applied-ai-018 commited on
Commit
b2e57f9
·
verified ·
1 Parent(s): 7929bb8

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  2. ckpts/universal/global_step20/zero/24.input_layernorm.weight/exp_avg_sq.pt +3 -0
  3. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical_ops.h +39 -0
  4. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  5. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_cuda_dispatch.h +24 -0
  6. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp_ops.h +83 -0
  7. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cuda_dispatch.h +24 -0
  8. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw_ops.h +83 -0
  9. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_has_same_storage_numel_ops.h +28 -0
  10. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward.h +30 -0
  11. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward_cpu_dispatch.h +23 -0
  12. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward_cuda_dispatch.h +23 -0
  13. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_segment_reduce_backward_ops.h +39 -0
  14. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_unsafe.h +69 -0
  15. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm.h +35 -0
  16. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_ops.h +28 -0
  17. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h +25 -0
  18. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_grad_native.h +23 -0
  19. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_lstm_cell_backward_compositeimplicitautograd_dispatch.h +23 -0
  20. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward.h +91 -0
  21. venv/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_compressed_tensor_args_ops.h +28 -0
  22. venv/lib/python3.10/site-packages/torch/include/ATen/ops/addmm.h +39 -0
  23. venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_cpu_dispatch.h +25 -0
  24. venv/lib/python3.10/site-packages/torch/include/ATen/ops/aminmax_ops.h +39 -0
  25. venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_meta.h +27 -0
  26. venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h +23 -0
  27. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cdist.h +30 -0
  28. venv/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_native.h +27 -0
  29. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummin.h +53 -0
  30. venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_compositeimplicitautograd_dispatch.h +26 -0
  31. venv/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_meta_dispatch.h +26 -0
  32. venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine.h +30 -0
  33. venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_cpu_dispatch.h +25 -0
  34. venv/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_native.h +28 -0
  35. venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward.h +39 -0
  36. venv/lib/python3.10/site-packages/torch/include/ATen/ops/group_norm_ops.h +28 -0
  37. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_ops.h +50 -0
  38. venv/lib/python3.10/site-packages/torch/include/ATen/ops/histogram_native.h +24 -0
  39. venv/lib/python3.10/site-packages/torch/include/ATen/ops/hspmm_native.h +24 -0
  40. venv/lib/python3.10/site-packages/torch/include/ATen/ops/imag_native.h +21 -0
  41. venv/lib/python3.10/site-packages/torch/include/ATen/ops/index.h +39 -0
  42. venv/lib/python3.10/site-packages/torch/include/ATen/ops/indices_ops.h +28 -0
  43. venv/lib/python3.10/site-packages/torch/include/ATen/ops/isclose.h +30 -0
  44. venv/lib/python3.10/site-packages/torch/include/ATen/ops/l1_loss.h +30 -0
  45. venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_exp.h +39 -0
  46. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_sigmoid_forward_native.h +24 -0
  47. venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_softmax_compositeimplicitautograd_dispatch.h +24 -0
  48. venv/lib/python3.10/site-packages/torch/include/ATen/ops/meshgrid_ops.h +39 -0
  49. venv/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_batch_norm_cuda_dispatch.h +23 -0
  50. venv/lib/python3.10/site-packages/torch/include/ATen/ops/mps_convolution_backward.h +91 -0
ckpts/universal/global_step20/zero/17.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:36264fb59ed53d51065e39f6d151751cf7aa40d907cf1d28511a95d5421572d6
3
+ size 33555533
ckpts/universal/global_step20/zero/24.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3358c2a4dda43004c68a154c57f846b4228bc05e9aba64043bfd58aa7720a21c
3
+ size 9387
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_conj_physical_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _conj_physical {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_conj_physical")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_conj_physical(Tensor self) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ struct TORCH_API _conj_physical_out {
29
+ using schema = at::Tensor & (const at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_conj_physical")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_conj_physical.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & self, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_convert_indices_from_coo_to_csr_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor _convert_indices_from_coo_to_csr(const at::Tensor & self, int64_t size, bool out_int32=false);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_cudnn_rnn_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, int64_t hidden_size, int64_t proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, at::IntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _cudnn_rnn_symint(const at::Tensor & input, at::TensorList weight, int64_t weight_stride0, const c10::optional<at::Tensor> & weight_buf, const at::Tensor & hx, const c10::optional<at::Tensor> & cx, int64_t mode, c10::SymInt hidden_size, c10::SymInt proj_size, int64_t num_layers, bool batch_first, double dropout, bool train, bool bidirectional, c10::SymIntArrayRef batch_sizes, const c10::optional<at::Tensor> & dropout_state);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_lerp_ops.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _foreach_lerp_List {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList, at::TensorList, at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp.List(Tensor[] self, Tensor[] tensors1, Tensor[] weights) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, at::TensorList weights);
26
+ };
27
+
28
+ struct TORCH_API _foreach_lerp__List {
29
+ using schema = void (at::TensorList, at::TensorList, at::TensorList);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp_.List(Tensor(a!)[] self, Tensor[] tensors1, Tensor[] weights) -> ()")
35
+ static void call(at::TensorList self, at::TensorList tensors1, at::TensorList weights);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, at::TensorList weights);
37
+ };
38
+
39
+ struct TORCH_API _foreach_lerp_Scalar {
40
+ using schema = ::std::vector<at::Tensor> (at::TensorList, at::TensorList, const at::Scalar &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp.Scalar(Tensor[] self, Tensor[] tensors1, Scalar weight) -> Tensor[]")
46
+ static ::std::vector<at::Tensor> call(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
47
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
48
+ };
49
+
50
+ struct TORCH_API _foreach_lerp__Scalar {
51
+ using schema = void (at::TensorList, at::TensorList, const at::Scalar &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp_")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp_.Scalar(Tensor(a!)[] self, Tensor[] tensors1, Scalar weight) -> ()")
57
+ static void call(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
58
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, const at::Scalar & weight);
59
+ };
60
+
61
+ struct TORCH_API _foreach_lerp_List_out {
62
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "List_out")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp.List_out(Tensor[] self, Tensor[] tensors1, Tensor[] weights, *, Tensor(a!)[] out) -> ()")
68
+ static void call(at::TensorList self, at::TensorList tensors1, at::TensorList weights, at::TensorList out);
69
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, at::TensorList weights, at::TensorList out);
70
+ };
71
+
72
+ struct TORCH_API _foreach_lerp_Scalar_out {
