diff --git "a/venv/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py" "b/venv/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/torch/_inductor/codegen/cpp.py" @@ -0,0 +1,4038 @@ +import contextlib +import dataclasses +import functools +import itertools +import logging +import math +import re +import sys +from copy import copy, deepcopy +from enum import Enum +from typing import Any, Dict, List, Optional, Set, Tuple, Union + +import sympy + +import torch +import torch.fx +from torch._inductor import dependencies +from torch._inductor.ir import StorageBox, TensorBox +from torch._prims_common import is_float_dtype +from torch.utils import _pytree as pytree +from torch.utils._sympy.functions import FloorDiv, ModularIndexing +from torch.utils._sympy.value_ranges import bound_sympy, ValueRanges + +from .. import codecache, config, ir, metrics +from ..codegen.wrapper import WrapperCodeGen +from ..optimize_indexing import range_expressable_in_32_bits +from ..scheduler import ( + BaseScheduling, + ForeachKernelSchedulerNode, + FusedSchedulerNode, + SchedulerNode, +) +from ..utils import ( + cache_on_self, + get_fused_kernel_name, + is_welford_reduction, + parallel_num_threads, + sympy_index_symbol, + sympy_product, + sympy_subs, +) + +from ..virtualized import ops, OpsValue, V +from .common import ( + BracesBuffer, + CppWrapperKernelArgs, + CSE, + CSEVariable, + DataTypePropagation, + DeferredLine, + DTYPE_TO_COMPUTATION_DTYPE, + ExprPrinter, + IndentedBuffer, + Kernel, + KernelArgs, + OpOverrides, + OptimizationContext, +) + +schedule_log = torch._logging.getArtifactLogger(__name__, "schedule") + +DTYPE_TO_CPP = { + torch.float32: "float", + torch.float64: "double", + torch.float16: "half", + torch.int64: "long", + torch.int32: "int", + torch.int16: "short", + torch.int8: "signed char", + torch.uint64: "unsigned long", + torch.uint32: "unsigned int", + torch.uint16: "unsigned short", + torch.uint8: "unsigned char", + torch.uint32: "unsigned int", + torch.uint64: "unsigned long", + torch.bool: "bool", + torch.bfloat16: "bfloat16", + torch.complex64: "complex64", + torch.float8_e4m3fn: "float8_e4m3fn", + torch.float8_e5m2: "float8_e5m2", +} + +DTYPE_TO_ATEN = { + torch.float32: "at::kFloat", + torch.float64: "at::kDouble", + torch.float16: "at::kHalf", + torch.int64: "at::kLong", + torch.int32: "at::kInt", + torch.int16: "at::kShort", + torch.int8: "at::kChar", + torch.uint64: "at::kUInt64", + torch.uint32: "at::kUInt32", + torch.uint16: "at::kUInt16", + torch.uint8: "at::kByte", + torch.uint32: "at::kUInt32", + torch.uint64: "at::kUInt64", + torch.bool: "at::kBool", + torch.bfloat16: "at::kBFloat16", + torch.complex32: "at::kComplexHalf", + torch.complex64: "at::kComplexFloat", + torch.complex128: "at::kComplexDouble", + torch.float8_e4m3fn: "at::kFloat8_e4m3fn", + torch.float8_e5m2: "at::kFloat8_e5m2", + torch.float8_e4m3fnuz: "at::kFloat8_e4m3fnuz", + torch.float8_e5m2fnuz: "at::kFloat8_e5m2fnuz", +} + +DEVICE_TO_ATEN = { + "cpu": "at::kCPU", + "cuda": "at::kCUDA", +} + +INDEX_TYPE = "long" + +NATIVE_OMP_RTYPES = {"+", "*", "^", "||", "min", "max"} +RTYPE_TO_CPP = { + "sum": "+", + "prod": "*", + "xor_sum": "^", + "min": "min", + "max": "max", + "argmin": "argmin", + "argmax": "argmax", + "any": "||", + "welford_reduce": "welford", + "welford_combine": "welford", +} +VECTORIZABLE_RTYPES = { + "max", + "min", + "sum", + "prod", + "xor_sum", + "welford_reduce", + "welford_combine", +} + +PYTHON_TO_CPP = { + "Tensor": "at::Tensor", + "int": "long", + "float": "double", + "bool": "bool", + "str": "std::string", + "ScalarType": "c10::ScalarType", + "MemoryFormat": "at::MemoryFormat", + "Layout": "at::Layout", + "Device": "at::Device", + "number": "at::Scalar", +} + +CONTAINER_PYTHON_TO_CPP = { + "List": "std::vector", + "Optional": "c10::optional", +} + +DTYPE_LOWP_FP = [ + torch.bfloat16, + torch.float16, +] + + +def value_to_cpp(value, cpp_type): + if value == float("-inf"): + return f"-std::numeric_limits<{cpp_type}>::infinity()" + elif value == float("inf"): + return f"std::numeric_limits<{cpp_type}>::infinity()" + elif isinstance(value, bool): + return f"static_cast<{cpp_type}>({str(value).lower()})" + elif math.isnan(value): + return f"std::numeric_limits<{cpp_type}>::quiet_NaN()" + else: + return f"static_cast<{cpp_type}>({repr(value)})" + + +def reduction_init(reduction_type, dtype): + if dtype in DTYPE_LOWP_FP: + # Since load promotes all half-precision inputs to float, the initial + # constant for reduction must be promoted as well + dtype = torch.float32 + if reduction_type in ("xor_sum", "sum", "any"): + return 0 + if reduction_type == "prod": + return 1 + if reduction_type in {"max", "argmax"}: + return ( + f"-std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()" + if is_float_dtype(dtype) + else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::min()" + ) + if reduction_type in {"min", "argmin"}: + return ( + f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()" + if is_float_dtype(dtype) + else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::max()" + ) + if is_welford_reduction(reduction_type): + return f"Welford<{DTYPE_TO_CPP[dtype]}>()" + raise AssertionError(reduction_type) + + +def reduction_acc_type(reduction_type, dtype): + assert reduction_type not in {"argmin", "argmax"} + scalar_type = DTYPE_TO_CPP[DTYPE_TO_COMPUTATION_DTYPE[dtype]] + if is_welford_reduction(reduction_type): + return f"Welford<{scalar_type}>" + + return scalar_type + + +def reduction_combine(reduction_type, var, next_value): + if reduction_type == "sum": + return f"{var} + {next_value}" + if reduction_type == "prod": + return f"{var} * {next_value}" + if reduction_type == "xor_sum": + return f"{var} ^ {next_value}" + if reduction_type == "any": + return f"{var} || {next_value}" + if reduction_type in ("min", "max"): + return f"{reduction_type}_propagate_nan({var}, {next_value})" + if reduction_type == "welford_reduce": + return f"welford_combine({var}, {next_value})" + if reduction_type == "welford_combine": + if isinstance(next_value, tuple): + mean, m2, weight = next_value + else: + mean, m2, weight = reduction_project(reduction_type, next_value) + return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})" + raise AssertionError(reduction_type) + + +def reduction_project(reduction_type, acc): + if is_welford_reduction(reduction_type): + return f"{acc}.mean", f"{acc}.m2", f"{acc}.weight" + elif reduction_type in {"argmin", "argmax"}: + return f"{acc}.index" + return acc + + +def is_to_lowp_dtype(expr): + to_exprs = ["cvt_fp32_to_lowp_fp", "c10::convert"] + if any(to_expr in expr for to_expr in to_exprs): + if "half" in expr: + return torch.half + if "bfloat16" in expr: + return torch.bfloat16 + return None + + +def get_lowp_to_fp32_expr(lowp_var, src_dtype, kernel): + if isinstance(kernel, CppVecKernel): + return f"cvt_lowp_fp_to_fp32<{DTYPE_TO_CPP[src_dtype]}>({lowp_var})" + else: + assert isinstance(kernel, CppKernel) + return f"c10::convert({lowp_var})" + + +index_value_name_counter = 1 + + +def argmax_argmin_prefix(reduction_type, src_dtype, tmpvar): + global index_value_name_counter + struct_name = f"IndexValue_{index_value_name_counter}" + index_value_name_counter += 1 + + # A small annoyance, due to it being a little cumbersome to just throw {} into strings + prefix = [ + f"struct {struct_name} {{size_t index; {DTYPE_TO_CPP[src_dtype]} value;}};", + f"{struct_name} {tmpvar}{{0, {reduction_init(reduction_type, src_dtype)}}};", + ] + + if reduction_type in ["argmax", "argmin"]: + compare_op = "greater_or_nan" if reduction_type == "argmax" else "less_or_nan" + prefix.extend( + [ + "#if !defined(__clang_major__) || __clang_major__ > 9", + f"#pragma omp declare reduction({reduction_type} : {struct_name} :\\", + f" omp_out = {compare_op}(omp_in.value, omp_out.value, omp_in.index, omp_out.index) ? omp_in : omp_out)\\", + f"\tinitializer(omp_priv = {{0, {reduction_init(reduction_type, src_dtype)}}})", + "#endif", + ] + ) + + return prefix + + +@functools.lru_cache +def stride_at(index: sympy.Expr, var: sympy.Symbol): + replacement = {var: var + 1} + new_index = sympy_subs(index, replacement) # type: ignore[arg-type] + return sympy.simplify(new_index - index) + + +@functools.lru_cache +def simplify_index_in_vec_range(index: sympy.Expr, var: sympy.Expr, vec_length: int): + """ + Simplifies the index expression within the range of a vectorized loop. + Given a vectorized loop variable `var` in the range of a loop with `vec_length`, + this function transforms the `index` into an equivalent form. It handles + simplifications for cases where `var` can be expressed as `vec_length * a + b`, + where `b` ranges from 0 to `vec_length - 1`. The function reduces occurrences + of `FloorDiv` and `ModularIndexing` in the `index` with best-effort optimizations. + + NOTE: + The simplified index expression is intended for analysis purposes only, not + for code generation. It replaces `FloorDiv` and `ModularIndexing` with free variables + which are not dependent on the loop variable `var` in the vectorized range. Check + https://github.com/pytorch/pytorch/pull/117221#discussion_r1449746217 for more details. + + Examples: + 1. If `var` is `x3` and `vec_length` is 16, and `x3 = 16*a + b`, then + `FloorDiv(x3, div)` or `ModularIndexing(x3, div, mod)` becomes a free variable + when `div` is divisible by 16. + 2. `ModularIndexing(x3, 1, mod)` can be simplified to `x3 + c` where `c` is a free + variable when `mod` is divisible by 16. + """ + + div_freevar_id = 0 + mod_freevar_id = 0 + + def visit_indexing_div(divisor): + nonlocal div_freevar_id + result = FloorDiv(var, divisor) + if sympy.gcd(divisor, vec_length) == vec_length: + result = sympy.Symbol(f"{var}_div_c{div_freevar_id}") + div_freevar_id += 1 + return result + + def visit_modular_indexing(divisor, modulus): + nonlocal mod_freevar_id + result = ModularIndexing(var, divisor, modulus) + if sympy.gcd(divisor, vec_length) == vec_length: + result = sympy.Symbol(f"{var}_mod_c{mod_freevar_id}") + mod_freevar_id += 1 + elif divisor == 1 and sympy.gcd(modulus, vec_length) == vec_length: + result = var + sympy.Symbol(f"{var}_mod_c{mod_freevar_id}") + mod_freevar_id += 1 + return result + + original_index = index + + div = sympy.Wild("divisor") + if index.has(FloorDiv): + index = index.replace(FloorDiv(var, div), visit_indexing_div) + + mod = sympy.Wild("modulus") + if index.has(ModularIndexing): + index = index.replace(ModularIndexing(var, div, mod), visit_modular_indexing) + + index = sympy.simplify(index) + if index != original_index: + return simplify_index_in_vec_range(index, var, vec_length) + + return index + + +@functools.lru_cache +def stride_at_vec_range(index: sympy.Expr, var: sympy.Symbol, vec_length: int): + index_vec_simplified = simplify_index_in_vec_range(index, var, vec_length) + return stride_at(index_vec_simplified, var) + + +class CppPrinter(ExprPrinter): + def _print_Integer(self, expr): + return f"{int(expr)}L" + + def _print_Where(self, expr): + c = self.paren(self.doprint(expr.args[0])) + p = self.paren(self.doprint(expr.args[1])) + q = self.paren(self.doprint(expr.args[2])) + return f"{c} ? {p} : {q}" + + def _print_ModularIndexing(self, expr): + x, div, mod = expr.args + x = self.paren(self.doprint(x)) + if div != 1: + div = self.paren(self.doprint(div)) + if expr.is_integer: + x = f"c10::div_floor_integer({x}, {div})" + else: + x = f"c10::div_floor_floating(static_cast({x}), static_cast({div}))" + mod = self.paren(self.doprint(mod)) + return f"static_cast<{INDEX_TYPE}>({x}) % static_cast<{INDEX_TYPE}>({mod})" + + def _print_FloorDiv(self, expr): + x, div = expr.args + x = self.paren(self.doprint(x)) + div = self.paren(self.doprint(div)) + if expr.is_integer: + return f"c10::div_floor_integer({x}, {div})" + return f"c10::div_floor_floating(static_cast({x}), static_cast({div}))" + + def _print_floor(self, expr): + assert len(expr.args) == 1 + r = f"std::floor({self._print(expr.args[0])})" + return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r + + def _print_Pow(self, expr): + # Uses float constants to perform FP div + base, exp = expr.args + base = self._print(base) + + if exp == 0.5 or exp == -0.5: + return f"std::sqrt({base})" if exp == 0.5 else f"1.0/std::sqrt({base})" + assert exp.is_integer + exp = int(exp) + if exp > 0: + r = "*".join([self.paren(base)] * exp) + elif exp < 0: + r = "1.0/" + self.paren("*".join([self.paren(base)] * abs(exp))) + else: # exp == 0 + r = "1.0" + + return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r + + def _print_Rational(self, expr): + # Uses float constants to perform FP div + if expr.q == 1: + r = f"{expr.p}" + else: + r = f"{expr.p}.0/{expr.q}.0" + return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r + + def _print_ceiling(self, expr): + assert len(expr.args) == 1 + r = f"std::ceil({self._print(expr.args[0])})" + return f"static_cast<{INDEX_TYPE}>({r})" if expr.is_integer else r + + def _print_Min(self, expr): + args = [self._print(a) for a in expr.args] + if len(args) == 2: + return f"std::min({args[0]}, {args[1]})" + else: + # Initializer list overload + il = "{" + ", ".join(args) + "}" + return f"std::min({il})" + + def _print_Max(self, expr): + args = [self._print(a) for a in expr.args] + if len(args) == 2: + return f"std::max({args[0]}, {args[1]})" + else: + # Initializer list overload + il = "{" + ", ".join(args) + "}" + return f"std::max({il})" + + def _print_Abs(self, expr): + assert len(expr.args) == 1 + return f"std::abs({self._print(expr.args[0])})" + + def _print_cos(self, expr): + assert len(expr.args) == 1 + return f"std::cos({self._print(expr.args[0])})" + + def _print_cosh(self, expr): + assert len(expr.args) == 1 + return f"std::cosh({self._print(expr.args[0])})" + + def _print_acos(self, expr): + assert len(expr.args) == 1 + return f"std::acos({self._print(expr.args[0])})" + + def _print_sin(self, expr): + assert len(expr.args) == 1 + return f"std::sin({self._print(expr.args[0])})" + + def _print_sinh(self, expr): + assert len(expr.args) == 1 + return f"std::sinh({self._print(expr.args[0])})" + + def _print_asin(self, expr): + assert len(expr.args) == 1 + return f"std::asin({self._print(expr.args[0])})" + + def _print_tan(self, expr): + assert len(expr.args) == 1 + return f"std::tan({self._print(expr.args[0])})" + + def _print_tanh(self, expr): + assert len(expr.args) == 1 + return f"std::tanh({self._print(expr.args[0])})" + + def _print_atan(self, expr): + assert len(expr.args) == 1 + return f"std::atan({self._print(expr.args[0])})" + + def _print_Round(self, expr): + assert len(expr.args) == 1 + return f"std::lrint({self._print(expr.args[0])})" + + def _print_RoundDecimal(self, expr): + assert len(expr.args) == 2 + number, ndigits = expr.args + if number.is_integer: + # ndigits < 0 should have been filtered by the sympy function + assert ndigits < 0 + raise ValueError( + f"For integer inputs, only non-negative ndigits are currently supported, but got {ndigits}." + ) + return f"static_cast(std::nearbyint(1e{ndigits} * {self.paren(self._print(number))}) * 1e{-ndigits})" + + +# A function to print, useful for printing sympy symbols. +cexpr = CppPrinter().doprint + + +def cexpr_index(index): + return f"static_cast<{INDEX_TYPE}>({cexpr(index)})" + + +class RecordOptimizationContext: + def __init__(self, func_name: str = ""): + self.func_name = func_name + self.current_node: Optional[torch.fx.Node] = None + self.opt_ctx: Optional[OptimizationContext] = None + + def __enter__(self): + assert V.interpreter + assert V.interpreter.current_node + + self.current_node = V.interpreter.current_node + assert self.current_node is not None + if OptimizationContext.key in self.current_node.meta: + self.opt_ctx = self.current_node.meta[OptimizationContext.key] + else: + self.opt_ctx = OptimizationContext() + assert self.opt_ctx is not None + self.opt_ctx.ops_name = self.func_name + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + assert self.current_node + assert self.opt_ctx + self.current_node.meta[OptimizationContext.key] = self.opt_ctx + + def get_opt_ctx(self): + return self.opt_ctx + + def get_fx_node(self): + assert self.current_node + return self.current_node + + +def get_opt_ctx(node: torch.fx.Node) -> OptimizationContext: + return node.meta.get(OptimizationContext.key, None) + + +def get_current_node_opt_ctx() -> OptimizationContext: + assert V.interpreter.current_node + return get_opt_ctx(V.interpreter.current_node) + + +class CppVecUnsupportedError(Exception): + pass + + +class CppCSEVariable(CSEVariable): + def __init__(self, name, bounds: ValueRanges[Any]): + super().