Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/11.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/configuration_camembert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_camembert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_tf_camembert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__init__.py +148 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/configuration_dpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/convert_dpr_original_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/modeling_dpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/modeling_tf_dpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/tokenization_dpr.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/tokenization_dpr_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/configuration_dpr.py +131 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py +143 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/modeling_dpr.py +663 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/modeling_tf_dpr.py +797 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/tokenization_dpr.py +319 -0
- venv/lib/python3.10/site-packages/transformers/models/dpr/tokenization_dpr_fast.py +319 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__init__.py +84 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/configuration_efficientnet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/convert_efficientnet_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/image_processing_efficientnet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/modeling_efficientnet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/configuration_efficientnet.py +169 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py +339 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/image_processing_efficientnet.py +387 -0
- venv/lib/python3.10/site-packages/transformers/models/efficientnet/modeling_efficientnet.py +648 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__init__.py +103 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/configuration_flaubert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_flaubert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_tf_flaubert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/tokenization_flaubert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/configuration_flaubert.py +234 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/modeling_flaubert.py +1302 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/modeling_tf_flaubert.py +1337 -0
- venv/lib/python3.10/site-packages/transformers/models/flaubert/tokenization_flaubert.py +565 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/__init__.py +79 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/modeling_mvp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py +179 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/modeling_mvp.py +2009 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py +391 -0
- venv/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp_fast.py +279 -0
ckpts/universal/global_step40/zero/11.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1aa83f9216fa3b5096ef2ee94ca58f7942ad749237a0c2ea806d12b9a9c43c90
|
3 |
+
size 9372
|
ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:230d66f0f800c64d7ad7e1e2e82adaab9b19f91c2b025cf90a3384f00beb7657
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/16.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c20f76bc1071fe1f85403339476a751b1f8db14e787d41b3cc11569d9f1e891
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/configuration_camembert.cpython-310.pyc
ADDED
Binary file (6.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_camembert.cpython-310.pyc
ADDED
Binary file (45 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/modeling_tf_camembert.cpython-310.pyc
ADDED
Binary file (51.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/camembert/__pycache__/tokenization_camembert.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__init__.py
ADDED
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import (
|
18 |
+
OptionalDependencyNotAvailable,
|
19 |
+
_LazyModule,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
)
|
24 |
+
|
25 |
+
|
26 |
+
_import_structure = {
|
27 |
+
"configuration_dpr": ["DPR_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPRConfig"],
|
28 |
+
"tokenization_dpr": [
|
29 |
+
"DPRContextEncoderTokenizer",
|
30 |
+
"DPRQuestionEncoderTokenizer",
|
31 |
+
"DPRReaderOutput",
|
32 |
+
"DPRReaderTokenizer",
|
33 |
+
],
|
34 |
+
}
|
35 |
+
|
36 |
+
|
37 |
+
try:
|
38 |
+
if not is_tokenizers_available():
|
39 |
+
raise OptionalDependencyNotAvailable()
|
40 |
+
except OptionalDependencyNotAvailable:
|
41 |
+
pass
|
42 |
+
else:
|
43 |
+
_import_structure["tokenization_dpr_fast"] = [
|
44 |
+
"DPRContextEncoderTokenizerFast",
|
45 |
+
"DPRQuestionEncoderTokenizerFast",
|
46 |
+
"DPRReaderTokenizerFast",
|
47 |
+
]
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
_import_structure["modeling_dpr"] = [
|
56 |
+
"DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
57 |
+
"DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
58 |
+
"DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
59 |
+
"DPRContextEncoder",
|
60 |
+
"DPRPretrainedContextEncoder",
|
61 |
+
"DPRPreTrainedModel",
|
62 |
+
"DPRPretrainedQuestionEncoder",
|
63 |
+
"DPRPretrainedReader",
|
64 |
+
"DPRQuestionEncoder",
|
65 |
+
"DPRReader",
|
66 |
+
]
|
67 |
+
|
68 |
+
try:
|
69 |
+
if not is_tf_available():
|
70 |
+
raise OptionalDependencyNotAvailable()
|
71 |
+
except OptionalDependencyNotAvailable:
|
72 |
+
pass
|
73 |
+
else:
|
74 |
+
_import_structure["modeling_tf_dpr"] = [
|
75 |
+
"TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
76 |
+
"TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
77 |
+
"TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST",
|
78 |
+
"TFDPRContextEncoder",
|
79 |
+
"TFDPRPretrainedContextEncoder",
|
80 |
+
"TFDPRPretrainedQuestionEncoder",
|
81 |
+
"TFDPRPretrainedReader",
|
82 |
+
"TFDPRQuestionEncoder",
|
83 |
+
"TFDPRReader",
|
84 |
+
]
|
85 |
+
|
86 |
+
|
87 |
+
if TYPE_CHECKING:
|
88 |
+
from .configuration_dpr import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP, DPRConfig
|
89 |
+
from .tokenization_dpr import (
