applied-ai-018 commited on
Commit
b3fa61c
·
verified ·
1 Parent(s): ac53a09

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step20/zero/11.input_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step20/zero/11.input_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step20/zero/11.input_layernorm.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step20/zero/16.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step20/zero/16.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
  6. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/code.h +39 -0
  7. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/debug_info.h +57 -0
  8. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/file_format.h +196 -0
  9. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/flatbuffer_loader.h +136 -0
  10. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/frame.h +53 -0
  11. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/function.h +86 -0
  12. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/import_data.h +38 -0
  13. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/import_export_common.h +23 -0
  14. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/interpreter.h +30 -0
  15. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/method.h +45 -0
  16. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/observer.h +110 -0
  17. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/parse_bytecode.h +25 -0
  18. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/prim_ops_registery.h +32 -0
  19. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/profiler_edge.h +119 -0
  20. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/promoted_prim_ops.h +63 -0
  21. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/quantization.h +38 -0
  22. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/register_ops_common_utils.h +55 -0
  23. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/add_if_then_else.h +11 -0
  24. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/canonicalize.h +22 -0
  25. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/concat_opt.h +19 -0
  26. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_propagation.h +32 -0
  27. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/create_functional_graphs.h +14 -0
  28. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dead_code_elimination.h +42 -0
  29. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/decompose_ops.h +11 -0
  30. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_linear_bn.h +29 -0
  31. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h +15 -0
  32. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_conv_folding.h +24 -0
  33. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_transpose.h +13 -0
  34. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_linear.h +24 -0
  35. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_rewrite_helper.h +54 -0
  36. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lift_closures.h +12 -0
  37. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_grad_of.h +17 -0
  38. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/normalize_ops.h +18 -0
  39. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onnx.h +28 -0
  40. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_dict_idioms.h +38 -0
  41. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_non_tensor.h +14 -0
  42. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/refine_tuple_types.h +12 -0
  43. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_exceptions.h +23 -0
  44. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_inplace_ops.h +14 -0
  45. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/requires_grad_analysis.h +16 -0
  46. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/specialize_autogradzero.h +21 -0
  47. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/subgraph_rewrite.h +117 -0
  48. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_analysis.h +58 -0
  49. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_cache.h +57 -0
  50. venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/runtime/argument_spec.h +511 -0
ckpts/universal/global_step20/zero/11.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c10c697dcdc57d4b5c8c4e89861530f08ae3d32bf6f2353d0ba1503ad1c1f02
3
+ size 9372
ckpts/universal/global_step20/zero/11.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6182c43529a98a93a7c2686bd01bf0187a0e89331f98b3e876f957b9cf8bac7
3
+ size 9387
ckpts/universal/global_step20/zero/11.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:502c0eed83d1b276adba1696ecd37f073ec756e1cfbb2044add3acfc3e407f72
3
+ size 9293
ckpts/universal/global_step20/zero/16.mlp.dense_4h_to_h.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb0f36303a9db36196bf043fc9ed8b97c9d409fbcd614248b4b1d46a5d0429bf
3
+ size 33555612
ckpts/universal/global_step20/zero/16.mlp.dense_4h_to_h.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2a7867e0253a7aaff53be04d3caeabae2443153a978322a79e2aefa516476c7f
3
+ size 33555627
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/code.h ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <vector>
4
+
5
+ #include <ATen/core/ivalue.h>
6
+ #include <ATen/core/operator_name.h>
7
+ #include <torch/csrc/jit/runtime/instruction.h>
8
+
9
+ namespace torch {
10
+ namespace jit {
11
+ namespace mobile {
12
+
13
+ using Stack = std::vector<c10::IValue>;
14
+ using DebugHandle = int64_t;
15
+
16
+ class Function;
17
+
18
+ // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
19
+ struct Code {
20
+ std::vector<Instruction> instructions_;
21
+ std::vector<DebugHandle> debug_handles_;
22
+ std::vector<c10::OperatorName> op_names_;
23
+ std::vector<int> operator_input_sizes_;
24
+ std::vector<std::function<void(Stack&)>> operators_;
25
+ std::vector<c10::IValue> constants_;
26
+ std::vector<c10::TypePtr> types_;
27
+ // TODO After we actually export CALL instructions we can remove this.
28
+ // We may need a two-stage importing scheme, where we firstly construct all
29
+ // function objects, and then append referenced function pointers. This could
30
+ // be done in parseMethods().
31
+ std::vector<mobile::Function*> functions_;
32
+ size_t register_size_ = 0; // Aggregated output size.
33
+ // initialized means operators_ array is filled with operators
34
+ bool initialized = false;
35
+ };
36
+
37
+ } // namespace mobile
38
+ } // namespace jit
39
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/debug_info.h ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <c10/util/flat_hash_map.h>
3
+ #include <caffe2/serialize/inline_container.h>
4
+ #include <torch/csrc/jit/api/compilation_unit.h>
5
+ #include <torch/csrc/jit/ir/scope.h>
6
+ #include <torch/csrc/jit/serialization/source_range_serialization.h>
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+ /*
11
+ * MobileDebugTable:
12
+ * Deserializes debug_pkl and callstack_map records from PT model's zip archive
13
+ * and stores them in a map of debug handles to DebugInfoPair. Debug handles are
14
+ * unique per model and runtime, be in lite interpreter or delegate, an
15
+ * exception of BackendRuntimeException should raised using debug handles.
16
+ * getSourceDebugString method is responsible for translating debug
17
+ * handles to correspond debug information.
18
+ * This debug informatin includes stack trace of model level source code and
19
+ * module hierarchy where the exception occurred.
20
+ */
21
+ class MobileDebugTable {
22
+ public:
23
+ MobileDebugTable() = default;
24
+ MobileDebugTable(
25
+ std::unique_ptr<caffe2::serialize::PyTorchStreamReader>& reader,
26
+ const std::shared_ptr<CompilationUnit>& cu);
27
+
28
+ template <typename It>
29
+ MobileDebugTable(It begin, It end) : callstack_ptr_map_(begin, end) {}
30
+
31
+ std::string getSourceDebugString(
32
+ const int64_t debug_handle,
33
+ const std::string& top_module_type_name = "ModuleTypeUnknown") const;
34
+ std::string getSourceDebugString(
35
+ const std::vector<int64_t>& debug_handles,
36
+ const std::string& top_module_type_name = "ModuleTypeUnknown") const;
37
+ std::string getModuleHierarchyInfo(
38
+ const int64_t debug_handle,
39
+ const std::string& top_module_type_name = "ModuleTypeUnknown") const;
40
+ std::string getModuleHierarchyInfo(
41
+ const std::vector<int64_t>& debug_handles,
42
+ const std::string& top_module_type_name = "ModuleTypeUnknown") const;
43
+
44
+ const ska::flat_hash_map<int64_t, DebugInfoTuple>& getCallStackPtrMap()
45
+ const {
46
+ return callstack_ptr_map_;
47
+ }
48
+
49
+ private:
50
+ std::pair<std::string, std::string> getSourceDebugModuleHierarchyInfo(
51
+ const std::vector<int64_t>& debug_handles,
52
+ const std::string& top_module_type_name = "ModuleTypeUnknown") const;
53
+ ska::flat_hash_map<int64_t, DebugInfoTuple> callstack_ptr_map_;
54
+ };
55
+
56
+ } // namespace jit
57
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/file_format.h ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <array>
4
+ #include <cerrno>
5
+ #include <cstddef>
6
+ #include <cstring>
7
+ #include <fstream>
8
+ #include <istream>
9
+ #include <memory>
10
+
11
+ #include <c10/core/CPUAllocator.h>
12
+ #include <c10/core/impl/alloc_cpu.h>
13
+ #include <caffe2/serialize/read_adapter_interface.h>
14
+
15
+ #if defined(HAVE_MMAP)
16
+ #include <fcntl.h>
17
+ #include <sys/mman.h>
18
+ #include <sys/stat.h>
19
+ #include <sys/types.h>
20
+ #include <unistd.h>
21
+ #endif
22
+
23
+ /**
24
+ * @file
25
+ *
26
+ * Helpers for identifying file formats when reading serialized data.
27
+ *
28
+ * Note that these functions are declared inline because they will typically
29
+ * only be called from one or two locations per binary.
30
+ */
31
+
32
+ namespace torch {
33
+ namespace jit {
34
+
35
+ /**
36
+ * The format of a file or data stream.
37
+ */
38
+ enum class FileFormat {
39
+ UnknownFileFormat = 0,
40
+ FlatbufferFileFormat,
41
+ ZipFileFormat,
42
+ };
43
+
44
+ /// The size of the buffer to pass to #getFileFormat(), in bytes.
45
+ constexpr size_t kFileFormatHeaderSize = 8;
46
+ constexpr size_t kMaxAlignment = 16;
47
+
48
+ /**
49
+ * Returns the likely file format based on the magic header bytes in @p header,
50
+ * which should contain the first bytes of a file or data stream.
51
+ */
52
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
53
+ static inline FileFormat getFileFormat(const char* data) {
54
+ // The size of magic strings to look for in the buffer.
55
+ static constexpr size_t kMagicSize = 4;
56
+
57
+ // Bytes 4..7 of a Flatbuffer-encoded file produced by
58
+ // `flatbuffer_serializer.h`. (The first four bytes contain an offset to the
59
+ // actual Flatbuffer data.)
60
+ static constexpr std::array<char, kMagicSize> kFlatbufferMagicString = {
61
+ 'P', 'T', 'M', 'F'};
62
+ static constexpr size_t kFlatbufferMagicOffset = 4;
63
+
64
+ // The first four bytes of a ZIP file.
65
+ static constexpr std::array<char, kMagicSize> kZipMagicString = {
66
+ 'P', 'K', '\x03', '\x04'};
67
+
68
+ // Note that we check for Flatbuffer magic first. Since the first four bytes
69
+ // of flatbuffer data contain an offset to the root struct, it's theoretically
70
+ // possible to construct a file whose offset looks like the ZIP magic. On the
71
+ // other hand, bytes 4-7 of ZIP files are constrained to a small set of values
72
+ // that do not typically cross into the printable ASCII range, so a ZIP file
73
+ // should never have a header that looks like a Flatbuffer file.
74
+ if (std::memcmp(
75
+ data + kFlatbufferMagicOffset,
76
+ kFlatbufferMagicString.data(),
77
+ kMagicSize) == 0) {
78
+ // Magic header for a binary file containing a Flatbuffer-serialized mobile
79
+ // Module.
80
+ return FileFormat::FlatbufferFileFormat;
81
+ } else if (std::memcmp(data, kZipMagicString.data(), kMagicSize) == 0) {
82
+ // Magic header for a zip file, which we use to store pickled sub-files.
83
+ return FileFormat::ZipFileFormat;
84
+ }
85
+ return FileFormat::UnknownFileFormat;
86
+ }
87
+
88
+ /**
89
+ * Returns the likely file format based on the magic header bytes of @p data.
90
+ * If the stream position changes while inspecting the data, this function will
91
+ * restore the stream position to its original offset before returning.
92
+ */
93
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
94
+ static inline FileFormat getFileFormat(std::istream& data) {
95
+ FileFormat format = FileFormat::UnknownFileFormat;
96
+ std::streampos orig_pos = data.tellg();
97
+ // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
98
+ std::array<char, kFileFormatHeaderSize> header;
99
+ data.read(header.data(), header.size());
100
+ if (data.good()) {
101
+ format = getFileFormat(header.data());
102
+ }
103
+ data.seekg(orig_pos, data.beg);
104
+ return format;
105
+ }
106
+
107
+ /**
108
+ * Returns the likely file format based on the magic header bytes of the file
109
+ * named @p filename.
