applied-ai-018 commited on
Commit
cb0f9fe
·
verified ·
1 Parent(s): 556d264

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. ckpts/universal/global_step40/zero/10.post_attention_layernorm.weight/exp_avg.pt +3 -0
  2. ckpts/universal/global_step40/zero/10.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  3. ckpts/universal/global_step40/zero/24.attention.dense.weight/fp32.pt +3 -0
  4. ckpts/universal/global_step40/zero/8.input_layernorm.weight/exp_avg.pt +3 -0
  5. ckpts/universal/global_step40/zero/8.input_layernorm.weight/exp_avg_sq.pt +3 -0
  6. ckpts/universal/global_step40/zero/8.input_layernorm.weight/fp32.pt +3 -0
  7. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc +0 -0
  8. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc +0 -0
  9. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc +0 -0
  10. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc +0 -0
  11. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc +0 -0
  12. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc +0 -0
  13. venv/lib/python3.10/site-packages/scipy/stats/__pycache__/stats.cpython-310.pyc +0 -0
  14. venv/lib/python3.10/site-packages/scipy/stats/_boost/__init__.py +53 -0
  15. venv/lib/python3.10/site-packages/scipy/stats/_boost/__pycache__/__init__.cpython-310.pyc +0 -0
  16. venv/lib/python3.10/site-packages/scipy/stats/_boost/beta_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  17. venv/lib/python3.10/site-packages/scipy/stats/_boost/binom_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  18. venv/lib/python3.10/site-packages/scipy/stats/_boost/hypergeom_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  19. venv/lib/python3.10/site-packages/scipy/stats/_boost/invgauss_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  20. venv/lib/python3.10/site-packages/scipy/stats/_boost/nbinom_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  21. venv/lib/python3.10/site-packages/scipy/stats/_boost/ncf_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  22. venv/lib/python3.10/site-packages/scipy/stats/_boost/nct_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  23. venv/lib/python3.10/site-packages/scipy/stats/_boost/ncx2_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  24. venv/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so +0 -0
  25. venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/__init__.py +1224 -0
  26. venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/__pycache__/__init__.cpython-310.pyc +0 -0
  27. venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/levyst.cpython-310-x86_64-linux-gnu.so +0 -0
  28. venv/lib/python3.10/site-packages/scipy/stats/_rcont/__init__.py +4 -0
  29. venv/lib/python3.10/site-packages/scipy/stats/_rcont/__pycache__/__init__.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/scipy/stats/_rcont/rcont.cpython-310-x86_64-linux-gnu.so +0 -0
  31. venv/lib/python3.10/site-packages/scipy/stats/tests/__init__.py +0 -0
  32. venv/lib/python3.10/site-packages/scipy/stats/tests/common_tests.py +351 -0
  33. venv/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/_mvt.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/fisher_exact_results_from_r.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/scipy/stats/tests/data/_mvt.py +171 -0
  36. venv/lib/python3.10/site-packages/scipy/stats/tests/data/fisher_exact_results_from_r.py +607 -0
  37. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/AtmWtAg.dat +108 -0
  38. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SiRstv.dat +85 -0
  39. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs01.dat +249 -0
  40. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs02.dat +1869 -0
  41. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs03.dat +0 -0
  42. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs04.dat +249 -0
  43. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs05.dat +1869 -0
  44. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs06.dat +0 -0
  45. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs07.dat +249 -0
  46. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs08.dat +1869 -0
  47. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs09.dat +0 -0
  48. venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_linregress/Norris.dat +97 -0
  49. venv/lib/python3.10/site-packages/scipy/stats/tests/data/studentized_range_mpmath_ref.json +1499 -0
  50. venv/lib/python3.10/site-packages/scipy/stats/tests/test_axis_nan_policy.py +1188 -0
ckpts/universal/global_step40/zero/10.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2499dee742d6c4650f7702856b9e26785b15c99ae5059300b818076b64439310
3
+ size 9372
ckpts/universal/global_step40/zero/10.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e6e85e9f611cc866b81ea8aa8bcb7296f7d76c074e5f67845124bbe9d5c2ab6f
3
+ size 9387
ckpts/universal/global_step40/zero/24.attention.dense.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5e7e6fa8ccb9cc938eef23aaabb6fa7fa27a87928118f22a4289a5cdb895c8e1
3
+ size 16778317
ckpts/universal/global_step40/zero/8.input_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:17cea6275bb3db06ea0a6bea04b88be865cf24394828603fe67243c1af874849
3
+ size 9372
ckpts/universal/global_step40/zero/8.input_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0d73f7b716570ed0cfc63d123110f9d5873e53868510d5511d8b75b2bf3cc7e0
3
+ size 9387
ckpts/universal/global_step40/zero/8.input_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:277b57f89c06ff0b973db615ac858f9a0783bf79da84adb04b4d997e05764998
3
+ size 9293
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_constants.cpython-310.pyc ADDED
Binary file (531 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_entropy.cpython-310.pyc ADDED
Binary file (15 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_mstats_extras.cpython-310.pyc ADDED
Binary file (15.4 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_odds_ratio.cpython-310.pyc ADDED
Binary file (15.8 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/_stats_py.cpython-310.pyc ADDED
Binary file (373 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/morestats.cpython-310.pyc ADDED
Binary file (1.29 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/__pycache__/stats.cpython-310.pyc ADDED
Binary file (1.88 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/__init__.py ADDED
@@ -0,0 +1,53 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from scipy.stats._boost.beta_ufunc import (
2
+ _beta_pdf, _beta_cdf, _beta_sf, _beta_ppf,
3
+ _beta_isf, _beta_mean, _beta_variance,
4
+ _beta_skewness, _beta_kurtosis_excess,
5
+ )
6
+
7
+ from scipy.stats._boost.binom_ufunc import (
8
+ _binom_pdf, _binom_cdf, _binom_sf, _binom_ppf,
9
+ _binom_isf, _binom_mean, _binom_variance,
10
+ _binom_skewness, _binom_kurtosis_excess,
11
+ )
12
+
13
+ from scipy.stats._boost.nbinom_ufunc import (
14
+ _nbinom_pdf, _nbinom_cdf, _nbinom_sf, _nbinom_ppf,
15
+ _nbinom_isf, _nbinom_mean, _nbinom_variance,
16
+ _nbinom_skewness, _nbinom_kurtosis_excess,
17
+ )
18
+
19
+ from scipy.stats._boost.hypergeom_ufunc import (
20
+ _hypergeom_pdf, _hypergeom_cdf, _hypergeom_sf, _hypergeom_ppf,
21
+ _hypergeom_isf, _hypergeom_mean, _hypergeom_variance,
22
+ _hypergeom_skewness, _hypergeom_kurtosis_excess,
23
+ )
24
+
25
+ from scipy.stats._boost.ncf_ufunc import (
26
+ _ncf_pdf, _ncf_cdf, _ncf_sf, _ncf_ppf,
27
+ _ncf_isf, _ncf_mean, _ncf_variance,
28
+ _ncf_skewness, _ncf_kurtosis_excess,
29
+ )
30
+
31
+ from scipy.stats._boost.ncx2_ufunc import (
32
+ _ncx2_pdf, _ncx2_cdf, _ncx2_sf, _ncx2_ppf,
33
+ _ncx2_isf, _ncx2_mean, _ncx2_variance,
34
+ _ncx2_skewness, _ncx2_kurtosis_excess,
35
+ )
36
+
37
+ from scipy.stats._boost.nct_ufunc import (
38
+ _nct_pdf, _nct_cdf, _nct_sf, _nct_ppf,
39
+ _nct_isf, _nct_mean, _nct_variance,
40
+ _nct_skewness, _nct_kurtosis_excess,
41
+ )
42
+
43
+ from scipy.stats._boost.skewnorm_ufunc import (
44
+ _skewnorm_pdf, _skewnorm_cdf, _skewnorm_sf, _skewnorm_ppf,
45
+ _skewnorm_isf, _skewnorm_mean, _skewnorm_variance,
46
+ _skewnorm_skewness, _skewnorm_kurtosis_excess,
47
+ )
48
+
49
+ from scipy.stats._boost.invgauss_ufunc import (
50
+ _invgauss_pdf, _invgauss_cdf, _invgauss_sf, _invgauss_ppf,
51
+ _invgauss_isf, _invgauss_mean, _invgauss_variance,
52
+ _invgauss_skewness, _invgauss_kurtosis_excess,
53
+ )
venv/lib/python3.10/site-packages/scipy/stats/_boost/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (2.53 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/beta_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (205 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/binom_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (176 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/hypergeom_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (121 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/invgauss_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (171 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/nbinom_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (180 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/ncf_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (174 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/nct_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (224 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/ncx2_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (175 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_boost/skewnorm_ufunc.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (109 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/__init__.py ADDED
@@ -0,0 +1,1224 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #
2
+
3
+ import warnings
4
+ from functools import partial
5
+
6
+ import numpy as np
7
+
8
+ from scipy import optimize
9
+ from scipy import integrate
10
+ from scipy.integrate._quadrature import _builtincoeffs
11
+ from scipy import interpolate
12
+ from scipy.interpolate import RectBivariateSpline
13
+ import scipy.special as sc
14
+ from scipy._lib._util import _lazywhere
15
+ from .._distn_infrastructure import rv_continuous, _ShapeInfo
16
+ from .._continuous_distns import uniform, expon, _norm_pdf, _norm_cdf
17
+ from .levyst import Nolan
18
+ from scipy._lib.doccer import inherit_docstring_from
19
+
20
+
21
+ __all__ = ["levy_stable", "levy_stable_gen", "pdf_from_cf_with_fft"]
22
+
23
+ # Stable distributions are known for various parameterisations
24
+ # some being advantageous for numerical considerations and others
25
+ # useful due to their location/scale awareness.
26
+ #
27
+ # Here we follow [NO] convention (see the references in the docstring
28
+ # for levy_stable_gen below).
29
+ #
30
+ # S0 / Z0 / x0 (aka Zoleterav's M)
31
+ # S1 / Z1 / x1
32
+ #
33
+ # Where S* denotes parameterisation, Z* denotes standardized
34
+ # version where gamma = 1, delta = 0 and x* denotes variable.
35
+ #
36
+ # Scipy's original Stable was a random variate generator. It
37
+ # uses S1 and unfortunately is not a location/scale aware.
38
+
39
+
40
+ # default numerical integration tolerance
41
+ # used for epsrel in piecewise and both epsrel and epsabs in dni
42
+ # (epsabs needed in dni since weighted quad requires epsabs > 0)
43
+ _QUAD_EPS = 1.2e-14
44
+
45
+
46
+ def _Phi_Z0(alpha, t):
47
+ return (
48
+ -np.tan(np.pi * alpha / 2) * (np.abs(t) ** (1 - alpha) - 1)
49
+ if alpha != 1
50
+ else -2.0 * np.log(np.abs(t)) / np.pi
51
+ )
52
+
53
+
54
+ def _Phi_Z1(alpha, t):
55
+ return (
56
+ np.tan(np.pi * alpha / 2)
57
+ if alpha != 1
58
+ else -2.0 * np.log(np.abs(t)) / np.pi
59
+ )
60
+
61
+
62
+ def _cf(Phi, t, alpha, beta):
63
+ """Characteristic function."""
64
+ return np.exp(
65
+ -(np.abs(t) ** alpha) * (1 - 1j * beta * np.sign(t) * Phi(alpha, t))
66
+ )
67
+
68
+
69
+ _cf_Z0 = partial(_cf, _Phi_Z0)
70
+ _cf_Z1 = partial(_cf, _Phi_Z1)
71
+
72
+
73
+ def _pdf_single_value_cf_integrate(Phi, x, alpha, beta, **kwds):
74
+ """To improve DNI accuracy convert characteristic function in to real
75
+ valued integral using Euler's formula, then exploit cosine symmetry to
76
+ change limits to [0, inf). Finally use cosine addition formula to split
77
+ into two parts that can be handled by weighted quad pack.
78
+ """
79
+ quad_eps = kwds.get("quad_eps", _QUAD_EPS)
80
+
81
+ def integrand1(t):
82
+ if t == 0:
83
+ return 0
84
+ return np.exp(-(t ** alpha)) * (
85
+ np.cos(beta * (t ** alpha) * Phi(alpha, t))
86
+ )
87
+
88
+ def integrand2(t):
89
+ if t == 0:
90
+ return 0
91
+ return np.exp(-(t ** alpha)) * (
92
+ np.sin(beta * (t ** alpha) * Phi(alpha, t))
93
+ )
94
+
95
+ with np.errstate(invalid="ignore"):
96
+ int1, *ret1 = integrate.quad(
97
+ integrand1,
98
+ 0,
99
+ np.inf,
100
+ weight="cos",
101
+ wvar=x,
102
+ limit=1000,
103
+ epsabs=quad_eps,
104
+ epsrel=quad_eps,
105
+ full_output=1,
106
+ )
107
+
108
+ int2, *ret2 = integrate.quad(
109
+ integrand2,
110
+ 0,
111
+ np.inf,
112
+ weight="sin",
113
+ wvar=x,
114
+ limit=1000,
115
+ epsabs=quad_eps,
116
+ epsrel=quad_eps,
117
+ full_output=1,
118
+ )
119
+
120
+ return (int1 + int2) / np.pi
121
+
122
+
123
+ _pdf_single_value_cf_integrate_Z0 = partial(
124
+ _pdf_single_value_cf_integrate, _Phi_Z0
125
+ )
126
+ _pdf_single_value_cf_integrate_Z1 = partial(
127
+ _pdf_single_value_cf_integrate, _Phi_Z1
128
+ )
129
+
130
+
131
+ def _nolan_round_x_near_zeta(x0, alpha, zeta, x_tol_near_zeta):
132
+ """Round x close to zeta for Nolan's method in [NO]."""
133
+ # "8. When |x0-beta*tan(pi*alpha/2)| is small, the
134
+ # computations of the density and cumulative have numerical problems.
135
+ # The program works around this by setting
136
+ # z = beta*tan(pi*alpha/2) when
137
+ # |z-beta*tan(pi*alpha/2)| < tol(5)*alpha**(1/alpha).
138
+ # (The bound on the right is ad hoc, to get reasonable behavior
139
+ # when alpha is small)."
140
+ # where tol(5) = 0.5e-2 by default.
141
+ #
142
+ # We seem to have partially addressed this through re-expression of
143
+ # g(theta) here, but it still needs to be used in some extreme cases.
144
+ # Perhaps tol(5) = 0.5e-2 could be reduced for our implementation.
145
+ if np.abs(x0 - zeta) < x_tol_near_zeta * alpha ** (1 / alpha):
146
+ x0 = zeta
147
+ return x0
148
+
149
+
150
+ def _nolan_round_difficult_input(
151
+ x0, alpha, beta, zeta, x_tol_near_zeta, alpha_tol_near_one
152
+ ):
153
+ """Round difficult input values for Nolan's method in [NO]."""
154
+
155
+ # following Nolan's STABLE,
156
+ # "1. When 0 < |alpha-1| < 0.005, the program has numerical problems
157
+ # evaluating the pdf and cdf. The current version of the program sets
158
+ # alpha=1 in these cases. This approximation is not bad in the S0
159
+ # parameterization."
160
+ if np.abs(alpha - 1) < alpha_tol_near_one:
161
+ alpha = 1.0
162
+
163
+ # "2. When alpha=1 and |beta| < 0.005, the program has numerical
164
+ # problems. The current version sets beta=0."
165
+ # We seem to have addressed this through re-expression of g(theta) here
166
+
167
+ x0 = _nolan_round_x_near_zeta(x0, alpha, zeta, x_tol_near_zeta)
168
+ return x0, alpha, beta
169
+
170
+
171
+ def _pdf_single_value_piecewise_Z1(x, alpha, beta, **kwds):
172
+ # convert from Nolan's S_1 (aka S) to S_0 (aka Zolaterev M)
173
+ # parameterization
174
+
175
+ zeta = -beta * np.tan(np.pi * alpha / 2.0)
176
+ x0 = x + zeta if alpha != 1 else x
177
+
178
+ return _pdf_single_value_piecewise_Z0(x0, alpha, beta, **kwds)
179
+
180
+
181
+ def _pdf_single_value_piecewise_Z0(x0, alpha, beta, **kwds):
182
+
183
+ quad_eps = kwds.get("quad_eps", _QUAD_EPS)
184
+ x_tol_near_zeta = kwds.get("piecewise_x_tol_near_zeta", 0.005)
185
+ alpha_tol_near_one = kwds.get("piecewise_alpha_tol_near_one", 0.005)
186
+
187
+ zeta = -beta * np.tan(np.pi * alpha / 2.0)
188
+ x0, alpha, beta = _nolan_round_difficult_input(
189
+ x0, alpha, beta, zeta, x_tol_near_zeta, alpha_tol_near_one
190
+ )
191
+
192
+ # some other known distribution pdfs / analytical cases
193
+ # TODO: add more where possible with test coverage,
194
+ # eg https://en.wikipedia.org/wiki/Stable_distribution#Other_analytic_cases
195
+ if alpha == 2.0:
196
+ # normal
197
+ return _norm_pdf(x0 / np.sqrt(2)) / np.sqrt(2)
198
+ elif alpha == 0.5 and beta == 1.0:
199
+ # levy
200
+ # since S(1/2, 1, gamma, delta; <x>) ==
201
+ # S(1/2, 1, gamma, gamma + delta; <x0>).
202
+ _x = x0 + 1
203
+ if _x <= 0:
204
+ return 0
205
+
206
+ return 1 / np.sqrt(2 * np.pi * _x) / _x * np.exp(-1 / (2 * _x))
207
+ elif alpha == 0.5 and beta == 0.0 and x0 != 0:
208
+ # analytical solution [HO]
209
+ S, C = sc.fresnel([1 / np.sqrt(2 * np.pi * np.abs(x0))])
210
+ arg = 1 / (4 * np.abs(x0))
211
+ return (
212
+ np.sin(arg) * (0.5 - S[0]) + np.cos(arg) * (0.5 - C[0])
213
+ ) / np.sqrt(2 * np.pi * np.abs(x0) ** 3)
214
+ elif alpha == 1.0 and beta == 0.0:
215
+ # cauchy
216
+ return 1 / (1 + x0 ** 2) / np.pi
217
+
218
+ return _pdf_single_value_piecewise_post_rounding_Z0(
219
+ x0, alpha, beta, quad_eps, x_tol_near_zeta
220
+ )
221
+
222
+
223
+ def _pdf_single_value_piecewise_post_rounding_Z0(x0, alpha, beta, quad_eps,
224
+ x_tol_near_zeta):
225
+ """Calculate pdf using Nolan's methods as detailed in [NO]."""
226
+
227
+ _nolan = Nolan(alpha, beta, x0)
228
+ zeta = _nolan.zeta
229
+ xi = _nolan.xi
230
+ c2 = _nolan.c2
231
+ g = _nolan.g
232
+
233
+ # round x0 to zeta again if needed. zeta was recomputed and may have
234
+ # changed due to floating point differences.
235
+ # See https://github.com/scipy/scipy/pull/18133
236
+ x0 = _nolan_round_x_near_zeta(x0, alpha, zeta, x_tol_near_zeta)
237
+ # handle Nolan's initial case logic
238
+ if x0 == zeta:
239
+ return (
240
+ sc.gamma(1 + 1 / alpha)
241
+ * np.cos(xi)
242
+ / np.pi
243
+ / ((1 + zeta ** 2) ** (1 / alpha / 2))
244
+ )
245
+ elif x0 < zeta:
246
+ return _pdf_single_value_piecewise_post_rounding_Z0(
247
+ -x0, alpha, -beta, quad_eps, x_tol_near_zeta
248
+ )
249
+
250
+ # following Nolan, we may now assume
251
+ # x0 > zeta when alpha != 1
252
+ # beta != 0 when alpha == 1
253
+
254
+ # spare calculating integral on null set
255
+ # use isclose as macos has fp differences
256
+ if np.isclose(-xi, np.pi / 2, rtol=1e-014, atol=1e-014):
257
+ return 0.0
258
+
259
+ def integrand(theta):
260
+ # limit any numerical issues leading to g_1 < 0 near theta limits
261
+ g_1 = g(theta)
262
+ if not np.isfinite(g_1) or g_1 < 0:
263
+ g_1 = 0
264
+ return g_1 * np.exp(-g_1)
265
+
266
+ with np.errstate(all="ignore"):
267
+ peak = optimize.bisect(
268
+ lambda t: g(t) - 1, -xi, np.pi / 2, xtol=quad_eps
269
+ )
270
+
271
+ # this integrand can be very peaked, so we need to force
272
+ # QUADPACK to evaluate the function inside its support
273
+ #
274
+
275
+ # lastly, we add additional samples at
276
+ # ~exp(-100), ~exp(-10), ~exp(-5), ~exp(-1)
277
+ # to improve QUADPACK's detection of rapidly descending tail behavior
278
+ # (this choice is fairly ad hoc)
279
+ tail_points = [
280
+ optimize.bisect(lambda t: g(t) - exp_height, -xi, np.pi / 2)
281
+ for exp_height in [100, 10, 5]
282
+ # exp_height = 1 is handled by peak
283
+ ]
284
+ intg_points = [0, peak] + tail_points
285
+ intg, *ret = integrate.quad(
286
+ integrand,
287
+ -xi,
288
+ np.pi / 2,
289
+ points=intg_points,
290
+ limit=100,
291
+ epsrel=quad_eps,
292
+ epsabs=0,
293
+ full_output=1,
294
+ )
295
+
296
+ return c2 * intg
297
+
298
+
299
+ def _cdf_single_value_piecewise_Z1(x, alpha, beta, **kwds):
300
+ # convert from Nolan's S_1 (aka S) to S_0 (aka Zolaterev M)
301
+ # parameterization
302
+
303
+ zeta = -beta * np.tan(np.pi * alpha / 2.0)
304
+ x0 = x + zeta if alpha != 1 else x
305
+
306
+ return _cdf_single_value_piecewise_Z0(x0, alpha, beta, **kwds)
307
+
308
+
309
+ def _cdf_single_value_piecewise_Z0(x0, alpha, beta, **kwds):
310
+
311
+ quad_eps = kwds.get("quad_eps", _QUAD_EPS)
312
+ x_tol_near_zeta = kwds.get("piecewise_x_tol_near_zeta", 0.005)
313
+ alpha_tol_near_one = kwds.get("piecewise_alpha_tol_near_one", 0.005)
314
+
315
+ zeta = -beta * np.tan(np.pi * alpha / 2.0)
316
+ x0, alpha, beta = _nolan_round_difficult_input(
317
+ x0, alpha, beta, zeta, x_tol_near_zeta, alpha_tol_near_one
318
+ )
319
+
320
+ # some other known distribution cdfs / analytical cases
321
+ # TODO: add more where possible with test coverage,
322
+ # eg https://en.wikipedia.org/wiki/Stable_distribution#Other_analytic_cases
323
+ if alpha == 2.0:
324
+ # normal
325
+ return _norm_cdf(x0 / np.sqrt(2))
326
+ elif alpha == 0.5 and beta == 1.0:
327
+ # levy
328
+ # since S(1/2, 1, gamma, delta; <x>) ==
329
+ # S(1/2, 1, gamma, gamma + delta; <x0>).
330
+ _x = x0 + 1
331
+ if _x <= 0:
332
+ return 0
333
+
334
+ return sc.erfc(np.sqrt(0.5 / _x))
335
+ elif alpha == 1.0 and beta == 0.0:
336
+ # cauchy
337
+ return 0.5 + np.arctan(x0) / np.pi
338
+
339
+ return _cdf_single_value_piecewise_post_rounding_Z0(
340
+ x0, alpha, beta, quad_eps, x_tol_near_zeta
341
+ )
342
+
343
+
344
+ def _cdf_single_value_piecewise_post_rounding_Z0(x0, alpha, beta, quad_eps,
345
+ x_tol_near_zeta):
346
+ """Calculate cdf using Nolan's methods as detailed in [NO]."""
347
+ _nolan = Nolan(alpha, beta, x0)
348
+ zeta = _nolan.zeta
349
+ xi = _nolan.xi
350
+ c1 = _nolan.c1
351
+ # c2 = _nolan.c2
352
+ c3 = _nolan.c3
353
+ g = _nolan.g
354
+ # round x0 to zeta again if needed. zeta was recomputed and may have
355
+ # changed due to floating point differences.
356
+ # See https://github.com/scipy/scipy/pull/18133
357
+ x0 = _nolan_round_x_near_zeta(x0, alpha, zeta, x_tol_near_zeta)
358
+ # handle Nolan's initial case logic
359
+ if (alpha == 1 and beta < 0) or x0 < zeta:
360
+ # NOTE: Nolan's paper has a typo here!
361
+ # He states F(x) = 1 - F(x, alpha, -beta), but this is clearly
362
+ # incorrect since F(-infty) would be 1.0 in this case
363
+ # Indeed, the alpha != 1, x0 < zeta case is correct here.
364
+ return 1 - _cdf_single_value_piecewise_post_rounding_Z0(
365
+ -x0, alpha, -beta, quad_eps, x_tol_near_zeta
366
+ )
367
+ elif x0 == zeta:
368
+ return 0.5 - xi / np.pi
369
+
370
+ # following Nolan, we may now assume
371
+ # x0 > zeta when alpha != 1
372
+ # beta > 0 when alpha == 1
373
+
374
+ # spare calculating integral on null set
375
+ # use isclose as macos has fp differences
376
+ if np.isclose(-xi, np.pi / 2, rtol=1e-014, atol=1e-014):
377
+ return c1
378
+
379
+ def integrand(theta):
380
+ g_1 = g(theta)
381
+ return np.exp(-g_1)
382
+
383
+ with np.errstate(all="ignore"):
384
+ # shrink supports where required
385
+ left_support = -xi
386
+ right_support = np.pi / 2
387
+ if alpha > 1:
388
+ # integrand(t) monotonic 0 to 1
389
+ if integrand(-xi) != 0.0:
390
+ res = optimize.minimize(
391
+ integrand,
392
+ (-xi,),
393
+ method="L-BFGS-B",
394
+ bounds=[(-xi, np.pi / 2)],
395
+ )
396
+ left_support = res.x[0]
397
+ else:
398
+ # integrand(t) monotonic 1 to 0
399
+ if integrand(np.pi / 2) != 0.0:
400
+ res = optimize.minimize(
401
+ integrand,
402
+ (np.pi / 2,),
403
+ method="L-BFGS-B",
404
+ bounds=[(-xi, np.pi / 2)],
405
+ )
406
+ right_support = res.x[0]
407
+
408
+ intg, *ret = integrate.quad(
409
+ integrand,
410
+ left_support,
411
+ right_support,
412
+ points=[left_support, right_support],
413
+ limit=100,
414
+ epsrel=quad_eps,
415
+ epsabs=0,
416
+ full_output=1,
417
+ )
418
+
419
+ return c1 + c3 * intg
420
+
421
+
422
+ def _rvs_Z1(alpha, beta, size=None, random_state=None):
423
+ """Simulate random variables using Nolan's methods as detailed in [NO].
424
+ """
425
+
426
+ def alpha1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
427
+ return (
428
+ 2
429
+ / np.pi
430
+ * (
431
+ (np.pi / 2 + bTH) * tanTH
432
+ - beta * np.log((np.pi / 2 * W * cosTH) / (np.pi / 2 + bTH))
433
+ )
434
+ )
435
+
436
+ def beta0func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
437
+ return (
438
+ W
439
+ / (cosTH / np.tan(aTH) + np.sin(TH))
440
+ * ((np.cos(aTH) + np.sin(aTH) * tanTH) / W) ** (1.0 / alpha)
441
+ )
442
+
443
+ def otherwise(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
444
+ # alpha is not 1 and beta is not 0
445
+ val0 = beta * np.tan(np.pi * alpha / 2)
446
+ th0 = np.arctan(val0) / alpha
447
+ val3 = W / (cosTH / np.tan(alpha * (th0 + TH)) + np.sin(TH))
448
+ res3 = val3 * (
449
+ (
450
+ np.cos(aTH)
451
+ + np.sin(aTH) * tanTH
452
+ - val0 * (np.sin(aTH) - np.cos(aTH) * tanTH)
453
+ )
454
+ / W
455
+ ) ** (1.0 / alpha)
456
+ return res3
457
+
458
+ def alphanot1func(alpha, beta, TH, aTH, bTH, cosTH, tanTH, W):
459
+ res = _lazywhere(
460
+ beta == 0,
461
+ (alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
462
+ beta0func,
463
+ f2=otherwise,
464
+ )
465
+ return res
466
+
467
+ alpha = np.broadcast_to(alpha, size)
468
+ beta = np.broadcast_to(beta, size)
469
+ TH = uniform.rvs(
470
+ loc=-np.pi / 2.0, scale=np.pi, size=size, random_state=random_state
471
+ )
472
+ W = expon.rvs(size=size, random_state=random_state)
473
+ aTH = alpha * TH
474
+ bTH = beta * TH
475
+ cosTH = np.cos(TH)
476
+ tanTH = np.tan(TH)
477
+ res = _lazywhere(
478
+ alpha == 1,
479
+ (alpha, beta, TH, aTH, bTH, cosTH, tanTH, W),
480
+ alpha1func,
481
+ f2=alphanot1func,
482
+ )
483
+ return res
484
+
485
+
486
+ def _fitstart_S0(data):
487
+ alpha, beta, delta1, gamma = _fitstart_S1(data)
488
+
489
+ # Formulas for mapping parameters in S1 parameterization to
490
+ # those in S0 parameterization can be found in [NO]. Note that
491
+ # only delta changes.
492
+ if alpha != 1:
493
+ delta0 = delta1 + beta * gamma * np.tan(np.pi * alpha / 2.0)
494
+ else:
495
+ delta0 = delta1 + 2 * beta * gamma * np.log(gamma) / np.pi
496
+
497
+ return alpha, beta, delta0, gamma
498
+
499
+
500
+ def _fitstart_S1(data):
501
+ # We follow McCullock 1986 method - Simple Consistent Estimators
502
+ # of Stable Distribution Parameters
503
+
504
+ # fmt: off
505
+ # Table III and IV
506
+ nu_alpha_range = [2.439, 2.5, 2.6, 2.7, 2.8, 3, 3.2, 3.5, 4,
507
+ 5, 6, 8, 10, 15, 25]
508
+ nu_beta_range = [0, 0.1, 0.2, 0.3, 0.5, 0.7, 1]
509
+
510
+ # table III - alpha = psi_1(nu_alpha, nu_beta)
511
+ alpha_table = np.array([
512
+ [2.000, 2.000, 2.000, 2.000, 2.000, 2.000, 2.000],
513
+ [1.916, 1.924, 1.924, 1.924, 1.924, 1.924, 1.924],
514
+ [1.808, 1.813, 1.829, 1.829, 1.829, 1.829, 1.829],
515
+ [1.729, 1.730, 1.737, 1.745, 1.745, 1.745, 1.745],
516
+ [1.664, 1.663, 1.663, 1.668, 1.676, 1.676, 1.676],
517
+ [1.563, 1.560, 1.553, 1.548, 1.547, 1.547, 1.547],
518
+ [1.484, 1.480, 1.471, 1.460, 1.448, 1.438, 1.438],
519
+ [1.391, 1.386, 1.378, 1.364, 1.337, 1.318, 1.318],
520
+ [1.279, 1.273, 1.266, 1.250, 1.210, 1.184, 1.150],
521
+ [1.128, 1.121, 1.114, 1.101, 1.067, 1.027, 0.973],
522
+ [1.029, 1.021, 1.014, 1.004, 0.974, 0.935, 0.874],
523
+ [0.896, 0.892, 0.884, 0.883, 0.855, 0.823, 0.769],
524
+ [0.818, 0.812, 0.806, 0.801, 0.780, 0.756, 0.691],
525
+ [0.698, 0.695, 0.692, 0.689, 0.676, 0.656, 0.597],
526
+ [0.593, 0.590, 0.588, 0.586, 0.579, 0.563, 0.513]]).T
527
+ # transpose because interpolation with `RectBivariateSpline` is with
528
+ # `nu_beta` as `x` and `nu_alpha` as `y`
529
+
530
+ # table IV - beta = psi_2(nu_alpha, nu_beta)
531
+ beta_table = np.array([
532
+ [0, 2.160, 1.000, 1.000, 1.000, 1.000, 1.000],
533
+ [0, 1.592, 3.390, 1.000, 1.000, 1.000, 1.000],
534
+ [0, 0.759, 1.800, 1.000, 1.000, 1.000, 1.000],
535
+ [0, 0.482, 1.048, 1.694, 1.000, 1.000, 1.000],
536
+ [0, 0.360, 0.760, 1.232, 2.229, 1.000, 1.000],
537
+ [0, 0.253, 0.518, 0.823, 1.575, 1.000, 1.000],
538
+ [0, 0.203, 0.410, 0.632, 1.244, 1.906, 1.000],
539
+ [0, 0.165, 0.332, 0.499, 0.943, 1.560, 1.000],
540
+ [0, 0.136, 0.271, 0.404, 0.689, 1.230, 2.195],
541
+ [0, 0.109, 0.216, 0.323, 0.539, 0.827, 1.917],
542
+ [0, 0.096, 0.190, 0.284, 0.472, 0.693, 1.759],
543
+ [0, 0.082, 0.163, 0.243, 0.412, 0.601, 1.596],
544
+ [0, 0.074, 0.147, 0.220, 0.377, 0.546, 1.482],
545
+ [0, 0.064, 0.128, 0.191, 0.330, 0.478, 1.362],
546
+ [0, 0.056, 0.112, 0.167, 0.285, 0.428, 1.274]]).T
547
+
548
+ # Table V and VII
549
+ # These are ordered with decreasing `alpha_range`; so we will need to
550
+ # reverse them as required by RectBivariateSpline.
551
+ alpha_range = [2, 1.9, 1.8, 1.7, 1.6, 1.5, 1.4, 1.3, 1.2, 1.1,
552
+ 1, 0.9, 0.8, 0.7, 0.6, 0.5][::-1]
553
+ beta_range = [0, 0.25, 0.5, 0.75, 1]
554
+
555
+ # Table V - nu_c = psi_3(alpha, beta)
556
+ nu_c_table = np.array([
557
+ [1.908, 1.908, 1.908, 1.908, 1.908],
558
+ [1.914, 1.915, 1.916, 1.918, 1.921],
559
+ [1.921, 1.922, 1.927, 1.936, 1.947],
560
+ [1.927, 1.930, 1.943, 1.961, 1.987],
561
+ [1.933, 1.940, 1.962, 1.997, 2.043],
562
+ [1.939, 1.952, 1.988, 2.045, 2.116],
563
+ [1.946, 1.967, 2.022, 2.106, 2.211],
564
+ [1.955, 1.984, 2.067, 2.188, 2.333],
565
+ [1.965, 2.007, 2.125, 2.294, 2.491],
566
+ [1.980, 2.040, 2.205, 2.435, 2.696],
567
+ [2.000, 2.085, 2.311, 2.624, 2.973],
568
+ [2.040, 2.149, 2.461, 2.886, 3.356],
569
+ [2.098, 2.244, 2.676, 3.265, 3.912],
570
+ [2.189, 2.392, 3.004, 3.844, 4.775],
571
+ [2.337, 2.634, 3.542, 4.808, 6.247],
572
+ [2.588, 3.073, 4.534, 6.636, 9.144]])[::-1].T
573
+ # transpose because interpolation with `RectBivariateSpline` is with
574
+ # `beta` as `x` and `alpha` as `y`
575
+
576
+ # Table VII - nu_zeta = psi_5(alpha, beta)
577
+ nu_zeta_table = np.array([
578
+ [0, 0.000, 0.000, 0.000, 0.000],
579
+ [0, -0.017, -0.032, -0.049, -0.064],
580
+ [0, -0.030, -0.061, -0.092, -0.123],
581
+ [0, -0.043, -0.088, -0.132, -0.179],
582
+ [0, -0.056, -0.111, -0.170, -0.232],
583
+ [0, -0.066, -0.134, -0.206, -0.283],
584
+ [0, -0.075, -0.154, -0.241, -0.335],
585
+ [0, -0.084, -0.173, -0.276, -0.390],
586
+ [0, -0.090, -0.192, -0.310, -0.447],
587
+ [0, -0.095, -0.208, -0.346, -0.508],
588
+ [0, -0.098, -0.223, -0.380, -0.576],
589
+ [0, -0.099, -0.237, -0.424, -0.652],
590
+ [0, -0.096, -0.250, -0.469, -0.742],
591
+ [0, -0.089, -0.262, -0.520, -0.853],
592
+ [0, -0.078, -0.272, -0.581, -0.997],
593
+ [0, -0.061, -0.279, -0.659, -1.198]])[::-1].T
594
+ # fmt: on
595
+
596
+ psi_1 = RectBivariateSpline(nu_beta_range, nu_alpha_range,
597
+ alpha_table, kx=1, ky=1, s=0)
598
+
599
+ def psi_1_1(nu_beta, nu_alpha):
600
+ return psi_1(nu_beta, nu_alpha) \
601
+ if nu_beta > 0 else psi_1(-nu_beta, nu_alpha)
602
+
603
+ psi_2 = RectBivariateSpline(nu_beta_range, nu_alpha_range,
604
+ beta_table, kx=1, ky=1, s=0)
605
+
606
+ def psi_2_1(nu_beta, nu_alpha):
607
+ return psi_2(nu_beta, nu_alpha) \
608
+ if nu_beta > 0 else -psi_2(-nu_beta, nu_alpha)
609
+
610
+ phi_3 = RectBivariateSpline(beta_range, alpha_range, nu_c_table,
611
+ kx=1, ky=1, s=0)
612
+
613
+ def phi_3_1(beta, alpha):
614
+ return phi_3(beta, alpha) if beta > 0 else phi_3(-beta, alpha)
615
+
616
+ phi_5 = RectBivariateSpline(beta_range, alpha_range, nu_zeta_table,
617
+ kx=1, ky=1, s=0)
618
+
619
+ def phi_5_1(beta, alpha):
620
+ return phi_5(beta, alpha) if beta > 0 else -phi_5(-beta, alpha)
621
+
622
+ # quantiles
623
+ p05 = np.percentile(data, 5)
624
+ p50 = np.percentile(data, 50)
625
+ p95 = np.percentile(data, 95)
626
+ p25 = np.percentile(data, 25)
627
+ p75 = np.percentile(data, 75)
628
+
629
+ nu_alpha = (p95 - p05) / (p75 - p25)
630
+ nu_beta = (p95 + p05 - 2 * p50) / (p95 - p05)
631
+
632
+ if nu_alpha >= 2.439:
633
+ eps = np.finfo(float).eps
634
+ alpha = np.clip(psi_1_1(nu_beta, nu_alpha)[0, 0], eps, 2.)
635
+ beta = np.clip(psi_2_1(nu_beta, nu_alpha)[0, 0], -1.0, 1.0)
636
+ else:
637
+ alpha = 2.0
638
+ beta = np.sign(nu_beta)
639
+ c = (p75 - p25) / phi_3_1(beta, alpha)[0, 0]
640
+ zeta = p50 + c * phi_5_1(beta, alpha)[0, 0]
641
+ delta = zeta-beta*c*np.tan(np.pi*alpha/2.) if alpha != 1. else zeta
642
+
643
+ return (alpha, beta, delta, c)
644
+
645
+
646
+ class levy_stable_gen(rv_continuous):
647
+ r"""A Levy-stable continuous random variable.
648
+
649
+ %(before_notes)s
650
+
651
+ See Also
652
+ --------
653
+ levy, levy_l, cauchy, norm
654
+
655
+ Notes
656
+ -----
657
+ The distribution for `levy_stable` has characteristic function:
658
+
659
+ .. math::
660
+
661
+ \varphi(t, \alpha, \beta, c, \mu) =
662
+ e^{it\mu -|ct|^{\alpha}(1-i\beta\operatorname{sign}(t)\Phi(\alpha, t))}
663
+
664
+ where two different parameterizations are supported. The first :math:`S_1`:
665
+
666
+ .. math::
667
+
668
+ \Phi = \begin{cases}
669
+ \tan \left({\frac {\pi \alpha }{2}}\right)&\alpha \neq 1\\
670
+ -{\frac {2}{\pi }}\log |t|&\alpha =1
671
+ \end{cases}
672
+
673
+ The second :math:`S_0`:
674
+
675
+ .. math::
676
+
677
+ \Phi = \begin{cases}
678
+ -\tan \left({\frac {\pi \alpha }{2}}\right)(|ct|^{1-\alpha}-1)
679
+ &\alpha \neq 1\\
680
+ -{\frac {2}{\pi }}\log |ct|&\alpha =1
681
+ \end{cases}
682
+
683
+
684
+ The probability density function for `levy_stable` is:
685
+
686
+ .. math::
687
+
688
+ f(x) = \frac{1}{2\pi}\int_{-\infty}^\infty \varphi(t)e^{-ixt}\,dt
689
+
690
+ where :math:`-\infty < t < \infty`. This integral does not have a known
691
+ closed form.
692
+
693
+ `levy_stable` generalizes several distributions. Where possible, they
694
+ should be used instead. Specifically, when the shape parameters
695
+ assume the values in the table below, the corresponding equivalent
696
+ distribution should be used.
697
+
698
+ ========= ======== ===========
699
+ ``alpha`` ``beta`` Equivalent
700
+ ========= ======== ===========
701
+ 1/2 -1 `levy_l`
702
+ 1/2 1 `levy`
703
+ 1 0 `cauchy`
704
+ 2 any `norm` (with ``scale=sqrt(2)``)
705
+ ========= ======== ===========
706
+
707
+ Evaluation of the pdf uses Nolan's piecewise integration approach with the
708
+ Zolotarev :math:`M` parameterization by default. There is also the option
709
+ to use direct numerical integration of the standard parameterization of the
710
+ characteristic function or to evaluate by taking the FFT of the
711
+ characteristic function.
712
+
713
+ The default method can changed by setting the class variable
714
+ ``levy_stable.pdf_default_method`` to one of 'piecewise' for Nolan's
715
+ approach, 'dni' for direct numerical integration, or 'fft-simpson' for the
716
+ FFT based approach. For the sake of backwards compatibility, the methods
717
+ 'best' and 'zolotarev' are equivalent to 'piecewise' and the method
718
+ 'quadrature' is equivalent to 'dni'.
719
+
720
+ The parameterization can be changed by setting the class variable
721
+ ``levy_stable.parameterization`` to either 'S0' or 'S1'.
722
+ The default is 'S1'.
723
+
724
+ To improve performance of piecewise and direct numerical integration one
725
+ can specify ``levy_stable.quad_eps`` (defaults to 1.2e-14). This is used
726
+ as both the absolute and relative quadrature tolerance for direct numerical
727
+ integration and as the relative quadrature tolerance for the piecewise
728
+ method. One can also specify ``levy_stable.piecewise_x_tol_near_zeta``
729
+ (defaults to 0.005) for how close x is to zeta before it is considered the
730
+ same as x [NO]. The exact check is
731
+ ``abs(x0 - zeta) < piecewise_x_tol_near_zeta*alpha**(1/alpha)``. One can
732
+ also specify ``levy_stable.piecewise_alpha_tol_near_one`` (defaults to
733
+ 0.005) for how close alpha is to 1 before being considered equal to 1.
734
+
735
+ To increase accuracy of FFT calculation one can specify
736
+ ``levy_stable.pdf_fft_grid_spacing`` (defaults to 0.001) and
737
+ ``pdf_fft_n_points_two_power`` (defaults to None which means a value is
738
+ calculated that sufficiently covers the input range).
739
+
740
+ Further control over FFT calculation is available by setting
741
+ ``pdf_fft_interpolation_degree`` (defaults to 3) for spline order and
742
+ ``pdf_fft_interpolation_level`` for determining the number of points to use
743
+ in the Newton-Cotes formula when approximating the characteristic function
744
+ (considered experimental).
745
+
746
+ Evaluation of the cdf uses Nolan's piecewise integration approach with the
747
+ Zolatarev :math:`S_0` parameterization by default. There is also the option
748
+ to evaluate through integration of an interpolated spline of the pdf
749
+ calculated by means of the FFT method. The settings affecting FFT
750
+ calculation are the same as for pdf calculation. The default cdf method can
751
+ be changed by setting ``levy_stable.cdf_default_method`` to either
752
+ 'piecewise' or 'fft-simpson'. For cdf calculations the Zolatarev method is
753
+ superior in accuracy, so FFT is disabled by default.
754
+
755
+ Fitting estimate uses quantile estimation method in [MC]. MLE estimation of
756
+ parameters in fit method uses this quantile estimate initially. Note that
757
+ MLE doesn't always converge if using FFT for pdf calculations; this will be
758
+ the case if alpha <= 1 where the FFT approach doesn't give good
759
+ approximations.
760
+
761
+ Any non-missing value for the attribute
762
+ ``levy_stable.pdf_fft_min_points_threshold`` will set
763
+ ``levy_stable.pdf_default_method`` to 'fft-simpson' if a valid
764
+ default method is not otherwise set.
765
+
766
+
767
+
768
+ .. warning::
769
+
770
+ For pdf calculations FFT calculation is considered experimental.
771
+
772
+ For cdf calculations FFT calculation is considered experimental. Use
773
+ Zolatarev's method instead (default).
774
+
775
+ The probability density above is defined in the "standardized" form. To
776
+ shift and/or scale the distribution use the ``loc`` and ``scale``
777
+ parameters.
778
+ Generally ``%(name)s.pdf(x, %(shapes)s, loc, scale)`` is identically
779
+ equivalent to ``%(name)s.pdf(y, %(shapes)s) / scale`` with
780
+ ``y = (x - loc) / scale``, except in the ``S1`` parameterization if
781
+ ``alpha == 1``. In that case ``%(name)s.pdf(x, %(shapes)s, loc, scale)``
782
+ is identically equivalent to ``%(name)s.pdf(y, %(shapes)s) / scale`` with
783
+ ``y = (x - loc - 2 * beta * scale * np.log(scale) / np.pi) / scale``.
784
+ See [NO2]_ Definition 1.8 for more information.
785
+ Note that shifting the location of a distribution
786
+ does not make it a "noncentral" distribution.
787
+
788
+ References
789
+ ----------
790
+ .. [MC] McCulloch, J., 1986. Simple consistent estimators of stable
791
+ distribution parameters. Communications in Statistics - Simulation and
792
+ Computation 15, 11091136.
793
+ .. [WZ] Wang, Li and Zhang, Ji-Hong, 2008. Simpson's rule based FFT method
794
+ to compute densities of stable distribution.
795
+ .. [NO] Nolan, J., 1997. Numerical Calculation of Stable Densities and
796
+ distributions Functions.
797
+ .. [NO2] Nolan, J., 2018. Stable Distributions: Models for Heavy Tailed
798
+ Data.
799
+ .. [HO] Hopcraft, K. I., Jakeman, E., Tanner, R. M. J., 1999. Lévy random
800
+ walks with fluctuating step number and multiscale behavior.
801
+
802
+ %(example)s
803
+
804
+ """
805
+ # Configurable options as class variables
806
+ # (accessible from self by attribute lookup).
807
+ parameterization = "S1"
808
+ pdf_default_method = "piecewise"
809
+ cdf_default_method = "piecewise"
810
+ quad_eps = _QUAD_EPS
811
+ piecewise_x_tol_near_zeta = 0.005
812
+ piecewise_alpha_tol_near_one = 0.005
813
+ pdf_fft_min_points_threshold = None
814
+ pdf_fft_grid_spacing = 0.001
815
+ pdf_fft_n_points_two_power = None
816
+ pdf_fft_interpolation_level = 3
817
+ pdf_fft_interpolation_degree = 3
818
+
819
+ def _argcheck(self, alpha, beta):
820
+ return (alpha > 0) & (alpha <= 2) & (beta <= 1) & (beta >= -1)
821
+
822
+ def _shape_info(self):
823
+ ialpha = _ShapeInfo("alpha", False, (0, 2), (False, True))
824
+ ibeta = _ShapeInfo("beta", False, (-1, 1), (True, True))
825
+ return [ialpha, ibeta]
826
+
827
+ def _parameterization(self):
828
+ allowed = ("S0", "S1")
829
+ pz = self.parameterization
830
+ if pz not in allowed:
831
+ raise RuntimeError(
832
+ f"Parameterization '{pz}' in supported list: {allowed}"
833
+ )
834
+ return pz
835
+
836
+ @inherit_docstring_from(rv_continuous)
837
+ def rvs(self, *args, **kwds):
838
+ X1 = super().rvs(*args, **kwds)
839
+
840
+ kwds.pop("discrete", None)
841
+ kwds.pop("random_state", None)
842
+ (alpha, beta), delta, gamma, size = self._parse_args_rvs(*args, **kwds)
843
+
844
+ # shift location for this parameterisation (S1)
845
+ X1 = np.where(
846
+ alpha == 1.0, X1 + 2 * beta * gamma * np.log(gamma) / np.pi, X1
847
+ )
848
+
849
+ if self._parameterization() == "S0":
850
+ return np.where(
851
+ alpha == 1.0,
852
+ X1 - (beta * 2 * gamma * np.log(gamma) / np.pi),
853
+ X1 - gamma * beta * np.tan(np.pi * alpha / 2.0),
854
+ )
855
+ elif self._parameterization() == "S1":
856
+ return X1
857
+
858
+ def _rvs(self, alpha, beta, size=None, random_state=None):
859
+ return _rvs_Z1(alpha, beta, size, random_state)
860
+
861
+ @inherit_docstring_from(rv_continuous)
862
+ def pdf(self, x, *args, **kwds):
863
+ # override base class version to correct
864
+ # location for S1 parameterization
865
+ if self._parameterization() == "S0":
866
+ return super().pdf(x, *args, **kwds)
867
+ elif self._parameterization() == "S1":
868
+ (alpha, beta), delta, gamma = self._parse_args(*args, **kwds)
869
+ if np.all(np.reshape(alpha, (1, -1))[0, :] != 1):
870
+ return super().pdf(x, *args, **kwds)
871
+ else:
872
+ # correct location for this parameterisation
873
+ x = np.reshape(x, (1, -1))[0, :]
874
+ x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
875
+
876
+ data_in = np.dstack((x, alpha, beta))[0]
877
+ data_out = np.empty(shape=(len(data_in), 1))
878
+ # group data in unique arrays of alpha, beta pairs
879
+ uniq_param_pairs = np.unique(data_in[:, 1:], axis=0)
880
+ for pair in uniq_param_pairs:
881
+ _alpha, _beta = pair
882
+ _delta = (
883
+ delta + 2 * _beta * gamma * np.log(gamma) / np.pi
884
+ if _alpha == 1.0
885
+ else delta
886
+ )
887
+ data_mask = np.all(data_in[:, 1:] == pair, axis=-1)
888
+ _x = data_in[data_mask, 0]
889
+ data_out[data_mask] = (
890
+ super()
891
+ .pdf(_x, _alpha, _beta, loc=_delta, scale=gamma)
892
+ .reshape(len(_x), 1)
893
+ )
894
+ output = data_out.T[0]
895
+ if output.shape == (1,):
896
+ return output[0]
897
+ return output
898
+
899
+ def _pdf(self, x, alpha, beta):
900
+ if self._parameterization() == "S0":
901
+ _pdf_single_value_piecewise = _pdf_single_value_piecewise_Z0
902
+ _pdf_single_value_cf_integrate = _pdf_single_value_cf_integrate_Z0
903
+ _cf = _cf_Z0
904
+ elif self._parameterization() == "S1":
905
+ _pdf_single_value_piecewise = _pdf_single_value_piecewise_Z1
906
+ _pdf_single_value_cf_integrate = _pdf_single_value_cf_integrate_Z1
907
+ _cf = _cf_Z1
908
+
909
+ x = np.asarray(x).reshape(1, -1)[0, :]
910
+
911
+ x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
912
+
913
+ data_in = np.dstack((x, alpha, beta))[0]
914
+ data_out = np.empty(shape=(len(data_in), 1))
915
+
916
+ pdf_default_method_name = self.pdf_default_method
917
+ if pdf_default_method_name in ("piecewise", "best", "zolotarev"):
918
+ pdf_single_value_method = _pdf_single_value_piecewise
919
+ elif pdf_default_method_name in ("dni", "quadrature"):
920
+ pdf_single_value_method = _pdf_single_value_cf_integrate
921
+ elif (
922
+ pdf_default_method_name == "fft-simpson"
923
+ or self.pdf_fft_min_points_threshold is not None
924
+ ):
925
+ pdf_single_value_method = None
926
+
927
+ pdf_single_value_kwds = {
928
+ "quad_eps": self.quad_eps,
929
+ "piecewise_x_tol_near_zeta": self.piecewise_x_tol_near_zeta,
930
+ "piecewise_alpha_tol_near_one": self.piecewise_alpha_tol_near_one,
931
+ }
932
+
933
+ fft_grid_spacing = self.pdf_fft_grid_spacing
934
+ fft_n_points_two_power = self.pdf_fft_n_points_two_power
935
+ fft_interpolation_level = self.pdf_fft_interpolation_level
936
+ fft_interpolation_degree = self.pdf_fft_interpolation_degree
937
+
938
+ # group data in unique arrays of alpha, beta pairs
939
+ uniq_param_pairs = np.unique(data_in[:, 1:], axis=0)
940
+ for pair in uniq_param_pairs:
941
+ data_mask = np.all(data_in[:, 1:] == pair, axis=-1)
942
+ data_subset = data_in[data_mask]
943
+ if pdf_single_value_method is not None:
944
+ data_out[data_mask] = np.array(
945
+ [
946
+ pdf_single_value_method(
947
+ _x, _alpha, _beta, **pdf_single_value_kwds
948
+ )
949
+ for _x, _alpha, _beta in data_subset
950
+ ]
951
+ ).reshape(len(data_subset), 1)
952
+ else:
953
+ warnings.warn(
954
+ "Density calculations experimental for FFT method."
