Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/8.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__init__.py +221 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_array_like.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nbit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_scalars.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_shape.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/setup.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_add_docstring.py +152 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_array_like.py +167 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_callable.pyi +338 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_char_codes.py +111 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_extended_precision.py +27 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_nbit.py +16 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_nested_sequence.py +86 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_scalars.py +30 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_shape.py +7 -0
- venv/lib/python3.10/site-packages/numpy/_typing/_ufunc.pyi +445 -0
- venv/lib/python3.10/site-packages/numpy/core/__init__.py +180 -0
- venv/lib/python3.10/site-packages/numpy/core/__init__.pyi +2 -0
- venv/lib/python3.10/site-packages/numpy/core/_add_newdocs.py +0 -0
- venv/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py +372 -0
- venv/lib/python3.10/site-packages/numpy/core/_asarray.py +134 -0
- venv/lib/python3.10/site-packages/numpy/core/_dtype.py +369 -0
- venv/lib/python3.10/site-packages/numpy/core/_dtype_ctypes.py +117 -0
- venv/lib/python3.10/site-packages/numpy/core/_exceptions.py +172 -0
- venv/lib/python3.10/site-packages/numpy/core/_internal.py +935 -0
- venv/lib/python3.10/site-packages/numpy/core/_internal.pyi +30 -0
- venv/lib/python3.10/site-packages/numpy/core/_machar.py +356 -0
- venv/lib/python3.10/site-packages/numpy/core/_multiarray_tests.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/core/_string_helpers.py +100 -0
- venv/lib/python3.10/site-packages/numpy/core/_struct_ufunc_tests.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/core/_type_aliases.py +245 -0
- venv/lib/python3.10/site-packages/numpy/core/_ufunc_config.py +466 -0
- venv/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi +37 -0
- venv/lib/python3.10/site-packages/numpy/core/_umath_tests.cpython-310-x86_64-linux-gnu.so +0 -0
- venv/lib/python3.10/site-packages/numpy/core/arrayprint.pyi +142 -0
- venv/lib/python3.10/site-packages/numpy/core/cversions.py +13 -0
- venv/lib/python3.10/site-packages/numpy/core/defchararray.py +2914 -0
- venv/lib/python3.10/site-packages/numpy/core/einsumfunc.py +1443 -0
- venv/lib/python3.10/site-packages/numpy/core/einsumfunc.pyi +187 -0
- venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py +0 -0
ckpts/universal/global_step40/zero/4.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5552a04c793f5a78ce624e36892a0934e0511feaa448d1a316323a99018e00d8
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/8.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1280675cdb1cb83a90d1fc2266ee8d0f0862d716d7be2a9b8d1873976dc3b8ba
|
3 |
+
size 50332843
|
venv/lib/python3.10/site-packages/numpy/_typing/__init__.py
ADDED
@@ -0,0 +1,221 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Private counterpart of ``numpy.typing``."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from .. import ufunc
|
6 |
+
from .._utils import set_module
|
7 |
+
from typing import TYPE_CHECKING, final
|
8 |
+
|
9 |
+
|
10 |
+
@final # Disallow the creation of arbitrary `NBitBase` subclasses
|
11 |
+
@set_module("numpy.typing")
|
12 |
+
class NBitBase:
|
13 |
+
"""
|
14 |
+
A type representing `numpy.number` precision during static type checking.
|
15 |
+
|
16 |
+
Used exclusively for the purpose static type checking, `NBitBase`
|
17 |
+
represents the base of a hierarchical set of subclasses.
|
18 |
+
Each subsequent subclass is herein used for representing a lower level
|
19 |
+
of precision, *e.g.* ``64Bit > 32Bit > 16Bit``.
|
20 |
+
|
21 |
+
.. versionadded:: 1.20
|
22 |
+
|
23 |
+
Examples
|
24 |
+
--------
|
25 |
+
Below is a typical usage example: `NBitBase` is herein used for annotating
|
26 |
+
a function that takes a float and integer of arbitrary precision
|
27 |
+
as arguments and returns a new float of whichever precision is largest
|
28 |
+
(*e.g.* ``np.float16 + np.int64 -> np.float64``).
|
29 |
+
|
30 |
+
.. code-block:: python
|
31 |
+
|
32 |
+
>>> from __future__ import annotations
|
33 |
+
>>> from typing import TypeVar, TYPE_CHECKING
|
34 |
+
>>> import numpy as np
|
35 |
+
>>> import numpy.typing as npt
|
36 |
+
|
37 |
+
>>> T1 = TypeVar("T1", bound=npt.NBitBase)
|
38 |
+
>>> T2 = TypeVar("T2", bound=npt.NBitBase)
|
39 |
+
|
40 |
+
>>> def add(a: np.floating[T1], b: np.integer[T2]) -> np.floating[T1 | T2]:
|
41 |
+
... return a + b
|
42 |
+
|
43 |
+
>>> a = np.float16()
|
44 |
+
>>> b = np.int64()
|
45 |
+
>>> out = add(a, b)
|
46 |
+
|
47 |
+
>>> if TYPE_CHECKING:
|
48 |
+
... reveal_locals()
|
49 |
+
... # note: Revealed local types are:
|
50 |
+
... # note: a: numpy.floating[numpy.typing._16Bit*]
|
51 |
+
... # note: b: numpy.signedinteger[numpy.typing._64Bit*]
|
52 |
+
... # note: out: numpy.floating[numpy.typing._64Bit*]
|
53 |
+
|
54 |
+
"""
|
55 |
+
|
56 |
+
def __init_subclass__(cls) -> None:
|
57 |
+
allowed_names = {
|
58 |
+
"NBitBase", "_256Bit", "_128Bit", "_96Bit", "_80Bit",
|
59 |
+
"_64Bit", "_32Bit", "_16Bit", "_8Bit",
|
60 |
+
}
|
61 |
+
if cls.__name__ not in allowed_names:
|
62 |
+
raise TypeError('cannot inherit from final class "NBitBase"')
|
63 |
+
super().__init_subclass__()
|
64 |
+
|
65 |
+
|
66 |
+
# Silence errors about subclassing a `@final`-decorated class
|
67 |
+
class _256Bit(NBitBase): # type: ignore[misc]
|
68 |
+
pass
|
69 |
+
|
70 |
+
class _128Bit(_256Bit): # type: ignore[misc]
|
71 |
+
pass
|
72 |
+
|
73 |
+
class _96Bit(_128Bit): # type: ignore[misc]
|
74 |
+
pass
|
75 |
+
|
76 |
+
class _80Bit(_96Bit): # type: ignore[misc]
|
77 |
+
pass
|
78 |
+
|
79 |
+
class _64Bit(_80Bit): # type: ignore[misc]
|
80 |
+
pass
|
81 |
+
|
82 |
+
class _32Bit(_64Bit): # type: ignore[misc]
|
83 |
+
pass
|
84 |
+
|
85 |
+
class _16Bit(_32Bit): # type: ignore[misc]
|
86 |
+
pass
|
87 |
+
|
88 |
+
class _8Bit(_16Bit): # type: ignore[misc]
|
89 |
+
pass
|
90 |
+
|
91 |
+
|
92 |
+
from ._nested_sequence import (
|
93 |
+
_NestedSequence as _NestedSequence,
|
94 |
+
)
|
95 |
+
from ._nbit import (
|
96 |
+
_NBitByte as _NBitByte,
|
97 |
+
_NBitShort as _NBitShort,
|
98 |
+
_NBitIntC as _NBitIntC,
|
99 |
+
_NBitIntP as _NBitIntP,
|
100 |
+
_NBitInt as _NBitInt,
|
101 |
+
_NBitLongLong as _NBitLongLong,
|
102 |
+
_NBitHalf as _NBitHalf,
|
103 |
+
_NBitSingle as _NBitSingle,
|
104 |
+
_NBitDouble as _NBitDouble,
|
105 |
+
_NBitLongDouble as _NBitLongDouble,
|
106 |
+
)
|
107 |
+
from ._char_codes import (
|
108 |
+
_BoolCodes as _BoolCodes,
|
109 |
+
_UInt8Codes as _UInt8Codes,
|
110 |
+
_UInt16Codes as _UInt16Codes,
|
111 |
+
_UInt32Codes as _UInt32Codes,
|
112 |
+
_UInt64Codes as _UInt64Codes,
|
113 |
+
_Int8Codes as _Int8Codes,
|
114 |
+
_Int16Codes as _Int16Codes,
|
115 |
+
_Int32Codes as _Int32Codes,
|
116 |
+
_Int64Codes as _Int64Codes,
|
117 |
+
_Float16Codes as _Float16Codes,
|
118 |
+
_Float32Codes as _Float32Codes,
|
119 |
+
_Float64Codes as _Float64Codes,
|
120 |
+
_Complex64Codes as _Complex64Codes,
|
121 |
+
_Complex128Codes as _Complex128Codes,
|
122 |
+
_ByteCodes as _ByteCodes,
|
123 |
+
_ShortCodes as _ShortCodes,
|
124 |
+
_IntCCodes as _IntCCodes,
|
125 |
+
_IntPCodes as _IntPCodes,
|
126 |
+
_IntCodes as _IntCodes,
|
127 |
+
_LongLongCodes as _LongLongCodes,
|
128 |
+
_UByteCodes as _UByteCodes,
|
129 |
+
_UShortCodes as _UShortCodes,
|
130 |
+
_UIntCCodes as _UIntCCodes,
|
131 |
+
_UIntPCodes as _UIntPCodes,
|
132 |
+
_UIntCodes as _UIntCodes,
|
133 |
+
_ULongLongCodes as _ULongLongCodes,
|
134 |
+
_HalfCodes as _HalfCodes,
|
135 |
+
_SingleCodes as _SingleCodes,
|
136 |
+
_DoubleCodes as _DoubleCodes,
|
137 |
+
_LongDoubleCodes as _LongDoubleCodes,
|
138 |
+
_CSingleCodes as _CSingleCodes,
|
139 |
+
_CDoubleCodes as _CDoubleCodes,
|
140 |
+
_CLongDoubleCodes as _CLongDoubleCodes,
|
141 |
+
_DT64Codes as _DT64Codes,
|
142 |
+
_TD64Codes as _TD64Codes,
|
143 |
+
_StrCodes as _StrCodes,
|
144 |
+
_BytesCodes as _BytesCodes,
|
145 |
+
_VoidCodes as _VoidCodes,
|
146 |
+
_ObjectCodes as _ObjectCodes,
|
147 |
+
)
|
148 |
+
from ._scalars import (
|
149 |
+
_CharLike_co as _CharLike_co,
|
150 |
+
_BoolLike_co as _BoolLike_co,
|
151 |
+
_UIntLike_co as _UIntLike_co,
|
152 |
+
_IntLike_co as _IntLike_co,
|
153 |
+
_FloatLike_co as _FloatLike_co,
|
154 |
+
_ComplexLike_co as _ComplexLike_co,
|
155 |
+
_TD64Like_co as _TD64Like_co,
|
156 |
+
_NumberLike_co as _NumberLike_co,
|
157 |
+
_ScalarLike_co as _ScalarLike_co,
|
158 |
+
_VoidLike_co as _VoidLike_co,
|
159 |
+
)
|
160 |
+
from ._shape import (
|
161 |
+
_Shape as _Shape,
|
162 |
+
_ShapeLike as _ShapeLike,
|
163 |
+
)
|
164 |
+
from ._dtype_like import (
|
165 |
+
DTypeLike as DTypeLike,
|
166 |
+
_DTypeLike as _DTypeLike,
|
167 |
+
_SupportsDType as _SupportsDType,
|
168 |
+
_VoidDTypeLike as _VoidDTypeLike,
|
169 |
+
_DTypeLikeBool as _DTypeLikeBool,
|
170 |
+
_DTypeLikeUInt as _DTypeLikeUInt,
|
171 |
+
_DTypeLikeInt as _DTypeLikeInt,
|
172 |
+
_DTypeLikeFloat as _DTypeLikeFloat,
|
173 |
+
_DTypeLikeComplex as _DTypeLikeComplex,
|
174 |
+
_DTypeLikeTD64 as _DTypeLikeTD64,
|
175 |
+
_DTypeLikeDT64 as _DTypeLikeDT64,
|
176 |
+
_DTypeLikeObject as _DTypeLikeObject,
|
177 |
+
_DTypeLikeVoid as _DTypeLikeVoid,
|
178 |
+
_DTypeLikeStr as _DTypeLikeStr,
|
179 |
+
_DTypeLikeBytes as _DTypeLikeBytes,
|
180 |
+
_DTypeLikeComplex_co as _DTypeLikeComplex_co,
|
181 |
+
)
|
182 |
+
from ._array_like import (
|
183 |
+
NDArray as NDArray,
|
184 |
+
ArrayLike as ArrayLike,
|
185 |
+
_ArrayLike as _ArrayLike,
|
186 |
+
_FiniteNestedSequence as _FiniteNestedSequence,
|
187 |
+
_SupportsArray as _SupportsArray,
|
188 |
+
_SupportsArrayFunc as _SupportsArrayFunc,
|
189 |
+
_ArrayLikeInt as _ArrayLikeInt,
|
190 |
+
_ArrayLikeBool_co as _ArrayLikeBool_co,
|
191 |
+
_ArrayLikeUInt_co as _ArrayLikeUInt_co,
|
192 |
+
_ArrayLikeInt_co as _ArrayLikeInt_co,
|
193 |
+
_ArrayLikeFloat_co as _ArrayLikeFloat_co,
|
194 |
+
_ArrayLikeComplex_co as _ArrayLikeComplex_co,
|
195 |
+
_ArrayLikeNumber_co as _ArrayLikeNumber_co,
|
196 |
+
_ArrayLikeTD64_co as _ArrayLikeTD64_co,
|
197 |
+
_ArrayLikeDT64_co as _ArrayLikeDT64_co,
|
198 |
+
_ArrayLikeObject_co as _ArrayLikeObject_co,
|
199 |
+
_ArrayLikeVoid_co as _ArrayLikeVoid_co,
|
200 |
+
_ArrayLikeStr_co as _ArrayLikeStr_co,
|
201 |
+
_ArrayLikeBytes_co as _ArrayLikeBytes_co,
|
202 |
+
_ArrayLikeUnknown as _ArrayLikeUnknown,
|
203 |
+
_UnknownType as _UnknownType,
|
204 |
+
)
|
205 |
+
|
206 |
+
if TYPE_CHECKING:
|
207 |
+
from ._ufunc import (
|
208 |
+
_UFunc_Nin1_Nout1 as _UFunc_Nin1_Nout1,
|
209 |
+
_UFunc_Nin2_Nout1 as _UFunc_Nin2_Nout1,
|
210 |
+
_UFunc_Nin1_Nout2 as _UFunc_Nin1_Nout2,
|
211 |
+
_UFunc_Nin2_Nout2 as _UFunc_Nin2_Nout2,
|
212 |
+
_GUFunc_Nin2_Nout1 as _GUFunc_Nin2_Nout1,
|
213 |
+
)
|
214 |
+
else:
|
215 |
+
# Declare the (type-check-only) ufunc subclasses as ufunc aliases during
|
216 |
+
# runtime; this helps autocompletion tools such as Jedi (numpy/numpy#19834)
|
217 |
+
_UFunc_Nin1_Nout1 = ufunc
|
218 |
+
_UFunc_Nin2_Nout1 = ufunc
|
219 |
+
_UFunc_Nin1_Nout2 = ufunc
|
220 |
+
_UFunc_Nin2_Nout2 = ufunc
|
221 |
+
_GUFunc_Nin2_Nout1 = ufunc
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (6.13 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_add_docstring.cpython-310.pyc
ADDED
Binary file (3.81 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_array_like.cpython-310.pyc
ADDED
Binary file (3.35 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_char_codes.cpython-310.pyc
ADDED
Binary file (5.11 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_dtype_like.cpython-310.pyc
ADDED
Binary file (3.69 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_extended_precision.cpython-310.pyc
ADDED
Binary file (873 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nbit.cpython-310.pyc
ADDED
Binary file (480 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_nested_sequence.cpython-310.pyc
ADDED
Binary file (3.28 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_scalars.cpython-310.pyc
ADDED
Binary file (770 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/_shape.cpython-310.pyc
ADDED
Binary file (352 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/__pycache__/setup.cpython-310.pyc
ADDED
Binary file (562 Bytes). View file
|
|
venv/lib/python3.10/site-packages/numpy/_typing/_add_docstring.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module for creating docstrings for sphinx ``data`` domains."""
|
2 |
+
|
3 |
+
import re
|
4 |
+
import textwrap
|
5 |
+
|
6 |
+
from ._array_like import NDArray
|
7 |
+
|
8 |
+
_docstrings_list = []
|
9 |
+
|
10 |
+
|
11 |
+
def add_newdoc(name: str, value: str, doc: str) -> None:
|
12 |
+
"""Append ``_docstrings_list`` with a docstring for `name`.
|
13 |
+
|
14 |
+
Parameters
|
15 |
+
----------
|
16 |
+
name : str
|
17 |
+
The name of the object.
|
18 |
+
value : str
|
19 |
+
A string-representation of the object.
|
20 |
+
doc : str
|
21 |
+
The docstring of the object.
|
22 |
+
|
23 |
+
"""
|
24 |
+
_docstrings_list.append((name, value, doc))
|
25 |
+
|
26 |
+
|
27 |
+
def _parse_docstrings() -> str:
|
28 |
+
"""Convert all docstrings in ``_docstrings_list`` into a single
|
29 |
+
sphinx-legible text block.
|
30 |
+
|
31 |
+
"""
|
32 |
+
type_list_ret = []
|
33 |
+
for name, value, doc in _docstrings_list:
|
34 |
+
s = textwrap.dedent(doc).replace("\n", "\n ")
|
35 |
+
|
36 |
+
# Replace sections by rubrics
|
37 |
+
lines = s.split("\n")
|
38 |
+
new_lines = []
|
39 |
+
indent = ""
|
40 |
+
for line in lines:
|
41 |
+
m = re.match(r'^(\s+)[-=]+\s*$', line)
|
42 |
+
if m and new_lines:
|
43 |
+
prev = textwrap.dedent(new_lines.pop())
|
44 |
+
if prev == "Examples":
|
45 |
+
indent = ""
|
46 |
+
new_lines.append(f'{m.group(1)}.. rubric:: {prev}')
|
47 |
+
else:
|
48 |
+
indent = 4 * " "
|
49 |
+
new_lines.append(f'{m.group(1)}.. admonition:: {prev}')
|
50 |
+
new_lines.append("")
|
51 |
+
else:
|
52 |
+
new_lines.append(f"{indent}{line}")
|
53 |
+
|
54 |
+
s = "\n".join(new_lines)
|
55 |
+
s_block = f""".. data:: {name}\n :value: {value}\n {s}"""
|
56 |
+
type_list_ret.append(s_block)
|
57 |
+
return "\n".join(type_list_ret)
|
58 |
+
|
59 |
+
|
60 |
+
add_newdoc('ArrayLike', 'typing.Union[...]',
|
61 |
+
"""
|
62 |
+
A `~typing.Union` representing objects that can be coerced
|
63 |
+
into an `~numpy.ndarray`.
|
64 |
+
|
65 |
+
Among others this includes the likes of:
|
66 |
+
|
67 |
+
* Scalars.
|
68 |
+
* (Nested) sequences.
|
69 |
+
* Objects implementing the `~class.__array__` protocol.
|
70 |
+
|
71 |
+
.. versionadded:: 1.20
|
72 |
+
|
73 |
+
See Also
|
74 |
+
--------
|
75 |
+
:term:`array_like`:
|
76 |
+
Any scalar or sequence that can be interpreted as an ndarray.
|
77 |
+
|
78 |
+
Examples
|
79 |
+
--------
|
80 |
+
.. code-block:: python
|
81 |
+
|
82 |
+
>>> import numpy as np
|
83 |
+
>>> import numpy.typing as npt
|
84 |
+
|
85 |
+
>>> def as_array(a: npt.ArrayLike) -> np.ndarray:
|
86 |
+
... return np.array(a)
|
87 |
+
|
88 |
+
""")
|
89 |
+
|
90 |
+
add_newdoc('DTypeLike', 'typing.Union[...]',
|
91 |
+
"""
|
92 |
+
A `~typing.Union` representing objects that can be coerced
|
93 |
+
into a `~numpy.dtype`.
|
94 |
+
|
95 |
+
Among others this includes the likes of:
|
96 |
+
|
97 |
+
* :class:`type` objects.
|
98 |
+
* Character codes or the names of :class:`type` objects.
|
99 |
+
* Objects with the ``.dtype`` attribute.
|
100 |
+
|
101 |
+
.. versionadded:: 1.20
|
102 |
+
|
103 |
+
See Also
|
104 |
+
--------
|
105 |
+
:ref:`Specifying and constructing data types <arrays.dtypes.constructing>`
|
106 |
+
A comprehensive overview of all objects that can be coerced
|
107 |
+
into data types.
|
108 |
+
|
109 |
+
Examples
|
110 |
+
--------
|
111 |
+
.. code-block:: python
|
112 |
+
|
113 |
+
>>> import numpy as np
|
114 |
+
>>> import numpy.typing as npt
|
115 |
+
|
116 |
+
>>> def as_dtype(d: npt.DTypeLike) -> np.dtype:
|
117 |
+
... return np.dtype(d)
|
118 |
+
|
119 |
+
""")
|
120 |
+
|
121 |
+
add_newdoc('NDArray', repr(NDArray),
|
122 |
+
"""
|
123 |
+
A :term:`generic <generic type>` version of
|
124 |
+
`np.ndarray[Any, np.dtype[+ScalarType]] <numpy.ndarray>`.
|
125 |
+
|
126 |
+
Can be used during runtime for typing arrays with a given dtype
|
127 |
+
and unspecified shape.
|
128 |
+
|
129 |
+
.. versionadded:: 1.21
|
130 |
+
|
131 |
+
Examples
|
132 |
+
--------
|
133 |
+
.. code-block:: python
|
134 |
+
|
135 |
+
>>> import numpy as np
|
136 |
+
>>> import numpy.typing as npt
|
137 |
+
|
138 |
+
>>> print(npt.NDArray)
|
139 |
+
numpy.ndarray[typing.Any, numpy.dtype[+ScalarType]]
|
140 |
+
|
141 |
+
>>> print(npt.NDArray[np.float64])
|
142 |
+
numpy.ndarray[typing.Any, numpy.dtype[numpy.float64]]
|
143 |
+
|
144 |
+
>>> NDArrayInt = npt.NDArray[np.int_]
|
145 |
+
>>> a: NDArrayInt = np.arange(10)
|
146 |
+
|
147 |
+
>>> def func(a: npt.ArrayLike) -> npt.NDArray[Any]:
|
148 |
+
... return np.array(a)
|
149 |
+
|
150 |
+
""")
|
151 |
+
|
152 |
+
_docstrings = _parse_docstrings()
|
venv/lib/python3.10/site-packages/numpy/_typing/_array_like.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import sys
|
4 |
+
from collections.abc import Collection, Callable, Sequence
|
5 |
+
from typing import Any, Protocol, Union, TypeVar, runtime_checkable
|
6 |
+
|
7 |
+
from numpy import (
|
8 |
+
ndarray,
|
9 |
+
dtype,
|
10 |
+
generic,
|
11 |
+
bool_,
|
12 |
+
unsignedinteger,
|
13 |
+
integer,
|
14 |
+
floating,
|
15 |
+
complexfloating,
|
16 |
+
number,
|
17 |
+
timedelta64,
|
18 |
+
datetime64,
|
19 |
+
object_,
|
20 |
+
void,
|
21 |
+
str_,
|
22 |
+
bytes_,
|
23 |
+
)
|
24 |
+
from ._nested_sequence import _NestedSequence
|
25 |
+
|
26 |
+
_T = TypeVar("_T")
|
27 |
+
_ScalarType = TypeVar("_ScalarType", bound=generic)
|
28 |
+
_ScalarType_co = TypeVar("_ScalarType_co", bound=generic, covariant=True)
|
29 |
+
_DType = TypeVar("_DType", bound=dtype[Any])
|
30 |
+
_DType_co = TypeVar("_DType_co", covariant=True, bound=dtype[Any])
|
31 |
+
|
32 |
+
NDArray = ndarray[Any, dtype[_ScalarType_co]]
|
33 |
+
|
34 |
+
# The `_SupportsArray` protocol only cares about the default dtype
|
35 |
+
# (i.e. `dtype=None` or no `dtype` parameter at all) of the to-be returned
|
36 |
+
# array.
|
37 |
+
# Concrete implementations of the protocol are responsible for adding
|
38 |
+
# any and all remaining overloads
|
39 |
+
@runtime_checkable
|
40 |
+
class _SupportsArray(Protocol[_DType_co]):
|
41 |
+
def __array__(self) -> ndarray[Any, _DType_co]: ...
|
42 |
+
|
43 |
+
|
44 |
+
@runtime_checkable
|
45 |
+
class _SupportsArrayFunc(Protocol):
|
46 |
+
"""A protocol class representing `~class.__array_function__`."""
|
47 |
+
def __array_function__(
|
48 |
+
self,
|
49 |
+
func: Callable[..., Any],
|
50 |
+
types: Collection[type[Any]],
|
51 |
+
args: tuple[Any, ...],
|
52 |
+
kwargs: dict[str, Any],
|
53 |
+
) -> object: ...
|
54 |
+
|
55 |
+
|
56 |
+
# TODO: Wait until mypy supports recursive objects in combination with typevars
|
57 |
+
_FiniteNestedSequence = Union[
|
58 |
+
_T,
|
59 |
+
Sequence[_T],
|
60 |
+
Sequence[Sequence[_T]],
|
61 |
+
Sequence[Sequence[Sequence[_T]]],
|
62 |
+
Sequence[Sequence[Sequence[Sequence[_T]]]],
|
63 |
+
]
|
64 |
+
|
65 |
+
# A subset of `npt.ArrayLike` that can be parametrized w.r.t. `np.generic`
|
66 |
+
_ArrayLike = Union[
|
67 |
+
_SupportsArray[dtype[_ScalarType]],
|
68 |
+
_NestedSequence[_SupportsArray[dtype[_ScalarType]]],
|
69 |
+
]
|
70 |
+
|
71 |
+
# A union representing array-like objects; consists of two typevars:
|
72 |
+
# One representing types that can be parametrized w.r.t. `np.dtype`
|
73 |
+
# and another one for the rest
|
74 |
+
_DualArrayLike = Union[
|
75 |
+
_SupportsArray[_DType],
|
76 |
+
_NestedSequence[_SupportsArray[_DType]],
|
77 |
+
_T,
|
78 |
+
_NestedSequence[_T],
|
79 |
+
]
|
80 |
+
|
81 |
+
if sys.version_info >= (3, 12):
|
82 |
+
from collections.abc import Buffer
|
83 |
+
|
84 |
+
ArrayLike = Buffer | _DualArrayLike[
|
85 |
+
dtype[Any],
|
86 |
+
Union[bool, int, float, complex, str, bytes],
|
87 |
+
]
|
88 |
+
else:
|
89 |
+
ArrayLike = _DualArrayLike[
|
90 |
+
dtype[Any],
|
91 |
+
Union[bool, int, float, complex, str, bytes],
|
92 |
+
]
|
93 |
+
|
94 |
+
# `ArrayLike<X>_co`: array-like objects that can be coerced into `X`
|
95 |
+
# given the casting rules `same_kind`
|
96 |
+
_ArrayLikeBool_co = _DualArrayLike[
|
97 |
+
dtype[bool_],
|
98 |
+
bool,
|
99 |
+
]
|
100 |
+
_ArrayLikeUInt_co = _DualArrayLike[
|
101 |
+
dtype[Union[bool_, unsignedinteger[Any]]],
|
102 |
+
bool,
|
103 |
+
]
|
104 |
+
_ArrayLikeInt_co = _DualArrayLike[
|
105 |
+
dtype[Union[bool_, integer[Any]]],
|
106 |
+
Union[bool, int],
|
107 |
+
]
|
108 |
+
_ArrayLikeFloat_co = _DualArrayLike[
|
109 |
+
dtype[Union[bool_, integer[Any], floating[Any]]],
|
110 |
+
Union[bool, int, float],
|
111 |
+
]
|
112 |
+
_ArrayLikeComplex_co = _DualArrayLike[
|
113 |
+
dtype[Union[
|
114 |
+
bool_,
|
115 |
+
integer[Any],
|
116 |
+
floating[Any],
|
117 |
+
complexfloating[Any, Any],
|
118 |
+
]],
|
119 |
+
Union[bool, int, float, complex],
|
120 |
+
]
|
121 |
+
_ArrayLikeNumber_co = _DualArrayLike[
|
122 |
+
dtype[Union[bool_, number[Any]]],
|
123 |
+
Union[bool, int, float, complex],
|
124 |
+
]
|
125 |
+
_ArrayLikeTD64_co = _DualArrayLike[
|
126 |
+
dtype[Union[bool_, integer[Any], timedelta64]],
|
127 |
+
Union[bool, int],
|
128 |
+
]
|
129 |
+
_ArrayLikeDT64_co = Union[
|
130 |
+
_SupportsArray[dtype[datetime64]],
|
131 |
+
_NestedSequence[_SupportsArray[dtype[datetime64]]],
|
132 |
+
]
|
133 |
+
_ArrayLikeObject_co = Union[
|
134 |
+
_SupportsArray[dtype[object_]],
|
135 |
+
_NestedSequence[_SupportsArray[dtype[object_]]],
|
136 |
+
]
|
137 |
+
|
138 |
+
_ArrayLikeVoid_co = Union[
|
139 |
+
_SupportsArray[dtype[void]],
|
140 |
+
_NestedSequence[_SupportsArray[dtype[void]]],
|
141 |
+
]
|
142 |
+
_ArrayLikeStr_co = _DualArrayLike[
|
143 |
+
dtype[str_],
|
144 |
+
str,
|
145 |
+
]
|
146 |
+
_ArrayLikeBytes_co = _DualArrayLike[
|
147 |
+
dtype[bytes_],
|
148 |
+
bytes,
|
149 |
+
]
|
150 |
+
|
151 |
+
_ArrayLikeInt = _DualArrayLike[
|
152 |
+
dtype[integer[Any]],
|
153 |
+
int,
|
154 |
+
]
|
155 |
+
|
156 |
+
# Extra ArrayLike type so that pyright can deal with NDArray[Any]
|
157 |
+
# Used as the first overload, should only match NDArray[Any],
|
158 |
+
# not any actual types.
|
159 |
+
# https://github.com/numpy/numpy/pull/22193
|
160 |
+
class _UnknownType:
|
161 |
+
...
|
162 |
+
|
163 |
+
|
164 |
+
_ArrayLikeUnknown = _DualArrayLike[
|
165 |
+
dtype[_UnknownType],
|
166 |
+
_UnknownType,
|
167 |
+
]
|
venv/lib/python3.10/site-packages/numpy/_typing/_callable.pyi
ADDED
@@ -0,0 +1,338 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A module with various ``typing.Protocol`` subclasses that implement
|
3 |
+
the ``__call__`` magic method.
|
4 |
+
|
5 |
+
See the `Mypy documentation`_ on protocols for more details.
|
6 |
+
|
7 |
+
.. _`Mypy documentation`: https://mypy.readthedocs.io/en/stable/protocols.html#callback-protocols
|
8 |
+
|
9 |
+
"""
|
10 |
+
|
11 |
+
from __future__ import annotations
|
12 |
+
|
13 |
+
from typing import (
|
14 |
+
TypeVar,
|
15 |
+
overload,
|
16 |
+
Any,
|
17 |
+
NoReturn,
|
18 |
+
Protocol,
|
19 |
+
)
|
20 |
+
|
21 |
+
from numpy import (
|
22 |
+
ndarray,
|
23 |
+
dtype,
|
24 |
+
generic,
|
25 |
+
bool_,
|
26 |
+
timedelta64,
|
27 |
+
number,
|
28 |
+
integer,
|
29 |
+
unsignedinteger,
|
30 |
+
signedinteger,
|
31 |
+
int8,
|
32 |
+
int_,
|
33 |
+
floating,
|
34 |
+
float64,
|
35 |
+
complexfloating,
|
36 |
+
complex128,
|
37 |
+
)
|
38 |
+
from ._nbit import _NBitInt, _NBitDouble
|
39 |
+
from ._scalars import (
|
40 |
+
_BoolLike_co,
|
41 |
+
_IntLike_co,
|
42 |
+
_FloatLike_co,
|
43 |
+
_NumberLike_co,
|
44 |
+
)
|
45 |
+
from . import NBitBase
|
46 |
+
from ._array_like import NDArray
|
47 |
+
from ._nested_sequence import _NestedSequence
|
48 |
+
|
49 |
+
_T1 = TypeVar("_T1")
|
50 |
+
_T2 = TypeVar("_T2")
|
51 |
+
_T1_contra = TypeVar("_T1_contra", contravariant=True)
|
52 |
+
_T2_contra = TypeVar("_T2_contra", contravariant=True)
|
53 |
+
_2Tuple = tuple[_T1, _T1]
|
54 |
+
|
55 |
+
_NBit1 = TypeVar("_NBit1", bound=NBitBase)
|
56 |
+
_NBit2 = TypeVar("_NBit2", bound=NBitBase)
|
57 |
+
|
58 |
+
_IntType = TypeVar("_IntType", bound=integer)
|
59 |
+
_FloatType = TypeVar("_FloatType", bound=floating)
|
60 |
+
_NumberType = TypeVar("_NumberType", bound=number)
|
61 |
+
_NumberType_co = TypeVar("_NumberType_co", covariant=True, bound=number)
|
62 |
+
_GenericType_co = TypeVar("_GenericType_co", covariant=True, bound=generic)
|
63 |
+
|
64 |
+
class _BoolOp(Protocol[_GenericType_co]):
|
65 |
+
@overload
|
66 |
+
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
67 |
+
@overload # platform dependent
|
68 |
+
def __call__(self, other: int, /) -> int_: ...
|
69 |
+
@overload
|
70 |
+
def __call__(self, other: float, /) -> float64: ...
|
71 |
+
@overload
|
72 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
73 |
+
@overload
|
74 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
75 |
+
|
76 |
+
class _BoolBitOp(Protocol[_GenericType_co]):
|
77 |
+
@overload
|
78 |
+
def __call__(self, other: _BoolLike_co, /) -> _GenericType_co: ...
|
79 |
+
@overload # platform dependent
|
80 |
+
def __call__(self, other: int, /) -> int_: ...
|
81 |
+
@overload
|
82 |
+
def __call__(self, other: _IntType, /) -> _IntType: ...
|
83 |
+
|
84 |
+
class _BoolSub(Protocol):
|
85 |
+
# Note that `other: bool_` is absent here
|
86 |
+
@overload
|
87 |
+
def __call__(self, other: bool, /) -> NoReturn: ...
|
88 |
+
@overload # platform dependent
|
89 |
+
def __call__(self, other: int, /) -> int_: ...
|
90 |
+
@overload
|
91 |
+
def __call__(self, other: float, /) -> float64: ...
|
92 |
+
@overload
|
93 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
94 |
+
@overload
|
95 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
96 |
+
|
97 |
+
class _BoolTrueDiv(Protocol):
|
98 |
+
@overload
|
99 |
+
def __call__(self, other: float | _IntLike_co, /) -> float64: ...
|
100 |
+
@overload
|
101 |
+
def __call__(self, other: complex, /) -> complex128: ...
|
102 |
+
@overload
|
103 |
+
def __call__(self, other: _NumberType, /) -> _NumberType: ...
|
104 |
+
|
105 |
+
class _BoolMod(Protocol):
|
106 |
+
@overload
|
107 |
+
def __call__(self, other: _BoolLike_co, /) -> int8: ...
|
108 |
+
@overload # platform dependent
|
109 |
+
def __call__(self, other: int, /) -> int_: ...
|
110 |
+
@overload
|
111 |
+
def __call__(self, other: float, /) -> float64: ...
|
112 |
+
@overload
|
113 |
+
def __call__(self, other: _IntType, /) -> _IntType: ...
|
114 |
+
@overload
|
115 |
+
def __call__(self, other: _FloatType, /) -> _FloatType: ...
|
116 |
+
|
117 |
+
class _BoolDivMod(Protocol):
|
118 |
+
@overload
|
119 |
+
def __call__(self, other: _BoolLike_co, /) -> _2Tuple[int8]: ...
|
120 |
+
@overload # platform dependent
|
121 |
+
def __call__(self, other: int, /) -> _2Tuple[int_]: ...
|
122 |
+
@overload
|
123 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
124 |
+
@overload
|
125 |
+
def __call__(self, other: _IntType, /) -> _2Tuple[_IntType]: ...
|
126 |
+
@overload
|
127 |
+
def __call__(self, other: _FloatType, /) -> _2Tuple[_FloatType]: ...
|
128 |
+
|
129 |
+
class _TD64Div(Protocol[_NumberType_co]):
|
130 |
+
@overload
|
131 |
+
def __call__(self, other: timedelta64, /) -> _NumberType_co: ...
|
132 |
+
@overload
|
133 |
+
def __call__(self, other: _BoolLike_co, /) -> NoReturn: ...
|
134 |
+
@overload
|
135 |
+
def __call__(self, other: _FloatLike_co, /) -> timedelta64: ...
|
136 |
+
|
137 |
+
class _IntTrueDiv(Protocol[_NBit1]):
|
138 |
+
@overload
|
139 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
140 |
+
@overload
|
141 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
142 |
+
@overload
|
143 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
144 |
+
@overload
|
145 |
+
def __call__(
|
146 |
+
self, other: complex, /,
|
147 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
148 |
+
@overload
|
149 |
+
def __call__(self, other: integer[_NBit2], /) -> floating[_NBit1 | _NBit2]: ...
|
150 |
+
|
151 |
+
class _UnsignedIntOp(Protocol[_NBit1]):
|
152 |
+
# NOTE: `uint64 + signedinteger -> float64`
|
153 |
+
@overload
|
154 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
155 |
+
@overload
|
156 |
+
def __call__(
|
157 |
+
self, other: int | signedinteger[Any], /
|
158 |
+
) -> Any: ...
|
159 |
+
@overload
|
160 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
161 |
+
@overload
|
162 |
+
def __call__(
|
163 |
+
self, other: complex, /,
|
164 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
165 |
+
@overload
|
166 |
+
def __call__(
|
167 |
+
self, other: unsignedinteger[_NBit2], /
|
168 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
169 |
+
|
170 |
+
class _UnsignedIntBitOp(Protocol[_NBit1]):
|
171 |
+
@overload
|
172 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
173 |
+
@overload
|
174 |
+
def __call__(self, other: int, /) -> signedinteger[Any]: ...
|
175 |
+
@overload
|
176 |
+
def __call__(self, other: signedinteger[Any], /) -> signedinteger[Any]: ...
|
177 |
+
@overload
|
178 |
+
def __call__(
|
179 |
+
self, other: unsignedinteger[_NBit2], /
|
180 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
181 |
+
|
182 |
+
class _UnsignedIntMod(Protocol[_NBit1]):
|
183 |
+
@overload
|
184 |
+
def __call__(self, other: bool, /) -> unsignedinteger[_NBit1]: ...
|
185 |
+
@overload
|
186 |
+
def __call__(
|
187 |
+
self, other: int | signedinteger[Any], /
|
188 |
+
) -> Any: ...
|
189 |
+
@overload
|
190 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
191 |
+
@overload
|
192 |
+
def __call__(
|
193 |
+
self, other: unsignedinteger[_NBit2], /
|
194 |
+
) -> unsignedinteger[_NBit1 | _NBit2]: ...
|
195 |
+
|
196 |
+
class _UnsignedIntDivMod(Protocol[_NBit1]):
|
197 |
+
@overload
|
198 |
+
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
199 |
+
@overload
|
200 |
+
def __call__(
|
201 |
+
self, other: int | signedinteger[Any], /
|
202 |
+
) -> _2Tuple[Any]: ...
|
203 |
+
@overload
|
204 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
205 |
+
@overload
|
206 |
+
def __call__(
|
207 |
+
self, other: unsignedinteger[_NBit2], /
|
208 |
+
) -> _2Tuple[unsignedinteger[_NBit1 | _NBit2]]: ...
|
209 |
+
|
210 |
+
class _SignedIntOp(Protocol[_NBit1]):
|
211 |
+
@overload
|
212 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
213 |
+
@overload
|
214 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
215 |
+
@overload
|
216 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
217 |
+
@overload
|
218 |
+
def __call__(
|
219 |
+
self, other: complex, /,
|
220 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
221 |
+
@overload
|
222 |
+
def __call__(
|
223 |
+
self, other: signedinteger[_NBit2], /,
|
224 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
225 |
+
|
226 |
+
class _SignedIntBitOp(Protocol[_NBit1]):
|
227 |
+
@overload
|
228 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
229 |
+
@overload
|
230 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
231 |
+
@overload
|
232 |
+
def __call__(
|
233 |
+
self, other: signedinteger[_NBit2], /,
|
234 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
235 |
+
|
236 |
+
class _SignedIntMod(Protocol[_NBit1]):
|
237 |
+
@overload
|
238 |
+
def __call__(self, other: bool, /) -> signedinteger[_NBit1]: ...
|
239 |
+
@overload
|
240 |
+
def __call__(self, other: int, /) -> signedinteger[_NBit1 | _NBitInt]: ...
|
241 |
+
@overload
|
242 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
243 |
+
@overload
|
244 |
+
def __call__(
|
245 |
+
self, other: signedinteger[_NBit2], /,
|
246 |
+
) -> signedinteger[_NBit1 | _NBit2]: ...
|
247 |
+
|
248 |
+
class _SignedIntDivMod(Protocol[_NBit1]):
|
249 |
+
@overload
|
250 |
+
def __call__(self, other: bool, /) -> _2Tuple[signedinteger[_NBit1]]: ...
|
251 |
+
@overload
|
252 |
+
def __call__(self, other: int, /) -> _2Tuple[signedinteger[_NBit1 | _NBitInt]]: ...
|
253 |
+
@overload
|
254 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
255 |
+
@overload
|
256 |
+
def __call__(
|
257 |
+
self, other: signedinteger[_NBit2], /,
|
258 |
+
) -> _2Tuple[signedinteger[_NBit1 | _NBit2]]: ...
|
259 |
+
|
260 |
+
class _FloatOp(Protocol[_NBit1]):
|
261 |
+
@overload
|
262 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
263 |
+
@overload
|
264 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
265 |
+
@overload
|
266 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
267 |
+
@overload
|
268 |
+
def __call__(
|
269 |
+
self, other: complex, /,
|
270 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
271 |
+
@overload
|
272 |
+
def __call__(
|
273 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
274 |
+
) -> floating[_NBit1 | _NBit2]: ...
|
275 |
+
|
276 |
+
class _FloatMod(Protocol[_NBit1]):
|
277 |
+
@overload
|
278 |
+
def __call__(self, other: bool, /) -> floating[_NBit1]: ...
|
279 |
+
@overload
|
280 |
+
def __call__(self, other: int, /) -> floating[_NBit1 | _NBitInt]: ...
|
281 |
+
@overload
|
282 |
+
def __call__(self, other: float, /) -> floating[_NBit1 | _NBitDouble]: ...
|
283 |
+
@overload
|
284 |
+
def __call__(
|
285 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
286 |
+
) -> floating[_NBit1 | _NBit2]: ...
|
287 |
+
|
288 |
+
class _FloatDivMod(Protocol[_NBit1]):
|
289 |
+
@overload
|
290 |
+
def __call__(self, other: bool, /) -> _2Tuple[floating[_NBit1]]: ...
|
291 |
+
@overload
|
292 |
+
def __call__(self, other: int, /) -> _2Tuple[floating[_NBit1 | _NBitInt]]: ...
|
293 |
+
@overload
|
294 |
+
def __call__(self, other: float, /) -> _2Tuple[floating[_NBit1 | _NBitDouble]]: ...
|
295 |
+
@overload
|
296 |
+
def __call__(
|
297 |
+
self, other: integer[_NBit2] | floating[_NBit2], /
|
298 |
+
) -> _2Tuple[floating[_NBit1 | _NBit2]]: ...
|
299 |
+
|
300 |
+
class _ComplexOp(Protocol[_NBit1]):
|
301 |
+
@overload
|
302 |
+
def __call__(self, other: bool, /) -> complexfloating[_NBit1, _NBit1]: ...
|
303 |
+
@overload
|
304 |
+
def __call__(self, other: int, /) -> complexfloating[_NBit1 | _NBitInt, _NBit1 | _NBitInt]: ...
|
305 |
+
@overload
|
306 |
+
def __call__(
|
307 |
+
self, other: complex, /,
|
308 |
+
) -> complexfloating[_NBit1 | _NBitDouble, _NBit1 | _NBitDouble]: ...
|
309 |
+
@overload
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
other: (
|
313 |
+
integer[_NBit2]
|
314 |
+
| floating[_NBit2]
|
315 |
+
| complexfloating[_NBit2, _NBit2]
|
316 |
+
), /,
|
317 |
+
) -> complexfloating[_NBit1 | _NBit2, _NBit1 | _NBit2]: ...
|
318 |
+
|
319 |
+
class _NumberOp(Protocol):
|
320 |
+
def __call__(self, other: _NumberLike_co, /) -> Any: ...
|
321 |
+
|
322 |
+
class _SupportsLT(Protocol):
|
323 |
+
def __lt__(self, other: Any, /) -> object: ...
|
324 |
+
|
325 |
+
class _SupportsGT(Protocol):
|
326 |
+
def __gt__(self, other: Any, /) -> object: ...
|
327 |
+
|
328 |
+
class _ComparisonOp(Protocol[_T1_contra, _T2_contra]):
|
329 |
+
@overload
|
330 |
+
def __call__(self, other: _T1_contra, /) -> bool_: ...
|
331 |
+
@overload
|
332 |
+
def __call__(self, other: _T2_contra, /) -> NDArray[bool_]: ...
|
333 |
+
@overload
|
334 |
+
def __call__(
|
335 |
+
self,
|
336 |
+
other: _SupportsLT | _SupportsGT | _NestedSequence[_SupportsLT | _SupportsGT],
|
337 |
+
/,
|
338 |
+
) -> Any: ...
|
venv/lib/python3.10/site-packages/numpy/_typing/_char_codes.py
ADDED
@@ -0,0 +1,111 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Literal
|
2 |
+
|
3 |
+
_BoolCodes = Literal["?", "=?", "<?", ">?", "bool", "bool_", "bool8"]
|
4 |
+
|
5 |
+
_UInt8Codes = Literal["uint8", "u1", "=u1", "<u1", ">u1"]
|
6 |
+
_UInt16Codes = Literal["uint16", "u2", "=u2", "<u2", ">u2"]
|
7 |
+
_UInt32Codes = Literal["uint32", "u4", "=u4", "<u4", ">u4"]
|
8 |
+
_UInt64Codes = Literal["uint64", "u8", "=u8", "<u8", ">u8"]
|
9 |
+
|
10 |
+
_Int8Codes = Literal["int8", "i1", "=i1", "<i1", ">i1"]
|
11 |
+
_Int16Codes = Literal["int16", "i2", "=i2", "<i2", ">i2"]
|
12 |
+
_Int32Codes = Literal["int32", "i4", "=i4", "<i4", ">i4"]
|
13 |
+
_Int64Codes = Literal["int64", "i8", "=i8", "<i8", ">i8"]
|
14 |
+
|
15 |
+
_Float16Codes = Literal["float16", "f2", "=f2", "<f2", ">f2"]
|
16 |
+
_Float32Codes = Literal["float32", "f4", "=f4", "<f4", ">f4"]
|
17 |
+
_Float64Codes = Literal["float64", "f8", "=f8", "<f8", ">f8"]
|
18 |
+
|
19 |
+
_Complex64Codes = Literal["complex64", "c8", "=c8", "<c8", ">c8"]
|
20 |
+
_Complex128Codes = Literal["complex128", "c16", "=c16", "<c16", ">c16"]
|
21 |
+
|
22 |
+
_ByteCodes = Literal["byte", "b", "=b", "<b", ">b"]
|
23 |
+
_ShortCodes = Literal["short", "h", "=h", "<h", ">h"]
|
24 |
+
_IntCCodes = Literal["intc", "i", "=i", "<i", ">i"]
|
25 |
+
_IntPCodes = Literal["intp", "int0", "p", "=p", "<p", ">p"]
|
26 |
+
_IntCodes = Literal["long", "int", "int_", "l", "=l", "<l", ">l"]
|
27 |
+
_LongLongCodes = Literal["longlong", "q", "=q", "<q", ">q"]
|
28 |
+
|
29 |
+
_UByteCodes = Literal["ubyte", "B", "=B", "<B", ">B"]
|
30 |
+
_UShortCodes = Literal["ushort", "H", "=H", "<H", ">H"]
|
31 |
+
_UIntCCodes = Literal["uintc", "I", "=I", "<I", ">I"]
|
32 |
+
_UIntPCodes = Literal["uintp", "uint0", "P", "=P", "<P", ">P"]
|
33 |
+
_UIntCodes = Literal["ulong", "uint", "L", "=L", "<L", ">L"]
|
34 |
+
_ULongLongCodes = Literal["ulonglong", "Q", "=Q", "<Q", ">Q"]
|
35 |
+
|
36 |
+
_HalfCodes = Literal["half", "e", "=e", "<e", ">e"]
|
37 |
+
_SingleCodes = Literal["single", "f", "=f", "<f", ">f"]
|
38 |
+
_DoubleCodes = Literal["double", "float", "float_", "d", "=d", "<d", ">d"]
|
39 |
+
_LongDoubleCodes = Literal["longdouble", "longfloat", "g", "=g", "<g", ">g"]
|
40 |
+
|
41 |
+
_CSingleCodes = Literal["csingle", "singlecomplex", "F", "=F", "<F", ">F"]
|
42 |
+
_CDoubleCodes = Literal["cdouble", "complex", "complex_", "cfloat", "D", "=D", "<D", ">D"]
|
43 |
+
_CLongDoubleCodes = Literal["clongdouble", "clongfloat", "longcomplex", "G", "=G", "<G", ">G"]
|
44 |
+
|
45 |
+
_StrCodes = Literal["str", "str_", "str0", "unicode", "unicode_", "U", "=U", "<U", ">U"]
|
46 |
+
_BytesCodes = Literal["bytes", "bytes_", "bytes0", "S", "=S", "<S", ">S"]
|
47 |
+
_VoidCodes = Literal["void", "void0", "V", "=V", "<V", ">V"]
|
48 |
+
_ObjectCodes = Literal["object", "object_", "O", "=O", "<O", ">O"]
|
49 |
+
|
50 |
+
_DT64Codes = Literal[
|
51 |
+
"datetime64", "=datetime64", "<datetime64", ">datetime64",
|
52 |
+
"datetime64[Y]", "=datetime64[Y]", "<datetime64[Y]", ">datetime64[Y]",
|
53 |
+
"datetime64[M]", "=datetime64[M]", "<datetime64[M]", ">datetime64[M]",
|
54 |
+
"datetime64[W]", "=datetime64[W]", "<datetime64[W]", ">datetime64[W]",
|
55 |
+
"datetime64[D]", "=datetime64[D]", "<datetime64[D]", ">datetime64[D]",
|
56 |
+
"datetime64[h]", "=datetime64[h]", "<datetime64[h]", ">datetime64[h]",
|
57 |
+
"datetime64[m]", "=datetime64[m]", "<datetime64[m]", ">datetime64[m]",
|
58 |
+
"datetime64[s]", "=datetime64[s]", "<datetime64[s]", ">datetime64[s]",
|
59 |
+
"datetime64[ms]", "=datetime64[ms]", "<datetime64[ms]", ">datetime64[ms]",
|
60 |
+
"datetime64[us]", "=datetime64[us]", "<datetime64[us]", ">datetime64[us]",
|
61 |
+
"datetime64[ns]", "=datetime64[ns]", "<datetime64[ns]", ">datetime64[ns]",
|
62 |
+
"datetime64[ps]", "=datetime64[ps]", "<datetime64[ps]", ">datetime64[ps]",
|
63 |
+
"datetime64[fs]", "=datetime64[fs]", "<datetime64[fs]", ">datetime64[fs]",
|
64 |
+
"datetime64[as]", "=datetime64[as]", "<datetime64[as]", ">datetime64[as]",
|
65 |
+
"M", "=M", "<M", ">M",
|
66 |
+
"M8", "=M8", "<M8", ">M8",
|
67 |
+
"M8[Y]", "=M8[Y]", "<M8[Y]", ">M8[Y]",
|
68 |
+
"M8[M]", "=M8[M]", "<M8[M]", ">M8[M]",
|
69 |
+
"M8[W]", "=M8[W]", "<M8[W]", ">M8[W]",
|
70 |
+
"M8[D]", "=M8[D]", "<M8[D]", ">M8[D]",
|
71 |
+
"M8[h]", "=M8[h]", "<M8[h]", ">M8[h]",
|
72 |
+
"M8[m]", "=M8[m]", "<M8[m]", ">M8[m]",
|
73 |
+
"M8[s]", "=M8[s]", "<M8[s]", ">M8[s]",
|
74 |
+
"M8[ms]", "=M8[ms]", "<M8[ms]", ">M8[ms]",
|
75 |
+
"M8[us]", "=M8[us]", "<M8[us]", ">M8[us]",
|
76 |
+
"M8[ns]", "=M8[ns]", "<M8[ns]", ">M8[ns]",
|
77 |
+
"M8[ps]", "=M8[ps]", "<M8[ps]", ">M8[ps]",
|
78 |
+
"M8[fs]", "=M8[fs]", "<M8[fs]", ">M8[fs]",
|
79 |
+
"M8[as]", "=M8[as]", "<M8[as]", ">M8[as]",
|
80 |
+
]
|
81 |
+
_TD64Codes = Literal[
|
82 |
+
"timedelta64", "=timedelta64", "<timedelta64", ">timedelta64",
|
83 |
+
"timedelta64[Y]", "=timedelta64[Y]", "<timedelta64[Y]", ">timedelta64[Y]",
|
84 |
+
"timedelta64[M]", "=timedelta64[M]", "<timedelta64[M]", ">timedelta64[M]",
|
85 |
+
"timedelta64[W]", "=timedelta64[W]", "<timedelta64[W]", ">timedelta64[W]",
|
86 |
+
"timedelta64[D]", "=timedelta64[D]", "<timedelta64[D]", ">timedelta64[D]",
|
87 |
+
"timedelta64[h]", "=timedelta64[h]", "<timedelta64[h]", ">timedelta64[h]",
|
88 |
+
"timedelta64[m]", "=timedelta64[m]", "<timedelta64[m]", ">timedelta64[m]",
|
89 |
+
"timedelta64[s]", "=timedelta64[s]", "<timedelta64[s]", ">timedelta64[s]",
|
90 |
+
"timedelta64[ms]", "=timedelta64[ms]", "<timedelta64[ms]", ">timedelta64[ms]",
|
91 |
+
"timedelta64[us]", "=timedelta64[us]", "<timedelta64[us]", ">timedelta64[us]",
|
92 |
+
"timedelta64[ns]", "=timedelta64[ns]", "<timedelta64[ns]", ">timedelta64[ns]",
|
93 |
+
"timedelta64[ps]", "=timedelta64[ps]", "<timedelta64[ps]", ">timedelta64[ps]",
|
94 |
+
"timedelta64[fs]", "=timedelta64[fs]", "<timedelta64[fs]", ">timedelta64[fs]",
|
95 |
+
"timedelta64[as]", "=timedelta64[as]", "<timedelta64[as]", ">timedelta64[as]",
|
96 |
+
"m", "=m", "<m", ">m",
|
97 |
+
"m8", "=m8", "<m8", ">m8",
|
98 |
+
"m8[Y]", "=m8[Y]", "<m8[Y]", ">m8[Y]",
|
99 |
+
"m8[M]", "=m8[M]", "<m8[M]", ">m8[M]",
|
100 |
+
"m8[W]", "=m8[W]", "<m8[W]", ">m8[W]",
|
101 |
+
"m8[D]", "=m8[D]", "<m8[D]", ">m8[D]",
|
102 |
+
"m8[h]", "=m8[h]", "<m8[h]", ">m8[h]",
|
103 |
+
"m8[m]", "=m8[m]", "<m8[m]", ">m8[m]",
|
104 |
+
"m8[s]", "=m8[s]", "<m8[s]", ">m8[s]",
|
105 |
+
"m8[ms]", "=m8[ms]", "<m8[ms]", ">m8[ms]",
|
106 |
+
"m8[us]", "=m8[us]", "<m8[us]", ">m8[us]",
|
107 |
+
"m8[ns]", "=m8[ns]", "<m8[ns]", ">m8[ns]",
|
108 |
+
"m8[ps]", "=m8[ps]", "<m8[ps]", ">m8[ps]",
|
109 |
+
"m8[fs]", "=m8[fs]", "<m8[fs]", ">m8[fs]",
|
110 |
+
"m8[as]", "=m8[as]", "<m8[as]", ">m8[as]",
|
111 |
+
]
|
venv/lib/python3.10/site-packages/numpy/_typing/_extended_precision.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with platform-specific extended precision
|
2 |
+
`numpy.number` subclasses.
|
3 |
+
|
4 |
+
The subclasses are defined here (instead of ``__init__.pyi``) such
|
5 |
+
that they can be imported conditionally via the numpy's mypy plugin.
|
6 |
+
"""
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
from . import (
|
10 |
+
_80Bit,
|
11 |
+
_96Bit,
|
12 |
+
_128Bit,
|
13 |
+
_256Bit,
|
14 |
+
)
|
15 |
+
|
16 |
+
uint128 = np.unsignedinteger[_128Bit]
|
17 |
+
uint256 = np.unsignedinteger[_256Bit]
|
18 |
+
int128 = np.signedinteger[_128Bit]
|
19 |
+
int256 = np.signedinteger[_256Bit]
|
20 |
+
float80 = np.floating[_80Bit]
|
21 |
+
float96 = np.floating[_96Bit]
|
22 |
+
float128 = np.floating[_128Bit]
|
23 |
+
float256 = np.floating[_256Bit]
|
24 |
+
complex160 = np.complexfloating[_80Bit, _80Bit]
|
25 |
+
complex192 = np.complexfloating[_96Bit, _96Bit]
|
26 |
+
complex256 = np.complexfloating[_128Bit, _128Bit]
|
27 |
+
complex512 = np.complexfloating[_256Bit, _256Bit]
|
venv/lib/python3.10/site-packages/numpy/_typing/_nbit.py
ADDED
@@ -0,0 +1,16 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with the precisions of platform-specific `~numpy.number`s."""
|
2 |
+
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
# To-be replaced with a `npt.NBitBase` subclass by numpy's mypy plugin
|
6 |
+
_NBitByte = Any
|
7 |
+
_NBitShort = Any
|
8 |
+
_NBitIntC = Any
|
9 |
+
_NBitIntP = Any
|
10 |
+
_NBitInt = Any
|
11 |
+
_NBitLongLong = Any
|
12 |
+
|
13 |
+
_NBitHalf = Any
|
14 |
+
_NBitSingle = Any
|
15 |
+
_NBitDouble = Any
|
16 |
+
_NBitLongDouble = Any
|
venv/lib/python3.10/site-packages/numpy/_typing/_nested_sequence.py
ADDED
@@ -0,0 +1,86 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module containing the `_NestedSequence` protocol."""