__init__(name, bounds) + self.is_vec = False + self.dtype: Optional[torch.dtype] = None + self.dependent_itervars: Set[sympy.Symbol] = set() + + def update_on_args(self, name, args, kwargs): + if name == "load": + # args[1] is index + self._set_dependent_itervars(args[1]) + else: + # propagate relevant itervars and is_vec from args + self.dependent_itervars.update( + *[ + arg.dependent_itervars + for arg in args + if isinstance(arg, CppCSEVariable) + ] + ) + if name == "index_expr": + self._set_dependent_itervars(args[0]) + if any(arg.is_vec for arg in args if isinstance(arg, CppCSEVariable)): + self.is_vec = True + # NOTE [dtype of CppCSEVariable] + # Deciding dtype according to the current optimization context is not + # always accurate since the dtypes are initialized during dtype propagation + # at the beginning of the codegen. It is possible that some ops are invoked + # during the codegen of the current op and take different dtypes from the + # current op. + # TODO(jgong5): A more accurate way of deciding the dtype of the variables is to + # propagate the dtypes here inside `update_on_args`. + if ( + hasattr(V.interpreter, "current_node") + and get_current_node_opt_ctx() is not None + ): + self.dtype = get_current_node_opt_ctx().dtype + + def _set_dependent_itervars(self, index: sympy.Expr): + """ + Set the relevant itervars for this variable based on the `index` expression. + This includes the itervars directly used in the `index` as well as relevant itervars + of other cse variables used in the `index`. + """ + for s in index.free_symbols: + if s in V.kernel.itervars: + self.dependent_itervars.add(s) # type: ignore[arg-type] + elif s.name in V.kernel.cse.varname_map: # type: ignore[attr-defined] + self.dependent_itervars.update( + V.kernel.cse.varname_map[s.name].dependent_itervars # type: ignore[attr-defined] + ) + + def depends_on(self, itervar: sympy.Symbol): + return itervar in self.dependent_itervars + + +class CppOverrides(OpOverrides): + """Map element-wise ops to C++""" + + @staticmethod + def add(a, b): + return f"decltype({a})({a} + {b})" + + @staticmethod + def sub(a, b): + return f"decltype({a})({a} - {b})" + + @staticmethod + def mul(a, b): + return f"decltype({a})({a} * {b})" + + @staticmethod + def to_dtype(x, dtype, src_dtype=None): + assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP" + return f"c10::convert<{DTYPE_TO_CPP[dtype]}>({x})" + + @staticmethod + def to_dtype_bitcast(x, dtype, src_dtype): + assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP" + if src_dtype in (torch.float16, torch.bfloat16): + # c10::bit_cast requires the source and target have the bitwidth. + # Because the input tensor's dtype could be promoted, e.g. from float16 to + # float, we have to cast the tensor to its original source dtype before + # invoking bit_cast. We also need to convert the bit-casted tensor + # back to float to make sure we keep using higher precision values + # for the rest of the computation. + cast_x = f"c10::convert<{DTYPE_TO_CPP[src_dtype]}>({x})" + cast_x = f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({cast_x})" + return f"c10::convert<{DTYPE_TO_CPP[torch.float32]}>({cast_x})" + else: + return f"c10::bit_cast<{DTYPE_TO_CPP[dtype]}>({x})" + + @staticmethod + def abs(x): + return f"std::abs({x})" + + @staticmethod + def sin(x): + return f"std::sin({x})" + + @staticmethod + def cos(x): + return f"std::cos({x})" + + @staticmethod + def neg(x): + return f"decltype({x})(-{x})" + + @staticmethod + def exp(x): + # return f"Sleef_expf_u10({x})" + return f"std::exp({x})" + + @staticmethod + def exp2(x): + return f"std::exp2({x})" + + @staticmethod + def expm1(x): + return f"std::expm1({x})" + + @staticmethod + def erf(x): + return f"std::erf({x})" + + @staticmethod + def erfc(x): + return f"std::erfc({x})" + + @staticmethod + def erfinv(x): + return f"calc_erfinv({x})" + + @staticmethod + def sqrt(x): + return f"std::sqrt({x})" + + @staticmethod + def rsqrt(x): + return f"1 / std::sqrt({x})" + + @staticmethod + def log1p(x): + bug = config.cpp.inject_log1p_bug_TESTING_ONLY + if bug == "accuracy": + return f"{x} + decltype({x})(1)" + elif bug is None: + return f"std::log1p({x})" + else: + raise AssertionError( + f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}" + ) + + @staticmethod + def tan(x): + return f"std::tan({x})" + + @staticmethod + def tanh(x): + return f"std::tanh({x})" + + @staticmethod + def signbit(x): + return f"std::signbit({x})" + + @staticmethod + def pow(a, b): + return f"std::pow({a}, {b})" + + @staticmethod + def log(x): + return f"std::log({x})" + + @staticmethod + def round(x): + return f"std::nearbyint({x})" + + @staticmethod + def floor(x): + return f"std::floor({x})" + + @staticmethod + def floordiv(a, b): + # a and b are integer type + quot = f"{a} / {b}" + rem = f"{a} % {b}" + return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})" + + @staticmethod + def ceil(x): + return f"std::ceil({x})" + + @staticmethod + def trunc(x): + return f"std::trunc({x})" + + @staticmethod + def truncdiv(a, b): + # a and b are integer type + return f"{a} / {b}" + + @staticmethod + def fmod(a, b): + return f"std::fmod({a}, {b})" + + @staticmethod + def isinf(x): + return f"std::isinf({x})" + + @staticmethod + def isnan(x): + return f"std::isnan({x})" + + @staticmethod + def lgamma(x): + return f"std::lgamma({x})" + + @staticmethod + def acos(x): + return f"std::acos({x})" + + @staticmethod + def acosh(x): + return f"std::acosh({x})" + + @staticmethod + def cosh(x): + return f"std::cosh({x})" + + @staticmethod + def sinh(x): + return f"std::sinh({x})" + + @staticmethod + def asin(x): + return f"std::asin({x})" + + @staticmethod + def asinh(x): + return f"std::asinh({x})" + + @staticmethod + def atan2(x, y): + return f"std::atan2({x}, {y})" + + @staticmethod + def atan(x): + return f"std::atan({x})" + + @staticmethod + def atanh(x): + return f"std::atanh({x})" + + @staticmethod + def copysign(x, y): + return f"std::copysign({x}, {y})" + + @staticmethod + def frexp(x): + cache_keys = f"frexp({x})[0]", f"frexp({x})[1]" + if all(cache_key in V.kernel.cse.cache for cache_key in cache_keys): + return tuple(V.kernel.cse.cache[cache_key] for cache_key in cache_keys) + + code = BracesBuffer() + exponent = V.kernel.cse.newvar() + mantissa = V.kernel.cse.newvar() + code.writeline(f"int32_t {exponent};") + code.writeline(f"auto {mantissa} = std::frexp({x}, &{exponent});") + V.kernel.compute.splice(code) + cse_vars = (mantissa, exponent) + for cache_key, cse_var in zip(cache_keys, cse_vars): + V.kernel.cse.cache[cache_key] = cse_var + return mantissa, exponent + + @staticmethod + def hypot(x, y): + return f"std::hypot({x}, {y})" + + @staticmethod + def log10(x): + return f"std::log10({x})" + + @staticmethod + def nextafter(x, y): + return f"std::nextafter({x}, {y})" + + @staticmethod + def relu(x): + bug = config.cpp.inject_relu_bug_TESTING_ONLY + if bug == "compile_error": + return "compile error!" + elif bug == "runtime_error": + return f"{x}; throw 1" + elif bug == "accuracy": + return f"{x} + decltype({x})(1)" + elif bug is None: + return f"std::max({x}, decltype({x})(0))" + else: + raise AssertionError( + f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}" + ) + + @staticmethod + def minimum(a, b): + return f"min_propagate_nan({a}, {b})" + + @staticmethod + def maximum(a, b): + return f"max_propagate_nan({a}, {b})" + + @staticmethod + def where(a, b, c): + return f"{a} ? {b} : {c}" + + @staticmethod + def mod(a, b): + return f"mod({a}, {b})" + + @staticmethod + def constant(val, dtype): + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + assert opt_ctx and opt_ctx.dtype is not None + dtype = opt_ctx.dtype + if dtype in DTYPE_LOWP_FP: + # Since load promotes all half-precision inputs to float, constants + # must be promoted as well + dtype = torch.float32 + return value_to_cpp(val, DTYPE_TO_CPP[dtype]) + + @staticmethod + def index_expr(expr, dtype): + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + assert opt_ctx and opt_ctx.dtype is not None + dtype = opt_ctx.dtype + return ops.to_dtype(cexpr(V.kernel.rename_indexing(expr)), dtype) + + @staticmethod + def masked(mask, body, other): + code = BracesBuffer() + + # Write masked operation into a lambda + body_var = V.kernel.cse.newvar() + code.writeline(f"auto {body_var} = [&]") + with V.kernel.swap_buffers(code), code.indent(): + result = body() + code.writeline(f"return {result};") + code.writeline(";") + V.kernel.compute.splice(code) + + # Use the lambda's return type as the type of other + other_code = value_to_cpp(other, f"decltype({body_var}())") + return f"{mask} ? {body_var}() : {other_code}" + + @staticmethod + def logical_and(a, b): + return f"{a} && {b}" + + @staticmethod + def logical_not(a): + return f"!{a}" + + @staticmethod + def logical_or(a, b): + return f"{a} || {b}" + + @staticmethod + def logical_xor(a, b): + return f"{a} != {b}" + + @staticmethod + def bitwise_and(a, b): + return f"decltype({a})({a} & {b})" + + @staticmethod + def bitwise_not(a): + return f"decltype({a})(~{a})" + + @staticmethod + def bitwise_or(a, b): + return f"decltype({a})({a} | {b})" + + @staticmethod + def bitwise_xor(a, b): + return f"decltype({a})({a} ^ {b})" + + @staticmethod + def bitwise_left_shift(a, b): + return f"decltype({a})({a} << {b})" + + @staticmethod + def bitwise_right_shift(a, b): + return f"decltype({a})({a} >> {b})" + + @staticmethod + def rand(seed: sympy.Expr, offset: sympy.Expr): + return f"normalized_rand_cpu({seed}, {offset})" + + @staticmethod + def randn(seed: sympy.Expr, offset: sympy.Expr): + return f"randn_cpu({seed}, {offset})" + + @staticmethod + def randint64(seed: sympy.Expr, offset: sympy.Expr, low, high): + return f"randint64_cpu({seed}, {offset}, {low}, {high})" + + @staticmethod + def sigmoid(x): + return f"decltype({x})(1) / (decltype({x})(1) + std::exp(-{x}))" + + @staticmethod + def sign(x): + code = BracesBuffer() + scalar_zero = f"decltype({x})(0)" + scalar_one = f"decltype({x})(1)" + code.writeline("[&]()") + with code.indent(): + code.writeline(f"auto left = {x} > 0 ? {scalar_one} : {scalar_zero};") + code.writeline(f"auto right = {x} < 0 ? {scalar_one} : {scalar_zero};") + code.writeline("return left - right;") + code.writeline("()") + return code + + +CppOverrides._initialize_pointwise_overrides("cpp") + + +class CppVecOverrides(CppOverrides): + """Map element-wise ops to aten vectorization C++""" + + def __new__(cls, *args, **kargs): + self = super().__new__(cls) + + def wrap(func): + # `CppVecKernel` generates both scalar ops and vector ops according to + # whether the inputs are scalars or vectors while all ops in `CppVecOverrides` + # (except for some ops explained below) assume the inputs are vectors. We wrap the ops in + # `CppVecOverrides` to broadcast scalar inputs to vectors if needed or fallback to + # `CppOverrides` when all inputs are scalars. + # + # Notes on ops handled separately in their own functions: + # `ops.masked`: + # needs recursive handling of masked body. + # `ops.index_expr`: + # needs to further analyze the dependency of the index expression on + # the tiling itervar. + def wrapper(*args, **kwargs): + scalars = [ + arg + for arg in args + if isinstance(arg, CppCSEVariable) and not arg.is_vec + ] + vectors = [ + arg + for arg in args + if isinstance(arg, CppCSEVariable) and arg.is_vec + ] + new_args = list(args) + if scalars and vectors: + # broadcast scalar args to vector if needed + new_args = [] + vec_dtype = vectors[0].dtype + for arg in args: + if isinstance(arg, CppCSEVariable) and not arg.is_vec: + assert isinstance(V.kernel, CppVecKernel) + # align scalar data type to the vector for binary ops + if len(args) == 2 and arg.dtype != vec_dtype: + arg = ops.to_dtype(arg, vec_dtype) + arg = arg.value if isinstance(arg, OpsValue) else arg + # See NOTE [dtype of CppCSEVariable]: we have to fix arg.dtype since + # the dtype from optimization context could be wrong. + assert isinstance(arg, CppCSEVariable) + arg.dtype = vec_dtype + new_arg = V.kernel.broadcast(arg) + new_args.append(new_arg) + else: + new_args.append(arg) + if vectors: + return func(*new_args, **kwargs) + else: + # fallback to scalar ops + scalar_ops = super(CppVecOverrides, self) + scalar_func = getattr( + scalar_ops, func.__name__, scalar_ops.__getattr__(func.__name__) # type: ignore[attr-defined] + ) + assert scalar_func is not None + return scalar_func(*args, **kwargs) + + return wrapper + + for name, method in vars(CppVecOverrides).items(): + if getattr(method, "__class__", None) == staticmethod and name not in [ + "masked", + "index_expr", + ]: + setattr(self, name, wrap(method.