diff --git a/ckpts/universal/global_step40/zero/21.mlp.dense_4h_to_h.weight/fp32.pt b/ckpts/universal/global_step40/zero/21.mlp.dense_4h_to_h.weight/fp32.pt new file mode 100644 index 0000000000000000000000000000000000000000..2515367869fda2ea1ce92e7084add0ae3a8fb064 --- /dev/null +++ b/ckpts/universal/global_step40/zero/21.mlp.dense_4h_to_h.weight/fp32.pt @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:8372e8f5a716ef6fd653031d370765ed4ac4f06eaf8cc2391d39b84c5df2da3c +size 33555533 diff --git a/lm-evaluation-harness/tests/testdata/arithmetic_5da-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/arithmetic_5da-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..a751332bc6fbae7b680f4412609dcf0695eb972c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/arithmetic_5da-v0-loglikelihood @@ -0,0 +1 @@ +49edb1e735660631ea6cc309721e6c0b80b7106a613a6959514852ca48f1130e \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..f808af460570411d4616b6187dd67fa2ddd6ecee --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_irregular_1-v0-loglikelihood @@ -0,0 +1 @@ +7fab9f02e71a224ae7931aa77f8a9a61d887a7480756adc965d4746e97fb04a5 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adjective_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adjective_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..d765bb590653a5c4eb3e2517f9b3788cdefc7fa5 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_determiner_noun_agreement_with_adjective_1-v0-loglikelihood @@ -0,0 +1 @@ +007c47e5fbf88119c5180feef75e1345d448e56adcd4c7ab2d52fb8d67350d34 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..da3deb1aaf576e90101d03035ae3f9f41b80fd27 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_existential_there_object_raising-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_existential_there_object_raising": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_existential_there_object_raising": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_1-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_1-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..7697713f85bef6fd2d624f5b9075aae5bfd8f168 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_existential_there_quantifiers_1-v0-loglikelihood @@ -0,0 +1 @@ +d77594382e6d9af31a8b8ef00ba1ef6c29d6be6d0ddb7a9c27ef25ace654e05a \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_passive_2-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_passive_2-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..5a4dd092c4a82b59d702c027e16c684c634649e1 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_passive_2-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_passive_2": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_passive_2": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..a7f8f1825ac91b69d8ba1a50a5f87f048aeb3f78 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_sentential_subject_island-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_sentential_subject_island": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_sentential_subject_island": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_wh_questions_object_gap-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_wh_questions_object_gap-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..c3e6af12f2da0a1857c0f0456bf4052d5558329e --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_wh_questions_object_gap-v0-loglikelihood @@ -0,0 +1 @@ +4d4aaa0274ccd485ff8430ed61b8f83806febe18c16616c7d050f637a0463eba \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap-v0-res.json b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..14befd4ab6450dbb2147d66e5458981756bfc25b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap-v0-res.json @@ -0,0 +1 @@ +{"results": {"blimp_wh_vs_that_with_gap": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_wh_vs_that_with_gap": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..34b959139635a241b0fe814ce2ae7240c32a7c1c --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/blimp_wh_vs_that_with_gap_long_distance-v0-loglikelihood @@ -0,0 +1 @@ +eed67491bdf493a1dad8f1d9766bc7bd0e79946365b833c0f7eb81ac998e3dca \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/cb-v1-res.json b/lm-evaluation-harness/tests/testdata/cb-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..1cff410b2c35a16b457d163d95ac7cbd8eb704e2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/cb-v1-res.json @@ -0,0 +1 @@ +{"results": {"cb": {"acc": 0.3392857142857143, "acc_stderr": 0.06384226561930825, "f1": 0.2819143819143819}}, "versions": {"cb": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..dcc5116204283941b74dfea97e3a1ce5edd9dc27 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-business_ethics-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-business_ethics": {"acc": 0.29, "acc_norm": 0.27, "acc_norm_stderr": 0.044619604333847394, "acc_stderr": 0.045604802157206845}}, "versions": {"hendrycksTest-business_ethics": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_psychology-v0-res.json b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_psychology-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..42b781149bff323130b4491463168f03bdfbb9a9 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/hendrycksTest-high_school_psychology-v0-res.json @@ -0,0 +1 @@ +{"results": {"hendrycksTest-high_school_psychology": {"acc": 0.24587155963302754, "acc_norm": 0.23302752293577983, "acc_norm_stderr": 0.018125669180861493, "acc_stderr": 0.018461940968708436}}, "versions": {"hendrycksTest-high_school_psychology": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/lambada_standard-v0-res.json b/lm-evaluation-harness/tests/testdata/lambada_standard-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..1f15d0be56b5edf18ad7cc2bec4977fae99f060b --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/lambada_standard-v0-res.json @@ -0,0 +1 @@ +{"results": {"lambada_standard": {"acc": 0.0, "acc_stderr": 0.0, "ppl": 1.6479047769869253, "ppl_stderr": 0.006497321146240192}}, "versions": {"lambada_standard": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-res.json b/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..240f7b6b42b77b8e94c1ec2eab2df808181a2cb3 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/math_counting_and_prob-v1-res.json @@ -0,0 +1 @@ +{"results": {"math_counting_and_prob": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"math_counting_and_prob": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mutual-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/mutual-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..0022f466d25f3e3a639720e4600732c9c0c1141d --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mutual-v0-loglikelihood @@ -0,0 +1 @@ +f759213a28f0412510bf1a24c9cab0dae64bdee902d42a26225295445e7779db \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/mutual-v0-res.json b/lm-evaluation-harness/tests/testdata/mutual-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..2d240576b3b8d891ff91a47770df9990edf34105 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/mutual-v0-res.json @@ -0,0 +1 @@ +{"results": {"mutual": {"mrr": 0.5023513920240772, "mrr_stderr": 0.009501864812936679, "r@1": 0.22573363431151242, "r@1_stderr": 0.014053085820407457, "r@2": 0.4221218961625282, "r@2_stderr": 0.016602191705517556}}, "versions": {"mutual": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/openbookqa-v0-res.json b/lm-evaluation-harness/tests/testdata/openbookqa-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..04f4c25442e678a63d3f6213dc9364bfa25b1a7a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/openbookqa-v0-res.json @@ -0,0 +1 @@ +{"results": {"openbookqa": {"acc": 0.214, "acc_norm": 0.276, "acc_norm_stderr": 0.020011219298073517, "acc_stderr": 0.018359797502387046}}, "versions": {"openbookqa": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_books3-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_books3-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..6ff7a517112eba76e15e999e9974124e04f07a83 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_books3-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_books3": {"bits_per_byte": 1.2901280503011222e-06, "byte_perplexity": 1.0000008942490204, "word_perplexity": 1.0000052870063607}}, "versions": {"pile_books3": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_enron-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_enron-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..a4a49493d56db35c99b7e58ea66ebc21304184b2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_enron-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_enron": {"bits_per_byte": 0.0003163902828673244, "byte_perplexity": 1.000316440339552, "word_perplexity": 1.00224668051869}}, "versions": {"pile_enron": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_enron-v1-res.json b/lm-evaluation-harness/tests/testdata/pile_enron-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..abe7b45f9aff9b6427068ceb1ba39977fa843c38 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_enron-v1-res.json @@ -0,0 +1 @@ +{"results": {"pile_enron": {"bits_per_byte": 0.0004564546920781453, "byte_perplexity": 1.000316440339552, "word_perplexity": 1.00224668051869}}, "versions": {"pile_enron": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_github-v1-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_github-v1-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..cf8251e4f68e2e893624142031e80d4d5777f4f2 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_github-v1-loglikelihood_rolling @@ -0,0 +1 @@ +df384c3df3d8f53273e97127c5bb84c17e638acad7d6bc9c91f6dee96d43b639 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-loglikelihood_rolling b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-loglikelihood_rolling new file mode 100644 index 0000000000000000000000000000000000000000..47805d3b5fe82555e4d61a90b43c157c974ddabc --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-loglikelihood_rolling @@ -0,0 +1 @@ +0f1c23a1f4ddec0c2b1ff34de8d1505b0eb9e2868d8edbcc1b6de13d02f32036 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..f718e515ba0cedfa5156b3a260d50ed55efc32e4 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_opensubtitles-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_opensubtitles": {"bits_per_byte": 1.5213441136639177e-05, "byte_perplexity": 1.0000152135568616, "word_perplexity": 1.0000856162053249}}, "versions": {"pile_opensubtitles": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/pile_philpapers-v0-res.json b/lm-evaluation-harness/tests/testdata/pile_philpapers-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..be561fe2f8a6fe5eba08c4c1efd113075da42e1f --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/pile_philpapers-v0-res.json @@ -0,0 +1 @@ +{"results": {"pile_philpapers": {"bits_per_byte": 6.241575895982095e-06, "byte_perplexity": 1.0000062415953748, "word_perplexity": 1.0000409888564146}}, "versions": {"pile_philpapers": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/random_insertion-v0-res.json b/lm-evaluation-harness/tests/testdata/random_insertion-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..9b5f507f6745120414ba5cfd39fc92eac4e48424 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/random_insertion-v0-res.json @@ -0,0 +1 @@ +{"results": {"random_insertion": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"random_insertion": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/triviaqa-v1-res.json b/lm-evaluation-harness/tests/testdata/triviaqa-v1-res.json new file mode 100644 index 0000000000000000000000000000000000000000..985f64c8e0eb3bc1dd563becf0cdf186baa172cd --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/triviaqa-v1-res.json @@ -0,0 +1 @@ +{"results": {"triviaqa": {"acc": 0.0, "acc_stderr": 0.0}}, "versions": {"triviaqa": 1}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v0-res.json b/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v0-res.json new file mode 100644 index 0000000000000000000000000000000000000000..5e68fa8dc6ace5fd91322aacdc74de3814832d9a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/truthfulqa_gen-v0-res.json @@ -0,0 +1 @@ +{"results": {"truthfulqa_gen": {"bleu_acc": 0.0, "bleu_acc_stderr": 0.0, "bleu_diff": 0.0, "bleu_diff_stderr": 0.0, "bleu_max": 0.0, "bleu_max_stderr": 0.0, "bleurt_acc": 0.8372093023255814, "bleurt_acc_stderr": 0.012923696051772253, "bleurt_diff": 0.13967358205134603, "bleurt_diff_stderr": 0.00532907098769571, "bleurt_max": -1.4402793981454072, "bleurt_max_stderr": 0.0021884846359458963, "rouge1_acc": 0.0, "rouge1_acc_stderr": 0.0, "rouge1_diff": 0.0, "rouge1_diff_stderr": 0.0, "rouge1_max": 0.0, "rouge1_max_stderr": 0.0, "rouge2_acc": 0.0, "rouge2_acc_stderr": 0.0, "rouge2_diff": 0.0, "rouge2_diff_stderr": 0.0, "rouge2_max": 0.0, "rouge2_max_stderr": 0.0, "rougeL_acc": 0.0, "rougeL_acc_stderr": 0.0, "rougeL_diff": 0.0, "rougeL_diff_stderr": 0.0, "rougeL_max": 0.0, "rougeL_max_stderr": 0.0}}, "versions": {"truthfulqa_gen": 0}} \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/truthfulqa_mc-v1-loglikelihood b/lm-evaluation-harness/tests/testdata/truthfulqa_mc-v1-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..4bab2d1f4df241fe0cf47f22bf185d52f9b783ef --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/truthfulqa_mc-v1-loglikelihood @@ -0,0 +1 @@ +1e07020e9cf41d46ed65312eb39d2b8e6599673d4f0d6b67c0d0eba0efb493bb \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/winogrande-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/winogrande-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..97866f6ce45cb9a213d27310a78b7cdeab23bc9a --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/winogrande-v0-loglikelihood @@ -0,0 +1 @@ +90a3eff49de9173964d46f5ed57bcf9a78a72dd1bfe0e5323b25cebb40b49ea9 \ No newline at end of file diff --git a/lm-evaluation-harness/tests/testdata/wsc273-v0-loglikelihood b/lm-evaluation-harness/tests/testdata/wsc273-v0-loglikelihood new file mode 100644 index 0000000000000000000000000000000000000000..9d592917bd96783c290237446891eef56083a693 --- /dev/null +++ b/lm-evaluation-harness/tests/testdata/wsc273-v0-loglikelihood @@ -0,0 +1 @@ +26450d414c4581feb51a09882080e7a9b95882e7eab47b1751a4a6024b5a60ee \ No newline at end of file diff --git a/venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_and.png b/venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_and.png new file mode 100644 index 0000000000000000000000000000000000000000..07cac5b54f8a39774c151fc70a00552ba83fe5fc --- /dev/null +++ b/venv/lib/python3.10/site-packages/sympy/plotting/tests/test_region_and.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:115d0b9b81ed40f93fe9e216b4f6384cf71093e3bbb64a5d648b8b9858c645a0 +size 6864 diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e3885d381f9c26e34c08af326364bf8309e1be98 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__init__.py @@ -0,0 +1,67 @@ +# Copyright 2021 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_sentencepiece_available, + is_tokenizers_available, + is_torch_available, + is_vision_available, +) + + +_import_structure = {"processing_layoutxlm": ["LayoutXLMProcessor"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_layoutxlm"] = ["LayoutXLMTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_layoutxlm_fast"] = ["LayoutXLMTokenizerFast"] + +if TYPE_CHECKING: + from .processing_layoutxlm import LayoutXLMProcessor + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_layoutxlm import LayoutXLMTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_layoutxlm_fast import LayoutXLMTokenizerFast + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1815ea9ee3e0395ea59a47c14c697576bae305ed Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..186192c42ea16afcbf65cbe24fe9a55cf0e59752 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/processing_layoutxlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..6c441688d63e7c4d294172d663f1c5eabd14de43 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..eb5d5a197e485eb056263ab14b65e250a7f2557e Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/__pycache__/tokenization_layoutxlm_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py new file mode 100644 index 0000000000000000000000000000000000000000..b1d885255b7cc846acaf59af31e8cec8544bd2ae --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/processing_layoutxlm.py @@ -0,0 +1,200 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +Processor class for LayoutXLM. +""" +import warnings +from typing import List, Optional, Union + +from ...processing_utils import ProcessorMixin +from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy +from ...utils import TensorType + + +class LayoutXLMProcessor(ProcessorMixin): + r""" + Constructs a LayoutXLM processor which combines a LayoutXLM image processor and a LayoutXLM tokenizer into a single + processor. + + [`LayoutXLMProcessor`] offers all the functionalities you need to prepare data for the model. + + It first uses [`LayoutLMv2ImageProcessor`] to resize document images to a fixed size, and optionally applies OCR to + get words and normalized bounding boxes. These are then provided to [`LayoutXLMTokenizer`] or + [`LayoutXLMTokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`, + `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned + into token-level `labels` for token classification tasks (such as FUNSD, CORD). + + Args: + image_processor (`LayoutLMv2ImageProcessor`, *optional*): + An instance of [`LayoutLMv2ImageProcessor`]. The image processor is a required input. + tokenizer (`LayoutXLMTokenizer` or `LayoutXLMTokenizerFast`, *optional*): + An instance of [`LayoutXLMTokenizer`] or [`LayoutXLMTokenizerFast`]. The tokenizer is a required input. + """ + + attributes = ["image_processor", "tokenizer"] + image_processor_class = "LayoutLMv2ImageProcessor" + tokenizer_class = ("LayoutXLMTokenizer", "LayoutXLMTokenizerFast") + + def __init__(self, image_processor=None, tokenizer=None, **kwargs): + if "feature_extractor" in kwargs: + warnings.warn( + "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" + " instead.", + FutureWarning, + ) + feature_extractor = kwargs.pop("feature_extractor") + + image_processor = image_processor if image_processor is not None else feature_extractor + if image_processor is None: + raise ValueError("You need to specify an `image_processor`.") + if tokenizer is None: + raise ValueError("You need to specify a `tokenizer`.") + + super().__init__(image_processor, tokenizer) + + def __call__( + self, + images, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, + text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, + boxes: Union[List[List[int]], List[List[List[int]]]] = None, + word_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> BatchEncoding: + """ + This method first forwards the `images` argument to [`~LayoutLMv2ImagePrpcessor.__call__`]. In case + [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and + bounding boxes along with the additional arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, + together with resized `images`. In case [`LayoutLMv2ImagePrpcessor`] was initialized with `apply_ocr` set to + `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional + arguments to [`~LayoutXLMTokenizer.__call__`] and returns the output, together with resized `images``. + + Please refer to the docstring of the above two methods for more information. + """ + # verify input + if self.image_processor.apply_ocr and (boxes is not None): + raise ValueError( + "You cannot provide bounding boxes " + "if you initialized the image processor with apply_ocr set to True." + ) + + if self.image_processor.apply_ocr and (word_labels is not None): + raise ValueError( + "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." + ) + + if return_overflowing_tokens is True and return_offsets_mapping is False: + raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") + + # first, apply the image processor + features = self.image_processor(images=images, return_tensors=return_tensors) + + # second, apply the tokenizer + if text is not None and self.image_processor.apply_ocr and text_pair is None: + if isinstance(text, str): + text = [text] # add batch dimension (as the image processor always adds a batch dimension) + text_pair = features["words"] + + encoded_inputs = self.tokenizer( + text=text if text is not None else features["words"], + text_pair=text_pair if text_pair is not None else None, + boxes=boxes if boxes is not None else features["boxes"], + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + return_tensors=return_tensors, + **kwargs, + ) + + # add pixel values + images = features.pop("pixel_values") + if return_overflowing_tokens is True: + images = self.get_overflowing_images(images, encoded_inputs["overflow_to_sample_mapping"]) + encoded_inputs["image"] = images + + return encoded_inputs + + def get_overflowing_images(self, images, overflow_to_sample_mapping): + # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image + images_with_overflow = [] + for sample_idx in overflow_to_sample_mapping: + images_with_overflow.append(images[sample_idx]) + + if len(images_with_overflow) != len(overflow_to_sample_mapping): + raise ValueError( + "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" + f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" + ) + + return images_with_overflow + + def batch_decode(self, *args, **kwargs): + """ + This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please + refer to the docstring of this method for more information. + """ + return self.tokenizer.batch_decode(*args, **kwargs) + + def decode(self, *args, **kwargs): + """ + This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer + to the docstring of this method for more information. + """ + return self.tokenizer.decode(*args, **kwargs) + + @property + def model_input_names(self): + return ["input_ids", "bbox", "attention_mask", "image"] + + @property + def feature_extractor_class(self): + warnings.warn( + "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.", + FutureWarning, + ) + return self.image_processor_class + + @property + def feature_extractor(self): + warnings.warn( + "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.", + FutureWarning, + ) + return self.image_processor diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py new file mode 100644 index 0000000000000000000000000000000000000000..bbfdf44a1e60208f1b7376bbfc53a839397c75df --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm.py @@ -0,0 +1,1170 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for LayoutXLM model.""" + + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple, Union + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, PreTrainedTokenizer +from ...tokenization_utils_base import ( + BatchEncoding, + EncodedInput, + PreTokenizedInput, + TextInput, + TextInputPair, + TruncationStrategy, +) +from ...utils import PaddingStrategy, TensorType, add_end_docstrings, logging +from ..xlm_roberta.tokenization_xlm_roberta import ( + SPIECE_UNDERLINE, + VOCAB_FILES_NAMES, +) + + +logger = logging.get_logger(__name__) + + +LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r""" + add_special_tokens (`bool`, *optional*, defaults to `True`): + Whether or not to encode the sequences with the special tokens relative to their model. + padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): + Activates and controls padding. Accepts the following values: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): + Activates and controls truncation. Accepts the following values: + + - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or + to the maximum acceptable input length for the model if that argument is not provided. This will + truncate token by token, removing a token from the longest sequence in the pair if a pair of + sequences (or a batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths + greater than the model maximum admissible input size). + max_length (`int`, *optional*): + Controls the maximum length to use by one of the truncation/padding parameters. + + If left unset or set to `None`, this will use the predefined model maximum length if a maximum length + is required by one of the truncation/padding parameters. If the model has no specific maximum input + length (like XLNet) truncation/padding to a maximum length will be deactivated. + stride (`int`, *optional*, defaults to 0): + If set to a number along with `max_length`, the overflowing tokens returned when + `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence + returned to provide some overlap between truncated and overflowing sequences. The value of this + argument defines the number of overlapping tokens. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_tensors (`str` or [`~file_utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + return_token_type_ids (`bool`, *optional*): + Whether to return token type IDs. If left to the default, will return the token type IDs according to + the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are token type IDs?](../glossary#token-type-ids) + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are attention masks?](../glossary#attention-mask) + return_overflowing_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch + of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead + of returning overflowing tokens. + return_special_tokens_mask (`bool`, *optional*, defaults to `False`): + Whether or not to return special tokens mask information. + return_offsets_mapping (`bool`, *optional*, defaults to `False`): + Whether or not to return `(char_start, char_end)` for each token. + + This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using + Python's tokenizer, this method will raise `NotImplementedError`. + return_length (`bool`, *optional*, defaults to `False`): + Whether or not to return the lengths of the encoded inputs. + verbose (`bool`, *optional*, defaults to `True`): + Whether or not to print more information and warnings. + **kwargs: passed to the `self.tokenize()` method + + Return: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. + + [What are input IDs?](../glossary#input-ids) + + - **bbox** -- List of bounding boxes to be fed to a model. + + - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or + if *"token_type_ids"* is in `self.model_input_names`). + + [What are token type IDs?](../glossary#token-type-ids) + + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). + + [What are attention masks?](../glossary#attention-mask) + + - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). + - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying + regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). + - **length** -- The length of the inputs (when `return_length=True`). +""" + + +class LayoutXLMTokenizer(PreTrainedTokenizer): + """ + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): + The bounding box to use for the special [CLS] token. + sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): + The bounding box to use for the special [SEP] token. + pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): + The bounding box to use for the special [PAD] token. + pad_token_label (`int`, *optional*, defaults to -100): + The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's + CrossEntropyLoss. + only_label_first_subword (`bool`, *optional*, defaults to `True`): + Whether or not to only label the first subword, in case word labels are provided. + sp_model_kwargs (`dict`, *optional*): + Will be passed to the `SentencePieceProcessor.__init__()` method. The [Python wrapper for + SentencePiece](https://github.com/google/sentencepiece/tree/master/python) can be used, among other things, + to set: + + - `enable_sampling`: Enable subword regularization. + - `nbest_size`: Sampling parameters for unigram. Invalid for BPE-Dropout. + + - `nbest_size = {0,1}`: No sampling is performed. + - `nbest_size > 1`: samples from the nbest_size results. + - `nbest_size < 0`: assuming that nbest_size is infinite and samples from the all hypothesis (lattice) + using forward-filtering-and-backward-sampling algorithm. + + - `alpha`: Smoothing parameter for unigram sampling, and dropout probability of merge operations for + BPE-dropout. + + Attributes: + sp_model (`SentencePieceProcessor`): + The *SentencePiece* processor that is used for every conversion (string, tokens and IDs). + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + cls_token_box=[0, 0, 0, 0], + sep_token_box=[1000, 1000, 1000, 1000], + pad_token_box=[0, 0, 0, 0], + pad_token_label=-100, + only_label_first_subword=True, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + **kwargs, + ) -> None: + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + self.fairseq_tokens_to_ids[""] = len(self.sp_model) + self.fairseq_offset + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + + # additional properties + self.cls_token_box = cls_token_box + self.sep_token_box = sep_token_box + self.pad_token_box = pad_token_box + self.pad_token_label = pad_token_label + self.only_label_first_subword = only_label_first_subword + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + cls_token_box=cls_token_box, + sep_token_box=sep_token_box, + pad_token_box=pad_token_box, + pad_token_label=pad_token_label, + only_label_first_subword=only_label_first_subword, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is None: + return [1] + ([0] * len(token_ids_0)) + [1] + return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + @property + def vocab_size(self): + return len(self.sp_model) + self.fairseq_offset + 1 # Add the token + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) + def __call__( + self, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], + text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, + boxes: Union[List[List[int]], List[List[List[int]]]] = None, + word_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of + sequences with word-level normalized bounding boxes and optional labels. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings + (words of a single example or questions of a batch of examples) or a list of list of strings (batch of + words). + text_pair (`List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence should be a list of strings + (pretokenized string). + boxes (`List[List[int]]`, `List[List[List[int]]]`): + Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. + word_labels (`List[int]`, `List[List[int]]`, *optional*): + Word-level integer labels (for token classification tasks such as FUNSD, CORD). + """ + + # Input type checking for clearer error + def _is_valid_text_input(t): + if isinstance(t, str): + # Strings are fine + return True + elif isinstance(t, (list, tuple)): + # List are fine as long as they are... + if len(t) == 0: + # ... empty + return True + elif isinstance(t[0], str): + # ... list of strings + return True + elif isinstance(t[0], (list, tuple)): + # ... list with an empty list or with a list of strings + return len(t[0]) == 0 or isinstance(t[0][0], str) + else: + return False + else: + return False + + if text_pair is not None: + # in case text + text_pair are provided, text = questions, text_pair = words + if not _is_valid_text_input(text): + raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") + if not isinstance(text_pair, (list, tuple)): + raise ValueError( + "words must of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + else: + # in case only text is provided => must be words + if not isinstance(text, (list, tuple)): + raise ValueError( + "Words must of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + + if text_pair is not None: + is_batched = isinstance(text, (list, tuple)) + else: + is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) + + words = text if text_pair is None else text_pair + if boxes is None: + raise ValueError("You must provide corresponding bounding boxes") + if is_batched: + if len(words) != len(boxes): + raise ValueError("You must provide words and boxes for an equal amount of examples") + for words_example, boxes_example in zip(words, boxes): + if len(words_example) != len(boxes_example): + raise ValueError("You must provide as many words as there are bounding boxes") + else: + if len(words) != len(boxes): + raise ValueError("You must provide as many words as there are bounding boxes") + + if is_batched: + if text_pair is not None and len(text) != len(text_pair): + raise ValueError( + f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" + f" {len(text_pair)}." + ) + batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text + is_pair = bool(text_pair is not None) + return self.batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + text=text, + text_pair=text_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + boxes: Optional[List[List[List[int]]]] = None, + word_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + batch_outputs = self._batch_prepare_for_model( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=return_tensors, + verbose=verbose, + ) + + return BatchEncoding(batch_outputs) + + @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) + def _batch_prepare_for_model( + self, + batch_text_or_text_pairs, + is_pair: bool = None, + boxes: Optional[List[List[int]]] = None, + word_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_length: bool = False, + verbose: bool = True, + ) -> BatchEncoding: + """ + Prepares a sequence of input id, or a pair of sequences of inputs ids so that it can be used by the model. It + adds special tokens, truncates sequences if overflowing while taking into account the special tokens and + manages a moving window (with user defined stride) for overflowing tokens + + Args: + batch_ids_pairs: list of tokenized input ids or input ids pairs + """ + + batch_outputs = {} + for idx, example in enumerate(zip(batch_text_or_text_pairs, boxes)): + batch_text_or_text_pair, boxes_example = example + outputs = self.prepare_for_model( + batch_text_or_text_pair[0] if is_pair else batch_text_or_text_pair, + batch_text_or_text_pair[1] if is_pair else None, + boxes_example, + word_labels=word_labels[idx] if word_labels is not None else None, + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterward + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=None, # we pad in batch afterward + return_attention_mask=False, # we pad in batch afterward + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding_strategy.value, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return batch_outputs + + def _encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + boxes: Optional[List[List[int]]] = None, + word_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast. " + "More information on available tokenizers at " + "https://github.com/huggingface/transformers/pull/2674" + ) + + return self.prepare_for_model( + text=text, + text_pair=text_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding_strategy.value, + truncation=truncation_strategy.value, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) + def prepare_for_model( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + boxes: Optional[List[List[int]]] = None, + word_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + prepend_batch_axis: bool = False, + **kwargs, + ) -> BatchEncoding: + """ + Prepares a sequence or a pair of sequences so that it can be used by the model. It adds special tokens, + truncates sequences if overflowing while taking into account the special tokens and manages a moving window + (with user defined stride) for overflowing tokens. + + Word-level `boxes` are turned into token-level `bbox`. If provided, word-level `word_labels` are turned into + token-level `labels`. The word label is used for the first token of the word, while remaining tokens are + labeled with -100, such that they will be ignored by the loss function. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The first sequence to be encoded. This can be a string, a list of strings or a list of list of strings. + text_pair (`List[str]` or `List[int]`, *optional*): + Optional second sequence to be encoded. This can be a list of strings (words of a single example) or a + list of list of strings (words of a batch of examples). + """ + + # Backward compatibility for 'truncation_strategy', 'pad_to_max_length' + padding_strategy, truncation_strategy, max_length, kwargs = self._get_padding_truncation_strategies( + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + verbose=verbose, + **kwargs, + ) + + tokens = [] + pair_tokens = [] + token_boxes = [] + pair_token_boxes = [] + labels = [] + + if text_pair is None: + if word_labels is None: + # CASE 1: document image classification (training + inference) + CASE 2: token classification (inference) + for word, box in zip(text, boxes): + if len(word) < 1: # skip empty words + continue + word_tokens = self.tokenize(word) + tokens.extend(word_tokens) + token_boxes.extend([box] * len(word_tokens)) + else: + # CASE 2: token classification (training) + for word, box, label in zip(text, boxes, word_labels): + if len(word) < 1: # skip empty words + continue + word_tokens = self.tokenize(word) + tokens.extend(word_tokens) + token_boxes.extend([box] * len(word_tokens)) + if self.only_label_first_subword: + # Use the real label id for the first token of the word, and padding ids for the remaining tokens + labels.extend([label] + [self.pad_token_label] * (len(word_tokens) - 1)) + else: + labels.extend([label] * len(word_tokens)) + else: + # CASE 3: document visual question answering (inference) + # text = question + # text_pair = words + tokens = self.tokenize(text) + token_boxes = [self.pad_token_box for _ in range(len(tokens))] + [self.sep_token_box] + + for word, box in zip(text_pair, boxes): + if len(word) < 1: # skip empty words + continue + word_tokens = self.tokenize(word) + pair_tokens.extend(word_tokens) + pair_token_boxes.extend([box] * len(word_tokens)) + + # Create ids + pair_ids + ids = self.convert_tokens_to_ids(tokens) + pair_ids = self.convert_tokens_to_ids(pair_tokens) if pair_tokens else None + + # Compute the total size of the returned encodings + pair = bool(pair_ids is not None) + len_ids = len(ids) + len_pair_ids = len(pair_ids) if pair else 0 + total_len = len_ids + len_pair_ids + (self.num_special_tokens_to_add(pair=pair) if add_special_tokens else 0) + + # Truncation: Handle max sequence length + overflowing_tokens = [] + overflowing_token_boxes = [] + overflowing_labels = [] + if truncation_strategy != TruncationStrategy.DO_NOT_TRUNCATE and max_length and total_len > max_length: + ( + ids, + token_boxes, + pair_ids, + pair_token_boxes, + labels, + overflowing_tokens, + overflowing_token_boxes, + overflowing_labels, + ) = self.truncate_sequences( + ids, + token_boxes, + pair_ids=pair_ids, + pair_token_boxes=pair_token_boxes, + labels=labels, + num_tokens_to_remove=total_len - max_length, + truncation_strategy=truncation_strategy, + stride=stride, + ) + + if return_token_type_ids and not add_special_tokens: + raise ValueError( + "Asking to return token_type_ids while setting add_special_tokens to False " + "results in an undefined behavior. Please set add_special_tokens to True or " + "set return_token_type_ids to None." + ) + + # Load from model defaults + if return_token_type_ids is None: + return_token_type_ids = "token_type_ids" in self.model_input_names + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + encoded_inputs = {} + + if return_overflowing_tokens: + encoded_inputs["overflowing_tokens"] = overflowing_tokens + encoded_inputs["overflowing_token_boxes"] = overflowing_token_boxes + encoded_inputs["overflowing_labels"] = overflowing_labels + encoded_inputs["num_truncated_tokens"] = total_len - max_length + + # Add special tokens + if add_special_tokens: + sequence = self.build_inputs_with_special_tokens(ids, pair_ids) + token_type_ids = self.create_token_type_ids_from_sequences(ids, pair_ids) + token_boxes = [self.cls_token_box] + token_boxes + [self.sep_token_box] + if pair_token_boxes: + pair_token_boxes = pair_token_boxes + [self.sep_token_box] + if labels: + labels = [self.pad_token_label] + labels + [self.pad_token_label] + else: + sequence = ids + pair_ids if pair else ids + token_type_ids = [0] * len(ids) + ([0] * len(pair_ids) if pair else []) + + # Build output dictionary + encoded_inputs["input_ids"] = sequence + encoded_inputs["bbox"] = token_boxes + pair_token_boxes + if return_token_type_ids: + encoded_inputs["token_type_ids"] = token_type_ids + if return_special_tokens_mask: + if add_special_tokens: + encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(ids, pair_ids) + else: + encoded_inputs["special_tokens_mask"] = [0] * len(sequence) + + if labels: + encoded_inputs["labels"] = labels + + # Check lengths + self._eventual_warn_about_too_long_sequence(encoded_inputs["input_ids"], max_length, verbose) + + # Padding + if padding_strategy != PaddingStrategy.DO_NOT_PAD or return_attention_mask: + encoded_inputs = self.pad( + encoded_inputs, + max_length=max_length, + padding=padding_strategy.value, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + if return_length: + encoded_inputs["length"] = len(encoded_inputs["input_ids"]) + + batch_outputs = BatchEncoding( + encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis + ) + + return batch_outputs + + def truncate_sequences( + self, + ids: List[int], + token_boxes: List[List[int]], + pair_ids: Optional[List[int]] = None, + pair_token_boxes: Optional[List[List[int]]] = None, + labels: Optional[List[int]] = None, + num_tokens_to_remove: int = 0, + truncation_strategy: Union[str, TruncationStrategy] = "longest_first", + stride: int = 0, + ) -> Tuple[List[int], List[int], List[int]]: + """ + Truncates a sequence pair in-place following the strategy. + + Args: + ids (`List[int]`): + Tokenized input ids of the first sequence. Can be obtained from a string by chaining the `tokenize` and + `convert_tokens_to_ids` methods. + token_boxes (`List[List[int]]`): + Bounding boxes of the first sequence. + pair_ids (`List[int]`, *optional*): + Tokenized input ids of the second sequence. Can be obtained from a string by chaining the `tokenize` + and `convert_tokens_to_ids` methods. + pair_token_boxes (`List[List[int]]`, *optional*): + Bounding boxes of the second sequence. + labels (`List[int]`, *optional*): + Labels of the first sequence (for token classification tasks). + num_tokens_to_remove (`int`, *optional*, defaults to 0): + Number of tokens to remove using the truncation strategy. + truncation_strategy (`str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): + The strategy to follow for truncation. Can be: + + - `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will truncate + token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a + batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths greater + than the model maximum admissible input size). + stride (`int`, *optional*, defaults to 0): + If set to a positive number, the overflowing tokens returned will contain some tokens from the main + sequence returned. The value of this argument defines the number of additional tokens. + + Returns: + `Tuple[List[int], List[int], List[int]]`: The truncated `ids`, the truncated `pair_ids` and the list of + overflowing tokens. + """ + if num_tokens_to_remove <= 0: + return ids, token_boxes, pair_ids, pair_token_boxes, labels, [], [], [] + + if not isinstance(truncation_strategy, TruncationStrategy): + truncation_strategy = TruncationStrategy(truncation_strategy) + + overflowing_tokens = [] + overflowing_token_boxes = [] + overflowing_labels = [] + if truncation_strategy == TruncationStrategy.LONGEST_FIRST: + for _ in range(num_tokens_to_remove): + if pair_ids is None or len(ids) > len(pair_ids): + if not overflowing_tokens: + window_len = min(len(ids), stride + 1) + else: + window_len = 1 + overflowing_tokens.extend(ids[-window_len:]) + overflowing_token_boxes.extend(token_boxes[-window_len:]) + overflowing_labels.extend(labels[-window_len:]) + ids = ids[:-1] + token_boxes = token_boxes[:-1] + labels = labels[:-1] + else: + if not overflowing_tokens: + window_len = min(len(pair_ids), stride + 1) + else: + window_len = 1 + overflowing_tokens.extend(pair_ids[-window_len:]) + overflowing_token_boxes.extend(pair_token_boxes[-window_len:]) + pair_ids = pair_ids[:-1] + pair_token_boxes = pair_token_boxes[:-1] + elif truncation_strategy == TruncationStrategy.ONLY_FIRST: + if len(ids) > num_tokens_to_remove: + window_len = min(len(ids), stride + num_tokens_to_remove) + overflowing_tokens = ids[-window_len:] + overflowing_token_boxes = token_boxes[-window_len:] + overflowing_labels = labels[-window_len:] + ids = ids[:-num_tokens_to_remove] + token_boxes = token_boxes[:-num_tokens_to_remove] + labels = labels[:-num_tokens_to_remove] + else: + logger.error( + f"We need to remove {num_tokens_to_remove} to truncate the input " + f"but the first sequence has a length {len(ids)}. " + f"Please select another truncation strategy than {truncation_strategy}, " + "for instance 'longest_first' or 'only_second'." + ) + elif truncation_strategy == TruncationStrategy.ONLY_SECOND and pair_ids is not None: + if len(pair_ids) > num_tokens_to_remove: + window_len = min(len(pair_ids), stride + num_tokens_to_remove) + overflowing_tokens = pair_ids[-window_len:] + overflowing_token_boxes = pair_token_boxes[-window_len:] + pair_ids = pair_ids[:-num_tokens_to_remove] + pair_token_boxes = pair_token_boxes[:-num_tokens_to_remove] + else: + logger.error( + f"We need to remove {num_tokens_to_remove} to truncate the input " + f"but the second sequence has a length {len(pair_ids)}. " + f"Please select another truncation strategy than {truncation_strategy}, " + "for instance 'longest_first' or 'only_first'." + ) + + return ( + ids, + token_boxes, + pair_ids, + pair_token_boxes, + labels, + overflowing_tokens, + overflowing_token_boxes, + overflowing_labels, + ) + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + + Args: + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + padding_strategy: PaddingStrategy to use for padding. + + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + required_input = encoded_inputs[self.model_input_names[0]] + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(required_input) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(required_input) + + if needs_to_be_padded: + difference = max_length - len(required_input) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = ( + encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference + ) + if "bbox" in encoded_inputs: + encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference + if "labels" in encoded_inputs: + encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ + "token_type_ids" + ] + if "bbox" in encoded_inputs: + encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] + if "labels" in encoded_inputs: + encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs diff --git a/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..e899d8b22e4df6ce2e3894cdcfb92987f43ec866 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/layoutxlm/tokenization_layoutxlm_fast.py @@ -0,0 +1,800 @@ +# coding=utf-8 +# Copyright 2021 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License +""" Tokenization classes for LayoutXLM model.""" + + +import os +from shutil import copyfile +from typing import Dict, List, Optional, Tuple, Union + +from ...tokenization_utils import AddedToken +from ...tokenization_utils_base import ( + BatchEncoding, + EncodedInput, + PreTokenizedInput, + TextInput, + TextInputPair, + TruncationStrategy, +) +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import PaddingStrategy, TensorType, add_end_docstrings, is_sentencepiece_available, logging +from ..xlm_roberta.tokenization_xlm_roberta_fast import ( + VOCAB_FILES_NAMES, +) + + +if is_sentencepiece_available(): + from .tokenization_layoutxlm import LayoutXLMTokenizer +else: + LayoutXLMTokenizer = None + + +logger = logging.get_logger(__name__) + +LAYOUTXLM_ENCODE_KWARGS_DOCSTRING = r""" + add_special_tokens (`bool`, *optional*, defaults to `True`): + Whether or not to encode the sequences with the special tokens relative to their model. + padding (`bool`, `str` or [`~file_utils.PaddingStrategy`], *optional*, defaults to `False`): + Activates and controls padding. Accepts the following values: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`): + Activates and controls truncation. Accepts the following values: + + - `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or + to the maximum acceptable input length for the model if that argument is not provided. This will + truncate token by token, removing a token from the longest sequence in the pair if a pair of + sequences (or a batch of pairs) is provided. + - `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the first sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the + maximum acceptable input length for the model if that argument is not provided. This will only + truncate the second sequence of a pair if a pair of sequences (or a batch of pairs) is provided. + - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths + greater than the model maximum admissible input size). + max_length (`int`, *optional*): + Controls the maximum length to use by one of the truncation/padding parameters. + + If left unset or set to `None`, this will use the predefined model maximum length if a maximum length + is required by one of the truncation/padding parameters. If the model has no specific maximum input + length (like XLNet) truncation/padding to a maximum length will be deactivated. + stride (`int`, *optional*, defaults to 0): + If set to a number along with `max_length`, the overflowing tokens returned when + `return_overflowing_tokens=True` will contain some tokens from the end of the truncated sequence + returned to provide some overlap between truncated and overflowing sequences. The value of this + argument defines the number of overlapping tokens. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_tensors (`str` or [`~file_utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. + return_token_type_ids (`bool`, *optional*): + Whether to return token type IDs. If left to the default, will return the token type IDs according to + the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are token type IDs?](../glossary#token-type-ids) + return_attention_mask (`bool`, *optional*): + Whether to return the attention mask. If left to the default, will return the attention mask according + to the specific tokenizer's default, defined by the `return_outputs` attribute. + + [What are attention masks?](../glossary#attention-mask) + return_overflowing_tokens (`bool`, *optional*, defaults to `False`): + Whether or not to return overflowing token sequences. If a pair of sequences of input ids (or a batch + of pairs) is provided with `truncation_strategy = longest_first` or `True`, an error is raised instead + of returning overflowing tokens. + return_special_tokens_mask (`bool`, *optional*, defaults to `False`): + Whether or not to return special tokens mask information. + return_offsets_mapping (`bool`, *optional*, defaults to `False`): + Whether or not to return `(char_start, char_end)` for each token. + + This is only available on fast tokenizers inheriting from [`PreTrainedTokenizerFast`], if using + Python's tokenizer, this method will raise `NotImplementedError`. + return_length (`bool`, *optional*, defaults to `False`): + Whether or not to return the lengths of the encoded inputs. + verbose (`bool`, *optional*, defaults to `True`): + Whether or not to print more information and warnings. + **kwargs: passed to the `self.tokenize()` method + + Return: + [`BatchEncoding`]: A [`BatchEncoding`] with the following fields: + + - **input_ids** -- List of token ids to be fed to a model. + + [What are input IDs?](../glossary#input-ids) + + - **bbox** -- List of bounding boxes to be fed to a model. + + - **token_type_ids** -- List of token type ids to be fed to a model (when `return_token_type_ids=True` or + if *"token_type_ids"* is in `self.model_input_names`). + + [What are token type IDs?](../glossary#token-type-ids) + + - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when + `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names`). + + [What are attention masks?](../glossary#attention-mask) + + - **labels** -- List of labels to be fed to a model. (when `word_labels` is specified). + - **overflowing_tokens** -- List of overflowing tokens sequences (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **num_truncated_tokens** -- Number of tokens truncated (when a `max_length` is specified and + `return_overflowing_tokens=True`). + - **special_tokens_mask** -- List of 0s and 1s, with 1 specifying added special tokens and 0 specifying + regular sequence tokens (when `add_special_tokens=True` and `return_special_tokens_mask=True`). + - **length** -- The length of the inputs (when `return_length=True`). +""" + + +class LayoutXLMTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" LayoutXLM tokenizer (backed by HuggingFace's *tokenizers* library). Adapted from + [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + Args: + vocab_file (`str`): + Path to the vocabulary file. + bos_token (`str`, *optional*, defaults to `""`): + The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token. + + + + When building a sequence using special tokens, this is not the token that is used for the beginning of + sequence. The token used is the `cls_token`. + + + + eos_token (`str`, *optional*, defaults to `""`): + The end of sequence token. + + + + When building a sequence using special tokens, this is not the token that is used for the end of sequence. + The token used is the `sep_token`. + + + + sep_token (`str`, *optional*, defaults to `""`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + cls_token (`str`, *optional*, defaults to `""`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + unk_token (`str`, *optional*, defaults to `""`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + pad_token (`str`, *optional*, defaults to `""`): + The token used for padding, for example when batching sequences of different lengths. + mask_token (`str`, *optional*, defaults to `""`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + cls_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): + The bounding box to use for the special [CLS] token. + sep_token_box (`List[int]`, *optional*, defaults to `[1000, 1000, 1000, 1000]`): + The bounding box to use for the special [SEP] token. + pad_token_box (`List[int]`, *optional*, defaults to `[0, 0, 0, 0]`): + The bounding box to use for the special [PAD] token. + pad_token_label (`int`, *optional*, defaults to -100): + The label to use for padding tokens. Defaults to -100, which is the `ignore_index` of PyTorch's + CrossEntropyLoss. + only_label_first_subword (`bool`, *optional*, defaults to `True`): + Whether or not to only label the first subword, in case word labels are provided. + additional_special_tokens (`List[str]`, *optional*, defaults to `["NOTUSED", "NOTUSED"]`): + Additional special tokens used by the tokenizer. + """ + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = LayoutXLMTokenizer + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + cls_token_box=[0, 0, 0, 0], + sep_token_box=[1000, 1000, 1000, 1000], + pad_token_box=[0, 0, 0, 0], + pad_token_label=-100, + only_label_first_subword=True, + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + super().__init__( + vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + cls_token_box=cls_token_box, + sep_token_box=sep_token_box, + pad_token_box=pad_token_box, + pad_token_label=pad_token_label, + only_label_first_subword=only_label_first_subword, + **kwargs, + ) + + self.vocab_file = vocab_file + + # additional properties + self.cls_token_box = cls_token_box + self.sep_token_box = sep_token_box + self.pad_token_box = pad_token_box + self.pad_token_label = pad_token_label + self.only_label_first_subword = only_label_first_subword + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + @add_end_docstrings(LAYOUTXLM_ENCODE_KWARGS_DOCSTRING) + def __call__( + self, + text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]], + text_pair: Optional[Union[PreTokenizedInput, List[PreTokenizedInput]]] = None, + boxes: Union[List[List[int]], List[List[List[int]]]] = None, + word_labels: Optional[Union[List[int], List[List[int]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TruncationStrategy] = None, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) or one or several pair(s) of + sequences with word-level normalized bounding boxes and optional labels. + + Args: + text (`str`, `List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence can be a string, a list of strings + (words of a single example or questions of a batch of examples) or a list of list of strings (batch of + words). + text_pair (`List[str]`, `List[List[str]]`): + The sequence or batch of sequences to be encoded. Each sequence should be a list of strings + (pretokenized string). + boxes (`List[List[int]]`, `List[List[List[int]]]`): + Word-level bounding boxes. Each bounding box should be normalized to be on a 0-1000 scale. + word_labels (`List[int]`, `List[List[int]]`, *optional*): + Word-level integer labels (for token classification tasks such as FUNSD, CORD). + """ + + # Input type checking for clearer error + def _is_valid_text_input(t): + if isinstance(t, str): + # Strings are fine + return True + elif isinstance(t, (list, tuple)): + # List are fine as long as they are... + if len(t) == 0: + # ... empty + return True + elif isinstance(t[0], str): + # ... list of strings + return True + elif isinstance(t[0], (list, tuple)): + # ... list with an empty list or with a list of strings + return len(t[0]) == 0 or isinstance(t[0][0], str) + else: + return False + else: + return False + + if text_pair is not None: + # in case text + text_pair are provided, text = questions, text_pair = words + if not _is_valid_text_input(text): + raise ValueError("text input must of type `str` (single example) or `List[str]` (batch of examples). ") + if not isinstance(text_pair, (list, tuple)): + raise ValueError( + "words must of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + else: + # in case only text is provided => must be words + if not isinstance(text, (list, tuple)): + raise ValueError( + "Words must of type `List[str]` (single pretokenized example), " + "or `List[List[str]]` (batch of pretokenized examples)." + ) + + if text_pair is not None: + is_batched = isinstance(text, (list, tuple)) + else: + is_batched = isinstance(text, (list, tuple)) and text and isinstance(text[0], (list, tuple)) + + words = text if text_pair is None else text_pair + if boxes is None: + raise ValueError("You must provide corresponding bounding boxes") + if is_batched: + if len(words) != len(boxes): + raise ValueError("You must provide words and boxes for an equal amount of examples") + for words_example, boxes_example in zip(words, boxes): + if len(words_example) != len(boxes_example): + raise ValueError("You must provide as many words as there are bounding boxes") + else: + if len(words) != len(boxes): + raise ValueError("You must provide as many words as there are bounding boxes") + + if is_batched: + if text_pair is not None and len(text) != len(text_pair): + raise ValueError( + f"batch length of `text`: {len(text)} does not match batch length of `text_pair`:" + f" {len(text_pair)}." + ) + batch_text_or_text_pairs = list(zip(text, text_pair)) if text_pair is not None else text + is_pair = bool(text_pair is not None) + return self.batch_encode_plus( + batch_text_or_text_pairs=batch_text_or_text_pairs, + is_pair=is_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + text=text, + text_pair=text_pair, + boxes=boxes, + word_labels=word_labels, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def tokenize(self, text: str, pair: Optional[str] = None, add_special_tokens: bool = False, **kwargs) -> List[str]: + batched_input = [(text, pair)] if pair else [text] + encodings = self._tokenizer.encode_batch( + batched_input, add_special_tokens=add_special_tokens, is_pretokenized=False, **kwargs + ) + + return encodings[0].tokens + + def _batch_encode_plus( + self, + batch_text_or_text_pairs: Union[ + List[TextInput], + List[TextInputPair], + List[PreTokenizedInput], + ], + is_pair: bool = None, + boxes: Optional[List[List[List[int]]]] = None, + word_labels: Optional[List[List[int]]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[str] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + if not isinstance(batch_text_or_text_pairs, list): + raise TypeError(f"batch_text_or_text_pairs has to be a list (got {type(batch_text_or_text_pairs)})") + + # Set the truncation and padding strategy and restore the initial configuration + self.set_truncation_and_padding( + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + ) + + if is_pair: + batch_text_or_text_pairs = [(text.split(), text_pair) for text, text_pair in batch_text_or_text_pairs] + + encodings = self._tokenizer.encode_batch( + batch_text_or_text_pairs, + add_special_tokens=add_special_tokens, + is_pretokenized=True, # we set this to True as LayoutLMv2 always expects pretokenized inputs + ) + + # Convert encoding to dict + # `Tokens` has type: Tuple[ + # List[Dict[str, List[List[int]]]] or List[Dict[str, 2D-Tensor]], + # List[EncodingFast] + # ] + # with nested dimensions corresponding to batch, overflows, sequence length + tokens_and_encodings = [ + self._convert_encoding( + encoding=encoding, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=True + if word_labels is not None + else return_offsets_mapping, # we use offsets to create the labels + return_length=return_length, + verbose=verbose, + ) + for encoding in encodings + ] + + # Convert the output to have dict[list] from list[dict] and remove the additional overflows dimension + # From (variable) shape (batch, overflows, sequence length) to ~ (batch * overflows, sequence length) + # (we say ~ because the number of overflow varies with the example in the batch) + # + # To match each overflowing sample with the original sample in the batch + # we add an overflow_to_sample_mapping array (see below) + sanitized_tokens = {} + for key in tokens_and_encodings[0][0].keys(): + stack = [e for item, _ in tokens_and_encodings for e in item[key]] + sanitized_tokens[key] = stack + sanitized_encodings = [e for _, item in tokens_and_encodings for e in item] + + # If returning overflowing tokens, we need to return a mapping + # from the batch idx to the original sample + if return_overflowing_tokens: + overflow_to_sample_mapping = [] + for i, (toks, _) in enumerate(tokens_and_encodings): + overflow_to_sample_mapping += [i] * len(toks["input_ids"]) + sanitized_tokens["overflow_to_sample_mapping"] = overflow_to_sample_mapping + + for input_ids in sanitized_tokens["input_ids"]: + self._eventual_warn_about_too_long_sequence(input_ids, max_length, verbose) + + # create the token boxes + token_boxes = [] + for batch_index in range(len(sanitized_tokens["input_ids"])): + if return_overflowing_tokens: + original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] + else: + original_index = batch_index + token_boxes_example = [] + for id, sequence_id, word_id in zip( + sanitized_tokens["input_ids"][batch_index], + sanitized_encodings[batch_index].sequence_ids, + sanitized_encodings[batch_index].word_ids, + ): + if word_id is not None: + if is_pair and sequence_id == 0: + token_boxes_example.append(self.pad_token_box) + else: + token_boxes_example.append(boxes[original_index][word_id]) + else: + if id == self.cls_token_id: + token_boxes_example.append(self.cls_token_box) + elif id == self.sep_token_id: + token_boxes_example.append(self.sep_token_box) + elif id == self.pad_token_id: + token_boxes_example.append(self.pad_token_box) + else: + raise ValueError("Id not recognized") + token_boxes.append(token_boxes_example) + + sanitized_tokens["bbox"] = token_boxes + + # optionally, create the labels + if word_labels is not None: + labels = [] + for batch_index in range(len(sanitized_tokens["input_ids"])): + if return_overflowing_tokens: + original_index = sanitized_tokens["overflow_to_sample_mapping"][batch_index] + else: + original_index = batch_index + labels_example = [] + for id, offset, word_id in zip( + sanitized_tokens["input_ids"][batch_index], + sanitized_tokens["offset_mapping"][batch_index], + sanitized_encodings[batch_index].word_ids, + ): + if word_id is not None: + if self.only_label_first_subword: + if offset[0] == 0: + # Use the real label id for the first token of the word, and padding ids for the remaining tokens + labels_example.append(word_labels[original_index][word_id]) + else: + labels_example.append(self.pad_token_label) + else: + labels_example.append(word_labels[original_index][word_id]) + else: + labels_example.append(self.pad_token_label) + labels.append(labels_example) + + sanitized_tokens["labels"] = labels + # finally, remove offsets if the user didn't want them + if not return_offsets_mapping: + del sanitized_tokens["offset_mapping"] + + return BatchEncoding(sanitized_tokens, sanitized_encodings, tensor_type=return_tensors) + + def _encode_plus( + self, + text: Union[TextInput, PreTokenizedInput], + text_pair: Optional[PreTokenizedInput] = None, + boxes: Optional[List[List[int]]] = None, + word_labels: Optional[List[int]] = None, + add_special_tokens: bool = True, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + truncation_strategy: TruncationStrategy = TruncationStrategy.DO_NOT_TRUNCATE, + max_length: Optional[int] = None, + stride: int = 0, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[bool] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + # make it a batched input + # 2 options: + # 1) only text, in case text must be a list of str + # 2) text + text_pair, in which case text = str and text_pair a list of str + batched_input = [(text, text_pair)] if text_pair else [text] + batched_boxes = [boxes] + batched_word_labels = [word_labels] if word_labels is not None else None + batched_output = self._batch_encode_plus( + batched_input, + is_pair=bool(text_pair is not None), + boxes=batched_boxes, + word_labels=batched_word_labels, + add_special_tokens=add_special_tokens, + padding_strategy=padding_strategy, + truncation_strategy=truncation_strategy, + max_length=max_length, + stride=stride, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + # Return tensor is None, then we can remove the leading batch axis + # Overflowing tokens are returned as a batch of output so we keep them in this case + if return_tensors is None and not return_overflowing_tokens: + batched_output = BatchEncoding( + { + key: value[0] if len(value) > 0 and isinstance(value[0], list) else value + for key, value in batched_output.items() + }, + batched_output.encodings, + ) + + self._eventual_warn_about_too_long_sequence(batched_output["input_ids"], max_length, verbose) + + return batched_output + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + + Args: + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + padding_strategy: PaddingStrategy to use for padding. + + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + required_input = encoded_inputs[self.model_input_names[0]] + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(required_input) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(required_input) != max_length + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(required_input) + + if needs_to_be_padded: + difference = max_length - len(required_input) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = ( + encoded_inputs["token_type_ids"] + [self.pad_token_type_id] * difference + ) + if "bbox" in encoded_inputs: + encoded_inputs["bbox"] = encoded_inputs["bbox"] + [self.pad_token_box] * difference + if "labels" in encoded_inputs: + encoded_inputs["labels"] = encoded_inputs["labels"] + [self.pad_token_label] * difference + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs[self.model_input_names[0]] = required_input + [self.pad_token_id] * difference + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [self.pad_token_type_id] * difference + encoded_inputs[ + "token_type_ids" + ] + if "bbox" in encoded_inputs: + encoded_inputs["bbox"] = [self.pad_token_box] * difference + encoded_inputs["bbox"] + if "labels" in encoded_inputs: + encoded_inputs["labels"] = [self.pad_token_label] * difference + encoded_inputs["labels"] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs[self.model_input_names[0]] = [self.pad_token_id] * difference + required_input + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An XLM-RoBERTa sequence has the following format: + + - single sequence: ` X ` + - pair of sequences: ` A B ` + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + + if token_ids_1 is None: + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + cls = [self.cls_token_id] + sep = [self.sep_token_id] + return cls + token_ids_0 + sep + sep + token_ids_1 + sep + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. XLM-RoBERTa does + not make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..bae4593c87d89c1e1d078e884e92db2e3d8dc2b0 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/__init__.py @@ -0,0 +1,148 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import ( + OptionalDependencyNotAvailable, + _LazyModule, + is_flax_available, + is_sentencepiece_available, + is_tf_available, + is_tokenizers_available, + is_torch_available, +) + + +_import_structure = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} + +try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mbart"] = ["MBartTokenizer"] + +try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["tokenization_mbart_fast"] = ["MBartTokenizerFast"] + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_mbart"] = [ + "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", + "MBartForCausalLM", + "MBartForConditionalGeneration", + "MBartForQuestionAnswering", + "MBartForSequenceClassification", + "MBartModel", + "MBartPreTrainedModel", + ] + +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_mbart"] = [ + "TFMBartForConditionalGeneration", + "TFMBartModel", + "TFMBartPreTrainedModel", + ] + +try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_flax_mbart"] = [ + "FlaxMBartForConditionalGeneration", + "FlaxMBartForQuestionAnswering", + "FlaxMBartForSequenceClassification", + "FlaxMBartModel", + "FlaxMBartPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig + + try: + if not is_sentencepiece_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mbart import MBartTokenizer + + try: + if not is_tokenizers_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .tokenization_mbart_fast import MBartTokenizerFast + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_mbart import ( + MBART_PRETRAINED_MODEL_ARCHIVE_LIST, + MBartForCausalLM, + MBartForConditionalGeneration, + MBartForQuestionAnswering, + MBartForSequenceClassification, + MBartModel, + MBartPreTrainedModel, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel + + try: + if not is_flax_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_flax_mbart import ( + FlaxMBartForConditionalGeneration, + FlaxMBartForQuestionAnswering, + FlaxMBartForSequenceClassification, + FlaxMBartModel, + FlaxMBartPreTrainedModel, + ) + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..aeebd280ba1fd57c65af38c050406d304f8cee35 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5e4c11399675fd9323979bd63049d19778ee1050 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/configuration_mbart.