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from collections.abc import Iterator
|
6 |
+
from typing import (
|
7 |
+
Any,
|
8 |
+
TypeVar,
|
9 |
+
Protocol,
|
10 |
+
runtime_checkable,
|
11 |
+
)
|
12 |
+
|
13 |
+
__all__ = ["_NestedSequence"]
|
14 |
+
|
15 |
+
_T_co = TypeVar("_T_co", covariant=True)
|
16 |
+
|
17 |
+
|
18 |
+
@runtime_checkable
|
19 |
+
class _NestedSequence(Protocol[_T_co]):
|
20 |
+
"""A protocol for representing nested sequences.
|
21 |
+
|
22 |
+
Warning
|
23 |
+
-------
|
24 |
+
`_NestedSequence` currently does not work in combination with typevars,
|
25 |
+
*e.g.* ``def func(a: _NestedSequnce[T]) -> T: ...``.
|
26 |
+
|
27 |
+
See Also
|
28 |
+
--------
|
29 |
+
collections.abc.Sequence
|
30 |
+
ABCs for read-only and mutable :term:`sequences`.
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
.. code-block:: python
|
35 |
+
|
36 |
+
>>> from __future__ import annotations
|
37 |
+
|
38 |
+
>>> from typing import TYPE_CHECKING
|
39 |
+
>>> import numpy as np
|
40 |
+
>>> from numpy._typing import _NestedSequence
|
41 |
+
|
42 |
+
>>> def get_dtype(seq: _NestedSequence[float]) -> np.dtype[np.float64]:
|
43 |
+
... return np.asarray(seq).dtype
|
44 |
+
|
45 |
+
>>> a = get_dtype([1.0])
|
46 |
+
>>> b = get_dtype([[1.0]])
|
47 |
+
>>> c = get_dtype([[[1.0]]])
|
48 |
+
>>> d = get_dtype([[[[1.0]]]])
|
49 |
+
|
50 |
+
>>> if TYPE_CHECKING:
|
51 |
+
... reveal_locals()
|
52 |
+
... # note: Revealed local types are:
|
53 |
+
... # note: a: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
54 |
+
... # note: b: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
55 |
+
... # note: c: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
56 |
+
... # note: d: numpy.dtype[numpy.floating[numpy._typing._64Bit]]
|
57 |
+
|
58 |
+
"""
|
59 |
+
|
60 |
+
def __len__(self, /) -> int:
|
61 |
+
"""Implement ``len(self)``."""
|
62 |
+
raise NotImplementedError
|
63 |
+
|
64 |
+
def __getitem__(self, index: int, /) -> _T_co | _NestedSequence[_T_co]:
|
65 |
+
"""Implement ``self[x]``."""
|
66 |
+
raise NotImplementedError
|
67 |
+
|
68 |
+
def __contains__(self, x: object, /) -> bool:
|
69 |
+
"""Implement ``x in self``."""
|
70 |
+
raise NotImplementedError
|
71 |
+
|
72 |
+
def __iter__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
73 |
+
"""Implement ``iter(self)``."""
|
74 |
+
raise NotImplementedError
|
75 |
+
|
76 |
+
def __reversed__(self, /) -> Iterator[_T_co | _NestedSequence[_T_co]]:
|
77 |
+
"""Implement ``reversed(self)``."""
|
78 |
+
raise NotImplementedError
|
79 |
+
|
80 |
+
def count(self, value: Any, /) -> int:
|
81 |
+
"""Return the number of occurrences of `value`."""
|
82 |
+
raise NotImplementedError
|
83 |
+
|
84 |
+
def index(self, value: Any, /) -> int:
|
85 |
+
"""Return the first index of `value`."""
|
86 |
+
raise NotImplementedError
|
venv/lib/python3.10/site-packages/numpy/_typing/_scalars.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Union, Any
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
# NOTE: `_StrLike_co` and `_BytesLike_co` are pointless, as `np.str_` and
|
6 |
+
# `np.bytes_` are already subclasses of their builtin counterpart
|
7 |
+
|
8 |
+
_CharLike_co = Union[str, bytes]
|
9 |
+
|
10 |
+
# The 6 `<X>Like_co` type-aliases below represent all scalars that can be
|
11 |
+
# coerced into `<X>` (with the casting rule `same_kind`)
|
12 |
+
_BoolLike_co = Union[bool, np.bool_]
|
13 |
+
_UIntLike_co = Union[_BoolLike_co, np.unsignedinteger[Any]]
|
14 |
+
_IntLike_co = Union[_BoolLike_co, int, np.integer[Any]]
|
15 |
+
_FloatLike_co = Union[_IntLike_co, float, np.floating[Any]]
|
16 |
+
_ComplexLike_co = Union[_FloatLike_co, complex, np.complexfloating[Any, Any]]
|
17 |
+
_TD64Like_co = Union[_IntLike_co, np.timedelta64]
|
18 |
+
|
19 |
+
_NumberLike_co = Union[int, float, complex, np.number[Any], np.bool_]
|
20 |
+
_ScalarLike_co = Union[
|
21 |
+
int,
|
22 |
+
float,
|
23 |
+
complex,
|
24 |
+
str,
|
25 |
+
bytes,
|
26 |
+
np.generic,
|
27 |
+
]
|
28 |
+
|
29 |
+
# `_VoidLike_co` is technically not a scalar, but it's close enough
|
30 |
+
_VoidLike_co = Union[tuple[Any, ...], np.void]
|
venv/lib/python3.10/site-packages/numpy/_typing/_shape.py
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import Union, SupportsIndex
|
3 |
+
|
4 |
+
_Shape = tuple[int, ...]
|
5 |
+
|
6 |
+
# Anything that can be coerced to a shape tuple
|
7 |
+
_ShapeLike = Union[SupportsIndex, Sequence[SupportsIndex]]
|
venv/lib/python3.10/site-packages/numpy/_typing/_ufunc.pyi
ADDED
@@ -0,0 +1,445 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""A module with private type-check-only `numpy.ufunc` subclasses.
|
2 |
+
|
3 |
+
The signatures of the ufuncs are too varied to reasonably type
|
4 |
+
with a single class. So instead, `ufunc` has been expanded into
|
5 |
+
four private subclasses, one for each combination of
|
6 |
+
`~ufunc.nin` and `~ufunc.nout`.
|
7 |
+
|
8 |
+
"""
|
9 |
+
|
10 |
+
from typing import (
|
11 |
+
Any,
|
12 |
+
Generic,
|
13 |
+
overload,
|
14 |
+
TypeVar,
|
15 |
+
Literal,
|
16 |
+
SupportsIndex,
|
17 |
+
Protocol,
|
18 |
+
)
|
19 |
+
|
20 |
+
from numpy import ufunc, _CastingKind, _OrderKACF
|
21 |
+
from numpy.typing import NDArray
|
22 |
+
|
23 |
+
from ._shape import _ShapeLike
|
24 |
+
from ._scalars import _ScalarLike_co
|
25 |
+
from ._array_like import ArrayLike, _ArrayLikeBool_co, _ArrayLikeInt_co
|
26 |
+
from ._dtype_like import DTypeLike
|
27 |
+
|
28 |
+
_T = TypeVar("_T")
|
29 |
+
_2Tuple = tuple[_T, _T]
|
30 |
+
_3Tuple = tuple[_T, _T, _T]
|
31 |
+
_4Tuple = tuple[_T, _T, _T, _T]
|
32 |
+
|
33 |
+
_NTypes = TypeVar("_NTypes", bound=int)
|
34 |
+
_IDType = TypeVar("_IDType", bound=Any)
|
35 |
+
_NameType = TypeVar("_NameType", bound=str)
|
36 |
+
|
37 |
+
|
38 |
+
class _SupportsArrayUFunc(Protocol):
|
39 |
+
def __array_ufunc__(
|
40 |
+
self,
|
41 |
+
ufunc: ufunc,
|
42 |
+
method: Literal["__call__", "reduce", "reduceat", "accumulate", "outer", "inner"],
|
43 |
+
*inputs: Any,
|
44 |
+
**kwargs: Any,
|
45 |
+
) -> Any: ...
|
46 |
+
|
47 |
+
|
48 |
+
# NOTE: In reality `extobj` should be a length of list 3 containing an
|
49 |
+
# int, an int, and a callable, but there's no way to properly express
|
50 |
+
# non-homogenous lists.
|
51 |
+
# Use `Any` over `Union` to avoid issues related to lists invariance.
|
52 |
+
|
53 |
+
# NOTE: `reduce`, `accumulate`, `reduceat` and `outer` raise a ValueError for
|
54 |
+
# ufuncs that don't accept two input arguments and return one output argument.
|
55 |
+
# In such cases the respective methods are simply typed as `None`.
|
56 |
+
|
57 |
+
# NOTE: Similarly, `at` won't be defined for ufuncs that return
|
58 |
+
# multiple outputs; in such cases `at` is typed as `None`
|
59 |
+
|
60 |
+
# NOTE: If 2 output types are returned then `out` must be a
|
61 |
+
# 2-tuple of arrays. Otherwise `None` or a plain array are also acceptable
|
62 |
+
|
63 |
+
class _UFunc_Nin1_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
64 |
+
@property
|
65 |
+
def __name__(self) -> _NameType: ...
|
66 |
+
@property
|
67 |
+
def ntypes(self) -> _NTypes: ...
|
68 |
+
@property
|
69 |
+
def identity(self) -> _IDType: ...
|
70 |
+
@property
|
71 |
+
def nin(self) -> Literal[1]: ...
|
72 |
+
@property
|
73 |
+
def nout(self) -> Literal[1]: ...
|
74 |
+
@property
|
75 |
+
def nargs(self) -> Literal[2]: ...
|
76 |
+
@property
|
77 |
+
def signature(self) -> None: ...
|
78 |
+
@property
|
79 |
+
def reduce(self) -> None: ...
|
80 |
+
@property
|
81 |
+
def accumulate(self) -> None: ...
|
82 |
+
@property
|
83 |
+
def reduceat(self) -> None: ...
|
84 |
+
@property
|
85 |
+
def outer(self) -> None: ...
|
86 |
+
|
87 |
+
@overload
|
88 |
+
def __call__(
|
89 |
+
self,
|
90 |
+
__x1: _ScalarLike_co,
|
91 |
+
out: None = ...,
|
92 |
+
*,
|
93 |
+
where: None | _ArrayLikeBool_co = ...,
|
94 |
+
casting: _CastingKind = ...,
|
95 |
+
order: _OrderKACF = ...,
|
96 |
+
dtype: DTypeLike = ...,
|
97 |
+
subok: bool = ...,
|
98 |
+
signature: str | _2Tuple[None | str] = ...,
|
99 |
+
extobj: list[Any] = ...,
|
100 |
+
) -> Any: ...
|
101 |
+
@overload
|
102 |
+
def __call__(
|
103 |
+
self,
|
104 |
+
__x1: ArrayLike,
|
105 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
106 |
+
*,
|
107 |
+
where: None | _ArrayLikeBool_co = ...,
|
108 |
+
casting: _CastingKind = ...,
|
109 |
+
order: _OrderKACF = ...,
|
110 |
+
dtype: DTypeLike = ...,
|
111 |
+
subok: bool = ...,
|
112 |
+
signature: str | _2Tuple[None | str] = ...,
|
113 |
+
extobj: list[Any] = ...,
|
114 |
+
) -> NDArray[Any]: ...
|
115 |
+
@overload
|
116 |
+
def __call__(
|
117 |
+
self,
|
118 |
+
__x1: _SupportsArrayUFunc,
|
119 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
120 |
+
*,
|
121 |
+
where: None | _ArrayLikeBool_co = ...,
|
122 |
+
casting: _CastingKind = ...,
|
123 |
+
order: _OrderKACF = ...,
|
124 |
+
dtype: DTypeLike = ...,
|
125 |
+
subok: bool = ...,
|
126 |
+
signature: str | _2Tuple[None | str] = ...,
|
127 |
+
extobj: list[Any] = ...,
|
128 |
+
) -> Any: ...
|
129 |
+
|
130 |
+
def at(
|
131 |
+
self,
|
132 |
+
a: _SupportsArrayUFunc,
|
133 |
+
indices: _ArrayLikeInt_co,
|
134 |
+
/,
|
135 |
+
) -> None: ...
|
136 |
+
|
137 |
+
class _UFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
138 |
+
@property
|
139 |
+
def __name__(self) -> _NameType: ...
|
140 |
+
@property
|
141 |
+
def ntypes(self) -> _NTypes: ...
|
142 |
+
@property
|
143 |
+
def identity(self) -> _IDType: ...
|
144 |
+
@property
|
145 |
+
def nin(self) -> Literal[2]: ...
|
146 |
+
@property
|
147 |
+
def nout(self) -> Literal[1]: ...
|
148 |
+
@property
|
149 |
+
def nargs(self) -> Literal[3]: ...
|
150 |
+
@property
|
151 |
+
def signature(self) -> None: ...
|
152 |
+
|
153 |
+
@overload
|
154 |
+
def __call__(
|
155 |
+
self,
|
156 |
+
__x1: _ScalarLike_co,
|
157 |
+
__x2: _ScalarLike_co,
|
158 |
+
out: None = ...,
|
159 |
+
*,
|
160 |
+
where: None | _ArrayLikeBool_co = ...,
|
161 |
+
casting: _CastingKind = ...,
|
162 |
+
order: _OrderKACF = ...,
|
163 |
+
dtype: DTypeLike = ...,
|
164 |
+
subok: bool = ...,
|
165 |
+
signature: str | _3Tuple[None | str] = ...,
|
166 |
+
extobj: list[Any] = ...,
|
167 |
+
) -> Any: ...
|
168 |
+
@overload
|
169 |
+
def __call__(
|
170 |
+
self,
|
171 |
+
__x1: ArrayLike,
|
172 |
+
__x2: ArrayLike,
|
173 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
174 |
+
*,
|
175 |
+
where: None | _ArrayLikeBool_co = ...,
|
176 |
+
casting: _CastingKind = ...,
|
177 |
+
order: _OrderKACF = ...,
|
178 |
+
dtype: DTypeLike = ...,
|
179 |
+
subok: bool = ...,
|
180 |
+
signature: str | _3Tuple[None | str] = ...,
|
181 |
+
extobj: list[Any] = ...,
|
182 |
+
) -> NDArray[Any]: ...
|
183 |
+
|
184 |
+
def at(
|
185 |
+
self,
|
186 |
+
a: NDArray[Any],
|
187 |
+
indices: _ArrayLikeInt_co,
|
188 |
+
b: ArrayLike,
|
189 |
+
/,
|
190 |
+
) -> None: ...
|
191 |
+
|
192 |
+
def reduce(
|
193 |
+
self,
|
194 |
+
array: ArrayLike,
|
195 |
+
axis: None | _ShapeLike = ...,
|
196 |
+
dtype: DTypeLike = ...,
|
197 |
+
out: None | NDArray[Any] = ...,
|
198 |
+
keepdims: bool = ...,
|
199 |
+
initial: Any = ...,
|
200 |
+
where: _ArrayLikeBool_co = ...,
|
201 |
+
) -> Any: ...
|
202 |
+
|
203 |
+
def accumulate(
|
204 |
+
self,
|
205 |
+
array: ArrayLike,
|
206 |
+
axis: SupportsIndex = ...,
|
207 |
+
dtype: DTypeLike = ...,
|
208 |
+
out: None | NDArray[Any] = ...,
|
209 |
+
) -> NDArray[Any]: ...
|
210 |
+
|
211 |
+
def reduceat(
|
212 |
+
self,
|
213 |
+
array: ArrayLike,
|
214 |
+
indices: _ArrayLikeInt_co,
|
215 |
+
axis: SupportsIndex = ...,
|
216 |
+
dtype: DTypeLike = ...,
|
217 |
+
out: None | NDArray[Any] = ...,
|
218 |
+
) -> NDArray[Any]: ...
|
219 |
+
|
220 |
+
# Expand `**kwargs` into explicit keyword-only arguments
|
221 |
+
@overload
|
222 |
+
def outer(
|
223 |
+
self,
|
224 |
+
A: _ScalarLike_co,
|
225 |
+
B: _ScalarLike_co,
|
226 |
+
/, *,
|
227 |
+
out: None = ...,
|
228 |
+
where: None | _ArrayLikeBool_co = ...,
|
229 |
+
casting: _CastingKind = ...,
|
230 |
+
order: _OrderKACF = ...,
|
231 |
+
dtype: DTypeLike = ...,
|
232 |
+
subok: bool = ...,
|
233 |
+
signature: str | _3Tuple[None | str] = ...,
|
234 |
+
extobj: list[Any] = ...,
|
235 |
+
) -> Any: ...
|
236 |
+
@overload
|
237 |
+
def outer( # type: ignore[misc]
|
238 |
+
self,
|
239 |
+
A: ArrayLike,
|
240 |
+
B: ArrayLike,
|
241 |
+
/, *,
|
242 |
+
out: None | NDArray[Any] | tuple[NDArray[Any]] = ...,
|
243 |
+
where: None | _ArrayLikeBool_co = ...,
|
244 |
+
casting: _CastingKind = ...,
|
245 |
+
order: _OrderKACF = ...,
|
246 |
+
dtype: DTypeLike = ...,
|
247 |
+
subok: bool = ...,
|
248 |
+
signature: str | _3Tuple[None | str] = ...,
|
249 |
+
extobj: list[Any] = ...,
|
250 |
+
) -> NDArray[Any]: ...
|
251 |
+
|
252 |
+
class _UFunc_Nin1_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
253 |
+
@property
|
254 |
+
def __name__(self) -> _NameType: ...
|
255 |
+
@property
|
256 |
+
def ntypes(self) -> _NTypes: ...
|
257 |
+
@property
|
258 |
+
def identity(self) -> _IDType: ...
|
259 |
+
@property
|
260 |
+
def nin(self) -> Literal[1]: ...
|
261 |
+
@property
|
262 |
+
def nout(self) -> Literal[2]: ...
|
263 |
+
@property
|
264 |
+
def nargs(self) -> Literal[3]: ...
|
265 |
+
@property
|
266 |
+
def signature(self) -> None: ...
|
267 |
+
@property
|
268 |
+
def at(self) -> None: ...
|
269 |
+
@property
|
270 |
+
def reduce(self) -> None: ...
|
271 |
+
@property
|
272 |
+
def accumulate(self) -> None: ...
|
273 |
+
@property
|
274 |
+
def reduceat(self) -> None: ...
|
275 |
+
@property
|
276 |
+
def outer(self) -> None: ...
|
277 |
+
|
278 |
+
@overload
|
279 |
+
def __call__(
|
280 |
+
self,
|
281 |
+
__x1: _ScalarLike_co,
|
282 |
+
__out1: None = ...,
|
283 |
+
__out2: None = ...,
|
284 |
+
*,
|
285 |
+
where: None | _ArrayLikeBool_co = ...,
|
286 |
+
casting: _CastingKind = ...,
|
287 |
+
order: _OrderKACF = ...,
|
288 |
+
dtype: DTypeLike = ...,
|
289 |
+
subok: bool = ...,
|
290 |
+
signature: str | _3Tuple[None | str] = ...,
|
291 |
+
extobj: list[Any] = ...,
|
292 |
+
) -> _2Tuple[Any]: ...
|
293 |
+
@overload
|
294 |
+
def __call__(
|
295 |
+
self,
|
296 |
+
__x1: ArrayLike,
|
297 |
+
__out1: None | NDArray[Any] = ...,
|
298 |
+
__out2: None | NDArray[Any] = ...,
|
299 |
+
*,
|
300 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
301 |
+
where: None | _ArrayLikeBool_co = ...,
|
302 |
+
casting: _CastingKind = ...,
|
303 |
+
order: _OrderKACF = ...,
|
304 |
+
dtype: DTypeLike = ...,
|
305 |
+
subok: bool = ...,
|
306 |
+
signature: str | _3Tuple[None | str] = ...,
|
307 |
+
extobj: list[Any] = ...,
|
308 |
+
) -> _2Tuple[NDArray[Any]]: ...
|
309 |
+
@overload
|
310 |
+
def __call__(
|
311 |
+
self,
|
312 |
+
__x1: _SupportsArrayUFunc,
|
313 |
+
__out1: None | NDArray[Any] = ...,
|
314 |
+
__out2: None | NDArray[Any] = ...,
|
315 |
+
*,
|
316 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
317 |
+
where: None | _ArrayLikeBool_co = ...,
|
318 |
+
casting: _CastingKind = ...,
|
319 |
+
order: _OrderKACF = ...,
|
320 |
+
dtype: DTypeLike = ...,
|
321 |
+
subok: bool = ...,
|
322 |
+
signature: str | _3Tuple[None | str] = ...,
|
323 |
+
extobj: list[Any] = ...,
|
324 |
+
) -> _2Tuple[Any]: ...
|
325 |
+
|
326 |
+
class _UFunc_Nin2_Nout2(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
327 |
+
@property
|
328 |
+
def __name__(self) -> _NameType: ...
|
329 |
+
@property
|
330 |
+
def ntypes(self) -> _NTypes: ...
|
331 |
+
@property
|
332 |
+
def identity(self) -> _IDType: ...
|
333 |
+
@property
|
334 |
+
def nin(self) -> Literal[2]: ...
|
335 |
+
@property
|
336 |
+
def nout(self) -> Literal[2]: ...
|
337 |
+
@property
|
338 |
+
def nargs(self) -> Literal[4]: ...
|
339 |
+
@property
|
340 |
+
def signature(self) -> None: ...
|
341 |
+
@property
|
342 |
+
def at(self) -> None: ...
|
343 |
+
@property
|
344 |
+
def reduce(self) -> None: ...
|
345 |
+
@property
|
346 |
+
def accumulate(self) -> None: ...
|
347 |
+
@property
|
348 |
+
def reduceat(self) -> None: ...
|
349 |
+
@property
|
350 |
+
def outer(self) -> None: ...
|
351 |
+
|
352 |
+
@overload
|
353 |
+
def __call__(
|
354 |
+
self,
|
355 |
+
__x1: _ScalarLike_co,
|
356 |
+
__x2: _ScalarLike_co,
|
357 |
+
__out1: None = ...,
|
358 |
+
__out2: None = ...,
|
359 |
+
*,
|
360 |
+
where: None | _ArrayLikeBool_co = ...,
|
361 |
+
casting: _CastingKind = ...,
|
362 |
+
order: _OrderKACF = ...,
|
363 |
+
dtype: DTypeLike = ...,
|
364 |
+
subok: bool = ...,
|
365 |
+
signature: str | _4Tuple[None | str] = ...,
|
366 |
+
extobj: list[Any] = ...,
|
367 |
+
) -> _2Tuple[Any]: ...
|
368 |
+
@overload
|
369 |
+
def __call__(
|
370 |
+
self,
|
371 |
+
__x1: ArrayLike,
|
372 |
+
__x2: ArrayLike,
|
373 |
+
__out1: None | NDArray[Any] = ...,
|
374 |
+
__out2: None | NDArray[Any] = ...,
|
375 |
+
*,
|
376 |
+
out: _2Tuple[NDArray[Any]] = ...,
|
377 |
+
where: None | _ArrayLikeBool_co = ...,
|
378 |
+
casting: _CastingKind = ...,
|
379 |
+
order: _OrderKACF = ...,
|
380 |
+
dtype: DTypeLike = ...,
|
381 |
+
subok: bool = ...,
|
382 |
+
signature: str | _4Tuple[None | str] = ...,
|
383 |
+
extobj: list[Any] = ...,
|
384 |
+
) -> _2Tuple[NDArray[Any]]: ...
|
385 |
+
|
386 |
+
class _GUFunc_Nin2_Nout1(ufunc, Generic[_NameType, _NTypes, _IDType]): # type: ignore[misc]
|
387 |
+
@property
|
388 |
+
def __name__(self) -> _NameType: ...
|
389 |
+
@property
|
390 |
+
def ntypes(self) -> _NTypes: ...
|
391 |
+
@property
|
392 |
+
def identity(self) -> _IDType: ...
|
393 |
+
@property
|
394 |
+
def nin(self) -> Literal[2]: ...
|
395 |
+
@property
|
396 |
+
def nout(self) -> Literal[1]: ...
|
397 |
+
@property
|
398 |
+
def nargs(self) -> Literal[3]: ...
|
399 |
+
|
400 |
+
# NOTE: In practice the only gufunc in the main namespace is `matmul`,
|
401 |
+
# so we can use its signature here
|
402 |
+
@property
|
403 |
+
def signature(self) -> Literal["(n?,k),(k,m?)->(n?,m?)"]: ...
|
404 |
+
@property
|
405 |
+
def reduce(self) -> None: ...
|
406 |
+
@property
|
407 |
+
def accumulate(self) -> None: ...
|
408 |
+
@property
|
409 |
+
def reduceat(self) -> None: ...
|
410 |
+
@property
|
411 |
+
def outer(self) -> None: ...
|
412 |
+
@property
|
413 |
+
def at(self) -> None: ...
|
414 |
+
|
415 |
+
# Scalar for 1D array-likes; ndarray otherwise
|
416 |
+
@overload
|
417 |
+
def __call__(
|
418 |
+
self,
|
419 |
+
__x1: ArrayLike,
|
420 |
+
__x2: ArrayLike,
|
421 |
+
out: None = ...,
|
422 |
+
*,
|
423 |
+
casting: _CastingKind = ...,
|
424 |
+
order: _OrderKACF = ...,
|
425 |
+
dtype: DTypeLike = ...,
|
426 |
+
subok: bool = ...,
|
427 |
+
signature: str | _3Tuple[None | str] = ...,
|
428 |
+
extobj: list[Any] = ...,
|
429 |
+
axes: list[_2Tuple[SupportsIndex]] = ...,
|
430 |
+
) -> Any: ...
|
431 |
+
@overload
|
432 |
+
def __call__(
|
433 |
+
self,
|
434 |
+
__x1: ArrayLike,
|
435 |
+
__x2: ArrayLike,
|
436 |
+
out: NDArray[Any] | tuple[NDArray[Any]],
|
437 |
+
*,
|
438 |
+
casting: _CastingKind = ...,
|
439 |
+
order: _OrderKACF = ...,
|
440 |
+
dtype: DTypeLike = ...,
|
441 |
+
subok: bool = ...,
|
442 |
+
signature: str | _3Tuple[None | str] = ...,
|
443 |
+
extobj: list[Any] = ...,
|
444 |
+
axes: list[_2Tuple[SupportsIndex]] = ...,
|
445 |
+
) -> NDArray[Any]: ...
|
venv/lib/python3.10/site-packages/numpy/core/__init__.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Contains the core of NumPy: ndarray, ufuncs, dtypes, etc.
|
3 |
+
|
4 |
+
Please note that this module is private. All functions and objects
|
5 |
+
are available in the main ``numpy`` namespace - use that instead.
|
6 |
+
|
7 |
+
"""
|
8 |
+
|
9 |
+
import os
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
from numpy.version import version as __version__
|
13 |
+
|
14 |
+
|
15 |
+
# disables OpenBLAS affinity setting of the main thread that limits
|
16 |
+
# python threads or processes to one core
|
17 |
+
env_added = []
|
18 |
+
for envkey in ['OPENBLAS_MAIN_FREE', 'GOTOBLAS_MAIN_FREE']:
|
19 |
+
if envkey not in os.environ:
|
20 |
+
os.environ[envkey] = '1'
|
21 |
+
env_added.append(envkey)
|
22 |
+
|
23 |
+
try:
|
24 |
+
from . import multiarray
|
25 |
+
except ImportError as exc:
|
26 |
+
import sys
|
27 |
+
msg = """
|
28 |
+
|
29 |
+
IMPORTANT: PLEASE READ THIS FOR ADVICE ON HOW TO SOLVE THIS ISSUE!
|
30 |
+
|
31 |
+
Importing the numpy C-extensions failed. This error can happen for
|
32 |
+
many reasons, often due to issues with your setup or how NumPy was
|
33 |
+
installed.
|
34 |
+
|
35 |
+
We have compiled some common reasons and troubleshooting tips at:
|
36 |
+
|
37 |
+
https://numpy.org/devdocs/user/troubleshooting-importerror.html
|
38 |
+
|
39 |
+
Please note and check the following:
|
40 |
+
|
41 |
+
* The Python version is: Python%d.%d from "%s"
|
42 |
+
* The NumPy version is: "%s"
|
43 |
+
|
44 |
+
and make sure that they are the versions you expect.
|
45 |
+
Please carefully study the documentation linked above for further help.
|
46 |
+
|
47 |
+
Original error was: %s
|
48 |
+
""" % (sys.version_info[0], sys.version_info[1], sys.executable,
|
49 |
+
__version__, exc)
|
50 |
+
raise ImportError(msg)
|
51 |
+
finally:
|
52 |
+
for envkey in env_added:
|
53 |
+
del os.environ[envkey]
|
54 |
+
del envkey
|
55 |
+
del env_added
|
56 |
+
del os
|
57 |
+
|
58 |
+
from . import umath
|
59 |
+
|
60 |
+
# Check that multiarray,umath are pure python modules wrapping
|
61 |
+
# _multiarray_umath and not either of the old c-extension modules
|
62 |
+
if not (hasattr(multiarray, '_multiarray_umath') and
|
63 |
+
hasattr(umath, '_multiarray_umath')):
|
64 |
+
import sys
|
65 |
+
path = sys.modules['numpy'].__path__
|
66 |
+
msg = ("Something is wrong with the numpy installation. "
|
67 |
+
"While importing we detected an older version of "
|
68 |
+
"numpy in {}. One method of fixing this is to repeatedly uninstall "
|
69 |
+
"numpy until none is found, then reinstall this version.")
|
70 |
+
raise ImportError(msg.format(path))
|
71 |
+
|
72 |
+
from . import numerictypes as nt
|
73 |
+
multiarray.set_typeDict(nt.sctypeDict)
|
74 |
+
from . import numeric
|
75 |
+
from .numeric import *
|
76 |
+
from . import fromnumeric
|
77 |
+
from .fromnumeric import *
|
78 |
+
from . import defchararray as char
|
79 |
+
from . import records
|
80 |
+
from . import records as rec
|
81 |
+
from .records import record, recarray, format_parser
|
82 |
+
# Note: module name memmap is overwritten by a class with same name
|
83 |
+
from .memmap import *
|
84 |
+
from .defchararray import chararray
|
85 |
+
from . import function_base
|
86 |
+
from .function_base import *
|
87 |
+
from . import _machar
|
88 |
+
from . import getlimits
|
89 |
+
from .getlimits import *
|
90 |
+
from . import shape_base
|
91 |
+
from .shape_base import *
|
92 |
+
from . import einsumfunc
|
93 |
+
from .einsumfunc import *
|
94 |
+
del nt
|
95 |
+
|
96 |
+
from .numeric import absolute as abs
|
97 |
+
|
98 |
+
# do this after everything else, to minimize the chance of this misleadingly
|
99 |
+
# appearing in an import-time traceback
|
100 |
+
from . import _add_newdocs
|
101 |
+
from . import _add_newdocs_scalars
|
102 |
+
# add these for module-freeze analysis (like PyInstaller)
|
103 |
+
from . import _dtype_ctypes
|
104 |
+
from . import _internal
|
105 |
+
from . import _dtype
|
106 |
+
from . import _methods
|
107 |
+
|
108 |
+
__all__ = ['char', 'rec', 'memmap']
|
109 |
+
__all__ += numeric.__all__
|
110 |
+
__all__ += ['record', 'recarray', 'format_parser']
|
111 |
+
__all__ += ['chararray']
|
112 |
+
__all__ += function_base.__all__
|
113 |
+
__all__ += getlimits.__all__
|
114 |
+
__all__ += shape_base.__all__
|
115 |
+
__all__ += einsumfunc.__all__
|
116 |
+
|
117 |
+
# We used to use `np.core._ufunc_reconstruct` to unpickle. This is unnecessary,
|
118 |
+
# but old pickles saved before 1.20 will be using it, and there is no reason
|
119 |
+
# to break loading them.
|
120 |
+
def _ufunc_reconstruct(module, name):
|
121 |
+
# The `fromlist` kwarg is required to ensure that `mod` points to the
|
122 |
+
# inner-most module rather than the parent package when module name is
|
123 |
+
# nested. This makes it possible to pickle non-toplevel ufuncs such as
|
124 |
+
# scipy.special.expit for instance.
|
125 |
+
mod = __import__(module, fromlist=[name])
|
126 |
+
return getattr(mod, name)
|
127 |
+
|
128 |
+
|
129 |
+
def _ufunc_reduce(func):
|
130 |
+
# Report the `__name__`. pickle will try to find the module. Note that
|
131 |
+
# pickle supports for this `__name__` to be a `__qualname__`. It may
|
132 |
+
# make sense to add a `__qualname__` to ufuncs, to allow this more
|
133 |
+
# explicitly (Numba has ufuncs as attributes).
|
134 |
+
# See also: https://github.com/dask/distributed/issues/3450
|
135 |
+
return func.__name__
|
136 |
+
|
137 |
+
|
138 |
+
def _DType_reconstruct(scalar_type):
|
139 |
+
# This is a work-around to pickle type(np.dtype(np.float64)), etc.
|
140 |
+
# and it should eventually be replaced with a better solution, e.g. when
|
141 |
+
# DTypes become HeapTypes.
|
142 |
+
return type(dtype(scalar_type))
|
143 |
+
|
144 |
+
|
145 |
+
def _DType_reduce(DType):
|
146 |
+
# As types/classes, most DTypes can simply be pickled by their name:
|
147 |
+
if not DType._legacy or DType.__module__ == "numpy.dtypes":
|
148 |
+
return DType.__name__
|
149 |
+
|
150 |
+
# However, user defined legacy dtypes (like rational) do not end up in
|
151 |
+
# `numpy.dtypes` as module and do not have a public class at all.
|
152 |
+
# For these, we pickle them by reconstructing them from the scalar type:
|
153 |
+
scalar_type = DType.type
|
154 |
+
return _DType_reconstruct, (scalar_type,)
|
155 |
+
|
156 |
+
|
157 |
+
def __getattr__(name):
|
158 |
+
# Deprecated 2022-11-22, NumPy 1.25.
|
159 |
+
if name == "MachAr":
|
160 |
+
warnings.warn(
|
161 |
+
"The `np.core.MachAr` is considered private API (NumPy 1.24)",
|
162 |
+
DeprecationWarning, stacklevel=2,
|
163 |
+
)
|
164 |
+
return _machar.MachAr
|
165 |
+
raise AttributeError(f"Module {__name__!r} has no attribute {name!r}")
|
166 |
+
|
167 |
+
|
168 |
+
import copyreg
|
169 |
+
|
170 |
+
copyreg.pickle(ufunc, _ufunc_reduce)
|
171 |
+
copyreg.pickle(type(dtype), _DType_reduce, _DType_reconstruct)
|
172 |
+
|
173 |
+
# Unclutter namespace (must keep _*_reconstruct for unpickling)
|
174 |
+
del copyreg
|
175 |
+
del _ufunc_reduce
|
176 |
+
del _DType_reduce
|
177 |
+
|
178 |
+
from numpy._pytesttester import PytestTester
|
179 |
+
test = PytestTester(__name__)
|
180 |
+
del PytestTester
|
venv/lib/python3.10/site-packages/numpy/core/__init__.pyi
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
# NOTE: The `np.core` namespace is deliberately kept empty due to it
|
2 |
+
# being private (despite the lack of leading underscore)
|
venv/lib/python3.10/site-packages/numpy/core/_add_newdocs.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/numpy/core/_add_newdocs_scalars.py
ADDED
@@ -0,0 +1,372 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This file is separate from ``_add_newdocs.py`` so that it can be mocked out by
|
3 |
+
our sphinx ``conf.py`` during doc builds, where we want to avoid showing
|
4 |
+
platform-dependent information.
|
5 |
+
"""
|
6 |
+
import sys
|
7 |
+
import os
|
8 |
+
from numpy.core import dtype
|
9 |
+
from numpy.core import numerictypes as _numerictypes
|
10 |
+
from numpy.core.function_base import add_newdoc
|
11 |
+
|
12 |
+
##############################################################################
|
13 |
+
#
|
14 |
+
# Documentation for concrete scalar classes
|
15 |
+
#
|
16 |
+
##############################################################################
|
17 |
+
|
18 |
+
def numeric_type_aliases(aliases):
|
19 |
+
def type_aliases_gen():
|
20 |
+
for alias, doc in aliases:
|
21 |
+
try:
|
22 |
+
alias_type = getattr(_numerictypes, alias)
|
23 |
+
except AttributeError:
|
24 |
+
# The set of aliases that actually exist varies between platforms
|
25 |
+
pass
|
26 |
+
else:
|
27 |
+
yield (alias_type, alias, doc)
|
28 |
+
return list(type_aliases_gen())
|
29 |
+
|
30 |
+
|
31 |
+
possible_aliases = numeric_type_aliases([
|
32 |
+
('int8', '8-bit signed integer (``-128`` to ``127``)'),
|
33 |
+
('int16', '16-bit signed integer (``-32_768`` to ``32_767``)'),
|
34 |
+
('int32', '32-bit signed integer (``-2_147_483_648`` to ``2_147_483_647``)'),
|
35 |
+
('int64', '64-bit signed integer (``-9_223_372_036_854_775_808`` to ``9_223_372_036_854_775_807``)'),
|
36 |
+
('intp', 'Signed integer large enough to fit pointer, compatible with C ``intptr_t``'),
|
37 |
+
('uint8', '8-bit unsigned integer (``0`` to ``255``)'),
|
38 |
+
('uint16', '16-bit unsigned integer (``0`` to ``65_535``)'),
|
39 |
+
('uint32', '32-bit unsigned integer (``0`` to ``4_294_967_295``)'),
|
40 |
+
('uint64', '64-bit unsigned integer (``0`` to ``18_446_744_073_709_551_615``)'),
|
41 |
+
('uintp', 'Unsigned integer large enough to fit pointer, compatible with C ``uintptr_t``'),
|
42 |
+
('float16', '16-bit-precision floating-point number type: sign bit, 5 bits exponent, 10 bits mantissa'),
|
43 |
+
('float32', '32-bit-precision floating-point number type: sign bit, 8 bits exponent, 23 bits mantissa'),
|
44 |
+
('float64', '64-bit precision floating-point number type: sign bit, 11 bits exponent, 52 bits mantissa'),
|
45 |
+
('float96', '96-bit extended-precision floating-point number type'),
|
46 |
+
('float128', '128-bit extended-precision floating-point number type'),
|
47 |
+
('complex64', 'Complex number type composed of 2 32-bit-precision floating-point numbers'),
|
48 |
+
('complex128', 'Complex number type composed of 2 64-bit-precision floating-point numbers'),
|
49 |
+
('complex192', 'Complex number type composed of 2 96-bit extended-precision floating-point numbers'),
|
50 |
+
('complex256', 'Complex number type composed of 2 128-bit extended-precision floating-point numbers'),
|
51 |
+
])
|
52 |
+
|
53 |
+
|
54 |
+
def _get_platform_and_machine():
|
55 |
+
try:
|
56 |
+
system, _, _, _, machine = os.uname()
|
57 |
+
except AttributeError:
|
58 |
+
system = sys.platform
|
59 |
+
if system == 'win32':
|
60 |
+
machine = os.environ.get('PROCESSOR_ARCHITEW6432', '') \
|
61 |
+
or os.environ.get('PROCESSOR_ARCHITECTURE', '')
|
62 |
+
else:
|
63 |
+
machine = 'unknown'
|
64 |
+
return system, machine
|
65 |
+
|
66 |
+
|
67 |
+
_system, _machine = _get_platform_and_machine()
|
68 |
+
_doc_alias_string = f":Alias on this platform ({_system} {_machine}):"
|
69 |
+
|
70 |
+
|
71 |
+
def add_newdoc_for_scalar_type(obj, fixed_aliases, doc):
|
72 |
+
# note: `:field: value` is rST syntax which renders as field lists.
|
73 |
+
o = getattr(_numerictypes, obj)
|
74 |
+
|
75 |
+
character_code = dtype(o).char
|
76 |
+
canonical_name_doc = "" if obj == o.__name__ else \
|
77 |
+
f":Canonical name: `numpy.{obj}`\n "
|
78 |
+
if fixed_aliases:
|
79 |
+
alias_doc = ''.join(f":Alias: `numpy.{alias}`\n "
|
80 |
+
for alias in fixed_aliases)
|
81 |
+
else:
|
82 |
+
alias_doc = ''
|
83 |
+
alias_doc += ''.join(f"{_doc_alias_string} `numpy.{alias}`: {doc}.\n "
|
84 |
+
for (alias_type, alias, doc) in possible_aliases if alias_type is o)
|
85 |
+
|
86 |
+
docstring = f"""
|
87 |
+
{doc.strip()}
|
88 |
+
|
89 |
+
:Character code: ``'{character_code}'``
|
90 |
+
{canonical_name_doc}{alias_doc}
|
91 |
+
"""
|
92 |
+
|
93 |
+
add_newdoc('numpy.core.numerictypes', obj, docstring)
|
94 |
+
|
95 |
+
|
96 |
+
add_newdoc_for_scalar_type('bool_', [],
|
97 |
+
"""
|
98 |
+
Boolean type (True or False), stored as a byte.
|
99 |
+
|
100 |
+
.. warning::
|
101 |
+
|
102 |
+
The :class:`bool_` type is not a subclass of the :class:`int_` type
|
103 |
+
(the :class:`bool_` is not even a number type). This is different
|
104 |
+
than Python's default implementation of :class:`bool` as a
|
105 |
+
sub-class of :class:`int`.
|
106 |
+
""")
|
107 |
+
|
108 |
+
add_newdoc_for_scalar_type('byte', [],
|
109 |
+
"""
|
110 |
+
Signed integer type, compatible with C ``char``.
|
111 |
+
""")
|
112 |
+
|
113 |
+
add_newdoc_for_scalar_type('short', [],
|
114 |
+
"""
|
115 |
+
Signed integer type, compatible with C ``short``.
|
116 |
+
""")
|
117 |
+
|
118 |
+
add_newdoc_for_scalar_type('intc', [],
|
119 |
+
"""
|
120 |
+
Signed integer type, compatible with C ``int``.
|
121 |
+
""")
|
122 |
+
|
123 |
+
add_newdoc_for_scalar_type('int_', [],
|
124 |
+
"""
|
125 |
+
Signed integer type, compatible with Python `int` and C ``long``.
|
126 |
+
""")
|
127 |
+
|
128 |
+
add_newdoc_for_scalar_type('longlong', [],
|
129 |
+
"""
|
130 |
+
Signed integer type, compatible with C ``long long``.
|
131 |
+
""")
|
132 |
+
|
133 |
+
add_newdoc_for_scalar_type('ubyte', [],
|
134 |
+
"""
|
135 |
+
Unsigned integer type, compatible with C ``unsigned char``.
|
136 |
+
""")
|
137 |
+
|
138 |
+
add_newdoc_for_scalar_type('ushort', [],
|
139 |
+
"""
|
140 |
+
Unsigned integer type, compatible with C ``unsigned short``.
|
141 |
+
""")
|
142 |
+
|
143 |
+
add_newdoc_for_scalar_type('uintc', [],
|
144 |
+
"""
|
145 |
+
Unsigned integer type, compatible with C ``unsigned int``.
|
146 |
+
""")
|
147 |
+
|
148 |
+
add_newdoc_for_scalar_type('uint', [],
|
149 |
+
"""
|
150 |
+
Unsigned integer type, compatible with C ``unsigned long``.
|
151 |
+
""")
|
152 |
+
|
153 |
+
add_newdoc_for_scalar_type('ulonglong', [],
|
154 |
+
"""
|
155 |
+
Signed integer type, compatible with C ``unsigned long long``.
|
156 |
+
""")
|
157 |
+
|
158 |
+
add_newdoc_for_scalar_type('half', [],
|
159 |
+
"""
|
160 |
+
Half-precision floating-point number type.
|
161 |
+
""")
|
162 |
+
|
163 |
+
add_newdoc_for_scalar_type('single', [],
|
164 |
+
"""
|
165 |
+
Single-precision floating-point number type, compatible with C ``float``.
|
166 |
+
""")
|
167 |
+
|
168 |
+
add_newdoc_for_scalar_type('double', ['float_'],
|
169 |
+
"""
|
170 |
+
Double-precision floating-point number type, compatible with Python `float`
|
171 |
+
and C ``double``.
|
172 |
+
""")
|
173 |
+
|
174 |
+
add_newdoc_for_scalar_type('longdouble', ['longfloat'],
|
175 |
+
"""
|
176 |
+
Extended-precision floating-point number type, compatible with C
|
177 |
+
``long double`` but not necessarily with IEEE 754 quadruple-precision.
|
178 |
+
""")
|
179 |
+
|
180 |
+
add_newdoc_for_scalar_type('csingle', ['singlecomplex'],
|
181 |
+
"""
|
182 |
+
Complex number type composed of two single-precision floating-point
|
183 |
+
numbers.
|
184 |
+
""")
|
185 |
+
|
186 |
+
add_newdoc_for_scalar_type('cdouble', ['cfloat', 'complex_'],
|
187 |
+
"""
|
188 |
+
Complex number type composed of two double-precision floating-point
|
189 |
+
numbers, compatible with Python `complex`.
|
190 |
+
""")
|
191 |
+
|
192 |
+
add_newdoc_for_scalar_type('clongdouble', ['clongfloat', 'longcomplex'],
|
193 |
+
"""
|
194 |
+
Complex number type composed of two extended-precision floating-point
|
195 |
+
numbers.
|
196 |
+
""")
|
197 |
+
|
198 |
+
add_newdoc_for_scalar_type('object_', [],
|
199 |
+
"""
|
200 |
+
Any Python object.
|
201 |
+
""")
|
202 |
+
|
203 |
+
add_newdoc_for_scalar_type('str_', ['unicode_'],
|
204 |
+
r"""
|
205 |
+
A unicode string.
|
206 |
+
|
207 |
+
This type strips trailing null codepoints.
|
208 |
+
|
209 |
+
>>> s = np.str_("abc\x00")
|
210 |
+
>>> s
|
211 |
+
'abc'
|
212 |
+
|
213 |
+
Unlike the builtin `str`, this supports the :ref:`python:bufferobjects`, exposing its
|
214 |
+
contents as UCS4:
|
215 |
+
|
216 |
+
>>> m = memoryview(np.str_("abc"))
|
217 |
+
>>> m.format
|
218 |
+
'3w'
|
219 |
+
>>> m.tobytes()
|
220 |
+
b'a\x00\x00\x00b\x00\x00\x00c\x00\x00\x00'
|
221 |
+
""")
|
222 |
+
|
223 |
+
add_newdoc_for_scalar_type('bytes_', ['string_'],
|
224 |
+
r"""
|
225 |
+
A byte string.
|
226 |
+
|
227 |
+
When used in arrays, this type strips trailing null bytes.
|
228 |
+
""")
|
229 |
+
|
230 |
+
add_newdoc_for_scalar_type('void', [],
|
231 |
+
r"""
|
232 |
+
np.void(length_or_data, /, dtype=None)
|
233 |
+
|
234 |
+
Create a new structured or unstructured void scalar.
|
235 |
+
|
236 |
+
Parameters
|
237 |
+
----------
|
238 |
+
length_or_data : int, array-like, bytes-like, object
|
239 |
+
One of multiple meanings (see notes). The length or
|
240 |
+
bytes data of an unstructured void. Or alternatively,
|
241 |
+
the data to be stored in the new scalar when `dtype`
|
242 |
+
is provided.
|
243 |
+
This can be an array-like, in which case an array may
|
244 |
+
be returned.
|
245 |
+
dtype : dtype, optional
|
246 |
+
If provided the dtype of the new scalar. This dtype must
|
247 |
+
be "void" dtype (i.e. a structured or unstructured void,
|
248 |
+
see also :ref:`defining-structured-types`).
|
249 |
+
|
250 |
+
..versionadded:: 1.24
|
251 |
+
|
252 |
+
Notes
|
253 |
+
-----
|
254 |
+
For historical reasons and because void scalars can represent both
|
255 |
+
arbitrary byte data and structured dtypes, the void constructor
|
256 |
+
has three calling conventions:
|
257 |
+
|
258 |
+
1. ``np.void(5)`` creates a ``dtype="V5"`` scalar filled with five
|
259 |
+
``\0`` bytes. The 5 can be a Python or NumPy integer.
|
260 |
+
2. ``np.void(b"bytes-like")`` creates a void scalar from the byte string.
|
261 |
+
The dtype itemsize will match the byte string length, here ``"V10"``.
|
262 |
+
3. When a ``dtype=`` is passed the call is roughly the same as an
|
263 |
+
array creation. However, a void scalar rather than array is returned.
|
264 |
+
|
265 |
+
Please see the examples which show all three different conventions.
|
266 |
+
|
267 |
+
Examples
|
268 |
+
--------
|
269 |
+
>>> np.void(5)
|
270 |
+
void(b'\x00\x00\x00\x00\x00')
|
271 |
+
>>> np.void(b'abcd')
|
272 |
+
void(b'\x61\x62\x63\x64')
|
273 |
+
>>> np.void((5, 3.2, "eggs"), dtype="i,d,S5")
|
274 |
+
(5, 3.2, b'eggs') # looks like a tuple, but is `np.void`
|
275 |
+
>>> np.void(3, dtype=[('x', np.int8), ('y', np.int8)])
|
276 |
+
(3, 3) # looks like a tuple, but is `np.void`
|
277 |
+
|
278 |
+
""")
|
279 |
+
|
280 |
+
add_newdoc_for_scalar_type('datetime64', [],
|
281 |
+
"""
|
282 |
+
If created from a 64-bit integer, it represents an offset from
|
283 |
+
``1970-01-01T00:00:00``.
|
284 |
+
If created from string, the string can be in ISO 8601 date
|
285 |
+
or datetime format.
|
286 |
+
|
287 |
+
>>> np.datetime64(10, 'Y')
|
288 |
+
numpy.datetime64('1980')
|
289 |
+
>>> np.datetime64('1980', 'Y')
|
290 |
+
numpy.datetime64('1980')
|
291 |
+
>>> np.datetime64(10, 'D')
|
292 |
+
numpy.datetime64('1970-01-11')
|
293 |
+
|
294 |
+
See :ref:`arrays.datetime` for more information.
|
295 |
+
""")
|
296 |
+
|
297 |
+
add_newdoc_for_scalar_type('timedelta64', [],
|
298 |
+
"""
|
299 |
+
A timedelta stored as a 64-bit integer.
|
300 |
+
|
301 |
+
See :ref:`arrays.datetime` for more information.
|
302 |
+
""")
|
303 |
+
|
304 |
+
add_newdoc('numpy.core.numerictypes', "integer", ('is_integer',
|
305 |
+
"""
|
306 |
+
integer.is_integer() -> bool
|
307 |
+
|
308 |
+
Return ``True`` if the number is finite with integral value.
|
309 |
+
|
310 |
+
.. versionadded:: 1.22
|
311 |
+
|
312 |
+
Examples
|
313 |
+
--------
|
314 |
+
>>> np.int64(-2).is_integer()
|
315 |
+
True
|
316 |
+
>>> np.uint32(5).is_integer()
|
317 |
+
True
|
318 |
+
"""))
|
319 |
+
|
320 |
+
# TODO: work out how to put this on the base class, np.floating
|
321 |
+
for float_name in ('half', 'single', 'double', 'longdouble'):
|
322 |
+
add_newdoc('numpy.core.numerictypes', float_name, ('as_integer_ratio',
|
323 |
+
"""
|
324 |
+
{ftype}.as_integer_ratio() -> (int, int)
|
325 |
+
|
326 |
+
Return a pair of integers, whose ratio is exactly equal to the original
|
327 |
+
floating point number, and with a positive denominator.
|
328 |
+
Raise `OverflowError` on infinities and a `ValueError` on NaNs.
|
329 |
+
|
330 |
+
>>> np.{ftype}(10.0).as_integer_ratio()
|
331 |
+
(10, 1)
|
332 |
+
>>> np.{ftype}(0.0).as_integer_ratio()
|
333 |
+
(0, 1)
|
334 |
+
>>> np.{ftype}(-.25).as_integer_ratio()
|
335 |
+
(-1, 4)
|
336 |
+
""".format(ftype=float_name)))
|
337 |
+
|
338 |
+
add_newdoc('numpy.core.numerictypes', float_name, ('is_integer',
|
339 |
+
f"""
|
340 |
+
{float_name}.is_integer() -> bool
|
341 |
+
|
342 |
+
Return ``True`` if the floating point number is finite with integral
|
343 |
+
value, and ``False`` otherwise.
|
344 |
+
|
345 |
+
.. versionadded:: 1.22
|
346 |
+
|
347 |
+
Examples
|
348 |
+
--------
|
349 |
+
>>> np.{float_name}(-2.0).is_integer()
|
350 |
+
True
|
351 |
+
>>> np.{float_name}(3.2).is_integer()
|
352 |
+
False
|
353 |
+
"""))
|
354 |
+
|
355 |
+
for int_name in ('int8', 'uint8', 'int16', 'uint16', 'int32', 'uint32',
|
356 |
+
'int64', 'uint64', 'int64', 'uint64', 'int64', 'uint64'):
|
357 |
+
# Add negative examples for signed cases by checking typecode
|
358 |
+
add_newdoc('numpy.core.numerictypes', int_name, ('bit_count',
|
359 |
+
f"""
|
360 |
+
{int_name}.bit_count() -> int
|
361 |
+
|
362 |
+
Computes the number of 1-bits in the absolute value of the input.
|
363 |
+
Analogous to the builtin `int.bit_count` or ``popcount`` in C++.
|
364 |
+
|
365 |
+
Examples
|
366 |
+
--------
|
367 |
+
>>> np.{int_name}(127).bit_count()
|
368 |
+
7""" +
|
369 |
+
(f"""
|
370 |
+
>>> np.{int_name}(-127).bit_count()
|
371 |
+
7
|
372 |
+
""" if dtype(int_name).char.islower() else "")))
|
venv/lib/python3.10/site-packages/numpy/core/_asarray.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions in the ``as*array`` family that promote array-likes into arrays.
|
3 |
+
|
4 |
+
`require` fits this category despite its name not matching this pattern.
|
5 |
+
"""
|
6 |
+
from .overrides import (
|
7 |
+
array_function_dispatch,
|
8 |
+
set_array_function_like_doc,
|
9 |
+
set_module,
|
10 |
+
)
|
11 |
+
from .multiarray import array, asanyarray
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = ["require"]
|
15 |
+
|
16 |
+
|
17 |
+
POSSIBLE_FLAGS = {
|
18 |
+
'C': 'C', 'C_CONTIGUOUS': 'C', 'CONTIGUOUS': 'C',
|
19 |
+
'F': 'F', 'F_CONTIGUOUS': 'F', 'FORTRAN': 'F',
|
20 |
+
'A': 'A', 'ALIGNED': 'A',
|
21 |
+
'W': 'W', 'WRITEABLE': 'W',
|
22 |
+
'O': 'O', 'OWNDATA': 'O',
|
23 |
+
'E': 'E', 'ENSUREARRAY': 'E'
|
24 |
+
}
|
25 |
+
|
26 |
+
|
27 |
+
@set_array_function_like_doc
|
28 |
+
@set_module('numpy')
|
29 |
+
def require(a, dtype=None, requirements=None, *, like=None):
|
30 |
+
"""
|
31 |
+
Return an ndarray of the provided type that satisfies requirements.
|
32 |
+
|
33 |
+
This function is useful to be sure that an array with the correct flags
|
34 |
+
is returned for passing to compiled code (perhaps through ctypes).
|
35 |
+
|
36 |
+
Parameters
|
37 |
+
----------
|
38 |
+
a : array_like
|
39 |
+
The object to be converted to a type-and-requirement-satisfying array.
|
40 |
+
dtype : data-type
|
41 |
+
The required data-type. If None preserve the current dtype. If your
|
42 |
+
application requires the data to be in native byteorder, include
|
43 |
+
a byteorder specification as a part of the dtype specification.
|
44 |
+
requirements : str or sequence of str
|
45 |
+
The requirements list can be any of the following
|
46 |
+
|
47 |
+
* 'F_CONTIGUOUS' ('F') - ensure a Fortran-contiguous array
|
48 |
+
* 'C_CONTIGUOUS' ('C') - ensure a C-contiguous array
|
49 |
+
* 'ALIGNED' ('A') - ensure a data-type aligned array
|
50 |
+
* 'WRITEABLE' ('W') - ensure a writable array
|
51 |
+
* 'OWNDATA' ('O') - ensure an array that owns its own data
|
52 |
+
* 'ENSUREARRAY', ('E') - ensure a base array, instead of a subclass
|
53 |
+
${ARRAY_FUNCTION_LIKE}
|
54 |
+
|
55 |
+
.. versionadded:: 1.20.0
|
56 |
+
|
57 |
+
Returns
|
58 |
+
-------
|
59 |
+
out : ndarray
|
60 |
+
Array with specified requirements and type if given.
|
61 |
+
|
62 |
+
See Also
|
63 |
+
--------
|
64 |
+
asarray : Convert input to an ndarray.
|
65 |
+
asanyarray : Convert to an ndarray, but pass through ndarray subclasses.
|
66 |
+
ascontiguousarray : Convert input to a contiguous array.
|
67 |
+
asfortranarray : Convert input to an ndarray with column-major
|
68 |
+
memory order.
|
69 |
+
ndarray.flags : Information about the memory layout of the array.
|
70 |
+
|
71 |
+
Notes
|
72 |
+
-----
|
73 |
+
The returned array will be guaranteed to have the listed requirements
|
74 |
+
by making a copy if needed.
|
75 |
+
|
76 |
+
Examples
|
77 |
+
--------
|
78 |
+
>>> x = np.arange(6).reshape(2,3)
|
79 |
+
>>> x.flags
|
80 |
+
C_CONTIGUOUS : True
|
81 |
+
F_CONTIGUOUS : False
|
82 |
+
OWNDATA : False
|
83 |
+
WRITEABLE : True
|
84 |
+
ALIGNED : True
|
85 |
+
WRITEBACKIFCOPY : False
|
86 |
+
|
87 |
+
>>> y = np.require(x, dtype=np.float32, requirements=['A', 'O', 'W', 'F'])
|
88 |
+
>>> y.flags
|
89 |
+
C_CONTIGUOUS : False
|
90 |
+
F_CONTIGUOUS : True
|
91 |
+
OWNDATA : True
|
92 |
+
WRITEABLE : True
|
93 |
+
ALIGNED : True
|
94 |
+
WRITEBACKIFCOPY : False
|
95 |
+
|
96 |
+
"""
|
97 |
+
if like is not None:
|
98 |
+
return _require_with_like(
|
99 |
+
like,
|
100 |
+
a,
|
101 |
+
dtype=dtype,
|
102 |
+
requirements=requirements,
|
103 |
+
)
|
104 |
+
|
105 |
+
if not requirements:
|
106 |
+
return asanyarray(a, dtype=dtype)
|
107 |
+
|
108 |
+
requirements = {POSSIBLE_FLAGS[x.upper()] for x in requirements}
|
109 |
+
|
110 |
+
if 'E' in requirements:
|
111 |
+
requirements.remove('E')
|
112 |
+
subok = False
|
113 |
+
else:
|
114 |
+
subok = True
|
115 |
+
|
116 |
+
order = 'A'
|
117 |
+
if requirements >= {'C', 'F'}:
|
118 |
+
raise ValueError('Cannot specify both "C" and "F" order')
|
119 |
+
elif 'F' in requirements:
|
120 |
+
order = 'F'
|
121 |
+
requirements.remove('F')
|
122 |
+
elif 'C' in requirements:
|
123 |
+
order = 'C'
|
124 |
+
requirements.remove('C')
|
125 |
+
|
126 |
+
arr = array(a, dtype=dtype, order=order, copy=False, subok=subok)
|
127 |
+
|
128 |
+
for prop in requirements:
|
129 |
+
if not arr.flags[prop]:
|
130 |
+
return arr.copy(order)
|
131 |
+
return arr
|
132 |
+
|
133 |
+
|
134 |
+
_require_with_like = array_function_dispatch()(require)
|
venv/lib/python3.10/site-packages/numpy/core/_dtype.py
ADDED
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A place for code to be called from the implementation of np.dtype
|
3 |
+
|
4 |
+
String handling is much easier to do correctly in python.