|
90 |
+
DPRContextEncoderTokenizer,
|
91 |
+
DPRQuestionEncoderTokenizer,
|
92 |
+
DPRReaderOutput,
|
93 |
+
DPRReaderTokenizer,
|
94 |
+
)
|
95 |
+
|
96 |
+
try:
|
97 |
+
if not is_tokenizers_available():
|
98 |
+
raise OptionalDependencyNotAvailable()
|
99 |
+
except OptionalDependencyNotAvailable:
|
100 |
+
pass
|
101 |
+
else:
|
102 |
+
from .tokenization_dpr_fast import (
|
103 |
+
DPRContextEncoderTokenizerFast,
|
104 |
+
DPRQuestionEncoderTokenizerFast,
|
105 |
+
DPRReaderTokenizerFast,
|
106 |
+
)
|
107 |
+
|
108 |
+
try:
|
109 |
+
if not is_torch_available():
|
110 |
+
raise OptionalDependencyNotAvailable()
|
111 |
+
except OptionalDependencyNotAvailable:
|
112 |
+
pass
|
113 |
+
else:
|
114 |
+
from .modeling_dpr import (
|
115 |
+
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
116 |
+
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
117 |
+
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
118 |
+
DPRContextEncoder,
|
119 |
+
DPRPretrainedContextEncoder,
|
120 |
+
DPRPreTrainedModel,
|
121 |
+
DPRPretrainedQuestionEncoder,
|
122 |
+
DPRPretrainedReader,
|
123 |
+
DPRQuestionEncoder,
|
124 |
+
DPRReader,
|
125 |
+
)
|
126 |
+
|
127 |
+
try:
|
128 |
+
if not is_tf_available():
|
129 |
+
raise OptionalDependencyNotAvailable()
|
130 |
+
except OptionalDependencyNotAvailable:
|
131 |
+
pass
|
132 |
+
else:
|
133 |
+
from .modeling_tf_dpr import (
|
134 |
+
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
135 |
+
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
136 |
+
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST,
|
137 |
+
TFDPRContextEncoder,
|
138 |
+
TFDPRPretrainedContextEncoder,
|
139 |
+
TFDPRPretrainedQuestionEncoder,
|
140 |
+
TFDPRPretrainedReader,
|
141 |
+
TFDPRQuestionEncoder,
|
142 |
+
TFDPRReader,
|
143 |
+
)
|
144 |
+
|
145 |
+
else:
|
146 |
+
import sys
|
147 |
+
|
148 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (2.18 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/configuration_dpr.cpython-310.pyc
ADDED
Binary file (5.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/convert_dpr_original_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.95 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/modeling_dpr.cpython-310.pyc
ADDED
Binary file (22.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/modeling_tf_dpr.cpython-310.pyc
ADDED
Binary file (27.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/tokenization_dpr.cpython-310.pyc
ADDED
Binary file (13.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/__pycache__/tokenization_dpr_fast.cpython-310.pyc
ADDED
Binary file (13.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dpr/configuration_dpr.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2010, DPR authors, The Hugging Face Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" DPR model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
|
20 |
+
|
21 |
+
logger = logging.get_logger(__name__)
|
22 |
+
|
23 |
+
|
24 |
+
from ..deprecated._archive_maps import DPR_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
25 |
+
|
26 |
+
|
27 |
+
class DPRConfig(PretrainedConfig):
|
28 |
+
r"""
|
29 |
+
[`DPRConfig`] is the configuration class to store the configuration of a *DPRModel*.
|
30 |
+
|
31 |
+
This is the configuration class to store the configuration of a [`DPRContextEncoder`], [`DPRQuestionEncoder`], or a
|
32 |
+
[`DPRReader`]. It is used to instantiate the components of the DPR model according to the specified arguments,
|
33 |
+
defining the model component architectures. Instantiating a configuration with the defaults will yield a similar
|
34 |
+
configuration to that of the DPRContextEncoder
|
35 |
+
[facebook/dpr-ctx_encoder-single-nq-base](https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base)
|
36 |
+
architecture.
|
37 |
+
|
38 |
+
This class is a subclass of [`BertConfig`]. Please check the superclass for the documentation of all kwargs.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
42 |
+
Vocabulary size of the DPR model. Defines the different tokens that can be represented by the *inputs_ids*
|
43 |
+
passed to the forward method of [`BertModel`].
|
44 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
45 |
+
Dimensionality of the encoder layers and the pooler layer.
|
46 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
47 |
+
Number of hidden layers in the Transformer encoder.
|
48 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
49 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
50 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
51 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
52 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
53 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
54 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
55 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
56 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
57 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout ratio for the attention probabilities.
|
59 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
60 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
61 |
+
just in case (e.g., 512 or 1024 or 2048).
|
62 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
63 |
+
The vocabulary size of the *token_type_ids* passed into [`BertModel`].
|
64 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
65 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
69 |
+
Padding token id.
|
70 |
+
position_embedding_type (`str`, *optional*, defaults to `"absolute"`):
|
71 |
+
Type of position embedding. Choose one of `"absolute"`, `"relative_key"`, `"relative_key_query"`. For
|
72 |
+
positional embeddings use `"absolute"`. For more information on `"relative_key"`, please refer to
|
73 |
+
[Self-Attention with Relative Position Representations (Shaw et al.)](https://arxiv.org/abs/1803.02155).
|
74 |
+
For more information on `"relative_key_query"`, please refer to *Method 4* in [Improve Transformer Models
|
75 |
+
with Better Relative Position Embeddings (Huang et al.)](https://arxiv.org/abs/2009.13658).
|
76 |
+
projection_dim (`int`, *optional*, defaults to 0):
|
77 |
+
Dimension of the projection for the context and question encoders. If it is set to zero (default), then no
|
78 |
+
projection is done.