73
+ using schema = void (at::TensorList, at::TensorList, const at::Scalar &, at::TensorList);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_foreach_lerp")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "Scalar_out")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_foreach_lerp.Scalar_out(Tensor[] self, Tensor[] tensors1, Scalar weight, *, Tensor(a!)[] out) -> ()")
79
+ static void call(at::TensorList self, at::TensorList tensors1, const at::Scalar & weight, at::TensorList out);
80
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList tensors1, const at::Scalar & weight, at::TensorList out);
81
+ };
82
+
83
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_foreach_sin_cuda_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::vector<at::Tensor> _foreach_sin(at::TensorList self);
21
+ TORCH_API void _foreach_sin_(at::TensorList self);
22
+
23
+ } // namespace cuda
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_fused_adamw_ops.h ADDED
@@ -0,0 +1,83 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _fused_adamw_ {
18
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw_")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw_(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
24
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
25
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
26
+ };
27
+
28
+ struct TORCH_API _fused_adamw__tensor_lr {
29
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw_")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw_.tensor_lr(Tensor(a!)[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> ()")
35
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
36
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
37
+ };
38
+
39
+ struct TORCH_API _fused_adamw_out {
40
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw.out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
46
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
47
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
48
+ };
49
+
50
+ struct TORCH_API _fused_adamw {
51
+ using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, double, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
52
+ using ptr_schema = schema*;
53
+ // See Note [static constexpr char* members for windows NVCC]
54
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw")
55
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
56
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, float lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
57
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
58
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, double lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
59
+ };
60
+
61
+ struct TORCH_API _fused_adamw_tensor_lr_out {
62
+ using schema = void (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, at::TensorList);
63
+ using ptr_schema = schema*;
64
+ // See Note [static constexpr char* members for windows NVCC]
65
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw")
66
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr_out")
67
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw.tensor_lr_out(Tensor[] self, Tensor(b!)[] grads, Tensor(c!)[] exp_avgs, Tensor(d!)[] exp_avg_sqs, Tensor(e!)[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None, Tensor(a!)[] out) -> ()")
68
+ static void call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
69
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf, at::TensorList out);
70
+ };
71
+
72
+ struct TORCH_API _fused_adamw_tensor_lr {
73
+ using schema = ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> (at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, at::TensorList, const at::Tensor &, double, double, double, double, bool, bool, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &);
74
+ using ptr_schema = schema*;
75
+ // See Note [static constexpr char* members for windows NVCC]
76
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_fused_adamw")
77
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "tensor_lr")
78
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_fused_adamw.tensor_lr(Tensor[] self, Tensor[] grads, Tensor[] exp_avgs, Tensor[] exp_avg_sqs, Tensor[] max_exp_avg_sqs, Tensor[] state_steps, *, Tensor lr, float beta1, float beta2, float weight_decay, float eps, bool amsgrad, bool maximize, Tensor? grad_scale=None, Tensor? found_inf=None) -> (Tensor[] self_out, Tensor[] grads_out, Tensor[] exp_avgs_out, Tensor[] exp_avg_sqs_out, Tensor[] max_exp_avg_sqs_out)")
79
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> call(at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
80
+ static ::std::tuple<::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>,::std::vector<at::Tensor>> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList self, at::TensorList grads, at::TensorList exp_avgs, at::TensorList exp_avg_sqs, at::TensorList max_exp_avg_sqs, at::TensorList state_steps, const at::Tensor & lr, double beta1, double beta2, double weight_decay, double eps, bool amsgrad, bool maximize, const c10::optional<at::Tensor> & grad_scale, const c10::optional<at::Tensor> & found_inf);
81
+ };
82
+
83
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_has_same_storage_numel_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _has_same_storage_numel {
18
+ using schema = bool (const at::Tensor &, const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_has_same_storage_numel")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_has_same_storage_numel(Tensor self, Tensor other) -> bool")
24
+ static bool call(const at::Tensor & self, const at::Tensor & other);
25
+ static bool redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & other);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_prelu_kernel_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_prelu_kernel_backward(Tensor grad_output, Tensor self, Tensor weight) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> _prelu_kernel_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight) {
27
+ return at::_ops::_prelu_kernel_backward::call(grad_output, self, weight);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward_cpu_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _prelu_kernel_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight);
21
+
22
+ } // namespace cpu
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_prelu_kernel_backward_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> _prelu_kernel_backward(const at::Tensor & grad_output, const at::Tensor & self, const at::Tensor & weight);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_segment_reduce_backward_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _segment_reduce_backward {
18
+ using schema = at::Tensor (const at::Tensor &, const at::Tensor &, const at::Tensor &, c10::string_view, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, int64_t, const c10::optional<at::Scalar> &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_segment_reduce_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_segment_reduce_backward(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, Tensor? offsets=None, int axis=0, Scalar? initial=None) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & grad, const at::Tensor & output, const at::Tensor & data, c10::string_view reduce, const c10::optional<at::Tensor> & lengths, const c10::optional<at::Tensor> & offsets, int64_t axis, const c10::optional<at::Scalar> & initial);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & output, const at::Tensor & data, c10::string_view reduce, const c10::optional<at::Tensor> & lengths, const c10::optional<at::Tensor> & offsets, int64_t axis, const c10::optional<at::Scalar> & initial);
26
+ };
27
+
28
+ struct TORCH_API _segment_reduce_backward_out {
29
+ using schema = at::Tensor & (const at::Tensor &, const at::Tensor &, const at::Tensor &, c10::string_view, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, int64_t, const c10::optional<at::Scalar> &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_segment_reduce_backward")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_segment_reduce_backward.out(Tensor grad, Tensor output, Tensor data, str reduce, *, Tensor? lengths=None, Tensor? offsets=None, int axis=0, Scalar? initial=None, Tensor(a!) out) -> Tensor(a!)")