__func__)) + return self + + @staticmethod + def add(a, b): + return f"{a} + {b}" + + @staticmethod + def sub(a, b): + return f"{a} - {b}" + + @staticmethod + def mul(a, b): + return f"{a} * {b}" + + @staticmethod + def truediv(a, b): + return f"{a} / {b}" + + @staticmethod + def abs(x): + return f"{x}.abs()" + + @staticmethod + def sin(x): + return f"{x}.sin()" + + @staticmethod + def cos(x): + return f"{x}.cos()" + + @staticmethod + def exp(x): + return f"{x}.exp()" + + @staticmethod + def exp2(x): + return f"{x}.exp2()" + + @staticmethod + def expm1(x): + # decompose for a better performance + vec_one = f"decltype({x})(1)" + return f"{x}.exp() - {vec_one}" + + @staticmethod + def erf(x): + return f"{x}.erf()" + + @staticmethod + def erfc(x): + return f"{x}.erfc()" + + @staticmethod + def erfinv(x): + return f"{x}.erfinv()" + + @staticmethod + def sqrt(x): + return f"{x}.sqrt()" + + @staticmethod + def eq(x, y): + return f"to_float_mask({x} == {y})" + + @staticmethod + def ne(x, y): + return f"to_float_mask({x} != {y})" + + @staticmethod + def lt(x, y): + return f"to_float_mask({x} < {y})" + + @staticmethod + def gt(x, y): + return f"to_float_mask({x} > {y})" + + @staticmethod + def le(x, y): + return f"to_float_mask({x} <= {y})" + + @staticmethod + def ge(x, y): + return f"to_float_mask({x} >= {y})" + + @staticmethod + def and_(x, y): + return f"{x} & {y}" + + @staticmethod + def rsqrt(x): + return f"{x}.rsqrt()" + + @staticmethod + def pow(a, b): + return f"{a}.pow({b})" + + @staticmethod + def log(x): + return f"{x}.log()" + + @staticmethod + def round(x): + return f"{x}.round()" + + @staticmethod + def floor(x): + return f"{x}.floor()" + + @staticmethod + def ceil(x): + return f"{x}.ceil()" + + @staticmethod + def trunc(x): + return f"{x}.trunc()" + + @staticmethod + def fmod(a, b): + return f"{a}.fmod({b})" + + @staticmethod + def lgamma(x): + return f"{x}.lgamma()" + + @staticmethod + def logical_and(a, b): + return f"({a} != 0) & ({b} != 0)" + + @staticmethod + def logical_not(a): + return f"{a} == 0" + + @staticmethod + def logical_or(a, b): + return f"({a} != 0) | ({b} != 0)" + + @staticmethod + def logical_xor(a, b): + return f"({a} != 0) ^ ({b} != 0)" + + @staticmethod + def tan(a): + return f"{a}.tan()" + + @staticmethod + def tanh(a): + vec_one = f"decltype({a})(1)" + vec_two = f"decltype({a})(2)" + vec_minus_two = f"decltype({a})(-2)" + return f"{vec_two} / ({vec_one} + ({vec_minus_two} * {a}).exp()) - {vec_one}" + + @staticmethod + def reciprocal(a): + return f"{a}.reciprocal()" + + @staticmethod + def atan(x): + return f"{x}.atan()" + + @staticmethod + def acos(x): + return f"{x}.acos()" + + @staticmethod + def asin(x): + return f"{x}.asin()" + + @staticmethod + def cosh(x): + return f"{x}.cosh()" + + @staticmethod + def sinh(x): + return f"{x}.sinh()" + + @staticmethod + def log10(x): + return f"{x}.log10()" + + @staticmethod + def nextafter(x): + return f"{x}.nextafter()" + + @staticmethod + def copysign(a, b): + return f"{a}.copysign({b})" + + @staticmethod + def atan2(a, b): + return f"{a}.atan2({b})" + + @staticmethod + def hypot(a, b): + return f"{a}.hypot({b})" + + @staticmethod + def atanh(x): + # For real x, atanh(x) = 1/2 * log((1+x)/(1-x)) + vec_one = f"decltype({x})(1)" + vec_one_half = f"decltype({x})(0.5)" + return f"{vec_one_half} * (({vec_one} + {x})/({vec_one} - {x})).log()" + + @staticmethod + def asinh(x): + # For real x, asinh(x) = log(x + sqrt(1 + x**2)) + vec_one = f"decltype({x})(1)" + return f"({x} + ({vec_one} + {x}*{x}).sqrt()).log()" + + @staticmethod + def acosh(x): + return f"{x}.acosh()" + + @staticmethod + def relu(x): + bug = config.cpp.inject_relu_bug_TESTING_ONLY + if bug == "compile_error": + return "compile error!" + elif bug == "runtime_error": + return f"{x}; throw 1" + elif bug == "accuracy": + return f"{x} + decltype({x})(1)" + elif bug is None: + return f"at::vec::clamp_min({x}, decltype({x})(0))" + else: + raise AssertionError( + f"unrecognized config cpp.inject_relu_bug_TESTING_ONLY = {bug!r}" + ) + + # TODO: this seems to be dead + @staticmethod + def sigmoid(x): + return f"decltype({x})(1)/(decltype({x})(1) + {x}.neg().exp())" + + @staticmethod + def neg(x): + return f"{x}.neg()" + + @staticmethod + def floordiv(a, b): + # a and b are integer type + _t = f"decltype({a})" + quot = f"{a} / {b}" + has_rem = f"({a} % {b} != {_t}(0))" + is_neg = f"(({a} < {_t}(0)) != ({b} < {_t}(0)))" + return f"{_t}::blendv({quot}, {quot} - {_t}(1), {has_rem} & {is_neg})" + + @staticmethod + def truncdiv(a, b): + # a and b are integer type + return f"{a} / {b}" + + @staticmethod + def minimum(a, b): + return f"at::vec::minimum({a}, {b})" + + @staticmethod + def maximum(a, b): + return f"at::vec::maximum({a}, {b})" + + @staticmethod + def square(a): + return f"{a} * {a}" + + @staticmethod + def where(a, b, c): + assert isinstance(b, CppCSEVariable) + if b.dtype != torch.float: + raise CppVecUnsupportedError( + "where with non-float tensor is not supported in vectorized codegen" + ) + return f"decltype({b})::blendv({c}, {b}, {a})" + + @staticmethod + def sign(x): + code = BracesBuffer() + vec_zero = f"decltype({x})(0)" + vec_one = f"decltype({x})(1)" + blendv_l = f"decltype({x})::blendv({vec_zero}, {vec_one}, {vec_zero} < {x})" + blendv_r = f"decltype({x})::blendv({vec_zero}, {vec_one}, {x} < {vec_zero})" + code.writeline("[&]()") + with code.indent(): + code.writeline(f"auto left = {blendv_l};") + code.writeline(f"auto right = {blendv_r};") + code.writeline("return left - right;") + code.writeline("()") + return code + + @staticmethod + def to_dtype(x, dtype, src_dtype=None): + assert dtype in [ + torch.bool, + torch.float, + torch.bfloat16, + torch.float16, + torch.uint8, + torch.int8, + torch.int32, + torch.int64, + ], f"{__name__} does not support {dtype}" + node: torch.fx.Node = V.interpreter.current_node + assert node and isinstance(node, torch.fx.Node) + opt_ctx_x = get_opt_ctx(node.args[1]) + assert opt_ctx_x + if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype == torch.bool: + return f"vec_convert_to_mask({x})" + if opt_ctx_x.dtype == torch.bool and dtype in (torch.float, torch.float32): + return f"mask_convert_to_float({x})" + if opt_ctx_x.dtype == torch.bool and dtype in DTYPE_LOWP_FP: + return f"mask_convert_to_lowp<{DTYPE_TO_CPP[dtype]}>({x})" + if opt_ctx_x.dtype == torch.bool and dtype == torch.int64: + return f"mask_convert_to_int64({x})" + if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype in DTYPE_LOWP_FP: + return f"cvt_fp32_to_lowp_fp<{DTYPE_TO_CPP[dtype]}>({x})" + if opt_ctx_x.dtype in DTYPE_LOWP_FP and dtype in (torch.float, torch.float32): + return f"cvt_lowp_fp_to_fp32<{DTYPE_TO_CPP[opt_ctx_x.dtype]}>({x})" + if opt_ctx_x.dtype in (torch.uint8, torch.int8) and dtype in ( + torch.float, + torch.float32, + ): + # Note: this function only convert inputs number of elements equal to at::vec::Vectorized.size() + return f"at::vec::convert_int8_to_float({x})" + if opt_ctx_x.dtype in (torch.float, torch.float32) and dtype in ( + torch.uint8, + torch.int8, + ): + # if we already handle the saturation previously. + # * Pattern match of quantization op in the loop body. + # * Skip the explicit saturation and clamp inside at::vec::convert_float_to_int8. + return f"at::vec::convert_float_to_int8<{DTYPE_TO_CPP[dtype]}>({x})" + if opt_ctx_x.dtype == torch.int32 and dtype == torch.float: + return f"at::vec::convert_to_fp_of_same_size({x})" + if opt_ctx_x.dtype == torch.float and dtype == torch.int32: + return f"at::vec::convert_to_int_of_same_size({x})" + if opt_ctx_x.dtype == torch.int64 and dtype == torch.float: + return f"cvt_int64_to_fp32({x})" + if opt_ctx_x.dtype == torch.float and dtype == torch.int64: + return f"cvt_fp32_to_int64({x})" + if opt_ctx_x.dtype == torch.int32 and dtype == torch.int64: + return f"cvt_int32_to_int64({x})" + if opt_ctx_x.dtype == torch.int64 and dtype == torch.int32: + return f"cvt_int64_to_int32({x})" + # TODO(jgong5): support conversion for other types + # currently we only allow load/store torch.uint8 and handle conversion there + return f"({x})" + + @staticmethod + def log1p(x): + bug = config.cpp.inject_log1p_bug_TESTING_ONLY + if bug == "accuracy": + return f"{x} + decltype({x})(1)" + elif bug is None: + return f"{x}.log1p()" + else: + raise AssertionError( + f"unrecognized config cpp.inject_log1p_bug_TESTING_ONLY = {bug!r}" + ) + + @staticmethod + def masked(mask, body, other): + assert isinstance(V.kernel, CppVecKernel) + code = BracesBuffer() + var = V.kernel.cse.newvar() + with V.kernel.masked(mask) as new_mask: + code.writeline(f"auto {var} = [&]") + with V.kernel.swap_buffers(code), code.indent(): + result = body() + code.writeline(f"return {result};") + code.writeline(";") + V.kernel.compute.splice(code) + + body_code = f"{var}()" + body_code_vec = ( + body_code + if result.is_vec + else f"{V.kernel._get_vec_type(torch.float)}({body_code})" + ) + other_code = value_to_cpp(other, "float") + other_code_vec = f"{V.kernel._get_vec_type(torch.float)}({other_code})" + assert isinstance(new_mask, CppCSEVariable), new_mask + if new_mask.is_vec or result.is_vec: + if result.dtype != torch.float: + raise CppVecUnsupportedError( + "masked with non-float tensor is not supported in vectorized codegen" + ) + type = f"decltype({body_code_vec})" + float_mask = f"to_float_mask({new_mask})" + code = BracesBuffer() + code.writeline("[&]") + with V.kernel.swap_buffers(code), code.indent(): + code.writeline(f"if (all_zero({float_mask}))") + with code.indent(): + code.writeline(f"return {other_code_vec};") + code.writeline("else") + with code.indent(): + code.writeline( + f"return {type}::blendv({other_code_vec}, {body_code_vec}, {float_mask});" + ) + code.writeline("()") + csevar = V.kernel.cse.generate( + V.kernel.compute, + code, + ) + else: + csevar = V.kernel.cse.generate( + V.kernel.compute, f"{mask} ? {body_code} : {other_code}" + ) + # `result` is explicitly added to the args for correct propagation + # of relevant itervars and vectorization status. + csevar.update_on_args("masked", (mask, body, other, result), {}) + return csevar + + @staticmethod + def index_expr(expr, dtype): + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + assert opt_ctx and opt_ctx.dtype is not None + dtype = opt_ctx.dtype + assert dtype == torch.int32 + assert isinstance(V.kernel, CppVecKernel) + index = V.kernel.rename_indexing(expr) + tiling_var = V.kernel.itervars[V.kernel.tiling_idx] + stride = stride_at_vec_range(index, tiling_var, V.kernel.tiling_factor) + if stride.is_number and not V.kernel.index_indirect_depends_on( + index, tiling_var + ): + if stride == 0: + return CppOverrides.index_expr(expr, dtype) + value = ops.to_dtype(cexpr(index), dtype) + if isinstance(value, OpsValue): + value = value.value + csevar = V.kernel.arange(value, stride) + else: + csevar = V.kernel.load_non_contiguous(None, index, dtype, V.kernel.compute) + csevar.update_on_args("index_expr", (expr, dtype), {}) + return csevar + + +CppVecOverrides._initialize_pointwise_overrides("cppvec") + + +class CppTile2DOverrides(CppVecOverrides): + @staticmethod + def index_expr(expr, dtype): + assert isinstance(V.kernel, CppTile2DKernel) + expr = V.kernel.transform_indexing(expr) + return CppVecOverrides.index_expr(expr, dtype) + + +class CppKernel(Kernel): + overrides = CppOverrides # type: ignore[assignment] + sexpr = cexpr + newvar_prefix = "auto " + suffix = ";" + + def __init__(self, args, num_threads): + super().__init__(args) + self.call_ranges: Optional[Tuple[sympy.Expr, ...]] = None + self.ranges: List[sympy.Expr] = [] + self.itervars: List[sympy.Symbol] = [] + self.reduction_depth = None + self.reduction_prefix = IndentedBuffer() + self.reduction_suffix = IndentedBuffer() + self.reduction_var_map = {} + self.reduction_cse = CSE(self.newvar_prefix, self.suffix, name_prefix="tmp_acc") + self.preloads = IndentedBuffer() + self.poststores = IndentedBuffer() + self.num_threads = num_threads # num_threads the kernel specialized for + self.reduction_omp_dec: Dict[Tuple[str, str], str] = {} + + @contextlib.contextmanager + def masked(self, mask): + """Context manager to add an additional mask to loads and stores.""" + prior = self._load_mask + if prior: + mask = ops.and_(mask, prior) + if isinstance(mask, OpsValue): + mask = mask.value + assert isinstance(mask, CppCSEVariable) + # see NOTE [dtype of CppCSEVariable] + # mask's dtype should be bool + mask.dtype = torch.bool + + self._load_mask = mask + try: + yield mask + finally: + self._load_mask = prior + + def cache_fp32_cse_var_before_lowp_store(self, var_to_store): + """ + https://github.com/pytorch/pytorch/issues/115260 + For FusedSchedulerNode[node1, node2], the node2 loads what node1 stores and the buffer is + in low-precision floating point data type. When the output of node1 also serves as the output of the + kernel, the result of nodes would be different from the case when output of node1 is not the output + of the kernel (where we don't need to insert `to_dtype` for legalization). To address the problem, on + storing the lowp node1 output, we also add the inverse dtype conversion to high precision data type + to the cse cache. + + Example (pseudo code): + node1_output = ... + node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) + store(buf, node1_output_lowp) + node2_input_lowp = load(buf) + node2_input = to_dtype(node2_input_lowp, dtype=torch.float) + + Without cse cache trick: + node1_output = ... + node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) + store(buf, node1_output_lowp) + node2_input_lowp = node_output_lowp # hit store cache + node2_input = to_dtype(node2_input_lowp, dtype=torch.float) + + With cse cache trick: + node1_output = ... + node1_output_lowp = to_dtype(node1_output, dtype=torch.bfloat16) + # also add `to_dtype(node1_input_lowp, dtype=torch.float)` -> `node1_output` to cse cache + store(buf, node1_output_lowp) + node2_input_lowp = node_output_lowp # hit store cache + node2_input = node1_output # hit cse cache + """ + + if var_to_store.dtype not in DTYPE_LOWP_FP: + # only need to cache fp32 cse var while var_to_store is lowp data + return + + def find_fp32_var(var, cache): + fp32_cse_var = None + fp32_cse_var_name = None + lowp_dtype = None + for expr, cse_var in cache.items(): + if cse_var == var: + lowp_dtype = is_to_lowp_dtype(expr) + if lowp_dtype: + m = re.search(r"tmp\d+", expr) + assert m + fp32_cse_var_name = m.group() + if fp32_cse_var_name: + for cse_var in cache.values(): + if cse_var.name == fp32_cse_var_name: + fp32_cse_var = cse_var + break + assert fp32_cse_var is not None + return fp32_cse_var, lowp_dtype + + fp32_var, lowp_dtype = find_fp32_var(var_to_store, self.cse.cache) + if fp32_var: + self.cse.cache[ + get_lowp_to_fp32_expr(var_to_store, lowp_dtype, self) + ] = fp32_var + + def scale_index_with_offset( + self, index: sympy.Expr, scale=1, itervar_idx=-1, offset=0 + ): + var = self.itervars[itervar_idx] + replacement = {var: var * scale + offset} + new_index = sympy_subs(index, replacement) + return new_index + + def index_to_str(self, index: sympy.Expr) -> str: + """ + Convert an index expr to a string that can be used in cpp code. + e.g. a sympy expression "s2" may actually appear as "ks1" in the cpp kernel. + """ + return cexpr(self.rename_indexing(index)) + + def index_indirect_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol): + """ + Check if an index has free symbol CppCSEVariable that depends on `itervar`. + """ + return any( + self.cse.varname_map[s.name].depends_on(itervar) # type: ignore[attr-defined] + for s in index.free_symbols + if s.name in self.cse.varname_map # type: ignore[attr-defined] + and isinstance(self.cse.varname_map[s.name], CppCSEVariable) # type: ignore[attr-defined] + ) + + def index_depends_on(self, index: sympy.Expr, itervar: sympy.Symbol): + return itervar in index.free_symbols or self.index_indirect_depends_on( + index, itervar + ) + + def load(self, name: str, index: sympy.Expr): + var = self.args.input(name) + index = self.rename_indexing(index) + line = f"{var}[{cexpr_index(index)}]" + if V.graph.get_dtype(name) in [torch.float16]: + line = f"static_cast({line})" + csevar = self.cse.generate(self.loads, line) + csevar.update_on_args("load", (name, index), {}) + return csevar + + def store(self, name, index, value, mode=None): + assert "buf" in name + var = self.args.output(name) + self.cache_fp32_cse_var_before_lowp_store(value) + index = self.rename_indexing(index) + if mode is None: + line = f"{var}[{cexpr_index(index)}] = {value};" + elif mode == "atomic_add": + if not config.cpp.dynamic_threads and self.num_threads == 1: + line = f"{var}[{cexpr_index(index)}] += {value};" + else: + dtype = V.graph.get_dtype(name) + # mirroring static_cast(...) in load: + value = f"static_cast<{DTYPE_TO_CPP[dtype]}>({value})" + line = f"atomic_add(&{var}[{cexpr_index(index)}], {value});" + else: + raise NotImplementedError(f"store mode={mode}") + self.stores.writeline(DeferredLine(name, line)) + + def reduction(self, dtype, src_dtype, reduction_type, value): + argmax_or_argmin = reduction_type in {"argmax", "argmin"} + + reduction_key = src_dtype, reduction_type, value + if reduction_key in self.reduction_cse.reduction_cache: + return self.reduction_cse.reduction_cache[reduction_key] + + acc = self.reduction_cse.generate( + self.loads, f"reduction {reduction_key}", write=False + ) + self.reduction_var_map[acc] = reduction_type + if argmax_or_argmin: + self.reduction_prefix.writelines( + argmax_argmin_prefix(reduction_type, src_dtype, acc) + ) + compare_op = ( + "greater_or_nan" if reduction_type == "argmax" else "less_or_nan" + ) + assert self.reduction_depth is not None + index = self.itervars[self.reduction_depth] + for i in range(self.reduction_depth + 1, len(self.itervars)): + index = index * self.ranges[i] + self.itervars[i] + self.stores.writelines( + [ + f"if(!