|
79 |
+
|
80 |
+
Example:
|
81 |
+
|
82 |
+
```python
|
83 |
+
>>> from transformers import DPRConfig, DPRContextEncoder
|
84 |
+
|
85 |
+
>>> # Initializing a DPR facebook/dpr-ctx_encoder-single-nq-base style configuration
|
86 |
+
>>> configuration = DPRConfig()
|
87 |
+
|
88 |
+
>>> # Initializing a model (with random weights) from the facebook/dpr-ctx_encoder-single-nq-base style configuration
|
89 |
+
>>> model = DPRContextEncoder(configuration)
|
90 |
+
|
91 |
+
>>> # Accessing the model configuration
|
92 |
+
>>> configuration = model.config
|
93 |
+
```"""
|
94 |
+
|
95 |
+
model_type = "dpr"
|
96 |
+
|
97 |
+
def __init__(
|
98 |
+
self,
|
99 |
+
vocab_size=30522,
|
100 |
+
hidden_size=768,
|
101 |
+
num_hidden_layers=12,
|
102 |
+
num_attention_heads=12,
|
103 |
+
intermediate_size=3072,
|
104 |
+
hidden_act="gelu",
|
105 |
+
hidden_dropout_prob=0.1,
|
106 |
+
attention_probs_dropout_prob=0.1,
|
107 |
+
max_position_embeddings=512,
|
108 |
+
type_vocab_size=2,
|
109 |
+
initializer_range=0.02,
|
110 |
+
layer_norm_eps=1e-12,
|
111 |
+
pad_token_id=0,
|
112 |
+
position_embedding_type="absolute",
|
113 |
+
projection_dim: int = 0,
|
114 |
+
**kwargs,
|
115 |
+
):
|
116 |
+
super().__init__(pad_token_id=pad_token_id, **kwargs)
|
117 |
+
|
118 |
+
self.vocab_size = vocab_size
|
119 |
+
self.hidden_size = hidden_size
|
120 |
+
self.num_hidden_layers = num_hidden_layers
|
121 |
+
self.num_attention_heads = num_attention_heads
|
122 |
+
self.hidden_act = hidden_act
|
123 |
+
self.intermediate_size = intermediate_size
|
124 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
125 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
126 |
+
self.max_position_embeddings = max_position_embeddings
|
127 |
+
self.type_vocab_size = type_vocab_size
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.layer_norm_eps = layer_norm_eps
|
130 |
+
self.projection_dim = projection_dim
|
131 |
+
self.position_embedding_type = position_embedding_type
|
venv/lib/python3.10/site-packages/transformers/models/dpr/convert_dpr_original_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,143 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import argparse
|
16 |
+
import collections
|
17 |
+
from pathlib import Path
|
18 |
+
|
19 |
+
import torch
|
20 |
+
from torch.serialization import default_restore_location
|
21 |
+
|
22 |
+
from transformers import BertConfig, DPRConfig, DPRContextEncoder, DPRQuestionEncoder, DPRReader
|
23 |
+
|
24 |
+
|
25 |
+
CheckpointState = collections.namedtuple(
|
26 |
+
"CheckpointState", ["model_dict", "optimizer_dict", "scheduler_dict", "offset", "epoch", "encoder_params"]
|
27 |
+
)
|
28 |
+
|
29 |
+
|
30 |
+
def load_states_from_checkpoint(model_file: str) -> CheckpointState:
|
31 |
+
print(f"Reading saved model from {model_file}")
|
32 |
+
state_dict = torch.load(model_file, map_location=lambda s, l: default_restore_location(s, "cpu"))
|
33 |
+
return CheckpointState(**state_dict)
|
34 |
+
|
35 |
+
|
36 |
+
class DPRState:
|
37 |
+
def __init__(self, src_file: Path):
|
38 |
+
self.src_file = src_file
|
39 |
+
|
40 |
+
def load_dpr_model(self):
|
41 |
+
raise NotImplementedError
|
42 |
+
|
43 |
+
@staticmethod
|
44 |
+
def from_type(comp_type: str, *args, **kwargs) -> "DPRState":
|
45 |
+
if comp_type.startswith("c"):
|
46 |
+
return DPRContextEncoderState(*args, **kwargs)
|
47 |
+
if comp_type.startswith("q"):
|
48 |
+
return DPRQuestionEncoderState(*args, **kwargs)
|
49 |
+
if comp_type.startswith("r"):
|
50 |
+
return DPRReaderState(*args, **kwargs)
|
51 |
+
else:
|
52 |
+
raise ValueError("Component type must be either 'ctx_encoder', 'question_encoder' or 'reader'.")
|
53 |
+
|
54 |
+
|
55 |
+
class DPRContextEncoderState(DPRState):
|
56 |
+
def load_dpr_model(self):
|
57 |
+
model = DPRContextEncoder(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0]))
|
58 |
+
print(f"Loading DPR biencoder from {self.src_file}")
|
59 |
+
saved_state = load_states_from_checkpoint(self.src_file)
|
60 |
+
encoder, prefix = model.ctx_encoder, "ctx_model."