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e53d1b103e567b625f1c24b941c3626a602208af Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/convert_mbart_original_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1080e4ea9baeb83dd313e3393456d2f1647ba755 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_flax_mbart.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c62993b41a53a6180f4f19984b23e9b236b4a51d Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_mbart.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2ecc3c032a044d27c1202de355416596d178a818 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/modeling_tf_mbart.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5f7030fc34c00886ad7035a9d5d1af929fce6be5 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2f4d409366caa1caf60b6a88b3c0184c1734ee6e Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/mbart/__pycache__/tokenization_mbart_fast.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..4823047dcf31517a889fe279541c73450fc7e6d6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/configuration_mbart.py @@ -0,0 +1,386 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" MBART model configuration""" +from collections import OrderedDict +from typing import Any, Mapping, Optional + +from ... import PreTrainedTokenizer +from ...configuration_utils import PretrainedConfig +from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeq2SeqConfigWithPast +from ...onnx.utils import compute_effective_axis_dimension +from ...utils import TensorType, is_torch_available, logging + + +logger = logging.get_logger(__name__) + + +class MBartConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`MBartModel`]. It is used to instantiate an MBART + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the MBART + [facebook/mbart-large-cc25](https://huggingface.co/facebook/mbart-large-cc25) architecture. + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + + Args: + vocab_size (`int`, *optional*, defaults to 50265): + Vocabulary size of the MBART model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`MBartModel`] or [`TFMBartModel`]. + d_model (`int`, *optional*, defaults to 1024): + Dimensionality of the layers and the pooler layer. + encoder_layers (`int`, *optional*, defaults to 12): + Number of encoder layers. + decoder_layers (`int`, *optional*, defaults to 12): + Number of decoder layers. + encoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer encoder. + decoder_attention_heads (`int`, *optional*, defaults to 16): + Number of attention heads for each attention layer in the Transformer decoder. + decoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + encoder_ffn_dim (`int`, *optional*, defaults to 4096): + Dimensionality of the "intermediate" (often named feed-forward) layer in decoder. + activation_function (`str` or `function`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"silu"` and `"gelu_new"` are supported. + dropout (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for the attention probabilities. + activation_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for activations inside the fully connected layer. + classifier_dropout (`float`, *optional*, defaults to 0.0): + The dropout ratio for classifier. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + init_std (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + encoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + decoder_layerdrop (`float`, *optional*, defaults to 0.0): + The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) + for more details. + scale_embedding (`bool`, *optional*, defaults to `False`): + Scale embeddings by diving by sqrt(d_model). + use_cache (`bool`, *optional*, defaults to `True`): + Whether or not the model should return the last key/values attentions (not used by all models) + forced_eos_token_id (`int`, *optional*, defaults to 2): + The id of the token to force as the last generated token when `max_length` is reached. Usually set to + `eos_token_id`. + + Example: + + ```python + >>> from transformers import MBartConfig, MBartModel + + >>> # Initializing a MBART facebook/mbart-large-cc25 style configuration + >>> configuration = MBartConfig() + + >>> # Initializing a model (with random weights) from the facebook/mbart-large-cc25 style configuration + >>> model = MBartModel(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "mbart" + keys_to_ignore_at_inference = ["past_key_values"] + attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} + + def __init__( + self, + vocab_size=50265, + max_position_embeddings=1024, + encoder_layers=12, + encoder_ffn_dim=4096, + encoder_attention_heads=16, + decoder_layers=12, + decoder_ffn_dim=4096, + decoder_attention_heads=16, + encoder_layerdrop=0.0, + decoder_layerdrop=0.0, + use_cache=True, + is_encoder_decoder=True, + activation_function="gelu", + d_model=1024, + dropout=0.1, + attention_dropout=0.0, + activation_dropout=0.0, + init_std=0.02, + classifier_dropout=0.0, + scale_embedding=False, + pad_token_id=1, + bos_token_id=0, + eos_token_id=2, + forced_eos_token_id=2, + **kwargs, + ): + self.vocab_size = vocab_size + self.max_position_embeddings = max_position_embeddings + self.d_model = d_model + self.encoder_ffn_dim = encoder_ffn_dim + self.encoder_layers = encoder_layers + self.encoder_attention_heads = encoder_attention_heads + self.decoder_ffn_dim = decoder_ffn_dim + self.decoder_layers = decoder_layers + self.decoder_attention_heads = decoder_attention_heads + self.dropout = dropout + self.attention_dropout = attention_dropout + self.activation_dropout = activation_dropout + self.activation_function = activation_function + self.init_std = init_std + self.encoder_layerdrop = encoder_layerdrop + self.decoder_layerdrop = decoder_layerdrop + self.classifier_dropout = classifier_dropout + self.use_cache = use_cache + self.num_hidden_layers = encoder_layers + self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True + super().__init__( + pad_token_id=pad_token_id, + bos_token_id=bos_token_id, + eos_token_id=eos_token_id, + is_encoder_decoder=is_encoder_decoder, + forced_eos_token_id=forced_eos_token_id, + **kwargs, + ) + + +# Copied from transformers.models.bart.configuration_bart.BartOnnxConfig with Bart->MBart +class MBartOnnxConfig(OnnxSeq2SeqConfigWithPast): + @property + def inputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + + if self.use_past: + common_inputs["decoder_input_ids"] = {0: "batch"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "past_decoder_sequence + sequence"} + else: + common_inputs["decoder_input_ids"] = {0: "batch", 1: "decoder_sequence"} + common_inputs["decoder_attention_mask"] = {0: "batch", 1: "decoder_sequence"} + + if self.use_past: + self.fill_with_past_key_values_(common_inputs, direction="inputs") + elif self.task == "causal-lm": + # TODO: figure this case out. + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ] + ) + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_inputs[f"past_key_values.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_inputs[f"past_key_values.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + else: + common_inputs = OrderedDict( + [ + ("input_ids", {0: "batch", 1: "encoder_sequence"}), + ("attention_mask", {0: "batch", 1: "encoder_sequence"}), + ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), + ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), + ] + ) + + return common_inputs + + @property + def outputs(self) -> Mapping[str, Mapping[int, str]]: + if self.task in ["default", "seq2seq-lm"]: + common_outputs = super().outputs + else: + common_outputs = super(OnnxConfigWithPast, self).outputs + if self.use_past: + num_encoder_layers, _ = self.num_layers + for i in range(num_encoder_layers): + common_outputs[f"present.{i}.key"] = {0: "batch", 2: "past_sequence + sequence"} + common_outputs[f"present.{i}.value"] = {0: "batch", 2: "past_sequence + sequence"} + return common_outputs + + def _generate_dummy_inputs_for_default_and_seq2seq_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + encoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + # Generate decoder inputs + decoder_seq_length = seq_length if not self.use_past else 1 + decoder_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, decoder_seq_length, is_pair, framework + ) + decoder_inputs = {f"decoder_{name}": tensor for name, tensor in decoder_inputs.items()} + common_inputs = dict(**encoder_inputs, **decoder_inputs) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, encoder_seq_length = common_inputs["input_ids"].shape + decoder_seq_length = common_inputs["decoder_input_ids"].shape[1] + num_encoder_attention_heads, num_decoder_attention_heads = self.num_attention_heads + encoder_shape = ( + batch, + num_encoder_attention_heads, + encoder_seq_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + decoder_past_length = decoder_seq_length + 3 + decoder_shape = ( + batch, + num_decoder_attention_heads, + decoder_past_length, + self._config.hidden_size // num_decoder_attention_heads, + ) + + common_inputs["decoder_attention_mask"] = torch.cat( + [common_inputs["decoder_attention_mask"], torch.ones(batch, decoder_past_length)], dim=1 + ) + + common_inputs["past_key_values"] = [] + # If the number of encoder and decoder layers are present in the model configuration, both are considered + num_encoder_layers, num_decoder_layers = self.num_layers + min_num_layers = min(num_encoder_layers, num_decoder_layers) + max_num_layers = max(num_encoder_layers, num_decoder_layers) - min_num_layers + remaining_side_name = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" + + for _ in range(min_num_layers): + common_inputs["past_key_values"].append( + ( + torch.zeros(decoder_shape), + torch.zeros(decoder_shape), + torch.zeros(encoder_shape), + torch.zeros(encoder_shape), + ) + ) + # TODO: test this. + shape = encoder_shape if remaining_side_name == "encoder" else decoder_shape + for _ in range(min_num_layers, max_num_layers): + common_inputs["past_key_values"].append((torch.zeros(shape), torch.zeros(shape))) + return common_inputs + + def _generate_dummy_inputs_for_causal_lm( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size, seq_length, is_pair, framework + ) + + if self.use_past: + if not is_torch_available(): + raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.") + else: + import torch + batch, seqlen = common_inputs["input_ids"].shape + # Not using the same length for past_key_values + past_key_values_length = seqlen + 2 + num_encoder_layers, _ = self.num_layers + num_encoder_attention_heads, _ = self.num_attention_heads + past_shape = ( + batch, + num_encoder_attention_heads, + past_key_values_length, + self._config.hidden_size // num_encoder_attention_heads, + ) + + mask_dtype = common_inputs["attention_mask"].dtype + common_inputs["attention_mask"] = torch.cat( + [common_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1 + ) + common_inputs["past_key_values"] = [ + (torch.zeros(past_shape), torch.zeros(past_shape)) for _ in range(num_encoder_layers) + ] + return common_inputs + + def _generate_dummy_inputs_for_sequence_classification_and_question_answering( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + # Copied from OnnxConfig.generate_dummy_inputs + # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. + # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX + batch_size = compute_effective_axis_dimension( + batch_size, fixed_dimension=OnnxConfig.default_fixed_batch, num_token_to_add=0 + ) + + # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX + token_to_add = tokenizer.num_special_tokens_to_add(is_pair) + seq_length = compute_effective_axis_dimension( + seq_length, fixed_dimension=OnnxConfig.default_fixed_sequence, num_token_to_add=token_to_add + ) + + # Generate dummy inputs according to compute batch and sequence + dummy_input = [" ".join([tokenizer.unk_token]) * seq_length] * batch_size + common_inputs = dict(tokenizer(dummy_input, return_tensors=framework)) + return common_inputs + + def generate_dummy_inputs( + self, + tokenizer: PreTrainedTokenizer, + batch_size: int = -1, + seq_length: int = -1, + is_pair: bool = False, + framework: Optional[TensorType] = None, + ) -> Mapping[str, Any]: + if self.task in ["default", "seq2seq-lm"]: + common_inputs = self._generate_dummy_inputs_for_default_and_seq2seq_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + elif self.task == "causal-lm": + common_inputs = self._generate_dummy_inputs_for_causal_lm( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + else: + common_inputs = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( + tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework + ) + + return common_inputs + + def _flatten_past_key_values_(self, flattened_output, name, idx, t): + if self.task in ["default", "seq2seq-lm"]: + flattened_output = super()._flatten_past_key_values_(flattened_output, name, idx, t) + else: + flattened_output = super(OnnxSeq2SeqConfigWithPast, self)._flatten_past_key_values_( + flattened_output, name, idx, t + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..eb7f00bf77107ff858a6131305f2e8bf6a17654b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/convert_mbart_original_checkpoint_to_pytorch.py @@ -0,0 +1,83 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import argparse + +import torch +from torch import nn + +from transformers import MBartConfig, MBartForConditionalGeneration + + +def remove_ignore_keys_(state_dict): + ignore_keys = [ + "encoder.version", + "decoder.version", + "model.encoder.version", + "model.decoder.version", + "_float_tensor", + "decoder.output_projection.weight", + ] + for k in ignore_keys: + state_dict.pop(k, None) + + +def make_linear_from_emb(emb): + vocab_size, emb_size = emb.weight.shape + lin_layer = nn.Linear(vocab_size, emb_size, bias=False) + lin_layer.weight.data = emb.weight.data + return lin_layer + + +def convert_fairseq_mbart_checkpoint_from_disk( + checkpoint_path, hf_config_path="facebook/mbart-large-en-ro", finetuned=False, mbart_50=False +): + state_dict = torch.load(checkpoint_path, map_location="cpu")["model"] + remove_ignore_keys_(state_dict) + vocab_size = state_dict["encoder.embed_tokens.weight"].shape[0] + + mbart_config = MBartConfig.from_pretrained(hf_config_path, vocab_size=vocab_size) + if mbart_50 and finetuned: + mbart_config.activation_function = "relu" + + state_dict["shared.weight"] = state_dict["decoder.embed_tokens.weight"] + model = MBartForConditionalGeneration(mbart_config) + model.model.load_state_dict(state_dict) + + if finetuned: + model.lm_head = make_linear_from_emb(model.model.shared) + + return model + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "fairseq_path", type=str, help="bart.large, bart.large.cnn or a path to a model.pt on local filesystem." + ) + parser.add_argument("pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") + parser.add_argument( + "--hf_config", + default="facebook/mbart-large-cc25", + type=str, + help="Which huggingface architecture to use: mbart-large", + ) + parser.add_argument("--mbart_50", action="store_true", help="whether the model is mMART-50 checkpoint") + parser.add_argument("--finetuned", action="store_true", help="whether the model is a fine-tuned checkpoint") + args = parser.parse_args() + model = convert_fairseq_mbart_checkpoint_from_disk( + args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_50=args.mbart_50 + ) + model.save_pretrained(args.pytorch_dump_folder_path) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..907fd53aa1e5d3214d5e5f2feba99060cbbafe7c --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_flax_mbart.py @@ -0,0 +1,1771 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Flax MBart model.""" + +import math +import random +from functools import partial +from typing import Callable, Optional, Tuple + +import flax.linen as nn +import jax +import jax.numpy as jnp +from flax.core.frozen_dict import FrozenDict, freeze, unfreeze +from flax.linen import combine_masks, make_causal_mask +from flax.linen.attention import dot_product_attention_weights +from flax.traverse_util import flatten_dict, unflatten_dict +from jax import lax +from jax.random import PRNGKey + +from ...modeling_flax_outputs import ( + FlaxBaseModelOutput, + FlaxBaseModelOutputWithPastAndCrossAttentions, + FlaxCausalLMOutputWithCrossAttentions, + FlaxSeq2SeqLMOutput, + FlaxSeq2SeqModelOutput, + FlaxSeq2SeqQuestionAnsweringModelOutput, + FlaxSeq2SeqSequenceClassifierOutput, +) +from ...modeling_flax_utils import ( + ACT2FN, + FlaxPreTrainedModel, + append_call_sample_docstring, + append_replace_return_docstrings, + overwrite_call_docstring, +) +from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, logging, replace_return_docstrings +from .configuration_mbart import MBartConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + + +MBART_START_DOCSTRING = r""" + This model inherits from [`FlaxPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a Flax Linen + [flax.nn.Module](https://flax.readthedocs.io/en/latest/_autosummary/flax.nn.module.html) subclass. Use it as a + regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior. + + Finally, this model supports inherent JAX features such as: + + - [Just-In-Time (JIT) compilation](https://jax.readthedocs.io/en/latest/jax.html#just-in-time-compilation-jit) + - [Automatic Differentiation](https://jax.readthedocs.io/en/latest/jax.html#automatic-differentiation) + - [Vectorization](https://jax.readthedocs.io/en/latest/jax.html#vectorization-vmap) + - [Parallelization](https://jax.readthedocs.io/en/latest/jax.html#parallelization-pmap) + + Parameters: + config ([`MBartConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~FlaxPreTrainedModel.from_pretrained`] method to load the model weights. + dtype (`jax.numpy.dtype`, *optional*, defaults to `jax.numpy.float32`): + The data type of the computation. Can be one of `jax.numpy.float32`, `jax.numpy.float16` (on GPUs) and + `jax.numpy.bfloat16` (on TPUs). + + This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If + specified all the computation will be performed with the given `dtype`. + + **Note that this only specifies the dtype of the computation and does not influence the dtype of model + parameters.** + + If you wish to change the dtype of the model parameters, see [`~FlaxPreTrainedModel.to_fp16`] and + [`~FlaxPreTrainedModel.to_bf16`]. +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +MBART_ENCODE_INPUTS_DOCSTRING = r""" + Args: + input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.max_position_embeddings - 1]`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + +MBART_DECODE_INPUTS_DOCSTRING = r""" + Args: + decoder_input_ids (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + encoder_outputs (`tuple(tuple(jnp.ndarray)`): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + encoder_attention_mask (`jnp.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_attention_mask (`jnp.ndarray` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + + If you want to change padding behavior, you should modify to your needs. See diagram 1 in [the + paper](https://arxiv.org/abs/1910.13461) for more information on the default strategy. + decoder_position_ids (`numpy.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + past_key_values (`Dict[str, np.ndarray]`, *optional*, returned by `init_cache` or when passing previous `past_key_values`): + Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast + auto-regressive decoding. Pre-computed key and value hidden-states are of shape *[batch_size, max_length]*. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +def shift_tokens_right(input_ids: jnp.ndarray, pad_token_id: int) -> jnp.ndarray: + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + prev_output_tokens = jnp.array(input_ids).copy() + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + + # replace possible -100 values in labels by `pad_token_id` + prev_output_tokens = jnp.where(prev_output_tokens == -100, pad_token_id, input_ids) + index_of_eos = (jnp.where(prev_output_tokens != pad_token_id, 1, 0).sum(axis=-1) - 1).reshape(-1, 1) + decoder_start_tokens = jnp.array( + [prev_output_tokens[i, eos_idx] for i, eos_idx in enumerate(index_of_eos)], dtype=jnp.int32 + ).squeeze() + + prev_output_tokens = prev_output_tokens.at[:, 1:].set(prev_output_tokens[:, :-1]) + prev_output_tokens = prev_output_tokens.at[:, 0].set(decoder_start_tokens) + + return prev_output_tokens + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartAttention with Bart->MBart +class FlaxMBartAttention(nn.Module): + config: MBartConfig + embed_dim: int + num_heads: int + dropout: float = 0.0 + causal: bool = False + bias: bool = True + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self) -> None: + self.head_dim = self.embed_dim // self.num_heads + if self.head_dim * self.num_heads != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {self.num_heads})." + ) + + dense = partial( + nn.Dense, + self.embed_dim, + use_bias=self.bias, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.q_proj, self.k_proj, self.v_proj = dense(), dense(), dense() + self.out_proj = dense() + + self.dropout_layer = nn.Dropout(rate=self.dropout) + + if self.causal: + self.causal_mask = make_causal_mask( + jnp.ones((1, self.config.max_position_embeddings), dtype="bool"), dtype="bool" + ) + + def _split_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.num_heads, self.head_dim)) + + def _merge_heads(self, hidden_states): + return hidden_states.reshape(hidden_states.shape[:2] + (self.embed_dim,)) + + @nn.compact + def _concatenate_to_cache(self, key, value, query, attention_mask): + """ + This function takes projected key, value states from a single input token and concatenates the states to cached + states from previous steps. This function is slighly adapted from the official Flax repository: + https://github.com/google/flax/blob/491ce18759622506588784b4fca0e4bf05f8c8cd/flax/linen/attention.py#L252 + """ + # detect if we're initializing by absence of existing cache data. + is_initialized = self.has_variable("cache", "cached_key") + cached_key = self.variable("cache", "cached_key", jnp.zeros, key.shape, key.dtype) + cached_value = self.variable("cache", "cached_value", jnp.zeros, value.shape, value.dtype) + cache_index = self.variable("cache", "cache_index", lambda: jnp.array(0, dtype=jnp.int32)) + + if is_initialized: + *batch_dims, max_length, num_heads, depth_per_head = cached_key.value.shape + # update key, value caches with our new 1d spatial slices + cur_index = cache_index.value + indices = (0,) * len(batch_dims) + (cur_index, 0, 0) + key = lax.dynamic_update_slice(cached_key.value, key, indices) + value = lax.dynamic_update_slice(cached_value.value, value, indices) + cached_key.value = key + cached_value.value = value + num_updated_cache_vectors = query.shape[1] + cache_index.value = cache_index.value + num_updated_cache_vectors + # causal mask for cached decoder self-attention: our single query position should only attend to those key positions that have already been generated and cached, not the remaining zero elements. + pad_mask = jnp.broadcast_to( + jnp.arange(max_length) < cur_index + num_updated_cache_vectors, + tuple(batch_dims) + (1, num_updated_cache_vectors, max_length), + ) + attention_mask = combine_masks(pad_mask, attention_mask) + return key, value, attention_mask + + def __call__( + self, + hidden_states: jnp.ndarray, + key_value_states: Optional[jnp.ndarray] = None, + attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + batch_size = hidden_states.shape[0] + + # get query proj + query_states = self.q_proj(hidden_states) + # get key, value proj + if is_cross_attention: + # cross_attentions + key_states = self.k_proj(key_value_states) + value_states = self.v_proj(key_value_states) + else: + # self_attention + key_states = self.k_proj(hidden_states) + value_states = self.v_proj(hidden_states) + + query_states = self._split_heads(query_states) + key_states = self._split_heads(key_states) + value_states = self._split_heads(value_states) + + # handle cache prepare causal attention mask + if self.causal: + query_length, key_length = query_states.shape[1], key_states.shape[1] + if self.has_variable("cache", "cached_key"): + mask_shift = self.variables["cache"]["cache_index"] + max_decoder_length = self.variables["cache"]["cached_key"].shape[1] + causal_mask = lax.dynamic_slice( + self.causal_mask, (0, 0, mask_shift, 0), (1, 1, query_length, max_decoder_length) + ) + else: + causal_mask = self.causal_mask[:, :, :query_length, :key_length] + causal_mask = jnp.broadcast_to(causal_mask, (batch_size,) + causal_mask.shape[1:]) + + # combine masks if needed + if attention_mask is not None and self.causal: + attention_mask = jnp.broadcast_to(jnp.expand_dims(attention_mask, axis=(-3, -2)), causal_mask.shape) + attention_mask = combine_masks(attention_mask, causal_mask) + elif self.causal: + attention_mask = causal_mask + elif attention_mask is not None: + attention_mask = jnp.expand_dims(attention_mask, axis=(-3, -2)) + + # During fast autoregressive decoding, we feed one position at a time, + # and cache the keys and values step by step. + if self.causal and (self.has_variable("cache", "cached_key") or init_cache): + key_states, value_states, attention_mask = self._concatenate_to_cache( + key_states, value_states, query_states, attention_mask + ) + + # Convert the boolean attention mask to an attention bias. + if attention_mask is not None: + # attention mask in the form of attention bias + attention_bias = lax.select( + attention_mask > 0, + jnp.full(attention_mask.shape, 0.0).astype(self.dtype), + jnp.full(attention_mask.shape, jnp.finfo(self.dtype).min).astype(self.dtype), + ) + else: + attention_bias = None + + dropout_rng = None + if not deterministic and self.dropout > 0.0: + dropout_rng = self.make_rng("dropout") + + attn_weights = dot_product_attention_weights( + query_states, + key_states, + bias=attention_bias, + dropout_rng=dropout_rng, + dropout_rate=self.dropout, + broadcast_dropout=True, + deterministic=deterministic, + dtype=self.dtype, + precision=None, + ) + + attn_output = jnp.einsum("...hqk,...khd->...qhd", attn_weights, value_states) + attn_output = self._merge_heads(attn_output) + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights + + +class FlaxMBartEncoderLayer(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.encoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + self.fc1 = nn.Dense( + self.config.encoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights = self.self_attn(hidden_states=hidden_states, attention_mask=attention_mask) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartEncoderLayerCollection with Bart->MBart +class FlaxMBartEncoderLayerCollection(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMBartEncoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.encoder_layers) + ] + self.layerdrop = self.config.encoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + deterministic: bool = True, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + all_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + + for encoder_layer in self.layers: + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): # skip the layer + layer_outputs = (None, None) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + output_attentions, + deterministic, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = (hidden_states, all_hidden_states, all_attentions) + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +class FlaxMBartDecoderLayer(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + + def setup(self) -> None: + self.embed_dim = self.config.d_model + self.self_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + causal=True, + dtype=self.dtype, + ) + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + self.activation_fn = ACT2FN[self.config.activation_function] + self.activation_dropout_layer = nn.Dropout(rate=self.config.activation_dropout) + + self.self_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.encoder_attn = FlaxMBartAttention( + config=self.config, + embed_dim=self.embed_dim, + num_heads=self.config.decoder_attention_heads, + dropout=self.config.attention_dropout, + dtype=self.dtype, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.fc1 = nn.Dense( + self.config.decoder_ffn_dim, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.fc2 = nn.Dense( + self.embed_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.final_layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + hidden_states: jnp.ndarray, + attention_mask: jnp.ndarray, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = True, + deterministic: bool = True, + ) -> Tuple[jnp.ndarray]: + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + hidden_states, self_attn_weights = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, init_cache=init_cache + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + + hidden_states = self.encoder_attn_layer_norm(hidden_states) + hidden_states, cross_attn_weights = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + ) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + return outputs + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartDecoderLayerCollection with Bart->MBart +class FlaxMBartDecoderLayerCollection(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.layers = [ + FlaxMBartDecoderLayer(self.config, name=str(i), dtype=self.dtype) + for i in range(self.config.decoder_layers) + ] + self.layerdrop = self.config.decoder_layerdrop + + def __call__( + self, + hidden_states, + attention_mask, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + deterministic: bool = True, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + ): + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + + for decoder_layer in self.layers: + if output_hidden_states: + all_hidden_states += (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if not deterministic and (dropout_probability < self.layerdrop): + layer_outputs = (None, None, None) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + init_cache=init_cache, + output_attentions=output_attentions, + deterministic=deterministic, + ) + + hidden_states = layer_outputs[0] + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + outputs = [hidden_states, all_hidden_states, all_self_attns, all_cross_attentions] + + if not return_dict: + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartClassificationHead with Bart->MBart +class FlaxMBartClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + config: MBartConfig + inner_dim: int + num_classes: int + pooler_dropout: float + dtype: jnp.dtype = jnp.float32 + + def setup(self): + self.dense = nn.Dense( + self.inner_dim, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + self.dropout = nn.Dropout(rate=self.pooler_dropout) + self.out_proj = nn.Dense( + self.num_classes, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + + def __call__(self, hidden_states: jnp.ndarray, deterministic: bool): + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.dense(hidden_states) + hidden_states = jnp.tanh(hidden_states) + hidden_states = self.dropout(hidden_states, deterministic=deterministic) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class FlaxMBartEncoder(nn.Module): + config: MBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_source_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if self.config.scale_embedding else 1.0 + + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + self.embed_positions = nn.Embed( + self.config.max_position_embeddings + self.offset, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.layers = FlaxMBartEncoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(position_ids + self.offset) + + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + deterministic=deterministic, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutput( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + ) + + +class FlaxMBartDecoder(nn.Module): + config: MBartConfig + embed_tokens: nn.Embed + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.dropout_layer = nn.Dropout(rate=self.config.dropout) + + embed_dim = self.config.d_model + self.padding_idx = self.config.pad_token_id + self.max_target_positions = self.config.max_position_embeddings + self.embed_scale = math.sqrt(self.config.d_model) if self.config.scale_embedding else 1.0 + + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + self.embed_positions = nn.Embed( + self.config.max_position_embeddings + self.offset, + embed_dim, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + ) + + self.layers = FlaxMBartDecoderLayerCollection(self.config, self.dtype) + self.layernorm_embedding = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + self.layer_norm = nn.LayerNorm(dtype=self.dtype, epsilon=1e-05) + + def __call__( + self, + input_ids, + attention_mask, + position_ids, + encoder_hidden_states: Optional[jnp.ndarray] = None, + encoder_attention_mask: Optional[jnp.ndarray] = None, + init_cache: bool = False, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + input_shape = input_ids.shape + input_ids = input_ids.reshape(-1, input_shape[-1]) + + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + # embed positions + positions = self.embed_positions(position_ids + self.offset) + + hidden_states = inputs_embeds + positions + hidden_states = self.layernorm_embedding(hidden_states) + + hidden_states = self.dropout_layer(hidden_states, deterministic=deterministic) + + outputs = self.layers( + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + deterministic=deterministic, + init_cache=init_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + last_hidden_states = outputs[0] + last_hidden_states = self.layer_norm(last_hidden_states) + + # update the last element in `hidden_states` after applying `layernorm` above + hidden_states = None + if output_hidden_states: + hidden_states = outputs[1] + hidden_states = hidden_states[:-1] + (last_hidden_states,) + + if not return_dict: + outputs = (last_hidden_states, hidden_states) + (outputs[2:] if output_hidden_states else outputs[1:]) + return tuple(v for v in outputs if v is not None) + + return FlaxBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=last_hidden_states, + hidden_states=hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartModule with Bart->MBart +class FlaxMBartModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + + def setup(self): + self.shared = nn.Embed( + self.config.vocab_size, + self.config.d_model, + embedding_init=jax.nn.initializers.normal(self.config.init_std), + dtype=self.dtype, + ) + + self.encoder = FlaxMBartEncoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + self.decoder = FlaxMBartDecoder(self.config, dtype=self.dtype, embed_tokens=self.shared) + + def _get_encoder_module(self): + return self.encoder + + def _get_decoder_module(self): + return self.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + position_ids=position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return FlaxSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +class FlaxMBartPreTrainedModel(FlaxPreTrainedModel): + config_class = MBartConfig + base_model_prefix: str = "model" + module_class: nn.Module = None + + def __init__( + self, + config: MBartConfig, + input_shape: Tuple[int] = (1, 1), + seed: int = 0, + dtype: jnp.dtype = jnp.float32, + _do_init: bool = True, + **kwargs, + ): + module = self.module_class(config=config, dtype=dtype, **kwargs) + super().__init__(config, module, input_shape=input_shape, seed=seed, dtype=dtype, _do_init=_do_init) + + def init_weights(self, rng: jax.random.PRNGKey, input_shape: Tuple, params: FrozenDict = None) -> FrozenDict: + # init input tensors + input_ids = jnp.zeros(input_shape, dtype="i4") + # make sure initialization pass will work for FlaxMBartForSequenceClassificationModule + input_ids = input_ids.at[(..., -1)].set(self.config.eos_token_id) + attention_mask = jnp.ones_like(input_ids) + decoder_input_ids = input_ids + decoder_attention_mask = jnp.ones_like(input_ids) + + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + decoder_position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + params_rng, dropout_rng = jax.random.split(rng) + rngs = {"params": params_rng, "dropout": dropout_rng} + + random_params = self.module.init( + rngs, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + )["params"] + + if params is not None: + random_params = flatten_dict(unfreeze(random_params)) + params = flatten_dict(unfreeze(params)) + for missing_key in self._missing_keys: + params[missing_key] = random_params[missing_key] + self._missing_keys = set() + return freeze(unflatten_dict(params)) + else: + return random_params + + # Copied from transformers.models.bart.modeling_flax_bart.FlaxBartPreTrainedModel.init_cache with Bart->MBart + def init_cache(self, batch_size, max_length, encoder_outputs): + r""" + Args: + batch_size (`int`): + batch_size used for fast auto-regressive decoding. Defines the batch size of the initialized cache. + max_length (`int`): + maximum possible length for auto-regressive decoding. Defines the sequence length of the initialized + cache. + encoder_outputs (`Union[FlaxBaseModelOutput, tuple(tuple(jnp.ndarray)]`): + `encoder_outputs` consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: + `attentions`). `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) + is a sequence of hidden-states at the output of the last layer of the encoder. Used in the + cross-attention of the decoder. + """ + # init input variables to retrieve cache + decoder_input_ids = jnp.ones((batch_size, max_length), dtype="i4") + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + decoder_position_ids = jnp.broadcast_to( + jnp.arange(jnp.atleast_2d(decoder_input_ids).shape[-1]), decoder_input_ids.shape + ) + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + init_variables = self.module.init( + jax.random.PRNGKey(0), + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + init_cache=True, + method=_decoder_forward, # we only need to call the decoder to init the cache + ) + return unfreeze(init_variables["cache"]) + + @add_start_docstrings(MBART_ENCODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutput, config_class=MBartConfig) + def encode( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + def _encoder_forward(module, input_ids, attention_mask, position_ids, **kwargs): + encode_module = module._get_encoder_module() + return encode_module(input_ids, attention_mask, position_ids, **kwargs) + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + method=_encoder_forward, + ) + + @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxBaseModelOutputWithPastAndCrossAttentions, config_class=MBartConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> last_decoder_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMBartAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + return decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs, past = outputs + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs, past = outputs + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + def __call__( + self, + input_ids: jnp.ndarray, + attention_mask: Optional[jnp.ndarray] = None, + decoder_input_ids: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + position_ids: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + # prepare encoder inputs + if attention_mask is None: + attention_mask = jnp.ones_like(input_ids) + if position_ids is None: + batch_size, sequence_length = input_ids.shape + position_ids = jnp.broadcast_to(jnp.arange(sequence_length)[None, :], (batch_size, sequence_length)) + + # prepare decoder inputs + if decoder_input_ids is None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones_like(decoder_input_ids) + if decoder_position_ids is None: + batch_size, sequence_length = decoder_input_ids.shape + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {"dropout": dropout_rng} if dropout_rng is not None else {} + + return self.module.apply( + {"params": params or self.params}, + input_ids=jnp.array(input_ids, dtype="i4"), + attention_mask=jnp.array(attention_mask, dtype="i4"), + position_ids=jnp.array(position_ids, dtype="i4"), + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + ) + + +@add_start_docstrings( + "The bare MBart Model transformer outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class FlaxMBartModel(FlaxMBartPreTrainedModel): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 # the dtype of the computation + module_class = FlaxMBartModule + + +append_call_sample_docstring(FlaxMBartModel, _CHECKPOINT_FOR_DOC, FlaxSeq2SeqModelOutput, _CONFIG_FOR_DOC) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForConditionalGenerationModule with Bart->MBart +class FlaxMBartForConditionalGenerationModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + bias_init: Callable[..., jnp.ndarray] = jax.nn.initializers.zeros + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.lm_head = nn.Dense( + self.model.shared.num_embeddings, + use_bias=False, + dtype=self.dtype, + kernel_init=jax.nn.initializers.normal(self.config.init_std), + ) + self.final_logits_bias = self.param("final_logits_bias", self.bias_init, (1, self.model.shared.num_embeddings)) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = self.model.variables["params"]["shared"]["embedding"] + lm_logits = self.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = self.lm_head(hidden_states) + + lm_logits += jax.lax.stop_gradient(self.final_logits_bias.astype(self.dtype)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return output + + return FlaxSeq2SeqLMOutput( + logits=lm_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + "The MMBart Model with a language modeling head. Can be used for summarization.", MBART_START_DOCSTRING +) +class FlaxMBartForConditionalGeneration(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForConditionalGenerationModule + dtype: jnp.dtype = jnp.float32 + + @add_start_docstrings(MBART_DECODE_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=FlaxCausalLMOutputWithCrossAttentions, config_class=MBartConfig) + def decode( + self, + decoder_input_ids, + encoder_outputs, + encoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_attention_mask: Optional[jnp.ndarray] = None, + decoder_position_ids: Optional[jnp.ndarray] = None, + past_key_values: dict = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + train: bool = False, + params: dict = None, + dropout_rng: PRNGKey = None, + ): + r""" + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> text = "My friends are cool but they eat too many carbs." + >>> inputs = tokenizer(text, max_length=1024, return_tensors="jax") + >>> encoder_outputs = model.encode(**inputs) + + >>> decoder_start_token_id = model.config.decoder_start_token_id + >>> decoder_input_ids = jnp.ones((inputs.input_ids.shape[0], 1), dtype="i4") * decoder_start_token_id + + >>> outputs = model.decode(decoder_input_ids, encoder_outputs) + >>> logits = outputs.logits + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.return_dict + + encoder_hidden_states = encoder_outputs[0] + if encoder_attention_mask is None: + batch_size, sequence_length = encoder_hidden_states.shape[:2] + encoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + batch_size, sequence_length = decoder_input_ids.shape + if decoder_attention_mask is None: + decoder_attention_mask = jnp.ones((batch_size, sequence_length)) + + if decoder_position_ids is None: + if past_key_values is not None: + raise ValueError("Make sure to provide `decoder_position_ids` when passing `past_key_values`.") + + decoder_position_ids = jnp.broadcast_to( + jnp.arange(sequence_length)[None, :], (batch_size, sequence_length) + ) + + # Handle any PRNG if needed + rngs = {} + if dropout_rng is not None: + rngs["dropout"] = dropout_rng + + inputs = {"params": params or self.params} + + # if past_key_values are passed then cache is already initialized a private flag init_cache has to be + # passed down to ensure cache is used. It has to be made sure that cache is marked as mutable so that + # it can be changed by FlaxMBartAttention module + if past_key_values: + inputs["cache"] = past_key_values + mutable = ["cache"] + else: + mutable = False + + def _decoder_forward(module, decoder_input_ids, decoder_attention_mask, decoder_position_ids, **kwargs): + decoder_module = module._get_decoder_module() + outputs = decoder_module( + decoder_input_ids, + decoder_attention_mask, + decoder_position_ids, + **kwargs, + ) + hidden_states = outputs[0] + + if self.config.tie_word_embeddings: + shared_embedding = module.model.variables["params"]["shared"]["embedding"] + lm_logits = module.lm_head.apply({"params": {"kernel": shared_embedding.T}}, hidden_states) + else: + lm_logits = module.lm_head(hidden_states) + + lm_logits += module.final_logits_bias.astype(self.dtype) + return lm_logits, outputs + + outputs = self.module.apply( + inputs, + decoder_input_ids=jnp.array(decoder_input_ids, dtype="i4"), + decoder_attention_mask=jnp.array(decoder_attention_mask, dtype="i4"), + decoder_position_ids=jnp.array(decoder_position_ids, dtype="i4"), + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=jnp.array(encoder_attention_mask, dtype="i4"), + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=not train, + rngs=rngs, + mutable=mutable, + method=_decoder_forward, + ) + + if past_key_values is None: + lm_logits, decoder_outputs = outputs + else: + (lm_logits, decoder_outputs), past = outputs + + if return_dict: + outputs = FlaxCausalLMOutputWithCrossAttentions( + logits=lm_logits, + hidden_states=decoder_outputs.hidden_states, + attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + ) + else: + outputs = (lm_logits,) + decoder_outputs[1:] + + # add updated cache to model output + if past_key_values is not None and return_dict: + outputs["past_key_values"] = unfreeze(past["cache"]) + return outputs + elif past_key_values is not None and not return_dict: + outputs = outputs[:1] + (unfreeze(past["cache"]),) + outputs[1:] + + return outputs + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + max_length, + attention_mask: Optional[jax.Array] = None, + decoder_attention_mask: Optional[jax.Array] = None, + encoder_outputs=None, + **kwargs, + ): + # initializing the cache + batch_size, seq_length = decoder_input_ids.shape + + past_key_values = self.init_cache(batch_size, max_length, encoder_outputs) + # Note that usually one would have to put 0's in the attention_mask for x > input_ids.shape[-1] and x < cache_length. + # But since the decoder uses a causal mask, those positions are masked anyways. + # Thus we can create a single static attention_mask here, which is more efficient for compilation + extended_attention_mask = jnp.ones((batch_size, max_length), dtype="i4") + if decoder_attention_mask is not None: + position_ids = decoder_attention_mask.cumsum(axis=-1) - 1 + extended_attention_mask = lax.dynamic_update_slice(extended_attention_mask, decoder_attention_mask, (0, 0)) + else: + position_ids = jnp.broadcast_to(jnp.arange(seq_length, dtype="i4")[None, :], (batch_size, seq_length)) + + return { + "past_key_values": past_key_values, + "encoder_outputs": encoder_outputs, + "encoder_attention_mask": attention_mask, + "decoder_attention_mask": extended_attention_mask, + "decoder_position_ids": position_ids, + } + + def update_inputs_for_generation(self, model_outputs, model_kwargs): + model_kwargs["past_key_values"] = model_outputs.past_key_values + model_kwargs["decoder_position_ids"] = model_kwargs["decoder_position_ids"][:, -1:] + 1 + return model_kwargs + + +FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING = r""" + Returns: + + Summarization example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration, MBartConfig + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> ARTICLE_TO_SUMMARIZE = "Meine Freunde sind cool, aber sie essen zu viel Kuchen." + >>> inputs = tokenizer([ARTICLE_TO_SUMMARIZE], max_length=1024, return_tensors="np") + + >>> # Generate Summary + >>> summary_ids = model.generate(inputs["input_ids"], num_beams=4, max_length=5).sequences + >>> print(tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)) + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, FlaxMBartForConditionalGeneration + + >>> model = FlaxMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="np")["input_ids"] + + >>> logits = model(input_ids).logits + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero()[0].item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ``` +""" + +overwrite_call_docstring( + FlaxMBartForConditionalGeneration, MBART_INPUTS_DOCSTRING + FLAX_MBART_CONDITIONAL_GENERATION_DOCSTRING +) +append_replace_return_docstrings( + FlaxMBartForConditionalGeneration, output_type=FlaxSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC +) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForSequenceClassificationModule with Bart->MBart +class FlaxMBartForSequenceClassificationModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + num_labels: Optional[int] = None + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.classification_head = FlaxMBartClassificationHead( + config=self.config, + inner_dim=self.config.d_model, + num_classes=self.num_labels if self.num_labels is not None else self.config.num_labels, + pooler_dropout=self.config.classifier_dropout, + ) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + hidden_states = outputs[0] # last hidden state + + eos_mask = jnp.where(input_ids == self.config.eos_token_id, 1, 0) + + # The first condition is necessary to overcome jax._src.errors.ConcretizationTypeError during JIT compilation + if type(eos_mask) != jax.interpreters.partial_eval.DynamicJaxprTracer: + if len(jnp.unique(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + + if any(eos_mask.sum(1) == 0): + raise ValueError("There are missing tokens in input_ids") + + # Ensure to keep 1 only for the last token for each example + eos_mask_noised = eos_mask + jnp.arange(eos_mask.shape[1]) * 1e-6 + eos_mask = jnp.where(eos_mask_noised == eos_mask_noised.max(1).reshape(-1, 1), 1, 0) + + sentence_representation = jnp.einsum("ijk, ij -> ijk", hidden_states, eos_mask).sum(1) + logits = self.classification_head(sentence_representation, deterministic=deterministic) + + if not return_dict: + output = (logits,) + outputs[1:] + return output + + return FlaxSeq2SeqSequenceClassifierOutput( + logits=logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + MBART_START_DOCSTRING, +) +class FlaxMBartForSequenceClassification(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForSequenceClassificationModule + dtype = jnp.float32 + + +append_call_sample_docstring( + FlaxMBartForSequenceClassification, + _CHECKPOINT_FOR_DOC, + FlaxSeq2SeqSequenceClassifierOutput, + _CONFIG_FOR_DOC, +) + + +# Copied from transformers.models.bart.modeling_flax_bart.FlaxBartForQuestionAnsweringModule with Bart->MBart +class FlaxMBartForQuestionAnsweringModule(nn.Module): + config: MBartConfig + dtype: jnp.dtype = jnp.float32 + num_labels = 2 + + def setup(self): + self.model = FlaxMBartModule(config=self.config, dtype=self.dtype) + self.qa_outputs = nn.Dense( + self.num_labels, dtype=self.dtype, kernel_init=jax.nn.initializers.normal(self.config.init_std) + ) + + def _get_encoder_module(self): + return self.model.encoder + + def _get_decoder_module(self): + return self.model.decoder + + def __call__( + self, + input_ids, + attention_mask, + decoder_input_ids, + decoder_attention_mask, + position_ids, + decoder_position_ids, + output_attentions: bool = False, + output_hidden_states: bool = False, + return_dict: bool = True, + deterministic: bool = True, + ): + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + position_ids=position_ids, + decoder_position_ids=decoder_position_ids, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + deterministic=deterministic, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = jnp.split(logits, logits.shape[-1], axis=-1) + start_logits = start_logits.squeeze(-1) + end_logits = end_logits.squeeze(-1) + + if not return_dict: + output = (start_logits, end_logits) + outputs[1:] + return output + + return FlaxSeq2SeqQuestionAnsweringModelOutput( + start_logits=start_logits, + end_logits=end_logits, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBart Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MBART_START_DOCSTRING, +) +class FlaxMBartForQuestionAnswering(FlaxMBartPreTrainedModel): + module_class = FlaxMBartForQuestionAnsweringModule + dtype = jnp.float32 + + +append_call_sample_docstring( + FlaxMBartForQuestionAnswering, + _CHECKPOINT_FOR_DOC, + FlaxSeq2SeqQuestionAnsweringModelOutput, + _CONFIG_FOR_DOC, +) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..fc23e2c675dbf2922feb94e8f25d62a6d7086801 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_mbart.py @@ -0,0 +1,2131 @@ +# coding=utf-8 +# Copyright 2021, The Facebook AI Research Team and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch MBART model.""" +import copy +import math +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn.functional as F +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask +from ...modeling_outputs import ( + BaseModelOutput, + BaseModelOutputWithPastAndCrossAttentions, + CausalLMOutputWithCrossAttentions, + Seq2SeqLMOutput, + Seq2SeqModelOutput, + Seq2SeqQuestionAnsweringModelOutput, + Seq2SeqSequenceClassifierOutput, +) +from ...modeling_utils import PreTrainedModel +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_flash_attn_2_available, + is_flash_attn_greater_or_equal_2_10, + logging, + replace_return_docstrings, +) +from .configuration_mbart import MBartConfig + + +if is_flash_attn_2_available(): + from flash_attn import flash_attn_func, flash_attn_varlen_func + from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + +# Base model docstring +_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024] + + +# Copied from transformers.models.llama.modeling_llama._get_unpad_data +def _get_unpad_data(attention_mask): + seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) + indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() + max_seqlen_in_batch = seqlens_in_batch.max().item() + cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) + return ( + indices, + cu_seqlens, + max_seqlen_in_batch, + ) + + +def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int): + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + prev_output_tokens = input_ids.clone() + + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + prev_output_tokens.masked_fill_(prev_output_tokens == -100, pad_token_id) + + index_of_eos = (prev_output_tokens.ne(pad_token_id).sum(dim=1) - 1).unsqueeze(-1) + decoder_start_tokens = prev_output_tokens.gather(1, index_of_eos).squeeze() + prev_output_tokens[:, 1:] = prev_output_tokens[:, :-1].clone() + prev_output_tokens[:, 0] = decoder_start_tokens + + return prev_output_tokens + + +# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MBart +class MBartLearnedPositionalEmbedding(nn.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int): + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim) + + def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0): + """`input_ids' shape is expected to be [bsz x seqlen].""" + + bsz, seq_len = input_ids.shape[:2] + positions = torch.arange( + past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device + ).expand(bsz, -1) + + return super().forward(positions + self.offset) + + +# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->MBart +class MBartAttention(nn.Module): + """Multi-headed attention from 'Attention Is All You Need' paper""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + is_causal: bool = False, + config: Optional[MBartConfig] = None, + ): + super().__init__() + self.embed_dim = embed_dim + self.num_heads = num_heads + self.dropout = dropout + self.head_dim = embed_dim // num_heads + self.config = config + + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + self.is_causal = is_causal + + self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias) + + def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous() + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, tgt_len, _ = hidden_states.size() + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape) + key_states = key_states.reshape(*proj_shape) + value_states = value_states.reshape(*proj_shape) + + src_len = key_states.size(1) + attn_weights = torch.bmm(query_states, key_states.transpose(1, 2)) + + if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len): + raise ValueError( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {attn_weights.size()}" + ) + + if attention_mask is not None: + if attention_mask.size() != (bsz, 1, tgt_len, src_len): + raise ValueError( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}" + ) + attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + attn_weights = nn.functional.softmax(attn_weights, dim=-1) + + if layer_head_mask is not None: + if layer_head_mask.size() != (self.num_heads,): + raise ValueError( + f"Head mask for a single layer should be of size {(self.num_heads,)}, but is" + f" {layer_head_mask.size()}" + ) + attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len) + + if output_attentions: + # this operation is a bit awkward, but it's required to + # make sure that attn_weights keeps its gradient. + # In order to do so, attn_weights have to be reshaped + # twice and have to be reused in the following + attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len) + else: + attn_weights_reshaped = None + + attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) + + attn_output = torch.bmm(attn_probs, value_states) + + if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim): + raise ValueError( + f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is" + f" {attn_output.size()}" + ) + + attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim) + attn_output = attn_output.transpose(1, 2) + + # Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be + # partitioned across GPUs when using tensor-parallelism. + attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim) + + attn_output = self.out_proj(attn_output) + + return attn_output, attn_weights_reshaped, past_key_value + + +# Copied from transformers.models.bart.modeling_bart.BartFlashAttention2 with Bart->MBart +class MBartFlashAttention2(MBartAttention): + """ + MBart flash attention module. This module inherits from `MBartAttention` as the weights of the module stays + untouched. The only required change would be on the forward pass where it needs to correctly call the public API of + flash attention and deal with padding tokens in case the input contains any of them. + """ + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__ + def __init__(self, *args, **kwargs): + super().