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
|
9 |
+
_kind_to_stem = {
|
10 |
+
'u': 'uint',
|
11 |
+
'i': 'int',
|
12 |
+
'c': 'complex',
|
13 |
+
'f': 'float',
|
14 |
+
'b': 'bool',
|
15 |
+
'V': 'void',
|
16 |
+
'O': 'object',
|
17 |
+
'M': 'datetime',
|
18 |
+
'm': 'timedelta',
|
19 |
+
'S': 'bytes',
|
20 |
+
'U': 'str',
|
21 |
+
}
|
22 |
+
|
23 |
+
|
24 |
+
def _kind_name(dtype):
|
25 |
+
try:
|
26 |
+
return _kind_to_stem[dtype.kind]
|
27 |
+
except KeyError as e:
|
28 |
+
raise RuntimeError(
|
29 |
+
"internal dtype error, unknown kind {!r}"
|
30 |
+
.format(dtype.kind)
|
31 |
+
) from None
|
32 |
+
|
33 |
+
|
34 |
+
def __str__(dtype):
|
35 |
+
if dtype.fields is not None:
|
36 |
+
return _struct_str(dtype, include_align=True)
|
37 |
+
elif dtype.subdtype:
|
38 |
+
return _subarray_str(dtype)
|
39 |
+
elif issubclass(dtype.type, np.flexible) or not dtype.isnative:
|
40 |
+
return dtype.str
|
41 |
+
else:
|
42 |
+
return dtype.name
|
43 |
+
|
44 |
+
|
45 |
+
def __repr__(dtype):
|
46 |
+
arg_str = _construction_repr(dtype, include_align=False)
|
47 |
+
if dtype.isalignedstruct:
|
48 |
+
arg_str = arg_str + ", align=True"
|
49 |
+
return "dtype({})".format(arg_str)
|
50 |
+
|
51 |
+
|
52 |
+
def _unpack_field(dtype, offset, title=None):
|
53 |
+
"""
|
54 |
+
Helper function to normalize the items in dtype.fields.
|
55 |
+
|
56 |
+
Call as:
|
57 |
+
|
58 |
+
dtype, offset, title = _unpack_field(*dtype.fields[name])
|
59 |
+
"""
|
60 |
+
return dtype, offset, title
|
61 |
+
|
62 |
+
|
63 |
+
def _isunsized(dtype):
|
64 |
+
# PyDataType_ISUNSIZED
|
65 |
+
return dtype.itemsize == 0
|
66 |
+
|
67 |
+
|
68 |
+
def _construction_repr(dtype, include_align=False, short=False):
|
69 |
+
"""
|
70 |
+
Creates a string repr of the dtype, excluding the 'dtype()' part
|
71 |
+
surrounding the object. This object may be a string, a list, or
|
72 |
+
a dict depending on the nature of the dtype. This
|
73 |
+
is the object passed as the first parameter to the dtype
|
74 |
+
constructor, and if no additional constructor parameters are
|
75 |
+
given, will reproduce the exact memory layout.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
short : bool
|
80 |
+
If true, this creates a shorter repr using 'kind' and 'itemsize', instead
|
81 |
+
of the longer type name.
|
82 |
+
|
83 |
+
include_align : bool
|
84 |
+
If true, this includes the 'align=True' parameter
|
85 |
+
inside the struct dtype construction dict when needed. Use this flag
|
86 |
+
if you want a proper repr string without the 'dtype()' part around it.
|
87 |
+
|
88 |
+
If false, this does not preserve the
|
89 |
+
'align=True' parameter or sticky NPY_ALIGNED_STRUCT flag for
|
90 |
+
struct arrays like the regular repr does, because the 'align'
|
91 |
+
flag is not part of first dtype constructor parameter. This
|
92 |
+
mode is intended for a full 'repr', where the 'align=True' is
|
93 |
+
provided as the second parameter.
|
94 |
+
"""
|
95 |
+
if dtype.fields is not None:
|
96 |
+
return _struct_str(dtype, include_align=include_align)
|
97 |
+
elif dtype.subdtype:
|
98 |
+
return _subarray_str(dtype)
|
99 |
+
else:
|
100 |
+
return _scalar_str(dtype, short=short)
|
101 |
+
|
102 |
+
|
103 |
+
def _scalar_str(dtype, short):
|
104 |
+
byteorder = _byte_order_str(dtype)
|
105 |
+
|
106 |
+
if dtype.type == np.bool_:
|
107 |
+
if short:
|
108 |
+
return "'?'"
|
109 |
+
else:
|
110 |
+
return "'bool'"
|
111 |
+
|
112 |
+
elif dtype.type == np.object_:
|
113 |
+
# The object reference may be different sizes on different
|
114 |
+
# platforms, so it should never include the itemsize here.
|
115 |
+
return "'O'"
|
116 |
+
|
117 |
+
elif dtype.type == np.bytes_:
|
118 |
+
if _isunsized(dtype):
|
119 |
+
return "'S'"
|
120 |
+
else:
|
121 |
+
return "'S%d'" % dtype.itemsize
|
122 |
+
|
123 |
+
elif dtype.type == np.str_:
|
124 |
+
if _isunsized(dtype):
|
125 |
+
return "'%sU'" % byteorder
|
126 |
+
else:
|
127 |
+
return "'%sU%d'" % (byteorder, dtype.itemsize / 4)
|
128 |
+
|
129 |
+
# unlike the other types, subclasses of void are preserved - but
|
130 |
+
# historically the repr does not actually reveal the subclass
|
131 |
+
elif issubclass(dtype.type, np.void):
|
132 |
+
if _isunsized(dtype):
|
133 |
+
return "'V'"
|
134 |
+
else:
|
135 |
+
return "'V%d'" % dtype.itemsize
|
136 |
+
|
137 |
+
elif dtype.type == np.datetime64:
|
138 |
+
return "'%sM8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
139 |
+
|
140 |
+
elif dtype.type == np.timedelta64:
|
141 |
+
return "'%sm8%s'" % (byteorder, _datetime_metadata_str(dtype))
|
142 |
+
|
143 |
+
elif np.issubdtype(dtype, np.number):
|
144 |
+
# Short repr with endianness, like '<f8'
|
145 |
+
if short or dtype.byteorder not in ('=', '|'):
|
146 |
+
return "'%s%c%d'" % (byteorder, dtype.kind, dtype.itemsize)
|
147 |
+
|
148 |
+
# Longer repr, like 'float64'
|
149 |
+
else:
|
150 |
+
return "'%s%d'" % (_kind_name(dtype), 8*dtype.itemsize)
|
151 |
+
|
152 |
+
elif dtype.isbuiltin == 2:
|
153 |
+
return dtype.type.__name__
|
154 |
+
|
155 |
+
else:
|
156 |
+
raise RuntimeError(
|
157 |
+
"Internal error: NumPy dtype unrecognized type number")
|
158 |
+
|
159 |
+
|
160 |
+
def _byte_order_str(dtype):
|
161 |
+
""" Normalize byteorder to '<' or '>' """
|
162 |
+
# hack to obtain the native and swapped byte order characters
|
163 |
+
swapped = np.dtype(int).newbyteorder('S')
|
164 |
+
native = swapped.newbyteorder('S')
|
165 |
+
|
166 |
+
byteorder = dtype.byteorder
|
167 |
+
if byteorder == '=':
|
168 |
+
return native.byteorder
|
169 |
+
if byteorder == 'S':
|
170 |
+
# TODO: this path can never be reached
|
171 |
+
return swapped.byteorder
|
172 |
+
elif byteorder == '|':
|
173 |
+
return ''
|
174 |
+
else:
|
175 |
+
return byteorder
|
176 |
+
|
177 |
+
|
178 |
+
def _datetime_metadata_str(dtype):
|
179 |
+
# TODO: this duplicates the C metastr_to_unicode functionality
|
180 |
+
unit, count = np.datetime_data(dtype)
|
181 |
+
if unit == 'generic':
|
182 |
+
return ''
|
183 |
+
elif count == 1:
|
184 |
+
return '[{}]'.format(unit)
|
185 |
+
else:
|
186 |
+
return '[{}{}]'.format(count, unit)
|
187 |
+
|
188 |
+
|
189 |
+
def _struct_dict_str(dtype, includealignedflag):
|
190 |
+
# unpack the fields dictionary into ls
|
191 |
+
names = dtype.names
|
192 |
+
fld_dtypes = []
|
193 |
+
offsets = []
|
194 |
+
titles = []
|
195 |
+
for name in names:
|
196 |
+
fld_dtype, offset, title = _unpack_field(*dtype.fields[name])
|
197 |
+
fld_dtypes.append(fld_dtype)
|
198 |
+
offsets.append(offset)
|
199 |
+
titles.append(title)
|
200 |
+
|
201 |
+
# Build up a string to make the dictionary
|
202 |
+
|
203 |
+
if np.core.arrayprint._get_legacy_print_mode() <= 121:
|
204 |
+
colon = ":"
|
205 |
+
fieldsep = ","
|
206 |
+
else:
|
207 |
+
colon = ": "
|
208 |
+
fieldsep = ", "
|
209 |
+
|
210 |
+
# First, the names
|
211 |
+
ret = "{'names'%s[" % colon
|
212 |
+
ret += fieldsep.join(repr(name) for name in names)
|
213 |
+
|
214 |
+
# Second, the formats
|
215 |
+
ret += "], 'formats'%s[" % colon
|
216 |
+
ret += fieldsep.join(
|
217 |
+
_construction_repr(fld_dtype, short=True) for fld_dtype in fld_dtypes)
|
218 |
+
|
219 |
+
# Third, the offsets
|
220 |
+
ret += "], 'offsets'%s[" % colon
|
221 |
+
ret += fieldsep.join("%d" % offset for offset in offsets)
|
222 |
+
|
223 |
+
# Fourth, the titles
|
224 |
+
if any(title is not None for title in titles):
|
225 |
+
ret += "], 'titles'%s[" % colon
|
226 |
+
ret += fieldsep.join(repr(title) for title in titles)
|
227 |
+
|
228 |
+
# Fifth, the itemsize
|
229 |
+
ret += "], 'itemsize'%s%d" % (colon, dtype.itemsize)
|
230 |
+
|
231 |
+
if (includealignedflag and dtype.isalignedstruct):
|
232 |
+
# Finally, the aligned flag
|
233 |
+
ret += ", 'aligned'%sTrue}" % colon
|
234 |
+
else:
|
235 |
+
ret += "}"
|
236 |
+
|
237 |
+
return ret
|
238 |
+
|
239 |
+
|
240 |
+
def _aligned_offset(offset, alignment):
|
241 |
+
# round up offset:
|
242 |
+
return - (-offset // alignment) * alignment
|
243 |
+
|
244 |
+
|
245 |
+
def _is_packed(dtype):
|
246 |
+
"""
|
247 |
+
Checks whether the structured data type in 'dtype'
|
248 |
+
has a simple layout, where all the fields are in order,
|
249 |
+
and follow each other with no alignment padding.
|
250 |
+
|
251 |
+
When this returns true, the dtype can be reconstructed
|
252 |
+
from a list of the field names and dtypes with no additional
|
253 |
+
dtype parameters.
|
254 |
+
|
255 |
+
Duplicates the C `is_dtype_struct_simple_unaligned_layout` function.
|
256 |
+
"""
|
257 |
+
align = dtype.isalignedstruct
|
258 |
+
max_alignment = 1
|
259 |
+
total_offset = 0
|
260 |
+
for name in dtype.names:
|
261 |
+
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
262 |
+
|
263 |
+
if align:
|
264 |
+
total_offset = _aligned_offset(total_offset, fld_dtype.alignment)
|
265 |
+
max_alignment = max(max_alignment, fld_dtype.alignment)
|
266 |
+
|
267 |
+
if fld_offset != total_offset:
|
268 |
+
return False
|
269 |
+
total_offset += fld_dtype.itemsize
|
270 |
+
|
271 |
+
if align:
|
272 |
+
total_offset = _aligned_offset(total_offset, max_alignment)
|
273 |
+
|
274 |
+
if total_offset != dtype.itemsize:
|
275 |
+
return False
|
276 |
+
return True
|
277 |
+
|
278 |
+
|
279 |
+
def _struct_list_str(dtype):
|
280 |
+
items = []
|
281 |
+
for name in dtype.names:
|
282 |
+
fld_dtype, fld_offset, title = _unpack_field(*dtype.fields[name])
|
283 |
+
|
284 |
+
item = "("
|
285 |
+
if title is not None:
|
286 |
+
item += "({!r}, {!r}), ".format(title, name)
|
287 |
+
else:
|
288 |
+
item += "{!r}, ".format(name)
|
289 |
+
# Special case subarray handling here
|
290 |
+
if fld_dtype.subdtype is not None:
|
291 |
+
base, shape = fld_dtype.subdtype
|
292 |
+
item += "{}, {}".format(
|
293 |
+
_construction_repr(base, short=True),
|
294 |
+
shape
|
295 |
+
)
|
296 |
+
else:
|
297 |
+
item += _construction_repr(fld_dtype, short=True)
|
298 |
+
|
299 |
+
item += ")"
|
300 |
+
items.append(item)
|
301 |
+
|
302 |
+
return "[" + ", ".join(items) + "]"
|
303 |
+
|
304 |
+
|
305 |
+
def _struct_str(dtype, include_align):
|
306 |
+
# The list str representation can't include the 'align=' flag,
|
307 |
+
# so if it is requested and the struct has the aligned flag set,
|
308 |
+
# we must use the dict str instead.
|
309 |
+
if not (include_align and dtype.isalignedstruct) and _is_packed(dtype):
|
310 |
+
sub = _struct_list_str(dtype)
|
311 |
+
|
312 |
+
else:
|
313 |
+
sub = _struct_dict_str(dtype, include_align)
|
314 |
+
|
315 |
+
# If the data type isn't the default, void, show it
|
316 |
+
if dtype.type != np.void:
|
317 |
+
return "({t.__module__}.{t.__name__}, {f})".format(t=dtype.type, f=sub)
|
318 |
+
else:
|
319 |
+
return sub
|
320 |
+
|
321 |
+
|
322 |
+
def _subarray_str(dtype):
|
323 |
+
base, shape = dtype.subdtype
|
324 |
+
return "({}, {})".format(
|
325 |
+
_construction_repr(base, short=True),
|
326 |
+
shape
|
327 |
+
)
|
328 |
+
|
329 |
+
|
330 |
+
def _name_includes_bit_suffix(dtype):
|
331 |
+
if dtype.type == np.object_:
|
332 |
+
# pointer size varies by system, best to omit it
|
333 |
+
return False
|
334 |
+
elif dtype.type == np.bool_:
|
335 |
+
# implied
|
336 |
+
return False
|
337 |
+
elif dtype.type is None:
|
338 |
+
return True
|
339 |
+
elif np.issubdtype(dtype, np.flexible) and _isunsized(dtype):
|
340 |
+
# unspecified
|
341 |
+
return False
|
342 |
+
else:
|
343 |
+
return True
|
344 |
+
|
345 |
+
|
346 |
+
def _name_get(dtype):
|
347 |
+
# provides dtype.name.__get__, documented as returning a "bit name"
|
348 |
+
|
349 |
+
if dtype.isbuiltin == 2:
|
350 |
+
# user dtypes don't promise to do anything special
|
351 |
+
return dtype.type.__name__
|
352 |
+
|
353 |
+
if dtype.kind == '\x00':
|
354 |
+
name = type(dtype).__name__
|
355 |
+
elif issubclass(dtype.type, np.void):
|
356 |
+
# historically, void subclasses preserve their name, eg `record64`
|
357 |
+
name = dtype.type.__name__
|
358 |
+
else:
|
359 |
+
name = _kind_name(dtype)
|
360 |
+
|
361 |
+
# append bit counts
|
362 |
+
if _name_includes_bit_suffix(dtype):
|
363 |
+
name += "{}".format(dtype.itemsize * 8)
|
364 |
+
|
365 |
+
# append metadata to datetimes
|
366 |
+
if dtype.type in (np.datetime64, np.timedelta64):
|
367 |
+
name += _datetime_metadata_str(dtype)
|
368 |
+
|
369 |
+
return name
|
venv/lib/python3.10/site-packages/numpy/core/_dtype_ctypes.py
ADDED
@@ -0,0 +1,117 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Conversion from ctypes to dtype.
|
3 |
+
|
4 |
+
In an ideal world, we could achieve this through the PEP3118 buffer protocol,
|
5 |
+
something like::
|
6 |
+
|
7 |
+
def dtype_from_ctypes_type(t):
|
8 |
+
# needed to ensure that the shape of `t` is within memoryview.format
|
9 |
+
class DummyStruct(ctypes.Structure):
|
10 |
+
_fields_ = [('a', t)]
|
11 |
+
|
12 |
+
# empty to avoid memory allocation
|
13 |
+
ctype_0 = (DummyStruct * 0)()
|
14 |
+
mv = memoryview(ctype_0)
|
15 |
+
|
16 |
+
# convert the struct, and slice back out the field
|
17 |
+
return _dtype_from_pep3118(mv.format)['a']
|
18 |
+
|
19 |
+
Unfortunately, this fails because:
|
20 |
+
|
21 |
+
* ctypes cannot handle length-0 arrays with PEP3118 (bpo-32782)
|
22 |
+
* PEP3118 cannot represent unions, but both numpy and ctypes can
|
23 |
+
* ctypes cannot handle big-endian structs with PEP3118 (bpo-32780)
|
24 |
+
"""
|
25 |
+
|
26 |
+
# We delay-import ctypes for distributions that do not include it.
|
27 |
+
# While this module is not used unless the user passes in ctypes
|
28 |
+
# members, it is eagerly imported from numpy/core/__init__.py.
|
29 |
+
import numpy as np
|
30 |
+
|
31 |
+
|
32 |
+
def _from_ctypes_array(t):
|
33 |
+
return np.dtype((dtype_from_ctypes_type(t._type_), (t._length_,)))
|
34 |
+
|
35 |
+
|
36 |
+
def _from_ctypes_structure(t):
|
37 |
+
for item in t._fields_:
|
38 |
+
if len(item) > 2:
|
39 |
+
raise TypeError(
|
40 |
+
"ctypes bitfields have no dtype equivalent")
|
41 |
+
|
42 |
+
if hasattr(t, "_pack_"):
|
43 |
+
import ctypes
|
44 |
+
formats = []
|
45 |
+
offsets = []
|
46 |
+
names = []
|
47 |
+
current_offset = 0
|
48 |
+
for fname, ftyp in t._fields_:
|
49 |
+
names.append(fname)
|
50 |
+
formats.append(dtype_from_ctypes_type(ftyp))
|
51 |
+
# Each type has a default offset, this is platform dependent for some types.
|
52 |
+
effective_pack = min(t._pack_, ctypes.alignment(ftyp))
|
53 |
+
current_offset = ((current_offset + effective_pack - 1) // effective_pack) * effective_pack
|
54 |
+
offsets.append(current_offset)
|
55 |
+
current_offset += ctypes.sizeof(ftyp)
|
56 |
+
|
57 |
+
return np.dtype(dict(
|
58 |
+
formats=formats,
|
59 |
+
offsets=offsets,
|
60 |
+
names=names,
|
61 |
+
itemsize=ctypes.sizeof(t)))
|
62 |
+
else:
|
63 |
+
fields = []
|
64 |
+
for fname, ftyp in t._fields_:
|
65 |
+
fields.append((fname, dtype_from_ctypes_type(ftyp)))
|
66 |
+
|
67 |
+
# by default, ctypes structs are aligned
|
68 |
+
return np.dtype(fields, align=True)
|
69 |
+
|
70 |
+
|
71 |
+
def _from_ctypes_scalar(t):
|
72 |
+
"""
|
73 |
+
Return the dtype type with endianness included if it's the case
|
74 |
+
"""
|
75 |
+
if getattr(t, '__ctype_be__', None) is t:
|
76 |
+
return np.dtype('>' + t._type_)
|
77 |
+
elif getattr(t, '__ctype_le__', None) is t:
|
78 |
+
return np.dtype('<' + t._type_)
|
79 |
+
else:
|
80 |
+
return np.dtype(t._type_)
|
81 |
+
|
82 |
+
|
83 |
+
def _from_ctypes_union(t):
|
84 |
+
import ctypes
|
85 |
+
formats = []
|
86 |
+
offsets = []
|
87 |
+
names = []
|
88 |
+
for fname, ftyp in t._fields_:
|
89 |
+
names.append(fname)
|
90 |
+
formats.append(dtype_from_ctypes_type(ftyp))
|
91 |
+
offsets.append(0) # Union fields are offset to 0
|
92 |
+
|
93 |
+
return np.dtype(dict(
|
94 |
+
formats=formats,
|
95 |
+
offsets=offsets,
|
96 |
+
names=names,
|
97 |
+
itemsize=ctypes.sizeof(t)))
|
98 |
+
|
99 |
+
|
100 |
+
def dtype_from_ctypes_type(t):
|
101 |
+
"""
|
102 |
+
Construct a dtype object from a ctypes type
|
103 |
+
"""
|
104 |
+
import _ctypes
|
105 |
+
if issubclass(t, _ctypes.Array):
|
106 |
+
return _from_ctypes_array(t)
|
107 |
+
elif issubclass(t, _ctypes._Pointer):
|
108 |
+
raise TypeError("ctypes pointers have no dtype equivalent")
|
109 |
+
elif issubclass(t, _ctypes.Structure):
|
110 |
+
return _from_ctypes_structure(t)
|
111 |
+
elif issubclass(t, _ctypes.Union):
|
112 |
+
return _from_ctypes_union(t)
|
113 |
+
elif isinstance(getattr(t, '_type_', None), str):
|
114 |
+
return _from_ctypes_scalar(t)
|
115 |
+
else:
|
116 |
+
raise NotImplementedError(
|
117 |
+
"Unknown ctypes type {}".format(t.__name__))
|
venv/lib/python3.10/site-packages/numpy/core/_exceptions.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Various richly-typed exceptions, that also help us deal with string formatting
|
3 |
+
in python where it's easier.
|
4 |
+
|
5 |
+
By putting the formatting in `__str__`, we also avoid paying the cost for
|
6 |
+
users who silence the exceptions.
|
7 |
+
"""
|
8 |
+
from .._utils import set_module
|
9 |
+
|
10 |
+
def _unpack_tuple(tup):
|
11 |
+
if len(tup) == 1:
|
12 |
+
return tup[0]
|
13 |
+
else:
|
14 |
+
return tup
|
15 |
+
|
16 |
+
|
17 |
+
def _display_as_base(cls):
|
18 |
+
"""
|
19 |
+
A decorator that makes an exception class look like its base.
|
20 |
+
|
21 |
+
We use this to hide subclasses that are implementation details - the user
|
22 |
+
should catch the base type, which is what the traceback will show them.
|
23 |
+
|
24 |
+
Classes decorated with this decorator are subject to removal without a
|
25 |
+
deprecation warning.
|
26 |
+
"""
|
27 |
+
assert issubclass(cls, Exception)
|
28 |
+
cls.__name__ = cls.__base__.__name__
|
29 |
+
return cls
|
30 |
+
|
31 |
+
|
32 |
+
class UFuncTypeError(TypeError):
|
33 |
+
""" Base class for all ufunc exceptions """
|
34 |
+
def __init__(self, ufunc):
|
35 |
+
self.ufunc = ufunc
|
36 |
+
|
37 |
+
|
38 |
+
@_display_as_base
|
39 |
+
class _UFuncNoLoopError(UFuncTypeError):
|
40 |
+
""" Thrown when a ufunc loop cannot be found """
|
41 |
+
def __init__(self, ufunc, dtypes):
|
42 |
+
super().__init__(ufunc)
|
43 |
+
self.dtypes = tuple(dtypes)
|
44 |
+
|
45 |
+
def __str__(self):
|
46 |
+
return (
|
47 |
+
"ufunc {!r} did not contain a loop with signature matching types "
|
48 |
+
"{!r} -> {!r}"
|
49 |
+
).format(
|
50 |
+
self.ufunc.__name__,
|
51 |
+
_unpack_tuple(self.dtypes[:self.ufunc.nin]),
|
52 |
+
_unpack_tuple(self.dtypes[self.ufunc.nin:])
|
53 |
+
)
|
54 |
+
|
55 |
+
|
56 |
+
@_display_as_base
|
57 |
+
class _UFuncBinaryResolutionError(_UFuncNoLoopError):
|
58 |
+
""" Thrown when a binary resolution fails """
|
59 |
+
def __init__(self, ufunc, dtypes):
|
60 |
+
super().__init__(ufunc, dtypes)
|
61 |
+
assert len(self.dtypes) == 2
|
62 |
+
|
63 |
+
def __str__(self):
|
64 |
+
return (
|
65 |
+
"ufunc {!r} cannot use operands with types {!r} and {!r}"
|
66 |
+
).format(
|
67 |
+
self.ufunc.__name__, *self.dtypes
|
68 |
+
)
|
69 |
+
|
70 |
+
|
71 |
+
@_display_as_base
|
72 |
+
class _UFuncCastingError(UFuncTypeError):
|
73 |
+
def __init__(self, ufunc, casting, from_, to):
|
74 |
+
super().__init__(ufunc)
|
75 |
+
self.casting = casting
|
76 |
+
self.from_ = from_
|
77 |
+
self.to = to
|
78 |
+
|
79 |
+
|
80 |
+
@_display_as_base
|
81 |
+
class _UFuncInputCastingError(_UFuncCastingError):
|
82 |
+
""" Thrown when a ufunc input cannot be casted """
|
83 |
+
def __init__(self, ufunc, casting, from_, to, i):
|
84 |
+
super().__init__(ufunc, casting, from_, to)
|
85 |
+
self.in_i = i
|
86 |
+
|
87 |
+
def __str__(self):
|
88 |
+
# only show the number if more than one input exists
|
89 |
+
i_str = "{} ".format(self.in_i) if self.ufunc.nin != 1 else ""
|
90 |
+
return (
|
91 |
+
"Cannot cast ufunc {!r} input {}from {!r} to {!r} with casting "
|
92 |
+
"rule {!r}"
|
93 |
+
).format(
|
94 |
+
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
95 |
+
)
|
96 |
+
|
97 |
+
|
98 |
+
@_display_as_base
|
99 |
+
class _UFuncOutputCastingError(_UFuncCastingError):
|
100 |
+
""" Thrown when a ufunc output cannot be casted """
|
101 |
+
def __init__(self, ufunc, casting, from_, to, i):
|
102 |
+
super().__init__(ufunc, casting, from_, to)
|
103 |
+
self.out_i = i
|
104 |
+
|
105 |
+
def __str__(self):
|
106 |
+
# only show the number if more than one output exists
|
107 |
+
i_str = "{} ".format(self.out_i) if self.ufunc.nout != 1 else ""
|
108 |
+
return (
|
109 |
+
"Cannot cast ufunc {!r} output {}from {!r} to {!r} with casting "
|
110 |
+
"rule {!r}"
|
111 |
+
).format(
|
112 |
+
self.ufunc.__name__, i_str, self.from_, self.to, self.casting
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
@_display_as_base
|
117 |
+
class _ArrayMemoryError(MemoryError):
|
118 |
+
""" Thrown when an array cannot be allocated"""
|
119 |
+
def __init__(self, shape, dtype):
|
120 |
+
self.shape = shape
|
121 |
+
self.dtype = dtype
|
122 |
+
|
123 |
+
@property
|
124 |
+
def _total_size(self):
|
125 |
+
num_bytes = self.dtype.itemsize
|
126 |
+
for dim in self.shape:
|
127 |
+
num_bytes *= dim
|
128 |
+
return num_bytes
|
129 |
+
|
130 |
+
@staticmethod
|
131 |
+
def _size_to_string(num_bytes):
|
132 |
+
""" Convert a number of bytes into a binary size string """
|
133 |
+
|
134 |
+
# https://en.wikipedia.org/wiki/Binary_prefix
|
135 |
+
LOG2_STEP = 10
|
136 |
+
STEP = 1024
|
137 |
+
units = ['bytes', 'KiB', 'MiB', 'GiB', 'TiB', 'PiB', 'EiB']
|
138 |
+
|
139 |
+
unit_i = max(num_bytes.bit_length() - 1, 1) // LOG2_STEP
|
140 |
+
unit_val = 1 << (unit_i * LOG2_STEP)
|
141 |
+
n_units = num_bytes / unit_val
|
142 |
+
del unit_val
|
143 |
+
|
144 |
+
# ensure we pick a unit that is correct after rounding
|
145 |
+
if round(n_units) == STEP:
|
146 |
+
unit_i += 1
|
147 |
+
n_units /= STEP
|
148 |
+
|
149 |
+
# deal with sizes so large that we don't have units for them
|
150 |
+
if unit_i >= len(units):
|
151 |
+
new_unit_i = len(units) - 1
|
152 |
+
n_units *= 1 << ((unit_i - new_unit_i) * LOG2_STEP)
|
153 |
+
unit_i = new_unit_i
|
154 |
+
|
155 |
+
unit_name = units[unit_i]
|
156 |
+
# format with a sensible number of digits
|
157 |
+
if unit_i == 0:
|
158 |
+
# no decimal point on bytes
|
159 |
+
return '{:.0f} {}'.format(n_units, unit_name)
|
160 |
+
elif round(n_units) < 1000:
|
161 |
+
# 3 significant figures, if none are dropped to the left of the .
|
162 |
+
return '{:#.3g} {}'.format(n_units, unit_name)
|
163 |
+
else:
|
164 |
+
# just give all the digits otherwise
|
165 |
+
return '{:#.0f} {}'.format(n_units, unit_name)
|
166 |
+
|
167 |
+
def __str__(self):
|
168 |
+
size_str = self._size_to_string(self._total_size)
|
169 |
+
return (
|
170 |
+
"Unable to allocate {} for an array with shape {} and data type {}"
|
171 |
+
.format(size_str, self.shape, self.dtype)
|
172 |
+
)
|
venv/lib/python3.10/site-packages/numpy/core/_internal.py
ADDED
@@ -0,0 +1,935 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
A place for internal code
|
3 |
+
|
4 |
+
Some things are more easily handled Python.
|
5 |
+
|
6 |
+
"""
|
7 |
+
import ast
|
8 |
+
import re
|
9 |
+
import sys
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
from ..exceptions import DTypePromotionError
|
13 |
+
from .multiarray import dtype, array, ndarray, promote_types
|
14 |
+
try:
|
15 |
+
import ctypes
|
16 |
+
except ImportError:
|
17 |
+
ctypes = None
|
18 |
+
|
19 |
+
IS_PYPY = sys.implementation.name == 'pypy'
|
20 |
+
|
21 |
+
if sys.byteorder == 'little':
|
22 |
+
_nbo = '<'
|
23 |
+
else:
|
24 |
+
_nbo = '>'
|
25 |
+
|
26 |
+
def _makenames_list(adict, align):
|
27 |
+
allfields = []
|
28 |
+
|
29 |
+
for fname, obj in adict.items():
|
30 |
+
n = len(obj)
|
31 |
+
if not isinstance(obj, tuple) or n not in (2, 3):
|
32 |
+
raise ValueError("entry not a 2- or 3- tuple")
|
33 |
+
if n > 2 and obj[2] == fname:
|
34 |
+
continue
|
35 |
+
num = int(obj[1])
|
36 |
+
if num < 0:
|
37 |
+
raise ValueError("invalid offset.")
|
38 |
+
format = dtype(obj[0], align=align)
|
39 |
+
if n > 2:
|
40 |
+
title = obj[2]
|
41 |
+
else:
|
42 |
+
title = None
|
43 |
+
allfields.append((fname, format, num, title))
|
44 |
+
# sort by offsets
|
45 |
+
allfields.sort(key=lambda x: x[2])
|
46 |
+
names = [x[0] for x in allfields]
|
47 |
+
formats = [x[1] for x in allfields]
|
48 |
+
offsets = [x[2] for x in allfields]
|
49 |
+
titles = [x[3] for x in allfields]
|
50 |
+
|
51 |
+
return names, formats, offsets, titles
|
52 |
+
|
53 |
+
# Called in PyArray_DescrConverter function when
|
54 |
+
# a dictionary without "names" and "formats"
|
55 |
+
# fields is used as a data-type descriptor.
|
56 |
+
def _usefields(adict, align):
|
57 |
+
try:
|
58 |
+
names = adict[-1]
|
59 |
+
except KeyError:
|
60 |
+
names = None
|
61 |
+
if names is None:
|
62 |
+
names, formats, offsets, titles = _makenames_list(adict, align)
|
63 |
+
else:
|
64 |
+
formats = []
|
65 |
+
offsets = []
|
66 |
+
titles = []
|
67 |
+
for name in names:
|
68 |
+
res = adict[name]
|
69 |
+
formats.append(res[0])
|
70 |
+
offsets.append(res[1])
|
71 |
+
if len(res) > 2:
|
72 |
+
titles.append(res[2])
|
73 |
+
else:
|
74 |
+
titles.append(None)
|
75 |
+
|
76 |
+
return dtype({"names": names,
|
77 |
+
"formats": formats,
|
78 |
+
"offsets": offsets,
|
79 |
+
"titles": titles}, align)
|
80 |
+
|
81 |
+
|
82 |
+
# construct an array_protocol descriptor list
|
83 |
+
# from the fields attribute of a descriptor
|
84 |
+
# This calls itself recursively but should eventually hit
|
85 |
+
# a descriptor that has no fields and then return
|
86 |
+
# a simple typestring
|
87 |
+
|
88 |
+
def _array_descr(descriptor):
|
89 |
+
fields = descriptor.fields
|
90 |
+
if fields is None:
|
91 |
+
subdtype = descriptor.subdtype
|
92 |
+
if subdtype is None:
|
93 |
+
if descriptor.metadata is None:
|
94 |
+
return descriptor.str
|
95 |
+
else:
|
96 |
+
new = descriptor.metadata.copy()
|
97 |
+
if new:
|
98 |
+
return (descriptor.str, new)
|
99 |
+
else:
|
100 |
+
return descriptor.str
|
101 |
+
else:
|
102 |
+
return (_array_descr(subdtype[0]), subdtype[1])
|
103 |
+
|
104 |
+
names = descriptor.names
|
105 |
+
ordered_fields = [fields[x] + (x,) for x in names]
|
106 |
+
result = []
|
107 |
+
offset = 0
|
108 |
+
for field in ordered_fields:
|
109 |
+
if field[1] > offset:
|
110 |
+
num = field[1] - offset
|
111 |
+
result.append(('', f'|V{num}'))
|
112 |
+
offset += num
|
113 |
+
elif field[1] < offset:
|
114 |
+
raise ValueError(
|
115 |
+
"dtype.descr is not defined for types with overlapping or "
|
116 |
+
"out-of-order fields")
|
117 |
+
if len(field) > 3:
|
118 |
+
name = (field[2], field[3])
|
119 |
+
else:
|
120 |
+
name = field[2]
|
121 |
+
if field[0].subdtype:
|
122 |
+
tup = (name, _array_descr(field[0].subdtype[0]),
|
123 |
+
field[0].subdtype[1])
|
124 |
+
else:
|
125 |
+
tup = (name, _array_descr(field[0]))
|
126 |
+
offset += field[0].itemsize
|
127 |
+
result.append(tup)
|
128 |
+
|
129 |
+
if descriptor.itemsize > offset:
|
130 |
+
num = descriptor.itemsize - offset
|
131 |
+
result.append(('', f'|V{num}'))
|
132 |
+
|
133 |
+
return result
|
134 |
+
|
135 |
+
# Build a new array from the information in a pickle.
|
136 |
+
# Note that the name numpy.core._internal._reconstruct is embedded in
|
137 |
+
# pickles of ndarrays made with NumPy before release 1.0
|
138 |
+
# so don't remove the name here, or you'll
|
139 |
+
# break backward compatibility.
|
140 |
+
def _reconstruct(subtype, shape, dtype):
|
141 |
+
return ndarray.__new__(subtype, shape, dtype)
|
142 |
+
|
143 |
+
|
144 |
+
# format_re was originally from numarray by J. Todd Miller
|
145 |
+
|
146 |
+
format_re = re.compile(r'(?P<order1>[<>|=]?)'
|
147 |
+
r'(?P<repeats> *[(]?[ ,0-9]*[)]? *)'
|
148 |
+
r'(?P<order2>[<>|=]?)'
|
149 |
+
r'(?P<dtype>[A-Za-z0-9.?]*(?:\[[a-zA-Z0-9,.]+\])?)')
|
150 |
+
sep_re = re.compile(r'\s*,\s*')
|
151 |
+
space_re = re.compile(r'\s+$')
|
152 |
+
|
153 |
+
# astr is a string (perhaps comma separated)
|
154 |
+
|
155 |
+
_convorder = {'=': _nbo}
|
156 |
+
|
157 |
+
def _commastring(astr):
|
158 |
+
startindex = 0
|
159 |
+
result = []
|
160 |
+
while startindex < len(astr):
|
161 |
+
mo = format_re.match(astr, pos=startindex)
|
162 |
+
try:
|
163 |
+
(order1, repeats, order2, dtype) = mo.groups()
|
164 |
+
except (TypeError, AttributeError):
|
165 |
+
raise ValueError(
|
166 |
+
f'format number {len(result)+1} of "{astr}" is not recognized'
|
167 |
+
) from None
|
168 |
+
startindex = mo.end()
|
169 |
+
# Separator or ending padding
|
170 |
+
if startindex < len(astr):
|
171 |
+
if space_re.match(astr, pos=startindex):
|
172 |
+
startindex = len(astr)
|
173 |
+
else:
|
174 |
+
mo = sep_re.match(astr, pos=startindex)
|
175 |
+
if not mo:
|
176 |
+
raise ValueError(
|
177 |
+
'format number %d of "%s" is not recognized' %
|
178 |
+
(len(result)+1, astr))
|
179 |
+
startindex = mo.end()
|
180 |
+
|
181 |
+
if order2 == '':
|
182 |
+
order = order1
|
183 |
+
elif order1 == '':
|
184 |
+
order = order2
|
185 |
+
else:
|
186 |
+
order1 = _convorder.get(order1, order1)
|
187 |
+
order2 = _convorder.get(order2, order2)
|
188 |
+
if (order1 != order2):
|
189 |
+
raise ValueError(
|
190 |
+
'inconsistent byte-order specification %s and %s' %
|
191 |
+
(order1, order2))
|
192 |
+
order = order1
|
193 |
+
|
194 |
+
if order in ('|', '=', _nbo):
|
195 |
+
order = ''
|
196 |
+
dtype = order + dtype
|
197 |
+
if (repeats == ''):
|
198 |
+
newitem = dtype
|
199 |
+
else:
|
200 |
+
newitem = (dtype, ast.literal_eval(repeats))
|
201 |
+
result.append(newitem)
|
202 |
+
|
203 |
+
return result
|
204 |
+
|
205 |
+
class dummy_ctype:
|
206 |
+
def __init__(self, cls):
|
207 |
+
self._cls = cls
|
208 |
+
def __mul__(self, other):
|
209 |
+
return self
|
210 |
+
def __call__(self, *other):
|
211 |
+
return self._cls(other)
|
212 |
+
def __eq__(self, other):
|
213 |
+
return self._cls == other._cls
|
214 |
+
def __ne__(self, other):
|
215 |
+
return self._cls != other._cls
|
216 |
+
|
217 |
+
def _getintp_ctype():
|
218 |
+
val = _getintp_ctype.cache
|
219 |
+
if val is not None:
|
220 |
+
return val
|
221 |
+
if ctypes is None:
|
222 |
+
import numpy as np
|
223 |
+
val = dummy_ctype(np.intp)
|
224 |
+
else:
|
225 |
+
char = dtype('p').char
|
226 |
+
if char == 'i':
|
227 |
+
val = ctypes.c_int
|
228 |
+
elif char == 'l':
|
229 |
+
val = ctypes.c_long
|
230 |
+
elif char == 'q':
|
231 |
+
val = ctypes.c_longlong
|
232 |
+
else:
|
233 |
+
val = ctypes.c_long
|
234 |
+
_getintp_ctype.cache = val
|
235 |
+
return val
|
236 |
+
_getintp_ctype.cache = None
|
237 |
+
|
238 |
+
# Used for .ctypes attribute of ndarray
|
239 |
+
|
240 |
+
class _missing_ctypes:
|
241 |
+
def cast(self, num, obj):
|
242 |
+
return num.value
|
243 |
+
|
244 |
+
class c_void_p:
|
245 |
+
def __init__(self, ptr):
|
246 |
+
self.value = ptr
|
247 |
+
|
248 |
+
|
249 |
+
class _ctypes:
|
250 |
+
def __init__(self, array, ptr=None):
|
251 |
+
self._arr = array
|
252 |
+
|
253 |
+
if ctypes:
|
254 |
+
self._ctypes = ctypes
|
255 |
+
self._data = self._ctypes.c_void_p(ptr)
|
256 |
+
else:
|
257 |
+
# fake a pointer-like object that holds onto the reference
|
258 |
+
self._ctypes = _missing_ctypes()
|
259 |
+
self._data = self._ctypes.c_void_p(ptr)
|
260 |
+
self._data._objects = array
|
261 |
+
|
262 |
+
if self._arr.ndim == 0:
|
263 |
+
self._zerod = True
|
264 |
+
else:
|
265 |
+
self._zerod = False
|
266 |
+
|
267 |
+
def data_as(self, obj):
|
268 |
+
"""
|
269 |
+
Return the data pointer cast to a particular c-types object.
|
270 |
+
For example, calling ``self._as_parameter_`` is equivalent to
|
271 |
+
``self.data_as(ctypes.c_void_p)``. Perhaps you want to use the data as a
|
272 |
+
pointer to a ctypes array of floating-point data:
|
273 |
+
``self.data_as(ctypes.POINTER(ctypes.c_double))``.
|
274 |
+
|
275 |
+
The returned pointer will keep a reference to the array.
|
276 |
+
"""
|
277 |
+
# _ctypes.cast function causes a circular reference of self._data in
|
278 |
+
# self._data._objects. Attributes of self._data cannot be released
|
279 |
+
# until gc.collect is called. Make a copy of the pointer first then let
|
280 |
+
# it hold the array reference. This is a workaround to circumvent the
|
281 |
+
# CPython bug https://bugs.python.org/issue12836
|
282 |
+
ptr = self._ctypes.cast(self._data, obj)
|
283 |
+
ptr._arr = self._arr
|
284 |
+
return ptr
|
285 |
+
|
286 |
+
def shape_as(self, obj):
|
287 |
+
"""
|
288 |
+
Return the shape tuple as an array of some other c-types
|
289 |
+
type. For example: ``self.shape_as(ctypes.c_short)``.
|
290 |
+
"""
|
291 |
+
if self._zerod:
|
292 |
+
return None
|
293 |
+
return (obj*self._arr.ndim)(*self._arr.shape)
|
294 |
+
|
295 |
+
def strides_as(self, obj):
|
296 |
+
"""
|
297 |
+
Return the strides tuple as an array of some other
|
298 |
+
c-types type. For example: ``self.strides_as(ctypes.c_longlong)``.
|
299 |
+
"""
|
300 |
+
if self._zerod:
|
301 |
+
return None
|
302 |
+
return (obj*self._arr.ndim)(*self._arr.strides)
|
303 |
+
|
304 |
+
@property
|
305 |
+
def data(self):
|
306 |
+
"""
|
307 |
+
A pointer to the memory area of the array as a Python integer.
|
308 |
+
This memory area may contain data that is not aligned, or not in correct
|
309 |
+
byte-order. The memory area may not even be writeable. The array
|
310 |
+
flags and data-type of this array should be respected when passing this
|
311 |
+
attribute to arbitrary C-code to avoid trouble that can include Python
|
312 |
+
crashing. User Beware! The value of this attribute is exactly the same
|
313 |
+
as ``self._array_interface_['data'][0]``.
|
314 |
+
|
315 |
+
Note that unlike ``data_as``, a reference will not be kept to the array:
|
316 |
+
code like ``ctypes.c_void_p((a + b).ctypes.data)`` will result in a
|
317 |
+
pointer to a deallocated array, and should be spelt
|
318 |
+
``(a + b).ctypes.data_as(ctypes.c_void_p)``
|
319 |
+
"""
|
320 |
+
return self._data.value
|
321 |
+
|
322 |
+
@property
|
323 |
+
def shape(self):
|
324 |
+
"""
|
325 |
+
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
326 |
+
the basetype is the C-integer corresponding to ``dtype('p')`` on this
|
327 |
+
platform (see `~numpy.ctypeslib.c_intp`). This base-type could be
|
328 |
+
`ctypes.c_int`, `ctypes.c_long`, or `ctypes.c_longlong` depending on
|
329 |
+
the platform. The ctypes array contains the shape of
|
330 |
+
the underlying array.
|
331 |
+
"""
|
332 |
+
return self.shape_as(_getintp_ctype())
|
333 |
+
|
334 |
+
@property
|
335 |
+
def strides(self):
|
336 |
+
"""
|
337 |
+
(c_intp*self.ndim): A ctypes array of length self.ndim where
|
338 |
+
the basetype is the same as for the shape attribute. This ctypes array
|
339 |
+
contains the strides information from the underlying array. This strides
|
340 |
+
information is important for showing how many bytes must be jumped to
|
341 |
+
get to the next element in the array.
|
342 |
+
"""
|
343 |
+
return self.strides_as(_getintp_ctype())
|
344 |
+
|
345 |
+
@property
|
346 |
+
def _as_parameter_(self):
|
347 |
+
"""
|
348 |
+
Overrides the ctypes semi-magic method
|
349 |
+
|
350 |
+
Enables `c_func(some_array.ctypes)`
|
351 |
+
"""
|
352 |
+
return self.data_as(ctypes.c_void_p)
|
353 |
+
|
354 |
+
# Numpy 1.21.0, 2021-05-18
|
355 |
+
|
356 |
+
def get_data(self):
|
357 |
+
"""Deprecated getter for the `_ctypes.data` property.
|
358 |
+
|
359 |
+
.. deprecated:: 1.21
|
360 |
+
"""
|
361 |
+
warnings.warn('"get_data" is deprecated. Use "data" instead',
|
362 |
+
DeprecationWarning, stacklevel=2)
|
363 |
+
return self.data
|
364 |
+
|
365 |
+
def get_shape(self):
|
366 |
+
"""Deprecated getter for the `_ctypes.shape` property.
|
367 |
+
|
368 |
+
.. deprecated:: 1.21
|
369 |
+
"""
|
370 |
+
warnings.warn('"get_shape" is deprecated. Use "shape" instead',
|
371 |
+
DeprecationWarning, stacklevel=2)
|
372 |
+
return self.shape
|
373 |
+
|
374 |
+
def get_strides(self):
|
375 |
+
"""Deprecated getter for the `_ctypes.strides` property.
|
376 |
+
|
377 |
+
.. deprecated:: 1.21
|
378 |
+
"""
|
379 |
+
warnings.warn('"get_strides" is deprecated. Use "strides" instead',
|
380 |
+
DeprecationWarning, stacklevel=2)
|
381 |
+
return self.strides
|
382 |
+
|
383 |
+
def get_as_parameter(self):
|
384 |
+
"""Deprecated getter for the `_ctypes._as_parameter_` property.
|
385 |
+
|
386 |
+
.. deprecated:: 1.21
|
387 |
+
"""
|
388 |
+
warnings.warn(
|
389 |
+
'"get_as_parameter" is deprecated. Use "_as_parameter_" instead',
|
390 |
+
DeprecationWarning, stacklevel=2,
|
391 |
+
)
|
392 |
+
return self._as_parameter_
|
393 |
+
|
394 |
+
|
395 |
+
def _newnames(datatype, order):
|
396 |
+
"""
|
397 |
+
Given a datatype and an order object, return a new names tuple, with the
|
398 |
+
order indicated
|
399 |
+
"""
|
400 |
+
oldnames = datatype.names
|
401 |
+
nameslist = list(oldnames)
|
402 |
+
if isinstance(order, str):
|
403 |
+
order = [order]
|
404 |
+
seen = set()
|
405 |
+
if isinstance(order, (list, tuple)):
|
406 |
+
for name in order:
|
407 |
+
try:
|
408 |
+
nameslist.remove(name)
|
409 |
+
except ValueError:
|
410 |
+
if name in seen:
|
411 |
+
raise ValueError(f"duplicate field name: {name}") from None
|
412 |
+
else:
|
413 |
+
raise ValueError(f"unknown field name: {name}") from None
|
414 |
+
seen.add(name)
|
415 |
+
return tuple(list(order) + nameslist)
|
416 |
+
raise ValueError(f"unsupported order value: {order}")
|
417 |
+
|
418 |
+
def _copy_fields(ary):
|
419 |
+
"""Return copy of structured array with padding between fields removed.
|
420 |
+
|
421 |
+
Parameters
|
422 |
+
----------
|
423 |
+
ary : ndarray
|
424 |
+
Structured array from which to remove padding bytes
|
425 |
+
|
426 |
+
Returns
|
427 |
+
-------
|
428 |
+
ary_copy : ndarray
|
429 |
+
Copy of ary with padding bytes removed
|
430 |
+
"""
|
431 |
+
dt = ary.dtype
|
432 |
+
copy_dtype = {'names': dt.names,
|
433 |
+
'formats': [dt.fields[name][0] for name in dt.names]}
|
434 |
+
return array(ary, dtype=copy_dtype, copy=True)
|
435 |
+
|
436 |
+
def _promote_fields(dt1, dt2):
|
437 |
+
""" Perform type promotion for two structured dtypes.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
dt1 : structured dtype
|
442 |
+
First dtype.
|
443 |
+
dt2 : structured dtype
|
444 |
+
Second dtype.
|
445 |
+
|
446 |
+
Returns
|
447 |
+
-------
|
448 |
+
out : dtype
|
449 |
+
The promoted dtype
|
450 |
+
|
451 |
+
Notes
|
452 |
+
-----
|
453 |
+
If one of the inputs is aligned, the result will be. The titles of
|
454 |
+
both descriptors must match (point to the same field).
|
455 |
+
"""
|
456 |
+
# Both must be structured and have the same names in the same order
|
457 |
+
if (dt1.names is None or dt2.names is None) or dt1.names != dt2.names:
|
458 |
+
raise DTypePromotionError(
|
459 |
+
f"field names `{dt1.names}` and `{dt2.names}` mismatch.")
|
460 |
+
|
461 |
+
# if both are identical, we can (maybe!) just return the same dtype.
|
462 |
+
identical = dt1 is dt2
|
463 |
+
new_fields = []
|
464 |
+
for name in dt1.names:
|
465 |
+
field1 = dt1.fields[name]
|
466 |
+
field2 = dt2.fields[name]
|
467 |
+
new_descr = promote_types(field1[0], field2[0])
|
468 |
+
identical = identical and new_descr is field1[0]
|
469 |
+
|
470 |
+
# Check that the titles match (if given):
|
471 |
+
if field1[2:] != field2[2:]:
|
472 |
+
raise DTypePromotionError(
|
473 |
+
f"field titles of field '{name}' mismatch")
|
474 |
+
if len(field1) == 2:
|
475 |
+
new_fields.append((name, new_descr))
|
476 |
+
else:
|
477 |
+
new_fields.append(((field1[2], name), new_descr))
|
478 |
+
|
479 |
+
res = dtype(new_fields, align=dt1.isalignedstruct or dt2.isalignedstruct)
|
480 |
+
|
481 |
+
# Might as well preserve identity (and metadata) if the dtype is identical
|
482 |
+
# and the itemsize, offsets are also unmodified. This could probably be
|
483 |
+
# sped up, but also probably just be removed entirely.
|
484 |
+
if identical and res.itemsize == dt1.itemsize:
|
485 |
+
for name in dt1.names:
|
486 |
+
if dt1.fields[name][1] != res.fields[name][1]:
|
487 |
+
return res # the dtype changed.
|
488 |
+
return dt1
|
489 |
+
|
490 |
+
return res
|
491 |
+
|
492 |
+
|
493 |
+
def _getfield_is_safe(oldtype, newtype, offset):
|
494 |
+
""" Checks safety of getfield for object arrays.
|
495 |
+
|
496 |
+
As in _view_is_safe, we need to check that memory containing objects is not
|
497 |
+
reinterpreted as a non-object datatype and vice versa.
|
498 |
+
|
499 |
+
Parameters
|
500 |
+
----------
|
501 |
+
oldtype : data-type
|
502 |
+
Data type of the original ndarray.
