diff --git "a/venv/lib/python3.10/site-packages/torch/nn/modules/module.py" "b/venv/lib/python3.10/site-packages/torch/nn/modules/module.py" new file mode 100644--- /dev/null +++ "b/venv/lib/python3.10/site-packages/torch/nn/modules/module.py" @@ -0,0 +1,2577 @@ +from collections import OrderedDict, namedtuple +import itertools +import warnings +import functools +import weakref + +import torch +from torch._prims_common import DeviceLikeType +from ..parameter import Parameter +import torch.utils.hooks as hooks + +from torch import Tensor, device, dtype +from typing import Union, Tuple, Any, Callable, Iterator, Set, Optional, overload, TypeVar, Mapping, Dict, List +from typing_extensions import Self +from ...utils.hooks import RemovableHandle +from torch.utils._python_dispatch import is_traceable_wrapper_subclass + +__all__ = ['register_module_forward_pre_hook', 'register_module_forward_hook', + 'register_module_full_backward_pre_hook', 'register_module_backward_hook', + 'register_module_full_backward_hook', 'register_module_buffer_registration_hook', + 'register_module_module_registration_hook', 'register_module_parameter_registration_hook', 'Module'] + +_grad_t = Union[Tuple[Tensor, ...], Tensor] +# See https://mypy.readthedocs.io/en/latest/generics.html#generic-methods-and-generic-self for the use +# of `T` to annotate `self`. Many methods of `Module` return `self` and we want those return values to be +# the type of the subclass, not the looser type of `Module`. +T = TypeVar('T', bound='Module') + + +class _IncompatibleKeys(namedtuple('IncompatibleKeys', ['missing_keys', 'unexpected_keys'])): + def __repr__(self): + if not self.missing_keys and not self.unexpected_keys: + return '' + return super().__repr__() + + __str__ = __repr__ + + +def _addindent(s_, numSpaces): + s = s_.split('\n') + # don't do anything for single-line stuff + if len(s) == 1: + return s_ + first = s.pop(0) + s = [(numSpaces * ' ') + line for line in s] + s = '\n'.join(s) + s = first + '\n' + s + return s + +r"""This tracks hooks common to all modules that are executed immediately before +.registering the buffer/module/parameter""" +_global_buffer_registration_hooks: Dict[int, Callable] = OrderedDict() +_global_module_registration_hooks: Dict[int, Callable] = OrderedDict() +_global_parameter_registration_hooks: Dict[int, Callable] = OrderedDict() + +class _WrappedHook: + def __init__(self, hook: Callable, module: Optional["Module"] = None): + self.hook: Callable = hook + functools.update_wrapper(self, hook) + + self.with_module: bool = False + + if module is not None: + self.module: weakref.ReferenceType[Module] = weakref.ref(module) + self.with_module = True + + def __call__(self, *args: Any, **kwargs: Any) -> Any: + if self.with_module: + module = self.module() + if module is None: + raise RuntimeError("You are trying to call the hook of a dead Module!") + return self.hook(module, *args, **kwargs) + return self.hook(*args, **kwargs) + + def __getstate__(self) -> Dict: + result = {"hook": self.hook, "with_module": self.with_module} + if self.with_module: + result["module"] = self.module() + + return result + + def __setstate__(self, state: Dict): + self.hook = state["hook"] + self.with_module = state["with_module"] + + if self.with_module: + if state["module"] is None: + raise RuntimeError("You are trying to revive the hook of a dead Module!") + self.module = weakref.ref(state["module"]) + + +r"""This tracks hooks common to all modules that are executed before/after +calling forward and backward. This is global state used for debugging/profiling +purposes""" +_global_backward_pre_hooks: Dict[int, Callable] = OrderedDict() +_global_backward_hooks: Dict[int, Callable] = OrderedDict() +_global_is_full_backward_hook: Optional[bool] = None +_global_forward_pre_hooks: Dict[int, Callable] = OrderedDict() +_global_forward_hooks: Dict[int, Callable] = OrderedDict() +_global_forward_hooks_always_called: Dict[int, bool] = OrderedDict() + +_EXTRA_STATE_KEY_SUFFIX = '_extra_state' + + +def register_module_buffer_registration_hook(hook: Callable[..., None]) -> RemovableHandle: + r"""Register a buffer registration hook common to all modules. + + .. warning :: + + This adds global state to the `nn.Module` module + + The hook will be called every time :func:`register_buffer` is invoked. + It should have the following signature:: + + hook(module, name, buffer) -> None or new buffer + + The hook can modify the input or return a single modified value in the hook. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle(_global_buffer_registration_hooks) + _global_buffer_registration_hooks[handle.id] = hook + return handle + + +def register_module_module_registration_hook(hook: Callable[..., None]) -> RemovableHandle: + r"""Register a module registration hook common to all modules. + + .. warning :: + + This adds global state to the `nn.Module` module + + The hook will be called every time :func:`register_module` is invoked. + It should have the following signature:: + + hook(module, name, submodule) -> None or new submodule + + The hook can modify the input or return a single modified value in the hook. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle(_global_module_registration_hooks) + _global_module_registration_hooks[handle.id] = hook + return handle + + +def register_module_parameter_registration_hook(hook: Callable[..., None]) -> RemovableHandle: + r"""Register a parameter registration hook common to all modules. + + .. warning :: + + This adds global state to the `nn.Module` module + + The hook will be called every time :func:`register_parameter` is invoked. + It should have the following signature:: + + hook(module, name, param) -> None or new parameter + + The hook can modify the input or return a single modified value in the hook. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle(_global_parameter_registration_hooks) + _global_parameter_registration_hooks[handle.id] = hook + return handle + + +def register_module_forward_pre_hook(hook: Callable[..., None]) -> RemovableHandle: + r"""Register a forward pre-hook common to all modules. + + .. warning :: + + This adds global state to the `nn.module` module + and it is only intended for debugging/profiling purposes. + + The hook will be called every time before :func:`forward` is invoked. + It should have the following signature:: + + hook(module, input) -> None or modified input + + The input contains only the positional arguments given to the module. + Keyword arguments won't be passed to the hooks and only to the ``forward``. + The hook can modify the input. User can either return a tuple or a + single modified value in the hook. We will wrap the value into a tuple + if a single value is returned(unless that value is already a tuple). + + This hook has precedence over the specific module hooks registered with + ``register_forward_pre_hook``. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle(_global_forward_pre_hooks) + _global_forward_pre_hooks[handle.id] = hook + return handle + + +def register_module_forward_hook(hook: Callable[..., None], *, always_call: bool = False) -> RemovableHandle: + r"""Register a global forward hook for all the modules. + + .. warning :: + + This adds global state to the `nn.module` module + and it is only intended for debugging/profiling purposes. + + The hook will be called every time after :func:`forward` has computed an output. + It should have the following signature:: + + hook(module, input, output) -> None or modified output + + The input contains only the positional arguments given to the module. + Keyword arguments won't be passed to the hooks and only to the ``forward``. + The hook can modify the output. It can modify the input inplace but + it will not have effect on forward since this is called after + :func:`forward` is called. + + Parameters: + hook (Callable): The user defined hook to be registered. + always_call (bool): If ``True`` the ``hook`` will be run regardless of + whether an exception is raised while calling the Module. + Default: ``False`` + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + This hook will be executed before specific module hooks registered with + ``register_forward_hook``. + """ + handle = hooks.RemovableHandle(_global_forward_hooks, + extra_dict=_global_forward_hooks_always_called) + _global_forward_hooks[handle.id] = hook + if always_call: + _global_forward_hooks_always_called[handle.id] = True + return handle + + +def register_module_backward_hook( + hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]] +) -> RemovableHandle: + r"""Register a backward hook common to all the modules. + + This function is deprecated in favor of + :func:`torch.nn.modules.module.register_module_full_backward_hook` + and the behavior of this function will change in future versions. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + global _global_is_full_backward_hook + if _global_is_full_backward_hook is True: + raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a " + "global Module hook. Please use only one of them.") + + _global_is_full_backward_hook = False + + handle = hooks.RemovableHandle(_global_backward_hooks) + _global_backward_hooks[handle.id] = hook + return handle + + +def register_module_full_backward_pre_hook( + hook: Callable[['Module', _grad_t], Union[None, _grad_t]] +) -> RemovableHandle: + r"""Register a backward pre-hook common to all the modules. + + .. warning :: + This adds global state to the `nn.module` module + and it is only intended for debugging/profiling purposes. + + Hooks registered using this function behave in the same way as those + registered by :meth:`torch.nn.Module.register_full_backward_pre_hook`. + Refer to its documentation for more details. + + Hooks registered using this function will be called before hooks registered + using :meth:`torch.nn.Module.register_full_backward_pre_hook`. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + handle = hooks.RemovableHandle(_global_backward_pre_hooks) + _global_backward_pre_hooks[handle.id] = hook + return handle + + +def register_module_full_backward_hook( + hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]] +) -> RemovableHandle: + r"""Register a backward hook common to all the modules. + + .. warning :: + This adds global state to the `nn.module` module + and it is only intended for debugging/profiling purposes. + + Hooks registered using this function behave in the same way as those + registered by :meth:`torch.nn.Module.register_full_backward_hook`. + Refer to its documentation for more details. + + Hooks registered using this function will be called before hooks registered + using :meth:`torch.nn.Module.register_full_backward_hook`. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + global _global_is_full_backward_hook + if _global_is_full_backward_hook is False: + raise RuntimeError("Cannot use both regular backward hooks and full backward hooks as a " + "global Module hook. Please use only one of them.") + + _global_is_full_backward_hook = True + + handle = hooks.RemovableHandle(_global_backward_hooks) + _global_backward_hooks[handle.id] = hook + return handle + + +# Trick mypy into not applying contravariance rules to inputs by defining +# forward as a value, rather than a function. See also +# https://github.com/python/mypy/issues/8795 +def _forward_unimplemented(self, *input: Any) -> None: + r"""Define the computation performed at every call. + + Should be overridden by all subclasses. + + .. note:: + Although the recipe for forward pass needs to be defined within + this function, one should call the :class:`Module` instance afterwards + instead of this since the former takes care of running the + registered hooks while the latter silently ignores them. + """ + raise NotImplementedError(f"Module [{type(self).