|
61 |
+
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
|
62 |
+
state_dict = {"bert_model.embeddings.position_ids": model.ctx_encoder.bert_model.embeddings.position_ids}
|
63 |
+
for key, value in saved_state.model_dict.items():
|
64 |
+
if key.startswith(prefix):
|
65 |
+
key = key[len(prefix) :]
|
66 |
+
if not key.startswith("encode_proj."):
|
67 |
+
key = "bert_model." + key
|
68 |
+
state_dict[key] = value
|
69 |
+
encoder.load_state_dict(state_dict)
|
70 |
+
return model
|
71 |
+
|
72 |
+
|
73 |
+
class DPRQuestionEncoderState(DPRState):
|
74 |
+
def load_dpr_model(self):
|
75 |
+
model = DPRQuestionEncoder(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0]))
|
76 |
+
print(f"Loading DPR biencoder from {self.src_file}")
|
77 |
+
saved_state = load_states_from_checkpoint(self.src_file)
|
78 |
+
encoder, prefix = model.question_encoder, "question_model."
|
79 |
+
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
|
80 |
+
state_dict = {"bert_model.embeddings.position_ids": model.question_encoder.bert_model.embeddings.position_ids}
|
81 |
+
for key, value in saved_state.model_dict.items():
|
82 |
+
if key.startswith(prefix):
|
83 |
+
key = key[len(prefix) :]
|
84 |
+
if not key.startswith("encode_proj."):
|
85 |
+
key = "bert_model." + key
|
86 |
+
state_dict[key] = value
|
87 |
+
encoder.load_state_dict(state_dict)
|
88 |
+
return model
|
89 |
+
|
90 |
+
|
91 |
+
class DPRReaderState(DPRState):
|
92 |
+
def load_dpr_model(self):
|
93 |
+
model = DPRReader(DPRConfig(**BertConfig.get_config_dict("google-bert/bert-base-uncased")[0]))
|
94 |
+
print(f"Loading DPR reader from {self.src_file}")
|
95 |
+
saved_state = load_states_from_checkpoint(self.src_file)
|
96 |
+
# Fix changes from https://github.com/huggingface/transformers/commit/614fef1691edb806de976756d4948ecbcd0c0ca3
|
97 |
+
state_dict = {
|
98 |
+
"encoder.bert_model.embeddings.position_ids": model.span_predictor.encoder.bert_model.embeddings.position_ids
|
99 |
+
}
|
100 |
+
for key, value in saved_state.model_dict.items():
|
101 |
+
if key.startswith("encoder.") and not key.startswith("encoder.encode_proj"):
|
102 |
+
key = "encoder.bert_model." + key[len("encoder.") :]
|
103 |
+
state_dict[key] = value
|
104 |
+
model.span_predictor.load_state_dict(state_dict)
|
105 |
+
return model
|
106 |
+
|
107 |
+
|
108 |
+
def convert(comp_type: str, src_file: Path, dest_dir: Path):
|
109 |
+
dest_dir = Path(dest_dir)
|
110 |
+
dest_dir.mkdir(exist_ok=True)
|
111 |
+
|
112 |
+
dpr_state = DPRState.from_type(comp_type, src_file=src_file)
|
113 |
+
model = dpr_state.load_dpr_model()
|
114 |
+
model.save_pretrained(dest_dir)
|
115 |
+
model.from_pretrained(dest_dir) # sanity check
|
116 |
+
|
117 |
+
|
118 |
+
if __name__ == "__main__":
|
119 |
+
parser = argparse.ArgumentParser()
|
120 |
+
# Required parameters
|
121 |
+
parser.add_argument(
|
122 |
+
"--type", type=str, help="Type of the component to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
|
123 |
+
)
|
124 |
+
parser.add_argument(
|
125 |
+
"--src",
|
126 |
+
type=str,
|
127 |
+
help=(
|
128 |
+
"Path to the dpr checkpoint file. They can be downloaded from the official DPR repo"
|
129 |
+
" https://github.com/facebookresearch/DPR. Note that in the official repo, both encoders are stored in the"
|
130 |
+
" 'retriever' checkpoints."
|
131 |
+
),
|
132 |
+
)
|
133 |
+
parser.add_argument("--dest", type=str, default=None, help="Path to the output PyTorch model directory.")
|
134 |
+
args = parser.parse_args()
|
135 |
+
|
136 |
+
src_file = Path(args.src)
|
137 |
+
dest_dir = f"converted-{src_file.name}" if args.dest is None else args.dest
|
138 |
+
dest_dir = Path(dest_dir)
|
139 |
+
assert src_file.exists()
|
140 |
+
assert (
|
141 |
+
args.type is not None
|
142 |
+
), "Please specify the component type of the DPR model to convert: 'ctx_encoder', 'question_encoder' or 'reader'."
|
143 |
+
convert(args.type, src_file, dest_dir)
|
venv/lib/python3.10/site-packages/transformers/models/dpr/modeling_dpr.py
ADDED
@@ -0,0 +1,663 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 DPR Authors, The Hugging Face Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch DPR model for Open Domain Question Answering."""
|
16 |
+
|
17 |
+
|
18 |
+
from dataclasses import dataclass
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
from torch import Tensor, nn
|
23 |
+
|
24 |
+
from ...modeling_outputs import BaseModelOutputWithPooling
|
25 |
+
from ...modeling_utils import PreTrainedModel
|
26 |
+
from ...utils import (
|
27 |
+
ModelOutput,
|
28 |
+
add_start_docstrings,
|
29 |
+
add_start_docstrings_to_model_forward,
|
30 |
+
logging,
|
31 |
+
replace_return_docstrings,
|
32 |
+
)
|
33 |
+
from ..bert.modeling_bert import BertModel
|
34 |
+
from .configuration_dpr import DPRConfig
|
35 |
+
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
_CONFIG_FOR_DOC = "DPRConfig"
|
40 |
+
_CHECKPOINT_FOR_DOC = "facebook/dpr-ctx_encoder-single-nq-base"
|
41 |
+
|
42 |
+
|
43 |
+
from ..deprecated._archive_maps import ( # noqa: F401, E402
|
44 |
+
DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
45 |
+
DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
46 |
+
DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
##########
|
51 |
+
# Outputs
|
52 |
+
##########
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class DPRContextEncoderOutput(ModelOutput):
|
57 |
+
"""
|
58 |
+
Class for outputs of [`DPRQuestionEncoder`].