110
+ */
111
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
112
+ static inline FileFormat getFileFormat(const std::string& filename) {
113
+ std::ifstream data(filename, std::ifstream::binary);
114
+ return getFileFormat(data);
115
+ }
116
+
117
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
118
+ static void file_not_found_error() {
119
+ std::stringstream message;
120
+ message << "Error while opening file: ";
121
+ if (errno == ENOENT) {
122
+ message << "no such file or directory" << std::endl;
123
+ } else {
124
+ message << "error no is: " << errno << std::endl;
125
+ }
126
+ TORCH_CHECK(false, message.str());
127
+ }
128
+
129
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
130
+ static inline std::tuple<std::shared_ptr<char>, size_t> get_file_content(
131
+ const char* filename) {
132
+ #if defined(HAVE_MMAP)
133
+ int fd = open(filename, O_RDONLY);
134
+ if (fd < 0) {
135
+ // failed to open file, chances are it's no such file or directory.
136
+ file_not_found_error();
137
+ }
138
+ struct stat statbuf {};
139
+ fstat(fd, &statbuf);
140
+ size_t size = statbuf.st_size;
141
+ void* ptr = mmap(nullptr, statbuf.st_size, PROT_READ, MAP_PRIVATE, fd, 0);
142
+ close(fd);
143
+ auto deleter = [statbuf](char* ptr) { munmap(ptr, statbuf.st_size); };
144
+ std::shared_ptr<char> data(reinterpret_cast<char*>(ptr), deleter);
145
+ #else
146
+ FILE* f = fopen(filename, "rb");
147
+ if (f == nullptr) {
148
+ file_not_found_error();
149
+ }
150
+ fseek(f, 0, SEEK_END);
151
+ size_t size = ftell(f);
152
+ fseek(f, 0, SEEK_SET);
153
+ // make sure buffer size is multiple of alignment
154
+ size_t buffer_size = (size / kMaxAlignment + 1) * kMaxAlignment;
155
+ std::shared_ptr<char> data(
156
+ static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu);
157
+ fread(data.get(), size, 1, f);
158
+ fclose(f);
159
+ #endif
160
+ return std::make_tuple(data, size);
161
+ }
162
+
163
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
164
+ static inline std::tuple<std::shared_ptr<char>, size_t> get_stream_content(
165
+ std::istream& in) {
166
+ // get size of the stream and reset to orig
167
+ std::streampos orig_pos = in.tellg();
168
+ in.seekg(orig_pos, std::ios::end);
169
+ const long size = in.tellg();
170
+ in.seekg(orig_pos, in.beg);
171
+
172
+ // read stream
173
+ // NOLINT make sure buffer size is multiple of alignment
174
+ size_t buffer_size = (size / kMaxAlignment + 1) * kMaxAlignment;
175
+ std::shared_ptr<char> data(
176
+ static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu);
177
+ in.read(data.get(), size);
178
+
179
+ // reset stream to original position
180
+ in.seekg(orig_pos, in.beg);
181
+ return std::make_tuple(data, size);
182
+ }
183
+
184
+ // NOLINTNEXTLINE(facebook-hte-NamespaceScopedStaticDeclaration)
185
+ static inline std::tuple<std::shared_ptr<char>, size_t> get_rai_content(
186
+ caffe2::serialize::ReadAdapterInterface* rai) {
187
+ size_t buffer_size = (rai->size() / kMaxAlignment + 1) * kMaxAlignment;
188
+ std::shared_ptr<char> data(
189
+ static_cast<char*>(c10::alloc_cpu(buffer_size)), c10::free_cpu);
190
+ rai->read(
191
+ 0, data.get(), rai->size(), "Loading ReadAdapterInterface to bytes");
192
+ return std::make_tuple(data, buffer_size);
193
+ }
194
+
195
+ } // namespace jit
196
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/flatbuffer_loader.h ADDED
@@ -0,0 +1,136 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <istream>
4
+ #include <memory>
5
+ #include <string>
6
+ #include <unordered_map>
7
+ #include <vector>
8
+
9
+ #include <ATen/core/ivalue.h>
10
+ #include <c10/core/Device.h>
11
+ #include <c10/macros/Macros.h>
12
+ #include <c10/util/Optional.h>
13
+ #include <torch/csrc/jit/mobile/module.h>
14
+
15
+ /**
16
+ * Defines the public API for loading flatbuffer-serialized mobile modules.
17
+ * Note that this header must not include or depend on flatbuffer-defined
18
+ * types, to avoid leaking those details to PyTorch clients.
19
+ */
20
+
21
+ namespace torch {
22
+ namespace jit {
23
+
24
+ /// All non-copied data pointers provided to `parse_and_initialize_*` functions
25
+ /// must be aligned to this boundary. Since the Module will point directly into
26
+ /// the data, this alignment is necessary to ensure that certain types/structs
27
+ /// are properly aligned.
28
+ constexpr size_t kFlatbufferDataAlignmentBytes = 16;
29
+
30
+ /// Maps file names to file contents.
31
+ using ExtraFilesMap = std::unordered_map<std::string, std::string>;
32
+
33
+ // On high level, to produce a Module from a file on disk, we need to go
34
+ // through the follow steps:
35
+ // 1. Read: Read the file from disk -> memory
36
+ // 2. Deserialize: Parse the bytes to produce some in memory manipulable
37
+ // structure
38
+ // 3. Module initialization: Produce mobile::Module out of the structure
39
+ // produced in 2.
40
+ // Under this context, the structure described in 2. is the flatbuffer-defined
41
+ // type mobile::serialization::Module. However, this step/type is not visible in
42
+ // the public API.
43
+
44
+ // Parse a mobile::Module from raw bytes.
45
+ //
46
+ // This function does steps 2+3 described above.
47
+ //
48
+ // Does not take ownership of `data`; if you want it to take ownership, see the
49
+ // shared_ptr overload of this function.
50
+ //
51
+ // If should_copy_tensor_memory is true, then the returned module will NOT have
52
+ // refences to `data`, so `data` can be freed immediately.
53
+ //
54
+ // If should_copy_tensor_memory is false, then returned module will have tensors
55
+ // that points inside of `data`; the caller will need to make sure that `data`
56
+ // outlives the returned Module. Also, `data` must be aligned to
57
+ // kFlatbufferDataAlignmentBytes.
58
+ TORCH_API mobile::Module parse_and_initialize_mobile_module(
59
+ void* data,
60
+ size_t size, // of `data`, in bytes.
61
+ c10::optional<at::Device> device = c10::nullopt,
62
+ ExtraFilesMap* extra_files = nullptr,
63
+ bool should_copy_tensor_memory = false);
64
+
65
+ // Parse a mobile::Module from raw bytes.
66
+ //
67
+ // This function does steps 2+3 described above.
68
+ //
69
+ // The returned Module holds a reference to `data`, which must be aligned to
70
+ // kFlatbufferDataAlignmentBytes.
71
+ //
72
+ // If you do not want the Module to hold a reference to `data`, see the raw
73
+ // pointer overload of this function.
74
+ TORCH_API mobile::Module parse_and_initialize_mobile_module(
75
+ std::shared_ptr<char> data,
76
+ size_t size, // of `data`, in bytes.
77
+ c10::optional<at::Device> device = c10::nullopt,
78
+ ExtraFilesMap* extra_files = nullptr);
79
+
80
+ // Parse a mobile::Module from raw bytes, also returning JIT-related metadata.
81
+ //
82
+ // This is the same as parse_and_initialize_mobile_module() except that it also
83
+ // extracts JIT source files and constants. Can be used to construct a
84
+ // jit::Module.
85
+ TORCH_API mobile::Module parse_and_initialize_mobile_module_for_jit(
86
+ void* data,
87
+ size_t size, // of `data`, in bytes.
88
+ ExtraFilesMap& jit_sources,
89
+ std::vector<IValue>& jit_constants,
90
+ c10::optional<at::Device> device = c10::nullopt,
91
+ ExtraFilesMap* extra_files = nullptr);
92
+
93
+ // Load a mobile::Module from a filepath.
94
+ //
95
+ // This function does steps 1+2+3 described above.
96
+ //
97
+ // We need to have this as a convienience because Python API will need to wrap
98
+ // this. C++ clients should use one of the versions of
99
+ // parse_and_initialize_mobile_module() so they can manage the raw data more
100
+ // directly.
101
+ TORCH_API mobile::Module load_mobile_module_from_file(
102
+ const std::string& filename,
103
+ c10::optional<at::Device> device = c10::nullopt,
104
+ ExtraFilesMap* extra_files = nullptr);
105
+
106
+ TORCH_API uint64_t get_bytecode_version(std::istream& in);
107
+ TORCH_API uint64_t get_bytecode_version(const std::string& filename);
108
+ TORCH_API uint64_t get_bytecode_version_from_bytes(char* flatbuffer_content);
109
+
110
+ TORCH_API mobile::ModuleInfo get_module_info_from_flatbuffer(
111
+ char* flatbuffer_content);
112
+
113
+ // The methods below are less efficient because it need to read the stream in
114
+ // its entirity to a buffer
115
+ TORCH_API mobile::Module load_mobile_module_from_stream_with_copy(
116
+ std::istream& in,
117
+ c10::optional<at::Device> device = c10::nullopt,
118
+ ExtraFilesMap* extra_files = nullptr);
119
+
120
+ TORCH_API mobile::Module parse_flatbuffer_no_object(
121
+ std::shared_ptr<char> data,
122
+ size_t size,
123
+ c10::optional<at::Device> device);
124
+
125
+ TORCH_API mobile::Module parse_and_initialize_mobile_module(
126
+ void* data,
127
+ size_t,
128
+ c10::optional<at::Device>,
129
+ ExtraFilesMap* extra_files,
130
+ bool should_copy_tensor_memory);
131
+
132
+ // no op, TODO(qihan) delete
133
+ TORCH_API bool register_flatbuffer_loader();
134
+
135
+ } // namespace jit
136
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/frame.h ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <cstddef>
4
+
5
+ #include <c10/util/Optional.h>
6
+ #include <torch/csrc/jit/mobile/code.h>
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+ namespace mobile {
11
+
12
+ class Frame {
13
+ public:
14
+ explicit Frame(const Code& code) : code_(code) {}
15
+ const Code& getCode() const {
16
+ return code_;
17
+ }
18
+
19
+ void step() {
20
+ pc_++;
21
+ }
22
+
23
+ void jump(size_t n) {
24
+ pc_ += n;
25
+ }
26
+
27
+ size_t getPC() const {
28
+ return pc_;
29
+ }
30
+
31
+ const Instruction& getInstruction() const {
32
+ return code_.instructions_.at(pc_);
33
+ }
34
+
35
+ c10::optional<int64_t> getDebugHandle() const {
36
+ return getDebugHandle(pc_);
37
+ }
38
+
39
+ c10::optional<int64_t> getDebugHandle(size_t pc) const {
40
+ if (pc >= code_.debug_handles_.size()) {
41
+ return {};
42
+ }
43
+ return code_.debug_handles_[pc];
44
+ }
45
+
46
+ private:
47
+ const Code& code_;
48
+ size_t pc_{0};
49
+ };
50
+
51
+ } // namespace mobile
52
+ } // namespace jit
53
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/function.h ADDED
@@ -0,0 +1,86 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <vector>
4
+
5
+ #include <ATen/core/function.h>
6
+ #include <ATen/core/function_schema.h>
7
+ #include <ATen/core/ivalue.h>
8
+ #include <torch/csrc/jit/mobile/code.h>
9
+
10
+ namespace torch {
11
+ namespace jit {
12
+ enum OpCode : uint8_t;
13
+ struct Instruction;
14
+ struct OperatorString;
15
+
16
+ namespace mobile {
17
+
18
+ class TORCH_API Function : public torch::jit::Function {
19
+ public:
20
+ explicit Function(c10::QualifiedName name);
21
+ Function(
22
+ c10::QualifiedName name,
23
+ Code code,
24
+ at::optional<c10::FunctionSchema> schema);
25
+ void run(Stack& stack) override;
26
+ at::IValue operator()(Stack& stack);
27
+ void ensure_defined() override {}
28
+ size_t num_inputs() const override;
29
+ const c10::QualifiedName& qualname() const override;
30
+ bool call(Stack&, c10::function_ref<void(const mobile::Code&)>) override;
31
+
32
+ // NOTE: the APIs below is dangerous: if you call append_instruction with
33
+ // dbg_handle and then call it without; then the dbg_handle will become
34
+ // misaligned. Therefore only use ONE variant at time.
