)
|
42 |
+
assert_type(i8 > [fractions.Fraction(1, 5)], Any)
|
43 |
+
assert_type(i8 > decimal.Decimal("1.5"), Any)
|
44 |
+
assert_type(i8 > [decimal.Decimal("1.5")], Any)
|
45 |
+
|
46 |
+
# Time structures
|
47 |
+
|
48 |
+
assert_type(dt > dt, np.bool_)
|
49 |
+
|
50 |
+
assert_type(td > td, np.bool_)
|
51 |
+
assert_type(td > i, np.bool_)
|
52 |
+
assert_type(td > i4, np.bool_)
|
53 |
+
assert_type(td > i8, np.bool_)
|
54 |
+
|
55 |
+
assert_type(td > AR, npt.NDArray[np.bool_])
|
56 |
+
assert_type(td > SEQ, npt.NDArray[np.bool_])
|
57 |
+
assert_type(AR > SEQ, npt.NDArray[np.bool_])
|
58 |
+
assert_type(AR > td, npt.NDArray[np.bool_])
|
59 |
+
assert_type(SEQ > td, npt.NDArray[np.bool_])
|
60 |
+
assert_type(SEQ > AR, npt.NDArray[np.bool_])
|
61 |
+
|
62 |
+
# boolean
|
63 |
+
|
64 |
+
assert_type(b_ > b, np.bool_)
|
65 |
+
assert_type(b_ > b_, np.bool_)
|
66 |
+
assert_type(b_ > i, np.bool_)
|
67 |
+
assert_type(b_ > i8, np.bool_)
|
68 |
+
assert_type(b_ > i4, np.bool_)
|
69 |
+
assert_type(b_ > u8, np.bool_)
|
70 |
+
assert_type(b_ > u4, np.bool_)
|
71 |
+
assert_type(b_ > f, np.bool_)
|
72 |
+
assert_type(b_ > f8, np.bool_)
|
73 |
+
assert_type(b_ > f4, np.bool_)
|
74 |
+
assert_type(b_ > c, np.bool_)
|
75 |
+
assert_type(b_ > c16, np.bool_)
|
76 |
+
assert_type(b_ > c8, np.bool_)
|
77 |
+
assert_type(b_ > AR, npt.NDArray[np.bool_])
|
78 |
+
assert_type(b_ > SEQ, npt.NDArray[np.bool_])
|
79 |
+
|
80 |
+
# Complex
|
81 |
+
|
82 |
+
assert_type(c16 > c16, np.bool_)
|
83 |
+
assert_type(c16 > f8, np.bool_)
|
84 |
+
assert_type(c16 > i8, np.bool_)
|
85 |
+
assert_type(c16 > c8, np.bool_)
|
86 |
+
assert_type(c16 > f4, np.bool_)
|
87 |
+
assert_type(c16 > i4, np.bool_)
|
88 |
+
assert_type(c16 > b_, np.bool_)
|
89 |
+
assert_type(c16 > b, np.bool_)
|
90 |
+
assert_type(c16 > c, np.bool_)
|
91 |
+
assert_type(c16 > f, np.bool_)
|
92 |
+
assert_type(c16 > i, np.bool_)
|
93 |
+
assert_type(c16 > AR, npt.NDArray[np.bool_])
|
94 |
+
assert_type(c16 > SEQ, npt.NDArray[np.bool_])
|
95 |
+
|
96 |
+
assert_type(c16 > c16, np.bool_)
|
97 |
+
assert_type(f8 > c16, np.bool_)
|
98 |
+
assert_type(i8 > c16, np.bool_)
|
99 |
+
assert_type(c8 > c16, np.bool_)
|
100 |
+
assert_type(f4 > c16, np.bool_)
|
101 |
+
assert_type(i4 > c16, np.bool_)
|
102 |
+
assert_type(b_ > c16, np.bool_)
|
103 |
+
assert_type(b > c16, np.bool_)
|
104 |
+
assert_type(c > c16, np.bool_)
|
105 |
+
assert_type(f > c16, np.bool_)
|
106 |
+
assert_type(i > c16, np.bool_)
|
107 |
+
assert_type(AR > c16, npt.NDArray[np.bool_])
|
108 |
+
assert_type(SEQ > c16, npt.NDArray[np.bool_])
|
109 |
+
|
110 |
+
assert_type(c8 > c16, np.bool_)
|
111 |
+
assert_type(c8 > f8, np.bool_)
|
112 |
+
assert_type(c8 > i8, np.bool_)
|
113 |