955
+ + " Use combination of piecewise and dni methods instead.",
956
+ RuntimeWarning, stacklevel=3,
957
+ )
958
+ _alpha, _beta = pair
959
+ _x = data_subset[:, (0,)]
960
+
961
+ if _alpha < 1.0:
962
+ raise RuntimeError(
963
+ "FFT method does not work well for alpha less than 1."
964
+ )
965
+
966
+ # need enough points to "cover" _x for interpolation
967
+ if fft_grid_spacing is None and fft_n_points_two_power is None:
968
+ raise ValueError(
969
+ "One of fft_grid_spacing or fft_n_points_two_power "
970
+ + "needs to be set."
971
+ )
972
+ max_abs_x = np.max(np.abs(_x))
973
+ h = (
974
+ 2 ** (3 - fft_n_points_two_power) * max_abs_x
975
+ if fft_grid_spacing is None
976
+ else fft_grid_spacing
977
+ )
978
+ q = (
979
+ np.ceil(np.log(2 * max_abs_x / h) / np.log(2)) + 2
980
+ if fft_n_points_two_power is None
981
+ else int(fft_n_points_two_power)
982
+ )
983
+
984
+ # for some parameters, the range of x can be quite
985
+ # large, let's choose an arbitrary cut off (8GB) to save on
986
+ # computer memory.
987
+ MAX_Q = 30
988
+ if q > MAX_Q:
989
+ raise RuntimeError(
990
+ "fft_n_points_two_power has a maximum "
991
+ + f"value of {MAX_Q}"
992
+ )
993
+
994
+ density_x, density = pdf_from_cf_with_fft(
995
+ lambda t: _cf(t, _alpha, _beta),
996
+ h=h,
997
+ q=q,
998
+ level=fft_interpolation_level,
999
+ )
1000
+ f = interpolate.InterpolatedUnivariateSpline(
1001
+ density_x, np.real(density), k=fft_interpolation_degree
1002
+ ) # patch FFT to use cubic
1003
+ data_out[data_mask] = f(_x)
1004
+
1005
+ return data_out.T[0]
1006
+
1007
+ @inherit_docstring_from(rv_continuous)
1008
+ def cdf(self, x, *args, **kwds):
1009
+ # override base class version to correct
1010
+ # location for S1 parameterization
1011
+ # NOTE: this is near identical to pdf() above
1012
+ if self._parameterization() == "S0":
1013
+ return super().cdf(x, *args, **kwds)
1014
+ elif self._parameterization() == "S1":
1015
+ (alpha, beta), delta, gamma = self._parse_args(*args, **kwds)
1016
+ if np.all(np.reshape(alpha, (1, -1))[0, :] != 1):
1017
+ return super().cdf(x, *args, **kwds)
1018
+ else:
1019
+ # correct location for this parameterisation
1020
+ x = np.reshape(x, (1, -1))[0, :]
1021
+ x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
1022
+
1023
+ data_in = np.dstack((x, alpha, beta))[0]
1024
+ data_out = np.empty(shape=(len(data_in), 1))
1025
+ # group data in unique arrays of alpha, beta pairs
1026
+ uniq_param_pairs = np.unique(data_in[:, 1:], axis=0)
1027
+ for pair in uniq_param_pairs:
1028
+ _alpha, _beta = pair
1029
+ _delta = (
1030
+ delta + 2 * _beta * gamma * np.log(gamma) / np.pi
1031
+ if _alpha == 1.0
1032
+ else delta
1033
+ )
1034
+ data_mask = np.all(data_in[:, 1:] == pair, axis=-1)
1035
+ _x = data_in[data_mask, 0]
1036
+ data_out[data_mask] = (
1037
+ super()
1038
+ .cdf(_x, _alpha, _beta, loc=_delta, scale=gamma)
1039
+ .reshape(len(_x), 1)
1040
+ )
1041
+ output = data_out.T[0]
1042
+ if output.shape == (1,):
1043
+ return output[0]
1044
+ return output
1045
+
1046
+ def _cdf(self, x, alpha, beta):
1047
+ if self._parameterization() == "S0":
1048
+ _cdf_single_value_piecewise = _cdf_single_value_piecewise_Z0
1049
+ _cf = _cf_Z0
1050
+ elif self._parameterization() == "S1":
1051
+ _cdf_single_value_piecewise = _cdf_single_value_piecewise_Z1
1052
+ _cf = _cf_Z1
1053
+
1054
+ x = np.asarray(x).reshape(1, -1)[0, :]
1055
+
1056
+ x, alpha, beta = np.broadcast_arrays(x, alpha, beta)
1057
+
1058
+ data_in = np.dstack((x, alpha, beta))[0]
1059
+ data_out = np.empty(shape=(len(data_in), 1))
1060
+
1061
+ cdf_default_method_name = self.cdf_default_method
1062
+ if cdf_default_method_name == "piecewise":
1063
+ cdf_single_value_method = _cdf_single_value_piecewise
1064
+ elif cdf_default_method_name == "fft-simpson":
1065
+ cdf_single_value_method = None
1066
+
1067
+ cdf_single_value_kwds = {
1068
+ "quad_eps": self.quad_eps,
1069
+ "piecewise_x_tol_near_zeta": self.piecewise_x_tol_near_zeta,
1070
+ "piecewise_alpha_tol_near_one": self.piecewise_alpha_tol_near_one,
1071
+ }
1072
+
1073
+ fft_grid_spacing = self.pdf_fft_grid_spacing
1074
+ fft_n_points_two_power = self.pdf_fft_n_points_two_power
1075
+ fft_interpolation_level = self.pdf_fft_interpolation_level
1076
+ fft_interpolation_degree = self.pdf_fft_interpolation_degree
1077
+
1078
+ # group data in unique arrays of alpha, beta pairs
1079
+ uniq_param_pairs = np.unique(data_in[:, 1:], axis=0)
1080
+ for pair in uniq_param_pairs:
1081
+ data_mask = np.all(data_in[:, 1:] == pair, axis=-1)
1082
+ data_subset = data_in[data_mask]
1083
+ if cdf_single_value_method is not None:
1084
+ data_out[data_mask] = np.array(
1085
+ [
1086
+ cdf_single_value_method(
1087
+ _x, _alpha, _beta, **cdf_single_value_kwds
1088
+ )
1089
+ for _x, _alpha, _beta in data_subset
1090
+ ]
1091
+ ).reshape(len(data_subset), 1)
1092
+ else:
1093
+ warnings.warn(
1094
+ "Cumulative density calculations experimental for FFT"
1095
+ + " method. Use piecewise method instead.",
1096
+ RuntimeWarning, stacklevel=3,
1097
+ )
1098
+ _alpha, _beta = pair
1099
+ _x = data_subset[:, (0,)]
1100
+
1101
+ # need enough points to "cover" _x for interpolation
1102
+ if fft_grid_spacing is None and fft_n_points_two_power is None:
1103
+ raise ValueError(
1104
+ "One of fft_grid_spacing or fft_n_points_two_power "
1105
+ + "needs to be set."
1106
+ )
1107
+ max_abs_x = np.max(np.abs(_x))
1108
+ h = (
1109
+ 2 ** (3 - fft_n_points_two_power) * max_abs_x
1110
+ if fft_grid_spacing is None
1111
+ else fft_grid_spacing
1112
+ )
1113
+ q = (
1114
+ np.ceil(np.log(2 * max_abs_x / h) / np.log(2)) + 2
1115
+ if fft_n_points_two_power is None
1116
+ else int(fft_n_points_two_power)
1117
+ )
1118
+
1119
+ density_x, density = pdf_from_cf_with_fft(
1120
+ lambda t: _cf(t, _alpha, _beta),
1121
+ h=h,
1122
+ q=q,
1123
+ level=fft_interpolation_level,
1124
+ )
1125
+ f = interpolate.InterpolatedUnivariateSpline(
1126
+ density_x, np.real(density), k=fft_interpolation_degree
1127
+ )
1128
+ data_out[data_mask] = np.array(
1129
+ [f.integral(self.a, float(x_1.squeeze())) for x_1 in _x]
1130
+ ).reshape(data_out[data_mask].shape)
1131
+
1132
+ return data_out.T[0]
1133
+
1134
+ def _fitstart(self, data):
1135
+ if self._parameterization() == "S0":
1136
+ _fitstart = _fitstart_S0
1137
+ elif self._parameterization() == "S1":
1138
+ _fitstart = _fitstart_S1
1139
+ return _fitstart(data)
1140
+
1141
+ def _stats(self, alpha, beta):
1142
+ mu = 0 if alpha > 1 else np.nan
1143
+ mu2 = 2 if alpha == 2 else np.inf
1144
+ g1 = 0.0 if alpha == 2.0 else np.nan
1145
+ g2 = 0.0 if alpha == 2.0 else np.nan
1146
+ return mu, mu2, g1, g2
1147
+
1148
+
1149
+ # cotes numbers - see sequence from http://oeis.org/A100642
1150
+ Cotes_table = np.array(
1151
+ [[], [1]] + [v[2] for v in _builtincoeffs.values()], dtype=object
1152
+ )
1153
+ Cotes = np.array(
1154
+ [
1155
+ np.pad(r, (0, len(Cotes_table) - 1 - len(r)), mode='constant')
1156
+ for r in Cotes_table
1157
+ ]
1158
+ )
1159
+
1160
+
1161
+ def pdf_from_cf_with_fft(cf, h=0.01, q=9, level=3):
1162
+ """Calculates pdf from characteristic function.
1163
+
1164
+ Uses fast Fourier transform with Newton-Cotes integration following [WZ].
1165
+ Defaults to using Simpson's method (3-point Newton-Cotes integration).
1166
+
1167
+ Parameters
1168
+ ----------
1169
+ cf : callable
1170
+ Single argument function from float -> complex expressing a
1171
+ characteristic function for some distribution.
1172
+ h : Optional[float]
1173
+ Step size for Newton-Cotes integration. Default: 0.01
1174
+ q : Optional[int]
1175
+ Use 2**q steps when performing Newton-Cotes integration.
1176
+ The infinite integral in the inverse Fourier transform will then
1177
+ be restricted to the interval [-2**q * h / 2, 2**q * h / 2]. Setting
1178
+ the number of steps equal to a power of 2 allows the fft to be
1179
+ calculated in O(n*log(n)) time rather than O(n**2).
1180
+ Default: 9
1181
+ level : Optional[int]
1182
+ Calculate integral using n-point Newton-Cotes integration for
1183
+ n = level. The 3-point Newton-Cotes formula corresponds to Simpson's
1184
+ rule. Default: 3
1185
+
1186
+ Returns
1187
+ -------
1188
+ x_l : ndarray
1189
+ Array of points x at which pdf is estimated. 2**q equally spaced
1190
+ points from -pi/h up to but not including pi/h.
1191
+ density : ndarray
1192
+ Estimated values of pdf corresponding to cf at points in x_l.
1193
+
1194
+ References
1195
+ ----------
1196
+ .. [WZ] Wang, Li and Zhang, Ji-Hong, 2008. Simpson's rule based FFT method
1197
+ to compute densities of stable distribution.
1198
+ """
1199
+ n = level
1200
+ N = 2**q
1201
+ steps = np.arange(0, N)
1202
+ L = N * h / 2
1203
+ x_l = np.pi * (steps - N / 2) / L
1204
+ if level > 1:
1205
+ indices = np.arange(n).reshape(n, 1)
1206
+ s1 = np.sum(
1207
+ (-1) ** steps * Cotes[n, indices] * np.fft.fft(
1208
+ (-1)**steps * cf(-L + h * steps + h * indices / (n - 1))
1209
+ ) * np.exp(
1210
+ 1j * np.pi * indices / (n - 1)
1211
+ - 2 * 1j * np.pi * indices * steps /
1212
+ (N * (n - 1))
1213
+ ),
1214
+ axis=0
1215
+ )
1216
+ else:
1217
+ s1 = (-1) ** steps * Cotes[n, 0] * np.fft.fft(
1218
+ (-1) ** steps * cf(-L + h * steps)
1219
+ )
1220
+ density = h * s1 / (2 * np.pi * np.sum(Cotes[n]))
1221
+ return (x_l, density)
1222
+
1223
+
1224
+ levy_stable = levy_stable_gen(name="levy_stable")
venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (32.6 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_levy_stable/levyst.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (66.5 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_rcont/__init__.py ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ #
2
+ from .rcont import rvs_rcont1, rvs_rcont2
3
+
4
+ __all__ = ["rvs_rcont1", "rvs_rcont2"]
venv/lib/python3.10/site-packages/scipy/stats/_rcont/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (276 Bytes). View file
 
venv/lib/python3.10/site-packages/scipy/stats/_rcont/rcont.cpython-310-x86_64-linux-gnu.so ADDED
Binary file (299 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/tests/__init__.py ADDED
File without changes
venv/lib/python3.10/site-packages/scipy/stats/tests/common_tests.py ADDED
@@ -0,0 +1,351 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pickle
2
+
3
+ import numpy as np
4
+ import numpy.testing as npt
5
+ from numpy.testing import assert_allclose, assert_equal
6
+ from pytest import raises as assert_raises
7
+
8
+ import numpy.ma.testutils as ma_npt
9
+
10
+ from scipy._lib._util import (
11
+ getfullargspec_no_self as _getfullargspec, np_long
12
+ )
13
+ from scipy import stats
14
+
15
+
16
+ def check_named_results(res, attributes, ma=False):
17
+ for i, attr in enumerate(attributes):
18
+ if ma:
19
+ ma_npt.assert_equal(res[i], getattr(res, attr))
20
+ else:
21
+ npt.assert_equal(res[i], getattr(res, attr))
22
+
23
+
24
+ def check_normalization(distfn, args, distname):
25
+ norm_moment = distfn.moment(0, *args)
26
+ npt.assert_allclose(norm_moment, 1.0)
27
+
28
+ if distname == "rv_histogram_instance":
29
+ atol, rtol = 1e-5, 0
30
+ else:
31
+ atol, rtol = 1e-7, 1e-7
32
+
33
+ normalization_expect = distfn.expect(lambda x: 1, args=args)
34
+ npt.assert_allclose(normalization_expect, 1.0, atol=atol, rtol=rtol,
35
+ err_msg=distname, verbose=True)
36
+
37
+ _a, _b = distfn.support(*args)
38
+ normalization_cdf = distfn.cdf(_b, *args)
39
+ npt.assert_allclose(normalization_cdf, 1.0)
40
+
41
+
42
+ def check_moment(distfn, arg, m, v, msg):
43
+ m1 = distfn.moment(1, *arg)
44
+ m2 = distfn.moment(2, *arg)
45
+ if not np.isinf(m):
46
+ npt.assert_almost_equal(m1, m, decimal=10,
47
+ err_msg=msg + ' - 1st moment')
48
+ else: # or np.isnan(m1),
49
+ npt.assert_(np.isinf(m1),
50
+ msg + ' - 1st moment -infinite, m1=%s' % str(m1))
51
+
52
+ if not np.isinf(v):
53
+ npt.assert_almost_equal(m2 - m1 * m1, v, decimal=10,
54
+ err_msg=msg + ' - 2ndt moment')
55
+ else: # or np.isnan(m2),
56
+ npt.assert_(np.isinf(m2), msg + f' - 2nd moment -infinite, {m2=}')
57
+
58
+
59
+ def check_mean_expect(distfn, arg, m, msg):
60
+ if np.isfinite(m):
61
+ m1 = distfn.expect(lambda x: x, arg)
62
+ npt.assert_almost_equal(m1, m, decimal=5,
63
+ err_msg=msg + ' - 1st moment (expect)')
64
+
65
+
66
+ def check_var_expect(distfn, arg, m, v, msg):
67
+ dist_looser_tolerances = {"rv_histogram_instance" , "ksone"}
68
+ kwargs = {'rtol': 5e-6} if msg in dist_looser_tolerances else {}
69
+ if np.isfinite(v):
70
+ m2 = distfn.expect(lambda x: x*x, arg)
71
+ npt.assert_allclose(m2, v + m*m, **kwargs)
72
+
73
+
74
+ def check_skew_expect(distfn, arg, m, v, s, msg):
75
+ if np.isfinite(s):
76
+ m3e = distfn.expect(lambda x: np.power(x-m, 3), arg)
77
+ npt.assert_almost_equal(m3e, s * np.power(v, 1.5),
78
+ decimal=5, err_msg=msg + ' - skew')
79
+ else:
80
+ npt.assert_(np.isnan(s))
81
+
82
+
83
+ def check_kurt_expect(distfn, arg, m, v, k, msg):
84
+ if np.isfinite(k):
85
+ m4e = distfn.expect(lambda x: np.power(x-m, 4), arg)
86
+ npt.assert_allclose(m4e, (k + 3.) * np.power(v, 2),
87
+ atol=1e-5, rtol=1e-5,
88
+ err_msg=msg + ' - kurtosis')
89
+ elif not np.isposinf(k):
90
+ npt.assert_(np.isnan(k))
91
+
92
+
93
+ def check_munp_expect(dist, args, msg):
94
+ # If _munp is overridden, test a higher moment. (Before gh-18634, some
95
+ # distributions had issues with moments 5 and higher.)
96
+ if dist._munp.__func__ != stats.rv_continuous._munp:
97
+ res = dist.moment(5, *args) # shouldn't raise an error
98
+ ref = dist.expect(lambda x: x ** 5, args, lb=-np.inf, ub=np.inf)
99
+ if not np.isfinite(res): # could be valid; automated test can't know
100
+ return
101
+ # loose tolerance, mostly to see whether _munp returns *something*
102
+ assert_allclose(res, ref, atol=1e-10, rtol=1e-4,
103
+ err_msg=msg + ' - higher moment / _munp')
104
+
105
+
106
+ def check_entropy(distfn, arg, msg):
107
+ ent = distfn.entropy(*arg)
108
+ npt.assert_(not np.isnan(ent), msg + 'test Entropy is nan')
109
+
110
+
111
+ def check_private_entropy(distfn, args, superclass):
112
+ # compare a generic _entropy with the distribution-specific implementation
113
+ npt.assert_allclose(distfn._entropy(*args),
114
+ superclass._entropy(distfn, *args))
115
+
116
+
117
+ def check_entropy_vect_scale(distfn, arg):
118
+ # check 2-d
119
+ sc = np.asarray([[1, 2], [3, 4]])
120
+ v_ent = distfn.entropy(*arg, scale=sc)
121
+ s_ent = [distfn.entropy(*arg, scale=s) for s in sc.ravel()]
122
+ s_ent = np.asarray(s_ent).reshape(v_ent.shape)
123
+ assert_allclose(v_ent, s_ent, atol=1e-14)
124
+
125
+ # check invalid value, check cast
126
+ sc = [1, 2, -3]
127
+ v_ent = distfn.entropy(*arg, scale=sc)
128
+ s_ent = [distfn.entropy(*arg, scale=s) for s in sc]
129
+ s_ent = np.asarray(s_ent).reshape(v_ent.shape)
130
+ assert_allclose(v_ent, s_ent, atol=1e-14)
131
+
132
+
133
+ def check_edge_support(distfn, args):
134
+ # Make sure that x=self.a and self.b are handled correctly.
135
+ x = distfn.support(*args)
136
+ if isinstance(distfn, stats.rv_discrete):
137
+ x = x[0]-1, x[1]
138
+
139
+ npt.assert_equal(distfn.cdf(x, *args), [0.0, 1.0])
140
+ npt.assert_equal(distfn.sf(x, *args), [1.0, 0.0])
141
+
142
+ if distfn.name not in ('skellam', 'dlaplace'):
143
+ # with a = -inf, log(0) generates warnings
144
+ npt.assert_equal(distfn.logcdf(x, *args), [-np.inf, 0.0])
145
+ npt.assert_equal(distfn.logsf(x, *args), [0.0, -np.inf])
146
+
147
+ npt.assert_equal(distfn.ppf([0.0, 1.0], *args), x)
148
+ npt.assert_equal(distfn.isf([0.0, 1.0], *args), x[::-1])
149
+
150
+ # out-of-bounds for isf & ppf
151
+ npt.assert_(np.isnan(distfn.isf([-1, 2], *args)).all())
152
+ npt.assert_(np.isnan(distfn.ppf([-1, 2], *args)).all())
153
+
154
+
155
+ def check_named_args(distfn, x, shape_args, defaults, meths):
156
+ ## Check calling w/ named arguments.
157
+
158
+ # check consistency of shapes, numargs and _parse signature
159
+ signature = _getfullargspec(distfn._parse_args)
160
+ npt.assert_(signature.varargs is None)
161
+ npt.assert_(signature.varkw is None)
162
+ npt.assert_(not signature.kwonlyargs)
163
+ npt.assert_(list(signature.defaults) == list(defaults))
164
+
165
+ shape_argnames = signature.args[:-len(defaults)] # a, b, loc=0, scale=1
166
+ if distfn.shapes:
167
+ shapes_ = distfn.shapes.replace(',', ' ').split()
168
+ else:
169
+ shapes_ = ''
170
+ npt.assert_(len(shapes_) == distfn.numargs)
171
+ npt.assert_(len(shapes_) == len(shape_argnames))
172
+
173
+ # check calling w/ named arguments
174
+ shape_args = list(shape_args)
175
+
176
+ vals = [meth(x, *shape_args) for meth in meths]
177
+ npt.assert_(np.all(np.isfinite(vals)))
178
+
179
+ names, a, k = shape_argnames[:], shape_args[:], {}
180
+ while names:
181
+ k.update({names.pop(): a.pop()})
182
+ v = [meth(x, *a, **k) for meth in meths]
183
+ npt.assert_array_equal(vals, v)
184
+ if 'n' not in k.keys():
185
+ # `n` is first parameter of moment(), so can't be used as named arg
186
+ npt.assert_equal(distfn.moment(1, *a, **k),
187
+ distfn.moment(1, *shape_args))
188
+
189
+ # unknown arguments should not go through:
190
+ k.update({'kaboom': 42})
191
+ assert_raises(TypeError, distfn.cdf, x, **k)
192
+
193
+
194
+ def check_random_state_property(distfn, args):
195
+ # check the random_state attribute of a distribution *instance*
196
+
197
+ # This test fiddles with distfn.random_state. This breaks other tests,
198
+ # hence need to save it and then restore.
199
+ rndm = distfn.random_state
200
+
201
+ # baseline: this relies on the global state
202
+ np.random.seed(1234)
203
+ distfn.random_state = None
204
+ r0 = distfn.rvs(*args, size=8)
205
+
206
+ # use an explicit instance-level random_state
207
+ distfn.random_state = 1234
208
+ r1 = distfn.rvs(*args, size=8)
209
+ npt.assert_equal(r0, r1)
210
+
211
+ distfn.random_state = np.random.RandomState(1234)
212
+ r2 = distfn.rvs(*args, size=8)
213
+ npt.assert_equal(r0, r2)
214
+
215
+ # check that np.random.Generator can be used (numpy >= 1.17)
216
+ if hasattr(np.random, 'default_rng'):
217
+ # obtain a np.random.Generator object
218
+ rng = np.random.default_rng(1234)
219
+ distfn.rvs(*args, size=1, random_state=rng)
220
+
221
+ # can override the instance-level random_state for an individual .rvs call
222
+ distfn.random_state = 2
223
+ orig_state = distfn.random_state.get_state()
224
+
225
+ r3 = distfn.rvs(*args, size=8, random_state=np.random.RandomState(1234))
226
+ npt.assert_equal(r0, r3)
227
+
228
+ # ... and that does not alter the instance-level random_state!
229
+ npt.assert_equal(distfn.random_state.get_state(), orig_state)
230
+
231
+ # finally, restore the random_state
232
+ distfn.random_state = rndm
233
+
234
+
235
+ def check_meth_dtype(distfn, arg, meths):
236
+ q0 = [0.25, 0.5, 0.75]
237
+ x0 = distfn.ppf(q0, *arg)
238
+ x_cast = [x0.astype(tp) for tp in (np_long, np.float16, np.float32,
239
+ np.float64)]
240
+
241
+ for x in x_cast:
242
+ # casting may have clipped the values, exclude those
243
+ distfn._argcheck(*arg)
244
+ x = x[(distfn.a < x) & (x < distfn.b)]
245
+ for meth in meths:
246
+ val = meth(x, *arg)
247
+ npt.assert_(val.dtype == np.float64)
248
+
249
+
250
+ def check_ppf_dtype(distfn, arg):
251
+ q0 = np.asarray([0.25, 0.5, 0.75])
252
+ q_cast = [q0.astype(tp) for tp in (np.float16, np.float32, np.float64)]
253
+ for q in q_cast:
254
+ for meth in [distfn.ppf, distfn.isf]:
255
+ val = meth(q, *arg)
256
+ npt.assert_(val.dtype == np.float64)
257
+
258
+
259
+ def check_cmplx_deriv(distfn, arg):
260
+ # Distributions allow complex arguments.
261
+ def deriv(f, x, *arg):
262
+ x = np.asarray(x)
263
+ h = 1e-10
264
+ return (f(x + h*1j, *arg)/h).imag
265
+
266
+ x0 = distfn.ppf([0.25, 0.51, 0.75], *arg)
267
+ x_cast = [x0.astype(tp) for tp in (np_long, np.float16, np.float32,
268
+ np.float64)]
269
+
270
+ for x in x_cast:
271
+ # casting may have clipped the values, exclude those
272
+ distfn._argcheck(*arg)
273
+ x = x[(distfn.a < x) & (x < distfn.b)]
274
+
275
+ pdf, cdf, sf = distfn.pdf(x, *arg), distfn.cdf(x, *arg), distfn.sf(x, *arg)
276
+ assert_allclose(deriv(distfn.cdf, x, *arg), pdf, rtol=1e-5)
277
+ assert_allclose(deriv(distfn.logcdf, x, *arg), pdf/cdf, rtol=1e-5)
278
+
279
+ assert_allclose(deriv(distfn.sf, x, *arg), -pdf, rtol=1e-5)
280
+ assert_allclose(deriv(distfn.logsf, x, *arg), -pdf/sf, rtol=1e-5)
281
+
282
+ assert_allclose(deriv(distfn.logpdf, x, *arg),
283
+ deriv(distfn.pdf, x, *arg) / distfn.pdf(x, *arg),
284
+ rtol=1e-5)
285
+
286
+
287
+ def check_pickling(distfn, args):
288
+ # check that a distribution instance pickles and unpickles
289
+ # pay special attention to the random_state property
290
+
291
+ # save the random_state (restore later)
292
+ rndm = distfn.random_state
293
+
294
+ # check unfrozen
295
+ distfn.random_state = 1234
296
+ distfn.rvs(*args, size=8)
297
+ s = pickle.dumps(distfn)
298
+ r0 = distfn.rvs(*args, size=8)
299
+
300
+ unpickled = pickle.loads(s)
301
+ r1 = unpickled.rvs(*args, size=8)
302
+ npt.assert_equal(r0, r1)
303
+
304
+ # also smoke test some methods
305
+ medians = [distfn.ppf(0.5, *args), unpickled.ppf(0.5, *args)]
306
+ npt.assert_equal(medians[0], medians[1])
307
+ npt.assert_equal(distfn.cdf(medians[0], *args),
308
+ unpickled.cdf(medians[1], *args))
309
+
310
+ # check frozen pickling/unpickling with rvs
311
+ frozen_dist = distfn(*args)
312
+ pkl = pickle.dumps(frozen_dist)
313
+ unpickled = pickle.loads(pkl)
314
+
315
+ r0 = frozen_dist.rvs(size=8)
316
+ r1 = unpickled.rvs(size=8)
317
+ npt.assert_equal(r0, r1)
318
+
319
+ # check pickling/unpickling of .fit method
320
+ if hasattr(distfn, "fit"):
321
+ fit_function = distfn.fit
322
+ pickled_fit_function = pickle.dumps(fit_function)
323
+ unpickled_fit_function = pickle.loads(pickled_fit_function)
324
+ assert fit_function.__name__ == unpickled_fit_function.__name__ == "fit"
325
+
326
+ # restore the random_state
327
+ distfn.random_state = rndm
328
+
329
+
330
+ def check_freezing(distfn, args):
331
+ # regression test for gh-11089: freezing a distribution fails
332
+ # if loc and/or scale are specified
333
+ if isinstance(distfn, stats.rv_continuous):
334
+ locscale = {'loc': 1, 'scale': 2}
335
+ else:
336
+ locscale = {'loc': 1}
337
+
338
+ rv = distfn(*args, **locscale)
339
+ assert rv.a == distfn(*args).a
340
+ assert rv.b == distfn(*args).b
341
+
342
+
343
+ def check_rvs_broadcast(distfunc, distname, allargs, shape, shape_only, otype):
344
+ np.random.seed(123)
345
+ sample = distfunc.rvs(*allargs)
346
+ assert_equal(sample.shape, shape, "%s: rvs failed to broadcast" % distname)
347
+ if not shape_only:
348
+ rvs = np.vectorize(lambda *allargs: distfunc.rvs(*allargs), otypes=otype)
349
+ np.random.seed(123)
350
+ expected = rvs(*allargs)
351
+ assert_allclose(sample, expected, rtol=1e-13)
venv/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/_mvt.cpython-310.pyc ADDED
Binary file (4.04 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/tests/data/__pycache__/fisher_exact_results_from_r.cpython-310.pyc ADDED
Binary file (7.96 kB). View file
 
venv/lib/python3.10/site-packages/scipy/stats/tests/data/_mvt.py ADDED
@@ -0,0 +1,171 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ import numpy as np
3
+ from scipy import special
4
+ from scipy.stats._qmc import primes_from_2_to
5
+
6
+
7
+ def _primes(n):
8
+ # Defined to facilitate comparison between translation and source
9
+ # In Matlab, primes(10.5) -> first four primes, primes(11.5) -> first five
10
+ return primes_from_2_to(math.ceil(n))
11
+
12
+
13
+ def _gaminv(a, b):
14
+ # Defined to facilitate comparison between translation and source
15
+ # Matlab's `gaminv` is like `special.gammaincinv` but args are reversed
16
+ return special.gammaincinv(b, a)
17
+
18
+
19
+ def _qsimvtv(m, nu, sigma, a, b, rng):
20
+ """Estimates the multivariate t CDF using randomized QMC
21
+
22
+ Parameters
23
+ ----------
24
+ m : int
25
+ The number of points
26
+ nu : float
27
+ Degrees of freedom
28
+ sigma : ndarray
29
+ A 2D positive semidefinite covariance matrix
30
+ a : ndarray
31
+ Lower integration limits
32
+ b : ndarray
33
+ Upper integration limits.
34
+ rng : Generator
35
+ Pseudorandom number generator
36
+
37
+ Returns
38
+ -------
39
+ p : float
40
+ The estimated CDF.
41
+ e : float
42
+ An absolute error estimate.
43
+
44
+ """
45
+ # _qsimvtv is a Python translation of the Matlab function qsimvtv,
46
+ # semicolons and all.
47
+ #
48
+ # This function uses an algorithm given in the paper
49
+ # "Comparison of Methods for the Numerical Computation of
50
+ # Multivariate t Probabilities", in
51
+ # J. of Computational and Graphical Stat., 11(2002), pp. 950-971, by
52
+ # Alan Genz and Frank Bretz
53
+ #
54
+ # The primary references for the numerical integration are
55
+ # "On a Number-Theoretical Integration Method"
56
+ # H. Niederreiter, Aequationes Mathematicae, 8(1972), pp. 304-11.
57
+ # and
58
+ # "Randomization of Number Theoretic Methods for Multiple Integration"
59
+ # R. Cranley & T.N.L. Patterson, SIAM J Numer Anal, 13(1976), pp. 904-14.
60
+ #
61
+ # Alan Genz is the author of this function and following Matlab functions.
62
+ # Alan Genz, WSU Math, PO Box 643113, Pullman, WA 99164-3113
63
+ # Email : [email protected]
64
+ #
65
+ # Copyright (C) 2013, Alan Genz, All rights reserved.
66
+ #
67
+ # Redistribution and use in source and binary forms, with or without
68
+ # modification, are permitted provided the following conditions are met:
69
+ # 1. Redistributions of source code must retain the above copyright
70
+ # notice, this list of conditions and the following disclaimer.
71
+ # 2. Redistributions in binary form must reproduce the above copyright
72
+ # notice, this list of conditions and the following disclaimer in
73
+ # the documentation and/or other materials provided with the
74
+ # distribution.
75
+ # 3. The contributor name(s) may not be used to endorse or promote
76
+ # products derived from this software without specific prior
77
+ # written permission.
78
+ # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
79
+ # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
80
+ # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
81
+ # FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
82
+ # COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
83
+ # INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
84
+ # BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
85
+ # OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
86
+ # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
87
+ # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF USE
88
+ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
89
+
90
+ # Initialization
91
+ sn = max(1, math.sqrt(nu)); ch, az, bz = _chlrps(sigma, a/sn, b/sn)
92
+ n = len(sigma); N = 10; P = math.ceil(m/N); on = np.ones(P); p = 0; e = 0
93
+ ps = np.sqrt(_primes(5*n*math.log(n+4)/4)); q = ps[:, np.newaxis] # Richtmyer gens.
94
+
95
+ # Randomization loop for ns samples
96
+ c = None; dc = None
97
+ for S in range(N):
98
+ vp = on.copy(); s = np.zeros((n, P))
99
+ for i in range(n):
100
+ x = np.abs(2*np.mod(q[i]*np.arange(1, P+1) + rng.random(), 1)-1) # periodizing transform
101
+ if i == 0:
102
+ r = on
103
+ if nu > 0:
104
+ r = np.sqrt(2*_gaminv(x, nu/2))
105
+ else:
106
+ y = _Phinv(c + x*dc)
107
+ s[i:] += ch[i:, i-1:i] * y
108
+ si = s[i, :]; c = on.copy(); ai = az[i]*r - si; d = on.copy(); bi = bz[i]*r - si
109
+ c[ai <= -9] = 0; tl = abs(ai) < 9; c[tl] = _Phi(ai[tl])
110
+ d[bi <= -9] = 0; tl = abs(bi) < 9; d[tl] = _Phi(bi[tl])
111
+ dc = d - c; vp = vp * dc
112
+ d = (np.mean(vp) - p)/(S + 1); p = p + d; e = (S - 1)*e/(S + 1) + d**2
113
+ e = math.sqrt(e) # error estimate is 3 times std error with N samples.
114
+ return p, e
115
+
116
+
117
+ # Standard statistical normal distribution functions
118
+ def _Phi(z):
119
+ return special.ndtr(z)
120
+
121
+
122
+ def _Phinv(p):
123
+ return special.ndtri(p)
124
+
125
+
126
+ def _chlrps(R, a, b):
127
+ """
128
+ Computes permuted and scaled lower Cholesky factor c for R which may be
129
+ singular, also permuting and scaling integration limit vectors a and b.
130
+ """
131
+ ep = 1e-10 # singularity tolerance
132
+ eps = np.finfo(R.dtype).eps
133
+
134
+ n = len(R); c = R.copy(); ap = a.copy(); bp = b.copy(); d = np.sqrt(np.maximum(np.diag(c), 0))
135
+ for i in range(n):
136
+ if d[i] > 0:
137
+ c[:, i] /= d[i]; c[i, :] /= d[i]
138
+ ap[i] /= d[i]; bp[i] /= d[i]
139
+ y = np.zeros((n, 1)); sqtp = math.sqrt(2*math.pi)
140
+
141
+ for k in range(n):
142
+ im = k; ckk = 0; dem = 1; s = 0
143
+ for i in range(k, n):
144
+ if c[i, i] > eps:
145
+ cii = math.sqrt(max(c[i, i], 0))
146
+ if i > 0: s = c[i, :k] @ y[:k]
147
+ ai = (ap[i]-s)/cii; bi = (bp[i]-s)/cii; de = _Phi(bi)-_Phi(ai)
148
+ if de <= dem:
149
+ ckk = cii; dem = de; am = ai; bm = bi; im = i
150
+ if im > k:
151
+ ap[[im, k]] = ap[[k, im]]; bp[[im, k]] = bp[[k, im]]; c[im, im] = c[k, k]
152
+ t = c[im, :k].copy(); c[im, :k] = c[k, :k]; c[k, :k] = t
153
+ t = c[im+1:, im].copy(); c[im+1:, im] = c[im+1:, k]; c[im+1:, k] = t
154
+ t = c[k+1:im, k].copy(); c[k+1:im, k] = c[im, k+1:im].T; c[im, k+1:im] = t.T
155
+ if ckk > ep*(k+1):
156
+ c[k, k] = ckk; c[k, k+1:] = 0
157
+ for i in range(k+1, n):
158
+ c[i, k] = c[i, k]/ckk; c[i, k+1:i+1] = c[i, k+1:i+1] - c[i, k]*c[k+1:i+1, k].T
159
+ if abs(dem) > ep:
160
+ y[k] = (np.exp(-am**2/2) - np.exp(-bm**2/2)) / (sqtp*dem)
161
+ else:
162
+ y[k] = (am + bm) / 2
163
+ if am < -10:
164
+ y[k] = bm
165
+ elif bm > 10:
166
+ y[k] = am
167
+ c[k, :k+1] /= ckk; ap[k] /= ckk; bp[k] /= ckk
168
+ else:
169
+ c[k:, k] = 0; y[k] = (ap[k] + bp[k])/2
170
+ pass
171
+ return c, ap, bp
venv/lib/python3.10/site-packages/scipy/stats/tests/data/fisher_exact_results_from_r.py ADDED
@@ -0,0 +1,607 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DO NOT EDIT THIS FILE!
2
+ # This file was generated by the R script
3
+ # generate_fisher_exact_results_from_r.R
4
+ # The script was run with R version 3.6.2 (2019-12-12) at 2020-11-09 06:16:09
5
+
6
+
7
+ from collections import namedtuple
8
+ import numpy as np
9
+
10
+
11
+ Inf = np.inf
12
+
13
+ Parameters = namedtuple('Parameters',
14
+ ['table', 'confidence_level', 'alternative'])
15
+ RResults = namedtuple('RResults',
16
+ ['pvalue', 'conditional_odds_ratio',
17
+ 'conditional_odds_ratio_ci'])
18
+ data = [
19
+ (Parameters(table=[[100, 2], [1000, 5]],
20
+ confidence_level=0.95,
21
+ alternative='two.sided'),
22
+ RResults(pvalue=0.1300759363430016,
23
+ conditional_odds_ratio=0.25055839934223,
24
+ conditional_odds_ratio_ci=(0.04035202926536294,
25
+ 2.662846672960251))),
26
+ (Parameters(table=[[2, 7], [8, 2]],
27
+ confidence_level=0.95,
28
+ alternative='two.sided'),
29
+ RResults(pvalue=0.02301413756522116,
30
+ conditional_odds_ratio=0.0858623513573622,
31
+ conditional_odds_ratio_ci=(0.004668988338943325,
32
+ 0.895792956493601))),
33
+ (Parameters(table=[[5, 1], [10, 10]],
34
+ confidence_level=0.95,
35
+ alternative='two.sided'),
36
+ RResults(pvalue=0.1973244147157191,
37
+ conditional_odds_ratio=4.725646047336587,
38
+ conditional_odds_ratio_ci=(0.4153910882532168,
39
+ 259.2593661129417))),
40
+ (Parameters(table=[[5, 15], [20, 20]],
41
+ confidence_level=0.95,
42
+ alternative='two.sided'),
43
+ RResults(pvalue=0.09580440012477633,
44
+ conditional_odds_ratio=0.3394396617440851,
45
+ conditional_odds_ratio_ci=(0.08056337526385809,
46
+ 1.22704788545557))),
47
+ (Parameters(table=[[5, 16], [16, 25]],
48
+ confidence_level=0.95,
49
+ alternative='two.sided'),
50
+ RResults(pvalue=0.2697004098849359,
51
+ conditional_odds_ratio=0.4937791394540491,
52
+ conditional_odds_ratio_ci=(0.1176691231650079,
53
+ 1.787463657995973))),
54
+ (Parameters(table=[[10, 5], [10, 1]],
55
+ confidence_level=0.95,
56
+ alternative='two.sided'),
57
+ RResults(pvalue=0.1973244147157192,
58
+ conditional_odds_ratio=0.2116112781158479,
59
+ conditional_odds_ratio_ci=(0.003857141267422399,
60
+ 2.407369893767229))),
61
+ (Parameters(table=[[10, 5], [10, 0]],
62
+ confidence_level=0.95,
63
+ alternative='two.sided'),
64
+ RResults(pvalue=0.06126482213438735,
65
+ conditional_odds_ratio=0,
66
+ conditional_odds_ratio_ci=(0,
67
+ 1.451643573543705))),
68
+ (Parameters(table=[[5, 0], [1, 4]],
69
+ confidence_level=0.95,
70
+ alternative='two.sided'),
71
+ RResults(pvalue=0.04761904761904762,
72
+ conditional_odds_ratio=Inf,
73
+ conditional_odds_ratio_ci=(1.024822256141754,
74
+ Inf))),
75
+ (Parameters(table=[[0, 5], [1, 4]],
76
+ confidence_level=0.95,
77
+ alternative='two.sided'),
78
+ RResults(pvalue=1,
79
+ conditional_odds_ratio=0,
80
+ conditional_odds_ratio_ci=(0,
81
+ 39.00054996869288))),
82
+ (Parameters(table=[[5, 1], [0, 4]],
83
+ confidence_level=0.95,
84
+ alternative='two.sided'),
85
+ RResults(pvalue=0.04761904761904761,
86
+ conditional_odds_ratio=Inf,
87
+ conditional_odds_ratio_ci=(1.024822256141754,
88
+ Inf))),
89
+ (Parameters(table=[[0, 1], [3, 2]],
90
+ confidence_level=0.95,
91
+ alternative='two.sided'),
92
+ RResults(pvalue=1,
93
+ conditional_odds_ratio=0,
94
+ conditional_odds_ratio_ci=(0,
95
+ 39.00054996869287))),
96
+ (Parameters(table=[[200, 7], [8, 300]],
97
+ confidence_level=0.95,
98
+ alternative='two.sided'),
99
+ RResults(pvalue=2.005657880389071e-122,
100
+ conditional_odds_ratio=977.7866978606228,
101
+ conditional_odds_ratio_ci=(349.2595113327733,
102
+ 3630.382605689872))),
103
+ (Parameters(table=[[28, 21], [6, 1957]],
104
+ confidence_level=0.95,
105
+ alternative='two.sided'),
106
+ RResults(pvalue=5.728437460831947e-44,
107
+ conditional_odds_ratio=425.2403028434684,
108
+ conditional_odds_ratio_ci=(152.4166024390096,
109
+ 1425.700792178893))),
110
+ (Parameters(table=[[190, 800], [200, 900]],
111
+ confidence_level=0.95,
112
+ alternative='two.sided'),
113
+ RResults(pvalue=0.574111858126088,
114
+ conditional_odds_ratio=1.068697577856801,
115
+ conditional_odds_ratio_ci=(0.8520462587912048,
116
+ 1.340148950273938))),
117
+ (Parameters(table=[[100, 2], [1000, 5]],
118
+ confidence_level=0.99,
119
+ alternative='two.sided'),
120
+ RResults(pvalue=0.1300759363430016,
121
+ conditional_odds_ratio=0.25055839934223,
122
+ conditional_odds_ratio_ci=(0.02502345007115455,
123
+ 6.304424772117853))),
124
+ (Parameters(table=[[2, 7], [8, 2]],
125
+ confidence_level=0.99,
126
+ alternative='two.sided'),
127
+ RResults(pvalue=0.02301413756522116,
128
+ conditional_odds_ratio=0.0858623513573622,
129
+ conditional_odds_ratio_ci=(0.001923034001462487,
130
+ 1.53670836950172))),
131
+ (Parameters(table=[[5, 1], [10, 10]],
132
+ confidence_level=0.99,
133
+ alternative='two.sided'),
134
+ RResults(pvalue=0.1973244147157191,
135
+ conditional_odds_ratio=4.725646047336587,
136
+ conditional_odds_ratio_ci=(0.2397970951413721,
137
+ 1291.342011095509))),
138
+ (Parameters(table=[[5, 15], [20, 20]],
139
+ confidence_level=0.99,
140
+ alternative='two.sided'),
141
+ RResults(pvalue=0.09580440012477633,
142
+ conditional_odds_ratio=0.3394396617440851,
143
+ conditional_odds_ratio_ci=(0.05127576113762925,
144
+ 1.717176678806983))),
145
+ (Parameters(table=[[5, 16], [16, 25]],
146
+ confidence_level=0.99,
147
+ alternative='two.sided'),
148
+ RResults(pvalue=0.2697004098849359,
149
+ conditional_odds_ratio=0.4937791394540491,
150
+ conditional_odds_ratio_ci=(0.07498546954483619,
151
+ 2.506969905199901))),
152
+ (Parameters(table=[[10, 5], [10, 1]],
153
+ confidence_level=0.99,
154
+ alternative='two.sided'),
155
+ RResults(pvalue=0.1973244147157192,
156
+ conditional_odds_ratio=0.2116112781158479,
157
+ conditional_odds_ratio_ci=(0.0007743881879531337,
158
+ 4.170192301163831))),
159
+ (Parameters(table=[[10, 5], [10, 0]],
160
+ confidence_level=0.99,
161
+ alternative='two.sided'),
162
+ RResults(pvalue=0.06126482213438735,
163
+ conditional_odds_ratio=0,
164
+ conditional_odds_ratio_ci=(0,
165
+ 2.642491011905582))),
166
+ (Parameters(table=[[5, 0], [1, 4]],
167
+ confidence_level=0.99,
168
+ alternative='two.sided'),
169
+ RResults(pvalue=0.04761904761904762,
170
+ conditional_odds_ratio=Inf,
171
+ conditional_odds_ratio_ci=(0.496935393325443,
172
+ Inf))),
173
+ (Parameters(table=[[0, 5], [1, 4]],
174
+ confidence_level=0.99,
175
+ alternative='two.sided'),
176
+ RResults(pvalue=1,
177
+ conditional_odds_ratio=0,
178
+ conditional_odds_ratio_ci=(0,
179
+ 198.019801980198))),
180
+ (Parameters(table=[[5, 1], [0, 4]],
181
+ confidence_level=0.99,
182
+ alternative='two.sided'),
183
+ RResults(pvalue=0.04761904761904761,
184
+ conditional_odds_ratio=Inf,
185
+ conditional_odds_ratio_ci=(0.496935393325443,
186
+ Inf))),
187
+ (Parameters(table=[[0, 1], [3, 2]],
188
+ confidence_level=0.99,
189
+ alternative='two.sided'),
190
+ RResults(pvalue=1,
191
+ conditional_odds_ratio=0,
192
+ conditional_odds_ratio_ci=(0,
193
+ 198.019801980198))),
194
+ (Parameters(table=[[200, 7], [8, 300]],
195
+ confidence_level=0.99,
196
+ alternative='two.sided'),
197
+ RResults(pvalue=2.005657880389071e-122,
198
+ conditional_odds_ratio=977.7866978606228,
199
+ conditional_odds_ratio_ci=(270.0334165523604,
200
+ 5461.333333326708))),
201
+ (Parameters(table=[[28, 21], [6, 1957]],
202
+ confidence_level=0.99,
203
+ alternative='two.sided'),
204
+ RResults(pvalue=5.728437460831947e-44,
205
+ conditional_odds_ratio=425.2403028434684,
206
+ conditional_odds_ratio_ci=(116.7944750275836,
207
+ 1931.995993191814))),
208
+ (Parameters(table=[[190, 800], [200, 900]],
209
+ confidence_level=0.99,
210
+ alternative='two.sided'),
211
+ RResults(pvalue=0.574111858126088,
212
+ conditional_odds_ratio=1.068697577856801,
213
+ conditional_odds_ratio_ci=(0.7949398282935892,
214
+ 1.436229679394333))),
215
+ (Parameters(table=[[100, 2], [1000, 5]],
216
+ confidence_level=0.95,
217
+ alternative='less'),
218
+ RResults(pvalue=0.1300759363430016,
219
+ conditional_odds_ratio=0.25055839934223,
220
+ conditional_odds_ratio_ci=(0,
221
+ 1.797867027270803))),
222
+ (Parameters(table=[[2, 7], [8, 2]],
223
+ confidence_level=0.95,
224
+ alternative='less'),
225
+ RResults(pvalue=0.0185217259520665,
226
+ conditional_odds_ratio=0.0858623513573622,
227
+ conditional_odds_ratio_ci=(0,
228
+ 0.6785254803404526))),
229
+ (Parameters(table=[[5, 1], [10, 10]],
230
+ confidence_level=0.95,
231
+ alternative='less'),
232
+ RResults(pvalue=0.9782608695652173,
233
+ conditional_odds_ratio=4.725646047336587,
234
+ conditional_odds_ratio_ci=(0,
235
+ 127.8497388102893))),
236
+ (Parameters(table=[[5, 15], [20, 20]],
237
+ confidence_level=0.95,
238
+ alternative='less'),
239
+ RResults(pvalue=0.05625775074399956,
240
+ conditional_odds_ratio=0.3394396617440851,
241
+ conditional_odds_ratio_ci=(0,
242
+ 1.032332939718425))),
243
+ (Parameters(table=[[5, 16], [16, 25]],
244
+ confidence_level=0.95,
245
+ alternative='less'),
246
+ RResults(pvalue=0.1808979350599346,
247
+ conditional_odds_ratio=0.4937791394540491,
248
+ conditional_odds_ratio_ci=(0,
249
+ 1.502407513296985))),
250
+ (Parameters(table=[[10, 5], [10, 1]],
251
+ confidence_level=0.95,
252
+ alternative='less'),
253
+ RResults(pvalue=0.1652173913043479,
254
+ conditional_odds_ratio=0.2116112781158479,
255
+ conditional_odds_ratio_ci=(0,
256
+ 1.820421051562392))),
257
+ (Parameters(table=[[10, 5], [10, 0]],
258
+ confidence_level=0.95,
259
+ alternative='less'),
260
+ RResults(pvalue=0.0565217391304348,
261
+ conditional_odds_ratio=0,
262
+ conditional_odds_ratio_ci=(0,
263
+ 1.06224603077045))),
264
+ (Parameters(table=[[5, 0], [1, 4]],
265
+ confidence_level=0.95,
266
+ alternative='less'),
267
+ RResults(pvalue=1,
268
+ conditional_odds_ratio=Inf,
269
+ conditional_odds_ratio_ci=(0,
270
+ Inf))),
271
+ (Parameters(table=[[0, 5], [1, 4]],
272
+ confidence_level=0.95,
273
+ alternative='less'),
274
+ RResults(pvalue=0.5,
275
+ conditional_odds_ratio=0,
276
+ conditional_odds_ratio_ci=(0,
277
+ 19.00192394479939))),
278
+ (Parameters(table=[[5, 1], [0, 4]],
279
+ confidence_level=0.95,
280
+ alternative='less'),
281
+ RResults(pvalue=1,
282
+ conditional_odds_ratio=Inf,
283
+ conditional_odds_ratio_ci=(0,
284
+ Inf))),
285
+ (Parameters(table=[[0, 1], [3, 2]],
286
+ confidence_level=0.95,
287
+ alternative='less'),
288
+ RResults(pvalue=0.4999999999999999,
289
+ conditional_odds_ratio=0,
290
+ conditional_odds_ratio_ci=(0,
291
+ 19.00192394479939))),
292
+ (Parameters(table=[[200, 7], [8, 300]],
293
+ confidence_level=0.95,
294
+ alternative='less'),
295
+ RResults(pvalue=1,
296
+ conditional_odds_ratio=977.7866978606228,
297
+ conditional_odds_ratio_ci=(0,
298
+ 3045.460216525746))),
299
+ (Parameters(table=[[28, 21], [6, 1957]],
300
+ confidence_level=0.95,
301
+ alternative='less'),
302
+ RResults(pvalue=1,
303
+ conditional_odds_ratio=425.2403028434684,
304
+ conditional_odds_ratio_ci=(0,
305
+ 1186.440170942579))),
306
+ (Parameters(table=[[190, 800], [200, 900]],
307
+ confidence_level=0.95,
308
+ alternative='less'),
309
+ RResults(pvalue=0.7416227010368963,
310
+ conditional_odds_ratio=1.068697577856801,
311
+ conditional_odds_ratio_ci=(0,
312
+ 1.293551891610822))),
313
+ (Parameters(table=[[100, 2], [1000, 5]],
314
+ confidence_level=0.99,
315
+ alternative='less'),
316
+ RResults(pvalue=0.1300759363430016,
317
+ conditional_odds_ratio=0.25055839934223,
318
+ conditional_odds_ratio_ci=(0,
319
+ 4.375946050832565))),
320
+ (Parameters(table=[[2, 7], [8, 2]],
321
+ confidence_level=0.99,
322
+ alternative='less'),
323
+ RResults(pvalue=0.0185217259520665,
324
+ conditional_odds_ratio=0.0858623513573622,
325
+ conditional_odds_ratio_ci=(0,
326
+ 1.235282118191202))),
327
+ (Parameters(table=[[5, 1], [10, 10]],
328
+ confidence_level=0.99,
329
+ alternative='less'),
330
+ RResults(pvalue=0.9782608695652173,
331
+ conditional_odds_ratio=4.725646047336587,
332
+ conditional_odds_ratio_ci=(0,
333
+ 657.2063583945989))),
334
+ (Parameters(table=[[5, 15], [20, 20]],
335
+ confidence_level=0.99,
336
+ alternative='less'),
337
+ RResults(pvalue=0.05625775074399956,
338
+ conditional_odds_ratio=0.3394396617440851,
339
+ conditional_odds_ratio_ci=(0,
340
+ 1.498867660683128))),
341
+ (Parameters(table=[[5, 16], [16, 25]],
342
+ confidence_level=0.99,
343
+ alternative='less'),
344
+ RResults(pvalue=0.1808979350599346,
345
+ conditional_odds_ratio=0.4937791394540491,
346
+ conditional_odds_ratio_ci=(0,
347
+ 2.186159386716762))),
348
+ (Parameters(table=[[10, 5], [10, 1]],
349
+ confidence_level=0.99,
350
+ alternative='less'),
351
+ RResults(pvalue=0.1652173913043479,
352
+ conditional_odds_ratio=0.2116112781158479,
353
+ conditional_odds_ratio_ci=(0,
354
+ 3.335351451901569))),
355
+ (Parameters(table=[[10, 5], [10, 0]],
356
+ confidence_level=0.99,
357
+ alternative='less'),
358
+ RResults(pvalue=0.0565217391304348,
359
+ conditional_odds_ratio=0,
360
+ conditional_odds_ratio_ci=(0,
361
+ 2.075407697450433))),
362
+ (Parameters(table=[[5, 0], [1, 4]],
363
+ confidence_level=0.99,
364
+ alternative='less'),
365
+ RResults(pvalue=1,
366
+ conditional_odds_ratio=Inf,
367
+ conditional_odds_ratio_ci=(0,
368
+ Inf))),
369
+ (Parameters(table=[[0, 5], [1, 4]],
370
+ confidence_level=0.99,
371
+ alternative='less'),
372
+ RResults(pvalue=0.5,
373
+ conditional_odds_ratio=0,
374
+ conditional_odds_ratio_ci=(0,
375
+ 99.00009507969122))),
376
+ (Parameters(table=[[5, 1], [0, 4]],
377
+ confidence_level=0.99,
378
+ alternative='less'),
379
+ RResults(pvalue=1,
380
+ conditional_odds_ratio=Inf,
381
+ conditional_odds_ratio_ci=(0,
382
+ Inf))),
383
+ (Parameters(table=[[0, 1], [3, 2]],
384
+ confidence_level=0.99,
385
+ alternative='less'),
386
+ RResults(pvalue=0.4999999999999999,
387
+ conditional_odds_ratio=0,
388
+ conditional_odds_ratio_ci=(0,
389
+ 99.00009507969123))),
390
+ (Parameters(table=[[200, 7], [8, 300]],
391
+ confidence_level=0.99,
392
+ alternative='less'),
393
+ RResults(pvalue=1,
394
+ conditional_odds_ratio=977.7866978606228,
395
+ conditional_odds_ratio_ci=(0,
396
+ 4503.078257659934))),
397
+ (Parameters(table=[[28, 21], [6, 1957]],
398
+ confidence_level=0.99,
399
+ alternative='less'),
400
+ RResults(pvalue=1,
401
+ conditional_odds_ratio=425.2403028434684,
402
+ conditional_odds_ratio_ci=(0,
403
+ 1811.766127544222))),
404
+ (Parameters(table=[[190, 800], [200, 900]],
405
+ confidence_level=0.99,
406
+ alternative='less'),
407
+ RResults(pvalue=0.7416227010368963,
408
+ conditional_odds_ratio=1.068697577856801,
409
+ conditional_odds_ratio_ci=(0,
410
+ 1.396522811516685))),
411
+ (Parameters(table=[[100, 2], [1000, 5]],
412
+ confidence_level=0.95,
413
+ alternative='greater'),
414
+ RResults(pvalue=0.979790445314723,
415
+ conditional_odds_ratio=0.25055839934223,
416
+ conditional_odds_ratio_ci=(0.05119649909830196,
417
+ Inf))),
418
+ (Parameters(table=[[2, 7], [8, 2]],
419
+ confidence_level=0.95,
420
+ alternative='greater'),
421
+ RResults(pvalue=0.9990149169715733,
422
+ conditional_odds_ratio=0.0858623513573622,
423
+ conditional_odds_ratio_ci=(0.007163749169069961,
424
+ Inf))),
425
+ (Parameters(table=[[5, 1], [10, 10]],
426
+ confidence_level=0.95,
427
+ alternative='greater'),
428
+ RResults(pvalue=0.1652173913043478,
429
+ conditional_odds_ratio=4.725646047336587,
430
+ conditional_odds_ratio_ci=(0.5493234651081089,
431
+ Inf))),
432
+ (Parameters(table=[[5, 15], [20, 20]],
433
+ confidence_level=0.95,
434
+ alternative='greater'),
435
+ RResults(pvalue=0.9849086665340765,
436
+ conditional_odds_ratio=0.3394396617440851,
437
+ conditional_odds_ratio_ci=(0.1003538933958604,
438
+ Inf))),
439
+ (Parameters(table=[[5, 16], [16, 25]],
440
+ confidence_level=0.95,
441
+ alternative='greater'),
442
+ RResults(pvalue=0.9330176609214881,
443
+ conditional_odds_ratio=0.4937791394540491,
444
+ conditional_odds_ratio_ci=(0.146507416280863,
445
+ Inf))),
446
+ (Parameters(table=[[10, 5], [10, 1]],
447
+ confidence_level=0.95,
448
+ alternative='greater'),
449
+ RResults(pvalue=0.9782608695652174,
450
+ conditional_odds_ratio=0.2116112781158479,
451
+ conditional_odds_ratio_ci=(0.007821681994077808,
452
+ Inf))),
453
+ (Parameters(table=[[10, 5], [10, 0]],
454
+ confidence_level=0.95,
455
+ alternative='greater'),
456
+ RResults(pvalue=1,
457
+ conditional_odds_ratio=0,
458
+ conditional_odds_ratio_ci=(0,
459
+ Inf))),
460
+ (Parameters(table=[[5, 0], [1, 4]],
461
+ confidence_level=0.95,
462
+ alternative='greater'),
463
+ RResults(pvalue=0.02380952380952382,
464
+ conditional_odds_ratio=Inf,
465
+ conditional_odds_ratio_ci=(1.487678929918272,
466
+ Inf))),
467
+ (Parameters(table=[[0, 5], [1, 4]],
468
+ confidence_level=0.95,
469
+ alternative='greater'),
470
+ RResults(pvalue=1,
471
+ conditional_odds_ratio=0,
472
+ conditional_odds_ratio_ci=(0,
473
+ Inf))),
474
+ (Parameters(table=[[5, 1], [0, 4]],
475
+ confidence_level=0.95,
476
+ alternative='greater'),
477
+ RResults(pvalue=0.0238095238095238,
478
+ conditional_odds_ratio=Inf,
479
+ conditional_odds_ratio_ci=(1.487678929918272,
480
+ Inf))),
481
+ (Parameters(table=[[0, 1], [3, 2]],
482
+ confidence_level=0.95,
483
+ alternative='greater'),
484
+ RResults(pvalue=1,
485
+ conditional_odds_ratio=0,
486
+ conditional_odds_ratio_ci=(0,
487
+ Inf))),
488
+ (Parameters(table=[[200, 7], [8, 300]],
489
+ confidence_level=0.95,
490
+ alternative='greater'),
491
+ RResults(pvalue=2.005657880388915e-122,
492
+ conditional_odds_ratio=977.7866978606228,
493
+ conditional_odds_ratio_ci=(397.784359748113,
494
+ Inf))),
495
+ (Parameters(table=[[28, 21], [6, 1957]],
496
+ confidence_level=0.95,
497
+ alternative='greater'),
498
+ RResults(pvalue=5.728437460831983e-44,
499
+ conditional_odds_ratio=425.2403028434684,
500
+ conditional_odds_ratio_ci=(174.7148056880929,
501
+ Inf))),
502
+ (Parameters(table=[[190, 800], [200, 900]],
503
+ confidence_level=0.95,
504
+ alternative='greater'),
505
+ RResults(pvalue=0.2959825901308897,
506
+ conditional_odds_ratio=1.068697577856801,
507
+ conditional_odds_ratio_ci=(0.8828406663967776,
508
+ Inf))),
509
+ (Parameters(table=[[100, 2], [1000, 5]],
510
+ confidence_level=0.99,
511
+ alternative='greater'),
512
+ RResults(pvalue=0.979790445314723,
513
+ conditional_odds_ratio=0.25055839934223,
514
+ conditional_odds_ratio_ci=(0.03045407081240429,
515
+ Inf))),
516
+ (Parameters(table=[[2, 7], [8, 2]],
517
+ confidence_level=0.99,
518
+ alternative='greater'),
519
+ RResults(pvalue=0.9990149169715733,
520
+ conditional_odds_ratio=0.0858623513573622,
521
+ conditional_odds_ratio_ci=(0.002768053063547901,
522
+ Inf))),
523
+ (Parameters(table=[[5, 1], [10, 10]],
524
+ confidence_level=0.99,
525
+ alternative='greater'),
526
+ RResults(pvalue=0.1652173913043478,
527
+ conditional_odds_ratio=4.725646047336587,
528
+ conditional_odds_ratio_ci=(0.2998184792279909,
529
+ Inf))),
530
+ (Parameters(table=[[5, 15], [20, 20]],
531
+ confidence_level=0.99,
532
+ alternative='greater'),
533
+ RResults(pvalue=0.9849086665340765,
534
+ conditional_odds_ratio=0.3394396617440851,
535
+ conditional_odds_ratio_ci=(0.06180414342643172,
536
+ Inf))),
537
+ (Parameters(table=[[5, 16], [16, 25]],
538
+ confidence_level=0.99,
539
+ alternative='greater'),
540
+ RResults(pvalue=0.9330176609214881,
541
+ conditional_odds_ratio=0.4937791394540491,
542
+ conditional_odds_ratio_ci=(0.09037094010066403,
543
+ Inf))),
544
+ (Parameters(table=[[10, 5], [10, 1]],
545
+ confidence_level=0.99,
546
+ alternative='greater'),
547
+ RResults(pvalue=0.9782608695652174,
548
+ conditional_odds_ratio=0.2116112781158479,
549
+ conditional_odds_ratio_ci=(0.001521592095430679,
550
+ Inf))),
551
+ (Parameters(table=[[10, 5], [10, 0]],
552
+ confidence_level=0.99,
553
+ alternative='greater'),
554
+ RResults(pvalue=1,
555
+ conditional_odds_ratio=0,
556
+ conditional_odds_ratio_ci=(0,
557
+ Inf))),
558
+ (Parameters(table=[[5, 0], [1, 4]],
559
+ confidence_level=0.99,
560
+ alternative='greater'),
561
+ RResults(pvalue=0.02380952380952382,
562
+ conditional_odds_ratio=Inf,
563
+ conditional_odds_ratio_ci=(0.6661157890359722,
564
+ Inf))),
565
+ (Parameters(table=[[0, 5], [1, 4]],
566
+ confidence_level=0.99,
567
+ alternative='greater'),
568
+ RResults(pvalue=1,
569
+ conditional_odds_ratio=0,
570
+ conditional_odds_ratio_ci=(0,
571
+ Inf))),
572
+ (Parameters(table=[[5, 1], [0, 4]],
573
+ confidence_level=0.99,
574
+ alternative='greater'),
575
+ RResults(pvalue=0.0238095238095238,
576
+ conditional_odds_ratio=Inf,
577
+ conditional_odds_ratio_ci=(0.6661157890359725,
578
+ Inf))),
579
+ (Parameters(table=[[0, 1], [3, 2]],
580
+ confidence_level=0.99,
581
+ alternative='greater'),
582
+ RResults(pvalue=1,
583
+ conditional_odds_ratio=0,
584
+ conditional_odds_ratio_ci=(0,
585
+ Inf))),
586
+ (Parameters(table=[[200, 7], [8, 300]],
587
+ confidence_level=0.99,
588
+ alternative='greater'),
589
+ RResults(pvalue=2.005657880388915e-122,
590
+ conditional_odds_ratio=977.7866978606228,
591
+ conditional_odds_ratio_ci=(297.9619252357688,
592
+ Inf))),
593
+ (Parameters(table=[[28, 21], [6, 1957]],
594
+ confidence_level=0.99,
595
+ alternative='greater'),
596
+ RResults(pvalue=5.728437460831983e-44,
597
+ conditional_odds_ratio=425.2403028434684,
598
+ conditional_odds_ratio_ci=(130.3213490295859,
599
+ Inf))),
600
+ (Parameters(table=[[190, 800], [200, 900]],
601
+ confidence_level=0.99,
602
+ alternative='greater'),
603
+ RResults(pvalue=0.2959825901308897,
604
+ conditional_odds_ratio=1.068697577856801,
605
+ conditional_odds_ratio_ci=(0.8176272148267533,
606
+ Inf))),
607
+ ]
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/AtmWtAg.dat ADDED
@@ -0,0 +1,108 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: AtmWtAg (AtmWtAg.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 108)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Powell, L.J., Murphy, T.J. and Gramlich, J.W. (1982).