({compare_op}({acc}.value, {value}, {acc}.index, {cexpr_index(index)}))) {{", + f" {acc}.index = {cexpr_index(index)}; {acc}.value = {value};", + "}", + ], + ) + else: + acc_type = reduction_acc_type(reduction_type, dtype) + + if (reduction_type, acc_type) not in self.reduction_omp_dec: + if RTYPE_TO_CPP[reduction_type] not in NATIVE_OMP_RTYPES: + # Scalar reduction for other reductions are declared by default + self.reduction_prefix.splice( + f"""\ + #pragma omp declare reduction(\ + {RTYPE_TO_CPP[reduction_type]}:{acc_type}:\ + omp_out = {reduction_combine(reduction_type, "omp_out", "omp_in")}) \ + initializer(omp_priv={{{reduction_init(reduction_type, dtype)}}}) + """ + ) + self.reduction_omp_dec[reduction_type, acc_type] = RTYPE_TO_CPP[ + reduction_type + ] + + self.reduction_prefix.writeline( + f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};" + ) + self.stores.writeline( + f"{acc} = {reduction_combine(reduction_type, acc, value)};" + ) + + result = reduction_project(reduction_type, acc) + self.reduction_cse.reduction_cache[reduction_key] = result + return result + + def store_reduction(self, name, index, value): + index = self.rename_indexing(index) + var = self.args.output(name) + self.reduction_suffix.writeline( + DeferredLine(name, f"{var}[{cexpr_index(index)}] = {value};") + ) + + def set_ranges(self, lengths, reduction_lengths): + if self.call_ranges: + assert self.call_ranges == tuple(lengths) + tuple( + reduction_lengths + ), f"{self.call_ranges} == {tuple(lengths)} + {tuple(reduction_lengths)}" + assert self.reduction_depth == len(lengths) + else: + self.call_ranges = tuple(lengths) + tuple(reduction_lengths) + self.ranges = [self.rename_indexing(x) for x in self.call_ranges] + self.itervars = [ + sympy_index_symbol(f"x{n}") for n in range(len(self.ranges)) + ] + self.reduction_depth = len(lengths) + return ( + self.itervars[: self.reduction_depth], + self.itervars[self.reduction_depth :], + ) + + def size_hint(self): + return V.graph.sizevars.size_hint( + sympy_product(self.call_ranges), fallback=8192 + ) + + def codegen_loops_impl(self, loop_nest, code, worksharing): + threads = parallel_num_threads() + assert self.call_ranges is not None + par_depth = self.decide_parallel_depth( + self.call_ranges[: loop_nest.max_parallel_depth()], threads + ) + with contextlib.ExitStack() as stack: + if par_depth: + if loop_nest.is_reduction_only(): + # need to close the worksharing scope to define reduction vars outside it + worksharing.close() + else: + worksharing.parallel(threads) + loop_nest.mark_parallel(par_depth) + elif threads > 1: + if worksharing.single(): + stack.enter_context(code.indent()) + + def gen_kernel(kernel): + with contextlib.ExitStack() as stack: + assert kernel + if hasattr(kernel, "codegen_inner_loops"): + code.splice(kernel.preloads) + kernel.codegen_inner_loops(code) + stack.enter_context(code.indent()) + code.splice(kernel.loads) + code.splice(kernel.compute) + code.splice(kernel.stores) + if hasattr(kernel, "codegen_inner_loops"): + code.splice(kernel.poststores) + + def get_reduction_code_buffer(loops, is_suffix=True): + for loop in loops: + for kernel in loop.get_kernels(): + if is_suffix: + return kernel.reduction_suffix + else: + return kernel.reduction_prefix + return None + + def gen_loops(loops: List[LoopLevel], in_reduction=False): + with contextlib.ExitStack() as stack_outer: + if loops: + loop = loops[0] + if loop.is_reduction() and not in_reduction: + reduction_prefix = get_reduction_code_buffer( + loops, is_suffix=False + ) + if reduction_prefix: + stack_outer.enter_context(code.indent()) + code.splice(reduction_prefix) + if loop_nest.is_reduction_only() and loop.parallel: + worksharing.parallel(threads) + + for loop in loops: + gen_loop(loop, in_reduction) + + if loops: + loop = loops[0] + if loop_nest.is_reduction_only() and loop.parallel: + worksharing.close() + if loop.is_reduction() and not in_reduction: + code.splice( + get_reduction_code_buffer(loops, is_suffix=True) + ) + + def gen_loop(loop: LoopLevel, in_reduction=False): + with contextlib.ExitStack() as stack: + loop_lines = loop.lines() + if loop_lines is None: + return + code.writelines(loop_lines) + stack.enter_context(code.indent()) + # generate inner loops or loop body + if loop.inner: + gen_loops(loop.inner, loop.is_reduction()) + else: + kernels = loop.get_kernels() + assert len(kernels) == 1 + gen_kernel(kernels[0]) + + stack.enter_context(code.indent()) + if loop_nest.root: + gen_loops(loop_nest.root) + else: + gen_kernel(loop_nest.kernel) + + def codegen_loops(self, code, worksharing): + loop_nest = LoopNestWithSplit.build(self) + self.codegen_loops_impl(loop_nest, code, worksharing) + + @property + def assert_function(self) -> str: + if V.graph.aot_mode: + return "AOTI_TORCH_CHECK" + else: + return "TORCH_CHECK" + + def decide_parallel_depth(self, ranges, threads): + seq = self.size_hint() + par = 1 + depth = 0 + for expr in ranges: + hint = V.graph.sizevars.size_hint(expr, fallback=8192) + if par >= 2 * threads or par == threads: + break + if seq // threads < config.cpp.min_chunk_size: + # not enough work + break + depth += 1 + par *= hint + seq /= hint + # if we assume thread number is dynamic, make sure we + # have at least one parallel scope and let OMP runtime + # to manage the serial vs. parallel. + if config.cpp.dynamic_threads and depth == 0 and len(ranges) > 0: + depth = 1 + return depth + + @contextlib.contextmanager + def write_to_suffix(self): + prior = (self.loads, self.compute, self.stores, self.cse) + self.loads = IndentedBuffer() + self.compute = IndentedBuffer() + self.stores = IndentedBuffer() + self.cse = self.cse.clone() + yield + self.reduction_suffix.splice(self.loads) + self.reduction_suffix.splice(self.compute) + self.reduction_suffix.splice(self.stores) + (self.loads, self.compute, self.stores, self.cse) = prior + + def create_cse_var(self, *args, **kwargs): + return CppCSEVariable(*args, **kwargs) + + +class CppVecKernel(CppKernel): + overrides = CppVecOverrides # type: ignore[assignment] + + def __init__( + self, + args, + num_threads, + tiling_factor=0, + tiling_idx=-1, + tiling_dtype=torch.float, + ): + super().__init__(args, num_threads) + self.vec_isa = codecache.pick_vec_isa() + assert self.vec_isa + if tiling_factor == 0: + tiling_factor = self.vec_isa.nelements(dtype=tiling_dtype) + self.tiling_factor = tiling_factor + self.tiling_idx = tiling_idx + + def _get_num_vectors(self, dtype: torch.dtype) -> int: + num_vectors = math.ceil( + self.tiling_factor * dtype.itemsize * 8 / self.vec_isa.bit_width() + ) + assert num_vectors >= 1 + return num_vectors + + def _get_vec_type(self, dtype: torch.dtype) -> str: + num_vectors = self._get_num_vectors(dtype) + if num_vectors == 1: + return f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>" + else: + return f"at::vec::VectorizedN<{DTYPE_TO_CPP[dtype]},{num_vectors}>" + + def _get_vec_load_line( + self, + var: str, + index: sympy.Expr, + dtype: torch.dtype, + load_mask: Optional[CppCSEVariable] = None, + ): + """ + Get a load line str that loads a vector from `var` at `index` of type `dtype`. + If `load_mask` is not None, we do a masked load accordingly. + Notes on the `dtype`: + 1. We always load `self.tiling_factor` number of elements regardless of the `dtype`. + It means we load half of the vector lanes for 16-bit data types and quarter of the + vector lanes for 8-bit data types. + 2. `torch.bool` and `torch.uint8` could mean masks and we load them as float mask vectors. + """ + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + assert opt_ctx is not None + load_mask_str = f"to_float_mask({load_mask})" if load_mask else None + loadbuf = f"{var} + {cexpr_index(index)}" if index != 0 else var + if dtype in (torch.uint8, torch.int8) and opt_ctx.is_load_int8_as_float: + assert self._get_num_vectors(torch.uint8) == 1 + line = ( + f"masked_load({loadbuf}, {load_mask_str})" + if load_mask_str + else f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>::loadu_one_fourth({loadbuf})" + ) + elif opt_ctx.is_load_as_mask: + line = f"flag_to_float_vec({loadbuf})" + elif dtype in DTYPE_LOWP_FP: + line = ( + f"masked_load({loadbuf}, {load_mask_str})" + if load_mask_str + else f"{self._get_vec_type(dtype)}::loadu({loadbuf}, {self.tiling_factor})" + ) + else: + line = ( + f"masked_load({loadbuf}, {load_mask_str})" + if load_mask_str + else f"{self._get_vec_type(dtype)}::loadu({loadbuf})" + ) + return line + + def load_non_contiguous( + self, + var: Optional[str], + index: sympy.Expr, + dtype: torch.dtype, + buffer: Optional[IndentedBuffer] = None, + ) -> CppCSEVariable: + """ + Load a vector in a non-contiguous way. The vector is initialized from an array that is + filled in an inner loop over the tiling factor. + :param var: buffer to load from, i.e. `var[transformed(index)]`. If None, we load the index + as index expression, i.e. `transformed(index)`. + :param index: index into the `var` or the index expression by its own if `var` is None. + The `index` could contain indirect indexing or the tiling itervar. When used in + the inner loop, the index is transformed as follows: + 1. the index is linearized along the tiling dim. + 2. the indirect indexing vector variables are transformed into arrays over the tiling dim. + :param dtype: data type of `var` or `index` if `var` is None. + :param buffer: the code buffer to write the generated code to. If None, we write to `self.loads`. + :return: a CppCSEVariable that represents the loaded vector. + """ + if buffer is None: + buffer = self.loads + + def get_result_size(dtype: torch.dtype) -> int: + if dtype.itemsize < 4: + return self.tiling_factor * (4 // dtype.itemsize) + else: + return self.tiling_factor + + def vec_to_array(vec_var: CppCSEVariable) -> CppCSEVariable: + assert vec_var.is_vec + code = BracesBuffer() + code.writeline("[&]") + with self.swap_buffers(code), code.indent(): + vec_dtype = vec_var.dtype + assert vec_dtype is not None + if vec_dtype == torch.bool: + vec_dtype = torch.float + result_size = get_result_size(vec_dtype) + code.writeline( + f"__at_align__ std::array<{DTYPE_TO_CPP[vec_dtype]}, {result_size}> tmpbuf;" + ) + line = f"{vec_var}.store(tmpbuf.data());" + code.writeline(line) + code.writeline("return tmpbuf;") + code.writeline("()") + csevar = self.cse.generate(buffer, code) + assert isinstance(csevar, CppCSEVariable) + return csevar + + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + assert opt_ctx is not None + is_mask = opt_ctx.is_load_as_mask + code = BracesBuffer() + code.writeline("[&]") + with self.swap_buffers(code), code.indent(): + result_type = "float" if is_mask else f"{DTYPE_TO_CPP[dtype]}" + result_size = get_result_size(dtype) + result_declare = ( + f"__at_align__ std::array<{result_type}, {result_size}> tmpbuf;" + ) + code.writeline(result_declare) + itervar_inner = sympy_index_symbol( + f"{self.itervars[self.tiling_idx]}_inner" + ) + replacements = {} + for indirect_var in ( + self.cse.varname_map[s.name] # type: ignore[attr-defined] + for s in index.free_symbols + if s.name.startswith("tmp") # type: ignore[attr-defined] + ): + assert isinstance(indirect_var, CppCSEVariable) + if indirect_var.is_vec: + array_var = vec_to_array(indirect_var) + replacements[indirect_var] = f"{array_var}[{itervar_inner}]" + load_mask = None + if self._load_mask is not None: + assert isinstance(self._load_mask, CppCSEVariable), self._load_mask + if self._load_mask.is_vec: + load_mask = ( + f"vector_lane_mask_check({self._load_mask}, {itervar_inner})" + ) + else: + load_mask = f"{self._load_mask} != 0" + index = sympy_subs(index, replacements) # type: ignore[arg-type] + index = self.scale_index_with_offset( + index, itervar_idx=self.tiling_idx, offset=itervar_inner + ) + if codecache.is_gcc(): + code.writeline(f"#pragma GCC unroll {self.tiling_factor}") + else: + code.writeline(f"#pragma unroll {self.tiling_factor}") + code.writeline( + f"for (long {itervar_inner} = 0; {itervar_inner} < {self.tiling_factor}; {itervar_inner}++)" + ) + with code.indent(), contextlib.ExitStack() as stack: + rhs = ( + f"{var}[{cexpr_index(index)}]" + if var is not None + else f"{cexpr_index(index)}" + ) + if is_mask: + rhs = f"flag_to_float_scalar({rhs})" + if load_mask: + code.writeline(f"if ({load_mask})") + stack.enter_context(code.indent()) + code.writeline(f"tmpbuf[{itervar_inner}] = {rhs};") + load_line = self._get_vec_load_line("tmpbuf.data()", 0, dtype) # type: ignore[arg-type] + code.writeline(f"return {load_line};") + code.writeline("()") + csevar = self.cse.generate(buffer, code) + assert isinstance(csevar, CppCSEVariable) + csevar.is_vec = True + return csevar + + def load(self, name: str, index: sympy.Expr): + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + var = self.args.input(name) + index = self.rename_indexing(index) + dtype = V.graph.get_dtype(name) + tiling_var = self.itervars[self.tiling_idx] + stride = stride_at_vec_range(index, tiling_var, self.tiling_factor) + if stride == 0: + # load scalar and lazily broadcast it on demand + return super().load(name, index) + non_contiguous = stride != 1 or self.index_indirect_depends_on( + index, tiling_var + ) + if non_contiguous: + csevar = self.load_non_contiguous(var, index, dtype) + else: + line = self._get_vec_load_line(var, index, dtype, self._load_mask) + csevar = self.cse.generate(self.loads, line) # type: ignore[assignment] + assert isinstance(csevar, CppCSEVariable) + csevar.update_on_args("load", (name, index), {}) + csevar.is_vec = True + return csevar + + def _get_vec_store_line( + self, + value: Union[str, CppCSEVariable], + var: str, + index: sympy.Expr, + dtype: torch.dtype, + ): + """ + Get a store line str that stores `value` into `var` at `index` of `dtype`. + :param value: Vectorized type templaterized on `dtype`. + :param var: buffer to store into. + :index: index into the `var`. + """ + # when value's type is str (e.g., welford reduction), caller should make sure + # it is a vector + assert isinstance(value, str) or ( + isinstance(value, CppCSEVariable) and value.is_vec + ), value + tiling_var = self.itervars[self.tiling_idx] + assert index.has(tiling_var), f"index: {index}, tiling_var: {tiling_var}" + var_expr = f"{var} + {cexpr_index(index)}" + stride = stride_at_vec_range(index, tiling_var, self.tiling_factor) + non_contiguous = stride != 1 or self.index_indirect_depends_on( + index, tiling_var + ) + if non_contiguous: + var_expr = "tmpbuf" + if dtype == torch.float: + line = f"{value}.store({var_expr});" + else: + line = f"{value}.store({var_expr}, {self.tiling_factor});" + if non_contiguous: + inner = sympy_index_symbol(f"{tiling_var}_inner") + new_index = self.scale_index_with_offset( + index, itervar_idx=self.tiling_idx, offset=inner + ) + tmp_bufsize = ( + f"{self.tiling_factor}*sizeof(float)/sizeof({DTYPE_TO_CPP[dtype]})" + ) + line = ( + f"{{ __at_align__ {DTYPE_TO_CPP[dtype]} tmpbuf[{tmp_bufsize}]; {line} " + f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++) " + f"{var}[{cexpr_index(new_index)}] = tmpbuf[{inner}]; }}" + ) + return line + + def store(self, name, index, value, mode=None): + assert "buf" in name + assert mode is None + assert isinstance(value, CppCSEVariable), value + if not value.is_vec: + # this happens when we store a scalar into a vectorized buffer like "fill" + value = self.broadcast(value) + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + var = self.args.output(name) + self.cache_fp32_cse_var_before_lowp_store(value) + index = self.rename_indexing(index) + self.stores.writeline( + DeferredLine( + name, + self._get_vec_store_line(value, var, index, V.graph.get_dtype(name)), + ) + ) + + def reduction(self, dtype, src_dtype, reduction_type, value): + assert reduction_type in { + "max", + "min", + "sum", + "prod", + "xor_sum", + "welford_reduce", + "welford_combine", + } + assert dtype == src_dtype + assert dtype in [torch.float, torch.int64] + assert isinstance(value, CppCSEVariable), value + + if not value.is_vec: + value = self.broadcast(value) + + acc_type = reduction_acc_type(reduction_type, dtype) + acc_type_vec = self.reduction_acc_type_vec(reduction_type, dtype) + + if (reduction_type, acc_type) not in self.reduction_omp_dec: + if RTYPE_TO_CPP[reduction_type] not in NATIVE_OMP_RTYPES: + # Scalar reduction for other reductions are declared by default + self.reduction_prefix.splice( + f"""\ +#pragma omp declare reduction(\ +{RTYPE_TO_CPP[reduction_type]}:{acc_type}:\ +omp_out = {reduction_combine(reduction_type, "omp_out", "omp_in")}) \ +initializer(omp_priv={{{reduction_init(reduction_type, dtype)}}}) + """ + ) + self.reduction_omp_dec[reduction_type, acc_type] = RTYPE_TO_CPP[ + reduction_type + ] + + if (reduction_type, acc_type_vec) not in self.reduction_omp_dec: + self.reduction_prefix.splice( + f"""\ +#pragma omp declare reduction(\ +{RTYPE_TO_CPP[reduction_type]}:{acc_type_vec}:\ +omp_out = {self.reduction_combine_vec(reduction_type, "omp_out", "omp_in")}) \ +initializer(omp_priv={{{self.reduction_init_vec(reduction_type, dtype)}}}) + """ + ) + self.reduction_omp_dec[reduction_type, acc_type_vec] = RTYPE_TO_CPP[ + reduction_type + ] + + reduction_key = src_dtype, reduction_type, value + if reduction_key in self.reduction_cse.reduction_cache: + return self.reduction_cse.reduction_cache[reduction_key] + + acc = self.reduction_cse.generate( + self.loads, f"reduction {reduction_key}", write=False + ) + acc_vec = f"{acc}_vec" + + self.reduction_var_map[acc_vec] = reduction_type + self.reduction_prefix.writeline( + f"{acc_type} {acc} = {reduction_init(reduction_type, dtype)};" + ) + self.reduction_prefix.writeline( + f"{acc_type_vec} {acc_vec} = {self.reduction_init_vec(reduction_type, dtype)};" + ) + self.stores.writeline( + f"{acc_vec} = {self.reduction_combine_vec(reduction_type, acc_vec, value)};" + ) + + tmpvar: Union[str, CSEVariable] + if self.tiling_idx >= self.reduction_depth: + # Horizontal reduction + if is_welford_reduction(reduction_type): + assert ( + self._get_num_vectors(dtype) == 1 + ), "Welford reduction does not support VectorizedN (N>1)" + next_value = f"welford_vec_reduce_all({acc_vec})" + else: + reduce_all_body = ( + "{ return " + + self.reduction_combine_vec(reduction_type, "x", "y") + + "; }" + ) + vec = f"at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>" + vec_reduce_all_func = f"at::vec::vec_reduce_all<{DTYPE_TO_CPP[dtype]}>" + next_value = f"{vec_reduce_all_func}([]({vec}& x, {vec}& y) {reduce_all_body}, {acc_vec})" + + self.reduction_suffix.writeline( + f"{acc} = {reduction_combine(reduction_type, acc, next_value)};" + ) + tmpvar = acc + else: + tmpvar = acc_vec + + result = reduction_project(reduction_type, tmpvar) + self.reduction_cse.reduction_cache[reduction_key] = result + return result + + def store_reduction(self, name, index, value): + index = self.rename_indexing(index) + var = self.args.output(name) + out_dtype = V.graph.get_dtype(name) + # Only float reductions are vectorized currently + dtype = torch.float + if self.tiling_idx >= self.reduction_depth: + # Horizontal reduction + self.reduction_suffix.writeline( + DeferredLine( + name, + f"{var}[{cexpr_index(index)}] = static_cast<{DTYPE_TO_CPP[out_dtype]}>({value});", + ) + ) + else: + # Vertical reduction + store_lines = [] + if out_dtype != dtype: + if out_dtype in DTYPE_LOWP_FP and dtype == torch.float: + _lowp_fp_tmpvar_vec = f"{DTYPE_TO_CPP[out_dtype]}_{value}" + store_lines = [ + DeferredLine( + name, + f"auto {_lowp_fp_tmpvar_vec} = cvt_fp32_to_lowp_fp<{DTYPE_TO_CPP[out_dtype]}>({value});", + ) + ] + value = _lowp_fp_tmpvar_vec + else: + raise AssertionError( + f"Unsupported reduction type from {dtype} to {out_dtype}" + ) + store_lines += [ + DeferredLine( + name, + self._get_vec_store_line(value, var, index, out_dtype), + ) + ] + self.reduction_suffix.writelines(store_lines) + + def broadcast(self, scalar_var: CppCSEVariable) -> CppCSEVariable: + assert not scalar_var.is_vec + if scalar_var.dtype == torch.bool: + vec_var = self.cse.generate( + self.compute, f"to_float_mask({scalar_var.name})" + ) + else: + assert scalar_var.dtype is not None + vec_var = self.cse.generate( + self.compute, + f"{self._get_vec_type(scalar_var.dtype)}({scalar_var.name})", + ) + assert isinstance(vec_var, CppCSEVariable) + vec_var.dtype = scalar_var.dtype + vec_var.dependent_itervars = scalar_var.dependent_itervars + vec_var.is_vec = True + return vec_var + + def arange( + self, index: Union[sympy.Expr, CppCSEVariable], stride: sympy.Symbol + ) -> CppCSEVariable: + if isinstance(index, sympy.Expr): + index = cexpr(index) + else: + assert isinstance(index, CppCSEVariable) + assert not index.is_vec + csevar = self.cse.generate( + self.compute, + f"{self._get_vec_type(torch.int32)}::arange({index}, {stride})", + ) + assert isinstance(csevar, CppCSEVariable) + csevar.dtype = torch.int32 + csevar.is_vec = True + return csevar + + def reduction_init_vec(self, reduction_type, dtype): + scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype] + vec_type = self._get_vec_type(scalar_type) + + if is_welford_reduction(reduction_type): + return f"Welford<{vec_type}>()" + + scalar_init = reduction_init(reduction_type, dtype) + return f"{vec_type}({scalar_init})" + + def reduction_acc_type_vec(self, reduction_type, dtype): + assert reduction_type not in {"argmin", "argmax"} + scalar_type = DTYPE_TO_COMPUTATION_DTYPE[dtype] + vec_type = self._get_vec_type(scalar_type) + if is_welford_reduction(reduction_type): + return f"Welford<{vec_type}>" + + return vec_type + + def reduction_combine_vec(self, reduction_type, var, next_value): + if reduction_type == "max": + return f"at::vec::maximum({var}, {next_value})" + elif reduction_type == "min": + return f"at::vec::minimum({var}, {next_value})" + elif reduction_type == "sum": + return f"{var} + {next_value}" + elif reduction_type == "prod": + return f"{var} * {next_value}" + elif reduction_type == "xor_sum": + return f"{var} ^ {next_value}" + elif reduction_type == "welford_reduce": + return f"welford_combine({var}, {next_value})" + elif reduction_type == "welford_combine": + if isinstance(next_value, tuple): + # When reading a value from Inductor IR we have a tuple of variable names + mean, m2, weight = next_value + else: + # When combining intermediate accumulators we have a Welford struct + mean, m2, weight = reduction_project(reduction_type, next_value) + return f"welford_combine({var}, {{{mean}, {m2}, {weight}}})" + else: + raise NotImplementedError() + + +class CppTile2DKernel(CppVecKernel): + """ + A vector kernel that handles the 2d tiles with the tile size defined in `tiling_factor` on + the inner-most loop level and one of the outer loop level (`outer_tiling_idx`). When the data + tile is accessed in a contiguous way from the outer loop axis, a transposition is applied on the + tile to make the access contiguous from the inner-most loop axis. Then, the same vectorization + logic from its parent `CppVecKernel` is leveraged for load/store/compute. The transposed tile load + and store are generated into kernel.preloads and kernel.poststores buffers. + + The loop structure looks like below: + for ... + for i_outer ... + for ... + for inner_most ... + // generated by CppTile2DKernel + float tmp0[16*16]; at::vec::transpose_mxn<...>(tmp0, in_ptr0 + ..., ...); // into kernel.preloads + float tmp1[16*16]; // into kernel.preloads + for i_inner ... { // the kernel inner loop + vectorized loads/compute/stores (e.g., load tmp0, store tmp1) // into kernel.loads/compute/stores + } + at::vec::transpose_mxn(out_ptr0 + ..., tmp1, ...) // into kernel.poststores + for inner_most ... (tail) + // generated by CppVecKernel + ... + for i_outer ... (tail) + for ... + for ... + // generated by CppKernel + ... + """ + + overrides = CppTile2DOverrides # type: ignore[assignment] + + def __init__(self, args, num_threads, tiling_factor, tiling_indices, tiling_dtype): + super().__init__( + args, num_threads, tiling_factor, tiling_indices[1], tiling_dtype + ) + self.tiling_indices = tiling_indices + + def inner_itervar(self): + return sympy_index_symbol(f"{self.itervars[self.outer_idx]}_inner") + + def need_vec_transpose(self, index): + outer_var = self.itervars[self.outer_idx] + inner_var = self.itervars[self.tiling_idx] + outer_stride = stride_at_vec_range(index, outer_var, self.tiling_factor) + inner_stride = stride_at_vec_range(index, inner_var, self.tiling_factor) + return ( + self._load_mask is None # TODO: support transposition with mask + and outer_stride == 1 + and index.has(inner_var) + and not inner_stride.has(inner_var) + and not inner_stride.has(outer_var) + ) + + def gen_transposed_tile_load_store(self, name, var, index, is_store): + # transposed tile load/store outside the kernel inner loop + dtype = V.graph.get_dtype(name) + factor = self.tiling_factor + src = f"{var} + {cexpr_index(index)}" + dst = "__place_holder__" + ld_src = f"{cexpr_index(stride_at_vec_range(index, self.itervars[self.tiling_idx], self.tiling_factor))}" + ld_dst = f"{factor}" + if is_store: + src, dst = dst, src + ld_src, ld_dst = ld_dst, ld_src + + need_define = True + load_or_store = f"at::vec::transpose_mxn<{DTYPE_TO_CPP[dtype]},{factor},{factor}>({src}, {ld_src}, {dst}, {ld_dst});" + if is_store: + tile_var = self.cse.newvar() + elif load_or_store not in self.cse.cache: + tile_var = self.cse.generate(self.preloads, load_or_store, write=False) + else: + need_define = False + tile_var = self.cse.cache[load_or_store] + + if need_define: + define_line = f"{DTYPE_TO_CPP[dtype]} {tile_var}[{factor}*{factor}] __attribute__ ((aligned ({factor})));" + self.preloads.writeline(define_line) + + load_or_store = load_or_store.replace("__place_holder__", str(tile_var)) + if is_store: + self.poststores.writeline(DeferredLine(name, load_or_store)) + else: + self.preloads.writeline(load_or_store) + + return tile_var + + def load(self, name: str, index: sympy.Expr): + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + var = self.args.input(name) + index = self.rename_indexing(index) + + inner = self.inner_itervar() + if self.need_vec_transpose(index): + tile_var = self.gen_transposed_tile_load_store( + name, var, index, is_store=False + ) + # vector load inside the kernel inner loop + loadbuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}" + dtype = V.graph.get_dtype(name) + line = self._get_vec_load_line(loadbuf, 0, dtype) # type: ignore[arg-type] + csevar = self.cse.generate(self.loads, line) + csevar.update_on_args("load", (name, index), {}) + assert isinstance(csevar, CppCSEVariable) + csevar.is_vec = True + return csevar + else: + new_index = self.transform_indexing(index) + return super().load(name, new_index) + + def store(self, name, index, value, mode=None): + assert "buf" in name + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + var = self.args.output(name) + + inner = self.inner_itervar() + index = self.rename_indexing(index) + assert mode is None + if self.need_vec_transpose(index): + tile_var = self.gen_transposed_tile_load_store( + name, var, index, is_store=True + ) + # vector store inside the kernel inner loop + storebuf = f"{tile_var} + {cexpr_index(inner * self.tiling_factor)}" + if V.graph.get_dtype(name) in DTYPE_LOWP_FP: + line = f"{value}.store({storebuf}, {self.tiling_factor});" + elif V.graph.get_dtype(name) in (torch.uint8, torch.int8): + line = f"{value}.store({storebuf}, {self.tiling_factor});" + else: + line = f"{value}.store({storebuf});" + self.stores.writeline(DeferredLine(name, line)) + else: + new_index = self.transform_indexing(index) + super().store(name, new_index, value, mode) + + def codegen_inner_loops(self, code): + inner = self.inner_itervar() + code.writeline( + f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++)" + ) + + def set_ranges(self, group, reduction_group): + vars = super().set_ranges(group, reduction_group) + # do vertical reduction as the tail loop + self.outer_idx, self.tiling_idx = ( + self.tiling_indices + if self.tiling_indices[1] < self.reduction_depth + else reversed(self.tiling_indices) + ) + return vars + + def transform_indexing(self, index: sympy.Expr) -> sympy.Expr: + return self.scale_index_with_offset( + index, + itervar_idx=self.outer_idx, + offset=self.inner_itervar(), + ) + + +class CppVecKernelChecker(CppVecKernel): + def __init__(self, args, num_threads, tiling_factor, tiling_idx=-1): + super().__init__(args, num_threads, tiling_factor, tiling_idx) + + # Since this kernel is only for checker but does not generate any + # code, so we need to decrease the kernel count. + metrics.generated_kernel_count -= 1 + + # Used to record the graph wrapper code as the wrapper_code status could be + # changed during graph run. + self._orig_wrapper_code = None + + self.simd_vec = True + + self.fast_vec_list = [] + for k, v in CppVecOverrides.