35
+ void append_instruction(OpCode op, int X, int N, int64_t dbg_handle);
36
+ void append_instruction(OpCode op, int X, int N);
37
+ void append_operator(
38
+ const std::string& name,
39
+ const std::string& overload_name,
40
+ const c10::optional<int>& num_specified_args);
41
+ void append_constant(const c10::IValue& constant);
42
+ void append_type(const c10::TypePtr& type);
43
+ void append_function(mobile::Function& func);
44
+
45
+ void set_register_size(size_t size);
46
+
47
+ int64_t get_debug_handle(size_t pc) const;
48
+ const Code& get_code() const;
49
+ Code& get_code();
50
+
51
+ torch::jit::Function& setSchema(c10::FunctionSchema schema) override;
52
+ bool hasSchema() const;
53
+ const c10::FunctionSchema& getSchema() const override;
54
+
55
+ // Returns the debug handle corresponding to where the execution
56
+ // is halted due to exception.
57
+ // If no corresponding debug handle is found then -1 is returned.
58
+ const std::vector<int64_t>& getExceptionDebugHandles() const;
59
+ static Function& registerFunc(
60
+ const std::string& qualified_name,
61
+ const std::vector<Instruction>& instructions,
62
+ const std::vector<c10::IValue>& constants,
63
+ const std::vector<c10::TypePtr>& types,
64
+ const size_t register_size);
65
+
66
+ // if not initialize, initialize by loading operators.
67
+ // return true of all op loaded, return false if some op is not found
68
+ // in the current runtime. Then, the ops that did not found will be filled
69
+ // in unsupported_op_names
70
+ bool initialize_operators(bool should_check_operators);
71
+
72
+ private:
73
+ c10::QualifiedName name_;
74
+ Code code_;
75
+ at::optional<c10::FunctionSchema> schema_; // (byte-code version 4+)
76
+ };
77
+
78
+ c10::optional<std::function<void(Stack&)>> makeOperatorFunction(
79
+ c10::OperatorName opname,
80
+ c10::optional<int> num_specified_args);
81
+
82
+ TORCH_API std::string operator_str(const c10::OperatorName& opname);
83
+
84
+ } // namespace mobile
85
+ } // namespace jit
86
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/import_data.h ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/TensorBase.h>
4
+ #include <c10/core/Device.h>
5
+ #include <c10/util/Optional.h>
6
+ #include <torch/csrc/jit/mobile/module.h>
7
+
8
+ #include <istream>
9
+ #include <map>
10
+ #include <string>
11
+
12
+ namespace torch {
13
+ namespace jit {
14
+
15
+ /**
16
+ * Loads named parameters from the serialized data in @p in.
17
+ *
18
+ * Calls #TORCH_CHECK() if the data format is not recognized.
19
+ */
20
+ TORCH_API std::map<std::string, at::Tensor> _load_parameters(
21
+ std::istream& in,
22
+ c10::optional<at::Device> device = c10::nullopt);
23
+
24
+ /**
25
+ * Loads named parameters from the serialized data in @p filename.
26
+ *
27
+ * Calls #TORCH_CHECK() if the data format is not recognized.
28
+ */
29
+ TORCH_API std::map<std::string, at::Tensor> _load_parameters(
30
+ const std::string& filename,
31
+ c10::optional<at::Device> device = c10::nullopt);
32
+
33
+ // NOTE: Please prefer using _load_parameters over using the function below.
34
+ TORCH_API std::map<std::string, at::Tensor> mobile_module_to_parameter_map(
35
+ const mobile::Module& module);
36
+
37
+ } // namespace jit
38
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/import_export_common.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ /**
4
+ * @file
5
+ * Declarations shared between import_data.cpp and export_data.cpp
6
+ */
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+ namespace mobile {
11
+
12
+ namespace internal {
13
+ /**
14
+ * The name of the mobile::Module attribute which contains saved parameters, as
15
+ * a Dict of names to Tensors. Only used for Flatbuffer serialization.
16
+ */
17
+ // NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
18
+ constexpr char kSavedParametersAttributeName[] = "data";
19
+ } // namespace internal
20
+
21
+ } // namespace mobile
22
+ } // namespace jit
23
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/interpreter.h ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <vector>
4
+
5
+ #include <torch/csrc/jit/mobile/code.h>
6
+ #include <torch/csrc/jit/mobile/frame.h>
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+ namespace mobile {
11
+
12
+ struct InterpreterState {
13
+ TORCH_API explicit InterpreterState(const Code& code);
14
+ TORCH_API bool run(Stack& stack);
15
+
16
+ private:
17
+ void enterFrame(const Code&);
18
+ void leaveFrame();
19
+ void saveExceptionDebugHandles();
20
+ void callFunction(torch::jit::Function& f, Stack& stack);
21
+
22
+ c10::IValue& reg(size_t reg);
23
+ std::vector<c10::IValue> registers_;
24
+ std::vector<Frame> frames_;
25
+ };
26
+
27
+ const std::vector<DebugHandle>& getInterpretersExceptionDebugHandles();
28
+ } // namespace mobile
29
+ } // namespace jit
30
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/method.h ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/ivalue.h>
4
+ #include <torch/csrc/jit/mobile/function.h>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+ namespace mobile {
9
+
10
+ class Module;
11
+
12
+ struct TORCH_API Method {
13
+ Method(const Module* owner, Function* function);
14
+
15
+ void run(Stack& stack) const;
16
+ void run(Stack&& stack) const {
17
+ run(stack);
18
+ }
19
+
20
+ c10::IValue operator()(std::vector<c10::IValue> stack) const;
21
+
22
+ const std::string& name() const {
23
+ return function_->name();
24
+ }
25
+
26
+ int64_t get_debug_handle(size_t pc) const {
27
+ return function_->get_debug_handle(pc);
28
+ }
29
+
30
+ Function& function() const {
31
+ return *function_;
32
+ }
33
+
34
+ private:
35
+ // Methods are uniquely owned by a single module.
36
+ // This raw pointer allows referencing the module
37
+ const Module* owner_;
38
+
39
+ // Underlying unbound function
40
+ Function* function_;
41
+ };
42
+
43
+ } // namespace mobile
44
+ } // namespace jit
45
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/observer.h ADDED
@@ -0,0 +1,110 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/util/ThreadLocalDebugInfo.h>
4
+ #include <string>
5
+ #include <unordered_map>
6
+ #include <vector>
7
+
8
+ namespace torch {
9
+
10
+ class MobileDebugInfo : public c10::DebugInfoBase {
11
+ public:
12
+ const std::string& getModelName() {
13
+ return model_name_;
14
+ }
15
+
16
+ void setModelName(const std::string& model_name) {
17
+ model_name_ = model_name;
18
+ }
19
+
20
+ const std::string& getMethodName() {
21
+ return method_name_;
22
+ }
23
+
24
+ void setMethodName(const std::string& method_name) {
25
+ method_name_ = method_name;
26
+ }
27
+
28
+ size_t getOpIdx() {
29
+ return op_idx_;
30
+ }
31
+
32
+ void setOpIdx(size_t op_idx) {
33
+ op_idx_ = op_idx;
34
+ }
35
+
36
+ private:
37
+ std::string model_name_;
38
+ std::string method_name_;
39
+ // TODO: Kimish
40
+ // If we launch a thread such as for at::launch, interepter continuation
41
+ // and if the caching allocator is enabled in the base thread
42
+ // then, in order to propagate this information, that is caching allocator
43
+ // is enabled, across thread boundaries we can use the mechanism provided
44
+ // by ThreadLocalDebugInfo
45
+ // Once the thread local MobileDebugInfo is accessible in the launched
46
+ // thread, it can be accessed in that thread and that thread can set
47
+ // its own thread local CachingAllocatorInfo.
48
+ // However, we cannot expect every launched thread to extract and set
49
+ // its own thread local copy of CachingAllocatorInfo.
50
+ // But this can be done in lite interpreter, where in the run method
51
+ // it can do info =
52
+ // c10::ThreadLocalDebugInfo::get(c10::DebugInfoKind::MOBILE_RUNTIME_INFO))
53
+ // .get_caching_allocator_info();
54
+ // GetThreadLocalCachingAllocatorInfo() = info;
55
+ // Other option is to have MobileDebugInfo itself be the place where thread
56
+ // local copy of CachingAllocatorInfo is stored. Then
57
+ // DefaultMobileCPUAllocator inspects this to decide if to use
58
+ // CachingAllocator. However, current lite interpreter does not support FORK,
59
+ // thus from the run method of lite interpreter we are not really gonna launch
60
+ // another instance of lite interpreter in a different thread. So for now not
61
+ // getting bothered about passing CachingAllocatorInfo across thread
62
+ // boundaries. c10::CachingAllocatorInfo caching_allocator_info;
63
+ size_t op_idx_ = 0;
64
+ };
65
+
66
+ class MobileModuleObserver {
67
+ public:
68
+ virtual ~MobileModuleObserver() = default;
69
+
70
+ virtual void onEnterRunMethod(const int32_t) {}
71
+ virtual void onExitRunMethod(
72
+ const std::unordered_map<std::string, std::string>&,
73
+ const std::string&,
74
+ const int32_t) {}
75
+ virtual void onFailRunMethod(
76
+ const std::unordered_map<std::string, std::string>&,
77
+ const std::string&,
78
+ const int32_t,
79
+ const char*) {}
80
+ virtual void onEnterLoadModel(const int32_t) {}
81
+ virtual void onExitLoadModel(
82
+ const int32_t,
83
+ const std::unordered_map<std::string, std::string>&) {
84
+ } // key: filename, value: file content
85
+ virtual void onFailLoadModel(const int32_t, const char*) {}
86
+ virtual void onFailLoadModel(
87
+ const int32_t,
88
+ const char*,
89
+ const std::unordered_map<std::string, std::string>&) {}
90
+ virtual std::vector<std::string> getDefaultExtraFiles() = 0;
91
+ virtual std::unordered_map<std::string, std::string> processMetadataFromExtra(
92
+ const std::unordered_map<std::string, std::string>&) = 0;
93
+ };
94
+
95
+ class MobileObserverConfig {
96
+ public:
97
+ void setModuleObserver(std::unique_ptr<MobileModuleObserver> reporter) {
98
+ module_observer_ = std::move(reporter);
99
+ }
100
+ MobileModuleObserver* getModuleObserver() {
101
+ return module_observer_.get();
102
+ }
103
+
104
+ private:
105
+ std::unique_ptr<MobileModuleObserver> module_observer_;
106
+ };
107
+
108
+ MobileObserverConfig& observerConfig();
109
+
110
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/parse_bytecode.h ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <torch/csrc/jit/mobile/function.h>
3
+
4
+ namespace torch {
5
+ namespace jit {
6
+ namespace mobile {
7
+ using c10::IValue;
8
+ TORCH_API void parseInstructions(
9
+ const std::string& function_name,
10
+ c10::ivalue::TupleElements&& ins_list,
11
+ c10::ivalue::TupleElements& debug_handles_m_tuple,
12
+ mobile::Function* function);
13
+ TORCH_API void parseConstants(
14
+ const c10::ivalue::TupleElements& consts_list,
15
+ mobile::Function* function);
16
+ TORCH_API void parseTypes(
17
+ const c10::ivalue::TupleElements& types_list,
18
+ mobile::Function* function);
19
+ TORCH_API void parseRegisterSize(size_t rsize, mobile::Function* function);
20
+ TORCH_API void applyUpgrader(
21
+ mobile::Function* function,
22
+ uint64_t operator_version);
23
+ } // namespace mobile
24
+ } // namespace jit
25
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/prim_ops_registery.h ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/ivalue.h>
4
+ #include <functional>
5
+ #include <vector>
6
+
7
+ namespace torch {
8
+ namespace jit {
9
+ namespace mobile {
10
+
11
+ using Stack = std::vector<c10::IValue>;
12
+
13
+ void registerPrimOpsFunction(
14
+ const std::string& name,
15
+ const std::function<void(Stack&)>& fn);
16
+
17
+ bool hasPrimOpsFn(const std::string& name);
18
+
19
+ std::function<void(Stack&)>& getPrimOpsFn(const std::string& name);
20
+
21
+ class prim_op_fn_register {
22
+ public:
23
+ prim_op_fn_register(
24
+ const std::string& name,
25
+ const std::function<void(Stack&)>& fn) {
26
+ registerPrimOpsFunction(name, fn);
27
+ }
28
+ };
29
+
30
+ } // namespace mobile
31
+ } // namespace jit
32
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/profiler_edge.h ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <torch/csrc/autograd/profiler_kineto.h>
3
+ #include <torch/csrc/jit/mobile/module.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+ namespace mobile {
8
+
9
+ // If we dont have kineto available then edge profiler does not
10
+ // work since it relies on Kineto
11
+ #ifdef USE_KINETO
12
+ class TORCH_API KinetoEdgeCPUProfiler {
13
+ public:
14
+ // This profiler only profiles KINETO events
15
+ // No GPU_FALLBACK or NVTX
16
+ /*
17
+ * @param m is the instance of mobile Module which is being profiled.