__init__(*args, **kwargs) + + # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. + # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. + # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). + self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() + + def _reshape(self, tensor: torch.Tensor, seq_len: int, bsz: int): + return tensor.view(bsz, seq_len, self.num_heads, self.head_dim) + + def forward( + self, + hidden_states: torch.Tensor, + key_value_states: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + output_attentions: bool = False, + ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + # MBartFlashAttention2 attention does not support output_attentions + if output_attentions: + raise ValueError("MBartFlashAttention2 attention does not support output_attentions") + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + + bsz, q_len, _ = hidden_states.size() + + # get query proj + query_states = self._reshape(self.q_proj(hidden_states), -1, bsz) + # get key, value proj + # `past_key_value[0].shape[2] == key_value_states.shape[1]` + # is checking that the `sequence_length` of the `past_key_value` is the same as + # the provided `key_value_states` to support prefix tuning + if ( + is_cross_attention + and past_key_value is not None + and past_key_value[0].shape[2] == key_value_states.shape[1] + ): + # reuse k,v, cross_attentions + key_states = past_key_value[0].transpose(1, 2) + value_states = past_key_value[1].transpose(1, 2) + elif is_cross_attention: + # cross_attentions + key_states = self._reshape(self.k_proj(key_value_states), -1, bsz) + value_states = self._reshape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) + value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) + key_states = torch.cat([past_key_value[0].transpose(1, 2), key_states], dim=1) + value_states = torch.cat([past_key_value[1].transpose(1, 2), value_states], dim=1) + else: + # self_attention + key_states = self._reshape(self.k_proj(hidden_states), -1, bsz) + value_states = self._reshape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states.transpose(1, 2), value_states.transpose(1, 2)) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + # In PEFT, usually we cast the layer norms in float32 for training stability reasons + # therefore the input hidden states gets silently casted in float32. Hence, we need + # cast them back in the correct dtype just to be sure everything works as expected. + # This might slowdown training & inference so it is recommended to not cast the LayerNorms + # in fp32. (LlamaRMSNorm handles it correctly) + + input_dtype = query_states.dtype + if input_dtype == torch.float32: + if torch.is_autocast_enabled(): + target_dtype = torch.get_autocast_gpu_dtype() + # Handle the case where the model is quantized + elif hasattr(self.config, "_pre_quantization_dtype"): + target_dtype = self.config._pre_quantization_dtype + else: + target_dtype = self.q_proj.weight.dtype + + logger.warning_once( + f"The input hidden states seems to be silently casted in float32, this might be related to" + f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" + f" {target_dtype}." + ) + + query_states = query_states.to(target_dtype) + key_states = key_states.to(target_dtype) + value_states = value_states.to(target_dtype) + + attn_output = self._flash_attention_forward( + query_states, key_states, value_states, attention_mask, q_len, dropout=self.dropout + ) + + attn_output = attn_output.reshape(bsz, q_len, -1) + attn_output = self.out_proj(attn_output) + + if not output_attentions: + attn_weights = None + + return attn_output, attn_weights, past_key_value + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._flash_attention_forward + def _flash_attention_forward( + self, query_states, key_states, value_states, attention_mask, query_length, dropout=0.0, softmax_scale=None + ): + """ + Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token + first unpad the input, then computes the attention scores and pad the final attention scores. + + Args: + query_states (`torch.Tensor`): + Input query states to be passed to Flash Attention API + key_states (`torch.Tensor`): + Input key states to be passed to Flash Attention API + value_states (`torch.Tensor`): + Input value states to be passed to Flash Attention API + attention_mask (`torch.Tensor`): + The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the + position of padding tokens and 1 for the position of non-padding tokens. + dropout (`float`): + Attention dropout + softmax_scale (`float`, *optional*): + The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) + """ + if not self._flash_attn_uses_top_left_mask: + causal = self.is_causal + else: + # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__. + causal = self.is_causal and query_length != 1 + + # Contains at least one padding token in the sequence + if attention_mask is not None: + batch_size = query_states.shape[0] + query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input( + query_states, key_states, value_states, attention_mask, query_length + ) + + cu_seqlens_q, cu_seqlens_k = cu_seq_lens + max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens + + attn_output_unpad = flash_attn_varlen_func( + query_states, + key_states, + value_states, + cu_seqlens_q=cu_seqlens_q, + cu_seqlens_k=cu_seqlens_k, + max_seqlen_q=max_seqlen_in_batch_q, + max_seqlen_k=max_seqlen_in_batch_k, + dropout_p=dropout, + softmax_scale=softmax_scale, + causal=causal, + ) + + attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length) + else: + attn_output = flash_attn_func( + query_states, key_states, value_states, dropout, softmax_scale=softmax_scale, causal=causal + ) + + return attn_output + + # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2._upad_input + def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length): + indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) + batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape + + key_layer = index_first_axis( + key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + value_layer = index_first_axis( + value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), indices_k + ) + if query_length == kv_seq_len: + query_layer = index_first_axis( + query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), indices_k + ) + cu_seqlens_q = cu_seqlens_k + max_seqlen_in_batch_q = max_seqlen_in_batch_k + indices_q = indices_k + elif query_length == 1: + max_seqlen_in_batch_q = 1 + cu_seqlens_q = torch.arange( + batch_size + 1, dtype=torch.int32, device=query_layer.device + ) # There is a memcpy here, that is very bad. + indices_q = cu_seqlens_q[:-1] + query_layer = query_layer.squeeze(1) + else: + # The -q_len: slice assumes left padding. + attention_mask = attention_mask[:, -query_length:] + query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask) + + return ( + query_layer, + key_layer, + value_layer, + indices_q, + (cu_seqlens_q, cu_seqlens_k), + (max_seqlen_in_batch_q, max_seqlen_in_batch_k), + ) + + +MBART_ATTENTION_CLASSES = { + "eager": MBartAttention, + "flash_attention_2": MBartFlashAttention2, +} + + +class MBartEncoderLayer(nn.Module): + def __init__(self, config: MBartConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.encoder_attention_heads, + dropout=config.attention_dropout, + config=config, + ) + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim) + self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: torch.Tensor, + layer_head_mask: torch.Tensor, + output_attentions: bool = False, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, attn_weights, _ = self.self_attn( + hidden_states=hidden_states, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + if hidden_states.dtype == torch.float16 and ( + torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any() + ): + clamp_value = torch.finfo(hidden_states.dtype).max - 1000 + hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) + + outputs = (hidden_states,) + + if output_attentions: + outputs += (attn_weights,) + + return outputs + + +class MBartDecoderLayer(nn.Module): + def __init__(self, config: MBartConfig): + super().__init__() + self.embed_dim = config.d_model + + self.self_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + is_causal=True, + config=config, + ) + self.dropout = config.dropout + self.activation_fn = ACT2FN[config.activation_function] + self.activation_dropout = config.activation_dropout + + self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.encoder_attn = MBART_ATTENTION_CLASSES[config._attn_implementation]( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + is_decoder=True, + config=config, + ) + self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim) + self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim) + self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim) + self.final_layer_norm = nn.LayerNorm(self.embed_dim) + + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.Tensor] = None, + encoder_attention_mask: Optional[torch.Tensor] = None, + layer_head_mask: Optional[torch.Tensor] = None, + cross_attn_layer_head_mask: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: Optional[bool] = False, + use_cache: Optional[bool] = True, + ) -> torch.Tensor: + """ + Args: + hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` + attention_mask (`torch.FloatTensor`): attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + encoder_hidden_states (`torch.FloatTensor`): + cross attention input to the layer of shape `(batch, seq_len, embed_dim)` + encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size + `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values. + layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size + `(encoder_attention_heads,)`. + cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of + size `(decoder_attention_heads,)`. + past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + ) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training) + hidden_states = self.fc2(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + hidden_states = residual + hidden_states + + outputs = (hidden_states,) + + if output_attentions: + outputs += (self_attn_weights, cross_attn_weights) + + if use_cache: + outputs += (present_key_value,) + + return outputs + + +# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MBart +class MBartClassificationHead(nn.Module): + """Head for sentence-level classification tasks.""" + + def __init__( + self, + input_dim: int, + inner_dim: int, + num_classes: int, + pooler_dropout: float, + ): + super().__init__() + self.dense = nn.Linear(input_dim, inner_dim) + self.dropout = nn.Dropout(p=pooler_dropout) + self.out_proj = nn.Linear(inner_dim, num_classes) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dropout(hidden_states) + hidden_states = self.dense(hidden_states) + hidden_states = torch.tanh(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.out_proj(hidden_states) + return hidden_states + + +class MBartPreTrainedModel(PreTrainedModel): + config_class = MBartConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["MBartDecoderLayer", "MBartAttention"] + _supports_flash_attn_2 = True + + def _init_weights(self, module): + std = self.config.init_std + if isinstance(module, nn.Linear): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def dummy_inputs(self): + pad_token = self.config.pad_token_id + input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device) + dummy_inputs = { + "attention_mask": input_ids.ne(pad_token), + "input_ids": input_ids, + } + return dummy_inputs + + +MBART_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`MBartConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MBART_GENERATION_EXAMPLE = r""" + Translation example: + + ```python + >>> from transformers import AutoTokenizer, MBartForConditionalGeneration + + >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") + + >>> example_english_phrase = "42 is the answer" + >>> inputs = tokenizer(example_english_phrase, return_tensors="pt") + + >>> # Translate + >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) + >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + '42 este răspuns' + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, MBartForConditionalGeneration + + >>> model = MBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="pt")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = (input_ids[0] == tokenizer.mask_token_id).nonzero().item() + >>> probs = logits[0, masked_index].softmax(dim=0) + >>> values, predictions = probs.topk(5) + + >>> tokenizer.decode(predictions).split() + ['nett', 'sehr', 'ganz', 'nicht', 'so'] + ``` +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that + varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also + be used by default. + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, + 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*): + Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`) + `last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of + hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded + representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be + input (see `past_key_values`). This is useful if you want more control over how to convert + `decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix. + + If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value + of `inputs_embeds`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +class MBartEncoder(MBartPreTrainedModel): + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`MBartEncoderLayer`]. + + Args: + config: MBartConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + + self.dropout = config.dropout + self.layerdrop = config.encoder_layerdrop + + embed_dim = config.d_model + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = MBartLearnedPositionalEmbedding( + config.max_position_embeddings, + embed_dim, + ) + self.layers = nn.ModuleList([MBartEncoderLayer(config) for _ in range(config.encoder_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.layernorm_embedding = nn.LayerNorm(embed_dim) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def _backward_compatibility_gradient_checkpointing(self): + # Override to not delete the attribute from the config + if self.supports_gradient_checkpointing and getattr(self.config, "gradient_checkpointing", False): + self.gradient_checkpointing_enable() + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + head_mask: Optional[torch.Tensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutput]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.shape + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input) + + hidden_states = inputs_embeds + embed_pos.to(inputs_embeds.device) + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + # expand attention_mask + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if self._use_flash_attention_2: + attention_mask = attention_mask if 0 in attention_mask else None + else: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype) + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + if head_mask.size()[0] != len(self.layers): + raise ValueError( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {head_mask.size()[0]}." + ) + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + to_drop = False + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: # skip the layer + to_drop = True + + if to_drop: + layer_outputs = (None, None) + else: + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + encoder_layer.__call__, + hidden_states, + attention_mask, + (head_mask[idx] if head_mask is not None else None), + output_attentions, + ) + else: + layer_outputs = encoder_layer( + hidden_states, + attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + output_attentions=output_attentions, + ) + + hidden_states = layer_outputs[0] + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + +class MBartDecoder(MBartPreTrainedModel): + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MBartDecoderLayer`] + + Args: + config: MBartConfig + embed_tokens (nn.Embedding): output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[nn.Embedding] = None): + super().__init__(config) + self.dropout = config.dropout + self.layerdrop = config.decoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_target_positions = config.max_position_embeddings + self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0 + + self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx) + + if embed_tokens is not None: + self.embed_tokens.weight = embed_tokens.weight + + self.embed_positions = MBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + ) + self.layers = nn.ModuleList([MBartDecoderLayer(config) for _ in range(config.decoder_layers)]) + self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" + self.layernorm_embedding = nn.LayerNorm(config.d_model) + self.layer_norm = nn.LayerNorm(config.d_model) + + self.gradient_checkpointing = False + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embed_tokens + + def set_input_embeddings(self, value): + self.embed_tokens = value + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing + cross-attention on hidden heads. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + """ + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # retrieve input_ids and inputs_embeds + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input = input_ids + input_shape = input.size() + input_ids = input_ids.view(-1, input_shape[-1]) + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + input = inputs_embeds[:, :, -1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + # past_key_values_length + past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0 + + if inputs_embeds is None: + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + if self._use_flash_attention_2: + # 2d mask is passed through the layers + attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None + else: + # 4d mask is passed through the layers + attention_mask = _prepare_4d_causal_attention_mask( + attention_mask, input_shape, inputs_embeds, past_key_values_length + ) + + # expand encoder attention mask + if encoder_hidden_states is not None and encoder_attention_mask is not None: + if self._use_flash_attention_2: + encoder_attention_mask = encoder_attention_mask if 0 in encoder_attention_mask else None + else: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _prepare_4d_attention_mask( + encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1] + ) + + # embed positions + positions = self.embed_positions(input, past_key_values_length) + + hidden_states = inputs_embeds + positions.to(inputs_embeds.device) + hidden_states = self.layernorm_embedding(hidden_states) + + hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training) + + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning_once( + "`use_cache=True` is incompatible with gradient checkpointing`. Setting `use_cache=False`..." + ) + use_cache = False + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None + next_decoder_cache = () if use_cache else None + + # check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired + for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]): + if attn_mask is not None: + if attn_mask.size()[0] != len(self.layers): + raise ValueError( + f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for" + f" {attn_mask.size()[0]}." + ) + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + if self.training: + dropout_probability = torch.rand([]) + if dropout_probability < self.layerdrop: + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + decoder_layer.__call__, + hidden_states, + attention_mask, + encoder_hidden_states, + encoder_attention_mask, + head_mask[idx] if head_mask is not None else None, + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + None, + output_attentions, + use_cache, + ) + else: + layer_outputs = decoder_layer( + hidden_states, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=(head_mask[idx] if head_mask is not None else None), + cross_attn_layer_head_mask=( + cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None + ), + past_key_value=past_key_value, + output_attentions=output_attentions, + use_cache=use_cache, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[3 if output_attentions else 1],) + + if output_attentions: + all_self_attns += (layer_outputs[1],) + + if encoder_hidden_states is not None: + all_cross_attentions += (layer_outputs[2],) + + hidden_states = self.layer_norm(hidden_states) + + # add hidden states from the last decoder layer + if output_hidden_states: + all_hidden_states += (hidden_states,) + + next_cache = next_decoder_cache if use_cache else None + if not return_dict: + return tuple( + v + for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions] + if v is not None + ) + return BaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_cache, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attentions, + ) + + +@add_start_docstrings( + "The bare MBART Model outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class MBartModel(MBartPreTrainedModel): + _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] + + def __init__(self, config: MBartConfig): + super().__init__(config) + + padding_idx, vocab_size = config.pad_token_id, config.vocab_size + self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx) + + self.encoder = MBartEncoder(config, self.shared) + self.decoder = MBartDecoder(config, self.shared) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, value): + self.shared = value + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + def get_encoder(self): + return self.encoder + + def get_decoder(self): + return self.decoder + + def _tie_weights(self): + if self.config.tie_word_embeddings: + self._tie_or_clone_weights(self.encoder.embed_tokens, self.get_input_embeddings()) + self._tie_or_clone_weights(self.decoder.embed_tokens, self.get_input_embeddings()) + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + expected_output=_EXPECTED_OUTPUT_SHAPE, + ) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Seq2SeqModelOutput, Tuple[torch.FloatTensor]]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # different to other models, MBart automatically creates decoder_input_ids from + # input_ids if no decoder_input_ids are provided + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): + encoder_outputs = BaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + + # decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn) + decoder_outputs = self.decoder( + input_ids=decoder_input_ids, + attention_mask=decoder_attention_mask, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return Seq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings( + "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", + MBART_START_DOCSTRING, +) +class MBartForConditionalGeneration(MBartPreTrainedModel): + base_model_prefix = "model" + _keys_to_ignore_on_load_missing = ["final_logits_bias"] + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight", "lm_head.weight"] + + def __init__(self, config: MBartConfig): + super().__init__(config) + self.model = MBartModel(config) + self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings))) + self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_encoder(self): + return self.model.get_encoder() + + def get_decoder(self): + return self.model.get_decoder() + + def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding: + new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + self._resize_final_logits_bias(new_embeddings.weight.shape[0]) + return new_embeddings + + def _resize_final_logits_bias(self, new_num_tokens: int) -> None: + old_num_tokens = self.final_logits_bias.shape[-1] + if new_num_tokens <= old_num_tokens: + new_bias = self.final_logits_bias[:, :new_num_tokens] + else: + extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device) + new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1) + self.register_buffer("final_logits_bias", new_bias) + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MBART_GENERATION_EXAMPLE) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Seq2SeqLMOutput, Tuple[torch.FloatTensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if labels is not None: + if use_cache: + logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.") + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() + masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return Seq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past is used + if past_key_values is not None: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if decoder_input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = decoder_input_ids.shape[1] - 1 + + decoder_input_ids = decoder_input_ids[:, remove_prefix_length:] + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id) + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + # cached cross_attention states don't have to be reordered -> they are always the same + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2]) + + layer_past[2:], + ) + return reordered_past + + +@add_start_docstrings( + """ + MBart model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE + tasks. + """, + MBART_START_DOCSTRING, +) +class MBartForSequenceClassification(MBartPreTrainedModel): + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] + + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(config, **kwargs) + self.model = MBartModel(config) + self.classification_head = MBartClassificationHead( + config.d_model, + config.d_model, + config.num_labels, + config.classifier_dropout, + ) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqSequenceClassifierOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bart.modeling_bart.BartForSequenceClassification.forward + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if labels is not None: + use_cache = False + + if input_ids is None and inputs_embeds is not None: + raise NotImplementedError( + f"Passing input embeddings is currently not supported for {self.__class__.__name__}" + ) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + hidden_states = outputs[0] # last hidden state + + eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device) + + if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: + raise ValueError("All examples must have the same number of tokens.") + sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[ + :, -1, : + ] + logits = self.classification_head(sentence_representation) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + if self.config.problem_type is None: + if self.config.num_labels == 1: + self.config.problem_type = "regression" + elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.config.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[1:] + return ((loss,) + output) if loss is not None else output + + return Seq2SeqSequenceClassifierOutput( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +@add_start_docstrings( + """ + MBART Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear + layer on top of the hidden-states output to compute `span start logits` and `span end logits`). + """, + MBART_START_DOCSTRING, +) +class MBartForQuestionAnswering(MBartPreTrainedModel): + _tied_weights_keys = ["model.encoder.embed_tokens.weight", "model.decoder.embed_tokens.weight"] + + def __init__(self, config): + super().__init__(config) + + config.num_labels = 2 + self.num_labels = config.num_labels + + self.model = MBartModel(config) + self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=Seq2SeqQuestionAnsweringModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + # Copied from transformers.models.bart.modeling_bart.BartForQuestionAnswering.forward + def forward( + self, + input_ids: torch.Tensor = None, + attention_mask: Optional[torch.Tensor] = None, + decoder_input_ids: Optional[torch.LongTensor] = None, + decoder_attention_mask: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.Tensor] = None, + decoder_head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + encoder_outputs: Optional[List[torch.FloatTensor]] = None, + start_positions: Optional[torch.LongTensor] = None, + end_positions: Optional[torch.LongTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + decoder_inputs_embeds: Optional[torch.FloatTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]: + r""" + start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the start of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for position (index) of the end of the labelled span for computing the token classification loss. + Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence + are not taken into account for computing the loss. + """ + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if start_positions is not None and end_positions is not None: + use_cache = False + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + + logits = self.qa_outputs(sequence_output) + start_logits, end_logits = logits.split(1, dim=-1) + start_logits = start_logits.squeeze(-1).contiguous() + end_logits = end_logits.squeeze(-1).contiguous() + + total_loss = None + if start_positions is not None and end_positions is not None: + # If we are on multi-GPU, split add a dimension + if len(start_positions.size()) > 1: + start_positions = start_positions.squeeze(-1) + if len(end_positions.size()) > 1: + end_positions = end_positions.squeeze(-1) + # sometimes the start/end positions are outside our model inputs, we ignore these terms + ignored_index = start_logits.size(1) + start_positions = start_positions.clamp(0, ignored_index) + end_positions = end_positions.clamp(0, ignored_index) + + loss_fct = CrossEntropyLoss(ignore_index=ignored_index) + start_loss = loss_fct(start_logits, start_positions) + end_loss = loss_fct(end_logits, end_positions) + total_loss = (start_loss + end_loss) / 2 + + if not return_dict: + output = ( + start_logits, + end_logits, + ) + outputs[1:] + return ((total_loss,) + output) if total_loss is not None else output + + return Seq2SeqQuestionAnsweringModelOutput( + loss=total_loss, + start_logits=start_logits, + end_logits=end_logits, + past_key_values=outputs.past_key_values, + decoder_hidden_states=outputs.decoder_hidden_states, + decoder_attentions=outputs.decoder_attentions, + cross_attentions=outputs.cross_attentions, + encoder_last_hidden_state=outputs.encoder_last_hidden_state, + encoder_hidden_states=outputs.encoder_hidden_states, + encoder_attentions=outputs.encoder_attentions, + ) + + +# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->MBart +class MBartDecoderWrapper(MBartPreTrainedModel): + """ + This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is + used in combination with the [`EncoderDecoderModel`] framework. + """ + + def __init__(self, config): + super().__init__(config) + self.decoder = MBartDecoder(config) + + def forward(self, *args, **kwargs): + return self.decoder(*args, **kwargs) + + +# Copied from transformers.models.bart.modeling_bart.BartForCausalLM with Bart->MBart, facebook/bart-base->facebook/mbart-large-cc25 +class MBartForCausalLM(MBartPreTrainedModel): + _tied_weights_keys = ["lm_head.weight"] + + def __init__(self, config): + config = copy.deepcopy(config) + config.is_decoder = True + config.is_encoder_decoder = False + super().__init__(config) + self.model = MBartDecoderWrapper(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.model.decoder.embed_tokens + + def set_input_embeddings(self, value): + self.model.decoder.embed_tokens = value + + def get_output_embeddings(self): + return self.lm_head + + def set_output_embeddings(self, new_embeddings): + self.lm_head = new_embeddings + + def set_decoder(self, decoder): + self.model.decoder = decoder + + def get_decoder(self): + return self.model.decoder + + @replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.Tensor] = None, + cross_attn_head_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithCrossAttentions]: + r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + if the model is configured as a decoder. + encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used + in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`: + head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of + shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of + shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional + tensors are only required when the model is used as a decoder in a Sequence to Sequence model. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the + cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding + (see `past_key_values`). + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. + + Returns: + + Example: + + ```python + >>> from transformers import AutoTokenizer, MBartForCausalLM + + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + >>> model = MBartForCausalLM.from_pretrained("facebook/mbart-large-cc25", add_cross_attention=False) + >>> assert model.config.is_decoder, f"{model.__class__} has to be configured as a decoder." + >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> expected_shape = [1, inputs.input_ids.shape[-1], model.config.vocab_size] + >>> list(logits.shape) == expected_shape + True + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model.decoder( + input_ids=input_ids, + attention_mask=attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + head_mask=head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = self.lm_head(outputs[0]) + + loss = None + if labels is not None: + labels = labels.to(logits.device) + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithCrossAttentions( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + cross_attentions=outputs.cross_attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs + ): + # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly + if attention_mask is None: + attention_mask = input_ids.new_ones(input_ids.shape) + + if past_key_values: + past_length = past_key_values[0][0].shape[2] + + # Some generation methods already pass only the last input ID + if input_ids.shape[1] > past_length: + remove_prefix_length = past_length + else: + # Default to old behavior: keep only final ID + remove_prefix_length = input_ids.shape[1] - 1 + + input_ids = input_ids[:, remove_prefix_length:] + # first step, decoder_cached_states are empty + return { + "input_ids": input_ids, # encoder_outputs is defined. input_ids not needed + "attention_mask": attention_mask, + "past_key_values": past_key_values, + "use_cache": use_cache, + } + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + reordered_past = () + for layer_past in past_key_values: + reordered_past += ( + tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past), + ) + return reordered_past diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..2c134b520d4300827f16fee16cacf1c04be6c0f7 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/modeling_tf_mbart.py @@ -0,0 +1,1573 @@ +# coding=utf-8 +# Copyright 2021 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" TF 2.0 MBart model.""" + + +from __future__ import annotations + +import random +from typing import Optional, Tuple, Union + +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutput, + TFBaseModelOutputWithPastAndCrossAttentions, + TFSeq2SeqLMOutput, + TFSeq2SeqModelOutput, +) + +# Public API +from ...modeling_tf_utils import ( + TFCausalLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + add_code_sample_docstrings, + add_end_docstrings, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_mbart import MBartConfig + + +logger = logging.get_logger(__name__) + +_CHECKPOINT_FOR_DOC = "facebook/mbart-large-cc25" +_CONFIG_FOR_DOC = "MBartConfig" + + +LARGE_NEGATIVE = -1e8 + + +def shift_tokens_right(input_ids: tf.Tensor, pad_token_id: int): + """ + Shift input ids one token to the right, and wrap the last non pad token (the token) Note that MBart does not + have a single `decoder_start_token_id` in contrast to other Bart-like models. + """ + if pad_token_id is None: + raise ValueError("self.model.config.pad_token_id has to be defined.") + # replace possible -100 values in labels by `pad_token_id` + input_ids = tf.where( + input_ids == -100, tf.fill(shape_list(input_ids), tf.cast(pad_token_id, input_ids.dtype)), input_ids + ) + language_id_index = ( + tf.reduce_sum(tf.cast(tf.math.not_equal(input_ids, pad_token_id), dtype=input_ids.dtype), axis=-1) - 1 + ) + language_id_index = tf.stack( + [tf.range(shape_list(input_ids)[0], dtype=input_ids.dtype), language_id_index], axis=-1 + ) + languages_ids = tf.gather_nd(input_ids, language_id_index) + + shifted_input_ids = tf.concat([tf.expand_dims(languages_ids, axis=-1), input_ids[:, :-1]], axis=-1) + + return shifted_input_ids + + +# Copied from transformers.models.bart.modeling_tf_bart._make_causal_mask +def _make_causal_mask(input_ids_shape: tf.TensorShape, past_key_values_length: int = 0): + """ + Make causal mask used for bi-directional self-attention. + """ + bsz = input_ids_shape[0] + tgt_len = input_ids_shape[1] + mask = tf.ones((tgt_len, tgt_len)) * LARGE_NEGATIVE + mask_cond = tf.range(shape_list(mask)[-1]) + + mask = tf.where(mask_cond < tf.reshape(mask_cond + 1, (shape_list(mask)[-1], 1)), 0.0, mask) + + if past_key_values_length > 0: + mask = tf.concat([tf.zeros((tgt_len, past_key_values_length)), mask], axis=-1) + + return tf.tile(mask[None, None, :, :], (bsz, 1, 1, 1)) + + +# Copied from transformers.models.bart.modeling_tf_bart._expand_mask +def _expand_mask(mask: tf.Tensor, tgt_len: Optional[int] = None): + """ + Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`. + """ + src_len = shape_list(mask)[1] + tgt_len = tgt_len if tgt_len is not None else src_len + one_cst = tf.constant(1.0) + mask = tf.cast(mask, dtype=one_cst.dtype) + expanded_mask = tf.tile(mask[:, None, None, :], (1, 1, tgt_len, 1)) + + return (one_cst - expanded_mask) * LARGE_NEGATIVE + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartLearnedPositionalEmbedding with Bart->MBart +class TFMBartLearnedPositionalEmbedding(keras.layers.Embedding): + """ + This module learns positional embeddings up to a fixed maximum size. + """ + + def __init__(self, num_embeddings: int, embedding_dim: int, **kwargs): + # MBart is set up so that if padding_idx is specified then offset the embedding ids by 2 + # and adjust num_embeddings appropriately. Other models don't have this hack + self.offset = 2 + super().__init__(num_embeddings + self.offset, embedding_dim, **kwargs) + + def call( + self, + input_shape: Optional[tf.TensorShape] = None, + past_key_values_length: int = 0, + position_ids: tf.Tensor | None = None, + ): + """Input is expected to be of size [bsz x seqlen].""" + if position_ids is None: + seq_len = input_shape[1] + position_ids = tf.range(seq_len, delta=1, name="range") + position_ids += past_key_values_length + + offset_dtype = position_ids.dtype if isinstance(position_ids, tf.Tensor) else tf.int32 + return super().call(position_ids + tf.constant(self.offset, dtype=offset_dtype)) + + +# Copied from transformers.models.bart.modeling_tf_bart.TFBartAttention with Bart->MBart +class TFMBartAttention(keras.layers.Layer): + """Multi-headed attention from "Attention Is All You Need""" + + def __init__( + self, + embed_dim: int, + num_heads: int, + dropout: float = 0.0, + is_decoder: bool = False, + bias: bool = True, + **kwargs, + ): + super().__init__(**kwargs) + self.embed_dim = embed_dim + + self.num_heads = num_heads + self.dropout = keras.layers.Dropout(dropout) + self.head_dim = embed_dim // num_heads + if (self.head_dim * num_heads) != self.embed_dim: + raise ValueError( + f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}" + f" and `num_heads`: {num_heads})." + ) + self.scaling = self.head_dim**-0.5 + self.is_decoder = is_decoder + + self.k_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="k_proj") + self.q_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="q_proj") + self.v_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="v_proj") + self.out_proj = keras.layers.Dense(embed_dim, use_bias=bias, name="out_proj") + + def _shape(self, tensor: tf.Tensor, seq_len: int, bsz: int): + return tf.transpose(tf.reshape(tensor, (bsz, seq_len, self.num_heads, self.head_dim)), (0, 2, 1, 3)) + + def call( + self, + hidden_states: tf.Tensor, + key_value_states: tf.Tensor | None = None, + past_key_value: Tuple[Tuple[tf.Tensor]] | None = None, + attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor | None]: + """Input shape: Batch x Time x Channel""" + + # if key_value_states are provided this layer is used as a cross-attention layer + # for the decoder + is_cross_attention = key_value_states is not None + bsz, tgt_len, embed_dim = shape_list(hidden_states) + + # get query proj + query_states = self.q_proj(hidden_states) * self.scaling + # get key, value proj + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_states = past_key_value[0] + value_states = past_key_value[1] + elif is_cross_attention: + # cross_attentions + key_states = self._shape(self.k_proj(key_value_states), -1, bsz) + value_states = self._shape(self.v_proj(key_value_states), -1, bsz) + elif past_key_value is not None: + # reuse k, v, self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + key_states = tf.concat([past_key_value[0], key_states], axis=2) + value_states = tf.concat([past_key_value[1], value_states], axis=2) + else: + # self_attention + key_states = self._shape(self.k_proj(hidden_states), -1, bsz) + value_states = self._shape(self.v_proj(hidden_states), -1, bsz) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_states, value_states) + + proj_shape = (bsz * self.num_heads, -1, self.head_dim) + query_states = tf.reshape(self._shape(query_states, tgt_len, bsz), proj_shape) + key_states = tf.reshape(key_states, proj_shape) + value_states = tf.reshape(value_states, proj_shape) + + src_len = shape_list(key_states)[1] + attn_weights = tf.matmul(query_states, key_states, transpose_b=True) + + tf.debugging.assert_equal( + shape_list(attn_weights), + [bsz * self.num_heads, tgt_len, src_len], + message=( + f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is" + f" {shape_list(attn_weights)}" + ), + ) + + if attention_mask is not None: + tf.debugging.assert_equal( + shape_list(attention_mask), + [bsz, 1, tgt_len, src_len], + message=( + f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is" + f" {shape_list(attention_mask)}" + ), + ) + + attention_mask = tf.cast(attention_mask, dtype=attn_weights.dtype) + attn_weights = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + attention_mask + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_weights = stable_softmax(attn_weights, axis=-1) + + if layer_head_mask is not None: + tf.debugging.assert_equal( + shape_list(layer_head_mask), + [self.num_heads], + message=( + f"Head mask for a single layer should be of size {(self.num_heads)}, but is" + f" {shape_list(layer_head_mask)}" + ), + ) + + attn_weights = tf.reshape(layer_head_mask, (1, -1, 1, 1)) * tf.reshape( + attn_weights, (bsz, self.num_heads, tgt_len, src_len) + ) + attn_weights = tf.reshape(attn_weights, (bsz * self.num_heads, tgt_len, src_len)) + + attn_probs = self.dropout(attn_weights, training=training) + attn_output = tf.matmul(attn_probs, value_states) + + tf.debugging.assert_equal( + shape_list(attn_output), + [bsz * self.num_heads, tgt_len, self.head_dim], + message=( + f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is" + f" {shape_list(attn_output)}" + ), + ) + + attn_output = tf.transpose( + tf.reshape(attn_output, (bsz, self.num_heads, tgt_len, self.head_dim)), (0, 2, 1, 3) + ) + attn_output = tf.reshape(attn_output, (bsz, tgt_len, embed_dim)) + + attn_output = self.out_proj(attn_output) + attn_weights: tf.Tensor = tf.reshape(attn_weights, (bsz, self.num_heads, tgt_len, src_len)) + + return attn_output, attn_weights, past_key_value + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "k_proj", None) is not None: + with tf.name_scope(self.k_proj.name): + self.k_proj.build([None, None, self.embed_dim]) + if getattr(self, "q_proj", None) is not None: + with tf.name_scope(self.q_proj.name): + self.q_proj.build([None, None, self.embed_dim]) + if getattr(self, "v_proj", None) is not None: + with tf.name_scope(self.v_proj.name): + self.v_proj.build([None, None, self.embed_dim]) + if getattr(self, "out_proj", None) is not None: + with tf.name_scope(self.out_proj.name): + self.out_proj.build([None, None, self.embed_dim]) + + +class TFMBartEncoderLayer(keras.layers.Layer): + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMBartAttention( + self.embed_dim, config.encoder_attention_heads, dropout=config.attention_dropout, name="self_attn" + ) + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + self.fc1 = keras.layers.Dense(config.encoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + layer_head_mask: tf.Tensor, + training: Optional[bool] = False, + ): + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(encoder_attention_heads,)* + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + hidden_states, self_attn_weights, _ = self.self_attn( + hidden_states=hidden_states, attention_mask=attention_mask, layer_head_mask=layer_head_mask + ) + + tf.debugging.assert_equal( + shape_list(hidden_states), + shape_list(residual), + message=f"Self attn modified the shape of query {shape_list(residual)} to {shape_list(hidden_states)}", + ) + + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return hidden_states, self_attn_weights + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.encoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFMBartDecoderLayer(keras.layers.Layer): + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + self.embed_dim = config.d_model + self.self_attn = TFMBartAttention( + embed_dim=self.embed_dim, + num_heads=config.decoder_attention_heads, + dropout=config.attention_dropout, + name="self_attn", + is_decoder=True, + ) + self.dropout = keras.layers.Dropout(config.dropout) + self.activation_fn = get_tf_activation(config.activation_function) + self.activation_dropout = keras.layers.Dropout(config.activation_dropout) + + self.self_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="self_attn_layer_norm") + self.encoder_attn = TFMBartAttention( + self.embed_dim, + config.decoder_attention_heads, + dropout=config.attention_dropout, + name="encoder_attn", + is_decoder=True, + ) + self.encoder_attn_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="encoder_attn_layer_norm") + self.fc1 = keras.layers.Dense(config.decoder_ffn_dim, name="fc1") + self.fc2 = keras.layers.Dense(self.embed_dim, name="fc2") + self.final_layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="final_layer_norm") + self.config = config + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + layer_head_mask: tf.Tensor | None = None, + cross_attn_layer_head_mask: tf.Tensor | None = None, + past_key_value: Tuple[tf.Tensor] | None = None, + training: Optional[bool] = False, + ) -> Tuple[tf.Tensor, tf.Tensor, Tuple[Tuple[tf.Tensor]]]: + """ + Args: + hidden_states (`tf.Tensor`): input to the layer of shape *(batch, seq_len, embed_dim)* + attention_mask (`tf.Tensor`): attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + encoder_hidden_states (`tf.Tensor`): + cross attention input to the layer of shape *(batch, seq_len, embed_dim)* + encoder_attention_mask (`tf.Tensor`): encoder attention mask of size + *(batch, 1, tgt_len, src_len)* where padding elements are indicated by very large negative values. + layer_head_mask (`tf.Tensor`): mask for attention heads in a given layer of size + *(decoder_attention_heads,)* + cross_attn_layer_head_mask (`tf.Tensor`): mask for heads of the cross-attention module. + *(decoder_attention_heads,)* + past_key_value (`Tuple(tf.Tensor)`): cached past key and value projection states + """ + residual = hidden_states + hidden_states = self.self_attn_layer_norm(hidden_states) + + # Self Attention + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + # add present self-attn cache to positions 1,2 of present_key_value tuple + hidden_states, self_attn_weights, present_key_value = self.self_attn( + hidden_states=hidden_states, + past_key_value=self_attn_past_key_value, + attention_mask=attention_mask, + layer_head_mask=layer_head_mask, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # Cross-Attention Block + cross_attn_present_key_value = None + cross_attn_weights = None + if encoder_hidden_states is not None: + residual = hidden_states + hidden_states = self.encoder_attn_layer_norm(hidden_states) + + # cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn( + hidden_states=hidden_states, + key_value_states=encoder_hidden_states, + attention_mask=encoder_attention_mask, + layer_head_mask=cross_attn_layer_head_mask, + past_key_value=cross_attn_past_key_value, + ) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + # add cross-attn to positions 3,4 of present_key_value tuple + present_key_value = present_key_value + cross_attn_present_key_value + + # Fully Connected + residual = hidden_states + hidden_states = self.final_layer_norm(hidden_states) + hidden_states = self.activation_fn(self.fc1(hidden_states)) + hidden_states = self.activation_dropout(hidden_states, training=training) + hidden_states = self.fc2(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + hidden_states = residual + hidden_states + + return ( + hidden_states, + self_attn_weights, + cross_attn_weights, + present_key_value, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attn", None) is not None: + with tf.name_scope(self.self_attn.name): + self.self_attn.build(None) + if getattr(self, "self_attn_layer_norm", None) is not None: + with tf.name_scope(self.self_attn_layer_norm.name): + self.self_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "encoder_attn", None) is not None: + with tf.name_scope(self.encoder_attn.name): + self.encoder_attn.build(None) + if getattr(self, "encoder_attn_layer_norm", None) is not None: + with tf.name_scope(self.encoder_attn_layer_norm.name): + self.encoder_attn_layer_norm.build([None, None, self.embed_dim]) + if getattr(self, "fc1", None) is not None: + with tf.name_scope(self.fc1.name): + self.fc1.build([None, None, self.embed_dim]) + if getattr(self, "fc2", None) is not None: + with tf.name_scope(self.fc2.name): + self.fc2.build([None, None, self.config.decoder_ffn_dim]) + if getattr(self, "final_layer_norm", None) is not None: + with tf.name_scope(self.final_layer_norm.name): + self.final_layer_norm.build([None, None, self.embed_dim]) + + +class TFMBartPreTrainedModel(TFPreTrainedModel): + config_class = MBartConfig + base_model_prefix = "model" + + +MBART_START_DOCSTRING = r""" + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Args: + config ([`MBartConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights. +""" + +MBART_INPUTS_DOCSTRING = r""" + Args: + input_ids (`tf.Tensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + decoder_input_ids (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + Indices of decoder input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are decoder input IDs?](../glossary#decoder-input-ids) + + MBart uses a specific language id token as the starting token for `decoder_input_ids` generation that + varies according to source and target language, *e.g.* 25004 for *en_XX*, and 25003 for *de_DE*. If + `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + For translation and summarization training, `decoder_input_ids` should be provided. If no + `decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right + for denoising pre-training following the paper. + decoder_attention_mask (`tf.Tensor` of shape `(batch_size, target_sequence_length)`, *optional*): + will be made by default and ignore pad tokens. It is not recommended to set this for most use cases. + decoder_position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + decoder_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + encoder_outputs (`tf.FloatTensor`, *optional*): + hidden states at the output of the last layer of the encoder. Used in the cross-attention of the decoder. + of shape `(batch_size, sequence_length, hidden_size)` is a sequence of + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers`) + contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding. + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + use_cache (`bool`, *optional*, defaults to `True`): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). Set to `False` during training, `True` during generation + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + +MBART_GENERATION_EXAMPLE = r""" + Translation example: + + ```python + >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration + + >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-en-ro") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-en-ro") + + >>> example_english_phrase = "42 is the answer" + >>> inputs = tokenizer(example_english_phrase, return_tensors="tf") + + >>> # Translate + >>> generated_ids = model.generate(**inputs, num_beams=4, max_length=5) + >>> tokenizer.batch_decode(generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] + '42 este răspuns' + ``` + + Mask filling example: + + ```python + >>> from transformers import AutoTokenizer, TFMBartForConditionalGeneration + >>> import tensorflow as tf + + >>> model = TFMBartForConditionalGeneration.from_pretrained("facebook/mbart-large-cc25") + >>> tokenizer = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25") + + >>> # de_DE is the language symbol id for German + >>> TXT = " Meine Freunde sind nett aber sie essen zu viel Kuchen. de_DE" + + >>> input_ids = tokenizer([TXT], add_special_tokens=False, return_tensors="tf")["input_ids"] + >>> logits = model(input_ids).logits + + >>> masked_index = tf.where(input_ids[0] == tokenizer.mask_token_id)[0, 0] + >>> probs = tf.nn.softmax(logits[0, masked_index], axis=0) + >>> values, predictions = tf.math.top_k(probs, 5) + + >>> tokenizer.decode(predictions).split() + ['nett', 'sehr', 'ganz', 'nicht', 'so'] + ``` +""" + + +@keras_serializable +class TFMBartEncoder(keras.layers.Layer): + config_class = MBartConfig + """ + Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a + [`TFMBartEncoderLayer`]. + + Args: + config: MBartConfig + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.dropout = keras.layers.Dropout(config.dropout) + self.layerdrop = config.encoder_layerdrop + self.padding_idx = config.pad_token_id + self.max_source_positions = config.max_position_embeddings + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + + self.embed_tokens = embed_tokens + self.embed_positions = TFMBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.layers = [TFMBartEncoderLayer(config, name=f"layers.{i}") for i in range(config.encoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + self.embed_dim = config.d_model + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutput, Tuple[tf.Tensor]]: + """ + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, `optional): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + embed_pos = self.embed_positions(input_shape) + hidden_states = inputs_embeds + embed_pos + hidden_states = self.layernorm_embedding(hidden_states) + hidden_states = self.dropout(hidden_states, training=training) + + # check attention mask and invert + if attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + attention_mask = _expand_mask(attention_mask) + else: + attention_mask = None + + encoder_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + + # check if head_mask has a correct number of layers specified if desired + if head_mask is not None: + tf.debugging.assert_equal( + shape_list(head_mask)[0], + len(self.layers), + message=( + f"The head_mask should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(head_mask)[0]}." + ), + ) + + # encoder layers + for idx, encoder_layer in enumerate(self.layers): + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + dropout_probability = random.uniform(0, 1) + if training and (dropout_probability < self.layerdrop): # skip the layer + continue + + hidden_states, attn = encoder_layer( + hidden_states, + attention_mask, + head_mask[idx] if head_mask is not None else None, + ) + + if output_attentions: + all_attentions += (attn,) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + encoder_states = encoder_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) + return TFBaseModelOutput( + last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.embed_dim]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMBartDecoder(keras.layers.Layer): + config_class = MBartConfig + """ + Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`TFMBartDecoderLayer`] + + Args: + config: MBartConfig + embed_tokens: output embedding + """ + + def __init__(self, config: MBartConfig, embed_tokens: Optional[keras.layers.Embedding] = None, **kwargs): + super().__init__(**kwargs) + self.config = config + self.padding_idx = config.pad_token_id + self.embed_tokens = embed_tokens + self.layerdrop = config.decoder_layerdrop + self.embed_positions = TFMBartLearnedPositionalEmbedding( + config.max_position_embeddings, + config.d_model, + name="embed_positions", + ) + self.embed_scale = tf.math.sqrt(float(config.d_model)) if config.scale_embedding else 1.0 + self.layers = [TFMBartDecoderLayer(config, name=f"layers.{i}") for i in range(config.decoder_layers)] + self.layernorm_embedding = keras.layers.LayerNormalization(epsilon=1e-5, name="layernorm_embedding") + self.layer_norm = keras.layers.LayerNormalization(epsilon=1e-5, name="layer_norm") + + self.dropout = keras.layers.Dropout(config.dropout) + + def get_embed_tokens(self): + return self.embed_tokens + + def set_embed_tokens(self, embed_tokens): + self.embed_tokens = embed_tokens + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType = None, + inputs_embeds: tf.Tensor | None = None, + attention_mask: tf.Tensor | None = None, + position_ids: tf.Tensor | None = None, + encoder_hidden_states: tf.Tensor | None = None, + encoder_attention_mask: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[ + TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor, tf.Tensor] + ]: + r""" + Args: + input_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you + provide it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + position_ids (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each decoder input sequence tokens in the position embeddings. Selected in the + range `[0, config.max_position_embeddings - 1]`. + encoder_hidden_states (`tf.Tensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*): + Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention + of the decoder. + encoder_attention_mask (`tf.Tensor` of shape `(batch_size, encoder_sequence_length)`, *optional*): + Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values + selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + cross_attn_head_mask (`tf.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*): + Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + past_key_values (`Tuple[Tuple[tf.Tensor]]` of length `config.n_layers` with each tuple having 2 tuples each of which has 2 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`): + Contains precomputed key and value hidden-states of the attention blocks. Can be used to speed up + decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those + that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of + all `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. + This is useful if you want more control over how to convert `input_ids` indices into associated vectors + than the model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under + returned tensors for more detail. This argument can be used only in eager mode, in graph mode the value + in the config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors + for more detail. This argument can be used only in eager mode, in graph mode the value in the config + will be used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used + in eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False`): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). + """ + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds") + + past_key_values_length = shape_list(past_key_values[0][0])[2] if past_key_values is not None else 0 + + # embed positions + if position_ids is None: + positions = self.embed_positions(input_shape, past_key_values_length) + else: + positions = self.embed_positions(input_shape, position_ids=position_ids) + + if inputs_embeds is None: + check_embeddings_within_bounds(input_ids, self.embed_tokens.input_dim) + inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale + + hidden_states = inputs_embeds + + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + if input_shape[-1] > 1: + combined_attention_mask = _make_causal_mask(input_shape, past_key_values_length=past_key_values_length) + else: + combined_attention_mask = _expand_mask( + tf.ones((input_shape[0], input_shape[1] + past_key_values_length)), tgt_len=input_shape[-1] + ) + + if attention_mask is not None: + combined_attention_mask = combined_attention_mask + _expand_mask(attention_mask, tgt_len=input_shape[-1]) + + if encoder_hidden_states is not None and encoder_attention_mask is not None: + # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len] + encoder_attention_mask = _expand_mask(encoder_attention_mask, tgt_len=input_shape[-1]) + + hidden_states = self.layernorm_embedding(hidden_states + positions) + hidden_states = self.dropout(hidden_states, training=training) + + # decoder layers + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + all_cross_attns = () if (output_attentions and encoder_hidden_states is not None) else None + present_key_values = () if use_cache else None + + # check if head_mask and cross_attn_head_mask have a correct number of layers specified if desired + for attn_mask_name, attn_mask in [("head_mask", head_mask), ("cross_attn_head_mask", cross_attn_head_mask)]: + if attn_mask is not None: + tf.debugging.assert_equal( + shape_list(attn_mask)[0], + len(self.layers), + message=( + f"The {attn_mask_name} should be specified for {len(self.layers)} layers, but it is for" + f" {shape_list(attn_mask)[0]}." + ), + ) + + for idx, decoder_layer in enumerate(self.layers): + # add LayerDrop (see https://arxiv.org/abs/1909.11556 for description) + if output_hidden_states: + all_hidden_states += (hidden_states,) + dropout_probability = random.uniform(0, 1) + + if training and (dropout_probability < self.layerdrop): + continue + + past_key_value = past_key_values[idx] if past_key_values is not None else None + + hidden_states, layer_self_attn, layer_cross_attn, present_key_value = decoder_layer( + hidden_states, + attention_mask=combined_attention_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + layer_head_mask=head_mask[idx] if head_mask is not None else None, + cross_attn_layer_head_mask=cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None, + past_key_value=past_key_value, + ) + + if use_cache: + present_key_values += (present_key_value,) + + if output_attentions: + all_self_attns += (layer_self_attn,) + + if encoder_hidden_states is not None: + all_cross_attns += (layer_cross_attn,) + + hidden_states = self.layer_norm(hidden_states) + + if output_hidden_states: + all_hidden_states += (hidden_states,) + + if not return_dict: + return hidden_states, present_key_values, all_hidden_states, all_self_attns, all_cross_attns + else: + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=present_key_values, + hidden_states=all_hidden_states, + attentions=all_self_attns, + cross_attentions=all_cross_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embed_positions", None) is not None: + with tf.name_scope(self.embed_positions.name): + self.embed_positions.build(None) + if getattr(self, "layernorm_embedding", None) is not None: + with tf.name_scope(self.layernorm_embedding.name): + self.layernorm_embedding.build([None, None, self.config.d_model]) + if getattr(self, "layer_norm", None) is not None: + with tf.name_scope(self.layer_norm.name): + self.layer_norm.build([None, None, self.config.d_model]) + if getattr(self, "layers", None) is not None: + for layer in self.layers: + with tf.name_scope(layer.name): + layer.build(None) + + +@keras_serializable +class TFMBartMainLayer(keras.layers.Layer): + config_class = MBartConfig + + def __init__(self, config: MBartConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.shared = keras.layers.Embedding( + input_dim=config.vocab_size, + output_dim=config.d_model, + embeddings_initializer=keras.initializers.TruncatedNormal(stddev=self.config.init_std), + name="model.shared", + ) + # Additional attribute to specify the expected name scope of the layer (for loading/storing weights) + self.shared.load_weight_prefix = "model.shared" + + self.encoder = TFMBartEncoder(config, self.shared, name="encoder") + self.decoder = TFMBartDecoder(config, self.shared, name="decoder") + + def get_input_embeddings(self): + return self.shared + + def set_input_embeddings(self, new_embeddings): + self.shared = new_embeddings + self.encoder.embed_tokens = self.shared + self.decoder.embed_tokens = self.shared + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFSeq2SeqModelOutput, tf.Tensor]: + if decoder_input_ids is None and decoder_inputs_embeds is None: + use_cache = False + + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + + if decoder_input_ids is None and input_ids is not None: + decoder_input_ids = shift_tokens_right(input_ids, self.config.pad_token_id) + + if encoder_outputs is None: + encoder_outputs = self.encoder( + input_ids=input_ids, + attention_mask=attention_mask, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + # If the user passed a tuple for encoder_outputs, we wrap it in a TFBaseModelOutput when return_dict=True + elif return_dict and not isinstance(encoder_outputs, TFBaseModelOutput): + encoder_outputs = TFBaseModelOutput( + last_hidden_state=encoder_outputs[0], + hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, + attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, + ) + # If the user passed a TFBaseModelOutput for encoder_outputs, we wrap it in a tuple when return_dict=False + elif not return_dict and not isinstance(encoder_outputs, tuple): + encoder_outputs = encoder_outputs.to_tuple() + + decoder_outputs = self.decoder( + decoder_input_ids, + attention_mask=decoder_attention_mask, + position_ids=decoder_position_ids, + encoder_hidden_states=encoder_outputs[0], + encoder_attention_mask=attention_mask, + head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + if not return_dict: + return decoder_outputs + encoder_outputs + + return TFSeq2SeqModelOutput( + last_hidden_state=decoder_outputs.last_hidden_state, + past_key_values=decoder_outputs.past_key_values, + decoder_hidden_states=decoder_outputs.hidden_states, + decoder_attentions=decoder_outputs.attentions, + cross_attentions=decoder_outputs.cross_attentions, + encoder_last_hidden_state=encoder_outputs.last_hidden_state, + encoder_hidden_states=encoder_outputs.hidden_states, + encoder_attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + # The shared/tied weights expect to be in the model base namespace + # Adding "/" to the end (not the start!) of a tf.name_scope puts it in the root namespace rather than + # the current one. + with tf.name_scope(self.shared.load_weight_prefix + "/" + self.shared.name + "/"): + self.shared.