|
59 |
+
|
60 |
+
Args:
|
61 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
|
62 |
+
The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer
|
63 |
+
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
|
64 |
+
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
|
65 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
67 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
"""
|
77 |
+
|
78 |
+
pooler_output: torch.FloatTensor
|
79 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
80 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
81 |
+
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class DPRQuestionEncoderOutput(ModelOutput):
|
85 |
+
"""
|
86 |
+
Class for outputs of [`DPRQuestionEncoder`].
|
87 |
+
|
88 |
+
Args:
|
89 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, embeddings_size)`):
|
90 |
+
The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer
|
91 |
+
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
|
92 |
+
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
|
93 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
94 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
95 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
96 |
+
|
97 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
98 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
99 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
100 |
+
sequence_length)`.
|
101 |
+
|
102 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
103 |
+
heads.
|
104 |
+
"""
|
105 |
+
|
106 |
+
pooler_output: torch.FloatTensor
|
107 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
108 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class DPRReaderOutput(ModelOutput):
|
113 |
+
"""
|
114 |
+
Class for outputs of [`DPRQuestionEncoder`].
|
115 |
+
|
116 |
+
Args:
|
117 |
+
start_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
|
118 |
+
Logits of the start index of the span for each passage.
|
119 |
+
end_logits (`torch.FloatTensor` of shape `(n_passages, sequence_length)`):
|
120 |
+
Logits of the end index of the span for each passage.
|
121 |
+
relevance_logits (`torch.FloatTensor` of shape `(n_passages, )`):
|
122 |
+
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
|
123 |
+
question, compared to all the other passages.
|
124 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
125 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
126 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
127 |
+
|
128 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
129 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
130 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
131 |
+
sequence_length)`.
|
132 |
+
|
133 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
134 |
+
heads.
|
135 |
+
"""
|
136 |
+
|
137 |
+
start_logits: torch.FloatTensor
|
138 |
+
end_logits: torch.FloatTensor = None
|
139 |
+
relevance_logits: torch.FloatTensor = None
|
140 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
141 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
142 |
+
|
143 |
+
|
144 |
+
class DPRPreTrainedModel(PreTrainedModel):
|
145 |
+
def _init_weights(self, module):
|
146 |
+
"""Initialize the weights"""
|
147 |
+
if isinstance(module, nn.Linear):
|
148 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
149 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
150 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
151 |
+
if module.bias is not None:
|
152 |
+
module.bias.data.zero_()
|
153 |
+
elif isinstance(module, nn.Embedding):
|
154 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
155 |
+
if module.padding_idx is not None:
|
156 |
+
module.weight.data[module.padding_idx].zero_()
|
157 |
+
elif isinstance(module, nn.LayerNorm):
|
158 |
+
module.bias.data.zero_()
|
159 |
+
module.weight.data.fill_(1.0)
|
160 |
+
|
161 |
+
|
162 |
+
class DPREncoder(DPRPreTrainedModel):
|
163 |
+
base_model_prefix = "bert_model"
|
164 |
+
|
165 |
+
def __init__(self, config: DPRConfig):
|
166 |
+
super().__init__(config)
|
167 |
+
self.bert_model = BertModel(config, add_pooling_layer=False)
|
168 |
+
if self.bert_model.config.hidden_size <= 0:
|
169 |
+
raise ValueError("Encoder hidden_size can't be zero")
|
170 |
+
self.projection_dim = config.projection_dim
|
171 |
+
if self.projection_dim > 0:
|
172 |
+
self.encode_proj = nn.Linear(self.bert_model.config.hidden_size, config.projection_dim)
|
173 |
+
# Initialize weights and apply final processing
|
174 |
+
self.post_init()
|
175 |
+
|
176 |
+
def forward(
|
177 |
+
self,
|
178 |
+
input_ids: Tensor,
|
179 |
+
attention_mask: Optional[Tensor] = None,
|
180 |
+
token_type_ids: Optional[Tensor] = None,
|
181 |
+
inputs_embeds: Optional[Tensor] = None,
|
182 |
+
output_attentions: bool = False,
|
183 |
+
output_hidden_states: bool = False,
|
184 |