18
+ * Note that this implies that KinetoEdgeCPUProfiler can be used
19
+ * to profile specific Module (see usage below), unliked ProfilerKineto
20
+ * which can profile pytorch runtime in arbitrary scope.
21
+ * @param fname is the name of the file to which chrome trace is written.
22
+ * @param report_input_shapes: whether to record shapes of op's inputs.
23
+ * @param with_stack: whether to record model's python stacktrace for the op.
24
+ * @param with_flops: whether to report flops corresponding to the op.
25
+ * @param with_modules: whether to report original python module
26
+ * hierarchy to which the op belongs.
27
+ * @param events
28
+ * @param adjust_vulkan_timestamps: whether to adjust vulkan timestamps from
29
+ * query pool to align with cpu event times
30
+ *
31
+ * Usage pattern for this profiler must be as follows:
32
+ *
33
+ * {
34
+ * KinetoEdgeCPUProfiler(m, filename, args);
35
+ * m.forward(...);
36
+ * }
37
+ *
38
+ * The reason being that KinetoEdgeCPUProfiler has a dependency on Module
39
+ * and thus it must not outlive it.
40
+ *
41
+ * Thus, when KinetoEdgeCPUProfiler is used as RAII to do profiling
42
+ * within certain scope. In that scope, the captured reference to
43
+ * Module will outlive KinetoEdgeCPUProfiler. This is gauranteed because
44
+ * KinetoEdgeCPUProfiler must be constructed later than Module, on stack.
45
+ *
46
+ * An example of the anti-pattern and wrong usage is:
47
+ *
48
+ * std::shared_ptr<KinetoMobileCPUProfiler> profiler(m, filename, args);
49
+ * m.forward(...);
50
+ *
51
+ * Since KinetoEdgeCPUProfiler object would then be constructed on heap
52
+ * with its lifetime managed manually or via smart pointers.
53
+ */
54
+ KinetoEdgeCPUProfiler(
55
+ const torch::jit::mobile::Module& m,
56
+ const std::string& fname,
57
+ const bool report_input_shapes = false,
58
+ const bool profile_memory = false,
59
+ const bool with_stack = false,
60
+ const bool with_flops = false,
61
+ const bool with_modules = false,
62
+ std::vector<std::string> events = {},
63
+ const bool adjust_vulkan_timestamps = false);
64
+
65
+ const std::unique_ptr<torch::autograd::profiler::ProfilerResult>&
66
+ disableProfiler();
67
+ const std::unique_ptr<torch::autograd::profiler::ProfilerResult>&
68
+ getProfilerResult();
69
+ void recordBackendEvent(
70
+ const int64_t start_time_us,
71
+ const int64_t end_time_us,
72
+ const int64_t debug_handle,
73
+ const std::string& event_name,
74
+ const std::string& backend_name);
75
+ void recordBackendMemoryEvent(
76
+ void* ptr,
77
+ int64_t alloc_size,
78
+ size_t total_allocated,
79
+ size_t total_reserved,
80
+ c10::Device device);
81
+
82
+ ~KinetoEdgeCPUProfiler();
83
+
84
+ private:
85
+ /*
86
+ * We store a reference to Module to make such dependency explicit, since
87
+ * a Module reference is already stored in a functor.
88
+ */
89
+ const mobile::Module& m_;
90
+ std::string trace_file_name_;
91
+ std::unique_ptr<torch::autograd::profiler::ProfilerResult> profiler_result_;
92
+ };
93
+
94
+ TORCH_API KinetoEdgeCPUProfiler* getCurrentEdgeProfiler();
95
+
96
+ #define RECORD_BACKEND_EVENT_TO_EDGE_PROFILER( \
97
+ start_time_us, end_time_us, debug_handle, event_name, backend_name) \
98
+ if (mobile::getCurrentEdgeProfiler()) { \
99
+ mobile::getCurrentEdgeProfiler()->recordBackendEvent( \
100
+ start_time_us, end_time_us, debug_handle, event_name, backend_name); \
101
+ }
102
+
103
+ #define RECORD_BACKEND_MEMORY_EVENT_TO_EDGE_PROFILER( \
104
+ ptr, alloc_size, total_allocated, total_reserved, device) \
105
+ if (mobile::getCurrentEdgeProfiler()) { \
106
+ mobile::getCurrentEdgeProfiler()->recordBackendMemoryEvent( \
107
+ ptr, alloc_size, total_allocated, total_reserved, device); \
108
+ }
109
+ #else
110
+
111
+ #define RECORD_BACKEND_EVENT_TO_EDGE_PROFILER( \
112
+ start_time_us, end_time_us, debug_handle, event_name, backend_name)
113
+
114
+ #define RECORD_BACKEND_MEMORY_EVENT_TO_EDGE_PROFILER( \
115
+ ptr, alloc_size, total_allocated, total_reserved, device)
116
+ #endif
117
+ } // namespace mobile
118
+ } // namespace jit
119
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/promoted_prim_ops.h ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+ #include <torch/csrc/jit/mobile/prim_ops_registery.h>
3
+ #include <torch/csrc/jit/mobile/register_ops_common_utils.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ void tupleIndex(Stack& stack);
9
+
10
+ void raiseException(Stack& stack);
11
+
12
+ void is(Stack& stack);
13
+
14
+ void unInitialized(Stack& stack);
15
+
16
+ void isNot(Stack& stack);
17
+
18
+ void aten_format(Stack& stack);
19
+
20
+ void size(Stack& stack);
21
+
22
+ void sym_size(Stack& stack);
23
+
24
+ void sym_size_int(Stack& stack);
25
+
26
+ void sym_stride_int(Stack& stack);
27
+
28
+ void sym_numel(Stack& stack);
29
+
30
+ void sym_storage_offset(Stack& stack);
31
+
32
+ void sym_stride(Stack& stack);
33
+
34
+ void device(Stack& stack);
35
+
36
+ void device_with_index(Stack& stack);
37
+
38
+ void dtype(Stack& stack);
39
+
40
+ void layout(Stack& stack);
41
+
42
+ void toPrimDType(Stack& stack);
43
+
44
+ void dim(Stack& stack);
45
+
46
+ void _not(Stack& stack);
47
+
48
+ void boolTensor(Stack& stack);
49
+
50
+ void toList(Stack& stack);
51
+
52
+ void numToTensorScalar(Stack& stack);
53
+
54
+ void isCuda(Stack& stack);
55
+
56
+ void numToTensorBool(Stack& stack);
57
+
58
+ void dictIndex(Stack& stack);
59
+
60
+ void raiseExceptionWithMessage(Stack& stack);
61
+
62
+ } // namespace jit
63
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/quantization.h ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <c10/macros/Export.h>
4
+ #include <string>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+ namespace mobile {
9
+ class Module;
10
+ namespace quantization {
11
+ /*
12
+ * Device side PTQ API.
13
+ * Once the model has been prepared for quantization on server side, such model
14
+ * is sent to device. On device side the model is further trained. At the end of
15
+ * the training, before the model is readied for inference, we need to quantize
16
+ * the model.
17
+ * Usage of this API is as follows.
18
+ * PTQQuanizationHelper ptq_helper;
19
+ * ptq_helper.quantize_dynamic(m, "forward");
20
+ * Args:
21
+ * m: Captured by reference, an instance of mobile::Module. This module will be
22
+ * mutated in place to replace its <method_name> method with quantized
23
+ * equivalent. method:name: Name of the method to be quantized. AOT preparation
24
+ * for quantization must also have been done for this method. Returns: In place
25
+ * mutated `m` whose size should be smaller due to weight quantization and whose
26
+ * <method_name> method should use quantized ops
27
+ */
28
+ class TORCH_API PTQQuanizationHelper {
29
+ public:
30
+ PTQQuanizationHelper() = default;
31
+ void quantize_dynamic(
32
+ torch::jit::mobile::Module& m,
33
+ const std::string& method_name);
34
+ };
35
+ } // namespace quantization
36
+ } // namespace mobile
37
+ } // namespace jit
38
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/mobile/register_ops_common_utils.h ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/Context.h>
4
+ #include <ATen/NativeFunctions.h>
5
+ #include <ATen/core/ivalue.h>
6
+ #include <ATen/core/stack.h>
7
+ #include <torch/csrc/jit/runtime/jit_exception.h>
8
+ #include <torch/csrc/jit/runtime/vararg_functions.h>
9
+
10
+ namespace torch {
11
+ namespace jit {
12
+
13
+ inline void noop(Stack& n) {}
14
+
15
+ int64_t normalizeIndex(int64_t idx, int64_t list_size);
16
+
17
+ // reference function THPVariable_to in python_variable_methods.cpp
18
+ static C10_UNUSED at::Tensor to_dispatch(
19
+ at::Tensor self,
20
+ c10::optional<at::Device> device,
21
+ c10::optional<at::ScalarType> scalarType,
22
+ bool non_blocking,
23
+ bool copy) {
24
+ if (device && device->is_cuda()) {
25
+ at::globalContext().lazyInitCUDA();
26
+ }
27
+ if (!device && !scalarType && !copy) {
28
+ return self;
29
+ } else if (!device) {
30
+ return self.to(*scalarType, non_blocking, copy);
31
+ } else if (!scalarType) {
32
+ return self.to(*device, non_blocking, copy);
33
+ } else {
34
+ return self.to(*device, *scalarType, non_blocking, copy);
35
+ }
36
+ }
37
+
38
+ // Convert the tensor pointed to by \p data to a nested list. \p dim is the
39
+ // number of dimensions in the tensor and \p cur_dim is the dimension being
40
+ // processed by the current invocation. \p ty is the expected output IR type of
41
+ // the operation. \p is the scalar type of \p data. \p sizes and \p strides are
42
+ // the sizes and strides of the tensor operand and \p element_size is the size
43
+ // in bytes of one tensor element.
44
+ IValue tensorToListRecursive(
45
+ char* data,
46
+ int64_t cur_dim,
47
+ int64_t num_tensor_dims,
48
+ at::TypePtr ty,
49
+ at::ScalarType scalar_ty,
50
+ at::IntArrayRef sizes,
51
+ at::IntArrayRef strides,
52
+ size_t element_size);
53
+
54
+ } // namespace jit
55
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/add_if_then_else.h ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ TORCH_API bool AddIfThenElseOp(std::shared_ptr<Graph>& graph);
9
+
10
+ } // namespace jit
11
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/canonicalize.h ADDED
@@ -0,0 +1,22 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ TORCH_API std::shared_ptr<Graph> Canonicalize(
9
+ const std::shared_ptr<Graph>& graph,
10
+ bool keep_unique_names = true);
11
+
12
+ TORCH_API void CanonicalizeOutputs(std::shared_ptr<Graph>& graph);
13
+
14
+ TORCH_API c10::optional<const Use> firstOrLastUse(Value* v, bool find_first);
15
+
16
+ TORCH_API bool isBeforeOrAfter(
17
+ const Use& a,
18
+ const Use& b,
19
+ bool checking_before);
20
+
21
+ } // namespace jit
22
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/concat_opt.h ADDED
@@ -0,0 +1,19 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Eliminates common inputs among `aten::cat` ops.