|
503 |
+
newtype : data-type
|
504 |
+
Data type of the field being accessed by ndarray.getfield
|
505 |
+
offset : int
|
506 |
+
Offset of the field being accessed by ndarray.getfield
|
507 |
+
|
508 |
+
Raises
|
509 |
+
------
|
510 |
+
TypeError
|
511 |
+
If the field access is invalid
|
512 |
+
|
513 |
+
"""
|
514 |
+
if newtype.hasobject or oldtype.hasobject:
|
515 |
+
if offset == 0 and newtype == oldtype:
|
516 |
+
return
|
517 |
+
if oldtype.names is not None:
|
518 |
+
for name in oldtype.names:
|
519 |
+
if (oldtype.fields[name][1] == offset and
|
520 |
+
oldtype.fields[name][0] == newtype):
|
521 |
+
return
|
522 |
+
raise TypeError("Cannot get/set field of an object array")
|
523 |
+
return
|
524 |
+
|
525 |
+
def _view_is_safe(oldtype, newtype):
|
526 |
+
""" Checks safety of a view involving object arrays, for example when
|
527 |
+
doing::
|
528 |
+
|
529 |
+
np.zeros(10, dtype=oldtype).view(newtype)
|
530 |
+
|
531 |
+
Parameters
|
532 |
+
----------
|
533 |
+
oldtype : data-type
|
534 |
+
Data type of original ndarray
|
535 |
+
newtype : data-type
|
536 |
+
Data type of the view
|
537 |
+
|
538 |
+
Raises
|
539 |
+
------
|
540 |
+
TypeError
|
541 |
+
If the new type is incompatible with the old type.
|
542 |
+
|
543 |
+
"""
|
544 |
+
|
545 |
+
# if the types are equivalent, there is no problem.
|
546 |
+
# for example: dtype((np.record, 'i4,i4')) == dtype((np.void, 'i4,i4'))
|
547 |
+
if oldtype == newtype:
|
548 |
+
return
|
549 |
+
|
550 |
+
if newtype.hasobject or oldtype.hasobject:
|
551 |
+
raise TypeError("Cannot change data-type for object array.")
|
552 |
+
return
|
553 |
+
|
554 |
+
# Given a string containing a PEP 3118 format specifier,
|
555 |
+
# construct a NumPy dtype
|
556 |
+
|
557 |
+
_pep3118_native_map = {
|
558 |
+
'?': '?',
|
559 |
+
'c': 'S1',
|
560 |
+
'b': 'b',
|
561 |
+
'B': 'B',
|
562 |
+
'h': 'h',
|
563 |
+
'H': 'H',
|
564 |
+
'i': 'i',
|
565 |
+
'I': 'I',
|
566 |
+
'l': 'l',
|
567 |
+
'L': 'L',
|
568 |
+
'q': 'q',
|
569 |
+
'Q': 'Q',
|
570 |
+
'e': 'e',
|
571 |
+
'f': 'f',
|
572 |
+
'd': 'd',
|
573 |
+
'g': 'g',
|
574 |
+
'Zf': 'F',
|
575 |
+
'Zd': 'D',
|
576 |
+
'Zg': 'G',
|
577 |
+
's': 'S',
|
578 |
+
'w': 'U',
|
579 |
+
'O': 'O',
|
580 |
+
'x': 'V', # padding
|
581 |
+
}
|
582 |
+
_pep3118_native_typechars = ''.join(_pep3118_native_map.keys())
|
583 |
+
|
584 |
+
_pep3118_standard_map = {
|
585 |
+
'?': '?',
|
586 |
+
'c': 'S1',
|
587 |
+
'b': 'b',
|
588 |
+
'B': 'B',
|
589 |
+
'h': 'i2',
|
590 |
+
'H': 'u2',
|
591 |
+
'i': 'i4',
|
592 |
+
'I': 'u4',
|
593 |
+
'l': 'i4',
|
594 |
+
'L': 'u4',
|
595 |
+
'q': 'i8',
|
596 |
+
'Q': 'u8',
|
597 |
+
'e': 'f2',
|
598 |
+
'f': 'f',
|
599 |
+
'd': 'd',
|
600 |
+
'Zf': 'F',
|
601 |
+
'Zd': 'D',
|
602 |
+
's': 'S',
|
603 |
+
'w': 'U',
|
604 |
+
'O': 'O',
|
605 |
+
'x': 'V', # padding
|
606 |
+
}
|
607 |
+
_pep3118_standard_typechars = ''.join(_pep3118_standard_map.keys())
|
608 |
+
|
609 |
+
_pep3118_unsupported_map = {
|
610 |
+
'u': 'UCS-2 strings',
|
611 |
+
'&': 'pointers',
|
612 |
+
't': 'bitfields',
|
613 |
+
'X': 'function pointers',
|
614 |
+
}
|
615 |
+
|
616 |
+
class _Stream:
|
617 |
+
def __init__(self, s):
|
618 |
+
self.s = s
|
619 |
+
self.byteorder = '@'
|
620 |
+
|
621 |
+
def advance(self, n):
|
622 |
+
res = self.s[:n]
|
623 |
+
self.s = self.s[n:]
|
624 |
+
return res
|
625 |
+
|
626 |
+
def consume(self, c):
|
627 |
+
if self.s[:len(c)] == c:
|
628 |
+
self.advance(len(c))
|
629 |
+
return True
|
630 |
+
return False
|
631 |
+
|
632 |
+
def consume_until(self, c):
|
633 |
+
if callable(c):
|
634 |
+
i = 0
|
635 |
+
while i < len(self.s) and not c(self.s[i]):
|
636 |
+
i = i + 1
|
637 |
+
return self.advance(i)
|
638 |
+
else:
|
639 |
+
i = self.s.index(c)
|
640 |
+
res = self.advance(i)
|
641 |
+
self.advance(len(c))
|
642 |
+
return res
|
643 |
+
|
644 |
+
@property
|
645 |
+
def next(self):
|
646 |
+
return self.s[0]
|
647 |
+
|
648 |
+
def __bool__(self):
|
649 |
+
return bool(self.s)
|
650 |
+
|
651 |
+
|
652 |
+
def _dtype_from_pep3118(spec):
|
653 |
+
stream = _Stream(spec)
|
654 |
+
dtype, align = __dtype_from_pep3118(stream, is_subdtype=False)
|
655 |
+
return dtype
|
656 |
+
|
657 |
+
def __dtype_from_pep3118(stream, is_subdtype):
|
658 |
+
field_spec = dict(
|
659 |
+
names=[],
|
660 |
+
formats=[],
|
661 |
+
offsets=[],
|
662 |
+
itemsize=0
|
663 |
+
)
|
664 |
+
offset = 0
|
665 |
+
common_alignment = 1
|
666 |
+
is_padding = False
|
667 |
+
|
668 |
+
# Parse spec
|
669 |
+
while stream:
|
670 |
+
value = None
|
671 |
+
|
672 |
+
# End of structure, bail out to upper level
|
673 |
+
if stream.consume('}'):
|
674 |
+
break
|
675 |
+
|
676 |
+
# Sub-arrays (1)
|
677 |
+
shape = None
|
678 |
+
if stream.consume('('):
|
679 |
+
shape = stream.consume_until(')')
|
680 |
+
shape = tuple(map(int, shape.split(',')))
|
681 |
+
|
682 |
+
# Byte order
|
683 |
+
if stream.next in ('@', '=', '<', '>', '^', '!'):
|
684 |
+
byteorder = stream.advance(1)
|
685 |
+
if byteorder == '!':
|
686 |
+
byteorder = '>'
|
687 |
+
stream.byteorder = byteorder
|
688 |
+
|
689 |
+
# Byte order characters also control native vs. standard type sizes
|
690 |
+
if stream.byteorder in ('@', '^'):
|
691 |
+
type_map = _pep3118_native_map
|
692 |
+
type_map_chars = _pep3118_native_typechars
|
693 |
+
else:
|
694 |
+
type_map = _pep3118_standard_map
|
695 |
+
type_map_chars = _pep3118_standard_typechars
|
696 |
+
|
697 |
+
# Item sizes
|
698 |
+
itemsize_str = stream.consume_until(lambda c: not c.isdigit())
|
699 |
+
if itemsize_str:
|
700 |
+
itemsize = int(itemsize_str)
|
701 |
+
else:
|
702 |
+
itemsize = 1
|
703 |
+
|
704 |
+
# Data types
|
705 |
+
is_padding = False
|
706 |
+
|
707 |
+
if stream.consume('T{'):
|
708 |
+
value, align = __dtype_from_pep3118(
|
709 |
+
stream, is_subdtype=True)
|
710 |
+
elif stream.next in type_map_chars:
|
711 |
+
if stream.next == 'Z':
|
712 |
+
typechar = stream.advance(2)
|
713 |
+
else:
|
714 |
+
typechar = stream.advance(1)
|
715 |
+
|
716 |
+
is_padding = (typechar == 'x')
|
717 |
+
dtypechar = type_map[typechar]
|
718 |
+
if dtypechar in 'USV':
|
719 |
+
dtypechar += '%d' % itemsize
|
720 |
+
itemsize = 1
|
721 |
+
numpy_byteorder = {'@': '=', '^': '='}.get(
|
722 |
+
stream.byteorder, stream.byteorder)
|
723 |
+
value = dtype(numpy_byteorder + dtypechar)
|
724 |
+
align = value.alignment
|
725 |
+
elif stream.next in _pep3118_unsupported_map:
|
726 |
+
desc = _pep3118_unsupported_map[stream.next]
|
727 |
+
raise NotImplementedError(
|
728 |
+
"Unrepresentable PEP 3118 data type {!r} ({})"
|
729 |
+
.format(stream.next, desc))
|
730 |
+
else:
|
731 |
+
raise ValueError("Unknown PEP 3118 data type specifier %r" % stream.s)
|
732 |
+
|
733 |
+
#
|
734 |
+
# Native alignment may require padding
|
735 |
+
#
|
736 |
+
# Here we assume that the presence of a '@' character implicitly implies
|
737 |
+
# that the start of the array is *already* aligned.
|
738 |
+
#
|
739 |
+
extra_offset = 0
|
740 |
+
if stream.byteorder == '@':
|
741 |
+
start_padding = (-offset) % align
|
742 |
+
intra_padding = (-value.itemsize) % align
|
743 |
+
|
744 |
+
offset += start_padding
|
745 |
+
|
746 |
+
if intra_padding != 0:
|
747 |
+
if itemsize > 1 or (shape is not None and _prod(shape) > 1):
|
748 |
+
# Inject internal padding to the end of the sub-item
|
749 |
+
value = _add_trailing_padding(value, intra_padding)
|
750 |
+
else:
|
751 |
+
# We can postpone the injection of internal padding,
|
752 |
+
# as the item appears at most once
|
753 |
+
extra_offset += intra_padding
|
754 |
+
|
755 |
+
# Update common alignment
|
756 |
+
common_alignment = _lcm(align, common_alignment)
|
757 |
+
|
758 |
+
# Convert itemsize to sub-array
|
759 |
+
if itemsize != 1:
|
760 |
+
value = dtype((value, (itemsize,)))
|
761 |
+
|
762 |
+
# Sub-arrays (2)
|
763 |
+
if shape is not None:
|
764 |
+
value = dtype((value, shape))
|
765 |
+
|
766 |
+
# Field name
|
767 |
+
if stream.consume(':'):
|
768 |
+
name = stream.consume_until(':')
|
769 |
+
else:
|
770 |
+
name = None
|
771 |
+
|
772 |
+
if not (is_padding and name is None):
|
773 |
+
if name is not None and name in field_spec['names']:
|
774 |
+
raise RuntimeError(f"Duplicate field name '{name}' in PEP3118 format")
|
775 |
+
field_spec['names'].append(name)
|
776 |
+
field_spec['formats'].append(value)
|
777 |
+
field_spec['offsets'].append(offset)
|
778 |
+
|
779 |
+
offset += value.itemsize
|
780 |
+
offset += extra_offset
|
781 |
+
|
782 |
+
field_spec['itemsize'] = offset
|
783 |
+
|
784 |
+
# extra final padding for aligned types
|
785 |
+
if stream.byteorder == '@':
|
786 |
+
field_spec['itemsize'] += (-offset) % common_alignment
|
787 |
+
|
788 |
+
# Check if this was a simple 1-item type, and unwrap it
|
789 |
+
if (field_spec['names'] == [None]
|
790 |
+
and field_spec['offsets'][0] == 0
|
791 |
+
and field_spec['itemsize'] == field_spec['formats'][0].itemsize
|
792 |
+
and not is_subdtype):
|
793 |
+
ret = field_spec['formats'][0]
|
794 |
+
else:
|
795 |
+
_fix_names(field_spec)
|
796 |
+
ret = dtype(field_spec)
|
797 |
+
|
798 |
+
# Finished
|
799 |
+
return ret, common_alignment
|
800 |
+
|
801 |
+
def _fix_names(field_spec):
|
802 |
+
""" Replace names which are None with the next unused f%d name """
|
803 |
+
names = field_spec['names']
|
804 |
+
for i, name in enumerate(names):
|
805 |
+
if name is not None:
|
806 |
+
continue
|
807 |
+
|
808 |
+
j = 0
|
809 |
+
while True:
|
810 |
+
name = f'f{j}'
|
811 |
+
if name not in names:
|
812 |
+
break
|
813 |
+
j = j + 1
|
814 |
+
names[i] = name
|
815 |
+
|
816 |
+
def _add_trailing_padding(value, padding):
|
817 |
+
"""Inject the specified number of padding bytes at the end of a dtype"""
|
818 |
+
if value.fields is None:
|
819 |
+
field_spec = dict(
|
820 |
+
names=['f0'],
|
821 |
+
formats=[value],
|
822 |
+
offsets=[0],
|
823 |
+
itemsize=value.itemsize
|
824 |
+
)
|
825 |
+
else:
|
826 |
+
fields = value.fields
|
827 |
+
names = value.names
|
828 |
+
field_spec = dict(
|
829 |
+
names=names,
|
830 |
+
formats=[fields[name][0] for name in names],
|
831 |
+
offsets=[fields[name][1] for name in names],
|
832 |
+
itemsize=value.itemsize
|
833 |
+
)
|
834 |
+
|
835 |
+
field_spec['itemsize'] += padding
|
836 |
+
return dtype(field_spec)
|
837 |
+
|
838 |
+
def _prod(a):
|
839 |
+
p = 1
|
840 |
+
for x in a:
|
841 |
+
p *= x
|
842 |
+
return p
|
843 |
+
|
844 |
+
def _gcd(a, b):
|
845 |
+
"""Calculate the greatest common divisor of a and b"""
|
846 |
+
while b:
|
847 |
+
a, b = b, a % b
|
848 |
+
return a
|
849 |
+
|
850 |
+
def _lcm(a, b):
|
851 |
+
return a // _gcd(a, b) * b
|
852 |
+
|
853 |
+
def array_ufunc_errmsg_formatter(dummy, ufunc, method, *inputs, **kwargs):
|
854 |
+
""" Format the error message for when __array_ufunc__ gives up. """
|
855 |
+
args_string = ', '.join(['{!r}'.format(arg) for arg in inputs] +
|
856 |
+
['{}={!r}'.format(k, v)
|
857 |
+
for k, v in kwargs.items()])
|
858 |
+
args = inputs + kwargs.get('out', ())
|
859 |
+
types_string = ', '.join(repr(type(arg).__name__) for arg in args)
|
860 |
+
return ('operand type(s) all returned NotImplemented from '
|
861 |
+
'__array_ufunc__({!r}, {!r}, {}): {}'
|
862 |
+
.format(ufunc, method, args_string, types_string))
|
863 |
+
|
864 |
+
|
865 |
+
def array_function_errmsg_formatter(public_api, types):
|
866 |
+
""" Format the error message for when __array_ufunc__ gives up. """
|
867 |
+
func_name = '{}.{}'.format(public_api.__module__, public_api.__name__)
|
868 |
+
return ("no implementation found for '{}' on types that implement "
|
869 |
+
'__array_function__: {}'.format(func_name, list(types)))
|
870 |
+
|
871 |
+
|
872 |
+
def _ufunc_doc_signature_formatter(ufunc):
|
873 |
+
"""
|
874 |
+
Builds a signature string which resembles PEP 457
|
875 |
+
|
876 |
+
This is used to construct the first line of the docstring
|
877 |
+
"""
|
878 |
+
|
879 |
+
# input arguments are simple
|
880 |
+
if ufunc.nin == 1:
|
881 |
+
in_args = 'x'
|
882 |
+
else:
|
883 |
+
in_args = ', '.join(f'x{i+1}' for i in range(ufunc.nin))
|
884 |
+
|
885 |
+
# output arguments are both keyword or positional
|
886 |
+
if ufunc.nout == 0:
|
887 |
+
out_args = ', /, out=()'
|
888 |
+
elif ufunc.nout == 1:
|
889 |
+
out_args = ', /, out=None'
|
890 |
+
else:
|
891 |
+
out_args = '[, {positional}], / [, out={default}]'.format(
|
892 |
+
positional=', '.join(
|
893 |
+
'out{}'.format(i+1) for i in range(ufunc.nout)),
|
894 |
+
default=repr((None,)*ufunc.nout)
|
895 |
+
)
|
896 |
+
|
897 |
+
# keyword only args depend on whether this is a gufunc
|
898 |
+
kwargs = (
|
899 |
+
", casting='same_kind'"
|
900 |
+
", order='K'"
|
901 |
+
", dtype=None"
|
902 |
+
", subok=True"
|
903 |
+
)
|
904 |
+
|
905 |
+
# NOTE: gufuncs may or may not support the `axis` parameter
|
906 |
+
if ufunc.signature is None:
|
907 |
+
kwargs = f", where=True{kwargs}[, signature, extobj]"
|
908 |
+
else:
|
909 |
+
kwargs += "[, signature, extobj, axes, axis]"
|
910 |
+
|
911 |
+
# join all the parts together
|
912 |
+
return '{name}({in_args}{out_args}, *{kwargs})'.format(
|
913 |
+
name=ufunc.__name__,
|
914 |
+
in_args=in_args,
|
915 |
+
out_args=out_args,
|
916 |
+
kwargs=kwargs
|
917 |
+
)
|
918 |
+
|
919 |
+
|
920 |
+
def npy_ctypes_check(cls):
|
921 |
+
# determine if a class comes from ctypes, in order to work around
|
922 |
+
# a bug in the buffer protocol for those objects, bpo-10746
|
923 |
+
try:
|
924 |
+
# ctypes class are new-style, so have an __mro__. This probably fails
|
925 |
+
# for ctypes classes with multiple inheritance.
|
926 |
+
if IS_PYPY:
|
927 |
+
# (..., _ctypes.basics._CData, Bufferable, object)
|
928 |
+
ctype_base = cls.__mro__[-3]
|
929 |
+
else:
|
930 |
+
# # (..., _ctypes._CData, object)
|
931 |
+
ctype_base = cls.__mro__[-2]
|
932 |
+
# right now, they're part of the _ctypes module
|
933 |
+
return '_ctypes' in ctype_base.__module__
|
934 |
+
except Exception:
|
935 |
+
return False
|
venv/lib/python3.10/site-packages/numpy/core/_internal.pyi
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Any, TypeVar, overload, Generic
|
2 |
+
import ctypes as ct
|
3 |
+
|
4 |
+
from numpy import ndarray
|
5 |
+
from numpy.ctypeslib import c_intp
|
6 |
+
|
7 |
+
_CastT = TypeVar("_CastT", bound=ct._CanCastTo) # Copied from `ctypes.cast`
|
8 |
+
_CT = TypeVar("_CT", bound=ct._CData)
|
9 |
+
_PT = TypeVar("_PT", bound=None | int)
|
10 |
+
|
11 |
+
# TODO: Let the likes of `shape_as` and `strides_as` return `None`
|
12 |
+
# for 0D arrays once we've got shape-support
|
13 |
+
|
14 |
+
class _ctypes(Generic[_PT]):
|
15 |
+
@overload
|
16 |
+
def __new__(cls, array: ndarray[Any, Any], ptr: None = ...) -> _ctypes[None]: ...
|
17 |
+
@overload
|
18 |
+
def __new__(cls, array: ndarray[Any, Any], ptr: _PT) -> _ctypes[_PT]: ...
|
19 |
+
@property
|
20 |
+
def data(self) -> _PT: ...
|
21 |
+
@property
|
22 |
+
def shape(self) -> ct.Array[c_intp]: ...
|
23 |
+
@property
|
24 |
+
def strides(self) -> ct.Array[c_intp]: ...
|
25 |
+
@property
|
26 |
+
def _as_parameter_(self) -> ct.c_void_p: ...
|
27 |
+
|
28 |
+
def data_as(self, obj: type[_CastT]) -> _CastT: ...
|
29 |
+
def shape_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
30 |
+
def strides_as(self, obj: type[_CT]) -> ct.Array[_CT]: ...
|
venv/lib/python3.10/site-packages/numpy/core/_machar.py
ADDED
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Machine arithmetic - determine the parameters of the
|
3 |
+
floating-point arithmetic system
|
4 |
+
|
5 |
+
Author: Pearu Peterson, September 2003
|
6 |
+
|
7 |
+
"""
|
8 |
+
__all__ = ['MachAr']
|
9 |
+
|
10 |
+
from .fromnumeric import any
|
11 |
+
from ._ufunc_config import errstate
|
12 |
+
from .._utils import set_module
|
13 |
+
|
14 |
+
# Need to speed this up...especially for longfloat
|
15 |
+
|
16 |
+
# Deprecated 2021-10-20, NumPy 1.22
|
17 |
+
class MachAr:
|
18 |
+
"""
|
19 |
+
Diagnosing machine parameters.
|
20 |
+
|
21 |
+
Attributes
|
22 |
+
----------
|
23 |
+
ibeta : int
|
24 |
+
Radix in which numbers are represented.
|
25 |
+
it : int
|
26 |
+
Number of base-`ibeta` digits in the floating point mantissa M.
|
27 |
+
machep : int
|
28 |
+
Exponent of the smallest (most negative) power of `ibeta` that,
|
29 |
+
added to 1.0, gives something different from 1.0
|
30 |
+
eps : float
|
31 |
+
Floating-point number ``beta**machep`` (floating point precision)
|
32 |
+
negep : int
|
33 |
+
Exponent of the smallest power of `ibeta` that, subtracted
|
34 |
+
from 1.0, gives something different from 1.0.
|
35 |
+
epsneg : float
|
36 |
+
Floating-point number ``beta**negep``.
|
37 |
+
iexp : int
|
38 |
+
Number of bits in the exponent (including its sign and bias).
|
39 |
+
minexp : int
|
40 |
+
Smallest (most negative) power of `ibeta` consistent with there
|
41 |
+
being no leading zeros in the mantissa.
|
42 |
+
xmin : float
|
43 |
+
Floating-point number ``beta**minexp`` (the smallest [in
|
44 |
+
magnitude] positive floating point number with full precision).
|
45 |
+
maxexp : int
|
46 |
+
Smallest (positive) power of `ibeta` that causes overflow.
|
47 |
+
xmax : float
|
48 |
+
``(1-epsneg) * beta**maxexp`` (the largest [in magnitude]
|
49 |
+
usable floating value).
|
50 |
+
irnd : int
|
51 |
+
In ``range(6)``, information on what kind of rounding is done
|
52 |
+
in addition, and on how underflow is handled.
|
53 |
+
ngrd : int
|
54 |
+
Number of 'guard digits' used when truncating the product
|
55 |
+
of two mantissas to fit the representation.
|
56 |
+
epsilon : float
|
57 |
+
Same as `eps`.
|
58 |
+
tiny : float
|
59 |
+
An alias for `smallest_normal`, kept for backwards compatibility.
|
60 |
+
huge : float
|
61 |
+
Same as `xmax`.
|
62 |
+
precision : float
|
63 |
+
``- int(-log10(eps))``
|
64 |
+
resolution : float
|
65 |
+
``- 10**(-precision)``
|
66 |
+
smallest_normal : float
|
67 |
+
The smallest positive floating point number with 1 as leading bit in
|
68 |
+
the mantissa following IEEE-754. Same as `xmin`.
|
69 |
+
smallest_subnormal : float
|
70 |
+
The smallest positive floating point number with 0 as leading bit in
|
71 |
+
the mantissa following IEEE-754.
|
72 |
+
|
73 |
+
Parameters
|
74 |
+
----------
|
75 |
+
float_conv : function, optional
|
76 |
+
Function that converts an integer or integer array to a float
|
77 |
+
or float array. Default is `float`.
|
78 |
+
int_conv : function, optional
|
79 |
+
Function that converts a float or float array to an integer or
|
80 |
+
integer array. Default is `int`.
|
81 |
+
float_to_float : function, optional
|
82 |
+
Function that converts a float array to float. Default is `float`.
|
83 |
+
Note that this does not seem to do anything useful in the current
|
84 |
+
implementation.
|
85 |
+
float_to_str : function, optional
|
86 |
+
Function that converts a single float to a string. Default is
|
87 |
+
``lambda v:'%24.16e' %v``.
|
88 |
+
title : str, optional
|
89 |
+
Title that is printed in the string representation of `MachAr`.
|
90 |
+
|
91 |
+
See Also
|
92 |
+
--------
|
93 |
+
finfo : Machine limits for floating point types.
|
94 |
+
iinfo : Machine limits for integer types.
|
95 |
+
|
96 |
+
References
|
97 |
+
----------
|
98 |
+
.. [1] Press, Teukolsky, Vetterling and Flannery,
|
99 |
+
"Numerical Recipes in C++," 2nd ed,
|
100 |
+
Cambridge University Press, 2002, p. 31.
|
101 |
+
|
102 |
+
"""
|
103 |
+
|
104 |
+
def __init__(self, float_conv=float,int_conv=int,
|
105 |
+
float_to_float=float,
|
106 |
+
float_to_str=lambda v:'%24.16e' % v,
|
107 |
+
title='Python floating point number'):
|
108 |
+
"""
|
109 |
+
|
110 |
+
float_conv - convert integer to float (array)
|
111 |
+
int_conv - convert float (array) to integer
|
112 |
+
float_to_float - convert float array to float
|
113 |
+
float_to_str - convert array float to str
|
114 |
+
title - description of used floating point numbers
|
115 |
+
|
116 |
+
"""
|
117 |
+
# We ignore all errors here because we are purposely triggering
|
118 |
+
# underflow to detect the properties of the runninng arch.
|
119 |
+
with errstate(under='ignore'):
|
120 |
+
self._do_init(float_conv, int_conv, float_to_float, float_to_str, title)
|
121 |
+
|
122 |
+
def _do_init(self, float_conv, int_conv, float_to_float, float_to_str, title):
|
123 |
+
max_iterN = 10000
|
124 |
+
msg = "Did not converge after %d tries with %s"
|
125 |
+
one = float_conv(1)
|
126 |
+
two = one + one
|
127 |
+
zero = one - one
|
128 |
+
|
129 |
+
# Do we really need to do this? Aren't they 2 and 2.0?
|
130 |
+
# Determine ibeta and beta
|
131 |
+
a = one
|
132 |
+
for _ in range(max_iterN):
|
133 |
+
a = a + a
|
134 |
+
temp = a + one
|
135 |
+
temp1 = temp - a
|
136 |
+
if any(temp1 - one != zero):
|
137 |
+
break
|
138 |
+
else:
|
139 |
+
raise RuntimeError(msg % (_, one.dtype))
|
140 |
+
b = one
|
141 |
+
for _ in range(max_iterN):
|
142 |
+
b = b + b
|
143 |
+
temp = a + b
|
144 |
+
itemp = int_conv(temp-a)
|
145 |
+
if any(itemp != 0):
|
146 |
+
break
|
147 |
+
else:
|
148 |
+
raise RuntimeError(msg % (_, one.dtype))
|
149 |
+
ibeta = itemp
|
150 |
+
beta = float_conv(ibeta)
|
151 |
+
|
152 |
+
# Determine it and irnd
|
153 |
+
it = -1
|
154 |
+
b = one
|
155 |
+
for _ in range(max_iterN):
|
156 |
+
it = it + 1
|
157 |
+
b = b * beta
|
158 |
+
temp = b + one
|
159 |
+
temp1 = temp - b
|
160 |
+
if any(temp1 - one != zero):
|
161 |
+
break
|
162 |
+
else:
|
163 |
+
raise RuntimeError(msg % (_, one.dtype))
|
164 |
+
|
165 |
+
betah = beta / two
|
166 |
+
a = one
|
167 |
+
for _ in range(max_iterN):
|
168 |
+
a = a + a
|
169 |
+
temp = a + one
|
170 |
+
temp1 = temp - a
|
171 |
+
if any(temp1 - one != zero):
|
172 |
+
break
|
173 |
+
else:
|
174 |
+
raise RuntimeError(msg % (_, one.dtype))
|
175 |
+
temp = a + betah
|
176 |
+
irnd = 0
|
177 |
+
if any(temp-a != zero):
|
178 |
+
irnd = 1
|
179 |
+
tempa = a + beta
|
180 |
+
temp = tempa + betah
|
181 |
+
if irnd == 0 and any(temp-tempa != zero):
|
182 |
+
irnd = 2
|
183 |
+
|
184 |
+
# Determine negep and epsneg
|
185 |
+
negep = it + 3
|
186 |
+
betain = one / beta
|
187 |
+
a = one
|
188 |
+
for i in range(negep):
|
189 |
+
a = a * betain
|
190 |
+
b = a
|
191 |
+
for _ in range(max_iterN):
|
192 |
+
temp = one - a
|
193 |
+
if any(temp-one != zero):
|
194 |
+
break
|
195 |
+
a = a * beta
|
196 |
+
negep = negep - 1
|
197 |
+
# Prevent infinite loop on PPC with gcc 4.0:
|
198 |
+
if negep < 0:
|
199 |
+
raise RuntimeError("could not determine machine tolerance "
|
200 |
+
"for 'negep', locals() -> %s" % (locals()))
|
201 |
+
else:
|
202 |
+
raise RuntimeError(msg % (_, one.dtype))
|
203 |
+
negep = -negep
|
204 |
+
epsneg = a
|
205 |
+
|
206 |
+
# Determine machep and eps
|
207 |
+
machep = - it - 3
|
208 |
+
a = b
|
209 |
+
|
210 |
+
for _ in range(max_iterN):
|
211 |
+
temp = one + a
|
212 |
+
if any(temp-one != zero):
|
213 |
+
break
|
214 |
+
a = a * beta
|
215 |
+
machep = machep + 1
|
216 |
+
else:
|
217 |
+
raise RuntimeError(msg % (_, one.dtype))
|
218 |
+
eps = a
|
219 |
+
|
220 |
+
# Determine ngrd
|
221 |
+
ngrd = 0
|
222 |
+
temp = one + eps
|
223 |
+
if irnd == 0 and any(temp*one - one != zero):
|
224 |
+
ngrd = 1
|
225 |
+
|
226 |
+
# Determine iexp
|
227 |
+
i = 0
|
228 |
+
k = 1
|
229 |
+
z = betain
|
230 |
+
t = one + eps
|
231 |
+
nxres = 0
|
232 |
+
for _ in range(max_iterN):
|
233 |
+
y = z
|
234 |
+
z = y*y
|
235 |
+
a = z*one # Check here for underflow
|
236 |
+
temp = z*t
|
237 |
+
if any(a+a == zero) or any(abs(z) >= y):
|
238 |
+
break
|
239 |
+
temp1 = temp * betain
|
240 |
+
if any(temp1*beta == z):
|
241 |
+
break
|
242 |
+
i = i + 1
|
243 |
+
k = k + k
|
244 |
+
else:
|
245 |
+
raise RuntimeError(msg % (_, one.dtype))
|
246 |
+
if ibeta != 10:
|
247 |
+
iexp = i + 1
|
248 |
+
mx = k + k
|
249 |
+
else:
|
250 |
+
iexp = 2
|
251 |
+
iz = ibeta
|
252 |
+
while k >= iz:
|
253 |
+
iz = iz * ibeta
|
254 |
+
iexp = iexp + 1
|
255 |
+
mx = iz + iz - 1
|
256 |
+
|
257 |
+
# Determine minexp and xmin
|
258 |
+
for _ in range(max_iterN):
|
259 |
+
xmin = y
|
260 |
+
y = y * betain
|
261 |
+
a = y * one
|
262 |
+
temp = y * t
|
263 |
+
if any((a + a) != zero) and any(abs(y) < xmin):
|
264 |
+
k = k + 1
|
265 |
+
temp1 = temp * betain
|
266 |
+
if any(temp1*beta == y) and any(temp != y):
|
267 |
+
nxres = 3
|
268 |
+
xmin = y
|
269 |
+
break
|
270 |
+
else:
|
271 |
+
break
|
272 |
+
else:
|
273 |
+
raise RuntimeError(msg % (_, one.dtype))
|
274 |
+
minexp = -k
|
275 |
+
|
276 |
+
# Determine maxexp, xmax
|
277 |
+
if mx <= k + k - 3 and ibeta != 10:
|
278 |
+
mx = mx + mx
|
279 |
+
iexp = iexp + 1
|
280 |
+
maxexp = mx + minexp
|
281 |
+
irnd = irnd + nxres
|
282 |
+
if irnd >= 2:
|
283 |
+
maxexp = maxexp - 2
|
284 |
+
i = maxexp + minexp
|
285 |
+
if ibeta == 2 and not i:
|
286 |
+
maxexp = maxexp - 1
|
287 |
+
if i > 20:
|
288 |
+
maxexp = maxexp - 1
|
289 |
+
if any(a != y):
|
290 |
+
maxexp = maxexp - 2
|
291 |
+
xmax = one - epsneg
|
292 |
+
if any(xmax*one != xmax):
|
293 |
+
xmax = one - beta*epsneg
|
294 |
+
xmax = xmax / (xmin*beta*beta*beta)
|
295 |
+
i = maxexp + minexp + 3
|
296 |
+
for j in range(i):
|
297 |
+
if ibeta == 2:
|
298 |
+
xmax = xmax + xmax
|
299 |
+
else:
|
300 |
+
xmax = xmax * beta
|
301 |
+
|
302 |
+
smallest_subnormal = abs(xmin / beta ** (it))
|
303 |
+
|
304 |
+
self.ibeta = ibeta
|
305 |
+
self.it = it
|
306 |
+
self.negep = negep
|
307 |
+
self.epsneg = float_to_float(epsneg)
|
308 |
+
self._str_epsneg = float_to_str(epsneg)
|
309 |
+
self.machep = machep
|
310 |
+
self.eps = float_to_float(eps)
|
311 |
+
self._str_eps = float_to_str(eps)
|
312 |
+
self.ngrd = ngrd
|
313 |
+
self.iexp = iexp
|
314 |
+
self.minexp = minexp
|
315 |
+
self.xmin = float_to_float(xmin)
|
316 |
+
self._str_xmin = float_to_str(xmin)
|
317 |
+
self.maxexp = maxexp
|
318 |
+
self.xmax = float_to_float(xmax)
|
319 |
+
self._str_xmax = float_to_str(xmax)
|
320 |
+
self.irnd = irnd
|
321 |
+
|
322 |
+
self.title = title
|
323 |
+
# Commonly used parameters
|
324 |
+
self.epsilon = self.eps
|
325 |
+
self.tiny = self.xmin
|
326 |
+
self.huge = self.xmax
|
327 |
+
self.smallest_normal = self.xmin
|
328 |
+
self._str_smallest_normal = float_to_str(self.xmin)
|
329 |
+
self.smallest_subnormal = float_to_float(smallest_subnormal)
|
330 |
+
self._str_smallest_subnormal = float_to_str(smallest_subnormal)
|
331 |
+
|
332 |
+
import math
|
333 |
+
self.precision = int(-math.log10(float_to_float(self.eps)))
|
334 |
+
ten = two + two + two + two + two
|
335 |
+
resolution = ten ** (-self.precision)
|
336 |
+
self.resolution = float_to_float(resolution)
|
337 |
+
self._str_resolution = float_to_str(resolution)
|
338 |
+
|
339 |
+
def __str__(self):
|
340 |
+
fmt = (
|
341 |
+
'Machine parameters for %(title)s\n'
|
342 |
+
'---------------------------------------------------------------------\n'
|
343 |
+
'ibeta=%(ibeta)s it=%(it)s iexp=%(iexp)s ngrd=%(ngrd)s irnd=%(irnd)s\n'
|
344 |
+
'machep=%(machep)s eps=%(_str_eps)s (beta**machep == epsilon)\n'
|
345 |
+
'negep =%(negep)s epsneg=%(_str_epsneg)s (beta**epsneg)\n'
|
346 |
+
'minexp=%(minexp)s xmin=%(_str_xmin)s (beta**minexp == tiny)\n'
|
347 |
+
'maxexp=%(maxexp)s xmax=%(_str_xmax)s ((1-epsneg)*beta**maxexp == huge)\n'
|
348 |
+
'smallest_normal=%(smallest_normal)s '
|
349 |
+
'smallest_subnormal=%(smallest_subnormal)s\n'
|
350 |
+
'---------------------------------------------------------------------\n'
|
351 |
+
)
|
352 |
+
return fmt % self.__dict__
|
353 |
+
|
354 |
+
|
355 |
+
if __name__ == '__main__':
|
356 |
+
print(MachAr())
|
venv/lib/python3.10/site-packages/numpy/core/_multiarray_tests.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (176 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/core/_operand_flag_tests.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (16.9 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/core/_rational_tests.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (59.8 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/core/_string_helpers.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
String-handling utilities to avoid locale-dependence.
|
3 |
+
|
4 |
+
Used primarily to generate type name aliases.
|
5 |
+
"""
|
6 |
+
# "import string" is costly to import!
|
7 |
+
# Construct the translation tables directly
|
8 |
+
# "A" = chr(65), "a" = chr(97)
|
9 |
+
_all_chars = tuple(map(chr, range(256)))
|
10 |
+
_ascii_upper = _all_chars[65:65+26]
|
11 |
+
_ascii_lower = _all_chars[97:97+26]
|
12 |
+
LOWER_TABLE = "".join(_all_chars[:65] + _ascii_lower + _all_chars[65+26:])
|
13 |
+
UPPER_TABLE = "".join(_all_chars[:97] + _ascii_upper + _all_chars[97+26:])
|
14 |
+
|
15 |
+
|
16 |
+
def english_lower(s):
|
17 |
+
""" Apply English case rules to convert ASCII strings to all lower case.
|
18 |
+
|
19 |
+
This is an internal utility function to replace calls to str.lower() such
|
20 |
+
that we can avoid changing behavior with changing locales. In particular,
|
21 |
+
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
22 |
+
both lowercase and uppercase. Thus, "I".lower() != "i" in a "tr" locale.
|
23 |
+
|
24 |
+
Parameters
|
25 |
+
----------
|
26 |
+
s : str
|
27 |
+
|
28 |
+
Returns
|
29 |
+
-------
|
30 |
+
lowered : str
|
31 |
+
|
32 |
+
Examples
|
33 |
+
--------
|
34 |
+
>>> from numpy.core.numerictypes import english_lower
|
35 |
+
>>> english_lower('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
36 |
+
'abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz0123456789_'
|
37 |
+
>>> english_lower('')
|
38 |
+
''
|
39 |
+
"""
|
40 |
+
lowered = s.translate(LOWER_TABLE)
|
41 |
+
return lowered
|
42 |
+
|
43 |
+
|
44 |
+
def english_upper(s):
|
45 |
+
""" Apply English case rules to convert ASCII strings to all upper case.
|
46 |
+
|
47 |
+
This is an internal utility function to replace calls to str.upper() such
|
48 |
+
that we can avoid changing behavior with changing locales. In particular,
|
49 |
+
Turkish has distinct dotted and dotless variants of the Latin letter "I" in
|
50 |
+
both lowercase and uppercase. Thus, "i".upper() != "I" in a "tr" locale.
|
51 |
+
|
52 |
+
Parameters
|
53 |
+
----------
|
54 |
+
s : str
|
55 |
+
|
56 |
+
Returns
|
57 |
+
-------
|
58 |
+
uppered : str
|
59 |
+
|
60 |
+
Examples
|
61 |
+
--------
|
62 |
+
>>> from numpy.core.numerictypes import english_upper
|
63 |
+
>>> english_upper('ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789_')
|
64 |
+
'ABCDEFGHIJKLMNOPQRSTUVWXYZABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789_'
|
65 |
+
>>> english_upper('')
|
66 |
+
''
|
67 |
+
"""
|
68 |
+
uppered = s.translate(UPPER_TABLE)
|
69 |
+
return uppered
|
70 |
+
|
71 |
+
|
72 |
+
def english_capitalize(s):
|
73 |
+
""" Apply English case rules to convert the first character of an ASCII
|
74 |
+
string to upper case.
|
75 |
+
|
76 |
+
This is an internal utility function to replace calls to str.capitalize()
|
77 |
+
such that we can avoid changing behavior with changing locales.
|
78 |
+
|
79 |
+
Parameters
|
80 |
+
----------
|
81 |
+
s : str
|
82 |
+
|
83 |
+
Returns
|
84 |
+
-------
|
85 |
+
capitalized : str
|
86 |
+
|
87 |
+
Examples
|
88 |
+
--------
|
89 |
+
>>> from numpy.core.numerictypes import english_capitalize
|
90 |
+
>>> english_capitalize('int8')
|
91 |
+
'Int8'
|
92 |
+
>>> english_capitalize('Int8')
|
93 |
+
'Int8'
|
94 |
+
>>> english_capitalize('')
|
95 |
+
''
|
96 |
+
"""
|
97 |
+
if s:
|
98 |
+
return english_upper(s[0]) + s[1:]
|
99 |
+
else:
|
100 |
+
return s
|
venv/lib/python3.10/site-packages/numpy/core/_struct_ufunc_tests.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (17 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/core/_type_aliases.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Due to compatibility, numpy has a very large number of different naming
|
3 |
+
conventions for the scalar types (those subclassing from `numpy.generic`).
|
4 |
+
This file produces a convoluted set of dictionaries mapping names to types,
|
5 |
+
and sometimes other mappings too.
|
6 |
+
|
7 |
+
.. data:: allTypes
|
8 |
+
A dictionary of names to types that will be exposed as attributes through
|
9 |
+
``np.core.numerictypes.*``
|
10 |
+
|
11 |
+
.. data:: sctypeDict
|
12 |
+
Similar to `allTypes`, but maps a broader set of aliases to their types.
|
13 |
+
|
14 |
+
.. data:: sctypes
|
15 |
+
A dictionary keyed by a "type group" string, providing a list of types
|
16 |
+
under that group.
|
17 |
+
|
18 |
+
"""
|
19 |
+
|
20 |
+
from numpy.compat import unicode
|
21 |
+
from numpy.core._string_helpers import english_lower
|
22 |
+
from numpy.core.multiarray import typeinfo, dtype
|
23 |
+
from numpy.core._dtype import _kind_name
|
24 |
+
|
25 |
+
|
26 |
+
sctypeDict = {} # Contains all leaf-node scalar types with aliases
|
27 |
+
allTypes = {} # Collect the types we will add to the module
|
28 |
+
|
29 |
+
|
30 |
+
# separate the actual type info from the abstract base classes
|
31 |
+
_abstract_types = {}
|
32 |
+
_concrete_typeinfo = {}
|
33 |
+
for k, v in typeinfo.items():
|
34 |
+
# make all the keys lowercase too
|
35 |
+
k = english_lower(k)
|
36 |
+
if isinstance(v, type):
|
37 |
+
_abstract_types[k] = v
|
38 |
+
else:
|
39 |
+
_concrete_typeinfo[k] = v
|
40 |
+
|
41 |
+
_concrete_types = {v.type for k, v in _concrete_typeinfo.items()}
|
42 |
+
|
43 |
+
|
44 |
+
def _bits_of(obj):
|
45 |
+
try:
|
46 |
+
info = next(v for v in _concrete_typeinfo.values() if v.type is obj)
|
47 |
+
except StopIteration:
|
48 |
+
if obj in _abstract_types.values():
|
49 |
+
msg = "Cannot count the bits of an abstract type"
|
50 |
+
raise ValueError(msg) from None
|
51 |
+
|
52 |
+
# some third-party type - make a best-guess
|
53 |
+
return dtype(obj).itemsize * 8
|
54 |
+
else:
|
55 |
+
return info.bits
|
56 |
+
|
57 |
+
|
58 |
+
def bitname(obj):
|
59 |
+
"""Return a bit-width name for a given type object"""
|
60 |
+
bits = _bits_of(obj)
|
61 |
+
dt = dtype(obj)
|
62 |
+
char = dt.kind
|
63 |
+
base = _kind_name(dt)
|
64 |
+
|
65 |
+
if base == 'object':
|
66 |
+
bits = 0
|
67 |
+
|
68 |
+
if bits != 0:
|
69 |
+
char = "%s%d" % (char, bits // 8)
|
70 |
+
|
71 |
+
return base, bits, char
|
72 |
+
|
73 |
+
|
74 |
+
def _add_types():
|
75 |
+
for name, info in _concrete_typeinfo.items():
|
76 |
+
# define C-name and insert typenum and typechar references also
|
77 |
+
allTypes[name] = info.type
|
78 |
+
sctypeDict[name] = info.type
|
79 |
+
sctypeDict[info.char] = info.type
|
80 |
+
sctypeDict[info.num] = info.type
|
81 |
+
|
82 |
+
for name, cls in _abstract_types.items():
|
83 |
+
allTypes[name] = cls
|
84 |
+
_add_types()
|
85 |
+
|
86 |
+
# This is the priority order used to assign the bit-sized NPY_INTxx names, which
|
87 |
+
# must match the order in npy_common.h in order for NPY_INTxx and np.intxx to be
|
88 |
+
# consistent.
|
89 |
+
# If two C types have the same size, then the earliest one in this list is used
|
90 |
+
# as the sized name.
|
91 |
+
_int_ctypes = ['long', 'longlong', 'int', 'short', 'byte']
|
92 |
+
_uint_ctypes = list('u' + t for t in _int_ctypes)
|
93 |
+
|
94 |
+
def _add_aliases():
|
95 |
+
for name, info in _concrete_typeinfo.items():
|
96 |
+
# these are handled by _add_integer_aliases
|
97 |
+
if name in _int_ctypes or name in _uint_ctypes:
|
98 |
+
continue
|
99 |
+
|
100 |
+
# insert bit-width version for this class (if relevant)
|
101 |
+
base, bit, char = bitname(info.type)
|
102 |
+
|
103 |
+
myname = "%s%d" % (base, bit)
|
104 |
+
|
105 |
+
# ensure that (c)longdouble does not overwrite the aliases assigned to
|
106 |
+
# (c)double
|
107 |
+
if name in ('longdouble', 'clongdouble') and myname in allTypes:
|
108 |
+
continue
|
109 |
+
|
110 |
+
# Add to the main namespace if desired:
|
111 |
+
if bit != 0 and base != "bool":
|
112 |
+
allTypes[myname] = info.type
|
113 |
+
|
114 |
+
# add forward, reverse, and string mapping to numarray
|
115 |
+
sctypeDict[char] = info.type
|
116 |
+
|
117 |
+
# add mapping for both the bit name
|
118 |
+
sctypeDict[myname] = info.type
|
119 |
+
|
120 |
+
|
121 |
+
_add_aliases()
|
122 |
+
|
123 |
+
def _add_integer_aliases():
|
124 |
+
seen_bits = set()
|
125 |
+
for i_ctype, u_ctype in zip(_int_ctypes, _uint_ctypes):
|
126 |
+
i_info = _concrete_typeinfo[i_ctype]
|
127 |
+
u_info = _concrete_typeinfo[u_ctype]
|
128 |
+
bits = i_info.bits # same for both
|
129 |
+
|
130 |
+
for info, charname, intname in [
|
131 |
+
(i_info,'i%d' % (bits//8,), 'int%d' % bits),
|
132 |
+
(u_info,'u%d' % (bits//8,), 'uint%d' % bits)]:
|
133 |
+
if bits not in seen_bits:
|
134 |
+
# sometimes two different types have the same number of bits
|
135 |
+
# if so, the one iterated over first takes precedence
|
136 |
+
allTypes[intname] = info.type
|
137 |
+
sctypeDict[intname] = info.type
|
138 |
+
sctypeDict[charname] = info.type
|
139 |
+
|
140 |
+
seen_bits.add(bits)
|
141 |
+
|
142 |
+
_add_integer_aliases()
|
143 |
+
|
144 |
+
# We use these later
|
145 |
+
void = allTypes['void']
|
146 |
+
|
147 |
+
#
|
148 |
+
# Rework the Python names (so that float and complex and int are consistent
|
149 |
+
# with Python usage)
|
150 |
+
#
|
151 |
+
def _set_up_aliases():
|
152 |
+
type_pairs = [('complex_', 'cdouble'),
|
153 |
+
('single', 'float'),
|
154 |
+
('csingle', 'cfloat'),
|
155 |
+
('singlecomplex', 'cfloat'),
|
156 |
+
('float_', 'double'),
|
157 |
+
('intc', 'int'),
|
158 |
+
('uintc', 'uint'),
|
159 |
+
('int_', 'long'),
|
160 |
+
('uint', 'ulong'),
|
161 |
+
('cfloat', 'cdouble'),
|
162 |
+
('longfloat', 'longdouble'),
|
163 |
+
('clongfloat', 'clongdouble'),
|
164 |
+
('longcomplex', 'clongdouble'),
|
165 |
+
('bool_', 'bool'),
|
166 |
+
('bytes_', 'string'),
|
167 |
+
('string_', 'string'),
|
168 |
+
('str_', 'unicode'),
|
169 |
+
('unicode_', 'unicode'),
|
170 |
+
('object_', 'object')]
|
171 |
+
for alias, t in type_pairs:
|
172 |
+
allTypes[alias] = allTypes[t]
|
173 |
+
sctypeDict[alias] = sctypeDict[t]
|
174 |
+
# Remove aliases overriding python types and modules
|
175 |
+
to_remove = ['object', 'int', 'float',
|
176 |
+
'complex', 'bool', 'string', 'datetime', 'timedelta',
|
177 |
+
'bytes', 'str']
|
178 |
+
|
179 |
+
for t in to_remove:
|
180 |
+
try:
|
181 |
+
del allTypes[t]
|
182 |
+
del sctypeDict[t]
|
183 |
+
except KeyError:
|
184 |
+
pass
|
185 |
+
|
186 |
+
# Additional aliases in sctypeDict that should not be exposed as attributes
|
187 |
+
attrs_to_remove = ['ulong']
|
188 |
+
|
189 |
+
for t in attrs_to_remove:
|
190 |
+
try:
|
191 |
+
del allTypes[t]
|
192 |
+
except KeyError:
|
193 |
+
pass
|
194 |
+
_set_up_aliases()
|
195 |
+
|
196 |
+
|
197 |
+
sctypes = {'int': [],
|
198 |
+
'uint':[],
|
199 |
+
'float':[],
|
200 |
+
'complex':[],
|
201 |
+
'others':[bool, object, bytes, unicode, void]}
|
202 |
+
|
203 |
+
def _add_array_type(typename, bits):
|
204 |
+
try:
|
205 |
+
t = allTypes['%s%d' % (typename, bits)]
|
206 |
+
except KeyError:
|
207 |
+
pass
|
208 |
+
else:
|
209 |
+
sctypes[typename].append(t)
|
210 |
+
|
211 |
+
def _set_array_types():
|
212 |
+
ibytes = [1, 2, 4, 8, 16, 32, 64]
|
213 |
+
fbytes = [2, 4, 8, 10, 12, 16, 32, 64]
|
214 |
+
for bytes in ibytes:
|
215 |
+
bits = 8*bytes
|
216 |
+
_add_array_type('int', bits)
|
217 |
+
_add_array_type('uint', bits)
|
218 |
+
for bytes in fbytes:
|
219 |
+
bits = 8*bytes
|
220 |
+
_add_array_type('float', bits)
|
221 |
+
_add_array_type('complex', 2*bits)
|
222 |
+
_gi = dtype('p')
|
223 |
+
if _gi.type not in sctypes['int']:
|
224 |
+
indx = 0
|
225 |
+
sz = _gi.itemsize
|
226 |
+
_lst = sctypes['int']
|
227 |
+
while (indx < len(_lst) and sz >= _lst[indx](0).itemsize):
|
228 |
+
indx += 1
|
229 |
+
sctypes['int'].insert(indx, _gi.type)
|
230 |
+
sctypes['uint'].insert(indx, dtype('P').type)
|
231 |
+
_set_array_types()
|
232 |
+
|
233 |
+
|
234 |
+
# Add additional strings to the sctypeDict
|
235 |
+
_toadd = ['int', 'float', 'complex', 'bool', 'object',
|
236 |
+
'str', 'bytes', ('a', 'bytes_'),
|
237 |
+
('int0', 'intp'), ('uint0', 'uintp')]
|
238 |
+
|
239 |
+
for name in _toadd:
|
240 |
+
if isinstance(name, tuple):
|
241 |
+
sctypeDict[name[0]] = allTypes[name[1]]
|
242 |
+
else:
|
243 |
+
sctypeDict[name] = allTypes['%s_' % name]
|
244 |
+
|
245 |
+
del _toadd, name
|
venv/lib/python3.10/site-packages/numpy/core/_ufunc_config.py
ADDED
@@ -0,0 +1,466 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions for changing global ufunc configuration
|
3 |
+
|
4 |
+
This provides helpers which wrap `umath.geterrobj` and `umath.seterrobj`
|
5 |
+
"""
|
6 |
+
import collections.abc
|
7 |
+
import contextlib
|
8 |
+
import contextvars
|
9 |
+
|
10 |
+
from .._utils import set_module
|
11 |
+
from .umath import (
|
12 |
+
UFUNC_BUFSIZE_DEFAULT,
|
13 |
+
ERR_IGNORE, ERR_WARN, ERR_RAISE, ERR_CALL, ERR_PRINT, ERR_LOG, ERR_DEFAULT,
|
14 |
+
SHIFT_DIVIDEBYZERO, SHIFT_OVERFLOW, SHIFT_UNDERFLOW, SHIFT_INVALID,
|
15 |
+
)
|
16 |
+
from . import umath
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"seterr", "geterr", "setbufsize", "getbufsize", "seterrcall", "geterrcall",
|
20 |
+
"errstate", '_no_nep50_warning'
|
21 |
+
]
|
22 |
+
|
23 |
+
_errdict = {"ignore": ERR_IGNORE,
|
24 |
+
"warn": ERR_WARN,
|
25 |
+
"raise": ERR_RAISE,
|
26 |
+
"call": ERR_CALL,
|
27 |
+
"print": ERR_PRINT,
|
28 |
+
"log": ERR_LOG}
|
29 |
+
|
30 |
+
_errdict_rev = {value: key for key, value in _errdict.items()}
|
31 |
+
|
32 |
+
|
33 |
+
@set_module('numpy')
|
34 |
+
def seterr(all=None, divide=None, over=None, under=None, invalid=None):
|
35 |
+
"""
|
36 |
+
Set how floating-point errors are handled.
|
37 |
+
|
38 |
+
Note that operations on integer scalar types (such as `int16`) are
|
39 |
+
handled like floating point, and are affected by these settings.
|
40 |
+
|
41 |
+
Parameters
|
42 |
+
----------
|
43 |
+
all : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
44 |
+
Set treatment for all types of floating-point errors at once:
|
45 |
+
|
46 |
+
- ignore: Take no action when the exception occurs.
|
47 |
+
- warn: Print a `RuntimeWarning` (via the Python `warnings` module).
|
48 |
+
- raise: Raise a `FloatingPointError`.
|
49 |
+
- call: Call a function specified using the `seterrcall` function.
|
50 |
+
- print: Print a warning directly to ``stdout``.
|
51 |
+
- log: Record error in a Log object specified by `seterrcall`.
|
52 |
+
|
53 |
+
The default is not to change the current behavior.
|
54 |
+
divide : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
55 |
+
Treatment for division by zero.
|
56 |
+
over : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
57 |
+
Treatment for floating-point overflow.
|
58 |
+
under : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
59 |
+
Treatment for floating-point underflow.
|
60 |
+
invalid : {'ignore', 'warn', 'raise', 'call', 'print', 'log'}, optional
|
61 |
+
Treatment for invalid floating-point operation.
|
62 |
+
|
63 |
+
Returns
|
64 |
+
-------
|
65 |
+
old_settings : dict
|
66 |
+
Dictionary containing the old settings.
|
67 |
+
|
68 |
+
See also
|
69 |
+
--------
|
70 |
+
seterrcall : Set a callback function for the 'call' mode.
|
71 |
+
geterr, geterrcall, errstate
|
72 |
+
|
73 |
+
Notes
|
74 |
+
-----
|
75 |
+
The floating-point exceptions are defined in the IEEE 754 standard [1]_:
|
76 |
+
|
77 |
+
- Division by zero: infinite result obtained from finite numbers.
|
78 |
+
- Overflow: result too large to be expressed.
|
79 |
+
- Underflow: result so close to zero that some precision
|
80 |
+
was lost.
|
81 |
+
- Invalid operation: result is not an expressible number, typically
|
82 |
+
indicates that a NaN was produced.