+
return_dict: bool = False,
|
185 |
+
) -> Union[BaseModelOutputWithPooling, Tuple[Tensor, ...]]:
|
186 |
+
outputs = self.bert_model(
|
187 |
+
input_ids=input_ids,
|
188 |
+
attention_mask=attention_mask,
|
189 |
+
token_type_ids=token_type_ids,
|
190 |
+
inputs_embeds=inputs_embeds,
|
191 |
+
output_attentions=output_attentions,
|
192 |
+
output_hidden_states=output_hidden_states,
|
193 |
+
return_dict=return_dict,
|
194 |
+
)
|
195 |
+
sequence_output = outputs[0]
|
196 |
+
pooled_output = sequence_output[:, 0, :]
|
197 |
+
|
198 |
+
if self.projection_dim > 0:
|
199 |
+
pooled_output = self.encode_proj(pooled_output)
|
200 |
+
|
201 |
+
if not return_dict:
|
202 |
+
return (sequence_output, pooled_output) + outputs[2:]
|
203 |
+
|
204 |
+
return BaseModelOutputWithPooling(
|
205 |
+
last_hidden_state=sequence_output,
|
206 |
+
pooler_output=pooled_output,
|
207 |
+
hidden_states=outputs.hidden_states,
|
208 |
+
attentions=outputs.attentions,
|
209 |
+
)
|
210 |
+
|
211 |
+
@property
|
212 |
+
def embeddings_size(self) -> int:
|
213 |
+
if self.projection_dim > 0:
|
214 |
+
return self.encode_proj.out_features
|
215 |
+
return self.bert_model.config.hidden_size
|
216 |
+
|
217 |
+
|
218 |
+
class DPRSpanPredictor(DPRPreTrainedModel):
|
219 |
+
base_model_prefix = "encoder"
|
220 |
+
|
221 |
+
def __init__(self, config: DPRConfig):
|
222 |
+
super().__init__(config)
|
223 |
+
self.encoder = DPREncoder(config)
|
224 |
+
self.qa_outputs = nn.Linear(self.encoder.embeddings_size, 2)
|
225 |
+
self.qa_classifier = nn.Linear(self.encoder.embeddings_size, 1)
|
226 |
+
# Initialize weights and apply final processing
|
227 |
+
self.post_init()
|
228 |
+
|
229 |
+
def forward(
|
230 |
+
self,
|
231 |
+
input_ids: Tensor,
|
232 |
+
attention_mask: Tensor,
|
233 |
+
inputs_embeds: Optional[Tensor] = None,
|
234 |
+
output_attentions: bool = False,
|
235 |
+
output_hidden_states: bool = False,
|
236 |
+
return_dict: bool = False,
|
237 |
+
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
|
238 |
+
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
|
239 |
+
n_passages, sequence_length = input_ids.size() if input_ids is not None else inputs_embeds.size()[:2]
|
240 |
+
# feed encoder
|
241 |
+
outputs = self.encoder(
|
242 |
+
input_ids,
|
243 |
+
attention_mask=attention_mask,
|
244 |
+
inputs_embeds=inputs_embeds,
|
245 |
+
output_attentions=output_attentions,
|
246 |
+
output_hidden_states=output_hidden_states,
|
247 |
+
return_dict=return_dict,
|
248 |
+
)
|
249 |
+
sequence_output = outputs[0]
|
250 |
+
|
251 |
+
# compute logits
|
252 |
+
logits = self.qa_outputs(sequence_output)
|
253 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
254 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
255 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
256 |
+
relevance_logits = self.qa_classifier(sequence_output[:, 0, :])
|
257 |
+
|
258 |
+
# resize
|
259 |
+
start_logits = start_logits.view(n_passages, sequence_length)
|
260 |
+
end_logits = end_logits.view(n_passages, sequence_length)
|
261 |
+
relevance_logits = relevance_logits.view(n_passages)
|
262 |
+
|
263 |
+
if not return_dict:
|
264 |
+
return (start_logits, end_logits, relevance_logits) + outputs[2:]
|
265 |
+
|
266 |
+
return DPRReaderOutput(
|
267 |
+
start_logits=start_logits,
|
268 |
+
end_logits=end_logits,
|
269 |
+
relevance_logits=relevance_logits,
|
270 |
+
hidden_states=outputs.hidden_states,
|
271 |
+
attentions=outputs.attentions,
|
272 |
+
)
|
273 |
+
|
274 |
+
|
275 |
+
##################
|
276 |
+
# PreTrainedModel
|
277 |
+
##################
|
278 |
+
|
279 |
+
|
280 |
+
class DPRPretrainedContextEncoder(DPRPreTrainedModel):
|
281 |
+
"""
|
282 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
283 |
+
models.
|
284 |
+
"""
|
285 |
+
|
286 |
+
config_class = DPRConfig
|
287 |
+
load_tf_weights = None
|
288 |
+
base_model_prefix = "ctx_encoder"
|
289 |
+
|
290 |
+
|
291 |
+
class DPRPretrainedQuestionEncoder(DPRPreTrainedModel):
|
292 |
+
"""
|
293 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
294 |
+
models.
|
295 |
+
"""
|
296 |
+
|
297 |
+
config_class = DPRConfig
|
298 |
+
load_tf_weights = None
|
299 |
+
base_model_prefix = "question_encoder"
|
300 |
+
|
301 |
+
|
302 |
+
class DPRPretrainedReader(DPRPreTrainedModel):
|
303 |
+
"""
|
304 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
305 |
+
models.
|
306 |
+
"""
|
307 |
+
|
308 |
+
config_class = DPRConfig
|
309 |
+
load_tf_weights = None
|
310 |
+
base_model_prefix = "span_predictor"
|
311 |
+
|
312 |
+
|
313 |
+
###############
|
314 |
+
# Actual Models
|
315 |
+
###############
|
316 |
+
|
317 |
+
|
318 |
+
DPR_START_DOCSTRING = r"""
|
319 |
+
|
320 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
321 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
322 |
+
etc.)