35
+ static at::Tensor & call(const at::Tensor & grad, const at::Tensor & output, const at::Tensor & data, c10::string_view reduce, const c10::optional<at::Tensor> & lengths, const c10::optional<at::Tensor> & offsets, int64_t axis, const c10::optional<at::Scalar> & initial, at::Tensor & out);
36
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & grad, const at::Tensor & output, const at::Tensor & data, c10::string_view reduce, const c10::optional<at::Tensor> & lengths, const c10::optional<at::Tensor> & offsets, int64_t axis, const c10::optional<at::Scalar> & initial, at::Tensor & out);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_compressed_tensor_unsafe.h ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_sparse_compressed_tensor_unsafe_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
26
+ inline at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options={}) {
27
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, c10::fromIntArrayRefSlow(size), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::TensorOptions options={}) {
32
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, c10::fromIntArrayRefSlow(size), c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
33
+ }
34
+ }
35
+
36
+ // aten::_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
37
+ inline at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
38
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
43
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, c10::fromIntArrayRefSlow(size), dtype, layout, device, pin_memory);
44
+ }
45
+ }
46
+
47
+ // aten::_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
48
+ inline at::Tensor _sparse_compressed_tensor_unsafe_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options={}) {
49
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, at::TensorOptions options={}) {
54
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, size, c10::optTypeMetaToScalarType(options.dtype_opt()), options.layout_opt(), options.device_opt(), options.pinned_memory_opt());
55
+ }
56
+ }
57
+
58
+ // aten::_sparse_compressed_tensor_unsafe(Tensor compressed_indices, Tensor plain_indices, Tensor values, SymInt[] size, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None, bool? pin_memory=None) -> Tensor
59
+ inline at::Tensor _sparse_compressed_tensor_unsafe_symint(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
60
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, size, dtype, layout, device, pin_memory);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor _sparse_compressed_tensor_unsafe(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, c10::SymIntArrayRef size, c10::optional<at::ScalarType> dtype, c10::optional<at::Layout> layout, c10::optional<at::Device> device, c10::optional<bool> pin_memory) {
65
+ return at::_ops::_sparse_compressed_tensor_unsafe::call(compressed_indices, plain_indices, values, size, dtype, layout, device, pin_memory);
66
+ }
67
+ }
68
+
69
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm.h ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_sparse_mm_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_sparse_mm(Tensor sparse, Tensor dense) -> Tensor
26
+ inline at::Tensor _sparse_mm(const at::Tensor & sparse, const at::Tensor & dense) {
27
+ return at::_ops::_sparse_mm::call(sparse, dense);
28
+ }
29
+
30
+ // aten::_sparse_mm.reduce(Tensor sparse, Tensor dense, str reduce) -> Tensor
31
+ inline at::Tensor _sparse_mm(const at::Tensor & sparse, const at::Tensor & dense, c10::string_view reduce) {
32
+ return at::_ops::_sparse_mm_reduce::call(sparse, dense, reduce);
33
+ }
34
+
35
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_mm_reduce_impl_backward_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _sparse_mm_reduce_impl_backward {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, const at::Tensor &, const at::Tensor &, c10::string_view, const at::Tensor &, ::std::array<bool,2>);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_sparse_mm_reduce_impl_backward")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_sparse_mm_reduce_impl_backward(Tensor self, Tensor grad_out, Tensor weight, str reduce, Tensor arg_out, bool[2] output_mask) -> (Tensor, Tensor)")
24
+ static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
25
+ static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Tensor & grad_out, const at::Tensor & weight, c10::string_view reduce, const at::Tensor & arg_out, ::std::array<bool,2> output_mask);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_sparse_softmax_native.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
20
+ TORCH_API at::Tensor _sparse_softmax(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & _sparse_softmax_out(const at::Tensor & self, int64_t dim, bool half_to_float, at::Tensor & out);
22
+ TORCH_API at::Tensor softmax_sparse_cpu(const at::Tensor & self, int64_t dim, bool half_to_float);
23
+ TORCH_API at::Tensor softmax_sparse_cuda(const at::Tensor & self, int64_t dim, bool half_to_float);
24
+ } // namespace native
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_standard_gamma_grad_native.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor & _standard_gamma_grad_out(const at::Tensor & self, const at::Tensor & output, at::Tensor & out);
20
+ TORCH_API at::Tensor _standard_gamma_grad_cpu(const at::Tensor & self, const at::Tensor & output);
21
+ TORCH_API at::Tensor _standard_gamma_grad_cuda(const at::Tensor & self, const at::Tensor & output);
22
+ } // namespace native
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_thnn_differentiable_lstm_cell_backward_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor,at::Tensor,at::Tensor> _thnn_differentiable_lstm_cell_backward(const c10::optional<at::Tensor> & grad_hy, const c10::optional<at::Tensor> & grad_cy, const at::Tensor & input_gates, const at::Tensor & hidden_gates, const c10::optional<at::Tensor> & input_bias, const c10::optional<at::Tensor> & hidden_bias, const at::Tensor & cx, const at::Tensor & cy);
21
+
22
+ } // namespace compositeimplicitautograd
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_upsample_nearest_exact1d_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/_upsample_nearest_exact1d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
26
+ inline at::Tensor & _upsample_nearest_exact1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
27
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales, grad_input);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ at::Tensor & _upsample_nearest_exact1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
32
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales, grad_input);
33
+ }
34
+ }
35
+
36
+ // aten::_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
37
+ inline at::Tensor & _upsample_nearest_exact1d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input) {
38
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales, grad_input);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
42
+ at::Tensor & _upsample_nearest_exact1d_backward_outf(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input) {
43
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales, grad_input);
44
+ }
45
+ }
46
+
47
+ // aten::_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
48
+ inline at::Tensor & _upsample_nearest_exact1d_backward_symint_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
49
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, output_size, input_size, scales, grad_input);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
53
+ at::Tensor & _upsample_nearest_exact1d_backward_out(at::Tensor & grad_input, const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
54
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, output_size, input_size, scales, grad_input);
55
+ }
56
+ }
57
+
58
+ // aten::_upsample_nearest_exact1d_backward.grad_input(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None, *, Tensor(a!) grad_input) -> Tensor(a!)