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "decoder", None) is not None: + with tf.name_scope(self.decoder.name): + self.decoder.build(None) + + +@add_start_docstrings( + "The bare MBART Model outputting raw hidden-states without any specific head on top.", + MBART_START_DOCSTRING, +) +class TFMBartModel(TFMBartPreTrainedModel): + def __init__(self, config: MBartConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.model = TFMBartMainLayer(config, name="model") + + def get_encoder(self): + return self.model.encoder + + def get_decoder(self): + return self.model.decoder + + @unpack_inputs + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @add_code_sample_docstrings( + checkpoint=_CHECKPOINT_FOR_DOC, + output_type=TFSeq2SeqModelOutput, + config_class=_CONFIG_FOR_DOC, + ) + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[Union[Tuple, TFBaseModelOutput]] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + **kwargs, + ) -> Union[TFSeq2SeqModelOutput, Tuple[tf.Tensor]]: + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + encoder_outputs=encoder_outputs, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartModel.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqModelOutput( + last_hidden_state=output.last_hidden_state, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + + +# Copied from transformers.models.bart.modeling_tf_bart.BiasLayer +class BiasLayer(keras.layers.Layer): + """ + Bias as a layer. It is used for serialization purposes: `keras.Model.save_weights` stores on a per-layer basis, + so all weights have to be registered in a layer. + """ + + def __init__(self, shape, initializer, trainable, name, **kwargs): + super().__init__(name=name, **kwargs) + # Note: the name of this variable will NOT be scoped when serialized, i.e. it will not be in the format of + # "outer_layer/inner_layer/.../name:0". Instead, it will be "name:0". For further details, see: + # https://github.com/huggingface/transformers/pull/18833#issuecomment-1233090214 + self.bias = self.add_weight(name=name, shape=shape, initializer=initializer, trainable=trainable) + + def call(self, x): + return x + self.bias + + +@add_start_docstrings( + "The MBART Model with a language modeling head. Can be used for summarization, after fine-tuning the pretrained models.", + MBART_START_DOCSTRING, +) +class TFMBartForConditionalGeneration(TFMBartPreTrainedModel, TFCausalLanguageModelingLoss): + _keys_to_ignore_on_load_unexpected = [ + r"model.encoder.embed_tokens.weight", + r"model.decoder.embed_tokens.weight", + ] + + def __init__(self, config, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.model = TFMBartMainLayer(config, name="model") + self.use_cache = config.use_cache + # final_bias_logits is registered as a buffer in pytorch, so not trainable for the sake of consistency. + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, config.vocab_size], initializer="zeros", trainable=False + ) + + def get_decoder(self): + return self.model.decoder + + def get_encoder(self): + return self.model.encoder + + def get_output_embeddings(self): + return self.get_input_embeddings() + + def set_output_embeddings(self, value): + self.set_input_embeddings(value) + + def get_bias(self): + return {"final_logits_bias": self.bias_layer.bias} + + def set_bias(self, value): + # Replaces the existing layers containing bias for correct (de)serialization. + vocab_size = value["final_logits_bias"].shape[-1] + self.bias_layer = BiasLayer( + name="final_logits_bias", shape=[1, vocab_size], initializer="zeros", trainable=False + ) + self.bias_layer.bias.assign(value["final_logits_bias"]) + + @unpack_inputs + @add_start_docstrings_to_model_forward(MBART_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=TFSeq2SeqLMOutput, config_class=_CONFIG_FOR_DOC) + @add_end_docstrings(MBART_GENERATION_EXAMPLE) + def call( + self, + input_ids: TFModelInputType = None, + attention_mask: tf.Tensor | None = None, + decoder_input_ids: tf.Tensor | None = None, + decoder_attention_mask: tf.Tensor | None = None, + decoder_position_ids: tf.Tensor | None = None, + head_mask: tf.Tensor | None = None, + decoder_head_mask: tf.Tensor | None = None, + cross_attn_head_mask: tf.Tensor | None = None, + encoder_outputs: Optional[TFBaseModelOutput] = None, + past_key_values: Tuple[Tuple[tf.Tensor]] = None, + inputs_embeds: tf.Tensor | None = None, + decoder_inputs_embeds: tf.Tensor | None = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSeq2SeqLMOutput, Tuple[tf.Tensor]]: + """ + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + """ + + if labels is not None: + labels = tf.where( + labels == self.config.pad_token_id, + tf.cast(tf.fill(shape_list(labels), -100), labels.dtype), + labels, + ) + use_cache = False + if decoder_input_ids is None and decoder_inputs_embeds is None: + decoder_input_ids = shift_tokens_right(labels, self.config.pad_token_id) + + outputs = self.model( + input_ids, + attention_mask=attention_mask, + decoder_input_ids=decoder_input_ids, + encoder_outputs=encoder_outputs, + decoder_attention_mask=decoder_attention_mask, + decoder_position_ids=decoder_position_ids, + head_mask=head_mask, + decoder_head_mask=decoder_head_mask, + cross_attn_head_mask=cross_attn_head_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + decoder_inputs_embeds=decoder_inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + lm_logits = tf.matmul(outputs[0], self.model.shared.weights, transpose_b=True) + lm_logits = self.bias_layer(lm_logits) + masked_lm_loss = None if labels is None else self.hf_compute_loss(labels, lm_logits) + + if not return_dict: + output = (lm_logits,) + outputs[1:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + return TFSeq2SeqLMOutput( + loss=masked_lm_loss, + logits=lm_logits, + past_key_values=outputs.past_key_values, # index 1 of d outputs + decoder_hidden_states=outputs.decoder_hidden_states, # index 2 of d outputs + decoder_attentions=outputs.decoder_attentions, # index 3 of d outputs + cross_attentions=outputs.cross_attentions, # index 4 of d outputs + encoder_last_hidden_state=outputs.encoder_last_hidden_state, # index 0 of encoder outputs + encoder_hidden_states=outputs.encoder_hidden_states, # 1 of e out + encoder_attentions=outputs.encoder_attentions, # 2 of e out + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.serving_output + def serving_output(self, output): + pkv = tf.tuple(output.past_key_values)[1] if self.config.use_cache else None + dec_hs = tf.convert_to_tensor(output.decoder_hidden_states) if self.config.output_hidden_states else None + dec_attns = tf.convert_to_tensor(output.decoder_attentions) if self.config.output_attentions else None + cross_attns = tf.convert_to_tensor(output.cross_attentions) if self.config.output_attentions else None + enc_hs = tf.convert_to_tensor(output.encoder_hidden_states) if self.config.output_hidden_states else None + enc_attns = tf.convert_to_tensor(output.encoder_attentions) if self.config.output_attentions else None + + return TFSeq2SeqLMOutput( + logits=output.logits, + past_key_values=pkv, + decoder_hidden_states=dec_hs, + decoder_attentions=dec_attns, + cross_attentions=cross_attns, + encoder_last_hidden_state=output.encoder_last_hidden_state, + encoder_hidden_states=enc_hs, + encoder_attentions=enc_attns, + ) + + # Copied from transformers.models.bart.modeling_tf_bart.TFBartForConditionalGeneration.prepare_inputs_for_generation + def prepare_inputs_for_generation( + self, + decoder_input_ids, + past_key_values=None, + attention_mask=None, + decoder_attention_mask=None, + head_mask=None, + decoder_head_mask=None, + cross_attn_head_mask=None, + use_cache=None, + encoder_outputs=None, + **kwargs, + ): + # cut decoder_input_ids if past_key_values is used + if past_key_values is not None: + decoder_input_ids = decoder_input_ids[:, -1:] + + if decoder_attention_mask is not None: # xla + decoder_position_ids = tf.math.cumsum(decoder_attention_mask, axis=-1, exclusive=True)[:, -1:] + elif past_key_values is not None: # no xla + past_key_values + decoder_position_ids = past_key_values[0][0].shape[2] + else: # no xla + no past_key_values + decoder_position_ids = tf.range(decoder_input_ids.shape[1]) + + return { + "input_ids": None, # encoder_outputs is defined. input_ids not needed + "encoder_outputs": encoder_outputs, + "past_key_values": past_key_values, + "decoder_input_ids": decoder_input_ids, + "attention_mask": attention_mask, + "decoder_attention_mask": decoder_attention_mask, + "decoder_position_ids": decoder_position_ids, + "head_mask": head_mask, + "decoder_head_mask": decoder_head_mask, + "cross_attn_head_mask": cross_attn_head_mask, + "use_cache": use_cache, # change this to avoid caching (presumably for debugging) + } + + def prepare_decoder_input_ids_from_labels(self, labels: tf.Tensor): + return shift_tokens_right(labels, self.config.pad_token_id) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "model", None) is not None: + with tf.name_scope(self.model.name): + self.model.build(None) + if getattr(self, "bias_layer", None) is not None: + with tf.name_scope(self.bias_layer.name): + self.bias_layer.build(None) diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py new file mode 100644 index 0000000000000000000000000000000000000000..d9da6cb45cb388fe8c89d3fb1137403df75bce77 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart.py @@ -0,0 +1,337 @@ +# coding=utf-8 +# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import Any, Dict, List, Optional, Tuple + +import sentencepiece as spm + +from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer +from ...utils import logging + + +logger = logging.get_logger(__name__) + +SPIECE_UNDERLINE = "▁" + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"} + + +FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip + + +class MBartTokenizer(PreTrainedTokenizer): + """ + Construct an MBART tokenizer. + + Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on + [SentencePiece](https://github.com/google/sentencepiece). + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import MBartTokenizer + + >>> tokenizer = MBartTokenizer.from_pretrained("facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO") + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") + ```""" + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + tokenizer_file=None, + src_lang=None, + tgt_lang=None, + sp_model_kwargs: Optional[Dict[str, Any]] = None, + additional_special_tokens=None, + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = ( + AddedToken(mask_token, lstrip=True, normalized=False) if isinstance(mask_token, str) else mask_token + ) + + self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.Load(str(vocab_file)) + self.vocab_file = vocab_file + + # Original fairseq vocab and spm vocab must be "aligned": + # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 + # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- + # fairseq | '' | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' + # spm | '' | '' | '' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' + + # Mimic fairseq token-to-id alignment for the first 4 token + self.fairseq_tokens_to_ids = {"": 0, "": 1, "": 2, "": 3} + + # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab + self.fairseq_offset = 1 + + self.sp_model_size = len(self.sp_model) + self.lang_code_to_id = { + code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(FAIRSEQ_LANGUAGE_CODES) + } + self.id_to_lang_code = {v: k for k, v in self.lang_code_to_id.items()} + self.fairseq_tokens_to_ids[""] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + + self.fairseq_tokens_to_ids.update(self.lang_code_to_id) + self.fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()} + _additional_special_tokens = list(self.lang_code_to_id.keys()) + + if additional_special_tokens is not None: + # Only add those special tokens if they are not already there. + _additional_special_tokens.extend( + [t for t in additional_special_tokens if t not in _additional_special_tokens] + ) + + super().__init__( + bos_token=bos_token, + eos_token=eos_token, + unk_token=unk_token, + sep_token=sep_token, + cls_token=cls_token, + pad_token=pad_token, + mask_token=mask_token, + tokenizer_file=None, + src_lang=src_lang, + tgt_lang=tgt_lang, + additional_special_tokens=_additional_special_tokens, + sp_model_kwargs=self.sp_model_kwargs, + **kwargs, + ) + + self._src_lang = src_lang if src_lang is not None else "en_XX" + self.cur_lang_code_id = self.lang_code_to_id[self._src_lang] + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + def __getstate__(self): + state = self.__dict__.copy() + state["sp_model"] = None + state["sp_model_proto"] = self.sp_model.serialized_model_proto() + return state + + def __setstate__(self, d): + self.__dict__ = d + + # for backward compatibility + if not hasattr(self, "sp_model_kwargs"): + self.sp_model_kwargs = {} + + self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) + self.sp_model.LoadFromSerializedProto(self.sp_model_proto) + + @property + def vocab_size(self): + return len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset + 1 # Plus 1 for the mask token + + @property + def src_lang(self) -> str: + return self._src_lang + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + prefix_ones = [1] * len(self.prefix_tokens) + suffix_ones = [1] * len(self.suffix_tokens) + if token_ids_1 is None: + return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones + return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. An MBART sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def get_vocab(self): + vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} + vocab.update(self.added_tokens_encoder) + return vocab + + def _tokenize(self, text: str) -> List[str]: + return self.sp_model.encode(text, out_type=str) + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + if token in self.fairseq_tokens_to_ids: + return self.fairseq_tokens_to_ids[token] + spm_id = self.sp_model.PieceToId(token) + + # Need to return unknown token if the SP model returned 0 + return spm_id + self.fairseq_offset if spm_id else self.unk_token_id + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + if index in self.fairseq_ids_to_tokens: + return self.fairseq_ids_to_tokens[index] + return self.sp_model.IdToPiece(index - self.fairseq_offset) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (strings for sub-words) in a single string.""" + out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): + copyfile(self.vocab_file, out_vocab_file) + elif not os.path.isfile(self.vocab_file): + with open(out_vocab_file, "wb") as fi: + content_spiece_model = self.sp_model.serialized_model_proto() + fi.write(content_spiece_model) + + return (out_vocab_file,) + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "en_XX", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "ro_RO", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" + self.cur_lang_code = self.lang_code_to_id[src_lang] + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" + self.cur_lang_code = self.lang_code_to_id[lang] + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] diff --git a/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py b/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py new file mode 100644 index 0000000000000000000000000000000000000000..71107bf0cdaf47e132e4d4985503a8bb4ab732de --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/mbart/tokenization_mbart_fast.py @@ -0,0 +1,270 @@ +# coding=utf-8 +# Copyright 2020 The Facebook AI Research Team Authors and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +from shutil import copyfile +from typing import List, Optional, Tuple + +from tokenizers import processors + +from ...tokenization_utils import AddedToken, BatchEncoding +from ...tokenization_utils_fast import PreTrainedTokenizerFast +from ...utils import is_sentencepiece_available, logging + + +if is_sentencepiece_available(): + from .tokenization_mbart import MBartTokenizer +else: + MBartTokenizer = None + + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"} + + +FAIRSEQ_LANGUAGE_CODES = ["ar_AR", "cs_CZ", "de_DE", "en_XX", "es_XX", "et_EE", "fi_FI", "fr_XX", "gu_IN", "hi_IN", "it_IT", "ja_XX", "kk_KZ", "ko_KR", "lt_LT", "lv_LV", "my_MM", "ne_NP", "nl_XX", "ro_RO", "ru_RU", "si_LK", "tr_TR", "vi_VN", "zh_CN"] # fmt: skip + + +class MBartTokenizerFast(PreTrainedTokenizerFast): + """ + Construct a "fast" MBART tokenizer (backed by HuggingFace's *tokenizers* library). Based on + [BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models). + + This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should + refer to this superclass for more information regarding those methods. + + The tokenization method is ` ` for source language documents, and ` + ` for target language documents. + + Examples: + + ```python + >>> from transformers import MBartTokenizerFast + + >>> tokenizer = MBartTokenizerFast.from_pretrained( + ... "facebook/mbart-large-en-ro", src_lang="en_XX", tgt_lang="ro_RO" + ... ) + >>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria" + >>> expected_translation_romanian = "Şeful ONU declară că nu există o soluţie militară în Siria" + >>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_romanian, return_tensors="pt") + ```""" + + vocab_files_names = VOCAB_FILES_NAMES + model_input_names = ["input_ids", "attention_mask"] + slow_tokenizer_class = MBartTokenizer + + prefix_tokens: List[int] = [] + suffix_tokens: List[int] = [] + + def __init__( + self, + vocab_file=None, + tokenizer_file=None, + bos_token="", + eos_token="", + sep_token="", + cls_token="", + unk_token="", + pad_token="", + mask_token="", + src_lang=None, + tgt_lang=None, + additional_special_tokens=None, + **kwargs, + ): + # Mask token behave like a normal word, i.e. include the space before it + mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token + + _additional_special_tokens = FAIRSEQ_LANGUAGE_CODES.copy() + + if additional_special_tokens is not None: + # Only add those special tokens if they are not already there. + _additional_special_tokens.extend( + [t for t in additional_special_tokens if t not in _additional_special_tokens] + ) + + super().__init__( + vocab_file=vocab_file, + tokenizer_file=tokenizer_file, + bos_token=bos_token, + eos_token=eos_token, + sep_token=sep_token, + cls_token=cls_token, + unk_token=unk_token, + pad_token=pad_token, + mask_token=mask_token, + src_lang=src_lang, + tgt_lang=tgt_lang, + additional_special_tokens=_additional_special_tokens, + **kwargs, + ) + + self.vocab_file = vocab_file + self.lang_code_to_id = { + lang_code: self.convert_tokens_to_ids(lang_code) for lang_code in FAIRSEQ_LANGUAGE_CODES + } + + self._src_lang = src_lang if src_lang is not None else "en_XX" + self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang) + self.tgt_lang = tgt_lang + self.set_src_lang_special_tokens(self._src_lang) + + @property + def can_save_slow_tokenizer(self) -> bool: + return os.path.isfile(self.vocab_file) if self.vocab_file else False + + @property + def src_lang(self) -> str: + return self._src_lang + + @src_lang.setter + def src_lang(self, new_src_lang: str) -> None: + self._src_lang = new_src_lang + self.set_src_lang_special_tokens(self._src_lang) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and + adding special tokens. The special tokens depend on calling set_lang. + + An MBART sequence has the following format, where `X` represents the sequence: + + - `input_ids` (for encoder) `X [eos, src_lang_code]` + - `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]` + + BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a + separator. + + Args: + token_ids_0 (`List[int]`): + List of IDs to which the special tokens will be added. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens. + """ + if token_ids_1 is None: + return self.prefix_tokens + token_ids_0 + self.suffix_tokens + # We don't expect to process pairs, but leave the pair logic for API consistency + return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens + + def create_token_type_ids_from_sequences( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Create a mask from the two sequences passed to be used in a sequence-pair classification task. mBART does not + make use of token type ids, therefore a list of zeros is returned. + + Args: + token_ids_0 (`List[int]`): + List of IDs. + token_ids_1 (`List[int]`, *optional*): + Optional second list of IDs for sequence pairs. + + Returns: + `List[int]`: List of zeros. + + """ + + sep = [self.sep_token_id] + cls = [self.cls_token_id] + + if token_ids_1 is None: + return len(cls + token_ids_0 + sep) * [0] + return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0] + + def _build_translation_inputs( + self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs + ): + """Used by translation pipeline, to prepare inputs for the generate function""" + if src_lang is None or tgt_lang is None: + raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model") + self.src_lang = src_lang + inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs) + tgt_lang_id = self.convert_tokens_to_ids(tgt_lang) + inputs["forced_bos_token_id"] = tgt_lang_id + return inputs + + def prepare_seq2seq_batch( + self, + src_texts: List[str], + src_lang: str = "en_XX", + tgt_texts: Optional[List[str]] = None, + tgt_lang: str = "ro_RO", + **kwargs, + ) -> BatchEncoding: + self.src_lang = src_lang + self.tgt_lang = tgt_lang + return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs) + + def _switch_to_input_mode(self): + return self.set_src_lang_special_tokens(self.src_lang) + + def _switch_to_target_mode(self): + return self.set_tgt_lang_special_tokens(self.tgt_lang) + + def set_src_lang_special_tokens(self, src_lang) -> None: + """Reset the special tokens to the source lang setting. No prefix and suffix=[eos, src_lang_code].""" + self.cur_lang_code = self.convert_tokens_to_ids(src_lang) + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def set_tgt_lang_special_tokens(self, lang: str) -> None: + """Reset the special tokens to the target language setting. No prefix and suffix=[eos, tgt_lang_code].""" + self.cur_lang_code = self.convert_tokens_to_ids(lang) + self.prefix_tokens = [] + self.suffix_tokens = [self.eos_token_id, self.cur_lang_code] + + prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens) + suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens) + + self._tokenizer.post_processor = processors.TemplateProcessing( + single=prefix_tokens_str + ["$A"] + suffix_tokens_str, + pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str, + special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)), + ) + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + if not self.can_save_slow_tokenizer: + raise ValueError( + "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " + "tokenizer." + ) + + if not os.path.isdir(save_directory): + logger.error(f"Vocabulary path ({save_directory}) should be a directory.") + return + out_vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + + if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file): + copyfile(self.vocab_file, out_vocab_file) + + return (out_vocab_file,) diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e1afab325420f7cef5170e549a49f2ead66d322b --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/__init__.py @@ -0,0 +1,95 @@ +# Copyright 2020 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available + + +_import_structure = { + "configuration_tapas": ["TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP", "TapasConfig"], + "tokenization_tapas": ["TapasTokenizer"], +} + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tapas"] = [ + "TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", + "TapasForMaskedLM", + "TapasForQuestionAnswering", + "TapasForSequenceClassification", + "TapasModel", + "TapasPreTrainedModel", + "load_tf_weights_in_tapas", + ] +try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_tf_tapas"] = [ + "TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST", + "TFTapasForMaskedLM", + "TFTapasForQuestionAnswering", + "TFTapasForSequenceClassification", + "TFTapasModel", + "TFTapasPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig + from .tokenization_tapas import TapasTokenizer + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tapas import ( + TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, + TapasForMaskedLM, + TapasForQuestionAnswering, + TapasForSequenceClassification, + TapasModel, + TapasPreTrainedModel, + load_tf_weights_in_tapas, + ) + + try: + if not is_tf_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_tf_tapas import ( + TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, + TFTapasForMaskedLM, + TFTapasForQuestionAnswering, + TFTapasForSequenceClassification, + TFTapasModel, + TFTapasPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__) diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/configuration_tapas.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/configuration_tapas.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..907135a419413c64fd3e6ffe056d1f9951818d5b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/configuration_tapas.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/convert_tapas_original_tf_checkpoint_to_pytorch.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/convert_tapas_original_tf_checkpoint_to_pytorch.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..c8ec1d31e15019df2747d34231e46be56de64905 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/convert_tapas_original_tf_checkpoint_to_pytorch.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tapas.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tapas.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..0f33ded759d6ba0ac9a4fe6b6bc984927b26e0ea Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tapas.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tf_tapas.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tf_tapas.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..84c8fb328448e3b9bae96ecfbac5818cb8c6ef04 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/tapas/__pycache__/modeling_tf_tapas.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/configuration_tapas.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/configuration_tapas.py new file mode 100644 index 0000000000000000000000000000000000000000..b448afd002206240d7ffd0d8c58d2c5a8c5bee39 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/configuration_tapas.py @@ -0,0 +1,228 @@ +# coding=utf-8 +# Copyright 2020 Google Research and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" +TAPAS configuration. Based on the BERT configuration with added parameters. + +Hyperparameters are taken from run_task_main.py and hparam_utils.py of the original implementation. URLS: + +- https://github.com/google-research/tapas/blob/master/tapas/run_task_main.py +- https://github.com/google-research/tapas/blob/master/tapas/utils/hparam_utils.py + +""" + + +from ...configuration_utils import PretrainedConfig +from ..deprecated._archive_maps import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class TapasConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`TapasModel`]. It is used to instantiate a TAPAS + model according to the specified arguments, defining the model architecture. Instantiating a configuration with the + defaults will yield a similar configuration to that of the TAPAS + [google/tapas-base-finetuned-sqa](https://huggingface.co/google/tapas-base-finetuned-sqa) architecture. + + Configuration objects inherit from [`PreTrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Hyperparameters additional to BERT are taken from run_task_main.py and hparam_utils.py of the original + implementation. Original implementation available at https://github.com/google-research/tapas/tree/master. + + Args: + vocab_size (`int`, *optional*, defaults to 30522): + Vocabulary size of the TAPAS model. Defines the number of different tokens that can be represented by the + `inputs_ids` passed when calling [`TapasModel`]. + hidden_size (`int`, *optional*, defaults to 768): + Dimensionality of the encoder layers and the pooler layer. + num_hidden_layers (`int`, *optional*, defaults to 12): + Number of hidden layers in the Transformer encoder. + num_attention_heads (`int`, *optional*, defaults to 12): + Number of attention heads for each attention layer in the Transformer encoder. + intermediate_size (`int`, *optional*, defaults to 3072): + Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder. + hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`): + The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, + `"relu"`, `"swish"` and `"gelu_new"` are supported. + hidden_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. + attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1): + The dropout ratio for the attention probabilities. + max_position_embeddings (`int`, *optional*, defaults to 1024): + The maximum sequence length that this model might ever be used with. Typically set this to something large + just in case (e.g., 512 or 1024 or 2048). + type_vocab_sizes (`List[int]`, *optional*, defaults to `[3, 256, 256, 2, 256, 256, 10]`): + The vocabulary sizes of the `token_type_ids` passed when calling [`TapasModel`]. + initializer_range (`float`, *optional*, defaults to 0.02): + The standard deviation of the truncated_normal_initializer for initializing all weight matrices. + layer_norm_eps (`float`, *optional*, defaults to 1e-12): + The epsilon used by the layer normalization layers. + positive_label_weight (`float`, *optional*, defaults to 10.0): + Weight for positive labels. + num_aggregation_labels (`int`, *optional*, defaults to 0): + The number of aggregation operators to predict. + aggregation_loss_weight (`float`, *optional*, defaults to 1.0): + Importance weight for the aggregation loss. + use_answer_as_supervision (`bool`, *optional*): + Whether to use the answer as the only supervision for aggregation examples. + answer_loss_importance (`float`, *optional*, defaults to 1.0): + Importance weight for the regression loss. + use_normalized_answer_loss (`bool`, *optional*, defaults to `False`): + Whether to normalize the answer loss by the maximum of the predicted and expected value. + huber_loss_delta (`float`, *optional*): + Delta parameter used to calculate the regression loss. + temperature (`float`, *optional*, defaults to 1.0): + Value used to control (OR change) the skewness of cell logits probabilities. + aggregation_temperature (`float`, *optional*, defaults to 1.0): + Scales aggregation logits to control the skewness of probabilities. + use_gumbel_for_cells (`bool`, *optional*, defaults to `False`): + Whether to apply Gumbel-Softmax to cell selection. + use_gumbel_for_aggregation (`bool`, *optional*, defaults to `False`): + Whether to apply Gumbel-Softmax to aggregation selection. + average_approximation_function (`string`, *optional*, defaults to `"ratio"`): + Method to calculate the expected average of cells in the weak supervision case. One of `"ratio"`, + `"first_order"` or `"second_order"`. + cell_selection_preference (`float`, *optional*): + Preference for cell selection in ambiguous cases. Only applicable in case of weak supervision for + aggregation (WTQ, WikiSQL). If the total mass of the aggregation probabilities (excluding the "NONE" + operator) is higher than this hyperparameter, then aggregation is predicted for an example. + answer_loss_cutoff (`float`, *optional*): + Ignore examples with answer loss larger than cutoff. + max_num_rows (`int`, *optional*, defaults to 64): + Maximum number of rows. + max_num_columns (`int`, *optional*, defaults to 32): + Maximum number of columns. + average_logits_per_cell (`bool`, *optional*, defaults to `False`): + Whether to average logits per cell. + select_one_column (`bool`, *optional*, defaults to `True`): + Whether to constrain the model to only select cells from a single column. + allow_empty_column_selection (`bool`, *optional*, defaults to `False`): + Whether to allow not to select any column. + init_cell_selection_weights_to_zero (`bool`, *optional*, defaults to `False`): + Whether to initialize cell selection weights to 0 so that the initial probabilities are 50%. + reset_position_index_per_cell (`bool`, *optional*, defaults to `True`): + Whether to restart position indexes at every cell (i.e. use relative position embeddings). + disable_per_token_loss (`bool`, *optional*, defaults to `False`): + Whether to disable any (strong or weak) supervision on cells. + aggregation_labels (`Dict[int, label]`, *optional*): + The aggregation labels used to aggregate the results. For example, the WTQ models have the following + aggregation labels: `{0: "NONE", 1: "SUM", 2: "AVERAGE", 3: "COUNT"}` + no_aggregation_label_index (`int`, *optional*): + If the aggregation labels are defined and one of these labels represents "No aggregation", this should be + set to its index. For example, the WTQ models have the "NONE" aggregation label at index 0, so that value + should be set to 0 for these models. + + + Example: + + ```python + >>> from transformers import TapasModel, TapasConfig + + >>> # Initializing a default (SQA) Tapas configuration + >>> configuration = TapasConfig() + >>> # Initializing a model from the configuration + >>> model = TapasModel(configuration) + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "tapas" + + def __init__( + self, + vocab_size=30522, + hidden_size=768, + num_hidden_layers=12, + num_attention_heads=12, + intermediate_size=3072, + hidden_act="gelu", + hidden_dropout_prob=0.1, + attention_probs_dropout_prob=0.1, + max_position_embeddings=1024, + type_vocab_sizes=[3, 256, 256, 2, 256, 256, 10], + initializer_range=0.02, + layer_norm_eps=1e-12, + pad_token_id=0, + positive_label_weight=10.0, + num_aggregation_labels=0, + aggregation_loss_weight=1.0, + use_answer_as_supervision=None, + answer_loss_importance=1.0, + use_normalized_answer_loss=False, + huber_loss_delta=None, + temperature=1.0, + aggregation_temperature=1.0, + use_gumbel_for_cells=False, + use_gumbel_for_aggregation=False, + average_approximation_function="ratio", + cell_selection_preference=None, + answer_loss_cutoff=None, + max_num_rows=64, + max_num_columns=32, + average_logits_per_cell=False, + select_one_column=True, + allow_empty_column_selection=False, + init_cell_selection_weights_to_zero=False, + reset_position_index_per_cell=True, + disable_per_token_loss=False, + aggregation_labels=None, + no_aggregation_label_index=None, + **kwargs, + ): + super().__init__(pad_token_id=pad_token_id, **kwargs) + + # BERT hyperparameters (with updated max_position_embeddings and type_vocab_sizes) + self.vocab_size = vocab_size + self.hidden_size = hidden_size + self.num_hidden_layers = num_hidden_layers + self.num_attention_heads = num_attention_heads + self.hidden_act = hidden_act + self.intermediate_size = intermediate_size + self.hidden_dropout_prob = hidden_dropout_prob + self.attention_probs_dropout_prob = attention_probs_dropout_prob + self.max_position_embeddings = max_position_embeddings + self.type_vocab_sizes = type_vocab_sizes + self.initializer_range = initializer_range + self.layer_norm_eps = layer_norm_eps + + # Fine-tuning task hyperparameters + self.positive_label_weight = positive_label_weight + self.num_aggregation_labels = num_aggregation_labels + self.aggregation_loss_weight = aggregation_loss_weight + self.use_answer_as_supervision = use_answer_as_supervision + self.answer_loss_importance = answer_loss_importance + self.use_normalized_answer_loss = use_normalized_answer_loss + self.huber_loss_delta = huber_loss_delta + self.temperature = temperature + self.aggregation_temperature = aggregation_temperature + self.use_gumbel_for_cells = use_gumbel_for_cells + self.use_gumbel_for_aggregation = use_gumbel_for_aggregation + self.average_approximation_function = average_approximation_function + self.cell_selection_preference = cell_selection_preference + self.answer_loss_cutoff = answer_loss_cutoff + self.max_num_rows = max_num_rows + self.max_num_columns = max_num_columns + self.average_logits_per_cell = average_logits_per_cell + self.select_one_column = select_one_column + self.allow_empty_column_selection = allow_empty_column_selection + self.init_cell_selection_weights_to_zero = init_cell_selection_weights_to_zero + self.reset_position_index_per_cell = reset_position_index_per_cell + self.disable_per_token_loss = disable_per_token_loss + + # Aggregation hyperparameters + self.aggregation_labels = aggregation_labels + self.no_aggregation_label_index = no_aggregation_label_index + + if isinstance(self.aggregation_labels, dict): + self.aggregation_labels = {int(k): v for k, v in aggregation_labels.items()} diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py new file mode 100644 index 0000000000000000000000000000000000000000..2772a7f126ef9ad350837e993e264c70e68ae3fb --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/convert_tapas_original_tf_checkpoint_to_pytorch.py @@ -0,0 +1,138 @@ +# coding=utf-8 +# Copyright 2020 The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""Convert TAPAS checkpoint.""" + + +import argparse + +from transformers import ( + TapasConfig, + TapasForMaskedLM, + TapasForQuestionAnswering, + TapasForSequenceClassification, + TapasModel, + TapasTokenizer, + load_tf_weights_in_tapas, +) +from transformers.utils import logging + + +logging.set_verbosity_info() + + +def convert_tf_checkpoint_to_pytorch( + task, reset_position_index_per_cell, tf_checkpoint_path, tapas_config_file, pytorch_dump_path +): + # Initialise PyTorch model. + # If you want to convert a checkpoint that uses absolute position embeddings, make sure to set reset_position_index_per_cell of + # TapasConfig to False. + + # initialize configuration from json file + config = TapasConfig.from_json_file(tapas_config_file) + # set absolute/relative position embeddings parameter + config.reset_position_index_per_cell = reset_position_index_per_cell + + # set remaining parameters of TapasConfig as well as the model based on the task + if task == "SQA": + model = TapasForQuestionAnswering(config=config) + elif task == "WTQ": + # run_task_main.py hparams + config.num_aggregation_labels = 4 + config.use_answer_as_supervision = True + # hparam_utils.py hparams + config.answer_loss_cutoff = 0.664694 + config.cell_selection_preference = 0.207951 + config.huber_loss_delta = 0.121194 + config.init_cell_selection_weights_to_zero = True + config.select_one_column = True + config.allow_empty_column_selection = False + config.temperature = 0.0352513 + + model = TapasForQuestionAnswering(config=config) + elif task == "WIKISQL_SUPERVISED": + # run_task_main.py hparams + config.num_aggregation_labels = 4 + config.use_answer_as_supervision = False + # hparam_utils.py hparams + config.answer_loss_cutoff = 36.4519 + config.cell_selection_preference = 0.903421 + config.huber_loss_delta = 222.088 + config.init_cell_selection_weights_to_zero = True + config.select_one_column = True + config.allow_empty_column_selection = True + config.temperature = 0.763141 + + model = TapasForQuestionAnswering(config=config) + elif task == "TABFACT": + model = TapasForSequenceClassification(config=config) + elif task == "MLM": + model = TapasForMaskedLM(config=config) + elif task == "INTERMEDIATE_PRETRAINING": + model = TapasModel(config=config) + else: + raise ValueError(f"Task {task} not supported.") + + print(f"Building PyTorch model from configuration: {config}") + # Load weights from tf checkpoint + load_tf_weights_in_tapas(model, config, tf_checkpoint_path) + + # Save pytorch-model (weights and configuration) + print(f"Save PyTorch model to {pytorch_dump_path}") + model.save_pretrained(pytorch_dump_path) + + # Save tokenizer files + print(f"Save tokenizer files to {pytorch_dump_path}") + tokenizer = TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + "vocab.txt", model_max_length=512) + tokenizer.save_pretrained(pytorch_dump_path) + + print("Used relative position embeddings:", model.config.reset_position_index_per_cell) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + # Required parameters + parser.add_argument( + "--task", default="SQA", type=str, help="Model task for which to convert a checkpoint. Defaults to SQA." + ) + parser.add_argument( + "--reset_position_index_per_cell", + default=False, + action="store_true", + help="Whether to use relative position embeddings or not. Defaults to True.", + ) + parser.add_argument( + "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." + ) + parser.add_argument( + "--tapas_config_file", + default=None, + type=str, + required=True, + help=( + "The config json file corresponding to the pre-trained TAPAS model. \n" + "This specifies the model architecture." + ), + ) + parser.add_argument( + "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." + ) + args = parser.parse_args() + convert_tf_checkpoint_to_pytorch( + args.task, + args.reset_position_index_per_cell, + args.tf_checkpoint_path, + args.tapas_config_file, + args.pytorch_dump_path, + ) diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tapas.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tapas.py new file mode 100644 index 0000000000000000000000000000000000000000..e2ce847926b38fef2dc8c309fa4ee5525fde5918 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tapas.py @@ -0,0 +1,2388 @@ +# coding=utf-8 +# Copyright 2020 Google Research and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""PyTorch TAPAS model.""" + + +import enum +import math +import os +from dataclasses import dataclass +from typing import Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn +from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss + +from ...activations import ACT2FN +from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling, MaskedLMOutput, SequenceClassifierOutput +from ...modeling_utils import PreTrainedModel +from ...pytorch_utils import ( + apply_chunking_to_forward, + find_pruneable_heads_and_indices, + is_torch_greater_or_equal_than_1_12, + prune_linear_layer, +) +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from .configuration_tapas import TapasConfig + + +logger = logging.get_logger(__name__) + +if not is_torch_greater_or_equal_than_1_12: + logger.warning( + f"You are using torch=={torch.__version__}, but torch>=1.12.0 is required to use " + "TapasModel. Please upgrade torch." + ) + +_CONFIG_FOR_DOC = "TapasConfig" +_CHECKPOINT_FOR_DOC = "google/tapas-base" + + +from ..deprecated._archive_maps import TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +EPSILON_ZERO_DIVISION = 1e-10 +CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0 + + +@dataclass +class TableQuestionAnsweringOutput(ModelOutput): + """ + Output type of [`TapasForQuestionAnswering`]. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): + Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the + semi-supervised regression loss and (optionally) supervised loss for aggregations. + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the cell selection head, for every token. + logits_aggregation (`torch.FloatTensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): + Prediction scores of the aggregation head, for every aggregation operator. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of + shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer + plus the initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + logits_aggregation: torch.FloatTensor = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + + +def load_tf_weights_in_tapas(model, config, tf_checkpoint_path): + """ + Load tf checkpoints in a PyTorch model. This is an adaptation from load_tf_weights_in_bert + + - add cell selection and aggregation heads + - take into account additional token type embedding layers + """ + try: + import re + + import numpy as np + import tensorflow as tf + except ImportError: + logger.error( + "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " + "https://www.tensorflow.org/install/ for installation instructions." + ) + raise + tf_path = os.path.abspath(tf_checkpoint_path) + logger.info(f"Converting TensorFlow checkpoint from {tf_path}") + # Load weights from TF model + init_vars = tf.train.list_variables(tf_path) + names = [] + arrays = [] + for name, shape in init_vars: + logger.info(f"Loading TF weight {name} with shape {shape}") + array = tf.train.load_variable(tf_path, name) + names.append(name) + arrays.append(array) + + for name, array in zip(names, arrays): + name = name.split("/") + # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculate m and v + # which are not required for using pretrained model + if any( + n + in [ + "adam_v", + "adam_m", + "AdamWeightDecayOptimizer", + "AdamWeightDecayOptimizer_1", + "global_step", + "seq_relationship", + ] + for n in name + ): + logger.info(f"Skipping {'/'.join(name)}") + continue + # in case the model is TapasForSequenceClassification, we skip output_bias and output_weights + # since these are not used for classification + if isinstance(model, TapasForSequenceClassification): + if any(n in ["output_bias", "output_weights"] for n in name): + logger.info(f"Skipping {'/'.join(name)}") + continue + # in case the model is TapasModel, we skip output_bias, output_weights, output_bias_cls and output_weights_cls + # since this model does not have MLM and NSP heads + if isinstance(model, TapasModel): + if any(n in ["output_bias", "output_weights", "output_bias_cls", "output_weights_cls"] for n in name): + logger.info(f"Skipping {'/'.join(name)}") + continue + # in case the model is TapasForMaskedLM, we skip the pooler + if isinstance(model, TapasForMaskedLM): + if any(n in ["pooler"] for n in name): + logger.info(f"Skipping {'/'.join(name)}") + continue + # if first scope name starts with "bert", change it to "tapas" + if name[0] == "bert": + name[0] = "tapas" + pointer = model + for m_name in name: + if re.fullmatch(r"[A-Za-z]+_\d+", m_name): + scope_names = re.split(r"_(\d+)", m_name) + else: + scope_names = [m_name] + if scope_names[0] == "kernel" or scope_names[0] == "gamma": + pointer = getattr(pointer, "weight") + elif scope_names[0] == "beta": + pointer = getattr(pointer, "bias") + # cell selection heads + elif scope_names[0] == "output_bias": + if not isinstance(model, TapasForMaskedLM): + pointer = getattr(pointer, "output_bias") + else: + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights": + pointer = getattr(pointer, "output_weights") + elif scope_names[0] == "column_output_bias": + pointer = getattr(pointer, "column_output_bias") + elif scope_names[0] == "column_output_weights": + pointer = getattr(pointer, "column_output_weights") + # aggregation head + elif scope_names[0] == "output_bias_agg": + pointer = getattr(pointer, "aggregation_classifier") + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights_agg": + pointer = getattr(pointer, "aggregation_classifier") + pointer = getattr(pointer, "weight") + # classification head + elif scope_names[0] == "output_bias_cls": + pointer = getattr(pointer, "classifier") + pointer = getattr(pointer, "bias") + elif scope_names[0] == "output_weights_cls": + pointer = getattr(pointer, "classifier") + pointer = getattr(pointer, "weight") + else: + try: + pointer = getattr(pointer, scope_names[0]) + except AttributeError: + logger.info(f"Skipping {'/'.join(name)}") + continue + if len(scope_names) >= 2: + num = int(scope_names[1]) + pointer = pointer[num] + if m_name[-11:] == "_embeddings": + pointer = getattr(pointer, "weight") + elif m_name[-13:] in [f"_embeddings_{i}" for i in range(7)]: + pointer = getattr(pointer, "weight") + elif m_name == "kernel": + array = np.transpose(array) + try: + if pointer.shape != array.shape: + raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") + except AssertionError as e: + e.args += (pointer.shape, array.shape) + raise + logger.info(f"Initialize PyTorch weight {name}") + # Added a check to see whether the array is a scalar (because bias terms in Tapas checkpoints can be + # scalar => should first be converted to numpy arrays) + if np.isscalar(array): + array = np.array(array) + pointer.data = torch.from_numpy(array) + return model + + +class TapasEmbeddings(nn.Module): + """ + Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of + additional token type embeddings to encode tabular structure. + """ + + def __init__(self, config): + super().__init__() + # we do not include config.disabled_features and config.disable_position_embeddings from the original implementation + # word embeddings + self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) + # position embeddings + self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) + # token type embeddings + for i, type_vocab_sizes in enumerate(config.type_vocab_sizes): + name = f"token_type_embeddings_{i}" + setattr(self, name, nn.Embedding(type_vocab_sizes, config.hidden_size)) + + self.number_of_token_type_embeddings = len(config.type_vocab_sizes) + + # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load + # any TensorFlow checkpoint file + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + self.config = config + + def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None): + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + seq_length = input_shape[1] + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if position_ids is None: + # create absolute position embeddings + position_ids = torch.arange(seq_length, dtype=torch.long, device=device) + position_ids = position_ids.unsqueeze(0).expand(input_shape) + # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings + if self.config.reset_position_index_per_cell: + # shape (batch_size, seq_len) + col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) + # shape (batch_size, seq_len) + row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) + # shape (batch_size, seq_len) + full_index = ProductIndexMap(col_index, row_index) + # shape (max_rows * max_columns,). First absolute position for every cell + first_position_per_segment = reduce_min(position_ids, full_index)[0] + # ? shape (batch_size, seq_len). First absolute position of the cell for every token + first_position = gather(first_position_per_segment, full_index) + # shape (1, seq_len) + position = torch.arange(seq_length, dtype=torch.long, device=device).unsqueeze(0) + position_ids = torch.min( + torch.as_tensor(self.config.max_position_embeddings - 1, device=device), position - first_position + ) + + if token_type_ids is None: + token_type_ids = torch.zeros( + (input_shape + self.number_of_token_type_embeddings), dtype=torch.long, device=device + ) + + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + + position_embeddings = self.position_embeddings(position_ids) + + embeddings = inputs_embeds + position_embeddings + + for i in range(self.number_of_token_type_embeddings): + name = f"token_type_embeddings_{i}" + embeddings += getattr(self, name)(token_type_ids[:, :, i]) + + embeddings = self.LayerNorm(embeddings) + embeddings = self.dropout(embeddings) + return embeddings + + +class TapasSelfAttention(nn.Module): + def __init__(self, config): + super().__init__() + if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): + raise ValueError( + f"The hidden size {config.hidden_size} is not a multiple of the number of attention " + f"heads {config.num_attention_heads}" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + + self.query = nn.Linear(config.hidden_size, self.all_head_size) + self.key = nn.Linear(config.hidden_size, self.all_head_size) + self.value = nn.Linear(config.hidden_size, self.all_head_size) + + self.dropout = nn.Dropout(config.attention_probs_dropout_prob) + self.is_decoder = config.is_decoder + + def transpose_for_scores(self, x): + new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) + x = x.view(*new_x_shape) + return x.permute(0, 2, 1, 3) + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=None, + output_attentions=False, + ): + mixed_query_layer = self.query(hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(encoder_hidden_states)) + value_layer = self.transpose_for_scores(self.value(encoder_hidden_states)) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + key_layer = torch.cat([past_key_value[0], key_layer], dim=2) + value_layer = torch.cat([past_key_value[1], value_layer], dim=2) + else: + key_layer = self.transpose_for_scores(self.key(hidden_states)) + value_layer = self.transpose_for_scores(self.value(hidden_states)) + + query_layer = self.transpose_for_scores(mixed_query_layer) + + if self.is_decoder: + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) + attention_scores = attention_scores / math.sqrt(self.attention_head_size) + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TapasModel forward() function) + attention_scores = attention_scores + attention_mask + + # Normalize the attention scores to probabilities. + attention_probs = nn.functional.softmax(attention_scores, dim=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(attention_probs) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = attention_probs * head_mask + + context_layer = torch.matmul(attention_probs, value_layer) + + context_layer = context_layer.permute(0, 2, 1, 3).contiguous() + new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) + context_layer = context_layer.view(*new_context_layer_shape) + + outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertSelfOutput +class TapasSelfOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class TapasAttention(nn.Module): + def __init__(self, config): + super().__init__() + self.self = TapasSelfAttention(config) + self.output = TapasSelfOutput(config) + self.pruned_heads = set() + + # Copied from transformers.models.bert.modeling_bert.BertAttention.prune_heads + def prune_heads(self, heads): + if len(heads) == 0: + return + heads, index = find_pruneable_heads_and_indices( + heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads + ) + + # Prune linear layers + self.self.query = prune_linear_layer(self.self.query, index) + self.self.key = prune_linear_layer(self.self.key, index) + self.self.value = prune_linear_layer(self.self.value, index) + self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) + + # Update hyper params and store pruned heads + self.self.num_attention_heads = self.self.num_attention_heads - len(heads) + self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads + self.pruned_heads = self.pruned_heads.union(heads) + + # Copied from transformers.models.bert.modeling_bert.BertAttention.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + self_outputs = self.self( + hidden_states, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_value, + output_attentions, + ) + attention_output = self.output(self_outputs[0], hidden_states) + outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them + return outputs + + +# Copied from transformers.models.bert.modeling_bert.BertIntermediate +class TapasIntermediate(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.intermediate_size) + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = ACT2FN[config.hidden_act] + else: + self.intermediate_act_fn = config.hidden_act + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOutput +class TapasOutput(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.intermediate_size, config.hidden_size) + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.dropout(hidden_states) + hidden_states = self.LayerNorm(hidden_states + input_tensor) + return hidden_states + + +class TapasLayer(nn.Module): + def __init__(self, config): + super().__init__() + self.chunk_size_feed_forward = config.chunk_size_feed_forward + self.seq_len_dim = 1 + self.attention = TapasAttention(config) + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TapasAttention(config) + self.intermediate = TapasIntermediate(config) + self.output = TapasOutput(config) + + # Copied from transformers.models.bert.modeling_bert.BertLayer.forward + def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.FloatTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, + output_attentions: Optional[bool] = False, + ) -> Tuple[torch.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + hidden_states, + attention_mask, + head_mask, + output_attentions=output_attentions, + past_key_value=self_attn_past_key_value, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + attention_output, + attention_mask, + head_mask, + encoder_hidden_states, + encoder_attention_mask, + cross_attn_past_key_value, + output_attentions, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + layer_output = apply_chunking_to_forward( + self.feed_forward_chunk, self.chunk_size_feed_forward, self.seq_len_dim, attention_output + ) + outputs = (layer_output,) + outputs + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + # Copied from transformers.models.bert.modeling_bert.BertLayer.feed_forward_chunk + def feed_forward_chunk(self, attention_output): + intermediate_output = self.intermediate(attention_output) + layer_output = self.output(intermediate_output, attention_output) + return layer_output + + +class TapasEncoder(nn.Module): + def __init__(self, config): + super().__init__() + self.config = config + self.layer = nn.ModuleList([TapasLayer(config) for _ in range(config.num_hidden_layers)]) + self.gradient_checkpointing = False + + def forward( + self, + hidden_states, + attention_mask=None, + head_mask=None, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=False, + output_hidden_states=False, + return_dict=True, + ): + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + layer_head_mask = head_mask[i] if head_mask is not None else None + + if self.gradient_checkpointing and self.training: + layer_outputs = self._gradient_checkpointing_func( + layer_module.__call__, + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_values, + output_attentions, + ) + else: + layer_outputs = layer_module( + hidden_states, + attention_mask, + layer_head_mask, + encoder_hidden_states, + encoder_attention_mask, + past_key_values, + output_attentions, + ) + hidden_states = layer_outputs[0] + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple(v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None) + return BaseModelOutput( + last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_attentions + ) + + +# Copied from transformers.models.bert.modeling_bert.BertPooler +class TapasPooler(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + self.activation = nn.Tanh() + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(first_token_tensor) + pooled_output = self.activation(pooled_output) + return pooled_output + + +# Copied from transformers.models.bert.modeling_bert.BertPredictionHeadTransform with Bert->Tapas +class TapasPredictionHeadTransform(nn.Module): + def __init__(self, config): + super().__init__() + self.dense = nn.Linear(config.hidden_size, config.hidden_size) + if isinstance(config.hidden_act, str): + self.transform_act_fn = ACT2FN[config.hidden_act] + else: + self.transform_act_fn = config.hidden_act + self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) + + def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: + hidden_states = self.dense(hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->Tapas +class TapasLMPredictionHead(nn.Module): + def __init__(self, config): + super().__init__() + self.transform = TapasPredictionHeadTransform(config) + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + self.bias = nn.Parameter(torch.zeros(config.vocab_size)) + + # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings` + self.decoder.bias = self.bias + + def forward(self, hidden_states): + hidden_states = self.transform(hidden_states) + hidden_states = self.decoder(hidden_states) + return hidden_states + + +# Copied from transformers.models.bert.modeling_bert.BertOnlyMLMHead with Bert->Tapas +class TapasOnlyMLMHead(nn.Module): + def __init__(self, config): + super().__init__() + self.predictions = TapasLMPredictionHead(config) + + def forward(self, sequence_output: torch.Tensor) -> torch.Tensor: + prediction_scores = self.predictions(sequence_output) + return prediction_scores + + +class TapasPreTrainedModel(PreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TapasConfig + base_model_prefix = "tapas" + supports_gradient_checkpointing = True + + # Copied from transformers.models.bert.modeling_bert.BertPreTrainedModel._init_weights + def _init_weights(self, module): + """Initialize the weights""" + if isinstance(module, nn.Linear): + # Slightly different from the TF version which uses truncated_normal for initialization + # cf https://github.com/pytorch/pytorch/pull/5617 + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + elif isinstance(module, nn.LayerNorm): + module.bias.data.zero_() + module.weight.data.fill_(1.0) + + +TAPAS_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its models (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`TapasConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TAPAS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `({0})`): + Indices of input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See + [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`torch.FloatTensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`torch.LongTensor` of shape `({0}, 7)`, *optional*): + Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this + class for more info. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`torch.LongTensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. If + `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be + used. Selected in the range `[0, config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: - 1 + indicates the head is **not masked**, - 0 indicates the head is **masked**. + inputs_embeds (`torch.FloatTensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.", + TAPAS_START_DOCSTRING, +) +class TapasModel(TapasPreTrainedModel): + """ + This class is a small change compared to [`BertModel`], taking into account the additional token type ids. + + The model can behave as an encoder (with only self-attention) as well as a decoder, in which case a layer of + cross-attention is added between the self-attention layers, following the architecture described in [Attention is + all you need](https://arxiv.org/abs/1706.03762) by Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, + Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin. + + """ + + def __init__(self, config, add_pooling_layer=True): + super().