|
323 |
+
|
324 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
325 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
326 |
+
and behavior.
|
327 |
+
|
328 |
+
Parameters:
|
329 |
+
config ([`DPRConfig`]): Model configuration class with all the parameters of the model.
|
330 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
331 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
332 |
+
"""
|
333 |
+
|
334 |
+
DPR_ENCODERS_INPUTS_DOCSTRING = r"""
|
335 |
+
Args:
|
336 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
337 |
+
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be
|
338 |
+
formatted with [CLS] and [SEP] tokens as follows:
|
339 |
+
|
340 |
+
(a) For sequence pairs (for a pair title+text for example):
|
341 |
+
|
342 |
+
```
|
343 |
+
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
344 |
+
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
345 |
+
```
|
346 |
+
|
347 |
+
(b) For single sequences (for a question for example):
|
348 |
+
|
349 |
+
```
|
350 |
+
tokens: [CLS] the dog is hairy . [SEP]
|
351 |
+
token_type_ids: 0 0 0 0 0 0 0
|
352 |
+
```
|
353 |
+
|
354 |
+
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
355 |
+
rather than the left.
|
356 |
+
|
357 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
358 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
359 |
+
|
360 |
+
[What are input IDs?](../glossary#input-ids)
|
361 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
362 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
363 |
+
|
364 |
+
- 1 for tokens that are **not masked**,
|
365 |
+
- 0 for tokens that are **masked**.
|
366 |
+
|
367 |
+
[What are attention masks?](../glossary#attention-mask)
|
368 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
369 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
370 |
+
1]`:
|
371 |
+
|
372 |
+
- 0 corresponds to a *sentence A* token,
|
373 |
+
- 1 corresponds to a *sentence B* token.
|
374 |
+
|
375 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
376 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
377 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
378 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
379 |
+
model's internal embedding lookup matrix.
|
380 |
+
output_attentions (`bool`, *optional*):
|
381 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
382 |
+
tensors for more detail.
|
383 |
+
output_hidden_states (`bool`, *optional*):
|
384 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
385 |
+
more detail.
|
386 |
+
return_dict (`bool`, *optional*):
|
387 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
388 |
+
"""
|
389 |
+
|
390 |
+
DPR_READER_INPUTS_DOCSTRING = r"""
|
391 |
+
Args:
|
392 |
+
input_ids (`Tuple[torch.LongTensor]` of shapes `(n_passages, sequence_length)`):
|
393 |
+
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question
|
394 |
+
and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should
|
395 |
+
be formatted with [CLS] and [SEP] with the format:
|
396 |
+
|
397 |
+
`[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>`
|
398 |
+
|
399 |
+
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
400 |
+
rather than the left.
|
401 |
+
|
402 |
+
Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details.
|
403 |
+
|
404 |
+
[What are input IDs?](../glossary#input-ids)
|
405 |
+
attention_mask (`torch.FloatTensor` of shape `(n_passages, sequence_length)`, *optional*):
|
406 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
407 |
+
|
408 |
+
- 1 for tokens that are **not masked**,
|
409 |
+
- 0 for tokens that are **masked**.
|
410 |
+
|
411 |
+
[What are attention masks?](../glossary#attention-mask)
|
412 |
+
inputs_embeds (`torch.FloatTensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*):
|
413 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
414 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
415 |
+
model's internal embedding lookup matrix.
|
416 |
+
output_attentions (`bool`, *optional*):
|
417 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
418 |
+
tensors for more detail.
|
419 |
+
output_hidden_states (`bool`, *optional*):
|
420 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
421 |
+
more detail.
|
422 |
+
return_dict (`bool`, *optional*):
|
423 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
424 |
+
"""
|
425 |
+
|
426 |
+
|
427 |
+
@add_start_docstrings(
|
428 |
+
"The bare DPRContextEncoder transformer outputting pooler outputs as context representations.",
|
429 |
+
DPR_START_DOCSTRING,
|
430 |
+
)
|
431 |
+
class DPRContextEncoder(DPRPretrainedContextEncoder):
|
432 |
+
def __init__(self, config: DPRConfig):
|
433 |
+
super().__init__(config)
|
434 |
+
self.config = config
|
435 |
+
self.ctx_encoder = DPREncoder(config)
|
436 |
+
# Initialize weights and apply final processing
|
437 |
+
self.post_init()
|
438 |
+
|
439 |
+
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
|
440 |
+
@replace_return_docstrings(output_type=DPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
|
441 |
+
def forward(
|
442 |
+
self,
|
443 |
+
input_ids: Optional[Tensor] = None,
|
444 |
+
attention_mask: Optional[Tensor] = None,
|
445 |
+
token_type_ids: Optional[Tensor] = None,
|
446 |
+
inputs_embeds: Optional[Tensor] = None,
|
447 |
+
output_attentions: Optional[bool] = None,
|
448 |
+
output_hidden_states: Optional[bool] = None,
|
449 |
+
return_dict: Optional[bool] = None,