9
+ TORCH_API bool EliminateConcatCommonInputs(const std::shared_ptr<Graph>& graph);
10
+
11
+ // Expands `aten::cat` ops into `aten::copy` ops and eliminates redudancies
12
+ // in the buffers used for concatenation if possible.
13
+ TORCH_API void ExpandConcatAndEliminateRedundancy(
14
+ const std::shared_ptr<Graph>& graph);
15
+
16
+ TORCH_API bool CombineConcats(const std::shared_ptr<Graph>& graph);
17
+
18
+ } // namespace jit
19
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/constant_propagation.h ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Runs constant propagation on all objects unless ignore_custom_classes is
9
+ // specified as true, in which case user defined classes are skipped. This is
10
+ // useful to prevent early fusion of packing operations, which end up lowering
11
+ // away information about their constructors (e.g. packed::linear_clamp_prepack
12
+ // and prepacked::conv2d_clamp_prepack)
13
+ // Returns True if the pass made a change to the graph
14
+ TORCH_API bool ConstantPropagation(
15
+ std::shared_ptr<Graph>& graph,
16
+ bool ignore_custom_classes = false);
17
+
18
+ // runs constant propagation only on ops that have non-aliasing inputs & outputs
19
+ // Returns True if the pass made a change to the graph
20
+ TORCH_API bool ConstantPropagationImmutableTypes(std::shared_ptr<Graph>& graph);
21
+
22
+ // Runs the node if its inputs are constants. Callers of this function must
23
+ // make their own determination if constant prop is appropriate - for example
24
+ // non-deterministic ops or ops with side effects. If ignore_custom_classes is
25
+ // specified, nodes that output user defined classes are not run.
26
+ TORCH_API c10::optional<Stack> runNodeIfInputsAreConstant(
27
+ const Node* node,
28
+ bool ignore_custom_classes = false,
29
+ AliasDb* db = nullptr);
30
+
31
+ } // namespace jit
32
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/create_functional_graphs.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/Export.h>
4
+ #include <torch/csrc/jit/ir/ir.h>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+
9
+ TORCH_API void CreateFunctionalGraphs(const std::shared_ptr<Graph>& graph);
10
+
11
+ TORCH_API void InlineFunctionalGraphs(const std::shared_ptr<Graph>& graph);
12
+
13
+ } // namespace jit
14
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/dead_code_elimination.h ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // If given a top-level graph, DCE will construct do alias analysis that allows
9
+ // for "smarter" dead code elimination (we will eliminate mutable ops if we can
10
+ // prove the mutated values are not used). Otherwise, we will not allow DCE to
11
+ // eliminate mutable ops.
12
+ //
13
+ // So, prefer to use the graph version if you can.
14
+ enum class DCESideEffectPolicy : uint8_t {
15
+ // default behavior: dead code elimination will check if a node has side
16
+ // effects
17
+ // and not delete it if it does.
18
+ DONT_DELETE_NODES_WITH_SIDE_EFFECTS,
19
+ // with this flag, dead code elimination will not check if a node has side
20
+ // effects and treat nodes with side effects like any other node,
21
+ // i.e. delete them if their outputs aren't used anywhere.
22
+ ALLOW_DELETING_NODES_WITH_SIDE_EFFECTS
23
+ };
24
+
25
+ TORCH_API void EliminateDeadCode(
26
+ const std::shared_ptr<Graph>& graph,
27
+ DCESideEffectPolicy sideEffectPolicy =
28
+ DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
29
+ TORCH_API void EliminateDeadCode(
30
+ Block* block,
31
+ bool recurse = true,
32
+ DCESideEffectPolicy sideEffectPolicy =
33
+ DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
34
+
35
+ // Invoke the user-provided callback on all live values before deleting anything
36
+ TORCH_API void EliminateDeadCode(
37
+ Block* block,
38
+ std::function<void(const std::unordered_set<const Value*>&)> cb,
39
+ DCESideEffectPolicy sideEffectPolicy =
40
+ DCESideEffectPolicy::DONT_DELETE_NODES_WITH_SIDE_EFFECTS);
41
+ } // namespace jit
42
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/decompose_ops.h ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ TORCH_API void DecomposeOps(std::shared_ptr<Graph>& graph);
9
+
10
+ }
11
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fold_linear_bn.h ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/api/module.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ struct TORCH_API LinearBNParameters {
9
+ at::Tensor linear_w;
10
+ at::Tensor linear_b;
11
+ at::Tensor bn_rm;
12
+ at::Tensor bn_rv;
13
+ double bn_eps = 0.0;
14
+ at::Tensor bn_w;
15
+ at::Tensor bn_b;
16
+ };
17
+
18
+ /**
19
+ * Given the current weight and bias tensors of a Linear module and parameters
20
+ * of the BatchNorm module we're folding with, compute the updated values
21
+ * for the weight and bias.
22
+ *
23
+ * The function is basically copied from torch/nn/utils/fusion.py
24
+ */
25
+ TORCH_API std::tuple<at::Tensor, at::Tensor> computeUpdatedLinearWeightAndBias(
26
+ const LinearBNParameters& p);
27
+
28
+ } // namespace jit
29
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_conv_add_relu_fusion.h ADDED
@@ -0,0 +1,15 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/api/module.h>
4
+ #include <torch/csrc/jit/ir/ir.h>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+
9
+ TORCH_API extern std::function<void(std::shared_ptr<Graph>&)>&
10
+ getFuseFrozenConvAddReluImpl();
11
+
12
+ TORCH_API void FuseFrozenConvAddRelu(std::shared_ptr<Graph>& graph);
13
+
14
+ } // namespace jit
15
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_conv_folding.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Fuses Convolution -> Batchnorm into a single Convolution by
9
+ // folding batchnorm weights into conv weights.
10
+ // This pass only works on Frozen Graphs; otherwise it is a No-Op.
11
+ TORCH_API bool FoldFrozenConvBatchnorm(std::shared_ptr<Graph>& graph);
12
+
13
+ // Fuses Convolution -> Add/Sub into a single Convolution by
14
+ // folding add constant tensor into conv weights.
15
+ // This pass only works on Frozen Graphs; otherwise it is a No-Op.
16
+ TORCH_API bool FoldFrozenConvAddOrSub(std::shared_ptr<Graph>& graph);
17
+
18
+ // Fuses Convolution -> Mul/Div into a single Convolution by
19
+ // folding add constant tensor into conv weights.
20
+ // This pass only works on Frozen Graphs; otherwise it is a No-Op.
21
+ TORCH_API bool FoldFrozenConvMulOrDiv(std::shared_ptr<Graph>& graph);
22
+
23
+ } // namespace jit
24
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/frozen_linear_transpose.h ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Transposes the weight matrix for frozen linear modules.
9
+ // and converts it into a matmul
10
+ TORCH_API bool FrozenLinearTranspose(std::shared_ptr<Graph>& graph);
11
+
12
+ } // namespace jit
13
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/fuse_linear.h ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /** \brief Fusing linear patterns as single at::linear for easier pattern
2
+ * matching in later passes
3
+ */
4
+ #pragma once
5
+
6
+ #include <torch/csrc/jit/ir/ir.h>
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+
11
+ /** \brief Match the at::linear pattern and fuse it into a single at::linear
12
+ * This pass fuse the addmm or matmul + add generated by JIT back to linear
13
+ * This pass can be deleted once the JIT can emit the aten::linear in the future
14
+ */
15
+ TORCH_API void FuseLinear(std::shared_ptr<Graph>& graph);
16
+
17
+ /** Swap functional linear CallFunctions to aten::linear
18
+ */
19
+ TORCH_API void SwapFunctionalLinear(std::shared_ptr<Graph>& graph);
20
+ /** Swap all functional linear CallFunctions in module
21
+ */
22
+ TORCH_API void SwapFunctionalLinear(Module& module);
23
+ } // namespace jit
24
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/graph_rewrite_helper.h ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+ #include <torch/csrc/jit/ir/irparser.h>
5
+ #include <torch/csrc/jit/ir/subgraph_matcher.h>
6
+ #include <torch/csrc/jit/passes/subgraph_rewrite.h>
7
+
8
+ namespace torch {
9
+ namespace jit {
10
+ namespace graph_rewrite_helper {
11
+
12
+ std::string getFuncName(Value* func_value);
13
+ Value* getValue(
14
+ const std::string& name,
15
+ const std::unordered_map<const Value*, Value*>& match_vmap,
16
+ const std::unordered_map<std::string, Value*>& vmap);
17
+ c10::optional<IValue> getIValue(
18
+ const std::string& name,
19
+ const std::unordered_map<const Value*, Value*>& match_vmap,
20
+ const std::unordered_map<std::string, Value*>& vmap);
21
+ TORCH_API void replaceConvolutionWithAtenConv(std::shared_ptr<Graph>& graph);
22
+
23
+ bool isClampFusable(
24
+ const Match& match,
25
+ const std::unordered_map<std::string, Value*>& vmap);
26
+
27
+ // This struct contains a compiled IR patterns slated for use in the
28
+ // findPatternMatches function. The struct encapsulates the common
29
+ // information from parseIR that is used in conjunction with the
30
+ // pattern matching facility. A const instance of this struct can
31
+ // also be stored away to cache the compiled IR pattern and reduce
32
+ // runtime cost
33
+ struct PatternInfo {
34
+ std::string pattern_string;
35
+ std::unique_ptr<Graph> pattern_graph;
36
+ std::unordered_map<std::string, Value*> vmap;
37
+ std::vector<MatchFilter> filters;
38
+
39
+ static PatternInfo parse_from_str(
40
+ std::string pattern_string,
41
+ const std::vector<MatchFilter>& filters = {}) {
42
+ PatternInfo rv{
43
+ std::move(pattern_string),
44
+ std::make_unique<Graph>(),
45
+ decltype(vmap){},
46
+ filters};
47
+ parseIR(rv.pattern_string, rv.pattern_graph.get(), rv.vmap);
48
+ return rv;
49
+ }
50
+ };
51
+
52
+ } // namespace graph_rewrite_helper
53
+ } // namespace jit
54
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lift_closures.h ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/Export.h>
4
+ #include <torch/csrc/jit/ir/ir.h>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+
9
+ TORCH_API void liftClosures(const std::shared_ptr<Graph>& graph);
10
+
11
+ } // namespace jit
12
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/lower_grad_of.h ADDED
@@ -0,0 +1,17 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // This pass removes 'grad_of' nodes, replacing them with conditionals of
9
+ // the form:
10
+ // if any_defined(inputs):
11
+ // outputs = <original_computation>
12
+ // else:
13
+ // outputs = undefineds
14
+ TORCH_API void LowerGradOf(Graph& g);
15
+
16
+ } // namespace jit
17
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/normalize_ops.h ADDED
@@ -0,0 +1,18 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // This pass converts aten ops to a normalized form. It is
9
+ // run immediately after IR generation in both the tracer and compiler,
10
+ // so downstream consumers of the IR do not need handle ops in their
11
+ // pre-normalized form.
12
+ // Currently only handles normalization of op aliases.