__init__(config) + self.config = config + + self.embeddings = TapasEmbeddings(config) + self.encoder = TapasEncoder(config) + + self.pooler = TapasPooler(config) if add_pooling_layer else None + + # Initialize weights and apply final processing + self.post_init() + + def get_input_embeddings(self): + return self.embeddings.word_embeddings + + def set_input_embeddings(self, value): + self.embeddings.word_embeddings = value + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + for layer, heads in heads_to_prune.items(): + self.encoder.layer[layer].attention.prune_heads(heads) + + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, BaseModelOutputWithPooling]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasModel + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") + >>> model = TapasModel.from_pretrained("google/tapas-base") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) + input_shape = input_ids.size() + elif inputs_embeds is not None: + input_shape = inputs_embeds.size()[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + if token_type_ids is None: + token_type_ids = torch.zeros( + (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device + ) + + # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] + # ourselves in which case we just need to make it broadcastable to all heads. + extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape) + + # If a 2D ou 3D attention mask is provided for the cross-attention + # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length] + if self.config.is_decoder and encoder_hidden_states is not None: + encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() + encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) + if encoder_attention_mask is None: + encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device) + encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) + else: + encoder_extended_attention_mask = None + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers) + + embedding_output = self.embeddings( + input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds + ) + encoder_outputs = self.encoder( + embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_extended_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(sequence_output) if self.pooler is not None else None + + if not return_dict: + return (sequence_output, pooled_output) + encoder_outputs[1:] + + return BaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + +@add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING) +class TapasForMaskedLM(TapasPreTrainedModel): + _tied_weights_keys = ["cls.predictions.decoder.weight", "cls.predictions.decoder.bias"] + config_class = TapasConfig + base_model_prefix = "tapas" + + def __init__(self, config): + super().__init__(config) + + self.tapas = TapasModel(config, add_pooling_layer=False) + self.cls = TapasOnlyMLMHead(config) + + # Initialize weights and apply final processing + self.post_init() + + def get_output_embeddings(self): + return self.cls.predictions.decoder + + def set_output_embeddings(self, new_embeddings): + self.cls.predictions.decoder = new_embeddings + + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=MaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + encoder_hidden_states: Optional[torch.FloatTensor] = None, + encoder_attention_mask: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + **kwargs, + ) -> Union[Tuple, MaskedLMOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForMaskedLM + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") + >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + + >>> inputs = tokenizer( + ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="pt" + ... ) + >>> labels = tokenizer( + ... table=table, queries="How many movies has George Clooney played in?", return_tensors="pt" + ... )["input_ids"] + + >>> outputs = model(**inputs, labels=labels) + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.tapas( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + prediction_scores = self.cls(sequence_output) + + masked_lm_loss = None + if labels is not None: + loss_fct = CrossEntropyLoss() # -100 index = padding token + masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1)) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output + + return MaskedLMOutput( + loss=masked_lm_loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables + (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for + SQA, WTQ or WikiSQL-supervised tasks. + """, + TAPAS_START_DOCSTRING, +) +class TapasForQuestionAnswering(TapasPreTrainedModel): + def __init__(self, config: TapasConfig): + super().__init__(config) + + # base model + self.tapas = TapasModel(config) + + # dropout (only used when training) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + + # cell selection heads + if config.init_cell_selection_weights_to_zero: + # init_cell_selection_weights_to_zero: Whether the initial weights should be + # set to 0. This ensures that all tokens have the same prior probability. + self.output_weights = nn.Parameter(torch.zeros(config.hidden_size)) + self.column_output_weights = nn.Parameter(torch.zeros(config.hidden_size)) + else: + self.output_weights = nn.Parameter(torch.empty(config.hidden_size)) + nn.init.normal_( + self.output_weights, std=config.initializer_range + ) # here, a truncated normal is used in the original implementation + self.column_output_weights = nn.Parameter(torch.empty(config.hidden_size)) + nn.init.normal_( + self.column_output_weights, std=config.initializer_range + ) # here, a truncated normal is used in the original implementation + self.output_bias = nn.Parameter(torch.zeros([])) + self.column_output_bias = nn.Parameter(torch.zeros([])) + + # aggregation head + if config.num_aggregation_labels > 0: + self.aggregation_classifier = nn.Linear(config.hidden_size, config.num_aggregation_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + table_mask: Optional[torch.LongTensor] = None, + labels: Optional[torch.LongTensor] = None, + aggregation_labels: Optional[torch.LongTensor] = None, + float_answer: Optional[torch.FloatTensor] = None, + numeric_values: Optional[torch.FloatTensor] = None, + numeric_values_scale: Optional[torch.FloatTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, TableQuestionAnsweringOutput]: + r""" + table_mask (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): + Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and + padding are 0. + labels (`torch.LongTensor` of shape `(batch_size, seq_length)`, *optional*): + Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the + answer appearing in the table. Can be obtained using [`AutoTokenizer`]. + + - 1 for tokens that are **part of the answer**, + - 0 for tokens that are **not part of the answer**. + + aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`, *optional*): + Aggregation function index for every example in the batch for computing the aggregation loss. Indices + should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for + aggregation (WikiSQL-supervised). + float_answer (`torch.FloatTensor` of shape `(batch_size, )`, *optional*): + Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only + required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. + numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): + Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using + [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the + regression loss. + numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`, *optional*): + Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case + of weak supervision for aggregation (WTQ) to calculate the regression loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForQuestionAnswering + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") + >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> logits_aggregation = outputs.logits_aggregation + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.tapas( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + sequence_output = outputs[0] + pooled_output = outputs[1] + + sequence_output = self.dropout(sequence_output) + + if input_ids is not None: + input_shape = input_ids.size() + else: + input_shape = inputs_embeds.size()[:-1] + + device = input_ids.device if input_ids is not None else inputs_embeds.device + + # Construct indices for the table. + if token_type_ids is None: + token_type_ids = torch.zeros( + (*input_shape, len(self.config.type_vocab_sizes)), dtype=torch.long, device=device + ) + + token_types = [ + "segment_ids", + "column_ids", + "row_ids", + "prev_labels", + "column_ranks", + "inv_column_ranks", + "numeric_relations", + ] + + row_ids = token_type_ids[:, :, token_types.index("row_ids")] + column_ids = token_type_ids[:, :, token_types.index("column_ids")] + + row_index = IndexMap( + indices=torch.min(row_ids, torch.as_tensor(self.config.max_num_rows - 1, device=row_ids.device)), + num_segments=self.config.max_num_rows, + batch_dims=1, + ) + col_index = IndexMap( + indices=torch.min(column_ids, torch.as_tensor(self.config.max_num_columns - 1, device=column_ids.device)), + num_segments=self.config.max_num_columns, + batch_dims=1, + ) + cell_index = ProductIndexMap(row_index, col_index) + + # Masks. + input_shape = input_ids.size() if input_ids is not None else inputs_embeds.size()[:-1] + device = input_ids.device if input_ids is not None else inputs_embeds.device + if attention_mask is None: + attention_mask = torch.ones(input_shape, device=device) + # Table cells only, without question tokens and table headers. + if table_mask is None: + table_mask = torch.where(row_ids > 0, torch.ones_like(row_ids), torch.zeros_like(row_ids)) + # torch.FloatTensor[batch_size, seq_length] + input_mask_float = attention_mask.float().to(device) + table_mask_float = table_mask.float().to(device) + # Mask for cells that exist in the table (i.e. that are not padding). + cell_mask, _ = reduce_mean(input_mask_float, cell_index) + + # Compute logits per token. These are used to select individual cells. + logits = compute_token_logits(sequence_output, self.config.temperature, self.output_weights, self.output_bias) + + # Compute logits per column. These are used to select a column. + column_logits = None + if self.config.select_one_column: + column_logits = compute_column_logits( + sequence_output, + self.column_output_weights, + self.column_output_bias, + cell_index, + cell_mask, + self.config.allow_empty_column_selection, + ) + + # Aggregation logits + logits_aggregation = None + if self.config.num_aggregation_labels > 0: + logits_aggregation = self.aggregation_classifier(pooled_output) + + # Total loss calculation + total_loss = 0.0 + calculate_loss = False + if labels is not None: + calculate_loss = True + is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision + + # Semi-supervised cell selection in case of no aggregation: + # If the answer (the denotation) appears directly in the table we might + # select the answer without applying any aggregation function. There are + # some ambiguous cases, see utils._calculate_aggregate_mask for more info. + # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 + # for examples where we chose to select the answer directly. + # `labels` encodes the positions of the answer appearing in the table. + if is_supervised: + aggregate_mask = None + else: + if float_answer is not None: + assert ( + labels.shape[0] == float_answer.shape[0] + ), "Make sure the answers are a FloatTensor of shape (batch_size,)" + # [batch_size] + aggregate_mask = _calculate_aggregate_mask( + float_answer, + pooled_output, + self.config.cell_selection_preference, + labels, + self.aggregation_classifier, + ) + else: + raise ValueError("You have to specify float answers in order to calculate the aggregate mask") + + # Cell selection log-likelihood + if self.config.average_logits_per_cell: + logits_per_cell, _ = reduce_mean(logits, cell_index) + logits = gather(logits_per_cell, cell_index) + dist_per_token = torch.distributions.Bernoulli(logits=logits) + + # Compute cell selection loss per example. + selection_loss_per_example = None + if not self.config.select_one_column: + weight = torch.where( + labels == 0, + torch.ones_like(labels, dtype=torch.float32), + self.config.positive_label_weight * torch.ones_like(labels, dtype=torch.float32), + ) + selection_loss_per_token = -dist_per_token.log_prob(labels) * weight + selection_loss_per_example = torch.sum(selection_loss_per_token * input_mask_float, dim=1) / ( + torch.sum(input_mask_float, dim=1) + EPSILON_ZERO_DIVISION + ) + else: + selection_loss_per_example, logits = _single_column_cell_selection_loss( + logits, column_logits, labels, cell_index, col_index, cell_mask + ) + dist_per_token = torch.distributions.Bernoulli(logits=logits) + + # Supervised cell selection + if self.config.disable_per_token_loss: + pass + elif is_supervised: + total_loss += torch.mean(selection_loss_per_example) + else: + # For the not supervised case, do not assign loss for cell selection + total_loss += torch.mean(selection_loss_per_example * (1.0 - aggregate_mask)) + + # Semi-supervised regression loss and supervised loss for aggregations + if self.config.num_aggregation_labels > 0: + if is_supervised: + # Note that `aggregate_mask` is None if the setting is supervised. + if aggregation_labels is not None: + assert ( + labels.shape[0] == aggregation_labels.shape[0] + ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" + per_example_additional_loss = _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + self.config.use_answer_as_supervision, + self.config.num_aggregation_labels, + self.config.aggregation_loss_weight, + ) + else: + raise ValueError( + "You have to specify aggregation labels in order to calculate the aggregation loss" + ) + else: + # Set aggregation labels to zeros + aggregation_labels = torch.zeros(labels.shape[0], dtype=torch.long, device=labels.device) + per_example_additional_loss = _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + self.config.use_answer_as_supervision, + self.config.num_aggregation_labels, + self.config.aggregation_loss_weight, + ) + + if self.config.use_answer_as_supervision: + if numeric_values is not None and numeric_values_scale is not None: + assert numeric_values.shape == numeric_values_scale.shape + # Add regression loss for numeric answers which require aggregation. + answer_loss, large_answer_loss_mask = _calculate_regression_loss( + float_answer, + aggregate_mask, + dist_per_token, + numeric_values, + numeric_values_scale, + table_mask_float, + logits_aggregation, + self.config, + ) + per_example_additional_loss += answer_loss + # Zero loss for examples with answer_loss > cutoff. + per_example_additional_loss *= large_answer_loss_mask + else: + raise ValueError( + "You have to specify numeric values and numeric values scale in order to calculate the" + " regression loss" + ) + + total_loss += torch.mean(per_example_additional_loss) + + else: + # if no label ids are provided, set them to zeros in order to properly compute logits + labels = torch.zeros_like(logits) + _, logits = _single_column_cell_selection_loss( + logits, column_logits, labels, cell_index, col_index, cell_mask + ) + if not return_dict: + output = (logits, logits_aggregation) + outputs[2:] + return ((total_loss,) + output) if calculate_loss else output + + return TableQuestionAnsweringOutput( + loss=total_loss if calculate_loss else None, + logits=logits, + logits_aggregation=logits_aggregation, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +@add_start_docstrings( + """ + Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table + entailment tasks, such as TabFact (Chen et al., 2020). + """, + TAPAS_START_DOCSTRING, +) +class TapasForSequenceClassification(TapasPreTrainedModel): + def __init__(self, config): + super().__init__(config) + self.num_labels = config.num_labels + + self.tapas = TapasModel(config) + self.dropout = nn.Dropout(config.hidden_dropout_prob) + self.classifier = nn.Linear(config.hidden_size, config.num_labels) + + # Initialize weights and apply final processing + self.post_init() + + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=SequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def forward( + self, + input_ids: Optional[torch.LongTensor] = None, + attention_mask: Optional[torch.FloatTensor] = None, + token_type_ids: Optional[torch.LongTensor] = None, + position_ids: Optional[torch.LongTensor] = None, + head_mask: Optional[torch.FloatTensor] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called + "classification_class_index" in the original implementation. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForSequenceClassification + >>> import torch + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") + >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = [ + ... "There is only one actor who is 45 years old", + ... "There are 3 actors which played in more than 60 movies", + ... ] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="pt") + >>> labels = torch.tensor([1, 0]) # 1 means entailed, 0 means refuted + + >>> outputs = model(**inputs, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + outputs = self.tapas( + input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + pooled_output = outputs[1] + + pooled_output = self.dropout(pooled_output) + logits = self.classifier(pooled_output) + + loss = None + if labels is not None: + if self.config.problem_type is None: + if self.num_labels == 1: + self.config.problem_type = "regression" + elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): + self.config.problem_type = "single_label_classification" + else: + self.config.problem_type = "multi_label_classification" + + if self.config.problem_type == "regression": + loss_fct = MSELoss() + if self.num_labels == 1: + loss = loss_fct(logits.squeeze(), labels.squeeze()) + else: + loss = loss_fct(logits, labels) + elif self.config.problem_type == "single_label_classification": + loss_fct = CrossEntropyLoss() + loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) + elif self.config.problem_type == "multi_label_classification": + loss_fct = BCEWithLogitsLoss() + loss = loss_fct(logits, labels) + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return SequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + +""" TAPAS utilities.""" + + +class AverageApproximationFunction(str, enum.Enum): + RATIO = "ratio" + FIRST_ORDER = "first_order" + SECOND_ORDER = "second_order" + + +# Beginning of everything related to segmented tensors + + +class IndexMap(object): + """Index grouping entries within a tensor.""" + + def __init__(self, indices, num_segments, batch_dims=0): + """ + Creates an index + + Args: + indices (`torch.LongTensor`, same shape as a *values* Tensor to which the indices refer): + Tensor containing the indices. + num_segments (`torch.LongTensor`): + Scalar tensor, the number of segments. All elements in a batched segmented tensor must have the same + number of segments (although many segments can be empty). + batch_dims (`int`, *optional*, defaults to 0): + The number of batch dimensions. The first *batch_dims* dimensions of a SegmentedTensor are treated as + batch dimensions. Segments in different batch elements are always distinct even if they have the same + index. + """ + self.indices = torch.as_tensor(indices) + self.num_segments = torch.as_tensor(num_segments, device=indices.device) + self.batch_dims = batch_dims + + def batch_shape(self): + return self.indices.size()[: self.batch_dims] # returns a torch.Size object + + +class ProductIndexMap(IndexMap): + """The product of two indices.""" + + def __init__(self, outer_index, inner_index): + """ + Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the + intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows + and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation + combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has *num_segments* equal to + *outer_index.num_segments* * *inner_index.num_segments* + + Args: + outer_index (`IndexMap`): + IndexMap. + inner_index (`IndexMap`): + IndexMap, must have the same shape as *outer_index*. + """ + if outer_index.batch_dims != inner_index.batch_dims: + raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") + + super().__init__( + indices=(inner_index.indices + outer_index.indices * inner_index.num_segments), + num_segments=inner_index.num_segments * outer_index.num_segments, + batch_dims=inner_index.batch_dims, + ) + self.outer_index = outer_index + self.inner_index = inner_index + + def project_outer(self, index): + """Projects an index with the same index set onto the outer components.""" + indices = torch.div(index.indices, self.inner_index.num_segments, rounding_mode="floor").type(torch.long) + return IndexMap(indices=indices, num_segments=self.outer_index.num_segments, batch_dims=index.batch_dims) + + def project_inner(self, index): + """Projects an index with the same index set onto the inner components.""" + return IndexMap( + indices=torch.fmod(index.indices, self.inner_index.num_segments) + .type(torch.float) + .floor() + .type(torch.long), + num_segments=self.inner_index.num_segments, + batch_dims=index.batch_dims, + ) + + +def gather(values, index, name="segmented_gather"): + """ + Gathers from *values* using the index map. For each element in the domain of the index map this operation looks up + a value for that index in *values*. Two elements from the same segment always get assigned the same value. + + Args: + values (`torch.Tensor` of shape (B1, ..., Bn, num_segments, V1, ...)): + Tensor with segment values. + index (`IndexMap` of shape (B1, ..., Bn, I1, ..., Ik)): + IndexMap. + name (`str`, *optional*, defaults to 'segmented_gather'): + Name for the operation. Currently not used + + Returns: + `tuple(torch.Tensor)`: Tensor of shape (B1, ..., Bn, I1, ..., Ik, V1, ...) with the gathered values. + """ + indices = index.indices + # first, check whether the indices of the index represent scalar values (i.e. not vectorized) + if len(values.shape[index.batch_dims :]) < 2: + return torch.gather( + values, + index.batch_dims, + indices.view( + values.size()[0], -1 + ), # torch.gather expects index to have the same number of dimensions as values + ).view(indices.size()) + else: + # this means we have a vectorized version + # we have to adjust the index + indices = indices.unsqueeze(-1).expand(values.shape) + return torch.gather(values, index.batch_dims, indices) + + +def flatten(index, name="segmented_flatten"): + """ + Flattens a batched index map (which is typically of shape batch_size, seq_length) to a 1d index map. This operation + relabels the segments to keep batch elements distinct. The k-th batch element will have indices shifted by + *num_segments* * (k - 1). The result is a tensor with *num_segments* multiplied by the number of elements in the + batch. + + Args: + index (`IndexMap`): + IndexMap to flatten. + name (`str`, *optional*, defaults to 'segmented_flatten'): + Name for the operation. Currently not used + + Returns: + (`IndexMap`): The flattened IndexMap. + """ + # first, get batch_size as scalar tensor + batch_size = torch.prod(torch.tensor(list(index.batch_shape()))) + # next, create offset as 1-D tensor of length batch_size, + # and multiply element-wise by num segments (to offset different elements in the batch) e.g. if batch size is 2: [0, 64] + offset = torch.arange(start=0, end=batch_size, device=index.num_segments.device) * index.num_segments + offset = offset.view(index.batch_shape()) + for _ in range(index.batch_dims, len(index.indices.size())): # typically range(1,2) + offset = offset.unsqueeze(-1) + + indices = offset + index.indices + return IndexMap(indices=indices.view(-1), num_segments=index.num_segments * batch_size, batch_dims=0) + + +def range_index_map(batch_shape, num_segments, name="range_index_map"): + """ + Constructs an index map equal to range(num_segments). + + Args: + batch_shape (`torch.Size`): + Batch shape + num_segments (`int`): + Number of segments + name (`str`, *optional*, defaults to 'range_index_map'): + Name for the operation. Currently not used + + Returns: + (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). + """ + batch_shape = torch.as_tensor( + batch_shape, dtype=torch.long + ) # create a rank 1 tensor vector containing batch_shape (e.g. [2]) + assert len(batch_shape.size()) == 1 + num_segments = torch.as_tensor(num_segments) # create a rank 0 tensor (scalar) containing num_segments (e.g. 64) + assert len(num_segments.size()) == 0 + + indices = torch.arange( + start=0, end=num_segments, device=num_segments.device + ) # create a rank 1 vector with num_segments elements + new_tensor = torch.cat( + [torch.ones_like(batch_shape, dtype=torch.long, device=num_segments.device), num_segments.unsqueeze(dim=0)], + dim=0, + ) + # new_tensor is just a vector of [1 64] for example (assuming only 1 batch dimension) + new_shape = [int(x) for x in new_tensor.tolist()] + indices = indices.view(new_shape) + + multiples = torch.cat([batch_shape, torch.as_tensor([1])], dim=0) + indices = indices.repeat(multiples.tolist()) + # equivalent (in Numpy:) + # indices = torch.as_tensor(np.tile(indices.numpy(), multiples.tolist())) + + return IndexMap(indices=indices, num_segments=num_segments, batch_dims=list(batch_shape.size())[0]) + + +def _segment_reduce(values, index, segment_reduce_fn, name): + """ + Applies a segment reduction segment-wise. + + Args: + values (`torch.Tensor`): + Tensor with segment values. + index (`IndexMap`): + IndexMap. + segment_reduce_fn (`str`): + Name for the reduce operation. One of "sum", "mean", "max" or "min". + name (`str`): + Name for the operation. Currently not used + + Returns: + (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). + """ + # Flatten the batch dimensions, as segments ops (scatter) do not support batching. + # However if `values` has extra dimensions to the right keep them + # unflattened. Segmented ops support vector-valued operations. + flat_index = flatten(index) + vector_shape = values.size()[len(index.indices.size()) :] # torch.Size object + flattened_shape = torch.cat( + [torch.as_tensor([-1], dtype=torch.long), torch.as_tensor(vector_shape, dtype=torch.long)], dim=0 + ) + # changed "view" by "reshape" in the following line + flat_values = values.reshape(flattened_shape.tolist()) + + out = torch.zeros(int(flat_index.num_segments), dtype=torch.float, device=flat_values.device) + segment_means = out.scatter_reduce( + dim=0, index=flat_index.indices.long(), src=flat_values.float(), reduce=segment_reduce_fn, include_self=False + ) + + # Unflatten the values. + new_shape = torch.cat( + [ + torch.as_tensor(index.batch_shape(), dtype=torch.long), + torch.as_tensor([index.num_segments], dtype=torch.long), + torch.as_tensor(vector_shape, dtype=torch.long), + ], + dim=0, + ) + + output_values = segment_means.clone().view(new_shape.tolist()).to(values.dtype) + output_index = range_index_map(index.batch_shape(), index.num_segments) + return output_values, output_index + + +def reduce_sum(values, index, name="segmented_reduce_sum"): + """ + Sums a tensor over its segments. + + Outputs 0 for empty segments. + + This operations computes the sum over segments, with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a sum of + vectors rather than scalars. Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): + Tensor containing the values of which the sum must be taken segment-wise. + index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): + Index defining the segments. + name (`str`, *optional*, defaults to 'segmented_reduce_sum'): + Name for the operation. Currently not used + + Returns: + output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the + output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. . + """ + return _segment_reduce(values, index, "sum", name) + + +def reduce_mean(values, index, name="segmented_reduce_mean"): + """ + Averages a tensor over its segments. + + Outputs 0 for empty segments. + + This operations computes the mean over segments, with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be a mean of + vectors rather than scalars. + + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): + Tensor containing the values of which the mean must be taken segment-wise. + index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): + Index defining the segments. + name (`str`, *optional*, defaults to 'segmented_reduce_sum'): + Name for the operation. Currently not used + + Returns: + output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the + output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, "mean", name) + + +def reduce_max(values, index, name="segmented_reduce_max"): + """ + Computes the maximum over segments. + + This operation computes the maximum over segments, with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise + maximum of vectors rather than scalars. + + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): + Tensor containing the values of which the max must be taken segment-wise. + index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): + Index defining the segments. + name (`str`, *optional*, defaults to 'segmented_reduce_sum'): + Name for the operation. Currently not used + + Returns: + output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the + output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, "amax", name) + + +def reduce_min(values, index, name="segmented_reduce_min"): + """ + Computes the minimum over segments. + + This operations computes the minimum over segments, with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present, the output will be an element-wise + minimum of vectors rather than scalars. + + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values (`torch.Tensor` of shape [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..]): + Tensor containing the values of which the min must be taken segment-wise. + index (`IndexMap`, indices are of shape [B1, B2, ..., Bn, I1, .., Ik].): + Index defining the segments. + name (`str`, *optional*, defaults to 'segmented_reduce_sum'): + Name for the operation. Currently not used + + Returns: + output_values (`torch.Tensor`of shape [B1, B2, ..., Bn, num_segments, V1, V2, ..]): Tensor containing the + output values. output_index (`IndexMap`): IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, "amin", name) + + +# End of everything related to segmented tensors + + +def compute_column_logits( + sequence_output, column_output_weights, column_output_bias, cell_index, cell_mask, allow_empty_column_selection +): + """ + Computes the column logits. + + Args: + sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. + column_output_weights (`torch.FloatTensor` of shape `(hidden_size)`): + Weights of the linear layer for column selection. + column_output_bias (`torch.FloatTensor` of shape `()`): + Bias of the linear layer for column selection. + cell_index (`ProductIndexMap`): + Index that groups tokens into cells. + cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`): + Mask for cells that exist in the table (i.e. that are not padding). + allow_empty_column_selection (`bool`): + Whether to allow not to select any column + + Returns: + column_logits (`torch.FloatTensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits + for every example in the batch. + """ + + # First, compute the token logits (batch_size, seq_len) - without temperature + token_logits = torch.einsum("bsj,j->bs", sequence_output, column_output_weights) + column_output_bias + + # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) + cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) + + # Finally, average the logits per column (batch_size, max_num_cols) + column_index = cell_index.project_inner(cell_logits_index) + column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) + + cell_count, _ = reduce_sum(cell_mask, column_index) + column_logits /= cell_count + EPSILON_ZERO_DIVISION + + # Mask columns that do not appear in the example. + is_padding = torch.logical_and(cell_count < 0.5, ~torch.eq(out_index.indices, 0)) + column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( + is_padding, dtype=torch.float32, device=is_padding.device + ) + + if not allow_empty_column_selection: + column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * torch.as_tensor( + torch.eq(out_index.indices, 0), dtype=torch.float32, device=out_index.indices.device + ) + + return column_logits + + +def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask): + """ + Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The + model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside + the selected column are never selected. + + Args: + token_logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): + Tensor containing the logits per token. + column_logits (`torch.FloatTensor` of shape `(batch_size, max_num_cols)`): + Tensor containing the logits per column. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Labels per token. + cell_index (`ProductIndexMap`): + Index that groups tokens into cells. + col_index (`IndexMap`): + Index that groups tokens into columns. + cell_mask (`torch.FloatTensor` of shape `(batch_size, max_num_rows * max_num_cols)`): + Mask for cells that exist in the table (i.e. that are not padding). + + Returns: + selection_loss_per_example (`torch.FloatTensor` of shape `(batch_size,)`): Loss for each example. logits + (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): New logits which are only allowed to select + cells in a single column. Logits outside of the most likely column according to *column_logits* will be set to + a very low value (such that the probabilities are 0). + """ + # Part 1: column loss + + # First find the column we should select. We use the column with maximum number of selected cells. + labels_per_column, _ = reduce_sum(torch.as_tensor(labels, dtype=torch.float32, device=labels.device), col_index) + # shape of labels_per_column is (batch_size, max_num_cols). It contains the number of label ids for every column, for every example + column_label = torch.argmax(labels_per_column, dim=-1) # shape (batch_size,) + # Check if there are no selected cells in the column. In that case the model + # should predict the special column id 0, which means "select nothing". + no_cell_selected = torch.eq( + torch.max(labels_per_column, dim=-1)[0], 0 + ) # no_cell_selected is of shape (batch_size,) and equals True + # if an example of the batch has no cells selected (i.e. if there are no labels set to 1 for that example) + column_label = torch.where( + no_cell_selected.view(column_label.size()), torch.zeros_like(column_label), column_label + ) + + column_dist = torch.distributions.Categorical(logits=column_logits) # shape (batch_size, max_num_cols) + column_loss_per_example = -column_dist.log_prob(column_label) + + # Part 2: cell loss + + # Reduce the labels and logits to per-cell from per-token. + # logits_per_cell: shape (batch_size, max_num_rows*max_num_cols) i.e. (batch_size, 64*32) + logits_per_cell, _ = reduce_mean(token_logits, cell_index) + # labels_per_cell: shape (batch_size, 64*32), indicating whether each cell should be selected (1) or not (0) + labels_per_cell, labels_index = reduce_max( + torch.as_tensor(labels, dtype=torch.long, device=labels.device), cell_index + ) + + # Mask for the selected column. + # column_id_for_cells: shape (batch_size, 64*32), indicating to which column each cell belongs + column_id_for_cells = cell_index.project_inner(labels_index).indices + # column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column to be selected + column_mask = torch.as_tensor( + torch.eq(column_id_for_cells, torch.unsqueeze(column_label, dim=-1)), + dtype=torch.float32, + device=cell_mask.device, + ) + + # Compute the log-likelihood for cells, but only for the selected column. + cell_dist = torch.distributions.Bernoulli(logits=logits_per_cell) # shape (batch_size, 64*32) + cell_log_prob = cell_dist.log_prob(labels_per_cell.type(torch.float32)) # shape(batch_size, 64*32) + + cell_loss = -torch.sum(cell_log_prob * column_mask * cell_mask, dim=1) + + # We need to normalize the loss by the number of cells in the column. + cell_loss /= torch.sum(column_mask * cell_mask, dim=1) + EPSILON_ZERO_DIVISION + + selection_loss_per_example = column_loss_per_example + selection_loss_per_example += torch.where( + no_cell_selected.view(selection_loss_per_example.size()), + torch.zeros_like(selection_loss_per_example), + cell_loss, + ) + + # Set the probs outside the selected column (selected by the *model*) + # to 0. This ensures backwards compatibility with models that select + # cells from multiple columns. + selected_column_id = torch.as_tensor( + torch.argmax(column_logits, dim=-1), dtype=torch.long, device=column_logits.device + ) # shape (batch_size,) + + # selected_column_mask: shape (batch_size, 64*32), equal to 1 if cell belongs to column selected by the model + selected_column_mask = torch.as_tensor( + torch.eq(column_id_for_cells, torch.unsqueeze(selected_column_id, dim=-1)), + dtype=torch.float32, + device=selected_column_id.device, + ) + + # Never select cells with the special column id 0. + selected_column_mask = torch.where( + torch.eq(column_id_for_cells, 0).view(selected_column_mask.size()), + torch.zeros_like(selected_column_mask), + selected_column_mask, + ) + new_logits_per_cell = logits_per_cell + CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask) + logits = gather(new_logits_per_cell, cell_index) + + return selection_loss_per_example, logits + + +def compute_token_logits(sequence_output, temperature, output_weights, output_bias): + """ + Computes logits per token + + Args: + sequence_output (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): + Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the model. + temperature (`float`): + Temperature for the Bernoulli distribution. + output_weights (`torch.FloatTensor` of shape `(hidden_size,)`): + Weights of the linear layer for cell selection. + output_bias (`torch.FloatTensor` of shape `()`): + Bias of the linear layer for cell selection + + Returns: + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length)`): Logits per token. + """ + logits = (torch.einsum("bsj,j->bs", sequence_output, output_weights) + output_bias) / temperature + + return logits + + +def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier): + """ + Finds examples where the model should select cells with no aggregation. + + Returns a mask that determines for which examples should the model select answers directly from the table, without + any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only + apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation + case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the + aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold + for this is a hyperparameter *cell_selection_preference* + + Args: + answer (`torch.FloatTensor` of shape `(batch_size, )`): + Answer for every example in the batch. Nan if there is no scalar answer. + pooled_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`): + Output of the pooler (BertPooler) on top of the encoder layer. + cell_selection_preference (`float`): + Preference for cell selection in ambiguous cases. + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head + + Returns: + aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use + aggregation functions. + """ + # torch.FloatTensor(batch_size,) + aggregate_mask_init = torch.logical_not(torch.isnan(answer)).type(torch.FloatTensor).to(answer.device) + logits_aggregation = aggregation_classifier(pooled_output) + dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation) + # Index 0 corresponds to "no aggregation". + aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1) + + # Cell selection examples according to current model. + is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference + + # Examples with non-empty cell selection supervision. + is_cell_supervision_available = torch.sum(labels, dim=1) > 0 + + # torch.where is not equivalent to tf.where (in tensorflow 1) + # hence the added .view on the condition to match the shape of the first tensor + aggregate_mask = torch.where( + torch.logical_and(is_pred_cell_selection, is_cell_supervision_available).view(aggregate_mask_init.size()), + torch.zeros_like(aggregate_mask_init, dtype=torch.float32), + aggregate_mask_init, + ) + + aggregate_mask = aggregate_mask.detach() + + return aggregate_mask + + +def _calculate_aggregation_loss_known( + logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels +): + """ + Calculates aggregation loss when its type is known during training. + + In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation" + should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting + where aggregation type is always known, standard cross entropy loss is accumulated for all examples + + Args: + logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions. + aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`): + Aggregation function id for every example in the batch. + use_answer_as_supervision (`bool`, *optional*): + Whether to use the answer as the only supervision for aggregation examples. + num_aggregation_labels (`int`, *optional*, defaults to 0): + The number of aggregation operators to predict. + + Returns: + aggregation_loss_known (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (when its type is known + during training) per example. + """ + if use_answer_as_supervision: + # Prepare "no aggregation" targets for cell selection examples. + target_aggregation = torch.zeros_like(aggregate_mask, dtype=torch.long) + else: + # Use aggregation supervision as the target. + target_aggregation = aggregation_labels + + one_hot_labels = nn.functional.one_hot(target_aggregation, num_classes=num_aggregation_labels).type(torch.float32) + log_probs = nn.functional.log_softmax(logits_aggregation, dim=-1) + + # torch.FloatTensor[batch_size] + per_example_aggregation_intermediate = -torch.sum(one_hot_labels * log_probs, dim=-1) + if use_answer_as_supervision: + # Accumulate loss only for examples requiring cell selection + # (no aggregation). + return per_example_aggregation_intermediate * (1 - aggregate_mask) + else: + return per_example_aggregation_intermediate + + +def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask): + """ + Calculates aggregation loss in the case of answer supervision. + + Args: + logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions + + Returns: + aggregation_loss_unknown (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss (in case of answer + supervision) per example. + """ + dist_aggregation = torch.distributions.categorical.Categorical(logits=logits_aggregation) + # Index 0 corresponds to "no aggregation". + aggregation_ops_total_mass = torch.sum(dist_aggregation.probs[:, 1:], dim=1) + # Predict some aggregation in case of an answer that needs aggregation. + # This increases the probability of all aggregation functions, in a way + # similar to MML, but without considering whether the function gives the + # correct answer. + return -torch.log(aggregation_ops_total_mass) * aggregate_mask + + +def _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + use_answer_as_supervision, + num_aggregation_labels, + aggregation_loss_weight, +): + """ + Calculates the aggregation loss per example. + + Args: + logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`torch.FloatTensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions. + aggregation_labels (`torch.LongTensor` of shape `(batch_size, )`): + Aggregation function id for every example in the batch. + use_answer_as_supervision (`bool`, *optional*): + Whether to use the answer as the only supervision for aggregation examples. + num_aggregation_labels (`int`, *optional*, defaults to 0): + The number of aggregation operators to predict. + aggregation_loss_weight (`float`, *optional*, defaults to 1.0): + Importance weight for the aggregation loss. + + Returns: + aggregation_loss (`torch.FloatTensor` of shape `(batch_size,)`): Aggregation loss per example. + """ + per_example_aggregation_loss = _calculate_aggregation_loss_known( + logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels + ) + + if use_answer_as_supervision: + # Add aggregation loss for numeric answers that need aggregation. + per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask) + return aggregation_loss_weight * per_example_aggregation_loss + + +def _calculate_expected_result( + dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config +): + """ + Calculates the expected result given cell and aggregation probabilities. + + Args: + dist_per_cell (`torch.distributions.Bernoulli`): + Cell selection distribution for each cell. + numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Numeric values of every token. Nan for tokens which are not numeric values. + numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Scale of the numeric values of every token. + input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Mask for the table, without question tokens and table headers. + logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + config ([`TapasConfig`]): + Model configuration class with all the hyperparameters of the model + + Returns: + expected_result (`torch.FloatTensor` of shape `(batch_size,)`): The expected result per example. + """ + if config.use_gumbel_for_cells: + gumbel_dist = torch.distributions.RelaxedBernoulli( + # The token logits where already divided by the temperature and used for + # computing cell selection errors so we need to multiply it again here + temperature=config.temperature, + logits=dist_per_cell.logits * config.temperature, + ) + scaled_probability_per_cell = gumbel_dist.sample() + else: + scaled_probability_per_cell = dist_per_cell.probs + + # [batch_size, seq_length] + scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float + count_result = torch.sum(scaled_probability_per_cell, dim=1) + numeric_values_masked = torch.where( + torch.isnan(numeric_values), torch.zeros_like(numeric_values), numeric_values + ) # Mask non-numeric table values to zero. + sum_result = torch.sum(scaled_probability_per_cell * numeric_values_masked, dim=1) + avg_approximation = config.average_approximation_function + if avg_approximation == AverageApproximationFunction.RATIO: + average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION) + elif avg_approximation == AverageApproximationFunction.FIRST_ORDER: + # The sum of all probabilities except that correspond to other cells + # Ex here stands for expectation, more explicitly the expectation of the sum of N-1 Bernoulli random variables plus + # the constant 1, which is computed as adding all N expected values and subtracting the extra one. It corresponds to X_c + # in Appendix D of the original TAPAS paper which is trying to approximate the average of a random set. + ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1 + average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell / ex, dim=1) + elif avg_approximation == AverageApproximationFunction.SECOND_ORDER: + # The sum of all probabilities except that correspond to other cells + ex = torch.sum(scaled_probability_per_cell, dim=1, keepdim=True) - scaled_probability_per_cell + 1 + pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell) + var = torch.sum(pointwise_var, dim=1, keepdim=True) - pointwise_var + + multiplier = (var / torch.square(ex) + 1) / ex + average_result = torch.sum(numeric_values_masked * scaled_probability_per_cell * multiplier, dim=1) + else: + raise ValueError(f"Invalid average_approximation_function: {config.average_approximation_function}") + + if config.use_gumbel_for_aggregation: + gumbel_dist = torch.distributions.RelaxedOneHotCategorical( + config.aggregation_temperature, logits=logits_aggregation[:, 1:] + ) + # [batch_size, num_aggregation_labels - 1] + aggregation_op_only_probs = gumbel_dist.sample() + else: + # [batch_size, num_aggregation_labels - 1] + aggregation_op_only_probs = nn.functional.softmax( + logits_aggregation[:, 1:] / config.aggregation_temperature, dim=-1 + ) + + all_results = torch.cat( + [ + torch.unsqueeze(sum_result, dim=1), + torch.unsqueeze(average_result, dim=1), + torch.unsqueeze(count_result, dim=1), + ], + dim=1, + ) + + expected_result = torch.sum(all_results * aggregation_op_only_probs, dim=1) + return expected_result + + +# PyTorch does not currently support Huber loss with custom delta so we define it ourself +def huber_loss(input, target, delta: float = 1.0): + errors = torch.abs(input - target) # shape (batch_size,) + return torch.where(errors < delta, 0.5 * errors**2, errors * delta - (0.5 * delta**2)) + + +def _calculate_regression_loss( + answer, + aggregate_mask, + dist_per_cell, + numeric_values, + numeric_values_scale, + input_mask_float, + logits_aggregation, + config, +): + """ + Calculates the regression loss per example. + + Args: + answer (`torch.FloatTensor` of shape `(batch_size,)`): + Answer for every example in the batch. Nan if there is no scalar answer. + aggregate_mask (`torch.FloatTensor` of shape `(batch_size,)`): + A mask set to 1 for examples that should use aggregation functions. + dist_per_cell (`torch.distributions.Bernoulli`): + Cell selection distribution for each cell. + numeric_values (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Numeric values of every token. Nan for tokens which are not numeric values. + numeric_values_scale (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Scale of the numeric values of every token. + input_mask_float (`torch.FloatTensor` of shape `(batch_size, seq_length)`): + Mask for the table, without question tokens and table headers. + logits_aggregation (`torch.FloatTensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + config ([`TapasConfig`]): + Model configuration class with all the parameters of the model + + Returns: + per_example_answer_loss_scaled (`torch.FloatTensor` of shape `(batch_size,)`): Scales answer loss for each + example in the batch. large_answer_loss_mask (`torch.FloatTensor` of shape `(batch_size,)`): A mask which is 1 + for examples for which their answer loss is larger than the answer_loss_cutoff. + """ + # float32 (batch_size,) + expected_result = _calculate_expected_result( + dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config + ) + + # float32 (batch_size,) + answer_masked = torch.where(torch.isnan(answer), torch.zeros_like(answer), answer) + + if config.use_normalized_answer_loss: + normalizer = (torch.max(torch.abs(expected_result), torch.abs(answer_masked)) + EPSILON_ZERO_DIVISION).detach() + + normalized_answer_masked = answer_masked / normalizer + normalized_expected_result = expected_result / normalizer + per_example_answer_loss = huber_loss( + normalized_expected_result * aggregate_mask, normalized_answer_masked * aggregate_mask + ) + else: + per_example_answer_loss = huber_loss( + expected_result * aggregate_mask, answer_masked * aggregate_mask, delta=config.huber_loss_delta + ) + + if config.answer_loss_cutoff is None: + large_answer_loss_mask = torch.ones_like(per_example_answer_loss, dtype=torch.float32) + + else: + large_answer_loss_mask = torch.where( + per_example_answer_loss > config.answer_loss_cutoff, + torch.zeros_like(per_example_answer_loss, dtype=torch.float32), + torch.ones_like(per_example_answer_loss, dtype=torch.float32), + ) + per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask) + + return per_example_answer_loss_scaled, large_answer_loss_mask diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tf_tapas.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tf_tapas.py new file mode 100644 index 0000000000000000000000000000000000000000..6b2ed5fab455a8b782f8dfe51394ffa6abf94446 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/modeling_tf_tapas.py @@ -0,0 +1,2450 @@ +# coding=utf-8 +# Copyright 2021 Google Research and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +"""TF 2.0 TAPAS model.""" + + +from __future__ import annotations + +import enum +import math +from dataclasses import dataclass +from typing import Dict, Optional, Tuple, Union + +import numpy as np +import tensorflow as tf + +from ...activations_tf import get_tf_activation +from ...modeling_tf_outputs import ( + TFBaseModelOutputWithPastAndCrossAttentions, + TFBaseModelOutputWithPooling, + TFMaskedLMOutput, + TFSequenceClassifierOutput, +) +from ...modeling_tf_utils import ( + TFMaskedLanguageModelingLoss, + TFModelInputType, + TFPreTrainedModel, + TFSequenceClassificationLoss, + get_initializer, + keras, + keras_serializable, + unpack_inputs, +) +from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax +from ...utils import ( + ModelOutput, + add_start_docstrings, + add_start_docstrings_to_model_forward, + is_tensorflow_probability_available, + logging, + replace_return_docstrings, + requires_backends, +) +from .configuration_tapas import TapasConfig + + +logger = logging.get_logger(__name__) + +# soft dependency +if is_tensorflow_probability_available(): + try: + import tensorflow_probability as tfp + + # On the first call, check whether a compatible version of TensorFlow is installed + # TensorFlow Probability depends on a recent stable release of TensorFlow + n = tfp.distributions.Normal(loc=0.0, scale=1.0) + except ImportError: + logger.error( + "TAPAS models are not usable since `tensorflow_probability` can't be loaded. " + "It seems you have `tensorflow_probability` installed with the wrong tensorflow version. " + "Please try to reinstall it following the instructions here: https://github.com/tensorflow/probability." + ) + +_CONFIG_FOR_DOC = "TapasConfig" +_CHECKPOINT_FOR_DOC = "google/tapas-base" + + +from ..deprecated._archive_maps import TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +EPSILON_ZERO_DIVISION = 1e-10 +CLOSE_ENOUGH_TO_LOG_ZERO = -10000.0 + + +@dataclass +class TFTableQuestionAnsweringOutput(ModelOutput): + """ + Output type of [`TFTapasForQuestionAnswering`]. + + Args: + loss (`tf.Tensor` of shape `(1,)`, *optional*, returned when `labels` (and possibly `answer`, `aggregation_labels`, `numeric_values` and `numeric_values_scale` are provided)): + Total loss as the sum of the hierarchical cell selection log-likelihood loss and (optionally) the + semi-supervised regression loss and (optionally) supervised loss for aggregations. + logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Prediction scores of the cell selection head, for every token. + logits_aggregation (`tf.Tensor`, *optional*, of shape `(batch_size, num_aggregation_labels)`): + Prediction scores of the aggregation head, for every aggregation operator. + hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape + `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus + the initial embedding outputs. + attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in + the self-attention heads. + """ + + loss: tf.Tensor | None = None + logits: tf.Tensor = None + logits_aggregation: tf.Tensor | None = None + hidden_states: Tuple[tf.Tensor] | None = None + attentions: Tuple[tf.Tensor] | None = None + + +class TFTapasEmbeddings(keras.layers.Layer): + """ + Construct the embeddings from word, position and token_type embeddings. Same as BertEmbeddings but with a number of + additional token type embeddings to encode tabular structure. + """ + + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.number_of_token_type_embeddings = len(config.type_vocab_sizes) + self.reset_position_index_per_cell = config.reset_position_index_per_cell + self.hidden_size = config.hidden_size + self.max_position_embeddings = config.max_position_embeddings + self.initializer_range = config.initializer_range + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + + def build(self, input_shape=None): + with tf.name_scope("word_embeddings"): + self.weight = self.add_weight( + name="weight", + shape=[self.config.vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + + with tf.name_scope("position_embeddings"): + self.position_embeddings = self.add_weight( + name="embeddings", + shape=[self.max_position_embeddings, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ) + for i, type_vocab_size in enumerate(self.config.type_vocab_sizes): + with tf.name_scope(f"token_type_embeddings_{i}"): + setattr( + self, + f"token_type_embeddings_{i}", + self.add_weight( + name="embeddings", + shape=[type_vocab_size, self.hidden_size], + initializer=get_initializer(self.initializer_range), + ), + ) + + if self.built: + return + self.built = True + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + def call( + self, + input_ids: tf.Tensor = None, + position_ids: tf.Tensor = None, + token_type_ids: tf.Tensor = None, + inputs_embeds: tf.Tensor = None, + training: bool = False, + ) -> tf.Tensor: + """ + Applies embedding based on inputs tensor. + + Returns: + final_embeddings (`tf.Tensor`): output embedding tensor. + """ + assert not (input_ids is None and inputs_embeds is None) + if input_ids is not None: + input_shape = shape_list(input_ids) + else: + input_shape = shape_list(inputs_embeds)[:-1] + + seq_length = input_shape[1] + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape + [self.number_of_token_type_embeddings], value=0) + + if position_ids is None: + # create absolute position embeddings + position_ids = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) + position_ids = tf.broadcast_to(position_ids, shape=input_shape) + # when self.config.reset_position_index_per_cell is set to True, create relative position embeddings + if self.reset_position_index_per_cell: + # shape (batch_size, seq_len) + col_index = IndexMap(token_type_ids[:, :, 1], self.config.type_vocab_sizes[1], batch_dims=1) + # shape (batch_size, seq_len) + row_index = IndexMap(token_type_ids[:, :, 2], self.config.type_vocab_sizes[2], batch_dims=1) + # shape (batch_size, seq_len) + full_index = ProductIndexMap(col_index, row_index) + # shape (max_rows * max_columns,). First absolute position for every cell + first_position_per_segment = reduce_min(position_ids, full_index)[0] + # ? shape (batch_size, seq_len). First absolute position of the cell for every token + first_position = gather(first_position_per_segment, full_index) + # shape (1, seq_len) + position = tf.expand_dims(tf.range(start=0, limit=seq_length), axis=0) + position_ids = tf.math.minimum(self.max_position_embeddings - 1, position - first_position) + + if input_ids is not None: + check_embeddings_within_bounds(input_ids, self.config.vocab_size) + inputs_embeds = tf.gather(params=self.weight, indices=input_ids) + + position_embeddings = tf.gather(self.position_embeddings, indices=position_ids) + + final_embeddings = inputs_embeds + position_embeddings + + for i in range(self.number_of_token_type_embeddings): + name = f"token_type_embeddings_{i}" + final_embeddings += tf.gather(params=getattr(self, name), indices=token_type_ids[:, :, i]) + + final_embeddings = self.LayerNorm(inputs=final_embeddings) + final_embeddings = self.dropout(inputs=final_embeddings, training=training) + + return final_embeddings + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfAttention with Bert->Tapas +class TFTapasSelfAttention(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + if config.hidden_size % config.num_attention_heads != 0: + raise ValueError( + f"The hidden size ({config.hidden_size}) is not a multiple of the number " + f"of attention heads ({config.num_attention_heads})" + ) + + self.num_attention_heads = config.num_attention_heads + self.attention_head_size = int(config.hidden_size / config.num_attention_heads) + self.all_head_size = self.num_attention_heads * self.attention_head_size + self.sqrt_att_head_size = math.sqrt(self.attention_head_size) + + self.query = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="query" + ) + self.key = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="key" + ) + self.value = keras.layers.Dense( + units=self.all_head_size, kernel_initializer=get_initializer(config.initializer_range), name="value" + ) + self.dropout = keras.layers.Dropout(rate=config.attention_probs_dropout_prob) + + self.is_decoder = config.is_decoder + self.config = config + + def transpose_for_scores(self, tensor: tf.Tensor, batch_size: int) -> tf.Tensor: + # Reshape from [batch_size, seq_length, all_head_size] to [batch_size, seq_length, num_attention_heads, attention_head_size] + tensor = tf.reshape(tensor=tensor, shape=(batch_size, -1, self.num_attention_heads, self.attention_head_size)) + + # Transpose the tensor from [batch_size, seq_length, num_attention_heads, attention_head_size] to [batch_size, num_attention_heads, seq_length, attention_head_size] + return tf.transpose(tensor, perm=[0, 2, 1, 3]) + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + batch_size = shape_list(hidden_states)[0] + mixed_query_layer = self.query(inputs=hidden_states) + + # If this is instantiated as a cross-attention module, the keys + # and values come from an encoder; the attention mask needs to be + # such that the encoder's padding tokens are not attended to. + is_cross_attention = encoder_hidden_states is not None + + if is_cross_attention and past_key_value is not None: + # reuse k,v, cross_attentions + key_layer = past_key_value[0] + value_layer = past_key_value[1] + attention_mask = encoder_attention_mask + elif is_cross_attention: + key_layer = self.transpose_for_scores(self.key(inputs=encoder_hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=encoder_hidden_states), batch_size) + attention_mask = encoder_attention_mask + elif past_key_value is not None: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + key_layer = tf.concat([past_key_value[0], key_layer], axis=2) + value_layer = tf.concat([past_key_value[1], value_layer], axis=2) + else: + key_layer = self.transpose_for_scores(self.key(inputs=hidden_states), batch_size) + value_layer = self.transpose_for_scores(self.value(inputs=hidden_states), batch_size) + + query_layer = self.transpose_for_scores(mixed_query_layer, batch_size) + + if self.is_decoder: + # if cross_attention save Tuple(tf.Tensor, tf.Tensor) of all cross attention key/value_states. + # Further calls to cross_attention layer can then reuse all cross-attention + # key/value_states (first "if" case) + # if uni-directional self-attention (decoder) save Tuple(tf.Tensor, tf.Tensor) of + # all previous decoder key/value_states. Further calls to uni-directional self-attention + # can concat previous decoder key/value_states to current projected key/value_states (third "elif" case) + # if encoder bi-directional self-attention `past_key_value` is always `None` + past_key_value = (key_layer, value_layer) + + # Take the dot product between "query" and "key" to get the raw attention scores. + # (batch size, num_heads, seq_len_q, seq_len_k) + attention_scores = tf.matmul(query_layer, key_layer, transpose_b=True) + dk = tf.cast(self.sqrt_att_head_size, dtype=attention_scores.dtype) + attention_scores = tf.divide(attention_scores, dk) + + if attention_mask is not None: + # Apply the attention mask is (precomputed for all layers in TFTapasModel call() function) + attention_scores = tf.add(attention_scores, attention_mask) + + # Normalize the attention scores to probabilities. + attention_probs = stable_softmax(logits=attention_scores, axis=-1) + + # This is actually dropping out entire tokens to attend to, which might + # seem a bit unusual, but is taken from the original Transformer paper. + attention_probs = self.dropout(inputs=attention_probs, training=training) + + # Mask heads if we want to + if head_mask is not None: + attention_probs = tf.multiply(attention_probs, head_mask) + + attention_output = tf.matmul(attention_probs, value_layer) + attention_output = tf.transpose(attention_output, perm=[0, 2, 1, 3]) + + # (batch_size, seq_len_q, all_head_size) + attention_output = tf.reshape(tensor=attention_output, shape=(batch_size, -1, self.all_head_size)) + outputs = (attention_output, attention_probs) if output_attentions else (attention_output,) + + if self.is_decoder: + outputs = outputs + (past_key_value,) + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "query", None) is not None: + with tf.name_scope(self.query.name): + self.query.build([None, None, self.config.hidden_size]) + if getattr(self, "key", None) is not None: + with tf.name_scope(self.key.name): + self.key.build([None, None, self.config.hidden_size]) + if getattr(self, "value", None) is not None: + with tf.name_scope(self.value.name): + self.value.