__dict__.items(): + if isinstance(v, staticmethod): + self.fast_vec_list.append(k) + self.exit_stack = contextlib.ExitStack() + + # Cache all the load result + self.load_supported_dtypes: List[torch.dtype] = [ + torch.float, + torch.bfloat16, + torch.float16, + torch.bool, + torch.uint8, + torch.int8, + torch.int32, + torch.int64, + ] + self.store_supported_dtypes: List[torch.dtype] = [ + torch.float, + torch.bfloat16, + torch.float16, + torch.uint8, + torch.int8, + torch.int32, + torch.int64, + ] + # Cache the dtypes of the store operation. If the store is mixing dtypes, the + # vectorization would not support it as it is hard to determine the vec dtype + self.store_dtypes: List[torch.dtype] = [] + # The dtype is used for vectorization + self.vec_dtype: torch.dtype = torch.float32 + + def disable_vec(self, msg=None): + if schedule_log.isEnabledFor(logging.DEBUG): + schedule_log.debug("Disabled vectorization: %s", msg) + self.simd_vec = False + + def is_mask(self, name: str, users: Dict[torch.fx.Node, None]): + load_type = V.graph.get_dtype(name) + if load_type == torch.bool: + return all(user.target in ("where", "masked") for user in users.keys()) + elif load_type in (torch.uint8, torch.int8): + """ + If the load value is torch.uint8/int8, then we only support the loaded + value is as the mask. + """ + if not all( + user.target == "to_dtype" and user.args[-1] == torch.bool + for user in users.keys() + ): + return False + + for to_dtype_node in users.keys(): + assert to_dtype_node.target == "to_dtype" + if not all( + user.target in ("where", "masked") + for user in to_dtype_node.users.keys() + ): + return False + return True + else: + return False + + def is_load_int8_as_float(self, name: str, users: Dict[torch.fx.Node, None]): + """ + Check: + 1. load_type is torch.uint8 or torch.int8 + 2. has 1 user node of target to_dtype + 3. dtype of to_dtype is torch.float + """ + load_type = V.graph.get_dtype(name) + if load_type not in (torch.uint8, torch.int8): + return False + if len(users) == 1: + user = next(iter(users)) + if (user.target == "to_dtype") and (user.args[-1] == torch.float): + return True + return False + return False + + def can_store_fp32_as_int8(self, store_var: str, value_node: torch.fx.Node): + """ + Check: + 1. store_type is torch.uint8/torch.int8 + 2. value_node is of target to_dtype + 3. dtype of to_dtype node is torch.uint8/torch.int8 + """ + store_type = V.graph.get_dtype(store_var) + if store_type not in (torch.uint8, torch.int8): + return False + if value_node.target == "to_dtype" and value_node.args[-1] in ( + torch.uint8, + torch.int8, + ): + return True + + return False + + def is_load_integer_scalar_tensor(self, name: str, index: sympy.Expr): + load_dtype = V.graph.get_dtype(name) + buffer = V.graph.get_buffer(name) + return ( + load_dtype in [torch.int32, torch.int64] + and isinstance(buffer, TensorBox) + and isinstance(buffer.data, StorageBox) + and (len(buffer.data.layout.size) == 0) + and (index == 0) + ) + + def load(self, name: str, index: sympy.Expr): + with RecordOptimizationContext(__name__) as node_ctx: + load_dtype = V.graph.get_dtype(name) + opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() + assert opt_ctx + opt_ctx.dtype = load_dtype + opt_ctx.is_load_as_mask = self.is_mask(name, node_ctx.get_fx_node().users) + opt_ctx.is_load_int8_as_float = self.is_load_int8_as_float( + name, node_ctx.get_fx_node().users + ) + + var = self.cse.newvar() + + if len(self.itervars) == 0: + self.disable_vec("not a loop") + return var + + if load_dtype in (torch.bool, torch.uint8, torch.int8) and not ( + opt_ctx.is_load_as_mask or opt_ctx.is_load_int8_as_float + ): + if not opt_ctx.is_load_as_mask: + self.disable_vec(f"{load_dtype} not loaded as mask") + elif not opt_ctx.is_load_int8_as_float: + self.disable_vec(f"{load_dtype} not loaded as float") + return var + + if ( + (load_dtype not in self.load_supported_dtypes) + and not self.is_load_integer_scalar_tensor(name, index) + and index.has(self.itervars[self.tiling_idx]) + ): + self.disable_vec(f"{load_dtype} not supported by load") + return var + + return var + + def store(self, name, index, value, mode=None): + with RecordOptimizationContext(__name__) as node_ctx: + if len(self.itervars) == 0: + self.disable_vec("not a loop") + return self.simd_vec + + store_dtype = V.graph.get_dtype(name) + + opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() + assert opt_ctx + opt_ctx.dtype = store_dtype + + store_dtype = torch.float if store_dtype == torch.float32 else store_dtype + self.store_dtypes.append(store_dtype) + if store_dtype not in self.store_supported_dtypes: + self.disable_vec(f"{store_dtype} not supported by store") + return self.simd_vec + + if store_dtype in (torch.uint8, torch.int8): + value_node = node_ctx.get_fx_node().all_input_nodes[-1] + if not self.can_store_fp32_as_int8(name, value_node): + self.disable_vec("not support store float32 as uint8/int8") + return self.simd_vec + + assert "buf" in name + index = self.rename_indexing(index) + + if mode: + self.disable_vec(f"store mode: {mode}") + return self.simd_vec + + if index.is_number: + self.disable_vec(f"constant store index: {index}") + return self.simd_vec + + def reduction(self, dtype, src_dtype, reduction_type, value): + if ( + (dtype == torch.float and src_dtype == torch.float) + or (dtype == torch.int64 and src_dtype == torch.int64) + and reduction_type in VECTORIZABLE_RTYPES + ): + pass + else: + self.disable_vec( + f"reduction: dtype {dtype}, src_dtype {src_dtype}, reduction_type {reduction_type}" + ) + if is_welford_reduction(reduction_type): + return tuple([self.simd_vec] * 3) + return self.simd_vec + + def store_reduction(self, name, index, value): + return self.simd_vec + + def is_supported_cmp(self, node: torch.fx.Node): + def get_node_dtype(node): + if type(node) == torch.fx.Node: + opt_ctx: OptimizationContext = get_current_node_opt_ctx() + return opt_ctx.dtype if opt_ctx else None + else: + return None + + def get_cmp_dtypes(node: torch.fx.Node): + return get_node_dtype(node.args[-2]), get_node_dtype(node.args[-1]) + + assert len(node.args) >= 2 + # cmp(x, y): y is a magic value like x >= 1 + if type(node.args[-1]) in [int, float]: + return True + # cmp(x, y): x is a magic value like 1 >= y + if type(node.args[-2]) in [int, float]: + return False + + left_dtype, right_dtype = get_cmp_dtypes(node) + if left_dtype is None or right_dtype is None: + # TODO(Eikan): To record, deduce and propagate the data type of every expression. + return True + else: + return left_dtype == right_dtype + + def __exit__(self, exc_type, exc_val, exc_tb): + assert self._orig_wrapper_code is not None + # Restore the wrapper_code + V.graph.wrapper_code = self._orig_wrapper_code + self.exit_stack.__exit__(exc_type, exc_val, exc_tb) + + def __enter__(self): + # Record the graph wrapper code. The wrapper_code status could be + # changed during graph run. Regarding this checker, we also need to + # run the graph but we don't expect to change any status that would + # impact the code generation. Hence, we record the graph wrapper code + # and replace it with a dummy wrapper_code and then restore to the + # original one as long as the checker is finished. + self._orig_wrapper_code = V.graph.wrapper_code + V.graph.wrapper_code = WrapperCodeGen() + + parent_handler = V.MockHandler() + + class VecCheckerProxy: + bin_cmp_ops = ["eq", "ne", "le", "ge", "lt", "gt"] + + @staticmethod + def _bin_cmp_op(x, y): + current_node: torch.fx.Node = V.interpreter.current_node + if not self.is_supported_cmp(current_node): + self.disable_vec(f"binary comparison op: {current_node}") + return self.simd_vec + + @staticmethod + def __getattr__(name): # type: ignore[misc] + def inner(*args, **kwargs): + if name in VecCheckerProxy.bin_cmp_ops: + return VecCheckerProxy._bin_cmp_op(args, kwargs) + + if name not in self.fast_vec_list: + self.disable_vec(f"op: {name}") + + parent_val = getattr(parent_handler, name)(*args, **kwargs) + return pytree.tree_map(lambda _: self.simd_vec, parent_val) + + return inner + + @staticmethod + def load(name: str, index: sympy.Expr): + return self.load(name, index) + + @staticmethod + def store(name, index, value, mode=None): + return self.store(name, index, value, mode=mode) + + @staticmethod + def reduction(dtype, src_dtype, reduction_type, value): + return self.reduction(dtype, src_dtype, reduction_type, value) + + @staticmethod + def store_reduction(name, index, value): + return self.store_reduction(name, index, value) + + @staticmethod + def constant(val, dtype): + with RecordOptimizationContext(__name__) as node_ctx: + opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() + assert opt_ctx + # VecKernel override dtype for constant + # Vectorization only support int32/fp32 now + # So if dtype = int64/fp64, we will cast it to int32/fp32 if possible + i32_iinfo = torch.iinfo(torch.int32) + if ( + dtype == torch.int64 + and val <= i32_iinfo.max + and val >= i32_iinfo.min + ): + opt_ctx.dtype = torch.int32 + + f32_iinfo = torch.finfo(torch.float32) + if dtype == torch.double: + if ( + (val <= f32_iinfo.max and val >= f32_iinfo.min) + or (val == torch.inf) + or (val == -torch.inf) + ): + opt_ctx.dtype = torch.float32 + + supported_dtypes = [ + torch.float32, + torch.int32, + torch.int64, + torch.bfloat16, + torch.float16, + torch.bool, + ] + + if opt_ctx.dtype not in supported_dtypes or ( + opt_ctx.dtype == torch.int32 + and not all( + user.target in VecCheckerProxy.bin_cmp_ops + for user in node_ctx.current_node.users + ) + ): + self.disable_vec(f"constant dtype: {opt_ctx.dtype}") + return val + + @staticmethod + def index_expr(expr, dtype): + assert len(self.ranges) == len(self.itervars) + if not len(self.ranges) or not all( + not isinstance(range, sympy.Expr) or sympy.simplify(range).is_number + for range in self.ranges + ): + # if the range value is sympy.Expr, we might could not deduce the accurate loop interval. + self.disable_vec(f"index_expr: {expr}, dtype {dtype}") + return self.cse.newvar() + + def can_use_int32(): + free_symbols = list(expr.free_symbols) + sizes = { + k: v + for k, v in zip(self.itervars, self.ranges) + if k in free_symbols + } + # Trivial case: Range empty + if any(v == 0 for v in sizes.values()): + return True + + vars_ranges = {k: ValueRanges(0, v - 1) for k, v in sizes.items()} + if not vars_ranges or len(vars_ranges) != len(free_symbols): + i32_iinfo = torch.iinfo(torch.int32) + return ( + expr.is_number + and expr <= i32_iinfo.max + and expr >= i32_iinfo.min + ) + expr_ranges = bound_sympy(expr, vars_ranges) + if math.isinf(expr_ranges.lower) or math.isinf(expr_ranges.upper): # type: ignore[arg-type] + return False + # If something takes the values 0..7, we will compare in the loop + # x < 8. As such, for the loop not to overflow in the last iteration, we want + # to check that expr_ranges.upper + 1 is representable as well + return range_expressable_in_32_bits( + ValueRanges( + int(expr_ranges.lower), int(expr_ranges.upper) + 1 # type: ignore[arg-type] + ) + ) + + with RecordOptimizationContext(__name__) as node_ctx: + assert len(self.ranges) == len(self.itervars) + opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() + assert opt_ctx + if ( + dtype == torch.int64 + and can_use_int32() + and all( + user.target in VecCheckerProxy.bin_cmp_ops + for user in node_ctx.current_node.users + ) + ): + opt_ctx.dtype = torch.int32 + else: + opt_ctx.dtype = dtype + self.disable_vec(f"index_expr: {expr}, dtype {dtype}") + + tmp_var = self.cse.newvar() + return tmp_var + + @staticmethod + def indirect_indexing(index_var, size, check=True): + return sympy_index_symbol(str(index_var)) + + @staticmethod + def masked(mask, body, other): + body() + return self.cse.newvar() + + @staticmethod + def to_dtype(x, dtype, src_dtype=None): + with RecordOptimizationContext(__name__) as node_ctx: + opt_ctx: OptimizationContext = node_ctx.get_opt_ctx() + assert opt_ctx + opt_ctx.dtype = dtype + + cur_node = node_ctx.get_fx_node() + input_value: torch.fx.Node = cur_node.all_input_nodes[1] + if dtype == torch.float: + if input_value.target in [ + "load", + ]: + # Support masked_load for BF16/FP16. Because the legalization will + # insert to_dtype to convert the BF16/FP16 input to FP32. + dtype = ( + V.graph.get_dtype(input_value.args[1]) # type: ignore[arg-type] + if input_value.target == "load" + else input_value.args[-1] + ) + if dtype in [ + torch.float16, + torch.bfloat16, + torch.float, + torch.float64, + torch.uint8, + torch.int8, + torch.int32, + torch.int64, + ]: + # Convert from dtype to torch.float + pass + else: + self.disable_vec(f"to_dtype: dtype {dtype}") + elif dtype in DTYPE_LOWP_FP: + if not all(usr.target == "store" for usr in cur_node.users): + self.disable_vec( + "to_dtype: bfloat16/float16 expecting users are all stores" + ) + return x + + store_names = [usr.args[1] for usr in cur_node.users] + if not all( + V.graph.get_dtype(name) in [dtype] for name in store_names + ): + self.disable_vec( + "to_dtype: expecting all stores into bfloat16 or float16" + ) + return x + elif dtype == torch.bool: + pass + elif dtype in (torch.uint8, torch.int8): + # Only allow below 2 cases: + # Case 1: to_int8 and store which corresponding to the single quant node + # at last of fusion pattern. + is_to_int8_and_store = all( + usr.target in ["store"] for usr in cur_node.users + ) + # Case 2: to_int8 and to_float which corresponding to pair of quant/dequant node + # at middle of fusion pattern. + is_to_int8_and_to_float = all( + ( + usr.target in ["to_dtype"] + and usr.args[2] == torch.float32 + ) + for usr in cur_node.users + ) + if not (is_to_int8_and_store or is_to_int8_and_to_float): + self.disable_vec(f"to_dtype: dtype {dtype}") + elif dtype in [torch.int64, torch.int32]: + pass + else: + self.disable_vec(f"to_dtype: dtype {dtype}") + return x + + self.exit_stack.enter_context(V.set_ops_handler(VecCheckerProxy())) + self.exit_stack.enter_context(V.set_kernel_handler(self)) + return self + + +class CppKernelProxy(CppKernel): + def __init__(self, kernel_group): + super().