__name__}] is missing the required \"forward\" function") + + +class Module: + r"""Base class for all neural network modules. + + Your models should also subclass this class. + + Modules can also contain other Modules, allowing to nest them in + a tree structure. You can assign the submodules as regular attributes:: + + import torch.nn as nn + import torch.nn.functional as F + + class Model(nn.Module): + def __init__(self): + super().__init__() + self.conv1 = nn.Conv2d(1, 20, 5) + self.conv2 = nn.Conv2d(20, 20, 5) + + def forward(self, x): + x = F.relu(self.conv1(x)) + return F.relu(self.conv2(x)) + + Submodules assigned in this way will be registered, and will have their + parameters converted too when you call :meth:`to`, etc. + + .. note:: + As per the example above, an ``__init__()`` call to the parent class + must be made before assignment on the child. + + :ivar training: Boolean represents whether this module is in training or + evaluation mode. + :vartype training: bool + """ + + dump_patches: bool = False + + _version: int = 1 + r"""This allows better BC support for :meth:`load_state_dict`. In + :meth:`state_dict`, the version number will be saved as in the attribute + `_metadata` of the returned state dict, and thus pickled. `_metadata` is a + dictionary with keys that follow the naming convention of state dict. See + ``_load_from_state_dict`` on how to use this information in loading. + + If new parameters/buffers are added/removed from a module, this number shall + be bumped, and the module's `_load_from_state_dict` method can compare the + version number and do appropriate changes if the state dict is from before + the change.""" + + training: bool + _parameters: Dict[str, Optional[Parameter]] + _buffers: Dict[str, Optional[Tensor]] + _non_persistent_buffers_set: Set[str] + _backward_pre_hooks: Dict[int, Callable] + _backward_hooks: Dict[int, Callable] + _is_full_backward_hook: Optional[bool] + _forward_hooks: Dict[int, Callable] + # Marks whether the corresponding _forward_hooks accept kwargs or not. + # As JIT does not support Set[int], this dict is used as a set, where all + # hooks represented in this dict accept kwargs. + _forward_hooks_with_kwargs: Dict[int, bool] + # forward hooks that should always be called even if an exception is raised + _forward_hooks_always_called: Dict[int, bool] + _forward_pre_hooks: Dict[int, Callable] + # Marks whether the corresponding _forward_hooks accept kwargs or not. + # As JIT does not support Set[int], this dict is used as a set, where all + # hooks represented in this dict accept kwargs. + _forward_pre_hooks_with_kwargs: Dict[int, bool] + _state_dict_hooks: Dict[int, Callable] + _load_state_dict_pre_hooks: Dict[int, Callable] + _state_dict_pre_hooks: Dict[int, Callable] + _load_state_dict_post_hooks: Dict[int, Callable] + _modules: Dict[str, Optional['Module']] + call_super_init: bool = False + _compiled_call_impl : Optional[Callable] = None + + def __init__(self, *args, **kwargs) -> None: + """Initialize internal Module state, shared by both nn.Module and ScriptModule.""" + torch._C._log_api_usage_once("python.nn_module") + + # Backward compatibility: no args used to be allowed when call_super_init=False + if self.call_super_init is False and bool(kwargs): + raise TypeError("{}.__init__() got an unexpected keyword argument '{}'" + "".format(type(self).__name__, next(iter(kwargs)))) + + if self.call_super_init is False and bool(args): + raise TypeError(f"{type(self).__name__}.__init__() takes 1 positional argument but {len(args) + 1} were" + " given") + + """ + Calls super().__setattr__('a', a) instead of the typical self.a = a + to avoid Module.__setattr__ overhead. Module's __setattr__ has special + handling for parameters, submodules, and buffers but simply calls into + super().__setattr__ for all other attributes. + """ + super().__setattr__('training', True) + super().__setattr__('_parameters', OrderedDict()) + super().__setattr__('_buffers', OrderedDict()) + super().__setattr__('_non_persistent_buffers_set', set()) + super().__setattr__('_backward_pre_hooks', OrderedDict()) + super().__setattr__('_backward_hooks', OrderedDict()) + super().__setattr__('_is_full_backward_hook', None) + super().__setattr__('_forward_hooks', OrderedDict()) + super().__setattr__('_forward_hooks_with_kwargs', OrderedDict()) + super().__setattr__('_forward_hooks_always_called', OrderedDict()) + super().__setattr__('_forward_pre_hooks', OrderedDict()) + super().__setattr__('_forward_pre_hooks_with_kwargs', OrderedDict()) + super().__setattr__('_state_dict_hooks', OrderedDict()) + super().__setattr__('_state_dict_pre_hooks', OrderedDict()) + super().__setattr__('_load_state_dict_pre_hooks', OrderedDict()) + super().__setattr__('_load_state_dict_post_hooks', OrderedDict()) + super().__setattr__('_modules', OrderedDict()) + + if self.call_super_init: + super().__init__(*args, **kwargs) + + forward: Callable[..., Any] = _forward_unimplemented + + def register_buffer(self, name: str, tensor: Optional[Tensor], persistent: bool = True) -> None: + r"""Add a buffer to the module. + + This is typically used to register a buffer that should not to be + considered a model parameter. For example, BatchNorm's ``running_mean`` + is not a parameter, but is part of the module's state. Buffers, by + default, are persistent and will be saved alongside parameters. This + behavior can be changed by setting :attr:`persistent` to ``False``. The + only difference between a persistent buffer and a non-persistent buffer + is that the latter will not be a part of this module's + :attr:`state_dict`. + + Buffers can be accessed as attributes using given names. + + Args: + name (str): name of the buffer. The buffer can be accessed + from this module using the given name + tensor (Tensor or None): buffer to be registered. If ``None``, then operations + that run on buffers, such as :attr:`cuda`, are ignored. If ``None``, + the buffer is **not** included in the module's :attr:`state_dict`. + persistent (bool): whether the buffer is part of this module's + :attr:`state_dict`. + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> self.register_buffer('running_mean', torch.zeros(num_features)) + + """ + if persistent is False and isinstance(self, torch.jit.ScriptModule): + raise RuntimeError("ScriptModule does not support non-persistent buffers") + + if '_buffers' not in self.__dict__: + raise AttributeError( + "cannot assign buffer before Module.__init__() call") + elif not isinstance(name, str): + raise TypeError(f"buffer name should be a string. Got {torch.typename(name)}") + elif '.' in name: + raise KeyError("buffer name can't contain \".\"") + elif name == '': + raise KeyError("buffer name can't be empty string \"\"") + elif hasattr(self, name) and name not in self._buffers: + raise KeyError(f"attribute '{name}' already exists") + elif tensor is not None and not isinstance(tensor, torch.Tensor): + raise TypeError(f"cannot assign '{torch.typename(tensor)}' object to buffer '{name}' " + "(torch Tensor or None required)" + ) + else: + for hook in _global_buffer_registration_hooks.values(): + output = hook(self, name, tensor) + if output is not None: + tensor = output + self._buffers[name] = tensor + if persistent: + self._non_persistent_buffers_set.discard(name) + else: + self._non_persistent_buffers_set.add(name) + + def register_parameter(self, name: str, param: Optional[Parameter]) -> None: + r"""Add a parameter to the module. + + The parameter can be accessed as an attribute using given name. + + Args: + name (str): name of the parameter. The parameter can be accessed + from this module using the given name + param (Parameter or None): parameter to be added to the module. If + ``None``, then operations that run on parameters, such as :attr:`cuda`, + are ignored. If ``None``, the parameter is **not** included in the + module's :attr:`state_dict`. + """ + if '_parameters' not in self.__dict__: + raise AttributeError( + "cannot assign parameter before Module.__init__() call") + + elif not isinstance(name, str): + raise TypeError(f"parameter name should be a string. Got {torch.typename(name)}") + elif '.' in name: + raise KeyError("parameter name can't contain \".\"") + elif name == '': + raise KeyError("parameter name can't be empty string \"\"") + elif hasattr(self, name) and name not in self._parameters: + raise KeyError(f"attribute '{name}' already exists") + + if param is None: + self._parameters[name] = None + elif not isinstance(param, Parameter): + raise TypeError(f"cannot assign '{torch.typename(param)}' object to parameter '{name}' " + "(torch.nn.Parameter or None required)" + ) + elif param.grad_fn: + raise ValueError( + f"Cannot assign non-leaf Tensor to parameter '{name}'. Model " + f"parameters must be created explicitly. To express '{name}' " + "as a function of another Tensor, compute the value in " + "the forward() method.") + else: + for hook in _global_parameter_registration_hooks.values(): + output = hook(self, name, param) + if output is not None: + param = output + self._parameters[name] = param + + def add_module(self, name: str, module: Optional['Module']) -> None: + r"""Add a child module to the current module. + + The module can be accessed as an attribute using the given name. + + Args: + name (str): name of the child module. The child module can be + accessed from this module using the given name + module (Module): child module to be added to the module. + """ + if not isinstance(module, Module) and module is not None: + raise TypeError(f"{torch.typename(module)} is not a Module subclass") + elif not isinstance(name, str): + raise TypeError(f"module name should be a string. Got {torch.typename(name)}") + elif hasattr(self, name) and name not in self._modules: + raise KeyError(f"attribute '{name}' already exists") + elif '.' in name: + raise KeyError(f"module name can't contain \".