14
+ "The Absolute Isotopic Abundance & Atomic Weight
15
+ of a Reference Sample of Silver".
16
+ NBS Journal of Research, 87, pp. 9-19.
17
+
18
+
19
+ Data: 1 Factor
20
+ 2 Treatments
21
+ 24 Replicates/Cell
22
+ 48 Observations
23
+ 7 Constant Leading Digits
24
+ Average Level of Difficulty
25
+ Observed Data
26
+
27
+
28
+ Model: 3 Parameters (mu, tau_1, tau_2)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+
42
+ Between Instrument 1 3.63834187500000E-09 3.63834187500000E-09 1.59467335677930E+01
43
+ Within Instrument 46 1.04951729166667E-08 2.28155932971014E-10
44
+
45
+ Certified R-Squared 2.57426544538321E-01
46
+
47
+ Certified Residual
48
+ Standard Deviation 1.51048314446410E-05
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Instrument AgWt
61
+ 1 107.8681568
62
+ 1 107.8681465
63
+ 1 107.8681572
64
+ 1 107.8681785
65
+ 1 107.8681446
66
+ 1 107.8681903
67
+ 1 107.8681526
68
+ 1 107.8681494
69
+ 1 107.8681616
70
+ 1 107.8681587
71
+ 1 107.8681519
72
+ 1 107.8681486
73
+ 1 107.8681419
74
+ 1 107.8681569
75
+ 1 107.8681508
76
+ 1 107.8681672
77
+ 1 107.8681385
78
+ 1 107.8681518
79
+ 1 107.8681662
80
+ 1 107.8681424
81
+ 1 107.8681360
82
+ 1 107.8681333
83
+ 1 107.8681610
84
+ 1 107.8681477
85
+ 2 107.8681079
86
+ 2 107.8681344
87
+ 2 107.8681513
88
+ 2 107.8681197
89
+ 2 107.8681604
90
+ 2 107.8681385
91
+ 2 107.8681642
92
+ 2 107.8681365
93
+ 2 107.8681151
94
+ 2 107.8681082
95
+ 2 107.8681517
96
+ 2 107.8681448
97
+ 2 107.8681198
98
+ 2 107.8681482
99
+ 2 107.8681334
100
+ 2 107.8681609
101
+ 2 107.8681101
102
+ 2 107.8681512
103
+ 2 107.8681469
104
+ 2 107.8681360
105
+ 2 107.8681254
106
+ 2 107.8681261
107
+ 2 107.8681450
108
+ 2 107.8681368
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SiRstv.dat ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SiRstv (SiRstv.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 85)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Ehrstein, James and Croarkin, M. Carroll.
14
+ Unpublished NIST dataset.
15
+
16
+
17
+ Data: 1 Factor
18
+ 5 Treatments
19
+ 5 Replicates/Cell
20
+ 25 Observations
21
+ 3 Constant Leading Digits
22
+ Lower Level of Difficulty
23
+ Observed Data
24
+
25
+
26
+ Model: 6 Parameters (mu,tau_1, ... , tau_5)
27
+ y_{ij} = mu + tau_i + epsilon_{ij}
28
+
29
+
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Instrument 4 5.11462616000000E-02 1.27865654000000E-02 1.18046237440255E+00
42
+ Within Instrument 20 2.16636560000000E-01 1.08318280000000E-02
43
+
44
+ Certified R-Squared 1.90999039051129E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.04076068334656E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Instrument Resistance
61
+ 1 196.3052
62
+ 1 196.1240
63
+ 1 196.1890
64
+ 1 196.2569
65
+ 1 196.3403
66
+ 2 196.3042
67
+ 2 196.3825
68
+ 2 196.1669
69
+ 2 196.3257
70
+ 2 196.0422
71
+ 3 196.1303
72
+ 3 196.2005
73
+ 3 196.2889
74
+ 3 196.0343
75
+ 3 196.1811
76
+ 4 196.2795
77
+ 4 196.1748
78
+ 4 196.1494
79
+ 4 196.1485
80
+ 4 195.9885
81
+ 5 196.2119
82
+ 5 196.1051
83
+ 5 196.1850
84
+ 5 196.0052
85
+ 5 196.2090
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs01.dat ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs01 (SmLs01.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 249)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 21 Replicates/Cell
22
+ 189 Observations
23
+ 1 Constant Leading Digit
24
+ Lower Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
42
+ Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.82758620689655E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1.4
62
+ 1 1.3
63
+ 1 1.5
64
+ 1 1.3
65
+ 1 1.5
66
+ 1 1.3
67
+ 1 1.5
68
+ 1 1.3
69
+ 1 1.5
70
+ 1 1.3
71
+ 1 1.5
72
+ 1 1.3
73
+ 1 1.5
74
+ 1 1.3
75
+ 1 1.5
76
+ 1 1.3
77
+ 1 1.5
78
+ 1 1.3
79
+ 1 1.5
80
+ 1 1.3
81
+ 1 1.5
82
+ 2 1.3
83
+ 2 1.2
84
+ 2 1.4
85
+ 2 1.2
86
+ 2 1.4
87
+ 2 1.2
88
+ 2 1.4
89
+ 2 1.2
90
+ 2 1.4
91
+ 2 1.2
92
+ 2 1.4
93
+ 2 1.2
94
+ 2 1.4
95
+ 2 1.2
96
+ 2 1.4
97
+ 2 1.2
98
+ 2 1.4
99
+ 2 1.2
100
+ 2 1.4
101
+ 2 1.2
102
+ 2 1.4
103
+ 3 1.5
104
+ 3 1.4
105
+ 3 1.6
106
+ 3 1.4
107
+ 3 1.6
108
+ 3 1.4
109
+ 3 1.6
110
+ 3 1.4
111
+ 3 1.6
112
+ 3 1.4
113
+ 3 1.6
114
+ 3 1.4
115
+ 3 1.6
116
+ 3 1.4
117
+ 3 1.6
118
+ 3 1.4
119
+ 3 1.6
120
+ 3 1.4
121
+ 3 1.6
122
+ 3 1.4
123
+ 3 1.6
124
+ 4 1.3
125
+ 4 1.2
126
+ 4 1.4
127
+ 4 1.2
128
+ 4 1.4
129
+ 4 1.2
130
+ 4 1.4
131
+ 4 1.2
132
+ 4 1.4
133
+ 4 1.2
134
+ 4 1.4
135
+ 4 1.2
136
+ 4 1.4
137
+ 4 1.2
138
+ 4 1.4
139
+ 4 1.2
140
+ 4 1.4
141
+ 4 1.2
142
+ 4 1.4
143
+ 4 1.2
144
+ 4 1.4
145
+ 5 1.5
146
+ 5 1.4
147
+ 5 1.6
148
+ 5 1.4
149
+ 5 1.6
150
+ 5 1.4
151
+ 5 1.6
152
+ 5 1.4
153
+ 5 1.6
154
+ 5 1.4
155
+ 5 1.6
156
+ 5 1.4
157
+ 5 1.6
158
+ 5 1.4
159
+ 5 1.6
160
+ 5 1.4
161
+ 5 1.6
162
+ 5 1.4
163
+ 5 1.6
164
+ 5 1.4
165
+ 5 1.6
166
+ 6 1.3
167
+ 6 1.2
168
+ 6 1.4
169
+ 6 1.2
170
+ 6 1.4
171
+ 6 1.2
172
+ 6 1.4
173
+ 6 1.2
174
+ 6 1.4
175
+ 6 1.2
176
+ 6 1.4
177
+ 6 1.2
178
+ 6 1.4
179
+ 6 1.2
180
+ 6 1.4
181
+ 6 1.2
182
+ 6 1.4
183
+ 6 1.2
184
+ 6 1.4
185
+ 6 1.2
186
+ 6 1.4
187
+ 7 1.5
188
+ 7 1.4
189
+ 7 1.6
190
+ 7 1.4
191
+ 7 1.6
192
+ 7 1.4
193
+ 7 1.6
194
+ 7 1.4
195
+ 7 1.6
196
+ 7 1.4
197
+ 7 1.6
198
+ 7 1.4
199
+ 7 1.6
200
+ 7 1.4
201
+ 7 1.6
202
+ 7 1.4
203
+ 7 1.6
204
+ 7 1.4
205
+ 7 1.6
206
+ 7 1.4
207
+ 7 1.6
208
+ 8 1.3
209
+ 8 1.2
210
+ 8 1.4
211
+ 8 1.2
212
+ 8 1.4
213
+ 8 1.2
214
+ 8 1.4
215
+ 8 1.2
216
+ 8 1.4
217
+ 8 1.2
218
+ 8 1.4
219
+ 8 1.2
220
+ 8 1.4
221
+ 8 1.2
222
+ 8 1.4
223
+ 8 1.2
224
+ 8 1.4
225
+ 8 1.2
226
+ 8 1.4
227
+ 8 1.2
228
+ 8 1.4
229
+ 9 1.5
230
+ 9 1.4
231
+ 9 1.6
232
+ 9 1.4
233
+ 9 1.6
234
+ 9 1.4
235
+ 9 1.6
236
+ 9 1.4
237
+ 9 1.6
238
+ 9 1.4
239
+ 9 1.6
240
+ 9 1.4
241
+ 9 1.6
242
+ 9 1.4
243
+ 9 1.6
244
+ 9 1.4
245
+ 9 1.6
246
+ 9 1.4
247
+ 9 1.6
248
+ 9 1.4
249
+ 9 1.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs02.dat ADDED
@@ -0,0 +1,1869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs02 (SmLs02.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 1869)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 201 Replicates/Cell
22
+ 1809 Observations
23
+ 1 Constant Leading Digit
24
+ Lower Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.60800000000000E+01 2.01000000000000E+00 2.01000000000000E+02
42
+ Within Treatment 1800 1.80000000000000E+01 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.71830985915493E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1.4
62
+ 1 1.3
63
+ 1 1.5
64
+ 1 1.3
65
+ 1 1.5
66
+ 1 1.3
67
+ 1 1.5
68
+ 1 1.3
69
+ 1 1.5
70
+ 1 1.3
71
+ 1 1.5
72
+ 1 1.3
73
+ 1 1.5
74
+ 1 1.3
75
+ 1 1.5
76
+ 1 1.3
77
+ 1 1.5
78
+ 1 1.3
79
+ 1 1.5
80
+ 1 1.3
81
+ 1 1.5
82
+ 1 1.3
83
+ 1 1.5
84
+ 1 1.3
85
+ 1 1.5
86
+ 1 1.3
87
+ 1 1.5
88
+ 1 1.3
89
+ 1 1.5
90
+ 1 1.3
91
+ 1 1.5
92
+ 1 1.3
93
+ 1 1.5
94
+ 1 1.3
95
+ 1 1.5
96
+ 1 1.3
97
+ 1 1.5
98
+ 1 1.3
99
+ 1 1.5
100
+ 1 1.3
101
+ 1 1.5
102
+ 1 1.3
103
+ 1 1.5
104
+ 1 1.3
105
+ 1 1.5
106
+ 1 1.3
107
+ 1 1.5
108
+ 1 1.3
109
+ 1 1.5
110
+ 1 1.3
111
+ 1 1.5
112
+ 1 1.3
113
+ 1 1.5
114
+ 1 1.3
115
+ 1 1.5
116
+ 1 1.3
117
+ 1 1.5
118
+ 1 1.3
119
+ 1 1.5
120
+ 1 1.3
121
+ 1 1.5
122
+ 1 1.3
123
+ 1 1.5
124
+ 1 1.3
125
+ 1 1.5
126
+ 1 1.3
127
+ 1 1.5
128
+ 1 1.3
129
+ 1 1.5
130
+ 1 1.3
131
+ 1 1.5
132
+ 1 1.3
133
+ 1 1.5
134
+ 1 1.3
135
+ 1 1.5
136
+ 1 1.3
137
+ 1 1.5
138
+ 1 1.3
139
+ 1 1.5
140
+ 1 1.3
141
+ 1 1.5
142
+ 1 1.3
143
+ 1 1.5
144
+ 1 1.3
145
+ 1 1.5
146
+ 1 1.3
147
+ 1 1.5
148
+ 1 1.3
149
+ 1 1.5
150
+ 1 1.3
151
+ 1 1.5
152
+ 1 1.3
153
+ 1 1.5
154
+ 1 1.3
155
+ 1 1.5
156
+ 1 1.3
157
+ 1 1.5
158
+ 1 1.3
159
+ 1 1.5
160
+ 1 1.3
161
+ 1 1.5
162
+ 1 1.3
163
+ 1 1.5
164
+ 1 1.3
165
+ 1 1.5
166
+ 1 1.3
167
+ 1 1.5
168
+ 1 1.3
169
+ 1 1.5
170
+ 1 1.3
171
+ 1 1.5
172
+ 1 1.3
173
+ 1 1.5
174
+ 1 1.3
175
+ 1 1.5
176
+ 1 1.3
177
+ 1 1.5
178
+ 1 1.3
179
+ 1 1.5
180
+ 1 1.3
181
+ 1 1.5
182
+ 1 1.3
183
+ 1 1.5
184
+ 1 1.3
185
+ 1 1.5
186
+ 1 1.3
187
+ 1 1.5
188
+ 1 1.3
189
+ 1 1.5
190
+ 1 1.3
191
+ 1 1.5
192
+ 1 1.3
193
+ 1 1.5
194
+ 1 1.3
195
+ 1 1.5
196
+ 1 1.3
197
+ 1 1.5
198
+ 1 1.3
199
+ 1 1.5
200
+ 1 1.3
201
+ 1 1.5
202
+ 1 1.3
203
+ 1 1.5
204
+ 1 1.3
205
+ 1 1.5
206
+ 1 1.3
207
+ 1 1.5
208
+ 1 1.3
209
+ 1 1.5
210
+ 1 1.3
211
+ 1 1.5
212
+ 1 1.3
213
+ 1 1.5
214
+ 1 1.3
215
+ 1 1.5
216
+ 1 1.3
217
+ 1 1.5
218
+ 1 1.3
219
+ 1 1.5
220
+ 1 1.3
221
+ 1 1.5
222
+ 1 1.3
223
+ 1 1.5
224
+ 1 1.3
225
+ 1 1.5
226
+ 1 1.3
227
+ 1 1.5
228
+ 1 1.3
229
+ 1 1.5
230
+ 1 1.3
231
+ 1 1.5
232
+ 1 1.3
233
+ 1 1.5
234
+ 1 1.3
235
+ 1 1.5
236
+ 1 1.3
237
+ 1 1.5
238
+ 1 1.3
239
+ 1 1.5
240
+ 1 1.3
241
+ 1 1.5
242
+ 1 1.3
243
+ 1 1.5
244
+ 1 1.3
245
+ 1 1.5
246
+ 1 1.3
247
+ 1 1.5
248
+ 1 1.3
249
+ 1 1.5
250
+ 1 1.3
251
+ 1 1.5
252
+ 1 1.3
253
+ 1 1.5
254
+ 1 1.3
255
+ 1 1.5
256
+ 1 1.3
257
+ 1 1.5
258
+ 1 1.3
259
+ 1 1.5
260
+ 1 1.3
261
+ 1 1.5
262
+ 2 1.3
263
+ 2 1.2
264
+ 2 1.4
265
+ 2 1.2
266
+ 2 1.4
267
+ 2 1.2
268
+ 2 1.4
269
+ 2 1.2
270
+ 2 1.4
271
+ 2 1.2
272
+ 2 1.4
273
+ 2 1.2
274
+ 2 1.4
275
+ 2 1.2
276
+ 2 1.4
277
+ 2 1.2
278
+ 2 1.4
279
+ 2 1.2
280
+ 2 1.4
281
+ 2 1.2
282
+ 2 1.4
283
+ 2 1.2
284
+ 2 1.4
285
+ 2 1.2
286
+ 2 1.4
287
+ 2 1.2
288
+ 2 1.4
289
+ 2 1.2
290
+ 2 1.4
291
+ 2 1.2
292
+ 2 1.4
293
+ 2 1.2
294
+ 2 1.4
295
+ 2 1.2
296
+ 2 1.4
297
+ 2 1.2
298
+ 2 1.4
299
+ 2 1.2
300
+ 2 1.4
301
+ 2 1.2
302
+ 2 1.4
303
+ 2 1.2
304
+ 2 1.4
305
+ 2 1.2
306
+ 2 1.4
307
+ 2 1.2
308
+ 2 1.4
309
+ 2 1.2
310
+ 2 1.4
311
+ 2 1.2
312
+ 2 1.4
313
+ 2 1.2
314
+ 2 1.4
315
+ 2 1.2
316
+ 2 1.4
317
+ 2 1.2
318
+ 2 1.4
319
+ 2 1.2
320
+ 2 1.4
321
+ 2 1.2
322
+ 2 1.4
323
+ 2 1.2
324
+ 2 1.4
325
+ 2 1.2
326
+ 2 1.4
327
+ 2 1.2
328
+ 2 1.4
329
+ 2 1.2
330
+ 2 1.4
331
+ 2 1.2
332
+ 2 1.4
333
+ 2 1.2
334
+ 2 1.4
335
+ 2 1.2
336
+ 2 1.4
337
+ 2 1.2
338
+ 2 1.4
339
+ 2 1.2
340
+ 2 1.4
341
+ 2 1.2
342
+ 2 1.4
343
+ 2 1.2
344
+ 2 1.4
345
+ 2 1.2
346
+ 2 1.4
347
+ 2 1.2
348
+ 2 1.4
349
+ 2 1.2
350
+ 2 1.4
351
+ 2 1.2
352
+ 2 1.4
353
+ 2 1.2
354
+ 2 1.4
355
+ 2 1.2
356
+ 2 1.4
357
+ 2 1.2
358
+ 2 1.4
359
+ 2 1.2
360
+ 2 1.4
361
+ 2 1.2
362
+ 2 1.4
363
+ 2 1.2
364
+ 2 1.4
365
+ 2 1.2
366
+ 2 1.4
367
+ 2 1.2
368
+ 2 1.4
369
+ 2 1.2
370
+ 2 1.4
371
+ 2 1.2
372
+ 2 1.4
373
+ 2 1.2
374
+ 2 1.4
375
+ 2 1.2
376
+ 2 1.4
377
+ 2 1.2
378
+ 2 1.4
379
+ 2 1.2
380
+ 2 1.4
381
+ 2 1.2
382
+ 2 1.4
383
+ 2 1.2
384
+ 2 1.4
385
+ 2 1.2
386
+ 2 1.4
387
+ 2 1.2
388
+ 2 1.4
389
+ 2 1.2
390
+ 2 1.4
391
+ 2 1.2
392
+ 2 1.4
393
+ 2 1.2
394
+ 2 1.4
395
+ 2 1.2
396
+ 2 1.4
397
+ 2 1.2
398
+ 2 1.4
399
+ 2 1.2
400
+ 2 1.4
401
+ 2 1.2
402
+ 2 1.4
403
+ 2 1.2
404
+ 2 1.4
405
+ 2 1.2
406
+ 2 1.4
407
+ 2 1.2
408
+ 2 1.4
409
+ 2 1.2
410
+ 2 1.4
411
+ 2 1.2
412
+ 2 1.4
413
+ 2 1.2
414
+ 2 1.4
415
+ 2 1.2
416
+ 2 1.4
417
+ 2 1.2
418
+ 2 1.4
419
+ 2 1.2
420
+ 2 1.4
421
+ 2 1.2
422
+ 2 1.4
423
+ 2 1.2
424
+ 2 1.4
425
+ 2 1.2
426
+ 2 1.4
427
+ 2 1.2
428
+ 2 1.4
429
+ 2 1.2
430
+ 2 1.4
431
+ 2 1.2
432
+ 2 1.4
433
+ 2 1.2
434
+ 2 1.4
435
+ 2 1.2
436
+ 2 1.4
437
+ 2 1.2
438
+ 2 1.4
439
+ 2 1.2
440
+ 2 1.4
441
+ 2 1.2
442
+ 2 1.4
443
+ 2 1.2
444
+ 2 1.4
445
+ 2 1.2
446
+ 2 1.4
447
+ 2 1.2
448
+ 2 1.4
449
+ 2 1.2
450
+ 2 1.4
451
+ 2 1.2
452
+ 2 1.4
453
+ 2 1.2
454
+ 2 1.4
455
+ 2 1.2
456
+ 2 1.4
457
+ 2 1.2
458
+ 2 1.4
459
+ 2 1.2
460
+ 2 1.4
461
+ 2 1.2
462
+ 2 1.4
463
+ 3 1.5
464
+ 3 1.4
465
+ 3 1.6
466
+ 3 1.4
467
+ 3 1.6
468
+ 3 1.4
469
+ 3 1.6
470
+ 3 1.4
471
+ 3 1.6
472
+ 3 1.4
473
+ 3 1.6
474
+ 3 1.4
475
+ 3 1.6
476
+ 3 1.4
477
+ 3 1.6
478
+ 3 1.4
479
+ 3 1.6
480
+ 3 1.4
481
+ 3 1.6
482
+ 3 1.4
483
+ 3 1.6
484
+ 3 1.4
485
+ 3 1.6
486
+ 3 1.4
487
+ 3 1.6
488
+ 3 1.4
489
+ 3 1.6
490
+ 3 1.4
491
+ 3 1.6
492
+ 3 1.4
493
+ 3 1.6
494
+ 3 1.4
495
+ 3 1.6
496
+ 3 1.4
497
+ 3 1.6
498
+ 3 1.4
499
+ 3 1.6
500
+ 3 1.4
501
+ 3 1.6
502
+ 3 1.4
503
+ 3 1.6
504
+ 3 1.4
505
+ 3 1.6
506
+ 3 1.4
507
+ 3 1.6
508
+ 3 1.4
509
+ 3 1.6
510
+ 3 1.4
511
+ 3 1.6
512
+ 3 1.4
513
+ 3 1.6
514
+ 3 1.4
515
+ 3 1.6
516
+ 3 1.4
517
+ 3 1.6
518
+ 3 1.4
519
+ 3 1.6
520
+ 3 1.4
521
+ 3 1.6
522
+ 3 1.4
523
+ 3 1.6
524
+ 3 1.4
525
+ 3 1.6
526
+ 3 1.4
527
+ 3 1.6
528
+ 3 1.4
529
+ 3 1.6
530
+ 3 1.4
531
+ 3 1.6
532
+ 3 1.4
533
+ 3 1.6
534
+ 3 1.4
535
+ 3 1.6
536
+ 3 1.4
537
+ 3 1.6
538
+ 3 1.4
539
+ 3 1.6
540
+ 3 1.4
541
+ 3 1.6
542
+ 3 1.4
543
+ 3 1.6
544
+ 3 1.4
545
+ 3 1.6
546
+ 3 1.4
547
+ 3 1.6
548
+ 3 1.4
549
+ 3 1.6
550
+ 3 1.4
551
+ 3 1.6
552
+ 3 1.4
553
+ 3 1.6
554
+ 3 1.4
555
+ 3 1.6
556
+ 3 1.4
557
+ 3 1.6
558
+ 3 1.4
559
+ 3 1.6
560
+ 3 1.4
561
+ 3 1.6
562
+ 3 1.4
563
+ 3 1.6
564
+ 3 1.4
565
+ 3 1.6
566
+ 3 1.4
567
+ 3 1.6
568
+ 3 1.4
569
+ 3 1.6
570
+ 3 1.4
571
+ 3 1.6
572
+ 3 1.4
573
+ 3 1.6
574
+ 3 1.4
575
+ 3 1.6
576
+ 3 1.4
577
+ 3 1.6
578
+ 3 1.4
579
+ 3 1.6
580
+ 3 1.4
581
+ 3 1.6
582
+ 3 1.4
583
+ 3 1.6
584
+ 3 1.4
585
+ 3 1.6
586
+ 3 1.4
587
+ 3 1.6
588
+ 3 1.4
589
+ 3 1.6
590
+ 3 1.4
591
+ 3 1.6
592
+ 3 1.4
593
+ 3 1.6
594
+ 3 1.4
595
+ 3 1.6
596
+ 3 1.4
597
+ 3 1.6
598
+ 3 1.4
599
+ 3 1.6
600
+ 3 1.4
601
+ 3 1.6
602
+ 3 1.4
603
+ 3 1.6
604
+ 3 1.4
605
+ 3 1.6
606
+ 3 1.4
607
+ 3 1.6
608
+ 3 1.4
609
+ 3 1.6
610
+ 3 1.4
611
+ 3 1.6
612
+ 3 1.4
613
+ 3 1.6
614
+ 3 1.4
615
+ 3 1.6
616
+ 3 1.4
617
+ 3 1.6
618
+ 3 1.4
619
+ 3 1.6
620
+ 3 1.4
621
+ 3 1.6
622
+ 3 1.4
623
+ 3 1.6
624
+ 3 1.4
625
+ 3 1.6
626
+ 3 1.4
627
+ 3 1.6
628
+ 3 1.4
629
+ 3 1.6
630
+ 3 1.4
631
+ 3 1.6
632
+ 3 1.4
633
+ 3 1.6
634
+ 3 1.4
635
+ 3 1.6
636
+ 3 1.4
637
+ 3 1.6
638
+ 3 1.4
639
+ 3 1.6
640
+ 3 1.4
641
+ 3 1.6
642
+ 3 1.4
643
+ 3 1.6
644
+ 3 1.4
645
+ 3 1.6
646
+ 3 1.4
647
+ 3 1.6
648
+ 3 1.4
649
+ 3 1.6
650
+ 3 1.4
651
+ 3 1.6
652
+ 3 1.4
653
+ 3 1.6
654
+ 3 1.4
655
+ 3 1.6
656
+ 3 1.4
657
+ 3 1.6
658
+ 3 1.4
659
+ 3 1.6
660
+ 3 1.4
661
+ 3 1.6
662
+ 3 1.4
663
+ 3 1.6
664
+ 4 1.3
665
+ 4 1.2
666
+ 4 1.4
667
+ 4 1.2
668
+ 4 1.4
669
+ 4 1.2
670
+ 4 1.4
671
+ 4 1.2
672
+ 4 1.4
673
+ 4 1.2
674
+ 4 1.4
675
+ 4 1.2
676
+ 4 1.4
677
+ 4 1.2
678
+ 4 1.4
679
+ 4 1.2
680
+ 4 1.4
681
+ 4 1.2
682
+ 4 1.4
683
+ 4 1.2
684
+ 4 1.4
685
+ 4 1.2
686
+ 4 1.4
687
+ 4 1.2
688
+ 4 1.4
689
+ 4 1.2
690
+ 4 1.4
691
+ 4 1.2
692
+ 4 1.4
693
+ 4 1.2
694
+ 4 1.4
695
+ 4 1.2
696
+ 4 1.4
697
+ 4 1.2
698
+ 4 1.4
699
+ 4 1.2
700
+ 4 1.4
701
+ 4 1.2
702
+ 4 1.4
703
+ 4 1.2
704
+ 4 1.4
705
+ 4 1.2
706
+ 4 1.4
707
+ 4 1.2
708
+ 4 1.4
709
+ 4 1.2
710
+ 4 1.4
711
+ 4 1.2
712
+ 4 1.4
713
+ 4 1.2
714
+ 4 1.4
715
+ 4 1.2
716
+ 4 1.4
717
+ 4 1.2
718
+ 4 1.4
719
+ 4 1.2
720
+ 4 1.4
721
+ 4 1.2
722
+ 4 1.4
723
+ 4 1.2
724
+ 4 1.4
725
+ 4 1.2
726
+ 4 1.4
727
+ 4 1.2
728
+ 4 1.4
729
+ 4 1.2
730
+ 4 1.4
731
+ 4 1.2
732
+ 4 1.4
733
+ 4 1.2
734
+ 4 1.4
735
+ 4 1.2
736
+ 4 1.4
737
+ 4 1.2
738
+ 4 1.4
739
+ 4 1.2
740
+ 4 1.4
741
+ 4 1.2
742
+ 4 1.4
743
+ 4 1.2
744
+ 4 1.4
745
+ 4 1.2
746
+ 4 1.4
747
+ 4 1.2
748
+ 4 1.4
749
+ 4 1.2
750
+ 4 1.4
751
+ 4 1.2
752
+ 4 1.4
753
+ 4 1.2
754
+ 4 1.4
755
+ 4 1.2
756
+ 4 1.4
757
+ 4 1.2
758
+ 4 1.4
759
+ 4 1.2
760
+ 4 1.4
761
+ 4 1.2
762
+ 4 1.4
763
+ 4 1.2
764
+ 4 1.4
765
+ 4 1.2
766
+ 4 1.4
767
+ 4 1.2
768
+ 4 1.4
769
+ 4 1.2
770
+ 4 1.4
771
+ 4 1.2
772
+ 4 1.4
773
+ 4 1.2
774
+ 4 1.4
775
+ 4 1.2
776
+ 4 1.4
777
+ 4 1.2
778
+ 4 1.4
779
+ 4 1.2
780
+ 4 1.4
781
+ 4 1.2
782
+ 4 1.4
783
+ 4 1.2
784
+ 4 1.4
785
+ 4 1.2
786
+ 4 1.4
787
+ 4 1.2
788
+ 4 1.4
789
+ 4 1.2
790
+ 4 1.4
791
+ 4 1.2
792
+ 4 1.4
793
+ 4 1.2
794
+ 4 1.4
795
+ 4 1.2
796
+ 4 1.4
797
+ 4 1.2
798
+ 4 1.4
799
+ 4 1.2
800
+ 4 1.4
801
+ 4 1.2
802
+ 4 1.4
803
+ 4 1.2
804
+ 4 1.4
805
+ 4 1.2
806
+ 4 1.4
807
+ 4 1.2
808
+ 4 1.4
809
+ 4 1.2
810
+ 4 1.4
811
+ 4 1.2
812
+ 4 1.4
813
+ 4 1.2
814
+ 4 1.4
815
+ 4 1.2
816
+ 4 1.4
817
+ 4 1.2
818
+ 4 1.4
819
+ 4 1.2
820
+ 4 1.4
821
+ 4 1.2
822
+ 4 1.4
823
+ 4 1.2
824
+ 4 1.4
825
+ 4 1.2
826
+ 4 1.4
827
+ 4 1.2
828
+ 4 1.4
829
+ 4 1.2
830
+ 4 1.4
831
+ 4 1.2
832
+ 4 1.4
833
+ 4 1.2
834
+ 4 1.4
835
+ 4 1.2
836
+ 4 1.4
837
+ 4 1.2
838
+ 4 1.4
839
+ 4 1.2
840
+ 4 1.4
841
+ 4 1.2
842
+ 4 1.4
843
+ 4 1.2
844
+ 4 1.4
845
+ 4 1.2
846
+ 4 1.4
847
+ 4 1.2
848
+ 4 1.4
849
+ 4 1.2
850
+ 4 1.4
851
+ 4 1.2
852
+ 4 1.4
853
+ 4 1.2
854
+ 4 1.4
855
+ 4 1.2
856
+ 4 1.4
857
+ 4 1.2
858
+ 4 1.4
859
+ 4 1.2
860
+ 4 1.4
861
+ 4 1.2
862
+ 4 1.4
863
+ 4 1.2
864
+ 4 1.4
865
+ 5 1.5
866
+ 5 1.4
867
+ 5 1.6
868
+ 5 1.4
869
+ 5 1.6
870
+ 5 1.4
871
+ 5 1.6
872
+ 5 1.4
873
+ 5 1.6
874
+ 5 1.4
875
+ 5 1.6
876
+ 5 1.4
877
+ 5 1.6
878
+ 5 1.4
879
+ 5 1.6
880
+ 5 1.4
881
+ 5 1.6
882
+ 5 1.4
883
+ 5 1.6
884
+ 5 1.4
885
+ 5 1.6
886
+ 5 1.4
887
+ 5 1.6
888
+ 5 1.4
889
+ 5 1.6
890
+ 5 1.4
891
+ 5 1.6
892
+ 5 1.4
893
+ 5 1.6
894
+ 5 1.4
895
+ 5 1.6
896
+ 5 1.4
897
+ 5 1.6
898
+ 5 1.4
899
+ 5 1.6
900
+ 5 1.4
901
+ 5 1.6
902
+ 5 1.4
903
+ 5 1.6
904
+ 5 1.4
905
+ 5 1.6
906
+ 5 1.4
907
+ 5 1.6
908
+ 5 1.4
909
+ 5 1.6
910
+ 5 1.4
911
+ 5 1.6
912
+ 5 1.4
913
+ 5 1.6
914
+ 5 1.4
915
+ 5 1.6
916
+ 5 1.4
917
+ 5 1.6
918
+ 5 1.4
919
+ 5 1.6
920
+ 5 1.4
921
+ 5 1.6
922
+ 5 1.4
923
+ 5 1.6
924
+ 5 1.4
925
+ 5 1.6
926
+ 5 1.4
927
+ 5 1.6
928
+ 5 1.4
929
+ 5 1.6
930
+ 5 1.4
931
+ 5 1.6
932
+ 5 1.4
933
+ 5 1.6
934
+ 5 1.4
935
+ 5 1.6
936
+ 5 1.4
937
+ 5 1.6
938
+ 5 1.4
939
+ 5 1.6
940
+ 5 1.4
941
+ 5 1.6
942
+ 5 1.4
943
+ 5 1.6
944
+ 5 1.4
945
+ 5 1.6
946
+ 5 1.4
947
+ 5 1.6
948
+ 5 1.4
949
+ 5 1.6
950
+ 5 1.4
951
+ 5 1.6
952
+ 5 1.4
953
+ 5 1.6
954
+ 5 1.4
955
+ 5 1.6
956
+ 5 1.4
957
+ 5 1.6
958
+ 5 1.4
959
+ 5 1.6
960
+ 5 1.4
961
+ 5 1.6
962
+ 5 1.4
963
+ 5 1.6
964
+ 5 1.4
965
+ 5 1.6
966
+ 5 1.4
967
+ 5 1.6
968
+ 5 1.4
969
+ 5 1.6
970
+ 5 1.4
971
+ 5 1.6
972
+ 5 1.4
973
+ 5 1.6
974
+ 5 1.4
975
+ 5 1.6
976
+ 5 1.4
977
+ 5 1.6
978
+ 5 1.4
979
+ 5 1.6
980
+ 5 1.4
981
+ 5 1.6
982
+ 5 1.4
983
+ 5 1.6
984
+ 5 1.4
985
+ 5 1.6
986
+ 5 1.4
987
+ 5 1.6
988
+ 5 1.4
989
+ 5 1.6
990
+ 5 1.4
991
+ 5 1.6
992
+ 5 1.4
993
+ 5 1.6
994
+ 5 1.4
995
+ 5 1.6
996
+ 5 1.4
997
+ 5 1.6
998
+ 5 1.4
999
+ 5 1.6
1000
+ 5 1.4
1001
+ 5 1.6
1002
+ 5 1.4
1003
+ 5 1.6
1004
+ 5 1.4
1005
+ 5 1.6
1006
+ 5 1.4
1007
+ 5 1.6
1008
+ 5 1.4
1009
+ 5 1.6
1010
+ 5 1.4
1011
+ 5 1.6
1012
+ 5 1.4
1013
+ 5 1.6
1014
+ 5 1.4
1015
+ 5 1.6
1016
+ 5 1.4
1017
+ 5 1.6
1018
+ 5 1.4
1019
+ 5 1.6
1020
+ 5 1.4
1021
+ 5 1.6
1022
+ 5 1.4
1023
+ 5 1.6
1024
+ 5 1.4
1025
+ 5 1.6
1026
+ 5 1.4
1027
+ 5 1.6
1028
+ 5 1.4
1029
+ 5 1.6
1030
+ 5 1.4
1031
+ 5 1.6
1032
+ 5 1.4
1033
+ 5 1.6
1034
+ 5 1.4
1035
+ 5 1.6
1036
+ 5 1.4
1037
+ 5 1.6
1038
+ 5 1.4
1039
+ 5 1.6
1040
+ 5 1.4
1041
+ 5 1.6
1042
+ 5 1.4
1043
+ 5 1.6
1044
+ 5 1.4
1045
+ 5 1.6
1046
+ 5 1.4
1047
+ 5 1.6
1048
+ 5 1.4
1049
+ 5 1.6
1050
+ 5 1.4
1051
+ 5 1.6
1052
+ 5 1.4
1053
+ 5 1.6
1054
+ 5 1.4
1055
+ 5 1.6
1056
+ 5 1.4
1057
+ 5 1.6
1058
+ 5 1.4
1059
+ 5 1.6
1060
+ 5 1.4
1061
+ 5 1.6
1062
+ 5 1.4
1063
+ 5 1.6
1064
+ 5 1.4
1065
+ 5 1.6
1066
+ 6 1.3
1067
+ 6 1.2
1068
+ 6 1.4
1069
+ 6 1.2
1070
+ 6 1.4
1071
+ 6 1.2
1072
+ 6 1.4
1073
+ 6 1.2
1074
+ 6 1.4
1075
+ 6 1.2
1076
+ 6 1.4
1077
+ 6 1.2
1078
+ 6 1.4
1079
+ 6 1.2
1080
+ 6 1.4
1081
+ 6 1.2
1082
+ 6 1.4
1083
+ 6 1.2
1084
+ 6 1.4
1085
+ 6 1.2
1086
+ 6 1.4
1087
+ 6 1.2
1088
+ 6 1.4
1089
+ 6 1.2
1090
+ 6 1.4
1091
+ 6 1.2
1092
+ 6 1.4
1093
+ 6 1.2
1094
+ 6 1.4
1095
+ 6 1.2
1096
+ 6 1.4
1097
+ 6 1.2
1098
+ 6 1.4
1099
+ 6 1.2
1100
+ 6 1.4
1101
+ 6 1.2
1102
+ 6 1.4
1103
+ 6 1.2
1104
+ 6 1.4
1105
+ 6 1.2
1106
+ 6 1.4
1107
+ 6 1.2
1108
+ 6 1.4
1109
+ 6 1.2
1110
+ 6 1.4
1111
+ 6 1.2
1112
+ 6 1.4
1113
+ 6 1.2
1114
+ 6 1.4
1115
+ 6 1.2
1116
+ 6 1.4
1117
+ 6 1.2
1118
+ 6 1.4
1119
+ 6 1.2
1120
+ 6 1.4
1121
+ 6 1.2
1122
+ 6 1.4
1123
+ 6 1.2
1124
+ 6 1.4
1125
+ 6 1.2
1126
+ 6 1.4
1127
+ 6 1.2
1128
+ 6 1.4
1129
+ 6 1.2
1130
+ 6 1.4
1131
+ 6 1.2
1132
+ 6 1.4
1133
+ 6 1.2
1134
+ 6 1.4
1135
+ 6 1.2
1136
+ 6 1.4
1137
+ 6 1.2
1138
+ 6 1.4
1139
+ 6 1.2
1140
+ 6 1.4
1141
+ 6 1.2
1142
+ 6 1.4
1143
+ 6 1.2
1144
+ 6 1.4
1145
+ 6 1.2
1146
+ 6 1.4
1147
+ 6 1.2
1148
+ 6 1.4
1149
+ 6 1.2
1150
+ 6 1.4
1151
+ 6 1.2
1152
+ 6 1.4
1153
+ 6 1.2
1154
+ 6 1.4
1155
+ 6 1.2
1156
+ 6 1.4
1157
+ 6 1.2
1158
+ 6 1.4
1159
+ 6 1.2
1160
+ 6 1.4
1161
+ 6 1.2
1162
+ 6 1.4
1163
+ 6 1.2
1164
+ 6 1.4
1165
+ 6 1.2
1166
+ 6 1.4
1167
+ 6 1.2
1168
+ 6 1.4
1169
+ 6 1.2
1170
+ 6 1.4
1171
+ 6 1.2
1172
+ 6 1.4
1173
+ 6 1.2
1174
+ 6 1.4
1175
+ 6 1.2
1176
+ 6 1.4
1177
+ 6 1.2
1178
+ 6 1.4
1179
+ 6 1.2
1180
+ 6 1.4
1181
+ 6 1.2
1182
+ 6 1.4
1183
+ 6 1.2
1184
+ 6 1.4
1185
+ 6 1.2
1186
+ 6 1.4
1187
+ 6 1.2
1188
+ 6 1.4
1189
+ 6 1.2
1190
+ 6 1.4
1191
+ 6 1.2
1192
+ 6 1.4
1193
+ 6 1.2
1194
+ 6 1.4
1195
+ 6 1.2
1196
+ 6 1.4
1197
+ 6 1.2
1198
+ 6 1.4
1199
+ 6 1.2
1200
+ 6 1.4
1201
+ 6 1.2
1202
+ 6 1.4
1203
+ 6 1.2
1204
+ 6 1.4
1205
+ 6 1.2
1206
+ 6 1.4
1207
+ 6 1.2
1208
+ 6 1.4
1209
+ 6 1.2
1210
+ 6 1.4
1211
+ 6 1.2
1212
+ 6 1.4
1213
+ 6 1.2
1214
+ 6 1.4
1215
+ 6 1.2
1216
+ 6 1.4
1217
+ 6 1.2
1218
+ 6 1.4
1219
+ 6 1.2
1220
+ 6 1.4
1221
+ 6 1.2
1222
+ 6 1.4
1223
+ 6 1.2
1224
+ 6 1.4
1225
+ 6 1.2
1226
+ 6 1.4
1227
+ 6 1.2
1228
+ 6 1.4
1229
+ 6 1.2
1230
+ 6 1.4
1231
+ 6 1.2
1232
+ 6 1.4
1233
+ 6 1.2
1234
+ 6 1.4
1235
+ 6 1.2
1236
+ 6 1.4
1237
+ 6 1.2
1238
+ 6 1.4
1239
+ 6 1.2
1240
+ 6 1.4
1241
+ 6 1.2
1242
+ 6 1.4
1243
+ 6 1.2
1244
+ 6 1.4
1245
+ 6 1.2
1246
+ 6 1.4
1247
+ 6 1.2
1248
+ 6 1.4
1249
+ 6 1.2
1250
+ 6 1.4
1251
+ 6 1.2
1252
+ 6 1.4
1253
+ 6 1.2
1254
+ 6 1.4
1255
+ 6 1.2
1256
+ 6 1.4
1257
+ 6 1.2
1258
+ 6 1.4
1259
+ 6 1.2
1260
+ 6 1.4
1261
+ 6 1.2
1262
+ 6 1.4
1263
+ 6 1.2
1264
+ 6 1.4
1265
+ 6 1.2
1266
+ 6 1.4
1267
+ 7 1.5
1268
+ 7 1.4
1269
+ 7 1.6
1270
+ 7 1.4
1271
+ 7 1.6
1272
+ 7 1.4
1273
+ 7 1.6
1274
+ 7 1.4
1275
+ 7 1.6
1276
+ 7 1.4
1277
+ 7 1.6
1278
+ 7 1.4
1279
+ 7 1.6
1280
+ 7 1.4
1281
+ 7 1.6
1282
+ 7 1.4
1283
+ 7 1.6
1284
+ 7 1.4
1285
+ 7 1.6
1286
+ 7 1.4
1287
+ 7 1.6
1288
+ 7 1.4
1289
+ 7 1.6
1290
+ 7 1.4
1291
+ 7 1.6
1292
+ 7 1.4
1293
+ 7 1.6
1294
+ 7 1.4
1295
+ 7 1.6
1296
+ 7 1.4
1297
+ 7 1.6
1298
+ 7 1.4
1299
+ 7 1.6
1300
+ 7 1.4
1301
+ 7 1.6
1302
+ 7 1.4
1303
+ 7 1.6
1304
+ 7 1.4
1305
+ 7 1.6
1306
+ 7 1.4
1307
+ 7 1.6
1308
+ 7 1.4
1309
+ 7 1.6
1310
+ 7 1.4
1311
+ 7 1.6
1312
+ 7 1.4
1313
+ 7 1.6
1314
+ 7 1.4
1315
+ 7 1.6
1316
+ 7 1.4
1317
+ 7 1.6
1318
+ 7 1.4
1319
+ 7 1.6
1320
+ 7 1.4
1321
+ 7 1.6
1322
+ 7 1.4
1323
+ 7 1.6
1324
+ 7 1.4
1325
+ 7 1.6
1326
+ 7 1.4
1327
+ 7 1.6
1328
+ 7 1.4
1329
+ 7 1.6
1330
+ 7 1.4
1331
+ 7 1.6
1332
+ 7 1.4
1333
+ 7 1.6
1334
+ 7 1.4
1335
+ 7 1.6
1336
+ 7 1.4
1337
+ 7 1.6
1338
+ 7 1.4
1339
+ 7 1.6
1340
+ 7 1.4
1341
+ 7 1.6
1342
+ 7 1.4
1343
+ 7 1.6
1344
+ 7 1.4
1345
+ 7 1.6
1346
+ 7 1.4
1347
+ 7 1.6
1348
+ 7 1.4
1349
+ 7 1.6
1350
+ 7 1.4
1351
+ 7 1.6
1352
+ 7 1.4
1353
+ 7 1.6
1354
+ 7 1.4
1355
+ 7 1.6
1356
+ 7 1.4
1357
+ 7 1.6
1358
+ 7 1.4
1359
+ 7 1.6
1360
+ 7 1.4
1361
+ 7 1.6
1362
+ 7 1.4
1363
+ 7 1.6
1364
+ 7 1.4
1365
+ 7 1.6
1366
+ 7 1.4
1367
+ 7 1.6
1368
+ 7 1.4
1369
+ 7 1.6
1370
+ 7 1.4
1371
+ 7 1.6
1372
+ 7 1.4
1373
+ 7 1.6
1374
+ 7 1.4
1375
+ 7 1.6
1376
+ 7 1.4
1377
+ 7 1.6
1378
+ 7 1.4
1379
+ 7 1.6
1380
+ 7 1.4
1381
+ 7 1.6
1382
+ 7 1.4
1383
+ 7 1.6
1384
+ 7 1.4
1385
+ 7 1.6
1386
+ 7 1.4
1387
+ 7 1.6
1388
+ 7 1.4
1389
+ 7 1.6
1390
+ 7 1.4
1391
+ 7 1.6
1392
+ 7 1.4
1393
+ 7 1.6
1394
+ 7 1.4
1395
+ 7 1.6
1396
+ 7 1.4
1397
+ 7 1.6
1398
+ 7 1.4
1399
+ 7 1.6
1400
+ 7 1.4
1401
+ 7 1.6
1402
+ 7 1.4
1403
+ 7 1.6
1404
+ 7 1.4
1405
+ 7 1.6
1406
+ 7 1.4
1407
+ 7 1.6
1408
+ 7 1.4
1409
+ 7 1.6
1410
+ 7 1.4
1411
+ 7 1.6
1412
+ 7 1.4
1413
+ 7 1.6
1414
+ 7 1.4
1415
+ 7 1.6
1416
+ 7 1.4
1417
+ 7 1.6
1418
+ 7 1.4
1419
+ 7 1.6
1420
+ 7 1.4
1421
+ 7 1.6
1422
+ 7 1.4
1423
+ 7 1.6
1424
+ 7 1.4
1425
+ 7 1.6
1426
+ 7 1.4
1427
+ 7 1.6
1428
+ 7 1.4
1429
+ 7 1.6
1430
+ 7 1.4
1431
+ 7 1.6
1432
+ 7 1.4
1433
+ 7 1.6
1434
+ 7 1.4
1435
+ 7 1.6
1436
+ 7 1.4
1437
+ 7 1.6
1438
+ 7 1.4
1439
+ 7 1.6
1440
+ 7 1.4
1441
+ 7 1.6
1442
+ 7 1.4
1443
+ 7 1.6
1444
+ 7 1.4
1445
+ 7 1.6
1446
+ 7 1.4
1447
+ 7 1.6
1448
+ 7 1.4
1449
+ 7 1.6
1450
+ 7 1.4
1451
+ 7 1.6
1452
+ 7 1.4
1453
+ 7 1.6
1454
+ 7 1.4
1455
+ 7 1.6
1456
+ 7 1.4
1457
+ 7 1.6
1458
+ 7 1.4
1459
+ 7 1.6
1460
+ 7 1.4
1461
+ 7 1.6
1462
+ 7 1.4
1463
+ 7 1.6
1464
+ 7 1.4
1465
+ 7 1.6
1466
+ 7 1.4
1467
+ 7 1.6
1468
+ 8 1.3
1469
+ 8 1.2
1470
+ 8 1.4
1471
+ 8 1.2
1472
+ 8 1.4
1473
+ 8 1.2
1474
+ 8 1.4
1475
+ 8 1.2
1476
+ 8 1.4
1477
+ 8 1.2
1478
+ 8 1.4
1479
+ 8 1.2
1480
+ 8 1.4
1481
+ 8 1.2
1482
+ 8 1.4
1483
+ 8 1.2
1484
+ 8 1.4
1485
+ 8 1.2
1486
+ 8 1.4
1487
+ 8 1.2
1488
+ 8 1.4
1489
+ 8 1.2
1490
+ 8 1.4
1491
+ 8 1.2
1492
+ 8 1.4
1493
+ 8 1.2
1494
+ 8 1.4
1495
+ 8 1.2
1496
+ 8 1.4
1497
+ 8 1.2
1498
+ 8 1.4
1499
+ 8 1.2
1500
+ 8 1.4
1501
+ 8 1.2
1502
+ 8 1.4
1503