+
assert_type(c8 > c8, np.bool_)
|
114 |
+
assert_type(c8 > f4, np.bool_)
|
115 |
+
assert_type(c8 > i4, np.bool_)
|
116 |
+
assert_type(c8 > b_, np.bool_)
|
117 |
+
assert_type(c8 > b, np.bool_)
|
118 |
+
assert_type(c8 > c, np.bool_)
|
119 |
+
assert_type(c8 > f, np.bool_)
|
120 |
+
assert_type(c8 > i, np.bool_)
|
121 |
+
assert_type(c8 > AR, npt.NDArray[np.bool_])
|
122 |
+
assert_type(c8 > SEQ, npt.NDArray[np.bool_])
|
123 |
+
|
124 |
+
assert_type(c16 > c8, np.bool_)
|
125 |
+
assert_type(f8 > c8, np.bool_)
|
126 |
+
assert_type(i8 > c8, np.bool_)
|
127 |
+
assert_type(c8 > c8, np.bool_)
|
128 |
+
assert_type(f4 > c8, np.bool_)
|
129 |
+
assert_type(i4 > c8, np.bool_)
|
130 |
+
assert_type(b_ > c8, np.bool_)
|
131 |
+
assert_type(b > c8, np.bool_)
|
132 |
+
assert_type(c > c8, np.bool_)
|
133 |
+
assert_type(f > c8, np.bool_)
|
134 |
+
assert_type(i > c8, np.bool_)
|
135 |
+
assert_type(AR > c8, npt.NDArray[np.bool_])
|
136 |
+
assert_type(SEQ > c8, npt.NDArray[np.bool_])
|
137 |
+
|
138 |
+
# Float
|
139 |
+
|
140 |
+
assert_type(f8 > f8, np.bool_)
|
141 |
+
assert_type(f8 > i8, np.bool_)
|
142 |
+
assert_type(f8 > f4, np.bool_)
|
143 |
+
assert_type(f8 > i4, np.bool_)
|
144 |
+
assert_type(f8 > b_, np.bool_)
|
145 |
+
assert_type(f8 > b, np.bool_)
|
146 |
+
assert_type(f8 > c, np.bool_)
|
147 |
+
assert_type(f8 > f, np.bool_)
|
148 |
+
assert_type(f8 > i, np.bool_)
|
149 |
+
assert_type(f8 > AR, npt.NDArray[np.bool_])
|
150 |
+
assert_type(f8 > SEQ, npt.NDArray[np.bool_])
|
151 |
+
|
152 |
+
assert_type(f8 > f8, np.bool_)
|
153 |
+
assert_type(i8 > f8, np.bool_)
|
154 |
+
assert_type(f4 > f8, np.bool_)
|
155 |
+
assert_type(i4 > f8, np.bool_)
|
156 |
+
assert_type(b_ > f8, np.bool_)
|
157 |
+
assert_type(b > f8, np.bool_)
|
158 |
+
assert_type(c > f8, np.bool_)
|
159 |
+
assert_type(f > f8, np.bool_)
|
160 |
+
assert_type(i > f8, np.bool_)
|
161 |
+
assert_type(AR > f8, npt.NDArray[np.bool_])
|
162 |
+
assert_type(SEQ > f8, npt.NDArray[np.bool_])
|
163 |
+
|
164 |
+
assert_type(f4 > f8, np.bool_)
|
165 |
+
assert_type(f4 > i8, np.bool_)
|
166 |
+
assert_type(f4 > f4, np.bool_)
|
167 |
+
assert_type(f4 > i4, np.bool_)
|
168 |
+
assert_type(f4 > b_, np.bool_)
|
169 |
+
assert_type(f4 > b, np.bool_)
|
170 |
+
assert_type(f4 > c, np.bool_)
|
171 |
+
assert_type(f4 > f, np.bool_)
|
172 |
+
assert_type(f4 > i, np.bool_)
|
173 |
+
assert_type(f4 > AR, npt.NDArray[np.bool_])
|
174 |
+
assert_type(f4 > SEQ, npt.NDArray[np.bool_])
|
175 |
+
|
176 |
+
assert_type(f8 > f4, np.bool_)
|
177 |
+
assert_type(i8 > f4, np.bool_)
|
178 |
+
assert_type(f4 > f4, np.bool_)
|
179 |
+
assert_type(i4 > f4, np.bool_)
|
180 |
+
assert_type(b_ > f4, np.bool_)
|
181 |
+
assert_type(b > f4, np.bool_)
|