|
83 |
+
|
84 |
+
.. [1] https://en.wikipedia.org/wiki/IEEE_754
|
85 |
+
|
86 |
+
Examples
|
87 |
+
--------
|
88 |
+
>>> old_settings = np.seterr(all='ignore') #seterr to known value
|
89 |
+
>>> np.seterr(over='raise')
|
90 |
+
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
91 |
+
>>> np.seterr(**old_settings) # reset to default
|
92 |
+
{'divide': 'ignore', 'over': 'raise', 'under': 'ignore', 'invalid': 'ignore'}
|
93 |
+
|
94 |
+
>>> np.int16(32000) * np.int16(3)
|
95 |
+
30464
|
96 |
+
>>> old_settings = np.seterr(all='warn', over='raise')
|
97 |
+
>>> np.int16(32000) * np.int16(3)
|
98 |
+
Traceback (most recent call last):
|
99 |
+
File "<stdin>", line 1, in <module>
|
100 |
+
FloatingPointError: overflow encountered in scalar multiply
|
101 |
+
|
102 |
+
>>> old_settings = np.seterr(all='print')
|
103 |
+
>>> np.geterr()
|
104 |
+
{'divide': 'print', 'over': 'print', 'under': 'print', 'invalid': 'print'}
|
105 |
+
>>> np.int16(32000) * np.int16(3)
|
106 |
+
30464
|
107 |
+
|
108 |
+
"""
|
109 |
+
|
110 |
+
pyvals = umath.geterrobj()
|
111 |
+
old = geterr()
|
112 |
+
|
113 |
+
if divide is None:
|
114 |
+
divide = all or old['divide']
|
115 |
+
if over is None:
|
116 |
+
over = all or old['over']
|
117 |
+
if under is None:
|
118 |
+
under = all or old['under']
|
119 |
+
if invalid is None:
|
120 |
+
invalid = all or old['invalid']
|
121 |
+
|
122 |
+
maskvalue = ((_errdict[divide] << SHIFT_DIVIDEBYZERO) +
|
123 |
+
(_errdict[over] << SHIFT_OVERFLOW) +
|
124 |
+
(_errdict[under] << SHIFT_UNDERFLOW) +
|
125 |
+
(_errdict[invalid] << SHIFT_INVALID))
|
126 |
+
|
127 |
+
pyvals[1] = maskvalue
|
128 |
+
umath.seterrobj(pyvals)
|
129 |
+
return old
|
130 |
+
|
131 |
+
|
132 |
+
@set_module('numpy')
|
133 |
+
def geterr():
|
134 |
+
"""
|
135 |
+
Get the current way of handling floating-point errors.
|
136 |
+
|
137 |
+
Returns
|
138 |
+
-------
|
139 |
+
res : dict
|
140 |
+
A dictionary with keys "divide", "over", "under", and "invalid",
|
141 |
+
whose values are from the strings "ignore", "print", "log", "warn",
|
142 |
+
"raise", and "call". The keys represent possible floating-point
|
143 |
+
exceptions, and the values define how these exceptions are handled.
|
144 |
+
|
145 |
+
See Also
|
146 |
+
--------
|
147 |
+
geterrcall, seterr, seterrcall
|
148 |
+
|
149 |
+
Notes
|
150 |
+
-----
|
151 |
+
For complete documentation of the types of floating-point exceptions and
|
152 |
+
treatment options, see `seterr`.
|
153 |
+
|
154 |
+
Examples
|
155 |
+
--------
|
156 |
+
>>> np.geterr()
|
157 |
+
{'divide': 'warn', 'over': 'warn', 'under': 'ignore', 'invalid': 'warn'}
|
158 |
+
>>> np.arange(3.) / np.arange(3.)
|
159 |
+
array([nan, 1., 1.])
|
160 |
+
|
161 |
+
>>> oldsettings = np.seterr(all='warn', over='raise')
|
162 |
+
>>> np.geterr()
|
163 |
+
{'divide': 'warn', 'over': 'raise', 'under': 'warn', 'invalid': 'warn'}
|
164 |
+
>>> np.arange(3.) / np.arange(3.)
|
165 |
+
array([nan, 1., 1.])
|
166 |
+
|
167 |
+
"""
|
168 |
+
maskvalue = umath.geterrobj()[1]
|
169 |
+
mask = 7
|
170 |
+
res = {}
|
171 |
+
val = (maskvalue >> SHIFT_DIVIDEBYZERO) & mask
|
172 |
+
res['divide'] = _errdict_rev[val]
|
173 |
+
val = (maskvalue >> SHIFT_OVERFLOW) & mask
|
174 |
+
res['over'] = _errdict_rev[val]
|
175 |
+
val = (maskvalue >> SHIFT_UNDERFLOW) & mask
|
176 |
+
res['under'] = _errdict_rev[val]
|
177 |
+
val = (maskvalue >> SHIFT_INVALID) & mask
|
178 |
+
res['invalid'] = _errdict_rev[val]
|
179 |
+
return res
|
180 |
+
|
181 |
+
|
182 |
+
@set_module('numpy')
|
183 |
+
def setbufsize(size):
|
184 |
+
"""
|
185 |
+
Set the size of the buffer used in ufuncs.
|
186 |
+
|
187 |
+
Parameters
|
188 |
+
----------
|
189 |
+
size : int
|
190 |
+
Size of buffer.
|
191 |
+
|
192 |
+
"""
|
193 |
+
if size > 10e6:
|
194 |
+
raise ValueError("Buffer size, %s, is too big." % size)
|
195 |
+
if size < 5:
|
196 |
+
raise ValueError("Buffer size, %s, is too small." % size)
|
197 |
+
if size % 16 != 0:
|
198 |
+
raise ValueError("Buffer size, %s, is not a multiple of 16." % size)
|
199 |
+
|
200 |
+
pyvals = umath.geterrobj()
|
201 |
+
old = getbufsize()
|
202 |
+
pyvals[0] = size
|
203 |
+
umath.seterrobj(pyvals)
|
204 |
+
return old
|
205 |
+
|
206 |
+
|
207 |
+
@set_module('numpy')
|
208 |
+
def getbufsize():
|
209 |
+
"""
|
210 |
+
Return the size of the buffer used in ufuncs.
|
211 |
+
|
212 |
+
Returns
|
213 |
+
-------
|
214 |
+
getbufsize : int
|
215 |
+
Size of ufunc buffer in bytes.
|
216 |
+
|
217 |
+
"""
|
218 |
+
return umath.geterrobj()[0]
|
219 |
+
|
220 |
+
|
221 |
+
@set_module('numpy')
|
222 |
+
def seterrcall(func):
|
223 |
+
"""
|
224 |
+
Set the floating-point error callback function or log object.
|
225 |
+
|
226 |
+
There are two ways to capture floating-point error messages. The first
|
227 |
+
is to set the error-handler to 'call', using `seterr`. Then, set
|
228 |
+
the function to call using this function.
|
229 |
+
|
230 |
+
The second is to set the error-handler to 'log', using `seterr`.
|
231 |
+
Floating-point errors then trigger a call to the 'write' method of
|
232 |
+
the provided object.
|
233 |
+
|
234 |
+
Parameters
|
235 |
+
----------
|
236 |
+
func : callable f(err, flag) or object with write method
|
237 |
+
Function to call upon floating-point errors ('call'-mode) or
|
238 |
+
object whose 'write' method is used to log such message ('log'-mode).
|
239 |
+
|
240 |
+
The call function takes two arguments. The first is a string describing
|
241 |
+
the type of error (such as "divide by zero", "overflow", "underflow",
|
242 |
+
or "invalid value"), and the second is the status flag. The flag is a
|
243 |
+
byte, whose four least-significant bits indicate the type of error, one
|
244 |
+
of "divide", "over", "under", "invalid"::
|
245 |
+
|
246 |
+
[0 0 0 0 divide over under invalid]
|
247 |
+
|
248 |
+
In other words, ``flags = divide + 2*over + 4*under + 8*invalid``.
|
249 |
+
|
250 |
+
If an object is provided, its write method should take one argument,
|
251 |
+
a string.
|
252 |
+
|
253 |
+
Returns
|
254 |
+
-------
|
255 |
+
h : callable, log instance or None
|
256 |
+
The old error handler.
|
257 |
+
|
258 |
+
See Also
|
259 |
+
--------
|
260 |
+
seterr, geterr, geterrcall
|
261 |
+
|
262 |
+
Examples
|
263 |
+
--------
|
264 |
+
Callback upon error:
|
265 |
+
|
266 |
+
>>> def err_handler(type, flag):
|
267 |
+
... print("Floating point error (%s), with flag %s" % (type, flag))
|
268 |
+
...
|
269 |
+
|
270 |
+
>>> saved_handler = np.seterrcall(err_handler)
|
271 |
+
>>> save_err = np.seterr(all='call')
|
272 |
+
|
273 |
+
>>> np.array([1, 2, 3]) / 0.0
|
274 |
+
Floating point error (divide by zero), with flag 1
|
275 |
+
array([inf, inf, inf])
|
276 |
+
|
277 |
+
>>> np.seterrcall(saved_handler)
|
278 |
+
<function err_handler at 0x...>
|
279 |
+
>>> np.seterr(**save_err)
|
280 |
+
{'divide': 'call', 'over': 'call', 'under': 'call', 'invalid': 'call'}
|
281 |
+
|
282 |
+
Log error message:
|
283 |
+
|
284 |
+
>>> class Log:
|
285 |
+
... def write(self, msg):
|
286 |
+
... print("LOG: %s" % msg)
|
287 |
+
...
|
288 |
+
|
289 |
+
>>> log = Log()
|
290 |
+
>>> saved_handler = np.seterrcall(log)
|
291 |
+
>>> save_err = np.seterr(all='log')
|
292 |
+
|
293 |
+
>>> np.array([1, 2, 3]) / 0.0
|
294 |
+
LOG: Warning: divide by zero encountered in divide
|
295 |
+
array([inf, inf, inf])
|
296 |
+
|
297 |
+
>>> np.seterrcall(saved_handler)
|
298 |
+
<numpy.core.numeric.Log object at 0x...>
|
299 |
+
>>> np.seterr(**save_err)
|
300 |
+
{'divide': 'log', 'over': 'log', 'under': 'log', 'invalid': 'log'}
|
301 |
+
|
302 |
+
"""
|
303 |
+
if func is not None and not isinstance(func, collections.abc.Callable):
|
304 |
+
if (not hasattr(func, 'write') or
|
305 |
+
not isinstance(func.write, collections.abc.Callable)):
|
306 |
+
raise ValueError("Only callable can be used as callback")
|
307 |
+
pyvals = umath.geterrobj()
|
308 |
+
old = geterrcall()
|
309 |
+
pyvals[2] = func
|
310 |
+
umath.seterrobj(pyvals)
|
311 |
+
return old
|
312 |
+
|
313 |
+
|
314 |
+
@set_module('numpy')
|
315 |
+
def geterrcall():
|
316 |
+
"""
|
317 |
+
Return the current callback function used on floating-point errors.
|
318 |
+
|
319 |
+
When the error handling for a floating-point error (one of "divide",
|
320 |
+
"over", "under", or "invalid") is set to 'call' or 'log', the function
|
321 |
+
that is called or the log instance that is written to is returned by
|
322 |
+
`geterrcall`. This function or log instance has been set with
|
323 |
+
`seterrcall`.
|
324 |
+
|
325 |
+
Returns
|
326 |
+
-------
|
327 |
+
errobj : callable, log instance or None
|
328 |
+
The current error handler. If no handler was set through `seterrcall`,
|
329 |
+
``None`` is returned.
|
330 |
+
|
331 |
+
See Also
|
332 |
+
--------
|
333 |
+
seterrcall, seterr, geterr
|
334 |
+
|
335 |
+
Notes
|
336 |
+
-----
|
337 |
+
For complete documentation of the types of floating-point exceptions and
|
338 |
+
treatment options, see `seterr`.
|
339 |
+
|
340 |
+
Examples
|
341 |
+
--------
|
342 |
+
>>> np.geterrcall() # we did not yet set a handler, returns None
|
343 |
+
|
344 |
+
>>> oldsettings = np.seterr(all='call')
|
345 |
+
>>> def err_handler(type, flag):
|
346 |
+
... print("Floating point error (%s), with flag %s" % (type, flag))
|
347 |
+
>>> oldhandler = np.seterrcall(err_handler)
|
348 |
+
>>> np.array([1, 2, 3]) / 0.0
|
349 |
+
Floating point error (divide by zero), with flag 1
|
350 |
+
array([inf, inf, inf])
|
351 |
+
|
352 |
+
>>> cur_handler = np.geterrcall()
|
353 |
+
>>> cur_handler is err_handler
|
354 |
+
True
|
355 |
+
|
356 |
+
"""
|
357 |
+
return umath.geterrobj()[2]
|
358 |
+
|
359 |
+
|
360 |
+
class _unspecified:
|
361 |
+
pass
|
362 |
+
|
363 |
+
|
364 |
+
_Unspecified = _unspecified()
|
365 |
+
|
366 |
+
|
367 |
+
@set_module('numpy')
|
368 |
+
class errstate(contextlib.ContextDecorator):
|
369 |
+
"""
|
370 |
+
errstate(**kwargs)
|
371 |
+
|
372 |
+
Context manager for floating-point error handling.
|
373 |
+
|
374 |
+
Using an instance of `errstate` as a context manager allows statements in
|
375 |
+
that context to execute with a known error handling behavior. Upon entering
|
376 |
+
the context the error handling is set with `seterr` and `seterrcall`, and
|
377 |
+
upon exiting it is reset to what it was before.
|
378 |
+
|
379 |
+
.. versionchanged:: 1.17.0
|
380 |
+
`errstate` is also usable as a function decorator, saving
|
381 |
+
a level of indentation if an entire function is wrapped.
|
382 |
+
See :py:class:`contextlib.ContextDecorator` for more information.
|
383 |
+
|
384 |
+
Parameters
|
385 |
+
----------
|
386 |
+
kwargs : {divide, over, under, invalid}
|
387 |
+
Keyword arguments. The valid keywords are the possible floating-point
|
388 |
+
exceptions. Each keyword should have a string value that defines the
|
389 |
+
treatment for the particular error. Possible values are
|
390 |
+
{'ignore', 'warn', 'raise', 'call', 'print', 'log'}.
|
391 |
+
|
392 |
+
See Also
|
393 |
+
--------
|
394 |
+
seterr, geterr, seterrcall, geterrcall
|
395 |
+
|
396 |
+
Notes
|
397 |
+
-----
|
398 |
+
For complete documentation of the types of floating-point exceptions and
|
399 |
+
treatment options, see `seterr`.
|
400 |
+
|
401 |
+
Examples
|
402 |
+
--------
|
403 |
+
>>> olderr = np.seterr(all='ignore') # Set error handling to known state.
|
404 |
+
|
405 |
+
>>> np.arange(3) / 0.
|
406 |
+
array([nan, inf, inf])
|
407 |
+
>>> with np.errstate(divide='warn'):
|
408 |
+
... np.arange(3) / 0.
|
409 |
+
array([nan, inf, inf])
|
410 |
+
|
411 |
+
>>> np.sqrt(-1)
|
412 |
+
nan
|
413 |
+
>>> with np.errstate(invalid='raise'):
|
414 |
+
... np.sqrt(-1)
|
415 |
+
Traceback (most recent call last):
|
416 |
+
File "<stdin>", line 2, in <module>
|
417 |
+
FloatingPointError: invalid value encountered in sqrt
|
418 |
+
|
419 |
+
Outside the context the error handling behavior has not changed:
|
420 |
+
|
421 |
+
>>> np.geterr()
|
422 |
+
{'divide': 'ignore', 'over': 'ignore', 'under': 'ignore', 'invalid': 'ignore'}
|
423 |
+
|
424 |
+
"""
|
425 |
+
|
426 |
+
def __init__(self, *, call=_Unspecified, **kwargs):
|
427 |
+
self.call = call
|
428 |
+
self.kwargs = kwargs
|
429 |
+
|
430 |
+
def __enter__(self):
|
431 |
+
self.oldstate = seterr(**self.kwargs)
|
432 |
+
if self.call is not _Unspecified:
|
433 |
+
self.oldcall = seterrcall(self.call)
|
434 |
+
|
435 |
+
def __exit__(self, *exc_info):
|
436 |
+
seterr(**self.oldstate)
|
437 |
+
if self.call is not _Unspecified:
|
438 |
+
seterrcall(self.oldcall)
|
439 |
+
|
440 |
+
|
441 |
+
def _setdef():
|
442 |
+
defval = [UFUNC_BUFSIZE_DEFAULT, ERR_DEFAULT, None]
|
443 |
+
umath.seterrobj(defval)
|
444 |
+
|
445 |
+
|
446 |
+
# set the default values
|
447 |
+
_setdef()
|
448 |
+
|
449 |
+
|
450 |
+
NO_NEP50_WARNING = contextvars.ContextVar("_no_nep50_warning", default=False)
|
451 |
+
|
452 |
+
@set_module('numpy')
|
453 |
+
@contextlib.contextmanager
|
454 |
+
def _no_nep50_warning():
|
455 |
+
"""
|
456 |
+
Context manager to disable NEP 50 warnings. This context manager is
|
457 |
+
only relevant if the NEP 50 warnings are enabled globally (which is not
|
458 |
+
thread/context safe).
|
459 |
+
|
460 |
+
This warning context manager itself is fully safe, however.
|
461 |
+
"""
|
462 |
+
token = NO_NEP50_WARNING.set(True)
|
463 |
+
try:
|
464 |
+
yield
|
465 |
+
finally:
|
466 |
+
NO_NEP50_WARNING.reset(token)
|
venv/lib/python3.10/site-packages/numpy/core/_ufunc_config.pyi
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Callable
|
2 |
+
from typing import Any, Literal, TypedDict
|
3 |
+
|
4 |
+
from numpy import _SupportsWrite
|
5 |
+
|
6 |
+
_ErrKind = Literal["ignore", "warn", "raise", "call", "print", "log"]
|
7 |
+
_ErrFunc = Callable[[str, int], Any]
|
8 |
+
|
9 |
+
class _ErrDict(TypedDict):
|
10 |
+
divide: _ErrKind
|
11 |
+
over: _ErrKind
|
12 |
+
under: _ErrKind
|
13 |
+
invalid: _ErrKind
|
14 |
+
|
15 |
+
class _ErrDictOptional(TypedDict, total=False):
|
16 |
+
all: None | _ErrKind
|
17 |
+
divide: None | _ErrKind
|
18 |
+
over: None | _ErrKind
|
19 |
+
under: None | _ErrKind
|
20 |
+
invalid: None | _ErrKind
|
21 |
+
|
22 |
+
def seterr(
|
23 |
+
all: None | _ErrKind = ...,
|
24 |
+
divide: None | _ErrKind = ...,
|
25 |
+
over: None | _ErrKind = ...,
|
26 |
+
under: None | _ErrKind = ...,
|
27 |
+
invalid: None | _ErrKind = ...,
|
28 |
+
) -> _ErrDict: ...
|
29 |
+
def geterr() -> _ErrDict: ...
|
30 |
+
def setbufsize(size: int) -> int: ...
|
31 |
+
def getbufsize() -> int: ...
|
32 |
+
def seterrcall(
|
33 |
+
func: None | _ErrFunc | _SupportsWrite[str]
|
34 |
+
) -> None | _ErrFunc | _SupportsWrite[str]: ...
|
35 |
+
def geterrcall() -> None | _ErrFunc | _SupportsWrite[str]: ...
|
36 |
+
|
37 |
+
# See `numpy/__init__.pyi` for the `errstate` class and `no_nep5_warnings`
|
venv/lib/python3.10/site-packages/numpy/core/_umath_tests.cpython-310-x86_64-linux-gnu.so
ADDED
Binary file (42.3 kB). View file
|
|
venv/lib/python3.10/site-packages/numpy/core/arrayprint.pyi
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import TracebackType
|
2 |
+
from collections.abc import Callable
|
3 |
+
from typing import Any, Literal, TypedDict, SupportsIndex
|
4 |
+
|
5 |
+
# Using a private class is by no means ideal, but it is simply a consequence
|
6 |
+
# of a `contextlib.context` returning an instance of aforementioned class
|
7 |
+
from contextlib import _GeneratorContextManager
|
8 |
+
|
9 |
+
from numpy import (
|
10 |
+
ndarray,
|
11 |
+
generic,
|
12 |
+
bool_,
|
13 |
+
integer,
|
14 |
+
timedelta64,
|
15 |
+
datetime64,
|
16 |
+
floating,
|
17 |
+
complexfloating,
|
18 |
+
void,
|
19 |
+
str_,
|
20 |
+
bytes_,
|
21 |
+
longdouble,
|
22 |
+
clongdouble,
|
23 |
+
)
|
24 |
+
from numpy._typing import ArrayLike, _CharLike_co, _FloatLike_co
|
25 |
+
|
26 |
+
_FloatMode = Literal["fixed", "unique", "maxprec", "maxprec_equal"]
|
27 |
+
|
28 |
+
class _FormatDict(TypedDict, total=False):
|
29 |
+
bool: Callable[[bool_], str]
|
30 |
+
int: Callable[[integer[Any]], str]
|
31 |
+
timedelta: Callable[[timedelta64], str]
|
32 |
+
datetime: Callable[[datetime64], str]
|
33 |
+
float: Callable[[floating[Any]], str]
|
34 |
+
longfloat: Callable[[longdouble], str]
|
35 |
+
complexfloat: Callable[[complexfloating[Any, Any]], str]
|
36 |
+
longcomplexfloat: Callable[[clongdouble], str]
|
37 |
+
void: Callable[[void], str]
|
38 |
+
numpystr: Callable[[_CharLike_co], str]
|
39 |
+
object: Callable[[object], str]
|
40 |
+
all: Callable[[object], str]
|
41 |
+
int_kind: Callable[[integer[Any]], str]
|
42 |
+
float_kind: Callable[[floating[Any]], str]
|
43 |
+
complex_kind: Callable[[complexfloating[Any, Any]], str]
|
44 |
+
str_kind: Callable[[_CharLike_co], str]
|
45 |
+
|
46 |
+
class _FormatOptions(TypedDict):
|
47 |
+
precision: int
|
48 |
+
threshold: int
|
49 |
+
edgeitems: int
|
50 |
+
linewidth: int
|
51 |
+
suppress: bool
|
52 |
+
nanstr: str
|
53 |
+
infstr: str
|
54 |
+
formatter: None | _FormatDict
|
55 |
+
sign: Literal["-", "+", " "]
|
56 |
+
floatmode: _FloatMode
|
57 |
+
legacy: Literal[False, "1.13", "1.21"]
|
58 |
+
|
59 |
+
def set_printoptions(
|
60 |
+
precision: None | SupportsIndex = ...,
|
61 |
+
threshold: None | int = ...,
|
62 |
+
edgeitems: None | int = ...,
|
63 |
+
linewidth: None | int = ...,
|
64 |
+
suppress: None | bool = ...,
|
65 |
+
nanstr: None | str = ...,
|
66 |
+
infstr: None | str = ...,
|
67 |
+
formatter: None | _FormatDict = ...,
|
68 |
+
sign: Literal[None, "-", "+", " "] = ...,
|
69 |
+
floatmode: None | _FloatMode = ...,
|
70 |
+
*,
|
71 |
+
legacy: Literal[None, False, "1.13", "1.21"] = ...
|
72 |
+
) -> None: ...
|
73 |
+
def get_printoptions() -> _FormatOptions: ...
|
74 |
+
def array2string(
|
75 |
+
a: ndarray[Any, Any],
|
76 |
+
max_line_width: None | int = ...,
|
77 |
+
precision: None | SupportsIndex = ...,
|
78 |
+
suppress_small: None | bool = ...,
|
79 |
+
separator: str = ...,
|
80 |
+
prefix: str = ...,
|
81 |
+
# NOTE: With the `style` argument being deprecated,
|
82 |
+
# all arguments between `formatter` and `suffix` are de facto
|
83 |
+
# keyworld-only arguments
|
84 |
+
*,
|
85 |
+
formatter: None | _FormatDict = ...,
|
86 |
+
threshold: None | int = ...,
|
87 |
+
edgeitems: None | int = ...,
|
88 |
+
sign: Literal[None, "-", "+", " "] = ...,
|
89 |
+
floatmode: None | _FloatMode = ...,
|
90 |
+
suffix: str = ...,
|
91 |
+
legacy: Literal[None, False, "1.13", "1.21"] = ...,
|
92 |
+
) -> str: ...
|
93 |
+
def format_float_scientific(
|
94 |
+
x: _FloatLike_co,
|
95 |
+
precision: None | int = ...,
|
96 |
+
unique: bool = ...,
|
97 |
+
trim: Literal["k", ".", "0", "-"] = ...,
|
98 |
+
sign: bool = ...,
|
99 |
+
pad_left: None | int = ...,
|
100 |
+
exp_digits: None | int = ...,
|
101 |
+
min_digits: None | int = ...,
|
102 |
+
) -> str: ...
|
103 |
+
def format_float_positional(
|
104 |
+
x: _FloatLike_co,
|
105 |
+
precision: None | int = ...,
|
106 |
+
unique: bool = ...,
|
107 |
+
fractional: bool = ...,
|
108 |
+
trim: Literal["k", ".", "0", "-"] = ...,
|
109 |
+
sign: bool = ...,
|
110 |
+
pad_left: None | int = ...,
|
111 |
+
pad_right: None | int = ...,
|
112 |
+
min_digits: None | int = ...,
|
113 |
+
) -> str: ...
|
114 |
+
def array_repr(
|
115 |
+
arr: ndarray[Any, Any],
|
116 |
+
max_line_width: None | int = ...,
|
117 |
+
precision: None | SupportsIndex = ...,
|
118 |
+
suppress_small: None | bool = ...,
|
119 |
+
) -> str: ...
|
120 |
+
def array_str(
|
121 |
+
a: ndarray[Any, Any],
|
122 |
+
max_line_width: None | int = ...,
|
123 |
+
precision: None | SupportsIndex = ...,
|
124 |
+
suppress_small: None | bool = ...,
|
125 |
+
) -> str: ...
|
126 |
+
def set_string_function(
|
127 |
+
f: None | Callable[[ndarray[Any, Any]], str], repr: bool = ...
|
128 |
+
) -> None: ...
|
129 |
+
def printoptions(
|
130 |
+
precision: None | SupportsIndex = ...,
|
131 |
+
threshold: None | int = ...,
|
132 |
+
edgeitems: None | int = ...,
|
133 |
+
linewidth: None | int = ...,
|
134 |
+
suppress: None | bool = ...,
|
135 |
+
nanstr: None | str = ...,
|
136 |
+
infstr: None | str = ...,
|
137 |
+
formatter: None | _FormatDict = ...,
|
138 |
+
sign: Literal[None, "-", "+", " "] = ...,
|
139 |
+
floatmode: None | _FloatMode = ...,
|
140 |
+
*,
|
141 |
+
legacy: Literal[None, False, "1.13", "1.21"] = ...
|
142 |
+
) -> _GeneratorContextManager[_FormatOptions]: ...
|
venv/lib/python3.10/site-packages/numpy/core/cversions.py
ADDED
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Simple script to compute the api hash of the current API.
|
2 |
+
|
3 |
+
The API has is defined by numpy_api_order and ufunc_api_order.
|
4 |
+
|
5 |
+
"""
|
6 |
+
from os.path import dirname
|
7 |
+
|
8 |
+
from code_generators.genapi import fullapi_hash
|
9 |
+
from code_generators.numpy_api import full_api
|
10 |
+
|
11 |
+
if __name__ == '__main__':
|
12 |
+
curdir = dirname(__file__)
|
13 |
+
print(fullapi_hash(full_api))
|
venv/lib/python3.10/site-packages/numpy/core/defchararray.py
ADDED
@@ -0,0 +1,2914 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
This module contains a set of functions for vectorized string
|
3 |
+
operations and methods.
|
4 |
+
|
5 |
+
.. note::
|
6 |
+
The `chararray` class exists for backwards compatibility with
|
7 |
+
Numarray, it is not recommended for new development. Starting from numpy
|
8 |
+
1.4, if one needs arrays of strings, it is recommended to use arrays of
|
9 |
+
`dtype` `object_`, `bytes_` or `str_`, and use the free functions
|
10 |
+
in the `numpy.char` module for fast vectorized string operations.
|
11 |
+
|
12 |
+
Some methods will only be available if the corresponding string method is
|
13 |
+
available in your version of Python.
|
14 |
+
|
15 |
+
The preferred alias for `defchararray` is `numpy.char`.
|
16 |
+
|
17 |
+
"""
|
18 |
+
import functools
|
19 |
+
|
20 |
+
from .._utils import set_module
|
21 |
+
from .numerictypes import (
|
22 |
+
bytes_, str_, integer, int_, object_, bool_, character)
|
23 |
+
from .numeric import ndarray, compare_chararrays
|
24 |
+
from .numeric import array as narray
|
25 |
+
from numpy.core.multiarray import _vec_string
|
26 |
+
from numpy.core import overrides
|
27 |
+
from numpy.compat import asbytes
|
28 |
+
import numpy
|
29 |
+
|
30 |
+
__all__ = [
|
31 |
+
'equal', 'not_equal', 'greater_equal', 'less_equal',
|
32 |
+
'greater', 'less', 'str_len', 'add', 'multiply', 'mod', 'capitalize',
|
33 |
+
'center', 'count', 'decode', 'encode', 'endswith', 'expandtabs',
|
34 |
+
'find', 'index', 'isalnum', 'isalpha', 'isdigit', 'islower', 'isspace',
|
35 |
+
'istitle', 'isupper', 'join', 'ljust', 'lower', 'lstrip', 'partition',
|
36 |
+
'replace', 'rfind', 'rindex', 'rjust', 'rpartition', 'rsplit',
|
37 |
+
'rstrip', 'split', 'splitlines', 'startswith', 'strip', 'swapcase',
|
38 |
+
'title', 'translate', 'upper', 'zfill', 'isnumeric', 'isdecimal',
|
39 |
+
'array', 'asarray'
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
_globalvar = 0
|
44 |
+
|
45 |
+
array_function_dispatch = functools.partial(
|
46 |
+
overrides.array_function_dispatch, module='numpy.char')
|
47 |
+
|
48 |
+
|
49 |
+
def _is_unicode(arr):
|
50 |
+
"""Returns True if arr is a string or a string array with a dtype that
|
51 |
+
represents a unicode string, otherwise returns False.
|
52 |
+
|
53 |
+
"""
|
54 |
+
if (isinstance(arr, str) or
|
55 |
+
issubclass(numpy.asarray(arr).dtype.type, str)):
|
56 |
+
return True
|
57 |
+
return False
|
58 |
+
|
59 |
+
|
60 |
+
def _to_bytes_or_str_array(result, output_dtype_like=None):
|
61 |
+
"""
|
62 |
+
Helper function to cast a result back into an array
|
63 |
+
with the appropriate dtype if an object array must be used
|
64 |
+
as an intermediary.
|
65 |
+
"""
|
66 |
+
ret = numpy.asarray(result.tolist())
|
67 |
+
dtype = getattr(output_dtype_like, 'dtype', None)
|
68 |
+
if dtype is not None:
|
69 |
+
return ret.astype(type(dtype)(_get_num_chars(ret)), copy=False)
|
70 |
+
return ret
|
71 |
+
|
72 |
+
|
73 |
+
def _clean_args(*args):
|
74 |
+
"""
|
75 |
+
Helper function for delegating arguments to Python string
|
76 |
+
functions.
|
77 |
+
|
78 |
+
Many of the Python string operations that have optional arguments
|
79 |
+
do not use 'None' to indicate a default value. In these cases,
|
80 |
+
we need to remove all None arguments, and those following them.
|
81 |
+
"""
|
82 |
+
newargs = []
|
83 |
+
for chk in args:
|
84 |
+
if chk is None:
|
85 |
+
break
|
86 |
+
newargs.append(chk)
|
87 |
+
return newargs
|
88 |
+
|
89 |
+
def _get_num_chars(a):
|
90 |
+
"""
|
91 |
+
Helper function that returns the number of characters per field in
|
92 |
+
a string or unicode array. This is to abstract out the fact that
|
93 |
+
for a unicode array this is itemsize / 4.
|
94 |
+
"""
|
95 |
+
if issubclass(a.dtype.type, str_):
|
96 |
+
return a.itemsize // 4
|
97 |
+
return a.itemsize
|
98 |
+
|
99 |
+
|
100 |
+
def _binary_op_dispatcher(x1, x2):
|
101 |
+
return (x1, x2)
|
102 |
+
|
103 |
+
|
104 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
105 |
+
def equal(x1, x2):
|
106 |
+
"""
|
107 |
+
Return (x1 == x2) element-wise.
|
108 |
+
|
109 |
+
Unlike `numpy.equal`, this comparison is performed by first
|
110 |
+
stripping whitespace characters from the end of the string. This
|
111 |
+
behavior is provided for backward-compatibility with numarray.
|
112 |
+
|
113 |
+
Parameters
|
114 |
+
----------
|
115 |
+
x1, x2 : array_like of str or unicode
|
116 |
+
Input arrays of the same shape.
|
117 |
+
|
118 |
+
Returns
|
119 |
+
-------
|
120 |
+
out : ndarray
|
121 |
+
Output array of bools.
|
122 |
+
|
123 |
+
See Also
|
124 |
+
--------
|
125 |
+
not_equal, greater_equal, less_equal, greater, less
|
126 |
+
"""
|
127 |
+
return compare_chararrays(x1, x2, '==', True)
|
128 |
+
|
129 |
+
|
130 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
131 |
+
def not_equal(x1, x2):
|
132 |
+
"""
|
133 |
+
Return (x1 != x2) element-wise.
|
134 |
+
|
135 |
+
Unlike `numpy.not_equal`, this comparison is performed by first
|
136 |
+
stripping whitespace characters from the end of the string. This
|
137 |
+
behavior is provided for backward-compatibility with numarray.
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
x1, x2 : array_like of str or unicode
|
142 |
+
Input arrays of the same shape.
|
143 |
+
|
144 |
+
Returns
|
145 |
+
-------
|
146 |
+
out : ndarray
|
147 |
+
Output array of bools.
|
148 |
+
|
149 |
+
See Also
|
150 |
+
--------
|
151 |
+
equal, greater_equal, less_equal, greater, less
|
152 |
+
"""
|
153 |
+
return compare_chararrays(x1, x2, '!=', True)
|
154 |
+
|
155 |
+
|
156 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
157 |
+
def greater_equal(x1, x2):
|
158 |
+
"""
|
159 |
+
Return (x1 >= x2) element-wise.
|
160 |
+
|
161 |
+
Unlike `numpy.greater_equal`, this comparison is performed by
|
162 |
+
first stripping whitespace characters from the end of the string.
|
163 |
+
This behavior is provided for backward-compatibility with
|
164 |
+
numarray.
|
165 |
+
|
166 |
+
Parameters
|
167 |
+
----------
|
168 |
+
x1, x2 : array_like of str or unicode
|
169 |
+
Input arrays of the same shape.
|
170 |
+
|
171 |
+
Returns
|
172 |
+
-------
|
173 |
+
out : ndarray
|
174 |
+
Output array of bools.
|
175 |
+
|
176 |
+
See Also
|
177 |
+
--------
|
178 |
+
equal, not_equal, less_equal, greater, less
|
179 |
+
"""
|
180 |
+
return compare_chararrays(x1, x2, '>=', True)
|
181 |
+
|
182 |
+
|
183 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
184 |
+
def less_equal(x1, x2):
|
185 |
+
"""
|
186 |
+
Return (x1 <= x2) element-wise.
|
187 |
+
|
188 |
+
Unlike `numpy.less_equal`, this comparison is performed by first
|
189 |
+
stripping whitespace characters from the end of the string. This
|
190 |
+
behavior is provided for backward-compatibility with numarray.
|
191 |
+
|
192 |
+
Parameters
|
193 |
+
----------
|
194 |
+
x1, x2 : array_like of str or unicode
|
195 |
+
Input arrays of the same shape.
|
196 |
+
|
197 |
+
Returns
|
198 |
+
-------
|
199 |
+
out : ndarray
|
200 |
+
Output array of bools.
|
201 |
+
|
202 |
+
See Also
|
203 |
+
--------
|
204 |
+
equal, not_equal, greater_equal, greater, less
|
205 |
+
"""
|
206 |
+
return compare_chararrays(x1, x2, '<=', True)
|
207 |
+
|
208 |
+
|
209 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
210 |
+
def greater(x1, x2):
|
211 |
+
"""
|
212 |
+
Return (x1 > x2) element-wise.
|
213 |
+
|
214 |
+
Unlike `numpy.greater`, this comparison is performed by first
|
215 |
+
stripping whitespace characters from the end of the string. This
|
216 |
+
behavior is provided for backward-compatibility with numarray.
|
217 |
+
|
218 |
+
Parameters
|
219 |
+
----------
|
220 |
+
x1, x2 : array_like of str or unicode
|
221 |
+
Input arrays of the same shape.
|
222 |
+
|
223 |
+
Returns
|
224 |
+
-------
|
225 |
+
out : ndarray
|
226 |
+
Output array of bools.
|
227 |
+
|
228 |
+
See Also
|
229 |
+
--------
|
230 |
+
equal, not_equal, greater_equal, less_equal, less
|
231 |
+
"""
|
232 |
+
return compare_chararrays(x1, x2, '>', True)
|
233 |
+
|
234 |
+
|
235 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
236 |
+
def less(x1, x2):
|
237 |
+
"""
|
238 |
+
Return (x1 < x2) element-wise.
|
239 |
+
|
240 |
+
Unlike `numpy.greater`, this comparison is performed by first
|
241 |
+
stripping whitespace characters from the end of the string. This
|
242 |
+
behavior is provided for backward-compatibility with numarray.
|
243 |
+
|
244 |
+
Parameters
|
245 |
+
----------
|
246 |
+
x1, x2 : array_like of str or unicode
|
247 |
+
Input arrays of the same shape.
|
248 |
+
|
249 |
+
Returns
|
250 |
+
-------
|
251 |
+
out : ndarray
|
252 |
+
Output array of bools.
|
253 |
+
|
254 |
+
See Also
|
255 |
+
--------
|
256 |
+
equal, not_equal, greater_equal, less_equal, greater
|
257 |
+
"""
|
258 |
+
return compare_chararrays(x1, x2, '<', True)
|
259 |
+
|
260 |
+
|
261 |
+
def _unary_op_dispatcher(a):
|
262 |
+
return (a,)
|
263 |
+
|
264 |
+
|
265 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
266 |
+
def str_len(a):
|
267 |
+
"""
|
268 |
+
Return len(a) element-wise.
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
----------
|
272 |
+
a : array_like of str or unicode
|
273 |
+
|
274 |
+
Returns
|
275 |
+
-------
|
276 |
+
out : ndarray
|
277 |
+
Output array of integers
|
278 |
+
|
279 |
+
See Also
|
280 |
+
--------
|
281 |
+
len
|
282 |
+
|
283 |
+
Examples
|
284 |
+
--------
|
285 |
+
>>> a = np.array(['Grace Hopper Conference', 'Open Source Day'])
|
286 |
+
>>> np.char.str_len(a)
|
287 |
+
array([23, 15])
|
288 |
+
>>> a = np.array([u'\u0420', u'\u043e'])
|
289 |
+
>>> np.char.str_len(a)
|
290 |
+
array([1, 1])
|
291 |
+
>>> a = np.array([['hello', 'world'], [u'\u0420', u'\u043e']])
|
292 |
+
>>> np.char.str_len(a)
|
293 |
+
array([[5, 5], [1, 1]])
|
294 |
+
"""
|
295 |
+
# Note: __len__, etc. currently return ints, which are not C-integers.
|
296 |
+
# Generally intp would be expected for lengths, although int is sufficient
|
297 |
+
# due to the dtype itemsize limitation.
|
298 |
+
return _vec_string(a, int_, '__len__')
|
299 |
+
|
300 |
+
|
301 |
+
@array_function_dispatch(_binary_op_dispatcher)
|
302 |
+
def add(x1, x2):
|
303 |
+
"""
|
304 |
+
Return element-wise string concatenation for two arrays of str or unicode.
|
305 |
+
|
306 |
+
Arrays `x1` and `x2` must have the same shape.
|
307 |
+
|
308 |
+
Parameters
|
309 |
+
----------
|
310 |
+
x1 : array_like of str or unicode
|
311 |
+
Input array.
|
312 |
+
x2 : array_like of str or unicode
|
313 |
+
Input array.
|
314 |
+
|
315 |
+
Returns
|
316 |
+
-------
|
317 |
+
add : ndarray
|
318 |
+
Output array of `bytes_` or `str_`, depending on input types
|
319 |
+
of the same shape as `x1` and `x2`.
|
320 |
+
|
321 |
+
"""
|
322 |
+
arr1 = numpy.asarray(x1)
|
323 |
+
arr2 = numpy.asarray(x2)
|
324 |
+
out_size = _get_num_chars(arr1) + _get_num_chars(arr2)
|
325 |
+
|
326 |
+
if type(arr1.dtype) != type(arr2.dtype):
|
327 |
+
# Enforce this for now. The solution to it will be implement add
|
328 |
+
# as a ufunc. It never worked right on Python 3: bytes + unicode gave
|
329 |
+
# nonsense unicode + bytes errored, and unicode + object used the
|
330 |
+
# object dtype itemsize as num chars (worked on short strings).
|
331 |
+
# bytes + void worked but promoting void->bytes is dubious also.
|
332 |
+
raise TypeError(
|
333 |
+
"np.char.add() requires both arrays of the same dtype kind, but "
|
334 |
+
f"got dtypes: '{arr1.dtype}' and '{arr2.dtype}' (the few cases "
|
335 |
+
"where this used to work often lead to incorrect results).")
|
336 |
+
|
337 |
+
return _vec_string(arr1, type(arr1.dtype)(out_size), '__add__', (arr2,))
|
338 |
+
|
339 |
+
def _multiply_dispatcher(a, i):
|
340 |
+
return (a,)
|
341 |
+
|
342 |
+
|
343 |
+
@array_function_dispatch(_multiply_dispatcher)
|
344 |
+
def multiply(a, i):
|
345 |
+
"""
|
346 |
+
Return (a * i), that is string multiple concatenation,
|
347 |
+
element-wise.
|
348 |
+
|
349 |
+
Values in `i` of less than 0 are treated as 0 (which yields an
|
350 |
+
empty string).
|
351 |
+
|
352 |
+
Parameters
|
353 |
+
----------
|
354 |
+
a : array_like of str or unicode
|
355 |
+
|
356 |
+
i : array_like of ints
|
357 |
+
|
358 |
+
Returns
|
359 |
+
-------
|
360 |
+
out : ndarray
|
361 |
+
Output array of str or unicode, depending on input types
|
362 |
+
|
363 |
+
Examples
|
364 |
+
--------
|
365 |
+
>>> a = np.array(["a", "b", "c"])
|
366 |
+
>>> np.char.multiply(x, 3)
|
367 |
+
array(['aaa', 'bbb', 'ccc'], dtype='<U3')
|
368 |
+
>>> i = np.array([1, 2, 3])
|
369 |
+
>>> np.char.multiply(a, i)
|
370 |
+
array(['a', 'bb', 'ccc'], dtype='<U3')
|
371 |
+
>>> np.char.multiply(np.array(['a']), i)
|
372 |
+
array(['a', 'aa', 'aaa'], dtype='<U3')
|
373 |
+
>>> a = np.array(['a', 'b', 'c', 'd', 'e', 'f']).reshape((2, 3))
|
374 |
+
>>> np.char.multiply(a, 3)
|
375 |
+
array([['aaa', 'bbb', 'ccc'],
|
376 |
+
['ddd', 'eee', 'fff']], dtype='<U3')
|
377 |
+
>>> np.char.multiply(a, i)
|
378 |
+
array([['a', 'bb', 'ccc'],
|
379 |
+
['d', 'ee', 'fff']], dtype='<U3')
|
380 |
+
"""
|
381 |
+
a_arr = numpy.asarray(a)
|
382 |
+
i_arr = numpy.asarray(i)
|
383 |
+
if not issubclass(i_arr.dtype.type, integer):
|
384 |
+
raise ValueError("Can only multiply by integers")
|
385 |
+
out_size = _get_num_chars(a_arr) * max(int(i_arr.max()), 0)
|
386 |
+
return _vec_string(
|
387 |
+
a_arr, type(a_arr.dtype)(out_size), '__mul__', (i_arr,))
|
388 |
+
|
389 |
+
|
390 |
+
def _mod_dispatcher(a, values):
|
391 |
+
return (a, values)
|
392 |
+
|
393 |
+
|
394 |
+
@array_function_dispatch(_mod_dispatcher)
|
395 |
+
def mod(a, values):
|
396 |
+
"""
|
397 |
+
Return (a % i), that is pre-Python 2.6 string formatting
|
398 |
+
(interpolation), element-wise for a pair of array_likes of str
|
399 |
+
or unicode.
|
400 |
+
|
401 |
+
Parameters
|
402 |
+
----------
|
403 |
+
a : array_like of str or unicode
|
404 |
+
|
405 |
+
values : array_like of values
|
406 |
+
These values will be element-wise interpolated into the string.
|
407 |
+
|
408 |
+
Returns
|
409 |
+
-------
|
410 |
+
out : ndarray
|
411 |
+
Output array of str or unicode, depending on input types
|
412 |
+
|
413 |
+
See Also
|
414 |
+
--------
|
415 |
+
str.__mod__
|
416 |
+
|
417 |
+
"""
|
418 |
+
return _to_bytes_or_str_array(
|
419 |
+
_vec_string(a, object_, '__mod__', (values,)), a)
|
420 |
+
|
421 |
+
|
422 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
423 |
+
def capitalize(a):
|
424 |
+
"""
|
425 |
+
Return a copy of `a` with only the first character of each element
|
426 |
+
capitalized.
|
427 |
+
|
428 |
+
Calls `str.capitalize` element-wise.
|
429 |
+
|
430 |
+
For 8-bit strings, this method is locale-dependent.
|
431 |
+
|
432 |
+
Parameters
|
433 |
+
----------
|
434 |
+
a : array_like of str or unicode
|
435 |
+
Input array of strings to capitalize.
|
436 |
+
|
437 |
+
Returns
|
438 |
+
-------
|
439 |
+
out : ndarray
|
440 |
+
Output array of str or unicode, depending on input
|
441 |
+
types
|
442 |
+
|
443 |
+
See Also
|
444 |
+
--------
|
445 |
+
str.capitalize
|
446 |
+
|
447 |
+
Examples
|
448 |
+
--------
|
449 |
+
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b'],'S4'); c
|
450 |
+
array(['a1b2', '1b2a', 'b2a1', '2a1b'],
|
451 |
+
dtype='|S4')
|
452 |
+
>>> np.char.capitalize(c)
|
453 |
+
array(['A1b2', '1b2a', 'B2a1', '2a1b'],
|
454 |
+
dtype='|S4')
|
455 |
+
|
456 |
+
"""
|
457 |
+
a_arr = numpy.asarray(a)
|
458 |
+
return _vec_string(a_arr, a_arr.dtype, 'capitalize')
|
459 |
+
|
460 |
+
|
461 |
+
def _center_dispatcher(a, width, fillchar=None):
|
462 |
+
return (a,)
|
463 |
+
|
464 |
+
|
465 |
+
@array_function_dispatch(_center_dispatcher)
|
466 |
+
def center(a, width, fillchar=' '):
|
467 |
+
"""
|
468 |
+
Return a copy of `a` with its elements centered in a string of
|
469 |
+
length `width`.
|
470 |
+
|
471 |
+
Calls `str.center` element-wise.
|
472 |
+
|
473 |
+
Parameters
|
474 |
+
----------
|
475 |
+
a : array_like of str or unicode
|
476 |
+
|
477 |
+
width : int
|
478 |
+
The length of the resulting strings
|
479 |
+
fillchar : str or unicode, optional
|
480 |
+
The padding character to use (default is space).
|
481 |
+
|
482 |
+
Returns
|
483 |
+
-------
|
484 |
+
out : ndarray
|
485 |
+
Output array of str or unicode, depending on input
|
486 |
+
types
|
487 |
+
|
488 |
+
See Also
|
489 |
+
--------
|
490 |
+
str.center
|
491 |
+
|
492 |
+
Notes
|
493 |
+
-----
|
494 |
+
This function is intended to work with arrays of strings. The
|
495 |
+
fill character is not applied to numeric types.
|
496 |
+
|
497 |
+
Examples
|
498 |
+
--------
|
499 |
+
>>> c = np.array(['a1b2','1b2a','b2a1','2a1b']); c
|
500 |
+
array(['a1b2', '1b2a', 'b2a1', '2a1b'], dtype='<U4')
|
501 |
+
>>> np.char.center(c, width=9)
|
502 |
+
array([' a1b2 ', ' 1b2a ', ' b2a1 ', ' 2a1b '], dtype='<U9')
|
503 |
+
>>> np.char.center(c, width=9, fillchar='*')
|
504 |
+
array(['***a1b2**', '***1b2a**', '***b2a1**', '***2a1b**'], dtype='<U9')
|
505 |
+
>>> np.char.center(c, width=1)
|
506 |
+
array(['a', '1', 'b', '2'], dtype='<U1')
|
507 |
+
|
508 |
+
"""
|
509 |
+
a_arr = numpy.asarray(a)
|
510 |
+
width_arr = numpy.asarray(width)
|
511 |
+
size = int(numpy.max(width_arr.flat))
|
512 |
+
if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
|
513 |
+
fillchar = asbytes(fillchar)
|
514 |
+
return _vec_string(
|
515 |
+
a_arr, type(a_arr.dtype)(size), 'center', (width_arr, fillchar))
|
516 |
+
|
517 |
+
|
518 |
+
def _count_dispatcher(a, sub, start=None, end=None):
|
519 |
+
return (a,)
|
520 |
+
|
521 |
+
|
522 |
+
@array_function_dispatch(_count_dispatcher)
|
523 |
+
def count(a, sub, start=0, end=None):
|
524 |
+
"""
|
525 |
+
Returns an array with the number of non-overlapping occurrences of
|
526 |
+
substring `sub` in the range [`start`, `end`].
|
527 |
+
|
528 |
+
Calls `str.count` element-wise.
|
529 |
+
|
530 |
+
Parameters
|
531 |
+
----------
|
532 |
+
a : array_like of str or unicode
|
533 |
+
|
534 |
+
sub : str or unicode
|
535 |
+
The substring to search for.
|
536 |
+
|
537 |
+
start, end : int, optional
|
538 |
+
Optional arguments `start` and `end` are interpreted as slice
|
539 |
+
notation to specify the range in which to count.
|
540 |
+
|
541 |
+
Returns
|
542 |
+
-------
|
543 |
+
out : ndarray
|
544 |
+
Output array of ints.
|
545 |
+
|
546 |
+
See Also
|
547 |
+
--------
|
548 |
+
str.count
|
549 |
+
|
550 |
+
Examples
|
551 |
+
--------
|
552 |
+
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
|
553 |
+
>>> c
|
554 |
+
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
|
555 |
+
>>> np.char.count(c, 'A')
|
556 |
+
array([3, 1, 1])
|
557 |
+
>>> np.char.count(c, 'aA')
|
558 |
+
array([3, 1, 0])
|
559 |
+
>>> np.char.count(c, 'A', start=1, end=4)
|
560 |
+
array([2, 1, 1])
|
561 |
+
>>> np.char.count(c, 'A', start=1, end=3)
|
562 |
+
array([1, 0, 0])
|
563 |
+
|
564 |
+
"""
|
565 |
+
return _vec_string(a, int_, 'count', [sub, start] + _clean_args(end))
|
566 |
+
|
567 |
+
|
568 |
+
def _code_dispatcher(a, encoding=None, errors=None):
|
569 |
+
return (a,)
|
570 |
+
|
571 |
+
|
572 |
+
@array_function_dispatch(_code_dispatcher)
|
573 |
+
def decode(a, encoding=None, errors=None):
|
574 |
+
r"""
|
575 |
+
Calls ``bytes.decode`` element-wise.
|
576 |
+
|
577 |
+
The set of available codecs comes from the Python standard library,
|
578 |
+
and may be extended at runtime. For more information, see the
|
579 |
+
:mod:`codecs` module.
|
580 |
+
|
581 |
+
Parameters
|
582 |
+
----------
|
583 |
+
a : array_like of str or unicode
|
584 |
+
|
585 |
+
encoding : str, optional
|
586 |
+
The name of an encoding
|
587 |
+
|
588 |
+
errors : str, optional
|
589 |
+
Specifies how to handle encoding errors
|
590 |
+
|
591 |
+
Returns
|
592 |
+
-------
|
593 |
+
out : ndarray
|
594 |
+
|
595 |
+
See Also
|
596 |
+
--------
|
597 |
+
:py:meth:`bytes.decode`
|
598 |
+
|
599 |
+
Notes
|
600 |
+
-----
|
601 |
+
The type of the result will depend on the encoding specified.
|
602 |
+
|
603 |
+
Examples
|
604 |
+
--------
|
605 |
+
>>> c = np.array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
|
606 |
+
... b'\x81\x82\xc2\xc1\xc2\x82\x81'])
|
607 |
+
>>> c
|
608 |
+
array([b'\x81\xc1\x81\xc1\x81\xc1', b'@@\x81\xc1@@',
|
609 |
+
... b'\x81\x82\xc2\xc1\xc2\x82\x81'], dtype='|S7')
|
610 |
+
>>> np.char.decode(c, encoding='cp037')
|
611 |
+
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
|
612 |
+
|
613 |
+
"""
|
614 |
+
return _to_bytes_or_str_array(
|
615 |
+
_vec_string(a, object_, 'decode', _clean_args(encoding, errors)))
|
616 |
+
|
617 |
+
|
618 |
+
@array_function_dispatch(_code_dispatcher)
|
619 |
+
def encode(a, encoding=None, errors=None):
|
620 |
+
"""
|
621 |
+
Calls `str.encode` element-wise.
|
622 |
+
|
623 |
+
The set of available codecs comes from the Python standard library,
|
624 |
+
and may be extended at runtime. For more information, see the codecs
|
625 |
+
module.
|
626 |
+
|
627 |
+
Parameters
|
628 |
+
----------
|
629 |
+
a : array_like of str or unicode
|
630 |
+
|
631 |
+
encoding : str, optional
|
632 |
+
The name of an encoding
|
633 |
+
|
634 |
+
errors : str, optional
|
635 |
+
Specifies how to handle encoding errors
|
636 |
+
|
637 |
+
Returns
|
638 |
+
-------
|
639 |
+
out : ndarray
|
640 |
+
|
641 |
+
See Also
|
642 |
+
--------
|
643 |
+
str.encode
|
644 |
+
|
645 |
+
Notes
|
646 |
+
-----
|
647 |
+
The type of the result will depend on the encoding specified.
|
648 |
+
|
649 |
+
"""
|
650 |
+
return _to_bytes_or_str_array(
|
651 |
+
_vec_string(a, object_, 'encode', _clean_args(encoding, errors)))
|
652 |
+
|
653 |
+
|
654 |
+
def _endswith_dispatcher(a, suffix, start=None, end=None):
|
655 |
+
return (a,)
|
656 |
+
|
657 |
+
|
658 |
+
@array_function_dispatch(_endswith_dispatcher)
|
659 |
+
def endswith(a, suffix, start=0, end=None):
|
660 |
+
"""
|
661 |
+
Returns a boolean array which is `True` where the string element
|
662 |
+
in `a` ends with `suffix`, otherwise `False`.
|
663 |
+
|
664 |
+
Calls `str.endswith` element-wise.
|
665 |
+
|
666 |
+
Parameters
|
667 |
+
----------
|
668 |
+
a : array_like of str or unicode
|
669 |
+
|
670 |
+
suffix : str
|
671 |
+
|
672 |
+
start, end : int, optional
|
673 |
+
With optional `start`, test beginning at that position. With
|
674 |
+
optional `end`, stop comparing at that position.
|
675 |
+
|
676 |
+
Returns
|
677 |
+
-------
|
678 |
+
out : ndarray
|
679 |
+
Outputs an array of bools.
|
680 |
+
|
681 |
+
See Also
|
682 |
+
--------
|
683 |
+
str.endswith
|
684 |
+
|
685 |
+
Examples
|
686 |
+
--------
|
687 |
+
>>> s = np.array(['foo', 'bar'])
|
688 |
+
>>> s[0] = 'foo'
|
689 |
+
>>> s[1] = 'bar'
|
690 |
+
>>> s
|
691 |
+
array(['foo', 'bar'], dtype='<U3')
|
692 |
+
>>> np.char.endswith(s, 'ar')
|
693 |
+
array([False, True])
|
694 |
+
>>> np.char.endswith(s, 'a', start=1, end=2)
|
695 |
+
array([False, True])
|
696 |
+
|
697 |
+
"""
|
698 |
+
return _vec_string(
|
699 |
+
a, bool_, 'endswith', [suffix, start] + _clean_args(end))
|
700 |
+
|
701 |
+
|
702 |
+
def _expandtabs_dispatcher(a, tabsize=None):
|
703 |
+
return (a,)
|
704 |
+
|
705 |
+
|
706 |
+
@array_function_dispatch(_expandtabs_dispatcher)
|
707 |
+
def expandtabs(a, tabsize=8):
|
708 |
+
"""
|
709 |
+
Return a copy of each string element where all tab characters are
|
710 |
+
replaced by one or more spaces.
|
711 |
+
|
712 |
+
Calls `str.expandtabs` element-wise.
|
713 |
+
|
714 |
+
Return a copy of each string element where all tab characters are
|
715 |
+
replaced by one or more spaces, depending on the current column
|
716 |
+
and the given `tabsize`. The column number is reset to zero after
|
717 |
+
each newline occurring in the string. This doesn't understand other
|
718 |
+
non-printing characters or escape sequences.