+ 8 1.2
1504
+ 8 1.4
1505
+ 8 1.2
1506
+ 8 1.4
1507
+ 8 1.2
1508
+ 8 1.4
1509
+ 8 1.2
1510
+ 8 1.4
1511
+ 8 1.2
1512
+ 8 1.4
1513
+ 8 1.2
1514
+ 8 1.4
1515
+ 8 1.2
1516
+ 8 1.4
1517
+ 8 1.2
1518
+ 8 1.4
1519
+ 8 1.2
1520
+ 8 1.4
1521
+ 8 1.2
1522
+ 8 1.4
1523
+ 8 1.2
1524
+ 8 1.4
1525
+ 8 1.2
1526
+ 8 1.4
1527
+ 8 1.2
1528
+ 8 1.4
1529
+ 8 1.2
1530
+ 8 1.4
1531
+ 8 1.2
1532
+ 8 1.4
1533
+ 8 1.2
1534
+ 8 1.4
1535
+ 8 1.2
1536
+ 8 1.4
1537
+ 8 1.2
1538
+ 8 1.4
1539
+ 8 1.2
1540
+ 8 1.4
1541
+ 8 1.2
1542
+ 8 1.4
1543
+ 8 1.2
1544
+ 8 1.4
1545
+ 8 1.2
1546
+ 8 1.4
1547
+ 8 1.2
1548
+ 8 1.4
1549
+ 8 1.2
1550
+ 8 1.4
1551
+ 8 1.2
1552
+ 8 1.4
1553
+ 8 1.2
1554
+ 8 1.4
1555
+ 8 1.2
1556
+ 8 1.4
1557
+ 8 1.2
1558
+ 8 1.4
1559
+ 8 1.2
1560
+ 8 1.4
1561
+ 8 1.2
1562
+ 8 1.4
1563
+ 8 1.2
1564
+ 8 1.4
1565
+ 8 1.2
1566
+ 8 1.4
1567
+ 8 1.2
1568
+ 8 1.4
1569
+ 8 1.2
1570
+ 8 1.4
1571
+ 8 1.2
1572
+ 8 1.4
1573
+ 8 1.2
1574
+ 8 1.4
1575
+ 8 1.2
1576
+ 8 1.4
1577
+ 8 1.2
1578
+ 8 1.4
1579
+ 8 1.2
1580
+ 8 1.4
1581
+ 8 1.2
1582
+ 8 1.4
1583
+ 8 1.2
1584
+ 8 1.4
1585
+ 8 1.2
1586
+ 8 1.4
1587
+ 8 1.2
1588
+ 8 1.4
1589
+ 8 1.2
1590
+ 8 1.4
1591
+ 8 1.2
1592
+ 8 1.4
1593
+ 8 1.2
1594
+ 8 1.4
1595
+ 8 1.2
1596
+ 8 1.4
1597
+ 8 1.2
1598
+ 8 1.4
1599
+ 8 1.2
1600
+ 8 1.4
1601
+ 8 1.2
1602
+ 8 1.4
1603
+ 8 1.2
1604
+ 8 1.4
1605
+ 8 1.2
1606
+ 8 1.4
1607
+ 8 1.2
1608
+ 8 1.4
1609
+ 8 1.2
1610
+ 8 1.4
1611
+ 8 1.2
1612
+ 8 1.4
1613
+ 8 1.2
1614
+ 8 1.4
1615
+ 8 1.2
1616
+ 8 1.4
1617
+ 8 1.2
1618
+ 8 1.4
1619
+ 8 1.2
1620
+ 8 1.4
1621
+ 8 1.2
1622
+ 8 1.4
1623
+ 8 1.2
1624
+ 8 1.4
1625
+ 8 1.2
1626
+ 8 1.4
1627
+ 8 1.2
1628
+ 8 1.4
1629
+ 8 1.2
1630
+ 8 1.4
1631
+ 8 1.2
1632
+ 8 1.4
1633
+ 8 1.2
1634
+ 8 1.4
1635
+ 8 1.2
1636
+ 8 1.4
1637
+ 8 1.2
1638
+ 8 1.4
1639
+ 8 1.2
1640
+ 8 1.4
1641
+ 8 1.2
1642
+ 8 1.4
1643
+ 8 1.2
1644
+ 8 1.4
1645
+ 8 1.2
1646
+ 8 1.4
1647
+ 8 1.2
1648
+ 8 1.4
1649
+ 8 1.2
1650
+ 8 1.4
1651
+ 8 1.2
1652
+ 8 1.4
1653
+ 8 1.2
1654
+ 8 1.4
1655
+ 8 1.2
1656
+ 8 1.4
1657
+ 8 1.2
1658
+ 8 1.4
1659
+ 8 1.2
1660
+ 8 1.4
1661
+ 8 1.2
1662
+ 8 1.4
1663
+ 8 1.2
1664
+ 8 1.4
1665
+ 8 1.2
1666
+ 8 1.4
1667
+ 8 1.2
1668
+ 8 1.4
1669
+ 9 1.5
1670
+ 9 1.4
1671
+ 9 1.6
1672
+ 9 1.4
1673
+ 9 1.6
1674
+ 9 1.4
1675
+ 9 1.6
1676
+ 9 1.4
1677
+ 9 1.6
1678
+ 9 1.4
1679
+ 9 1.6
1680
+ 9 1.4
1681
+ 9 1.6
1682
+ 9 1.4
1683
+ 9 1.6
1684
+ 9 1.4
1685
+ 9 1.6
1686
+ 9 1.4
1687
+ 9 1.6
1688
+ 9 1.4
1689
+ 9 1.6
1690
+ 9 1.4
1691
+ 9 1.6
1692
+ 9 1.4
1693
+ 9 1.6
1694
+ 9 1.4
1695
+ 9 1.6
1696
+ 9 1.4
1697
+ 9 1.6
1698
+ 9 1.4
1699
+ 9 1.6
1700
+ 9 1.4
1701
+ 9 1.6
1702
+ 9 1.4
1703
+ 9 1.6
1704
+ 9 1.4
1705
+ 9 1.6
1706
+ 9 1.4
1707
+ 9 1.6
1708
+ 9 1.4
1709
+ 9 1.6
1710
+ 9 1.4
1711
+ 9 1.6
1712
+ 9 1.4
1713
+ 9 1.6
1714
+ 9 1.4
1715
+ 9 1.6
1716
+ 9 1.4
1717
+ 9 1.6
1718
+ 9 1.4
1719
+ 9 1.6
1720
+ 9 1.4
1721
+ 9 1.6
1722
+ 9 1.4
1723
+ 9 1.6
1724
+ 9 1.4
1725
+ 9 1.6
1726
+ 9 1.4
1727
+ 9 1.6
1728
+ 9 1.4
1729
+ 9 1.6
1730
+ 9 1.4
1731
+ 9 1.6
1732
+ 9 1.4
1733
+ 9 1.6
1734
+ 9 1.4
1735
+ 9 1.6
1736
+ 9 1.4
1737
+ 9 1.6
1738
+ 9 1.4
1739
+ 9 1.6
1740
+ 9 1.4
1741
+ 9 1.6
1742
+ 9 1.4
1743
+ 9 1.6
1744
+ 9 1.4
1745
+ 9 1.6
1746
+ 9 1.4
1747
+ 9 1.6
1748
+ 9 1.4
1749
+ 9 1.6
1750
+ 9 1.4
1751
+ 9 1.6
1752
+ 9 1.4
1753
+ 9 1.6
1754
+ 9 1.4
1755
+ 9 1.6
1756
+ 9 1.4
1757
+ 9 1.6
1758
+ 9 1.4
1759
+ 9 1.6
1760
+ 9 1.4
1761
+ 9 1.6
1762
+ 9 1.4
1763
+ 9 1.6
1764
+ 9 1.4
1765
+ 9 1.6
1766
+ 9 1.4
1767
+ 9 1.6
1768
+ 9 1.4
1769
+ 9 1.6
1770
+ 9 1.4
1771
+ 9 1.6
1772
+ 9 1.4
1773
+ 9 1.6
1774
+ 9 1.4
1775
+ 9 1.6
1776
+ 9 1.4
1777
+ 9 1.6
1778
+ 9 1.4
1779
+ 9 1.6
1780
+ 9 1.4
1781
+ 9 1.6
1782
+ 9 1.4
1783
+ 9 1.6
1784
+ 9 1.4
1785
+ 9 1.6
1786
+ 9 1.4
1787
+ 9 1.6
1788
+ 9 1.4
1789
+ 9 1.6
1790
+ 9 1.4
1791
+ 9 1.6
1792
+ 9 1.4
1793
+ 9 1.6
1794
+ 9 1.4
1795
+ 9 1.6
1796
+ 9 1.4
1797
+ 9 1.6
1798
+ 9 1.4
1799
+ 9 1.6
1800
+ 9 1.4
1801
+ 9 1.6
1802
+ 9 1.4
1803
+ 9 1.6
1804
+ 9 1.4
1805
+ 9 1.6
1806
+ 9 1.4
1807
+ 9 1.6
1808
+ 9 1.4
1809
+ 9 1.6
1810
+ 9 1.4
1811
+ 9 1.6
1812
+ 9 1.4
1813
+ 9 1.6
1814
+ 9 1.4
1815
+ 9 1.6
1816
+ 9 1.4
1817
+ 9 1.6
1818
+ 9 1.4
1819
+ 9 1.6
1820
+ 9 1.4
1821
+ 9 1.6
1822
+ 9 1.4
1823
+ 9 1.6
1824
+ 9 1.4
1825
+ 9 1.6
1826
+ 9 1.4
1827
+ 9 1.6
1828
+ 9 1.4
1829
+ 9 1.6
1830
+ 9 1.4
1831
+ 9 1.6
1832
+ 9 1.4
1833
+ 9 1.6
1834
+ 9 1.4
1835
+ 9 1.6
1836
+ 9 1.4
1837
+ 9 1.6
1838
+ 9 1.4
1839
+ 9 1.6
1840
+ 9 1.4
1841
+ 9 1.6
1842
+ 9 1.4
1843
+ 9 1.6
1844
+ 9 1.4
1845
+ 9 1.6
1846
+ 9 1.4
1847
+ 9 1.6
1848
+ 9 1.4
1849
+ 9 1.6
1850
+ 9 1.4
1851
+ 9 1.6
1852
+ 9 1.4
1853
+ 9 1.6
1854
+ 9 1.4
1855
+ 9 1.6
1856
+ 9 1.4
1857
+ 9 1.6
1858
+ 9 1.4
1859
+ 9 1.6
1860
+ 9 1.4
1861
+ 9 1.6
1862
+ 9 1.4
1863
+ 9 1.6
1864
+ 9 1.4
1865
+ 9 1.6
1866
+ 9 1.4
1867
+ 9 1.6
1868
+ 9 1.4
1869
+ 9 1.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs03.dat ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs04.dat ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs04 (SmLs04.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 249)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 21 Replicates/Cell
22
+ 189 Observations
23
+ 7 Constant Leading Digits
24
+ Average Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
42
+ Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.82758620689655E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1000000.4
62
+ 1 1000000.3
63
+ 1 1000000.5
64
+ 1 1000000.3
65
+ 1 1000000.5
66
+ 1 1000000.3
67
+ 1 1000000.5
68
+ 1 1000000.3
69
+ 1 1000000.5
70
+ 1 1000000.3
71
+ 1 1000000.5
72
+ 1 1000000.3
73
+ 1 1000000.5
74
+ 1 1000000.3
75
+ 1 1000000.5
76
+ 1 1000000.3
77
+ 1 1000000.5
78
+ 1 1000000.3
79
+ 1 1000000.5
80
+ 1 1000000.3
81
+ 1 1000000.5
82
+ 2 1000000.3
83
+ 2 1000000.2
84
+ 2 1000000.4
85
+ 2 1000000.2
86
+ 2 1000000.4
87
+ 2 1000000.2
88
+ 2 1000000.4
89
+ 2 1000000.2
90
+ 2 1000000.4
91
+ 2 1000000.2
92
+ 2 1000000.4
93
+ 2 1000000.2
94
+ 2 1000000.4
95
+ 2 1000000.2
96
+ 2 1000000.4
97
+ 2 1000000.2
98
+ 2 1000000.4
99
+ 2 1000000.2
100
+ 2 1000000.4
101
+ 2 1000000.2
102
+ 2 1000000.4
103
+ 3 1000000.5
104
+ 3 1000000.4
105
+ 3 1000000.6
106
+ 3 1000000.4
107
+ 3 1000000.6
108
+ 3 1000000.4
109
+ 3 1000000.6
110
+ 3 1000000.4
111
+ 3 1000000.6
112
+ 3 1000000.4
113
+ 3 1000000.6
114
+ 3 1000000.4
115
+ 3 1000000.6
116
+ 3 1000000.4
117
+ 3 1000000.6
118
+ 3 1000000.4
119
+ 3 1000000.6
120
+ 3 1000000.4
121
+ 3 1000000.6
122
+ 3 1000000.4
123
+ 3 1000000.6
124
+ 4 1000000.3
125
+ 4 1000000.2
126
+ 4 1000000.4
127
+ 4 1000000.2
128
+ 4 1000000.4
129
+ 4 1000000.2
130
+ 4 1000000.4
131
+ 4 1000000.2
132
+ 4 1000000.4
133
+ 4 1000000.2
134
+ 4 1000000.4
135
+ 4 1000000.2
136
+ 4 1000000.4
137
+ 4 1000000.2
138
+ 4 1000000.4
139
+ 4 1000000.2
140
+ 4 1000000.4
141
+ 4 1000000.2
142
+ 4 1000000.4
143
+ 4 1000000.2
144
+ 4 1000000.4
145
+ 5 1000000.5
146
+ 5 1000000.4
147
+ 5 1000000.6
148
+ 5 1000000.4
149
+ 5 1000000.6
150
+ 5 1000000.4
151
+ 5 1000000.6
152
+ 5 1000000.4
153
+ 5 1000000.6
154
+ 5 1000000.4
155
+ 5 1000000.6
156
+ 5 1000000.4
157
+ 5 1000000.6
158
+ 5 1000000.4
159
+ 5 1000000.6
160
+ 5 1000000.4
161
+ 5 1000000.6
162
+ 5 1000000.4
163
+ 5 1000000.6
164
+ 5 1000000.4
165
+ 5 1000000.6
166
+ 6 1000000.3
167
+ 6 1000000.2
168
+ 6 1000000.4
169
+ 6 1000000.2
170
+ 6 1000000.4
171
+ 6 1000000.2
172
+ 6 1000000.4
173
+ 6 1000000.2
174
+ 6 1000000.4
175
+ 6 1000000.2
176
+ 6 1000000.4
177
+ 6 1000000.2
178
+ 6 1000000.4
179
+ 6 1000000.2
180
+ 6 1000000.4
181
+ 6 1000000.2
182
+ 6 1000000.4
183
+ 6 1000000.2
184
+ 6 1000000.4
185
+ 6 1000000.2
186
+ 6 1000000.4
187
+ 7 1000000.5
188
+ 7 1000000.4
189
+ 7 1000000.6
190
+ 7 1000000.4
191
+ 7 1000000.6
192
+ 7 1000000.4
193
+ 7 1000000.6
194
+ 7 1000000.4
195
+ 7 1000000.6
196
+ 7 1000000.4
197
+ 7 1000000.6
198
+ 7 1000000.4
199
+ 7 1000000.6
200
+ 7 1000000.4
201
+ 7 1000000.6
202
+ 7 1000000.4
203
+ 7 1000000.6
204
+ 7 1000000.4
205
+ 7 1000000.6
206
+ 7 1000000.4
207
+ 7 1000000.6
208
+ 8 1000000.3
209
+ 8 1000000.2
210
+ 8 1000000.4
211
+ 8 1000000.2
212
+ 8 1000000.4
213
+ 8 1000000.2
214
+ 8 1000000.4
215
+ 8 1000000.2
216
+ 8 1000000.4
217
+ 8 1000000.2
218
+ 8 1000000.4
219
+ 8 1000000.2
220
+ 8 1000000.4
221
+ 8 1000000.2
222
+ 8 1000000.4
223
+ 8 1000000.2
224
+ 8 1000000.4
225
+ 8 1000000.2
226
+ 8 1000000.4
227
+ 8 1000000.2
228
+ 8 1000000.4
229
+ 9 1000000.5
230
+ 9 1000000.4
231
+ 9 1000000.6
232
+ 9 1000000.4
233
+ 9 1000000.6
234
+ 9 1000000.4
235
+ 9 1000000.6
236
+ 9 1000000.4
237
+ 9 1000000.6
238
+ 9 1000000.4
239
+ 9 1000000.6
240
+ 9 1000000.4
241
+ 9 1000000.6
242
+ 9 1000000.4
243
+ 9 1000000.6
244
+ 9 1000000.4
245
+ 9 1000000.6
246
+ 9 1000000.4
247
+ 9 1000000.6
248
+ 9 1000000.4
249
+ 9 1000000.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs05.dat ADDED
@@ -0,0 +1,1869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs05 (SmLs05.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 1869)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 201 Replicates/Cell
22
+ 1809 Observations
23
+ 7 Constant Leading Digits
24
+ Average Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.60800000000000E+01 2.01000000000000E+00 2.01000000000000E+02
42
+ Within Treatment 1800 1.80000000000000E+01 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.71830985915493E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1000000.4
62
+ 1 1000000.3
63
+ 1 1000000.5
64
+ 1 1000000.3
65
+ 1 1000000.5
66
+ 1 1000000.3
67
+ 1 1000000.5
68
+ 1 1000000.3
69
+ 1 1000000.5
70
+ 1 1000000.3
71
+ 1 1000000.5
72
+ 1 1000000.3
73
+ 1 1000000.5
74
+ 1 1000000.3
75
+ 1 1000000.5
76
+ 1 1000000.3
77
+ 1 1000000.5
78
+ 1 1000000.3
79
+ 1 1000000.5
80
+ 1 1000000.3
81
+ 1 1000000.5
82
+ 1 1000000.3
83
+ 1 1000000.5
84
+ 1 1000000.3
85
+ 1 1000000.5
86
+ 1 1000000.3
87
+ 1 1000000.5
88
+ 1 1000000.3
89
+ 1 1000000.5
90
+ 1 1000000.3
91
+ 1 1000000.5
92
+ 1 1000000.3
93
+ 1 1000000.5
94
+ 1 1000000.3
95
+ 1 1000000.5
96
+ 1 1000000.3
97
+ 1 1000000.5
98
+ 1 1000000.3
99
+ 1 1000000.5
100
+ 1 1000000.3
101
+ 1 1000000.5
102
+ 1 1000000.3
103
+ 1 1000000.5
104
+ 1 1000000.3
105
+ 1 1000000.5
106
+ 1 1000000.3
107
+ 1 1000000.5
108
+ 1 1000000.3
109
+ 1 1000000.5
110
+ 1 1000000.3
111
+ 1 1000000.5
112
+ 1 1000000.3
113
+ 1 1000000.5
114
+ 1 1000000.3
115
+ 1 1000000.5
116
+ 1 1000000.3
117
+ 1 1000000.5
118
+ 1 1000000.3
119
+ 1 1000000.5
120
+ 1 1000000.3
121
+ 1 1000000.5
122
+ 1 1000000.3
123
+ 1 1000000.5
124
+ 1 1000000.3
125
+ 1 1000000.5
126
+ 1 1000000.3
127
+ 1 1000000.5
128
+ 1 1000000.3
129
+ 1 1000000.5
130
+ 1 1000000.3
131
+ 1 1000000.5
132
+ 1 1000000.3
133
+ 1 1000000.5
134
+ 1 1000000.3
135
+ 1 1000000.5
136
+ 1 1000000.3
137
+ 1 1000000.5
138
+ 1 1000000.3
139
+ 1 1000000.5
140
+ 1 1000000.3
141
+ 1 1000000.5
142
+ 1 1000000.3
143
+ 1 1000000.5
144
+ 1 1000000.3
145
+ 1 1000000.5
146
+ 1 1000000.3
147
+ 1 1000000.5
148
+ 1 1000000.3
149
+ 1 1000000.5
150
+ 1 1000000.3
151
+ 1 1000000.5
152
+ 1 1000000.3
153
+ 1 1000000.5
154
+ 1 1000000.3
155
+ 1 1000000.5
156
+ 1 1000000.3
157
+ 1 1000000.5
158
+ 1 1000000.3
159
+ 1 1000000.5
160
+ 1 1000000.3
161
+ 1 1000000.5
162
+ 1 1000000.3
163
+ 1 1000000.5
164
+ 1 1000000.3
165
+ 1 1000000.5
166
+ 1 1000000.3
167
+ 1 1000000.5
168
+ 1 1000000.3
169
+ 1 1000000.5
170
+ 1 1000000.3
171
+ 1 1000000.5
172
+ 1 1000000.3
173
+ 1 1000000.5
174
+ 1 1000000.3
175
+ 1 1000000.5
176
+ 1 1000000.3
177
+ 1 1000000.5
178
+ 1 1000000.3
179
+ 1 1000000.5
180
+ 1 1000000.3
181
+ 1 1000000.5
182
+ 1 1000000.3
183
+ 1 1000000.5
184
+ 1 1000000.3
185
+ 1 1000000.5
186
+ 1 1000000.3
187
+ 1 1000000.5
188
+ 1 1000000.3
189
+ 1 1000000.5
190
+ 1 1000000.3
191
+ 1 1000000.5
192
+ 1 1000000.3
193
+ 1 1000000.5
194
+ 1 1000000.3
195
+ 1 1000000.5
196
+ 1 1000000.3
197
+ 1 1000000.5
198
+ 1 1000000.3
199
+ 1 1000000.5
200
+ 1 1000000.3
201
+ 1 1000000.5
202
+ 1 1000000.3
203
+ 1 1000000.5
204
+ 1 1000000.3
205
+ 1 1000000.5
206
+ 1 1000000.3
207
+ 1 1000000.5
208
+ 1 1000000.3
209
+ 1 1000000.5
210
+ 1 1000000.3
211
+ 1 1000000.5
212
+ 1 1000000.3
213
+ 1 1000000.5
214
+ 1 1000000.3
215
+ 1 1000000.5
216
+ 1 1000000.3
217
+ 1 1000000.5
218
+ 1 1000000.3
219
+ 1 1000000.5
220
+ 1 1000000.3
221
+ 1 1000000.5
222
+ 1 1000000.3
223
+ 1 1000000.5
224
+ 1 1000000.3
225
+ 1 1000000.5
226
+ 1 1000000.3
227
+ 1 1000000.5
228
+ 1 1000000.3
229
+ 1 1000000.5
230
+ 1 1000000.3
231
+ 1 1000000.5
232
+ 1 1000000.3
233
+ 1 1000000.5
234
+ 1 1000000.3
235
+ 1 1000000.5
236
+ 1 1000000.3
237
+ 1 1000000.5
238
+ 1 1000000.3
239
+ 1 1000000.5
240
+ 1 1000000.3
241
+ 1 1000000.5
242
+ 1 1000000.3
243
+ 1 1000000.5
244
+ 1 1000000.3
245
+ 1 1000000.5
246
+ 1 1000000.3
247
+ 1 1000000.5
248
+ 1 1000000.3
249
+ 1 1000000.5
250
+ 1 1000000.3
251
+ 1 1000000.5
252
+ 1 1000000.3
253
+ 1 1000000.5
254
+ 1 1000000.3
255
+ 1 1000000.5
256
+ 1 1000000.3
257
+ 1 1000000.5
258
+ 1 1000000.3
259
+ 1 1000000.5
260
+ 1 1000000.3
261
+ 1 1000000.5
262
+ 2 1000000.3
263
+ 2 1000000.2
264
+ 2 1000000.4
265
+ 2 1000000.2
266
+ 2 1000000.4
267
+ 2 1000000.2
268
+ 2 1000000.4
269
+ 2 1000000.2
270
+ 2 1000000.4
271
+ 2 1000000.2
272
+ 2 1000000.4
273
+ 2 1000000.2
274
+ 2 1000000.4
275
+ 2 1000000.2
276
+ 2 1000000.4
277
+ 2 1000000.2
278
+ 2 1000000.4
279
+ 2 1000000.2
280
+ 2 1000000.4
281
+ 2 1000000.2
282
+ 2 1000000.4
283
+ 2 1000000.2
284
+ 2 1000000.4
285
+ 2 1000000.2
286
+ 2 1000000.4
287
+ 2 1000000.2
288
+ 2 1000000.4
289
+ 2 1000000.2
290
+ 2 1000000.4
291
+ 2 1000000.2
292
+ 2 1000000.4
293
+ 2 1000000.2
294
+ 2 1000000.4
295
+ 2 1000000.2
296
+ 2 1000000.4
297
+ 2 1000000.2
298
+ 2 1000000.4
299
+ 2 1000000.2
300
+ 2 1000000.4
301
+ 2 1000000.2
302
+ 2 1000000.4
303
+ 2 1000000.2
304
+ 2 1000000.4
305
+ 2 1000000.2
306
+ 2 1000000.4
307
+ 2 1000000.2
308
+ 2 1000000.4
309
+ 2 1000000.2
310
+ 2 1000000.4
311
+ 2 1000000.2
312
+ 2 1000000.4
313
+ 2 1000000.2
314
+ 2 1000000.4
315
+ 2 1000000.2
316
+ 2 1000000.4
317
+ 2 1000000.2
318
+ 2 1000000.4
319
+ 2 1000000.2
320
+ 2 1000000.4
321
+ 2 1000000.2
322
+ 2 1000000.4
323
+ 2 1000000.2
324
+ 2 1000000.4
325
+ 2 1000000.2
326
+ 2 1000000.4
327
+ 2 1000000.2
328
+ 2 1000000.4
329
+ 2 1000000.2
330
+ 2 1000000.4
331
+ 2 1000000.2
332
+ 2 1000000.4
333
+ 2 1000000.2
334
+ 2 1000000.4
335
+ 2 1000000.2
336
+ 2 1000000.4
337
+ 2 1000000.2
338
+ 2 1000000.4
339
+ 2 1000000.2
340
+ 2 1000000.4
341
+ 2 1000000.2
342
+ 2 1000000.4
343
+ 2 1000000.2
344
+ 2 1000000.4
345
+ 2 1000000.2
346
+ 2 1000000.4
347
+ 2 1000000.2
348
+ 2 1000000.4
349
+ 2 1000000.2
350
+ 2 1000000.4
351
+ 2 1000000.2
352
+ 2 1000000.4
353
+ 2 1000000.2
354
+ 2 1000000.4
355
+ 2 1000000.2
356
+ 2 1000000.4
357
+ 2 1000000.2
358
+ 2 1000000.4
359
+ 2 1000000.2
360
+ 2 1000000.4
361
+ 2 1000000.2
362
+ 2 1000000.4
363
+ 2 1000000.2
364
+ 2 1000000.4
365
+ 2 1000000.2
366
+ 2 1000000.4
367
+ 2 1000000.2
368
+ 2 1000000.4
369
+ 2 1000000.2
370
+ 2 1000000.4
371
+ 2 1000000.2
372
+ 2 1000000.4
373
+ 2 1000000.2
374
+ 2 1000000.4
375
+ 2 1000000.2
376
+ 2 1000000.4
377
+ 2 1000000.2
378
+ 2 1000000.4
379
+ 2 1000000.2
380
+ 2 1000000.4
381
+ 2 1000000.2
382
+ 2 1000000.4
383
+ 2 1000000.2
384
+ 2 1000000.4
385
+ 2 1000000.2
386
+ 2 1000000.4
387
+ 2 1000000.2
388
+ 2 1000000.4
389
+ 2 1000000.2
390
+ 2 1000000.4
391
+ 2 1000000.2
392
+ 2 1000000.4
393
+ 2 1000000.2
394
+ 2 1000000.4
395
+ 2 1000000.2
396
+ 2 1000000.4
397
+ 2 1000000.2
398
+ 2 1000000.4
399
+ 2 1000000.2
400
+ 2 1000000.4
401
+ 2 1000000.2
402
+ 2 1000000.4
403
+ 2 1000000.2
404
+ 2 1000000.4
405
+ 2 1000000.2
406
+ 2 1000000.4
407
+ 2 1000000.2
408
+ 2 1000000.4
409
+ 2 1000000.2
410
+ 2 1000000.4
411
+ 2 1000000.2
412
+ 2 1000000.4
413
+ 2 1000000.2
414
+ 2 1000000.4
415
+ 2 1000000.2
416
+ 2 1000000.4
417
+ 2 1000000.2
418
+ 2 1000000.4
419
+ 2 1000000.2
420
+ 2 1000000.4
421
+ 2 1000000.2
422
+ 2 1000000.4
423
+ 2 1000000.2
424
+ 2 1000000.4
425
+ 2 1000000.2
426
+ 2 1000000.4
427
+ 2 1000000.2
428
+ 2 1000000.4
429
+ 2 1000000.2
430
+ 2 1000000.4
431
+ 2 1000000.2
432
+ 2 1000000.4
433
+ 2 1000000.2
434
+ 2 1000000.4
435
+ 2 1000000.2
436
+ 2 1000000.4
437
+ 2 1000000.2
438
+ 2 1000000.4
439
+ 2 1000000.2
440
+ 2 1000000.4
441
+ 2 1000000.2
442
+ 2 1000000.4
443
+ 2 1000000.2
444
+ 2 1000000.4
445
+ 2 1000000.2
446
+ 2 1000000.4
447
+ 2 1000000.2
448
+ 2 1000000.4
449
+ 2 1000000.2
450
+ 2 1000000.4
451
+ 2 1000000.2
452
+ 2 1000000.4
453
+ 2 1000000.2
454
+ 2 1000000.4
455
+ 2 1000000.2
456
+ 2 1000000.4
457
+ 2 1000000.2
458
+ 2 1000000.4
459
+ 2 1000000.2
460
+ 2 1000000.4
461
+ 2 1000000.2
462
+ 2 1000000.4
463
+ 3 1000000.5
464
+ 3 1000000.4
465
+ 3 1000000.6
466
+ 3 1000000.4
467
+ 3 1000000.6
468
+ 3 1000000.4
469
+ 3 1000000.6
470
+ 3 1000000.4
471
+ 3 1000000.6
472
+ 3 1000000.4
473
+ 3 1000000.6
474
+ 3 1000000.4
475
+ 3 1000000.6
476
+ 3 1000000.4
477
+ 3 1000000.6
478
+ 3 1000000.4
479
+ 3 1000000.6
480
+ 3 1000000.4
481
+ 3 1000000.6
482
+ 3 1000000.4
483
+ 3 1000000.6
484
+ 3 1000000.4
485
+ 3 1000000.6
486
+ 3 1000000.4
487
+ 3 1000000.6
488
+ 3 1000000.4
489
+ 3 1000000.6
490
+ 3 1000000.4
491
+ 3 1000000.6
492
+ 3 1000000.4
493
+ 3 1000000.6
494
+ 3 1000000.4
495
+ 3 1000000.6
496
+ 3 1000000.4
497
+ 3 1000000.6
498
+ 3 1000000.4
499
+ 3 1000000.6
500
+ 3 1000000.4
501
+ 3 1000000.6
502
+ 3 1000000.4
503
+ 3 1000000.6
504
+ 3 1000000.4
505
+ 3 1000000.6
506
+ 3 1000000.4
507
+ 3 1000000.6
508
+ 3 1000000.4
509
+ 3 1000000.6
510
+ 3 1000000.4
511
+ 3 1000000.6
512
+ 3 1000000.4
513
+ 3 1000000.6
514
+ 3 1000000.4
515
+ 3 1000000.6
516
+ 3 1000000.4
517
+ 3 1000000.6
518
+ 3 1000000.4
519
+ 3 1000000.6
520
+ 3 1000000.4
521
+ 3 1000000.6
522
+ 3 1000000.4
523
+ 3 1000000.6
524
+ 3 1000000.4
525
+ 3 1000000.6
526
+ 3 1000000.4
527
+ 3 1000000.6
528
+ 3 1000000.4
529
+ 3 1000000.6
530
+ 3 1000000.4
531
+ 3 1000000.6
532
+ 3 1000000.4
533
+ 3 1000000.6
534
+ 3 1000000.4
535
+ 3 1000000.6
536
+ 3 1000000.4
537
+ 3 1000000.6
538
+ 3 1000000.4
539
+ 3 1000000.6
540
+ 3 1000000.4
541
+ 3 1000000.6
542
+ 3 1000000.4
543
+ 3 1000000.6
544
+ 3 1000000.4
545
+ 3 1000000.6
546
+ 3 1000000.4
547
+ 3 1000000.6
548
+ 3 1000000.4
549
+ 3 1000000.6
550
+ 3 1000000.4
551
+ 3 1000000.6
552
+ 3 1000000.4
553
+ 3 1000000.6
554
+ 3 1000000.4
555
+ 3 1000000.6
556
+ 3 1000000.4
557
+ 3 1000000.6
558
+ 3 1000000.4
559
+ 3 1000000.6
560
+ 3 1000000.4
561
+ 3 1000000.6
562
+ 3 1000000.4
563
+ 3 1000000.6
564
+ 3 1000000.4
565
+ 3 1000000.6
566
+ 3 1000000.4
567
+ 3 1000000.6
568
+ 3 1000000.4
569
+ 3 1000000.6
570
+ 3 1000000.4
571
+ 3 1000000.6
572
+ 3 1000000.4
573
+ 3 1000000.6
574
+ 3 1000000.4
575
+ 3 1000000.6
576
+ 3 1000000.4
577
+ 3 1000000.6
578
+ 3 1000000.4
579
+ 3 1000000.6
580
+ 3 1000000.4
581
+ 3 1000000.6
582
+ 3 1000000.4
583
+ 3 1000000.6
584
+ 3 1000000.4
585
+ 3 1000000.6
586
+ 3 1000000.4
587
+ 3 1000000.6
588
+ 3 1000000.4
589
+ 3 1000000.6
590
+ 3 1000000.4
591
+ 3 1000000.6
592
+ 3 1000000.4
593
+ 3 1000000.6
594
+ 3 1000000.4
595
+ 3 1000000.6
596
+ 3 1000000.4
597
+ 3 1000000.6
598
+ 3 1000000.4
599
+ 3 1000000.6
600
+ 3 1000000.4
601
+ 3 1000000.6
602
+ 3 1000000.4
603
+ 3 1000000.6
604
+ 3 1000000.4
605
+ 3 1000000.6
606
+ 3 1000000.4
607
+ 3 1000000.6
608
+ 3 1000000.4
609
+ 3 1000000.6
610
+ 3 1000000.4
611
+ 3 1000000.6
612
+ 3 1000000.4
613
+ 3 1000000.6
614
+ 3 1000000.4
615
+ 3 1000000.6
616
+ 3 1000000.4
617
+ 3 1000000.6
618
+ 3 1000000.4
619
+ 3 1000000.6
620
+ 3 1000000.4
621
+ 3 1000000.6
622
+ 3 1000000.4
623
+ 3 1000000.6
624
+ 3 1000000.4
625
+ 3 1000000.6
626
+ 3 1000000.4
627
+ 3 1000000.6
628
+ 3 1000000.4
629
+ 3 1000000.6
630
+ 3 1000000.4
631
+ 3 1000000.6
632
+ 3 1000000.4
633
+ 3 1000000.6
634
+ 3 1000000.4
635
+ 3 1000000.6
636
+ 3 1000000.4
637
+ 3 1000000.6
638
+ 3 1000000.4
639
+ 3 1000000.6
640
+ 3 1000000.4
641
+ 3 1000000.6
642
+ 3 1000000.4
643
+ 3 1000000.6
644
+ 3 1000000.4
645
+ 3 1000000.6
646
+ 3 1000000.4
647
+ 3 1000000.6
648
+ 3 1000000.4
649
+ 3 1000000.6
650
+ 3 1000000.4
651
+ 3 1000000.6
652
+ 3 1000000.4
653
+ 3 1000000.6
654
+ 3 1000000.4
655
+ 3 1000000.6
656
+ 3 1000000.4
657
+ 3 1000000.6
658
+ 3 1000000.4
659
+ 3 1000000.6
660
+ 3 1000000.4
661
+ 3 1000000.6
662
+ 3 1000000.4
663
+ 3 1000000.6
664
+ 4 1000000.3
665
+ 4 1000000.2
666
+ 4 1000000.4
667
+ 4 1000000.2
668
+ 4 1000000.4
669
+ 4 1000000.2
670
+ 4 1000000.4
671
+ 4 1000000.2
672
+ 4 1000000.4
673
+ 4 1000000.2
674
+ 4 1000000.4
675
+ 4 1000000.2
676
+ 4 1000000.4
677
+ 4 1000000.2
678
+ 4 1000000.4
679
+ 4 1000000.2
680
+ 4 1000000.4
681
+ 4 1000000.2
682
+ 4 1000000.4
683
+ 4 1000000.2
684
+ 4 1000000.4
685
+ 4 1000000.2
686
+ 4 1000000.4
687
+ 4 1000000.2
688
+ 4 1000000.4
689
+ 4 1000000.2
690
+ 4 1000000.4
691
+ 4 1000000.2
692
+ 4 1000000.4
693
+ 4 1000000.2
694
+ 4 1000000.4
695
+ 4 1000000.2
696
+ 4 1000000.4
697
+ 4 1000000.2
698
+ 4 1000000.4
699
+ 4 1000000.2
700
+ 4 1000000.4
701
+ 4 1000000.2
702
+ 4 1000000.4
703
+ 4 1000000.2
704
+ 4 1000000.4
705
+ 4 1000000.2
706
+ 4 1000000.4
707
+ 4 1000000.2
708
+ 4 1000000.4
709
+ 4 1000000.2
710
+ 4 1000000.4
711
+ 4 1000000.2
712
+ 4 1000000.4
713
+ 4 1000000.2
714
+ 4 1000000.4
715
+ 4 1000000.2
716
+ 4 1000000.4
717
+ 4 1000000.2
718
+ 4 1000000.4
719
+ 4 1000000.2
720
+ 4 1000000.4
721
+ 4 1000000.2
722
+ 4 1000000.4
723
+ 4 1000000.2
724
+ 4 1000000.4
725
+ 4 1000000.2
726
+ 4 1000000.4
727
+ 4 1000000.2
728
+ 4 1000000.4
729
+ 4 1000000.2
730
+ 4 1000000.4
731
+ 4 1000000.2
732
+ 4 1000000.4
733
+ 4 1000000.2
734
+ 4 1000000.4
735
+ 4 1000000.2
736
+ 4 1000000.4
737
+ 4 1000000.2
738
+ 4 1000000.4
739
+ 4 1000000.2
740
+ 4 1000000.4
741
+ 4 1000000.2
742
+ 4 1000000.4
743
+ 4 1000000.2
744
+ 4 1000000.4
745
+ 4 1000000.2
746
+ 4 1000000.4
747
+ 4 1000000.2
748
+ 4 1000000.4
749
+ 4 1000000.2
750
+ 4 1000000.4
751
+ 4 1000000.2
752
+ 4 1000000.4
753
+ 4 1000000.2
754
+ 4 1000000.4
755
+ 4 1000000.2
756
+ 4 1000000.4
757
+ 4 1000000.2
758
+ 4 1000000.4
759
+ 4 1000000.2
760
+ 4 1000000.4
761
+ 4 1000000.2
762
+ 4 1000000.4
763
+ 4 1000000.2
764
+ 4 1000000.4
765
+ 4 1000000.2
766
+ 4 1000000.4
767
+ 4 1000000.2
768
+ 4 1000000.4
769
+ 4 1000000.2
770
+ 4 1000000.4
771
+ 4 1000000.2
772
+ 4 1000000.4
773
+ 4 1000000.2
774
+ 4 1000000.4
775
+ 4 1000000.2
776
+ 4 1000000.4
777
+ 4 1000000.2
778
+ 4 1000000.4
779
+ 4 1000000.2
780
+ 4 1000000.4
781
+ 4 1000000.2
782
+ 4 1000000.4
783
+ 4 1000000.2
784
+ 4 1000000.4
785
+ 4 1000000.2
786
+ 4 1000000.4
787
+ 4 1000000.2
788
+ 4 1000000.4
789
+ 4 1000000.2
790
+ 4 1000000.4
791
+ 4 1000000.2
792
+ 4 1000000.4
793
+ 4 1000000.2
794
+ 4 1000000.4
795
+ 4 1000000.2
796
+ 4 1000000.4
797
+ 4 1000000.2
798
+ 4 1000000.4
799
+ 4 1000000.2
800
+ 4 1000000.4
801
+ 4 1000000.2
802
+ 4 1000000.4
803
+ 4 1000000.2
804
+ 4 1000000.4
805
+ 4 1000000.2
806
+ 4 1000000.4
807
+ 4 1000000.2
808
+ 4 1000000.4
809
+ 4 1000000.2
810
+ 4 1000000.4
811
+ 4 1000000.2
812
+ 4 1000000.4
813
+ 4 1000000.2
814
+ 4 1000000.4
815
+ 4 1000000.2
816
+ 4 1000000.4
817
+ 4 1000000.2
818
+ 4 1000000.4
819
+ 4 1000000.2
820
+ 4 1000000.4
821
+ 4 1000000.2
822
+ 4 1000000.4
823
+ 4 1000000.2
824
+ 4 1000000.4
825
+ 4 1000000.2
826
+ 4 1000000.4
827
+ 4 1000000.2
828
+ 4 1000000.4
829
+ 4 1000000.2
830
+ 4 1000000.4
831
+ 4 1000000.2
832
+ 4 1000000.4
833
+ 4 1000000.2
834
+ 4 1000000.4
835
+ 4 1000000.2
836
+ 4 1000000.4
837
+ 4 1000000.2
838
+ 4 1000000.4
839
+ 4 1000000.2
840
+ 4 1000000.4
841
+ 4 1000000.2
842
+ 4 1000000.4
843
+ 4 1000000.2
844
+ 4 1000000.4
845
+ 4 1000000.2
846
+ 4 1000000.4
847
+ 4 1000000.2
848
+ 4 1000000.4
849
+ 4 1000000.2
850
+ 4 1000000.4
851
+ 4 1000000.2
852
+ 4 1000000.4
853
+ 4 1000000.2
854
+ 4 1000000.4
855
+ 4 1000000.2
856
+ 4 1000000.4
857
+ 4 1000000.2
858
+ 4 1000000.4
859
+ 4 1000000.2
860
+ 4 1000000.4
861
+ 4 1000000.2
862
+ 4 1000000.4
863
+ 4 1000000.2
864
+ 4 1000000.4
865
+ 5 1000000.5
866
+ 5 1000000.4
867
+ 5 1000000.6
868
+ 5 1000000.4
869
+ 5 1000000.6
870
+ 5 1000000.4
871
+ 5 1000000.6
872
+ 5 1000000.4
873
+ 5 1000000.6
874
+ 5 1000000.4
875
+ 5 1000000.6
876
+ 5 1000000.4
877
+ 5 1000000.6
878
+ 5 1000000.4
879
+ 5 1000000.6
880
+ 5 1000000.4
881
+ 5 1000000.6
882
+ 5 1000000.4
883
+ 5 1000000.6
884
+ 5 1000000.4
885
+ 5 1000000.6
886
+ 5 1000000.4
887
+ 5 1000000.6
888
+ 5 1000000.4
889
+ 5 1000000.6
890