__init__(kernel_group.args, kernel_group.ws.num_threads) + self.kernel_group = kernel_group + self.loop_nest = None + self.call_ranges = None + self.picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa() + + def data_type_propagation(self, nodes): + for _node in nodes: + assert isinstance(_node, SchedulerNode) + DataTypePropagation.propagate_scheduler_node(_node) + + # Check if all the nodes of a given fx graph can support BF16/FP16 + def is_lowp_fp_scheduler(self, scheduler_node: SchedulerNode): + if not isinstance(scheduler_node._body, ir.LoopBody): + return True + + _lowp_fp_type: Optional[torch.dtype] = None + + # Propagate the dtype to check if all the fx node is bf16/fp16 + DataTypePropagation.propagate_scheduler_node(scheduler_node) + + sub_blocks = [scheduler_node._body.root_block] + list( + scheduler_node._body.subblocks.values() + ) + for sub_block in sub_blocks: + for _node in sub_block.graph.nodes: + # TODO(Eikan): Regarding get_index and index_expr, we should conclude the + # the data type as well. + if _node.op == "placeholder" or _node.target in ( + "get_index", + "index_expr", + ): + continue + + # Fast path if all operations can support bf16/fp16 without converting to fp32 + if _node.target not in [ + "load", + "store", + "abs", + "neg", + "output", + ]: + return False + + if hasattr(_node, "meta") and _node.meta: + assert OptimizationContext.key in _node.meta + opt_ctx: OptimizationContext = _node.meta[OptimizationContext.key] + if not opt_ctx.dtype or opt_ctx.dtype not in DTYPE_LOWP_FP: + return False + if _lowp_fp_type: + assert ( + _lowp_fp_type == opt_ctx.dtype + ), "scheduler node do not support bf16/fp16 mix" + else: + _lowp_fp_type = opt_ctx.dtype + else: + return False + + scheduler_node._lowp_fp_type = _lowp_fp_type # type: ignore[attr-defined] + return True + + def legalize_lowp_fp_dtype(self, nodes): + def add_to_dtype(sub_graph: torch.fx.Graph): + def is_lowp_fp_load(node: torch.fx.Node): + if node.target not in ["load"]: + return False + assert len(node.args) == 3 + load_dtype = V.graph.get_dtype(node.args[1]) # type: ignore[arg-type] + return load_dtype in DTYPE_LOWP_FP + + def is_lowp_fp_store(node: torch.fx.Node): + if node.target != "store": + return False + _, store_var, _, _, _ = node.args + store_dtype = V.graph.get_dtype(store_var) # type: ignore[arg-type] + return store_dtype in DTYPE_LOWP_FP + + sub_graph_nodes = list(sub_graph.nodes) + to_lowp_fp_legalized_nodes = [] + for _node in sub_graph_nodes: + if is_lowp_fp_load(_node): + # No need to promote to float if all users are direct stores + if all(user.target == "store" for user in _node.users): + continue + ops = _node.args[0] + with sub_graph.inserting_after(_node): + to_type_node = sub_graph.call_method( + "to_dtype", args=(ops, _node, torch.float) + ) + to_type_node_args = to_type_node.args + _node.replace_all_uses_with(to_type_node) + to_type_node.args = to_type_node_args + metrics.cpp_to_dtype_count += 1 + elif is_lowp_fp_store(_node): + ops, name, _, value_var, _ = _node.args + # No need to promote to float if it is a user of a load which are all directly stored + if value_var.target == "load" and all( + user.target == "store" for user in value_var.users + ): + continue + dtype = V.graph.get_dtype(name) + with sub_graph.inserting_before(_node): + to_type_node = sub_graph.call_method( + "to_dtype", args=(ops, value_var, dtype) + ) + _node.replace_input_with(value_var, to_type_node) + metrics.cpp_to_dtype_count += 1 + elif _node.target == "reduction": + ( + ops, + dtype, + src_dtype, + reduction_type, + value, + ) = _node.args + if src_dtype in DTYPE_LOWP_FP: + # Since we always convert the load/store value to float if the tensor is bfloat16/float16. + # Therefore, the reduction should never work with bfloat16/float16 value. Hence, we update + # the bfloat16/float16 reduction by + # 1) updating the src_dtype to float + # and 2) updating the dtype to float if it is bfloat16/float16. + assert dtype in [ + torch.float, + torch.bfloat16, + torch.float16, + torch.int64, + ] + _node.args = ( + ops, + torch.float if dtype in DTYPE_LOWP_FP else dtype, + torch.float, + reduction_type, + value, + ) + elif _node.target == "to_dtype" and _node.args[-1] in DTYPE_LOWP_FP: + (ops, x, _) = _node.args + # The legalization always loads the BF16/FP16 tensor as FP32 for computation + # and converts back to BF16/FP16 after the computation. + # Hence, there should be no computation w/ BF16/FP16. + # Therefore, we update the to_dtype by replacing the bf16/fp16 dtype with fp32. + # Save the legalized to_dtype node for the elimination(eliminate_to_dtype step): + # 1) Eliminate the redundant to_dtype node if we have a pattern as follows: + # graph(): + # %lowp_fp_legalized = call_method[target=to_dtype](args = (%ops, %input, torch.float)) + # %to_dtype2 = call_method[target=to_dtype](args = (%ops, %lowp_fp_legalized, torch.bfloat16/float16)) + # Regarding the first to_dtype, it is redundant because + # the second to_type also converts to the torch.bfloat16/torch.float16. + # Hence, we remove the first to_type. + to_lowp_fp_legalized_nodes.append(_node) + _node.args = (ops, x, torch.float) + else: + pass + + def eliminate_to_dtype(sub_graph: torch.fx.Graph): + def _eliminate_duplicate_to_node(sub_graph: torch.fx.Graph): + # Eliminate the redundant to_dtype node. Let's consider a pattern as follows: + # graph(): + # %to_dtype1 = call_method[target=to_dtype](args = (%ops, %input, torch.float), kwargs = {}) + # %to_dtype2 = call_method[target=to_dtype](args = (%ops, %to_dtype1, torch.float), kwargs = {}) + # Regarding the first to_dtype, it is redundant because the second to_type also converts to the + # torch.float. Hence, we remove the first to_type + def _used_by_to(to_node: torch.fx.Node): + return all(usr.target == "to_dtype" for usr in to_node.users) + + all_to_nodes = [ + node for node in sub_graph.nodes if node.target == "to_dtype" + ] + all_to_nodes_and_users = [ + {node: node.users} for node in all_to_nodes if _used_by_to(node) + ] + for node_users in all_to_nodes_and_users: + for node, users in node_users.items(): + if node in sub_graph.nodes and ( + all(usr.args[-1] == node.args[-1] for usr in users) + or ( + node in to_lowp_fp_legalized_nodes + and all( + usr.args[-1] in DTYPE_LOWP_FP for usr in users + ) + ) + ): + val_node = node.all_input_nodes[-1] + node.replace_all_uses_with(val_node) + sub_graph.erase_node(node) + + # For debug mode, the graph of LoopBody will attach a new GraphModule as + # owning_module for debugging while the release mode will not. The lint will + # check whether the graph has owning_module to decide if it needs to check + # call_module. LoopBody might contain get_index as a module call. But it + # is just a function. Hence, it cannot pass the lint check for debug mode. + # We bypass the check if the owning_module is None. Eventually, we should call + # get_index via call_function but not call_module. + if sub_graph.owning_module is None: + sub_graph.lint() + + _eliminate_duplicate_to_node(sub_graph) + + eliminate_to_dtype(sub_graph) + + def _legalize_lowp_fp(loop_body: ir.LoopBody): + sub_blocks = [loop_body.root_block] + list(loop_body.subblocks.values()) + for sub_block in sub_blocks: + add_to_dtype(sub_block.graph) + + if all( + isinstance(_node, SchedulerNode) and self.is_lowp_fp_scheduler(_node) + for _node in nodes + ): + # Mark the load node to load bf16/fp16 + for _node in nodes: + sub_blocks = [_node._body.root_block] + list( + _node._body.subblocks.values() + ) + for sub_block in sub_blocks: + for fx_node in sub_block.graph.nodes: + if fx_node.target in ["load", "store"]: + assert fx_node.meta + assert OptimizationContext.key in fx_node.meta + opt_ctx: OptimizationContext = fx_node.meta[ + OptimizationContext.key + ] + assert opt_ctx.dtype in DTYPE_LOWP_FP + + # Bypass the legalization as the kernel can run with bf16/fp16 directly + return + + for _node in nodes: + assert isinstance(_node, SchedulerNode) + assert isinstance(_node._body, ir.LoopBody) + node: SchedulerNode = _node + + def is_memory_copy_scheduler_node(node: SchedulerNode): + op_counts = node.read_writes.op_counts + return ( + len(op_counts) == 2 and "load" in op_counts and "store" in op_counts + ) + + should_legalize = not is_memory_copy_scheduler_node(node) + if should_legalize: + body: ir.LoopBody = node._body + _legalize_lowp_fp(body) + + def codegen_nodes(self, nodes: List[SchedulerNode]): + # Legalize BF16 node by adding to_dtype explicitly + self.legalize_lowp_fp_dtype(nodes) + self.data_type_propagation(nodes) + + assert len(nodes) >= 1 + first_node = nodes[0] + vec_dtype = ( + first_node._lowp_fp_type # type: ignore[attr-defined] + if all( + hasattr(_node, "_lowp_fp_type") + and _node._lowp_fp_type == first_node._lowp_fp_type # type: ignore[attr-defined] + for _node in nodes + ) + else torch.float + ) + + kernel_group = self.kernel_group + _, (group, reduction_group) = max( + nodes, key=lambda x: int(x.is_reduction()) + ).group + + self.set_ranges(group, reduction_group) + + def codegen_kernel(cls, *args): + with kernel_group.new_kernel(cls, *args) as kernel: + # Ugly hack to maintain the metrics kernel count since + # we only count in CppKernelProxy, not those contained in it + metrics.generated_kernel_count -= 1 + + run(kernel) + return kernel + + def run(kernel): + vars, reduction_vars = kernel.set_ranges(group, reduction_group) + in_suffix = False + for node in nodes: + if node.group[1] in [ + (group, reduction_group), + (group + reduction_group, ()), + ]: + assert not in_suffix + node.run(vars, reduction_vars) + else: + in_suffix = True + assert node.group[1] == ( + group, + (), + ), f"unexpected group: {node.group[1]} != {group}, {reduction_group}" + # we can fuse in some extra pointwise into the suffix + with kernel.write_to_suffix(): + node.run(vars, ()) + + scalar_kernel = codegen_kernel(CppKernel) + V.graph.removed_buffers |= scalar_kernel.removed_buffers + V.graph.inplaced_to_remove |= scalar_kernel.inplaced_to_remove + self.loop_nest = LoopNestWithSplit.build(scalar_kernel) + + if not self.picked_vec_isa: + return + + def select_tiling_indices(tiling_factor): + all_index = [] + for node in nodes: + rw = dependencies.extract_read_writes(node._body, *node._sizes) + all_index += [dep.index for dep in itertools.chain(rw.reads, rw.writes)] + contig_vars = set() + contig_vars_list = [] + non_contig_stride_const = set() + non_contig_stride_other = set() + for index in all_index: + for var in index.free_symbols: + if not re.search(r"^d\d+$", var.name): + continue + stride = stride_at_vec_range(index, var, tiling_factor) + if stride == 0: + continue + elif stride == 1: + contig_vars.add(int(var.name[1:])) + contig_vars_list.append(int(var.name[1:])) + elif all(s.name.startswith("s") for s in stride.free_symbols): + non_contig_stride_const.add(int(var.name[1:])) + else: + non_contig_stride_other.add(int(var.name[1:])) + contig_only = ( + contig_vars - non_contig_stride_const - non_contig_stride_other + ) + if len(contig_vars) == 0: + # no contiguous vars + return [len(self.itervars) - 1] + if contig_only: + return sorted(contig_only)[-1:] + contig_and_const_stride = ( + contig_vars & non_contig_stride_const + ) - non_contig_stride_other + contig_vars_sorted = sorted(contig_vars) + if ( + len(contig_vars_sorted) == 2 + and contig_vars_sorted[-1] in contig_and_const_stride + and contig_vars_sorted[-1] == len(self.itervars) - 1 + ): + return contig_vars_sorted + return sorted(contig_vars_sorted, key=contig_vars_list.count)[-1:] + + def select_tiling(dtype: torch.dtype = torch.float): + # TODO(jgong5): support alternative tiling factors and data types + tiling_factor = self.picked_vec_isa.nelements(dtype=dtype) + tiling_indices = select_tiling_indices(tiling_factor) + if tiling_indices: + could_vec = True + for tiling_indice in tiling_indices: + with CppVecKernelChecker( + deepcopy(self.kernel_group.args), + parallel_num_threads(), + tiling_factor, + tiling_indice, + ) as vec_checker: + run(vec_checker) + could_vec = could_vec and vec_checker.simd_vec + if not could_vec: + break + if could_vec: + if len(tiling_indices) == 1: + return [tiling_factor], tiling_indices + if len(tiling_indices) == 2: + return [tiling_factor, tiling_factor], tiling_indices + return [], [] + + # Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args. + # But the generated scalar kernel has updated these global contexts. Hence, the other kernels + # should not do this again to avoid context conflict. By now, we only control the + # config.inplace_buffers. In the future, we could maintain more contexts. + with torch._inductor.config.patch(inplace_buffers=False): + tiling_factors, tiling_indices = select_tiling(vec_dtype) + assert len(tiling_factors) == len(tiling_indices) + try: + if len(tiling_indices) == 1: + vec_kernel = codegen_kernel( + CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype + ) + metrics.generated_cpp_vec_kernel_count += 1 + main_loop, tail_loop = self.loop_nest.split_with_tiling( + tiling_indices[0], factor=tiling_factors[0] + ) + main_loop.set_kernel(vec_kernel) + tail_loop.set_kernel(scalar_kernel) + main_loop.simd_vec = True + tail_loop.simd_omp = True + # We chop the loop into two cubes by the nelements - main loop and tail loop. + # Regarding the main loop, it is straightforward that it could be vectorized with + # nelements. But for the tail loop, it still could be vectorized. For example, + # if the nelements is 8(256bits), then the tail loop still could be vectorized + # as 4(128bits). + tail_loop.simd_nelements = tiling_factors[0] // 2 + elif len(tiling_indices) == 2: + assert ( + tiling_indices[1] == len(self.itervars) - 1 + and tiling_factors[0] == tiling_factors[1] + ) + tile2d_kernel = codegen_kernel( + CppTile2DKernel, tiling_factors[0], tiling_indices, vec_dtype + ) + vec_kernel = codegen_kernel( + CppVecKernel, tiling_factors[0], tiling_indices[0], vec_dtype + ) + metrics.generated_cpp_vec_kernel_count += 2 + outer_main_loop, outer_tail_loop = self.loop_nest.split_with_tiling( + tiling_indices[0], factor=tiling_factors[0] + ) + outer_tail_loop.set_kernel(scalar_kernel) + ( + inner_main_loop, + inner_tail_loop, + ) = outer_main_loop.split_with_tiling( + tiling_indices[1] - tiling_indices[0], factor=tiling_factors[0] + ) + inner_main_loop.set_kernel(tile2d_kernel) + inner_tail_loop.set_kernel(vec_kernel) + except CppVecUnsupportedError as e: + if schedule_log.isEnabledFor(logging.DEBUG): + schedule_log.debug("Disabled vectorization: %s", e) + + def codegen_loops(self, code, worksharing): + self.codegen_loops_impl(self.loop_nest, code, worksharing) + + +class ReasonFusedNodes(Enum): + SAME_VARS_REDUCE = "same_vars_reduce" + COMPATIBLE_REDUCTION = "compatible_reduction" + COMPATIBLE_RANGES_NO_REDUCTION = "compatible_ranges_no_reduction" + + +class CppScheduling(BaseScheduling): + # ctypes limits the number of args to 1024, refer to: + # https://github.com/python/cpython/commit/a285af7e626d1b81cf09f8b2bf7656f100bc1237 + # We set a conservative threshold here. + MAX_FUSED_KERNEL_ARGS_NUM = 500 + + def __init__(self, scheduler): + self.scheduler = scheduler + self.get_kernel_group() + self._ready_to_flush = False + + def _set_flush_status(self, status: bool): + self._ready_to_flush = status + + def group_fn(self, sizes): + return tuple(tuple(map(V.graph.sizevars.simplify, s)) for s in sizes) + + def get_kernel_group(self): + from .cpp_wrapper_cpu import CppWrapperCpu + + self.kernel_group: Union[CppWrapperKernelGroup, KernelGroup] + if isinstance(V.graph.wrapper_code, CppWrapperCpu): + self.kernel_group = CppWrapperKernelGroup() + else: + self.kernel_group = KernelGroup() + + def fuse(self, node1, node2): + if node1.is_foreach() or node2.is_foreach(): + return ForeachKernelSchedulerNode.fuse(node1, node2) + else: + if ( + self._why_fuse_nodes(node1, node2) + == ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION + ): + assert isinstance(node1, (SchedulerNode, FusedSchedulerNode)) + assert isinstance(node2, (SchedulerNode, FusedSchedulerNode)) + + _, (vars1, reduce1) = node1.group + _, (vars2, reduce2) = node2.group + assert reduce1 == () and reduce2 == (), (reduce1, reduce2) + + def get_indexing_ranges_exprs(node): + if isinstance(node, FusedSchedulerNode): + assert len(node.snodes) > 0 + return get_indexing_ranges_exprs(node.snodes[0]) + else: + assert isinstance(node, SchedulerNode) + comp_buffer = node.node + assert isinstance(comp_buffer, ir.ComputedBuffer) + _, body, _ = comp_buffer.get_default_sizes_body() + return body.var_ranges, list(body.indexing_exprs.values()) + + node_to_recomp = node1 if len(vars1) < len(vars2) else node2 + assert isinstance(node_to_recomp, SchedulerNode) + + ref_node = node2 if len(vars1) < len(vars2) else node1 + + extra_indexing_constraints = get_indexing_ranges_exprs(ref_node) + + node_to_recomp.recompute_size_and_body( + extra_indexing_constraints=extra_indexing_constraints + ) + + _, (vars1, _) = node1.group + _, (vars2, _) = node2.group + assert vars1 == vars2, (vars1, vars2) + + return FusedSchedulerNode.fuse(node1, node2) + + def _why_fuse_nodes(self, node1, node2) -> Optional[ReasonFusedNodes]: + _, (vars1, reduce1) = node1.group + _, (vars2, reduce2) = node2.group + + if vars1 == vars2 and reduce1 == reduce2: + return ReasonFusedNodes.SAME_VARS_REDUCE + if reduce1 == () and vars1 == vars2 + reduce2: + return ReasonFusedNodes.COMPATIBLE_REDUCTION + if