|
719 |
+
|
720 |
+
Parameters
|
721 |
+
----------
|
722 |
+
a : array_like of str or unicode
|
723 |
+
Input array
|
724 |
+
tabsize : int, optional
|
725 |
+
Replace tabs with `tabsize` number of spaces. If not given defaults
|
726 |
+
to 8 spaces.
|
727 |
+
|
728 |
+
Returns
|
729 |
+
-------
|
730 |
+
out : ndarray
|
731 |
+
Output array of str or unicode, depending on input type
|
732 |
+
|
733 |
+
See Also
|
734 |
+
--------
|
735 |
+
str.expandtabs
|
736 |
+
|
737 |
+
"""
|
738 |
+
return _to_bytes_or_str_array(
|
739 |
+
_vec_string(a, object_, 'expandtabs', (tabsize,)), a)
|
740 |
+
|
741 |
+
|
742 |
+
@array_function_dispatch(_count_dispatcher)
|
743 |
+
def find(a, sub, start=0, end=None):
|
744 |
+
"""
|
745 |
+
For each element, return the lowest index in the string where
|
746 |
+
substring `sub` is found.
|
747 |
+
|
748 |
+
Calls `str.find` element-wise.
|
749 |
+
|
750 |
+
For each element, return the lowest index in the string where
|
751 |
+
substring `sub` is found, such that `sub` is contained in the
|
752 |
+
range [`start`, `end`].
|
753 |
+
|
754 |
+
Parameters
|
755 |
+
----------
|
756 |
+
a : array_like of str or unicode
|
757 |
+
|
758 |
+
sub : str or unicode
|
759 |
+
|
760 |
+
start, end : int, optional
|
761 |
+
Optional arguments `start` and `end` are interpreted as in
|
762 |
+
slice notation.
|
763 |
+
|
764 |
+
Returns
|
765 |
+
-------
|
766 |
+
out : ndarray or int
|
767 |
+
Output array of ints. Returns -1 if `sub` is not found.
|
768 |
+
|
769 |
+
See Also
|
770 |
+
--------
|
771 |
+
str.find
|
772 |
+
|
773 |
+
Examples
|
774 |
+
--------
|
775 |
+
>>> a = np.array(["NumPy is a Python library"])
|
776 |
+
>>> np.char.find(a, "Python", start=0, end=None)
|
777 |
+
array([11])
|
778 |
+
|
779 |
+
"""
|
780 |
+
return _vec_string(
|
781 |
+
a, int_, 'find', [sub, start] + _clean_args(end))
|
782 |
+
|
783 |
+
|
784 |
+
@array_function_dispatch(_count_dispatcher)
|
785 |
+
def index(a, sub, start=0, end=None):
|
786 |
+
"""
|
787 |
+
Like `find`, but raises `ValueError` when the substring is not found.
|
788 |
+
|
789 |
+
Calls `str.index` element-wise.
|
790 |
+
|
791 |
+
Parameters
|
792 |
+
----------
|
793 |
+
a : array_like of str or unicode
|
794 |
+
|
795 |
+
sub : str or unicode
|
796 |
+
|
797 |
+
start, end : int, optional
|
798 |
+
|
799 |
+
Returns
|
800 |
+
-------
|
801 |
+
out : ndarray
|
802 |
+
Output array of ints. Returns -1 if `sub` is not found.
|
803 |
+
|
804 |
+
See Also
|
805 |
+
--------
|
806 |
+
find, str.find
|
807 |
+
|
808 |
+
Examples
|
809 |
+
--------
|
810 |
+
>>> a = np.array(["Computer Science"])
|
811 |
+
>>> np.char.index(a, "Science", start=0, end=None)
|
812 |
+
array([9])
|
813 |
+
|
814 |
+
"""
|
815 |
+
return _vec_string(
|
816 |
+
a, int_, 'index', [sub, start] + _clean_args(end))
|
817 |
+
|
818 |
+
|
819 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
820 |
+
def isalnum(a):
|
821 |
+
"""
|
822 |
+
Returns true for each element if all characters in the string are
|
823 |
+
alphanumeric and there is at least one character, false otherwise.
|
824 |
+
|
825 |
+
Calls `str.isalnum` element-wise.
|
826 |
+
|
827 |
+
For 8-bit strings, this method is locale-dependent.
|
828 |
+
|
829 |
+
Parameters
|
830 |
+
----------
|
831 |
+
a : array_like of str or unicode
|
832 |
+
|
833 |
+
Returns
|
834 |
+
-------
|
835 |
+
out : ndarray
|
836 |
+
Output array of str or unicode, depending on input type
|
837 |
+
|
838 |
+
See Also
|
839 |
+
--------
|
840 |
+
str.isalnum
|
841 |
+
"""
|
842 |
+
return _vec_string(a, bool_, 'isalnum')
|
843 |
+
|
844 |
+
|
845 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
846 |
+
def isalpha(a):
|
847 |
+
"""
|
848 |
+
Returns true for each element if all characters in the string are
|
849 |
+
alphabetic and there is at least one character, false otherwise.
|
850 |
+
|
851 |
+
Calls `str.isalpha` element-wise.
|
852 |
+
|
853 |
+
For 8-bit strings, this method is locale-dependent.
|
854 |
+
|
855 |
+
Parameters
|
856 |
+
----------
|
857 |
+
a : array_like of str or unicode
|
858 |
+
|
859 |
+
Returns
|
860 |
+
-------
|
861 |
+
out : ndarray
|
862 |
+
Output array of bools
|
863 |
+
|
864 |
+
See Also
|
865 |
+
--------
|
866 |
+
str.isalpha
|
867 |
+
"""
|
868 |
+
return _vec_string(a, bool_, 'isalpha')
|
869 |
+
|
870 |
+
|
871 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
872 |
+
def isdigit(a):
|
873 |
+
"""
|
874 |
+
Returns true for each element if all characters in the string are
|
875 |
+
digits and there is at least one character, false otherwise.
|
876 |
+
|
877 |
+
Calls `str.isdigit` element-wise.
|
878 |
+
|
879 |
+
For 8-bit strings, this method is locale-dependent.
|
880 |
+
|
881 |
+
Parameters
|
882 |
+
----------
|
883 |
+
a : array_like of str or unicode
|
884 |
+
|
885 |
+
Returns
|
886 |
+
-------
|
887 |
+
out : ndarray
|
888 |
+
Output array of bools
|
889 |
+
|
890 |
+
See Also
|
891 |
+
--------
|
892 |
+
str.isdigit
|
893 |
+
|
894 |
+
Examples
|
895 |
+
--------
|
896 |
+
>>> a = np.array(['a', 'b', '0'])
|
897 |
+
>>> np.char.isdigit(a)
|
898 |
+
array([False, False, True])
|
899 |
+
>>> a = np.array([['a', 'b', '0'], ['c', '1', '2']])
|
900 |
+
>>> np.char.isdigit(a)
|
901 |
+
array([[False, False, True], [False, True, True]])
|
902 |
+
"""
|
903 |
+
return _vec_string(a, bool_, 'isdigit')
|
904 |
+
|
905 |
+
|
906 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
907 |
+
def islower(a):
|
908 |
+
"""
|
909 |
+
Returns true for each element if all cased characters in the
|
910 |
+
string are lowercase and there is at least one cased character,
|
911 |
+
false otherwise.
|
912 |
+
|
913 |
+
Calls `str.islower` element-wise.
|
914 |
+
|
915 |
+
For 8-bit strings, this method is locale-dependent.
|
916 |
+
|
917 |
+
Parameters
|
918 |
+
----------
|
919 |
+
a : array_like of str or unicode
|
920 |
+
|
921 |
+
Returns
|
922 |
+
-------
|
923 |
+
out : ndarray
|
924 |
+
Output array of bools
|
925 |
+
|
926 |
+
See Also
|
927 |
+
--------
|
928 |
+
str.islower
|
929 |
+
"""
|
930 |
+
return _vec_string(a, bool_, 'islower')
|
931 |
+
|
932 |
+
|
933 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
934 |
+
def isspace(a):
|
935 |
+
"""
|
936 |
+
Returns true for each element if there are only whitespace
|
937 |
+
characters in the string and there is at least one character,
|
938 |
+
false otherwise.
|
939 |
+
|
940 |
+
Calls `str.isspace` element-wise.
|
941 |
+
|
942 |
+
For 8-bit strings, this method is locale-dependent.
|
943 |
+
|
944 |
+
Parameters
|
945 |
+
----------
|
946 |
+
a : array_like of str or unicode
|
947 |
+
|
948 |
+
Returns
|
949 |
+
-------
|
950 |
+
out : ndarray
|
951 |
+
Output array of bools
|
952 |
+
|
953 |
+
See Also
|
954 |
+
--------
|
955 |
+
str.isspace
|
956 |
+
"""
|
957 |
+
return _vec_string(a, bool_, 'isspace')
|
958 |
+
|
959 |
+
|
960 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
961 |
+
def istitle(a):
|
962 |
+
"""
|
963 |
+
Returns true for each element if the element is a titlecased
|
964 |
+
string and there is at least one character, false otherwise.
|
965 |
+
|
966 |
+
Call `str.istitle` element-wise.
|
967 |
+
|
968 |
+
For 8-bit strings, this method is locale-dependent.
|
969 |
+
|
970 |
+
Parameters
|
971 |
+
----------
|
972 |
+
a : array_like of str or unicode
|
973 |
+
|
974 |
+
Returns
|
975 |
+
-------
|
976 |
+
out : ndarray
|
977 |
+
Output array of bools
|
978 |
+
|
979 |
+
See Also
|
980 |
+
--------
|
981 |
+
str.istitle
|
982 |
+
"""
|
983 |
+
return _vec_string(a, bool_, 'istitle')
|
984 |
+
|
985 |
+
|
986 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
987 |
+
def isupper(a):
|
988 |
+
"""
|
989 |
+
Return true for each element if all cased characters in the
|
990 |
+
string are uppercase and there is at least one character, false
|
991 |
+
otherwise.
|
992 |
+
|
993 |
+
Call `str.isupper` element-wise.
|
994 |
+
|
995 |
+
For 8-bit strings, this method is locale-dependent.
|
996 |
+
|
997 |
+
Parameters
|
998 |
+
----------
|
999 |
+
a : array_like of str or unicode
|
1000 |
+
|
1001 |
+
Returns
|
1002 |
+
-------
|
1003 |
+
out : ndarray
|
1004 |
+
Output array of bools
|
1005 |
+
|
1006 |
+
See Also
|
1007 |
+
--------
|
1008 |
+
str.isupper
|
1009 |
+
|
1010 |
+
Examples
|
1011 |
+
--------
|
1012 |
+
>>> str = "GHC"
|
1013 |
+
>>> np.char.isupper(str)
|
1014 |
+
array(True)
|
1015 |
+
>>> a = np.array(["hello", "HELLO", "Hello"])
|
1016 |
+
>>> np.char.isupper(a)
|
1017 |
+
array([False, True, False])
|
1018 |
+
|
1019 |
+
"""
|
1020 |
+
return _vec_string(a, bool_, 'isupper')
|
1021 |
+
|
1022 |
+
|
1023 |
+
def _join_dispatcher(sep, seq):
|
1024 |
+
return (sep, seq)
|
1025 |
+
|
1026 |
+
|
1027 |
+
@array_function_dispatch(_join_dispatcher)
|
1028 |
+
def join(sep, seq):
|
1029 |
+
"""
|
1030 |
+
Return a string which is the concatenation of the strings in the
|
1031 |
+
sequence `seq`.
|
1032 |
+
|
1033 |
+
Calls `str.join` element-wise.
|
1034 |
+
|
1035 |
+
Parameters
|
1036 |
+
----------
|
1037 |
+
sep : array_like of str or unicode
|
1038 |
+
seq : array_like of str or unicode
|
1039 |
+
|
1040 |
+
Returns
|
1041 |
+
-------
|
1042 |
+
out : ndarray
|
1043 |
+
Output array of str or unicode, depending on input types
|
1044 |
+
|
1045 |
+
See Also
|
1046 |
+
--------
|
1047 |
+
str.join
|
1048 |
+
|
1049 |
+
Examples
|
1050 |
+
--------
|
1051 |
+
>>> np.char.join('-', 'osd')
|
1052 |
+
array('o-s-d', dtype='<U5')
|
1053 |
+
|
1054 |
+
>>> np.char.join(['-', '.'], ['ghc', 'osd'])
|
1055 |
+
array(['g-h-c', 'o.s.d'], dtype='<U5')
|
1056 |
+
|
1057 |
+
"""
|
1058 |
+
return _to_bytes_or_str_array(
|
1059 |
+
_vec_string(sep, object_, 'join', (seq,)), seq)
|
1060 |
+
|
1061 |
+
|
1062 |
+
|
1063 |
+
def _just_dispatcher(a, width, fillchar=None):
|
1064 |
+
return (a,)
|
1065 |
+
|
1066 |
+
|
1067 |
+
@array_function_dispatch(_just_dispatcher)
|
1068 |
+
def ljust(a, width, fillchar=' '):
|
1069 |
+
"""
|
1070 |
+
Return an array with the elements of `a` left-justified in a
|
1071 |
+
string of length `width`.
|
1072 |
+
|
1073 |
+
Calls `str.ljust` element-wise.
|
1074 |
+
|
1075 |
+
Parameters
|
1076 |
+
----------
|
1077 |
+
a : array_like of str or unicode
|
1078 |
+
|
1079 |
+
width : int
|
1080 |
+
The length of the resulting strings
|
1081 |
+
fillchar : str or unicode, optional
|
1082 |
+
The character to use for padding
|
1083 |
+
|
1084 |
+
Returns
|
1085 |
+
-------
|
1086 |
+
out : ndarray
|
1087 |
+
Output array of str or unicode, depending on input type
|
1088 |
+
|
1089 |
+
See Also
|
1090 |
+
--------
|
1091 |
+
str.ljust
|
1092 |
+
|
1093 |
+
"""
|
1094 |
+
a_arr = numpy.asarray(a)
|
1095 |
+
width_arr = numpy.asarray(width)
|
1096 |
+
size = int(numpy.max(width_arr.flat))
|
1097 |
+
if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
|
1098 |
+
fillchar = asbytes(fillchar)
|
1099 |
+
return _vec_string(
|
1100 |
+
a_arr, type(a_arr.dtype)(size), 'ljust', (width_arr, fillchar))
|
1101 |
+
|
1102 |
+
|
1103 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1104 |
+
def lower(a):
|
1105 |
+
"""
|
1106 |
+
Return an array with the elements converted to lowercase.
|
1107 |
+
|
1108 |
+
Call `str.lower` element-wise.
|
1109 |
+
|
1110 |
+
For 8-bit strings, this method is locale-dependent.
|
1111 |
+
|
1112 |
+
Parameters
|
1113 |
+
----------
|
1114 |
+
a : array_like, {str, unicode}
|
1115 |
+
Input array.
|
1116 |
+
|
1117 |
+
Returns
|
1118 |
+
-------
|
1119 |
+
out : ndarray, {str, unicode}
|
1120 |
+
Output array of str or unicode, depending on input type
|
1121 |
+
|
1122 |
+
See Also
|
1123 |
+
--------
|
1124 |
+
str.lower
|
1125 |
+
|
1126 |
+
Examples
|
1127 |
+
--------
|
1128 |
+
>>> c = np.array(['A1B C', '1BCA', 'BCA1']); c
|
1129 |
+
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
|
1130 |
+
>>> np.char.lower(c)
|
1131 |
+
array(['a1b c', '1bca', 'bca1'], dtype='<U5')
|
1132 |
+
|
1133 |
+
"""
|
1134 |
+
a_arr = numpy.asarray(a)
|
1135 |
+
return _vec_string(a_arr, a_arr.dtype, 'lower')
|
1136 |
+
|
1137 |
+
|
1138 |
+
def _strip_dispatcher(a, chars=None):
|
1139 |
+
return (a,)
|
1140 |
+
|
1141 |
+
|
1142 |
+
@array_function_dispatch(_strip_dispatcher)
|
1143 |
+
def lstrip(a, chars=None):
|
1144 |
+
"""
|
1145 |
+
For each element in `a`, return a copy with the leading characters
|
1146 |
+
removed.
|
1147 |
+
|
1148 |
+
Calls `str.lstrip` element-wise.
|
1149 |
+
|
1150 |
+
Parameters
|
1151 |
+
----------
|
1152 |
+
a : array-like, {str, unicode}
|
1153 |
+
Input array.
|
1154 |
+
|
1155 |
+
chars : {str, unicode}, optional
|
1156 |
+
The `chars` argument is a string specifying the set of
|
1157 |
+
characters to be removed. If omitted or None, the `chars`
|
1158 |
+
argument defaults to removing whitespace. The `chars` argument
|
1159 |
+
is not a prefix; rather, all combinations of its values are
|
1160 |
+
stripped.
|
1161 |
+
|
1162 |
+
Returns
|
1163 |
+
-------
|
1164 |
+
out : ndarray, {str, unicode}
|
1165 |
+
Output array of str or unicode, depending on input type
|
1166 |
+
|
1167 |
+
See Also
|
1168 |
+
--------
|
1169 |
+
str.lstrip
|
1170 |
+
|
1171 |
+
Examples
|
1172 |
+
--------
|
1173 |
+
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
|
1174 |
+
>>> c
|
1175 |
+
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
|
1176 |
+
|
1177 |
+
The 'a' variable is unstripped from c[1] because whitespace leading.
|
1178 |
+
|
1179 |
+
>>> np.char.lstrip(c, 'a')
|
1180 |
+
array(['AaAaA', ' aA ', 'bBABba'], dtype='<U7')
|
1181 |
+
|
1182 |
+
|
1183 |
+
>>> np.char.lstrip(c, 'A') # leaves c unchanged
|
1184 |
+
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
|
1185 |
+
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, '')).all()
|
1186 |
+
... # XXX: is this a regression? This used to return True
|
1187 |
+
... # np.char.lstrip(c,'') does not modify c at all.
|
1188 |
+
False
|
1189 |
+
>>> (np.char.lstrip(c, ' ') == np.char.lstrip(c, None)).all()
|
1190 |
+
True
|
1191 |
+
|
1192 |
+
"""
|
1193 |
+
a_arr = numpy.asarray(a)
|
1194 |
+
return _vec_string(a_arr, a_arr.dtype, 'lstrip', (chars,))
|
1195 |
+
|
1196 |
+
|
1197 |
+
def _partition_dispatcher(a, sep):
|
1198 |
+
return (a,)
|
1199 |
+
|
1200 |
+
|
1201 |
+
@array_function_dispatch(_partition_dispatcher)
|
1202 |
+
def partition(a, sep):
|
1203 |
+
"""
|
1204 |
+
Partition each element in `a` around `sep`.
|
1205 |
+
|
1206 |
+
Calls `str.partition` element-wise.
|
1207 |
+
|
1208 |
+
For each element in `a`, split the element as the first
|
1209 |
+
occurrence of `sep`, and return 3 strings containing the part
|
1210 |
+
before the separator, the separator itself, and the part after
|
1211 |
+
the separator. If the separator is not found, return 3 strings
|
1212 |
+
containing the string itself, followed by two empty strings.
|
1213 |
+
|
1214 |
+
Parameters
|
1215 |
+
----------
|
1216 |
+
a : array_like, {str, unicode}
|
1217 |
+
Input array
|
1218 |
+
sep : {str, unicode}
|
1219 |
+
Separator to split each string element in `a`.
|
1220 |
+
|
1221 |
+
Returns
|
1222 |
+
-------
|
1223 |
+
out : ndarray, {str, unicode}
|
1224 |
+
Output array of str or unicode, depending on input type.
|
1225 |
+
The output array will have an extra dimension with 3
|
1226 |
+
elements per input element.
|
1227 |
+
|
1228 |
+
See Also
|
1229 |
+
--------
|
1230 |
+
str.partition
|
1231 |
+
|
1232 |
+
"""
|
1233 |
+
return _to_bytes_or_str_array(
|
1234 |
+
_vec_string(a, object_, 'partition', (sep,)), a)
|
1235 |
+
|
1236 |
+
|
1237 |
+
def _replace_dispatcher(a, old, new, count=None):
|
1238 |
+
return (a,)
|
1239 |
+
|
1240 |
+
|
1241 |
+
@array_function_dispatch(_replace_dispatcher)
|
1242 |
+
def replace(a, old, new, count=None):
|
1243 |
+
"""
|
1244 |
+
For each element in `a`, return a copy of the string with all
|
1245 |
+
occurrences of substring `old` replaced by `new`.
|
1246 |
+
|
1247 |
+
Calls `str.replace` element-wise.
|
1248 |
+
|
1249 |
+
Parameters
|
1250 |
+
----------
|
1251 |
+
a : array-like of str or unicode
|
1252 |
+
|
1253 |
+
old, new : str or unicode
|
1254 |
+
|
1255 |
+
count : int, optional
|
1256 |
+
If the optional argument `count` is given, only the first
|
1257 |
+
`count` occurrences are replaced.
|
1258 |
+
|
1259 |
+
Returns
|
1260 |
+
-------
|
1261 |
+
out : ndarray
|
1262 |
+
Output array of str or unicode, depending on input type
|
1263 |
+
|
1264 |
+
See Also
|
1265 |
+
--------
|
1266 |
+
str.replace
|
1267 |
+
|
1268 |
+
Examples
|
1269 |
+
--------
|
1270 |
+
>>> a = np.array(["That is a mango", "Monkeys eat mangos"])
|
1271 |
+
>>> np.char.replace(a, 'mango', 'banana')
|
1272 |
+
array(['That is a banana', 'Monkeys eat bananas'], dtype='<U19')
|
1273 |
+
|
1274 |
+
>>> a = np.array(["The dish is fresh", "This is it"])
|
1275 |
+
>>> np.char.replace(a, 'is', 'was')
|
1276 |
+
array(['The dwash was fresh', 'Thwas was it'], dtype='<U19')
|
1277 |
+
"""
|
1278 |
+
return _to_bytes_or_str_array(
|
1279 |
+
_vec_string(a, object_, 'replace', [old, new] + _clean_args(count)), a)
|
1280 |
+
|
1281 |
+
|
1282 |
+
@array_function_dispatch(_count_dispatcher)
|
1283 |
+
def rfind(a, sub, start=0, end=None):
|
1284 |
+
"""
|
1285 |
+
For each element in `a`, return the highest index in the string
|
1286 |
+
where substring `sub` is found, such that `sub` is contained
|
1287 |
+
within [`start`, `end`].
|
1288 |
+
|
1289 |
+
Calls `str.rfind` element-wise.
|
1290 |
+
|
1291 |
+
Parameters
|
1292 |
+
----------
|
1293 |
+
a : array-like of str or unicode
|
1294 |
+
|
1295 |
+
sub : str or unicode
|
1296 |
+
|
1297 |
+
start, end : int, optional
|
1298 |
+
Optional arguments `start` and `end` are interpreted as in
|
1299 |
+
slice notation.
|
1300 |
+
|
1301 |
+
Returns
|
1302 |
+
-------
|
1303 |
+
out : ndarray
|
1304 |
+
Output array of ints. Return -1 on failure.
|
1305 |
+
|
1306 |
+
See Also
|
1307 |
+
--------
|
1308 |
+
str.rfind
|
1309 |
+
|
1310 |
+
"""
|
1311 |
+
return _vec_string(
|
1312 |
+
a, int_, 'rfind', [sub, start] + _clean_args(end))
|
1313 |
+
|
1314 |
+
|
1315 |
+
@array_function_dispatch(_count_dispatcher)
|
1316 |
+
def rindex(a, sub, start=0, end=None):
|
1317 |
+
"""
|
1318 |
+
Like `rfind`, but raises `ValueError` when the substring `sub` is
|
1319 |
+
not found.
|
1320 |
+
|
1321 |
+
Calls `str.rindex` element-wise.
|
1322 |
+
|
1323 |
+
Parameters
|
1324 |
+
----------
|
1325 |
+
a : array-like of str or unicode
|
1326 |
+
|
1327 |
+
sub : str or unicode
|
1328 |
+
|
1329 |
+
start, end : int, optional
|
1330 |
+
|
1331 |
+
Returns
|
1332 |
+
-------
|
1333 |
+
out : ndarray
|
1334 |
+
Output array of ints.
|
1335 |
+
|
1336 |
+
See Also
|
1337 |
+
--------
|
1338 |
+
rfind, str.rindex
|
1339 |
+
|
1340 |
+
"""
|
1341 |
+
return _vec_string(
|
1342 |
+
a, int_, 'rindex', [sub, start] + _clean_args(end))
|
1343 |
+
|
1344 |
+
|
1345 |
+
@array_function_dispatch(_just_dispatcher)
|
1346 |
+
def rjust(a, width, fillchar=' '):
|
1347 |
+
"""
|
1348 |
+
Return an array with the elements of `a` right-justified in a
|
1349 |
+
string of length `width`.
|
1350 |
+
|
1351 |
+
Calls `str.rjust` element-wise.
|
1352 |
+
|
1353 |
+
Parameters
|
1354 |
+
----------
|
1355 |
+
a : array_like of str or unicode
|
1356 |
+
|
1357 |
+
width : int
|
1358 |
+
The length of the resulting strings
|
1359 |
+
fillchar : str or unicode, optional
|
1360 |
+
The character to use for padding
|
1361 |
+
|
1362 |
+
Returns
|
1363 |
+
-------
|
1364 |
+
out : ndarray
|
1365 |
+
Output array of str or unicode, depending on input type
|
1366 |
+
|
1367 |
+
See Also
|
1368 |
+
--------
|
1369 |
+
str.rjust
|
1370 |
+
|
1371 |
+
"""
|
1372 |
+
a_arr = numpy.asarray(a)
|
1373 |
+
width_arr = numpy.asarray(width)
|
1374 |
+
size = int(numpy.max(width_arr.flat))
|
1375 |
+
if numpy.issubdtype(a_arr.dtype, numpy.bytes_):
|
1376 |
+
fillchar = asbytes(fillchar)
|
1377 |
+
return _vec_string(
|
1378 |
+
a_arr, type(a_arr.dtype)(size), 'rjust', (width_arr, fillchar))
|
1379 |
+
|
1380 |
+
|
1381 |
+
@array_function_dispatch(_partition_dispatcher)
|
1382 |
+
def rpartition(a, sep):
|
1383 |
+
"""
|
1384 |
+
Partition (split) each element around the right-most separator.
|
1385 |
+
|
1386 |
+
Calls `str.rpartition` element-wise.
|
1387 |
+
|
1388 |
+
For each element in `a`, split the element as the last
|
1389 |
+
occurrence of `sep`, and return 3 strings containing the part
|
1390 |
+
before the separator, the separator itself, and the part after
|
1391 |
+
the separator. If the separator is not found, return 3 strings
|
1392 |
+
containing the string itself, followed by two empty strings.
|
1393 |
+
|
1394 |
+
Parameters
|
1395 |
+
----------
|
1396 |
+
a : array_like of str or unicode
|
1397 |
+
Input array
|
1398 |
+
sep : str or unicode
|
1399 |
+
Right-most separator to split each element in array.
|
1400 |
+
|
1401 |
+
Returns
|
1402 |
+
-------
|
1403 |
+
out : ndarray
|
1404 |
+
Output array of string or unicode, depending on input
|
1405 |
+
type. The output array will have an extra dimension with
|
1406 |
+
3 elements per input element.
|
1407 |
+
|
1408 |
+
See Also
|
1409 |
+
--------
|
1410 |
+
str.rpartition
|
1411 |
+
|
1412 |
+
"""
|
1413 |
+
return _to_bytes_or_str_array(
|
1414 |
+
_vec_string(a, object_, 'rpartition', (sep,)), a)
|
1415 |
+
|
1416 |
+
|
1417 |
+
def _split_dispatcher(a, sep=None, maxsplit=None):
|
1418 |
+
return (a,)
|
1419 |
+
|
1420 |
+
|
1421 |
+
@array_function_dispatch(_split_dispatcher)
|
1422 |
+
def rsplit(a, sep=None, maxsplit=None):
|
1423 |
+
"""
|
1424 |
+
For each element in `a`, return a list of the words in the
|
1425 |
+
string, using `sep` as the delimiter string.
|
1426 |
+
|
1427 |
+
Calls `str.rsplit` element-wise.
|
1428 |
+
|
1429 |
+
Except for splitting from the right, `rsplit`
|
1430 |
+
behaves like `split`.
|
1431 |
+
|
1432 |
+
Parameters
|
1433 |
+
----------
|
1434 |
+
a : array_like of str or unicode
|
1435 |
+
|
1436 |
+
sep : str or unicode, optional
|
1437 |
+
If `sep` is not specified or None, any whitespace string
|
1438 |
+
is a separator.
|
1439 |
+
maxsplit : int, optional
|
1440 |
+
If `maxsplit` is given, at most `maxsplit` splits are done,
|
1441 |
+
the rightmost ones.
|
1442 |
+
|
1443 |
+
Returns
|
1444 |
+
-------
|
1445 |
+
out : ndarray
|
1446 |
+
Array of list objects
|
1447 |
+
|
1448 |
+
See Also
|
1449 |
+
--------
|
1450 |
+
str.rsplit, split
|
1451 |
+
|
1452 |
+
"""
|
1453 |
+
# This will return an array of lists of different sizes, so we
|
1454 |
+
# leave it as an object array
|
1455 |
+
return _vec_string(
|
1456 |
+
a, object_, 'rsplit', [sep] + _clean_args(maxsplit))
|
1457 |
+
|
1458 |
+
|
1459 |
+
def _strip_dispatcher(a, chars=None):
|
1460 |
+
return (a,)
|
1461 |
+
|
1462 |
+
|
1463 |
+
@array_function_dispatch(_strip_dispatcher)
|
1464 |
+
def rstrip(a, chars=None):
|
1465 |
+
"""
|
1466 |
+
For each element in `a`, return a copy with the trailing
|
1467 |
+
characters removed.
|
1468 |
+
|
1469 |
+
Calls `str.rstrip` element-wise.
|
1470 |
+
|
1471 |
+
Parameters
|
1472 |
+
----------
|
1473 |
+
a : array-like of str or unicode
|
1474 |
+
|
1475 |
+
chars : str or unicode, optional
|
1476 |
+
The `chars` argument is a string specifying the set of
|
1477 |
+
characters to be removed. If omitted or None, the `chars`
|
1478 |
+
argument defaults to removing whitespace. The `chars` argument
|
1479 |
+
is not a suffix; rather, all combinations of its values are
|
1480 |
+
stripped.
|
1481 |
+
|
1482 |
+
Returns
|
1483 |
+
-------
|
1484 |
+
out : ndarray
|
1485 |
+
Output array of str or unicode, depending on input type
|
1486 |
+
|
1487 |
+
See Also
|
1488 |
+
--------
|
1489 |
+
str.rstrip
|
1490 |
+
|
1491 |
+
Examples
|
1492 |
+
--------
|
1493 |
+
>>> c = np.array(['aAaAaA', 'abBABba'], dtype='S7'); c
|
1494 |
+
array(['aAaAaA', 'abBABba'],
|
1495 |
+
dtype='|S7')
|
1496 |
+
>>> np.char.rstrip(c, b'a')
|
1497 |
+
array(['aAaAaA', 'abBABb'],
|
1498 |
+
dtype='|S7')
|
1499 |
+
>>> np.char.rstrip(c, b'A')
|
1500 |
+
array(['aAaAa', 'abBABba'],
|
1501 |
+
dtype='|S7')
|
1502 |
+
|
1503 |
+
"""
|
1504 |
+
a_arr = numpy.asarray(a)
|
1505 |
+
return _vec_string(a_arr, a_arr.dtype, 'rstrip', (chars,))
|
1506 |
+
|
1507 |
+
|
1508 |
+
@array_function_dispatch(_split_dispatcher)
|
1509 |
+
def split(a, sep=None, maxsplit=None):
|
1510 |
+
"""
|
1511 |
+
For each element in `a`, return a list of the words in the
|
1512 |
+
string, using `sep` as the delimiter string.
|
1513 |
+
|
1514 |
+
Calls `str.split` element-wise.
|
1515 |
+
|
1516 |
+
Parameters
|
1517 |
+
----------
|
1518 |
+
a : array_like of str or unicode
|
1519 |
+
|
1520 |
+
sep : str or unicode, optional
|
1521 |
+
If `sep` is not specified or None, any whitespace string is a
|
1522 |
+
separator.
|
1523 |
+
|
1524 |
+
maxsplit : int, optional
|
1525 |
+
If `maxsplit` is given, at most `maxsplit` splits are done.
|
1526 |
+
|
1527 |
+
Returns
|
1528 |
+
-------
|
1529 |
+
out : ndarray
|
1530 |
+
Array of list objects
|
1531 |
+
|
1532 |
+
See Also
|
1533 |
+
--------
|
1534 |
+
str.split, rsplit
|
1535 |
+
|
1536 |
+
"""
|
1537 |
+
# This will return an array of lists of different sizes, so we
|
1538 |
+
# leave it as an object array
|
1539 |
+
return _vec_string(
|
1540 |
+
a, object_, 'split', [sep] + _clean_args(maxsplit))
|
1541 |
+
|
1542 |
+
|
1543 |
+
def _splitlines_dispatcher(a, keepends=None):
|
1544 |
+
return (a,)
|
1545 |
+
|
1546 |
+
|
1547 |
+
@array_function_dispatch(_splitlines_dispatcher)
|
1548 |
+
def splitlines(a, keepends=None):
|
1549 |
+
"""
|
1550 |
+
For each element in `a`, return a list of the lines in the
|
1551 |
+
element, breaking at line boundaries.
|
1552 |
+
|
1553 |
+
Calls `str.splitlines` element-wise.
|
1554 |
+
|
1555 |
+
Parameters
|
1556 |
+
----------
|
1557 |
+
a : array_like of str or unicode
|
1558 |
+
|
1559 |
+
keepends : bool, optional
|
1560 |
+
Line breaks are not included in the resulting list unless
|
1561 |
+
keepends is given and true.
|
1562 |
+
|
1563 |
+
Returns
|
1564 |
+
-------
|
1565 |
+
out : ndarray
|
1566 |
+
Array of list objects
|
1567 |
+
|
1568 |
+
See Also
|
1569 |
+
--------
|
1570 |
+
str.splitlines
|
1571 |
+
|
1572 |
+
"""
|
1573 |
+
return _vec_string(
|
1574 |
+
a, object_, 'splitlines', _clean_args(keepends))
|
1575 |
+
|
1576 |
+
|
1577 |
+
def _startswith_dispatcher(a, prefix, start=None, end=None):
|
1578 |
+
return (a,)
|
1579 |
+
|
1580 |
+
|
1581 |
+
@array_function_dispatch(_startswith_dispatcher)
|
1582 |
+
def startswith(a, prefix, start=0, end=None):
|
1583 |
+
"""
|
1584 |
+
Returns a boolean array which is `True` where the string element
|
1585 |
+
in `a` starts with `prefix`, otherwise `False`.
|
1586 |
+
|
1587 |
+
Calls `str.startswith` element-wise.
|
1588 |
+
|
1589 |
+
Parameters
|
1590 |
+
----------
|
1591 |
+
a : array_like of str or unicode
|
1592 |
+
|
1593 |
+
prefix : str
|
1594 |
+
|
1595 |
+
start, end : int, optional
|
1596 |
+
With optional `start`, test beginning at that position. With
|
1597 |
+
optional `end`, stop comparing at that position.
|
1598 |
+
|
1599 |
+
Returns
|
1600 |
+
-------
|
1601 |
+
out : ndarray
|
1602 |
+
Array of booleans
|
1603 |
+
|
1604 |
+
See Also
|
1605 |
+
--------
|
1606 |
+
str.startswith
|
1607 |
+
|
1608 |
+
"""
|
1609 |
+
return _vec_string(
|
1610 |
+
a, bool_, 'startswith', [prefix, start] + _clean_args(end))
|
1611 |
+
|
1612 |
+
|
1613 |
+
@array_function_dispatch(_strip_dispatcher)
|
1614 |
+
def strip(a, chars=None):
|
1615 |
+
"""
|
1616 |
+
For each element in `a`, return a copy with the leading and
|
1617 |
+
trailing characters removed.
|
1618 |
+
|
1619 |
+
Calls `str.strip` element-wise.
|
1620 |
+
|
1621 |
+
Parameters
|
1622 |
+
----------
|
1623 |
+
a : array-like of str or unicode
|
1624 |
+
|
1625 |
+
chars : str or unicode, optional
|
1626 |
+
The `chars` argument is a string specifying the set of
|
1627 |
+
characters to be removed. If omitted or None, the `chars`
|
1628 |
+
argument defaults to removing whitespace. The `chars` argument
|
1629 |
+
is not a prefix or suffix; rather, all combinations of its
|
1630 |
+
values are stripped.
|
1631 |
+
|
1632 |
+
Returns
|
1633 |
+
-------
|
1634 |
+
out : ndarray
|
1635 |
+
Output array of str or unicode, depending on input type
|
1636 |
+
|
1637 |
+
See Also
|
1638 |
+
--------
|
1639 |
+
str.strip
|
1640 |
+
|
1641 |
+
Examples
|
1642 |
+
--------
|
1643 |
+
>>> c = np.array(['aAaAaA', ' aA ', 'abBABba'])
|
1644 |
+
>>> c
|
1645 |
+
array(['aAaAaA', ' aA ', 'abBABba'], dtype='<U7')
|
1646 |
+
>>> np.char.strip(c)
|
1647 |
+
array(['aAaAaA', 'aA', 'abBABba'], dtype='<U7')
|
1648 |
+
>>> np.char.strip(c, 'a') # 'a' unstripped from c[1] because whitespace leads
|
1649 |
+
array(['AaAaA', ' aA ', 'bBABb'], dtype='<U7')
|
1650 |
+
>>> np.char.strip(c, 'A') # 'A' unstripped from c[1] because (unprinted) ws trails
|
1651 |
+
array(['aAaAa', ' aA ', 'abBABba'], dtype='<U7')
|
1652 |
+
|
1653 |
+
"""
|
1654 |
+
a_arr = numpy.asarray(a)
|
1655 |
+
return _vec_string(a_arr, a_arr.dtype, 'strip', _clean_args(chars))
|
1656 |
+
|
1657 |
+
|
1658 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1659 |
+
def swapcase(a):
|
1660 |
+
"""
|
1661 |
+
Return element-wise a copy of the string with
|
1662 |
+
uppercase characters converted to lowercase and vice versa.
|
1663 |
+
|
1664 |
+
Calls `str.swapcase` element-wise.
|
1665 |
+
|
1666 |
+
For 8-bit strings, this method is locale-dependent.
|
1667 |
+
|
1668 |
+
Parameters
|
1669 |
+
----------
|
1670 |
+
a : array_like, {str, unicode}
|
1671 |
+
Input array.
|
1672 |
+
|
1673 |
+
Returns
|
1674 |
+
-------
|
1675 |
+
out : ndarray, {str, unicode}
|
1676 |
+
Output array of str or unicode, depending on input type
|
1677 |
+
|
1678 |
+
See Also
|
1679 |
+
--------
|
1680 |
+
str.swapcase
|
1681 |
+
|
1682 |
+
Examples
|
1683 |
+
--------
|
1684 |
+
>>> c=np.array(['a1B c','1b Ca','b Ca1','cA1b'],'S5'); c
|
1685 |
+
array(['a1B c', '1b Ca', 'b Ca1', 'cA1b'],
|
1686 |
+
dtype='|S5')
|
1687 |
+
>>> np.char.swapcase(c)
|
1688 |
+
array(['A1b C', '1B cA', 'B cA1', 'Ca1B'],
|
1689 |
+
dtype='|S5')
|
1690 |
+
|
1691 |
+
"""
|
1692 |
+
a_arr = numpy.asarray(a)
|
1693 |
+
return _vec_string(a_arr, a_arr.dtype, 'swapcase')
|
1694 |
+
|
1695 |
+
|
1696 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1697 |
+
def title(a):
|
1698 |
+
"""
|
1699 |
+
Return element-wise title cased version of string or unicode.
|
1700 |
+
|
1701 |
+
Title case words start with uppercase characters, all remaining cased
|
1702 |
+
characters are lowercase.
|
1703 |
+
|
1704 |
+
Calls `str.title` element-wise.
|
1705 |
+
|
1706 |
+
For 8-bit strings, this method is locale-dependent.
|
1707 |
+
|
1708 |
+
Parameters
|
1709 |
+
----------
|
1710 |
+
a : array_like, {str, unicode}
|
1711 |
+
Input array.
|
1712 |
+
|
1713 |
+
Returns
|
1714 |
+
-------
|
1715 |
+
out : ndarray
|
1716 |
+
Output array of str or unicode, depending on input type
|
1717 |
+
|
1718 |
+
See Also
|
1719 |
+
--------
|
1720 |
+
str.title
|
1721 |
+
|
1722 |
+
Examples
|
1723 |
+
--------
|
1724 |
+
>>> c=np.array(['a1b c','1b ca','b ca1','ca1b'],'S5'); c
|
1725 |
+
array(['a1b c', '1b ca', 'b ca1', 'ca1b'],
|
1726 |
+
dtype='|S5')
|
1727 |
+
>>> np.char.title(c)
|
1728 |
+
array(['A1B C', '1B Ca', 'B Ca1', 'Ca1B'],
|
1729 |
+
dtype='|S5')
|
1730 |
+
|
1731 |
+
"""
|
1732 |
+
a_arr = numpy.asarray(a)
|
1733 |
+
return _vec_string(a_arr, a_arr.dtype, 'title')
|
1734 |
+
|
1735 |
+
|
1736 |
+
def _translate_dispatcher(a, table, deletechars=None):
|
1737 |
+
return (a,)
|
1738 |
+
|
1739 |
+
|
1740 |
+
@array_function_dispatch(_translate_dispatcher)
|
1741 |
+
def translate(a, table, deletechars=None):
|
1742 |
+
"""
|
1743 |
+
For each element in `a`, return a copy of the string where all
|
1744 |
+
characters occurring in the optional argument `deletechars` are
|
1745 |
+
removed, and the remaining characters have been mapped through the
|
1746 |
+
given translation table.
|
1747 |
+
|
1748 |
+
Calls `str.translate` element-wise.
|
1749 |
+
|
1750 |
+
Parameters
|
1751 |
+
----------
|
1752 |
+
a : array-like of str or unicode
|
1753 |
+
|
1754 |
+
table : str of length 256
|
1755 |
+
|
1756 |
+
deletechars : str
|
1757 |
+
|
1758 |
+
Returns
|
1759 |
+
-------
|
1760 |
+
out : ndarray
|
1761 |
+
Output array of str or unicode, depending on input type
|
1762 |
+
|
1763 |
+
See Also
|
1764 |
+
--------
|
1765 |
+
str.translate
|
1766 |
+
|
1767 |
+
"""
|
1768 |
+
a_arr = numpy.asarray(a)
|
1769 |
+
if issubclass(a_arr.dtype.type, str_):
|
1770 |
+
return _vec_string(
|
1771 |
+
a_arr, a_arr.dtype, 'translate', (table,))
|
1772 |
+
else:
|
1773 |
+
return _vec_string(
|
1774 |
+
a_arr, a_arr.dtype, 'translate', [table] + _clean_args(deletechars))
|
1775 |
+
|
1776 |
+
|
1777 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1778 |
+
def upper(a):
|
1779 |
+
"""
|
1780 |
+
Return an array with the elements converted to uppercase.
|
1781 |
+
|
1782 |
+
Calls `str.upper` element-wise.
|
1783 |
+
|
1784 |
+
For 8-bit strings, this method is locale-dependent.
|
1785 |
+
|
1786 |
+
Parameters
|
1787 |
+
----------
|
1788 |
+
a : array_like, {str, unicode}
|
1789 |
+
Input array.
|
1790 |
+
|
1791 |
+
Returns
|
1792 |
+
-------
|
1793 |
+
out : ndarray, {str, unicode}
|
1794 |
+
Output array of str or unicode, depending on input type
|
1795 |
+
|
1796 |
+
See Also
|
1797 |
+
--------
|
1798 |
+
str.upper
|
1799 |
+
|
1800 |
+
Examples
|
1801 |
+
--------
|
1802 |
+
>>> c = np.array(['a1b c', '1bca', 'bca1']); c
|
1803 |
+
array(['a1b c', '1bca', 'bca1'], dtype='<U5')
|
1804 |
+
>>> np.char.upper(c)
|
1805 |
+
array(['A1B C', '1BCA', 'BCA1'], dtype='<U5')
|
1806 |
+
|
1807 |
+
"""
|
1808 |
+
a_arr = numpy.asarray(a)
|
1809 |
+
return _vec_string(a_arr, a_arr.dtype, 'upper')
|
1810 |
+
|
1811 |
+
|
1812 |
+
def _zfill_dispatcher(a, width):
|
1813 |
+
return (a,)
|
1814 |
+
|
1815 |
+
|
1816 |
+
@array_function_dispatch(_zfill_dispatcher)
|
1817 |
+
def zfill(a, width):
|
1818 |
+
"""
|
1819 |
+
Return the numeric string left-filled with zeros
|
1820 |
+
|
1821 |
+
Calls `str.zfill` element-wise.
|
1822 |
+
|
1823 |
+
Parameters
|
1824 |
+
----------
|
1825 |
+
a : array_like, {str, unicode}
|
1826 |
+
Input array.
|
1827 |
+
width : int
|
1828 |
+
Width of string to left-fill elements in `a`.
|
1829 |
+
|
1830 |
+
Returns
|
1831 |
+
-------
|
1832 |
+
out : ndarray, {str, unicode}
|
1833 |
+
Output array of str or unicode, depending on input type
|
1834 |
+
|
1835 |
+
See Also
|
1836 |
+
--------
|
1837 |
+
str.zfill
|
1838 |
+
|
1839 |
+
"""
|
1840 |
+
a_arr = numpy.asarray(a)
|
1841 |
+
width_arr = numpy.asarray(width)
|
1842 |
+
size = int(numpy.max(width_arr.flat))
|
1843 |
+
return _vec_string(
|
1844 |
+
a_arr, type(a_arr.dtype)(size), 'zfill', (width_arr,))
|
1845 |
+
|
1846 |
+
|
1847 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1848 |
+
def isnumeric(a):
|
1849 |
+
"""
|
1850 |
+
For each element, return True if there are only numeric
|
1851 |
+
characters in the element.
|
1852 |
+
|
1853 |
+
Calls `str.isnumeric` element-wise.
|
1854 |
+
|
1855 |
+
Numeric characters include digit characters, and all characters
|
1856 |
+
that have the Unicode numeric value property, e.g. ``U+2155,
|
1857 |
+
VULGAR FRACTION ONE FIFTH``.
|
1858 |
+
|
1859 |
+
Parameters
|
1860 |
+
----------
|
1861 |
+
a : array_like, unicode
|
1862 |
+
Input array.
|
1863 |
+
|
1864 |
+
Returns
|
1865 |
+
-------
|
1866 |
+
out : ndarray, bool
|
1867 |
+
Array of booleans of same shape as `a`.
|
1868 |
+
|
1869 |
+
See Also
|
1870 |
+
--------
|
1871 |
+
str.isnumeric
|
1872 |
+
|
1873 |
+
Examples
|
1874 |
+
--------
|
1875 |
+
>>> np.char.isnumeric(['123', '123abc', '9.0', '1/4', 'VIII'])
|
1876 |
+
array([ True, False, False, False, False])
|
1877 |
+
|
1878 |
+
"""
|
1879 |
+
if not _is_unicode(a):
|
1880 |
+
raise TypeError("isnumeric is only available for Unicode strings and arrays")
|
1881 |
+
return _vec_string(a, bool_, 'isnumeric')
|
1882 |
+
|
1883 |
+
|
1884 |
+
@array_function_dispatch(_unary_op_dispatcher)
|
1885 |
+
def isdecimal(a):
|
1886 |
+
"""
|
1887 |
+
For each element, return True if there are only decimal
|
1888 |
+
characters in the element.
|
1889 |
+
|
1890 |
+
Calls `str.isdecimal` element-wise.
|
1891 |
+
|
1892 |
+
Decimal characters include digit characters, and all characters
|
1893 |
+
that can be used to form decimal-radix numbers,
|
1894 |
+
e.g. ``U+0660, ARABIC-INDIC DIGIT ZERO``.
|
1895 |
+
|
1896 |
+
Parameters
|
1897 |
+
----------
|
1898 |
+
a : array_like, unicode
|
1899 |
+
Input array.
|
1900 |
+
|
1901 |
+
Returns
|
1902 |
+
-------
|
1903 |
+
out : ndarray, bool
|
1904 |
+
Array of booleans identical in shape to `a`.
|
1905 |
+
|
1906 |
+
See Also
|
1907 |
+
--------
|
1908 |
+
str.isdecimal
|
1909 |
+
|
1910 |
+
Examples
|
1911 |
+
--------
|
1912 |
+
>>> np.char.isdecimal(['12345', '4.99', '123ABC', ''])
|
1913 |
+
array([ True, False, False, False])
|
1914 |
+
|
1915 |
+
"""
|
1916 |
+
if not _is_unicode(a):
|
1917 |
+
raise TypeError(
|
1918 |
+
"isdecimal is only available for Unicode strings and arrays")
|
1919 |
+
return _vec_string(a, bool_, 'isdecimal')
|
1920 |
+
|
1921 |
+
|
1922 |
+
@set_module('numpy')
|
1923 |
+
class chararray(ndarray):
|
1924 |
+
"""
|
1925 |
+
chararray(shape, itemsize=1, unicode=False, buffer=None, offset=0,
|
1926 |
+
strides=None, order=None)
|
1927 |
+
|
1928 |
+
Provides a convenient view on arrays of string and unicode values.
|
1929 |
+
|
1930 |
+
.. note::
|
1931 |
+
The `chararray` class exists for backwards compatibility with
|
1932 |
+
Numarray, it is not recommended for new development. Starting from numpy
|
1933 |
+
1.4, if one needs arrays of strings, it is recommended to use arrays of
|
1934 |
+
`dtype` `object_`, `bytes_` or `str_`, and use the free functions
|
1935 |
+
in the `numpy.char` module for fast vectorized string operations.
|
1936 |
+
|
1937 |
+
Versus a regular NumPy array of type `str` or `unicode`, this
|
1938 |
+
class adds the following functionality:
|
1939 |
+
|
1940 |
+
1) values automatically have whitespace removed from the end
|
1941 |
+
when indexed
|
1942 |
+
|
1943 |
+
2) comparison operators automatically remove whitespace from the
|
1944 |
+
end when comparing values
|
1945 |
+
|
1946 |
+
3) vectorized string operations are provided as methods
|
1947 |
+
(e.g. `.endswith`) and infix operators (e.g. ``"+", "*", "%"``)
|
1948 |
+
|
1949 |
+
chararrays should be created using `numpy.char.array` or
|
1950 |
+
`numpy.char.asarray`, rather than this constructor directly.
|
1951 |
+
|
1952 |
+
This constructor creates the array, using `buffer` (with `offset`
|
1953 |
+
and `strides`) if it is not ``None``. If `buffer` is ``None``, then
|
1954 |
+
constructs a new array with `strides` in "C order", unless both
|
1955 |
+
``len(shape) >= 2`` and ``order='F'``, in which case `strides`
|
1956 |
+
is in "Fortran order".
|
1957 |
+
|
1958 |
+
Methods
|
1959 |
+
-------
|
1960 |
+
astype
|
1961 |
+
argsort
|
1962 |
+
copy
|
1963 |
+
count
|
1964 |
+
decode
|
1965 |
+
dump
|
1966 |
+
dumps
|
1967 |
+
encode
|
1968 |
+
endswith
|
1969 |
+
expandtabs
|
1970 |
+
fill
|
1971 |
+
find
|
1972 |
+
flatten
|
1973 |
+
getfield
|
1974 |
+
index
|
1975 |
+
isalnum
|
1976 |
+
isalpha
|
1977 |
+
isdecimal
|
1978 |
+
isdigit
|
1979 |
+
islower
|
1980 |
+
isnumeric
|
1981 |
+
isspace
|
1982 |
+
istitle
|
1983 |
+
isupper
|
1984 |
+
item
|
1985 |
+
join
|
1986 |
+
ljust
|
1987 |
+
lower
|
1988 |
+
lstrip
|
1989 |
+
nonzero
|
1990 |
+
put
|
1991 |
+
ravel
|
1992 |
+
repeat
|
1993 |
+
replace
|
1994 |
+
reshape
|
1995 |
+
resize
|
1996 |
+
rfind
|
1997 |
+
rindex
|
1998 |
+
rjust
|
1999 |
+
rsplit
|
2000 |
+
rstrip
|
2001 |
+
searchsorted
|
2002 |
+
setfield
|
2003 |
+
setflags
|
2004 |
+
sort
|
2005 |
+
split
|
2006 |
+
splitlines
|
2007 |
+
squeeze
|
2008 |
+
startswith
|
2009 |
+
strip
|
2010 |
+
swapaxes
|
2011 |
+
swapcase
|
2012 |
+
take
|
2013 |
+
title
|
2014 |
+
tofile
|
2015 |
+
tolist
|
2016 |
+
tostring
|
2017 |
+
translate
|
2018 |
+
transpose
|
2019 |
+
upper
|
2020 |
+
view
|
2021 |
+
zfill
|
2022 |
+
|
2023 |
+
Parameters
|
2024 |
+
----------
|
2025 |
+
shape : tuple
|
2026 |
+
Shape of the array.
|
2027 |
+
itemsize : int, optional
|
2028 |
+
Length of each array element, in number of characters. Default is 1.
|
2029 |
+
unicode : bool, optional
|
2030 |
+
Are the array elements of type unicode (True) or string (False).
|
2031 |
+
Default is False.
|
2032 |
+
buffer : object exposing the buffer interface or str, optional
|
2033 |
+
Memory address of the start of the array data. Default is None,
|
2034 |
+
in which case a new array is created.
|
2035 |
+
offset : int, optional
|
2036 |
+
Fixed stride displacement from the beginning of an axis?
|
2037 |
+
Default is 0. Needs to be >=0.
|
2038 |
+
strides : array_like of ints, optional
|
2039 |
+
Strides for the array (see `ndarray.strides` for full description).
|
2040 |
+
Default is None.
|
2041 |
+
order : {'C', 'F'}, optional
|
2042 |
+
The order in which the array data is stored in memory: 'C' ->
|
2043 |
+
"row major" order (the default), 'F' -> "column major"
|
2044 |
+
(Fortran) order.
|
2045 |
+
|
2046 |
+
Examples
|
2047 |
+
--------
|
2048 |
+
>>> charar = np.chararray((3, 3))
|
2049 |
+
>>> charar[:] = 'a'
|
2050 |
+
>>> charar
|
2051 |
+
chararray([[b'a', b'a', b'a'],
|
2052 |
+
[b'a', b'a', b'a'],
|
2053 |
+
[b'a', b'a', b'a']], dtype='|S1')
|
2054 |
+
|
2055 |
+
>>> charar = np.chararray(charar.shape, itemsize=5)
|
2056 |
+
>>> charar[:] = 'abc'
|
2057 |
+
>>> charar
|
2058 |
+
chararray([[b'abc', b'abc', b'abc'],
|
2059 |
+
[b'abc', b'abc', b'abc'],
|
2060 |
+
[b'abc', b'abc', b'abc']], dtype='|S5')
|
2061 |
+
|
2062 |
+
"""
|
2063 |
+
def __new__(subtype, shape, itemsize=1, unicode=False, buffer=None,
|
2064 |
+
offset=0, strides=None, order='C'):
|
2065 |
+
global _globalvar
|
2066 |
+
|
2067 |
+
if unicode:
|
2068 |
+
dtype = str_
|
2069 |
+
else:
|
2070 |
+
dtype = bytes_
|
2071 |
+
|
2072 |
+
# force itemsize to be a Python int, since using NumPy integer
|
2073 |
+
# types results in itemsize.itemsize being used as the size of
|
2074 |
+
# strings in the new array.
|
2075 |
+
itemsize = int(itemsize)
|
2076 |
+
|
2077 |
+
if isinstance(buffer, str):
|
2078 |
+
# unicode objects do not have the buffer interface
|
2079 |
+
filler = buffer
|
2080 |
+
buffer = None
|
2081 |
+
else:
|
2082 |
+
filler = None
|
2083 |
+
|
2084 |
+
_globalvar = 1
|
2085 |
+
if buffer is None:
|
2086 |
+
self = ndarray.__new__(subtype, shape, (dtype, itemsize),
|
2087 |
+
order=order)
|
2088 |
+
else:
|
2089 |
+
self = ndarray.__new__(subtype, shape, (dtype, itemsize),
|
2090 |
+
buffer=buffer,
|
2091 |
+
offset=offset, strides=strides,
|
2092 |
+
order=order)
|
2093 |
+
if filler is not None:
|
2094 |
+
self[...] = filler
|
2095 |
+
_globalvar = 0
|
2096 |
+
return self
|
2097 |
+
|
2098 |
+
def __array_finalize__(self, obj):
|
2099 |
+
# The b is a special case because it is used for reconstructing.
|
2100 |
+
if not _globalvar and self.dtype.char not in 'SUbc':
|
2101 |
+
raise ValueError("Can only create a chararray from string data.")