+ 5 1000000.4
891
+ 5 1000000.6
892
+ 5 1000000.4
893
+ 5 1000000.6
894
+ 5 1000000.4
895
+ 5 1000000.6
896
+ 5 1000000.4
897
+ 5 1000000.6
898
+ 5 1000000.4
899
+ 5 1000000.6
900
+ 5 1000000.4
901
+ 5 1000000.6
902
+ 5 1000000.4
903
+ 5 1000000.6
904
+ 5 1000000.4
905
+ 5 1000000.6
906
+ 5 1000000.4
907
+ 5 1000000.6
908
+ 5 1000000.4
909
+ 5 1000000.6
910
+ 5 1000000.4
911
+ 5 1000000.6
912
+ 5 1000000.4
913
+ 5 1000000.6
914
+ 5 1000000.4
915
+ 5 1000000.6
916
+ 5 1000000.4
917
+ 5 1000000.6
918
+ 5 1000000.4
919
+ 5 1000000.6
920
+ 5 1000000.4
921
+ 5 1000000.6
922
+ 5 1000000.4
923
+ 5 1000000.6
924
+ 5 1000000.4
925
+ 5 1000000.6
926
+ 5 1000000.4
927
+ 5 1000000.6
928
+ 5 1000000.4
929
+ 5 1000000.6
930
+ 5 1000000.4
931
+ 5 1000000.6
932
+ 5 1000000.4
933
+ 5 1000000.6
934
+ 5 1000000.4
935
+ 5 1000000.6
936
+ 5 1000000.4
937
+ 5 1000000.6
938
+ 5 1000000.4
939
+ 5 1000000.6
940
+ 5 1000000.4
941
+ 5 1000000.6
942
+ 5 1000000.4
943
+ 5 1000000.6
944
+ 5 1000000.4
945
+ 5 1000000.6
946
+ 5 1000000.4
947
+ 5 1000000.6
948
+ 5 1000000.4
949
+ 5 1000000.6
950
+ 5 1000000.4
951
+ 5 1000000.6
952
+ 5 1000000.4
953
+ 5 1000000.6
954
+ 5 1000000.4
955
+ 5 1000000.6
956
+ 5 1000000.4
957
+ 5 1000000.6
958
+ 5 1000000.4
959
+ 5 1000000.6
960
+ 5 1000000.4
961
+ 5 1000000.6
962
+ 5 1000000.4
963
+ 5 1000000.6
964
+ 5 1000000.4
965
+ 5 1000000.6
966
+ 5 1000000.4
967
+ 5 1000000.6
968
+ 5 1000000.4
969
+ 5 1000000.6
970
+ 5 1000000.4
971
+ 5 1000000.6
972
+ 5 1000000.4
973
+ 5 1000000.6
974
+ 5 1000000.4
975
+ 5 1000000.6
976
+ 5 1000000.4
977
+ 5 1000000.6
978
+ 5 1000000.4
979
+ 5 1000000.6
980
+ 5 1000000.4
981
+ 5 1000000.6
982
+ 5 1000000.4
983
+ 5 1000000.6
984
+ 5 1000000.4
985
+ 5 1000000.6
986
+ 5 1000000.4
987
+ 5 1000000.6
988
+ 5 1000000.4
989
+ 5 1000000.6
990
+ 5 1000000.4
991
+ 5 1000000.6
992
+ 5 1000000.4
993
+ 5 1000000.6
994
+ 5 1000000.4
995
+ 5 1000000.6
996
+ 5 1000000.4
997
+ 5 1000000.6
998
+ 5 1000000.4
999
+ 5 1000000.6
1000
+ 5 1000000.4
1001
+ 5 1000000.6
1002
+ 5 1000000.4
1003
+ 5 1000000.6
1004
+ 5 1000000.4
1005
+ 5 1000000.6
1006
+ 5 1000000.4
1007
+ 5 1000000.6
1008
+ 5 1000000.4
1009
+ 5 1000000.6
1010
+ 5 1000000.4
1011
+ 5 1000000.6
1012
+ 5 1000000.4
1013
+ 5 1000000.6
1014
+ 5 1000000.4
1015
+ 5 1000000.6
1016
+ 5 1000000.4
1017
+ 5 1000000.6
1018
+ 5 1000000.4
1019
+ 5 1000000.6
1020
+ 5 1000000.4
1021
+ 5 1000000.6
1022
+ 5 1000000.4
1023
+ 5 1000000.6
1024
+ 5 1000000.4
1025
+ 5 1000000.6
1026
+ 5 1000000.4
1027
+ 5 1000000.6
1028
+ 5 1000000.4
1029
+ 5 1000000.6
1030
+ 5 1000000.4
1031
+ 5 1000000.6
1032
+ 5 1000000.4
1033
+ 5 1000000.6
1034
+ 5 1000000.4
1035
+ 5 1000000.6
1036
+ 5 1000000.4
1037
+ 5 1000000.6
1038
+ 5 1000000.4
1039
+ 5 1000000.6
1040
+ 5 1000000.4
1041
+ 5 1000000.6
1042
+ 5 1000000.4
1043
+ 5 1000000.6
1044
+ 5 1000000.4
1045
+ 5 1000000.6
1046
+ 5 1000000.4
1047
+ 5 1000000.6
1048
+ 5 1000000.4
1049
+ 5 1000000.6
1050
+ 5 1000000.4
1051
+ 5 1000000.6
1052
+ 5 1000000.4
1053
+ 5 1000000.6
1054
+ 5 1000000.4
1055
+ 5 1000000.6
1056
+ 5 1000000.4
1057
+ 5 1000000.6
1058
+ 5 1000000.4
1059
+ 5 1000000.6
1060
+ 5 1000000.4
1061
+ 5 1000000.6
1062
+ 5 1000000.4
1063
+ 5 1000000.6
1064
+ 5 1000000.4
1065
+ 5 1000000.6
1066
+ 6 1000000.3
1067
+ 6 1000000.2
1068
+ 6 1000000.4
1069
+ 6 1000000.2
1070
+ 6 1000000.4
1071
+ 6 1000000.2
1072
+ 6 1000000.4
1073
+ 6 1000000.2
1074
+ 6 1000000.4
1075
+ 6 1000000.2
1076
+ 6 1000000.4
1077
+ 6 1000000.2
1078
+ 6 1000000.4
1079
+ 6 1000000.2
1080
+ 6 1000000.4
1081
+ 6 1000000.2
1082
+ 6 1000000.4
1083
+ 6 1000000.2
1084
+ 6 1000000.4
1085
+ 6 1000000.2
1086
+ 6 1000000.4
1087
+ 6 1000000.2
1088
+ 6 1000000.4
1089
+ 6 1000000.2
1090
+ 6 1000000.4
1091
+ 6 1000000.2
1092
+ 6 1000000.4
1093
+ 6 1000000.2
1094
+ 6 1000000.4
1095
+ 6 1000000.2
1096
+ 6 1000000.4
1097
+ 6 1000000.2
1098
+ 6 1000000.4
1099
+ 6 1000000.2
1100
+ 6 1000000.4
1101
+ 6 1000000.2
1102
+ 6 1000000.4
1103
+ 6 1000000.2
1104
+ 6 1000000.4
1105
+ 6 1000000.2
1106
+ 6 1000000.4
1107
+ 6 1000000.2
1108
+ 6 1000000.4
1109
+ 6 1000000.2
1110
+ 6 1000000.4
1111
+ 6 1000000.2
1112
+ 6 1000000.4
1113
+ 6 1000000.2
1114
+ 6 1000000.4
1115
+ 6 1000000.2
1116
+ 6 1000000.4
1117
+ 6 1000000.2
1118
+ 6 1000000.4
1119
+ 6 1000000.2
1120
+ 6 1000000.4
1121
+ 6 1000000.2
1122
+ 6 1000000.4
1123
+ 6 1000000.2
1124
+ 6 1000000.4
1125
+ 6 1000000.2
1126
+ 6 1000000.4
1127
+ 6 1000000.2
1128
+ 6 1000000.4
1129
+ 6 1000000.2
1130
+ 6 1000000.4
1131
+ 6 1000000.2
1132
+ 6 1000000.4
1133
+ 6 1000000.2
1134
+ 6 1000000.4
1135
+ 6 1000000.2
1136
+ 6 1000000.4
1137
+ 6 1000000.2
1138
+ 6 1000000.4
1139
+ 6 1000000.2
1140
+ 6 1000000.4
1141
+ 6 1000000.2
1142
+ 6 1000000.4
1143
+ 6 1000000.2
1144
+ 6 1000000.4
1145
+ 6 1000000.2
1146
+ 6 1000000.4
1147
+ 6 1000000.2
1148
+ 6 1000000.4
1149
+ 6 1000000.2
1150
+ 6 1000000.4
1151
+ 6 1000000.2
1152
+ 6 1000000.4
1153
+ 6 1000000.2
1154
+ 6 1000000.4
1155
+ 6 1000000.2
1156
+ 6 1000000.4
1157
+ 6 1000000.2
1158
+ 6 1000000.4
1159
+ 6 1000000.2
1160
+ 6 1000000.4
1161
+ 6 1000000.2
1162
+ 6 1000000.4
1163
+ 6 1000000.2
1164
+ 6 1000000.4
1165
+ 6 1000000.2
1166
+ 6 1000000.4
1167
+ 6 1000000.2
1168
+ 6 1000000.4
1169
+ 6 1000000.2
1170
+ 6 1000000.4
1171
+ 6 1000000.2
1172
+ 6 1000000.4
1173
+ 6 1000000.2
1174
+ 6 1000000.4
1175
+ 6 1000000.2
1176
+ 6 1000000.4
1177
+ 6 1000000.2
1178
+ 6 1000000.4
1179
+ 6 1000000.2
1180
+ 6 1000000.4
1181
+ 6 1000000.2
1182
+ 6 1000000.4
1183
+ 6 1000000.2
1184
+ 6 1000000.4
1185
+ 6 1000000.2
1186
+ 6 1000000.4
1187
+ 6 1000000.2
1188
+ 6 1000000.4
1189
+ 6 1000000.2
1190
+ 6 1000000.4
1191
+ 6 1000000.2
1192
+ 6 1000000.4
1193
+ 6 1000000.2
1194
+ 6 1000000.4
1195
+ 6 1000000.2
1196
+ 6 1000000.4
1197
+ 6 1000000.2
1198
+ 6 1000000.4
1199
+ 6 1000000.2
1200
+ 6 1000000.4
1201
+ 6 1000000.2
1202
+ 6 1000000.4
1203
+ 6 1000000.2
1204
+ 6 1000000.4
1205
+ 6 1000000.2
1206
+ 6 1000000.4
1207
+ 6 1000000.2
1208
+ 6 1000000.4
1209
+ 6 1000000.2
1210
+ 6 1000000.4
1211
+ 6 1000000.2
1212
+ 6 1000000.4
1213
+ 6 1000000.2
1214
+ 6 1000000.4
1215
+ 6 1000000.2
1216
+ 6 1000000.4
1217
+ 6 1000000.2
1218
+ 6 1000000.4
1219
+ 6 1000000.2
1220
+ 6 1000000.4
1221
+ 6 1000000.2
1222
+ 6 1000000.4
1223
+ 6 1000000.2
1224
+ 6 1000000.4
1225
+ 6 1000000.2
1226
+ 6 1000000.4
1227
+ 6 1000000.2
1228
+ 6 1000000.4
1229
+ 6 1000000.2
1230
+ 6 1000000.4
1231
+ 6 1000000.2
1232
+ 6 1000000.4
1233
+ 6 1000000.2
1234
+ 6 1000000.4
1235
+ 6 1000000.2
1236
+ 6 1000000.4
1237
+ 6 1000000.2
1238
+ 6 1000000.4
1239
+ 6 1000000.2
1240
+ 6 1000000.4
1241
+ 6 1000000.2
1242
+ 6 1000000.4
1243
+ 6 1000000.2
1244
+ 6 1000000.4
1245
+ 6 1000000.2
1246
+ 6 1000000.4
1247
+ 6 1000000.2
1248
+ 6 1000000.4
1249
+ 6 1000000.2
1250
+ 6 1000000.4
1251
+ 6 1000000.2
1252
+ 6 1000000.4
1253
+ 6 1000000.2
1254
+ 6 1000000.4
1255
+ 6 1000000.2
1256
+ 6 1000000.4
1257
+ 6 1000000.2
1258
+ 6 1000000.4
1259
+ 6 1000000.2
1260
+ 6 1000000.4
1261
+ 6 1000000.2
1262
+ 6 1000000.4
1263
+ 6 1000000.2
1264
+ 6 1000000.4
1265
+ 6 1000000.2
1266
+ 6 1000000.4
1267
+ 7 1000000.5
1268
+ 7 1000000.4
1269
+ 7 1000000.6
1270
+ 7 1000000.4
1271
+ 7 1000000.6
1272
+ 7 1000000.4
1273
+ 7 1000000.6
1274
+ 7 1000000.4
1275
+ 7 1000000.6
1276
+ 7 1000000.4
1277
+ 7 1000000.6
1278
+ 7 1000000.4
1279
+ 7 1000000.6
1280
+ 7 1000000.4
1281
+ 7 1000000.6
1282
+ 7 1000000.4
1283
+ 7 1000000.6
1284
+ 7 1000000.4
1285
+ 7 1000000.6
1286
+ 7 1000000.4
1287
+ 7 1000000.6
1288
+ 7 1000000.4
1289
+ 7 1000000.6
1290
+ 7 1000000.4
1291
+ 7 1000000.6
1292
+ 7 1000000.4
1293
+ 7 1000000.6
1294
+ 7 1000000.4
1295
+ 7 1000000.6
1296
+ 7 1000000.4
1297
+ 7 1000000.6
1298
+ 7 1000000.4
1299
+ 7 1000000.6
1300
+ 7 1000000.4
1301
+ 7 1000000.6
1302
+ 7 1000000.4
1303
+ 7 1000000.6
1304
+ 7 1000000.4
1305
+ 7 1000000.6
1306
+ 7 1000000.4
1307
+ 7 1000000.6
1308
+ 7 1000000.4
1309
+ 7 1000000.6
1310
+ 7 1000000.4
1311
+ 7 1000000.6
1312
+ 7 1000000.4
1313
+ 7 1000000.6
1314
+ 7 1000000.4
1315
+ 7 1000000.6
1316
+ 7 1000000.4
1317
+ 7 1000000.6
1318
+ 7 1000000.4
1319
+ 7 1000000.6
1320
+ 7 1000000.4
1321
+ 7 1000000.6
1322
+ 7 1000000.4
1323
+ 7 1000000.6
1324
+ 7 1000000.4
1325
+ 7 1000000.6
1326
+ 7 1000000.4
1327
+ 7 1000000.6
1328
+ 7 1000000.4
1329
+ 7 1000000.6
1330
+ 7 1000000.4
1331
+ 7 1000000.6
1332
+ 7 1000000.4
1333
+ 7 1000000.6
1334
+ 7 1000000.4
1335
+ 7 1000000.6
1336
+ 7 1000000.4
1337
+ 7 1000000.6
1338
+ 7 1000000.4
1339
+ 7 1000000.6
1340
+ 7 1000000.4
1341
+ 7 1000000.6
1342
+ 7 1000000.4
1343
+ 7 1000000.6
1344
+ 7 1000000.4
1345
+ 7 1000000.6
1346
+ 7 1000000.4
1347
+ 7 1000000.6
1348
+ 7 1000000.4
1349
+ 7 1000000.6
1350
+ 7 1000000.4
1351
+ 7 1000000.6
1352
+ 7 1000000.4
1353
+ 7 1000000.6
1354
+ 7 1000000.4
1355
+ 7 1000000.6
1356
+ 7 1000000.4
1357
+ 7 1000000.6
1358
+ 7 1000000.4
1359
+ 7 1000000.6
1360
+ 7 1000000.4
1361
+ 7 1000000.6
1362
+ 7 1000000.4
1363
+ 7 1000000.6
1364
+ 7 1000000.4
1365
+ 7 1000000.6
1366
+ 7 1000000.4
1367
+ 7 1000000.6
1368
+ 7 1000000.4
1369
+ 7 1000000.6
1370
+ 7 1000000.4
1371
+ 7 1000000.6
1372
+ 7 1000000.4
1373
+ 7 1000000.6
1374
+ 7 1000000.4
1375
+ 7 1000000.6
1376
+ 7 1000000.4
1377
+ 7 1000000.6
1378
+ 7 1000000.4
1379
+ 7 1000000.6
1380
+ 7 1000000.4
1381
+ 7 1000000.6
1382
+ 7 1000000.4
1383
+ 7 1000000.6
1384
+ 7 1000000.4
1385
+ 7 1000000.6
1386
+ 7 1000000.4
1387
+ 7 1000000.6
1388
+ 7 1000000.4
1389
+ 7 1000000.6
1390
+ 7 1000000.4
1391
+ 7 1000000.6
1392
+ 7 1000000.4
1393
+ 7 1000000.6
1394
+ 7 1000000.4
1395
+ 7 1000000.6
1396
+ 7 1000000.4
1397
+ 7 1000000.6
1398
+ 7 1000000.4
1399
+ 7 1000000.6
1400
+ 7 1000000.4
1401
+ 7 1000000.6
1402
+ 7 1000000.4
1403
+ 7 1000000.6
1404
+ 7 1000000.4
1405
+ 7 1000000.6
1406
+ 7 1000000.4
1407
+ 7 1000000.6
1408
+ 7 1000000.4
1409
+ 7 1000000.6
1410
+ 7 1000000.4
1411
+ 7 1000000.6
1412
+ 7 1000000.4
1413
+ 7 1000000.6
1414
+ 7 1000000.4
1415
+ 7 1000000.6
1416
+ 7 1000000.4
1417
+ 7 1000000.6
1418
+ 7 1000000.4
1419
+ 7 1000000.6
1420
+ 7 1000000.4
1421
+ 7 1000000.6
1422
+ 7 1000000.4
1423
+ 7 1000000.6
1424
+ 7 1000000.4
1425
+ 7 1000000.6
1426
+ 7 1000000.4
1427
+ 7 1000000.6
1428
+ 7 1000000.4
1429
+ 7 1000000.6
1430
+ 7 1000000.4
1431
+ 7 1000000.6
1432
+ 7 1000000.4
1433
+ 7 1000000.6
1434
+ 7 1000000.4
1435
+ 7 1000000.6
1436
+ 7 1000000.4
1437
+ 7 1000000.6
1438
+ 7 1000000.4
1439
+ 7 1000000.6
1440
+ 7 1000000.4
1441
+ 7 1000000.6
1442
+ 7 1000000.4
1443
+ 7 1000000.6
1444
+ 7 1000000.4
1445
+ 7 1000000.6
1446
+ 7 1000000.4
1447
+ 7 1000000.6
1448
+ 7 1000000.4
1449
+ 7 1000000.6
1450
+ 7 1000000.4
1451
+ 7 1000000.6
1452
+ 7 1000000.4
1453
+ 7 1000000.6
1454
+ 7 1000000.4
1455
+ 7 1000000.6
1456
+ 7 1000000.4
1457
+ 7 1000000.6
1458
+ 7 1000000.4
1459
+ 7 1000000.6
1460
+ 7 1000000.4
1461
+ 7 1000000.6
1462
+ 7 1000000.4
1463
+ 7 1000000.6
1464
+ 7 1000000.4
1465
+ 7 1000000.6
1466
+ 7 1000000.4
1467
+ 7 1000000.6
1468
+ 8 1000000.3
1469
+ 8 1000000.2
1470
+ 8 1000000.4
1471
+ 8 1000000.2
1472
+ 8 1000000.4
1473
+ 8 1000000.2
1474
+ 8 1000000.4
1475
+ 8 1000000.2
1476
+ 8 1000000.4
1477
+ 8 1000000.2
1478
+ 8 1000000.4
1479
+ 8 1000000.2
1480
+ 8 1000000.4
1481
+ 8 1000000.2
1482
+ 8 1000000.4
1483
+ 8 1000000.2
1484
+ 8 1000000.4
1485
+ 8 1000000.2
1486
+ 8 1000000.4
1487
+ 8 1000000.2
1488
+ 8 1000000.4
1489
+ 8 1000000.2
1490
+ 8 1000000.4
1491
+ 8 1000000.2
1492
+ 8 1000000.4
1493
+ 8 1000000.2
1494
+ 8 1000000.4
1495
+ 8 1000000.2
1496
+ 8 1000000.4
1497
+ 8 1000000.2
1498
+ 8 1000000.4
1499
+ 8 1000000.2
1500
+ 8 1000000.4
1501
+ 8 1000000.2
1502
+ 8 1000000.4
1503
+ 8 1000000.2
1504
+ 8 1000000.4
1505
+ 8 1000000.2
1506
+ 8 1000000.4
1507
+ 8 1000000.2
1508
+ 8 1000000.4
1509
+ 8 1000000.2
1510
+ 8 1000000.4
1511
+ 8 1000000.2
1512
+ 8 1000000.4
1513
+ 8 1000000.2
1514
+ 8 1000000.4
1515
+ 8 1000000.2
1516
+ 8 1000000.4
1517
+ 8 1000000.2
1518
+ 8 1000000.4
1519
+ 8 1000000.2
1520
+ 8 1000000.4
1521
+ 8 1000000.2
1522
+ 8 1000000.4
1523
+ 8 1000000.2
1524
+ 8 1000000.4
1525
+ 8 1000000.2
1526
+ 8 1000000.4
1527
+ 8 1000000.2
1528
+ 8 1000000.4
1529
+ 8 1000000.2
1530
+ 8 1000000.4
1531
+ 8 1000000.2
1532
+ 8 1000000.4
1533
+ 8 1000000.2
1534
+ 8 1000000.4
1535
+ 8 1000000.2
1536
+ 8 1000000.4
1537
+ 8 1000000.2
1538
+ 8 1000000.4
1539
+ 8 1000000.2
1540
+ 8 1000000.4
1541
+ 8 1000000.2
1542
+ 8 1000000.4
1543
+ 8 1000000.2
1544
+ 8 1000000.4
1545
+ 8 1000000.2
1546
+ 8 1000000.4
1547
+ 8 1000000.2
1548
+ 8 1000000.4
1549
+ 8 1000000.2
1550
+ 8 1000000.4
1551
+ 8 1000000.2
1552
+ 8 1000000.4
1553
+ 8 1000000.2
1554
+ 8 1000000.4
1555
+ 8 1000000.2
1556
+ 8 1000000.4
1557
+ 8 1000000.2
1558
+ 8 1000000.4
1559
+ 8 1000000.2
1560
+ 8 1000000.4
1561
+ 8 1000000.2
1562
+ 8 1000000.4
1563
+ 8 1000000.2
1564
+ 8 1000000.4
1565
+ 8 1000000.2
1566
+ 8 1000000.4
1567
+ 8 1000000.2
1568
+ 8 1000000.4
1569
+ 8 1000000.2
1570
+ 8 1000000.4
1571
+ 8 1000000.2
1572
+ 8 1000000.4
1573
+ 8 1000000.2
1574
+ 8 1000000.4
1575
+ 8 1000000.2
1576
+ 8 1000000.4
1577
+ 8 1000000.2
1578
+ 8 1000000.4
1579
+ 8 1000000.2
1580
+ 8 1000000.4
1581
+ 8 1000000.2
1582
+ 8 1000000.4
1583
+ 8 1000000.2
1584
+ 8 1000000.4
1585
+ 8 1000000.2
1586
+ 8 1000000.4
1587
+ 8 1000000.2
1588
+ 8 1000000.4
1589
+ 8 1000000.2
1590
+ 8 1000000.4
1591
+ 8 1000000.2
1592
+ 8 1000000.4
1593
+ 8 1000000.2
1594
+ 8 1000000.4
1595
+ 8 1000000.2
1596
+ 8 1000000.4
1597
+ 8 1000000.2
1598
+ 8 1000000.4
1599
+ 8 1000000.2
1600
+ 8 1000000.4
1601
+ 8 1000000.2
1602
+ 8 1000000.4
1603
+ 8 1000000.2
1604
+ 8 1000000.4
1605
+ 8 1000000.2
1606
+ 8 1000000.4
1607
+ 8 1000000.2
1608
+ 8 1000000.4
1609
+ 8 1000000.2
1610
+ 8 1000000.4
1611
+ 8 1000000.2
1612
+ 8 1000000.4
1613
+ 8 1000000.2
1614
+ 8 1000000.4
1615
+ 8 1000000.2
1616
+ 8 1000000.4
1617
+ 8 1000000.2
1618
+ 8 1000000.4
1619
+ 8 1000000.2
1620
+ 8 1000000.4
1621
+ 8 1000000.2
1622
+ 8 1000000.4
1623
+ 8 1000000.2
1624
+ 8 1000000.4
1625
+ 8 1000000.2
1626
+ 8 1000000.4
1627
+ 8 1000000.2
1628
+ 8 1000000.4
1629
+ 8 1000000.2
1630
+ 8 1000000.4
1631
+ 8 1000000.2
1632
+ 8 1000000.4
1633
+ 8 1000000.2
1634
+ 8 1000000.4
1635
+ 8 1000000.2
1636
+ 8 1000000.4
1637
+ 8 1000000.2
1638
+ 8 1000000.4
1639
+ 8 1000000.2
1640
+ 8 1000000.4
1641
+ 8 1000000.2
1642
+ 8 1000000.4
1643
+ 8 1000000.2
1644
+ 8 1000000.4
1645
+ 8 1000000.2
1646
+ 8 1000000.4
1647
+ 8 1000000.2
1648
+ 8 1000000.4
1649
+ 8 1000000.2
1650
+ 8 1000000.4
1651
+ 8 1000000.2
1652
+ 8 1000000.4
1653
+ 8 1000000.2
1654
+ 8 1000000.4
1655
+ 8 1000000.2
1656
+ 8 1000000.4
1657
+ 8 1000000.2
1658
+ 8 1000000.4
1659
+ 8 1000000.2
1660
+ 8 1000000.4
1661
+ 8 1000000.2
1662
+ 8 1000000.4
1663
+ 8 1000000.2
1664
+ 8 1000000.4
1665
+ 8 1000000.2
1666
+ 8 1000000.4
1667
+ 8 1000000.2
1668
+ 8 1000000.4
1669
+ 9 1000000.5
1670
+ 9 1000000.4
1671
+ 9 1000000.6
1672
+ 9 1000000.4
1673
+ 9 1000000.6
1674
+ 9 1000000.4
1675
+ 9 1000000.6
1676
+ 9 1000000.4
1677
+ 9 1000000.6
1678
+ 9 1000000.4
1679
+ 9 1000000.6
1680
+ 9 1000000.4
1681
+ 9 1000000.6
1682
+ 9 1000000.4
1683
+ 9 1000000.6
1684
+ 9 1000000.4
1685
+ 9 1000000.6
1686
+ 9 1000000.4
1687
+ 9 1000000.6
1688
+ 9 1000000.4
1689
+ 9 1000000.6
1690
+ 9 1000000.4
1691
+ 9 1000000.6
1692
+ 9 1000000.4
1693
+ 9 1000000.6
1694
+ 9 1000000.4
1695
+ 9 1000000.6
1696
+ 9 1000000.4
1697
+ 9 1000000.6
1698
+ 9 1000000.4
1699
+ 9 1000000.6
1700
+ 9 1000000.4
1701
+ 9 1000000.6
1702
+ 9 1000000.4
1703
+ 9 1000000.6
1704
+ 9 1000000.4
1705
+ 9 1000000.6
1706
+ 9 1000000.4
1707
+ 9 1000000.6
1708
+ 9 1000000.4
1709
+ 9 1000000.6
1710
+ 9 1000000.4
1711
+ 9 1000000.6
1712
+ 9 1000000.4
1713
+ 9 1000000.6
1714
+ 9 1000000.4
1715
+ 9 1000000.6
1716
+ 9 1000000.4
1717
+ 9 1000000.6
1718
+ 9 1000000.4
1719
+ 9 1000000.6
1720
+ 9 1000000.4
1721
+ 9 1000000.6
1722
+ 9 1000000.4
1723
+ 9 1000000.6
1724
+ 9 1000000.4
1725
+ 9 1000000.6
1726
+ 9 1000000.4
1727
+ 9 1000000.6
1728
+ 9 1000000.4
1729
+ 9 1000000.6
1730
+ 9 1000000.4
1731
+ 9 1000000.6
1732
+ 9 1000000.4
1733
+ 9 1000000.6
1734
+ 9 1000000.4
1735
+ 9 1000000.6
1736
+ 9 1000000.4
1737
+ 9 1000000.6
1738
+ 9 1000000.4
1739
+ 9 1000000.6
1740
+ 9 1000000.4
1741
+ 9 1000000.6
1742
+ 9 1000000.4
1743
+ 9 1000000.6
1744
+ 9 1000000.4
1745
+ 9 1000000.6
1746
+ 9 1000000.4
1747
+ 9 1000000.6
1748
+ 9 1000000.4
1749
+ 9 1000000.6
1750
+ 9 1000000.4
1751
+ 9 1000000.6
1752
+ 9 1000000.4
1753
+ 9 1000000.6
1754
+ 9 1000000.4
1755
+ 9 1000000.6
1756
+ 9 1000000.4
1757
+ 9 1000000.6
1758
+ 9 1000000.4
1759
+ 9 1000000.6
1760
+ 9 1000000.4
1761
+ 9 1000000.6
1762
+ 9 1000000.4
1763
+ 9 1000000.6
1764
+ 9 1000000.4
1765
+ 9 1000000.6
1766
+ 9 1000000.4
1767
+ 9 1000000.6
1768
+ 9 1000000.4
1769
+ 9 1000000.6
1770
+ 9 1000000.4
1771
+ 9 1000000.6
1772
+ 9 1000000.4
1773
+ 9 1000000.6
1774
+ 9 1000000.4
1775
+ 9 1000000.6
1776
+ 9 1000000.4
1777
+ 9 1000000.6
1778
+ 9 1000000.4
1779
+ 9 1000000.6
1780
+ 9 1000000.4
1781
+ 9 1000000.6
1782
+ 9 1000000.4
1783
+ 9 1000000.6
1784
+ 9 1000000.4
1785
+ 9 1000000.6
1786
+ 9 1000000.4
1787
+ 9 1000000.6
1788
+ 9 1000000.4
1789
+ 9 1000000.6
1790
+ 9 1000000.4
1791
+ 9 1000000.6
1792
+ 9 1000000.4
1793
+ 9 1000000.6
1794
+ 9 1000000.4
1795
+ 9 1000000.6
1796
+ 9 1000000.4
1797
+ 9 1000000.6
1798
+ 9 1000000.4
1799
+ 9 1000000.6
1800
+ 9 1000000.4
1801
+ 9 1000000.6
1802
+ 9 1000000.4
1803
+ 9 1000000.6
1804
+ 9 1000000.4
1805
+ 9 1000000.6
1806
+ 9 1000000.4
1807
+ 9 1000000.6
1808
+ 9 1000000.4
1809
+ 9 1000000.6
1810
+ 9 1000000.4
1811
+ 9 1000000.6
1812
+ 9 1000000.4
1813
+ 9 1000000.6
1814
+ 9 1000000.4
1815
+ 9 1000000.6
1816
+ 9 1000000.4
1817
+ 9 1000000.6
1818
+ 9 1000000.4
1819
+ 9 1000000.6
1820
+ 9 1000000.4
1821
+ 9 1000000.6
1822
+ 9 1000000.4
1823
+ 9 1000000.6
1824
+ 9 1000000.4
1825
+ 9 1000000.6
1826
+ 9 1000000.4
1827
+ 9 1000000.6
1828
+ 9 1000000.4
1829
+ 9 1000000.6
1830
+ 9 1000000.4
1831
+ 9 1000000.6
1832
+ 9 1000000.4
1833
+ 9 1000000.6
1834
+ 9 1000000.4
1835
+ 9 1000000.6
1836
+ 9 1000000.4
1837
+ 9 1000000.6
1838
+ 9 1000000.4
1839
+ 9 1000000.6
1840
+ 9 1000000.4
1841
+ 9 1000000.6
1842
+ 9 1000000.4
1843
+ 9 1000000.6
1844
+ 9 1000000.4
1845
+ 9 1000000.6
1846
+ 9 1000000.4
1847
+ 9 1000000.6
1848
+ 9 1000000.4
1849
+ 9 1000000.6
1850
+ 9 1000000.4
1851
+ 9 1000000.6
1852
+ 9 1000000.4
1853
+ 9 1000000.6
1854
+ 9 1000000.4
1855
+ 9 1000000.6
1856
+ 9 1000000.4
1857
+ 9 1000000.6
1858
+ 9 1000000.4
1859
+ 9 1000000.6
1860
+ 9 1000000.4
1861
+ 9 1000000.6
1862
+ 9 1000000.4
1863
+ 9 1000000.6
1864
+ 9 1000000.4
1865
+ 9 1000000.6
1866
+ 9 1000000.4
1867
+ 9 1000000.6
1868
+ 9 1000000.4
1869
+ 9 1000000.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs06.dat ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs07.dat ADDED
@@ -0,0 +1,249 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs07 (SmLs07.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 249)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 21 Replicates/Cell
22
+ 189 Observations
23
+ 13 Constant Leading Digits
24
+ Higher Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.68000000000000E+00 2.10000000000000E-01 2.10000000000000E+01
42
+ Within Treatment 180 1.80000000000000E+00 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.82758620689655E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1000000000000.4
62
+ 1 1000000000000.3
63
+ 1 1000000000000.5
64
+ 1 1000000000000.3
65
+ 1 1000000000000.5
66
+ 1 1000000000000.3
67
+ 1 1000000000000.5
68
+ 1 1000000000000.3
69
+ 1 1000000000000.5
70
+ 1 1000000000000.3
71
+ 1 1000000000000.5
72
+ 1 1000000000000.3
73
+ 1 1000000000000.5
74
+ 1 1000000000000.3
75
+ 1 1000000000000.5
76
+ 1 1000000000000.3
77
+ 1 1000000000000.5
78
+ 1 1000000000000.3
79
+ 1 1000000000000.5
80
+ 1 1000000000000.3
81
+ 1 1000000000000.5
82
+ 2 1000000000000.3
83
+ 2 1000000000000.2
84
+ 2 1000000000000.4
85
+ 2 1000000000000.2
86
+ 2 1000000000000.4
87
+ 2 1000000000000.2
88
+ 2 1000000000000.4
89
+ 2 1000000000000.2
90
+ 2 1000000000000.4
91
+ 2 1000000000000.2
92
+ 2 1000000000000.4
93
+ 2 1000000000000.2
94
+ 2 1000000000000.4
95
+ 2 1000000000000.2
96
+ 2 1000000000000.4
97
+ 2 1000000000000.2
98
+ 2 1000000000000.4
99
+ 2 1000000000000.2
100
+ 2 1000000000000.4
101
+ 2 1000000000000.2
102
+ 2 1000000000000.4
103
+ 3 1000000000000.5
104
+ 3 1000000000000.4
105
+ 3 1000000000000.6
106
+ 3 1000000000000.4
107
+ 3 1000000000000.6
108
+ 3 1000000000000.4
109
+ 3 1000000000000.6
110
+ 3 1000000000000.4
111
+ 3 1000000000000.6
112
+ 3 1000000000000.4
113
+ 3 1000000000000.6
114
+ 3 1000000000000.4
115
+ 3 1000000000000.6
116
+ 3 1000000000000.4
117
+ 3 1000000000000.6
118
+ 3 1000000000000.4
119
+ 3 1000000000000.6
120
+ 3 1000000000000.4
121
+ 3 1000000000000.6
122
+ 3 1000000000000.4
123
+ 3 1000000000000.6
124
+ 4 1000000000000.3
125
+ 4 1000000000000.2
126
+ 4 1000000000000.4
127
+ 4 1000000000000.2
128
+ 4 1000000000000.4
129
+ 4 1000000000000.2
130
+ 4 1000000000000.4
131
+ 4 1000000000000.2
132
+ 4 1000000000000.4
133
+ 4 1000000000000.2
134
+ 4 1000000000000.4
135
+ 4 1000000000000.2
136
+ 4 1000000000000.4
137
+ 4 1000000000000.2
138
+ 4 1000000000000.4
139
+ 4 1000000000000.2
140
+ 4 1000000000000.4
141
+ 4 1000000000000.2
142
+ 4 1000000000000.4
143
+ 4 1000000000000.2
144
+ 4 1000000000000.4
145
+ 5 1000000000000.5
146
+ 5 1000000000000.4
147
+ 5 1000000000000.6
148
+ 5 1000000000000.4
149
+ 5 1000000000000.6
150
+ 5 1000000000000.4
151
+ 5 1000000000000.6
152
+ 5 1000000000000.4
153
+ 5 1000000000000.6
154
+ 5 1000000000000.4
155
+ 5 1000000000000.6
156
+ 5 1000000000000.4
157
+ 5 1000000000000.6
158
+ 5 1000000000000.4
159
+ 5 1000000000000.6
160
+ 5 1000000000000.4
161
+ 5 1000000000000.6
162
+ 5 1000000000000.4
163
+ 5 1000000000000.6
164
+ 5 1000000000000.4
165
+ 5 1000000000000.6
166
+ 6 1000000000000.3
167
+ 6 1000000000000.2
168
+ 6 1000000000000.4
169
+ 6 1000000000000.2
170
+ 6 1000000000000.4
171
+ 6 1000000000000.2
172
+ 6 1000000000000.4
173
+ 6 1000000000000.2
174
+ 6 1000000000000.4
175
+ 6 1000000000000.2
176
+ 6 1000000000000.4
177
+ 6 1000000000000.2
178
+ 6 1000000000000.4
179
+ 6 1000000000000.2
180
+ 6 1000000000000.4
181
+ 6 1000000000000.2
182
+ 6 1000000000000.4
183
+ 6 1000000000000.2
184
+ 6 1000000000000.4
185
+ 6 1000000000000.2
186
+ 6 1000000000000.4
187
+ 7 1000000000000.5
188
+ 7 1000000000000.4
189
+ 7 1000000000000.6
190
+ 7 1000000000000.4
191
+ 7 1000000000000.6
192
+ 7 1000000000000.4
193
+ 7 1000000000000.6
194
+ 7 1000000000000.4
195
+ 7 1000000000000.6
196
+ 7 1000000000000.4
197
+ 7 1000000000000.6
198
+ 7 1000000000000.4
199
+ 7 1000000000000.6
200
+ 7 1000000000000.4
201
+ 7 1000000000000.6
202
+ 7 1000000000000.4
203
+ 7 1000000000000.6
204
+ 7 1000000000000.4
205
+ 7 1000000000000.6
206
+ 7 1000000000000.4
207
+ 7 1000000000000.6
208
+ 8 1000000000000.3
209
+ 8 1000000000000.2
210
+ 8 1000000000000.4
211
+ 8 1000000000000.2
212
+ 8 1000000000000.4
213
+ 8 1000000000000.2
214
+ 8 1000000000000.4
215
+ 8 1000000000000.2
216
+ 8 1000000000000.4
217
+ 8 1000000000000.2
218
+ 8 1000000000000.4
219
+ 8 1000000000000.2
220
+ 8 1000000000000.4
221
+ 8 1000000000000.2
222
+ 8 1000000000000.4
223
+ 8 1000000000000.2
224
+ 8 1000000000000.4
225
+ 8 1000000000000.2
226
+ 8 1000000000000.4
227
+ 8 1000000000000.2
228
+ 8 1000000000000.4
229
+ 9 1000000000000.5
230
+ 9 1000000000000.4
231
+ 9 1000000000000.6
232
+ 9 1000000000000.4
233
+ 9 1000000000000.6
234
+ 9 1000000000000.4
235
+ 9 1000000000000.6
236
+ 9 1000000000000.4
237
+ 9 1000000000000.6
238
+ 9 1000000000000.4
239
+ 9 1000000000000.6
240
+ 9 1000000000000.4
241
+ 9 1000000000000.6
242
+ 9 1000000000000.4
243
+ 9 1000000000000.6
244
+ 9 1000000000000.4
245
+ 9 1000000000000.6
246
+ 9 1000000000000.4
247
+ 9 1000000000000.6
248
+ 9 1000000000000.4
249
+ 9 1000000000000.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs08.dat ADDED
@@ -0,0 +1,1869 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: SmLs08 (SmLs08.dat)
3
+
4
+
5
+ File Format: ASCII
6
+ Certified Values (lines 41 to 47)
7
+ Data (lines 61 to 1869)
8
+
9
+
10
+ Procedure: Analysis of Variance
11
+
12
+
13
+ Reference: Simon, Stephen D. and Lesage, James P. (1989).
14
+ "Assessing the Accuracy of ANOVA Calculations in
15
+ Statistical Software".
16
+ Computational Statistics & Data Analysis, 8, pp. 325-332.