59
+ inline at::Tensor & _upsample_nearest_exact1d_backward_symint_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input) {
60
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, output_size, input_size, scales, grad_input);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
64
+ at::Tensor & _upsample_nearest_exact1d_backward_outf(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales, at::Tensor & grad_input) {
65
+ return at::_ops::_upsample_nearest_exact1d_backward_grad_input::call(grad_output, output_size, input_size, scales, grad_input);
66
+ }
67
+ }
68
+
69
+ // aten::_upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor
70
+ inline at::Tensor _upsample_nearest_exact1d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
71
+ return at::_ops::_upsample_nearest_exact1d_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
75
+ at::Tensor _upsample_nearest_exact1d_backward(const at::Tensor & grad_output, at::IntArrayRef output_size, at::IntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
76
+ return at::_ops::_upsample_nearest_exact1d_backward::call(grad_output, c10::fromIntArrayRefSlow(output_size), c10::fromIntArrayRefSlow(input_size), scales);
77
+ }
78
+ }
79
+
80
+ // aten::_upsample_nearest_exact1d_backward(Tensor grad_output, SymInt[1] output_size, SymInt[3] input_size, float? scales=None) -> Tensor
81
+ inline at::Tensor _upsample_nearest_exact1d_backward_symint(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
82
+ return at::_ops::_upsample_nearest_exact1d_backward::call(grad_output, output_size, input_size, scales);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ at::Tensor _upsample_nearest_exact1d_backward(const at::Tensor & grad_output, c10::SymIntArrayRef output_size, c10::SymIntArrayRef input_size, c10::optional<double> scales=c10::nullopt) {
87
+ return at::_ops::_upsample_nearest_exact1d_backward::call(grad_output, output_size, input_size, scales);
88
+ }
89
+ }
90
+
91
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/_validate_sparse_compressed_tensor_args_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API _validate_sparse_compressed_tensor_args {
18
+ using schema = void (const at::Tensor &, const at::Tensor &, const at::Tensor &, at::IntArrayRef, at::Layout);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::_validate_sparse_compressed_tensor_args")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "_validate_sparse_compressed_tensor_args(Tensor compressed_indices, Tensor plain_indices, Tensor values, int[] size, Layout layout) -> ()")
24
+ static void call(const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::Layout layout);
25
+ static void redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & compressed_indices, const at::Tensor & plain_indices, const at::Tensor & values, at::IntArrayRef size, at::Layout layout);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/addmm.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/addmm_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
26
+ inline at::Tensor & addmm_out(at::Tensor & out, const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1) {
27
+ return at::_ops::addmm_out::call(self, mat1, mat2, beta, alpha, out);
28
+ }
29
+ // aten::addmm.out(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1, Tensor(a!) out) -> Tensor(a!)
30
+ inline at::Tensor & addmm_outf(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta, const at::Scalar & alpha, at::Tensor & out) {
31
+ return at::_ops::addmm_out::call(self, mat1, mat2, beta, alpha, out);
32
+ }
33
+
34
+ // aten::addmm(Tensor self, Tensor mat1, Tensor mat2, *, Scalar beta=1, Scalar alpha=1) -> Tensor
35
+ inline at::Tensor addmm(const at::Tensor & self, const at::Tensor & mat1, const at::Tensor & mat2, const at::Scalar & beta=1, const at::Scalar & alpha=1) {
36
+ return at::_ops::addmm::call(self, mat1, mat2, beta, alpha);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/amin_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor amin(const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
21
+ TORCH_API at::Tensor & amin_out(at::Tensor & out, const at::Tensor & self, at::IntArrayRef dim={}, bool keepdim=false);
22
+ TORCH_API at::Tensor & amin_outf(const at::Tensor & self, at::IntArrayRef dim, bool keepdim, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/aminmax_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API aminmax {
18
+ using schema = ::std::tuple<at::Tensor,at::Tensor> (const at::Tensor &, c10::optional<int64_t>, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::aminmax")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "aminmax(Tensor self, *, int? dim=None, bool keepdim=False) -> (Tensor min, Tensor max)")
24
+ static ::std::tuple<at::Tensor,at::Tensor> call(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim);
25
+ static ::std::tuple<at::Tensor,at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim);
26
+ };
27
+
28
+ struct TORCH_API aminmax_out {
29
+ using schema = ::std::tuple<at::Tensor &,at::Tensor &> (const at::Tensor &, c10::optional<int64_t>, bool, at::Tensor &, at::Tensor &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::aminmax")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "aminmax.out(Tensor self, *, int? dim=None, bool keepdim=False, Tensor(a!) min, Tensor(b!) max) -> (Tensor(a!) min, Tensor(b!) max)")
35
+ static ::std::tuple<at::Tensor &,at::Tensor &> call(const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim, at::Tensor & min, at::Tensor & max);
36
+ static ::std::tuple<at::Tensor &,at::Tensor &> redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, c10::optional<int64_t> dim, bool keepdim, at::Tensor & min, at::Tensor & max);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/atanh_meta.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeMetaFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/TensorIterator.h>
13
+ #include <ATen/TensorMeta.h>
14
+ #include <tuple>
15
+ #include <vector>
16
+
17
+ namespace at {
18
+ namespace meta {
19
+
20
+ struct TORCH_API structured_atanh : public TensorIteratorBase {
21
+
22
+
23
+ void meta(const at::Tensor & self);
24
+ };
25
+
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/avg_pool2d_backward_compositeexplicitautogradnonfunctional_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeexplicitautogradnonfunctional {
19
+
20
+ TORCH_API at::Tensor avg_pool2d_backward(const at::Tensor & grad_output, const at::Tensor & self, at::IntArrayRef kernel_size, at::IntArrayRef stride, at::IntArrayRef padding, bool ceil_mode, bool count_include_pad, c10::optional<int64_t> divisor_override);
21
+
22
+ } // namespace compositeexplicitautogradnonfunctional
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cdist.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/cdist_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::cdist(Tensor x1, Tensor x2, float p=2, int? compute_mode=None) -> Tensor
26
+ inline at::Tensor cdist(const at::Tensor & x1, const at::Tensor & x2, double p=2, c10::optional<int64_t> compute_mode=c10::nullopt) {