13
+ TORCH_API void NormalizeOps(const std::shared_ptr<Graph>& graph);
14
+
15
+ const std::unordered_map<Symbol, Symbol>& getOperatorAliasMap();
16
+
17
+ } // namespace jit
18
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/onnx.h ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+ #include <torch/csrc/onnx/onnx.h>
5
+ #include <unordered_map>
6
+
7
+ namespace torch {
8
+ namespace jit {
9
+
10
+ TORCH_API std::shared_ptr<Graph> ToONNX(
11
+ std::shared_ptr<Graph>& state,
12
+ ::torch::onnx::OperatorExportTypes operator_export_type);
13
+ TORCH_API std::unordered_map<Value*, Value*> BlockToONNX(
14
+ Block* old_block,
15
+ Block* new_block,
16
+ ::torch::onnx::OperatorExportTypes operator_export_type,
17
+ std::unordered_map<Value*, Value*>& env,
18
+ bool is_sub_block = false);
19
+ TORCH_API void NodeToONNX(
20
+ Node* old_node,
21
+ Block* new_block,
22
+ ::torch::onnx::OperatorExportTypes operator_export_type,
23
+ std::unordered_map<Value*, Value*>& env);
24
+ TORCH_API void RemovePrintOps(std::shared_ptr<Graph>& graph);
25
+ TORCH_API void PreprocessCaffe2Ops(std::shared_ptr<Graph>& graph);
26
+
27
+ } // namespace jit
28
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_dict_idioms.h ADDED
@@ -0,0 +1,38 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Peephole Optimizes Dict Ops such as len() and __getitem__
9
+ // 1. getitem optimizations
10
+ // Given a function like this:
11
+ // def foo():
12
+ // d = {0 : 1}
13
+ // x = d[0]
14
+ // return x
15
+ // This pass produces (after dead code elimination):
16
+ // def foo(a, b):
17
+ // return 1
18
+ //
19
+ // This optimization can only happen if the dict is not modified
20
+ // and the dict has constant, non overlapping keys.
21
+ //
22
+ // 2. len optimizations
23
+ // Given a function like this:
24
+ // def foo():
25
+ // d = {0 : 1}
26
+ // return len(d)
27
+ // This pass produces (after dead code elimination):
28
+ // def foo():
29
+ // return 1
30
+ //
31
+ // This has the same requirements as the getitem optimizations.
32
+ //
33
+ // Currently this is invoked as part of PeepholeOptimize
34
+ // return true if graph is modified.
35
+ TORCH_API bool PeepholeOptimizeDictIdioms(const std::shared_ptr<Graph>& graph);
36
+
37
+ } // namespace jit
38
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/peephole_non_tensor.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // return true if graph is modified
9
+ // Optimizing General Graph Patterns that
10
+ // are not covered in peephole.cpp and peephole_list_idioms
11
+ TORCH_API bool PeepholeOptimizeNonTensor(const std::shared_ptr<Graph>& graph);
12
+
13
+ } // namespace jit
14
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/refine_tuple_types.h ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // updates the types of tuples according to the type of their current inputs.
9
+ TORCH_API void RefineTupleTypes(std::shared_ptr<Graph>& graph);
10
+
11
+ } // namespace jit
12
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_exceptions.h ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // Considering prim::RaiseException nodes unreachable, simplify prim::If nodes
9
+ // when one of the branches contains prim::RaiseException.
10
+ //
11
+ // This pass is illegal in general case as the modified graph might not throw
12
+ // an exception that the original graph would throw. The purpose of the pass is
13
+ // to cleanup the graph in a "risky" way by removing pathways leading to
14
+ // RaiseExceptions nodes. In some sense, this pass could be considered as a
15
+ // "Release" mode, while the original graph was in a "Debug" mode.
16
+ // The pass should only be used when such transformation is guaranteed to be
17
+ // safe by some other mechanisms. For instance, when we know exact shapes of
18
+ // tensors flowing through the graph and tensors with such shapes never cause
19
+ // exceptions.
20
+ TORCH_API void EliminateExceptions(std::shared_ptr<Graph>& graph);
21
+
22
+ } // namespace jit
23
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/remove_inplace_ops.h ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ #include <memory>
6
+
7
+ namespace torch {
8
+ namespace jit {
9
+ // see .cpp for docs
10
+ TORCH_API void RemoveInplaceOps(const std::shared_ptr<Graph>& graph);
11
+
12
+ TORCH_API void ImplicitCastForBinaryInplaceOps(Block* block);
13
+ } // namespace jit
14
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/requires_grad_analysis.h ADDED
@@ -0,0 +1,16 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/Export.h>
4
+
5
+ #include <memory>
6
+
7
+ namespace torch {
8
+ namespace jit {
9
+
10
+ struct Graph;
11
+ struct ArgumentSpec;
12
+
13
+ TORCH_API void PropagateRequiresGrad(std::shared_ptr<Graph>& graph);
14
+
15
+ } // namespace jit
16
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/specialize_autogradzero.h ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+
5
+ namespace torch {
6
+ namespace jit {
7
+
8
+ // propagate autograd zero information through a gradient graph and
9
+ // remove grad_of blocks if present.
10
+ // Note: this is a very limited pass. It only propagates autograd zeros for
11
+ // operations generated by the symbolic autodiff code and cleans up
12
+ // AutogradAdds when possible. Outputs of other nodes are conservatively
13
+ // marked Unknown and not optimized.
14
+ TORCH_API void specializeAutogradZero(std::shared_ptr<Graph> g);
15
+
16
+ struct ProfilingRecord;
17
+
18
+ TORCH_API void InsertProfileNodesForSpecializeAutogradZero(ProfilingRecord* pr);
19
+
20
+ } // namespace jit
21
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/subgraph_rewrite.h ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ /** This file defines API for pattern-based subgraph rewrites.
2
+ *
3
+ * The API can be used for finding concrete patterns in the model and replacing
4
+ * the corresponding subgraphs with another subgraph. A special case of such
5
+ * rewrites is fusion, where the new subgraph consists of just a single node.
6
+ *
7
+ * There is a default set of the most common patterns that everyone could use.
8
+ * Alternatively, an arbitrary pattern can be registered.
9
+ */
10
+ #pragma once
11
+
12
+ #include <torch/csrc/jit/api/module.h>
13
+ #include <torch/csrc/jit/ir/ir.h>
14
+
15
+ #include <functional>
16
+ #include <unordered_set>
17
+ #include <vector>
18
+
19
+ namespace torch {
20
+ namespace jit {
21
+
22
+ // Forward declarations.
23
+ struct RewritePatternDescr;
24
+ struct Match;
25
+
26
+ using MatchFilter = std::function<
27
+ bool(const Match&, const std::unordered_map<std::string, Value*>&)>;
28
+
29
+ /** Run pattern-based subgraph rewrites on all methods in the module.
30
+ *
31
+ * This pass will go through all methods in the module and try to replace all
32
+ * recognized patterns (see SubgraphRewriter::RegisterDefaultPatterns for the
33
+ * list of these patterns).
34
+ */
35
+ TORCH_API Module PatternBasedRewrite(const Module& module);
36
+
37
+ /** A class implementing API for pattern-based subgraph rewrites.
38
+ *
39
+ * To perform pattern-based subgraph rewrites on a module using this API, one
40
+ * needs to create an object of such class, register rewrite patterns and run
41
+ * the transformation pass (`runOnModule`).
42
+ *
43
+ * To use standard patterns, one could use `RegisterDefaultPatterns`.
44
+ *
45
+ * To enable rewrites of custom patterns, the custom patterns must be registered
46
+ * with `RegisterRewritePattern`.
47
+ */
48
+ class TORCH_API SubgraphRewriter {
49
+ public:
50
+ // Run pattern-based subgraph rewrite pass on the module.
51
+ Module runOnModule(const Module& module);
52
+
53
+ // Run pattern-based subgraph rewrite pass on the graph (used in testing).
54
+ // `filter` is a function that does extra filtering on the match. If it
55
+ // returns false for a given Match, we'll skip the Match. The filter
56
+ // function's arguments consist of a Match and a value map from parsing the
57
+ // pattern graph. Both the Match and the value map are necessary because we
58
+ // need to 1) do extra filtering on the matched result as well as 2) refer to
59
+ // the values in the matched result through the values in the pattern graph.
60
+ void runOnGraph(
61
+ std::shared_ptr<Graph>& graph,
62
+ const std::vector<MatchFilter>& filters);
63
+
64
+ void runOnGraph(
65
+ std::shared_ptr<Graph>& graph,
66
+ const MatchFilter& filter =
67
+ [](const Match&, const std::unordered_map<std::string, Value*>&) {
68
+ return true;
69
+ }) {
70
+ runOnGraph(graph, std::vector<MatchFilter>({filter}));
71
+ }
72
+
73
+ // Register standard rewrite patterns.
74
+ void RegisterDefaultPatterns();
75
+
76
+ /** Register a custom rewrite pattern.
77
+ *
78
+ * The method takes two parameters specifying the pattern:
79
+ * \p PATTERN - IR string representing the pattern subgraph.
80
+ * \p REPLACEMENT - IR string representing the replacement subgraph.
81
+ * \p value name map - vector of pairs mapping values in the replacement graph
82
+ * to the values in the pattern graph. Used for preserving source range info
83
+ * across graph rewrite.
84
+ *
85
+ * See examples of pattern registering in `RegisterDefaultPatterns`.
86
+ */
87
+ void RegisterRewritePattern(
88
+ const std::string& pattern,
89
+ const std::string& replacement,
90
+ const std::vector<std::pair<std::string, std::string>>& value_name_pair =
91
+ {});
92
+
93
+ private:
94
+ std::vector<RewritePatternDescr> patterns_;
95
+ std::unordered_set<Node*> nodes_to_delete_;
96
+
97
+ void rewriteSinglePatternOnGraph(
98
+ std::shared_ptr<Graph>& graph,
99
+ const RewritePatternDescr& pattern,
100
+ const std::vector<MatchFilter>& filters);
101
+
102
+ bool overlapsWithPreviousMatches(const Match* match);
103
+ };
104
+
105
+ /** Rewrite pattern descriptor.
106
+ *
107
+ * This structure is used in the implementation of `SubgraphRewriter` and
108
+ * is not supposed to be used externally.
109
+ */
110
+ struct RewritePatternDescr {
111
+ std::string pattern;
112
+ std::string replacement;
113
+ std::unordered_map<std::string, std::string> value_name_map;
114
+ };
115
+
116
+ } // namespace jit
117
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_analysis.h ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/Export.h>
4
+ #include <torch/csrc/jit/ir/ir.h>
5
+ #include <unordered_map>
6
+ #include <utility>
7
+ #include <variant>
8
+
9
+ namespace torch {
10
+ namespace jit {
11
+
12
+ // CAUTION NOT TO BE USED, STILL A WIP, NOT STABLE
13
+
14
+ TORCH_API void PropagateShapesOnGraph(std::shared_ptr<Graph>& graph);
15
+
16
+ // CAUTION NOT TO BE USED, STILL A WIP, NOT STABLE
17
+ // From [beg, end) attempt to propagate shapes and
18
+ // build up a graph that will compute all remaining symbolic
19
+ // shapes in [beg, end) that can be executed before beg
20
+
21
+ struct ShapeComputeGraphMapping {
22
+ ShapeComputeGraphMapping(
23
+ std::shared_ptr<Graph> partial_eval_shape_graph,
24
+ std::unordered_map<Value*, Value*>
25
+ enclosing_graph_value_to_shape_graph_input,
26
+ std::unordered_map<Value*, int64_t> graph_output_to_symbolic_shape_dim)
27
+ : partial_eval_shape_graph(std::move(partial_eval_shape_graph)),
28
+ enclosing_graph_value_to_shape_graph_input_(
29
+ std::move(enclosing_graph_value_to_shape_graph_input)),
30
+ graph_output_to_symbolic_shape_dim_(
31
+ std::move(graph_output_to_symbolic_shape_dim)){};
32
+
33
+ std::shared_ptr<Graph> partial_eval_shape_graph;
34
+ std::unordered_map<Value*, Value*>
35
+ enclosing_graph_value_to_shape_graph_input_;
36
+ std::unordered_map<Value*, int64_t> graph_output_to_symbolic_shape_dim_;
37
+ };
38
+
39
+ TORCH_API c10::optional<ShapeComputeGraphMapping>
40
+ PropagateShapesAndBuildLargeShapeComputeGraph(
41
+ std::shared_ptr<Graph>& graph,
42
+ Node* beg,
43
+ Node* end);
44
+
45
+ // don't insert complete tensor shapes in shape compute graphs and instead
46
+ // rely on our partial evaluation pipeline to propagate information.
47
+ // this is a good proxy for our ability to propagate non-complete shape
48
+ // information.