|
2102 |
+
|
2103 |
+
def __getitem__(self, obj):
|
2104 |
+
val = ndarray.__getitem__(self, obj)
|
2105 |
+
|
2106 |
+
if isinstance(val, character):
|
2107 |
+
temp = val.rstrip()
|
2108 |
+
if len(temp) == 0:
|
2109 |
+
val = ''
|
2110 |
+
else:
|
2111 |
+
val = temp
|
2112 |
+
|
2113 |
+
return val
|
2114 |
+
|
2115 |
+
# IMPLEMENTATION NOTE: Most of the methods of this class are
|
2116 |
+
# direct delegations to the free functions in this module.
|
2117 |
+
# However, those that return an array of strings should instead
|
2118 |
+
# return a chararray, so some extra wrapping is required.
|
2119 |
+
|
2120 |
+
def __eq__(self, other):
|
2121 |
+
"""
|
2122 |
+
Return (self == other) element-wise.
|
2123 |
+
|
2124 |
+
See Also
|
2125 |
+
--------
|
2126 |
+
equal
|
2127 |
+
"""
|
2128 |
+
return equal(self, other)
|
2129 |
+
|
2130 |
+
def __ne__(self, other):
|
2131 |
+
"""
|
2132 |
+
Return (self != other) element-wise.
|
2133 |
+
|
2134 |
+
See Also
|
2135 |
+
--------
|
2136 |
+
not_equal
|
2137 |
+
"""
|
2138 |
+
return not_equal(self, other)
|
2139 |
+
|
2140 |
+
def __ge__(self, other):
|
2141 |
+
"""
|
2142 |
+
Return (self >= other) element-wise.
|
2143 |
+
|
2144 |
+
See Also
|
2145 |
+
--------
|
2146 |
+
greater_equal
|
2147 |
+
"""
|
2148 |
+
return greater_equal(self, other)
|
2149 |
+
|
2150 |
+
def __le__(self, other):
|
2151 |
+
"""
|
2152 |
+
Return (self <= other) element-wise.
|
2153 |
+
|
2154 |
+
See Also
|
2155 |
+
--------
|
2156 |
+
less_equal
|
2157 |
+
"""
|
2158 |
+
return less_equal(self, other)
|
2159 |
+
|
2160 |
+
def __gt__(self, other):
|
2161 |
+
"""
|
2162 |
+
Return (self > other) element-wise.
|
2163 |
+
|
2164 |
+
See Also
|
2165 |
+
--------
|
2166 |
+
greater
|
2167 |
+
"""
|
2168 |
+
return greater(self, other)
|
2169 |
+
|
2170 |
+
def __lt__(self, other):
|
2171 |
+
"""
|
2172 |
+
Return (self < other) element-wise.
|
2173 |
+
|
2174 |
+
See Also
|
2175 |
+
--------
|
2176 |
+
less
|
2177 |
+
"""
|
2178 |
+
return less(self, other)
|
2179 |
+
|
2180 |
+
def __add__(self, other):
|
2181 |
+
"""
|
2182 |
+
Return (self + other), that is string concatenation,
|
2183 |
+
element-wise for a pair of array_likes of str or unicode.
|
2184 |
+
|
2185 |
+
See Also
|
2186 |
+
--------
|
2187 |
+
add
|
2188 |
+
"""
|
2189 |
+
return asarray(add(self, other))
|
2190 |
+
|
2191 |
+
def __radd__(self, other):
|
2192 |
+
"""
|
2193 |
+
Return (other + self), that is string concatenation,
|
2194 |
+
element-wise for a pair of array_likes of `bytes_` or `str_`.
|
2195 |
+
|
2196 |
+
See Also
|
2197 |
+
--------
|
2198 |
+
add
|
2199 |
+
"""
|
2200 |
+
return asarray(add(numpy.asarray(other), self))
|
2201 |
+
|
2202 |
+
def __mul__(self, i):
|
2203 |
+
"""
|
2204 |
+
Return (self * i), that is string multiple concatenation,
|
2205 |
+
element-wise.
|
2206 |
+
|
2207 |
+
See Also
|
2208 |
+
--------
|
2209 |
+
multiply
|
2210 |
+
"""
|
2211 |
+
return asarray(multiply(self, i))
|
2212 |
+
|
2213 |
+
def __rmul__(self, i):
|
2214 |
+
"""
|
2215 |
+
Return (self * i), that is string multiple concatenation,
|
2216 |
+
element-wise.
|
2217 |
+
|
2218 |
+
See Also
|
2219 |
+
--------
|
2220 |
+
multiply
|
2221 |
+
"""
|
2222 |
+
return asarray(multiply(self, i))
|
2223 |
+
|
2224 |
+
def __mod__(self, i):
|
2225 |
+
"""
|
2226 |
+
Return (self % i), that is pre-Python 2.6 string formatting
|
2227 |
+
(interpolation), element-wise for a pair of array_likes of `bytes_`
|
2228 |
+
or `str_`.
|
2229 |
+
|
2230 |
+
See Also
|
2231 |
+
--------
|
2232 |
+
mod
|
2233 |
+
"""
|
2234 |
+
return asarray(mod(self, i))
|
2235 |
+
|
2236 |
+
def __rmod__(self, other):
|
2237 |
+
return NotImplemented
|
2238 |
+
|
2239 |
+
def argsort(self, axis=-1, kind=None, order=None):
|
2240 |
+
"""
|
2241 |
+
Return the indices that sort the array lexicographically.
|
2242 |
+
|
2243 |
+
For full documentation see `numpy.argsort`, for which this method is
|
2244 |
+
in fact merely a "thin wrapper."
|
2245 |
+
|
2246 |
+
Examples
|
2247 |
+
--------
|
2248 |
+
>>> c = np.array(['a1b c', '1b ca', 'b ca1', 'Ca1b'], 'S5')
|
2249 |
+
>>> c = c.view(np.chararray); c
|
2250 |
+
chararray(['a1b c', '1b ca', 'b ca1', 'Ca1b'],
|
2251 |
+
dtype='|S5')
|
2252 |
+
>>> c[c.argsort()]
|
2253 |
+
chararray(['1b ca', 'Ca1b', 'a1b c', 'b ca1'],
|
2254 |
+
dtype='|S5')
|
2255 |
+
|
2256 |
+
"""
|
2257 |
+
return self.__array__().argsort(axis, kind, order)
|
2258 |
+
argsort.__doc__ = ndarray.argsort.__doc__
|
2259 |
+
|
2260 |
+
def capitalize(self):
|
2261 |
+
"""
|
2262 |
+
Return a copy of `self` with only the first character of each element
|
2263 |
+
capitalized.
|
2264 |
+
|
2265 |
+
See Also
|
2266 |
+
--------
|
2267 |
+
char.capitalize
|
2268 |
+
|
2269 |
+
"""
|
2270 |
+
return asarray(capitalize(self))
|
2271 |
+
|
2272 |
+
def center(self, width, fillchar=' '):
|
2273 |
+
"""
|
2274 |
+
Return a copy of `self` with its elements centered in a
|
2275 |
+
string of length `width`.
|
2276 |
+
|
2277 |
+
See Also
|
2278 |
+
--------
|
2279 |
+
center
|
2280 |
+
"""
|
2281 |
+
return asarray(center(self, width, fillchar))
|
2282 |
+
|
2283 |
+
def count(self, sub, start=0, end=None):
|
2284 |
+
"""
|
2285 |
+
Returns an array with the number of non-overlapping occurrences of
|
2286 |
+
substring `sub` in the range [`start`, `end`].
|
2287 |
+
|
2288 |
+
See Also
|
2289 |
+
--------
|
2290 |
+
char.count
|
2291 |
+
|
2292 |
+
"""
|
2293 |
+
return count(self, sub, start, end)
|
2294 |
+
|
2295 |
+
def decode(self, encoding=None, errors=None):
|
2296 |
+
"""
|
2297 |
+
Calls ``bytes.decode`` element-wise.
|
2298 |
+
|
2299 |
+
See Also
|
2300 |
+
--------
|
2301 |
+
char.decode
|
2302 |
+
|
2303 |
+
"""
|
2304 |
+
return decode(self, encoding, errors)
|
2305 |
+
|
2306 |
+
def encode(self, encoding=None, errors=None):
|
2307 |
+
"""
|
2308 |
+
Calls `str.encode` element-wise.
|
2309 |
+
|
2310 |
+
See Also
|
2311 |
+
--------
|
2312 |
+
char.encode
|
2313 |
+
|
2314 |
+
"""
|
2315 |
+
return encode(self, encoding, errors)
|
2316 |
+
|
2317 |
+
def endswith(self, suffix, start=0, end=None):
|
2318 |
+
"""
|
2319 |
+
Returns a boolean array which is `True` where the string element
|
2320 |
+
in `self` ends with `suffix`, otherwise `False`.
|
2321 |
+
|
2322 |
+
See Also
|
2323 |
+
--------
|
2324 |
+
char.endswith
|
2325 |
+
|
2326 |
+
"""
|
2327 |
+
return endswith(self, suffix, start, end)
|
2328 |
+
|
2329 |
+
def expandtabs(self, tabsize=8):
|
2330 |
+
"""
|
2331 |
+
Return a copy of each string element where all tab characters are
|
2332 |
+
replaced by one or more spaces.
|
2333 |
+
|
2334 |
+
See Also
|
2335 |
+
--------
|
2336 |
+
char.expandtabs
|
2337 |
+
|
2338 |
+
"""
|
2339 |
+
return asarray(expandtabs(self, tabsize))
|
2340 |
+
|
2341 |
+
def find(self, sub, start=0, end=None):
|
2342 |
+
"""
|
2343 |
+
For each element, return the lowest index in the string where
|
2344 |
+
substring `sub` is found.
|
2345 |
+
|
2346 |
+
See Also
|
2347 |
+
--------
|
2348 |
+
char.find
|
2349 |
+
|
2350 |
+
"""
|
2351 |
+
return find(self, sub, start, end)
|
2352 |
+
|
2353 |
+
def index(self, sub, start=0, end=None):
|
2354 |
+
"""
|
2355 |
+
Like `find`, but raises `ValueError` when the substring is not found.
|
2356 |
+
|
2357 |
+
See Also
|
2358 |
+
--------
|
2359 |
+
char.index
|
2360 |
+
|
2361 |
+
"""
|
2362 |
+
return index(self, sub, start, end)
|
2363 |
+
|
2364 |
+
def isalnum(self):
|
2365 |
+
"""
|
2366 |
+
Returns true for each element if all characters in the string
|
2367 |
+
are alphanumeric and there is at least one character, false
|
2368 |
+
otherwise.
|
2369 |
+
|
2370 |
+
See Also
|
2371 |
+
--------
|
2372 |
+
char.isalnum
|
2373 |
+
|
2374 |
+
"""
|
2375 |
+
return isalnum(self)
|
2376 |
+
|
2377 |
+
def isalpha(self):
|
2378 |
+
"""
|
2379 |
+
Returns true for each element if all characters in the string
|
2380 |
+
are alphabetic and there is at least one character, false
|
2381 |
+
otherwise.
|
2382 |
+
|
2383 |
+
See Also
|
2384 |
+
--------
|
2385 |
+
char.isalpha
|
2386 |
+
|
2387 |
+
"""
|
2388 |
+
return isalpha(self)
|
2389 |
+
|
2390 |
+
def isdigit(self):
|
2391 |
+
"""
|
2392 |
+
Returns true for each element if all characters in the string are
|
2393 |
+
digits and there is at least one character, false otherwise.
|
2394 |
+
|
2395 |
+
See Also
|
2396 |
+
--------
|
2397 |
+
char.isdigit
|
2398 |
+
|
2399 |
+
"""
|
2400 |
+
return isdigit(self)
|
2401 |
+
|
2402 |
+
def islower(self):
|
2403 |
+
"""
|
2404 |
+
Returns true for each element if all cased characters in the
|
2405 |
+
string are lowercase and there is at least one cased character,
|
2406 |
+
false otherwise.
|
2407 |
+
|
2408 |
+
See Also
|
2409 |
+
--------
|
2410 |
+
char.islower
|
2411 |
+
|
2412 |
+
"""
|
2413 |
+
return islower(self)
|
2414 |
+
|
2415 |
+
def isspace(self):
|
2416 |
+
"""
|
2417 |
+
Returns true for each element if there are only whitespace
|
2418 |
+
characters in the string and there is at least one character,
|
2419 |
+
false otherwise.
|
2420 |
+
|
2421 |
+
See Also
|
2422 |
+
--------
|
2423 |
+
char.isspace
|
2424 |
+
|
2425 |
+
"""
|
2426 |
+
return isspace(self)
|
2427 |
+
|
2428 |
+
def istitle(self):
|
2429 |
+
"""
|
2430 |
+
Returns true for each element if the element is a titlecased
|
2431 |
+
string and there is at least one character, false otherwise.
|
2432 |
+
|
2433 |
+
See Also
|
2434 |
+
--------
|
2435 |
+
char.istitle
|
2436 |
+
|
2437 |
+
"""
|
2438 |
+
return istitle(self)
|
2439 |
+
|
2440 |
+
def isupper(self):
|
2441 |
+
"""
|
2442 |
+
Returns true for each element if all cased characters in the
|
2443 |
+
string are uppercase and there is at least one character, false
|
2444 |
+
otherwise.
|
2445 |
+
|
2446 |
+
See Also
|
2447 |
+
--------
|
2448 |
+
char.isupper
|
2449 |
+
|
2450 |
+
"""
|
2451 |
+
return isupper(self)
|
2452 |
+
|
2453 |
+
def join(self, seq):
|
2454 |
+
"""
|
2455 |
+
Return a string which is the concatenation of the strings in the
|
2456 |
+
sequence `seq`.
|
2457 |
+
|
2458 |
+
See Also
|
2459 |
+
--------
|
2460 |
+
char.join
|
2461 |
+
|
2462 |
+
"""
|
2463 |
+
return join(self, seq)
|
2464 |
+
|
2465 |
+
def ljust(self, width, fillchar=' '):
|
2466 |
+
"""
|
2467 |
+
Return an array with the elements of `self` left-justified in a
|
2468 |
+
string of length `width`.
|
2469 |
+
|
2470 |
+
See Also
|
2471 |
+
--------
|
2472 |
+
char.ljust
|
2473 |
+
|
2474 |
+
"""
|
2475 |
+
return asarray(ljust(self, width, fillchar))
|
2476 |
+
|
2477 |
+
def lower(self):
|
2478 |
+
"""
|
2479 |
+
Return an array with the elements of `self` converted to
|
2480 |
+
lowercase.
|
2481 |
+
|
2482 |
+
See Also
|
2483 |
+
--------
|
2484 |
+
char.lower
|
2485 |
+
|
2486 |
+
"""
|
2487 |
+
return asarray(lower(self))
|
2488 |
+
|
2489 |
+
def lstrip(self, chars=None):
|
2490 |
+
"""
|
2491 |
+
For each element in `self`, return a copy with the leading characters
|
2492 |
+
removed.
|
2493 |
+
|
2494 |
+
See Also
|
2495 |
+
--------
|
2496 |
+
char.lstrip
|
2497 |
+
|
2498 |
+
"""
|
2499 |
+
return asarray(lstrip(self, chars))
|
2500 |
+
|
2501 |
+
def partition(self, sep):
|
2502 |
+
"""
|
2503 |
+
Partition each element in `self` around `sep`.
|
2504 |
+
|
2505 |
+
See Also
|
2506 |
+
--------
|
2507 |
+
partition
|
2508 |
+
"""
|
2509 |
+
return asarray(partition(self, sep))
|
2510 |
+
|
2511 |
+
def replace(self, old, new, count=None):
|
2512 |
+
"""
|
2513 |
+
For each element in `self`, return a copy of the string with all
|
2514 |
+
occurrences of substring `old` replaced by `new`.
|
2515 |
+
|
2516 |
+
See Also
|
2517 |
+
--------
|
2518 |
+
char.replace
|
2519 |
+
|
2520 |
+
"""
|
2521 |
+
return asarray(replace(self, old, new, count))
|
2522 |
+
|
2523 |
+
def rfind(self, sub, start=0, end=None):
|
2524 |
+
"""
|
2525 |
+
For each element in `self`, return the highest index in the string
|
2526 |
+
where substring `sub` is found, such that `sub` is contained
|
2527 |
+
within [`start`, `end`].
|
2528 |
+
|
2529 |
+
See Also
|
2530 |
+
--------
|
2531 |
+
char.rfind
|
2532 |
+
|
2533 |
+
"""
|
2534 |
+
return rfind(self, sub, start, end)
|
2535 |
+
|
2536 |
+
def rindex(self, sub, start=0, end=None):
|
2537 |
+
"""
|
2538 |
+
Like `rfind`, but raises `ValueError` when the substring `sub` is
|
2539 |
+
not found.
|
2540 |
+
|
2541 |
+
See Also
|
2542 |
+
--------
|
2543 |
+
char.rindex
|
2544 |
+
|
2545 |
+
"""
|
2546 |
+
return rindex(self, sub, start, end)
|
2547 |
+
|
2548 |
+
def rjust(self, width, fillchar=' '):
|
2549 |
+
"""
|
2550 |
+
Return an array with the elements of `self`
|
2551 |
+
right-justified in a string of length `width`.
|
2552 |
+
|
2553 |
+
See Also
|
2554 |
+
--------
|
2555 |
+
char.rjust
|
2556 |
+
|
2557 |
+
"""
|
2558 |
+
return asarray(rjust(self, width, fillchar))
|
2559 |
+
|
2560 |
+
def rpartition(self, sep):
|
2561 |
+
"""
|
2562 |
+
Partition each element in `self` around `sep`.
|
2563 |
+
|
2564 |
+
See Also
|
2565 |
+
--------
|
2566 |
+
rpartition
|
2567 |
+
"""
|
2568 |
+
return asarray(rpartition(self, sep))
|
2569 |
+
|
2570 |
+
def rsplit(self, sep=None, maxsplit=None):
|
2571 |
+
"""
|
2572 |
+
For each element in `self`, return a list of the words in
|
2573 |
+
the string, using `sep` as the delimiter string.
|
2574 |
+
|
2575 |
+
See Also
|
2576 |
+
--------
|
2577 |
+
char.rsplit
|
2578 |
+
|
2579 |
+
"""
|
2580 |
+
return rsplit(self, sep, maxsplit)
|
2581 |
+
|
2582 |
+
def rstrip(self, chars=None):
|
2583 |
+
"""
|
2584 |
+
For each element in `self`, return a copy with the trailing
|
2585 |
+
characters removed.
|
2586 |
+
|
2587 |
+
See Also
|
2588 |
+
--------
|
2589 |
+
char.rstrip
|
2590 |
+
|
2591 |
+
"""
|
2592 |
+
return asarray(rstrip(self, chars))
|
2593 |
+
|
2594 |
+
def split(self, sep=None, maxsplit=None):
|
2595 |
+
"""
|
2596 |
+
For each element in `self`, return a list of the words in the
|
2597 |
+
string, using `sep` as the delimiter string.
|
2598 |
+
|
2599 |
+
See Also
|
2600 |
+
--------
|
2601 |
+
char.split
|
2602 |
+
|
2603 |
+
"""
|
2604 |
+
return split(self, sep, maxsplit)
|
2605 |
+
|
2606 |
+
def splitlines(self, keepends=None):
|
2607 |
+
"""
|
2608 |
+
For each element in `self`, return a list of the lines in the
|
2609 |
+
element, breaking at line boundaries.
|
2610 |
+
|
2611 |
+
See Also
|
2612 |
+
--------
|
2613 |
+
char.splitlines
|
2614 |
+
|
2615 |
+
"""
|
2616 |
+
return splitlines(self, keepends)
|
2617 |
+
|
2618 |
+
def startswith(self, prefix, start=0, end=None):
|
2619 |
+
"""
|
2620 |
+
Returns a boolean array which is `True` where the string element
|
2621 |
+
in `self` starts with `prefix`, otherwise `False`.
|
2622 |
+
|
2623 |
+
See Also
|
2624 |
+
--------
|
2625 |
+
char.startswith
|
2626 |
+
|
2627 |
+
"""
|
2628 |
+
return startswith(self, prefix, start, end)
|
2629 |
+
|
2630 |
+
def strip(self, chars=None):
|
2631 |
+
"""
|
2632 |
+
For each element in `self`, return a copy with the leading and
|
2633 |
+
trailing characters removed.
|
2634 |
+
|
2635 |
+
See Also
|
2636 |
+
--------
|
2637 |
+
char.strip
|
2638 |
+
|
2639 |
+
"""
|
2640 |
+
return asarray(strip(self, chars))
|
2641 |
+
|
2642 |
+
def swapcase(self):
|
2643 |
+
"""
|
2644 |
+
For each element in `self`, return a copy of the string with
|
2645 |
+
uppercase characters converted to lowercase and vice versa.
|
2646 |
+
|
2647 |
+
See Also
|
2648 |
+
--------
|
2649 |
+
char.swapcase
|
2650 |
+
|
2651 |
+
"""
|
2652 |
+
return asarray(swapcase(self))
|
2653 |
+
|
2654 |
+
def title(self):
|
2655 |
+
"""
|
2656 |
+
For each element in `self`, return a titlecased version of the
|
2657 |
+
string: words start with uppercase characters, all remaining cased
|
2658 |
+
characters are lowercase.
|
2659 |
+
|
2660 |
+
See Also
|
2661 |
+
--------
|
2662 |
+
char.title
|
2663 |
+
|
2664 |
+
"""
|
2665 |
+
return asarray(title(self))
|
2666 |
+
|
2667 |
+
def translate(self, table, deletechars=None):
|
2668 |
+
"""
|
2669 |
+
For each element in `self`, return a copy of the string where
|
2670 |
+
all characters occurring in the optional argument
|
2671 |
+
`deletechars` are removed, and the remaining characters have
|
2672 |
+
been mapped through the given translation table.
|
2673 |
+
|
2674 |
+
See Also
|
2675 |
+
--------
|
2676 |
+
char.translate
|
2677 |
+
|
2678 |
+
"""
|
2679 |
+
return asarray(translate(self, table, deletechars))
|
2680 |
+
|
2681 |
+
def upper(self):
|
2682 |
+
"""
|
2683 |
+
Return an array with the elements of `self` converted to
|
2684 |
+
uppercase.
|
2685 |
+
|
2686 |
+
See Also
|
2687 |
+
--------
|
2688 |
+
char.upper
|
2689 |
+
|
2690 |
+
"""
|
2691 |
+
return asarray(upper(self))
|
2692 |
+
|
2693 |
+
def zfill(self, width):
|
2694 |
+
"""
|
2695 |
+
Return the numeric string left-filled with zeros in a string of
|
2696 |
+
length `width`.
|
2697 |
+
|
2698 |
+
See Also
|
2699 |
+
--------
|
2700 |
+
char.zfill
|
2701 |
+
|
2702 |
+
"""
|
2703 |
+
return asarray(zfill(self, width))
|
2704 |
+
|
2705 |
+
def isnumeric(self):
|
2706 |
+
"""
|
2707 |
+
For each element in `self`, return True if there are only
|
2708 |
+
numeric characters in the element.
|
2709 |
+
|
2710 |
+
See Also
|
2711 |
+
--------
|
2712 |
+
char.isnumeric
|
2713 |
+
|
2714 |
+
"""
|
2715 |
+
return isnumeric(self)
|
2716 |
+
|
2717 |
+
def isdecimal(self):
|
2718 |
+
"""
|
2719 |
+
For each element in `self`, return True if there are only
|
2720 |
+
decimal characters in the element.
|
2721 |
+
|
2722 |
+
See Also
|
2723 |
+
--------
|
2724 |
+
char.isdecimal
|
2725 |
+
|
2726 |
+
"""
|
2727 |
+
return isdecimal(self)
|
2728 |
+
|
2729 |
+
|
2730 |
+
@set_module("numpy.char")
|
2731 |
+
def array(obj, itemsize=None, copy=True, unicode=None, order=None):
|
2732 |
+
"""
|
2733 |
+
Create a `chararray`.
|
2734 |
+
|
2735 |
+
.. note::
|
2736 |
+
This class is provided for numarray backward-compatibility.
|
2737 |
+
New code (not concerned with numarray compatibility) should use
|
2738 |
+
arrays of type `bytes_` or `str_` and use the free functions
|
2739 |
+
in :mod:`numpy.char <numpy.core.defchararray>` for fast
|
2740 |
+
vectorized string operations instead.
|
2741 |
+
|
2742 |
+
Versus a regular NumPy array of type `str` or `unicode`, this
|
2743 |
+
class adds the following functionality:
|
2744 |
+
|
2745 |
+
1) values automatically have whitespace removed from the end
|
2746 |
+
when indexed
|
2747 |
+
|
2748 |
+
2) comparison operators automatically remove whitespace from the
|
2749 |
+
end when comparing values
|
2750 |
+
|
2751 |
+
3) vectorized string operations are provided as methods
|
2752 |
+
(e.g. `str.endswith`) and infix operators (e.g. ``+, *, %``)
|
2753 |
+
|
2754 |
+
Parameters
|
2755 |
+
----------
|
2756 |
+
obj : array of str or unicode-like
|
2757 |
+
|
2758 |
+
itemsize : int, optional
|
2759 |
+
`itemsize` is the number of characters per scalar in the
|
2760 |
+
resulting array. If `itemsize` is None, and `obj` is an
|
2761 |
+
object array or a Python list, the `itemsize` will be
|
2762 |
+
automatically determined. If `itemsize` is provided and `obj`
|
2763 |
+
is of type str or unicode, then the `obj` string will be
|
2764 |
+
chunked into `itemsize` pieces.
|
2765 |
+
|
2766 |
+
copy : bool, optional
|
2767 |
+
If true (default), then the object is copied. Otherwise, a copy
|
2768 |
+
will only be made if __array__ returns a copy, if obj is a
|
2769 |
+
nested sequence, or if a copy is needed to satisfy any of the other
|
2770 |
+
requirements (`itemsize`, unicode, `order`, etc.).
|
2771 |
+
|
2772 |
+
unicode : bool, optional
|
2773 |
+
When true, the resulting `chararray` can contain Unicode
|
2774 |
+
characters, when false only 8-bit characters. If unicode is
|
2775 |
+
None and `obj` is one of the following:
|
2776 |
+
|
2777 |
+
- a `chararray`,
|
2778 |
+
- an ndarray of type `str` or `unicode`
|
2779 |
+
- a Python str or unicode object,
|
2780 |
+
|
2781 |
+
then the unicode setting of the output array will be
|
2782 |
+
automatically determined.
|
2783 |
+
|
2784 |
+
order : {'C', 'F', 'A'}, optional
|
2785 |
+
Specify the order of the array. If order is 'C' (default), then the
|
2786 |
+
array will be in C-contiguous order (last-index varies the
|
2787 |
+
fastest). If order is 'F', then the returned array
|
2788 |
+
will be in Fortran-contiguous order (first-index varies the
|
2789 |
+
fastest). If order is 'A', then the returned array may
|
2790 |
+
be in any order (either C-, Fortran-contiguous, or even
|
2791 |
+
discontiguous).
|
2792 |
+
"""
|
2793 |
+
if isinstance(obj, (bytes, str)):
|
2794 |
+
if unicode is None:
|
2795 |
+
if isinstance(obj, str):
|
2796 |
+
unicode = True
|
2797 |
+
else:
|
2798 |
+
unicode = False
|
2799 |
+
|
2800 |
+
if itemsize is None:
|
2801 |
+
itemsize = len(obj)
|
2802 |
+
shape = len(obj) // itemsize
|
2803 |
+
|
2804 |
+
return chararray(shape, itemsize=itemsize, unicode=unicode,
|
2805 |
+
buffer=obj, order=order)
|
2806 |
+
|
2807 |
+
if isinstance(obj, (list, tuple)):
|
2808 |
+
obj = numpy.asarray(obj)
|
2809 |
+
|
2810 |
+
if isinstance(obj, ndarray) and issubclass(obj.dtype.type, character):
|
2811 |
+
# If we just have a vanilla chararray, create a chararray
|
2812 |
+
# view around it.
|
2813 |
+
if not isinstance(obj, chararray):
|
2814 |
+
obj = obj.view(chararray)
|
2815 |
+
|
2816 |
+
if itemsize is None:
|
2817 |
+
itemsize = obj.itemsize
|
2818 |
+
# itemsize is in 8-bit chars, so for Unicode, we need
|
2819 |
+
# to divide by the size of a single Unicode character,
|
2820 |
+
# which for NumPy is always 4
|
2821 |
+
if issubclass(obj.dtype.type, str_):
|
2822 |
+
itemsize //= 4
|
2823 |
+
|
2824 |
+
if unicode is None:
|
2825 |
+
if issubclass(obj.dtype.type, str_):
|
2826 |
+
unicode = True
|
2827 |
+
else:
|
2828 |
+
unicode = False
|
2829 |
+
|
2830 |
+
if unicode:
|
2831 |
+
dtype = str_
|
2832 |
+
else:
|
2833 |
+
dtype = bytes_
|
2834 |
+
|
2835 |
+
if order is not None:
|
2836 |
+
obj = numpy.asarray(obj, order=order)
|
2837 |
+
if (copy or
|
2838 |
+
(itemsize != obj.itemsize) or
|
2839 |
+
(not unicode and isinstance(obj, str_)) or
|
2840 |
+
(unicode and isinstance(obj, bytes_))):
|
2841 |
+
obj = obj.astype((dtype, int(itemsize)))
|
2842 |
+
return obj
|
2843 |
+
|
2844 |
+
if isinstance(obj, ndarray) and issubclass(obj.dtype.type, object):
|
2845 |
+
if itemsize is None:
|
2846 |
+
# Since no itemsize was specified, convert the input array to
|
2847 |
+
# a list so the ndarray constructor will automatically
|
2848 |
+
# determine the itemsize for us.
|
2849 |
+
obj = obj.tolist()
|
2850 |
+
# Fall through to the default case
|
2851 |
+
|
2852 |
+
if unicode:
|
2853 |
+
dtype = str_
|
2854 |
+
else:
|
2855 |
+
dtype = bytes_
|
2856 |
+
|
2857 |
+
if itemsize is None:
|
2858 |
+
val = narray(obj, dtype=dtype, order=order, subok=True)
|
2859 |
+
else:
|
2860 |
+
val = narray(obj, dtype=(dtype, itemsize), order=order, subok=True)
|
2861 |
+
return val.view(chararray)
|
2862 |
+
|
2863 |
+
|
2864 |
+
@set_module("numpy.char")
|
2865 |
+
def asarray(obj, itemsize=None, unicode=None, order=None):
|
2866 |
+
"""
|
2867 |
+
Convert the input to a `chararray`, copying the data only if
|
2868 |
+
necessary.
|
2869 |
+
|
2870 |
+
Versus a regular NumPy array of type `str` or `unicode`, this
|
2871 |
+
class adds the following functionality:
|
2872 |
+
|
2873 |
+
1) values automatically have whitespace removed from the end
|
2874 |
+
when indexed
|
2875 |
+
|
2876 |
+
2) comparison operators automatically remove whitespace from the
|
2877 |
+
end when comparing values
|
2878 |
+
|
2879 |
+
3) vectorized string operations are provided as methods
|
2880 |
+
(e.g. `str.endswith`) and infix operators (e.g. ``+``, ``*``,``%``)
|
2881 |
+
|
2882 |
+
Parameters
|
2883 |
+
----------
|
2884 |
+
obj : array of str or unicode-like
|
2885 |
+
|
2886 |
+
itemsize : int, optional
|
2887 |
+
`itemsize` is the number of characters per scalar in the
|
2888 |
+
resulting array. If `itemsize` is None, and `obj` is an
|
2889 |
+
object array or a Python list, the `itemsize` will be
|
2890 |
+
automatically determined. If `itemsize` is provided and `obj`
|
2891 |
+
is of type str or unicode, then the `obj` string will be
|
2892 |
+
chunked into `itemsize` pieces.
|
2893 |
+
|
2894 |
+
unicode : bool, optional
|
2895 |
+
When true, the resulting `chararray` can contain Unicode
|
2896 |
+
characters, when false only 8-bit characters. If unicode is
|
2897 |
+
None and `obj` is one of the following:
|
2898 |
+
|
2899 |
+
- a `chararray`,
|
2900 |
+
- an ndarray of type `str` or 'unicode`
|
2901 |
+
- a Python str or unicode object,
|
2902 |
+
|
2903 |
+
then the unicode setting of the output array will be
|
2904 |
+
automatically determined.
|
2905 |
+
|
2906 |
+
order : {'C', 'F'}, optional
|
2907 |
+
Specify the order of the array. If order is 'C' (default), then the
|
2908 |
+
array will be in C-contiguous order (last-index varies the
|
2909 |
+
fastest). If order is 'F', then the returned array
|
2910 |
+
will be in Fortran-contiguous order (first-index varies the
|
2911 |
+
fastest).
|
2912 |
+
"""
|
2913 |
+
return array(obj, itemsize, copy=False,
|
2914 |
+
unicode=unicode, order=order)
|
venv/lib/python3.10/site-packages/numpy/core/einsumfunc.py
ADDED
@@ -0,0 +1,1443 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Implementation of optimized einsum.
|
3 |
+
|
4 |
+
"""
|
5 |
+
import itertools
|
6 |
+
import operator
|
7 |
+
|
8 |
+
from numpy.core.multiarray import c_einsum
|
9 |
+
from numpy.core.numeric import asanyarray, tensordot
|
10 |
+
from numpy.core.overrides import array_function_dispatch
|
11 |
+
|
12 |
+
__all__ = ['einsum', 'einsum_path']
|
13 |
+
|
14 |
+
einsum_symbols = 'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ'
|
15 |
+
einsum_symbols_set = set(einsum_symbols)
|
16 |
+
|
17 |
+
|
18 |
+
def _flop_count(idx_contraction, inner, num_terms, size_dictionary):
|
19 |
+
"""
|
20 |
+
Computes the number of FLOPS in the contraction.
|
21 |
+
|
22 |
+
Parameters
|
23 |
+
----------
|
24 |
+
idx_contraction : iterable
|
25 |
+
The indices involved in the contraction
|
26 |
+
inner : bool
|
27 |
+
Does this contraction require an inner product?
|
28 |
+
num_terms : int
|
29 |
+
The number of terms in a contraction
|
30 |
+
size_dictionary : dict
|
31 |
+
The size of each of the indices in idx_contraction
|
32 |
+
|
33 |
+
Returns
|
34 |
+
-------
|
35 |
+
flop_count : int
|
36 |
+
The total number of FLOPS required for the contraction.
|
37 |
+
|
38 |
+
Examples
|
39 |
+
--------
|
40 |
+
|
41 |
+
>>> _flop_count('abc', False, 1, {'a': 2, 'b':3, 'c':5})
|
42 |
+
30
|
43 |
+
|
44 |
+
>>> _flop_count('abc', True, 2, {'a': 2, 'b':3, 'c':5})
|
45 |
+
60
|
46 |
+
|
47 |
+
"""
|
48 |
+
|
49 |
+
overall_size = _compute_size_by_dict(idx_contraction, size_dictionary)
|
50 |
+
op_factor = max(1, num_terms - 1)
|
51 |
+
if inner:
|
52 |
+
op_factor += 1
|
53 |
+
|
54 |
+
return overall_size * op_factor
|
55 |
+
|
56 |
+
def _compute_size_by_dict(indices, idx_dict):
|
57 |
+
"""
|
58 |
+
Computes the product of the elements in indices based on the dictionary
|
59 |
+
idx_dict.
|
60 |
+
|
61 |
+
Parameters
|
62 |
+
----------
|
63 |
+
indices : iterable
|
64 |
+
Indices to base the product on.
|
65 |
+
idx_dict : dictionary
|
66 |
+
Dictionary of index sizes
|
67 |
+
|
68 |
+
Returns
|
69 |
+
-------
|
70 |
+
ret : int
|
71 |
+
The resulting product.
|
72 |
+
|
73 |
+
Examples
|
74 |
+
--------
|
75 |
+
>>> _compute_size_by_dict('abbc', {'a': 2, 'b':3, 'c':5})
|
76 |
+
90
|
77 |
+
|
78 |
+
"""
|
79 |
+
ret = 1
|
80 |
+
for i in indices:
|
81 |
+
ret *= idx_dict[i]
|
82 |
+
return ret
|
83 |
+
|
84 |
+
|
85 |
+
def _find_contraction(positions, input_sets, output_set):
|
86 |
+
"""
|
87 |
+
Finds the contraction for a given set of input and output sets.
|
88 |
+
|
89 |
+
Parameters
|
90 |
+
----------
|
91 |
+
positions : iterable
|
92 |
+
Integer positions of terms used in the contraction.
|
93 |
+
input_sets : list
|
94 |
+
List of sets that represent the lhs side of the einsum subscript
|
95 |
+
output_set : set
|
96 |
+
Set that represents the rhs side of the overall einsum subscript
|
97 |
+
|
98 |
+
Returns
|
99 |
+
-------
|
100 |
+
new_result : set
|
101 |
+
The indices of the resulting contraction
|
102 |
+
remaining : list
|
103 |
+
List of sets that have not been contracted, the new set is appended to
|
104 |
+
the end of this list
|
105 |
+
idx_removed : set
|
106 |
+
Indices removed from the entire contraction
|
107 |
+
idx_contraction : set
|
108 |
+
The indices used in the current contraction
|
109 |
+
|
110 |
+
Examples
|
111 |
+
--------
|
112 |
+
|
113 |
+
# A simple dot product test case
|
114 |
+
>>> pos = (0, 1)
|
115 |
+
>>> isets = [set('ab'), set('bc')]
|
116 |
+
>>> oset = set('ac')
|
117 |
+
>>> _find_contraction(pos, isets, oset)
|
118 |
+
({'a', 'c'}, [{'a', 'c'}], {'b'}, {'a', 'b', 'c'})
|
119 |
+
|
120 |
+
# A more complex case with additional terms in the contraction
|
121 |
+
>>> pos = (0, 2)
|
122 |
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
123 |
+
>>> oset = set('ac')
|
124 |
+
>>> _find_contraction(pos, isets, oset)
|
125 |
+
({'a', 'c'}, [{'a', 'c'}, {'a', 'c'}], {'b', 'd'}, {'a', 'b', 'c', 'd'})
|
126 |
+
"""
|
127 |
+
|
128 |
+
idx_contract = set()
|
129 |
+
idx_remain = output_set.copy()
|
130 |
+
remaining = []
|
131 |
+
for ind, value in enumerate(input_sets):
|
132 |
+
if ind in positions:
|
133 |
+
idx_contract |= value
|
134 |
+
else:
|
135 |
+
remaining.append(value)
|
136 |
+
idx_remain |= value
|
137 |
+
|
138 |
+
new_result = idx_remain & idx_contract
|
139 |
+
idx_removed = (idx_contract - new_result)
|
140 |
+
remaining.append(new_result)
|
141 |
+
|
142 |
+
return (new_result, remaining, idx_removed, idx_contract)
|
143 |
+
|
144 |
+
|
145 |
+
def _optimal_path(input_sets, output_set, idx_dict, memory_limit):
|
146 |
+
"""
|
147 |
+
Computes all possible pair contractions, sieves the results based
|
148 |
+
on ``memory_limit`` and returns the lowest cost path. This algorithm
|
149 |
+
scales factorial with respect to the elements in the list ``input_sets``.
|
150 |
+
|
151 |
+
Parameters
|
152 |
+
----------
|
153 |
+
input_sets : list
|
154 |
+
List of sets that represent the lhs side of the einsum subscript
|
155 |
+
output_set : set
|
156 |
+
Set that represents the rhs side of the overall einsum subscript
|
157 |
+
idx_dict : dictionary
|
158 |
+
Dictionary of index sizes
|
159 |
+
memory_limit : int
|
160 |
+
The maximum number of elements in a temporary array
|
161 |
+
|
162 |
+
Returns
|
163 |
+
-------
|
164 |
+
path : list
|
165 |
+
The optimal contraction order within the memory limit constraint.
|
166 |
+
|
167 |
+
Examples
|
168 |
+
--------
|
169 |
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
170 |
+
>>> oset = set()
|
171 |
+
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
172 |
+
>>> _optimal_path(isets, oset, idx_sizes, 5000)
|
173 |
+
[(0, 2), (0, 1)]
|
174 |
+
"""
|
175 |
+
|
176 |
+
full_results = [(0, [], input_sets)]
|
177 |
+
for iteration in range(len(input_sets) - 1):
|
178 |
+
iter_results = []
|
179 |
+
|
180 |
+
# Compute all unique pairs
|
181 |
+
for curr in full_results:
|
182 |
+
cost, positions, remaining = curr
|
183 |
+
for con in itertools.combinations(range(len(input_sets) - iteration), 2):
|
184 |
+
|
185 |
+
# Find the contraction
|
186 |
+
cont = _find_contraction(con, remaining, output_set)
|
187 |
+
new_result, new_input_sets, idx_removed, idx_contract = cont
|
188 |
+
|
189 |
+
# Sieve the results based on memory_limit
|
190 |
+
new_size = _compute_size_by_dict(new_result, idx_dict)
|
191 |
+
if new_size > memory_limit:
|
192 |
+
continue
|
193 |
+
|
194 |
+
# Build (total_cost, positions, indices_remaining)
|
195 |
+
total_cost = cost + _flop_count(idx_contract, idx_removed, len(con), idx_dict)
|
196 |
+
new_pos = positions + [con]
|
197 |
+
iter_results.append((total_cost, new_pos, new_input_sets))
|
198 |
+
|
199 |
+
# Update combinatorial list, if we did not find anything return best
|
200 |
+
# path + remaining contractions
|
201 |
+
if iter_results:
|
202 |
+
full_results = iter_results
|
203 |
+
else:
|
204 |
+
path = min(full_results, key=lambda x: x[0])[1]
|
205 |
+
path += [tuple(range(len(input_sets) - iteration))]
|
206 |
+
return path
|
207 |
+
|
208 |
+
# If we have not found anything return single einsum contraction
|
209 |
+
if len(full_results) == 0:
|
210 |
+
return [tuple(range(len(input_sets)))]
|
211 |
+
|
212 |
+
path = min(full_results, key=lambda x: x[0])[1]
|
213 |
+
return path
|
214 |
+
|
215 |
+
def _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost, naive_cost):
|
216 |
+
"""Compute the cost (removed size + flops) and resultant indices for
|
217 |
+
performing the contraction specified by ``positions``.
|
218 |
+
|
219 |
+
Parameters
|
220 |
+
----------
|
221 |
+
positions : tuple of int
|
222 |
+
The locations of the proposed tensors to contract.
|
223 |
+
input_sets : list of sets
|
224 |
+
The indices found on each tensors.
|
225 |
+
output_set : set
|
226 |
+
The output indices of the expression.
|
227 |
+
idx_dict : dict
|
228 |
+
Mapping of each index to its size.
|
229 |
+
memory_limit : int
|
230 |
+
The total allowed size for an intermediary tensor.
|
231 |
+
path_cost : int
|
232 |
+
The contraction cost so far.
|
233 |
+
naive_cost : int
|
234 |
+
The cost of the unoptimized expression.
|
235 |
+
|
236 |
+
Returns
|
237 |
+
-------
|
238 |
+
cost : (int, int)
|
239 |
+
A tuple containing the size of any indices removed, and the flop cost.
|
240 |
+
positions : tuple of int
|
241 |
+
The locations of the proposed tensors to contract.
|
242 |
+
new_input_sets : list of sets
|
243 |
+
The resulting new list of indices if this proposed contraction is performed.
|
244 |
+
|
245 |
+
"""
|
246 |
+
|
247 |
+
# Find the contraction
|
248 |
+
contract = _find_contraction(positions, input_sets, output_set)
|
249 |
+
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
250 |
+
|
251 |
+
# Sieve the results based on memory_limit
|
252 |
+
new_size = _compute_size_by_dict(idx_result, idx_dict)
|
253 |
+
if new_size > memory_limit:
|
254 |
+
return None
|
255 |
+
|
256 |
+
# Build sort tuple
|
257 |
+
old_sizes = (_compute_size_by_dict(input_sets[p], idx_dict) for p in positions)
|
258 |
+
removed_size = sum(old_sizes) - new_size
|
259 |
+
|
260 |
+
# NB: removed_size used to be just the size of any removed indices i.e.:
|
261 |
+
# helpers.compute_size_by_dict(idx_removed, idx_dict)
|
262 |
+
cost = _flop_count(idx_contract, idx_removed, len(positions), idx_dict)
|
263 |
+
sort = (-removed_size, cost)
|
264 |
+
|
265 |
+
# Sieve based on total cost as well
|
266 |
+
if (path_cost + cost) > naive_cost:
|
267 |
+
return None
|
268 |
+
|
269 |
+
# Add contraction to possible choices
|
270 |
+
return [sort, positions, new_input_sets]
|
271 |
+
|
272 |
+
|
273 |
+
def _update_other_results(results, best):
|
274 |
+
"""Update the positions and provisional input_sets of ``results`` based on
|
275 |
+
performing the contraction result ``best``. Remove any involving the tensors
|
276 |
+
contracted.
|
277 |
+
|
278 |
+
Parameters
|
279 |
+
----------
|
280 |
+
results : list
|
281 |
+
List of contraction results produced by ``_parse_possible_contraction``.
|
282 |
+
best : list
|
283 |
+
The best contraction of ``results`` i.e. the one that will be performed.
|
284 |
+
|
285 |
+
Returns
|
286 |
+
-------
|
287 |
+
mod_results : list
|
288 |
+
The list of modified results, updated with outcome of ``best`` contraction.
|
289 |
+
"""
|
290 |
+
|
291 |
+
best_con = best[1]
|
292 |
+
bx, by = best_con
|
293 |
+
mod_results = []
|
294 |
+
|
295 |
+
for cost, (x, y), con_sets in results:
|
296 |
+
|
297 |
+
# Ignore results involving tensors just contracted
|
298 |
+
if x in best_con or y in best_con:
|
299 |
+
continue
|
300 |
+
|
301 |
+
# Update the input_sets
|
302 |
+
del con_sets[by - int(by > x) - int(by > y)]
|
303 |
+
del con_sets[bx - int(bx > x) - int(bx > y)]
|
304 |
+
con_sets.insert(-1, best[2][-1])
|
305 |
+
|
306 |
+
# Update the position indices
|
307 |
+
mod_con = x - int(x > bx) - int(x > by), y - int(y > bx) - int(y > by)
|
308 |
+
mod_results.append((cost, mod_con, con_sets))
|
309 |
+
|
310 |
+
return mod_results
|
311 |
+
|
312 |
+
def _greedy_path(input_sets, output_set, idx_dict, memory_limit):
|
313 |
+
"""
|
314 |
+
Finds the path by contracting the best pair until the input list is
|
315 |
+
exhausted. The best pair is found by minimizing the tuple
|
316 |
+
``(-prod(indices_removed), cost)``. What this amounts to is prioritizing
|
317 |
+
matrix multiplication or inner product operations, then Hadamard like
|
318 |
+
operations, and finally outer operations. Outer products are limited by
|
319 |
+
``memory_limit``. This algorithm scales cubically with respect to the
|
320 |
+
number of elements in the list ``input_sets``.
|
321 |
+
|
322 |
+
Parameters
|
323 |
+
----------
|
324 |
+
input_sets : list
|
325 |
+
List of sets that represent the lhs side of the einsum subscript
|
326 |
+
output_set : set
|
327 |
+
Set that represents the rhs side of the overall einsum subscript
|
328 |
+
idx_dict : dictionary
|
329 |
+
Dictionary of index sizes
|
330 |
+
memory_limit : int
|
331 |
+
The maximum number of elements in a temporary array
|
332 |
+
|
333 |
+
Returns
|
334 |
+
-------
|
335 |
+
path : list
|
336 |
+
The greedy contraction order within the memory limit constraint.
|
337 |
+
|
338 |
+
Examples
|
339 |
+
--------
|
340 |
+
>>> isets = [set('abd'), set('ac'), set('bdc')]
|
341 |
+
>>> oset = set()
|
342 |
+
>>> idx_sizes = {'a': 1, 'b':2, 'c':3, 'd':4}
|
343 |
+
>>> _greedy_path(isets, oset, idx_sizes, 5000)
|
344 |
+
[(0, 2), (0, 1)]
|
345 |
+
"""
|
346 |
+
|
347 |
+
# Handle trivial cases that leaked through
|
348 |
+
if len(input_sets) == 1:
|
349 |
+
return [(0,)]
|
350 |
+
elif len(input_sets) == 2:
|
351 |
+
return [(0, 1)]
|
352 |
+
|
353 |
+
# Build up a naive cost
|
354 |
+
contract = _find_contraction(range(len(input_sets)), input_sets, output_set)
|
355 |
+
idx_result, new_input_sets, idx_removed, idx_contract = contract
|
356 |
+
naive_cost = _flop_count(idx_contract, idx_removed, len(input_sets), idx_dict)
|
357 |
+
|
358 |
+
# Initially iterate over all pairs
|
359 |
+
comb_iter = itertools.combinations(range(len(input_sets)), 2)
|
360 |
+
known_contractions = []
|
361 |
+
|
362 |
+
path_cost = 0
|
363 |
+
path = []
|
364 |
+
|
365 |
+
for iteration in range(len(input_sets) - 1):
|
366 |
+
|
367 |
+
# Iterate over all pairs on first step, only previously found pairs on subsequent steps
|
368 |
+
for positions in comb_iter:
|
369 |
+
|
370 |
+
# Always initially ignore outer products
|
371 |
+
if input_sets[positions[0]].isdisjoint(input_sets[positions[1]]):
|
372 |
+
continue
|
373 |
+
|
374 |
+
result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit, path_cost,
|
375 |
+
naive_cost)
|
376 |
+
if result is not None:
|
377 |
+
known_contractions.append(result)
|
378 |
+
|
379 |
+
# If we do not have a inner contraction, rescan pairs including outer products
|
380 |
+
if len(known_contractions) == 0:
|
381 |
+
|
382 |
+
# Then check the outer products
|
383 |
+
for positions in itertools.combinations(range(len(input_sets)), 2):
|
384 |
+
result = _parse_possible_contraction(positions, input_sets, output_set, idx_dict, memory_limit,
|
385 |
+
path_cost, naive_cost)
|
386 |
+
if result is not None:
|
387 |
+
known_contractions.append(result)
|
388 |
+
|
389 |
+
# If we still did not find any remaining contractions, default back to einsum like behavior
|
390 |
+
if len(known_contractions) == 0:
|
391 |
+
path.append(tuple(range(len(input_sets))))
|
392 |
+
break
|
393 |
+
|
394 |
+
# Sort based on first index
|
395 |
+
best = min(known_contractions, key=lambda x: x[0])
|
396 |
+
|
397 |
+
# Now propagate as many unused contractions as possible to next iteration
|
398 |
+
known_contractions = _update_other_results(known_contractions, best)
|
399 |
+
|
400 |
+
# Next iteration only compute contractions with the new tensor
|
401 |
+
# All other contractions have been accounted for
|
402 |
+
input_sets = best[2]
|
403 |
+
new_tensor_pos = len(input_sets) - 1
|
404 |
+
comb_iter = ((i, new_tensor_pos) for i in range(new_tensor_pos))
|
405 |
+
|
406 |
+
# Update path and total cost
|
407 |
+
path.append(best[1])
|
408 |
+
path_cost += best[0][1]
|
409 |
+
|
410 |
+
return path
|
411 |
+
|
412 |
+
|
413 |
+
def _can_dot(inputs, result, idx_removed):
|
414 |
+
"""
|
415 |
+
Checks if we can use BLAS (np.tensordot) call and its beneficial to do so.
|
416 |
+
|
417 |
+
Parameters
|
418 |
+
----------
|
419 |
+
inputs : list of str
|
420 |
+
Specifies the subscripts for summation.
|
421 |
+
result : str
|
422 |
+
Resulting summation.
|
423 |
+
idx_removed : set
|
424 |
+
Indices that are removed in the summation
|
425 |
+
|
426 |
+
|
427 |
+
Returns
|
428 |
+
-------
|
429 |
+
type : bool
|
430 |
+
Returns true if BLAS should and can be used, else False
|
431 |
+
|
432 |
+
Notes
|
433 |
+
-----
|
434 |
+
If the operations is BLAS level 1 or 2 and is not already aligned
|
435 |
+
we default back to einsum as the memory movement to copy is more
|
436 |
+
costly than the operation itself.
|
437 |
+
|
438 |
+
|
439 |
+
Examples
|
440 |
+
--------
|
441 |
+
|
442 |
+
# Standard GEMM operation
|
443 |
+
>>> _can_dot(['ij', 'jk'], 'ik', set('j'))
|
444 |
+
True
|
445 |
+
|
446 |
+
# Can use the standard BLAS, but requires odd data movement
|
447 |
+
>>> _can_dot(['ijj', 'jk'], 'ik', set('j'))
|
448 |
+
False
|
449 |
+
|
450 |
+
# DDOT where the memory is not aligned
|
451 |
+
>>> _can_dot(['ijk', 'ikj'], '', set('ijk'))
|
452 |
+
False
|
453 |
+
|
454 |
+
"""
|
455 |
+
|
456 |
+
# All `dot` calls remove indices
|
457 |
+
if len(idx_removed) == 0:
|
458 |
+
return False
|
459 |
+
|
460 |
+
# BLAS can only handle two operands
|
461 |
+
if len(inputs) != 2:
|
462 |
+
return False
|
463 |
+
|
464 |
+
input_left, input_right = inputs
|
465 |
+
|
466 |
+
for c in set(input_left + input_right):
|
467 |
+
# can't deal with repeated indices on same input or more than 2 total
|
468 |
+
nl, nr = input_left.count(c), input_right.count(c)
|
469 |
+
if (nl > 1) or (nr > 1) or (nl + nr > 2):
|
470 |
+
return False
|
471 |
+
|
472 |
+
# can't do implicit summation or dimension collapse e.g.
|
473 |
+
# "ab,bc->c" (implicitly sum over 'a')
|
474 |
+
# "ab,ca->ca" (take diagonal of 'a')
|
475 |
+
if nl + nr - 1 == int(c in result):
|
476 |
+
return False
|
477 |
+
|
478 |
+
# Build a few temporaries
|
479 |
+
set_left = set(input_left)
|
480 |
+
set_right = set(input_right)
|
481 |
+
keep_left = set_left - idx_removed
|
482 |
+
keep_right = set_right - idx_removed
|
483 |
+
rs = len(idx_removed)
|
484 |
+
|
485 |
+
# At this point we are a DOT, GEMV, or GEMM operation
|
486 |
+
|
487 |
+
# Handle inner products
|
488 |
+
|
489 |
+
# DDOT with aligned data
|
490 |
+
if input_left == input_right:
|
491 |
+
return True
|
492 |
+
|
493 |
+
# DDOT without aligned data (better to use einsum)
|
494 |
+
if set_left == set_right:
|
495 |
+
return False
|
496 |
+
|
497 |
+
# Handle the 4 possible (aligned) GEMV or GEMM cases
|
498 |
+
|
499 |
+
# GEMM or GEMV no transpose
|
500 |
+
if input_left[-rs:] == input_right[:rs]:
|
501 |
+
return True
|
502 |
+
|
503 |
+
# GEMM or GEMV transpose both
|
504 |
+
if input_left[:rs] == input_right[-rs:]:
|
505 |
+
return True
|
506 |
+
|
507 |
+
# GEMM or GEMV transpose right
|
508 |
+
if input_left[-rs:] == input_right[-rs:]:
|
509 |
+
return True
|
510 |
+
|
511 |
+
# GEMM or GEMV transpose left
|
512 |
+
if input_left[:rs] == input_right[:rs]:
|
513 |
+
return True
|
514 |
+
|
515 |
+
# Einsum is faster than GEMV if we have to copy data
|
516 |
+
if not keep_left or not keep_right:
|
517 |
+
return False
|
518 |
+
|
519 |
+
# We are a matrix-matrix product, but we need to copy data
|
520 |
+
return True
|
521 |
+
|
522 |
+
|
523 |
+
def _parse_einsum_input(operands):
|
524 |
+
"""
|
525 |
+
A reproduction of einsum c side einsum parsing in python.
|
526 |
+
|
527 |
+
Returns
|
528 |
+
-------
|
529 |
+
input_strings : str
|
530 |
+
Parsed input strings
|
531 |
+
output_string : str
|
532 |
+
Parsed output string
|
533 |
+
operands : list of array_like
|
534 |
+
The operands to use in the numpy contraction
|
535 |
+
|
536 |
+
Examples
|
537 |
+
--------
|
538 |
+
The operand list is simplified to reduce printing:
|
539 |
+
|
540 |
+
>>> np.random.seed(123)
|
541 |
+
>>> a = np.random.rand(4, 4)
|
542 |
+
>>> b = np.random.rand(4, 4, 4)
|
543 |
+
>>> _parse_einsum_input(('...a,...a->...', a, b))
|
544 |
+
('za,xza', 'xz', [a, b]) # may vary
|
545 |
+
|
546 |
+
>>> _parse_einsum_input((a, [Ellipsis, 0], b, [Ellipsis, 0]))
|
547 |
+
('za,xza', 'xz', [a, b]) # may vary
|
548 |
+
"""
|
549 |
+
|
550 |
+
if len(operands) == 0:
|
551 |
+
raise ValueError("No input operands")
|
552 |
+
|
553 |
+
if isinstance(operands[0], str):
|
554 |
+
subscripts = operands[0].replace(" ", "")
|
555 |
+
operands = [asanyarray(v) for v in operands[1:]]
|
556 |
+
|
557 |
+
# Ensure all characters are valid
|
558 |
+
for s in subscripts:
|
559 |
+
if s in '.,->':
|
560 |
+
continue
|
561 |
+
if s not in einsum_symbols:
|
562 |
+
raise ValueError("Character %s is not a valid symbol." % s)
|
563 |
+
|
564 |
+
else:
|
565 |
+
tmp_operands = list(operands)
|
566 |
+
operand_list = []
|
567 |
+
subscript_list = []
|
568 |
+
for p in range(len(operands) // 2):
|
569 |
+
operand_list.append(tmp_operands.pop(0))
|
570 |
+
subscript_list.append(tmp_operands.pop(0))
|
571 |
+
|
572 |
+
output_list = tmp_operands[-1] if len(tmp_operands) else None
|
573 |
+
operands = [asanyarray(v) for v in operand_list]
|
574 |
+
subscripts = ""
|
575 |
+
last = len(subscript_list) - 1
|
576 |
+
for num, sub in enumerate(subscript_list):
|
577 |
+
for s in sub:
|
578 |
+
if s is Ellipsis:
|
579 |
+
subscripts += "..."