182 |
+
assert_type(c > f4, np.bool_)
|
183 |
+
assert_type(f > f4, np.bool_)
|
184 |
+
assert_type(i > f4, np.bool_)
|
185 |
+
assert_type(AR > f4, npt.NDArray[np.bool_])
|
186 |
+
assert_type(SEQ > f4, npt.NDArray[np.bool_])
|
187 |
+
|
188 |
+
# Int
|
189 |
+
|
190 |
+
assert_type(i8 > i8, np.bool_)
|
191 |
+
assert_type(i8 > u8, np.bool_)
|
192 |
+
assert_type(i8 > i4, np.bool_)
|
193 |
+
assert_type(i8 > u4, np.bool_)
|
194 |
+
assert_type(i8 > b_, np.bool_)
|
195 |
+
assert_type(i8 > b, np.bool_)
|
196 |
+
assert_type(i8 > c, np.bool_)
|
197 |
+
assert_type(i8 > f, np.bool_)
|
198 |
+
assert_type(i8 > i, np.bool_)
|
199 |
+
assert_type(i8 > AR, npt.NDArray[np.bool_])
|
200 |
+
assert_type(i8 > SEQ, npt.NDArray[np.bool_])
|
201 |
+
|
202 |
+
assert_type(u8 > u8, np.bool_)
|
203 |
+
assert_type(u8 > i4, np.bool_)
|
204 |
+
assert_type(u8 > u4, np.bool_)
|
205 |
+
assert_type(u8 > b_, np.bool_)
|
206 |
+
assert_type(u8 > b, np.bool_)
|
207 |
+
assert_type(u8 > c, np.bool_)
|
208 |
+
assert_type(u8 > f, np.bool_)
|
209 |
+
assert_type(u8 > i, np.bool_)
|
210 |
+
assert_type(u8 > AR, npt.NDArray[np.bool_])
|
211 |
+
assert_type(u8 > SEQ, npt.NDArray[np.bool_])
|
212 |
+
|
213 |
+
assert_type(i8 > i8, np.bool_)
|
214 |
+
assert_type(u8 > i8, np.bool_)
|
215 |
+
assert_type(i4 > i8, np.bool_)
|
216 |
+
assert_type(u4 > i8, np.bool_)
|
217 |
+
assert_type(b_ > i8, np.bool_)
|
218 |
+
assert_type(b > i8, np.bool_)
|
219 |
+
assert_type(c > i8, np.bool_)
|
220 |
+
assert_type(f > i8, np.bool_)
|
221 |
+
assert_type(i > i8, np.bool_)
|
222 |
+
assert_type(AR > i8, npt.NDArray[np.bool_])
|
223 |
+
assert_type(SEQ > i8, npt.NDArray[np.bool_])
|
224 |
+
|
225 |
+
assert_type(u8 > u8, np.bool_)
|
226 |
+
assert_type(i4 > u8, np.bool_)
|
227 |
+
assert_type(u4 > u8, np.bool_)
|
228 |
+
assert_type(b_ > u8, np.bool_)
|
229 |
+
assert_type(b > u8, np.bool_)
|
230 |
+
assert_type(c > u8, np.bool_)
|
231 |
+
assert_type(f > u8, np.bool_)
|
232 |
+
assert_type(i > u8, np.bool_)
|
233 |
+
assert_type(AR > u8, npt.NDArray[np.bool_])
|
234 |
+
assert_type(SEQ > u8, npt.NDArray[np.bool_])
|
235 |
+
|
236 |
+
assert_type(i4 > i8, np.bool_)
|
237 |
+
assert_type(i4 > i4, np.bool_)
|
238 |
+
assert_type(i4 > i, np.bool_)
|
239 |
+
assert_type(i4 > b_, np.bool_)
|
240 |
+
assert_type(i4 > b, np.bool_)
|
241 |
+
assert_type(i4 > AR, npt.NDArray[np.bool_])
|
242 |
+
assert_type(i4 > SEQ, npt.NDArray[np.bool_])
|
243 |
+
|
244 |
+
assert_type(u4 > i8, np.bool_)
|
245 |
+
assert_type(u4 > i4, np.bool_)
|
246 |
+
assert_type(u4 > u8, np.bool_)
|
247 |
+
assert_type(u4 > u4, np.bool_)
|
248 |
+
assert_type(u4 > i, np.bool_)
|
249 |
+
assert_type(u4 > b_, np.bool_)
|
250 |
+
assert_type(u4 > b, np.bool_)
|