27
+ return at::_ops::cdist::call(x1, x2, p, compute_mode);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/clamp_native.h ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/clamp_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_clamp_out : public at::meta::structured_clamp {
20
+ void impl(const at::Tensor & self, at::OptionalScalarRef min, at::OptionalScalarRef max, const at::Tensor & out);
21
+ };
22
+ TORCH_API at::Tensor clamp_quantized_cpu(const at::Tensor & self, const c10::optional<at::Scalar> & min=c10::nullopt, const c10::optional<at::Scalar> & max=c10::nullopt);
23
+ struct TORCH_API structured_clamp_Tensor_out : public at::meta::structured_clamp_Tensor {
24
+ void impl(const at::Tensor & self, at::OptionalTensorRef min, at::OptionalTensorRef max, const at::Tensor & out);
25
+ };
26
+ } // namespace native
27
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cummin.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/cummin_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::cummin(Tensor self, int dim) -> (Tensor values, Tensor indices)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> cummin(const at::Tensor & self, int64_t dim) {
27
+ return at::_ops::cummin::call(self, dim);
28
+ }
29
+
30
+ // aten::cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &> cummin_out(at::Tensor & values, at::Tensor & indices, const at::Tensor & self, int64_t dim) {
32
+ return at::_ops::cummin_out::call(self, dim, values, indices);
33
+ }
34
+ // aten::cummin.out(Tensor self, int dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &> cummin_outf(const at::Tensor & self, int64_t dim, at::Tensor & values, at::Tensor & indices) {
36
+ return at::_ops::cummin_out::call(self, dim, values, indices);
37
+ }
38
+
39
+ // aten::cummin.dimname(Tensor self, Dimname dim) -> (Tensor values, Tensor indices)
40
+ inline ::std::tuple<at::Tensor,at::Tensor> cummin(const at::Tensor & self, at::Dimname dim) {
41
+ return at::_ops::cummin_dimname::call(self, dim);
42
+ }
43
+
44
+ // aten::cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
45
+ inline ::std::tuple<at::Tensor &,at::Tensor &> cummin_out(at::Tensor & values, at::Tensor & indices, const at::Tensor & self, at::Dimname dim) {
46
+ return at::_ops::cummin_dimname_out::call(self, dim, values, indices);
47
+ }
48
+ // aten::cummin.dimname_out(Tensor self, Dimname dim, *, Tensor(a!) values, Tensor(b!) indices) -> (Tensor(a!) values, Tensor(b!) indices)
49
+ inline ::std::tuple<at::Tensor &,at::Tensor &> cummin_outf(const at::Tensor & self, at::Dimname dim, at::Tensor & values, at::Tensor & indices) {
50
+ return at::_ops::cummin_dimname_out::call(self, dim, values, indices);
51
+ }
52
+
53
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/cumsum_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor cumsum(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor & cumsum_out(at::Tensor & out, const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
22
+ TORCH_API at::Tensor & cumsum_outf(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype, at::Tensor & out);
23
+ TORCH_API at::Tensor & cumsum_(at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
24
+
25
+ } // namespace compositeimplicitautograd
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/digamma_meta_dispatch.h ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace meta {
19
+
20
+ TORCH_API at::Tensor digamma(const at::Tensor & self);
21
+ TORCH_API at::Tensor & digamma_out(at::Tensor & out, const at::Tensor & self);
22
+ TORCH_API at::Tensor & digamma_outf(const at::Tensor & self, at::Tensor & out);
23
+ TORCH_API at::Tensor & digamma_(at::Tensor & self);
24
+
25
+ } // namespace meta
26
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/fake_quantize_per_channel_affine.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/fake_quantize_per_channel_affine_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::fake_quantize_per_channel_affine(Tensor self, Tensor scale, Tensor zero_point, int axis, int quant_min, int quant_max) -> Tensor
26
+ inline at::Tensor fake_quantize_per_channel_affine(const at::Tensor & self, const at::Tensor & scale, const at::Tensor & zero_point, int64_t axis, int64_t quant_min, int64_t quant_max) {
27
+ return at::_ops::fake_quantize_per_channel_affine::call(self, scale, zero_point, axis, quant_min, quant_max);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gather_cpu_dispatch.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cpu {
19
+
20
+ TORCH_API at::Tensor gather(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad=false);
21
+ TORCH_API at::Tensor & gather_out(at::Tensor & out, const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad=false);
22
+ TORCH_API at::Tensor & gather_outf(const at::Tensor & self, int64_t dim, const at::Tensor & index, bool sparse_grad, at::Tensor & out);
23
+
24
+ } // namespace cpu
25
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/gelu_backward_native.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+ #include <ATen/ops/gelu_backward_meta.h>
16
+
17
+ namespace at {
18
+ namespace native {
19
+ struct TORCH_API structured_gelu_backward_out_cpu : public at::meta::structured_gelu_backward {
20
+ void impl(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate, const at::Tensor & grad_input);
21
+ };
22
+ struct TORCH_API structured_gelu_backward_out_cuda : public at::meta::structured_gelu_backward {
23
+ void impl(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate, const at::Tensor & grad_input);
24
+ };
25
+ TORCH_API at::Tensor gelu_backwards_nested(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate="none");
26
+ TORCH_API at::Tensor mkldnn_gelu_backward(const at::Tensor & grad_output, const at::Tensor & self, c10::string_view approximate="none");
27
+ } // namespace native
28
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/grid_sampler_3d_backward.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/grid_sampler_3d_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::grid_sampler_3d_backward(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask) -> (Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor> grid_sampler_3d_backward(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask) {
27
+ return at::_ops::grid_sampler_3d_backward::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask);
28
+ }
29
+
30
+ // aten::grid_sampler_3d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
31
+ inline ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_3d_backward_out(at::Tensor & out0, at::Tensor & out1, const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask) {
32
+ return at::_ops::grid_sampler_3d_backward_out::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, out0, out1);
33
+ }
34
+ // aten::grid_sampler_3d_backward.out(Tensor grad_output, Tensor input, Tensor grid, int interpolation_mode, int padding_mode, bool align_corners, bool[2] output_mask, *, Tensor(a!) out0, Tensor(b!) out1) -> (Tensor(a!), Tensor(b!))