17
+
18
+
19
+ Data: 1 Factor
20
+ 9 Treatments
21
+ 201 Replicates/Cell
22
+ 1809 Observations
23
+ 13 Constant Leading Digits
24
+ Higher Level of Difficulty
25
+ Generated Data
26
+
27
+
28
+ Model: 10 Parameters (mu,tau_1, ... , tau_9)
29
+ y_{ij} = mu + tau_i + epsilon_{ij}
30
+
31
+
32
+
33
+
34
+
35
+
36
+ Certified Values:
37
+
38
+ Source of Sums of Mean
39
+ Variation df Squares Squares F Statistic
40
+
41
+ Between Treatment 8 1.60800000000000E+01 2.01000000000000E+00 2.01000000000000E+02
42
+ Within Treatment 1800 1.80000000000000E+01 1.00000000000000E-02
43
+
44
+ Certified R-Squared 4.71830985915493E-01
45
+
46
+ Certified Residual
47
+ Standard Deviation 1.00000000000000E-01
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: Treatment Response
61
+ 1 1000000000000.4
62
+ 1 1000000000000.3
63
+ 1 1000000000000.5
64
+ 1 1000000000000.3
65
+ 1 1000000000000.5
66
+ 1 1000000000000.3
67
+ 1 1000000000000.5
68
+ 1 1000000000000.3
69
+ 1 1000000000000.5
70
+ 1 1000000000000.3
71
+ 1 1000000000000.5
72
+ 1 1000000000000.3
73
+ 1 1000000000000.5
74
+ 1 1000000000000.3
75
+ 1 1000000000000.5
76
+ 1 1000000000000.3
77
+ 1 1000000000000.5
78
+ 1 1000000000000.3
79
+ 1 1000000000000.5
80
+ 1 1000000000000.3
81
+ 1 1000000000000.5
82
+ 1 1000000000000.3
83
+ 1 1000000000000.5
84
+ 1 1000000000000.3
85
+ 1 1000000000000.5
86
+ 1 1000000000000.3
87
+ 1 1000000000000.5
88
+ 1 1000000000000.3
89
+ 1 1000000000000.5
90
+ 1 1000000000000.3
91
+ 1 1000000000000.5
92
+ 1 1000000000000.3
93
+ 1 1000000000000.5
94
+ 1 1000000000000.3
95
+ 1 1000000000000.5
96
+ 1 1000000000000.3
97
+ 1 1000000000000.5
98
+ 1 1000000000000.3
99
+ 1 1000000000000.5
100
+ 1 1000000000000.3
101
+ 1 1000000000000.5
102
+ 1 1000000000000.3
103
+ 1 1000000000000.5
104
+ 1 1000000000000.3
105
+ 1 1000000000000.5
106
+ 1 1000000000000.3
107
+ 1 1000000000000.5
108
+ 1 1000000000000.3
109
+ 1 1000000000000.5
110
+ 1 1000000000000.3
111
+ 1 1000000000000.5
112
+ 1 1000000000000.3
113
+ 1 1000000000000.5
114
+ 1 1000000000000.3
115
+ 1 1000000000000.5
116
+ 1 1000000000000.3
117
+ 1 1000000000000.5
118
+ 1 1000000000000.3
119
+ 1 1000000000000.5
120
+ 1 1000000000000.3
121
+ 1 1000000000000.5
122
+ 1 1000000000000.3
123
+ 1 1000000000000.5
124
+ 1 1000000000000.3
125
+ 1 1000000000000.5
126
+ 1 1000000000000.3
127
+ 1 1000000000000.5
128
+ 1 1000000000000.3
129
+ 1 1000000000000.5
130
+ 1 1000000000000.3
131
+ 1 1000000000000.5
132
+ 1 1000000000000.3
133
+ 1 1000000000000.5
134
+ 1 1000000000000.3
135
+ 1 1000000000000.5
136
+ 1 1000000000000.3
137
+ 1 1000000000000.5
138
+ 1 1000000000000.3
139
+ 1 1000000000000.5
140
+ 1 1000000000000.3
141
+ 1 1000000000000.5
142
+ 1 1000000000000.3
143
+ 1 1000000000000.5
144
+ 1 1000000000000.3
145
+ 1 1000000000000.5
146
+ 1 1000000000000.3
147
+ 1 1000000000000.5
148
+ 1 1000000000000.3
149
+ 1 1000000000000.5
150
+ 1 1000000000000.3
151
+ 1 1000000000000.5
152
+ 1 1000000000000.3
153
+ 1 1000000000000.5
154
+ 1 1000000000000.3
155
+ 1 1000000000000.5
156
+ 1 1000000000000.3
157
+ 1 1000000000000.5
158
+ 1 1000000000000.3
159
+ 1 1000000000000.5
160
+ 1 1000000000000.3
161
+ 1 1000000000000.5
162
+ 1 1000000000000.3
163
+ 1 1000000000000.5
164
+ 1 1000000000000.3
165
+ 1 1000000000000.5
166
+ 1 1000000000000.3
167
+ 1 1000000000000.5
168
+ 1 1000000000000.3
169
+ 1 1000000000000.5
170
+ 1 1000000000000.3
171
+ 1 1000000000000.5
172
+ 1 1000000000000.3
173
+ 1 1000000000000.5
174
+ 1 1000000000000.3
175
+ 1 1000000000000.5
176
+ 1 1000000000000.3
177
+ 1 1000000000000.5
178
+ 1 1000000000000.3
179
+ 1 1000000000000.5
180
+ 1 1000000000000.3
181
+ 1 1000000000000.5
182
+ 1 1000000000000.3
183
+ 1 1000000000000.5
184
+ 1 1000000000000.3
185
+ 1 1000000000000.5
186
+ 1 1000000000000.3
187
+ 1 1000000000000.5
188
+ 1 1000000000000.3
189
+ 1 1000000000000.5
190
+ 1 1000000000000.3
191
+ 1 1000000000000.5
192
+ 1 1000000000000.3
193
+ 1 1000000000000.5
194
+ 1 1000000000000.3
195
+ 1 1000000000000.5
196
+ 1 1000000000000.3
197
+ 1 1000000000000.5
198
+ 1 1000000000000.3
199
+ 1 1000000000000.5
200
+ 1 1000000000000.3
201
+ 1 1000000000000.5
202
+ 1 1000000000000.3
203
+ 1 1000000000000.5
204
+ 1 1000000000000.3
205
+ 1 1000000000000.5
206
+ 1 1000000000000.3
207
+ 1 1000000000000.5
208
+ 1 1000000000000.3
209
+ 1 1000000000000.5
210
+ 1 1000000000000.3
211
+ 1 1000000000000.5
212
+ 1 1000000000000.3
213
+ 1 1000000000000.5
214
+ 1 1000000000000.3
215
+ 1 1000000000000.5
216
+ 1 1000000000000.3
217
+ 1 1000000000000.5
218
+ 1 1000000000000.3
219
+ 1 1000000000000.5
220
+ 1 1000000000000.3
221
+ 1 1000000000000.5
222
+ 1 1000000000000.3
223
+ 1 1000000000000.5
224
+ 1 1000000000000.3
225
+ 1 1000000000000.5
226
+ 1 1000000000000.3
227
+ 1 1000000000000.5
228
+ 1 1000000000000.3
229
+ 1 1000000000000.5
230
+ 1 1000000000000.3
231
+ 1 1000000000000.5
232
+ 1 1000000000000.3
233
+ 1 1000000000000.5
234
+ 1 1000000000000.3
235
+ 1 1000000000000.5
236
+ 1 1000000000000.3
237
+ 1 1000000000000.5
238
+ 1 1000000000000.3
239
+ 1 1000000000000.5
240
+ 1 1000000000000.3
241
+ 1 1000000000000.5
242
+ 1 1000000000000.3
243
+ 1 1000000000000.5
244
+ 1 1000000000000.3
245
+ 1 1000000000000.5
246
+ 1 1000000000000.3
247
+ 1 1000000000000.5
248
+ 1 1000000000000.3
249
+ 1 1000000000000.5
250
+ 1 1000000000000.3
251
+ 1 1000000000000.5
252
+ 1 1000000000000.3
253
+ 1 1000000000000.5
254
+ 1 1000000000000.3
255
+ 1 1000000000000.5
256
+ 1 1000000000000.3
257
+ 1 1000000000000.5
258
+ 1 1000000000000.3
259
+ 1 1000000000000.5
260
+ 1 1000000000000.3
261
+ 1 1000000000000.5
262
+ 2 1000000000000.3
263
+ 2 1000000000000.2
264
+ 2 1000000000000.4
265
+ 2 1000000000000.2
266
+ 2 1000000000000.4
267
+ 2 1000000000000.2
268
+ 2 1000000000000.4
269
+ 2 1000000000000.2
270
+ 2 1000000000000.4
271
+ 2 1000000000000.2
272
+ 2 1000000000000.4
273
+ 2 1000000000000.2
274
+ 2 1000000000000.4
275
+ 2 1000000000000.2
276
+ 2 1000000000000.4
277
+ 2 1000000000000.2
278
+ 2 1000000000000.4
279
+ 2 1000000000000.2
280
+ 2 1000000000000.4
281
+ 2 1000000000000.2
282
+ 2 1000000000000.4
283
+ 2 1000000000000.2
284
+ 2 1000000000000.4
285
+ 2 1000000000000.2
286
+ 2 1000000000000.4
287
+ 2 1000000000000.2
288
+ 2 1000000000000.4
289
+ 2 1000000000000.2
290
+ 2 1000000000000.4
291
+ 2 1000000000000.2
292
+ 2 1000000000000.4
293
+ 2 1000000000000.2
294
+ 2 1000000000000.4
295
+ 2 1000000000000.2
296
+ 2 1000000000000.4
297
+ 2 1000000000000.2
298
+ 2 1000000000000.4
299
+ 2 1000000000000.2
300
+ 2 1000000000000.4
301
+ 2 1000000000000.2
302
+ 2 1000000000000.4
303
+ 2 1000000000000.2
304
+ 2 1000000000000.4
305
+ 2 1000000000000.2
306
+ 2 1000000000000.4
307
+ 2 1000000000000.2
308
+ 2 1000000000000.4
309
+ 2 1000000000000.2
310
+ 2 1000000000000.4
311
+ 2 1000000000000.2
312
+ 2 1000000000000.4
313
+ 2 1000000000000.2
314
+ 2 1000000000000.4
315
+ 2 1000000000000.2
316
+ 2 1000000000000.4
317
+ 2 1000000000000.2
318
+ 2 1000000000000.4
319
+ 2 1000000000000.2
320
+ 2 1000000000000.4
321
+ 2 1000000000000.2
322
+ 2 1000000000000.4
323
+ 2 1000000000000.2
324
+ 2 1000000000000.4
325
+ 2 1000000000000.2
326
+ 2 1000000000000.4
327
+ 2 1000000000000.2
328
+ 2 1000000000000.4
329
+ 2 1000000000000.2
330
+ 2 1000000000000.4
331
+ 2 1000000000000.2
332
+ 2 1000000000000.4
333
+ 2 1000000000000.2
334
+ 2 1000000000000.4
335
+ 2 1000000000000.2
336
+ 2 1000000000000.4
337
+ 2 1000000000000.2
338
+ 2 1000000000000.4
339
+ 2 1000000000000.2
340
+ 2 1000000000000.4
341
+ 2 1000000000000.2
342
+ 2 1000000000000.4
343
+ 2 1000000000000.2
344
+ 2 1000000000000.4
345
+ 2 1000000000000.2
346
+ 2 1000000000000.4
347
+ 2 1000000000000.2
348
+ 2 1000000000000.4
349
+ 2 1000000000000.2
350
+ 2 1000000000000.4
351
+ 2 1000000000000.2
352
+ 2 1000000000000.4
353
+ 2 1000000000000.2
354
+ 2 1000000000000.4
355
+ 2 1000000000000.2
356
+ 2 1000000000000.4
357
+ 2 1000000000000.2
358
+ 2 1000000000000.4
359
+ 2 1000000000000.2
360
+ 2 1000000000000.4
361
+ 2 1000000000000.2
362
+ 2 1000000000000.4
363
+ 2 1000000000000.2
364
+ 2 1000000000000.4
365
+ 2 1000000000000.2
366
+ 2 1000000000000.4
367
+ 2 1000000000000.2
368
+ 2 1000000000000.4
369
+ 2 1000000000000.2
370
+ 2 1000000000000.4
371
+ 2 1000000000000.2
372
+ 2 1000000000000.4
373
+ 2 1000000000000.2
374
+ 2 1000000000000.4
375
+ 2 1000000000000.2
376
+ 2 1000000000000.4
377
+ 2 1000000000000.2
378
+ 2 1000000000000.4
379
+ 2 1000000000000.2
380
+ 2 1000000000000.4
381
+ 2 1000000000000.2
382
+ 2 1000000000000.4
383
+ 2 1000000000000.2
384
+ 2 1000000000000.4
385
+ 2 1000000000000.2
386
+ 2 1000000000000.4
387
+ 2 1000000000000.2
388
+ 2 1000000000000.4
389
+ 2 1000000000000.2
390
+ 2 1000000000000.4
391
+ 2 1000000000000.2
392
+ 2 1000000000000.4
393
+ 2 1000000000000.2
394
+ 2 1000000000000.4
395
+ 2 1000000000000.2
396
+ 2 1000000000000.4
397
+ 2 1000000000000.2
398
+ 2 1000000000000.4
399
+ 2 1000000000000.2
400
+ 2 1000000000000.4
401
+ 2 1000000000000.2
402
+ 2 1000000000000.4
403
+ 2 1000000000000.2
404
+ 2 1000000000000.4
405
+ 2 1000000000000.2
406
+ 2 1000000000000.4
407
+ 2 1000000000000.2
408
+ 2 1000000000000.4
409
+ 2 1000000000000.2
410
+ 2 1000000000000.4
411
+ 2 1000000000000.2
412
+ 2 1000000000000.4
413
+ 2 1000000000000.2
414
+ 2 1000000000000.4
415
+ 2 1000000000000.2
416
+ 2 1000000000000.4
417
+ 2 1000000000000.2
418
+ 2 1000000000000.4
419
+ 2 1000000000000.2
420
+ 2 1000000000000.4
421
+ 2 1000000000000.2
422
+ 2 1000000000000.4
423
+ 2 1000000000000.2
424
+ 2 1000000000000.4
425
+ 2 1000000000000.2
426
+ 2 1000000000000.4
427
+ 2 1000000000000.2
428
+ 2 1000000000000.4
429
+ 2 1000000000000.2
430
+ 2 1000000000000.4
431
+ 2 1000000000000.2
432
+ 2 1000000000000.4
433
+ 2 1000000000000.2
434
+ 2 1000000000000.4
435
+ 2 1000000000000.2
436
+ 2 1000000000000.4
437
+ 2 1000000000000.2
438
+ 2 1000000000000.4
439
+ 2 1000000000000.2
440
+ 2 1000000000000.4
441
+ 2 1000000000000.2
442
+ 2 1000000000000.4
443
+ 2 1000000000000.2
444
+ 2 1000000000000.4
445
+ 2 1000000000000.2
446
+ 2 1000000000000.4
447
+ 2 1000000000000.2
448
+ 2 1000000000000.4
449
+ 2 1000000000000.2
450
+ 2 1000000000000.4
451
+ 2 1000000000000.2
452
+ 2 1000000000000.4
453
+ 2 1000000000000.2
454
+ 2 1000000000000.4
455
+ 2 1000000000000.2
456
+ 2 1000000000000.4
457
+ 2 1000000000000.2
458
+ 2 1000000000000.4
459
+ 2 1000000000000.2
460
+ 2 1000000000000.4
461
+ 2 1000000000000.2
462
+ 2 1000000000000.4
463
+ 3 1000000000000.5
464
+ 3 1000000000000.4
465
+ 3 1000000000000.6
466
+ 3 1000000000000.4
467
+ 3 1000000000000.6
468
+ 3 1000000000000.4
469
+ 3 1000000000000.6
470
+ 3 1000000000000.4
471
+ 3 1000000000000.6
472
+ 3 1000000000000.4
473
+ 3 1000000000000.6
474
+ 3 1000000000000.4
475
+ 3 1000000000000.6
476
+ 3 1000000000000.4
477
+ 3 1000000000000.6
478
+ 3 1000000000000.4
479
+ 3 1000000000000.6
480
+ 3 1000000000000.4
481
+ 3 1000000000000.6
482
+ 3 1000000000000.4
483
+ 3 1000000000000.6
484
+ 3 1000000000000.4
485
+ 3 1000000000000.6
486
+ 3 1000000000000.4
487
+ 3 1000000000000.6
488
+ 3 1000000000000.4
489
+ 3 1000000000000.6
490
+ 3 1000000000000.4
491
+ 3 1000000000000.6
492
+ 3 1000000000000.4
493
+ 3 1000000000000.6
494
+ 3 1000000000000.4
495
+ 3 1000000000000.6
496
+ 3 1000000000000.4
497
+ 3 1000000000000.6
498
+ 3 1000000000000.4
499
+ 3 1000000000000.6
500
+ 3 1000000000000.4
501
+ 3 1000000000000.6
502
+ 3 1000000000000.4
503
+ 3 1000000000000.6
504
+ 3 1000000000000.4
505
+ 3 1000000000000.6
506
+ 3 1000000000000.4
507
+ 3 1000000000000.6
508
+ 3 1000000000000.4
509
+ 3 1000000000000.6
510
+ 3 1000000000000.4
511
+ 3 1000000000000.6
512
+ 3 1000000000000.4
513
+ 3 1000000000000.6
514
+ 3 1000000000000.4
515
+ 3 1000000000000.6
516
+ 3 1000000000000.4
517
+ 3 1000000000000.6
518
+ 3 1000000000000.4
519
+ 3 1000000000000.6
520
+ 3 1000000000000.4
521
+ 3 1000000000000.6
522
+ 3 1000000000000.4
523
+ 3 1000000000000.6
524
+ 3 1000000000000.4
525
+ 3 1000000000000.6
526
+ 3 1000000000000.4
527
+ 3 1000000000000.6
528
+ 3 1000000000000.4
529
+ 3 1000000000000.6
530
+ 3 1000000000000.4
531
+ 3 1000000000000.6
532
+ 3 1000000000000.4
533
+ 3 1000000000000.6
534
+ 3 1000000000000.4
535
+ 3 1000000000000.6
536
+ 3 1000000000000.4
537
+ 3 1000000000000.6
538
+ 3 1000000000000.4
539
+ 3 1000000000000.6
540
+ 3 1000000000000.4
541
+ 3 1000000000000.6
542
+ 3 1000000000000.4
543
+ 3 1000000000000.6
544
+ 3 1000000000000.4
545
+ 3 1000000000000.6
546
+ 3 1000000000000.4
547
+ 3 1000000000000.6
548
+ 3 1000000000000.4
549
+ 3 1000000000000.6
550
+ 3 1000000000000.4
551
+ 3 1000000000000.6
552
+ 3 1000000000000.4
553
+ 3 1000000000000.6
554
+ 3 1000000000000.4
555
+ 3 1000000000000.6
556
+ 3 1000000000000.4
557
+ 3 1000000000000.6
558
+ 3 1000000000000.4
559
+ 3 1000000000000.6
560
+ 3 1000000000000.4
561
+ 3 1000000000000.6
562
+ 3 1000000000000.4
563
+ 3 1000000000000.6
564
+ 3 1000000000000.4
565
+ 3 1000000000000.6
566
+ 3 1000000000000.4
567
+ 3 1000000000000.6
568
+ 3 1000000000000.4
569
+ 3 1000000000000.6
570
+ 3 1000000000000.4
571
+ 3 1000000000000.6
572
+ 3 1000000000000.4
573
+ 3 1000000000000.6
574
+ 3 1000000000000.4
575
+ 3 1000000000000.6
576
+ 3 1000000000000.4
577
+ 3 1000000000000.6
578
+ 3 1000000000000.4
579
+ 3 1000000000000.6
580
+ 3 1000000000000.4
581
+ 3 1000000000000.6
582
+ 3 1000000000000.4
583
+ 3 1000000000000.6
584
+ 3 1000000000000.4
585
+ 3 1000000000000.6
586
+ 3 1000000000000.4
587
+ 3 1000000000000.6
588
+ 3 1000000000000.4
589
+ 3 1000000000000.6
590
+ 3 1000000000000.4
591
+ 3 1000000000000.6
592
+ 3 1000000000000.4
593
+ 3 1000000000000.6
594
+ 3 1000000000000.4
595
+ 3 1000000000000.6
596
+ 3 1000000000000.4
597
+ 3 1000000000000.6
598
+ 3 1000000000000.4
599
+ 3 1000000000000.6
600
+ 3 1000000000000.4
601
+ 3 1000000000000.6
602
+ 3 1000000000000.4
603
+ 3 1000000000000.6
604
+ 3 1000000000000.4
605
+ 3 1000000000000.6
606
+ 3 1000000000000.4
607
+ 3 1000000000000.6
608
+ 3 1000000000000.4
609
+ 3 1000000000000.6
610
+ 3 1000000000000.4
611
+ 3 1000000000000.6
612
+ 3 1000000000000.4
613
+ 3 1000000000000.6
614
+ 3 1000000000000.4
615
+ 3 1000000000000.6
616
+ 3 1000000000000.4
617
+ 3 1000000000000.6
618
+ 3 1000000000000.4
619
+ 3 1000000000000.6
620
+ 3 1000000000000.4
621
+ 3 1000000000000.6
622
+ 3 1000000000000.4
623
+ 3 1000000000000.6
624
+ 3 1000000000000.4
625
+ 3 1000000000000.6
626
+ 3 1000000000000.4
627
+ 3 1000000000000.6
628
+ 3 1000000000000.4
629
+ 3 1000000000000.6
630
+ 3 1000000000000.4
631
+ 3 1000000000000.6
632
+ 3 1000000000000.4
633
+ 3 1000000000000.6
634
+ 3 1000000000000.4
635
+ 3 1000000000000.6
636
+ 3 1000000000000.4
637
+ 3 1000000000000.6
638
+ 3 1000000000000.4
639
+ 3 1000000000000.6
640
+ 3 1000000000000.4
641
+ 3 1000000000000.6
642
+ 3 1000000000000.4
643
+ 3 1000000000000.6
644
+ 3 1000000000000.4
645
+ 3 1000000000000.6
646
+ 3 1000000000000.4
647
+ 3 1000000000000.6
648
+ 3 1000000000000.4
649
+ 3 1000000000000.6
650
+ 3 1000000000000.4
651
+ 3 1000000000000.6
652
+ 3 1000000000000.4
653
+ 3 1000000000000.6
654
+ 3 1000000000000.4
655
+ 3 1000000000000.6
656
+ 3 1000000000000.4
657
+ 3 1000000000000.6
658
+ 3 1000000000000.4
659
+ 3 1000000000000.6
660
+ 3 1000000000000.4
661
+ 3 1000000000000.6
662
+ 3 1000000000000.4
663
+ 3 1000000000000.6
664
+ 4 1000000000000.3
665
+ 4 1000000000000.2
666
+ 4 1000000000000.4
667
+ 4 1000000000000.2
668
+ 4 1000000000000.4
669
+ 4 1000000000000.2
670
+ 4 1000000000000.4
671
+ 4 1000000000000.2
672
+ 4 1000000000000.4
673
+ 4 1000000000000.2
674
+ 4 1000000000000.4
675
+ 4 1000000000000.2
676
+ 4 1000000000000.4
677
+ 4 1000000000000.2
678
+ 4 1000000000000.4
679
+ 4 1000000000000.2
680
+ 4 1000000000000.4
681
+ 4 1000000000000.2
682
+ 4 1000000000000.4
683
+ 4 1000000000000.2
684
+ 4 1000000000000.4
685
+ 4 1000000000000.2
686
+ 4 1000000000000.4
687
+ 4 1000000000000.2
688
+ 4 1000000000000.4
689
+ 4 1000000000000.2
690
+ 4 1000000000000.4
691
+ 4 1000000000000.2
692
+ 4 1000000000000.4
693
+ 4 1000000000000.2
694
+ 4 1000000000000.4
695
+ 4 1000000000000.2
696
+ 4 1000000000000.4
697
+ 4 1000000000000.2
698
+ 4 1000000000000.4
699
+ 4 1000000000000.2
700
+ 4 1000000000000.4
701
+ 4 1000000000000.2
702
+ 4 1000000000000.4
703
+ 4 1000000000000.2
704
+ 4 1000000000000.4
705
+ 4 1000000000000.2
706
+ 4 1000000000000.4
707
+ 4 1000000000000.2
708
+ 4 1000000000000.4
709
+ 4 1000000000000.2
710
+ 4 1000000000000.4
711
+ 4 1000000000000.2
712
+ 4 1000000000000.4
713
+ 4 1000000000000.2
714
+ 4 1000000000000.4
715
+ 4 1000000000000.2
716
+ 4 1000000000000.4
717
+ 4 1000000000000.2
718
+ 4 1000000000000.4
719
+ 4 1000000000000.2
720
+ 4 1000000000000.4
721
+ 4 1000000000000.2
722
+ 4 1000000000000.4
723
+ 4 1000000000000.2
724
+ 4 1000000000000.4
725
+ 4 1000000000000.2
726
+ 4 1000000000000.4
727
+ 4 1000000000000.2
728
+ 4 1000000000000.4
729
+ 4 1000000000000.2
730
+ 4 1000000000000.4
731
+ 4 1000000000000.2
732
+ 4 1000000000000.4
733
+ 4 1000000000000.2
734
+ 4 1000000000000.4
735
+ 4 1000000000000.2
736
+ 4 1000000000000.4
737
+ 4 1000000000000.2
738
+ 4 1000000000000.4
739
+ 4 1000000000000.2
740
+ 4 1000000000000.4
741
+ 4 1000000000000.2
742
+ 4 1000000000000.4
743
+ 4 1000000000000.2
744
+ 4 1000000000000.4
745
+ 4 1000000000000.2
746
+ 4 1000000000000.4
747
+ 4 1000000000000.2
748
+ 4 1000000000000.4
749
+ 4 1000000000000.2
750
+ 4 1000000000000.4
751
+ 4 1000000000000.2
752
+ 4 1000000000000.4
753
+ 4 1000000000000.2
754
+ 4 1000000000000.4
755
+ 4 1000000000000.2
756
+ 4 1000000000000.4
757
+ 4 1000000000000.2
758
+ 4 1000000000000.4
759
+ 4 1000000000000.2
760
+ 4 1000000000000.4
761
+ 4 1000000000000.2
762
+ 4 1000000000000.4
763
+ 4 1000000000000.2
764
+ 4 1000000000000.4
765
+ 4 1000000000000.2
766
+ 4 1000000000000.4
767
+ 4 1000000000000.2
768
+ 4 1000000000000.4
769
+ 4 1000000000000.2
770
+ 4 1000000000000.4
771
+ 4 1000000000000.2
772
+ 4 1000000000000.4
773
+ 4 1000000000000.2
774
+ 4 1000000000000.4
775
+ 4 1000000000000.2
776
+ 4 1000000000000.4
777
+ 4 1000000000000.2
778
+ 4 1000000000000.4
779
+ 4 1000000000000.2
780
+ 4 1000000000000.4
781
+ 4 1000000000000.2
782
+ 4 1000000000000.4
783
+ 4 1000000000000.2
784
+ 4 1000000000000.4
785
+ 4 1000000000000.2
786
+ 4 1000000000000.4
787
+ 4 1000000000000.2
788
+ 4 1000000000000.4
789
+ 4 1000000000000.2
790
+ 4 1000000000000.4
791
+ 4 1000000000000.2
792
+ 4 1000000000000.4
793
+ 4 1000000000000.2
794
+ 4 1000000000000.4
795
+ 4 1000000000000.2
796
+ 4 1000000000000.4
797
+ 4 1000000000000.2
798
+ 4 1000000000000.4
799
+ 4 1000000000000.2
800
+ 4 1000000000000.4
801
+ 4 1000000000000.2
802
+ 4 1000000000000.4
803
+ 4 1000000000000.2
804
+ 4 1000000000000.4
805
+ 4 1000000000000.2
806
+ 4 1000000000000.4
807
+ 4 1000000000000.2
808
+ 4 1000000000000.4
809
+ 4 1000000000000.2
810
+ 4 1000000000000.4
811
+ 4 1000000000000.2
812
+ 4 1000000000000.4
813
+ 4 1000000000000.2
814
+ 4 1000000000000.4
815
+ 4 1000000000000.2
816
+ 4 1000000000000.4
817
+ 4 1000000000000.2
818
+ 4 1000000000000.4
819
+ 4 1000000000000.2
820
+ 4 1000000000000.4
821
+ 4 1000000000000.2
822
+ 4 1000000000000.4
823
+ 4 1000000000000.2
824
+ 4 1000000000000.4
825
+ 4 1000000000000.2
826
+ 4 1000000000000.4
827
+ 4 1000000000000.2
828
+ 4 1000000000000.4
829
+ 4 1000000000000.2
830
+ 4 1000000000000.4
831
+ 4 1000000000000.2
832
+ 4 1000000000000.4
833
+ 4 1000000000000.2
834
+ 4 1000000000000.4
835
+ 4 1000000000000.2
836
+ 4 1000000000000.4
837
+ 4 1000000000000.2
838
+ 4 1000000000000.4
839
+ 4 1000000000000.2
840
+ 4 1000000000000.4
841
+ 4 1000000000000.2
842
+ 4 1000000000000.4
843
+ 4 1000000000000.2
844
+ 4 1000000000000.4
845
+ 4 1000000000000.2
846
+ 4 1000000000000.4
847
+ 4 1000000000000.2
848
+ 4 1000000000000.4
849
+ 4 1000000000000.2
850
+ 4 1000000000000.4
851
+ 4 1000000000000.2
852
+ 4 1000000000000.4
853
+ 4 1000000000000.2
854
+ 4 1000000000000.4
855
+ 4 1000000000000.2
856
+ 4 1000000000000.4
857
+ 4 1000000000000.2
858
+ 4 1000000000000.4
859
+ 4 1000000000000.2
860
+ 4 1000000000000.4
861
+ 4 1000000000000.2
862
+ 4 1000000000000.4
863
+ 4 1000000000000.2
864
+ 4 1000000000000.4
865
+ 5 1000000000000.5
866
+ 5 1000000000000.4
867
+ 5 1000000000000.6
868
+ 5 1000000000000.4
869
+ 5 1000000000000.6
870
+ 5 1000000000000.4
871
+ 5 1000000000000.6
872
+ 5 1000000000000.4
873
+ 5 1000000000000.6
874
+ 5 1000000000000.4
875
+ 5 1000000000000.6
876
+ 5 1000000000000.4
877
+ 5 1000000000000.6
878
+ 5 1000000000000.4
879
+ 5 1000000000000.6
880
+ 5 1000000000000.4
881
+ 5 1000000000000.6
882
+ 5 1000000000000.4
883
+ 5 1000000000000.6
884
+ 5 1000000000000.4
885
+ 5 1000000000000.6
886
+ 5 1000000000000.4
887
+ 5 1000000000000.6
888
+ 5 1000000000000.4
889
+ 5 1000000000000.6
890
+ 5 1000000000000.4
891
+ 5 1000000000000.6
892
+ 5 1000000000000.4
893
+ 5 1000000000000.6
894
+ 5 1000000000000.4
895
+ 5 1000000000000.6
896
+ 5 1000000000000.4
897
+ 5 1000000000000.6
898
+ 5 1000000000000.4
899
+ 5 1000000000000.6
900
+ 5 1000000000000.4
901
+ 5 1000000000000.6
902
+ 5 1000000000000.4
903
+ 5 1000000000000.6
904
+ 5 1000000000000.4
905
+ 5 1000000000000.6
906
+ 5 1000000000000.4
907
+ 5 1000000000000.6
908
+ 5 1000000000000.4
909
+ 5 1000000000000.6
910
+ 5 1000000000000.4
911
+ 5 1000000000000.6
912
+ 5 1000000000000.4
913
+ 5 1000000000000.6
914
+ 5 1000000000000.4
915
+ 5 1000000000000.6
916
+ 5 1000000000000.4
917
+ 5 1000000000000.6
918
+ 5 1000000000000.4
919
+ 5 1000000000000.6
920
+ 5 1000000000000.4
921
+ 5 1000000000000.6
922
+ 5 1000000000000.4
923
+ 5 1000000000000.6
924
+ 5 1000000000000.4
925
+ 5 1000000000000.6
926
+ 5 1000000000000.4
927
+ 5 1000000000000.6
928
+ 5 1000000000000.4
929
+ 5 1000000000000.6
930
+ 5 1000000000000.4
931
+ 5 1000000000000.6
932
+ 5 1000000000000.4
933
+ 5 1000000000000.6
934
+ 5 1000000000000.4
935
+ 5 1000000000000.6
936
+ 5 1000000000000.4
937
+ 5 1000000000000.6
938
+ 5 1000000000000.4
939
+ 5 1000000000000.6
940
+ 5 1000000000000.4
941
+ 5 1000000000000.6
942
+ 5 1000000000000.4
943
+ 5 1000000000000.6
944
+ 5 1000000000000.4
945
+ 5 1000000000000.6
946
+ 5 1000000000000.4
947
+ 5 1000000000000.6
948
+ 5 1000000000000.4
949
+ 5 1000000000000.6
950
+ 5 1000000000000.4
951
+ 5 1000000000000.6
952
+ 5 1000000000000.4
953
+ 5 1000000000000.6
954
+ 5 1000000000000.4
955
+ 5 1000000000000.6
956
+ 5 1000000000000.4
957
+ 5 1000000000000.6
958
+ 5 1000000000000.4
959
+ 5 1000000000000.6
960
+ 5 1000000000000.4
961
+ 5 1000000000000.6
962
+ 5 1000000000000.4
963
+ 5 1000000000000.6
964
+ 5 1000000000000.4
965
+ 5 1000000000000.6
966
+ 5 1000000000000.4
967
+ 5 1000000000000.6
968
+ 5 1000000000000.4
969
+ 5 1000000000000.6
970
+ 5 1000000000000.4
971
+ 5 1000000000000.6
972
+ 5 1000000000000.4
973
+ 5 1000000000000.6
974
+ 5 1000000000000.4
975
+ 5 1000000000000.6
976
+ 5 1000000000000.4
977
+ 5 1000000000000.6
978
+ 5 1000000000000.4
979
+ 5 1000000000000.6
980
+ 5 1000000000000.4
981
+ 5 1000000000000.6
982
+ 5 1000000000000.4
983
+ 5 1000000000000.6
984
+ 5 1000000000000.4
985
+ 5 1000000000000.6
986
+ 5 1000000000000.4
987
+ 5 1000000000000.6
988
+ 5 1000000000000.4
989
+ 5 1000000000000.6
990
+ 5 1000000000000.4
991
+ 5 1000000000000.6
992
+ 5 1000000000000.4
993
+ 5 1000000000000.6
994
+ 5 1000000000000.4
995
+ 5 1000000000000.6
996
+ 5 1000000000000.4
997
+ 5 1000000000000.6
998
+ 5 1000000000000.4
999
+ 5 1000000000000.6
1000
+ 5 1000000000000.4
1001
+ 5 1000000000000.6
1002
+ 5 1000000000000.4
1003
+ 5 1000000000000.6
1004
+ 5 1000000000000.4
1005
+ 5 1000000000000.6
1006
+ 5 1000000000000.4
1007
+ 5 1000000000000.6
1008
+ 5 1000000000000.4
1009
+ 5 1000000000000.6
1010
+ 5 1000000000000.4
1011
+ 5 1000000000000.6
1012
+ 5 1000000000000.4
1013
+ 5 1000000000000.6
1014
+ 5 1000000000000.4
1015
+ 5 1000000000000.6
1016
+ 5 1000000000000.4
1017
+ 5 1000000000000.6
1018
+ 5 1000000000000.4
1019
+ 5 1000000000000.6
1020
+ 5 1000000000000.4
1021
+ 5 1000000000000.6
1022
+ 5 1000000000000.4
1023
+ 5 1000000000000.6
1024
+ 5 1000000000000.4
1025
+ 5 1000000000000.6
1026
+ 5 1000000000000.4
1027
+ 5 1000000000000.6
1028
+ 5 1000000000000.4
1029
+ 5 1000000000000.6
1030
+ 5 1000000000000.4
1031
+ 5 1000000000000.6
1032
+ 5 1000000000000.4
1033
+ 5 1000000000000.6
1034
+ 5 1000000000000.4
1035
+ 5 1000000000000.6
1036
+ 5 1000000000000.4
1037
+ 5 1000000000000.6
1038
+ 5 1000000000000.4
1039
+ 5 1000000000000.6
1040
+ 5 1000000000000.4
1041
+ 5 1000000000000.6
1042
+ 5 1000000000000.4
1043
+ 5 1000000000000.6
1044
+ 5 1000000000000.4
1045
+ 5 1000000000000.6
1046
+ 5 1000000000000.4
1047
+ 5 1000000000000.6
1048
+ 5 1000000000000.4
1049
+ 5 1000000000000.6
1050
+ 5 1000000000000.4
1051
+ 5 1000000000000.6
1052
+ 5 1000000000000.4
1053
+ 5 1000000000000.6
1054
+ 5 1000000000000.4
1055
+ 5 1000000000000.6
1056
+ 5 1000000000000.4
1057
+ 5 1000000000000.6
1058
+ 5 1000000000000.4
1059
+ 5 1000000000000.6
1060
+ 5 1000000000000.4
1061
+ 5 1000000000000.6
1062
+ 5 1000000000000.4
1063
+ 5 1000000000000.6
1064
+ 5 1000000000000.4
1065
+ 5 1000000000000.6
1066
+ 6 1000000000000.3
1067
+ 6 1000000000000.2
1068
+ 6 1000000000000.4
1069
+ 6 1000000000000.2
1070
+ 6 1000000000000.4
1071
+ 6 1000000000000.2
1072
+ 6 1000000000000.4
1073
+ 6 1000000000000.2
1074
+ 6 1000000000000.4
1075
+ 6 1000000000000.2
1076
+ 6 1000000000000.4
1077
+ 6 1000000000000.2
1078
+ 6 1000000000000.4
1079
+ 6 1000000000000.2
1080
+ 6 1000000000000.4
1081
+ 6 1000000000000.2
1082
+ 6 1000000000000.4
1083
+ 6 1000000000000.2
1084
+ 6 1000000000000.4
1085
+ 6 1000000000000.2
1086
+ 6 1000000000000.4
1087
+ 6 1000000000000.2
1088
+ 6 1000000000000.4
1089
+ 6 1000000000000.2
1090
+ 6 1000000000000.4
1091
+ 6 1000000000000.2
1092
+ 6 1000000000000.4
1093
+ 6 1000000000000.2
1094
+ 6 1000000000000.4
1095
+ 6 1000000000000.2
1096
+ 6 1000000000000.4
1097
+ 6 1000000000000.2
1098
+ 6 1000000000000.4
1099
+ 6 1000000000000.2
1100
+ 6 1000000000000.4
1101
+ 6 1000000000000.2
1102
+ 6 1000000000000.4
1103
+ 6 1000000000000.2
1104
+ 6 1000000000000.4
1105
+ 6 1000000000000.2
1106
+ 6 1000000000000.4
1107
+ 6 1000000000000.2
1108
+ 6 1000000000000.4
1109
+ 6 1000000000000.2
1110
+ 6 1000000000000.4
1111
+ 6 1000000000000.2
1112
+ 6 1000000000000.4
1113
+ 6 1000000000000.2
1114
+ 6 1000000000000.4
1115
+ 6 1000000000000.2
1116
+ 6 1000000000000.4
1117
+ 6 1000000000000.2
1118
+ 6 1000000000000.4
1119
+ 6 1000000000000.2
1120
+ 6 1000000000000.4
1121
+ 6 1000000000000.2
1122
+ 6 1000000000000.4
1123
+ 6 1000000000000.2
1124
+ 6 1000000000000.4
1125
+ 6 1000000000000.2
1126
+ 6 1000000000000.4
1127
+ 6 1000000000000.2
1128
+ 6 1000000000000.4
1129
+ 6 1000000000000.2
1130
+ 6 1000000000000.4
1131
+ 6 1000000000000.2
1132
+ 6 1000000000000.4
1133
+ 6 1000000000000.2
1134
+ 6 1000000000000.4
1135
+ 6 1000000000000.2
1136
+ 6 1000000000000.4
1137
+ 6 1000000000000.2
1138
+ 6 1000000000000.4
1139
+ 6 1000000000000.2
1140
+ 6 1000000000000.4
1141
+ 6 1000000000000.2
1142
+ 6 1000000000000.4
1143
+ 6 1000000000000.2
1144
+ 6 1000000000000.4
1145
+ 6 1000000000000.2
1146
+ 6 1000000000000.4
1147
+ 6 1000000000000.2
1148
+ 6 1000000000000.4
1149
+ 6 1000000000000.2
1150
+ 6 1000000000000.4
1151
+ 6 1000000000000.2
1152
+ 6 1000000000000.4
1153
+ 6 1000000000000.2
1154
+ 6 1000000000000.4
1155
+ 6 1000000000000.2
1156
+ 6 1000000000000.4
1157
+ 6 1000000000000.2
1158
+ 6 1000000000000.4
1159
+ 6 1000000000000.2
1160
+ 6 1000000000000.4
1161
+ 6 1000000000000.2
1162
+ 6 1000000000000.4
1163
+ 6 1000000000000.2
1164
+ 6 1000000000000.4
1165
+ 6 1000000000000.2
1166
+ 6 1000000000000.4
1167
+ 6 1000000000000.2
1168
+ 6 1000000000000.4
1169
+ 6 1000000000000.2
1170
+ 6 1000000000000.4
1171
+ 6 1000000000000.2
1172
+ 6 1000000000000.4
1173
+ 6 1000000000000.2
1174
+ 6 1000000000000.4
1175
+ 6 1000000000000.2
1176
+ 6 1000000000000.4
1177
+ 6 1000000000000.2
1178
+ 6 1000000000000.4
1179
+ 6 1000000000000.2
1180
+ 6 1000000000000.4
1181
+ 6 1000000000000.2
1182
+ 6 1000000000000.4
1183
+ 6 1000000000000.2
1184
+ 6 1000000000000.4
1185
+ 6 1000000000000.2
1186
+ 6 1000000000000.4
1187
+ 6 1000000000000.2
1188
+ 6 1000000000000.4
1189
+ 6 1000000000000.2
1190
+ 6 1000000000000.4
1191
+ 6 1000000000000.2
1192
+ 6 1000000000000.4
1193
+ 6 1000000000000.2
1194
+ 6 1000000000000.4
1195
+ 6 1000000000000.2
1196
+ 6 1000000000000.4
1197
+ 6 1000000000000.2
1198
+ 6 1000000000000.4
1199
+ 6 1000000000000.2
1200
+ 6 1000000000000.4
1201
+ 6 1000000000000.2
1202
+ 6 1000000000000.4
1203
+ 6 1000000000000.2
1204
+ 6 1000000000000.4
1205
+ 6 1000000000000.2
1206
+ 6 1000000000000.4
1207
+ 6 1000000000000.2
1208
+ 6 1000000000000.4
1209
+ 6 1000000000000.2
1210
+ 6 1000000000000.4
1211
+ 6 1000000000000.2
1212
+ 6 1000000000000.4
1213
+ 6 1000000000000.2
1214
+ 6 1000000000000.4
1215
+ 6 1000000000000.2
1216
+ 6 1000000000000.4
1217
+ 6 1000000000000.2
1218
+ 6 1000000000000.4
1219
+ 6 1000000000000.2
1220
+ 6 1000000000000.4
1221
+ 6 1000000000000.2
1222
+ 6 1000000000000.4
1223
+ 6 1000000000000.2
1224
+ 6 1000000000000.4
1225
+ 6 1000000000000.2
1226
+ 6 1000000000000.4
1227
+ 6 1000000000000.2
1228
+ 6 1000000000000.4
1229
+ 6 1000000000000.2
1230
+ 6 1000000000000.4
1231
+ 6 1000000000000.2
1232
+ 6 1000000000000.4
1233
+ 6 1000000000000.2
1234
+ 6 1000000000000.4
1235
+ 6 1000000000000.2
1236
+ 6 1000000000000.4
1237
+ 6 1000000000000.2
1238
+ 6 1000000000000.4
1239
+ 6 1000000000000.2
1240
+ 6 1000000000000.4
1241
+ 6 1000000000000.2
1242
+ 6 1000000000000.4
1243
+ 6 1000000000000.2
1244
+ 6 1000000000000.4
1245
+ 6 1000000000000.2
1246
+ 6 1000000000000.4
1247
+ 6 1000000000000.2
1248
+ 6 1000000000000.4
1249
+ 6 1000000000000.2
1250
+ 6 1000000000000.4
1251
+ 6 1000000000000.2
1252
+ 6 1000000000000.4
1253
+ 6 1000000000000.2
1254
+ 6 1000000000000.4
1255
+ 6 1000000000000.2
1256
+ 6 1000000000000.4
1257
+ 6 1000000000000.2
1258
+ 6 1000000000000.4
1259
+ 6 1000000000000.2
1260
+ 6 1000000000000.4
1261
+ 6 1000000000000.2
1262
+ 6 1000000000000.4
1263
+ 6 1000000000000.2
1264
+ 6 1000000000000.4
1265
+ 6 1000000000000.2
1266
+ 6 1000000000000.4
1267
+ 7 1000000000000.5
1268
+ 7 1000000000000.4
1269
+ 7 1000000000000.6
1270
+ 7 1000000000000.4
1271
+ 7 1000000000000.6
1272
+ 7 1000000000000.4
1273
+ 7 1000000000000.6
1274
+ 7 1000000000000.4
1275
+ 7 1000000000000.6
1276
+ 7 1000000000000.4
1277
+ 7 1000000000000.6
1278
+ 7 1000000000000.4
1279
+ 7 1000000000000.6
1280
+ 7 1000000000000.4
1281
+ 7 1000000000000.6
1282
+ 7 1000000000000.4
1283
+ 7 1000000000000.6
1284
+ 7 1000000000000.4
1285
+ 7 1000000000000.6
1286
+ 7 1000000000000.4
1287
+ 7 1000000000000.6
1288
+ 7 1000000000000.4
1289
+ 7 1000000000000.6
1290
+ 7 1000000000000.4
1291
+ 7 1000000000000.6
1292
+ 7 1000000000000.4
1293
+ 7 1000000000000.6
1294
+ 7 1000000000000.4
1295
+ 7 1000000000000.6
1296
+ 7 1000000000000.4
1297
+ 7 1000000000000.6
1298
+ 7 1000000000000.4
1299
+ 7 1000000000000.6
1300
+ 7 1000000000000.4
1301
+ 7 1000000000000.6
1302
+ 7 1000000000000.4
1303
+ 7 1000000000000.6
1304
+ 7 1000000000000.4
1305
+ 7 1000000000000.6
1306
+ 7 1000000000000.4
1307
+ 7 1000000000000.6
1308
+ 7 1000000000000.4
1309
+ 7 1000000000000.6
1310
+ 7 1000000000000.4
1311
+ 7 1000000000000.6
1312
+ 7 1000000000000.4
1313
+ 7 1000000000000.6
1314
+ 7 1000000000000.4
1315
+ 7 1000000000000.6
1316
+ 7 1000000000000.4
1317
+ 7 1000000000000.6
1318
+ 7 1000000000000.4
1319
+ 7 1000000000000.6
1320
+ 7 1000000000000.4
1321
+ 7 1000000000000.6
1322
+ 7 1000000000000.4
1323
+ 7 1000000000000.6
1324
+ 7 1000000000000.4
1325
+ 7 1000000000000.6
1326
+ 7 1000000000000.4
1327
+ 7 1000000000000.6
1328
+ 7 1000000000000.4
1329
+ 7 1000000000000.6
1330
+ 7 1000000000000.4
1331
+ 7 1000000000000.6
1332
+ 7 1000000000000.4
1333
+ 7 1000000000000.6
1334
+ 7 1000000000000.4
1335
+ 7 1000000000000.6
1336
+ 7 1000000000000.4
1337
+ 7 1000000000000.6
1338
+ 7 1000000000000.4
1339
+ 7 1000000000000.6
1340
+ 7 1000000000000.4
1341
+ 7 1000000000000.6
1342
+ 7 1000000000000.4
1343
+ 7 1000000000000.6
1344
+ 7 1000000000000.4
1345
+ 7 1000000000000.6
1346
+ 7 1000000000000.4
1347
+ 7 1000000000000.6
1348
+ 7 1000000000000.4
1349
+ 7 1000000000000.6
1350
+ 7 1000000000000.4
1351
+ 7 1000000000000.6
1352
+ 7 1000000000000.4
1353
+ 7 1000000000000.6
1354
+ 7 1000000000000.4
1355
+ 7 1000000000000.6
1356
+ 7 1000000000000.4
1357
+ 7 1000000000000.6
1358
+ 7 1000000000000.4
1359
+ 7 1000000000000.6
1360
+ 7 1000000000000.4
1361
+ 7 1000000000000.6
1362
+ 7 1000000000000.4
1363
+ 7 1000000000000.6
1364
+ 7 1000000000000.4
1365
+ 7 1000000000000.6
1366
+ 7 1000000000000.4
1367
+ 7 1000000000000.6
1368
+ 7 1000000000000.4
1369
+ 7 1000000000000.6
1370
+ 7 1000000000000.4
1371
+ 7 1000000000000.6
1372
+ 7 1000000000000.4
1373
+ 7 1000000000000.6
1374
+ 7 1000000000000.4
1375
+ 7 1000000000000.6
1376
+ 7 1000000000000.4
1377
+ 7 1000000000000.6
1378
+ 7 1000000000000.4
1379
+ 7 1000000000000.6
1380
+ 7 1000000000000.4
1381
+ 7 1000000000000.6
1382
+ 7 1000000000000.4
1383
+ 7 1000000000000.6
1384
+ 7 1000000000000.4
1385
+ 7 1000000000000.6
1386
+ 7 1000000000000.4
1387
+ 7 1000000000000.6
1388
+ 7 1000000000000.4
1389
+ 7 1000000000000.6
1390
+ 7 1000000000000.4
1391
+ 7 1000000000000.6
1392
+ 7 1000000000000.4
1393
+ 7 1000000000000.6
1394
+ 7 1000000000000.4
1395
+ 7 1000000000000.6
1396
+ 7 1000000000000.4
1397
+ 7 1000000000000.6
1398
+ 7 1000000000000.4
1399
+ 7 1000000000000.6
1400
+ 7 1000000000000.4
1401
+ 7 1000000000000.6
1402
+ 7 1000000000000.4
1403
+ 7 1000000000000.6
1404
+ 7 1000000000000.4
1405
+ 7 1000000000000.6
1406
+ 7 1000000000000.4
1407
+ 7 1000000000000.6
1408
+ 7 1000000000000.4
1409
+ 7 1000000000000.6
1410
+ 7 1000000000000.4
1411
+ 7 1000000000000.6
1412
+ 7 1000000000000.4
1413
+ 7 1000000000000.6
1414
+ 7 1000000000000.4
1415
+ 7 1000000000000.6
1416
+ 7 1000000000000.4
1417
+ 7 1000000000000.6
1418
+ 7 1000000000000.4
1419
+ 7 1000000000000.6
1420
+ 7 1000000000000.4
1421
+ 7 1000000000000.6
1422
+ 7 1000000000000.4
1423
+ 7 1000000000000.6
1424
+ 7 1000000000000.4
1425
+ 7 1000000000000.6
1426
+ 7 1000000000000.4
1427
+ 7 1000000000000.6
1428
+ 7 1000000000000.4
1429
+ 7 1000000000000.6
1430
+ 7 1000000000000.4
1431
+ 7 1000000000000.6
1432
+ 7 1000000000000.4
1433
+ 7 1000000000000.6
1434
+ 7 1000000000000.4
1435
+ 7 1000000000000.6
1436
+ 7 1000000000000.4
1437
+ 7 1000000000000.6
1438
+ 7 1000000000000.4
1439
+ 7 1000000000000.6
1440
+ 7 1000000000000.4
1441
+ 7 1000000000000.6
1442
+ 7 1000000000000.4
1443
+ 7 1000000000000.6
1444
+ 7 1000000000000.4
1445
+ 7 1000000000000.6
1446
+ 7 1000000000000.4
1447
+ 7 1000000000000.6
1448
+ 7 1000000000000.4
1449
+ 7 1000000000000.6
1450
+ 7 1000000000000.4
1451
+ 7 1000000000000.6
1452
+ 7 1000000000000.4
1453
+ 7 1000000000000.6
1454
+ 7 1000000000000.4
1455
+ 7 1000000000000.6
1456
+ 7 1000000000000.4
1457
+ 7 1000000000000.6
1458
+ 7 1000000000000.4
1459
+ 7 1000000000000.6
1460
+ 7 1000000000000.4
1461
+ 7 1000000000000.6
1462
+ 7 1000000000000.4
1463
+ 7 1000000000000.6
1464
+ 7 1000000000000.4
1465
+ 7 1000000000000.6
1466
+ 7 1000000000000.4
1467
+ 7 1000000000000.6
1468
+ 8 1000000000000.3
1469
+ 8 1000000000000.2
1470
+ 8 1000000000000.4
1471
+ 8 1000000000000.2
1472
+ 8 1000000000000.4
1473
+ 8 1000000000000.2
1474
+ 8 1000000000000.4
1475
+ 8 1000000000000.2
1476
+ 8 1000000000000.4
1477
+ 8 1000000000000.2
1478
+ 8 1000000000000.4
1479
+ 8 1000000000000.2
1480
+ 8 1000000000000.4
1481
+ 8 1000000000000.2
1482
+ 8 1000000000000.4
1483
+ 8 1000000000000.2
1484
+ 8 1000000000000.4
1485
+ 8 1000000000000.2
1486
+ 8 1000000000000.4
1487
+ 8 1000000000000.2
1488
+ 8 1000000000000.4
1489
+ 8 1000000000000.2
1490
+ 8 1000000000000.4
1491
+ 8 1000000000000.2
1492
+ 8 1000000000000.4
1493
+ 8 1000000000000.2
1494
+ 8 1000000000000.4
1495
+ 8 1000000000000.2
1496
+ 8 1000000000000.4
1497
+ 8 1000000000000.2
1498
+ 8 1000000000000.4
1499
+ 8 1000000000000.2
1500
+ 8 1000000000000.4
1501
+ 8 1000000000000.2
1502
+ 8 1000000000000.4
1503
+ 8 1000000000000.2
1504
+ 8 1000000000000.4
1505
+ 8 1000000000000.2
1506
+ 8 1000000000000.4
1507
+ 8 1000000000000.2
1508
+ 8 1000000000000.4
1509
+ 8 1000000000000.2
1510
+ 8 1000000000000.4
1511
+ 8 1000000000000.2
1512
+ 8 1000000000000.4
1513
+ 8 1000000000000.2
1514
+ 8 1000000000000.4
1515
+ 8 1000000000000.2
1516
+ 8 1000000000000.4
1517
+ 8 1000000000000.2
1518
+ 8 1000000000000.4
1519
+ 8 1000000000000.2
1520
+ 8 1000000000000.4
1521
+ 8 1000000000000.2
1522
+ 8 1000000000000.4
1523
+ 8 1000000000000.2
1524
+ 8 1000000000000.4
1525
+ 8 1000000000000.2
1526
+ 8 1000000000000.4
1527
+ 8 1000000000000.2
1528
+ 8 1000000000000.4
1529
+ 8 1000000000000.2
1530
+ 8 1000000000000.4
1531
+ 8 1000000000000.2
1532
+ 8 1000000000000.4
1533
+ 8 1000000000000.2
1534
+ 8 1000000000000.4
1535
+ 8 1000000000000.2
1536
+ 8 1000000000000.4
1537
+ 8 1000000000000.2
1538
+ 8 1000000000000.4
1539
+ 8 1000000000000.2
1540
+ 8 1000000000000.4
1541
+ 8 1000000000000.2
1542
+ 8 1000000000000.4
1543
+ 8 1000000000000.2
1544
+ 8 1000000000000.4
1545
+ 8 1000000000000.2
1546
+ 8 1000000000000.4
1547
+ 8 1000000000000.2
1548
+ 8 1000000000000.4
1549
+ 8 1000000000000.2
1550
+ 8 1000000000000.4
1551
+ 8 1000000000000.2
1552
+ 8 1000000000000.4
1553
+ 8 1000000000000.2
1554
+ 8 1000000000000.4
1555
+ 8 1000000000000.2
1556
+ 8 1000000000000.4
1557
+ 8 1000000000000.2
1558
+ 8 1000000000000.4
1559
+ 8 1000000000000.2
1560
+ 8 1000000000000.4
1561
+ 8 1000000000000.2
1562
+ 8 1000000000000.4
1563
+ 8 1000000000000.2
1564
+ 8 1000000000000.4
1565
+ 8 1000000000000.2
1566
+ 8 1000000000000.4
1567
+ 8 1000000000000.2
1568
+ 8 1000000000000.4
1569
+ 8 1000000000000.2
1570
+ 8 1000000000000.4
1571
+ 8 1000000000000.2
1572
+ 8 1000000000000.4
1573
+ 8 1000000000000.2
1574
+ 8 1000000000000.4
1575
+ 8 1000000000000.2
1576
+ 8 1000000000000.4
1577
+ 8 1000000000000.2
1578
+ 8 1000000000000.4
1579
+ 8 1000000000000.2
1580
+ 8 1000000000000.4
1581
+ 8 1000000000000.2
1582
+ 8 1000000000000.4
1583
+ 8 1000000000000.2
1584
+ 8 1000000000000.4
1585
+ 8 1000000000000.2
1586
+ 8 1000000000000.4
1587
+ 8 1000000000000.2
1588
+ 8 1000000000000.4
1589
+ 8 1000000000000.2
1590
+ 8 1000000000000.4
1591
+ 8 1000000000000.2
1592
+ 8 1000000000000.4
1593
+ 8 1000000000000.2
1594
+ 8 1000000000000.4
1595
+ 8 1000000000000.2
1596
+ 8 1000000000000.4
1597
+ 8 1000000000000.2
1598
+ 8 1000000000000.4
1599
+ 8 1000000000000.2
1600
+ 8 1000000000000.4
1601
+ 8 1000000000000.2
1602
+ 8 1000000000000.4
1603
+ 8 1000000000000.2
1604
+ 8 1000000000000.4
1605
+ 8 1000000000000.2
1606
+ 8 1000000000000.4
1607
+ 8 1000000000000.2
1608
+ 8 1000000000000.4
1609
+ 8 1000000000000.2
1610
+ 8 1000000000000.4
1611
+ 8 1000000000000.2
1612
+ 8 1000000000000.4
1613
+ 8 1000000000000.2
1614
+ 8 1000000000000.4
1615
+ 8 1000000000000.2
1616
+ 8 1000000000000.4
1617
+ 8 1000000000000.2
1618
+ 8 1000000000000.4
1619
+ 8 1000000000000.2
1620
+ 8 1000000000000.4
1621
+ 8 1000000000000.2
1622
+ 8 1000000000000.4
1623
+ 8 1000000000000.2
1624
+ 8 1000000000000.4
1625
+ 8 1000000000000.2
1626
+ 8 1000000000000.4
1627
+ 8 1000000000000.2
1628
+ 8 1000000000000.4
1629
+ 8 1000000000000.2
1630
+ 8 1000000000000.4
1631
+ 8 1000000000000.2
1632
+ 8 1000000000000.4
1633
+ 8 1000000000000.2
1634
+ 8 1000000000000.4
1635
+ 8 1000000000000.2
1636
+ 8 1000000000000.4
1637
+ 8 1000000000000.2
1638
+ 8 1000000000000.4
1639
+ 8 1000000000000.2
1640
+ 8 1000000000000.4
1641
+ 8 1000000000000.2
1642
+ 8 1000000000000.4
1643
+ 8 1000000000000.2
1644
+ 8 1000000000000.4
1645
+ 8 1000000000000.2
1646
+ 8 1000000000000.4
1647
+ 8 1000000000000.2
1648
+ 8 1000000000000.4
1649
+ 8 1000000000000.2
1650
+ 8 1000000000000.4
1651
+ 8 1000000000000.2
1652
+ 8 1000000000000.4
1653
+ 8 1000000000000.2
1654
+ 8 1000000000000.4
1655
+ 8 1000000000000.2
1656
+ 8 1000000000000.4
1657
+ 8 1000000000000.2
1658
+ 8 1000000000000.4
1659
+ 8 1000000000000.2
1660
+ 8 1000000000000.4
1661
+ 8 1000000000000.2
1662
+ 8 1000000000000.4
1663
+ 8 1000000000000.2
1664
+ 8 1000000000000.4
1665
+ 8 1000000000000.2
1666
+ 8 1000000000000.4
1667
+ 8 1000000000000.2
1668
+ 8 1000000000000.4
1669
+ 9 1000000000000.5
1670
+ 9 1000000000000.4
1671
+ 9 1000000000000.6
1672
+ 9 1000000000000.4
1673
+ 9 1000000000000.6
1674
+ 9 1000000000000.4
1675
+ 9 1000000000000.6
1676
+ 9 1000000000000.4
1677
+ 9 1000000000000.6
1678
+ 9 1000000000000.4
1679
+ 9 1000000000000.6
1680
+ 9 1000000000000.4
1681
+ 9 1000000000000.6
1682
+ 9 1000000000000.4
1683
+ 9 1000000000000.6
1684
+ 9 1000000000000.4
1685
+ 9 1000000000000.6
1686
+ 9 1000000000000.4
1687
+ 9 1000000000000.6
1688
+ 9 1000000000000.4
1689
+ 9 1000000000000.6
1690
+ 9 1000000000000.4
1691
+ 9 1000000000000.6
1692
+ 9 1000000000000.4
1693
+ 9 1000000000000.6
1694
+ 9 1000000000000.4
1695
+ 9 1000000000000.6
1696
+ 9 1000000000000.4
1697
+ 9 1000000000000.6
1698
+ 9 1000000000000.4
1699
+ 9 1000000000000.6
1700
+ 9 1000000000000.4
1701
+ 9 1000000000000.6
1702
+ 9 1000000000000.4
1703
+ 9 1000000000000.6
1704
+ 9 1000000000000.4
1705
+ 9 1000000000000.6
1706
+ 9 1000000000000.4
1707
+ 9 1000000000000.6
1708
+ 9 1000000000000.4
1709
+ 9 1000000000000.6
1710
+ 9 1000000000000.4
1711
+ 9 1000000000000.6
1712
+ 9 1000000000000.4
1713
+ 9 1000000000000.6
1714
+ 9 1000000000000.4
1715
+ 9 1000000000000.6
1716
+ 9 1000000000000.4
1717
+ 9 1000000000000.6
1718
+ 9 1000000000000.4
1719
+ 9 1000000000000.6
1720
+ 9 1000000000000.4
1721
+ 9 1000000000000.6
1722
+ 9 1000000000000.4
1723
+ 9 1000000000000.6
1724
+ 9 1000000000000.4
1725
+ 9 1000000000000.6
1726
+ 9 1000000000000.4
1727
+ 9 1000000000000.6
1728
+ 9 1000000000000.4
1729
+ 9 1000000000000.6
1730
+ 9 1000000000000.4
1731
+ 9 1000000000000.6
1732
+ 9 1000000000000.4
1733
+ 9 1000000000000.6
1734
+ 9 1000000000000.4
1735
+ 9 1000000000000.6
1736
+ 9 1000000000000.4
1737
+ 9 1000000000000.6
1738
+ 9 1000000000000.4
1739
+ 9 1000000000000.6
1740
+ 9 1000000000000.4
1741
+ 9 1000000000000.6
1742
+ 9 1000000000000.4
1743
+ 9 1000000000000.6
1744
+ 9 1000000000000.4
1745
+ 9 1000000000000.6
1746
+ 9 1000000000000.4
1747
+ 9 1000000000000.6
1748
+ 9 1000000000000.4
1749
+ 9 1000000000000.6
1750
+ 9 1000000000000.4
1751
+ 9 1000000000000.6
1752
+ 9 1000000000000.4
1753
+ 9 1000000000000.6
1754
+ 9 1000000000000.4
1755
+ 9 1000000000000.6
1756
+ 9 1000000000000.4
1757
+ 9 1000000000000.6
1758
+ 9 1000000000000.4
1759
+ 9 1000000000000.6
1760
+ 9 1000000000000.4
1761
+ 9 1000000000000.6
1762
+ 9 1000000000000.4
1763
+ 9 1000000000000.6
1764
+ 9 1000000000000.4
1765
+ 9 1000000000000.6
1766
+ 9 1000000000000.4
1767
+ 9 1000000000000.6
1768
+ 9 1000000000000.4
1769
+ 9 1000000000000.6
1770
+ 9 1000000000000.4
1771
+ 9 1000000000000.6
1772
+ 9 1000000000000.4
1773
+ 9 1000000000000.6
1774
+ 9 1000000000000.4
1775
+ 9 1000000000000.6
1776
+ 9 1000000000000.4
1777
+ 9 1000000000000.6
1778
+ 9 1000000000000.4
1779
+ 9 1000000000000.6
1780
+ 9 1000000000000.4
1781
+ 9 1000000000000.6
1782
+ 9 1000000000000.4
1783
+ 9 1000000000000.6
1784
+ 9 1000000000000.4
1785
+ 9 1000000000000.6
1786
+ 9 1000000000000.4
1787
+ 9 1000000000000.6
1788
+ 9 1000000000000.4
1789
+ 9 1000000000000.6
1790
+ 9 1000000000000.4
1791
+ 9 1000000000000.6
1792
+ 9 1000000000000.4
1793
+ 9 1000000000000.6
1794
+ 9 1000000000000.4
1795
+ 9 1000000000000.6
1796
+ 9 1000000000000.4
1797
+ 9 1000000000000.6
1798
+ 9 1000000000000.4
1799
+ 9 1000000000000.6
1800
+ 9 1000000000000.4
1801
+ 9 1000000000000.6
1802
+ 9 1000000000000.4
1803
+ 9 1000000000000.6
1804
+ 9 1000000000000.4
1805
+ 9 1000000000000.6
1806
+ 9 1000000000000.4
1807
+ 9 1000000000000.6
1808
+ 9 1000000000000.4
1809
+ 9 1000000000000.6
1810
+ 9 1000000000000.4
1811
+ 9 1000000000000.6
1812
+ 9 1000000000000.4
1813
+ 9 1000000000000.6
1814
+ 9 1000000000000.4
1815
+ 9 1000000000000.6
1816
+ 9 1000000000000.4
1817
+ 9 1000000000000.6
1818
+ 9 1000000000000.4
1819
+ 9 1000000000000.6
1820
+ 9 1000000000000.4
1821
+ 9 1000000000000.6
1822
+ 9 1000000000000.4
1823
+ 9 1000000000000.6
1824
+ 9 1000000000000.4
1825
+ 9 1000000000000.6
1826
+ 9 1000000000000.4
1827
+ 9 1000000000000.6
1828
+ 9 1000000000000.4
1829
+ 9 1000000000000.6
1830
+ 9 1000000000000.4
1831
+ 9 1000000000000.6
1832
+ 9 1000000000000.4
1833
+ 9 1000000000000.6
1834
+ 9 1000000000000.4
1835
+ 9 1000000000000.6
1836
+ 9 1000000000000.4
1837
+ 9 1000000000000.6
1838
+ 9 1000000000000.4
1839
+ 9 1000000000000.6
1840
+ 9 1000000000000.4
1841
+ 9 1000000000000.6
1842
+ 9 1000000000000.4
1843
+ 9 1000000000000.6
1844
+ 9 1000000000000.4
1845
+ 9 1000000000000.6
1846
+ 9 1000000000000.4
1847
+ 9 1000000000000.6
1848
+ 9 1000000000000.4
1849
+ 9 1000000000000.6
1850
+ 9 1000000000000.4
1851
+ 9 1000000000000.6
1852
+ 9 1000000000000.4
1853
+ 9 1000000000000.6
1854
+ 9 1000000000000.4
1855
+ 9 1000000000000.6
1856
+ 9 1000000000000.4
1857
+ 9 1000000000000.6
1858
+ 9 1000000000000.4
1859
+ 9 1000000000000.6
1860
+ 9 1000000000000.4
1861
+ 9 1000000000000.6
1862
+ 9 1000000000000.4
1863
+ 9 1000000000000.6
1864
+ 9 1000000000000.4
1865
+ 9 1000000000000.6
1866
+ 9 1000000000000.4
1867
+ 9 1000000000000.6
1868
+ 9 1000000000000.4
1869
+ 9 1000000000000.6
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_anova/SmLs09.dat ADDED
The diff for this file is too large to render. See raw diff
 
venv/lib/python3.10/site-packages/scipy/stats/tests/data/nist_linregress/Norris.dat ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ NIST/ITL StRD
2
+ Dataset Name: Norris (Norris.dat)
3
+
4
+ File Format: ASCII
5
+ Certified Values (lines 31 to 46)
6
+ Data (lines 61 to 96)
7
+
8
+ Procedure: Linear Least Squares Regression
9
+
10
+ Reference: Norris, J., NIST.
11
+ Calibration of Ozone Monitors.