251 |
+
assert_type(u4 > AR, npt.NDArray[np.bool_])
|
252 |
+
assert_type(u4 > SEQ, npt.NDArray[np.bool_])
|
253 |
+
|
254 |
+
assert_type(i8 > i4, np.bool_)
|
255 |
+
assert_type(i4 > i4, np.bool_)
|
256 |
+
assert_type(i > i4, np.bool_)
|
257 |
+
assert_type(b_ > i4, np.bool_)
|
258 |
+
assert_type(b > i4, np.bool_)
|
259 |
+
assert_type(AR > i4, npt.NDArray[np.bool_])
|
260 |
+
assert_type(SEQ > i4, npt.NDArray[np.bool_])
|
261 |
+
|
262 |
+
assert_type(i8 > u4, np.bool_)
|
263 |
+
assert_type(i4 > u4, np.bool_)
|
264 |
+
assert_type(u8 > u4, np.bool_)
|
265 |
+
assert_type(u4 > u4, np.bool_)
|
266 |
+
assert_type(b_ > u4, np.bool_)
|
267 |
+
assert_type(b > u4, np.bool_)
|
268 |
+
assert_type(i > u4, np.bool_)
|
269 |
+
assert_type(AR > u4, npt.NDArray[np.bool_])
|
270 |
+
assert_type(SEQ > u4, npt.NDArray[np.bool_])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/dtype.pyi
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
import ctypes as ct
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
if sys.version_info >= (3, 11):
|
8 |
+
from typing import assert_type
|
9 |
+
else:
|
10 |
+
from typing_extensions import assert_type
|
11 |
+
|
12 |
+
dtype_U: np.dtype[np.str_]
|
13 |
+
dtype_V: np.dtype[np.void]
|
14 |
+
dtype_i8: np.dtype[np.int64]
|
15 |
+
|
16 |
+
assert_type(np.dtype(np.float64), np.dtype[np.float64])
|
17 |
+
assert_type(np.dtype(np.float64, metadata={"test": "test"}), np.dtype[np.float64])
|
18 |
+
assert_type(np.dtype(np.int64), np.dtype[np.int64])
|
19 |
+
|
20 |
+
# String aliases
|
21 |
+
assert_type(np.dtype("float64"), np.dtype[np.float64])
|
22 |
+
assert_type(np.dtype("float32"), np.dtype[np.float32])
|
23 |
+
assert_type(np.dtype("int64"), np.dtype[np.int64])
|
24 |
+
assert_type(np.dtype("int32"), np.dtype[np.int32])
|
25 |
+
assert_type(np.dtype("bool"), np.dtype[np.bool_])
|
26 |
+
assert_type(np.dtype("bytes"), np.dtype[np.bytes_])
|
27 |
+
assert_type(np.dtype("str"), np.dtype[np.str_])
|
28 |
+
|
29 |
+
# Python types
|
30 |
+
assert_type(np.dtype(complex), np.dtype[np.cdouble])
|
31 |
+
assert_type(np.dtype(float), np.dtype[np.double])
|
32 |
+
assert_type(np.dtype(int), np.dtype[np.int_])
|
33 |
+
assert_type(np.dtype(bool), np.dtype[np.bool_])
|
34 |
+
assert_type(np.dtype(str), np.dtype[np.str_])
|
35 |
+
assert_type(np.dtype(bytes), np.dtype[np.bytes_])
|
36 |
+
assert_type(np.dtype(object), np.dtype[np.object_])
|
37 |
+
|
38 |
+
# ctypes
|
39 |
+
assert_type(np.dtype(ct.c_double), np.dtype[np.double])
|
40 |
+
assert_type(np.dtype(ct.c_longlong), np.dtype[np.longlong])
|
41 |
+
assert_type(np.dtype(ct.c_uint32), np.dtype[np.uint32])
|
42 |
+
assert_type(np.dtype(ct.c_bool), np.dtype[np.bool_])
|
43 |
+
assert_type(np.dtype(ct.c_char), np.dtype[np.bytes_])