|
580 |
+
else:
|
581 |
+
try:
|
582 |
+
s = operator.index(s)
|
583 |
+
except TypeError as e:
|
584 |
+
raise TypeError("For this input type lists must contain "
|
585 |
+
"either int or Ellipsis") from e
|
586 |
+
subscripts += einsum_symbols[s]
|
587 |
+
if num != last:
|
588 |
+
subscripts += ","
|
589 |
+
|
590 |
+
if output_list is not None:
|
591 |
+
subscripts += "->"
|
592 |
+
for s in output_list:
|
593 |
+
if s is Ellipsis:
|
594 |
+
subscripts += "..."
|
595 |
+
else:
|
596 |
+
try:
|
597 |
+
s = operator.index(s)
|
598 |
+
except TypeError as e:
|
599 |
+
raise TypeError("For this input type lists must contain "
|
600 |
+
"either int or Ellipsis") from e
|
601 |
+
subscripts += einsum_symbols[s]
|
602 |
+
# Check for proper "->"
|
603 |
+
if ("-" in subscripts) or (">" in subscripts):
|
604 |
+
invalid = (subscripts.count("-") > 1) or (subscripts.count(">") > 1)
|
605 |
+
if invalid or (subscripts.count("->") != 1):
|
606 |
+
raise ValueError("Subscripts can only contain one '->'.")
|
607 |
+
|
608 |
+
# Parse ellipses
|
609 |
+
if "." in subscripts:
|
610 |
+
used = subscripts.replace(".", "").replace(",", "").replace("->", "")
|
611 |
+
unused = list(einsum_symbols_set - set(used))
|
612 |
+
ellipse_inds = "".join(unused)
|
613 |
+
longest = 0
|
614 |
+
|
615 |
+
if "->" in subscripts:
|
616 |
+
input_tmp, output_sub = subscripts.split("->")
|
617 |
+
split_subscripts = input_tmp.split(",")
|
618 |
+
out_sub = True
|
619 |
+
else:
|
620 |
+
split_subscripts = subscripts.split(',')
|
621 |
+
out_sub = False
|
622 |
+
|
623 |
+
for num, sub in enumerate(split_subscripts):
|
624 |
+
if "." in sub:
|
625 |
+
if (sub.count(".") != 3) or (sub.count("...") != 1):
|
626 |
+
raise ValueError("Invalid Ellipses.")
|
627 |
+
|
628 |
+
# Take into account numerical values
|
629 |
+
if operands[num].shape == ():
|
630 |
+
ellipse_count = 0
|
631 |
+
else:
|
632 |
+
ellipse_count = max(operands[num].ndim, 1)
|
633 |
+
ellipse_count -= (len(sub) - 3)
|
634 |
+
|
635 |
+
if ellipse_count > longest:
|
636 |
+
longest = ellipse_count
|
637 |
+
|
638 |
+
if ellipse_count < 0:
|
639 |
+
raise ValueError("Ellipses lengths do not match.")
|
640 |
+
elif ellipse_count == 0:
|
641 |
+
split_subscripts[num] = sub.replace('...', '')
|
642 |
+
else:
|
643 |
+
rep_inds = ellipse_inds[-ellipse_count:]
|
644 |
+
split_subscripts[num] = sub.replace('...', rep_inds)
|
645 |
+
|
646 |
+
subscripts = ",".join(split_subscripts)
|
647 |
+
if longest == 0:
|
648 |
+
out_ellipse = ""
|
649 |
+
else:
|
650 |
+
out_ellipse = ellipse_inds[-longest:]
|
651 |
+
|
652 |
+
if out_sub:
|
653 |
+
subscripts += "->" + output_sub.replace("...", out_ellipse)
|
654 |
+
else:
|
655 |
+
# Special care for outputless ellipses
|
656 |
+
output_subscript = ""
|
657 |
+
tmp_subscripts = subscripts.replace(",", "")
|
658 |
+
for s in sorted(set(tmp_subscripts)):
|
659 |
+
if s not in (einsum_symbols):
|
660 |
+
raise ValueError("Character %s is not a valid symbol." % s)
|
661 |
+
if tmp_subscripts.count(s) == 1:
|
662 |
+
output_subscript += s
|
663 |
+
normal_inds = ''.join(sorted(set(output_subscript) -
|
664 |
+
set(out_ellipse)))
|
665 |
+
|
666 |
+
subscripts += "->" + out_ellipse + normal_inds
|
667 |
+
|
668 |
+
# Build output string if does not exist
|
669 |
+
if "->" in subscripts:
|
670 |
+
input_subscripts, output_subscript = subscripts.split("->")
|
671 |
+
else:
|
672 |
+
input_subscripts = subscripts
|
673 |
+
# Build output subscripts
|
674 |
+
tmp_subscripts = subscripts.replace(",", "")
|
675 |
+
output_subscript = ""
|
676 |
+
for s in sorted(set(tmp_subscripts)):
|
677 |
+
if s not in einsum_symbols:
|
678 |
+
raise ValueError("Character %s is not a valid symbol." % s)
|
679 |
+
if tmp_subscripts.count(s) == 1:
|
680 |
+
output_subscript += s
|
681 |
+
|
682 |
+
# Make sure output subscripts are in the input
|
683 |
+
for char in output_subscript:
|
684 |
+
if char not in input_subscripts:
|
685 |
+
raise ValueError("Output character %s did not appear in the input"
|
686 |
+
% char)
|
687 |
+
|
688 |
+
# Make sure number operands is equivalent to the number of terms
|
689 |
+
if len(input_subscripts.split(',')) != len(operands):
|
690 |
+
raise ValueError("Number of einsum subscripts must be equal to the "
|
691 |
+
"number of operands.")
|
692 |
+
|
693 |
+
return (input_subscripts, output_subscript, operands)
|
694 |
+
|
695 |
+
|
696 |
+
def _einsum_path_dispatcher(*operands, optimize=None, einsum_call=None):
|
697 |
+
# NOTE: technically, we should only dispatch on array-like arguments, not
|
698 |
+
# subscripts (given as strings). But separating operands into
|
699 |
+
# arrays/subscripts is a little tricky/slow (given einsum's two supported
|
700 |
+
# signatures), so as a practical shortcut we dispatch on everything.
|
701 |
+
# Strings will be ignored for dispatching since they don't define
|
702 |
+
# __array_function__.
|
703 |
+
return operands
|
704 |
+
|
705 |
+
|
706 |
+
@array_function_dispatch(_einsum_path_dispatcher, module='numpy')
|
707 |
+
def einsum_path(*operands, optimize='greedy', einsum_call=False):
|
708 |
+
"""
|
709 |
+
einsum_path(subscripts, *operands, optimize='greedy')
|
710 |
+
|
711 |
+
Evaluates the lowest cost contraction order for an einsum expression by
|
712 |
+
considering the creation of intermediate arrays.
|
713 |
+
|
714 |
+
Parameters
|
715 |
+
----------
|
716 |
+
subscripts : str
|
717 |
+
Specifies the subscripts for summation.
|
718 |
+
*operands : list of array_like
|
719 |
+
These are the arrays for the operation.
|
720 |
+
optimize : {bool, list, tuple, 'greedy', 'optimal'}
|
721 |
+
Choose the type of path. If a tuple is provided, the second argument is
|
722 |
+
assumed to be the maximum intermediate size created. If only a single
|
723 |
+
argument is provided the largest input or output array size is used
|
724 |
+
as a maximum intermediate size.
|
725 |
+
|
726 |
+
* if a list is given that starts with ``einsum_path``, uses this as the
|
727 |
+
contraction path
|
728 |
+
* if False no optimization is taken
|
729 |
+
* if True defaults to the 'greedy' algorithm
|
730 |
+
* 'optimal' An algorithm that combinatorially explores all possible
|
731 |
+
ways of contracting the listed tensors and chooses the least costly
|
732 |
+
path. Scales exponentially with the number of terms in the
|
733 |
+
contraction.
|
734 |
+
* 'greedy' An algorithm that chooses the best pair contraction
|
735 |
+
at each step. Effectively, this algorithm searches the largest inner,
|
736 |
+
Hadamard, and then outer products at each step. Scales cubically with
|
737 |
+
the number of terms in the contraction. Equivalent to the 'optimal'
|
738 |
+
path for most contractions.
|
739 |
+
|
740 |
+
Default is 'greedy'.
|
741 |
+
|
742 |
+
Returns
|
743 |
+
-------
|
744 |
+
path : list of tuples
|
745 |
+
A list representation of the einsum path.
|
746 |
+
string_repr : str
|
747 |
+
A printable representation of the einsum path.
|
748 |
+
|
749 |
+
Notes
|
750 |
+
-----
|
751 |
+
The resulting path indicates which terms of the input contraction should be
|
752 |
+
contracted first, the result of this contraction is then appended to the
|
753 |
+
end of the contraction list. This list can then be iterated over until all
|
754 |
+
intermediate contractions are complete.
|
755 |
+
|
756 |
+
See Also
|
757 |
+
--------
|
758 |
+
einsum, linalg.multi_dot
|
759 |
+
|
760 |
+
Examples
|
761 |
+
--------
|
762 |
+
|
763 |
+
We can begin with a chain dot example. In this case, it is optimal to
|
764 |
+
contract the ``b`` and ``c`` tensors first as represented by the first
|
765 |
+
element of the path ``(1, 2)``. The resulting tensor is added to the end
|
766 |
+
of the contraction and the remaining contraction ``(0, 1)`` is then
|
767 |
+
completed.
|
768 |
+
|
769 |
+
>>> np.random.seed(123)
|
770 |
+
>>> a = np.random.rand(2, 2)
|
771 |
+
>>> b = np.random.rand(2, 5)
|
772 |
+
>>> c = np.random.rand(5, 2)
|
773 |
+
>>> path_info = np.einsum_path('ij,jk,kl->il', a, b, c, optimize='greedy')
|
774 |
+
>>> print(path_info[0])
|
775 |
+
['einsum_path', (1, 2), (0, 1)]
|
776 |
+
>>> print(path_info[1])
|
777 |
+
Complete contraction: ij,jk,kl->il # may vary
|
778 |
+
Naive scaling: 4
|
779 |
+
Optimized scaling: 3
|
780 |
+
Naive FLOP count: 1.600e+02
|
781 |
+
Optimized FLOP count: 5.600e+01
|
782 |
+
Theoretical speedup: 2.857
|
783 |
+
Largest intermediate: 4.000e+00 elements
|
784 |
+
-------------------------------------------------------------------------
|
785 |
+
scaling current remaining
|
786 |
+
-------------------------------------------------------------------------
|
787 |
+
3 kl,jk->jl ij,jl->il
|
788 |
+
3 jl,ij->il il->il
|
789 |
+
|
790 |
+
|
791 |
+
A more complex index transformation example.
|
792 |
+
|
793 |
+
>>> I = np.random.rand(10, 10, 10, 10)
|
794 |
+
>>> C = np.random.rand(10, 10)
|
795 |
+
>>> path_info = np.einsum_path('ea,fb,abcd,gc,hd->efgh', C, C, I, C, C,
|
796 |
+
... optimize='greedy')
|
797 |
+
|
798 |
+
>>> print(path_info[0])
|
799 |
+
['einsum_path', (0, 2), (0, 3), (0, 2), (0, 1)]
|
800 |
+
>>> print(path_info[1])
|
801 |
+
Complete contraction: ea,fb,abcd,gc,hd->efgh # may vary
|
802 |
+
Naive scaling: 8
|
803 |
+
Optimized scaling: 5
|
804 |
+
Naive FLOP count: 8.000e+08
|
805 |
+
Optimized FLOP count: 8.000e+05
|
806 |
+
Theoretical speedup: 1000.000
|
807 |
+
Largest intermediate: 1.000e+04 elements
|
808 |
+
--------------------------------------------------------------------------
|
809 |
+
scaling current remaining
|
810 |
+
--------------------------------------------------------------------------
|
811 |
+
5 abcd,ea->bcde fb,gc,hd,bcde->efgh
|
812 |
+
5 bcde,fb->cdef gc,hd,cdef->efgh
|
813 |
+
5 cdef,gc->defg hd,defg->efgh
|
814 |
+
5 defg,hd->efgh efgh->efgh
|
815 |
+
"""
|
816 |
+
|
817 |
+
# Figure out what the path really is
|
818 |
+
path_type = optimize
|
819 |
+
if path_type is True:
|
820 |
+
path_type = 'greedy'
|
821 |
+
if path_type is None:
|
822 |
+
path_type = False
|
823 |
+
|
824 |
+
explicit_einsum_path = False
|
825 |
+
memory_limit = None
|
826 |
+
|
827 |
+
# No optimization or a named path algorithm
|
828 |
+
if (path_type is False) or isinstance(path_type, str):
|
829 |
+
pass
|
830 |
+
|
831 |
+
# Given an explicit path
|
832 |
+
elif len(path_type) and (path_type[0] == 'einsum_path'):
|
833 |
+
explicit_einsum_path = True
|
834 |
+
|
835 |
+
# Path tuple with memory limit
|
836 |
+
elif ((len(path_type) == 2) and isinstance(path_type[0], str) and
|
837 |
+
isinstance(path_type[1], (int, float))):
|
838 |
+
memory_limit = int(path_type[1])
|
839 |
+
path_type = path_type[0]
|
840 |
+
|
841 |
+
else:
|
842 |
+
raise TypeError("Did not understand the path: %s" % str(path_type))
|
843 |
+
|
844 |
+
# Hidden option, only einsum should call this
|
845 |
+
einsum_call_arg = einsum_call
|
846 |
+
|
847 |
+
# Python side parsing
|
848 |
+
input_subscripts, output_subscript, operands = _parse_einsum_input(operands)
|
849 |
+
|
850 |
+
# Build a few useful list and sets
|
851 |
+
input_list = input_subscripts.split(',')
|
852 |
+
input_sets = [set(x) for x in input_list]
|
853 |
+
output_set = set(output_subscript)
|
854 |
+
indices = set(input_subscripts.replace(',', ''))
|
855 |
+
|
856 |
+
# Get length of each unique dimension and ensure all dimensions are correct
|
857 |
+
dimension_dict = {}
|
858 |
+
broadcast_indices = [[] for x in range(len(input_list))]
|
859 |
+
for tnum, term in enumerate(input_list):
|
860 |
+
sh = operands[tnum].shape
|
861 |
+
if len(sh) != len(term):
|
862 |
+
raise ValueError("Einstein sum subscript %s does not contain the "
|
863 |
+
"correct number of indices for operand %d."
|
864 |
+
% (input_subscripts[tnum], tnum))
|
865 |
+
for cnum, char in enumerate(term):
|
866 |
+
dim = sh[cnum]
|
867 |
+
|
868 |
+
# Build out broadcast indices
|
869 |
+
if dim == 1:
|
870 |
+
broadcast_indices[tnum].append(char)
|
871 |
+
|
872 |
+
if char in dimension_dict.keys():
|
873 |
+
# For broadcasting cases we always want the largest dim size
|
874 |
+
if dimension_dict[char] == 1:
|
875 |
+
dimension_dict[char] = dim
|
876 |
+
elif dim not in (1, dimension_dict[char]):
|
877 |
+
raise ValueError("Size of label '%s' for operand %d (%d) "
|
878 |
+
"does not match previous terms (%d)."
|
879 |
+
% (char, tnum, dimension_dict[char], dim))
|
880 |
+
else:
|
881 |
+
dimension_dict[char] = dim
|
882 |
+
|
883 |
+
# Convert broadcast inds to sets
|
884 |
+
broadcast_indices = [set(x) for x in broadcast_indices]
|
885 |
+
|
886 |
+
# Compute size of each input array plus the output array
|
887 |
+
size_list = [_compute_size_by_dict(term, dimension_dict)
|
888 |
+
for term in input_list + [output_subscript]]
|
889 |
+
max_size = max(size_list)
|
890 |
+
|
891 |
+
if memory_limit is None:
|
892 |
+
memory_arg = max_size
|
893 |
+
else:
|
894 |
+
memory_arg = memory_limit
|
895 |
+
|
896 |
+
# Compute naive cost
|
897 |
+
# This isn't quite right, need to look into exactly how einsum does this
|
898 |
+
inner_product = (sum(len(x) for x in input_sets) - len(indices)) > 0
|
899 |
+
naive_cost = _flop_count(indices, inner_product, len(input_list), dimension_dict)
|
900 |
+
|
901 |
+
# Compute the path
|
902 |
+
if explicit_einsum_path:
|
903 |
+
path = path_type[1:]
|
904 |
+
elif (
|
905 |
+
(path_type is False)
|
906 |
+
or (len(input_list) in [1, 2])
|
907 |
+
or (indices == output_set)
|
908 |
+
):
|
909 |
+
# Nothing to be optimized, leave it to einsum
|
910 |
+
path = [tuple(range(len(input_list)))]
|
911 |
+
elif path_type == "greedy":
|
912 |
+
path = _greedy_path(input_sets, output_set, dimension_dict, memory_arg)
|
913 |
+
elif path_type == "optimal":
|
914 |
+
path = _optimal_path(input_sets, output_set, dimension_dict, memory_arg)
|
915 |
+
else:
|
916 |
+
raise KeyError("Path name %s not found", path_type)
|
917 |
+
|
918 |
+
cost_list, scale_list, size_list, contraction_list = [], [], [], []
|
919 |
+
|
920 |
+
# Build contraction tuple (positions, gemm, einsum_str, remaining)
|
921 |
+
for cnum, contract_inds in enumerate(path):
|
922 |
+
# Make sure we remove inds from right to left
|
923 |
+
contract_inds = tuple(sorted(list(contract_inds), reverse=True))
|
924 |
+
|
925 |
+
contract = _find_contraction(contract_inds, input_sets, output_set)
|
926 |
+
out_inds, input_sets, idx_removed, idx_contract = contract
|
927 |
+
|
928 |
+
cost = _flop_count(idx_contract, idx_removed, len(contract_inds), dimension_dict)
|
929 |
+
cost_list.append(cost)
|
930 |
+
scale_list.append(len(idx_contract))
|
931 |
+
size_list.append(_compute_size_by_dict(out_inds, dimension_dict))
|
932 |
+
|
933 |
+
bcast = set()
|
934 |
+
tmp_inputs = []
|
935 |
+
for x in contract_inds:
|
936 |
+
tmp_inputs.append(input_list.pop(x))
|
937 |
+
bcast |= broadcast_indices.pop(x)
|
938 |
+
|
939 |
+
new_bcast_inds = bcast - idx_removed
|
940 |
+
|
941 |
+
# If we're broadcasting, nix blas
|
942 |
+
if not len(idx_removed & bcast):
|
943 |
+
do_blas = _can_dot(tmp_inputs, out_inds, idx_removed)
|
944 |
+
else:
|
945 |
+
do_blas = False
|
946 |
+
|
947 |
+
# Last contraction
|
948 |
+
if (cnum - len(path)) == -1:
|
949 |
+
idx_result = output_subscript
|
950 |
+
else:
|
951 |
+
sort_result = [(dimension_dict[ind], ind) for ind in out_inds]
|
952 |
+
idx_result = "".join([x[1] for x in sorted(sort_result)])
|
953 |
+
|
954 |
+
input_list.append(idx_result)
|
955 |
+
broadcast_indices.append(new_bcast_inds)
|
956 |
+
einsum_str = ",".join(tmp_inputs) + "->" + idx_result
|
957 |
+
|
958 |
+
contraction = (contract_inds, idx_removed, einsum_str, input_list[:], do_blas)
|
959 |
+
contraction_list.append(contraction)
|
960 |
+
|
961 |
+
opt_cost = sum(cost_list) + 1
|
962 |
+
|
963 |
+
if len(input_list) != 1:
|
964 |
+
# Explicit "einsum_path" is usually trusted, but we detect this kind of
|
965 |
+
# mistake in order to prevent from returning an intermediate value.
|
966 |
+
raise RuntimeError(
|
967 |
+
"Invalid einsum_path is specified: {} more operands has to be "
|
968 |
+
"contracted.".format(len(input_list) - 1))
|
969 |
+
|
970 |
+
if einsum_call_arg:
|
971 |
+
return (operands, contraction_list)
|
972 |
+
|
973 |
+
# Return the path along with a nice string representation
|
974 |
+
overall_contraction = input_subscripts + "->" + output_subscript
|
975 |
+
header = ("scaling", "current", "remaining")
|
976 |
+
|
977 |
+
speedup = naive_cost / opt_cost
|
978 |
+
max_i = max(size_list)
|
979 |
+
|
980 |
+
path_print = " Complete contraction: %s\n" % overall_contraction
|
981 |
+
path_print += " Naive scaling: %d\n" % len(indices)
|
982 |
+
path_print += " Optimized scaling: %d\n" % max(scale_list)
|
983 |
+
path_print += " Naive FLOP count: %.3e\n" % naive_cost
|
984 |
+
path_print += " Optimized FLOP count: %.3e\n" % opt_cost
|
985 |
+
path_print += " Theoretical speedup: %3.3f\n" % speedup
|
986 |
+
path_print += " Largest intermediate: %.3e elements\n" % max_i
|
987 |
+
path_print += "-" * 74 + "\n"
|
988 |
+
path_print += "%6s %24s %40s\n" % header
|
989 |
+
path_print += "-" * 74
|
990 |
+
|
991 |
+
for n, contraction in enumerate(contraction_list):
|
992 |
+
inds, idx_rm, einsum_str, remaining, blas = contraction
|
993 |
+
remaining_str = ",".join(remaining) + "->" + output_subscript
|
994 |
+
path_run = (scale_list[n], einsum_str, remaining_str)
|
995 |
+
path_print += "\n%4d %24s %40s" % path_run
|
996 |
+
|
997 |
+
path = ['einsum_path'] + path
|
998 |
+
return (path, path_print)
|
999 |
+
|
1000 |
+
|
1001 |
+
def _einsum_dispatcher(*operands, out=None, optimize=None, **kwargs):
|
1002 |
+
# Arguably we dispatch on more arguments than we really should; see note in
|
1003 |
+
# _einsum_path_dispatcher for why.
|
1004 |
+
yield from operands
|
1005 |
+
yield out
|
1006 |
+
|
1007 |
+
|
1008 |
+
# Rewrite einsum to handle different cases
|
1009 |
+
@array_function_dispatch(_einsum_dispatcher, module='numpy')
|
1010 |
+
def einsum(*operands, out=None, optimize=False, **kwargs):
|
1011 |
+
"""
|
1012 |
+
einsum(subscripts, *operands, out=None, dtype=None, order='K',
|
1013 |
+
casting='safe', optimize=False)
|
1014 |
+
|
1015 |
+
Evaluates the Einstein summation convention on the operands.
|
1016 |
+
|
1017 |
+
Using the Einstein summation convention, many common multi-dimensional,
|
1018 |
+
linear algebraic array operations can be represented in a simple fashion.
|
1019 |
+
In *implicit* mode `einsum` computes these values.
|
1020 |
+
|
1021 |
+
In *explicit* mode, `einsum` provides further flexibility to compute
|
1022 |
+
other array operations that might not be considered classical Einstein
|
1023 |
+
summation operations, by disabling, or forcing summation over specified
|
1024 |
+
subscript labels.
|
1025 |
+
|
1026 |
+
See the notes and examples for clarification.
|
1027 |
+
|
1028 |
+
Parameters
|
1029 |
+
----------
|
1030 |
+
subscripts : str
|
1031 |
+
Specifies the subscripts for summation as comma separated list of
|
1032 |
+
subscript labels. An implicit (classical Einstein summation)
|
1033 |
+
calculation is performed unless the explicit indicator '->' is
|
1034 |
+
included as well as subscript labels of the precise output form.
|
1035 |
+
operands : list of array_like
|
1036 |
+
These are the arrays for the operation.
|
1037 |
+
out : ndarray, optional
|
1038 |
+
If provided, the calculation is done into this array.
|
1039 |
+
dtype : {data-type, None}, optional
|
1040 |
+
If provided, forces the calculation to use the data type specified.
|
1041 |
+
Note that you may have to also give a more liberal `casting`
|
1042 |
+
parameter to allow the conversions. Default is None.
|
1043 |
+
order : {'C', 'F', 'A', 'K'}, optional
|
1044 |
+
Controls the memory layout of the output. 'C' means it should
|
1045 |
+
be C contiguous. 'F' means it should be Fortran contiguous,
|
1046 |
+
'A' means it should be 'F' if the inputs are all 'F', 'C' otherwise.
|
1047 |
+
'K' means it should be as close to the layout as the inputs as
|
1048 |
+
is possible, including arbitrarily permuted axes.
|
1049 |
+
Default is 'K'.
|
1050 |
+
casting : {'no', 'equiv', 'safe', 'same_kind', 'unsafe'}, optional
|
1051 |
+
Controls what kind of data casting may occur. Setting this to
|
1052 |
+
'unsafe' is not recommended, as it can adversely affect accumulations.
|
1053 |
+
|
1054 |
+
* 'no' means the data types should not be cast at all.
|
1055 |
+
* 'equiv' means only byte-order changes are allowed.
|
1056 |
+
* 'safe' means only casts which can preserve values are allowed.
|
1057 |
+
* 'same_kind' means only safe casts or casts within a kind,
|
1058 |
+
like float64 to float32, are allowed.
|
1059 |
+
* 'unsafe' means any data conversions may be done.
|
1060 |
+
|
1061 |
+
Default is 'safe'.
|
1062 |
+
optimize : {False, True, 'greedy', 'optimal'}, optional
|
1063 |
+
Controls if intermediate optimization should occur. No optimization
|
1064 |
+
will occur if False and True will default to the 'greedy' algorithm.
|
1065 |
+
Also accepts an explicit contraction list from the ``np.einsum_path``
|
1066 |
+
function. See ``np.einsum_path`` for more details. Defaults to False.
|
1067 |
+
|
1068 |
+
Returns
|
1069 |
+
-------
|
1070 |
+
output : ndarray
|
1071 |
+
The calculation based on the Einstein summation convention.
|
1072 |
+
|
1073 |
+
See Also
|
1074 |
+
--------
|
1075 |
+
einsum_path, dot, inner, outer, tensordot, linalg.multi_dot
|
1076 |
+
einops :
|
1077 |
+
similar verbose interface is provided by
|
1078 |
+
`einops <https://github.com/arogozhnikov/einops>`_ package to cover
|
1079 |
+
additional operations: transpose, reshape/flatten, repeat/tile,
|
1080 |
+
squeeze/unsqueeze and reductions.
|
1081 |
+
opt_einsum :
|
1082 |
+
`opt_einsum <https://optimized-einsum.readthedocs.io/en/stable/>`_
|
1083 |
+
optimizes contraction order for einsum-like expressions
|
1084 |
+
in backend-agnostic manner.
|
1085 |
+
|
1086 |
+
Notes
|
1087 |
+
-----
|
1088 |
+
.. versionadded:: 1.6.0
|
1089 |
+
|
1090 |
+
The Einstein summation convention can be used to compute
|
1091 |
+
many multi-dimensional, linear algebraic array operations. `einsum`
|
1092 |
+
provides a succinct way of representing these.
|
1093 |
+
|
1094 |
+
A non-exhaustive list of these operations,
|
1095 |
+
which can be computed by `einsum`, is shown below along with examples:
|
1096 |
+
|
1097 |
+
* Trace of an array, :py:func:`numpy.trace`.
|
1098 |
+
* Return a diagonal, :py:func:`numpy.diag`.
|
1099 |
+
* Array axis summations, :py:func:`numpy.sum`.
|
1100 |
+
* Transpositions and permutations, :py:func:`numpy.transpose`.
|
1101 |
+
* Matrix multiplication and dot product, :py:func:`numpy.matmul` :py:func:`numpy.dot`.
|
1102 |
+
* Vector inner and outer products, :py:func:`numpy.inner` :py:func:`numpy.outer`.
|
1103 |
+
* Broadcasting, element-wise and scalar multiplication, :py:func:`numpy.multiply`.
|
1104 |
+
* Tensor contractions, :py:func:`numpy.tensordot`.
|
1105 |
+
* Chained array operations, in efficient calculation order, :py:func:`numpy.einsum_path`.
|
1106 |
+
|
1107 |
+
The subscripts string is a comma-separated list of subscript labels,
|
1108 |
+
where each label refers to a dimension of the corresponding operand.
|
1109 |
+
Whenever a label is repeated it is summed, so ``np.einsum('i,i', a, b)``
|
1110 |
+
is equivalent to :py:func:`np.inner(a,b) <numpy.inner>`. If a label
|
1111 |
+
appears only once, it is not summed, so ``np.einsum('i', a)`` produces a
|
1112 |
+
view of ``a`` with no changes. A further example ``np.einsum('ij,jk', a, b)``
|
1113 |
+
describes traditional matrix multiplication and is equivalent to
|
1114 |
+
:py:func:`np.matmul(a,b) <numpy.matmul>`. Repeated subscript labels in one
|
1115 |
+
operand take the diagonal. For example, ``np.einsum('ii', a)`` is equivalent
|
1116 |
+
to :py:func:`np.trace(a) <numpy.trace>`.
|
1117 |
+
|
1118 |
+
In *implicit mode*, the chosen subscripts are important
|
1119 |
+
since the axes of the output are reordered alphabetically. This
|
1120 |
+
means that ``np.einsum('ij', a)`` doesn't affect a 2D array, while
|
1121 |
+
``np.einsum('ji', a)`` takes its transpose. Additionally,
|
1122 |
+
``np.einsum('ij,jk', a, b)`` returns a matrix multiplication, while,
|
1123 |
+
``np.einsum('ij,jh', a, b)`` returns the transpose of the
|
1124 |
+
multiplication since subscript 'h' precedes subscript 'i'.
|
1125 |
+
|
1126 |
+
In *explicit mode* the output can be directly controlled by
|
1127 |
+
specifying output subscript labels. This requires the
|
1128 |
+
identifier '->' as well as the list of output subscript labels.
|
1129 |
+
This feature increases the flexibility of the function since
|
1130 |
+
summing can be disabled or forced when required. The call
|
1131 |
+
``np.einsum('i->', a)`` is like :py:func:`np.sum(a, axis=-1) <numpy.sum>`,
|
1132 |
+
and ``np.einsum('ii->i', a)`` is like :py:func:`np.diag(a) <numpy.diag>`.
|
1133 |
+
The difference is that `einsum` does not allow broadcasting by default.
|
1134 |
+
Additionally ``np.einsum('ij,jh->ih', a, b)`` directly specifies the
|
1135 |
+
order of the output subscript labels and therefore returns matrix
|
1136 |
+
multiplication, unlike the example above in implicit mode.
|
1137 |
+
|
1138 |
+
To enable and control broadcasting, use an ellipsis. Default
|
1139 |
+
NumPy-style broadcasting is done by adding an ellipsis
|
1140 |
+
to the left of each term, like ``np.einsum('...ii->...i', a)``.
|
1141 |
+
To take the trace along the first and last axes,
|
1142 |
+
you can do ``np.einsum('i...i', a)``, or to do a matrix-matrix
|
1143 |
+
product with the left-most indices instead of rightmost, one can do
|
1144 |
+
``np.einsum('ij...,jk...->ik...', a, b)``.
|
1145 |
+
|
1146 |
+
When there is only one operand, no axes are summed, and no output
|
1147 |
+
parameter is provided, a view into the operand is returned instead
|
1148 |
+
of a new array. Thus, taking the diagonal as ``np.einsum('ii->i', a)``
|
1149 |
+
produces a view (changed in version 1.10.0).
|
1150 |
+
|
1151 |
+
`einsum` also provides an alternative way to provide the subscripts
|
1152 |
+
and operands as ``einsum(op0, sublist0, op1, sublist1, ..., [sublistout])``.
|
1153 |
+
If the output shape is not provided in this format `einsum` will be
|
1154 |
+
calculated in implicit mode, otherwise it will be performed explicitly.
|
1155 |
+
The examples below have corresponding `einsum` calls with the two
|
1156 |
+
parameter methods.
|
1157 |
+
|
1158 |
+
.. versionadded:: 1.10.0
|
1159 |
+
|
1160 |
+
Views returned from einsum are now writeable whenever the input array
|
1161 |
+
is writeable. For example, ``np.einsum('ijk...->kji...', a)`` will now
|
1162 |
+
have the same effect as :py:func:`np.swapaxes(a, 0, 2) <numpy.swapaxes>`
|
1163 |
+
and ``np.einsum('ii->i', a)`` will return a writeable view of the diagonal
|
1164 |
+
of a 2D array.
|
1165 |
+
|
1166 |
+
.. versionadded:: 1.12.0
|
1167 |
+
|
1168 |
+
Added the ``optimize`` argument which will optimize the contraction order
|
1169 |
+
of an einsum expression. For a contraction with three or more operands this
|
1170 |
+
can greatly increase the computational efficiency at the cost of a larger
|
1171 |
+
memory footprint during computation.
|
1172 |
+
|
1173 |
+
Typically a 'greedy' algorithm is applied which empirical tests have shown
|
1174 |
+
returns the optimal path in the majority of cases. In some cases 'optimal'
|
1175 |
+
will return the superlative path through a more expensive, exhaustive search.
|
1176 |
+
For iterative calculations it may be advisable to calculate the optimal path
|
1177 |
+
once and reuse that path by supplying it as an argument. An example is given
|
1178 |
+
below.
|
1179 |
+
|
1180 |
+
See :py:func:`numpy.einsum_path` for more details.
|
1181 |
+
|
1182 |
+
Examples
|
1183 |
+
--------
|
1184 |
+
>>> a = np.arange(25).reshape(5,5)
|
1185 |
+
>>> b = np.arange(5)
|
1186 |
+
>>> c = np.arange(6).reshape(2,3)
|
1187 |
+
|
1188 |
+
Trace of a matrix:
|
1189 |
+
|
1190 |
+
>>> np.einsum('ii', a)
|
1191 |
+
60
|
1192 |
+
>>> np.einsum(a, [0,0])
|
1193 |
+
60
|
1194 |
+
>>> np.trace(a)
|
1195 |
+
60
|
1196 |
+
|
1197 |
+
Extract the diagonal (requires explicit form):
|
1198 |
+
|
1199 |
+
>>> np.einsum('ii->i', a)
|
1200 |
+
array([ 0, 6, 12, 18, 24])
|
1201 |
+
>>> np.einsum(a, [0,0], [0])
|
1202 |
+
array([ 0, 6, 12, 18, 24])
|
1203 |
+
>>> np.diag(a)
|
1204 |
+
array([ 0, 6, 12, 18, 24])
|
1205 |
+
|
1206 |
+
Sum over an axis (requires explicit form):
|
1207 |
+
|
1208 |
+
>>> np.einsum('ij->i', a)
|
1209 |
+
array([ 10, 35, 60, 85, 110])
|
1210 |
+
>>> np.einsum(a, [0,1], [0])
|
1211 |
+
array([ 10, 35, 60, 85, 110])
|
1212 |
+
>>> np.sum(a, axis=1)
|
1213 |
+
array([ 10, 35, 60, 85, 110])
|
1214 |
+
|
1215 |
+
For higher dimensional arrays summing a single axis can be done with ellipsis:
|
1216 |
+
|
1217 |
+
>>> np.einsum('...j->...', a)
|
1218 |
+
array([ 10, 35, 60, 85, 110])
|
1219 |
+
>>> np.einsum(a, [Ellipsis,1], [Ellipsis])
|
1220 |
+
array([ 10, 35, 60, 85, 110])
|
1221 |
+
|
1222 |
+
Compute a matrix transpose, or reorder any number of axes:
|
1223 |
+
|
1224 |
+
>>> np.einsum('ji', c)
|
1225 |
+
array([[0, 3],
|
1226 |
+
[1, 4],
|
1227 |
+
[2, 5]])
|
1228 |
+
>>> np.einsum('ij->ji', c)
|
1229 |
+
array([[0, 3],
|
1230 |
+
[1, 4],
|
1231 |
+
[2, 5]])
|
1232 |
+
>>> np.einsum(c, [1,0])
|
1233 |
+
array([[0, 3],
|
1234 |
+
[1, 4],
|
1235 |
+
[2, 5]])
|
1236 |
+
>>> np.transpose(c)
|
1237 |
+
array([[0, 3],
|
1238 |
+
[1, 4],
|
1239 |
+
[2, 5]])
|
1240 |
+
|
1241 |
+
Vector inner products:
|
1242 |
+
|
1243 |
+
>>> np.einsum('i,i', b, b)
|
1244 |
+
30
|
1245 |
+
>>> np.einsum(b, [0], b, [0])
|
1246 |
+
30
|
1247 |
+
>>> np.inner(b,b)
|
1248 |
+
30
|
1249 |
+
|
1250 |
+
Matrix vector multiplication:
|
1251 |
+
|
1252 |
+
>>> np.einsum('ij,j', a, b)
|
1253 |
+
array([ 30, 80, 130, 180, 230])
|
1254 |
+
>>> np.einsum(a, [0,1], b, [1])
|
1255 |
+
array([ 30, 80, 130, 180, 230])
|
1256 |
+
>>> np.dot(a, b)
|
1257 |
+
array([ 30, 80, 130, 180, 230])
|
1258 |
+
>>> np.einsum('...j,j', a, b)
|
1259 |
+
array([ 30, 80, 130, 180, 230])
|
1260 |
+
|
1261 |
+
Broadcasting and scalar multiplication:
|
1262 |
+
|
1263 |
+
>>> np.einsum('..., ...', 3, c)
|
1264 |
+
array([[ 0, 3, 6],
|
1265 |
+
[ 9, 12, 15]])
|
1266 |
+
>>> np.einsum(',ij', 3, c)
|
1267 |
+
array([[ 0, 3, 6],
|
1268 |
+
[ 9, 12, 15]])
|
1269 |
+
>>> np.einsum(3, [Ellipsis], c, [Ellipsis])
|
1270 |
+
array([[ 0, 3, 6],
|
1271 |
+
[ 9, 12, 15]])
|
1272 |
+
>>> np.multiply(3, c)
|
1273 |
+
array([[ 0, 3, 6],
|
1274 |
+
[ 9, 12, 15]])
|
1275 |
+
|
1276 |
+
Vector outer product:
|
1277 |
+
|
1278 |
+
>>> np.einsum('i,j', np.arange(2)+1, b)
|
1279 |
+
array([[0, 1, 2, 3, 4],
|
1280 |
+
[0, 2, 4, 6, 8]])
|
1281 |
+
>>> np.einsum(np.arange(2)+1, [0], b, [1])
|
1282 |
+
array([[0, 1, 2, 3, 4],
|
1283 |
+
[0, 2, 4, 6, 8]])
|
1284 |
+
>>> np.outer(np.arange(2)+1, b)
|
1285 |
+
array([[0, 1, 2, 3, 4],
|
1286 |
+
[0, 2, 4, 6, 8]])
|
1287 |
+
|
1288 |
+
Tensor contraction:
|
1289 |
+
|
1290 |
+
>>> a = np.arange(60.).reshape(3,4,5)
|
1291 |
+
>>> b = np.arange(24.).reshape(4,3,2)
|
1292 |
+
>>> np.einsum('ijk,jil->kl', a, b)
|
1293 |
+
array([[4400., 4730.],
|
1294 |
+
[4532., 4874.],
|
1295 |
+
[4664., 5018.],
|
1296 |
+
[4796., 5162.],
|
1297 |
+
[4928., 5306.]])
|
1298 |
+
>>> np.einsum(a, [0,1,2], b, [1,0,3], [2,3])
|
1299 |
+
array([[4400., 4730.],
|
1300 |
+
[4532., 4874.],
|
1301 |
+
[4664., 5018.],
|
1302 |
+
[4796., 5162.],
|
1303 |
+
[4928., 5306.]])
|
1304 |
+
>>> np.tensordot(a,b, axes=([1,0],[0,1]))
|
1305 |
+
array([[4400., 4730.],
|
1306 |
+
[4532., 4874.],
|
1307 |
+
[4664., 5018.],
|
1308 |
+
[4796., 5162.],
|
1309 |
+
[4928., 5306.]])
|
1310 |
+
|
1311 |
+
Writeable returned arrays (since version 1.10.0):
|
1312 |
+
|
1313 |
+
>>> a = np.zeros((3, 3))
|
1314 |
+
>>> np.einsum('ii->i', a)[:] = 1
|
1315 |
+
>>> a
|
1316 |
+
array([[1., 0., 0.],
|
1317 |
+
[0., 1., 0.],
|
1318 |
+
[0., 0., 1.]])
|
1319 |
+
|
1320 |
+
Example of ellipsis use:
|
1321 |
+
|
1322 |
+
>>> a = np.arange(6).reshape((3,2))
|
1323 |
+
>>> b = np.arange(12).reshape((4,3))
|
1324 |
+
>>> np.einsum('ki,jk->ij', a, b)
|
1325 |
+
array([[10, 28, 46, 64],
|
1326 |
+
[13, 40, 67, 94]])
|
1327 |
+
>>> np.einsum('ki,...k->i...', a, b)
|
1328 |
+
array([[10, 28, 46, 64],
|
1329 |
+
[13, 40, 67, 94]])
|
1330 |
+
>>> np.einsum('k...,jk', a, b)
|
1331 |
+
array([[10, 28, 46, 64],
|
1332 |
+
[13, 40, 67, 94]])
|
1333 |
+
|
1334 |
+
Chained array operations. For more complicated contractions, speed ups
|
1335 |
+
might be achieved by repeatedly computing a 'greedy' path or pre-computing the
|
1336 |
+
'optimal' path and repeatedly applying it, using an
|
1337 |
+
`einsum_path` insertion (since version 1.12.0). Performance improvements can be
|
1338 |
+
particularly significant with larger arrays:
|
1339 |
+
|
1340 |
+
>>> a = np.ones(64).reshape(2,4,8)
|
1341 |
+
|
1342 |
+
Basic `einsum`: ~1520ms (benchmarked on 3.1GHz Intel i5.)
|
1343 |
+
|
1344 |
+
>>> for iteration in range(500):
|
1345 |
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a)
|
1346 |
+
|
1347 |
+
Sub-optimal `einsum` (due to repeated path calculation time): ~330ms
|
1348 |
+
|
1349 |
+
>>> for iteration in range(500):
|
1350 |
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')
|
1351 |
+
|
1352 |
+
Greedy `einsum` (faster optimal path approximation): ~160ms
|
1353 |
+
|
1354 |
+
>>> for iteration in range(500):
|
1355 |
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='greedy')
|
1356 |
+
|
1357 |
+
Optimal `einsum` (best usage pattern in some use cases): ~110ms
|
1358 |
+
|
1359 |
+
>>> path = np.einsum_path('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize='optimal')[0]
|
1360 |
+
>>> for iteration in range(500):
|
1361 |
+
... _ = np.einsum('ijk,ilm,njm,nlk,abc->',a,a,a,a,a, optimize=path)
|
1362 |
+
|
1363 |
+
"""
|
1364 |
+
# Special handling if out is specified
|
1365 |
+
specified_out = out is not None
|
1366 |
+
|
1367 |
+
# If no optimization, run pure einsum
|
1368 |
+
if optimize is False:
|
1369 |
+
if specified_out:
|
1370 |
+
kwargs['out'] = out
|
1371 |
+
return c_einsum(*operands, **kwargs)
|
1372 |
+
|
1373 |
+
# Check the kwargs to avoid a more cryptic error later, without having to
|
1374 |
+
# repeat default values here
|
1375 |
+
valid_einsum_kwargs = ['dtype', 'order', 'casting']
|
1376 |
+
unknown_kwargs = [k for (k, v) in kwargs.items() if
|
1377 |
+
k not in valid_einsum_kwargs]
|
1378 |
+
if len(unknown_kwargs):
|
1379 |
+
raise TypeError("Did not understand the following kwargs: %s"
|
1380 |
+
% unknown_kwargs)
|
1381 |
+
|
1382 |
+
# Build the contraction list and operand
|
1383 |
+
operands, contraction_list = einsum_path(*operands, optimize=optimize,
|
1384 |
+
einsum_call=True)
|
1385 |
+
|
1386 |
+
# Handle order kwarg for output array, c_einsum allows mixed case
|
1387 |
+
output_order = kwargs.pop('order', 'K')
|
1388 |
+
if output_order.upper() == 'A':
|
1389 |
+
if all(arr.flags.f_contiguous for arr in operands):
|
1390 |
+
output_order = 'F'
|
1391 |
+
else:
|
1392 |
+
output_order = 'C'
|
1393 |
+
|
1394 |
+
# Start contraction loop
|
1395 |
+
for num, contraction in enumerate(contraction_list):
|
1396 |
+
inds, idx_rm, einsum_str, remaining, blas = contraction
|
1397 |
+
tmp_operands = [operands.pop(x) for x in inds]
|
1398 |
+
|
1399 |
+
# Do we need to deal with the output?
|
1400 |
+
handle_out = specified_out and ((num + 1) == len(contraction_list))
|
1401 |
+
|
1402 |
+
# Call tensordot if still possible
|
1403 |
+
if blas:
|
1404 |
+
# Checks have already been handled
|
1405 |
+
input_str, results_index = einsum_str.split('->')
|
1406 |
+
input_left, input_right = input_str.split(',')
|
1407 |
+
|
1408 |
+
tensor_result = input_left + input_right
|
1409 |
+
for s in idx_rm:
|
1410 |
+
tensor_result = tensor_result.replace(s, "")
|
1411 |
+
|
1412 |
+
# Find indices to contract over
|
1413 |
+
left_pos, right_pos = [], []
|
1414 |
+
for s in sorted(idx_rm):
|
1415 |
+
left_pos.append(input_left.find(s))
|
1416 |
+
right_pos.append(input_right.find(s))
|
1417 |
+
|
1418 |
+
# Contract!
|
1419 |
+
new_view = tensordot(*tmp_operands, axes=(tuple(left_pos), tuple(right_pos)))
|
1420 |
+
|
1421 |
+
# Build a new view if needed
|
1422 |
+
if (tensor_result != results_index) or handle_out:
|
1423 |
+
if handle_out:
|
1424 |
+
kwargs["out"] = out
|
1425 |
+
new_view = c_einsum(tensor_result + '->' + results_index, new_view, **kwargs)
|
1426 |
+
|
1427 |
+
# Call einsum
|
1428 |
+
else:
|
1429 |
+
# If out was specified
|
1430 |
+
if handle_out:
|
1431 |
+
kwargs["out"] = out
|
1432 |
+
|
1433 |
+
# Do the contraction
|
1434 |
+
new_view = c_einsum(einsum_str, *tmp_operands, **kwargs)
|
1435 |
+
|
1436 |
+
# Append new items and dereference what we can
|
1437 |
+
operands.append(new_view)
|
1438 |
+
del tmp_operands, new_view
|
1439 |
+
|
1440 |
+
if specified_out:
|
1441 |
+
return out
|
1442 |
+
else:
|
1443 |
+
return asanyarray(operands[0], order=output_order)
|
venv/lib/python3.10/site-packages/numpy/core/einsumfunc.pyi
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from collections.abc import Sequence
|
2 |
+
from typing import TypeVar, Any, overload, Union, Literal
|
3 |
+
|
4 |
+
from numpy import (
|
5 |
+
ndarray,
|
6 |
+
dtype,
|
7 |
+
bool_,
|
8 |
+
number,
|
9 |
+
_OrderKACF,
|
10 |
+
)
|
11 |
+
from numpy._typing import (
|
12 |
+
_ArrayLikeBool_co,
|
13 |
+
_ArrayLikeUInt_co,
|
14 |
+
_ArrayLikeInt_co,
|
15 |
+
_ArrayLikeFloat_co,
|
16 |
+
_ArrayLikeComplex_co,
|
17 |
+
_ArrayLikeObject_co,
|
18 |
+
_DTypeLikeBool,
|
19 |
+
_DTypeLikeUInt,
|
20 |
+
_DTypeLikeInt,
|
21 |
+
_DTypeLikeFloat,
|
22 |
+
_DTypeLikeComplex,
|
23 |
+
_DTypeLikeComplex_co,
|
24 |
+
_DTypeLikeObject,
|
25 |
+
)
|
26 |
+
|
27 |
+
_ArrayType = TypeVar(
|
28 |
+
"_ArrayType",
|
29 |
+
bound=ndarray[Any, dtype[Union[bool_, number[Any]]]],
|
30 |
+
)
|
31 |
+
|
32 |
+
_OptimizeKind = None | bool | Literal["greedy", "optimal"] | Sequence[Any]
|
33 |
+
_CastingSafe = Literal["no", "equiv", "safe", "same_kind"]
|
34 |
+
_CastingUnsafe = Literal["unsafe"]
|
35 |
+
|
36 |
+
__all__: list[str]
|
37 |
+
|
38 |
+
# TODO: Properly handle the `casting`-based combinatorics
|
39 |
+
# TODO: We need to evaluate the content `__subscripts` in order
|
40 |
+
# to identify whether or an array or scalar is returned. At a cursory
|
41 |
+
# glance this seems like something that can quite easily be done with
|
42 |
+
# a mypy plugin.
|
43 |
+
# Something like `is_scalar = bool(__subscripts.partition("->")[-1])`
|
44 |
+
@overload
|
45 |
+
def einsum(
|
46 |
+
subscripts: str | _ArrayLikeInt_co,
|
47 |
+
/,
|
48 |
+
*operands: _ArrayLikeBool_co,
|
49 |
+
out: None = ...,
|
50 |
+
dtype: None | _DTypeLikeBool = ...,
|
51 |
+
order: _OrderKACF = ...,
|
52 |
+
casting: _CastingSafe = ...,
|
53 |
+
optimize: _OptimizeKind = ...,
|
54 |
+
) -> Any: ...
|
55 |
+
@overload
|
56 |
+
def einsum(
|
57 |
+
subscripts: str | _ArrayLikeInt_co,
|
58 |
+
/,
|
59 |
+
*operands: _ArrayLikeUInt_co,
|
60 |
+
out: None = ...,
|
61 |
+
dtype: None | _DTypeLikeUInt = ...,
|
62 |
+
order: _OrderKACF = ...,
|
63 |
+
casting: _CastingSafe = ...,
|
64 |
+
optimize: _OptimizeKind = ...,
|
65 |
+
) -> Any: ...
|
66 |
+
@overload
|
67 |
+
def einsum(
|
68 |
+
subscripts: str | _ArrayLikeInt_co,
|
69 |
+
/,
|
70 |
+
*operands: _ArrayLikeInt_co,
|
71 |
+
out: None = ...,
|
72 |
+
dtype: None | _DTypeLikeInt = ...,
|
73 |
+
order: _OrderKACF = ...,
|
74 |
+
casting: _CastingSafe = ...,
|
75 |
+
optimize: _OptimizeKind = ...,
|
76 |
+
) -> Any: ...
|
77 |
+
@overload
|
78 |
+
def einsum(
|
79 |
+
subscripts: str | _ArrayLikeInt_co,
|
80 |
+
/,
|
81 |
+
*operands: _ArrayLikeFloat_co,
|
82 |
+
out: None = ...,
|
83 |
+
dtype: None | _DTypeLikeFloat = ...,
|
84 |
+
order: _OrderKACF = ...,
|
85 |
+
casting: _CastingSafe = ...,
|
86 |
+
optimize: _OptimizeKind = ...,
|
87 |
+
) -> Any: ...
|
88 |
+
@overload
|
89 |
+
def einsum(
|
90 |
+
subscripts: str | _ArrayLikeInt_co,
|
91 |
+
/,
|
92 |
+
*operands: _ArrayLikeComplex_co,
|
93 |
+
out: None = ...,
|
94 |
+
dtype: None | _DTypeLikeComplex = ...,
|
95 |
+
order: _OrderKACF = ...,
|
96 |
+
casting: _CastingSafe = ...,
|
97 |
+
optimize: _OptimizeKind = ...,
|
98 |
+
) -> Any: ...
|
99 |
+
@overload
|
100 |
+
def einsum(
|
101 |
+
subscripts: str | _ArrayLikeInt_co,
|
102 |
+
/,
|
103 |
+
*operands: Any,
|
104 |
+
casting: _CastingUnsafe,
|
105 |
+
dtype: None | _DTypeLikeComplex_co = ...,
|
106 |
+
out: None = ...,
|
107 |
+
order: _OrderKACF = ...,
|
108 |
+
optimize: _OptimizeKind = ...,
|
109 |
+
) -> Any: ...
|
110 |
+
@overload
|
111 |
+
def einsum(
|
112 |
+
subscripts: str | _ArrayLikeInt_co,
|
113 |
+
/,
|
114 |
+
*operands: _ArrayLikeComplex_co,
|
115 |
+
out: _ArrayType,
|
116 |
+
dtype: None | _DTypeLikeComplex_co = ...,
|
117 |
+
order: _OrderKACF = ...,
|
118 |
+
casting: _CastingSafe = ...,
|
119 |
+
optimize: _OptimizeKind = ...,
|
120 |
+
) -> _ArrayType: ...
|
121 |
+
@overload
|
122 |
+
def einsum(
|
123 |
+
subscripts: str | _ArrayLikeInt_co,
|
124 |
+
/,
|
125 |
+
*operands: Any,
|
126 |
+
out: _ArrayType,
|
127 |
+
casting: _CastingUnsafe,
|
128 |
+
dtype: None | _DTypeLikeComplex_co = ...,
|
129 |
+
order: _OrderKACF = ...,
|
130 |
+
optimize: _OptimizeKind = ...,
|
131 |
+
) -> _ArrayType: ...
|
132 |
+
|
133 |
+
@overload
|
134 |
+
def einsum(
|
135 |
+
subscripts: str | _ArrayLikeInt_co,
|
136 |
+
/,
|
137 |
+
*operands: _ArrayLikeObject_co,
|
138 |
+
out: None = ...,
|
139 |
+
dtype: None | _DTypeLikeObject = ...,
|
140 |
+
order: _OrderKACF = ...,
|
141 |
+
casting: _CastingSafe = ...,
|
142 |
+
optimize: _OptimizeKind = ...,
|
143 |
+
) -> Any: ...
|
144 |
+
@overload
|
145 |
+
def einsum(
|
146 |
+
subscripts: str | _ArrayLikeInt_co,
|
147 |
+
/,
|
148 |
+
*operands: Any,
|
149 |
+
casting: _CastingUnsafe,
|
150 |
+
dtype: None | _DTypeLikeObject = ...,
|
151 |
+
out: None = ...,
|
152 |
+
order: _OrderKACF = ...,
|
153 |
+
optimize: _OptimizeKind = ...,
|
154 |
+
) -> Any: ...
|
155 |
+
@overload
|
156 |
+
def einsum(
|
157 |
+
subscripts: str | _ArrayLikeInt_co,
|
158 |
+
/,
|
159 |
+
*operands: _ArrayLikeObject_co,
|
160 |
+
out: _ArrayType,
|
161 |
+
dtype: None | _DTypeLikeObject = ...,
|
162 |
+
order: _OrderKACF = ...,
|
163 |
+
casting: _CastingSafe = ...,
|
164 |
+
optimize: _OptimizeKind = ...,
|
165 |
+
) -> _ArrayType: ...
|
166 |
+
@overload
|
167 |
+
def einsum(
|
168 |
+
subscripts: str | _ArrayLikeInt_co,
|
169 |
+
/,
|
170 |
+
*operands: Any,
|
171 |
+
out: _ArrayType,
|
172 |
+
casting: _CastingUnsafe,
|
173 |
+
dtype: None | _DTypeLikeObject = ...,
|
174 |
+
order: _OrderKACF = ...,
|
175 |
+
optimize: _OptimizeKind = ...,
|
176 |
+
) -> _ArrayType: ...
|
177 |
+
|
178 |
+
# NOTE: `einsum_call` is a hidden kwarg unavailable for public use.
|
179 |
+
# It is therefore excluded from the signatures below.
|
180 |
+
# NOTE: In practice the list consists of a `str` (first element)
|
181 |
+
# and a variable number of integer tuples.
|
182 |
+
def einsum_path(
|
183 |
+
subscripts: str | _ArrayLikeInt_co,
|
184 |
+
/,
|
185 |
+
*operands: _ArrayLikeComplex_co | _DTypeLikeObject,
|
186 |
+
optimize: _OptimizeKind = ...,
|
187 |
+
) -> tuple[list[Any], str]: ...
|
venv/lib/python3.10/site-packages/numpy/core/fromnumeric.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|