12
+
13
+ Data: 1 Response Variable (y)
14
+ 1 Predictor Variable (x)
15
+ 36 Observations
16
+ Lower Level of Difficulty
17
+ Observed Data
18
+
19
+ Model: Linear Class
20
+ 2 Parameters (B0,B1)
21
+
22
+ y = B0 + B1*x + e
23
+
24
+
25
+
26
+ Certified Regression Statistics
27
+
28
+ Standard Deviation
29
+ Parameter Estimate of Estimate
30
+
31
+ B0 -0.262323073774029 0.232818234301152
32
+ B1 1.00211681802045 0.429796848199937E-03
33
+
34
+ Residual
35
+ Standard Deviation 0.884796396144373
36
+
37
+ R-Squared 0.999993745883712
38
+
39
+
40
+ Certified Analysis of Variance Table
41
+
42
+ Source of Degrees of Sums of Mean
43
+ Variation Freedom Squares Squares F Statistic
44
+
45
+ Regression 1 4255954.13232369 4255954.13232369 5436385.54079785
46
+ Residual 34 26.6173985294224 0.782864662630069
47
+
48
+
49
+
50
+
51
+
52
+
53
+
54
+
55
+
56
+
57
+
58
+
59
+
60
+ Data: y x
61
+ 0.1 0.2
62
+ 338.8 337.4
63
+ 118.1 118.2
64
+ 888.0 884.6
65
+ 9.2 10.1
66
+ 228.1 226.5
67
+ 668.5 666.3
68
+ 998.5 996.3
69
+ 449.1 448.6
70
+ 778.9 777.0
71
+ 559.2 558.2
72
+ 0.3 0.4
73
+ 0.1 0.6
74
+ 778.1 775.5
75
+ 668.8 666.9
76
+ 339.3 338.0
77
+ 448.9 447.5
78
+ 10.8 11.6
79
+ 557.7 556.0
80
+ 228.3 228.1
81
+ 998.0 995.8
82
+ 888.8 887.6
83
+ 119.6 120.2
84
+ 0.3 0.3
85
+ 0.6 0.3
86
+ 557.6 556.8
87
+ 339.3 339.1
88
+ 888.0 887.2
89
+ 998.5 999.0
90
+ 778.9 779.0
91
+ 10.2 11.1
92
+ 117.6 118.3
93
+ 228.9 229.2
94
+ 668.4 669.1
95
+ 449.2 448.9
96
+ 0.2 0.5
97
+
venv/lib/python3.10/site-packages/scipy/stats/tests/data/studentized_range_mpmath_ref.json ADDED
@@ -0,0 +1,1499 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "COMMENT": "!!!!!! THIS FILE WAS AUTOGENERATED BY RUNNING `python studentized_range_mpmath_ref.py` !!!!!!",
3
+ "moment_data": [
4
+ {
5
+ "src_case": {
6
+ "m": 0,
7
+ "k": 3,
8
+ "v": 10,
9
+ "expected_atol": 1e-09,
10
+ "expected_rtol": 1e-09
11
+ },
12
+ "mp_result": 1.0
13
+ },
14
+ {
15
+ "src_case": {
16
+ "m": 1,
17
+ "k": 3,
18
+ "v": 10,
19
+ "expected_atol": 1e-09,
20
+ "expected_rtol": 1e-09
21
+ },
22
+ "mp_result": 1.8342745127927962
23
+ },
24
+ {
25
+ "src_case": {
26
+ "m": 2,
27
+ "k": 3,
28
+ "v": 10,
29
+ "expected_atol": 1e-09,
30
+ "expected_rtol": 1e-09
31
+ },
32
+ "mp_result": 4.567483357831711
33
+ },
34
+ {
35
+ "src_case": {
36
+ "m": 3,
37
+ "k": 3,
38
+ "v": 10,
39
+ "expected_atol": 1e-09,
40
+ "expected_rtol": 1e-09
41
+ },
42
+ "mp_result": 14.412156886227011
43
+ },
44
+ {
45
+ "src_case": {
46
+ "m": 4,
47
+ "k": 3,
48
+ "v": 10,
49
+ "expected_atol": 1e-09,
50
+ "expected_rtol": 1e-09
51
+ },
52
+ "mp_result": 56.012250366720444
53
+ }
54
+ ],
55
+ "cdf_data": [
56
+ {
57
+ "src_case": {
58
+ "q": 0.1,
59
+ "k": 3,
60
+ "v": 3,
61
+ "expected_atol": 1e-11,
62
+ "expected_rtol": 1e-11
63
+ },
64
+ "mp_result": 0.0027502772229359594
65
+ },
66
+ {
67
+ "src_case": {
68
+ "q": 0.1,
69
+ "k": 10,
70
+ "v": 10,
71
+ "expected_atol": 1e-11,
72
+ "expected_rtol": 1e-11
73
+ },
74
+ "mp_result": 2.8544145010066327e-12
75
+ },
76
+ {
77
+ "src_case": {
78
+ "q": 0.1,
79
+ "k": 3,
80
+ "v": 10,
81
+ "expected_atol": 1e-11,
82
+ "expected_rtol": 1e-11
83
+ },
84
+ "mp_result": 0.0027520560662338336
85
+ },
86
+ {
87
+ "src_case": {
88
+ "q": 0.1,
89
+ "k": 10,
90
+ "v": 100,
91
+ "expected_atol": 1e-11,
92
+ "expected_rtol": 1e-11
93
+ },
94
+ "mp_result": 9.39089126131273e-13
95
+ },
96
+ {
97
+ "src_case": {
98
+ "q": 0.1,
99
+ "k": 3,
100
+ "v": 20,
101
+ "expected_atol": 1e-11,
102
+ "expected_rtol": 1e-11
103
+ },
104
+ "mp_result": 0.002752437649536182
105
+ },
106
+ {
107
+ "src_case": {
108
+ "q": 0.1,
109
+ "k": 10,
110
+ "v": 50,
111
+ "expected_atol": 1e-11,
112
+ "expected_rtol": 1e-11
113
+ },
114
+ "mp_result": 1.0862189999210748e-12
115
+ },
116
+ {
117
+ "src_case": {
118
+ "q": 0.1,
119
+ "k": 3,
120
+ "v": 120,
121
+ "expected_atol": 1e-11,
122
+ "expected_rtol": 1e-11
123
+ },
124
+ "mp_result": 0.002752755744313648
125
+ },
126
+ {
127
+ "src_case": {
128
+ "q": 0.1,
129
+ "k": 3,
130
+ "v": 100,
131
+ "expected_atol": 1e-11,
132
+ "expected_rtol": 1e-11
133
+ },
134
+ "mp_result": 0.0027527430186246545
135
+ },
136
+ {
137
+ "src_case": {
138
+ "q": 0.1,
139
+ "k": 3,
140
+ "v": 50,
141
+ "expected_atol": 1e-11,
142
+ "expected_rtol": 1e-11
143
+ },
144
+ "mp_result": 0.002752666667812431
145
+ },
146
+ {
147
+ "src_case": {
148
+ "q": 0.1,
149
+ "k": 20,
150
+ "v": 10,
151
+ "expected_atol": 1e-11,
152
+ "expected_rtol": 1e-11
153
+ },
154
+ "mp_result": 2.505275157135514e-24
155
+ },
156
+ {
157
+ "src_case": {
158
+ "q": 0.1,
159
+ "k": 20,
160
+ "v": 20,
161
+ "expected_atol": 1e-11,
162
+ "expected_rtol": 1e-11
163
+ },
164
+ "mp_result": 3.8546698113384126e-25
165
+ },
166
+ {
167
+ "src_case": {
168
+ "q": 0.1,
169
+ "k": 10,
170
+ "v": 3,
171
+ "expected_atol": 1e-11,
172
+ "expected_rtol": 1e-11
173
+ },
174
+ "mp_result": 1.7362668562706085e-11
175
+ },
176
+ {
177
+ "src_case": {
178
+ "q": 0.1,
179
+ "k": 20,
180
+ "v": 50,
181
+ "expected_atol": 1e-11,
182
+ "expected_rtol": 1e-11
183
+ },
184
+ "mp_result": 5.571947730052616e-26
185
+ },
186
+ {
187
+ "src_case": {
188
+ "q": 0.1,
189
+ "k": 20,
190
+ "v": 100,
191
+ "expected_atol": 1e-11,
192
+ "expected_rtol": 1e-11
193
+ },
194
+ "mp_result": 2.032619249089036e-27
195
+ },
196
+ {
197
+ "src_case": {
198
+ "q": 0.1,
199
+ "k": 20,
200
+ "v": 3,
201
+ "expected_atol": 1e-11,
202
+ "expected_rtol": 1e-11
203
+ },
204
+ "mp_result": 9.539763646681808e-22
205
+ },
206
+ {
207
+ "src_case": {
208
+ "q": 0.1,
209
+ "k": 10,
210
+ "v": 20,
211
+ "expected_atol": 1e-11,
212
+ "expected_rtol": 1e-11
213
+ },
214
+ "mp_result": 1.618313512511099e-12
215
+ },
216
+ {
217
+ "src_case": {
218
+ "q": 0.1,
219
+ "k": 20,
220
+ "v": 120,
221
+ "expected_atol": 1e-11,
222
+ "expected_rtol": 1e-11
223
+ },
224
+ "mp_result": 4.919231733354114e-28
225
+ },
226
+ {
227
+ "src_case": {
228
+ "q": 0.1,
229
+ "k": 10,
230
+ "v": 120,
231
+ "expected_atol": 1e-11,
232
+ "expected_rtol": 1e-11
233
+ },
234
+ "mp_result": 9.159348906295542e-13
235
+ },
236
+ {
237
+ "src_case": {
238
+ "q": 1,
239
+ "k": 3,
240
+ "v": 3,
241
+ "expected_atol": 1e-11,
242
+ "expected_rtol": 1e-11
243
+ },
244
+ "mp_result": 0.22331624289542043
245
+ },
246
+ {
247
+ "src_case": {
248
+ "q": 1,
249
+ "k": 3,
250
+ "v": 50,
251
+ "expected_atol": 1e-11,
252
+ "expected_rtol": 1e-11
253
+ },
254
+ "mp_result": 0.2395624637676257
255
+ },
256
+ {
257
+ "src_case": {
258
+ "q": 1,
259
+ "k": 3,
260
+ "v": 10,
261
+ "expected_atol": 1e-11,
262
+ "expected_rtol": 1e-11
263
+ },
264
+ "mp_result": 0.23510918942128056
265
+ },
266
+ {
267
+ "src_case": {
268
+ "q": 1,
269
+ "k": 3,
270
+ "v": 20,
271
+ "expected_atol": 1e-11,
272
+ "expected_rtol": 1e-11
273
+ },
274
+ "mp_result": 0.23786536230099864
275
+ },
276
+ {
277
+ "src_case": {
278
+ "q": 1,
279
+ "k": 10,
280
+ "v": 50,
281
+ "expected_atol": 1e-11,
282
+ "expected_rtol": 1e-11
283
+ },
284
+ "mp_result": 0.000651656693149116
285
+ },
286
+ {
287
+ "src_case": {
288
+ "q": 1,
289
+ "k": 3,
290
+ "v": 100,
291
+ "expected_atol": 1e-11,
292
+ "expected_rtol": 1e-11
293
+ },
294
+ "mp_result": 0.2401356460422021
295
+ },
296
+ {
297
+ "src_case": {
298
+ "q": 1,
299
+ "k": 10,
300
+ "v": 3,
301
+ "expected_atol": 1e-11,
302
+ "expected_rtol": 1e-11
303
+ },
304
+ "mp_result": 0.003971273224673166
305
+ },
306
+ {
307
+ "src_case": {
308
+ "q": 1,
309
+ "k": 10,
310
+ "v": 20,
311
+ "expected_atol": 1e-11,
312
+ "expected_rtol": 1e-11
313
+ },
314
+ "mp_result": 0.0008732969319364606
315
+ },
316
+ {
317
+ "src_case": {
318
+ "q": 1,
319
+ "k": 3,
320
+ "v": 120,
321
+ "expected_atol": 1e-11,
322
+ "expected_rtol": 1e-11
323
+ },
324
+ "mp_result": 0.24023154593376422
325
+ },
326
+ {
327
+ "src_case": {
328
+ "q": 1,
329
+ "k": 10,
330
+ "v": 10,
331
+ "expected_atol": 1e-11,
332
+ "expected_rtol": 1e-11
333
+ },
334
+ "mp_result": 0.001300816146573152
335
+ },
336
+ {
337
+ "src_case": {
338
+ "q": 1,
339
+ "k": 20,
340
+ "v": 50,
341
+ "expected_atol": 1e-11,
342
+ "expected_rtol": 1e-11
343
+ },
344
+ "mp_result": 1.5682573722040226e-07
345
+ },
346
+ {
347
+ "src_case": {
348
+ "q": 1,
349
+ "k": 10,
350
+ "v": 100,
351
+ "expected_atol": 1e-11,
352
+ "expected_rtol": 1e-11
353
+ },
354
+ "mp_result": 0.0005841098057517027
355
+ },
356
+ {
357
+ "src_case": {
358
+ "q": 1,
359
+ "k": 20,
360
+ "v": 3,
361
+ "expected_atol": 1e-11,
362
+ "expected_rtol": 1e-11
363
+ },
364
+ "mp_result": 9.2267674885784e-05
365
+ },
366
+ {
367
+ "src_case": {
368
+ "q": 1,
369
+ "k": 10,
370
+ "v": 120,
371
+ "expected_atol": 1e-11,
372
+ "expected_rtol": 1e-11
373
+ },
374
+ "mp_result": 0.0005731712496327297
375
+ },
376
+ {
377
+ "src_case": {
378
+ "q": 1,
379
+ "k": 20,
380
+ "v": 10,
381
+ "expected_atol": 1e-11,
382
+ "expected_rtol": 1e-11
383
+ },
384
+ "mp_result": 2.746798012658064e-06
385
+ },
386
+ {
387
+ "src_case": {
388
+ "q": 1,
389
+ "k": 20,
390
+ "v": 20,
391
+ "expected_atol": 1e-11,
392
+ "expected_rtol": 1e-11
393
+ },
394
+ "mp_result": 5.807700350854172e-07
395
+ },
396
+ {
397
+ "src_case": {
398
+ "q": 1,
399
+ "k": 20,
400
+ "v": 100,
401
+ "expected_atol": 1e-11,
402
+ "expected_rtol": 1e-11
403
+ },
404
+ "mp_result": 9.147637957472628e-08
405
+ },
406
+ {
407
+ "src_case": {
408
+ "q": 1,
409
+ "k": 20,
410
+ "v": 120,
411
+ "expected_atol": 1e-11,
412
+ "expected_rtol": 1e-11
413
+ },
414
+ "mp_result": 8.306675539750552e-08
415
+ },
416
+ {
417
+ "src_case": {
418
+ "q": 4,
419
+ "k": 3,
420
+ "v": 3,
421
+ "expected_atol": 1e-11,
422
+ "expected_rtol": 1e-11
423
+ },
424
+ "mp_result": 0.8711786295203324
425
+ },
426
+ {
427
+ "src_case": {
428
+ "q": 4,
429
+ "k": 3,
430
+ "v": 50,
431
+ "expected_atol": 1e-11,
432
+ "expected_rtol": 1e-11
433
+ },
434
+ "mp_result": 0.9818862781476212
435
+ },
436
+ {
437
+ "src_case": {
438
+ "q": 4,
439
+ "k": 3,
440
+ "v": 10,
441
+ "expected_atol": 1e-11,
442
+ "expected_rtol": 1e-11
443
+ },
444
+ "mp_result": 0.9566506502400175
445
+ },
446
+ {
447
+ "src_case": {
448
+ "q": 4,
449
+ "k": 3,
450
+ "v": 120,
451
+ "expected_atol": 1e-11,
452
+ "expected_rtol": 1e-11
453
+ },
454
+ "mp_result": 0.9849546621386962
455
+ },
456
+ {
457
+ "src_case": {
458
+ "q": 4,
459
+ "k": 3,
460
+ "v": 20,
461
+ "expected_atol": 1e-11,
462
+ "expected_rtol": 1e-11
463
+ },
464
+ "mp_result": 0.9731488893573804
465
+ },
466
+ {
467
+ "src_case": {
468
+ "q": 4,
469
+ "k": 10,
470
+ "v": 50,
471
+ "expected_atol": 1e-11,
472
+ "expected_rtol": 1e-11
473
+ },
474
+ "mp_result": 0.8450530667988544
475
+ },
476
+ {
477
+ "src_case": {
478
+ "q": 4,
479
+ "k": 10,
480
+ "v": 3,
481
+ "expected_atol": 1e-11,
482
+ "expected_rtol": 1e-11
483
+ },
484
+ "mp_result": 0.6164875232404174
485
+ },
486
+ {
487
+ "src_case": {
488
+ "q": 4,
489
+ "k": 3,
490
+ "v": 100,
491
+ "expected_atol": 1e-11,
492
+ "expected_rtol": 1e-11
493
+ },
494
+ "mp_result": 0.9845292772767739
495
+ },
496
+ {
497
+ "src_case": {
498
+ "q": 4,
499
+ "k": 10,
500
+ "v": 20,
501
+ "expected_atol": 1e-11,
502
+ "expected_rtol": 1e-11
503
+ },
504
+ "mp_result": 0.8079691517949077
505
+ },
506
+ {
507
+ "src_case": {
508
+ "q": 4,
509
+ "k": 10,
510
+ "v": 10,
511
+ "expected_atol": 1e-11,
512
+ "expected_rtol": 1e-11
513
+ },
514
+ "mp_result": 0.7573606942645745
515
+ },
516
+ {
517
+ "src_case": {
518
+ "q": 4,
519
+ "k": 10,
520
+ "v": 100,
521
+ "expected_atol": 1e-11,
522
+ "expected_rtol": 1e-11
523
+ },
524
+ "mp_result": 0.8587525248147736
525
+ },
526
+ {
527
+ "src_case": {
528
+ "q": 4,
529
+ "k": 10,
530
+ "v": 120,
531
+ "expected_atol": 1e-11,
532
+ "expected_rtol": 1e-11
533
+ },
534
+ "mp_result": 0.8611036193280976
535
+ },
536
+ {
537
+ "src_case": {
538
+ "q": 4,
539
+ "k": 20,
540
+ "v": 3,
541
+ "expected_atol": 1e-11,
542
+ "expected_rtol": 1e-11
543
+ },
544
+ "mp_result": 0.46523135355387657
545
+ },
546
+ {
547
+ "src_case": {
548
+ "q": 4,
549
+ "k": 20,
550
+ "v": 50,
551
+ "expected_atol": 1e-11,
552
+ "expected_rtol": 1e-11
553
+ },
554
+ "mp_result": 0.6318042819232383
555
+ },
556
+ {
557
+ "src_case": {
558
+ "q": 4,
559
+ "k": 20,
560
+ "v": 10,
561
+ "expected_atol": 1e-11,
562
+ "expected_rtol": 1e-11
563
+ },
564
+ "mp_result": 0.5574947140294286
565
+ },
566
+ {
567
+ "src_case": {
568
+ "q": 4,
569
+ "k": 20,
570
+ "v": 20,
571
+ "expected_atol": 1e-11,
572
+ "expected_rtol": 1e-11
573
+ },
574
+ "mp_result": 0.5970517763141937
575
+ },
576
+ {
577
+ "src_case": {
578
+ "q": 4,
579
+ "k": 20,
580
+ "v": 120,
581
+ "expected_atol": 1e-11,
582
+ "expected_rtol": 1e-11
583
+ },
584
+ "mp_result": 0.6493671527818267
585
+ },
586
+ {
587
+ "src_case": {
588
+ "q": 4,
589
+ "k": 20,
590
+ "v": 100,
591
+ "expected_atol": 1e-11,
592
+ "expected_rtol": 1e-11
593
+ },
594
+ "mp_result": 0.6466699776044968
595
+ },
596
+ {
597
+ "src_case": {
598
+ "q": 10,
599
+ "k": 3,
600
+ "v": 3,
601
+ "expected_atol": 1e-11,
602
+ "expected_rtol": 1e-11
603
+ },
604
+ "mp_result": 0.9881335633712994
605
+ },
606
+ {
607
+ "src_case": {
608
+ "q": 10,
609
+ "k": 3,
610
+ "v": 50,
611
+ "expected_atol": 1e-11,
612
+ "expected_rtol": 1e-11
613
+ },
614
+ "mp_result": 0.9999999861266821
615
+ },
616
+ {
617
+ "src_case": {
618
+ "q": 10,
619
+ "k": 3,
620
+ "v": 10,
621
+ "expected_atol": 1e-11,
622
+ "expected_rtol": 1e-11
623
+ },
624
+ "mp_result": 0.999908236635449
625
+ },
626
+ {
627
+ "src_case": {
628
+ "q": 10,
629
+ "k": 3,
630
+ "v": 20,
631
+ "expected_atol": 1e-11,
632
+ "expected_rtol": 1e-11
633
+ },
634
+ "mp_result": 0.9999978467928313
635
+ },
636
+ {
637
+ "src_case": {
638
+ "q": 10,
639
+ "k": 3,
640
+ "v": 120,
641
+ "expected_atol": 1e-11,
642
+ "expected_rtol": 1e-11
643
+ },
644
+ "mp_result": 0.9999999996690216
645
+ },
646
+ {
647
+ "src_case": {
648
+ "q": 10,
649
+ "k": 3,
650
+ "v": 100,
651
+ "expected_atol": 1e-11,
652
+ "expected_rtol": 1e-11
653
+ },
654
+ "mp_result": 0.9999999993640496
655
+ },
656
+ {
657
+ "src_case": {
658
+ "q": 10,
659
+ "k": 10,
660
+ "v": 3,
661
+ "expected_atol": 1e-11,
662
+ "expected_rtol": 1e-11
663
+ },
664
+ "mp_result": 0.9570401457077894
665
+ },
666
+ {
667
+ "src_case": {
668
+ "q": 10,
669
+ "k": 10,
670
+ "v": 50,
671
+ "expected_atol": 1e-11,
672
+ "expected_rtol": 1e-11
673
+ },
674
+ "mp_result": 0.9999997977351971
675
+ },
676
+ {
677
+ "src_case": {
678
+ "q": 10,
679
+ "k": 10,
680
+ "v": 10,
681
+ "expected_atol": 1e-11,
682
+ "expected_rtol": 1e-11
683
+ },
684
+ "mp_result": 0.9991738325963548
685
+ },
686
+ {
687
+ "src_case": {
688
+ "q": 10,
689
+ "k": 10,
690
+ "v": 20,
691
+ "expected_atol": 1e-11,
692
+ "expected_rtol": 1e-11
693
+ },
694
+ "mp_result": 0.9999730883609333
695
+ },
696
+ {
697
+ "src_case": {
698
+ "q": 10,
699
+ "k": 10,
700
+ "v": 100,
701
+ "expected_atol": 1e-11,
702
+ "expected_rtol": 1e-11
703
+ },
704
+ "mp_result": 0.9999999905199205
705
+ },
706
+ {
707
+ "src_case": {
708
+ "q": 10,
709
+ "k": 10,
710
+ "v": 120,
711
+ "expected_atol": 1e-11,
712
+ "expected_rtol": 1e-11
713
+ },
714
+ "mp_result": 0.9999999950566264
715
+ },
716
+ {
717
+ "src_case": {
718
+ "q": 10,
719
+ "k": 20,
720
+ "v": 3,
721
+ "expected_atol": 1e-11,
722
+ "expected_rtol": 1e-11
723
+ },
724
+ "mp_result": 0.9312318042339768
725
+ },
726
+ {
727
+ "src_case": {
728
+ "q": 10,
729
+ "k": 20,
730
+ "v": 50,
731
+ "expected_atol": 1e-11,
732
+ "expected_rtol": 1e-11
733
+ },
734
+ "mp_result": 0.9999991743904675
735
+ },
736
+ {
737
+ "src_case": {
738
+ "q": 10,
739
+ "k": 20,
740
+ "v": 10,
741
+ "expected_atol": 1e-11,
742
+ "expected_rtol": 1e-11
743
+ },
744
+ "mp_result": 0.9977643922032399
745
+ },
746
+ {
747
+ "src_case": {
748
+ "q": 10,
749
+ "k": 20,
750
+ "v": 20,
751
+ "expected_atol": 1e-11,
752
+ "expected_rtol": 1e-11
753
+ },
754
+ "mp_result": 0.9999054426012515
755
+ },
756
+ {
757
+ "src_case": {
758
+ "q": 10,
759
+ "k": 20,
760
+ "v": 100,
761
+ "expected_atol": 1e-11,
762
+ "expected_rtol": 1e-11
763
+ },
764
+ "mp_result": 0.9999999602948055
765
+ },
766
+ {
767
+ "src_case": {
768
+ "q": 10,
769
+ "k": 20,
770
+ "v": 120,
771
+ "expected_atol": 1e-11,
772
+ "expected_rtol": 1e-11
773
+ },
774
+ "mp_result": 0.9999999792458618
775
+ }
776
+ ],
777
+ "pdf_data": [
778
+ {
779
+ "src_case": {
780
+ "q": 0.1,
781
+ "k": 3,
782
+ "v": 3,
783
+ "expected_atol": 1e-11,
784
+ "expected_rtol": 1e-11
785
+ },
786
+ "mp_result": 0.05487847613526332
787
+ },
788
+ {
789
+ "src_case": {
790
+ "q": 0.1,
791
+ "k": 10,
792
+ "v": 10,
793
+ "expected_atol": 1e-11,
794
+ "expected_rtol": 1e-11
795
+ },
796
+ "mp_result": 2.564099684606509e-10
797
+ },
798
+ {
799
+ "src_case": {
800
+ "q": 0.1,
801
+ "k": 3,
802
+ "v": 10,
803
+ "expected_atol": 1e-11,
804
+ "expected_rtol": 1e-11
805
+ },
806
+ "mp_result": 0.05494947290360002
807
+ },
808
+ {
809
+ "src_case": {
810
+ "q": 0.1,
811
+ "k": 10,
812
+ "v": 100,
813
+ "expected_atol": 1e-11,
814
+ "expected_rtol": 1e-11
815
+ },
816
+ "mp_result": 8.442593793786411e-11
817
+ },
818
+ {
819
+ "src_case": {
820
+ "q": 0.1,
821
+ "k": 3,
822
+ "v": 20,
823
+ "expected_atol": 1e-11,
824
+ "expected_rtol": 1e-11
825
+ },
826
+ "mp_result": 0.054964710604860405
827
+ },
828
+ {
829
+ "src_case": {
830
+ "q": 0.1,
831
+ "k": 10,
832
+ "v": 50,
833
+ "expected_atol": 1e-11,
834
+ "expected_rtol": 1e-11
835
+ },
836
+ "mp_result": 9.764441961563576e-11
837
+ },
838
+ {
839
+ "src_case": {
840
+ "q": 0.1,
841
+ "k": 3,
842
+ "v": 100,
843
+ "expected_atol": 1e-11,
844
+ "expected_rtol": 1e-11
845
+ },
846
+ "mp_result": 0.05497690690332341
847
+ },
848
+ {
849
+ "src_case": {
850
+ "q": 0.1,
851
+ "k": 3,
852
+ "v": 50,
853
+ "expected_atol": 1e-11,
854
+ "expected_rtol": 1e-11
855
+ },
856
+ "mp_result": 0.05497385731702228
857
+ },
858
+ {
859
+ "src_case": {
860
+ "q": 0.1,
861
+ "k": 20,
862
+ "v": 10,
863
+ "expected_atol": 1e-11,
864
+ "expected_rtol": 1e-11
865
+ },
866
+ "mp_result": 4.758021225803992e-22
867
+ },
868
+ {
869
+ "src_case": {
870
+ "q": 0.1,
871
+ "k": 3,
872
+ "v": 120,
873
+ "expected_atol": 1e-11,
874
+ "expected_rtol": 1e-11
875
+ },
876
+ "mp_result": 0.054977415200879516
877
+ },
878
+ {
879
+ "src_case": {
880
+ "q": 0.1,
881
+ "k": 20,
882
+ "v": 3,
883
+ "expected_atol": 1e-11,
884
+ "expected_rtol": 1e-11
885
+ },
886
+ "mp_result": 1.8004731453548083e-19
887
+ },
888
+ {
889
+ "src_case": {
890
+ "q": 0.1,
891
+ "k": 10,
892
+ "v": 3,
893
+ "expected_atol": 1e-11,
894
+ "expected_rtol": 1e-11
895
+ },
896
+ "mp_result": 1.5564176176604816e-09
897
+ },
898
+ {
899
+ "src_case": {
900
+ "q": 0.1,
901
+ "k": 20,
902
+ "v": 50,
903
+ "expected_atol": 1e-11,
904
+ "expected_rtol": 1e-11
905
+ },
906
+ "mp_result": 9.342768070688728e-24
907
+ },
908
+ {
909
+ "src_case": {
910
+ "q": 0.1,
911
+ "k": 10,
912
+ "v": 20,
913
+ "expected_atol": 1e-11,
914
+ "expected_rtol": 1e-11
915
+ },
916
+ "mp_result": 1.454372265306114e-10
917
+ },
918
+ {
919
+ "src_case": {
920
+ "q": 0.1,
921
+ "k": 20,
922
+ "v": 100,
923
+ "expected_atol": 1e-11,
924
+ "expected_rtol": 1e-11
925
+ },
926
+ "mp_result": 3.9138464398429654e-25
927
+ },
928
+ {
929
+ "src_case": {
930
+ "q": 0.1,
931
+ "k": 20,
932
+ "v": 20,
933
+ "expected_atol": 1e-11,
934
+ "expected_rtol": 1e-11
935
+ },
936
+ "mp_result": 5.266341131767418e-23
937
+ },
938
+ {
939
+ "src_case": {
940
+ "q": 0.1,
941
+ "k": 10,
942
+ "v": 120,
943
+ "expected_atol": 1e-11,
944
+ "expected_rtol": 1e-11
945
+ },
946
+ "mp_result": 8.234556126446594e-11
947
+ },
948
+ {
949
+ "src_case": {
950
+ "q": 0.1,
951
+ "k": 20,
952
+ "v": 120,
953
+ "expected_atol": 1e-11,
954
+ "expected_rtol": 1e-11
955
+ },
956
+ "mp_result": 9.32929780487562e-26
957
+ },
958
+ {
959
+ "src_case": {
960
+ "q": 1,
961
+ "k": 3,
962
+ "v": 3,
963
+ "expected_atol": 1e-11,
964
+ "expected_rtol": 1e-11
965
+ },
966
+ "mp_result": 0.36083736990527154
967
+ },
968
+ {
969
+ "src_case": {
970
+ "q": 1,
971
+ "k": 3,
972
+ "v": 50,
973
+ "expected_atol": 1e-11,
974
+ "expected_rtol": 1e-11
975
+ },
976
+ "mp_result": 0.4137959132282269
977
+ },
978
+ {
979
+ "src_case": {
980
+ "q": 1,
981
+ "k": 3,
982
+ "v": 20,
983
+ "expected_atol": 1e-11,
984
+ "expected_rtol": 1e-11
985
+ },
986
+ "mp_result": 0.4080239698771056
987
+ },
988
+ {
989
+ "src_case": {
990
+ "q": 1,
991
+ "k": 3,
992
+ "v": 10,
993
+ "expected_atol": 1e-11,
994
+ "expected_rtol": 1e-11
995
+ },
996
+ "mp_result": 0.398772020275752
997
+ },
998
+ {
999
+ "src_case": {
1000
+ "q": 1,
1001
+ "k": 3,
1002
+ "v": 120,
1003
+ "expected_atol": 1e-11,
1004
+ "expected_rtol": 1e-11
1005
+ },
1006
+ "mp_result": 0.4160873922094346
1007
+ },
1008
+ {
1009
+ "src_case": {
1010
+ "q": 1,
1011
+ "k": 3,
1012
+ "v": 100,
1013
+ "expected_atol": 1e-11,
1014
+ "expected_rtol": 1e-11
1015
+ },
1016
+ "mp_result": 0.4157583991350054
1017
+ },
1018
+ {
1019
+ "src_case": {
1020
+ "q": 1,
1021
+ "k": 10,
1022
+ "v": 50,
1023
+ "expected_atol": 1e-11,
1024
+ "expected_rtol": 1e-11
1025
+ },
1026
+ "mp_result": 0.005210720148451848
1027
+ },
1028
+ {
1029
+ "src_case": {
1030
+ "q": 1,
1031
+ "k": 10,
1032
+ "v": 3,
1033
+ "expected_atol": 1e-11,
1034
+ "expected_rtol": 1e-11
1035
+ },
1036
+ "mp_result": 0.02575314059867804
1037
+ },
1038
+ {
1039
+ "src_case": {
1040
+ "q": 1,
1041
+ "k": 10,
1042
+ "v": 10,
1043
+ "expected_atol": 1e-11,
1044
+ "expected_rtol": 1e-11
1045
+ },
1046
+ "mp_result": 0.009782573637596617
1047
+ },
1048
+ {
1049
+ "src_case": {
1050
+ "q": 1,
1051
+ "k": 10,
1052
+ "v": 20,
1053
+ "expected_atol": 1e-11,
1054
+ "expected_rtol": 1e-11
1055
+ },
1056
+ "mp_result": 0.006818708302379005
1057
+ },
1058
+ {
1059
+ "src_case": {
1060
+ "q": 1,
1061
+ "k": 10,
1062
+ "v": 100,
1063
+ "expected_atol": 1e-11,
1064
+ "expected_rtol": 1e-11
1065
+ },
1066
+ "mp_result": 0.0047089182958790715
1067
+ },
1068
+ {
1069
+ "src_case": {
1070
+ "q": 1,
1071
+ "k": 10,
1072
+ "v": 120,
1073
+ "expected_atol": 1e-11,
1074
+ "expected_rtol": 1e-11
1075
+ },
1076
+ "mp_result": 0.004627085294166373
1077
+ },
1078
+ {
1079
+ "src_case": {
1080
+ "q": 1,
1081
+ "k": 20,
1082
+ "v": 3,
1083
+ "expected_atol": 1e-11,
1084
+ "expected_rtol": 1e-11
1085
+ },
1086
+ "mp_result": 0.0010886280311369462
1087
+ },
1088
+ {
1089
+ "src_case": {
1090
+ "q": 1,
1091
+ "k": 20,
1092
+ "v": 50,
1093
+ "expected_atol": 1e-11,
1094
+ "expected_rtol": 1e-11
1095
+ },
1096
+ "mp_result": 2.630674470916427e-06
1097
+ },
1098
+ {
1099
+ "src_case": {
1100
+ "q": 1,
1101
+ "k": 20,
1102
+ "v": 10,
1103
+ "expected_atol": 1e-11,
1104
+ "expected_rtol": 1e-11
1105
+ },
1106
+ "mp_result": 4.121713278199428e-05
1107
+ },
1108
+ {
1109
+ "src_case": {
1110
+ "q": 1,
1111
+ "k": 20,
1112
+ "v": 20,
1113
+ "expected_atol": 1e-11,
1114
+ "expected_rtol": 1e-11
1115
+ },
1116
+ "mp_result": 9.319506007252685e-06
1117
+ },
1118
+ {
1119
+ "src_case": {
1120
+ "q": 1,
1121
+ "k": 20,
1122
+ "v": 100,
1123
+ "expected_atol": 1e-11,
1124
+ "expected_rtol": 1e-11
1125
+ },
1126
+ "mp_result": 1.5585754418789747e-06
1127
+ },
1128
+ {
1129
+ "src_case": {
1130
+ "q": 1,
1131
+ "k": 20,
1132
+ "v": 120,
1133
+ "expected_atol": 1e-11,
1134
+ "expected_rtol": 1e-11
1135
+ },
1136
+ "mp_result": 1.4190335899441991e-06
1137
+ },
1138
+ {
1139
+ "src_case": {
1140
+ "q": 4,
1141
+ "k": 3,
1142
+ "v": 3,
1143
+ "expected_atol": 1e-11,
1144
+ "expected_rtol": 1e-11
1145
+ },
1146
+ "mp_result": 0.07185383302009114
1147
+ },
1148
+ {
1149
+ "src_case": {
1150
+ "q": 4,
1151
+ "k": 3,
1152
+ "v": 10,
1153
+ "expected_atol": 1e-11,
1154
+ "expected_rtol": 1e-11
1155
+ },
1156
+ "mp_result": 0.050268901219386576
1157
+ },
1158
+ {
1159
+ "src_case": {
1160
+ "q": 4,
1161
+ "k": 3,
1162
+ "v": 50,
1163
+ "expected_atol": 1e-11,
1164
+ "expected_rtol": 1e-11
1165
+ },
1166
+ "mp_result": 0.03321056847176124
1167
+ },
1168
+ {
1169
+ "src_case": {
1170
+ "q": 4,
1171
+ "k": 3,
1172
+ "v": 20,
1173
+ "expected_atol": 1e-11,
1174
+ "expected_rtol": 1e-11
1175
+ },
1176
+ "mp_result": 0.04044172384981084
1177
+ },
1178
+ {
1179
+ "src_case": {
1180
+ "q": 4,
1181
+ "k": 3,
1182
+ "v": 100,
1183
+ "expected_atol": 1e-11,
1184
+ "expected_rtol": 1e-11
1185
+ },
1186
+ "mp_result": 0.030571365659999617
1187
+ },
1188
+ {
1189
+ "src_case": {
1190
+ "q": 4,
1191
+ "k": 3,
1192
+ "v": 120,
1193
+ "expected_atol": 1e-11,
1194
+ "expected_rtol": 1e-11
1195
+ },
1196
+ "mp_result": 0.030120779149073032
1197
+ },
1198
+ {
1199
+ "src_case": {
1200
+ "q": 4,
1201
+ "k": 10,
1202
+ "v": 3,
1203
+ "expected_atol": 1e-11,
1204
+ "expected_rtol": 1e-11
1205
+ },
1206
+ "mp_result": 0.17501664247670937
1207
+ },
1208
+ {
1209
+ "src_case": {
1210
+ "q": 4,
1211
+ "k": 10,
1212
+ "v": 10,
1213
+ "expected_atol": 1e-11,
1214
+ "expected_rtol": 1e-11
1215
+ },
1216
+ "mp_result": 0.22374394725370736
1217
+ },
1218
+ {
1219
+ "src_case": {
1220
+ "q": 4,
1221
+ "k": 10,
1222
+ "v": 50,
1223
+ "expected_atol": 1e-11,
1224
+ "expected_rtol": 1e-11
1225
+ },
1226
+ "mp_result": 0.23246597521020534
1227
+ },
1228
+ {
1229
+ "src_case": {
1230
+ "q": 4,
1231
+ "k": 10,
1232
+ "v": 20,
1233
+ "expected_atol": 1e-11,
1234
+ "expected_rtol": 1e-11
1235
+ },
1236
+ "mp_result": 0.23239043677504484
1237
+ },
1238
+ {
1239
+ "src_case": {
1240
+ "q": 4,
1241
+ "k": 10,
1242
+ "v": 100,
1243
+ "expected_atol": 1e-11,
1244
+ "expected_rtol": 1e-11
1245
+ },
1246
+ "mp_result": 0.23057775622748988
1247
+ },
1248
+ {
1249
+ "src_case": {
1250
+ "q": 4,
1251
+ "k": 10,
1252
+ "v": 120,
1253
+ "expected_atol": 1e-11,
1254
+ "expected_rtol": 1e-11
1255
+ },
1256
+ "mp_result": 0.23012666145240815
1257
+ },
1258
+ {
1259
+ "src_case": {
1260
+ "q": 4,
1261
+ "k": 20,
1262
+ "v": 3,
1263
+ "expected_atol": 1e-11,
1264
+ "expected_rtol": 1e-11
1265
+ },
1266
+ "mp_result": 0.2073676639537027
1267
+ },
1268
+ {
1269
+ "src_case": {
1270
+ "q": 4,
1271
+ "k": 20,
1272
+ "v": 10,
1273
+ "expected_atol": 1e-11,
1274
+ "expected_rtol": 1e-11
1275
+ },
1276
+ "mp_result": 0.3245990542431859
1277
+ },
1278
+ {
1279
+ "src_case": {
1280
+ "q": 10,
1281
+ "k": 3,
1282
+ "v": 3,
1283
+ "expected_atol": 1e-11,
1284
+ "expected_rtol": 1e-11
1285
+ },
1286
+ "mp_result": 0.0033733228559870584
1287
+ },
1288
+ {
1289
+ "src_case": {
1290
+ "q": 10,
1291
+ "k": 3,
1292
+ "v": 10,
1293
+ "expected_atol": 1e-11,
1294
+ "expected_rtol": 1e-11
1295
+ },
1296
+ "mp_result": 7.728665739003835e-05
1297
+ },
1298
+ {
1299
+ "src_case": {
1300
+ "q": 4,
1301
+ "k": 20,
1302
+ "v": 20,
1303
+ "expected_atol": 1e-11,
1304
+ "expected_rtol": 1e-11
1305
+ },
1306
+ "mp_result": 0.38244500549096866
1307
+ },
1308
+ {
1309
+ "src_case": {
1310
+ "q": 4,
1311
+ "k": 20,
1312
+ "v": 100,
1313
+ "expected_atol": 1e-11,
1314
+ "expected_rtol": 1e-11
1315
+ },
1316
+ "mp_result": 0.45434978340834464
1317
+ },
1318
+ {
1319
+ "src_case": {
1320
+ "q": 4,
1321
+ "k": 20,
1322
+ "v": 50,
1323
+ "expected_atol": 1e-11,
1324
+ "expected_rtol": 1e-11
1325
+ },
1326
+ "mp_result": 0.43334135870667473
1327
+ },
1328
+ {
1329
+ "src_case": {
1330
+ "q": 10,
1331
+ "k": 3,
1332
+ "v": 100,
1333
+ "expected_atol": 1e-11,
1334
+ "expected_rtol": 1e-11
1335
+ },
1336
+ "mp_result": 2.159522630228393e-09
1337
+ },
1338
+ {
1339
+ "src_case": {
1340
+ "q": 4,
1341
+ "k": 20,
1342
+ "v": 120,
1343
+ "expected_atol": 1e-11,
1344
+ "expected_rtol": 1e-11
1345
+ },
1346
+ "mp_result": 0.45807877248528855
1347
+ },
1348
+ {
1349
+ "src_case": {
1350
+ "q": 10,
1351
+ "k": 3,
1352
+ "v": 50,
1353
+ "expected_atol": 1e-11,
1354
+ "expected_rtol": 1e-11
1355
+ },
1356
+ "mp_result": 3.5303467191175695e-08
1357
+ },
1358
+ {
1359
+ "src_case": {
1360
+ "q": 10,
1361
+ "k": 3,
1362
+ "v": 20,
1363
+ "expected_atol": 1e-11,
1364
+ "expected_rtol": 1e-11
1365
+ },
1366
+ "mp_result": 3.121281850105421e-06
1367
+ },
1368
+ {
1369
+ "src_case": {
1370
+ "q": 10,
1371
+ "k": 3,
1372
+ "v": 120,
1373
+ "expected_atol": 1e-11,
1374
+ "expected_rtol": 1e-11
1375
+ },
1376
+ "mp_result": 1.1901591191700855e-09
1377
+ },
1378
+ {
1379
+ "src_case": {
1380
+ "q": 10,
1381
+ "k": 10,
1382
+ "v": 10,
1383
+ "expected_atol": 1e-11,
1384
+ "expected_rtol": 1e-11
1385
+ },
1386
+ "mp_result": 0.0006784051704217357
1387
+ },
1388
+ {
1389
+ "src_case": {
1390
+ "q": 10,
1391
+ "k": 10,
1392
+ "v": 3,
1393
+ "expected_atol": 1e-11,
1394
+ "expected_rtol": 1e-11
1395
+ },
1396
+ "mp_result": 0.011845582636101885
1397
+ },
1398
+ {
1399
+ "src_case": {
1400
+ "q": 10,
1401
+ "k": 10,
1402
+ "v": 20,
1403
+ "expected_atol": 1e-11,
1404
+ "expected_rtol": 1e-11
1405
+ },
1406
+ "mp_result": 3.844183552674918e-05
1407
+ },
1408
+ {
1409
+ "src_case": {
1410
+ "q": 10,
1411
+ "k": 10,
1412
+ "v": 100,
1413
+ "expected_atol": 1e-11,
1414
+ "expected_rtol": 1e-11
1415
+ },
1416
+ "mp_result": 3.215093171597309e-08
1417
+ },
1418
+ {
1419
+ "src_case": {
1420
+ "q": 10,
1421
+ "k": 10,
1422
+ "v": 50,
1423
+ "expected_atol": 1e-11,
1424
+ "expected_rtol": 1e-11
1425
+ },
1426
+ "mp_result": 5.125792577534542e-07
1427
+ },
1428
+ {
1429
+ "src_case": {
1430
+ "q": 10,
1431
+ "k": 10,
1432
+ "v": 120,
1433
+ "expected_atol": 1e-11,
1434
+ "expected_rtol": 1e-11
1435
+ },
1436
+ "mp_result": 1.7759015355532446e-08
1437
+ },
1438
+ {
1439
+ "src_case": {
1440
+ "q": 10,
1441
+ "k": 20,
1442
+ "v": 10,
1443
+ "expected_atol": 1e-11,
1444
+ "expected_rtol": 1e-11
1445
+ },
1446
+ "mp_result": 0.0017957646258393628
1447
+ },
1448
+ {
1449
+ "src_case": {
1450
+ "q": 10,
1451
+ "k": 20,
1452
+ "v": 3,
1453
+ "expected_atol": 1e-11,
1454
+ "expected_rtol": 1e-11
1455
+ },
1456
+ "mp_result": 0.018534407764819284
1457
+ },
1458
+ {
1459
+ "src_case": {
1460
+ "q": 10,
1461
+ "k": 20,
1462
+ "v": 20,
1463
+ "expected_atol": 1e-11,
1464
+ "expected_rtol": 1e-11
1465
+ },
1466
+ "mp_result": 0.00013316083413164858
1467
+ },
1468
+ {
1469
+ "src_case": {
1470
+ "q": 10,
1471
+ "k": 20,
1472
+ "v": 50,
1473
+ "expected_atol": 1e-11,
1474
+ "expected_rtol": 1e-11
1475
+ },
1476
+ "mp_result": 2.082489228991225e-06
1477
+ },
1478
+ {
1479
+ "src_case": {
1480
+ "q": 10,
1481
+ "k": 20,
1482
+ "v": 100,
1483
+ "expected_atol": 1e-11,
1484
+ "expected_rtol": 1e-11
1485
+ },
1486
+ "mp_result": 1.3444226792257012e-07
1487
+ },
1488
+ {
1489
+ "src_case": {
1490
+ "q": 10,
1491
+ "k": 20,
1492
+ "v": 120,
1493
+ "expected_atol": 1e-11,
1494
+ "expected_rtol": 1e-11
1495
+ },
1496
+ "mp_result": 7.446912854228521e-08
1497
+ }
1498
+ ]
1499
+ }
venv/lib/python3.10/site-packages/scipy/stats/tests/test_axis_nan_policy.py ADDED
@@ -0,0 +1,1188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Many scipy.stats functions support `axis` and `nan_policy` parameters.
2
+ # When the two are combined, it can be tricky to get all the behavior just
3
+ # right. This file contains a suite of common tests for scipy.stats functions
4
+ # that support `axis` and `nan_policy` and additional tests for some associated
5
+ # functions in stats._util.
6
+
7
+ from itertools import product, combinations_with_replacement, permutations
8
+ import re
9
+ import pickle
10
+ import pytest
11
+
12
+ import numpy as np
13
+ from numpy.testing import assert_allclose, assert_equal, suppress_warnings
14
+ from scipy import stats
15
+ from scipy.stats import norm # type: ignore[attr-defined]
16
+ from scipy.stats._axis_nan_policy import _masked_arrays_2_sentinel_arrays
17
+ from scipy._lib._util import AxisError
18
+
19
+
20
+ def unpack_ttest_result(res):
21
+ low, high = res.confidence_interval()
22
+ return (res.statistic, res.pvalue, res.df, res._standard_error,
23
+ res._estimate, low, high)
24
+
25
+
26
+ def _get_ttest_ci(ttest):
27
+ # get a function that returns the CI bounds of provided `ttest`
28
+ def ttest_ci(*args, **kwargs):
29
+ res = ttest(*args, **kwargs)
30
+ return res.confidence_interval()
31
+ return ttest_ci
32
+
33
+
34
+ axis_nan_policy_cases = [
35
+ # function, args, kwds, number of samples, number of outputs,
36
+ # ... paired, unpacker function
37
+ # args, kwds typically aren't needed; just showing that they work
38
+ (stats.kruskal, tuple(), dict(), 3, 2, False, None), # 4 samples is slow
39
+ (stats.ranksums, ('less',), dict(), 2, 2, False, None),
40
+ (stats.mannwhitneyu, tuple(), {'method': 'asymptotic'}, 2, 2, False, None),
41
+ (stats.wilcoxon, ('pratt',), {'mode': 'auto'}, 2, 2, True,
42
+ lambda res: (res.statistic, res.pvalue)),
43
+ (stats.wilcoxon, tuple(), dict(), 1, 2, True,
44
+ lambda res: (res.statistic, res.pvalue)),
45
+ (stats.wilcoxon, tuple(), {'mode': 'approx'}, 1, 3, True,
46
+ lambda res: (res.statistic, res.pvalue, res.zstatistic)),
47
+ (stats.gmean, tuple(), dict(), 1, 1, False, lambda x: (x,)),
48
+ (stats.hmean, tuple(), dict(), 1, 1, False, lambda x: (x,)),
49
+ (stats.pmean, (1.42,), dict(), 1, 1, False, lambda x: (x,)),
50
+ (stats.sem, tuple(), dict(), 1, 1, False, lambda x: (x,)),
51
+ (stats.iqr, tuple(), dict(), 1, 1, False, lambda x: (x,)),
52
+ (stats.kurtosis, tuple(), dict(), 1, 1, False, lambda x: (x,)),
53
+ (stats.skew, tuple(), dict(), 1, 1, False, lambda x: (x,)),
54
+ (stats.kstat, tuple(), dict(), 1, 1, False, lambda x: (x,)),
55
+ (stats.kstatvar, tuple(), dict(), 1, 1, False, lambda x: (x,)),
56
+ (stats.moment, tuple(), dict(), 1, 1, False, lambda x: (x,)),
57
+ (stats.moment, tuple(), dict(order=[1, 2]), 1, 2, False, None),
58
+ (stats.jarque_bera, tuple(), dict(), 1, 2, False, None),
59
+ (stats.ttest_1samp, (np.array([0]),), dict(), 1, 7, False,
60
+ unpack_ttest_result),
61
+ (stats.ttest_rel, tuple(), dict(), 2, 7, True, unpack_ttest_result),
62
+ (stats.ttest_ind, tuple(), dict(), 2, 7, False, unpack_ttest_result),
63
+ (_get_ttest_ci(stats.ttest_1samp), (0,), dict(), 1, 2, False, None),
64
+ (_get_ttest_ci(stats.ttest_rel), tuple(), dict(), 2, 2, True, None),
65
+ (_get_ttest_ci(stats.ttest_ind), tuple(), dict(), 2, 2, False, None),
66
+ (stats.mode, tuple(), dict(), 1, 2, True, lambda x: (x.mode, x.count)),
67
+ (stats.differential_entropy, tuple(), dict(), 1, 1, False, lambda x: (x,)),
68
+ (stats.variation, tuple(), dict(), 1, 1, False, lambda x: (x,)),
69
+ (stats.friedmanchisquare, tuple(), dict(), 3, 2, True, None),
70
+ (stats.brunnermunzel, tuple(), dict(), 2, 2, False, None),
71
+ (stats.mood, tuple(), {}, 2, 2, False, None),
72
+ (stats.shapiro, tuple(), {}, 1, 2, False, None),
73
+ (stats.ks_1samp, (norm().cdf,), dict(), 1, 4, False,
74
+ lambda res: (*res, res.statistic_location, res.statistic_sign)),
75
+ (stats.ks_2samp, tuple(), dict(), 2, 4, False,
76
+ lambda res: (*res, res.statistic_location, res.statistic_sign)),
77
+ (stats.kstest, (norm().cdf,), dict(), 1, 4, False,
78
+ lambda res: (*res, res.statistic_location, res.statistic_sign)),
79
+ (stats.kstest, tuple(), dict(), 2, 4, False,
80
+ lambda res: (*res, res.statistic_location, res.statistic_sign)),
81
+ (stats.levene, tuple(), {}, 2, 2, False, None),
82
+ (stats.fligner, tuple(), {'center': 'trimmed', 'proportiontocut': 0.01},
83
+ 2, 2, False, None),
84
+ (stats.ansari, tuple(), {}, 2, 2, False, None),
85
+ (stats.entropy, tuple(), dict(), 1, 1, False, lambda x: (x,)),
86
+ (stats.entropy, tuple(), dict(), 2, 1, True, lambda x: (x,)),
87
+ (stats.skewtest, tuple(), dict(), 1, 2, False, None),
88
+ (stats.kurtosistest, tuple(), dict(), 1, 2, False, None),
89
+ (stats.normaltest, tuple(), dict(), 1, 2, False, None),
90
+ (stats.cramervonmises, ("norm",), dict(), 1, 2, False,
91
+ lambda res: (res.statistic, res.pvalue)),
92
+ (stats.cramervonmises_2samp, tuple(), dict(), 2, 2, False,
93
+ lambda res: (res.statistic, res.pvalue)),
94
+ (stats.epps_singleton_2samp, tuple(), dict(), 2, 2, False, None),
95
+ (stats.bartlett, tuple(), {}, 2, 2, False, None),
96
+ (stats.tmean, tuple(), {}, 1, 1, False, lambda x: (x,)),
97
+ (stats.tvar, tuple(), {}, 1, 1, False, lambda x: (x,)),
98
+ (stats.tmin, tuple(), {}, 1, 1, False, lambda x: (x,)),
99
+ (stats.tmax, tuple(), {}, 1, 1, False, lambda x: (x,)),
100
+ (stats.tstd, tuple(), {}, 1, 1, False, lambda x: (x,)),
101
+ (stats.tsem, tuple(), {}, 1, 1, False, lambda x: (x,)),
102
+ (stats.circmean, tuple(), dict(), 1, 1, False, lambda x: (x,)),
103
+ (stats.circvar, tuple(), dict(), 1, 1, False, lambda x: (x,)),
104
+ (stats.circstd, tuple(), dict(), 1, 1, False, lambda x: (x,)),
105
+ (stats.f_oneway, tuple(), {}, 2, 2, False, None),
106
+ (stats.alexandergovern, tuple(), {}, 2, 2, False,
107
+ lambda res: (res.statistic, res.pvalue)),
108
+ (stats.combine_pvalues, tuple(), {}, 1, 2, False, None),
109
+ ]
110
+
111
+ # If the message is one of those expected, put nans in
112
+ # appropriate places of `statistics` and `pvalues`
113
+ too_small_messages = {"The input contains nan", # for nan_policy="raise"
114
+ "Degrees of freedom <= 0 for slice",
115
+ "x and y should have at least 5 elements",
116
+ "Data must be at least length 3",
117
+ "The sample must contain at least two",
118
+ "x and y must contain at least two",
119
+ "division by zero",
120
+ "Mean of empty slice",
121
+ "Data passed to ks_2samp must not be empty",
122
+ "Not enough test observations",
123
+ "Not enough other observations",
124
+ "Not enough observations.",
125
+ "At least one observation is required",
126
+ "zero-size array to reduction operation maximum",
127
+ "`x` and `y` must be of nonzero size.",
128
+ "The exact distribution of the Wilcoxon test",
129
+ "Data input must not be empty",
130
+ "Window length (0) must be positive and less",
131
+ "Window length (1) must be positive and less",
132
+ "Window length (2) must be positive and less",
133
+ "skewtest is not valid with less than",
134
+ "kurtosistest requires at least 5",
135
+ "attempt to get argmax of an empty sequence",
136
+ "No array values within given limits",
137
+ "Input sample size must be greater than one.",}
138
+
139
+ # If the message is one of these, results of the function may be inaccurate,
140
+ # but NaNs are not to be placed
141
+ inaccuracy_messages = {"Precision loss occurred in moment calculation",
142
+ "Sample size too small for normal approximation."}
143
+
144
+ # For some functions, nan_policy='propagate' should not just return NaNs
145
+ override_propagate_funcs = {stats.mode}
146
+
147
+ # For some functions, empty arrays produce non-NaN results
148
+ empty_special_case_funcs = {stats.entropy}
149
+
150
+ def _mixed_data_generator(n_samples, n_repetitions, axis, rng,
151
+ paired=False):
152
+ # generate random samples to check the response of hypothesis tests to
153
+ # samples with different (but broadcastable) shapes and various
154
+ # nan patterns (e.g. all nans, some nans, no nans) along axis-slices
155
+
156
+ data = []
157
+ for i in range(n_samples):
158
+ n_patterns = 6 # number of distinct nan patterns
159
+ n_obs = 20 if paired else 20 + i # observations per axis-slice
160
+ x = np.ones((n_repetitions, n_patterns, n_obs)) * np.nan
161
+
162
+ for j in range(n_repetitions):
163
+ samples = x[j, :, :]
164
+
165
+ # case 0: axis-slice with all nans (0 reals)
166
+ # cases 1-3: axis-slice with 1-3 reals (the rest nans)
167
+ # case 4: axis-slice with mostly (all but two) reals
168
+ # case 5: axis slice with all reals
169
+ for k, n_reals in enumerate([0, 1, 2, 3, n_obs-2, n_obs]):
170
+ # for cases 1-3, need paired nansw to be in the same place
171
+ indices = rng.permutation(n_obs)[:n_reals]
172
+ samples[k, indices] = rng.random(size=n_reals)
173
+
174
+ # permute the axis-slices just to show that order doesn't matter
175
+ samples[:] = rng.permutation(samples, axis=0)
176
+
177
+ # For multi-sample tests, we want to test broadcasting and check
178
+ # that nan policy works correctly for each nan pattern for each input.