\", got: {name}") + elif name == '': + raise KeyError("module name can't be empty string \"\"") + for hook in _global_module_registration_hooks.values(): + output = hook(self, name, module) + if output is not None: + module = output + self._modules[name] = module + + def register_module(self, name: str, module: Optional['Module']) -> None: + r"""Alias for :func:`add_module`.""" + self.add_module(name, module) + + def get_submodule(self, target: str) -> "Module": + """Return the submodule given by ``target`` if it exists, otherwise throw an error. + + For example, let's say you have an ``nn.Module`` ``A`` that + looks like this: + + .. code-block:: text + + A( + (net_b): Module( + (net_c): Module( + (conv): Conv2d(16, 33, kernel_size=(3, 3), stride=(2, 2)) + ) + (linear): Linear(in_features=100, out_features=200, bias=True) + ) + ) + + (The diagram shows an ``nn.Module`` ``A``. ``A`` has a nested + submodule ``net_b``, which itself has two submodules ``net_c`` + and ``linear``. ``net_c`` then has a submodule ``conv``.) + + To check whether or not we have the ``linear`` submodule, we + would call ``get_submodule("net_b.linear")``. To check whether + we have the ``conv`` submodule, we would call + ``get_submodule("net_b.net_c.conv")``. + + The runtime of ``get_submodule`` is bounded by the degree + of module nesting in ``target``. A query against + ``named_modules`` achieves the same result, but it is O(N) in + the number of transitive modules. So, for a simple check to see + if some submodule exists, ``get_submodule`` should always be + used. + + Args: + target: The fully-qualified string name of the submodule + to look for. (See above example for how to specify a + fully-qualified string.) + + Returns: + torch.nn.Module: The submodule referenced by ``target`` + + Raises: + AttributeError: If the target string references an invalid + path or resolves to something that is not an + ``nn.Module`` + """ + if target == "": + return self + + atoms: List[str] = target.split(".") + mod: torch.nn.Module = self + + for item in atoms: + + if not hasattr(mod, item): + raise AttributeError(mod._get_name() + " has no " + "attribute `" + item + "`") + + mod = getattr(mod, item) + + if not isinstance(mod, torch.nn.Module): + raise AttributeError("`" + item + "` is not " + "an nn.Module") + + return mod + + def get_parameter(self, target: str) -> "Parameter": + """Return the parameter given by ``target`` if it exists, otherwise throw an error. + + See the docstring for ``get_submodule`` for a more detailed + explanation of this method's functionality as well as how to + correctly specify ``target``. + + Args: + target: The fully-qualified string name of the Parameter + to look for. (See ``get_submodule`` for how to specify a + fully-qualified string.) + + Returns: + torch.nn.Parameter: The Parameter referenced by ``target`` + + Raises: + AttributeError: If the target string references an invalid + path or resolves to something that is not an + ``nn.Parameter`` + """ + module_path, _, param_name = target.rpartition(".") + + mod: torch.nn.Module = self.get_submodule(module_path) + + if not hasattr(mod, param_name): + raise AttributeError(mod._get_name() + " has no attribute `" + + param_name + "`") + + param: torch.nn.Parameter = getattr(mod, param_name) + + if not isinstance(param, torch.nn.Parameter): + raise AttributeError("`" + param_name + "` is not an " + "nn.Parameter") + + return param + + def get_buffer(self, target: str) -> "Tensor": + """Return the buffer given by ``target`` if it exists, otherwise throw an error. + + See the docstring for ``get_submodule`` for a more detailed + explanation of this method's functionality as well as how to + correctly specify ``target``. + + Args: + target: The fully-qualified string name of the buffer + to look for. (See ``get_submodule`` for how to specify a + fully-qualified string.) + + Returns: + torch.Tensor: The buffer referenced by ``target`` + + Raises: + AttributeError: If the target string references an invalid + path or resolves to something that is not a + buffer + """ + module_path, _, buffer_name = target.rpartition(".") + + mod: torch.nn.Module = self.get_submodule(module_path) + + if not hasattr(mod, buffer_name): + raise AttributeError(mod._get_name() + " has no attribute `" + + buffer_name + "`") + + buffer: torch.Tensor = getattr(mod, buffer_name) + + if buffer_name not in mod._buffers: + raise AttributeError("`" + buffer_name + "` is not a buffer") + + return buffer + + def get_extra_state(self) -> Any: + """Return any extra state to include in the module's state_dict. + + Implement this and a corresponding :func:`set_extra_state` for your module + if you need to store extra state. This function is called when building the + module's `state_dict()`. + + Note that extra state should be picklable to ensure working serialization + of the state_dict. We only provide provide backwards compatibility guarantees + for serializing Tensors; other objects may break backwards compatibility if + their serialized pickled form changes. + + Returns: + object: Any extra state to store in the module's state_dict + """ + raise RuntimeError( + "Reached a code path in Module.get_extra_state() that should never be called. " + "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml " + "to report this bug.") + + def set_extra_state(self, state: Any) -> None: + """Set extra state contained in the loaded `state_dict`. + + This function is called from :func:`load_state_dict` to handle any extra state + found within the `state_dict`. Implement this function and a corresponding + :func:`get_extra_state` for your module if you need to store extra state within its + `state_dict`. + + Args: + state (dict): Extra state from the `state_dict` + """ + raise RuntimeError( + "Reached a code path in Module.set_extra_state() that should never be called. " + "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml " + "to report this bug.") + + def _apply(self, fn, recurse=True): + if recurse: + for module in self.children(): + module._apply(fn) + + def compute_should_use_set_data(tensor, tensor_applied): + if torch._has_compatible_shallow_copy_type(tensor, tensor_applied): + # If the new tensor has compatible tensor type as the existing tensor, + # the current behavior is to change the tensor in-place using `.data =`, + # and the future behavior is to overwrite the existing tensor. However, + # changing the current behavior is a BC-breaking change, and we want it + # to happen in future releases. So for now we introduce the + # `torch.__future__.get_overwrite_module_params_on_conversion()` + # global flag to let the user control whether they want the future + # behavior of overwriting the existing tensor or not. + return not torch.__future__.get_overwrite_module_params_on_conversion() + else: + return False + + should_use_swap_tensors = torch.__future__.get_swap_module_params_on_conversion() + + for key, param in self._parameters.items(): + if param is None: + continue + # Tensors stored in modules are graph leaves, and we don't want to + # track autograd history of `param_applied`, so we have to use + # `with torch.no_grad():` + with torch.no_grad(): + param_applied = fn(param) + p_should_use_set_data = compute_should_use_set_data(param, param_applied) + + # subclasses may have multiple child tensors so we need to use swap_tensors + p_should_use_swap_tensors = should_use_swap_tensors or is_traceable_wrapper_subclass(param_applied) + + param_grad = param.grad + if p_should_use_swap_tensors: + try: + if param_grad is not None: + # Accessing param.grad makes its at::Tensor's use_count 2, which will prevent swapping. + # Decrement use count of the gradient by setting to None + param.grad = None + param_applied = torch.nn.Parameter(param_applied, requires_grad=param.requires_grad) + torch.utils.swap_tensors(param, param_applied) + except Exception as e: + if param_grad is not None: + param.grad = param_grad + raise RuntimeError(f"_apply(): Couldn't swap {self._get_name()}.{key}") from e + out_param = param + elif p_should_use_set_data: + param.data = param_applied + out_param = param + else: + assert isinstance(param, Parameter) + assert param.is_leaf + out_param = Parameter(param_applied, param.requires_grad) + self._parameters[key] = out_param + + if param_grad is not None: + with torch.no_grad(): + grad_applied = fn(param_grad) + g_should_use_set_data = compute_should_use_set_data(param_grad, grad_applied) + if p_should_use_swap_tensors: + grad_applied.requires_grad_(param_grad.requires_grad) + try: + torch.utils.swap_tensors(param_grad, grad_applied) + except Exception as e: + raise RuntimeError(f"_apply(): Couldn't swap {self._get_name()}.{key}.grad") from e + out_param.grad = param_grad + elif g_should_use_set_data: + assert out_param.grad is not None + out_param.grad.data = grad_applied + else: + assert param_grad.is_leaf + out_param.grad = grad_applied.requires_grad_(param_grad.requires_grad) + + for key, buf in self._buffers.items(): + if buf is not None: + self._buffers[key] = fn(buf) + + return self + + def apply(self: T, fn: Callable[['Module'], None]) -> T: + r"""Apply ``fn`` recursively to every submodule (as returned by ``.children()``) as well as self. + + Typical use includes initializing the parameters of a model + (see also :ref:`nn-init-doc`). + + Args: + fn (:class:`Module` -> None): function to be applied to each submodule + + Returns: + Module: self + + Example:: + + >>> @torch.no_grad() + >>> def init_weights(m): + >>> print(m) + >>> if type(m) == nn.Linear: + >>> m.weight.fill_(1.0) + >>> print(m.weight) + >>> net = nn.Sequential(nn.Linear(2, 2), nn.Linear(2, 2)) + >>> net.apply(init_weights) + Linear(in_features=2, out_features=2, bias=True) + Parameter containing: + tensor([[1., 1.], + [1., 1.]], requires_grad=True) + Linear(in_features=2, out_features=2, bias=True) + Parameter containing: + tensor([[1., 1.], + [1., 1.]], requires_grad=True) + Sequential( + (0): Linear(in_features=2, out_features=2, bias=True) + (1): Linear(in_features=2, out_features=2, bias=True) + ) + + """ + for module in self.children(): + module.apply(fn) + fn(self) + return self + + def cuda(self: T, device: Optional[Union[int, device]] = None) -> T: + r"""Move all model parameters and buffers to the GPU. + + This also makes associated parameters and buffers different objects. So + it should be called before constructing optimizer if the module will + live on GPU while being optimized. + + .. note:: + This method modifies the module in-place. + + Args: + device (int, optional): if specified, all parameters will be + copied to that device + + Returns: + Module: self + """ + return self._apply(lambda t: t.cuda(device)) + + def ipu(self: T, device: Optional[Union[int, device]] = None) -> T: + r"""Move all model parameters and buffers to the IPU. + + This also makes associated parameters and buffers different objects. So + it should be called before constructing optimizer if the module will + live on IPU while being optimized. + + .. note:: + This method modifies the module in-place. + + Arguments: + device (int, optional): if specified, all parameters will be + copied to that device + + Returns: + Module: self + """ + return self._apply(lambda t: t.ipu(device)) + + def xpu(self: T, device: Optional[Union[int, device]] = None) -> T: + r"""Move all model parameters and buffers to the XPU. + + This also makes associated parameters and buffers different objects. So + it should be called before constructing optimizer if the module will + live on XPU while being optimized. + + .. note:: + This method modifies the module in-place. + + Arguments: + device (int, optional): if specified, all parameters will be + copied to that device + + Returns: + Module: self + """ + return self._apply(lambda t: t.xpu(device)) + + def cpu(self: T) -> T: + r"""Move all model parameters and buffers to the CPU. + + .. note:: + This method modifies the module in-place. + + Returns: + Module: self + """ + return self._apply(lambda t: t.cpu()) + + def type(self: T, dst_type: Union[dtype, str]) -> T: + r"""Casts all parameters and buffers to :attr:`dst_type`. + + .. note:: + This method modifies the module in-place. + + Args: + dst_type (type or string): the desired type + + Returns: + Module: self + """ + return self._apply(lambda t: t.type(dst_type)) + + def float(self: T) -> T: + r"""Casts all floating point parameters and buffers to ``float`` datatype. + + .. note:: + This method modifies the module in-place. + + Returns: + Module: self + """ + return self._apply(lambda t: t.float() if t.is_floating_point() else t) + + def double(self: T) -> T: + r"""Casts all floating point parameters and buffers to ``double`` datatype. + + .. note:: + This method modifies the module in-place. + + Returns: + Module: self + """ + return self._apply(lambda t: t.double() if t.is_floating_point() else t) + + def half(self: T) -> T: + r"""Casts all floating point parameters and buffers to ``half`` datatype. + + .. note:: + This method modifies the module in-place. + + Returns: + Module: self + """ + return self._apply(lambda t: t.half() if t.is_floating_point() else t) + + def bfloat16(self: T) -> T: + r"""Casts all floating point parameters and buffers to ``bfloat16`` datatype. + + .. note:: + This method modifies the module in-place. + + Returns: + Module: self + """ + return self._apply(lambda t: t.bfloat16() if t.is_floating_point() else t) + + def to_empty(self: T, *, device: Optional[DeviceLikeType], recurse: bool = True) -> T: + r"""Move the parameters and buffers to the specified device without copying storage. + + Args: + device (:class:`torch.device`): The desired device of the parameters + and buffers in this module. + recurse (bool): Whether parameters and buffers of submodules should + be recursively moved to the specified device. + + Returns: + Module: self + """ + return self._apply(lambda t: torch.empty_like(t, device=device), recurse=recurse) + + @overload + def to(self, device: Optional[DeviceLikeType] = ..., dtype: Optional[dtype] = ..., + non_blocking: bool = ...) -> Self: + ... + + @overload + def to(self, dtype: dtype, non_blocking: bool = ...) -> Self: + ... + + @overload + def to(self, tensor: Tensor, non_blocking: bool = ...) -> Self: + ... + + def to(self, *args, **kwargs): + r"""Move and/or cast the parameters and buffers. + + This can be called as + + .. function:: to(device=None, dtype=None, non_blocking=False) + :noindex: + + .. function:: to(dtype, non_blocking=False) + :noindex: + + .. function:: to(tensor, non_blocking=False) + :noindex: + + .. function:: to(memory_format=torch.channels_last) + :noindex: + + Its signature is similar to :meth:`torch.Tensor.to`, but only accepts + floating point or complex :attr:`dtype`\ s. In addition, this method will + only cast the floating point or complex parameters and buffers to :attr:`dtype` + (if given). The integral parameters and buffers will be moved + :attr:`device`, if that is given, but with dtypes unchanged. When + :attr:`non_blocking` is set, it tries to convert/move asynchronously + with respect to the host if possible, e.g., moving CPU Tensors with + pinned memory to CUDA devices. + + See below for examples. + + .. note:: + This method modifies the module in-place. + + Args: + device (:class:`torch.device`): the desired device of the parameters + and buffers in this module + dtype (:class:`torch.dtype`): the desired floating point or complex dtype of + the parameters and buffers in this module + tensor (torch.Tensor): Tensor whose dtype and device are the desired + dtype and device for all parameters and buffers in this module + memory_format (:class:`torch.memory_format`): the desired memory + format for 4D parameters and buffers in this module (keyword + only argument) + + Returns: + Module: self + + Examples:: + + >>> # xdoctest: +IGNORE_WANT("non-deterministic") + >>> linear = nn.Linear(2, 2) + >>> linear.weight + Parameter containing: + tensor([[ 0.1913, -0.3420], + [-0.5113, -0.2325]]) + >>> linear.to(torch.double) + Linear(in_features=2, out_features=2, bias=True) + >>> linear.weight + Parameter containing: + tensor([[ 0.1913, -0.3420], + [-0.5113, -0.2325]], dtype=torch.float64) + >>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_CUDA1) + >>> gpu1 = torch.device("cuda:1") + >>> linear.to(gpu1, dtype=torch.half, non_blocking=True) + Linear(in_features=2, out_features=2, bias=True) + >>> linear.weight + Parameter containing: + tensor([[ 0.1914, -0.3420], + [-0.5112, -0.2324]], dtype=torch.float16, device='cuda:1') + >>> cpu = torch.device("cpu") + >>> linear.to(cpu) + Linear(in_features=2, out_features=2, bias=True) + >>> linear.weight + Parameter containing: + tensor([[ 0.1914, -0.3420], + [-0.5112, -0.2324]], dtype=torch.float16) + + >>> linear = nn.Linear(2, 2, bias=None).to(torch.cdouble) + >>> linear.weight + Parameter containing: + tensor([[ 0.3741+0.j, 0.2382+0.j], + [ 0.5593+0.j, -0.4443+0.j]], dtype=torch.complex128) + >>> linear(torch.ones(3, 2, dtype=torch.cdouble)) + tensor([[0.6122+0.j, 0.1150+0.j], + [0.6122+0.j, 0.1150+0.j], + [0.6122+0.j, 0.1150+0.j]], dtype=torch.complex128) + + """ + device, dtype, non_blocking, convert_to_format = torch._C._nn._parse_to(*args, **kwargs) + + if dtype is not None: + if not (dtype.is_floating_point or dtype.is_complex): + raise TypeError('nn.Module.to only accepts floating point or complex ' + f'dtypes, but got desired dtype={dtype}') + if dtype.is_complex: + warnings.warn( + "Complex modules are a new feature under active development whose design may change, " + "and some modules might not work as expected when using complex tensors as parameters or buffers. " + "Please file an issue at https://github.com/pytorch/pytorch/issues/new?template=bug-report.yml " + "if a complex module does not work as expected.") + + def convert(t): + try: + if convert_to_format is not None and t.dim() in (4, 5): + return t.to( + device, + dtype if t.is_floating_point() or t.is_complex() else None, + non_blocking, + memory_format=convert_to_format, + ) + return t.to( + device, + dtype if t.is_floating_point() or t.is_complex() else None, + non_blocking, + ) + except NotImplementedError as e: + if str(e) == "Cannot copy out of meta tensor; no data!": + raise NotImplementedError( + f"{e} Please use torch.nn.Module.to_empty() instead of torch.nn.Module.to() " + f"when moving module from meta to a different device." + ) from None + else: + raise + + return self._apply(convert) + + def register_full_backward_pre_hook( + self, + hook: Callable[["Module", _grad_t], Union[None, _grad_t]], + prepend: bool = False, + ) -> RemovableHandle: + r"""Register a backward pre-hook on the module. + + The hook will be called every time the gradients for the module are computed. + The hook should have the following signature:: + + hook(module, grad_output) -> tuple[Tensor] or None + + The :attr:`grad_output` is a tuple. The hook should + not modify its arguments, but it can optionally return a new gradient with + respect to the output that will be used in place of :attr:`grad_output` in + subsequent computations. Entries in :attr:`grad_output` will be ``None`` for + all non-Tensor arguments. + + For technical reasons, when this hook is applied to a Module, its forward function will + receive a view of each Tensor passed to the Module. Similarly the caller will receive a view + of each Tensor returned by the Module's forward function. + + .. warning :: + Modifying inputs inplace is not allowed when using backward hooks and + will raise an error. + + Args: + hook (Callable): The user-defined hook to be registered. + prepend (bool): If true, the provided ``hook`` will be fired before + all existing ``backward_pre`` hooks on this + :class:`torch.nn.modules.Module`. Otherwise, the provided + ``hook`` will be fired after all existing ``backward_pre`` hooks + on this :class:`torch.nn.modules.Module`. Note that global + ``backward_pre`` hooks registered with + :func:`register_module_full_backward_pre_hook` will fire before + all hooks registered by this method. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + handle = hooks.RemovableHandle(self._backward_pre_hooks) + self._backward_pre_hooks[handle.id] = hook + if prepend: + self._backward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined] + return handle + + def register_backward_hook( + self, hook: Callable[['Module', _grad_t, _grad_t], Union[None, _grad_t]] + ) -> RemovableHandle: + r"""Register a backward hook on the module. + + This function is deprecated in favor of :meth:`~torch.nn.Module.register_full_backward_hook` and + the behavior of this function will change in future versions. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + if self._is_full_backward_hook is True: + raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a " + "single Module. Please use only one of them.") + + self._is_full_backward_hook = False + + handle = hooks.RemovableHandle(self._backward_hooks) + self._backward_hooks[handle.id] = hook + return handle + + def register_full_backward_hook( + self, + hook: Callable[["Module", _grad_t, _grad_t], Union[None, _grad_t]], + prepend: bool = False, + ) -> RemovableHandle: + r"""Register a backward hook on the module. + + The hook will be called every time the gradients with respect to a module + are computed, i.e. the hook will execute if and only if the gradients with + respect to module outputs are computed. The hook should have the following + signature:: + + hook(module, grad_input, grad_output) -> tuple(Tensor) or None + + The :attr:`grad_input` and :attr:`grad_output` are tuples that contain the gradients + with respect to the inputs and outputs respectively. The hook should + not modify its arguments, but it can optionally return a new gradient with + respect to the input that will be used in place of :attr:`grad_input` in + subsequent computations. :attr:`grad_input` will only correspond to the inputs given + as positional arguments and all kwarg arguments are ignored. Entries + in :attr:`grad_input` and :attr:`grad_output` will be ``None`` for all non-Tensor + arguments. + + For technical reasons, when this hook is applied to a Module, its forward function will + receive a view of each Tensor passed to the Module. Similarly the caller will receive a view + of each Tensor returned by the Module's forward function. + + .. warning :: + Modifying inputs or outputs inplace is not allowed when using backward hooks and + will raise an error. + + Args: + hook (Callable): The user-defined hook to be registered. + prepend (bool): If true, the provided ``hook`` will be fired before + all existing ``backward`` hooks on this + :class:`torch.nn.modules.Module`. Otherwise, the provided + ``hook`` will be fired after all existing ``backward`` hooks on + this :class:`torch.nn.modules.Module`. Note that global + ``backward`` hooks registered with + :func:`register_module_full_backward_hook` will fire before + all hooks registered by this method. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + + """ + if self._is_full_backward_hook is False: + raise RuntimeError("Cannot use both regular backward hooks and full backward hooks on a " + "single Module. Please use only one of them.") + + self._is_full_backward_hook = True + + handle = hooks.RemovableHandle(self._backward_hooks) + self._backward_hooks[handle.id] = hook + if prepend: + self._backward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined] + return handle + + def _get_backward_hooks(self): + r"""Return the backward hooks for use in the call function. + + It returns two lists, one with the full backward hooks and one with the non-full + backward hooks. + """ + full_backward_hooks: List[Callable] = [] + if (_global_is_full_backward_hook is True): + full_backward_hooks += _global_backward_hooks.values() + if (self._is_full_backward_hook is True): + full_backward_hooks += self._backward_hooks.values() + + non_full_backward_hooks: List[Callable] = [] + if (_global_is_full_backward_hook is False): + non_full_backward_hooks += _global_backward_hooks.values() + if (self._is_full_backward_hook is False): + non_full_backward_hooks += self._backward_hooks.values() + + return full_backward_hooks, non_full_backward_hooks + + def _get_backward_pre_hooks(self): + backward_pre_hooks: List[Callable] = [] + backward_pre_hooks += _global_backward_pre_hooks.values() + backward_pre_hooks += self._backward_pre_hooks.values() + + return backward_pre_hooks + + def _maybe_warn_non_full_backward_hook(self, inputs, result, grad_fn): + if not isinstance(result, torch.Tensor): + if not (isinstance(result, tuple) and all(isinstance(r, torch.Tensor) for r in result)): + warnings.warn("Using non-full backward hooks on a Module that does not return a " + "single Tensor or a tuple of Tensors is deprecated and will be removed " + "in future versions. This hook will be missing some of the grad_output. " + "Please use register_full_backward_hook to get the documented behavior.") + return + else: + result = (result,) + + if not isinstance(inputs, torch.Tensor): + if not (isinstance(inputs, tuple) and all(isinstance(i, torch.Tensor) for i in inputs)): + warnings.warn("Using non-full backward hooks on a Module that does not take as input a " + "single Tensor or a tuple of Tensors is deprecated and will be removed " + "in future versions. This hook will be missing some of the grad_input. " + "Please use register_full_backward_hook to get the documented behavior.") + return + else: + inputs = (inputs,) + + # At this point we are sure that inputs and result are tuple of Tensors + out_grad_fn = {r.grad_fn for r in result if r.grad_fn is not None} + if len(out_grad_fn) == 0 or (len(out_grad_fn) == 1 and grad_fn not in out_grad_fn): + warnings.warn("Using a non-full backward hook when outputs are nested in python data structure " + "is deprecated and will be removed in future versions. This hook will be missing " + "some grad_output.") + elif len(out_grad_fn) > 1: + warnings.warn("Using a non-full backward hook when outputs are generated by different autograd Nodes " + "is deprecated and will be removed in future versions. This hook will be missing " + "some grad_output. Please use register_full_backward_hook to get the documented behavior.") + else: + # At this point the grad_output part of the hook will most likely be correct + inputs_grad_fn = {i.grad_fn for i in inputs if i.grad_fn is not None} + + next_functions = {n[0] for n in grad_fn.next_functions} + + if inputs_grad_fn != next_functions: + warnings.warn("Using a non-full backward hook when the forward contains multiple autograd Nodes " + "is deprecated and will be removed in future versions. This hook will be missing " + "some grad_input. Please use register_full_backward_hook to get the documented " + "behavior.") + + def register_forward_pre_hook( + self, + hook: Union[ + Callable[[T, Tuple[Any, ...]], Optional[Any]], + Callable[[T, Tuple[Any, ...], Dict[str, Any]], Optional[Tuple[Any, Dict[str, Any]]]], + ], + *, + prepend: bool = False, + with_kwargs: bool = False, + ) -> RemovableHandle: + r"""Register a forward pre-hook on the module. + + The hook will be called every time before :func:`forward` is invoked. + + + If ``with_kwargs`` is false or not specified, the input contains only + the positional arguments given to the module. Keyword arguments won't be + passed to the hooks and only to the ``forward``. The hook can modify the + input. User can either return a tuple or a single modified value in the + hook. We will wrap the value into a tuple if a single value is returned + (unless that value is already a tuple). The hook should have the + following signature:: + + hook(module, args) -> None or modified input + + If ``with_kwargs`` is true, the forward pre-hook will be passed the + kwargs given to the forward function. And if the hook modifies the + input, both the args and kwargs should be returned. The hook should have + the following signature:: + + hook(module, args, kwargs) -> None or a tuple of modified input and kwargs + + Args: + hook (Callable): The user defined hook to be registered. + prepend (bool): If true, the provided ``hook`` will be fired before + all existing ``forward_pre`` hooks on this + :class:`torch.nn.modules.Module`. Otherwise, the provided + ``hook`` will be fired after all existing ``forward_pre`` hooks + on this :class:`torch.nn.modules.Module`. Note that global + ``forward_pre`` hooks registered with + :func:`register_module_forward_pre_hook` will fire before all + hooks registered by this method. + Default: ``False`` + with_kwargs (bool): If true, the ``hook`` will be passed the kwargs + given to the forward function. + Default: ``False`` + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle( + self._forward_pre_hooks, + extra_dict=self._forward_pre_hooks_with_kwargs + ) + self._forward_pre_hooks[handle.id] = hook + if with_kwargs: + self._forward_pre_hooks_with_kwargs[handle.id] = True + + if prepend: + self._forward_pre_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined] + return handle + + def register_forward_hook( + self, + hook: Union[ + Callable[[T, Tuple[Any, ...], Any], Optional[Any]], + Callable[[T, Tuple[Any, ...], Dict[str, Any], Any], Optional[Any]], + ], + *, + prepend: bool = False, + with_kwargs: bool = False, + always_call: bool = False, + ) -> RemovableHandle: + r"""Register a forward hook on the module. + + The hook will be called every time after :func:`forward` has computed an output. + + If ``with_kwargs`` is ``False`` or not specified, the input contains only + the positional arguments given to the module. Keyword arguments won't be + passed to the hooks and only to the ``forward``. The hook can modify the + output. It can modify the input inplace but it will not have effect on + forward since this is called after :func:`forward` is called. The hook + should have the following signature:: + + hook(module, args, output) -> None or modified output + + If ``with_kwargs`` is ``True``, the forward hook will be passed the + ``kwargs`` given to the forward function and be expected to return the + output possibly modified. The hook should have the following signature:: + + hook(module, args, kwargs, output) -> None or modified output + + Args: + hook (Callable): The user defined hook to be registered. + prepend (bool): If ``True``, the provided ``hook`` will be fired + before all existing ``forward`` hooks on this + :class:`torch.nn.modules.Module`. Otherwise, the provided + ``hook`` will be fired after all existing ``forward`` hooks on + this :class:`torch.nn.modules.Module`. Note that global + ``forward`` hooks registered with + :func:`register_module_forward_hook` will fire before all hooks + registered by this method. + Default: ``False`` + with_kwargs (bool): If ``True``, the ``hook`` will be passed the + kwargs given to the forward function. + Default: ``False`` + always_call (bool): If ``True`` the ``hook`` will be run regardless of + whether an exception is raised while calling the Module. + Default: ``False`` + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle( + self._forward_hooks, + extra_dict=[self._forward_hooks_with_kwargs, self._forward_hooks_always_called], + ) + self._forward_hooks[handle.id] = hook + if with_kwargs: + self._forward_hooks_with_kwargs[handle.id] = True + if always_call: + self._forward_hooks_always_called[handle.id] = True + if prepend: + self._forward_hooks.move_to_end(handle.id, last=False) # type: ignore[attr-defined] + return handle + + def _slow_forward(self, *input, **kwargs): + tracing_state = torch._C._get_tracing_state() + if not tracing_state or isinstance(self.forward, torch._C.ScriptMethod): + return self.forward(*input, **kwargs) + recording_scopes = torch.jit._trace._trace_module_map is not None + if recording_scopes: + # type ignore was added because at this point one knows that + # torch.jit._trace._trace_module_map is not Optional and has type Dict[Any, Any] + name = torch.jit._trace._trace_module_map[self] if self in torch.jit._trace._trace_module_map else None # type: ignore[index, operator] # noqa: B950 + if name: + tracing_state.push_scope(name) + else: + recording_scopes = False + try: + result = self.forward(*input, **kwargs) + finally: + if recording_scopes: + tracing_state.pop_scope() + return result + + def _wrapped_call_impl(self, *args, **kwargs): + if self._compiled_call_impl is not None: + return self._compiled_call_impl(*args, **kwargs) # type: ignore[misc] + else: + return self._call_impl(*args, **kwargs) + + def _call_impl(self, *args, **kwargs): + forward_call = (self._slow_forward if torch._C._get_tracing_state() else self.forward) + # If we don't have any hooks, we want to skip the rest of the logic in + # this function, and just call forward. + if not (self._backward_hooks or self._backward_pre_hooks or self._forward_hooks or self._forward_pre_hooks + or _global_backward_pre_hooks or _global_backward_hooks + or _global_forward_hooks or _global_forward_pre_hooks): + return forward_call(*args, **kwargs) + + try: + result = None + called_always_called_hooks = set() + + full_backward_hooks, non_full_backward_hooks = [], [] + backward_pre_hooks = [] + if self._backward_pre_hooks or _global_backward_pre_hooks: + backward_pre_hooks = self._get_backward_pre_hooks() + + if self._backward_hooks or _global_backward_hooks: + full_backward_hooks, non_full_backward_hooks = self._get_backward_hooks() + + if _global_forward_pre_hooks or self._forward_pre_hooks: + for hook_id, hook in ( + *_global_forward_pre_hooks.items(), + *self._forward_pre_hooks.items(), + ): + if hook_id in self._forward_pre_hooks_with_kwargs: + args_kwargs_result = hook(self, args, kwargs) # type: ignore[misc] + if args_kwargs_result is not None: + if isinstance(args_kwargs_result, tuple) and len(args_kwargs_result) == 2: + args, kwargs = args_kwargs_result + else: + raise RuntimeError( + "forward pre-hook must return None or a tuple " + f"of (new_args, new_kwargs), but got {args_kwargs_result}." + ) + else: + args_result = hook(self, args) + if args_result is not None: + if not isinstance(args_result, tuple): + args_result = (args_result,) + args = args_result + + bw_hook = None + if full_backward_hooks or backward_pre_hooks: + bw_hook = hooks.BackwardHook(self, full_backward_hooks, backward_pre_hooks) + args = bw_hook.setup_input_hook(args) + + result = forward_call(*args, **kwargs) + if _global_forward_hooks or self._forward_hooks: + for hook_id, hook in ( + *_global_forward_hooks.items(), + *self._forward_hooks.items(), + ): + # mark that always called hook is run + if hook_id in self._forward_hooks_always_called or hook_id in _global_forward_hooks_always_called: + called_always_called_hooks.add(hook_id) + + if hook_id in self._forward_hooks_with_kwargs: + hook_result = hook(self, args, kwargs, result) + else: + hook_result = hook(self, args, result) + + if hook_result is not None: + result = hook_result + + if bw_hook: + if not isinstance(result, (torch.Tensor, tuple)): + warnings.warn("For backward hooks to be called," + " module output should be a Tensor or a tuple of Tensors" + f" but received {type(result)}") + result = bw_hook.setup_output_hook(result) + + # Handle the non-full backward hooks + if non_full_backward_hooks: + var = result + while not isinstance(var, torch.Tensor): + if isinstance(var, dict): + var = next(v for v in var.values() if isinstance(v, torch.Tensor)) + else: + var = var[0] + grad_fn = var.grad_fn + if grad_fn is not None: + for hook in non_full_backward_hooks: + grad_fn.register_hook(_WrappedHook(hook, self)) + self._maybe_warn_non_full_backward_hook(args, result, grad_fn) + + return result + + except Exception: + # run always called hooks if they have not already been run + # For now only forward hooks have the always_call option but perhaps + # this functionality should be added to full backward hooks as well. + for hook_id, hook in _global_forward_hooks.items(): + if hook_id in _global_forward_hooks_always_called and hook_id not in called_always_called_hooks: # type: ignore[possibly-undefined] + try: + hook_result = hook(self, args, result) # type: ignore[possibly-undefined] + if hook_result is not None: + result = hook_result + except Exception as e: + warnings.warn("global module forward hook with ``always_call=True`` raised an exception " + f"that was silenced as another error was raised in forward: {str(e)}") + continue + + for hook_id, hook in self._forward_hooks.items(): + if hook_id in self._forward_hooks_always_called and hook_id not in called_always_called_hooks: # type: ignore[possibly-undefined] + try: + if hook_id in self._forward_hooks_with_kwargs: + hook_result = hook(self, args, kwargs, result) # type: ignore[possibly-undefined] + else: + hook_result = hook(self, args, result) # type: ignore[possibly-undefined] + if hook_result is not None: + result = hook_result + except Exception as e: + warnings.warn("module forward hook with ``always_call=True`` raised an exception " + f"that was silenced as another error was raised in forward: {str(e)}") + continue + # raise exception raised in try block + raise + + + __call__ : Callable[..., Any] = _wrapped_call_impl + + def __getstate__(self): + state = self.