35
+ inline ::std::tuple<at::Tensor &,at::Tensor &> grid_sampler_3d_backward_outf(const at::Tensor & grad_output, const at::Tensor & input, const at::Tensor & grid, int64_t interpolation_mode, int64_t padding_mode, bool align_corners, ::std::array<bool,2> output_mask, at::Tensor & out0, at::Tensor & out1) {
36
+ return at::_ops::grid_sampler_3d_backward_out::call(grad_output, input, grid, interpolation_mode, padding_mode, align_corners, output_mask, out0, out1);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/group_norm_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API group_norm {
18
+ using schema = at::Tensor (const at::Tensor &, int64_t, const c10::optional<at::Tensor> &, const c10::optional<at::Tensor> &, double, bool);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::group_norm")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "group_norm(Tensor input, int num_groups, Tensor? weight=None, Tensor? bias=None, float eps=1e-05, bool cudnn_enabled=True) -> Tensor")
24
+ static at::Tensor call(const at::Tensor & input, int64_t num_groups, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, double eps, bool cudnn_enabled);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & input, int64_t num_groups, const c10::optional<at::Tensor> & weight, const c10::optional<at::Tensor> & bias, double eps, bool cudnn_enabled);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hardtanh_ops.h ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API hardtanh_out {
18
+ using schema = at::Tensor & (const at::Tensor &, const at::Scalar &, const at::Scalar &, at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "out")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh.out(Tensor self, Scalar min_val=-1, Scalar max_val=1, *, Tensor(a!) out) -> Tensor(a!)")
24
+ static at::Tensor & call(const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & out);
25
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val, at::Tensor & out);
26
+ };
27
+
28
+ struct TORCH_API hardtanh {
29
+ using schema = at::Tensor (const at::Tensor &, const at::Scalar &, const at::Scalar &);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh(Tensor self, Scalar min_val=-1, Scalar max_val=1) -> Tensor")
35
+ static at::Tensor call(const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
36
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
37
+ };
38
+
39
+ struct TORCH_API hardtanh_ {
40
+ using schema = at::Tensor & (at::Tensor &, const at::Scalar &, const at::Scalar &);
41
+ using ptr_schema = schema*;
42
+ // See Note [static constexpr char* members for windows NVCC]
43
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::hardtanh_")
44
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
45
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "hardtanh_(Tensor(a!) self, Scalar min_val=-1, Scalar max_val=1) -> Tensor(a!)")
46
+ static at::Tensor & call(at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
47
+ static at::Tensor & redispatch(c10::DispatchKeySet dispatchKeySet, at::Tensor & self, const at::Scalar & min_val, const at::Scalar & max_val);
48
+ };
49
+
50
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/histogram_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> histogram(const at::Tensor & self, const at::Tensor & bins, const c10::optional<at::Tensor> & weight={}, bool density=false);
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> histogram_out(const at::Tensor & self, const at::Tensor & bins, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & hist, at::Tensor & bin_edges);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> histogram(const at::Tensor & self, int64_t bins=100, c10::optional<at::ArrayRef<double>> range=c10::nullopt, const c10::optional<at::Tensor> & weight={}, bool density=false);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> histogram_out(const at::Tensor & self, int64_t bins, c10::optional<at::ArrayRef<double>> range, const c10::optional<at::Tensor> & weight, bool density, at::Tensor & hist, at::Tensor & bin_edges);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/hspmm_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor hspmm_sparse_cpu(const at::Tensor & mat1, const at::Tensor & mat2);
20
+ TORCH_API at::Tensor & hspmm_out_sparse_cpu(const at::Tensor & mat1, const at::Tensor & mat2, at::Tensor & out);
21
+ TORCH_API at::Tensor hspmm_sparse_cuda(const at::Tensor & mat1, const at::Tensor & mat2);
22
+ TORCH_API at::Tensor & hspmm_out_sparse_cuda(const at::Tensor & mat1, const at::Tensor & mat2, at::Tensor & out);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/imag_native.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API at::Tensor imag(const at::Tensor & self);
20
+ } // namespace native
21
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/index.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/index_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::index.Tensor(Tensor self, Tensor?[] indices) -> Tensor
26
+ inline at::Tensor index(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices) {
27
+ return at::_ops::index_Tensor::call(self, indices);
28
+ }
29
+
30
+ // aten::index.Tensor_out(Tensor self, Tensor?[] indices, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & index_out(at::Tensor & out, const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices) {
32
+ return at::_ops::index_Tensor_out::call(self, indices, out);
33
+ }
34
+ // aten::index.Tensor_out(Tensor self, Tensor?[] indices, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & index_outf(const at::Tensor & self, const c10::List<c10::optional<at::Tensor>> & indices, at::Tensor & out) {
36
+ return at::_ops::index_Tensor_out::call(self, indices, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/indices_ops.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API indices {
18
+ using schema = at::Tensor (const at::Tensor &);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::indices")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "indices(Tensor(a) self) -> Tensor(a)")