179
+ # This takes care of both simultaneously.
180
+ new_shape = [n_repetitions] + [1]*n_samples + [n_obs]
181
+ new_shape[1 + i] = 6
182
+ x = x.reshape(new_shape)
183
+
184
+ x = np.moveaxis(x, -1, axis)
185
+ data.append(x)
186
+ return data
187
+
188
+
189
+ def _homogeneous_data_generator(n_samples, n_repetitions, axis, rng,
190
+ paired=False, all_nans=True):
191
+ # generate random samples to check the response of hypothesis tests to
192
+ # samples with different (but broadcastable) shapes and homogeneous
193
+ # data (all nans or all finite)
194
+ data = []
195
+ for i in range(n_samples):
196
+ n_obs = 20 if paired else 20 + i # observations per axis-slice
197
+ shape = [n_repetitions] + [1]*n_samples + [n_obs]
198
+ shape[1 + i] = 2
199
+ x = np.ones(shape) * np.nan if all_nans else rng.random(shape)
200
+ x = np.moveaxis(x, -1, axis)
201
+ data.append(x)
202
+ return data
203
+
204
+
205
+ def nan_policy_1d(hypotest, data1d, unpacker, *args, n_outputs=2,
206
+ nan_policy='raise', paired=False, _no_deco=True, **kwds):
207
+ # Reference implementation for how `nan_policy` should work for 1d samples
208
+
209
+ if nan_policy == 'raise':
210
+ for sample in data1d:
211
+ if np.any(np.isnan(sample)):
212
+ raise ValueError("The input contains nan values")
213
+
214
+ elif (nan_policy == 'propagate'
215
+ and hypotest not in override_propagate_funcs):
216
+ # For all hypothesis tests tested, returning nans is the right thing.
217
+ # But many hypothesis tests don't propagate correctly (e.g. they treat
218
+ # np.nan the same as np.inf, which doesn't make sense when ranks are
219
+ # involved) so override that behavior here.
220
+ for sample in data1d:
221
+ if np.any(np.isnan(sample)):
222
+ return np.full(n_outputs, np.nan)
223
+
224
+ elif nan_policy == 'omit':
225
+ # manually omit nans (or pairs in which at least one element is nan)
226
+ if not paired:
227
+ data1d = [sample[~np.isnan(sample)] for sample in data1d]
228
+ else:
229
+ nan_mask = np.isnan(data1d[0])
230
+ for sample in data1d[1:]:
231
+ nan_mask = np.logical_or(nan_mask, np.isnan(sample))
232
+ data1d = [sample[~nan_mask] for sample in data1d]
233
+
234
+ return unpacker(hypotest(*data1d, *args, _no_deco=_no_deco, **kwds))
235
+
236
+
237
+ @pytest.mark.filterwarnings('ignore::RuntimeWarning')
238
+ @pytest.mark.filterwarnings('ignore::UserWarning')
239
+ @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
240
+ "paired", "unpacker"), axis_nan_policy_cases)
241
+ @pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
242
+ @pytest.mark.parametrize(("axis"), (1,))
243
+ @pytest.mark.parametrize(("data_generator"), ("mixed",))
244
+ def test_axis_nan_policy_fast(hypotest, args, kwds, n_samples, n_outputs,
245
+ paired, unpacker, nan_policy, axis,
246
+ data_generator):
247
+ _axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
248
+ unpacker, nan_policy, axis, data_generator)
249
+
250
+
251
+ @pytest.mark.slow
252
+ @pytest.mark.filterwarnings('ignore::RuntimeWarning')
253
+ @pytest.mark.filterwarnings('ignore::UserWarning')
254
+ @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
255
+ "paired", "unpacker"), axis_nan_policy_cases)
256
+ @pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
257
+ @pytest.mark.parametrize(("axis"), range(-3, 3))
258
+ @pytest.mark.parametrize(("data_generator"),
259
+ ("all_nans", "all_finite", "mixed"))
260
+ def test_axis_nan_policy_full(hypotest, args, kwds, n_samples, n_outputs,
261
+ paired, unpacker, nan_policy, axis,
262
+ data_generator):
263
+ _axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
264
+ unpacker, nan_policy, axis, data_generator)
265
+
266
+
267
+ def _axis_nan_policy_test(hypotest, args, kwds, n_samples, n_outputs, paired,
268
+ unpacker, nan_policy, axis, data_generator):
269
+ # Tests the 1D and vectorized behavior of hypothesis tests against a
270
+ # reference implementation (nan_policy_1d with np.ndenumerate)
271
+
272
+ # Some hypothesis tests return a non-iterable that needs an `unpacker` to
273
+ # extract the statistic and p-value. For those that don't:
274
+ if not unpacker:
275
+ def unpacker(res):
276
+ return res
277
+
278
+ rng = np.random.default_rng(0)
279
+
280
+ # Generate multi-dimensional test data with all important combinations
281
+ # of patterns of nans along `axis`
282
+ n_repetitions = 3 # number of repetitions of each pattern
283
+ data_gen_kwds = {'n_samples': n_samples, 'n_repetitions': n_repetitions,
284
+ 'axis': axis, 'rng': rng, 'paired': paired}
285
+ if data_generator == 'mixed':
286
+ inherent_size = 6 # number of distinct types of patterns
287
+ data = _mixed_data_generator(**data_gen_kwds)
288
+ elif data_generator == 'all_nans':
289
+ inherent_size = 2 # hard-coded in _homogeneous_data_generator
290
+ data_gen_kwds['all_nans'] = True
291
+ data = _homogeneous_data_generator(**data_gen_kwds)
292
+ elif data_generator == 'all_finite':
293
+ inherent_size = 2 # hard-coded in _homogeneous_data_generator
294
+ data_gen_kwds['all_nans'] = False
295
+ data = _homogeneous_data_generator(**data_gen_kwds)
296
+
297
+ output_shape = [n_repetitions] + [inherent_size]*n_samples
298
+
299
+ # To generate reference behavior to compare against, loop over the axis-
300
+ # slices in data. Make indexing easier by moving `axis` to the end and
301
+ # broadcasting all samples to the same shape.
302
+ data_b = [np.moveaxis(sample, axis, -1) for sample in data]
303
+ data_b = [np.broadcast_to(sample, output_shape + [sample.shape[-1]])
304
+ for sample in data_b]
305
+ statistics = np.zeros(output_shape)
306
+ pvalues = np.zeros(output_shape)
307
+
308
+ for i, _ in np.ndenumerate(statistics):
309
+ data1d = [sample[i] for sample in data_b]
310
+ with np.errstate(divide='ignore', invalid='ignore'):
311
+ try:
312
+ res1d = nan_policy_1d(hypotest, data1d, unpacker, *args,
313
+ n_outputs=n_outputs,
314
+ nan_policy=nan_policy,
315
+ paired=paired, _no_deco=True, **kwds)
316
+
317
+ # Eventually we'll check the results of a single, vectorized
318
+ # call of `hypotest` against the arrays `statistics` and
319
+ # `pvalues` populated using the reference `nan_policy_1d`.
320
+ # But while we're at it, check the results of a 1D call to
321
+ # `hypotest` against the reference `nan_policy_1d`.
322
+ res1db = unpacker(hypotest(*data1d, *args,
323
+ nan_policy=nan_policy, **kwds))
324
+ assert_equal(res1db[0], res1d[0])
325
+ if len(res1db) == 2:
326
+ assert_equal(res1db[1], res1d[1])
327
+
328
+ # When there is not enough data in 1D samples, many existing
329
+ # hypothesis tests raise errors instead of returning nans .
330
+ # For vectorized calls, we put nans in the corresponding elements
331
+ # of the output.
332
+ except (RuntimeWarning, UserWarning, ValueError,
333
+ ZeroDivisionError) as e:
334
+
335
+ # whatever it is, make sure same error is raised by both
336
+ # `nan_policy_1d` and `hypotest`
337
+ with pytest.raises(type(e), match=re.escape(str(e))):
338
+ nan_policy_1d(hypotest, data1d, unpacker, *args,
339
+ n_outputs=n_outputs, nan_policy=nan_policy,
340
+ paired=paired, _no_deco=True, **kwds)
341
+ with pytest.raises(type(e), match=re.escape(str(e))):
342
+ hypotest(*data1d, *args, nan_policy=nan_policy, **kwds)
343
+
344
+ if any([str(e).startswith(message)
345
+ for message in too_small_messages]):
346
+ res1d = np.full(n_outputs, np.nan)
347
+ elif any([str(e).startswith(message)
348
+ for message in inaccuracy_messages]):
349
+ with suppress_warnings() as sup:
350
+ sup.filter(RuntimeWarning)
351
+ sup.filter(UserWarning)
352
+ res1d = nan_policy_1d(hypotest, data1d, unpacker,
353
+ *args, n_outputs=n_outputs,
354
+ nan_policy=nan_policy,
355
+ paired=paired, _no_deco=True,
356
+ **kwds)
357
+ else:
358
+ raise e
359
+ statistics[i] = res1d[0]
360
+ if len(res1d) == 2:
361
+ pvalues[i] = res1d[1]
362
+
363
+ # Perform a vectorized call to the hypothesis test.
364
+ # If `nan_policy == 'raise'`, check that it raises the appropriate error.
365
+ # If not, compare against the output against `statistics` and `pvalues`
366
+ if nan_policy == 'raise' and not data_generator == "all_finite":
367
+ message = 'The input contains nan values'
368
+ with pytest.raises(ValueError, match=message):
369
+ hypotest(*data, axis=axis, nan_policy=nan_policy, *args, **kwds)
370
+
371
+ else:
372
+ with suppress_warnings() as sup, \
373
+ np.errstate(divide='ignore', invalid='ignore'):
374
+ sup.filter(RuntimeWarning, "Precision loss occurred in moment")
375
+ sup.filter(UserWarning, "Sample size too small for normal "
376
+ "approximation.")
377
+ res = unpacker(hypotest(*data, axis=axis, nan_policy=nan_policy,
378
+ *args, **kwds))
379
+ assert_allclose(res[0], statistics, rtol=1e-15)
380
+ assert_equal(res[0].dtype, statistics.dtype)
381
+
382
+ if len(res) == 2:
383
+ assert_allclose(res[1], pvalues, rtol=1e-15)
384
+ assert_equal(res[1].dtype, pvalues.dtype)
385
+
386
+
387
+ @pytest.mark.filterwarnings('ignore::RuntimeWarning')
388
+ @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
389
+ "paired", "unpacker"), axis_nan_policy_cases)
390
+ @pytest.mark.parametrize(("nan_policy"), ("propagate", "omit", "raise"))
391
+ @pytest.mark.parametrize(("data_generator"),
392
+ ("all_nans", "all_finite", "mixed", "empty"))
393
+ def test_axis_nan_policy_axis_is_None(hypotest, args, kwds, n_samples,
394
+ n_outputs, paired, unpacker, nan_policy,
395
+ data_generator):
396
+ # check for correct behavior when `axis=None`
397
+
398
+ if not unpacker:
399
+ def unpacker(res):
400
+ return res
401
+
402
+ rng = np.random.default_rng(0)
403
+
404
+ if data_generator == "empty":
405
+ data = [rng.random((2, 0)) for i in range(n_samples)]
406
+ else:
407
+ data = [rng.random((2, 20)) for i in range(n_samples)]
408
+
409
+ if data_generator == "mixed":
410
+ masks = [rng.random((2, 20)) > 0.9 for i in range(n_samples)]
411
+ for sample, mask in zip(data, masks):
412
+ sample[mask] = np.nan
413
+ elif data_generator == "all_nans":
414
+ data = [sample * np.nan for sample in data]
415
+
416
+ data_raveled = [sample.ravel() for sample in data]
417
+
418
+ if nan_policy == 'raise' and data_generator not in {"all_finite", "empty"}:
419
+ message = 'The input contains nan values'
420
+
421
+ # check for correct behavior whether or not data is 1d to begin with
422
+ with pytest.raises(ValueError, match=message):
423
+ hypotest(*data, axis=None, nan_policy=nan_policy,
424
+ *args, **kwds)
425
+ with pytest.raises(ValueError, match=message):
426
+ hypotest(*data_raveled, axis=None, nan_policy=nan_policy,
427
+ *args, **kwds)
428
+
429
+ else:
430
+ # behavior of reference implementation with 1d input, hypotest with 1d
431
+ # input, and hypotest with Nd input should match, whether that means
432
+ # that outputs are equal or they raise the same exception
433
+
434
+ ea_str, eb_str, ec_str = None, None, None
435
+ with np.errstate(divide='ignore', invalid='ignore'):
436
+ try:
437
+ res1da = nan_policy_1d(hypotest, data_raveled, unpacker, *args,
438
+ n_outputs=n_outputs,
439
+ nan_policy=nan_policy, paired=paired,
440
+ _no_deco=True, **kwds)
441
+ except (RuntimeWarning, ValueError, ZeroDivisionError) as ea:
442
+ ea_str = str(ea)
443
+
444
+ try:
445
+ res1db = unpacker(hypotest(*data_raveled, *args,
446
+ nan_policy=nan_policy, **kwds))
447
+ except (RuntimeWarning, ValueError, ZeroDivisionError) as eb:
448
+ eb_str = str(eb)
449
+
450
+ try:
451
+ res1dc = unpacker(hypotest(*data, *args, axis=None,
452
+ nan_policy=nan_policy, **kwds))
453
+ except (RuntimeWarning, ValueError, ZeroDivisionError) as ec:
454
+ ec_str = str(ec)
455
+
456
+ if ea_str or eb_str or ec_str:
457
+ assert any([str(ea_str).startswith(message)
458
+ for message in too_small_messages])
459
+ assert ea_str == eb_str == ec_str
460
+ else:
461
+ assert_equal(res1db, res1da)
462
+ assert_equal(res1dc, res1da)
463
+ for item in list(res1da) + list(res1db) + list(res1dc):
464
+ # Most functions naturally return NumPy numbers, which
465
+ # are drop-in replacements for the Python versions but with
466
+ # desirable attributes. Make sure this is consistent.
467
+ assert np.issubdtype(item.dtype, np.number)
468
+
469
+ # Test keepdims for:
470
+ # - single-output and multi-output functions (gmean and mannwhitneyu)
471
+ # - Axis negative, positive, None, and tuple
472
+ # - 1D with no NaNs
473
+ # - 1D with NaN propagation
474
+ # - Zero-sized output
475
+ @pytest.mark.parametrize("nan_policy", ("omit", "propagate"))
476
+ @pytest.mark.parametrize(
477
+ ("hypotest", "args", "kwds", "n_samples", "unpacker"),
478
+ ((stats.gmean, tuple(), dict(), 1, lambda x: (x,)),
479
+ (stats.mannwhitneyu, tuple(), {'method': 'asymptotic'}, 2, None))
480
+ )
481
+ @pytest.mark.parametrize(
482
+ ("sample_shape", "axis_cases"),
483
+ (((2, 3, 3, 4), (None, 0, -1, (0, 2), (1, -1), (3, 1, 2, 0))),
484
+ ((10, ), (0, -1)),
485
+ ((20, 0), (0, 1)))
486
+ )
487
+ def test_keepdims(hypotest, args, kwds, n_samples, unpacker,
488
+ sample_shape, axis_cases, nan_policy):
489
+ # test if keepdims parameter works correctly
490
+ if not unpacker:
491
+ def unpacker(res):
492
+ return res
493
+ rng = np.random.default_rng(0)
494
+ data = [rng.random(sample_shape) for _ in range(n_samples)]
495
+ nan_data = [sample.copy() for sample in data]
496
+ nan_mask = [rng.random(sample_shape) < 0.2 for _ in range(n_samples)]
497
+ for sample, mask in zip(nan_data, nan_mask):
498
+ sample[mask] = np.nan
499
+ for axis in axis_cases:
500
+ expected_shape = list(sample_shape)
501
+ if axis is None:
502
+ expected_shape = np.ones(len(sample_shape))
503
+ else:
504
+ if isinstance(axis, int):
505
+ expected_shape[axis] = 1
506
+ else:
507
+ for ax in axis:
508
+ expected_shape[ax] = 1
509
+ expected_shape = tuple(expected_shape)
510
+ res = unpacker(hypotest(*data, *args, axis=axis, keepdims=True,
511
+ **kwds))
512
+ res_base = unpacker(hypotest(*data, *args, axis=axis, keepdims=False,
513
+ **kwds))
514
+ nan_res = unpacker(hypotest(*nan_data, *args, axis=axis,
515
+ keepdims=True, nan_policy=nan_policy,
516
+ **kwds))
517
+ nan_res_base = unpacker(hypotest(*nan_data, *args, axis=axis,
518
+ keepdims=False,
519
+ nan_policy=nan_policy, **kwds))
520
+ for r, r_base, rn, rn_base in zip(res, res_base, nan_res,
521
+ nan_res_base):
522
+ assert r.shape == expected_shape
523
+ r = np.squeeze(r, axis=axis)
524
+ assert_equal(r, r_base)
525
+ assert rn.shape == expected_shape
526
+ rn = np.squeeze(rn, axis=axis)
527
+ assert_equal(rn, rn_base)
528
+
529
+
530
+ @pytest.mark.parametrize(("fun", "nsamp"),
531
+ [(stats.kstat, 1),
532
+ (stats.kstatvar, 1)])
533
+ def test_hypotest_back_compat_no_axis(fun, nsamp):
534
+ m, n = 8, 9
535
+
536
+ rng = np.random.default_rng(0)
537
+ x = rng.random((nsamp, m, n))
538
+ res = fun(*x)
539
+ res2 = fun(*x, _no_deco=True)
540
+ res3 = fun([xi.ravel() for xi in x])
541
+ assert_equal(res, res2)
542
+ assert_equal(res, res3)
543
+
544
+
545
+ @pytest.mark.parametrize(("axis"), (0, 1, 2))
546
+ def test_axis_nan_policy_decorated_positional_axis(axis):
547
+ # Test for correct behavior of function decorated with
548
+ # _axis_nan_policy_decorator whether `axis` is provided as positional or
549
+ # keyword argument
550
+
551
+ shape = (8, 9, 10)
552
+ rng = np.random.default_rng(0)
553
+ x = rng.random(shape)
554
+ y = rng.random(shape)
555
+ res1 = stats.mannwhitneyu(x, y, True, 'two-sided', axis)
556
+ res2 = stats.mannwhitneyu(x, y, True, 'two-sided', axis=axis)
557
+ assert_equal(res1, res2)
558
+
559
+ message = "mannwhitneyu() got multiple values for argument 'axis'"
560
+ with pytest.raises(TypeError, match=re.escape(message)):
561
+ stats.mannwhitneyu(x, y, True, 'two-sided', axis, axis=axis)
562
+
563
+
564
+ def test_axis_nan_policy_decorated_positional_args():
565
+ # Test for correct behavior of function decorated with
566
+ # _axis_nan_policy_decorator when function accepts *args
567
+
568
+ shape = (3, 8, 9, 10)
569
+ rng = np.random.default_rng(0)
570
+ x = rng.random(shape)
571
+ x[0, 0, 0, 0] = np.nan
572
+ stats.kruskal(*x)
573
+
574
+ message = "kruskal() got an unexpected keyword argument 'samples'"
575
+ with pytest.raises(TypeError, match=re.escape(message)):
576
+ stats.kruskal(samples=x)
577
+
578
+ with pytest.raises(TypeError, match=re.escape(message)):
579
+ stats.kruskal(*x, samples=x)
580
+
581
+
582
+ def test_axis_nan_policy_decorated_keyword_samples():
583
+ # Test for correct behavior of function decorated with
584
+ # _axis_nan_policy_decorator whether samples are provided as positional or
585
+ # keyword arguments
586
+
587
+ shape = (2, 8, 9, 10)
588
+ rng = np.random.default_rng(0)
589
+ x = rng.random(shape)
590
+ x[0, 0, 0, 0] = np.nan
591
+ res1 = stats.mannwhitneyu(*x)
592
+ res2 = stats.mannwhitneyu(x=x[0], y=x[1])
593
+ assert_equal(res1, res2)
594
+
595
+ message = "mannwhitneyu() got multiple values for argument"
596
+ with pytest.raises(TypeError, match=re.escape(message)):
597
+ stats.mannwhitneyu(*x, x=x[0], y=x[1])
598
+
599
+
600
+ @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
601
+ "paired", "unpacker"), axis_nan_policy_cases)
602
+ def test_axis_nan_policy_decorated_pickled(hypotest, args, kwds, n_samples,
603
+ n_outputs, paired, unpacker):
604
+ if "ttest_ci" in hypotest.__name__:
605
+ pytest.skip("Can't pickle functions defined within functions.")
606
+
607
+ rng = np.random.default_rng(0)
608
+
609
+ # Some hypothesis tests return a non-iterable that needs an `unpacker` to
610
+ # extract the statistic and p-value. For those that don't:
611
+ if not unpacker:
612
+ def unpacker(res):
613
+ return res
614
+
615
+ data = rng.uniform(size=(n_samples, 2, 30))
616
+ pickled_hypotest = pickle.dumps(hypotest)
617
+ unpickled_hypotest = pickle.loads(pickled_hypotest)
618
+ res1 = unpacker(hypotest(*data, *args, axis=-1, **kwds))
619
+ res2 = unpacker(unpickled_hypotest(*data, *args, axis=-1, **kwds))
620
+ assert_allclose(res1, res2, rtol=1e-12)
621
+
622
+
623
+ def test_check_empty_inputs():
624
+ # Test that _check_empty_inputs is doing its job, at least for single-
625
+ # sample inputs. (Multi-sample functionality is tested below.)
626
+ # If the input sample is not empty, it should return None.
627
+ # If the input sample is empty, it should return an array of NaNs or an
628
+ # empty array of appropriate shape. np.mean is used as a reference for the
629
+ # output because, like the statistics calculated by these functions,
630
+ # it works along and "consumes" `axis` but preserves the other axes.
631
+ for i in range(5):
632
+ for combo in combinations_with_replacement([0, 1, 2], i):
633
+ for axis in range(len(combo)):
634
+ samples = (np.zeros(combo),)
635
+ output = stats._axis_nan_policy._check_empty_inputs(samples,
636
+ axis)
637
+ if output is not None:
638
+ with np.testing.suppress_warnings() as sup:
639
+ sup.filter(RuntimeWarning, "Mean of empty slice.")
640
+ sup.filter(RuntimeWarning, "invalid value encountered")
641
+ reference = samples[0].mean(axis=axis)
642
+ np.testing.assert_equal(output, reference)
643
+
644
+
645
+ def _check_arrays_broadcastable(arrays, axis):
646
+ # https://numpy.org/doc/stable/user/basics.broadcasting.html
647
+ # "When operating on two arrays, NumPy compares their shapes element-wise.
648
+ # It starts with the trailing (i.e. rightmost) dimensions and works its
649
+ # way left.
650
+ # Two dimensions are compatible when
651
+ # 1. they are equal, or
652
+ # 2. one of them is 1
653
+ # ...
654
+ # Arrays do not need to have the same number of dimensions."
655
+ # (Clarification: if the arrays are compatible according to the criteria
656
+ # above and an array runs out of dimensions, it is still compatible.)
657
+ # Below, we follow the rules above except ignoring `axis`
658
+
659
+ n_dims = max([arr.ndim for arr in arrays])
660
+ if axis is not None:
661
+ # convert to negative axis
662
+ axis = (-n_dims + axis) if axis >= 0 else axis
663
+
664
+ for dim in range(1, n_dims+1): # we'll index from -1 to -n_dims, inclusive
665
+ if -dim == axis:
666
+ continue # ignore lengths along `axis`
667
+
668
+ dim_lengths = set()
669
+ for arr in arrays:
670
+ if dim <= arr.ndim and arr.shape[-dim] != 1:
671
+ dim_lengths.add(arr.shape[-dim])
672
+
673
+ if len(dim_lengths) > 1:
674
+ return False
675
+ return True
676
+
677
+
678
+ @pytest.mark.slow
679
+ @pytest.mark.parametrize(("hypotest", "args", "kwds", "n_samples", "n_outputs",
680
+ "paired", "unpacker"), axis_nan_policy_cases)
681
+ def test_empty(hypotest, args, kwds, n_samples, n_outputs, paired, unpacker):
682
+ # test for correct output shape when at least one input is empty
683
+
684
+ if hypotest in override_propagate_funcs:
685
+ reason = "Doesn't follow the usual pattern. Tested separately."
686
+ pytest.skip(reason=reason)
687
+
688
+ if unpacker is None:
689
+ unpacker = lambda res: (res[0], res[1]) # noqa: E731
690
+
691
+ def small_data_generator(n_samples, n_dims):
692
+
693
+ def small_sample_generator(n_dims):
694
+ # return all possible "small" arrays in up to n_dim dimensions
695
+ for i in n_dims:
696
+ # "small" means with size along dimension either 0 or 1
697
+ for combo in combinations_with_replacement([0, 1, 2], i):
698
+ yield np.zeros(combo)
699
+
700
+ # yield all possible combinations of small samples
701
+ gens = [small_sample_generator(n_dims) for i in range(n_samples)]
702
+ yield from product(*gens)
703
+
704
+ n_dims = [2, 3]
705
+ for samples in small_data_generator(n_samples, n_dims):
706
+
707
+ # this test is only for arrays of zero size
708
+ if not any(sample.size == 0 for sample in samples):
709
+ continue
710
+
711
+ max_axis = max(sample.ndim for sample in samples)
712
+
713
+ # need to test for all valid values of `axis` parameter, too
714
+ for axis in range(-max_axis, max_axis):
715
+
716
+ try:
717
+ # After broadcasting, all arrays are the same shape, so
718
+ # the shape of the output should be the same as a single-
719
+ # sample statistic. Use np.mean as a reference.
720
+ concat = stats._stats_py._broadcast_concatenate(samples, axis)
721
+ with np.testing.suppress_warnings() as sup:
722
+ sup.filter(RuntimeWarning, "Mean of empty slice.")
723
+ sup.filter(RuntimeWarning, "invalid value encountered")
724
+ expected = np.mean(concat, axis=axis) * np.nan
725
+
726
+ if hypotest in empty_special_case_funcs:
727
+ empty_val = hypotest(*([[]]*len(samples)), *args, **kwds)
728
+ mask = np.isnan(expected)
729
+ expected[mask] = empty_val
730
+
731
+ with np.testing.suppress_warnings() as sup:
732
+ # generated by f_oneway for too_small inputs
733
+ sup.filter(stats.DegenerateDataWarning)
734
+ res = hypotest(*samples, *args, axis=axis, **kwds)
735
+ res = unpacker(res)
736
+
737
+ for i in range(n_outputs):
738
+ assert_equal(res[i], expected)
739
+
740
+ except ValueError:
741
+ # confirm that the arrays truly are not broadcastable
742
+ assert not _check_arrays_broadcastable(samples,
743
+ None if paired else axis)
744
+
745
+ # confirm that _both_ `_broadcast_concatenate` and `hypotest`
746
+ # produce this information.
747
+ message = "Array shapes are incompatible for broadcasting."
748
+ with pytest.raises(ValueError, match=message):
749
+ stats._stats_py._broadcast_concatenate(samples, axis, paired)
750
+ with pytest.raises(ValueError, match=message):
751
+ hypotest(*samples, *args, axis=axis, **kwds)
752
+
753
+
754
+ def test_masked_array_2_sentinel_array():
755
+ # prepare arrays
756
+ np.random.seed(0)
757
+ A = np.random.rand(10, 11, 12)
758
+ B = np.random.rand(12)
759
+ mask = A < 0.5
760
+ A = np.ma.masked_array(A, mask)
761
+
762
+ # set arbitrary elements to special values
763
+ # (these values might have been considered for use as sentinel values)
764
+ max_float = np.finfo(np.float64).max
765
+ max_float2 = np.nextafter(max_float, -np.inf)
766
+ max_float3 = np.nextafter(max_float2, -np.inf)
767
+ A[3, 4, 1] = np.nan
768
+ A[4, 5, 2] = np.inf
769
+ A[5, 6, 3] = max_float
770
+ B[8] = np.nan
771
+ B[7] = np.inf
772
+ B[6] = max_float2
773
+
774
+ # convert masked A to array with sentinel value, don't modify B
775
+ out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([A, B])
776
+ A_out, B_out = out_arrays
777
+
778
+ # check that good sentinel value was chosen (according to intended logic)
779
+ assert (sentinel != max_float) and (sentinel != max_float2)
780
+ assert sentinel == max_float3
781
+
782
+ # check that output arrays are as intended
783
+ A_reference = A.data
784
+ A_reference[A.mask] = sentinel
785
+ np.testing.assert_array_equal(A_out, A_reference)
786
+ assert B_out is B
787
+
788
+
789
+ def test_masked_dtype():
790
+ # When _masked_arrays_2_sentinel_arrays was first added, it always
791
+ # upcast the arrays to np.float64. After gh16662, check expected promotion
792
+ # and that the expected sentinel is found.
793
+
794
+ # these are important because the max of the promoted dtype is the first
795
+ # candidate to be the sentinel value
796
+ max16 = np.iinfo(np.int16).max
797
+ max128c = np.finfo(np.complex128).max
798
+
799
+ # a is a regular array, b has masked elements, and c has no masked elements
800
+ a = np.array([1, 2, max16], dtype=np.int16)
801
+ b = np.ma.array([1, 2, 1], dtype=np.int8, mask=[0, 1, 0])
802
+ c = np.ma.array([1, 2, 1], dtype=np.complex128, mask=[0, 0, 0])
803
+
804
+ # check integer masked -> sentinel conversion
805
+ out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([a, b])
806
+ a_out, b_out = out_arrays
807
+ assert sentinel == max16-1 # not max16 because max16 was in the data
808
+ assert b_out.dtype == np.int16 # check expected promotion
809
+ assert_allclose(b_out, [b[0], sentinel, b[-1]]) # check sentinel placement
810
+ assert a_out is a # not a masked array, so left untouched
811
+ assert not isinstance(b_out, np.ma.MaskedArray) # b became regular array
812
+
813
+ # similarly with complex
814
+ out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([b, c])
815
+ b_out, c_out = out_arrays
816
+ assert sentinel == max128c # max128c was not in the data
817
+ assert b_out.dtype == np.complex128 # b got promoted
818
+ assert_allclose(b_out, [b[0], sentinel, b[-1]]) # check sentinel placement
819
+ assert not isinstance(b_out, np.ma.MaskedArray) # b became regular array
820
+ assert not isinstance(c_out, np.ma.MaskedArray) # c became regular array
821
+
822
+ # Also, check edge case when a sentinel value cannot be found in the data
823
+ min8, max8 = np.iinfo(np.int8).min, np.iinfo(np.int8).max
824
+ a = np.arange(min8, max8+1, dtype=np.int8) # use all possible values
825
+ mask1 = np.zeros_like(a, dtype=bool)
826
+ mask0 = np.zeros_like(a, dtype=bool)
827
+
828
+ # a masked value can be used as the sentinel
829
+ mask1[1] = True
830
+ a1 = np.ma.array(a, mask=mask1)
831
+ out_arrays, sentinel = _masked_arrays_2_sentinel_arrays([a1])
832
+ assert sentinel == min8+1
833
+
834
+ # unless it's the smallest possible; skipped for simiplicity (see code)
835
+ mask0[0] = True
836
+ a0 = np.ma.array(a, mask=mask0)
837
+ message = "This function replaces masked elements with sentinel..."
838
+ with pytest.raises(ValueError, match=message):
839
+ _masked_arrays_2_sentinel_arrays([a0])
840
+
841
+ # test that dtype is preserved in functions
842
+ a = np.ma.array([1, 2, 3], mask=[0, 1, 0], dtype=np.float32)
843
+ assert stats.gmean(a).dtype == np.float32
844
+
845
+
846
+ def test_masked_stat_1d():
847
+ # basic test of _axis_nan_policy_factory with 1D masked sample
848
+ males = [19, 22, 16, 29, 24]
849
+ females = [20, 11, 17, 12]
850
+ res = stats.mannwhitneyu(males, females)
851
+
852
+ # same result when extra nan is omitted
853
+ females2 = [20, 11, 17, np.nan, 12]
854
+ res2 = stats.mannwhitneyu(males, females2, nan_policy='omit')
855
+ np.testing.assert_array_equal(res2, res)
856
+
857
+ # same result when extra element is masked
858
+ females3 = [20, 11, 17, 1000, 12]
859
+ mask3 = [False, False, False, True, False]
860
+ females3 = np.ma.masked_array(females3, mask=mask3)
861
+ res3 = stats.mannwhitneyu(males, females3)
862
+ np.testing.assert_array_equal(res3, res)
863
+
864
+ # same result when extra nan is omitted and additional element is masked
865
+ females4 = [20, 11, 17, np.nan, 1000, 12]
866
+ mask4 = [False, False, False, False, True, False]
867
+ females4 = np.ma.masked_array(females4, mask=mask4)
868
+ res4 = stats.mannwhitneyu(males, females4, nan_policy='omit')
869
+ np.testing.assert_array_equal(res4, res)
870
+
871
+ # same result when extra elements, including nan, are masked
872
+ females5 = [20, 11, 17, np.nan, 1000, 12]
873
+ mask5 = [False, False, False, True, True, False]
874
+ females5 = np.ma.masked_array(females5, mask=mask5)
875
+ res5 = stats.mannwhitneyu(males, females5, nan_policy='propagate')
876
+ res6 = stats.mannwhitneyu(males, females5, nan_policy='raise')
877
+ np.testing.assert_array_equal(res5, res)
878
+ np.testing.assert_array_equal(res6, res)
879
+
880
+
881
+ @pytest.mark.parametrize(("axis"), range(-3, 3))
882
+ def test_masked_stat_3d(axis):
883
+ # basic test of _axis_nan_policy_factory with 3D masked sample
884
+ np.random.seed(0)
885
+ a = np.random.rand(3, 4, 5)
886
+ b = np.random.rand(4, 5)
887
+ c = np.random.rand(4, 1)
888
+
889
+ mask_a = a < 0.1
890
+ mask_c = [False, False, False, True]
891
+ a_masked = np.ma.masked_array(a, mask=mask_a)
892
+ c_masked = np.ma.masked_array(c, mask=mask_c)
893
+
894
+ a_nans = a.copy()
895
+ a_nans[mask_a] = np.nan
896
+ c_nans = c.copy()
897
+ c_nans[mask_c] = np.nan
898
+
899
+ res = stats.kruskal(a_nans, b, c_nans, nan_policy='omit', axis=axis)
900
+ res2 = stats.kruskal(a_masked, b, c_masked, axis=axis)
901
+ np.testing.assert_array_equal(res, res2)
902
+
903
+
904
+ def test_mixed_mask_nan_1():
905
+ # targeted test of _axis_nan_policy_factory with 2D masked sample:
906
+ # omitting samples with masks and nan_policy='omit' are equivalent
907
+ # also checks paired-sample sentinel value removal
908
+ m, n = 3, 20
909
+ axis = -1
910
+
911
+ np.random.seed(0)
912
+ a = np.random.rand(m, n)
913
+ b = np.random.rand(m, n)
914
+ mask_a1 = np.random.rand(m, n) < 0.2
915
+ mask_a2 = np.random.rand(m, n) < 0.1
916
+ mask_b1 = np.random.rand(m, n) < 0.15
917
+ mask_b2 = np.random.rand(m, n) < 0.15
918
+ mask_a1[2, :] = True
919
+
920
+ a_nans = a.copy()
921
+ b_nans = b.copy()
922
+ a_nans[mask_a1 | mask_a2] = np.nan
923
+ b_nans[mask_b1 | mask_b2] = np.nan
924
+
925
+ a_masked1 = np.ma.masked_array(a, mask=mask_a1)
926
+ b_masked1 = np.ma.masked_array(b, mask=mask_b1)
927
+ a_masked1[mask_a2] = np.nan
928
+ b_masked1[mask_b2] = np.nan
929
+
930
+ a_masked2 = np.ma.masked_array(a, mask=mask_a2)
931
+ b_masked2 = np.ma.masked_array(b, mask=mask_b2)
932
+ a_masked2[mask_a1] = np.nan
933
+ b_masked2[mask_b1] = np.nan
934
+
935
+ a_masked3 = np.ma.masked_array(a, mask=(mask_a1 | mask_a2))
936
+ b_masked3 = np.ma.masked_array(b, mask=(mask_b1 | mask_b2))
937
+
938
+ res = stats.wilcoxon(a_nans, b_nans, nan_policy='omit', axis=axis)
939
+ res1 = stats.wilcoxon(a_masked1, b_masked1, nan_policy='omit', axis=axis)
940
+ res2 = stats.wilcoxon(a_masked2, b_masked2, nan_policy='omit', axis=axis)
941
+ res3 = stats.wilcoxon(a_masked3, b_masked3, nan_policy='raise', axis=axis)
942
+ res4 = stats.wilcoxon(a_masked3, b_masked3,
943
+ nan_policy='propagate', axis=axis)
944
+
945
+ np.testing.assert_array_equal(res1, res)
946
+ np.testing.assert_array_equal(res2, res)
947
+ np.testing.assert_array_equal(res3, res)
948
+ np.testing.assert_array_equal(res4, res)
949
+
950
+
951
+ def test_mixed_mask_nan_2():
952
+ # targeted test of _axis_nan_policy_factory with 2D masked sample:
953
+ # check for expected interaction between masks and nans
954
+
955
+ # Cases here are
956
+ # [mixed nan/mask, all nans, all masked,
957
+ # unmasked nan, masked nan, unmasked non-nan]
958
+ a = [[1, np.nan, 2], [np.nan, np.nan, np.nan], [1, 2, 3],
959
+ [1, np.nan, 3], [1, np.nan, 3], [1, 2, 3]]
960
+ mask = [[1, 0, 1], [0, 0, 0], [1, 1, 1],
961
+ [0, 0, 0], [0, 1, 0], [0, 0, 0]]
962
+ a_masked = np.ma.masked_array(a, mask=mask)
963
+ b = [[4, 5, 6]]
964
+ ref1 = stats.ranksums([1, 3], [4, 5, 6])
965
+ ref2 = stats.ranksums([1, 2, 3], [4, 5, 6])
966
+
967
+ # nan_policy = 'omit'
968
+ # all elements are removed from first three rows
969
+ # middle element is removed from fourth and fifth rows
970
+ # no elements removed from last row
971
+ res = stats.ranksums(a_masked, b, nan_policy='omit', axis=-1)
972
+ stat_ref = [np.nan, np.nan, np.nan,
973
+ ref1.statistic, ref1.statistic, ref2.statistic]
974
+ p_ref = [np.nan, np.nan, np.nan,
975
+ ref1.pvalue, ref1.pvalue, ref2.pvalue]
976
+ np.testing.assert_array_equal(res.statistic, stat_ref)
977
+ np.testing.assert_array_equal(res.pvalue, p_ref)
978
+
979
+ # nan_policy = 'propagate'
980
+ # nans propagate in first, second, and fourth row
981
+ # all elements are removed by mask from third row
982
+ # middle element is removed from fifth row
983
+ # no elements removed from last row
984
+ res = stats.ranksums(a_masked, b, nan_policy='propagate', axis=-1)
985
+ stat_ref = [np.nan, np.nan, np.nan,
986
+ np.nan, ref1.statistic, ref2.statistic]
987
+ p_ref = [np.nan, np.nan, np.nan,
988
+ np.nan, ref1.pvalue, ref2.pvalue]
989
+ np.testing.assert_array_equal(res.statistic, stat_ref)
990
+ np.testing.assert_array_equal(res.pvalue, p_ref)
991
+
992
+
993
+ def test_axis_None_vs_tuple():
994
+ # `axis` `None` should be equivalent to tuple with all axes
995
+ shape = (3, 8, 9, 10)
996
+ rng = np.random.default_rng(0)
997
+ x = rng.random(shape)
998
+ res = stats.kruskal(*x, axis=None)
999
+ res2 = stats.kruskal(*x, axis=(0, 1, 2))
1000
+ np.testing.assert_array_equal(res, res2)
1001
+
1002
+
1003
+ def test_axis_None_vs_tuple_with_broadcasting():
1004
+ # `axis` `None` should be equivalent to tuple with all axes,
1005
+ # which should be equivalent to raveling the arrays before passing them
1006
+ rng = np.random.default_rng(0)
1007
+ x = rng.random((5, 1))
1008
+ y = rng.random((1, 5))
1009
+ x2, y2 = np.broadcast_arrays(x, y)
1010
+
1011
+ res0 = stats.mannwhitneyu(x.ravel(), y.ravel())
1012
+ res1 = stats.mannwhitneyu(x, y, axis=None)
1013
+ res2 = stats.mannwhitneyu(x, y, axis=(0, 1))
1014
+ res3 = stats.mannwhitneyu(x2.ravel(), y2.ravel())
1015
+
1016
+ assert res1 == res0
1017
+ assert res2 == res0
1018
+ assert res3 != res0
1019
+
1020
+
1021
+ @pytest.mark.parametrize(("axis"),
1022
+ list(permutations(range(-3, 3), 2)) + [(-4, 1)])
1023
+ def test_other_axis_tuples(axis):
1024
+ # Check that _axis_nan_policy_factory treats all `axis` tuples as expected
1025
+ rng = np.random.default_rng(0)
1026
+ shape_x = (4, 5, 6)
1027
+ shape_y = (1, 6)
1028
+ x = rng.random(shape_x)
1029
+ y = rng.random(shape_y)
1030
+ axis_original = axis
1031
+
1032
+ # convert axis elements to positive
1033
+ axis = tuple([(i if i >= 0 else 3 + i) for i in axis])
1034
+ axis = sorted(axis)
1035
+
1036
+ if len(set(axis)) != len(axis):
1037
+ message = "`axis` must contain only distinct elements"
1038
+ with pytest.raises(AxisError, match=re.escape(message)):
1039
+ stats.mannwhitneyu(x, y, axis=axis_original)
1040
+ return
1041
+
1042
+ if axis[0] < 0 or axis[-1] > 2:
1043
+ message = "`axis` is out of bounds for array of dimension 3"
1044
+ with pytest.raises(AxisError, match=re.escape(message)):
1045
+ stats.mannwhitneyu(x, y, axis=axis_original)
1046
+ return
1047
+
1048
+ res = stats.mannwhitneyu(x, y, axis=axis_original)
1049
+
1050
+ # reference behavior
1051
+ not_axis = {0, 1, 2} - set(axis) # which axis is not part of `axis`
1052
+ not_axis = next(iter(not_axis)) # take it out of the set
1053
+
1054
+ x2 = x
1055
+ shape_y_broadcasted = [1, 1, 6]
1056
+ shape_y_broadcasted[not_axis] = shape_x[not_axis]
1057
+ y2 = np.broadcast_to(y, shape_y_broadcasted)
1058
+
1059
+ m = x2.shape[not_axis]
1060
+ x2 = np.moveaxis(x2, axis, (1, 2))
1061
+ y2 = np.moveaxis(y2, axis, (1, 2))
1062
+ x2 = np.reshape(x2, (m, -1))
1063
+ y2 = np.reshape(y2, (m, -1))
1064
+ res2 = stats.mannwhitneyu(x2, y2, axis=1)
1065
+
1066
+ np.testing.assert_array_equal(res, res2)
1067
+
1068
+
1069
+ @pytest.mark.parametrize(
1070
+ ("weighted_fun_name, unpacker"),
1071
+ [
1072
+ ("gmean", lambda x: x),
1073
+ ("hmean", lambda x: x),
1074
+ ("pmean", lambda x: x),
1075
+ ("combine_pvalues", lambda x: (x.pvalue, x.statistic)),
1076
+ ],
1077
+ )
1078
+ def test_mean_mixed_mask_nan_weights(weighted_fun_name, unpacker):
1079
+ # targeted test of _axis_nan_policy_factory with 2D masked sample:
1080
+ # omitting samples with masks and nan_policy='omit' are equivalent
1081
+ # also checks paired-sample sentinel value removal
1082
+
1083
+ if weighted_fun_name == 'pmean':
1084
+ def weighted_fun(a, **kwargs):
1085
+ return stats.pmean(a, p=0.42, **kwargs)
1086
+ else:
1087
+ weighted_fun = getattr(stats, weighted_fun_name)
1088
+
1089
+ def func(*args, **kwargs):
1090
+ return unpacker(weighted_fun(*args, **kwargs))
1091
+
1092
+ m, n = 3, 20
1093
+ axis = -1
1094
+
1095
+ rng = np.random.default_rng(6541968121)
1096
+ a = rng.uniform(size=(m, n))
1097
+ b = rng.uniform(size=(m, n))
1098
+ mask_a1 = rng.uniform(size=(m, n)) < 0.2
1099
+ mask_a2 = rng.uniform(size=(m, n)) < 0.1
1100
+ mask_b1 = rng.uniform(size=(m, n)) < 0.15
1101
+ mask_b2 = rng.uniform(size=(m, n)) < 0.15
1102
+ mask_a1[2, :] = True
1103
+
1104
+ a_nans = a.copy()
1105
+ b_nans = b.copy()
1106
+ a_nans[mask_a1 | mask_a2] = np.nan
1107
+ b_nans[mask_b1 | mask_b2] = np.nan
1108
+
1109
+ a_masked1 = np.ma.masked_array(a, mask=mask_a1)
1110
+ b_masked1 = np.ma.masked_array(b, mask=mask_b1)
1111
+ a_masked1[mask_a2] = np.nan
1112
+ b_masked1[mask_b2] = np.nan
1113
+
1114
+ a_masked2 = np.ma.masked_array(a, mask=mask_a2)
1115
+ b_masked2 = np.ma.masked_array(b, mask=mask_b2)
1116
+ a_masked2[mask_a1] = np.nan
1117
+ b_masked2[mask_b1] = np.nan
1118
+
1119
+ a_masked3 = np.ma.masked_array(a, mask=(mask_a1 | mask_a2))
1120
+ b_masked3 = np.ma.masked_array(b, mask=(mask_b1 | mask_b2))
1121
+
1122
+ mask_all = (mask_a1 | mask_a2 | mask_b1 | mask_b2)
1123
+ a_masked4 = np.ma.masked_array(a, mask=mask_all)
1124
+ b_masked4 = np.ma.masked_array(b, mask=mask_all)
1125
+
1126
+ with np.testing.suppress_warnings() as sup:
1127
+ message = 'invalid value encountered'
1128
+ sup.filter(RuntimeWarning, message)
1129
+ res = func(a_nans, weights=b_nans, nan_policy="omit", axis=axis)
1130
+ res1 = func(a_masked1, weights=b_masked1, nan_policy="omit", axis=axis)
1131
+ res2 = func(a_masked2, weights=b_masked2, nan_policy="omit", axis=axis)
1132
+ res3 = func(a_masked3, weights=b_masked3, nan_policy="raise", axis=axis)
1133
+ res4 = func(a_masked3, weights=b_masked3, nan_policy="propagate", axis=axis)
1134
+ # Would test with a_masked3/b_masked3, but there is a bug in np.average
1135
+ # that causes a bug in _no_deco mean with masked weights. Would use
1136
+ # np.ma.average, but that causes other problems. See numpy/numpy#7330.
1137
+ if weighted_fun_name in {"hmean"}:
1138
+ weighted_fun_ma = getattr(stats.mstats, weighted_fun_name)
1139
+ res5 = weighted_fun_ma(a_masked4, weights=b_masked4,
1140
+ axis=axis, _no_deco=True)
1141
+
1142
+ np.testing.assert_array_equal(res1, res)
1143
+ np.testing.assert_array_equal(res2, res)
1144
+ np.testing.assert_array_equal(res3, res)
1145
+ np.testing.assert_array_equal(res4, res)
1146
+ if weighted_fun_name in {"hmean"}:
1147
+ # _no_deco mean returns masked array, last element was masked
1148
+ np.testing.assert_allclose(res5.compressed(), res[~np.isnan(res)])
1149
+
1150
+
1151
+ def test_raise_invalid_args_g17713():
1152
+ # other cases are handled in:
1153
+ # test_axis_nan_policy_decorated_positional_axis - multiple values for arg
1154
+ # test_axis_nan_policy_decorated_positional_args - unexpected kwd arg
1155
+ message = "got an unexpected keyword argument"
1156
+ with pytest.raises(TypeError, match=message):
1157
+ stats.gmean([1, 2, 3], invalid_arg=True)
1158
+
1159
+ message = " got multiple values for argument"
1160
+ with pytest.raises(TypeError, match=message):
1161
+ stats.gmean([1, 2, 3], a=True)
1162
+
1163
+ message = "missing 1 required positional argument"
1164
+ with pytest.raises(TypeError, match=message):
1165
+ stats.gmean()
1166
+
1167
+ message = "takes from 1 to 4 positional arguments but 5 were given"
1168
+ with pytest.raises(TypeError, match=message):
1169
+ stats.gmean([1, 2, 3], 0, float, [1, 1, 1], 10)
1170
+
1171
+
1172
+ @pytest.mark.parametrize('dtype', [np.int16, np.float32, np.complex128])
1173
+ def test_array_like_input(dtype):
1174
+ # Check that `_axis_nan_policy`-decorated functions work with custom
1175
+ # containers that are coercible to numeric arrays
1176
+
1177
+ class ArrLike:
1178
+ def __init__(self, x, dtype):
1179
+ self._x = x
1180
+ self._dtype = dtype
1181
+
1182
+ def __array__(self, dtype=None, copy=None):
1183
+ return np.asarray(x, dtype=self._dtype)
1184
+
1185
+ x = [1]*2 + [3, 4, 5]
1186
+ res = stats.mode(ArrLike(x, dtype=dtype))
1187
+ assert res.mode == 1
1188
+ assert res.count == 2