__dict__.copy() + state.pop("_compiled_call_impl", None) + return state + + def __setstate__(self, state): + self.__dict__.update(state) + + # Support loading old checkpoints that don't have the following attrs: + if '_forward_pre_hooks' not in self.__dict__: + self._forward_pre_hooks = OrderedDict() + if '_forward_pre_hooks_with_kwargs' not in self.__dict__: + self._forward_pre_hooks_with_kwargs = OrderedDict() + if '_forward_hooks_with_kwargs' not in self.__dict__: + self._forward_hooks_with_kwargs = OrderedDict() + if '_forward_hooks_always_called' not in self.__dict__: + self._forward_hooks_always_called = OrderedDict() + if '_state_dict_hooks' not in self.__dict__: + self._state_dict_hooks = OrderedDict() + if '_state_dict_pre_hooks' not in self.__dict__: + self._state_dict_pre_hooks = OrderedDict() + if '_load_state_dict_pre_hooks' not in self.__dict__: + self._load_state_dict_pre_hooks = OrderedDict() + if '_load_state_dict_post_hooks' not in self.__dict__: + self._load_state_dict_post_hooks = OrderedDict() + if '_non_persistent_buffers_set' not in self.__dict__: + self._non_persistent_buffers_set = set() + if '_is_full_backward_hook' not in self.__dict__: + self._is_full_backward_hook = None + if '_backward_pre_hooks' not in self.__dict__: + self._backward_pre_hooks = OrderedDict() + + # On the return type: + # We choose to return `Any` in the `__getattr__` type signature instead of a more strict `Union[Tensor, Module]`. + # This is done for better interop with various type checkers for the end users. + # Having a stricter return type doesn't play nicely with `register_buffer()` and forces + # people to excessively use type-ignores, asserts, casts, etc. + # See full discussion on the problems with returning `Union` here + # https://github.com/microsoft/pyright/issues/4213 + def __getattr__(self, name: str) -> Any: + if '_parameters' in self.__dict__: + _parameters = self.__dict__['_parameters'] + if name in _parameters: + return _parameters[name] + if '_buffers' in self.__dict__: + _buffers = self.__dict__['_buffers'] + if name in _buffers: + return _buffers[name] + if '_modules' in self.__dict__: + modules = self.__dict__['_modules'] + if name in modules: + return modules[name] + raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'") + + def __setattr__(self, name: str, value: Union[Tensor, 'Module']) -> None: + def remove_from(*dicts_or_sets): + for d in dicts_or_sets: + if name in d: + if isinstance(d, dict): + del d[name] + else: + d.discard(name) + + params = self.__dict__.get('_parameters') + if isinstance(value, Parameter): + if params is None: + raise AttributeError( + "cannot assign parameters before Module.__init__() call") + remove_from(self.__dict__, self._buffers, self._modules, self._non_persistent_buffers_set) + self.register_parameter(name, value) + elif params is not None and name in params: + if value is not None: + raise TypeError(f"cannot assign '{torch.typename(value)}' as parameter '{name}' " + "(torch.nn.Parameter or None expected)" + ) + self.register_parameter(name, value) + else: + modules = self.__dict__.get('_modules') + if isinstance(value, Module): + if modules is None: + raise AttributeError( + "cannot assign module before Module.__init__() call") + remove_from(self.__dict__, self._parameters, self._buffers, self._non_persistent_buffers_set) + for hook in _global_module_registration_hooks.values(): + output = hook(self, name, value) + if output is not None: + value = output + modules[name] = value + elif modules is not None and name in modules: + if value is not None: + raise TypeError(f"cannot assign '{torch.typename(value)}' as child module '{name}' " + "(torch.nn.Module or None expected)" + ) + for hook in _global_module_registration_hooks.values(): + output = hook(self, name, value) + if output is not None: + value = output + modules[name] = value + else: + buffers = self.__dict__.get('_buffers') + if buffers is not None and name in buffers: + if value is not None and not isinstance(value, torch.Tensor): + raise TypeError(f"cannot assign '{torch.typename(value)}' as buffer '{name}' " + "(torch.Tensor or None expected)" + ) + for hook in _global_buffer_registration_hooks.values(): + output = hook(self, name, value) + if output is not None: + value = output + buffers[name] = value + else: + super().__setattr__(name, value) + + def __delattr__(self, name): + if name in self._parameters: + del self._parameters[name] + elif name in self._buffers: + del self._buffers[name] + self._non_persistent_buffers_set.discard(name) + elif name in self._modules: + del self._modules[name] + else: + super().__delattr__(name) + + def _register_state_dict_hook(self, hook): + r"""Register a state-dict hook. + + These hooks will be called with arguments: `self`, `state_dict`, + `prefix`, `local_metadata`, after the `state_dict` of `self` is set. + Note that only parameters and buffers of `self` or its children are + guaranteed to exist in `state_dict`. The hooks may modify `state_dict` + inplace or return a new one. + """ + handle = hooks.RemovableHandle(self._state_dict_hooks) + self._state_dict_hooks[handle.id] = hook + return handle + + def register_state_dict_pre_hook(self, hook): + r"""Register a pre-hook for the :meth:`~torch.nn.Module.state_dict` method. + + These hooks will be called with arguments: ``self``, ``prefix``, + and ``keep_vars`` before calling ``state_dict`` on ``self``. The registered + hooks can be used to perform pre-processing before the ``state_dict`` + call is made. + """ + handle = hooks.RemovableHandle(self._state_dict_pre_hooks) + self._state_dict_pre_hooks[handle.id] = hook + return handle + + def _save_to_state_dict(self, destination, prefix, keep_vars): + r"""Save module state to the `destination` dictionary. + + The `destination` dictionary will contain the state + of the module, but not its descendants. This is called on every + submodule in :meth:`~torch.nn.Module.state_dict`. + + In rare cases, subclasses can achieve class-specific behavior by + overriding this method with custom logic. + + Args: + destination (dict): a dict where state will be stored + prefix (str): the prefix for parameters and buffers used in this + module + """ + for name, param in self._parameters.items(): + if param is not None: + destination[prefix + name] = param if keep_vars else param.detach() + for name, buf in self._buffers.items(): + if buf is not None and name not in self._non_persistent_buffers_set: + destination[prefix + name] = buf if keep_vars else buf.detach() + extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX + if getattr(self.__class__, "get_extra_state", Module.get_extra_state) is not Module.get_extra_state: + destination[extra_state_key] = self.get_extra_state() + + # The user can pass an optional arbitrary mappable object to `state_dict`, in which case `state_dict` returns + # back that same object. But if they pass nothing, an `OrderedDict` is created and returned. + T_destination = TypeVar('T_destination', bound=Dict[str, Any]) + + @overload + def state_dict(self, *, destination: T_destination, prefix: str = ..., keep_vars: bool = ...) -> T_destination: + ... + + @overload + def state_dict(self, *, prefix: str = ..., keep_vars: bool = ...) -> Dict[str, Any]: + ... + + # TODO: Change `*args` to `*` and remove the corresponding warning in docs when BC allows. + # Also remove the logic for arg parsing together. + def state_dict(self, *args, destination=None, prefix='', keep_vars=False): + r"""Return a dictionary containing references to the whole state of the module. + + Both parameters and persistent buffers (e.g. running averages) are + included. Keys are corresponding parameter and buffer names. + Parameters and buffers set to ``None`` are not included. + + .. note:: + The returned object is a shallow copy. It contains references + to the module's parameters and buffers. + + .. warning:: + Currently ``state_dict()`` also accepts positional arguments for + ``destination``, ``prefix`` and ``keep_vars`` in order. However, + this is being deprecated and keyword arguments will be enforced in + future releases. + + .. warning:: + Please avoid the use of argument ``destination`` as it is not + designed for end-users. + + Args: + destination (dict, optional): If provided, the state of module will + be updated into the dict and the same object is returned. + Otherwise, an ``OrderedDict`` will be created and returned. + Default: ``None``. + prefix (str, optional): a prefix added to parameter and buffer + names to compose the keys in state_dict. Default: ``''``. + keep_vars (bool, optional): by default the :class:`~torch.Tensor` s + returned in the state dict are detached from autograd. If it's + set to ``True``, detaching will not be performed. + Default: ``False``. + + Returns: + dict: + a dictionary containing a whole state of the module + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> module.state_dict().keys() + ['bias', 'weight'] + + """ + # TODO: Remove `args` and the parsing logic when BC allows. + if len(args) > 0: + if destination is None: + destination = args[0] + if len(args) > 1 and prefix == '': + prefix = args[1] + if len(args) > 2 and keep_vars is False: + keep_vars = args[2] + # DeprecationWarning is ignored by default + warnings.warn( + "Positional args are being deprecated, use kwargs instead. Refer to " + "https://pytorch.org/docs/master/generated/torch.nn.Module.html#torch.nn.Module.state_dict" + " for details.") + + if destination is None: + destination = OrderedDict() + destination._metadata = OrderedDict() + + local_metadata = dict(version=self._version) + if hasattr(destination, "_metadata"): + destination._metadata[prefix[:-1]] = local_metadata + + for hook in self._state_dict_pre_hooks.values(): + hook(self, prefix, keep_vars) + self._save_to_state_dict(destination, prefix, keep_vars) + for name, module in self._modules.items(): + if module is not None: + module.state_dict(destination=destination, prefix=prefix + name + '.', keep_vars=keep_vars) + for hook in self._state_dict_hooks.values(): + hook_result = hook(self, destination, prefix, local_metadata) + if hook_result is not None: + destination = hook_result + return destination + + def _register_load_state_dict_pre_hook(self, hook, with_module=False): + r"""Register a pre-hook for the :meth:`~torch.nn.Module.load_state_dict` method. + + These hooks will be called with arguments: `state_dict`, `prefix`, + `local_metadata`, `strict`, `missing_keys`, `unexpected_keys`, + `error_msgs`, before loading `state_dict` into `self`. These arguments + are exactly the same as those of `_load_from_state_dict`. + + If ``with_module`` is ``True``, then the first argument to the hook is + an instance of the module. + + Arguments: + hook (Callable): Callable hook that will be invoked before + loading the state dict. + with_module (bool, optional): Whether or not to pass the module + instance to the hook as the first parameter. + """ + handle = hooks.RemovableHandle(self._load_state_dict_pre_hooks) + self._load_state_dict_pre_hooks[handle.id] = _WrappedHook(hook, self if with_module else None) + return handle + + def register_load_state_dict_post_hook(self, hook): + r"""Register a post hook to be run after module's ``load_state_dict`` is called. + + It should have the following signature:: + hook(module, incompatible_keys) -> None + + The ``module`` argument is the current module that this hook is registered + on, and the ``incompatible_keys`` argument is a ``NamedTuple`` consisting + of attributes ``missing_keys`` and ``unexpected_keys``. ``missing_keys`` + is a ``list`` of ``str`` containing the missing keys and + ``unexpected_keys`` is a ``list`` of ``str`` containing the unexpected keys. + + The given incompatible_keys can be modified inplace if needed. + + Note that the checks performed when calling :func:`load_state_dict` with + ``strict=True`` are affected by modifications the hook makes to + ``missing_keys`` or ``unexpected_keys``, as expected. Additions to either + set of keys will result in an error being thrown when ``strict=True``, and + clearing out both missing and unexpected keys will avoid an error. + + Returns: + :class:`torch.utils.hooks.RemovableHandle`: + a handle that can be used to remove the added hook by calling + ``handle.remove()`` + """ + handle = hooks.RemovableHandle(self._load_state_dict_post_hooks) + self._load_state_dict_post_hooks[handle.id] = hook + return handle + + + def _load_from_state_dict(self, state_dict, prefix, local_metadata, strict, + missing_keys, unexpected_keys, error_msgs): + r"""Copy parameters and buffers from :attr:`state_dict` into only this module, but not its descendants. + + This is called on every submodule + in :meth:`~torch.nn.Module.load_state_dict`. Metadata saved for this + module in input :attr:`state_dict` is provided as :attr:`local_metadata`. + For state dicts without metadata, :attr:`local_metadata` is empty. + Subclasses can achieve class-specific backward compatible loading using + the version number at `local_metadata.get("version", None)`. + Additionally, :attr:`local_metadata` can also contain the key + `assign_to_params_buffers` that indicates whether keys should be + assigned their corresponding tensor in the state_dict. + + .. note:: + :attr:`state_dict` is not the same object as the input + :attr:`state_dict` to :meth:`~torch.nn.Module.load_state_dict`. So + it can be modified. + + Args: + state_dict (dict): a dict containing parameters and + persistent buffers. + prefix (str): the prefix for parameters and buffers used in this + module + local_metadata (dict): a dict containing the metadata for this module. + See + strict (bool): whether to strictly enforce that the keys in + :attr:`state_dict` with :attr:`prefix` match the names of + parameters and buffers in this module + missing_keys (list of str): if ``strict=True``, add missing keys to + this list + unexpected_keys (list of str): if ``strict=True``, add unexpected + keys to this list + error_msgs (list of str): error messages should be added to this + list, and will be reported together in + :meth:`~torch.nn.Module.load_state_dict` + """ + for hook in self._load_state_dict_pre_hooks.values(): + hook(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs) + + persistent_buffers = {k: v for k, v in self._buffers.items() if k not in self._non_persistent_buffers_set} + local_name_params = itertools.chain(self._parameters.items(), persistent_buffers.items()) + local_state = {k: v for k, v in local_name_params if v is not None} + assign_to_params_buffers = local_metadata.get("assign_to_params_buffers", False) + use_swap_tensors = torch.__future__.get_swap_module_params_on_conversion() + + for name, param in local_state.items(): + key = prefix + name + if key in state_dict: + input_param = state_dict[key] + if not torch.overrides.is_tensor_like(input_param): + error_msgs.append(f'While copying the parameter named "{key}", ' + 'expected torch.Tensor or Tensor-like object from checkpoint but ' + f'received {type(input_param)}' + ) + continue + + # This is used to avoid copying uninitialized parameters into + # non-lazy modules, since they dont have the hook to do the checks + # in such case, it will error when accessing the .shape attribute. + is_param_lazy = torch.nn.parameter.is_lazy(param) + # Backward compatibility: loading 1-dim tensor from 0.3.* to version 0.4+ + if not is_param_lazy and len(param.shape) == 0 and len(input_param.shape) == 1: + input_param = input_param[0] + + if not is_param_lazy and input_param.shape != param.shape: + # local shape should match the one in checkpoint + error_msgs.append('size mismatch for {}: copying a param with shape {} from checkpoint, ' + 'the shape in current model is {}.' + .format(key, input_param.shape, param.shape)) + continue + + if param.is_meta and not input_param.is_meta and not assign_to_params_buffers: + warnings.warn(f'for {key}: copying from a non-meta parameter in the checkpoint to a meta ' + 'parameter in the current model, which is a no-op. (Did you mean to ' + 'pass `assign=True` to assign items in the state dictionary to their ' + 'corresponding key in the module instead of copying them in place?)') + + try: + with torch.no_grad(): + if use_swap_tensors: + new_input_param = param.module_load(input_param, assign=assign_to_params_buffers) + if id(new_input_param) == id(input_param) or id(new_input_param) == id(param): + raise RuntimeError("module_load returned one of self or other, please .detach() " + "the result if returning one of the inputs in module_load") + if (isinstance(param, torch.nn.Parameter)): + if not isinstance(new_input_param, torch.nn.Parameter): + new_input_param = torch.nn.Parameter(new_input_param, requires_grad=param.requires_grad) + else: + new_input_param.requires_grad_(param.requires_grad) + torch.utils.swap_tensors(param, new_input_param) + del new_input_param + elif assign_to_params_buffers: + # Shape checks are already done above + if (isinstance(param, torch.nn.Parameter)): + if not isinstance(input_param, torch.nn.Parameter): + input_param = torch.nn.Parameter(input_param, requires_grad=param.requires_grad) + else: + input_param.requires_grad_(param.requires_grad) + setattr(self, name, input_param) + else: + param.copy_(input_param) + except Exception as ex: + action = "swapping" if use_swap_tensors else "copying" + error_msgs.append(f'While {action} the parameter named "{key}", ' + f'whose dimensions in the model are {param.size()} and ' + f'whose dimensions in the checkpoint are {input_param.size()}, ' + f'an exception occurred : {ex.args}.' + ) + elif strict: + missing_keys.append(key) + + extra_state_key = prefix + _EXTRA_STATE_KEY_SUFFIX + if getattr(self.__class__, "set_extra_state", Module.set_extra_state) is not Module.set_extra_state: + if extra_state_key in state_dict: + self.set_extra_state(state_dict[extra_state_key]) + elif strict: + missing_keys.append(extra_state_key) + elif strict and (extra_state_key in state_dict): + unexpected_keys.append(extra_state_key) + + if strict: + for key in state_dict.keys(): + if key.startswith(prefix) and key != extra_state_key: + input_name = key[len(prefix):] + input_name = input_name.split('.', 1)[0] # get the name of param/buffer/child + if input_name not in self._modules and input_name not in local_state: + unexpected_keys.append(key) + + def load_state_dict(self, state_dict: Mapping[str, Any], + strict: bool = True, assign: bool = False): + r"""Copy parameters and buffers from :attr:`state_dict` into this module and its descendants. + + If :attr:`strict` is ``True``, then + the keys of :attr:`state_dict` must exactly match the keys returned + by this module's :meth:`~torch.nn.Module.state_dict` function. + + .. warning:: + If :attr:`assign` is ``True`` the optimizer must be created after + the call to :attr:`load_state_dict` unless + :func:`~torch.__future__.get_swap_module_params_on_conversion` is ``True``. + + Args: + state_dict (dict): a dict containing parameters and + persistent buffers. + strict (bool, optional): whether to strictly enforce that the keys + in :attr:`state_dict` match the keys returned by this module's + :meth:`~torch.nn.Module.state_dict` function. Default: ``True`` + assign (bool, optional): When ``False``, the properties of the tensors + in the current module are preserved while when ``True``, the + properties of the Tensors in the state dict are preserved. The only + exception is the ``requires_grad`` field of :class:`~torch.nn.Parameter`s + for which the value from the module is preserved. + Default: ``False`` + + Returns: + ``NamedTuple`` with ``missing_keys`` and ``unexpected_keys`` fields: + * **missing_keys** is a list of str containing the missing keys + * **unexpected_keys** is a list of str containing the unexpected keys + + Note: + If a parameter or buffer is registered as ``None`` and its corresponding key + exists in :attr:`state_dict`, :meth:`load_state_dict` will raise a + ``RuntimeError``. + """ + if not isinstance(state_dict, Mapping): + raise TypeError(f"Expected state_dict to be dict-like, got {type(state_dict)}.") + + missing_keys: List[str] = [] + unexpected_keys: List[str] = [] + error_msgs: List[str] = [] + + # copy state_dict so _load_from_state_dict can modify it + metadata = getattr(state_dict, '_metadata', None) + state_dict = OrderedDict(state_dict) + if metadata is not None: + # mypy isn't aware that "_metadata" exists in state_dict + state_dict._metadata = metadata # type: ignore[attr-defined] + + def load(module, local_state_dict, prefix=''): + local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) + if assign: + local_metadata['assign_to_params_buffers'] = assign + module._load_from_state_dict( + local_state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) + for name, child in module._modules.items(): + if child is not None: + child_prefix = prefix + name + '.' + child_state_dict = {k: v for k, v in local_state_dict.items() if k.startswith(child_prefix)} + load(child, child_state_dict, child_prefix) # noqa: F821 + + # Note that the hook can modify missing_keys and unexpected_keys. + incompatible_keys = _IncompatibleKeys(missing_keys, unexpected_keys) + for hook in module._load_state_dict_post_hooks.values(): + out = hook(module, incompatible_keys) + assert out is None, ( + "Hooks registered with ``register_load_state_dict_post_hook`` are not" + "expected to return new values, if incompatible_keys need to be modified," + "it should be done inplace." + ) + + load(self, state_dict) + del load + + if strict: + if len(unexpected_keys) > 0: + error_msgs.insert( + 0, 'Unexpected key(s) in state_dict: {}. '.format( + ', '.join(f'"{k}"' for k in unexpected_keys))) + if len(missing_keys) > 0: + error_msgs.insert( + 0, 'Missing key(s) in state_dict: {}. '.format( + ', '.join(f'"{k}"' for k in missing_keys))) + + if len(error_msgs) > 0: + raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( + self.__class__.