49
+ TORCH_API bool setSymbolicShapeAnalysisTestMode(bool value);
50
+ TORCH_API bool symbolicShapeAnalysisTestModeEnabled();
51
+
52
+ using SSAInput = std::variant<IValue, c10::SymbolicShape>;
53
+ TORCH_API c10::optional<std::vector<c10::SymbolicShape>>
54
+ calculateSymbolicShapesOnOp(
55
+ const FunctionSchema* schema,
56
+ const std::vector<SSAInput>& inputs);
57
+ } // namespace jit
58
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/passes/symbolic_shape_cache.h ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <torch/csrc/jit/ir/ir.h>
4
+ #include <torch/csrc/jit/passes/symbolic_shape_analysis.h>
5
+
6
+ namespace torch {
7
+ namespace jit {
8
+
9
+ struct TORCH_API CanonicalizedSymbolicShape {
10
+ // TODO: Consider in the future if it is reasonable to
11
+ // merge code with SymbolicShape or VaryingShape while keeping
12
+ // the two not implicitly convertable (and cause bugs).
13
+ CanonicalizedSymbolicShape(
14
+ const c10::SymbolicShape& orig_shape,
15
+ std::unordered_map<int64_t, int64_t>& ss_map) {
16
+ init(orig_shape, ss_map);
17
+ }
18
+
19
+ CanonicalizedSymbolicShape(c10::SymbolicShape& orig_shape) {
20
+ std::unordered_map<int64_t, int64_t> new_ssmap;
21
+ init(orig_shape, new_ssmap);
22
+ }
23
+
24
+ size_t hash() const;
25
+
26
+ c10::SymbolicShape toSymbolicShape(
27
+ std::unordered_map<int64_t, int64_t>& inverse_ss_map) const;
28
+
29
+ TORCH_API friend bool operator==(
30
+ const CanonicalizedSymbolicShape& a,
31
+ const CanonicalizedSymbolicShape& b);
32
+
33
+ private:
34
+ c10::optional<std::vector<int64_t>> values_;
35
+
36
+ void init(
37
+ const c10::SymbolicShape& orig_shape,
38
+ std::unordered_map<int64_t, int64_t>& ss_map);
39
+ };
40
+
41
+ // SHAPE CACHE API
42
+ TORCH_API c10::optional<std::vector<at::SymbolicShape>>
43
+ get_cached_shape_function(
44
+ const FunctionSchema* schema,
45
+ const std::vector<SSAInput>& arg_vec);
46
+
47
+ TORCH_API void cache_shape_function(
48
+ const FunctionSchema* schema,
49
+ const std::vector<SSAInput>& arg_vec,
50
+ const std::vector<at::SymbolicShape>& ret_vec);
51
+
52
+ // For use in test code
53
+ TORCH_API void clear_shape_cache();
54
+ TORCH_API size_t get_shape_cache_size();
55
+
56
+ } // namespace jit
57
+ } // namespace torch
venv/lib/python3.10/site-packages/torch/include/torch/csrc/jit/runtime/argument_spec.h ADDED
@@ -0,0 +1,511 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #pragma once
2
+
3
+ #include <ATen/core/jit_type.h>
4
+ #include <ATen/core/stack.h>
5
+ #include <c10/util/hash.h>
6
+ #include <c10/util/irange.h>
7
+ #include <torch/csrc/Export.h>
8
+ #include <torch/csrc/autograd/variable.h>
9
+ #include <torch/csrc/jit/ir/ir.h>
10
+ #include <ostream>
11
+ #include <vector>
12
+
13
+ C10_CLANG_DIAGNOSTIC_PUSH()
14
+ #if C10_CLANG_HAS_WARNING("-Wshorten-64-to-32")
15
+ C10_CLANG_DIAGNOSTIC_IGNORE("-Wshorten-64-to-32")
16
+ #endif
17
+
18
+ namespace torch::jit {
19
+
20
+ // GraphExecutor creates specializations of Graphs for different
21
+ // dimensionalitities and types of inputs.
22
+
23
+ struct ArgumentInfo {
24
+ friend struct ArgumentSpec;
25
+ using plain_data_type = uint64_t;
26
+
27
+ bool defined() const {
28
+ return defined_;
29
+ }
30
+ at::Device device() const {
31
+ return at::Device(DeviceType(dev_type_), device_);
32
+ }
33
+ // XXX: It is guaranteed that this will return false when called on non-tensor
34
+ // arguments
35
+ bool requires_grad() const {
36
+ return requires_grad_;
37
+ }
38
+ int dim() const {
39
+ // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
40
+ return dim_;
41
+ }
42
+ at::ScalarType type() const {
43
+ return at::ScalarType(type_);
44
+ }
45
+ TypePtr toType() const {
46
+ if (!defined())
47
+ return TensorType::get();
48
+
49
+ return TensorType::create(
50
+ type(), device(), c10::optional<size_t>(dim()), requires_grad());
51
+ }
52
+ operator TypePtr() const {
53
+ return toType();
54
+ }
55
+
56
+ private:
57
+ unsigned defined_ : 1;
58
+ unsigned requires_grad_ : 1;
59
+ unsigned : 5;
60
+ unsigned dim_ : 8;
61
+ unsigned device_ : 8;
62
+ unsigned type_ : 8;
63
+ unsigned dev_type_ : 16;
64
+ unsigned : 16;
65
+ };
66
+
67
+ static_assert(
68
+ std::is_standard_layout<ArgumentInfo>::value,
69
+ "ArgumentInfo is to be a POD struct");
70
+ static_assert(
71
+ sizeof(ArgumentInfo) == sizeof(ArgumentInfo::plain_data_type),
72
+ "ArgumentInfo is expected to be a 32-bit struct");
73
+
74
+ struct ArgumentSpec {
75
+ ArgumentSpec(size_t num_flat_tensor_inputs, size_t num_flat_optional_inputs)
76
+ : hash_code(c10::hash_combine(
77
+ num_flat_tensor_inputs,
78
+ num_flat_optional_inputs)) {
79
+ tensor_args.reserve(num_flat_tensor_inputs);
80
+ optional_presence.reserve(num_flat_optional_inputs);
81
+ }
82
+
83
+ void addOptional(const IValue& input) {
84
+ bool is_present = !input.isNone();
85
+ optional_presence.push_back(is_present);
86
+ hash_code = c10::hash_combine(hash_code, is_present);
87
+ }
88
+
89
+ void addTensor(const IValue& input, bool with_grad) {
90
+ AT_ASSERT(input.isTensor(), "Expected Tensor but found ", input.tagKind());
91
+ tensor_args.emplace_back();
92
+ auto& arg = tensor_args.back();
93
+ // Initialize all fields to 0. This is convenient, because e.g.
94
+ // requires_grad() can be checked even on tensors AND will make
95
+ // padding bits all 0s.
96
+ std::memset(&arg, 0, sizeof(ArgumentInfo));
97
+
98
+ // [argspec refcounting] reinterpret the IValue to avoid having to refcount
99
+ // the Tensor microbenchmarks
100
+ // https://github.com/zdevito/pytorch/commit/21e7200a0a0fc456bea2f10e95b1781f83933d10
101
+ // show overhead in extra refcounting along this path
102
+ const at::Tensor* t = reinterpret_cast<const at::Tensor*>(&input);
103
+ arg.defined_ = t->defined();
104
+ if (arg.defined_) {
105
+ arg.requires_grad_ = with_grad && autograd::Variable(*t).requires_grad();
106
+ arg.dim_ = t->dim();
107
+ // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
108
+ at::Device device = t->device();
109
+ arg.dev_type_ =
110
+ // NOLINTNEXTLINE(bugprone-signed-char-misuse)
111
+ static_cast<std::underlying_type<DeviceType>::type>(device.type());
112
+ // NOLINTNEXTLINE(bugprone-signed-char-misuse)
113
+ arg.device_ = device.index();
114
+ arg.type_ = static_cast<unsigned>(t->scalar_type());
115
+ }
116
+ combineHash(arg);
117
+ }
118
+
119
+ void combineHash(const ArgumentInfo& arg) {
120
+ // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
121
+ ArgumentInfo::plain_data_type arg_data;
122
+ std::memcpy(&arg_data, &arg, sizeof(ArgumentInfo));
123
+ hash_code = c10::hash_combine(hash_code, arg_data);
124
+ }
125
+
126
+ // equality is fast: check ninputs, and then check the raw array data,
127
+ // there are no size/stride indirections
128
+ // hopefully std::vector<bool> has fast equality
129
+ bool operator==(const ArgumentSpec& spec) const {
130
+ if (optional_presence != spec.optional_presence) {
131
+ return false;
132
+ }
133
+ if (tensor_args.size() != spec.tensor_args.size())
134
+ return false;
135
+ // NB: we need to break out early when there are no elements, because
136
+ // passing a nullptr to memcmp is UB.
137
+ if (tensor_args.empty())
138
+ return true;
139
+ return std::memcmp(
140
+ tensor_args.data(),
141
+ spec.tensor_args.data(),
142
+ tensor_args.size() * sizeof(ArgumentInfo)) == 0;
143
+ }
144
+ bool operator!=(const ArgumentSpec& spec) const {
145
+ return !(*this == spec);
146
+ }
147
+ size_t numTensors() const {
148
+ return tensor_args.size();
149
+ }
150
+ const ArgumentInfo& tensorAt(size_t i) const {
151
+ return tensor_args[i];
152
+ }
153
+ size_t numOptionals() const {
154
+ return optional_presence.size();
155
+ }
156
+ bool isPresent(size_t i) const {
157
+ return optional_presence[i];
158
+ }
159
+ size_t hashCode() const {
160
+ return hash_code;
161
+ }
162
+
163
+ private:
164
+ size_t hash_code; // precomputed on construction
165
+ std::vector<ArgumentInfo> tensor_args;
166
+ std::vector<bool> optional_presence;
167
+ };
168
+
169
+ namespace {
170
+ static constexpr size_t ARG_SPEC_DEPTH_LIMIT = 128;
171
+ }
172
+
173
+ // ArgumentSpecCreator takes an initial graph and comes up with a set
174
+ // of simple instructions to compute the ArgumentSpec given a set of
175
+ // input tensors.
176
+ struct TORCH_API ArgumentSpecCreator {
177
+ // instructs acts on a stack of a list of input IValues
178
+ // at the beginning the stack contains a single list of the inputs to the
179
+ // function the ENTER_ instructs descend into subobjects and push new lists
180
+ // onto the stack
181
+ enum Inst : char {
182
+ ENTER_TUPLE, // consume a tuple ivalue from the top-most list, and push the
183
+ // list of its elements onto the stack as a new list
184
+ ENTER_OBJECT, // same as ENTER_TUPLE, but the input is a class
185
+ LEAVE, // pop the top-most list from the stack
186
+ SKIP, // consume an element from the top-most list, and discard
187
+ SPECIALIZE_OPTIONAL_TENSOR, // consume a optional tensor for the top-most
188
+ // list, and add it to the ArgSpec key being
189
+ // created
190
+ SPECIALIZE_TENSOR, // consume a tensor for the top-most
191
+ // list, and add it to the ArgSpec key being created
192
+ SPECIALIZE_OPTIONAL,
193
+ // consume a nontensor optional from the top-most list,
194
+ // and add it to the ArgSpec key being created
195
+ };
196
+ ArgumentSpecCreator(Graph& graph);
197
+ ArgumentSpec create(bool with_grad, const Stack& stack) const;
198
+ void specializeTypes(Graph& g, const ArgumentSpec& spec) const;
199
+ void dump() const;
200
+ using WrittenSlots = std::unordered_set<std::string>;
201
+
202
+ private:
203
+ void scan(
204
+ const TypePtr& typ,
205
+ size_t depth,
206
+ const WrittenSlots& written_slots);
207
+ size_t num_inputs_;
208
+ size_t num_tensors_ = 0;
209
+ size_t num_optionals_ = 0;
210
+ std::vector<Inst> instructions_;
211
+ };
212
+
213
+ // CompleteArgumentSpec represents one particular specialization.
214
+ // It is designed so that it can be created, hashed, and compared quickly
215
+ // since it is used along the hot-path of the JIT to check if the code
216
+ // we have created is valid for the given inputs.