24
+ static at::Tensor call(const at::Tensor & self);
25
+ static at::Tensor redispatch(c10::DispatchKeySet dispatchKeySet, const at::Tensor & self);
26
+ };
27
+
28
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/isclose.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/isclose_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::isclose(Tensor self, Tensor other, float rtol=1e-05, float atol=1e-08, bool equal_nan=False) -> Tensor
26
+ inline at::Tensor isclose(const at::Tensor & self, const at::Tensor & other, double rtol=1e-05, double atol=1e-08, bool equal_nan=false) {
27
+ return at::_ops::isclose::call(self, other, rtol, atol, equal_nan);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/l1_loss.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/l1_loss_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::l1_loss(Tensor self, Tensor target, int reduction=Mean) -> Tensor
26
+ inline at::Tensor l1_loss(const at::Tensor & self, const at::Tensor & target, int64_t reduction=at::Reduction::Mean) {
27
+ return at::_ops::l1_loss::call(self, target, reduction);
28
+ }
29
+
30
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/linalg_matrix_exp.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/linalg_matrix_exp_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::linalg_matrix_exp(Tensor self) -> Tensor
26
+ inline at::Tensor linalg_matrix_exp(const at::Tensor & self) {
27
+ return at::_ops::linalg_matrix_exp::call(self);
28
+ }
29
+
30
+ // aten::linalg_matrix_exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
31
+ inline at::Tensor & linalg_matrix_exp_out(at::Tensor & out, const at::Tensor & self) {
32
+ return at::_ops::linalg_matrix_exp_out::call(self, out);
33
+ }
34
+ // aten::linalg_matrix_exp.out(Tensor self, *, Tensor(a!) out) -> Tensor(a!)
35
+ inline at::Tensor & linalg_matrix_exp_outf(const at::Tensor & self, at::Tensor & out) {
36
+ return at::_ops::linalg_matrix_exp_out::call(self, out);
37
+ }
38
+
39
+ }
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_sigmoid_forward_native.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from NativeFunction.h
4
+
5
+ #include <c10/core/Scalar.h>
6
+ #include <c10/core/Storage.h>
7
+ #include <c10/core/TensorOptions.h>
8
+ #include <c10/util/Deprecated.h>
9
+ #include <c10/util/Optional.h>
10
+ #include <c10/core/QScheme.h>
11
+ #include <ATen/core/Reduction.h>
12
+ #include <ATen/core/Tensor.h>
13
+ #include <tuple>
14
+ #include <vector>
15
+
16
+
17
+ namespace at {
18
+ namespace native {
19
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> log_sigmoid_forward_cpu(const at::Tensor & self);
20
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> log_sigmoid_forward_out_cpu(const at::Tensor & self, at::Tensor & output, at::Tensor & buffer);
21
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor> log_sigmoid_forward_cuda(const at::Tensor & self);
22
+ TORCH_API ::std::tuple<at::Tensor &,at::Tensor &> log_sigmoid_forward_out_cuda(const at::Tensor & self, at::Tensor & output, at::Tensor & buffer);
23
+ } // namespace native
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/log_softmax_compositeimplicitautograd_dispatch.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace compositeimplicitautograd {
19
+
20
+ TORCH_API at::Tensor log_softmax(const at::Tensor & self, int64_t dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
21
+ TORCH_API at::Tensor log_softmax(const at::Tensor & self, at::Dimname dim, c10::optional<at::ScalarType> dtype=c10::nullopt);
22
+
23
+ } // namespace compositeimplicitautograd
24
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/meshgrid_ops.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Operator.h
4
+
5
+ #include <tuple>
6
+ #include <vector>
7
+
8
+ // Forward declarations of any types needed in the operator signatures.
9
+ // We can't directly include these classes because it will cause circular include dependencies.
10
+ // This file is included by TensorBody.h, which defines the Tensor class.
11
+ #include <ATen/core/ATen_fwd.h>
12
+
13
+ namespace at {
14
+ namespace _ops {
15
+
16
+
17
+ struct TORCH_API meshgrid {
18
+ using schema = ::std::vector<at::Tensor> (at::TensorList);
19
+ using ptr_schema = schema*;
20
+ // See Note [static constexpr char* members for windows NVCC]
21
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::meshgrid")
22
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "")
23
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "meshgrid(Tensor[] tensors) -> Tensor[]")
24
+ static ::std::vector<at::Tensor> call(at::TensorList tensors);
25
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors);
26
+ };
27
+
28
+ struct TORCH_API meshgrid_indexing {
29
+ using schema = ::std::vector<at::Tensor> (at::TensorList, c10::string_view);
30
+ using ptr_schema = schema*;
31
+ // See Note [static constexpr char* members for windows NVCC]
32
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(name, "aten::meshgrid")
33
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(overload_name, "indexing")
34
+ STATIC_CONSTEXPR_STR_INL_EXCEPT_WIN_CUDA(schema_str, "meshgrid.indexing(Tensor[] tensors, *, str indexing) -> Tensor[]")
35
+ static ::std::vector<at::Tensor> call(at::TensorList tensors, c10::string_view indexing);
36
+ static ::std::vector<at::Tensor> redispatch(c10::DispatchKeySet dispatchKeySet, at::TensorList tensors, c10::string_view indexing);
37
+ };
38
+
39
+ }} // namespace at::_ops
venv/lib/python3.10/site-packages/torch/include/ATen/ops/miopen_batch_norm_cuda_dispatch.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ // @generated by torchgen/gen.py from DispatchKeyFunction.h
3
+
4
+ // NB: The implementing C++ file is RegisterDispatchKey.cpp
5
+
6
+ // The only #includes we need are for custom classes that have defaults in the C++ API
7
+ #include <c10/core/MemoryFormat.h>
8
+ #include <c10/core/Scalar.h>
9
+ #include <ATen/core/Reduction.h>
10
+
11
+ // Forward declarations of any types needed in the operator signatures.