|
44 |
+
assert_type(np.dtype(ct.py_object), np.dtype[np.object_])
|
45 |
+
|
46 |
+
# Special case for None
|
47 |
+
assert_type(np.dtype(None), np.dtype[np.double])
|
48 |
+
|
49 |
+
# Dtypes of dtypes
|
50 |
+
assert_type(np.dtype(np.dtype(np.float64)), np.dtype[np.float64])
|
51 |
+
|
52 |
+
# Parameterized dtypes
|
53 |
+
assert_type(np.dtype("S8"), np.dtype)
|
54 |
+
|
55 |
+
# Void
|
56 |
+
assert_type(np.dtype(("U", 10)), np.dtype[np.void])
|
57 |
+
|
58 |
+
# Methods and attributes
|
59 |
+
assert_type(dtype_U.base, np.dtype[Any])
|
60 |
+
assert_type(dtype_U.subdtype, None | tuple[np.dtype[Any], tuple[int, ...]])
|
61 |
+
assert_type(dtype_U.newbyteorder(), np.dtype[np.str_])
|
62 |
+
assert_type(dtype_U.type, type[np.str_])
|
63 |
+
assert_type(dtype_U.name, str)
|
64 |
+
assert_type(dtype_U.names, None | tuple[str, ...])
|
65 |
+
|
66 |
+
assert_type(dtype_U * 0, np.dtype[np.str_])
|
67 |
+
assert_type(dtype_U * 1, np.dtype[np.str_])
|
68 |
+
assert_type(dtype_U * 2, np.dtype[np.str_])
|
69 |
+
|
70 |
+
assert_type(dtype_i8 * 0, np.dtype[np.void])
|
71 |
+
assert_type(dtype_i8 * 1, np.dtype[np.int64])
|
72 |
+
assert_type(dtype_i8 * 2, np.dtype[np.void])
|
73 |
+
|
74 |
+
assert_type(0 * dtype_U, np.dtype[np.str_])
|
75 |
+
assert_type(1 * dtype_U, np.dtype[np.str_])
|
76 |
+
assert_type(2 * dtype_U, np.dtype[np.str_])
|
77 |
+
|
78 |
+
assert_type(0 * dtype_i8, np.dtype[Any])
|
79 |
+
assert_type(1 * dtype_i8, np.dtype[Any])
|
80 |
+
assert_type(2 * dtype_i8, np.dtype[Any])
|
81 |
+
|
82 |
+
assert_type(dtype_V["f0"], np.dtype[Any])
|
83 |
+
assert_type(dtype_V[0], np.dtype[Any])
|
84 |
+
assert_type(dtype_V[["f0", "f1"]], np.dtype[np.void])
|
85 |
+
assert_type(dtype_V[["f0"]], np.dtype[np.void])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/einsumfunc.pyi
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
|
7 |
+
if sys.version_info >= (3, 11):
|
8 |
+
from typing import assert_type
|
9 |
+
else:
|
10 |
+
from typing_extensions import assert_type
|
11 |
+
|
12 |
+
AR_LIKE_b: list[bool]
|
13 |
+
AR_LIKE_u: list[np.uint32]
|
14 |
+
AR_LIKE_i: list[int]
|
15 |
+
AR_LIKE_f: list[float]
|
16 |
+
AR_LIKE_c: list[complex]
|
17 |
+
AR_LIKE_U: list[str]
|
18 |
+
AR_o: npt.NDArray[np.object_]
|
19 |
+
|
20 |
+
OUT_f: npt.NDArray[np.float64]
|
21 |
+
|
22 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_b), Any)
|
23 |
+
assert_type(np.einsum("i,i->i", AR_o, AR_o), Any)
|
24 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_u, AR_LIKE_u), Any)
|
25 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_i, AR_LIKE_i), Any)
|
26 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f), Any)
|
27 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c), Any)