217
+
218
+ // COmpleteArgumentInfoPOD is only used internally in CompleteArgumentSpec
219
+ // API users should use ArgumentInfo
220
+ struct CompleteArgumentInfoPOD {
221
+ // total size is 64-bit
222
+ unsigned is_tensor : 8; // all other fields are invalid if this is false
223
+ unsigned type : 8; // scalar type
224
+ unsigned defined : 1;
225
+ unsigned requires_grad : 1;
226
+ signed device : 14;
227
+ unsigned dev_type : 16;
228
+ unsigned
229
+ total_dims : 16; // all TensorInfoPODs are in CompleteArgumentSpec's
230
+ // tensor_info() array. total_dims is the total number of
231
+ // dimensions seen so far in all previous members of
232
+ // tensor_info(), including this tensor 2*total_dims
233
+ // becomes the offset into the sizes_strides list for the
234
+ // _next_ tensor in the tensor_info array for tensor 0,
235
+ // the offset is always 0
236
+ };
237
+
238
+ static_assert(
239
+ sizeof(CompleteArgumentInfoPOD) == sizeof(int64_t),
240
+ "CompleteArgumentInfoPOD must be 64-bit struct for CompleteArgumentSpec encoding to work");
241
+
242
+ struct CompleteArgumentInfo;
243
+
244
+ struct CompleteArgumentSpec {
245
+ // NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
246
+ CompleteArgumentSpec(bool with_grad, at::ArrayRef<IValue> inputs)
247
+ : hash_code(0), ninputs(inputs.size()) {
248
+ int32_t all_dims = 0;
249
+ // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
250
+ const int32_t num_inputs = inputs.size();
251
+ for (const auto i : c10::irange(num_inputs)) {
252
+ if (!inputs[i].isTensor())
253
+ continue;
254
+ auto& tensor = inputs[i].toTensor();
255
+ all_dims += tensor.defined() ? tensor.ndimension() : 0;
256
+ }
257
+ // allocate enough room for all TensorPODs and dimensions
258
+ data.resize(ninputs + all_dims * 2);
259
+
260
+ // and reinterpret our data array as these structs
261
+ // NOLINTNEXTLINE(cppcoreguidelines-init-variables)
262
+ auto* pods = reinterpret_cast<CompleteArgumentInfoPOD*>(data.data());
263
+ int64_t* next_dim = sizes_strides();
264
+ int32_t total_dims = 0;
265
+ for (const auto i : c10::irange(num_inputs)) {
266
+ auto& pod = pods[i];
267
+ pod.is_tensor = static_cast<uint32_t>(inputs[i].isTensor());
268
+ if (pod.is_tensor) {
269
+ at::Tensor t = inputs[i].toTensor();
270
+ pod.defined = t.defined();
271
+ if (pod.defined) {
272
+ pod.type = static_cast<int>(t.scalar_type());
273
+ // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
274
+ at::Device device = t.device();
275
+ // NOLINTNEXTLINE(bugprone-signed-char-misuse)
276
+ pod.dev_type = static_cast<std::underlying_type<DeviceType>::type>(
277
+ device.type());
278
+ // NOLINTNEXTLINE(bugprone-signed-char-misuse)
279
+ pod.device = device.index();
280
+ pod.requires_grad = with_grad && t.requires_grad();
281
+ total_dims += t.ndimension();
282
+ auto sizes = t.sizes();
283
+ std::copy(sizes.begin(), sizes.end(), next_dim);
284
+ next_dim += sizes.size();
285
+ auto strides = t.strides();
286
+ std::copy(strides.begin(), strides.end(), next_dim);
287
+ next_dim += strides.size();
288
+ }
289
+ }
290
+ // each POD has a running tally of all dimensions including its own
291
+ TORCH_CHECK(
292
+ total_dims < std::numeric_limits<uint16_t>::max(),
293
+ "The number of dims cannot be packed into CompleteArgumentSpec:",
294
+ total_dims);
295
+ pod.total_dims = total_dims;
296
+ }
297
+ // we precompute the hash_code to minimize the time inside of hash
298
+ // table operations where we may need to hold a compiler cache lock.
299
+ hash_code = c10::hash_combine(0, ninputs);
300
+ for (auto d : data) {
301
+ hash_code = c10::hash_combine(hash_code, d);
302
+ }
303
+ }
304
+
305
+ // equality is fast: check ninputs, and then check the raw array data,
306
+ // there are no size/stride indirections
307
+ bool operator==(const CompleteArgumentSpec& spec) const {
308
+ return ninputs == spec.ninputs && data == spec.data;
309
+ }
310
+ bool operator!=(const CompleteArgumentSpec& spec) const {
311
+ return !(*this == spec);
312
+ }
313
+ friend struct CompleteArgumentInfo;
314
+ CompleteArgumentInfo at(size_t i) const;
315
+ size_t size() const {
316
+ return ninputs;
317
+ }
318
+ size_t hashCode() const {
319
+ return hash_code;
320
+ }
321
+
322
+ private:
323
+ ArrayRef<CompleteArgumentInfoPOD> tensor_info() const {
324
+ return ArrayRef<CompleteArgumentInfoPOD>(
325
+ reinterpret_cast<const CompleteArgumentInfoPOD*>(data.data()), ninputs);
326
+ }
327
+ // the start of the sizes_strides information, which comes after the
328
+ // CompleteArgumentInfoPOD list.
329
+ const int64_t* sizes_strides() const {
330
+ return data.data() + ninputs;
331
+ }
332
+ int64_t* sizes_strides() {
333
+ return data.data() + ninputs;
334
+ }
335
+ size_t hash_code; // precomputed on construction
336
+ size_t ninputs;
337
+ // layout is ninputs of TensorPOD (each 64-bit) followed by their size and
338
+ // stride info for 3 tensors:
339
+ // [t0POD][t1POD][t2POD]...
340
+ // [t0 sizes][t0 strides][t1 sizes][t1 strides][t2 sizes][t2 strides]
341
+ std::vector<int64_t> data;
342
+ };
343
+
344
+ // public view of compressed CompleteArgumentInfo
345
+ struct CompleteArgumentInfo {
346
+ CompleteArgumentInfo(const CompleteArgumentSpec& spec, const int i)
347
+ : spec(spec), i(i) {}
348
+ bool isTensor() const {
349
+ return pod(i).is_tensor;
350
+ }
351
+ at::ScalarType type() const {
352
+ return at::ScalarType(pod(i).type);
353
+ }
354
+ bool defined() const {
355
+ return pod(i).defined;
356
+ }
357
+ bool requires_grad() const {
358
+ return pod(i).requires_grad;
359
+ }
360
+ at::Device device() const {
361
+ return at::Device(
362
+ DeviceType(pod(i).dev_type),
363
+ static_cast<c10::DeviceIndex>(pod(i).device));
364
+ }
365
+ int ndimension() const {
366
+ // See [valid range], it is always valid to ask for offset for (i + 1)
367
+ return (sizes_strides_offset(i + 1) - sizes_strides_offset(i)) / 2;
368
+ }
369
+ at::IntArrayRef sizes() const {
370
+ return at::IntArrayRef(
371
+ spec.sizes_strides() + sizes_strides_offset(i), ndimension());
372
+ }
373
+ at::IntArrayRef strides() const {
374
+ int ndim = ndimension();
375
+ return at::IntArrayRef(
376
+ spec.sizes_strides() + sizes_strides_offset(i) + ndim, ndim);
377
+ }
378
+ operator TypePtr() const {
379
+ if (!defined())
380
+ return TensorType::get();
381
+ return TensorType::create(
382
+ type(),
383
+ device(),
384
+ c10::VaryingShape<int64_t>{sizes()},
385
+ c10::VaryingShape<int64_t>{strides()},
386
+ requires_grad());
387
+ }
388
+
389
+ private:
390
+ // offsetinto sizes_strides() array where the sizes start for tensor j
391
+ // [valid range] valid range is [0, ninputs]
392
+ // (i.e. you can ask for the offset at ninputs, which would be the offset of
393
+ // the next tensor if it existed)
394
+ int sizes_strides_offset(int j) const {
395
+ if (j == 0)
396
+ return 0;
397
+ // NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
398
+ return 2 * pod(j - 1).total_dims;
399
+ }
400
+ const CompleteArgumentInfoPOD& pod(int j) const {
401
+ return spec.tensor_info().at(j);
402
+ }
403
+ const CompleteArgumentSpec& spec;
404
+ const int i;
405
+ };
406
+
407
+ inline std::ostream& operator<<(std::ostream& out, const ArgumentInfo& info) {
408
+ if (!info.defined()) {
409
+ return out << "<undefined>";
410
+ }
411
+ out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
412
+ << ", requires_grad=" << info.requires_grad() << ", dims=" << info.dim()
413
+ << ")";
414
+ return out;
415
+ }
416
+
417
+ inline std::ostream& operator<<(std::ostream& out, const ArgumentSpec& spec) {
418
+ out << "{";
419
+ for (const auto i : c10::irange(spec.numTensors())) {
420
+ if (i > 0)
421
+ out << ", ";
422
+ out << spec.tensorAt(i);
423
+ }
424
+ out << "; ";
425
+ for (const auto i : c10::irange(spec.numOptionals())) {
426
+ if (i > 0)
427
+ out << ", ";
428
+ out << spec.isPresent(i);
429
+ }
430
+ out << "}";
431
+ return out;
432
+ }
433
+
434
+ inline std::ostream& operator<<(
435
+ std::ostream& out,
436
+ const CompleteArgumentInfo& info) {
437
+ if (!info.defined()) {
438
+ return out << "<undefined>";
439
+ }
440
+ out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
441
+ << ", requires_grad=" << info.requires_grad()
442
+ << ", sizes=" << info.sizes() << ", strides=" << info.strides() << ")";
443
+ return out;
444
+ }
445
+
446
+ inline std::ostream& operator<<(
447
+ std::ostream& out,
448
+ const CompleteArgumentSpec& spec) {
449
+ out << "{";
450
+ for (const auto i : c10::irange(spec.size())) {
451
+ if (i > 0)
452
+ out << ", ";
453
+ out << spec.at(i);
454
+ }
455
+ out << "}";
456
+ return out;
457
+ }
458
+
459
+ inline CompleteArgumentInfo CompleteArgumentSpec::at(size_t i) const {
460
+ return CompleteArgumentInfo(*this, i);
461
+ }
462
+
463
+ inline c10::optional<int8_t> convertOptional(
464
+ c10::optional<c10::ScalarType> const& from) {
465
+ return (from) ? c10::optional<int8_t>(static_cast<int8_t>(*from))
466
+ : c10::optional<int8_t>{};
467
+ }
468
+
469
+ } // namespace torch::jit
470
+
471
+ namespace std {
472
+
473
+ template <typename T>
474
+ struct hash<c10::VaryingShape<T>> {
475
+ size_t operator()(const c10::VaryingShape<T>& vs) const {
476
+ return c10::get_hash(
477
+ vs.size(),
478
+ vs.size() ? vs.sizes().value() : std::vector<c10::optional<T>>());
479
+ }
480
+ };
481
+
482
+ template <>
483
+ struct hash<c10::TensorType> {
484
+ size_t operator()(const c10::TensorType& ptt) const {
485
+ return c10::get_hash<
486
+ c10::optional<int8_t>,
487
+ c10::VaryingShape<int64_t>,
488
+ c10::VaryingShape<int64_t>,
489
+ c10::optional<bool>>(
490
+ torch::jit::convertOptional(ptt.scalarType()),
491
+ ptt.sizes(),
492
+ ptt.strides(),
493
+ ptt.requiresGrad());
494
+ }
495
+ };
496
+
497
+ template <>
498
+ struct hash<torch::jit::ArgumentSpec> {
499
+ size_t operator()(const torch::jit::ArgumentSpec& spec) const {
500
+ return spec.hashCode();
501
+ }
502
+ };
503
+ template <>
504
+ struct hash<torch::jit::CompleteArgumentSpec> {
505
+ size_t operator()(const torch::jit::CompleteArgumentSpec& spec) const {
506
+ return spec.hashCode();
507
+ }
508
+ };
509
+ } // namespace std
510
+
511
+ C10_CLANG_DIAGNOSTIC_POP()