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertSelfOutput with Bert->Tapas +class TFTapasSelfOutput(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertAttention with Bert->Tapas +class TFTapasAttention(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.self_attention = TFTapasSelfAttention(config, name="self") + self.dense_output = TFTapasSelfOutput(config, name="output") + + def prune_heads(self, heads): + raise NotImplementedError + + def call( + self, + input_tensor: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor, + encoder_attention_mask: tf.Tensor, + past_key_value: Tuple[tf.Tensor], + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + self_outputs = self.self_attention( + hidden_states=input_tensor, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self.dense_output( + hidden_states=self_outputs[0], input_tensor=input_tensor, training=training + ) + # add attentions (possibly with past_key_value) if we output them + outputs = (attention_output,) + self_outputs[1:] + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "self_attention", None) is not None: + with tf.name_scope(self.self_attention.name): + self.self_attention.build(None) + if getattr(self, "dense_output", None) is not None: + with tf.name_scope(self.dense_output.name): + self.dense_output.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertIntermediate with Bert->Tapas +class TFTapasIntermediate(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.intermediate_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + + if isinstance(config.hidden_act, str): + self.intermediate_act_fn = get_tf_activation(config.hidden_act) + else: + self.intermediate_act_fn = config.hidden_act + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.intermediate_act_fn(hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertOutput with Bert->Tapas +class TFTapasOutput(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, kernel_initializer=get_initializer(config.initializer_range), name="dense" + ) + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.dropout = keras.layers.Dropout(rate=config.hidden_dropout_prob) + self.config = config + + def call(self, hidden_states: tf.Tensor, input_tensor: tf.Tensor, training: bool = False) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.dropout(inputs=hidden_states, training=training) + hidden_states = self.LayerNorm(inputs=hidden_states + input_tensor) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.intermediate_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLayer with Bert->Tapas +class TFTapasLayer(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.attention = TFTapasAttention(config, name="attention") + self.is_decoder = config.is_decoder + self.add_cross_attention = config.add_cross_attention + if self.add_cross_attention: + if not self.is_decoder: + raise ValueError(f"{self} should be used as a decoder model if cross attention is added") + self.crossattention = TFTapasAttention(config, name="crossattention") + self.intermediate = TFTapasIntermediate(config, name="intermediate") + self.bert_output = TFTapasOutput(config, name="output") + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_value: Tuple[tf.Tensor] | None, + output_attentions: bool, + training: bool = False, + ) -> Tuple[tf.Tensor]: + # decoder uni-directional self-attention cached key/values tuple is at positions 1,2 + self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None + self_attention_outputs = self.attention( + input_tensor=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_value=self_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = self_attention_outputs[0] + + # if decoder, the last output is tuple of self-attn cache + if self.is_decoder: + outputs = self_attention_outputs[1:-1] + present_key_value = self_attention_outputs[-1] + else: + outputs = self_attention_outputs[1:] # add self attentions if we output attention weights + + cross_attn_present_key_value = None + if self.is_decoder and encoder_hidden_states is not None: + if not hasattr(self, "crossattention"): + raise ValueError( + f"If `encoder_hidden_states` are passed, {self} has to be instantiated with cross-attention layers" + " by setting `config.add_cross_attention=True`" + ) + + # cross_attn cached key/values tuple is at positions 3,4 of past_key_value tuple + cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None + cross_attention_outputs = self.crossattention( + input_tensor=attention_output, + attention_mask=attention_mask, + head_mask=head_mask, + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=cross_attn_past_key_value, + output_attentions=output_attentions, + training=training, + ) + attention_output = cross_attention_outputs[0] + outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights + + # add cross-attn cache to positions 3,4 of present_key_value tuple + cross_attn_present_key_value = cross_attention_outputs[-1] + present_key_value = present_key_value + cross_attn_present_key_value + + intermediate_output = self.intermediate(hidden_states=attention_output) + layer_output = self.bert_output( + hidden_states=intermediate_output, input_tensor=attention_output, training=training + ) + outputs = (layer_output,) + outputs # add attentions if we output them + + # if decoder, return the attn key/values as the last output + if self.is_decoder: + outputs = outputs + (present_key_value,) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "attention", None) is not None: + with tf.name_scope(self.attention.name): + self.attention.build(None) + if getattr(self, "intermediate", None) is not None: + with tf.name_scope(self.intermediate.name): + self.intermediate.build(None) + if getattr(self, "bert_output", None) is not None: + with tf.name_scope(self.bert_output.name): + self.bert_output.build(None) + if getattr(self, "crossattention", None) is not None: + with tf.name_scope(self.crossattention.name): + self.crossattention.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertEncoder with Bert->Tapas +class TFTapasEncoder(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + self.config = config + self.layer = [TFTapasLayer(config, name=f"layer_._{i}") for i in range(config.num_hidden_layers)] + + def call( + self, + hidden_states: tf.Tensor, + attention_mask: tf.Tensor, + head_mask: tf.Tensor, + encoder_hidden_states: tf.Tensor | None, + encoder_attention_mask: tf.Tensor | None, + past_key_values: Tuple[Tuple[tf.Tensor]] | None, + use_cache: Optional[bool], + output_attentions: bool, + output_hidden_states: bool, + return_dict: bool, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPastAndCrossAttentions, Tuple[tf.Tensor]]: + all_hidden_states = () if output_hidden_states else None + all_attentions = () if output_attentions else None + all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None + + next_decoder_cache = () if use_cache else None + for i, layer_module in enumerate(self.layer): + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + past_key_value = past_key_values[i] if past_key_values is not None else None + + layer_outputs = layer_module( + hidden_states=hidden_states, + attention_mask=attention_mask, + head_mask=head_mask[i], + encoder_hidden_states=encoder_hidden_states, + encoder_attention_mask=encoder_attention_mask, + past_key_value=past_key_value, + output_attentions=output_attentions, + training=training, + ) + hidden_states = layer_outputs[0] + + if use_cache: + next_decoder_cache += (layer_outputs[-1],) + + if output_attentions: + all_attentions = all_attentions + (layer_outputs[1],) + if self.config.add_cross_attention and encoder_hidden_states is not None: + all_cross_attentions = all_cross_attentions + (layer_outputs[2],) + + # Add last layer + if output_hidden_states: + all_hidden_states = all_hidden_states + (hidden_states,) + + if not return_dict: + return tuple( + v for v in [hidden_states, all_hidden_states, all_attentions, all_cross_attentions] if v is not None + ) + + return TFBaseModelOutputWithPastAndCrossAttentions( + last_hidden_state=hidden_states, + past_key_values=next_decoder_cache, + hidden_states=all_hidden_states, + attentions=all_attentions, + cross_attentions=all_cross_attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "layer", None) is not None: + for layer in self.layer: + with tf.name_scope(layer.name): + layer.build(None) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPooler with Bert->Tapas +class TFTapasPooler(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + activation="tanh", + name="dense", + ) + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + # We "pool" the model by simply taking the hidden state corresponding + # to the first token. + first_token_tensor = hidden_states[:, 0] + pooled_output = self.dense(inputs=first_token_tensor) + + return pooled_output + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertPredictionHeadTransform with Bert->Tapas +class TFTapasPredictionHeadTransform(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.dense = keras.layers.Dense( + units=config.hidden_size, + kernel_initializer=get_initializer(config.initializer_range), + name="dense", + ) + + if isinstance(config.hidden_act, str): + self.transform_act_fn = get_tf_activation(config.hidden_act) + else: + self.transform_act_fn = config.hidden_act + + self.LayerNorm = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="LayerNorm") + self.config = config + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.dense(inputs=hidden_states) + hidden_states = self.transform_act_fn(hidden_states) + hidden_states = self.LayerNorm(inputs=hidden_states) + + return hidden_states + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "dense", None) is not None: + with tf.name_scope(self.dense.name): + self.dense.build([None, None, self.config.hidden_size]) + if getattr(self, "LayerNorm", None) is not None: + with tf.name_scope(self.LayerNorm.name): + self.LayerNorm.build([None, None, self.config.hidden_size]) + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertLMPredictionHead with Bert->Tapas +class TFTapasLMPredictionHead(keras.layers.Layer): + def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.config = config + self.hidden_size = config.hidden_size + + self.transform = TFTapasPredictionHeadTransform(config, name="transform") + + # The output weights are the same as the input embeddings, but there is + # an output-only bias for each token. + self.input_embeddings = input_embeddings + + def build(self, input_shape=None): + self.bias = self.add_weight(shape=(self.config.vocab_size,), initializer="zeros", trainable=True, name="bias") + + if self.built: + return + self.built = True + if getattr(self, "transform", None) is not None: + with tf.name_scope(self.transform.name): + self.transform.build(None) + + def get_output_embeddings(self) -> keras.layers.Layer: + return self.input_embeddings + + def set_output_embeddings(self, value: tf.Variable): + self.input_embeddings.weight = value + self.input_embeddings.vocab_size = shape_list(value)[0] + + def get_bias(self) -> Dict[str, tf.Variable]: + return {"bias": self.bias} + + def set_bias(self, value: tf.Variable): + self.bias = value["bias"] + self.config.vocab_size = shape_list(value["bias"])[0] + + def call(self, hidden_states: tf.Tensor) -> tf.Tensor: + hidden_states = self.transform(hidden_states=hidden_states) + seq_length = shape_list(hidden_states)[1] + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, self.hidden_size]) + hidden_states = tf.matmul(a=hidden_states, b=self.input_embeddings.weight, transpose_b=True) + hidden_states = tf.reshape(tensor=hidden_states, shape=[-1, seq_length, self.config.vocab_size]) + hidden_states = tf.nn.bias_add(value=hidden_states, bias=self.bias) + + return hidden_states + + +# Copied from transformers.models.bert.modeling_tf_bert.TFBertMLMHead with Bert->Tapas +class TFTapasMLMHead(keras.layers.Layer): + def __init__(self, config: TapasConfig, input_embeddings: keras.layers.Layer, **kwargs): + super().__init__(**kwargs) + + self.predictions = TFTapasLMPredictionHead(config, input_embeddings, name="predictions") + + def call(self, sequence_output: tf.Tensor) -> tf.Tensor: + prediction_scores = self.predictions(hidden_states=sequence_output) + + return prediction_scores + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "predictions", None) is not None: + with tf.name_scope(self.predictions.name): + self.predictions.build(None) + + +@keras_serializable +class TFTapasMainLayer(keras.layers.Layer): + config_class = TapasConfig + + def __init__(self, config: TapasConfig, add_pooling_layer: bool = True, **kwargs): + requires_backends(self, "tensorflow_probability") + super().__init__(**kwargs) + + self.config = config + + self.embeddings = TFTapasEmbeddings(config, name="embeddings") + self.encoder = TFTapasEncoder(config, name="encoder") + self.pooler = TFTapasPooler(config, name="pooler") if add_pooling_layer else None + + def get_input_embeddings(self) -> keras.layers.Layer: + return self.embeddings + + def set_input_embeddings(self, value: tf.Variable): + self.embeddings.weight = value + self.embeddings.vocab_size = shape_list(value)[0] + + def _prune_heads(self, heads_to_prune): + """ + Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base + class PreTrainedModel + """ + raise NotImplementedError + + @unpack_inputs + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: bool = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + if input_ids is not None and inputs_embeds is not None: + raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") + elif input_ids is not None: + input_shape = shape_list(input_ids) + elif inputs_embeds is not None: + input_shape = shape_list(inputs_embeds)[:-1] + else: + raise ValueError("You have to specify either input_ids or inputs_embeds") + + if attention_mask is None: + attention_mask = tf.fill(dims=input_shape, value=1) + + if token_type_ids is None: + token_type_ids = tf.fill(dims=input_shape + [len(self.config.type_vocab_sizes)], value=0) + + embedding_output = self.embeddings( + input_ids=input_ids, + position_ids=position_ids, + token_type_ids=token_type_ids, + inputs_embeds=inputs_embeds, + training=training, + ) + + # We create a 3D attention mask from a 2D tensor mask. + # Sizes are [batch_size, 1, 1, to_seq_length] + # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] + # this attention mask is more simple than the triangular masking of causal attention + # used in OpenAI GPT, we just need to prepare the broadcast dimension here. + extended_attention_mask = tf.reshape(attention_mask, (input_shape[0], 1, 1, input_shape[1])) + + # Since attention_mask is 1.0 for positions we want to attend and 0.0 for + # masked positions, this operation will create a tensor which is 0.0 for + # positions we want to attend and -10000.0 for masked positions. + # Since we are adding it to the raw scores before the softmax, this is + # effectively the same as removing these entirely. + extended_attention_mask = tf.cast(extended_attention_mask, dtype=embedding_output.dtype) + one_cst = tf.constant(1.0, dtype=embedding_output.dtype) + ten_thousand_cst = tf.constant(-10000.0, dtype=embedding_output.dtype) + extended_attention_mask = tf.multiply(tf.subtract(one_cst, extended_attention_mask), ten_thousand_cst) + + # Prepare head mask if needed + # 1.0 in head_mask indicate we keep the head + # attention_probs has shape bsz x n_heads x N x N + # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] + # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] + if head_mask is not None: + raise NotImplementedError + else: + head_mask = [None] * self.config.num_hidden_layers + + encoder_outputs = self.encoder( + hidden_states=embedding_output, + attention_mask=extended_attention_mask, + head_mask=head_mask, + encoder_hidden_states=None, + encoder_attention_mask=None, + past_key_values=None, + use_cache=None, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = encoder_outputs[0] + pooled_output = self.pooler(hidden_states=sequence_output) if self.pooler is not None else None + + if not return_dict: + return ( + sequence_output, + pooled_output, + ) + encoder_outputs[1:] + + return TFBaseModelOutputWithPooling( + last_hidden_state=sequence_output, + pooler_output=pooled_output, + hidden_states=encoder_outputs.hidden_states, + attentions=encoder_outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "embeddings", None) is not None: + with tf.name_scope(self.embeddings.name): + self.embeddings.build(None) + if getattr(self, "encoder", None) is not None: + with tf.name_scope(self.encoder.name): + self.encoder.build(None) + if getattr(self, "pooler", None) is not None: + with tf.name_scope(self.pooler.name): + self.pooler.build(None) + + +class TFTapasPreTrainedModel(TFPreTrainedModel): + """ + An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained + models. + """ + + config_class = TapasConfig + base_model_prefix = "tapas" + + @property + def input_signature(self): + return { + "input_ids": tf.TensorSpec((None, None), tf.int32, name="input_ids"), + "attention_mask": tf.TensorSpec((None, None), tf.float32, name="attention_mask"), + "token_type_ids": tf.TensorSpec((None, None, 7), tf.int32, name="token_type_ids"), + } + + +TAPAS_START_DOCSTRING = r""" + + This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it + as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and + behavior. + + + + TensorFlow models and layers in `transformers` accept two formats as input: + + - having all inputs as keyword arguments (like PyTorch models), or + - having all inputs as a list, tuple or dict in the first positional argument. + + The reason the second format is supported is that Keras methods prefer this format when passing inputs to models + and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just + pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second + format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with + the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first + positional argument: + + - a single Tensor with `input_ids` only and nothing else: `model(input_ids)` + - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring: + `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])` + - a dictionary with one or several input Tensors associated to the input names given in the docstring: + `model({"input_ids": input_ids, "token_type_ids": token_type_ids})` + + Note that when creating models and layers with + [subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry + about any of this, as you can just pass inputs like you would to any other Python function! + + + + Parameters: + config ([`TapasConfig`]): Model configuration class with all the parameters of the model. + Initializing with a config file does not load the weights associated with the model, only the + configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + +TAPAS_INPUTS_DOCSTRING = r""" + Args: + input_ids (`np.ndarray`, `tf.Tensor`, `List[tf.Tensor]` ``Dict[str, tf.Tensor]` or `Dict[str, np.ndarray]` and each example must have the shape `({0})`): + Indices of input sequence tokens in the vocabulary. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and + [`PreTrainedTokenizer.encode`] for details. + + [What are input IDs?](../glossary#input-ids) + attention_mask (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + token_type_ids (`np.ndarray` or `tf.Tensor` of shape `({0}, 7)`, *optional*): + Token indices that encode tabular structure. Indices can be obtained using [`AutoTokenizer`]. See this + class for more info. + + [What are token type IDs?](../glossary#token-type-ids) + position_ids (`np.ndarray` or `tf.Tensor` of shape `({0})`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. If + `reset_position_index_per_cell` of [`TapasConfig`] is set to `True`, relative position embeddings will be + used. Selected in the range `[0, config.max_position_embeddings - 1]`. + + [What are position IDs?](../glossary#position-ids) + head_mask (`np.ndarray` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): + Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`: + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + + inputs_embeds (`np.ndarray` or `tf.Tensor` of shape `({0}, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the + config will be used instead. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. This argument can be used only in eager mode, in graph mode the value in the config will be + used instead. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in + eager mode, in graph mode the value will always be set to True. + training (`bool`, *optional*, defaults to `False``): + Whether or not to use the model in training mode (some modules like dropout modules have different + behaviors between training and evaluation). +""" + + +@add_start_docstrings( + "The bare Tapas Model transformer outputting raw hidden-states without any specific head on top.", + TAPAS_START_DOCSTRING, +) +class TFTapasModel(TFTapasPreTrainedModel): + def __init__(self, config: TapasConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + self.tapas = TFTapasMainLayer(config, name="tapas") + + @unpack_inputs + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFBaseModelOutputWithPooling, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + training: Optional[bool] = False, + ) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor]]: + r""" + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasModel + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") + >>> model = TapasModel.from_pretrained("google/tapas-base") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") + >>> outputs = model(**inputs) + + >>> last_hidden_states = outputs.last_hidden_state + ```""" + outputs = self.tapas( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + return outputs + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "tapas", None) is not None: + with tf.name_scope(self.tapas.name): + self.tapas.build(None) + + +@add_start_docstrings("""Tapas Model with a `language modeling` head on top.""", TAPAS_START_DOCSTRING) +class TFTapasForMaskedLM(TFTapasPreTrainedModel, TFMaskedLanguageModelingLoss): + def __init__(self, config: TapasConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + if config.is_decoder: + logger.warning( + "If you want to use `TFTapasForMaskedLM` make sure `config.is_decoder=False` for " + "bi-directional self-attention." + ) + + self.tapas = TFTapasMainLayer(config, add_pooling_layer=False, name="tapas") + self.lm_head = TFTapasMLMHead(config, input_embeddings=self.tapas.embeddings, name="cls") + + def get_lm_head(self) -> keras.layers.Layer: + return self.lm_head.predictions + + @unpack_inputs + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFMaskedLMOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFMaskedLMOutput, Tuple[tf.Tensor]]: + r""" + labels (`tf.Tensor` or `np.ndarray` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ..., + config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the + loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]` + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForMaskedLM + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base") + >>> model = TapasForMaskedLM.from_pretrained("google/tapas-base") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + + >>> inputs = tokenizer( + ... table=table, queries="How many [MASK] has George [MASK] played in?", return_tensors="tf" + ... ) + >>> labels = tokenizer( + ... table=table, queries="How many movies has George Clooney played in?", return_tensors="tf" + ... )["input_ids"] + + >>> outputs = model(**inputs, labels=labels) + >>> logits = outputs.logits + ```""" + outputs = self.tapas( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + sequence_output = outputs[0] + prediction_scores = self.lm_head(sequence_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=prediction_scores) + + if not return_dict: + output = (prediction_scores,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFMaskedLMOutput( + loss=loss, + logits=prediction_scores, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "tapas", None) is not None: + with tf.name_scope(self.tapas.name): + self.tapas.build(None) + if getattr(self, "lm_head", None) is not None: + with tf.name_scope(self.lm_head.name): + self.lm_head.build(None) + + +class TFTapasComputeTokenLogits(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + self.temperature = config.temperature + # cell selection heads + with tf.name_scope("output"): + self.output_weights = self.add_weight( + name="output_weights", + shape=(config.hidden_size,), + dtype=tf.float32, + trainable=True, + initializer=tf.zeros_initializer() + if config.init_cell_selection_weights_to_zero + else keras.initializers.TruncatedNormal(stddev=config.initializer_range), + ) + self.output_bias = self.add_weight( + name="output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() + ) + + def call(self, sequence_output: tf.Tensor) -> tf.Tensor: + """ + Computes logits per token + + Args: + sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the + model. + + Returns: + logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): Logits per token. + """ + logits = (tf.einsum("bsj,j->bs", sequence_output, self.output_weights) + self.output_bias) / self.temperature + return logits + + +class TFTapasComputeColumnLogits(keras.layers.Layer): + def __init__(self, config: TapasConfig, **kwargs): + super().__init__(**kwargs) + + with tf.name_scope("column_output"): + self.column_output_weights = self.add_weight( + name="column_output_weights", + shape=[config.hidden_size], + dtype=tf.float32, + trainable=True, + initializer=tf.zeros_initializer() + if config.init_cell_selection_weights_to_zero + else keras.initializers.TruncatedNormal(stddev=config.initializer_range), + ) + self.column_output_bias = self.add_weight( + name="column_output_bias", shape=(), trainable=True, initializer=tf.zeros_initializer() + ) + + def call(self, sequence_output, cell_index, cell_mask, allow_empty_column_selection) -> tf.Tensor: + """ + Computes the column logits. + + Args: + sequence_output (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`): + Also known as last_hidden_state. Sequence of hidden-states at the output of the last layer of the + model. + cell_index (`ProductIndexMap`): + Index that groups tokens into cells. + cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): + Mask for cells that exist in the table (i.e. that are not padding). + allow_empty_column_selection (`bool`): + Whether to allow not to select any column + + Returns: + column_logits (`tf.Tensor`of shape `(batch_size, max_num_cols)`): Tensor containing the column logits for + every example in the batch. + """ + + # First, compute the token logits (batch_size, seq_len) - without temperature + token_logits = tf.einsum("bsj,j->bs", sequence_output, self.column_output_weights) + self.column_output_bias + + # Next, average the logits per cell (batch_size, max_num_cols*max_num_rows) + cell_logits, cell_logits_index = reduce_mean(token_logits, cell_index) + + # Finally, average the logits per column (batch_size, max_num_cols) + column_index = cell_index.project_inner(cell_logits_index) + column_logits, out_index = reduce_sum(cell_logits * cell_mask, column_index) + + cell_count, _ = reduce_sum(cell_mask, column_index) + column_logits /= cell_count + EPSILON_ZERO_DIVISION + + # Mask columns that do not appear in the example. + is_padding = tf.logical_and(cell_count < 0.5, tf.not_equal(out_index.indices, 0)) + column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(is_padding, tf.float32) + + if not allow_empty_column_selection: + column_logits += CLOSE_ENOUGH_TO_LOG_ZERO * tf.cast(tf.equal(out_index.indices, 0), tf.float32) + + return column_logits + + +@add_start_docstrings( + """ + Tapas Model with a cell selection head and optional aggregation head on top for question-answering tasks on tables + (linear layers on top of the hidden-states output to compute `logits` and optional `logits_aggregation`), e.g. for + SQA, WTQ or WikiSQL-supervised tasks. + """, + TAPAS_START_DOCSTRING, +) +class TFTapasForQuestionAnswering(TFTapasPreTrainedModel): + def __init__(self, config: TapasConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + + # base model + self.tapas = TFTapasMainLayer(config, name="tapas") + + # dropout + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob) + + self.compute_token_logits = TFTapasComputeTokenLogits(config, name="compute_token_logits") + + self.compute_column_logits = TFTapasComputeColumnLogits(config, name="compute_column_logits") + + if config.num_aggregation_labels > 0: + self.aggregation_classifier = keras.layers.Dense( + config.num_aggregation_labels, + kernel_initializer=get_initializer(config.initializer_range), + name="aggregation_classifier", + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, sequence_length")) + @replace_return_docstrings(output_type=TFTableQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + table_mask: np.ndarray | tf.Tensor | None = None, + aggregation_labels: np.ndarray | tf.Tensor | None = None, + float_answer: np.ndarray | tf.Tensor | None = None, + numeric_values: np.ndarray | tf.Tensor | None = None, + numeric_values_scale: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFTableQuestionAnsweringOutput, Tuple[tf.Tensor]]: + r""" + table_mask (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): + Mask for the table. Indicates which tokens belong to the table (1). Question tokens, table headers and + padding are 0. + labels (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): + Labels per token for computing the hierarchical cell selection loss. This encodes the positions of the + answer appearing in the table. Can be obtained using [`AutoTokenizer`]. + + - 1 for tokens that are **part of the answer**, + - 0 for tokens that are **not part of the answer**. + + aggregation_labels (`tf.Tensor` of shape `(batch_size, )`, *optional*): + Aggregation function index for every example in the batch for computing the aggregation loss. Indices + should be in `[0, ..., config.num_aggregation_labels - 1]`. Only required in case of strong supervision for + aggregation (WikiSQL-supervised). + float_answer (`tf.Tensor` of shape `(batch_size, )`, *optional*): + Float answer for every example in the batch. Set to *float('nan')* for cell selection questions. Only + required in case of weak supervision (WTQ) to calculate the aggregate mask and regression loss. + numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): + Numeric values of every token, NaN for tokens which are not numeric values. Can be obtained using + [`AutoTokenizer`]. Only required in case of weak supervision for aggregation (WTQ) to calculate the + regression loss. + numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`, *optional*): + Scale of the numeric values of every token. Can be obtained using [`AutoTokenizer`]. Only required in case + of weak supervision for aggregation (WTQ) to calculate the regression loss. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForQuestionAnswering + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-wtq") + >>> model = TapasForQuestionAnswering.from_pretrained("google/tapas-base-finetuned-wtq") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = ["How many movies has George Clooney played in?", "How old is Brad Pitt?"] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") + >>> outputs = model(**inputs) + + >>> logits = outputs.logits + >>> logits_aggregation = outputs.logits_aggregation + ```""" + + outputs = self.tapas( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + + sequence_output = outputs[0] + pooled_output = outputs[1] + + sequence_output = self.dropout(sequence_output) + + if input_ids is not None: + input_shape = shape_list(input_ids) + else: + input_shape = shape_list(inputs_embeds)[:-1] + + # Construct indices for the table. + if token_type_ids is None: + token_type_ids = tf.fill(input_shape + [len(self.config.type_vocab_sizes)], 0) + + token_types = [ + "segment_ids", + "column_ids", + "row_ids", + "prev_labels", + "column_ranks", + "inv_column_ranks", + "numeric_relations", + ] + + row_ids = token_type_ids[:, :, token_types.index("row_ids")] + column_ids = token_type_ids[:, :, token_types.index("column_ids")] + + # Construct indices for the table. + row_index = IndexMap( + indices=tf.minimum(tf.cast(row_ids, tf.int32), self.config.max_num_rows - 1), + num_segments=self.config.max_num_rows, + batch_dims=1, + ) + col_index = IndexMap( + indices=tf.minimum(tf.cast(column_ids, tf.int32), self.config.max_num_columns - 1), + num_segments=self.config.max_num_columns, + batch_dims=1, + ) + cell_index = ProductIndexMap(row_index, col_index) + + # Masks. + input_shape = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:-1] + if attention_mask is None: + attention_mask = tf.ones(input_shape) + # Table cells only, without question tokens and table headers. + if table_mask is None: + table_mask = tf.where(row_ids > 0, tf.ones_like(row_ids), tf.zeros_like(row_ids)) + # [batch_size, seq_length] + input_mask_float = tf.cast(attention_mask, tf.float32) + table_mask_float = tf.cast(table_mask, tf.float32) + + # Mask for cells that exist in the table (i.e. that are not padding). + cell_mask, _ = reduce_mean(input_mask_float, cell_index) + + # Compute logits per token. These are used to select individual cells. + logits = self.compute_token_logits(sequence_output) + + # Compute logits per column. These are used to select a column. + column_logits = None + if self.config.select_one_column: + column_logits = self.compute_column_logits( + sequence_output, cell_index, cell_mask, self.config.allow_empty_column_selection + ) + + # Aggregate logits. + logits_aggregation = None + if self.config.num_aggregation_labels > 0: + logits_aggregation = self.aggregation_classifier(pooled_output) + + # Total loss calculation + total_loss = tf.zeros(shape=(1,), dtype=tf.float32) + calculate_loss = False + if labels is not None: + calculate_loss = True + is_supervised = not self.config.num_aggregation_labels > 0 or not self.config.use_answer_as_supervision + + # Semi-supervised cell selection in case of no aggregation: + # If the answer (the denotation) appears directly in the table we might + # select the answer without applying any aggregation function. There are + # some ambiguous cases, see utils._calculate_aggregate_mask for more info. + # `aggregate_mask` is 1 for examples where we chose to aggregate and 0 + # for examples where we chose to select the answer directly. + # `labels` encodes the positions of the answer appearing in the table. + if is_supervised: + aggregate_mask = None + else: + if float_answer is not None: + assert ( + shape_list(labels)[0] == shape_list(float_answer)[0] + ), "Make sure the answers are a FloatTensor of shape (batch_size,)" + # [batch_size] + aggregate_mask = _calculate_aggregate_mask( + float_answer, + pooled_output, + self.config.cell_selection_preference, + labels, + self.aggregation_classifier, + ) + else: + aggregate_mask = None + raise ValueError("You have to specify float answers in order to calculate the aggregate mask") + + # Cell selection log-likelihood + if self.config.average_logits_per_cell: + logits_per_cell, _ = reduce_mean(logits, cell_index) + logits = gather(logits_per_cell, cell_index) + dist_per_token = tfp.distributions.Bernoulli(logits=logits) + + # Compute cell selection loss per example. + selection_loss_per_example = None + if not self.config.select_one_column: + weight = tf.where( + labels == 0, + tf.ones_like(labels, dtype=tf.float32), + self.config.positive_label_weight * tf.ones_like(labels, dtype=tf.float32), + ) + selection_loss_per_token = -dist_per_token.log_prob(labels) * weight + selection_loss_per_example = tf.reduce_sum(selection_loss_per_token * input_mask_float, axis=1) / ( + tf.reduce_sum(input_mask_float, axis=1) + EPSILON_ZERO_DIVISION + ) + else: + selection_loss_per_example, logits = _single_column_cell_selection_loss( + logits, column_logits, labels, cell_index, col_index, cell_mask + ) + dist_per_token = tfp.distributions.Bernoulli(logits=logits) + + # Supervised cell selection + if self.config.disable_per_token_loss: + pass + elif is_supervised: + total_loss += tf.reduce_mean(selection_loss_per_example) + else: + # For the not supervised case, do not assign loss for cell selection + total_loss += tf.reduce_mean(selection_loss_per_example * (1.0 - aggregate_mask)) + + # Semi-supervised regression loss and supervised loss for aggregations + if self.config.num_aggregation_labels > 0: + if is_supervised: + # Note that `aggregate_mask` is None if the setting is supervised. + if aggregation_labels is not None: + assert ( + shape_list(labels)[0] == shape_list(aggregation_labels)[0] + ), "Make sure the aggregation labels are a LongTensor of shape (batch_size,)" + per_example_additional_loss = _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + self.config.use_answer_as_supervision, + self.config.num_aggregation_labels, + self.config.aggregation_loss_weight, + ) + else: + raise ValueError( + "You have to specify aggregation labels in order to calculate the aggregation loss" + ) + else: + aggregation_labels = tf.zeros(shape_list(labels)[0], dtype=tf.int32) + per_example_additional_loss = _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + self.config.use_answer_as_supervision, + self.config.num_aggregation_labels, + self.config.aggregation_loss_weight, + ) + + if self.config.use_answer_as_supervision: + if numeric_values is not None and numeric_values_scale is not None: + assert shape_list(numeric_values) == shape_list(numeric_values_scale) + # Add regression loss for numeric answers which require aggregation. + answer_loss, large_answer_loss_mask = _calculate_regression_loss( + float_answer, + aggregate_mask, + dist_per_token, + numeric_values, + numeric_values_scale, + table_mask_float, + logits_aggregation, + self.config, + ) + per_example_additional_loss += answer_loss + # Zero loss for examples with answer_loss > cutoff. + per_example_additional_loss *= large_answer_loss_mask + else: + raise ValueError( + "You have to specify numeric values and numeric values scale in order to calculate the" + " regression loss" + ) + total_loss += tf.reduce_mean(per_example_additional_loss) + + else: + # if no label ids are provided, set them to zeros in order to properly compute logits + labels = tf.zeros_like(logits) + _, logits = _single_column_cell_selection_loss( + logits, column_logits, labels, cell_index, col_index, cell_mask + ) + if not return_dict: + output = (logits, logits_aggregation) + outputs[2:] + return ((total_loss,) + output) if calculate_loss else output + + return TFTableQuestionAnsweringOutput( + loss=total_loss if calculate_loss else None, + logits=logits, + logits_aggregation=logits_aggregation, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "tapas", None) is not None: + with tf.name_scope(self.tapas.name): + self.tapas.build(None) + if getattr(self, "compute_token_logits", None) is not None: + with tf.name_scope(self.compute_token_logits.name): + self.compute_token_logits.build(None) + if getattr(self, "compute_column_logits", None) is not None: + with tf.name_scope(self.compute_column_logits.name): + self.compute_column_logits.build(None) + if getattr(self, "aggregation_classifier", None) is not None: + with tf.name_scope(self.aggregation_classifier.name): + self.aggregation_classifier.build([None, None, self.config.hidden_size]) + + +@add_start_docstrings( + """ + Tapas Model with a sequence classification head on top (a linear layer on top of the pooled output), e.g. for table + entailment tasks, such as TabFact (Chen et al., 2020). + """, + TAPAS_START_DOCSTRING, +) +class TFTapasForSequenceClassification(TFTapasPreTrainedModel, TFSequenceClassificationLoss): + def __init__(self, config: TapasConfig, *inputs, **kwargs): + super().__init__(config, *inputs, **kwargs) + self.num_labels = config.num_labels + + self.tapas = TFTapasMainLayer(config, name="tapas") + self.dropout = keras.layers.Dropout(config.hidden_dropout_prob, name="dropout") + self.classifier = keras.layers.Dense( + config.num_labels, kernel_initializer=get_initializer(config.initializer_range), name="classifier" + ) + self.config = config + + @unpack_inputs + @add_start_docstrings_to_model_forward(TAPAS_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")) + @replace_return_docstrings(output_type=TFSequenceClassifierOutput, config_class=_CONFIG_FOR_DOC) + def call( + self, + input_ids: TFModelInputType | None = None, + attention_mask: np.ndarray | tf.Tensor | None = None, + token_type_ids: np.ndarray | tf.Tensor | None = None, + position_ids: np.ndarray | tf.Tensor | None = None, + head_mask: np.ndarray | tf.Tensor | None = None, + inputs_embeds: np.ndarray | tf.Tensor | None = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + labels: np.ndarray | tf.Tensor | None = None, + training: Optional[bool] = False, + ) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]: + r""" + labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): + Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., + config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If + `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Note: this is called + "classification_class_index" in the original implementation. + + Returns: + + Examples: + + ```python + >>> from transformers import AutoTokenizer, TapasForSequenceClassification + >>> import tensorflow as tf + >>> import pandas as pd + + >>> tokenizer = AutoTokenizer.from_pretrained("google/tapas-base-finetuned-tabfact") + >>> model = TapasForSequenceClassification.from_pretrained("google/tapas-base-finetuned-tabfact") + + >>> data = { + ... "Actors": ["Brad Pitt", "Leonardo Di Caprio", "George Clooney"], + ... "Age": ["56", "45", "59"], + ... "Number of movies": ["87", "53", "69"], + ... } + >>> table = pd.DataFrame.from_dict(data) + >>> queries = [ + ... "There is only one actor who is 45 years old", + ... "There are 3 actors which played in more than 60 movies", + ... ] + + >>> inputs = tokenizer(table=table, queries=queries, padding="max_length", return_tensors="tf") + >>> labels = tf.convert_to_tensor([1, 0]) # 1 means entailed, 0 means refuted + + >>> outputs = model(**inputs, labels=labels) + >>> loss = outputs.loss + >>> logits = outputs.logits + ```""" + + outputs = self.tapas( + input_ids=input_ids, + attention_mask=attention_mask, + token_type_ids=token_type_ids, + position_ids=position_ids, + head_mask=head_mask, + inputs_embeds=inputs_embeds, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + training=training, + ) + pooled_output = outputs[1] + pooled_output = self.dropout(inputs=pooled_output, training=training) + logits = self.classifier(inputs=pooled_output) + loss = None if labels is None else self.hf_compute_loss(labels=labels, logits=logits) + + if not return_dict: + output = (logits,) + outputs[2:] + return ((loss,) + output) if loss is not None else output + + return TFSequenceClassifierOutput( + loss=loss, + logits=logits, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def build(self, input_shape=None): + if self.built: + return + self.built = True + if getattr(self, "tapas", None) is not None: + with tf.name_scope(self.tapas.name): + self.tapas.build(None) + if getattr(self, "dropout", None) is not None: + with tf.name_scope(self.dropout.name): + self.dropout.build(None) + if getattr(self, "classifier", None) is not None: + with tf.name_scope(self.classifier.name): + self.classifier.build([None, None, self.config.hidden_size]) + + +""" TAPAS utilities.""" + + +class AverageApproximationFunction(str, enum.Enum): + RATIO = "ratio" + FIRST_ORDER = "first_order" + SECOND_ORDER = "second_order" + + +# Beginning of everything related to segmented tensors + + +class IndexMap(object): + """Index grouping entries within a tensor.""" + + def __init__(self, indices, num_segments, batch_dims=0): + """ + Creates an index. + + Args: + indices: Tensor of indices, same shape as `values`. + num_segments: Scalar tensor, the number of segments. All elements + in a batched segmented tensor must have the same number of segments (although many segments can be empty). + batch_dims: Python integer, the number of batch dimensions. The first + `batch_dims` dimensions of a SegmentedTensor are treated as batch dimensions. Segments in different batch + elements are always distinct even if they have the same index. + """ + self.indices = tf.convert_to_tensor(indices) + self.num_segments = tf.convert_to_tensor(num_segments) + self.batch_dims = batch_dims + + def batch_shape(self): + return tf.shape(self.indices)[: self.batch_dims] + + +class ProductIndexMap(IndexMap): + """The product of two indices.""" + + def __init__(self, outer_index, inner_index): + """ + Combines indices i and j into pairs (i, j). The result is an index where each segment (i, j) is the + intersection of segments i and j. For example if the inputs represent table cells indexed by respectively rows + and columns the output will be a table indexed by (row, column) pairs, i.e. by cell. The implementation + combines indices {0, .., n - 1} and {0, .., m - 1} into {0, .., nm - 1}. The output has `num_segments` equal to + `outer_index.num_segements` * `inner_index.num_segments`. + + Args: + outer_index: IndexMap. + inner_index: IndexMap, must have the same shape as `outer_index`. + """ + if outer_index.batch_dims != inner_index.batch_dims: + raise ValueError("outer_index.batch_dims and inner_index.batch_dims must be the same.") + + super(ProductIndexMap, self).__init__( + indices=( + inner_index.indices + + outer_index.indices * tf.cast(inner_index.num_segments, inner_index.indices.dtype) + ), + num_segments=inner_index.num_segments * outer_index.num_segments, + batch_dims=inner_index.batch_dims, + ) + self.outer_index = outer_index + self.inner_index = inner_index + + def project_outer(self, index): + """Projects an index with the same index set onto the outer components.""" + return IndexMap( + indices=tf.math.floordiv(index.indices, self.inner_index.num_segments), + num_segments=self.outer_index.num_segments, + batch_dims=index.batch_dims, + ) + + def project_inner(self, index): + """Projects an index with the same index set onto the inner components.""" + return IndexMap( + indices=tf.math.floormod(index.indices, self.inner_index.num_segments), + num_segments=self.inner_index.num_segments, + batch_dims=index.batch_dims, + ) + + +def gather(values, index, name="segmented_gather"): + """ + Gathers from `values` using the index map. For each element in the domain of the index map this operation looks up + a value for that index in `values`. Two elements from the same segment always get assigned the same value. + + Args: + values: [B1, ..., Bn, num_segments, V1, ...] Tensor with segment values. + index: [B1, ..., Bn, I1, ..., Ik] IndexMap. + name: Name for the TensorFlow operation. + + Returns: + [B1, ..., Bn, I1, ..., Ik, V1, ...] Tensor with the gathered values. + """ + return tf.gather(values, index.indices, batch_dims=index.batch_dims, name=name) + + +def flatten(index, name="segmented_flatten"): + """ + Flattens a batched index map to a 1d index map. This operation relabels the segments to keep batch elements + distinct. The k-th batch element will have indices shifted by `num_segments` * (k - 1). The result is a tensor with + `num_segments` multiplied by the number of elements in the batch. + + Args: + index: IndexMap to flatten. + name: Name for the TensorFlow operation. + + Returns: + The flattened IndexMap. + """ + batch_size = tf.reduce_prod(index.batch_shape()) + offset = tf.range(batch_size) * index.num_segments + offset = tf.reshape(offset, index.batch_shape()) + for _ in range(index.batch_dims, index.indices.shape.rank): + offset = tf.expand_dims(offset, -1) + + indices = tf.cast(offset, index.indices.dtype) + index.indices + return IndexMap(indices=tf.reshape(indices, [-1]), num_segments=index.num_segments * batch_size, batch_dims=0) + + +def range_index_map(batch_shape, num_segments, name="range_index_map"): + """ + Constructs an index map equal to range(num_segments). + + Args: + batch_shape (`tf.Tensor`): + Batch shape + num_segments (`int`): + Number of segments + name (`str`, *optional*, defaults to 'range_index_map'): + Name for the operation. Currently not used + + Returns: + (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). + """ + batch_shape = tf.convert_to_tensor(batch_shape) + batch_shape.shape.assert_has_rank(1) + num_segments = tf.convert_to_tensor(num_segments) + num_segments.shape.assert_has_rank(0) + + indices = tf.range(num_segments) + shape = tf.concat([tf.ones_like(batch_shape, dtype=tf.int32), tf.expand_dims(num_segments, axis=0)], axis=0) + indices = tf.reshape(indices, shape) + multiples = tf.concat([batch_shape, [1]], axis=0) + indices = tf.tile(indices, multiples) + return IndexMap(indices=indices, num_segments=num_segments, batch_dims=batch_shape.shape.as_list()[0]) + + +def _segment_reduce(values, index, segment_reduce_fn, name): + """ + Applies a segment reduction segment-wise. + + Args: + values (`tf.Tensor`): + Tensor with segment values. + index (`IndexMap`): + IndexMap. + segment_reduce_fn (`str`): + Name for the reduce operation. One of "sum", "mean", "max" or "min". + name (`str`): + Name for the operation. Currently not used + + Returns: + (`IndexMap`): IndexMap of shape batch_shape with elements equal to range(num_segments). + """ + # Flatten the batch dimensions, as segments ops do not support batching. + # However if `values` has extra dimensions to the right keep them + # unflattened. Segmented ops support vector-valued operations. + flat_index = flatten(index) + vector_shape = tf.shape(values)[index.indices.shape.rank :] + flattened_shape = tf.concat([[-1], vector_shape], axis=0) + flat_values = tf.reshape(values, flattened_shape) + segment_means = segment_reduce_fn( + data=flat_values, segment_ids=flat_index.indices, num_segments=flat_index.num_segments + ) + + # Unflatten the values. + new_shape = tf.concat([index.batch_shape(), [index.num_segments], vector_shape], axis=0) + output_values = tf.reshape(segment_means, new_shape) + output_index = range_index_map(index.batch_shape(), index.num_segments) + return output_values, output_index + + +def reduce_mean(values, index, name="segmented_reduce_mean"): + """ + Averages a tensor over its segments. Outputs 0 for empty segments. This operations computes the mean over segments, + with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a mean of vectors + rather than scalars. + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be + averaged. + index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. + name: Name for the TensorFlow ops. + + Returns: + A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, + V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, tf.math.unsorted_segment_mean, name) + + +def reduce_sum(values, index, name="segmented_reduce_sum"): + """ + Sums a tensor over its segments. Outputs 0 for empty segments. This operations computes the sum over segments, with + support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be a sum of vectors + rather than scalars. + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be + averaged. + index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. + name: Name for the TensorFlow ops. + + Returns: + A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, + V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, tf.math.unsorted_segment_sum, name) + + +def reduce_max(values, index, name="segmented_reduce_max"): + """ + Computes the maximum over segments. This operations computes the maximum over segments, with support for: + + - Batching using the first dimensions [B1, B2, ..., Bn]. Each element in a batch can have different indices. + - Vectorization using the last dimension [V1, V2, ...]. If they are present the output will be an element-wise + maximum of vectors rather than scalars. + Only the middle dimensions [I1, ..., Ik] are reduced by the operation. + + Args: + values: [B1, B2, ..., Bn, I1, .., Ik, V1, V2, ..] tensor of values to be + averaged. + index: IndexMap [B1, B2, ..., Bn, I1, .., Ik] index defining the segments. + name: Name for the TensorFlow ops. + + Returns: + A pair (output_values, output_index) where `output_values` is a tensor of shape [B1, B2, ..., Bn, num_segments, + V1, V2, ..] and `index` is an IndexMap with shape [B1, B2, ..., Bn, num_segments]. + """ + return _segment_reduce(values, index, tf.math.unsorted_segment_max, name) + + +def reduce_min(values, index, name="segmented_reduce_min"): + """Computes the minimum over segments.""" + return _segment_reduce(values, index, tf.math.unsorted_segment_min, name) + + +def _single_column_cell_selection_loss(token_logits, column_logits, labels, cell_index, col_index, cell_mask): + """ + Computes the loss for cell selection constrained to a single column. The loss is a hierarchical log-likelihood. The + model first predicts a column and then selects cells within that column (conditioned on the column). Cells outside + the selected column are never selected. + + Args: + token_logits (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Tensor containing the logits per token. + column_logits (`tf.Tensor` of shape `(batch_size, max_num_cols)`): + Tensor containing the logits per column. + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Labels per token. + cell_index (`ProductIndexMap`): + Index that groups tokens into cells. + col_index (`IndexMap`): + Index that groups tokens into columns. + cell_mask (`tf.Tensor` of shape `(batch_size, max_num_rows * max_num_cols)`): + Mask for cells that exist in the table (i.e. that are not padding). + + Returns: + selection_loss_per_example (`tf.Tensor` of shape `(batch_size,)`): Loss for each example. logits (`tf.Tensor` + of shape `(batch_size, sequence_length)`): New logits which are only allowed to select cells in a single + column. Logits outside of the most likely column according to *column_logits* will be set to a very low value + (such that the probabilities are 0). + """ + # First find the column we should select. We use the column with maximum + # number of selected cells. + labels_per_column, _ = reduce_sum(tf.cast(labels, tf.float32), col_index) + column_label = tf.argmax(labels_per_column, axis=-1, output_type=tf.int32) + # Check if there are no selected cells in the column. In that case the model + # should predict the special column id 0, which means "select nothing". + no_cell_selected = tf.equal(tf.reduce_max(labels_per_column, axis=-1), 0) + column_label = tf.where(no_cell_selected, tf.zeros_like(column_label), column_label) + + column_dist = tfp.distributions.Categorical(logits=column_logits) + column_loss_per_example = -column_dist.log_prob(column_label) + + # Reduce the labels and logits to per-cell from per-token. + logits_per_cell, _ = reduce_mean(token_logits, cell_index) + labels_per_cell, labels_index = reduce_max(tf.cast(labels, tf.int32), cell_index) + + # Mask for the selected column. + column_id_for_cells = cell_index.project_inner(labels_index).indices + column_mask = tf.cast(tf.equal(column_id_for_cells, tf.expand_dims(column_label, axis=1)), tf.float32) + + # Compute the log-likelihood for cells, but only for the selected column. + cell_dist = tfp.distributions.Bernoulli(logits=logits_per_cell) + cell_log_prob = cell_dist.log_prob(labels_per_cell) + cell_loss = -tf.reduce_sum(cell_log_prob * column_mask * cell_mask, axis=1) + # We need to normalize the loss by the number of cells in the column. + cell_loss /= tf.reduce_sum(column_mask * cell_mask, axis=1) + EPSILON_ZERO_DIVISION + + selection_loss_per_example = column_loss_per_example + selection_loss_per_example += tf.where(no_cell_selected, tf.zeros_like(selection_loss_per_example), cell_loss) + + # Set the probs outside the selected column (selected by the *model*) + # to 0. This ensures backwards compatibility with models that select + # cells from multiple columns. + selected_column_id = tf.argmax(column_logits, axis=-1, output_type=tf.int32) + selected_column_mask = tf.cast( + tf.equal(column_id_for_cells, tf.expand_dims(selected_column_id, axis=-1)), tf.float32 + ) + # Never select cells with the special column id 0. + selected_column_mask = tf.where( + tf.equal(column_id_for_cells, 0), tf.zeros_like(selected_column_mask), selected_column_mask + ) + logits_per_cell += CLOSE_ENOUGH_TO_LOG_ZERO * (1.0 - cell_mask * selected_column_mask) + logits = gather(logits_per_cell, cell_index) + + return selection_loss_per_example, logits + + +def _calculate_aggregate_mask(answer, pooled_output, cell_selection_preference, labels, aggregation_classifier): + """ + Finds examples where the model should select cells with no aggregation. + + Returns a mask that determines for which examples should the model select answers directly from the table, without + any aggregation function. If the answer is a piece of text the case is unambiguous as aggregation functions only + apply to numbers. If the answer is a number but does not appear in the table then we must use some aggregation + case. The ambiguous case is when the answer is a number that also appears in the table. In this case we use the + aggregation function probabilities predicted by the model to decide whether to select or aggregate. The threshold + for this is a hyperparameter *cell_selection_preference* + + Args: + answer (`tf.Tensor` of shape `(batch_size, )`): + Answer for every example in the batch. Nan if there is no scalar answer. + pooled_output (`tf.Tensor` of shape `(batch_size, hidden_size)`): + Output of the pooler (BertPooler) on top of the encoder layer. + cell_selection_preference (`float`): + Preference for cell selection in ambiguous cases. + labels (`tf.Tensor` of shape `(batch_size, sequence_length)`): + Labels per token. aggregation_classifier (`torch.nn.Linear`): Aggregation head + + Returns: + aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): A mask set to 1 for examples that should use aggregation + functions. + """ + # tf.Tensor(batch_size,) + aggregate_mask_init = tf.cast(tf.logical_not(tf.math.is_nan(answer)), tf.float32) + logits_aggregation = aggregation_classifier(pooled_output) + dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) + # Index 0 corresponds to "no aggregation". + aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) + # Cell selection examples according to current model. + is_pred_cell_selection = aggregation_ops_total_mass <= cell_selection_preference + # Examples with non-empty cell selection supervision. + is_cell_supervision_available = tf.reduce_sum(labels, axis=1) > 0 + aggregate_mask = tf.where( + tf.logical_and(is_pred_cell_selection, is_cell_supervision_available), + tf.zeros_like(aggregate_mask_init, dtype=tf.float32), + aggregate_mask_init, + ) + aggregate_mask = tf.stop_gradient(aggregate_mask) + return aggregate_mask + + +def _calculate_aggregation_loss_known( + logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels +): + """ + Calculates aggregation loss when its type is known during training. + + In the weakly supervised setting, the only known information is that for cell selection examples, "no aggregation" + should be predicted. For other examples (those that require aggregation), no loss is accumulated. In the setting + where aggregation type is always known, standard cross entropy loss is accumulated for all examples + + Args: + logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions. + aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): + Aggregation function id for every example in the batch. + use_answer_as_supervision (`bool`, *optional*): + Whether to use the answer as the only supervision for aggregation examples. + num_aggregation_labels (`int`, *optional*, defaults to 0): + The number of aggregation operators to predict. + + Returns: + aggregation_loss_known (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (when its type is known during + training) per example. + """ + if use_answer_as_supervision: + # Prepare "no aggregation" targets for cell selection examples. + target_aggregation = tf.zeros_like(aggregate_mask, dtype=tf.int32) + else: + # Use aggregation supervision as the target. + target_aggregation = aggregation_labels + + one_hot_labels = tf.one_hot(target_aggregation, depth=num_aggregation_labels, dtype=tf.float32) + log_probs = tf.nn.log_softmax(logits_aggregation, axis=-1) + + # [batch_size] + per_example_aggregation_intermediate = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) + if use_answer_as_supervision: + # Accumulate loss only for examples requiring cell selection + # (no aggregation). + return per_example_aggregation_intermediate * (1 - aggregate_mask) + else: + return per_example_aggregation_intermediate + + +def _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask): + """ + Calculates aggregation loss in the case of answer supervision. + + Args: + logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions + + Returns: + aggregation_loss_unknown (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss (in case of answer + supervision) per example. + """ + dist_aggregation = tfp.distributions.Categorical(logits=logits_aggregation) + # Index 0 corresponds to "no aggregation". + aggregation_ops_total_mass = tf.reduce_sum(dist_aggregation.probs_parameter()[:, 1:], axis=1) + # Predict some aggregation in case of an answer that needs aggregation. + # This increases the probability of all aggregation functions, in a way + # similar to MML, but without considering whether the function gives the + # correct answer. + return -tf.math.log(aggregation_ops_total_mass) * aggregate_mask + + +def _calculate_aggregation_loss( + logits_aggregation, + aggregate_mask, + aggregation_labels, + use_answer_as_supervision, + num_aggregation_labels, + aggregation_loss_weight, +): + """ + Calculates the aggregation loss per example. + + Args: + logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + aggregate_mask (`tf.Tensor` of shape `(batch_size, )`): + A mask set to 1 for examples that should use aggregation functions. + aggregation_labels (`tf.Tensor` of shape `(batch_size, )`): + Aggregation function id for every example in the batch. + use_answer_as_supervision (`bool`, *optional*): + Whether to use the answer as the only supervision for aggregation examples. + num_aggregation_labels (`int`, *optional*, defaults to 0): + The number of aggregation operators to predict. + aggregation_loss_weight (`float`, *optional*, defaults to 1.0): + Importance weight for the aggregation loss. + + Returns: + aggregation_loss (`tf.Tensor` of shape `(batch_size,)`): Aggregation loss per example. + """ + per_example_aggregation_loss = _calculate_aggregation_loss_known( + logits_aggregation, aggregate_mask, aggregation_labels, use_answer_as_supervision, num_aggregation_labels + ) + + if use_answer_as_supervision: + # Add aggregation loss for numeric answers that need aggregation. + per_example_aggregation_loss += _calculate_aggregation_loss_unknown(logits_aggregation, aggregate_mask) + return aggregation_loss_weight * per_example_aggregation_loss + + +def _calculate_expected_result( + dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config +): + """ + Calculates the expected result given cell and aggregation probabilities. + + Args: + dist_per_cell (`tfp.distributions.Bernoulli`): + Cell selection distribution for each cell. + numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): + Numeric values of every token. Nan for tokens which are not numeric values. + numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): + Scale of the numeric values of every token. + input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): + Mask for the table, without question tokens and table headers. + logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + config ([`TapasConfig`]): + Model configuration class with all the hyperparameters of the model + + Returns: + expected_result (`tf.Tensor` of shape `(batch_size,)`): The expected result per example. + """ + if config.use_gumbel_for_cells: + gumbel_dist = tfp.distributions.RelaxedBernoulli( + # The token logits where already divided by the temperature and used for + # computing cell selection errors so we need to multiply it again here + config.temperature, + logits=dist_per_cell.logits_parameter() * config.temperature, + ) + scaled_probability_per_cell = gumbel_dist.sample() + else: + scaled_probability_per_cell = dist_per_cell.probs_parameter() + + # [batch_size, seq_length] + scaled_probability_per_cell = (scaled_probability_per_cell / numeric_values_scale) * input_mask_float + count_result = tf.reduce_sum(scaled_probability_per_cell, axis=1) + numeric_values_masked = tf.where( + tf.math.is_nan(numeric_values), tf.zeros_like(numeric_values), numeric_values + ) # Mask non-numeric table values to zero. + sum_result = tf.reduce_sum(scaled_probability_per_cell * numeric_values_masked, axis=1) + avg_approximation = config.average_approximation_function + if avg_approximation == AverageApproximationFunction.RATIO: + average_result = sum_result / (count_result + EPSILON_ZERO_DIVISION) + elif avg_approximation == AverageApproximationFunction.FIRST_ORDER: + # The sum of all probabilities exept that correspond to other cells + ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 + average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell / ex, axis=1) + elif avg_approximation == AverageApproximationFunction.SECOND_ORDER: + # The sum of all probabilities exept that correspond to other cells + ex = tf.reduce_sum(scaled_probability_per_cell, axis=1, keepdims=True) - scaled_probability_per_cell + 1 + pointwise_var = scaled_probability_per_cell * (1 - scaled_probability_per_cell) + var = tf.reduce_sum(pointwise_var, axis=1, keepdims=True) - pointwise_var + multiplier = (var / tf.math.square(ex) + 1) / ex + average_result = tf.reduce_sum(numeric_values_masked * scaled_probability_per_cell * multiplier, axis=1) + else: + raise ValueError("Invalid average_approximation_function: %s", config.average_approximation_function) + + if config.use_gumbel_for_aggregation: + gumbel_dist = tfp.distributions.RelaxedOneHotCategorical( + config.aggregation_temperature, logits=logits_aggregation[:, 1:] + ) + # [batch_size, num_aggregation_labels - 1] + aggregation_op_only_probs = gumbel_dist.sample() + else: + # [batch_size, num_aggregation_labels - 1] + aggregation_op_only_probs = stable_softmax(logits_aggregation[:, 1:] / config.aggregation_temperature, axis=-1) + all_results = tf.concat( + [ + tf.expand_dims(sum_result, axis=1), + tf.expand_dims(average_result, axis=1), + tf.expand_dims(count_result, axis=1), + ], + axis=1, + ) + expected_result = tf.reduce_sum(all_results * aggregation_op_only_probs, axis=1) + return expected_result + + +def _calculate_regression_loss( + answer, + aggregate_mask, + dist_per_cell, + numeric_values, + numeric_values_scale, + input_mask_float, + logits_aggregation, + config, +): + """ + Calculates the regression loss per example. + + Args: + answer (`tf.Tensor` of shape `(batch_size,)`): + Answer for every example in the batch. Nan if there is no scalar answer. + aggregate_mask (`tf.Tensor` of shape `(batch_size,)`): + A mask set to 1 for examples that should use aggregation functions. + dist_per_cell (`torch.distributions.Bernoulli`): + Cell selection distribution for each cell. + numeric_values (`tf.Tensor` of shape `(batch_size, seq_length)`): + Numeric values of every token. Nan for tokens which are not numeric values. + numeric_values_scale (`tf.Tensor` of shape `(batch_size, seq_length)`): + Scale of the numeric values of every token. + input_mask_float (`tf.Tensor` of shape `(batch_size, seq_length)`): + Mask for the table, without question tokens and table headers. + logits_aggregation (`tf.Tensor` of shape `(batch_size, num_aggregation_labels)`): + Logits per aggregation operation. + config ([`TapasConfig`]): + Model configuration class with all the parameters of the model + + Returns: + per_example_answer_loss_scaled (`tf.Tensor` of shape `(batch_size,)`): Scales answer loss for each example in + the batch. large_answer_loss_mask (`tf.Tensor` of shape `(batch_size,)`): A mask which is 1 for examples for + which their answer loss is larger than the answer_loss_cutoff. + """ + # float32 (batch_size,) + expected_result = _calculate_expected_result( + dist_per_cell, numeric_values, numeric_values_scale, input_mask_float, logits_aggregation, config + ) + + # [batch_size] + answer_masked = tf.where(tf.math.is_nan(answer), tf.zeros_like(answer), answer) + + if config.use_normalized_answer_loss: + normalizer = tf.stop_gradient( + tf.math.maximum(tf.math.abs(expected_result), tf.math.abs(answer_masked)) + EPSILON_ZERO_DIVISION + ) + normalized_answer_masked = answer_masked / normalizer + normalized_expected_result = expected_result / normalizer + per_example_answer_loss = tf.compat.v1.losses.huber_loss( + normalized_answer_masked * aggregate_mask, + normalized_expected_result * aggregate_mask, + delta=tf.cast(1.0, tf.float32), + reduction=tf.losses.Reduction.NONE, + ) + else: + per_example_answer_loss = tf.compat.v1.losses.huber_loss( + answer_masked * aggregate_mask, + expected_result * aggregate_mask, + delta=tf.cast(config.huber_loss_delta, tf.float32), + reduction=tf.losses.Reduction.NONE, + ) + if config.answer_loss_cutoff is None: + large_answer_loss_mask = tf.ones_like(per_example_answer_loss, dtype=tf.float32) + else: + large_answer_loss_mask = tf.where( + per_example_answer_loss > config.answer_loss_cutoff, + tf.zeros_like(per_example_answer_loss, dtype=tf.float32), + tf.ones_like(per_example_answer_loss, dtype=tf.float32), + ) + per_example_answer_loss_scaled = config.answer_loss_importance * (per_example_answer_loss * aggregate_mask) + return per_example_answer_loss_scaled, large_answer_loss_mask diff --git a/venv/lib/python3.10/site-packages/transformers/models/tapas/tokenization_tapas.py b/venv/lib/python3.10/site-packages/transformers/models/tapas/tokenization_tapas.py new file mode 100644 index 0000000000000000000000000000000000000000..23fbd5300ed583cc57986e6bca7e39d5d593dcd6 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/tapas/tokenization_tapas.py @@ -0,0 +1,2764 @@ +# coding=utf-8 +# Copyright 2020 Google Research and The HuggingFace Inc. team. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" Tokenization class for TAPAS model.""" + + +import collections +import datetime +import enum +import itertools +import math +import os +import re +import unicodedata +from dataclasses import dataclass +from typing import Callable, Dict, Generator, List, Optional, Tuple, Union + +import numpy as np + +from ...tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace +from ...tokenization_utils_base import ( + ENCODE_KWARGS_DOCSTRING, + VERY_LARGE_INTEGER, + BatchEncoding, + EncodedInput, + PreTokenizedInput, + TextInput, +) +from ...utils import ExplicitEnum, PaddingStrategy, TensorType, add_end_docstrings, is_pandas_available, logging + + +if is_pandas_available(): + import pandas as pd + +logger = logging.get_logger(__name__) + + +VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt"} + + +class TapasTruncationStrategy(ExplicitEnum): + """ + Possible values for the `truncation` argument in [`~TapasTokenizer.__call__`]. Useful for tab-completion in an IDE. + """ + + DROP_ROWS_TO_FIT = "drop_rows_to_fit" + DO_NOT_TRUNCATE = "do_not_truncate" + + +TableValue = collections.namedtuple("TokenValue", ["token", "column_id", "row_id"]) + + +@dataclass(frozen=True) +class TokenCoordinates: + column_index: int + row_index: int + token_index: int + + +@dataclass +class TokenizedTable: + rows: List[List[List[str]]] + selected_tokens: List[TokenCoordinates] + + +@dataclass(frozen=True) +class SerializedExample: + tokens: List[str] + column_ids: List[int] + row_ids: List[int] + segment_ids: List[int] + + +def _is_inner_wordpiece(token: str): + return token.startswith("##") + + +def load_vocab(vocab_file): + """Loads a vocabulary file into a dictionary.""" + vocab = collections.OrderedDict() + with open(vocab_file, "r", encoding="utf-8") as reader: + tokens = reader.readlines() + for index, token in enumerate(tokens): + token = token.rstrip("\n") + vocab[token] = index + return vocab + + +def whitespace_tokenize(text): + """Runs basic whitespace cleaning and splitting on a piece of text.""" + text = text.strip() + if not text: + return [] + tokens = text.split() + return tokens + + +TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING = r""" + add_special_tokens (`bool`, *optional*, defaults to `True`): + Whether or not to encode the sequences with the special tokens relative to their model. + padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): + Activates and controls padding. Accepts the following values: + + - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single + sequence if provided). + - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum + acceptable input length for the model if that argument is not provided. + - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different + lengths). + truncation (`bool`, `str` or [`TapasTruncationStrategy`], *optional*, defaults to `False`): + Activates and controls truncation. Accepts the following values: + + - `True` or `'drop_rows_to_fit'`: Truncate to a maximum length specified with the argument `max_length` + or to the maximum acceptable input length for the model if that argument is not provided. This will + truncate row by row, removing rows from the table. + - `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths + greater than the model maximum admissible input size). + max_length (`int`, *optional*): + Controls the maximum length to use by one of the truncation/padding parameters. + + If left unset or set to `None`, this will use the predefined model maximum length if a maximum length + is required by one of the truncation/padding parameters. If the model has no specific maximum input + length (like XLNet) truncation/padding to a maximum length will be deactivated. + is_split_into_words (`bool`, *optional*, defaults to `False`): + Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the + tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace) + which it will tokenize. This is useful for NER or token classification. + pad_to_multiple_of (`int`, *optional*): + If set will pad the sequence to a multiple of the provided value. This is especially useful to enable + the use of Tensor Cores on NVIDIA hardware with compute capability `>= 7.5` (Volta). + return_tensors (`str` or [`~utils.TensorType`], *optional*): + If set, will return tensors instead of list of python integers. Acceptable values are: + + - `'tf'`: Return TensorFlow `tf.constant` objects. + - `'pt'`: Return PyTorch `torch.Tensor` objects. + - `'np'`: Return Numpy `np.ndarray` objects. +""" + + +class TapasTokenizer(PreTrainedTokenizer): + r""" + Construct a TAPAS tokenizer. Based on WordPiece. Flattens a table and one or more related sentences to be used by + TAPAS models. + + This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to + this superclass for more information regarding those methods. [`TapasTokenizer`] creates several token type ids to + encode tabular structure. To be more precise, it adds 7 token type ids, in the following order: `segment_ids`, + `column_ids`, `row_ids`, `prev_labels`, `column_ranks`, `inv_column_ranks` and `numeric_relations`: + + - segment_ids: indicate whether a token belongs to the question (0) or the table (1). 0 for special tokens and + padding. + - column_ids: indicate to which column of the table a token belongs (starting from 1). Is 0 for all question + tokens, special tokens and padding. + - row_ids: indicate to which row of the table a token belongs (starting from 1). Is 0 for all question tokens, + special tokens and padding. Tokens of column headers are also 0. + - prev_labels: indicate whether a token was (part of) an answer to the previous question (1) or not (0). Useful in + a conversational setup (such as SQA). + - column_ranks: indicate the rank of a table token relative to a column, if applicable. For example, if you have a + column "number of movies" with values 87, 53 and 69, then the column ranks of these tokens are 3, 1 and 2 + respectively. 0 for all question tokens, special tokens and padding. + - inv_column_ranks: indicate the inverse rank of a table token relative to a column, if applicable. For example, if + you have a column "number of movies" with values 87, 53 and 69, then the inverse column ranks of these tokens are + 1, 3 and 2 respectively. 0 for all question tokens, special tokens and padding. + - numeric_relations: indicate numeric relations between the question and the tokens of the table. 0 for all + question tokens, special tokens and padding. + + [`TapasTokenizer`] runs end-to-end tokenization on a table and associated sentences: punctuation splitting and + wordpiece. + + Args: + vocab_file (`str`): + File containing the vocabulary. + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + do_basic_tokenize (`bool`, *optional*, defaults to `True`): + Whether or not to do basic tokenization before WordPiece. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + unk_token (`str`, *optional*, defaults to `"[UNK]"`): + The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this + token instead. + sep_token (`str`, *optional*, defaults to `"[SEP]"`): + The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for + sequence classification or for a text and a question for question answering. It is also used as the last + token of a sequence built with special tokens. + pad_token (`str`, *optional*, defaults to `"[PAD]"`): + The token used for padding, for example when batching sequences of different lengths. + cls_token (`str`, *optional*, defaults to `"[CLS]"`): + The classifier token which is used when doing sequence classification (classification of the whole sequence + instead of per-token classification). It is the first token of the sequence when built with special tokens. + mask_token (`str`, *optional*, defaults to `"[MASK]"`): + The token used for masking values. This is the token used when training this model with masked language + modeling. This is the token which the model will try to predict. + empty_token (`str`, *optional*, defaults to `"[EMPTY]"`): + The token used for empty cell values in a table. Empty cell values include "", "n/a", "nan" and "?". + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + cell_trim_length (`int`, *optional*, defaults to -1): + If > 0: Trim cells so that the length is <= this value. Also disables further cell trimming, should thus be + used with `truncation` set to `True`. + max_column_id (`int`, *optional*): + Max column id to extract. + max_row_id (`int`, *optional*): + Max row id to extract. + strip_column_names (`bool`, *optional*, defaults to `False`): + Whether to add empty strings instead of column names. + update_answer_coordinates (`bool`, *optional*, defaults to `False`): + Whether to recompute the answer coordinates from the answer text. + min_question_length (`int`, *optional*): + Minimum length of each question in terms of tokens (will be skipped otherwise). + max_question_length (`int`, *optional*): + Maximum length of each question in terms of tokens (will be skipped otherwise). + """ + + vocab_files_names = VOCAB_FILES_NAMES + + def __init__( + self, + vocab_file, + do_lower_case=True, + do_basic_tokenize=True, + never_split=None, + unk_token="[UNK]", + sep_token="[SEP]", + pad_token="[PAD]", + cls_token="[CLS]", + mask_token="[MASK]", + empty_token="[EMPTY]", + tokenize_chinese_chars=True, + strip_accents=None, + cell_trim_length: int = -1, + max_column_id: int = None, + max_row_id: int = None, + strip_column_names: bool = False, + update_answer_coordinates: bool = False, + min_question_length=None, + max_question_length=None, + model_max_length: int = 512, + additional_special_tokens: Optional[List[str]] = None, + **kwargs, + ): + if not is_pandas_available(): + raise ImportError("Pandas is required for the TAPAS tokenizer.") + + if additional_special_tokens is not None: + if empty_token not in additional_special_tokens: + additional_special_tokens.append(empty_token) + else: + additional_special_tokens = [empty_token] + + if not os.path.isfile(vocab_file): + raise ValueError( + f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google pretrained" + " model use `tokenizer = BertTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`" + ) + self.vocab = load_vocab(vocab_file) + self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()]) + self.do_basic_tokenize = do_basic_tokenize + if do_basic_tokenize: + self.basic_tokenizer = BasicTokenizer( + do_lower_case=do_lower_case, + never_split=never_split, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + ) + self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token)) + + # Additional properties + self.cell_trim_length = cell_trim_length + self.max_column_id = ( + max_column_id + if max_column_id is not None + else model_max_length + if model_max_length is not None + else VERY_LARGE_INTEGER + ) + self.max_row_id = ( + max_row_id + if max_row_id is not None + else model_max_length + if model_max_length is not None + else VERY_LARGE_INTEGER + ) + self.strip_column_names = strip_column_names + self.update_answer_coordinates = update_answer_coordinates + self.min_question_length = min_question_length + self.max_question_length = max_question_length + + super().__init__( + do_lower_case=do_lower_case, + do_basic_tokenize=do_basic_tokenize, + never_split=never_split, + unk_token=unk_token, + sep_token=sep_token, + pad_token=pad_token, + cls_token=cls_token, + mask_token=mask_token, + empty_token=empty_token, + tokenize_chinese_chars=tokenize_chinese_chars, + strip_accents=strip_accents, + cell_trim_length=cell_trim_length, + max_column_id=max_column_id, + max_row_id=max_row_id, + strip_column_names=strip_column_names, + update_answer_coordinates=update_answer_coordinates, + min_question_length=min_question_length, + max_question_length=max_question_length, + model_max_length=model_max_length, + additional_special_tokens=additional_special_tokens, + **kwargs, + ) + + @property + def do_lower_case(self): + return self.basic_tokenizer.do_lower_case + + @property + def vocab_size(self): + return len(self.vocab) + + def get_vocab(self): + return dict(self.vocab, **self.added_tokens_encoder) + + def _tokenize(self, text): + if format_text(text) == EMPTY_TEXT: + return [self.additional_special_tokens[0]] + split_tokens = [] + if self.do_basic_tokenize: + for token in self.basic_tokenizer.tokenize(text, never_split=self.all_special_tokens): + # If the token is part of the never_split set + if token in self.basic_tokenizer.never_split: + split_tokens.append(token) + else: + split_tokens += self.wordpiece_tokenizer.tokenize(token) + else: + split_tokens = self.wordpiece_tokenizer.tokenize(text) + return split_tokens + + def _convert_token_to_id(self, token): + """Converts a token (str) in an id using the vocab.""" + return self.vocab.get(token, self.vocab.get(self.unk_token)) + + def _convert_id_to_token(self, index): + """Converts an index (integer) in a token (str) using the vocab.""" + return self.ids_to_tokens.get(index, self.unk_token) + + def convert_tokens_to_string(self, tokens): + """Converts a sequence of tokens (string) in a single string.""" + out_string = " ".join(tokens).replace(" ##", "").strip() + return out_string + + def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]: + index = 0 + if os.path.isdir(save_directory): + vocab_file = os.path.join( + save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] + ) + else: + vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory + with open(vocab_file, "w", encoding="utf-8") as writer: + for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]): + if index != token_index: + logger.warning( + f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive." + " Please check that the vocabulary is not corrupted!" + ) + index = token_index + writer.write(token + "\n") + index += 1 + return (vocab_file,) + + def create_attention_mask_from_sequences(self, query_ids: List[int], table_values: List[TableValue]) -> List[int]: + """ + Creates the attention mask according to the query token IDs and a list of table values. + + Args: + query_ids (`List[int]`): list of token IDs corresponding to the ID. + table_values (`List[TableValue]`): lift of table values, which are named tuples containing the + token value, the column ID and the row ID of said token. + + Returns: + `List[int]`: List of ints containing the attention mask values. + """ + return [1] * (1 + len(query_ids) + 1 + len(table_values)) + + def create_segment_token_type_ids_from_sequences( + self, query_ids: List[int], table_values: List[TableValue] + ) -> List[int]: + """ + Creates the segment token type IDs according to the query token IDs and a list of table values. + + Args: + query_ids (`List[int]`): list of token IDs corresponding to the ID. + table_values (`List[TableValue]`): lift of table values, which are named tuples containing the + token value, the column ID and the row ID of said token. + + Returns: + `List[int]`: List of ints containing the segment token type IDs values. + """ + table_ids = list(zip(*table_values))[0] if table_values else [] + return [0] * (1 + len(query_ids) + 1) + [1] * len(table_ids) + + def create_column_token_type_ids_from_sequences( + self, query_ids: List[int], table_values: List[TableValue] + ) -> List[int]: + """ + Creates the column token type IDs according to the query token IDs and a list of table values. + + Args: + query_ids (`List[int]`): list of token IDs corresponding to the ID. + table_values (`List[TableValue]`): lift of table values, which are named tuples containing the + token value, the column ID and the row ID of said token. + + Returns: + `List[int]`: List of ints containing the column token type IDs values. + """ + table_column_ids = list(zip(*table_values))[1] if table_values else [] + return [0] * (1 + len(query_ids) + 1) + list(table_column_ids) + + def create_row_token_type_ids_from_sequences( + self, query_ids: List[int], table_values: List[TableValue] + ) -> List[int]: + """ + Creates the row token type IDs according to the query token IDs and a list of table values. + + Args: + query_ids (`List[int]`): list of token IDs corresponding to the ID. + table_values (`List[TableValue]`): lift of table values, which are named tuples containing the + token value, the column ID and the row ID of said token. + + Returns: + `List[int]`: List of ints containing the row token type IDs values. + """ + table_row_ids = list(zip(*table_values))[2] if table_values else [] + return [0] * (1 + len(query_ids) + 1) + list(table_row_ids) + + def build_inputs_with_special_tokens( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None + ) -> List[int]: + """ + Build model inputs from a question and flattened table for question answering or sequence classification tasks + by concatenating and adding special tokens. + + Args: + token_ids_0 (`List[int]`): The ids of the question. + token_ids_1 (`List[int]`, *optional*): The ids of the flattened table. + + Returns: + `List[int]`: The model input with special tokens. + """ + if token_ids_1 is None: + raise ValueError("With TAPAS, you must provide both question IDs and table IDs.") + + return [self.cls_token_id] + token_ids_0 + [self.sep_token_id] + token_ids_1 + + def get_special_tokens_mask( + self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False + ) -> List[int]: + """ + Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding + special tokens using the tokenizer `prepare_for_model` method. + + Args: + token_ids_0 (`List[int]`): + List of question IDs. + token_ids_1 (`List[int]`, *optional*): + List of flattened table IDs. + already_has_special_tokens (`bool`, *optional*, defaults to `False`): + Whether or not the token list is already formatted with special tokens for the model. + + Returns: + `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. + """ + + if already_has_special_tokens: + return super().get_special_tokens_mask( + token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True + ) + + if token_ids_1 is not None: + return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + return [1] + ([0] * len(token_ids_0)) + [1] + + @add_end_docstrings(TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def __call__( + self, + table: "pd.DataFrame", + queries: Optional[ + Union[ + TextInput, + PreTokenizedInput, + EncodedInput, + List[TextInput], + List[PreTokenizedInput], + List[EncodedInput], + ] + ] = None, + answer_coordinates: Optional[Union[List[Tuple], List[List[Tuple]]]] = None, + answer_text: Optional[Union[List[TextInput], List[List[TextInput]]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Main method to tokenize and prepare for the model one or several sequence(s) related to a table. + + Args: + table (`pd.DataFrame`): + Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas + dataframe to convert it to string. + queries (`str` or `List[str]`): + Question or batch of questions related to a table to be encoded. Note that in case of a batch, all + questions must refer to the **same** table. + answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): + Answer coordinates of each table-question pair in the batch. In case only a single table-question pair + is provided, then the answer_coordinates must be a single list of one or more tuples. Each tuple must + be a (row_index, column_index) pair. The first data row (not the column header row) has index 0. The + first column has index 0. In case a batch of table-question pairs is provided, then the + answer_coordinates must be a list of lists of tuples (each list corresponding to a single + table-question pair). + answer_text (`List[str]` or `List[List[str]]`, *optional*): + Answer text of each table-question pair in the batch. In case only a single table-question pair is + provided, then the answer_text must be a single list of one or more strings. Each string must be the + answer text of a corresponding answer coordinate. In case a batch of table-question pairs is provided, + then the answer_coordinates must be a list of lists of strings (each list corresponding to a single + table-question pair). + """ + assert isinstance(table, pd.DataFrame), "Table must be of type pd.DataFrame" + + # Input type checking for clearer error + valid_query = False + + # Check that query has a valid type + if queries is None or isinstance(queries, str): + valid_query = True + elif isinstance(queries, (list, tuple)): + if len(queries) == 0 or isinstance(queries[0], str): + valid_query = True + + if not valid_query: + raise ValueError( + "queries input must of type `str` (single example), `List[str]` (batch or single pretokenized" + " example). " + ) + is_batched = isinstance(queries, (list, tuple)) + + if is_batched: + return self.batch_encode_plus( + table=table, + queries=queries, + answer_coordinates=answer_coordinates, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + else: + return self.encode_plus( + table=table, + query=queries, + answer_coordinates=answer_coordinates, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def batch_encode_plus( + self, + table: "pd.DataFrame", + queries: Optional[ + Union[ + List[TextInput], + List[PreTokenizedInput], + List[EncodedInput], + ] + ] = None, + answer_coordinates: Optional[List[List[Tuple]]] = None, + answer_text: Optional[List[List[TextInput]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Prepare a table and a list of strings for the model. + + + + This method is deprecated, `__call__` should be used instead. + + + + Args: + table (`pd.DataFrame`): + Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas + dataframe to convert it to string. + queries (`List[str]`): + Batch of questions related to a table to be encoded. Note that all questions must refer to the **same** + table. + answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): + Answer coordinates of each table-question pair in the batch. Each tuple must be a (row_index, + column_index) pair. The first data row (not the column header row) has index 0. The first column has + index 0. The answer_coordinates must be a list of lists of tuples (each list corresponding to a single + table-question pair). + answer_text (`List[str]` or `List[List[str]]`, *optional*): + Answer text of each table-question pair in the batch. In case a batch of table-question pairs is + provided, then the answer_coordinates must be a list of lists of strings (each list corresponding to a + single table-question pair). Each string must be the answer text of a corresponding answer coordinate. + """ + if return_token_type_ids is not None and not add_special_tokens: + raise ValueError( + "Asking to return token_type_ids while setting add_special_tokens to False " + "results in an undefined behavior. Please set add_special_tokens to True or " + "set return_token_type_ids to None." + ) + + if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): + raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") + elif answer_coordinates is None and answer_text is None: + answer_coordinates = answer_text = [None] * len(queries) + + if "is_split_into_words" in kwargs: + raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") + + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + return self._batch_encode_plus( + table=table, + queries=queries, + answer_coordinates=answer_coordinates, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _get_question_tokens(self, query): + """Tokenizes the query, taking into account the max and min question length.""" + + query_tokens = self.tokenize(query) + if self.max_question_length is not None and len(query_tokens) > self.max_question_length: + logger.warning("Skipping query as its tokens are longer than the max question length") + return "", [] + if self.min_question_length is not None and len(query_tokens) < self.min_question_length: + logger.warning("Skipping query as its tokens are shorter than the min question length") + return "", [] + + return query, query_tokens + + def _batch_encode_plus( + self, + table, + queries: Union[ + List[TextInput], + List[PreTokenizedInput], + List[EncodedInput], + ], + answer_coordinates: Optional[List[List[Tuple]]] = None, + answer_text: Optional[List[List[TextInput]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = True, + return_attention_mask: Optional[bool] = None, + return_overflowing_tokens: bool = False, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + table_tokens = self._tokenize_table(table) + + queries_tokens = [] + for idx, query in enumerate(queries): + query, query_tokens = self._get_question_tokens(query) + queries[idx] = query + queries_tokens.append(query_tokens) + + batch_outputs = self._batch_prepare_for_model( + table, + queries, + tokenized_table=table_tokens, + queries_tokens=queries_tokens, + answer_coordinates=answer_coordinates, + padding=padding, + truncation=truncation, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_overflowing_tokens=return_overflowing_tokens, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + return BatchEncoding(batch_outputs) + + def _batch_prepare_for_model( + self, + raw_table: "pd.DataFrame", + raw_queries: Union[ + List[TextInput], + List[PreTokenizedInput], + List[EncodedInput], + ], + tokenized_table: Optional[TokenizedTable] = None, + queries_tokens: Optional[List[List[str]]] = None, + answer_coordinates: Optional[List[List[Tuple]]] = None, + answer_text: Optional[List[List[TextInput]]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = True, + return_attention_mask: Optional[bool] = True, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + prepend_batch_axis: bool = False, + **kwargs, + ) -> BatchEncoding: + batch_outputs = {} + + for index, example in enumerate(zip(raw_queries, queries_tokens, answer_coordinates, answer_text)): + raw_query, query_tokens, answer_coords, answer_txt = example + outputs = self.prepare_for_model( + raw_table, + raw_query, + tokenized_table=tokenized_table, + query_tokens=query_tokens, + answer_coordinates=answer_coords, + answer_text=answer_txt, + add_special_tokens=add_special_tokens, + padding=PaddingStrategy.DO_NOT_PAD.value, # we pad in batch afterwards + truncation=truncation, + max_length=max_length, + pad_to_multiple_of=None, # we pad in batch afterwards + return_attention_mask=False, # we pad in batch afterwards + return_token_type_ids=return_token_type_ids, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + return_tensors=None, # We convert the whole batch to tensors at the end + prepend_batch_axis=False, + verbose=verbose, + prev_answer_coordinates=answer_coordinates[index - 1] if index != 0 else None, + prev_answer_text=answer_text[index - 1] if index != 0 else None, + ) + + for key, value in outputs.items(): + if key not in batch_outputs: + batch_outputs[key] = [] + batch_outputs[key].append(value) + + batch_outputs = self.pad( + batch_outputs, + padding=padding, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + batch_outputs = BatchEncoding(batch_outputs, tensor_type=return_tensors) + + return batch_outputs + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING) + def encode( + self, + table: "pd.DataFrame", + query: Optional[ + Union[ + TextInput, + PreTokenizedInput, + EncodedInput, + ] + ] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + **kwargs, + ) -> List[int]: + """ + Prepare a table and a string for the model. This method does not return token type IDs, attention masks, etc. + which are necessary for the model to work correctly. Use that method if you want to build your processing on + your own, otherwise refer to `__call__`. + + Args: + table (`pd.DataFrame`): + Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas + dataframe to convert it to string. + query (`str` or `List[str]`): + Question related to a table to be encoded. + """ + encoded_inputs = self.encode_plus( + table, + query=query, + add_special_tokens=add_special_tokens, + padding=padding, + truncation=truncation, + max_length=max_length, + return_tensors=return_tensors, + **kwargs, + ) + + return encoded_inputs["input_ids"] + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def encode_plus( + self, + table: "pd.DataFrame", + query: Optional[ + Union[ + TextInput, + PreTokenizedInput, + EncodedInput, + ] + ] = None, + answer_coordinates: Optional[List[Tuple]] = None, + answer_text: Optional[List[TextInput]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = None, + return_attention_mask: Optional[bool] = None, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ) -> BatchEncoding: + """ + Prepare a table and a string for the model. + + Args: + table (`pd.DataFrame`): + Table containing tabular data. Note that all cell values must be text. Use *.astype(str)* on a Pandas + dataframe to convert it to string. + query (`str` or `List[str]`): + Question related to a table to be encoded. + answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): + Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single + list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row + (not the column header row) has index 0. The first column has index 0. + answer_text (`List[str]` or `List[List[str]]`, *optional*): + Answer text of each table-question pair in the batch. The answer_text must be a single list of one or + more strings. Each string must be the answer text of a corresponding answer coordinate. + """ + if return_token_type_ids is not None and not add_special_tokens: + raise ValueError( + "Asking to return token_type_ids while setting add_special_tokens to False " + "results in an undefined behavior. Please set add_special_tokens to True or " + "set return_token_type_ids to None." + ) + + if (answer_coordinates and not answer_text) or (not answer_coordinates and answer_text): + raise ValueError("In case you provide answers, both answer_coordinates and answer_text should be provided") + + if "is_split_into_words" in kwargs: + raise NotImplementedError("Currently TapasTokenizer only supports questions as strings.") + + if return_offsets_mapping: + raise NotImplementedError( + "return_offset_mapping is not available when using Python tokenizers. " + "To use this feature, change your tokenizer to one deriving from " + "transformers.PreTrainedTokenizerFast." + ) + + return self._encode_plus( + table=table, + query=query, + answer_coordinates=answer_coordinates, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + truncation=truncation, + padding=padding, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + return_token_type_ids=return_token_type_ids, + return_attention_mask=return_attention_mask, + return_special_tokens_mask=return_special_tokens_mask, + return_offsets_mapping=return_offsets_mapping, + return_length=return_length, + verbose=verbose, + **kwargs, + ) + + def _encode_plus( + self, + table: "pd.DataFrame", + query: Union[ + TextInput, + PreTokenizedInput, + EncodedInput, + ], + answer_coordinates: Optional[List[Tuple]] = None, + answer_text: Optional[List[TextInput]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = True, + return_attention_mask: Optional[bool] = True, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + **kwargs, + ): + if query is None: + query = "" + logger.warning( + "TAPAS is a question answering model but you have not passed a query. Please be aware that the " + "model will probably not behave correctly." + ) + + table_tokens = self._tokenize_table(table) + query, query_tokens = self._get_question_tokens(query) + + return self.prepare_for_model( + table, + query, + tokenized_table=table_tokens, + query_tokens=query_tokens, + answer_coordinates=answer_coordinates, + answer_text=answer_text, + add_special_tokens=add_special_tokens, + truncation=truncation, + padding=padding, + max_length=max_length, + pad_to_multiple_of=pad_to_multiple_of, + return_tensors=return_tensors, + prepend_batch_axis=True, + return_attention_mask=return_attention_mask, + return_token_type_ids=return_token_type_ids, + return_special_tokens_mask=return_special_tokens_mask, + return_length=return_length, + verbose=verbose, + ) + + @add_end_docstrings(ENCODE_KWARGS_DOCSTRING, TAPAS_ENCODE_PLUS_ADDITIONAL_KWARGS_DOCSTRING) + def prepare_for_model( + self, + raw_table: "pd.DataFrame", + raw_query: Union[ + TextInput, + PreTokenizedInput, + EncodedInput, + ], + tokenized_table: Optional[TokenizedTable] = None, + query_tokens: Optional[TokenizedTable] = None, + answer_coordinates: Optional[List[Tuple]] = None, + answer_text: Optional[List[TextInput]] = None, + add_special_tokens: bool = True, + padding: Union[bool, str, PaddingStrategy] = False, + truncation: Union[bool, str, TapasTruncationStrategy] = False, + max_length: Optional[int] = None, + pad_to_multiple_of: Optional[int] = None, + return_tensors: Optional[Union[str, TensorType]] = None, + return_token_type_ids: Optional[bool] = True, + return_attention_mask: Optional[bool] = True, + return_special_tokens_mask: bool = False, + return_offsets_mapping: bool = False, + return_length: bool = False, + verbose: bool = True, + prepend_batch_axis: bool = False, + **kwargs, + ) -> BatchEncoding: + """ + Prepares a sequence of input id so that it can be used by the model. It adds special tokens, truncates + sequences if overflowing while taking into account the special tokens. + + Args: + raw_table (`pd.DataFrame`): + The original table before any transformation (like tokenization) was applied to it. + raw_query (`TextInput` or `PreTokenizedInput` or `EncodedInput`): + The original query before any transformation (like tokenization) was applied to it. + tokenized_table (`TokenizedTable`): + The table after tokenization. + query_tokens (`List[str]`): + The query after tokenization. + answer_coordinates (`List[Tuple]` or `List[List[Tuple]]`, *optional*): + Answer coordinates of each table-question pair in the batch. The answer_coordinates must be a single + list of one or more tuples. Each tuple must be a (row_index, column_index) pair. The first data row + (not the column header row) has index 0. The first column has index 0. + answer_text (`List[str]` or `List[List[str]]`, *optional*): + Answer text of each table-question pair in the batch. The answer_text must be a single list of one or + more strings. Each string must be the answer text of a corresponding answer coordinate. + """ + if isinstance(padding, bool): + if padding and (max_length is not None or pad_to_multiple_of is not None): + padding = PaddingStrategy.MAX_LENGTH + else: + padding = PaddingStrategy.DO_NOT_PAD + elif not isinstance(padding, PaddingStrategy): + padding = PaddingStrategy(padding) + + if isinstance(truncation, bool): + if truncation: + truncation = TapasTruncationStrategy.DROP_ROWS_TO_FIT + else: + truncation = TapasTruncationStrategy.DO_NOT_TRUNCATE + elif not isinstance(truncation, TapasTruncationStrategy): + truncation = TapasTruncationStrategy(truncation) + + encoded_inputs = {} + + is_part_of_batch = False + prev_answer_coordinates, prev_answer_text = None, None + if "prev_answer_coordinates" in kwargs and "prev_answer_text" in kwargs: + is_part_of_batch = True + prev_answer_coordinates = kwargs["prev_answer_coordinates"] + prev_answer_text = kwargs["prev_answer_text"] + + num_rows = self._get_num_rows(raw_table, truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE) + num_columns = self._get_num_columns(raw_table) + _, _, num_tokens = self._get_table_boundaries(tokenized_table) + + if truncation != TapasTruncationStrategy.DO_NOT_TRUNCATE: + num_rows, num_tokens = self._get_truncated_table_rows( + query_tokens, tokenized_table, num_rows, num_columns, max_length, truncation_strategy=truncation + ) + table_data = list(self._get_table_values(tokenized_table, num_columns, num_rows, num_tokens)) + + query_ids = self.convert_tokens_to_ids(query_tokens) + table_ids = list(zip(*table_data))[0] if len(table_data) > 0 else list(zip(*table_data)) + table_ids = self.convert_tokens_to_ids(list(table_ids)) + + if "return_overflowing_tokens" in kwargs and kwargs["return_overflowing_tokens"]: + raise ValueError("TAPAS does not return overflowing tokens as it works on tables.") + + if add_special_tokens: + input_ids = self.build_inputs_with_special_tokens(query_ids, table_ids) + else: + input_ids = query_ids + table_ids + + if max_length is not None and len(input_ids) > max_length: + raise ValueError( + "Could not encode the query and table header given the maximum length. Encoding the query and table " + f"header results in a length of {len(input_ids)} which is higher than the max_length of {max_length}" + ) + + encoded_inputs["input_ids"] = input_ids + + segment_ids = self.create_segment_token_type_ids_from_sequences(query_ids, table_data) + column_ids = self.create_column_token_type_ids_from_sequences(query_ids, table_data) + row_ids = self.create_row_token_type_ids_from_sequences(query_ids, table_data) + if not is_part_of_batch or (prev_answer_coordinates is None and prev_answer_text is None): + # simply set the prev_labels to zeros + prev_labels = [0] * len(row_ids) + else: + prev_labels = self.get_answer_ids( + column_ids, row_ids, table_data, prev_answer_text, prev_answer_coordinates + ) + + # FIRST: parse both the table and question in terms of numeric values + + raw_table = add_numeric_table_values(raw_table) + raw_query = add_numeric_values_to_question(raw_query) + + # SECOND: add numeric-related features (and not parse them in these functions): + + column_ranks, inv_column_ranks = self._get_numeric_column_ranks(column_ids, row_ids, raw_table) + numeric_relations = self._get_numeric_relations(raw_query, column_ids, row_ids, raw_table) + + # Load from model defaults + if return_token_type_ids is None: + return_token_type_ids = "token_type_ids" in self.model_input_names + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + if return_attention_mask: + attention_mask = self.create_attention_mask_from_sequences(query_ids, table_data) + encoded_inputs["attention_mask"] = attention_mask + + if answer_coordinates is not None and answer_text is not None: + labels = self.get_answer_ids(column_ids, row_ids, table_data, answer_text, answer_coordinates) + numeric_values = self._get_numeric_values(raw_table, column_ids, row_ids) + numeric_values_scale = self._get_numeric_values_scale(raw_table, column_ids, row_ids) + + encoded_inputs["labels"] = labels + encoded_inputs["numeric_values"] = numeric_values + encoded_inputs["numeric_values_scale"] = numeric_values_scale + + if return_token_type_ids: + token_type_ids = [ + segment_ids, + column_ids, + row_ids, + prev_labels, + column_ranks, + inv_column_ranks, + numeric_relations, + ] + + token_type_ids = [list(ids) for ids in list(zip(*token_type_ids))] + encoded_inputs["token_type_ids"] = token_type_ids + + if return_special_tokens_mask: + if add_special_tokens: + encoded_inputs["special_tokens_mask"] = self.get_special_tokens_mask(query_ids, table_ids) + else: + encoded_inputs["special_tokens_mask"] = [0] * len(input_ids) + + # Check lengths + if max_length is None and len(encoded_inputs["input_ids"]) > self.model_max_length and verbose: + if not self.deprecation_warnings.get("sequence-length-is-longer-than-the-specified-maximum", False): + logger.warning( + "Token indices sequence length is longer than the specified maximum sequence length " + f"for this model ({len(encoded_inputs['input_ids'])} > {self.model_max_length}). Running this " + "sequence through the model will result in indexing errors." + ) + self.deprecation_warnings["sequence-length-is-longer-than-the-specified-maximum"] = True + + # Padding + if padding != PaddingStrategy.DO_NOT_PAD or return_attention_mask: + encoded_inputs = self.pad( + encoded_inputs, + max_length=max_length, + padding=padding.value, + pad_to_multiple_of=pad_to_multiple_of, + return_attention_mask=return_attention_mask, + ) + + if return_length: + encoded_inputs["length"] = len(encoded_inputs["input_ids"]) + + batch_outputs = BatchEncoding( + encoded_inputs, tensor_type=return_tensors, prepend_batch_axis=prepend_batch_axis + ) + + return batch_outputs + + def _get_truncated_table_rows( + self, + query_tokens: List[str], + tokenized_table: TokenizedTable, + num_rows: int, + num_columns: int, + max_length: int, + truncation_strategy: Union[str, TapasTruncationStrategy], + ) -> Tuple[int, int]: + """ + Truncates a sequence pair in-place following the strategy. + + Args: + query_tokens (`List[str]`): + List of strings corresponding to the tokenized query. + tokenized_table (`TokenizedTable`): + Tokenized table + num_rows (`int`): + Total number of table rows + num_columns (`int`): + Total number of table columns + max_length (`int`): + Total maximum length. + truncation_strategy (`str` or [`TapasTruncationStrategy`]): + Truncation strategy to use. Seeing as this method should only be called when truncating, the only + available strategy is the `"drop_rows_to_fit"` strategy. + + Returns: + `Tuple(int, int)`: tuple containing the number of rows after truncation, and the number of tokens available + for each table element. + """ + if not isinstance(truncation_strategy, TapasTruncationStrategy): + truncation_strategy = TapasTruncationStrategy(truncation_strategy) + + if max_length is None: + max_length = self.model_max_length + + if truncation_strategy == TapasTruncationStrategy.DROP_ROWS_TO_FIT: + while True: + num_tokens = self._get_max_num_tokens( + query_tokens, tokenized_table, num_rows=num_rows, num_columns=num_columns, max_length=max_length + ) + + if num_tokens is not None: + # We could fit the table. + break + + # Try to drop a row to fit the table. + num_rows -= 1 + + if num_rows < 1: + break + elif truncation_strategy != TapasTruncationStrategy.DO_NOT_TRUNCATE: + raise ValueError(f"Unknown truncation strategy {truncation_strategy}.") + + return num_rows, num_tokens or 1 + + def _tokenize_table( + self, + table=None, + ): + """ + Tokenizes column headers and cell texts of a table. + + Args: + table (`pd.Dataframe`): + Table. Returns: `TokenizedTable`: TokenizedTable object. + """ + tokenized_rows = [] + tokenized_row = [] + # tokenize column headers + for column in table: + if self.strip_column_names: + tokenized_row.append(self.tokenize("")) + else: + tokenized_row.append(self.tokenize(column)) + tokenized_rows.append(tokenized_row) + + # tokenize cell values + for idx, row in table.iterrows(): + tokenized_row = [] + for cell in row: + tokenized_row.append(self.tokenize(cell)) + tokenized_rows.append(tokenized_row) + + token_coordinates = [] + for row_index, row in enumerate(tokenized_rows): + for column_index, cell in enumerate(row): + for token_index, _ in enumerate(cell): + token_coordinates.append( + TokenCoordinates( + row_index=row_index, + column_index=column_index, + token_index=token_index, + ) + ) + + return TokenizedTable( + rows=tokenized_rows, + selected_tokens=token_coordinates, + ) + + def _question_encoding_cost(self, question_tokens): + # Two extra spots of SEP and CLS. + return len(question_tokens) + 2 + + def _get_token_budget(self, question_tokens, max_length=None): + """ + Computes the number of tokens left for the table after tokenizing a question, taking into account the max + sequence length of the model. + + Args: + question_tokens (`List[String]`): + List of question tokens. Returns: `int`: the number of tokens left for the table, given the model max + length. + """ + return (max_length if max_length is not None else self.model_max_length) - self._question_encoding_cost( + question_tokens + ) + + def _get_table_values(self, table, num_columns, num_rows, num_tokens) -> Generator[TableValue, None, None]: + """Iterates over partial table and returns token, column and row indexes.""" + for tc in table.selected_tokens: + # First row is header row. + if tc.row_index >= num_rows + 1: + continue + if tc.column_index >= num_columns: + continue + cell = table.rows[tc.row_index][tc.column_index] + token = cell[tc.token_index] + word_begin_index = tc.token_index + # Don't add partial words. Find the starting word piece and check if it + # fits in the token budget. + while word_begin_index >= 0 and _is_inner_wordpiece(cell[word_begin_index]): + word_begin_index -= 1 + if word_begin_index >= num_tokens: + continue + yield TableValue(token, tc.column_index + 1, tc.row_index) + + def _get_table_boundaries(self, table): + """Return maximal number of rows, columns and tokens.""" + max_num_tokens = 0 + max_num_columns = 0 + max_num_rows = 0 + for tc in table.selected_tokens: + max_num_columns = max(max_num_columns, tc.column_index + 1) + max_num_rows = max(max_num_rows, tc.row_index + 1) + max_num_tokens = max(max_num_tokens, tc.token_index + 1) + max_num_columns = min(self.max_column_id, max_num_columns) + max_num_rows = min(self.max_row_id, max_num_rows) + return max_num_rows, max_num_columns, max_num_tokens + + def _get_table_cost(self, table, num_columns, num_rows, num_tokens): + return sum(1 for _ in self._get_table_values(table, num_columns, num_rows, num_tokens)) + + def _get_max_num_tokens(self, question_tokens, tokenized_table, num_columns, num_rows, max_length): + """Computes max number of tokens that can be squeezed into the budget.""" + token_budget = self._get_token_budget(question_tokens, max_length) + _, _, max_num_tokens = self._get_table_boundaries(tokenized_table) + if self.cell_trim_length >= 0 and max_num_tokens > self.cell_trim_length: + max_num_tokens = self.cell_trim_length + num_tokens = 0 + for num_tokens in range(max_num_tokens + 1): + cost = self._get_table_cost(tokenized_table, num_columns, num_rows, num_tokens + 1) + if cost > token_budget: + break + if num_tokens < max_num_tokens: + if self.cell_trim_length >= 0: + # We don't allow dynamic trimming if a cell_trim_length is set. + return None + if num_tokens == 0: + return None + return num_tokens + + def _get_num_columns(self, table): + num_columns = table.shape[1] + if num_columns >= self.max_column_id: + raise ValueError("Too many columns") + return num_columns + + def _get_num_rows(self, table, drop_rows_to_fit): + num_rows = table.shape[0] + if num_rows >= self.max_row_id: + if drop_rows_to_fit: + num_rows = self.max_row_id - 1 + else: + raise ValueError("Too many rows") + return num_rows + + def _serialize_text(self, question_tokens): + """Serializes texts in index arrays.""" + tokens = [] + segment_ids = [] + column_ids = [] + row_ids = [] + + # add [CLS] token at the beginning + tokens.append(self.cls_token) + segment_ids.append(0) + column_ids.append(0) + row_ids.append(0) + + for token in question_tokens: + tokens.append(token) + segment_ids.append(0) + column_ids.append(0) + row_ids.append(0) + + return tokens, segment_ids, column_ids, row_ids + + def _serialize( + self, + question_tokens, + table, + num_columns, + num_rows, + num_tokens, + ): + """Serializes table and text.""" + tokens, segment_ids, column_ids, row_ids = self._serialize_text(question_tokens) + + # add [SEP] token between question and table tokens + tokens.append(self.sep_token) + segment_ids.append(0) + column_ids.append(0) + row_ids.append(0) + + for token, column_id, row_id in self._get_table_values(table, num_columns, num_rows, num_tokens): + tokens.append(token) + segment_ids.append(1) + column_ids.append(column_id) + row_ids.append(row_id) + + return SerializedExample( + tokens=tokens, + segment_ids=segment_ids, + column_ids=column_ids, + row_ids=row_ids, + ) + + def _get_column_values(self, table, col_index): + table_numeric_values = {} + for row_index, row in table.iterrows(): + cell = row[col_index] + if cell.numeric_value is not None: + table_numeric_values[row_index] = cell.numeric_value + return table_numeric_values + + def _get_cell_token_indexes(self, column_ids, row_ids, column_id, row_id): + for index in range(len(column_ids)): + if column_ids[index] - 1 == column_id and row_ids[index] - 1 == row_id: + yield index + + def _get_numeric_column_ranks(self, column_ids, row_ids, table): + """Returns column ranks for all numeric columns.""" + + ranks = [0] * len(column_ids) + inv_ranks = [0] * len(column_ids) + + # original code from tf_example_utils.py of the original implementation + if table is not None: + for col_index in range(len(table.columns)): + table_numeric_values = self._get_column_values(table, col_index) + + if not table_numeric_values: + continue + + try: + key_fn = get_numeric_sort_key_fn(table_numeric_values.values()) + except ValueError: + continue + + table_numeric_values = {row_index: key_fn(value) for row_index, value in table_numeric_values.items()} + + table_numeric_values_inv = collections.defaultdict(list) + for row_index, value in table_numeric_values.items(): + table_numeric_values_inv[value].append(row_index) + + unique_values = sorted(table_numeric_values_inv.keys()) + + for rank, value in enumerate(unique_values): + for row_index in table_numeric_values_inv[value]: + for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): + ranks[index] = rank + 1 + inv_ranks[index] = len(unique_values) - rank + + return ranks, inv_ranks + + def _get_numeric_sort_key_fn(self, table_numeric_values, value): + """ + Returns the sort key function for comparing value to table values. The function returned will be a suitable + input for the key param of the sort(). See number_annotation_utils._get_numeric_sort_key_fn for details + + Args: + table_numeric_values: Numeric values of a column + value: Numeric value in the question + + Returns: + A function key function to compare column and question values. + """ + if not table_numeric_values: + return None + all_values = list(table_numeric_values.values()) + all_values.append(value) + try: + return get_numeric_sort_key_fn(all_values) + except ValueError: + return None + + def _get_numeric_relations(self, question, column_ids, row_ids, table): + """ + Returns numeric relations embeddings + + Args: + question: Question object. + column_ids: Maps word piece position to column id. + row_ids: Maps word piece position to row id. + table: The table containing the numeric cell values. + """ + + numeric_relations = [0] * len(column_ids) + + # first, we add any numeric value spans to the question: + # Create a dictionary that maps a table cell to the set of all relations + # this cell has with any value in the question. + cell_indices_to_relations = collections.defaultdict(set) + if question is not None and table is not None: + for numeric_value_span in question.numeric_spans: + for value in numeric_value_span.values: + for column_index in range(len(table.columns)): + table_numeric_values = self._get_column_values(table, column_index) + sort_key_fn = self._get_numeric_sort_key_fn(table_numeric_values, value) + if sort_key_fn is None: + continue + for row_index, cell_value in table_numeric_values.items(): + relation = get_numeric_relation(value, cell_value, sort_key_fn) + if relation is not None: + cell_indices_to_relations[column_index, row_index].add(relation) + + # For each cell add a special feature for all its word pieces. + for (column_index, row_index), relations in cell_indices_to_relations.items(): + relation_set_index = 0 + for relation in relations: + assert relation.value >= Relation.EQ.value + relation_set_index += 2 ** (relation.value - Relation.EQ.value) + for cell_token_index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): + numeric_relations[cell_token_index] = relation_set_index + + return numeric_relations + + def _get_numeric_values(self, table, column_ids, row_ids): + """Returns numeric values for computation of answer loss.""" + + numeric_values = [float("nan")] * len(column_ids) + + if table is not None: + num_rows = table.shape[0] + num_columns = table.shape[1] + + for col_index in range(num_columns): + for row_index in range(num_rows): + numeric_value = table.iloc[row_index, col_index].numeric_value + if numeric_value is not None: + if numeric_value.float_value is None: + continue + float_value = numeric_value.float_value + if float_value == float("inf"): + continue + for index in self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index): + numeric_values[index] = float_value + + return numeric_values + + def _get_numeric_values_scale(self, table, column_ids, row_ids): + """Returns a scale to each token to down weigh the value of long words.""" + + numeric_values_scale = [1.0] * len(column_ids) + + if table is None: + return numeric_values_scale + + num_rows = table.shape[0] + num_columns = table.shape[1] + + for col_index in range(num_columns): + for row_index in range(num_rows): + indices = list(self._get_cell_token_indexes(column_ids, row_ids, col_index, row_index)) + num_indices = len(indices) + if num_indices > 1: + for index in indices: + numeric_values_scale[index] = float(num_indices) + + return numeric_values_scale + + def _pad_to_seq_length(self, inputs): + while len(inputs) > self.model_max_length: + inputs.pop() + while len(inputs) < self.model_max_length: + inputs.append(0) + + def _get_all_answer_ids_from_coordinates( + self, + column_ids, + row_ids, + answers_list, + ): + """Maps lists of answer coordinates to token indexes.""" + answer_ids = [0] * len(column_ids) + found_answers = set() + all_answers = set() + for answers in answers_list: + column_index, row_index = answers + all_answers.add((column_index, row_index)) + for index in self._get_cell_token_indexes(column_ids, row_ids, column_index, row_index): + found_answers.add((column_index, row_index)) + answer_ids[index] = 1 + + missing_count = len(all_answers) - len(found_answers) + return answer_ids, missing_count + + def _get_all_answer_ids(self, column_ids, row_ids, answer_coordinates): + """ + Maps answer coordinates of a question to token indexes. + + In the SQA format (TSV), the coordinates are given as (row, column) tuples. Here, we first swap them to + (column, row) format before calling _get_all_answer_ids_from_coordinates. + """ + + def _to_coordinates(answer_coordinates_question): + return [(coords[1], coords[0]) for coords in answer_coordinates_question] + + return self._get_all_answer_ids_from_coordinates( + column_ids, row_ids, answers_list=(_to_coordinates(answer_coordinates)) + ) + + def _find_tokens(self, text, segment): + """Return start index of segment in text or None.""" + logging.info(f"text: {text} {segment}") + for index in range(1 + len(text) - len(segment)): + for seg_index, seg_token in enumerate(segment): + if text[index + seg_index].piece != seg_token.piece: + break + else: + return index + return None + + def _find_answer_coordinates_from_answer_text( + self, + tokenized_table, + answer_text, + ): + """Returns all occurrences of answer_text in the table.""" + logging.info(f"answer text: {answer_text}") + for row_index, row in enumerate(tokenized_table.rows): + if row_index == 0: + # We don't search for answers in the header. + continue + for col_index, cell in enumerate(row): + token_index = self._find_tokens(cell, answer_text) + if token_index is not None: + yield TokenCoordinates( + row_index=row_index, + column_index=col_index, + token_index=token_index, + ) + + def _find_answer_ids_from_answer_texts( + self, + column_ids, + row_ids, + tokenized_table, + answer_texts, + ): + """Maps question with answer texts to the first matching token indexes.""" + answer_ids = [0] * len(column_ids) + for answer_text in answer_texts: + for coordinates in self._find_answer_coordinates_from_answer_text( + tokenized_table, + answer_text, + ): + # Maps answer coordinates to indexes this can fail if tokens / rows have + # been pruned. + indexes = list( + self._get_cell_token_indexes( + column_ids, + row_ids, + column_id=coordinates.column_index, + row_id=coordinates.row_index - 1, + ) + ) + indexes.sort() + coordinate_answer_ids = [] + if indexes: + begin_index = coordinates.token_index + indexes[0] + end_index = begin_index + len(answer_text) + for index in indexes: + if index >= begin_index and index < end_index: + coordinate_answer_ids.append(index) + if len(coordinate_answer_ids) == len(answer_text): + for index in coordinate_answer_ids: + answer_ids[index] = 1 + break + return answer_ids + + def _get_answer_ids(self, column_ids, row_ids, answer_coordinates): + """Maps answer coordinates of a question to token indexes.""" + answer_ids, missing_count = self._get_all_answer_ids(column_ids, row_ids, answer_coordinates) + + if missing_count: + raise ValueError("Couldn't find all answers") + return answer_ids + + def get_answer_ids(self, column_ids, row_ids, tokenized_table, answer_texts_question, answer_coordinates_question): + if self.update_answer_coordinates: + return self._find_answer_ids_from_answer_texts( + column_ids, + row_ids, + tokenized_table, + answer_texts=[self.tokenize(at) for at in answer_texts_question], + ) + return self._get_answer_ids(column_ids, row_ids, answer_coordinates_question) + + def _pad( + self, + encoded_inputs: Union[Dict[str, EncodedInput], BatchEncoding], + max_length: Optional[int] = None, + padding_strategy: PaddingStrategy = PaddingStrategy.DO_NOT_PAD, + pad_to_multiple_of: Optional[int] = None, + return_attention_mask: Optional[bool] = None, + ) -> dict: + """ + Pad encoded inputs (on left/right and up to predefined length or max length in the batch) + + Args: + encoded_inputs: + Dictionary of tokenized inputs (`List[int]`) or batch of tokenized inputs (`List[List[int]]`). + max_length: maximum length of the returned list and optionally padding length (see below). + Will truncate by taking into account the special tokens. + padding_strategy: PaddingStrategy to use for padding. + + - PaddingStrategy.LONGEST Pad to the longest sequence in the batch + - PaddingStrategy.MAX_LENGTH: Pad to the max length (default) + - PaddingStrategy.DO_NOT_PAD: Do not pad + The tokenizer padding sides are defined in self.padding_side: + + - 'left': pads on the left of the sequences + - 'right': pads on the right of the sequences + pad_to_multiple_of: (optional) Integer if set will pad the sequence to a multiple of the provided value. + This is especially useful to enable the use of Tensor Core on NVIDIA hardware with compute capability + `>= 7.5` (Volta). + return_attention_mask: + (optional) Set to False to avoid returning attention mask (default: set to model specifics) + """ + # Load from model defaults + if return_attention_mask is None: + return_attention_mask = "attention_mask" in self.model_input_names + + if padding_strategy == PaddingStrategy.LONGEST: + max_length = len(encoded_inputs["input_ids"]) + + if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): + max_length = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of + + needs_to_be_padded = ( + padding_strategy != PaddingStrategy.DO_NOT_PAD and len(encoded_inputs["input_ids"]) != max_length + ) + + # Initialize attention mask if not present. + if return_attention_mask and "attention_mask" not in encoded_inputs: + encoded_inputs["attention_mask"] = [1] * len(encoded_inputs["input_ids"]) + + if needs_to_be_padded: + difference = max_length - len(encoded_inputs["input_ids"]) + if self.padding_side == "right": + if return_attention_mask: + encoded_inputs["attention_mask"] = encoded_inputs["attention_mask"] + [0] * difference + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = ( + encoded_inputs["token_type_ids"] + [[self.pad_token_type_id] * 7] * difference + ) + if "labels" in encoded_inputs: + encoded_inputs["labels"] = encoded_inputs["labels"] + [0] * difference + if "numeric_values" in encoded_inputs: + encoded_inputs["numeric_values"] = encoded_inputs["numeric_values"] + [float("nan")] * difference + if "numeric_values_scale" in encoded_inputs: + encoded_inputs["numeric_values_scale"] = ( + encoded_inputs["numeric_values_scale"] + [1.0] * difference + ) + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = encoded_inputs["special_tokens_mask"] + [1] * difference + encoded_inputs["input_ids"] = encoded_inputs["input_ids"] + [self.pad_token_id] * difference + elif self.padding_side == "left": + if return_attention_mask: + encoded_inputs["attention_mask"] = [0] * difference + encoded_inputs["attention_mask"] + if "token_type_ids" in encoded_inputs: + encoded_inputs["token_type_ids"] = [[self.pad_token_type_id] * 7] * difference + encoded_inputs[ + "token_type_ids" + ] + if "labels" in encoded_inputs: + encoded_inputs["labels"] = [0] * difference + encoded_inputs["labels"] + if "numeric_values" in encoded_inputs: + encoded_inputs["numeric_values"] = [float("nan")] * difference + encoded_inputs["numeric_values"] + if "numeric_values_scale" in encoded_inputs: + encoded_inputs["numeric_values_scale"] = [1.0] * difference + encoded_inputs[ + "numeric_values_scale" + ] + if "special_tokens_mask" in encoded_inputs: + encoded_inputs["special_tokens_mask"] = [1] * difference + encoded_inputs["special_tokens_mask"] + encoded_inputs["input_ids"] = [self.pad_token_id] * difference + encoded_inputs["input_ids"] + else: + raise ValueError("Invalid padding strategy:" + str(self.padding_side)) + + return encoded_inputs + + # Everything related to converting logits to predictions + + def _get_cell_token_probs(self, probabilities, segment_ids, row_ids, column_ids): + for i, p in enumerate(probabilities): + segment_id = segment_ids[i] + col = column_ids[i] - 1 + row = row_ids[i] - 1 + if col >= 0 and row >= 0 and segment_id == 1: + yield i, p + + def _get_mean_cell_probs(self, probabilities, segment_ids, row_ids, column_ids): + """Computes average probability per cell, aggregating over tokens.""" + coords_to_probs = collections.defaultdict(list) + for i, prob in self._get_cell_token_probs(probabilities, segment_ids, row_ids, column_ids): + col = column_ids[i] - 1 + row = row_ids[i] - 1 + coords_to_probs[(col, row)].append(prob) + return {coords: np.array(cell_probs).mean() for coords, cell_probs in coords_to_probs.items()} + + def convert_logits_to_predictions(self, data, logits, logits_agg=None, cell_classification_threshold=0.5): + """ + Converts logits of [`TapasForQuestionAnswering`] to actual predicted answer coordinates and optional + aggregation indices. + + The original implementation, on which this function is based, can be found + [here](https://github.com/google-research/tapas/blob/4908213eb4df7aa988573350278b44c4dbe3f71b/tapas/experiments/prediction_utils.py#L288). + + Args: + data (`dict`): + Dictionary mapping features to actual values. Should be created using [`TapasTokenizer`]. + logits (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, sequence_length)`): + Tensor containing the logits at the token level. + logits_agg (`torch.Tensor` or `tf.Tensor` of shape `(batch_size, num_aggregation_labels)`, *optional*): + Tensor containing the aggregation logits. + cell_classification_threshold (`float`, *optional*, defaults to 0.5): + Threshold to be used for cell selection. All table cells for which their probability is larger than + this threshold will be selected. + + Returns: + `tuple` comprising various elements depending on the inputs: + + - predicted_answer_coordinates (`List[List[[tuple]]` of length `batch_size`): Predicted answer coordinates + as a list of lists of tuples. Each element in the list contains the predicted answer coordinates of a + single example in the batch, as a list of tuples. Each tuple is a cell, i.e. (row index, column index). + - predicted_aggregation_indices (`List[int]`of length `batch_size`, *optional*, returned when + `logits_aggregation` is provided): Predicted aggregation operator indices of the aggregation head. + """ + # converting to numpy arrays to work with PT/TF + logits = logits.numpy() + if logits_agg is not None: + logits_agg = logits_agg.numpy() + data = {key: value.numpy() for key, value in data.items() if key != "training"} + # input data is of type float32 + # np.log(np.finfo(np.float32).max) = 88.72284 + # Any value over 88.72284 will overflow when passed through the exponential, sending a warning + # We disable this warning by truncating the logits. + logits[logits < -88.7] = -88.7 + + # Compute probabilities from token logits + probabilities = 1 / (1 + np.exp(-logits)) * data["attention_mask"] + token_types = [ + "segment_ids", + "column_ids", + "row_ids", + "prev_labels", + "column_ranks", + "inv_column_ranks", + "numeric_relations", + ] + + # collect input_ids, segment ids, row ids and column ids of batch. Shape (batch_size, seq_len) + input_ids = data["input_ids"] + segment_ids = data["token_type_ids"][:, :, token_types.index("segment_ids")] + row_ids = data["token_type_ids"][:, :, token_types.index("row_ids")] + column_ids = data["token_type_ids"][:, :, token_types.index("column_ids")] + + # next, get answer coordinates for every example in the batch + num_batch = input_ids.shape[0] + predicted_answer_coordinates = [] + for i in range(num_batch): + probabilities_example = probabilities[i].tolist() + segment_ids_example = segment_ids[i] + row_ids_example = row_ids[i] + column_ids_example = column_ids[i] + + max_width = column_ids_example.max() + max_height = row_ids_example.max() + + if max_width == 0 and max_height == 0: + continue + + cell_coords_to_prob = self._get_mean_cell_probs( + probabilities_example, + segment_ids_example.tolist(), + row_ids_example.tolist(), + column_ids_example.tolist(), + ) + + # Select the answers above the classification threshold. + answer_coordinates = [] + for col in range(max_width): + for row in range(max_height): + cell_prob = cell_coords_to_prob.get((col, row), None) + if cell_prob is not None: + if cell_prob > cell_classification_threshold: + answer_coordinates.append((row, col)) + answer_coordinates = sorted(answer_coordinates) + predicted_answer_coordinates.append(answer_coordinates) + + output = (predicted_answer_coordinates,) + + if logits_agg is not None: + predicted_aggregation_indices = logits_agg.argmax(axis=-1) + output = (predicted_answer_coordinates, predicted_aggregation_indices.tolist()) + + return output + + # End of everything related to converting logits to predictions + + +# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer +class BasicTokenizer(object): + """ + Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.). + + Args: + do_lower_case (`bool`, *optional*, defaults to `True`): + Whether or not to lowercase the input when tokenizing. + never_split (`Iterable`, *optional*): + Collection of tokens which will never be split during tokenization. Only has an effect when + `do_basic_tokenize=True` + tokenize_chinese_chars (`bool`, *optional*, defaults to `True`): + Whether or not to tokenize Chinese characters. + + This should likely be deactivated for Japanese (see this + [issue](https://github.com/huggingface/transformers/issues/328)). + strip_accents (`bool`, *optional*): + Whether or not to strip all accents. If this option is not specified, then it will be determined by the + value for `lowercase` (as in the original BERT). + do_split_on_punc (`bool`, *optional*, defaults to `True`): + In some instances we want to skip the basic punctuation splitting so that later tokenization can capture + the full context of the words, such as contractions. + """ + + def __init__( + self, + do_lower_case=True, + never_split=None, + tokenize_chinese_chars=True, + strip_accents=None, + do_split_on_punc=True, + ): + if never_split is None: + never_split = [] + self.do_lower_case = do_lower_case + self.never_split = set(never_split) + self.tokenize_chinese_chars = tokenize_chinese_chars + self.strip_accents = strip_accents + self.do_split_on_punc = do_split_on_punc + + def tokenize(self, text, never_split=None): + """ + Basic Tokenization of a piece of text. For sub-word tokenization, see WordPieceTokenizer. + + Args: + never_split (`List[str]`, *optional*) + Kept for backward compatibility purposes. Now implemented directly at the base class level (see + [`PreTrainedTokenizer.tokenize`]) List of token not to split. + """ + # union() returns a new set by concatenating the two sets. + never_split = self.never_split.union(set(never_split)) if never_split else self.never_split + text = self._clean_text(text) + + # This was added on November 1st, 2018 for the multilingual and Chinese + # models. This is also applied to the English models now, but it doesn't + # matter since the English models were not trained on any Chinese data + # and generally don't have any Chinese data in them (there are Chinese + # characters in the vocabulary because Wikipedia does have some Chinese + # words in the English Wikipedia.). + if self.tokenize_chinese_chars: + text = self._tokenize_chinese_chars(text) + # prevents treating the same character with different unicode codepoints as different characters + unicode_normalized_text = unicodedata.normalize("NFC", text) + orig_tokens = whitespace_tokenize(unicode_normalized_text) + split_tokens = [] + for token in orig_tokens: + if token not in never_split: + if self.do_lower_case: + token = token.lower() + if self.strip_accents is not False: + token = self._run_strip_accents(token) + elif self.strip_accents: + token = self._run_strip_accents(token) + split_tokens.extend(self._run_split_on_punc(token, never_split)) + + output_tokens = whitespace_tokenize(" ".join(split_tokens)) + return output_tokens + + def _run_strip_accents(self, text): + """Strips accents from a piece of text.""" + text = unicodedata.normalize("NFD", text) + output = [] + for char in text: + cat = unicodedata.category(char) + if cat == "Mn": + continue + output.append(char) + return "".join(output) + + def _run_split_on_punc(self, text, never_split=None): + """Splits punctuation on a piece of text.""" + if not self.do_split_on_punc or (never_split is not None and text in never_split): + return [text] + chars = list(text) + i = 0 + start_new_word = True + output = [] + while i < len(chars): + char = chars[i] + if _is_punctuation(char): + output.append([char]) + start_new_word = True + else: + if start_new_word: + output.append([]) + start_new_word = False + output[-1].append(char) + i += 1 + + return ["".join(x) for x in output] + + def _tokenize_chinese_chars(self, text): + """Adds whitespace around any CJK character.""" + output = [] + for char in text: + cp = ord(char) + if self._is_chinese_char(cp): + output.append(" ") + output.append(char) + output.append(" ") + else: + output.append(char) + return "".join(output) + + def _is_chinese_char(self, cp): + """Checks whether CP is the codepoint of a CJK character.""" + # This defines a "chinese character" as anything in the CJK Unicode block: + # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) + # + # Note that the CJK Unicode block is NOT all Japanese and Korean characters, + # despite its name. The modern Korean Hangul alphabet is a different block, + # as is Japanese Hiragana and Katakana. Those alphabets are used to write + # space-separated words, so they are not treated specially and handled + # like the all of the other languages. + if ( + (cp >= 0x4E00 and cp <= 0x9FFF) + or (cp >= 0x3400 and cp <= 0x4DBF) # + or (cp >= 0x20000 and cp <= 0x2A6DF) # + or (cp >= 0x2A700 and cp <= 0x2B73F) # + or (cp >= 0x2B740 and cp <= 0x2B81F) # + or (cp >= 0x2B820 and cp <= 0x2CEAF) # + or (cp >= 0xF900 and cp <= 0xFAFF) + or (cp >= 0x2F800 and cp <= 0x2FA1F) # + ): # + return True + + return False + + def _clean_text(self, text): + """Performs invalid character removal and whitespace cleanup on text.""" + output = [] + for char in text: + cp = ord(char) + if cp == 0 or cp == 0xFFFD or _is_control(char): + continue + if _is_whitespace(char): + output.append(" ") + else: + output.append(char) + return "".join(output) + + +# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer +class WordpieceTokenizer(object): + """Runs WordPiece tokenization.""" + + def __init__(self, vocab, unk_token, max_input_chars_per_word=100): + self.vocab = vocab + self.unk_token = unk_token + self.max_input_chars_per_word = max_input_chars_per_word + + def tokenize(self, text): + """ + Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform + tokenization using the given vocabulary. + + For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`. + + Args: + text: A single token or whitespace separated tokens. This should have + already been passed through *BasicTokenizer*. + + Returns: + A list of wordpiece tokens. + """ + + output_tokens = [] + for token in whitespace_tokenize(text): + chars = list(token) + if len(chars) > self.max_input_chars_per_word: + output_tokens.append(self.unk_token) + continue + + is_bad = False + start = 0 + sub_tokens = [] + while start < len(chars): + end = len(chars) + cur_substr = None + while start < end: + substr = "".join(chars[start:end]) + if start > 0: + substr = "##" + substr + if substr in self.vocab: + cur_substr = substr + break + end -= 1 + if cur_substr is None: + is_bad = True + break + sub_tokens.append(cur_substr) + start = end + + if is_bad: + output_tokens.append(self.unk_token) + else: + output_tokens.extend(sub_tokens) + return output_tokens + + +# Below: utilities for TAPAS tokenizer (independent from PyTorch/Tensorflow). +# This includes functions to parse numeric values (dates and numbers) from both the table and questions in order +# to create the column_ranks, inv_column_ranks, numeric_values, numeric values_scale and numeric_relations in +# prepare_for_model of TapasTokenizer. +# These are meant to be used in an academic setup, for production use cases Gold mine or Aqua should be used. + + +# taken from constants.py of the original implementation +# URL: https://github.com/google-research/tapas/blob/master/tapas/utils/constants.py +class Relation(enum.Enum): + HEADER_TO_CELL = 1 # Connects header to cell. + CELL_TO_HEADER = 2 # Connects cell to header. + QUERY_TO_HEADER = 3 # Connects query to headers. + QUERY_TO_CELL = 4 # Connects query to cells. + ROW_TO_CELL = 5 # Connects row to cells. + CELL_TO_ROW = 6 # Connects cells to row. + EQ = 7 # Annotation value is same as cell value + LT = 8 # Annotation value is less than cell value + GT = 9 # Annotation value is greater than cell value + + +@dataclass +class Date: + year: Optional[int] = None + month: Optional[int] = None + day: Optional[int] = None + + +@dataclass +class NumericValue: + float_value: Optional[float] = None + date: Optional[Date] = None + + +@dataclass +class NumericValueSpan: + begin_index: int = None + end_index: int = None + values: List[NumericValue] = None + + +@dataclass +class Cell: + text: str + numeric_value: Optional[NumericValue] = None + + +@dataclass +class Question: + original_text: str # The original raw question string. + text: str # The question string after normalization. + numeric_spans: Optional[List[NumericValueSpan]] = None + + +# Below: all functions from number_utils.py as well as 2 functions (namely get_all_spans and normalize_for_match) +# from text_utils.py of the original implementation. URL's: +# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_utils.py +# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py + + +# Constants for parsing date expressions. +# Masks that specify (by a bool) which of (year, month, day) will be populated. +_DateMask = collections.namedtuple("_DateMask", ["year", "month", "day"]) + +_YEAR = _DateMask(True, False, False) +_YEAR_MONTH = _DateMask(True, True, False) +_YEAR_MONTH_DAY = _DateMask(True, True, True) +_MONTH = _DateMask(False, True, False) +_MONTH_DAY = _DateMask(False, True, True) + +# Pairs of patterns to pass to 'datetime.strptime' and masks specifying which +# fields will be set by the corresponding pattern. +_DATE_PATTERNS = ( + ("%B", _MONTH), + ("%Y", _YEAR), + ("%Ys", _YEAR), + ("%b %Y", _YEAR_MONTH), + ("%B %Y", _YEAR_MONTH), + ("%B %d", _MONTH_DAY), + ("%b %d", _MONTH_DAY), + ("%d %b", _MONTH_DAY), + ("%d %B", _MONTH_DAY), + ("%B %d, %Y", _YEAR_MONTH_DAY), + ("%d %B %Y", _YEAR_MONTH_DAY), + ("%m-%d-%Y", _YEAR_MONTH_DAY), + ("%Y-%m-%d", _YEAR_MONTH_DAY), + ("%Y-%m", _YEAR_MONTH), + ("%B %Y", _YEAR_MONTH), + ("%d %b %Y", _YEAR_MONTH_DAY), + ("%Y-%m-%d", _YEAR_MONTH_DAY), + ("%b %d, %Y", _YEAR_MONTH_DAY), + ("%d.%m.%Y", _YEAR_MONTH_DAY), + ("%A, %b %d", _MONTH_DAY), + ("%A, %B %d", _MONTH_DAY), +) + +# This mapping is used to convert date patterns to regex patterns. +_FIELD_TO_REGEX = ( + ("%A", r"\w+"), # Weekday as locale’s full name. + ("%B", r"\w+"), # Month as locale’s full name. + ("%Y", r"\d{4}"), # Year with century as a decimal number. + ("%b", r"\w{3}"), # Month as locale’s abbreviated name. + ("%d", r"\d{1,2}"), # Day of the month as a zero-padded decimal number. + ("%m", r"\d{1,2}"), # Month as a zero-padded decimal number. +) + + +def _process_date_pattern(dp): + """Compute a regex for each date pattern to use as a prefilter.""" + pattern, mask = dp + regex = pattern + regex = regex.replace(".", re.escape(".")) + regex = regex.replace("-", re.escape("-")) + regex = regex.replace(" ", r"\s+") + for field, field_regex in _FIELD_TO_REGEX: + regex = regex.replace(field, field_regex) + # Make sure we didn't miss any of the fields. + assert "%" not in regex, regex + return pattern, mask, re.compile("^" + regex + "$") + + +def _process_date_patterns(): + return tuple(_process_date_pattern(dp) for dp in _DATE_PATTERNS) + + +_PROCESSED_DATE_PATTERNS = _process_date_patterns() + +_MAX_DATE_NGRAM_SIZE = 5 + +# Following DynSp: +# https://github.com/Microsoft/DynSP/blob/master/util.py#L414. +_NUMBER_WORDS = [ + "zero", + "one", + "two", + "three", + "four", + "five", + "six", + "seven", + "eight", + "nine", + "ten", + "eleven", + "twelve", +] + +_ORDINAL_WORDS = [ + "zeroth", + "first", + "second", + "third", + "fourth", + "fith", + "sixth", + "seventh", + "eighth", + "ninth", + "tenth", + "eleventh", + "twelfth", +] + +_ORDINAL_SUFFIXES = ["st", "nd", "rd", "th"] + +_NUMBER_PATTERN = re.compile(r"((^|\s)[+-])?((\.\d+)|(\d+(,\d\d\d)*(\.\d*)?))") + +# Following DynSp: +# https://github.com/Microsoft/DynSP/blob/master/util.py#L293. +_MIN_YEAR = 1700 +_MAX_YEAR = 2016 + +_INF = float("INF") + + +def _get_numeric_value_from_date(date, mask): + """Converts date (datetime Python object) to a NumericValue object with a Date object value.""" + if date.year < _MIN_YEAR or date.year > _MAX_YEAR: + raise ValueError(f"Invalid year: {date.year}") + + new_date = Date() + if mask.year: + new_date.year = date.year + if mask.month: + new_date.month = date.month + if mask.day: + new_date.day = date.day + return NumericValue(date=new_date) + + +def _get_span_length_key(span): + """Sorts span by decreasing length first and increasing first index second.""" + return span[1] - span[0], -span[0] + + +def _get_numeric_value_from_float(value): + """Converts float (Python) to a NumericValue object with a float value.""" + return NumericValue(float_value=value) + + +# Doesn't parse ordinal expressions such as '18th of february 1655'. +def _parse_date(text): + """Attempts to format a text as a standard date string (yyyy-mm-dd).""" + text = re.sub(r"Sept\b", "Sep", text) + for in_pattern, mask, regex in _PROCESSED_DATE_PATTERNS: + if not regex.match(text): + continue + try: + date = datetime.datetime.strptime(text, in_pattern).date() + except ValueError: + continue + try: + return _get_numeric_value_from_date(date, mask) + except ValueError: + continue + return None + + +def _parse_number(text): + """Parses simple cardinal and ordinals numbers.""" + for suffix in _ORDINAL_SUFFIXES: + if text.endswith(suffix): + text = text[: -len(suffix)] + break + text = text.replace(",", "") + try: + value = float(text) + except ValueError: + return None + if math.isnan(value): + return None + if value == _INF: + return None + return value + + +def get_all_spans(text, max_ngram_length): + """ + Split a text into all possible ngrams up to 'max_ngram_length'. Split points are white space and punctuation. + + Args: + text: Text to split. + max_ngram_length: maximal ngram length. + Yields: + Spans, tuples of begin-end index. + """ + start_indexes = [] + for index, char in enumerate(text): + if not char.isalnum(): + continue + if index == 0 or not text[index - 1].isalnum(): + start_indexes.append(index) + if index + 1 == len(text) or not text[index + 1].isalnum(): + for start_index in start_indexes[-max_ngram_length:]: + yield start_index, index + 1 + + +def normalize_for_match(text): + return " ".join(text.lower().split()) + + +def format_text(text): + """Lowercases and strips punctuation.""" + text = text.lower().strip() + if text == "n/a" or text == "?" or text == "nan": + text = EMPTY_TEXT + + text = re.sub(r"[^\w\d]+", " ", text).replace("_", " ") + text = " ".join(text.split()) + text = text.strip() + if text: + return text + return EMPTY_TEXT + + +def parse_text(text): + """ + Extracts longest number and date spans. + + Args: + text: text to annotate + + Returns: + List of longest numeric value spans. + """ + span_dict = collections.defaultdict(list) + for match in _NUMBER_PATTERN.finditer(text): + span_text = text[match.start() : match.end()] + number = _parse_number(span_text) + if number is not None: + span_dict[match.span()].append(_get_numeric_value_from_float(number)) + + for begin_index, end_index in get_all_spans(text, max_ngram_length=1): + if (begin_index, end_index) in span_dict: + continue + span_text = text[begin_index:end_index] + + number = _parse_number(span_text) + if number is not None: + span_dict[begin_index, end_index].append(_get_numeric_value_from_float(number)) + for number, word in enumerate(_NUMBER_WORDS): + if span_text == word: + span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) + break + for number, word in enumerate(_ORDINAL_WORDS): + if span_text == word: + span_dict[begin_index, end_index].append(_get_numeric_value_from_float(float(number))) + break + + for begin_index, end_index in get_all_spans(text, max_ngram_length=_MAX_DATE_NGRAM_SIZE): + span_text = text[begin_index:end_index] + date = _parse_date(span_text) + if date is not None: + span_dict[begin_index, end_index].append(date) + + spans = sorted(span_dict.items(), key=lambda span_value: _get_span_length_key(span_value[0]), reverse=True) + selected_spans = [] + for span, value in spans: + for selected_span, _ in selected_spans: + if selected_span[0] <= span[0] and span[1] <= selected_span[1]: + break + else: + selected_spans.append((span, value)) + + selected_spans.sort(key=lambda span_value: span_value[0][0]) + + numeric_value_spans = [] + for span, values in selected_spans: + numeric_value_spans.append(NumericValueSpan(begin_index=span[0], end_index=span[1], values=values)) + return numeric_value_spans + + +# Below: all functions from number_annotation_utils.py and 2 functions (namely filter_invalid_unicode +# and filter_invalid_unicode_from_table) from text_utils.py of the original implementation. URL's: +# - https://github.com/google-research/tapas/blob/master/tapas/utils/number_annotation_utils.py +# - https://github.com/google-research/tapas/blob/master/tapas/utils/text_utils.py + + +_PrimitiveNumericValue = Union[float, Tuple[Optional[float], Optional[float], Optional[float]]] +_SortKeyFn = Callable[[NumericValue], Tuple[float, Ellipsis]] + +_DATE_TUPLE_SIZE = 3 + +EMPTY_TEXT = "EMPTY" + +NUMBER_TYPE = "number" +DATE_TYPE = "date" + + +def _get_value_type(numeric_value): + if numeric_value.float_value is not None: + return NUMBER_TYPE + elif numeric_value.date is not None: + return DATE_TYPE + raise ValueError(f"Unknown type: {numeric_value}") + + +def _get_value_as_primitive_value(numeric_value): + """Maps a NumericValue proto to a float or tuple of float.""" + if numeric_value.float_value is not None: + return numeric_value.float_value + if numeric_value.date is not None: + date = numeric_value.date + value_tuple = [None, None, None] + # All dates fields are cased to float to produce a simple primitive value. + if date.year is not None: + value_tuple[0] = float(date.year) + if date.month is not None: + value_tuple[1] = float(date.month) + if date.day is not None: + value_tuple[2] = float(date.day) + return tuple(value_tuple) + raise ValueError(f"Unknown type: {numeric_value}") + + +def _get_all_types(numeric_values): + return {_get_value_type(value) for value in numeric_values} + + +def get_numeric_sort_key_fn(numeric_values): + """ + Creates a function that can be used as a sort key or to compare the values. Maps to primitive types and finds the + biggest common subset. Consider the values "05/05/2010" and "August 2007". With the corresponding primitive values + (2010.,5.,5.) and (2007.,8., None). These values can be compared by year and date so we map to the sequence (2010., + 5.), (2007., 8.). If we added a third value "2006" with primitive value (2006., None, None), we could only compare + by the year so we would map to (2010.,), (2007.,) and (2006.,). + + Args: + numeric_values: Values to compare + + Returns: + A function that can be used as a sort key function (mapping numeric values to a comparable tuple) + + Raises: + ValueError if values don't have a common type or are not comparable. + """ + value_types = _get_all_types(numeric_values) + if len(value_types) != 1: + raise ValueError(f"No common value type in {numeric_values}") + + value_type = next(iter(value_types)) + if value_type == NUMBER_TYPE: + # Primitive values are simple floats, nothing to do here. + return _get_value_as_primitive_value + + # The type can only be Date at this point which means the primitive type + # is a float triple. + valid_indexes = set(range(_DATE_TUPLE_SIZE)) + + for numeric_value in numeric_values: + value = _get_value_as_primitive_value(numeric_value) + assert isinstance(value, tuple) + for tuple_index, inner_value in enumerate(value): + if inner_value is None: + valid_indexes.discard(tuple_index) + + if not valid_indexes: + raise ValueError(f"No common value in {numeric_values}") + + def _sort_key_fn(numeric_value): + value = _get_value_as_primitive_value(numeric_value) + return tuple(value[index] for index in valid_indexes) + + return _sort_key_fn + + +def _consolidate_numeric_values(row_index_to_values, min_consolidation_fraction, debug_info): + """ + Finds the most common numeric values in a column and returns them + + Args: + row_index_to_values: + For each row index all the values in that cell. + min_consolidation_fraction: + Fraction of cells that need to have consolidated value. + debug_info: + Additional information only used for logging + + Returns: + For each row index the first value that matches the most common value. Rows that don't have a matching value + are dropped. Empty list if values can't be consolidated. + """ + type_counts = collections.Counter() + for numeric_values in row_index_to_values.values(): + type_counts.update(_get_all_types(numeric_values)) + if not type_counts: + return {} + max_count = max(type_counts.values()) + if max_count < len(row_index_to_values) * min_consolidation_fraction: + # logging.log_every_n(logging.INFO, f'Can\'t consolidate types: {debug_info} {row_index_to_values} {max_count}', 100) + return {} + + valid_types = set() + for value_type, count in type_counts.items(): + if count == max_count: + valid_types.add(value_type) + if len(valid_types) > 1: + assert DATE_TYPE in valid_types + max_type = DATE_TYPE + else: + max_type = next(iter(valid_types)) + + new_row_index_to_value = {} + for index, values in row_index_to_values.items(): + # Extract the first matching value. + for value in values: + if _get_value_type(value) == max_type: + new_row_index_to_value[index] = value + break + + return new_row_index_to_value + + +def _get_numeric_values(text): + """Parses text and returns numeric values.""" + numeric_spans = parse_text(text) + return itertools.chain(*(span.values for span in numeric_spans)) + + +def _get_column_values(table, col_index): + """ + Parses text in column and returns a dict mapping row_index to values. This is the _get_column_values function from + number_annotation_utils.py of the original implementation + + Args: + table: Pandas dataframe + col_index: integer, indicating the index of the column to get the numeric values of + """ + index_to_values = {} + for row_index, row in table.iterrows(): + text = normalize_for_match(row[col_index].text) + index_to_values[row_index] = list(_get_numeric_values(text)) + return index_to_values + + +def get_numeric_relation(value, other_value, sort_key_fn): + """Compares two values and returns their relation or None.""" + value = sort_key_fn(value) + other_value = sort_key_fn(other_value) + if value == other_value: + return Relation.EQ + if value < other_value: + return Relation.LT + if value > other_value: + return Relation.GT + return None + + +def add_numeric_values_to_question(question): + """Adds numeric value spans to a question.""" + original_text = question + question = normalize_for_match(question) + numeric_spans = parse_text(question) + return Question(original_text=original_text, text=question, numeric_spans=numeric_spans) + + +def filter_invalid_unicode(text): + """Return an empty string and True if 'text' is in invalid unicode.""" + return ("", True) if isinstance(text, bytes) else (text, False) + + +def filter_invalid_unicode_from_table(table): + """ + Removes invalid unicode from table. Checks whether a table cell text contains an invalid unicode encoding. If yes, + reset the table cell text to an empty str and log a warning for each invalid cell + + Args: + table: table to clean. + """ + # to do: add table id support + if not hasattr(table, "table_id"): + table.table_id = 0 + + for row_index, row in table.iterrows(): + for col_index, cell in enumerate(row): + cell, is_invalid = filter_invalid_unicode(cell) + if is_invalid: + logging.warning( + f"Scrub an invalid table body @ table_id: {table.table_id}, row_index: {row_index}, " + f"col_index: {col_index}", + ) + for col_index, column in enumerate(table.columns): + column, is_invalid = filter_invalid_unicode(column) + if is_invalid: + logging.warning(f"Scrub an invalid table header @ table_id: {table.table_id}, col_index: {col_index}") + + +def add_numeric_table_values(table, min_consolidation_fraction=0.7, debug_info=None): + """ + Parses text in table column-wise and adds the consolidated values. Consolidation refers to finding values with a + common types (date or number) + + Args: + table: + Table to annotate. + min_consolidation_fraction: + Fraction of cells in a column that need to have consolidated value. + debug_info: + Additional information used for logging. + """ + table = table.copy() + # First, filter table on invalid unicode + filter_invalid_unicode_from_table(table) + + # Second, replace cell values by Cell objects + for row_index, row in table.iterrows(): + for col_index, cell in enumerate(row): + table.iloc[row_index, col_index] = Cell(text=cell) + + # Third, add numeric_value attributes to these Cell objects + for col_index, column in enumerate(table.columns): + column_values = _consolidate_numeric_values( + _get_column_values(table, col_index), + min_consolidation_fraction=min_consolidation_fraction, + debug_info=(debug_info, column), + ) + + for row_index, numeric_value in column_values.items(): + table.iloc[row_index, col_index].numeric_value = numeric_value + + return table diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/__init__.py b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..2853605ba2d275073624c1b189ee5247eba695ca --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__init__.py @@ -0,0 +1,54 @@ +# Copyright 2023 The HuggingFace Team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +from typing import TYPE_CHECKING + +from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available + + +_import_structure = {"configuration_vipllava": ["VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP", "VipLlavaConfig"]} + + +try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() +except OptionalDependencyNotAvailable: + pass +else: + _import_structure["modeling_vipllava"] = [ + "VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST", + "VipLlavaForConditionalGeneration", + "VipLlavaPreTrainedModel", + ] + + +if TYPE_CHECKING: + from .configuration_vipllava import VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP, VipLlavaConfig + + try: + if not is_torch_available(): + raise OptionalDependencyNotAvailable() + except OptionalDependencyNotAvailable: + pass + else: + from .modeling_vipllava import ( + VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST, + VipLlavaForConditionalGeneration, + VipLlavaPreTrainedModel, + ) + + +else: + import sys + + sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d819c677820c381149a4a9c3e0e347d81ce32b6b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/__init__.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4826870640adb0ea9c6e8fd4d74d523b02bebb52 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/configuration_vipllava.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5888618c31f68289a10ca7916a5c0aeca0e2f338 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/convert_vipllava_weights_to_hf.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..755f9c637167ec6aeae4f96d3a3bf41bbde92a03 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vipllava/__pycache__/modeling_vipllava.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/configuration_vipllava.py b/venv/lib/python3.10/site-packages/transformers/models/vipllava/configuration_vipllava.py new file mode 100644 index 0000000000000000000000000000000000000000..d57f4179492ea20996ec5d340f53b870273a14c2 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vipllava/configuration_vipllava.py @@ -0,0 +1,144 @@ +# coding=utf-8 +# Copyright 2023 Microsoft Research & University of Wisconsin-Madison and the HuggingFace Inc. team. All rights reserved. +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" VipLlava model configuration""" + +import warnings + +from ...configuration_utils import PretrainedConfig +from ...utils import logging +from ..auto import CONFIG_MAPPING + + +logger = logging.get_logger(__name__) + + +from ..deprecated._archive_maps import VIPLLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402 + + +class VipLlavaConfig(PretrainedConfig): + r""" + This is the configuration class to store the configuration of a [`VipLlavaForConditionalGeneration`]. It is used to instantiate an + VipLlava model according to the specified arguments, defining the model architecture. Instantiating a configuration + with the defaults will yield a similar configuration to that of the VipLlava-9B. + + e.g. [ybelkada/vip-llava-7b-hf](https://huggingface.co/ybelkada/vip-llava-7b-hf) + + Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the + documentation from [`PretrainedConfig`] for more information. + + Args: + vision_config (`VipLlavaVisionConfig`, *optional*): + Custom vision config or dict + text_config (`Union[AutoConfig, dict]`, *optional*): + The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. + ignore_index (`int`, *optional*, defaults to -100): + The ignore index for the loss function. + image_token_index (`int`, *optional*, defaults to 32000): + The image token index to encode the image prompt. + projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): + The activation function used by the multimodal projector. + projector_layernorm_eps (`float`, *optional*, defaults to 1e-05): + The layer norm epsilon of the projector layernorm + vision_feature_layers (`List[int]`, *optional*, defaults to `[-2, -5, -8, -11, 6]`): + The list of layers to select the vision features from. + + Example: + + ```python + >>> from transformers import VipLlavaForConditionalGeneration, VipLlavaConfig, CLIPVisionConfig, LlamaConfig + + >>> # Initializing a CLIP-vision config + >>> vision_config = CLIPVisionConfig() + + >>> # Initializing a Llama config + >>> text_config = LlamaConfig() + + >>> # Initializing a VipLlava vipllava-7b style configuration + >>> configuration = VipLlavaConfig(vision_config, text_config) + + >>> # Initializing a model from the vipllava-7b style configuration + >>> model = VipLlavaForConditionalGeneration(configuration) + + >>> # Accessing the model configuration + >>> configuration = model.config + ```""" + + model_type = "vipllava" + is_composition = False + + def __init__( + self, + vision_config=None, + text_config=None, + ignore_index=-100, + image_token_index=32000, + projector_hidden_act="gelu", + projector_layernorm_eps=1e-5, + vision_feature_layers=[-2, -5, -8, -11, 6], + **kwargs, + ): + self.ignore_index = ignore_index + self.image_token_index = image_token_index + self.projector_hidden_act = projector_hidden_act + self.projector_layernorm_eps = projector_layernorm_eps + self.vision_feature_layers = vision_feature_layers + + if "vocab_size" in kwargs: + warnings.warn( + "The `vocab_size` argument is deprecated and will be removed in v4.42, since it can be inferred from the `text_config`. Passing this argument has no effect", + FutureWarning, + ) + + self.vision_config = vision_config + + if isinstance(self.vision_config, dict): + vision_config["model_type"] = ( + vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" + ) + self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) + elif vision_config is None: + self.vision_config = CONFIG_MAPPING["clip_vision_model"]( + intermediate_size=4096, + hidden_size=1024, + patch_size=14, + image_size=336, + num_hidden_layers=24, + num_attention_heads=16, + vocab_size=32000, + projection_dim=768, + ) + + if isinstance(text_config, dict): + text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" + text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) + elif text_config is None: + text_config = CONFIG_MAPPING["llama"]() + + self.text_config = text_config + self._vocab_size = self.text_config.vocab_size + + super().__init__(**kwargs) + + @property + def vocab_size(self): + warnings.warn( + "The `vocab_size` attribute is deprecated and will be removed in v4.42, Please use `text_config.vocab_size` instead.", + FutureWarning, + ) + return self._vocab_size + + def to_dict(self): + output = super().to_dict() + output.pop("_vocab_size", None) + return output diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/convert_vipllava_weights_to_hf.py b/venv/lib/python3.10/site-packages/transformers/models/vipllava/convert_vipllava_weights_to_hf.py new file mode 100644 index 0000000000000000000000000000000000000000..2914cfdfcd4b421c5c020852364034037fcc9558 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vipllava/convert_vipllava_weights_to_hf.py @@ -0,0 +1,132 @@ +# Copyright 2023 The HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +import argparse + +import torch +from huggingface_hub import hf_hub_download + +from transformers import ( + AddedToken, + AutoConfig, + AutoTokenizer, + CLIPImageProcessor, + LlavaProcessor, + VipLlavaConfig, + VipLlavaForConditionalGeneration, +) + + +KEYS_TO_MODIFY_MAPPING = { + "model.vision_tower.": "", + "model.mm_projector": "multi_modal_projector", + "model": "model.model", + "vision_model.model": "vision_model", + "lm_head": "language_model.lm_head", + "model.model": "language_model.model", + "multi_modal_projector.0": "multi_modal_projector.linear_1", + "multi_modal_projector.2": "multi_modal_projector.linear_2", + "final_linear.0": "linear_1", + "final_linear.2": "linear_2", + "multi_modal_projector.clip_layernorm": "multi_modal_projector.projector_layernorm", +} + + +# Copied from transformers.models.llava.convert_llava_weights_to_hf.convert_state_dict_to_hf +def convert_state_dict_to_hf(state_dict): + new_state_dict = {} + for key, value in state_dict.items(): + if key.endswith(".inv_freq"): + continue + for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): + if key_to_modify in key: + key = key.replace(key_to_modify, new_key) + new_state_dict[key] = value + return new_state_dict + + +def convert_vipllava_llama_to_hf(text_model_id, vision_model_id, output_hub_path, old_state_dict_id): + torch.set_default_dtype(torch.float16) + text_config = AutoConfig.from_pretrained(text_model_id) + + tokenizer = AutoTokenizer.from_pretrained(text_model_id) + tokenizer.add_tokens(AddedToken("", special=True, normalized=False), special_tokens=True) + tokenizer.add_special_tokens({"pad_token": ""}) + + image_processor = CLIPImageProcessor.from_pretrained(vision_model_id) + + processor = LlavaProcessor(tokenizer=tokenizer, image_processor=image_processor) + + config = VipLlavaConfig(text_config=text_config) + config.pad_token_id = 32001 + + with torch.device("meta"): + model = VipLlavaForConditionalGeneration(config) + + # Pad to 64 for performance reasons + pad_shape = 64 + + state_dict_path = hf_hub_download(old_state_dict_id, "model_state_dict_7b.bin") + + state_dict = torch.load(state_dict_path, map_location="cpu") + state_dict = convert_state_dict_to_hf(state_dict) + + model.load_state_dict(state_dict, strict=True, assign=True) + + pre_expansion_embeddings = model.language_model.model.embed_tokens.weight.data + mu = torch.mean(pre_expansion_embeddings, dim=0).float() + n = pre_expansion_embeddings.size()[0] + sigma = ((pre_expansion_embeddings - mu).T @ (pre_expansion_embeddings - mu)) / n + dist = torch.distributions.multivariate_normal.MultivariateNormal(mu, covariance_matrix=1e-5 * sigma) + + # We add an image token so we resize the model + model.resize_token_embeddings(config.text_config.vocab_size + 2, pad_shape) + model.language_model.model.embed_tokens.weight.data[32000:] = torch.stack( + tuple((dist.sample() for _ in range(model.language_model.model.embed_tokens.weight.data[32000:].shape[0]))), + dim=0, + ) + model.language_model.lm_head.weight.data[32000:] = torch.stack( + tuple((dist.sample() for _ in range(model.language_model.lm_head.weight.data[32000:].shape[0]))), + dim=0, + ) + + model.push_to_hub(output_hub_path) + processor.push_to_hub(output_hub_path) + + +def main(): + parser = argparse.ArgumentParser() + parser.add_argument( + "--text_model_id", + help="Hub location of the text model", + ) + parser.add_argument( + "--vision_model_id", + help="Hub location of the vision model", + ) + parser.add_argument( + "--output_hub_path", + help="Location on the hub of the converted model", + ) + parser.add_argument( + "--old_state_dict_id", + help="Location on the hub of the raw state dict of the original model. The filename needs to be `model_state_dict.bin`", + ) + args = parser.parse_args() + convert_vipllava_llama_to_hf( + args.text_model_id, args.vision_model_id, args.output_hub_path, args.old_state_dict_id + ) + + +if __name__ == "__main__": + main() diff --git a/venv/lib/python3.10/site-packages/transformers/models/vipllava/modeling_vipllava.py b/venv/lib/python3.10/site-packages/transformers/models/vipllava/modeling_vipllava.py new file mode 100644 index 0000000000000000000000000000000000000000..1b20353410c895d64a859e26f0cd838a45141c26 --- /dev/null +++ b/venv/lib/python3.10/site-packages/transformers/models/vipllava/modeling_vipllava.py @@ -0,0 +1,566 @@ +# coding=utf-8 +# Copyright 2023 the HuggingFace Inc. team. All rights reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. +""" PyTorch VipLlava model.""" +from dataclasses import dataclass +from typing import List, Optional, Tuple, Union + +import torch +import torch.utils.checkpoint +from torch import nn + +from ... import PreTrainedModel +from ...activations import ACT2FN +from ...cache_utils import Cache +from ...modeling_outputs import ModelOutput +from ...utils import ( + add_start_docstrings, + add_start_docstrings_to_model_forward, + logging, + replace_return_docstrings, +) +from ..auto import AutoModel, AutoModelForCausalLM +from .configuration_vipllava import VipLlavaConfig + + +logger = logging.get_logger(__name__) + +_CONFIG_FOR_DOC = "VipLlavaConfig" + + +from ..deprecated._archive_maps import VIPLLAVA_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402 + + +@dataclass +# Copied from transformers.models.idefics.modeling_idefics.IdeficsCausalLMOutputWithPast with Idefics->VipLlava +class VipLlavaCausalLMOutputWithPast(ModelOutput): + """ + Base class for VipLlava causal language model (or autoregressive) outputs. + + Args: + loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): + Language modeling loss (for next-token prediction). + logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): + Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) + + Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see + `past_key_values` input) to speed up sequential decoding. + hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): + Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. + + Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. + attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): + Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, + sequence_length)`. + + Attentions weights after the attention softmax, used to compute the weighted average in the self-attention + heads. + image_hidden_states (`tuple(torch.FloatTensor)`, *optional*): + Tuple of `torch.FloatTensor` (one for the output of the image embeddings, `(batch_size, num_images, + sequence_length, hidden_size)`. + + image_hidden_states of the model produced by the vision encoder, and optionally by the perceiver + """ + + loss: Optional[torch.FloatTensor] = None + logits: torch.FloatTensor = None + past_key_values: Optional[List[torch.FloatTensor]] = None + hidden_states: Optional[Tuple[torch.FloatTensor]] = None + attentions: Optional[Tuple[torch.FloatTensor]] = None + image_hidden_states: Optional[Tuple[torch.FloatTensor]] = None + + +class VipLlavaMultiModalProjector(nn.Module): + def __init__(self, config: VipLlavaConfig): + super().__init__() + self.projector_layernorm = nn.LayerNorm( + len(config.vision_feature_layers) * config.vision_config.hidden_size, eps=config.projector_layernorm_eps + ) + + self.linear_1 = nn.Linear( + len(config.vision_feature_layers) * config.vision_config.hidden_size, + config.text_config.hidden_size, + bias=True, + ) + self.act = ACT2FN[config.projector_hidden_act] + self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) + + def forward(self, hidden_states): + hidden_states = self.projector_layernorm(hidden_states) + hidden_states = self.linear_1(hidden_states) + hidden_states = self.act(hidden_states) + hidden_states = self.linear_2(hidden_states) + return hidden_states + + +VIPLLAVA_START_DOCSTRING = r""" + This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the + library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads + etc.) + + This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. + Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage + and behavior. + + Parameters: + config ([`VipLlavaConfig`] or [`VipLlavaVisionConfig`]): + Model configuration class with all the parameters of the model. Initializing with a config file does not + load the weights associated with the model, only the configuration. Check out the + [`~PreTrainedModel.from_pretrained`] method to load the model weights. +""" + + +@add_start_docstrings( + "The bare VipLlava Model outputting raw hidden-states without any specific head on top.", + VIPLLAVA_START_DOCSTRING, +) +# Copied from transformers.models.llava.modeling_llava.LlavaPreTrainedModel with Llava->VipLlava,llava->vipllava +class VipLlavaPreTrainedModel(PreTrainedModel): + config_class = VipLlavaConfig + base_model_prefix = "model" + supports_gradient_checkpointing = True + _no_split_modules = ["VipLlavaVisionAttention"] + _skip_keys_device_placement = "past_key_values" + _supports_flash_attn_2 = True + + def _init_weights(self, module): + # important: this ported version of VipLlava isn't meant for training from scratch - only + # inference and fine-tuning - so the proper init weights code has been removed - the original codebase + # https://github.com/haotian-liu/LLaVA/tree/main/vipllava should serve for that purpose + std = ( + self.config.initializer_range + if hasattr(self.config, "initializer_range") + else self.config.text_config.initializer_range + ) + + if hasattr(module, "class_embedding"): + module.class_embedding.data.normal_(mean=0.0, std=std) + + if isinstance(module, (nn.Linear, nn.Conv2d)): + module.weight.data.normal_(mean=0.0, std=std) + if module.bias is not None: + module.bias.data.zero_() + elif isinstance(module, nn.Embedding): + module.weight.data.normal_(mean=0.0, std=std) + if module.padding_idx is not None: + module.weight.data[module.padding_idx].zero_() + + @property + def _supports_sdpa(self): + """ + Retrieve language_model's attribute to check whether the model supports + SDPA or not. + """ + return self.language_model._supports_sdpa + + +VIPLLAVA_INPUTS_DOCSTRING = r""" + Args: + input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): + Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide + it. + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + [What are input IDs?](../glossary#input-ids) + pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)): + The tensors corresponding to the input images. Pixel values can be obtained using + [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details ([]`LlavaProcessor`] uses + [`CLIPImageProcessor`] for processing images). + attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): + Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: + + - 1 for tokens that are **not masked**, + - 0 for tokens that are **masked**. + + [What are attention masks?](../glossary#attention-mask) + + Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and + [`PreTrainedTokenizer.__call__`] for details. + + If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see + `past_key_values`). + + If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] + and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more + information on the default strategy. + + - 1 indicates the head is **not masked**, + - 0 indicates the head is **masked**. + position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, + config.n_positions - 1]`. [What are position IDs?](../glossary#position-ids) + past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): + Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape + `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape + `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. + + Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention + blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. + + If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that + don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all + `decoder_input_ids` of shape `(batch_size, sequence_length)`. + inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): + Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This + is useful if you want more control over how to convert `input_ids` indices into associated vectors than the + model's internal embedding lookup matrix. + use_cache (`bool`, *optional*): + If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see + `past_key_values`). + output_attentions (`bool`, *optional*): + Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned + tensors for more detail. + output_hidden_states (`bool`, *optional*): + Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for + more detail. + return_dict (`bool`, *optional*): + Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. +""" + + +@add_start_docstrings( + """The VIPLLAVA model which consists of a vision backbone and a language model.""", + VIPLLAVA_START_DOCSTRING, +) +# Copied from transformers.models.llava.modeling_llava.LlavaForConditionalGeneration with LLAVA->VIPLLAVA,Llava->VipLlava +class VipLlavaForConditionalGeneration(VipLlavaPreTrainedModel): + def __init__(self, config: VipLlavaConfig): + super().__init__(config) + self.vision_tower = AutoModel.from_config(config.vision_config) + + self.multi_modal_projector = VipLlavaMultiModalProjector(config) + self.vocab_size = config.text_config.vocab_size + self.language_model = AutoModelForCausalLM.from_config( + config.text_config, attn_implementation=config._attn_implementation + ) + self.pad_token_id = self.config.pad_token_id if self.config.pad_token_id is not None else -1 + self.post_init() + + def get_input_embeddings(self): + return self.language_model.get_input_embeddings() + + def set_input_embeddings(self, value): + self.language_model.set_input_embeddings(value) + + def get_output_embeddings(self): + return self.language_model.get_output_embeddings() + + def set_output_embeddings(self, new_embeddings): + self.language_model.set_output_embeddings(new_embeddings) + + def set_decoder(self, decoder): + self.language_model.set_decoder(decoder) + + def get_decoder(self): + return self.language_model.get_decoder() + + def tie_weights(self): + return self.language_model.tie_weights() + + def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding: + model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of) + # update vocab size + self.config.text_config.vocab_size = model_embeds.num_embeddings + self.vocab_size = model_embeds.num_embeddings + return model_embeds + + def _merge_input_ids_with_image_features(self, image_features, inputs_embeds, input_ids, attention_mask, labels): + num_images, num_image_patches, embed_dim = image_features.shape + batch_size, sequence_length = input_ids.shape + left_padding = not torch.sum(input_ids[:, -1] == torch.tensor(self.pad_token_id)) + # 1. Create a mask to know where special image tokens are + special_image_token_mask = input_ids == self.config.image_token_index + num_special_image_tokens = torch.sum(special_image_token_mask, dim=-1) + # Compute the maximum embed dimension + max_embed_dim = (num_special_image_tokens.max() * (num_image_patches - 1)) + sequence_length + batch_indices, non_image_indices = torch.where(input_ids != self.config.image_token_index) + + # 2. Compute the positions where text should be written + # Calculate new positions for text tokens in merged image-text sequence. + # `special_image_token_mask` identifies image tokens. Each image token will be replaced by `nb_text_tokens_per_images - 1` text tokens. + # `torch.cumsum` computes how each image token shifts subsequent text token positions. + # - 1 to adjust for zero-based indexing, as `cumsum` inherently increases indices by one. + new_token_positions = torch.cumsum((special_image_token_mask * (num_image_patches - 1) + 1), -1) - 1 + nb_image_pad = max_embed_dim - 1 - new_token_positions[:, -1] + if left_padding: + new_token_positions += nb_image_pad[:, None] # offset for left padding + text_to_overwrite = new_token_positions[batch_indices, non_image_indices] + + # 3. Create the full embedding, already padded to the maximum position + final_embedding = torch.zeros( + batch_size, max_embed_dim, embed_dim, dtype=inputs_embeds.dtype, device=inputs_embeds.device + ) + final_attention_mask = torch.zeros( + batch_size, max_embed_dim, dtype=attention_mask.dtype, device=inputs_embeds.device + ) + if labels is not None: + final_labels = torch.full( + (batch_size, max_embed_dim), self.config.ignore_index, dtype=input_ids.dtype, device=input_ids.device + ) + # In case the Vision model or the Language model has been offloaded to CPU, we need to manually + # set the corresponding tensors into their correct target device. + target_device = inputs_embeds.device + batch_indices, non_image_indices, text_to_overwrite = ( + batch_indices.to(target_device), + non_image_indices.to(target_device), + text_to_overwrite.to(target_device), + ) + attention_mask = attention_mask.to(target_device) + + # 4. Fill the embeddings based on the mask. If we have ["hey" "", "how", "are"] + # we need to index copy on [0, 577, 578, 579] for the text and [1:576] for the image features + final_embedding[batch_indices, text_to_overwrite] = inputs_embeds[batch_indices, non_image_indices] + final_attention_mask[batch_indices, text_to_overwrite] = attention_mask[batch_indices, non_image_indices] + if labels is not None: + final_labels[batch_indices, text_to_overwrite] = labels[batch_indices, non_image_indices] + + # 5. Fill the embeddings corresponding to the images. Anything that is still zeros needs filling + image_to_overwrite = torch.all(final_embedding == 0, dim=-1) + image_to_overwrite &= image_to_overwrite.cumsum(-1) - 1 >= nb_image_pad[:, None].to(target_device) + + if image_to_overwrite.sum() != image_features.shape[:-1].numel(): + raise ValueError( + f"The input provided to the model are wrong. The number of image tokens is {torch.sum(special_image_token_mask)} while" + f" the number of image given to the model is {num_images}. This prevents correct indexing and breaks batch generation." + ) + + final_embedding[image_to_overwrite] = image_features.contiguous().reshape(-1, embed_dim).to(target_device) + final_attention_mask |= image_to_overwrite + position_ids = (final_attention_mask.cumsum(-1) - 1).masked_fill_((final_attention_mask == 0), 1) + + # 6. Mask out the embedding at padding positions, as we later use the past_key_value value to determine the non-attended tokens. + batch_indices, pad_indices = torch.where(input_ids == self.pad_token_id) + indices_to_mask = new_token_positions[batch_indices, pad_indices] + + final_embedding[batch_indices, indices_to_mask] = 0 + + if labels is None: + final_labels = None + + return final_embedding, final_attention_mask, final_labels, position_ids + + @add_start_docstrings_to_model_forward(VIPLLAVA_INPUTS_DOCSTRING) + @replace_return_docstrings(output_type=VipLlavaCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC) + # Ignore copy + def forward( + self, + input_ids: torch.LongTensor = None, + pixel_values: torch.FloatTensor = None, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.LongTensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + vision_feature_layers: Optional[List[int]] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, VipLlavaCausalLMOutputWithPast]: + r""" + Args: + labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): + Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., + config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored + (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. + + Returns: + + Example: + + ```python + >>> import torch + >>> from PIL import Image + >>> import requests + >>> from transformers import AutoProcessor, VipLlavaForConditionalGeneration + + >>> model = VipLlavaForConditionalGeneration.from_pretrained("llava-hf/vip-llava-7b-hf", device_map="auto", torch_dtype=torch.float16) + >>> processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf") + + >>> prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: \n{}###Assistant:" + >>> question = "Can you please describe this image?" + >>> prompt = prompt.format(question) + >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png" + >>> image = Image.open(requests.get(url, stream=True).raw) + + >>> inputs = processor(text=text, images=image, return_tensors="pt").to(0, torch.float16) + + >>> # Generate + >>> generate_ids = model.generate(**inputs, max_new_tokens=20) + >>> processor.decode(generate_ids[0][len(inputs["input_ids"][0]):], skip_special_tokens=True) + The image features a brown and white cat sitting on a green surface, with a red ball in its + ```""" + + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + vision_feature_layers = ( + vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers + ) + + if inputs_embeds is None: + # 1. Extra the input embeddings + inputs_embeds = self.get_input_embeddings()(input_ids) + + # 2. Merge text and images + if pixel_values is not None and input_ids.shape[1] != 1: + image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) + # For VIP-llava, the image features are computed this way + # We select the features from index 1: for the layers -2, -5, -8, -11 and 6 + image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers] + image_features = torch.cat(image_features, dim=-1) + + image_features = self.multi_modal_projector(image_features) + inputs_embeds, attention_mask, labels, position_ids = self._merge_input_ids_with_image_features( + image_features, inputs_embeds, input_ids, attention_mask, labels + ) + if labels is None: + labels = torch.full_like(attention_mask, self.config.ignore_index).to(torch.long) + else: + # In case input_ids.shape[1] == 1 & pixel_values==None & past_key_values != None, we are in the case of + # generation with cache + if past_key_values is not None and pixel_values is not None and input_ids.shape[1] == 1: + # Retrieve the first layer to inspect the logits and mask out the hidden states + # that are set to 0 + first_layer_past_key_value = past_key_values[0][0][:, :, :, 0] + + # Sum all dimensions of head_dim (-1) to avoid random errors such as: https://github.com/huggingface/transformers/pull/28032#issuecomment-1863691941 + batch_index, non_attended_tokens = torch.where(first_layer_past_key_value.float().sum(-2) == 0) + + target_length = input_ids.shape[1] + past_length = first_layer_past_key_value.shape[-1] + + extended_attention_mask = torch.ones( + (attention_mask.shape[0], past_length), + dtype=attention_mask.dtype, + device=attention_mask.device, + ) + + # Filter out only the tokens that can be un-attended, this can happen + # in the case one uses Llava + Fused modules where the cache on the + # first iteration is already big enough, or if one passes custom cache + valid_indices = non_attended_tokens < extended_attention_mask.size(-1) + new_batch_index = batch_index[valid_indices] + new_non_attended_tokens = non_attended_tokens[valid_indices] + + # Zero-out the places where we don't need to attend + extended_attention_mask[new_batch_index, new_non_attended_tokens] = 0 + + attention_mask = torch.cat((extended_attention_mask, attention_mask[:, -target_length:]), dim=1) + position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1 + + outputs = self.language_model( + attention_mask=attention_mask, + position_ids=position_ids, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict, + ) + + logits = outputs[0] + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + if attention_mask is not None: + shift_attention_mask = attention_mask[..., 1:] + shift_logits = logits[..., :-1, :][shift_attention_mask.to(logits.device) != 0].contiguous() + shift_labels = labels[..., 1:][shift_attention_mask.to(labels.device) != 0].contiguous() + else: + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = nn.CrossEntropyLoss() + loss = loss_fct( + shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device) + ) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return VipLlavaCausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, inputs_embeds=None, pixel_values=None, attention_mask=None, **kwargs + ): + if past_key_values is not None: + if isinstance(past_key_values, Cache): + cache_length = past_key_values.get_seq_length() + past_length = past_key_values.seen_tokens + else: + cache_length = past_length = past_key_values[0][0].shape[2] + + # Keep only the unprocessed tokens: + # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where + # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as + # input) + if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]: + input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] + # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard + # input_ids based on the past_length. + elif past_length < input_ids.shape[1]: + input_ids = input_ids[:, past_length:] + # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens. + elif self.config.image_token_index in input_ids: + input_ids = input_ids[:, input_ids.shape[1] - 1 :] + # If the cache has seen more tokens than it can hold, then the cache has a size limit. Let's discard the + # older attention values, as their corresponding values are not part of the input. + if cache_length < past_length and attention_mask is not None: + attention_mask = attention_mask[:, -(cache_length + input_ids.shape[1]) :] + + position_ids = kwargs.get("position_ids", None) + if attention_mask is not None and position_ids is None: + # create position_ids on the fly for batch generation + position_ids = attention_mask.long().cumsum(-1) - 1 + position_ids.masked_fill_(attention_mask == 0, 1) + if past_key_values: + position_ids = position_ids[:, -input_ids.shape[1] :] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "position_ids": position_ids, + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "pixel_values": pixel_values, + } + ) + return model_inputs + + def _reorder_cache(self, *args, **kwargs): + return self.language_model._reorder_cache(*args, **kwargs) diff --git a/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/configuration_vivit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/configuration_vivit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..697a9a3a135c1d023bfbe60aca91e49d99e3e083 Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/configuration_vivit.cpython-310.pyc differ diff --git a/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/modeling_vivit.cpython-310.pyc b/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/modeling_vivit.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10019f4128d0ef615e624afcec8b5152e0c8579b Binary files /dev/null and b/venv/lib/python3.10/site-packages/transformers/models/vivit/__pycache__/modeling_vivit.cpython-310.pyc differ