|
28 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_b, AR_LIKE_i), Any)
|
29 |
+
assert_type(np.einsum("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c), Any)
|
30 |
+
|
31 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_c, AR_LIKE_c, out=OUT_f), npt.NDArray[np.float64])
|
32 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe", out=OUT_f), npt.NDArray[np.float64])
|
33 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_f, AR_LIKE_f, dtype="c16"), Any)
|
34 |
+
assert_type(np.einsum("i,i->i", AR_LIKE_U, AR_LIKE_U, dtype=bool, casting="unsafe"), Any)
|
35 |
+
|
36 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_b), tuple[list[Any], str])
|
37 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_u, AR_LIKE_u), tuple[list[Any], str])
|
38 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_i, AR_LIKE_i), tuple[list[Any], str])
|
39 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_f, AR_LIKE_f), tuple[list[Any], str])
|
40 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_c, AR_LIKE_c), tuple[list[Any], str])
|
41 |
+
assert_type(np.einsum_path("i,i->i", AR_LIKE_b, AR_LIKE_i), tuple[list[Any], str])
|
42 |
+
assert_type(np.einsum_path("i,i,i,i->i", AR_LIKE_b, AR_LIKE_u, AR_LIKE_i, AR_LIKE_c), tuple[list[Any], str])
|
43 |
+
|
44 |
+
assert_type(np.einsum([[1, 1], [1, 1]], AR_LIKE_i, AR_LIKE_i), Any)
|
45 |
+
assert_type(np.einsum_path([[1, 1], [1, 1]], AR_LIKE_i, AR_LIKE_i), tuple[list[Any], str])
|
venv/lib/python3.10/site-packages/numpy/typing/tests/data/reveal/flatiter.pyi
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from typing import Any
|
3 |
+
|
4 |
+
import numpy as np
|
5 |
+
import numpy.typing as npt
|
6 |
+
|
7 |
+
if sys.version_info >= (3, 11):
|
8 |
+
from typing import assert_type
|
9 |
+
else:
|
10 |
+
from typing_extensions import assert_type
|
11 |
+
|
12 |
+
a: np.flatiter[npt.NDArray[np.str_]]
|
13 |
+
|
14 |
+
assert_type(a.base, npt.NDArray[np.str_])
|
15 |
+
assert_type(a.copy(), npt.NDArray[np.str_])
|
16 |
+
assert_type(a.coords, tuple[int, ...])
|
17 |
+
assert_type(a.index, int)
|
18 |
+
assert_type(iter(a), np.flatiter[npt.NDArray[np.str_]])
|
19 |
+
assert_type(next(a), np.str_)
|
20 |
+
assert_type(a[0], np.str_)
|
21 |
+
assert_type(a[[0, 1, 2]], npt.NDArray[np.str_])
|
22 |
+
assert_type(a[...], npt.NDArray[np.str_])
|
23 |
+
assert_type(a[:], npt.NDArray[np.str_])
|
24 |
+
assert_type(a[(...,)], npt.NDArray[np.str_])
|
25 |
+
assert_type(a[(0,)], np.str_)
|
26 |
+
assert_type(a.__array__(), npt.NDArray[np.str_])
|
27 |
+
assert_type(a.__array__(np.dtype(np.float64)), npt.NDArray[np.float64])
|
28 |
+
a[0] = "a"
|
29 |
+
a[:5] = "a"
|
30 |
+
a[...] = "a"
|
31 |
+
a[(...,)] = "a"
|