self._can_fuse_nodes_with_compatible_ranges(node1, node2): + return ReasonFusedNodes.COMPATIBLE_RANGES_NO_REDUCTION + # TODO(jansel): allow fusion pointwise (vars1, ()) suffix? + return None + + def _can_fuse_nodes_with_compatible_ranges(self, node1, node2): + # Here we try to fuse SchedulerNode/FusedSchedulerNode with compatible ranges + # e.g. (s0, s1, s2) and (s0 * s1 * s2) + _, (vars1, reduce1) = node1.group + _, (vars2, reduce2) = node2.group + + c1 = reduce1 == () and reduce2 == () + c2 = math.prod(vars1) == math.prod(vars2) + c3 = len(vars1) == 1 or len(vars2) == 1 + if not (c1 and c2 and c3): + return False + + node_to_recomp = node1 if len(vars1) < len(vars2) else node2 + ref_node = node2 if len(vars1) < len(vars2) else node1 + + # We can not recompute sizes and body for nodes other than SchedulerNode + # TODO: we can extend fusion support with compatible ranges for FusedSchedulerNode + if isinstance(node_to_recomp, FusedSchedulerNode): + return False + + def get_buffer(node): + if isinstance(node, FusedSchedulerNode): + assert len(node.snodes) > 0 + # use the last scheduler node from the list as it has the most + # relevant indexing expressions + return get_buffer(node.snodes[-1]) + else: + assert isinstance(node, SchedulerNode) + return node.node + + ref_node_buffer = get_buffer(ref_node) + if isinstance(ref_node_buffer, ir.TemplateBuffer): + return False + + assert isinstance(ref_node_buffer, ir.ComputedBuffer) + + # It may happen that node1 and node2 compatible number of elements + # but different original ranges, for example: + # {d0: s0, d1: s1, d2: s2} vs {d0: s0*s1*s2} + # See https://github.com/pytorch/pytorch/pull/120077/files#r1500427848 for more details + # TODO: we can fix if it allows us to CSE at least one of the variables + var_ranges1 = ref_node_buffer.get_read_writes().var_ranges + var_ranges2 = node_to_recomp.node.get_read_writes().var_ranges + if var_ranges1 != var_ranges2: + return False + + return True + + def _can_fuse_horizontal_impl(self, node1, node2): + assert isinstance(node1, (FusedSchedulerNode, SchedulerNode)) + assert isinstance(node2, (FusedSchedulerNode, SchedulerNode)) + return self._why_fuse_nodes(node1, node2) is not None + + def can_fuse_horizontal(self, node1, node2): + if ( + len(node1.get_nodes()) + len(node2.get_nodes()) + > config.cpp.max_horizontal_fusion_size + ): + return False + + return self._can_fuse_horizontal_impl(node1, node2) + + def can_fuse_vertical(self, node1, node2): + return self._can_fuse_horizontal_impl(node1, node2) and not node1.is_reduction() + + def codegen_nodes(self, nodes: List[SchedulerNode]): + """ + Turn an set of pre-fused nodes into a C++ kernel. + """ + kernel_group = self.kernel_group + + cpp_kernel_proxy = CppKernelProxy(kernel_group) + cpp_kernel_proxy.codegen_nodes(nodes) + + kernel_group.finalize_kernel(cpp_kernel_proxy, nodes) + + args_num = self._get_scheduled_num_args() + if args_num > CppScheduling.MAX_FUSED_KERNEL_ARGS_NUM: + self._set_flush_status(True) + + def _get_scheduled_num_args(self): + return self.kernel_group.get_num_args() + + def ready_to_flush(self): + return self._ready_to_flush + + def codegen_sync(self): + pass + + def flush(self): + self.kernel_group.codegen_define_and_call(V.graph.wrapper_code) + self.get_kernel_group() + self._set_flush_status(False) + + +class KernelGroup: + def __init__(self): + super().__init__() + self.args = KernelArgs() + self.loops_code = BracesBuffer() + self.ws = WorkSharing(self.loops_code) + self.stack = contextlib.ExitStack() + self.stack.enter_context(self.ws) + self.scheduled_nodes = [] + + def new_kernel(self, cls, *args): + return cls(self.args, parallel_num_threads(), *args) + + def finalize_kernel(self, new_kernel, nodes): + self.scheduled_nodes += nodes + code = self.loops_code + ws = self.ws + new_kernel.codegen_loops(code, ws) + + def get_num_args(self): + arg_defs, call_args, arg_types = self.args.cpp_argdefs() + args_num = len(arg_defs) + return args_num + + def codegen_define_and_call(self, wrapper): + self.stack.close() + if not self.scheduled_nodes: + return + + fused_name = ( + get_fused_kernel_name(self.scheduled_nodes, config.cpp.descriptive_names) + if config.cpp.descriptive_names + else "" + ) + kernel_name = "_".join(["cpp", fused_name, wrapper.next_kernel_suffix()]) + arg_defs, call_args, arg_types = self.args.cpp_argdefs() + arg_defs = ",\n".ljust(25).join(arg_defs) + code = BracesBuffer() + # TODO: support kernel profile on other platforms + enable_kernel_profile = ( + config.cpp.enable_kernel_profile and sys.platform == "linux" + ) + if enable_kernel_profile: + code.writelines(["#include "]) + kernel_decl_name = kernel_name if V.graph.cpp_wrapper else "kernel" + code.writeline(codecache.cpp_prefix()) + + code.writeline(f'extern "C" void {kernel_decl_name}({arg_defs})') + with code.indent(): + if enable_kernel_profile: + graph_id = V.graph.graph_id + prefix = "graph_" + str(graph_id) + "_" if graph_id is not None else "" + code.writelines( + [ + f'RECORD_FUNCTION("{prefix + kernel_name}", c10::ArrayRef({{}}));' + ] + ) + for old, new in self.args.aliases(): + code.writeline(f"auto {old} = {new};") + code.splice(self.loops_code) + + codecache_def = IndentedBuffer() + if not V.graph.cpp_wrapper: + codecache_def.writeline(f"async_compile.cpp_pybinding({arg_types!r}, '''") + codecache_def.splice(code) + if not V.graph.cpp_wrapper: + codecache_def.writeline("''')") + + codecache_str = codecache_def.getvalue() + # TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does + # not use BracesBuffer, so we have no good indicator of a C++ buffer atm. + codecache_str = codecache_str.replace("#pragma CMT", "//") + wrapper.define_kernel(kernel_name, codecache_str, cuda=False) + # generate the code to call this + wrapper.generate_kernel_call( + kernel_name, call_args, cuda=False, arg_types=arg_types + ) + + +class CppWrapperKernelGroup(KernelGroup): + def __init__(self): + super().__init__() + self.args = CppWrapperKernelArgs() + + +class WorkSharing: + def __init__(self, code): + self.code = code + self.in_parallel = False + self.num_threads = None + self.stack = contextlib.ExitStack() + + def parallel(self, threads): + if self.in_parallel and threads != self.num_threads: + # wrong number of threads + self.close() + if not self.in_parallel: + self.num_threads = threads + self.in_parallel = True + if config.cpp.dynamic_threads: + self.code.writeline("#pragma omp parallel") + else: + self.code.writeline(f"#pragma omp parallel num_threads({threads})") + self.stack.enter_context(self.code.indent()) + + def single(self): + if self.in_parallel: + self.code.writeline("#pragma omp single") + return self.in_parallel + + def close(self): + self.stack.close() + self.in_parallel = False + + def __enter__(self): + self.stack.__enter__() + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + self.stack.__exit__(exc_type, exc_val, exc_tb) + + +@dataclasses.dataclass +class LoopLevel: + var: Optional[sympy.Expr] = None + size: Optional[sympy.Expr] = None + offset: sympy.Expr = sympy.Integer(0) + steps: sympy.Expr = sympy.Integer(1) + parallel: int = 0 + simd_omp: bool = False + simd_vec: bool = False + collapsed: bool = False + reduction_var_map: Optional[Dict[str, str]] = None + parent: Optional["LoopLevel"] = None + # the next inner level of the loop, empty if it is inner-most + # contains >1 LoopLevel if the inner level of loop is split + inner: List["LoopLevel"] = dataclasses.field(default_factory=list) + # kernel assigned to this loop level, only valid when it is a leaf + kernel: Optional[CppKernel] = None + + def __post_init__(self): + # Regarding the C++/OpenMP backend, `codecache.pick_vec_isa()` to check + # vectorization ISA is a time-consuming and one-shot operation. It leads + # to taking a longer time to import `codegen.cpp` package because the + # `LoopLevel` of the package is decorated by `@dataclasses.dataclass` while + # the decorator will invoke `codecache.pick_vec_isa()` to initialize the + # `simd_nelements` of the `LoopLevel`. It might introduce additional compilation + # overhead to the Triton backend. Therefore, we moved the `simd_nelements` to + # `__post_init__` + picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa() + self.simd_nelements: int = picked_vec_isa.nelements() if picked_vec_isa else 0 + + def get_kernels(self) -> List[CppKernel]: + """Get all kernel objects under this loop level""" + if self.kernel: + return [self.kernel] + kernels = [] + for loop in self.inner: + kernels += loop.get_kernels() + return kernels + + def set_kernel(self, kernel: CppKernel): + """ + Set the kernel under this loop level. No split is allowed under + this loop level. + """ + if not self.inner: + self.kernel = kernel + loop: Optional[LoopLevel] = self + assert loop is not None + if loop.is_reduction(): + loop.reduction_var_map = kernel.reduction_var_map.copy() + loop = loop.parent + while loop is not None and loop.is_reduction(): + assert loop.reduction_var_map is not None + loop.reduction_var_map.update(kernel.reduction_var_map) + loop = loop.parent + return + assert len(self.inner) == 1 + self.inner[0].set_kernel(kernel) + + def get_loops_at(self, depth) -> List["LoopLevel"]: + if depth == 0: + return [self] + else: + loops = [] + for loop in self.inner: + loops += loop.get_loops_at(depth - 1) + return loops + + def is_reduction(self): + return bool(self.reduction_var_map) + + def split_with_tiling(self, depth, factor): + def clone_inner(): + inner = [] + if self.inner: + for loop in self.inner: + inner.append(loop.clone()) + return inner + + def do_split_with_tiling(): + sympy_factor = sympy.Integer(factor) + + offset = FloorDiv(self.size, sympy_factor) * sympy_factor + main_loop = LoopLevel(self.var, offset) + main_loop.steps = sympy_factor + main_loop.parallel = self.parallel + main_loop.collapsed = False + main_loop.reduction_var_map = self.reduction_var_map + main_loop.inner = clone_inner() + if main_loop.inner: + for loop in main_loop.inner: + loop.parent = main_loop + + tail_loop = LoopLevel(self.var, self.size) + tail_loop.offset = offset + tail_loop.parallel = self.parallel + tail_loop.collapsed = False + tail_loop.reduction_var_map = self.reduction_var_map + tail_loop.inner = clone_inner() + if tail_loop.inner: + for loop in tail_loop.inner: + loop.parent = tail_loop + + return main_loop, tail_loop + + if depth == 0: + main_loop, tail_loop = do_split_with_tiling() + parent = self.parent + if parent: + parent.inner = [main_loop, tail_loop] + main_loop.parent = parent + tail_loop.parent = parent + return main_loop, tail_loop + else: + assert len(self.inner) == 1 + return self.inner[0].split_with_tiling(depth - 1, factor) + + def clone(self): + loop = copy(self) + loop.inner = [] + if self.inner: + for inner_loop in self.inner: + inner_loop_clone = inner_loop.clone() + inner_loop_clone.parent = loop + loop.inner.append(inner_loop_clone) + loop.kernel = deepcopy(self.kernel) + return loop + + def lines(self): + offset_expr = cexpr_index(self.offset) + size_expr = cexpr_index(self.size) + if config.cpp.no_redundant_loops and offset_expr == size_expr: + return None + if self.reduction_var_map: + reduction = " " + " ".join( + f"reduction({RTYPE_TO_CPP[rtype]}:{var})" + for var, rtype in self.reduction_var_map.items() + ) + else: + reduction = "" + simd = ( + f"simd simdlen({self.simd_nelements}) " + if self.simd_omp and self.simd_nelements > 1 + else "" + ) + if self.parallel: + # TODO(jansel): look into chunk size and other schedules + line1 = f"#pragma omp for{reduction} " + if self.parallel > 1: + line1 += f" collapse({self.parallel})" + if self.simd_omp: + line1 = line1.replace(" for ", f" for {simd}") + elif self.simd_vec: + line1 = "" + elif self.simd_omp: + line1 = f"#pragma omp {simd}{reduction}" + elif not self.reduction_var_map and codecache.is_gcc(): + line1 = "#pragma GCC ivdep" + else: + line1 = "" + offset_str = f"{INDEX_TYPE} {self.var}={offset_expr}" + size_str = f"{self.var}<{size_expr}" + steps_str = f"{self.var}+={cexpr_index(self.steps)}" + line2 = f"for({offset_str}; {size_str}; {steps_str})" + if self.collapsed or not line1: + return [line2] + return [line1, line2] + + +@dataclasses.dataclass +class LoopNestWithSplit: + """ + A loop-nest like structure but with some loop level split along + the loop range into the main tiling loop and the tail. It is built + with the `build` method as a loop nest and then split with + `split_with_tiling` at some depth. + + A typical case is for vectorization where we typically split at the inner-most + loop level. A more complicated case is 2D tiling where we split at + both inner-most and outer levels. + """ + + root: Optional[List[LoopLevel]] = None + kernel: Optional[CppKernel] = None + + @staticmethod + def build(kernel: CppKernel): + """Build a LoopNest with the given `kernel` as the leaf""" + itervars = kernel.itervars + ranges = kernel.ranges + reduction_depth = kernel.reduction_depth + assert reduction_depth is not None + + root: List[LoopLevel] = [] + levels: List[LoopLevel] = root + loop: Optional[LoopLevel] = None + for loop_idx, (var, size) in enumerate(zip(itervars, ranges)): + loop = LoopLevel(var, size, parent=loop) + if loop_idx >= reduction_depth: + loop.reduction_var_map = kernel.reduction_var_map.copy() + levels.append(loop) + levels = loop.inner + loop_nest = LoopNestWithSplit(root) + if loop: + loop.kernel = kernel + else: + loop_nest.kernel = kernel + return loop_nest + + def __bool__(self): + return bool(self.root) + + def get_loops_at(self, depth) -> List[LoopLevel]: + """Get all the loop levels at the given `depth` (most outer loop has depth 0)""" + loops: List[LoopLevel] = [] + assert self.root is not None + for loop in self.root: + loops += loop.get_loops_at(depth) + return loops + + @cache_on_self + def max_parallel_depth(self): + """ + Maximal allowed depth for parallelism: + 1) Levels without splitting and + 2) All reduction or non-reduction levels + When the loop is split at the top level, the max depth is 1. + """ + max_depth = 0 + assert self.root is not None + loops = self.root + if len(loops) > 1: + return 1 + is_reduction = loops[0].is_reduction() if loops else False + while len(loops) == 1 and loops[0].is_reduction() == is_reduction: + max_depth += 1 + loops = loops[0].inner + return max_depth + + def is_reduction_only(self): + """ + Whether all the loops are for reduction. Reduction loops + are always the inner most ones. + """ + return ( + self.root is not None and len(self.root) > 0 and self.root[0].is_reduction() + ) + + def mark_parallel(self, par_depth): + assert ( + par_depth <= self.max_parallel_depth() + ), "Parallel depth cannot exceed the maximal allowed parallel depth" + assert self.root is not None + loops = self.root + for loop in loops: + loop.parallel = par_depth + for i in range(1, par_depth): + loops = loops[0].inner + loops[0].collapsed = True + + def split_with_tiling(self, depth, factor): + """ + Split the loop into main and tail loops at given `depth` so that the range + of the main loop has range `floor_div(range, factor) * factor` and + the tail loop handles the remainder. The main loop is tiled + according to the `factor`. + """ + loops = self.get_loops_at(depth) + assert len(loops) == 1 + split_loops = loops[0].split_with_tiling(0, factor) + if depth == 0: + self.root = split_loops + return split_loops