__name__, "\n\t".join(error_msgs))) + return _IncompatibleKeys(missing_keys, unexpected_keys) + + def _named_members(self, get_members_fn, prefix='', recurse=True, remove_duplicate: bool = True): + r"""Help yield various names + members of modules.""" + memo = set() + modules = self.named_modules(prefix=prefix, remove_duplicate=remove_duplicate) if recurse else [(prefix, self)] + for module_prefix, module in modules: + members = get_members_fn(module) + for k, v in members: + if v is None or v in memo: + continue + if remove_duplicate: + memo.add(v) + name = module_prefix + ('.' if module_prefix else '') + k + yield name, v + + def parameters(self, recurse: bool = True) -> Iterator[Parameter]: + r"""Return an iterator over module parameters. + + This is typically passed to an optimizer. + + Args: + recurse (bool): if True, then yields parameters of this module + and all submodules. Otherwise, yields only parameters that + are direct members of this module. + + Yields: + Parameter: module parameter + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> for param in model.parameters(): + >>> print(type(param), param.size()) + (20L,) + (20L, 1L, 5L, 5L) + + """ + for name, param in self.named_parameters(recurse=recurse): + yield param + + def named_parameters( + self, + prefix: str = '', + recurse: bool = True, + remove_duplicate: bool = True + ) -> Iterator[Tuple[str, Parameter]]: + r"""Return an iterator over module parameters, yielding both the name of the parameter as well as the parameter itself. + + Args: + prefix (str): prefix to prepend to all parameter names. + recurse (bool): if True, then yields parameters of this module + and all submodules. Otherwise, yields only parameters that + are direct members of this module. + remove_duplicate (bool, optional): whether to remove the duplicated + parameters in the result. Defaults to True. + + Yields: + (str, Parameter): Tuple containing the name and parameter + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> for name, param in self.named_parameters(): + >>> if name in ['bias']: + >>> print(param.size()) + + """ + gen = self._named_members( + lambda module: module._parameters.items(), + prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate) + yield from gen + + def buffers(self, recurse: bool = True) -> Iterator[Tensor]: + r"""Return an iterator over module buffers. + + Args: + recurse (bool): if True, then yields buffers of this module + and all submodules. Otherwise, yields only buffers that + are direct members of this module. + + Yields: + torch.Tensor: module buffer + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> for buf in model.buffers(): + >>> print(type(buf), buf.size()) + (20L,) + (20L, 1L, 5L, 5L) + + """ + for _, buf in self.named_buffers(recurse=recurse): + yield buf + + def named_buffers(self, prefix: str = '', recurse: bool = True, remove_duplicate: bool = True) -> Iterator[Tuple[str, Tensor]]: + r"""Return an iterator over module buffers, yielding both the name of the buffer as well as the buffer itself. + + Args: + prefix (str): prefix to prepend to all buffer names. + recurse (bool, optional): if True, then yields buffers of this module + and all submodules. Otherwise, yields only buffers that + are direct members of this module. Defaults to True. + remove_duplicate (bool, optional): whether to remove the duplicated buffers in the result. Defaults to True. + + Yields: + (str, torch.Tensor): Tuple containing the name and buffer + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> for name, buf in self.named_buffers(): + >>> if name in ['running_var']: + >>> print(buf.size()) + + """ + gen = self._named_members( + lambda module: module._buffers.items(), + prefix=prefix, recurse=recurse, remove_duplicate=remove_duplicate) + yield from gen + + def children(self) -> Iterator['Module']: + r"""Return an iterator over immediate children modules. + + Yields: + Module: a child module + """ + for name, module in self.named_children(): + yield module + + def named_children(self) -> Iterator[Tuple[str, 'Module']]: + r"""Return an iterator over immediate children modules, yielding both the name of the module as well as the module itself. + + Yields: + (str, Module): Tuple containing a name and child module + + Example:: + + >>> # xdoctest: +SKIP("undefined vars") + >>> for name, module in model.named_children(): + >>> if name in ['conv4', 'conv5']: + >>> print(module) + + """ + memo = set() + for name, module in self._modules.items(): + if module is not None and module not in memo: + memo.add(module) + yield name, module + + def modules(self) -> Iterator['Module']: + r"""Return an iterator over all modules in the network. + + Yields: + Module: a module in the network + + Note: + Duplicate modules are returned only once. In the following + example, ``l`` will be returned only once. + + Example:: + + >>> l = nn.Linear(2, 2) + >>> net = nn.Sequential(l, l) + >>> for idx, m in enumerate(net.modules()): + ... print(idx, '->', m) + + 0 -> Sequential( + (0): Linear(in_features=2, out_features=2, bias=True) + (1): Linear(in_features=2, out_features=2, bias=True) + ) + 1 -> Linear(in_features=2, out_features=2, bias=True) + + """ + for _, module in self.named_modules(): + yield module + + def named_modules(self, memo: Optional[Set['Module']] = None, prefix: str = '', remove_duplicate: bool = True): + r"""Return an iterator over all modules in the network, yielding both the name of the module as well as the module itself. + + Args: + memo: a memo to store the set of modules already added to the result + prefix: a prefix that will be added to the name of the module + remove_duplicate: whether to remove the duplicated module instances in the result + or not + + Yields: + (str, Module): Tuple of name and module + + Note: + Duplicate modules are returned only once. In the following + example, ``l`` will be returned only once. + + Example:: + + >>> l = nn.Linear(2, 2) + >>> net = nn.Sequential(l, l) + >>> for idx, m in enumerate(net.named_modules()): + ... print(idx, '->', m) + + 0 -> ('', Sequential( + (0): Linear(in_features=2, out_features=2, bias=True) + (1): Linear(in_features=2, out_features=2, bias=True) + )) + 1 -> ('0', Linear(in_features=2, out_features=2, bias=True)) + + """ + if memo is None: + memo = set() + if self not in memo: + if remove_duplicate: + memo.add(self) + yield prefix, self + for name, module in self._modules.items(): + if module is None: + continue + submodule_prefix = prefix + ('.' if prefix else '') + name + yield from module.named_modules(memo, submodule_prefix, remove_duplicate) + + def train(self: T, mode: bool = True) -> T: + r"""Set the module in training mode. + + This has any effect only on certain modules. See documentations of + particular modules for details of their behaviors in training/evaluation + mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, + etc. + + Args: + mode (bool): whether to set training mode (``True``) or evaluation + mode (``False``). Default: ``True``. + + Returns: + Module: self + """ + if not isinstance(mode, bool): + raise ValueError("training mode is expected to be boolean") + self.training = mode + for module in self.children(): + module.train(mode) + return self + + def eval(self: T) -> T: + r"""Set the module in evaluation mode. + + This has any effect only on certain modules. See documentations of + particular modules for details of their behaviors in training/evaluation + mode, if they are affected, e.g. :class:`Dropout`, :class:`BatchNorm`, + etc. + + This is equivalent with :meth:`self.train(False) `. + + See :ref:`locally-disable-grad-doc` for a comparison between + `.eval()` and several similar mechanisms that may be confused with it. + + Returns: + Module: self + """ + return self.train(False) + + def requires_grad_(self: T, requires_grad: bool = True) -> T: + r"""Change if autograd should record operations on parameters in this module. + + This method sets the parameters' :attr:`requires_grad` attributes + in-place. + + This method is helpful for freezing part of the module for finetuning + or training parts of a model individually (e.g., GAN training). + + See :ref:`locally-disable-grad-doc` for a comparison between + `.requires_grad_()` and several similar mechanisms that may be confused with it. + + Args: + requires_grad (bool): whether autograd should record operations on + parameters in this module. Default: ``True``. + + Returns: + Module: self + """ + for p in self.parameters(): + p.requires_grad_(requires_grad) + return self + + def zero_grad(self, set_to_none: bool = True) -> None: + r"""Reset gradients of all model parameters. + + See similar function under :class:`torch.optim.Optimizer` for more context. + + Args: + set_to_none (bool): instead of setting to zero, set the grads to None. + See :meth:`torch.optim.Optimizer.zero_grad` for details. + """ + if getattr(self, '_is_replica', False): + warnings.warn( + "Calling .zero_grad() from a module created with nn.DataParallel() has no effect. " + "The parameters are copied (in a differentiable manner) from the original module. " + "This means they are not leaf nodes in autograd and so don't accumulate gradients. " + "If you need gradients in your forward method, consider using autograd.grad instead.") + + for p in self.parameters(): + if p.grad is not None: + if set_to_none: + p.grad = None + else: + if p.grad.grad_fn is not None: + p.grad.detach_() + else: + p.grad.requires_grad_(False) + p.grad.zero_() + + def share_memory(self: T) -> T: + r"""See :meth:`torch.Tensor.share_memory_`.""" + return self._apply(lambda t: t.share_memory_()) + + def _get_name(self): + return self.__class__.__name__ + + def extra_repr(self) -> str: + r"""Set the extra representation of the module. + + To print customized extra information, you should re-implement + this method in your own modules. Both single-line and multi-line + strings are acceptable. + """ + return '' + + def __repr__(self): + # We treat the extra repr like the sub-module, one item per line + extra_lines = [] + extra_repr = self.extra_repr() + # empty string will be split into list [''] + if extra_repr: + extra_lines = extra_repr.split('\n') + child_lines = [] + for key, module in self._modules.items(): + mod_str = repr(module) + mod_str = _addindent(mod_str, 2) + child_lines.append('(' + key + '): ' + mod_str) + lines = extra_lines + child_lines + + main_str = self._get_name() + '(' + if lines: + # simple one-liner info, which most builtin Modules will use + if len(extra_lines) == 1 and not child_lines: + main_str += extra_lines[0] + else: + main_str += '\n ' + '\n '.join(lines) + '\n' + + main_str += ')' + return main_str + + def __dir__(self): + module_attrs = dir(self.__class__) + attrs = list(self.__dict__.keys()) + parameters = list(self._parameters.keys()) + modules = list(self._modules.keys()) + buffers = list(self._buffers.keys()) + keys = module_attrs + attrs + parameters + modules + buffers + + # Eliminate attrs that are not legal Python variable names + keys = [key for key in keys if not key[0].isdigit()] + + return sorted(keys) + + def _replicate_for_data_parallel(self): + replica = self.__new__(type(self)) + replica.__dict__ = self.__dict__.copy() + + # replicas do not have parameters themselves, the replicas reference the original + # module. + replica._parameters = OrderedDict() + replica._buffers = replica._buffers.copy() + replica._modules = replica._modules.copy() + replica._is_replica = True # type: ignore[assignment] + + return replica + + def compile(self, *args, **kwargs): + """ + Compile this Module's forward using :func:`torch.compile`. + + This Module's `__call__` method is compiled and all arguments are passed as-is + to :func:`torch.compile`. + + See :func:`torch.compile` for details on the arguments for this function. + """ + self._compiled_call_impl = torch.compile(self._call_impl, *args, **kwargs)