12
+ // We can't directly include these classes because it will cause circular include dependencies.
13
+ // This file is included by TensorBody.h, which defines the Tensor class.
14
+ #include <ATen/core/ATen_fwd.h>
15
+
16
+ namespace at {
17
+
18
+ namespace cuda {
19
+
20
+ TORCH_API ::std::tuple<at::Tensor,at::Tensor,at::Tensor> miopen_batch_norm(const at::Tensor & input, const at::Tensor & weight, const c10::optional<at::Tensor> & bias, const c10::optional<at::Tensor> & running_mean, const c10::optional<at::Tensor> & running_var, bool training, double exponential_average_factor, double epsilon);
21
+
22
+ } // namespace cuda
23
+ } // namespace at
venv/lib/python3.10/site-packages/torch/include/ATen/ops/mps_convolution_backward.h ADDED
@@ -0,0 +1,91 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ // @generated by torchgen/gen.py from Function.h
4
+
5
+ #include <ATen/Context.h>
6
+ #include <ATen/DeviceGuard.h>
7
+ #include <ATen/TensorUtils.h>
8
+ #include <ATen/TracerMode.h>
9
+ #include <ATen/core/Generator.h>
10
+ #include <ATen/core/Reduction.h>
11
+ #include <ATen/core/Tensor.h>
12
+ #include <c10/core/Scalar.h>
13
+ #include <c10/core/Storage.h>
14
+ #include <c10/core/TensorOptions.h>
15
+ #include <c10/util/Deprecated.h>
16
+ #include <c10/util/Optional.h>
17
+
18
+
19
+
20
+ #include <ATen/ops/mps_convolution_backward_ops.h>
21
+
22
+ namespace at {
23
+
24
+
25
+ // aten::mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
26
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> mps_convolution_backward(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask) {
27
+ return at::_ops::mps_convolution_backward::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask);
28
+ }
29
+ namespace symint {
30
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
31
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> mps_convolution_backward(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask) {
32
+ return at::_ops::mps_convolution_backward::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask);
33
+ }
34
+ }
35
+
36
+ // aten::mps_convolution_backward(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask) -> (Tensor, Tensor, Tensor)
37
+ inline ::std::tuple<at::Tensor,at::Tensor,at::Tensor> mps_convolution_backward_symint(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask) {
38
+ return at::_ops::mps_convolution_backward::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask);
39
+ }
40
+ namespace symint {
41
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
42
+ ::std::tuple<at::Tensor,at::Tensor,at::Tensor> mps_convolution_backward(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask) {
43
+ return at::_ops::mps_convolution_backward::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask);
44
+ }
45
+ }
46
+
47
+ // aten::mps_convolution_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
48
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask) {
49
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask, out0, out1, out2);
50
+ }
51
+ namespace symint {
52
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
53
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask) {
54
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask, out0, out1, out2);
55
+ }
56
+ }
57
+
58
+ // aten::mps_convolution_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
59
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
60
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask, out0, out1, out2);
61
+ }
62
+ namespace symint {
63
+ template <typename T, typename = std::enable_if_t<std::is_same<T, int64_t>::value>>
64
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, at::IntArrayRef padding, at::IntArrayRef stride, at::IntArrayRef dilation, int64_t groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
65
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, c10::fromIntArrayRefSlow(padding), c10::fromIntArrayRefSlow(stride), c10::fromIntArrayRefSlow(dilation), groups, output_mask, out0, out1, out2);
66
+ }
67
+ }
68
+
69
+ // aten::mps_convolution_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
70
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_symint_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask) {
71
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask, out0, out1, out2);
72
+ }
73
+ namespace symint {
74
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
75
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_out(at::Tensor & out0, at::Tensor & out1, at::Tensor & out2, const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask) {
76
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask, out0, out1, out2);
77
+ }
78
+ }
79
+
80
+ // aten::mps_convolution_backward.out(Tensor self, Tensor grad_output, Tensor weight, SymInt[] padding, SymInt[] stride, SymInt[] dilation, SymInt groups, bool[3] output_mask, *, Tensor(a!) out0, Tensor(b!) out1, Tensor(c!) out2) -> (Tensor(a!), Tensor(b!), Tensor(c!))
81
+ inline ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_symint_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
82
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask, out0, out1, out2);
83
+ }
84
+ namespace symint {
85
+ template <typename T, typename = std::enable_if_t<std::is_same<T, c10::SymInt>::value>>
86
+ ::std::tuple<at::Tensor &,at::Tensor &,at::Tensor &> mps_convolution_backward_outf(const at::Tensor & self, const at::Tensor & grad_output, const at::Tensor & weight, c10::SymIntArrayRef padding, c10::SymIntArrayRef stride, c10::SymIntArrayRef dilation, c10::SymInt groups, ::std::array<bool,3> output_mask, at::Tensor & out0, at::Tensor & out1, at::Tensor & out2) {
87
+ return at::_ops::mps_convolution_backward_out::call(self, grad_output, weight, padding, stride, dilation, groups, output_mask, out0, out1, out2);
88
+ }
89
+ }
90
+
91
+ }