|
450 |
+
) -> Union[DPRContextEncoderOutput, Tuple[Tensor, ...]]:
|
451 |
+
r"""
|
452 |
+
Return:
|
453 |
+
|
454 |
+
Examples:
|
455 |
+
|
456 |
+
```python
|
457 |
+
>>> from transformers import DPRContextEncoder, DPRContextEncoderTokenizer
|
458 |
+
|
459 |
+
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
460 |
+
>>> model = DPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
461 |
+
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
|
462 |
+
>>> embeddings = model(input_ids).pooler_output
|
463 |
+
```"""
|
464 |
+
|
465 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
466 |
+
output_hidden_states = (
|
467 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
468 |
+
)
|
469 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
470 |
+
|
471 |
+
if input_ids is not None and inputs_embeds is not None:
|
472 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
473 |
+
elif input_ids is not None:
|
474 |
+
input_shape = input_ids.size()
|
475 |
+
elif inputs_embeds is not None:
|
476 |
+
input_shape = inputs_embeds.size()[:-1]
|
477 |
+
else:
|
478 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
479 |
+
|
480 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
481 |
+
|
482 |
+
if attention_mask is None:
|
483 |
+
attention_mask = (
|
484 |
+
torch.ones(input_shape, device=device)
|
485 |
+
if input_ids is None
|
486 |
+
else (input_ids != self.config.pad_token_id)
|
487 |
+
)
|
488 |
+
if token_type_ids is None:
|
489 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
490 |
+
|
491 |
+
outputs = self.ctx_encoder(
|
492 |
+
input_ids=input_ids,
|
493 |
+
attention_mask=attention_mask,
|
494 |
+
token_type_ids=token_type_ids,
|
495 |
+
inputs_embeds=inputs_embeds,
|
496 |
+
output_attentions=output_attentions,
|
497 |
+
output_hidden_states=output_hidden_states,
|
498 |
+
return_dict=return_dict,
|
499 |
+
)
|
500 |
+
|
501 |
+
if not return_dict:
|
502 |
+
return outputs[1:]
|
503 |
+
return DPRContextEncoderOutput(
|
504 |
+
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
505 |
+
)
|
506 |
+
|
507 |
+
|
508 |
+
@add_start_docstrings(
|
509 |
+
"The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.",
|
510 |
+
DPR_START_DOCSTRING,
|
511 |
+
)
|
512 |
+
class DPRQuestionEncoder(DPRPretrainedQuestionEncoder):
|
513 |
+
def __init__(self, config: DPRConfig):
|
514 |
+
super().__init__(config)
|
515 |
+
self.config = config
|
516 |
+
self.question_encoder = DPREncoder(config)
|
517 |
+
# Initialize weights and apply final processing
|
518 |
+
self.post_init()
|
519 |
+
|
520 |
+
@add_start_docstrings_to_model_forward(DPR_ENCODERS_INPUTS_DOCSTRING)
|
521 |
+
@replace_return_docstrings(output_type=DPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
|
522 |
+
def forward(
|
523 |
+
self,
|
524 |
+
input_ids: Optional[Tensor] = None,
|
525 |
+
attention_mask: Optional[Tensor] = None,
|
526 |
+
token_type_ids: Optional[Tensor] = None,
|
527 |
+
inputs_embeds: Optional[Tensor] = None,
|
528 |
+
output_attentions: Optional[bool] = None,
|
529 |
+
output_hidden_states: Optional[bool] = None,
|
530 |
+
return_dict: Optional[bool] = None,
|
531 |
+
) -> Union[DPRQuestionEncoderOutput, Tuple[Tensor, ...]]:
|
532 |
+
r"""
|
533 |
+
Return:
|
534 |
+
|
535 |
+
Examples:
|
536 |
+
|
537 |
+
```python
|
538 |
+
>>> from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer
|
539 |
+
|
540 |
+
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
541 |
+
>>> model = DPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
542 |
+
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="pt")["input_ids"]
|
543 |
+
>>> embeddings = model(input_ids).pooler_output
|
544 |
+
```
|
545 |
+
"""
|
546 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
547 |
+
output_hidden_states = (
|
548 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
549 |
+
)
|
550 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
551 |
+
|
552 |
+
if input_ids is not None and inputs_embeds is not None:
|
553 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
554 |
+
elif input_ids is not None:
|
555 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
556 |
+
input_shape = input_ids.size()
|
557 |
+
elif inputs_embeds is not None:
|
558 |
+
input_shape = inputs_embeds.size()[:-1]
|
559 |
+
else:
|
560 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
561 |
+
|
562 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
563 |
+
|
564 |
+
if attention_mask is None:
|
565 |
+
attention_mask = (
|
566 |
+
torch.ones(input_shape, device=device)
|
567 |
+
if input_ids is None
|
568 |
+
else (input_ids != self.config.pad_token_id)
|
569 |
+
)
|
570 |
+
if token_type_ids is None:
|
571 |
+
token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
|
572 |
+
|
573 |
+
outputs = self.question_encoder(
|
574 |
+
input_ids=input_ids,
|
575 |
+
attention_mask=attention_mask,
|
576 |
+
token_type_ids=token_type_ids,
|
577 |
+
inputs_embeds=inputs_embeds,
|
578 |
+
output_attentions=output_attentions,
|
579 |
+
output_hidden_states=output_hidden_states,
|
580 |
+
return_dict=return_dict,
|
581 |
+
)
|
582 |
+
|
583 |
+
if not return_dict:
|
584 |
+
return outputs[1:]
|
585 |
+
return DPRQuestionEncoderOutput(
|
586 |
+
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
587 |
+
)
|
588 |
+
|
589 |
+
|
590 |
+
@add_start_docstrings(
|
591 |
+
"The bare DPRReader transformer outputting span predictions.",
|
592 |
+
DPR_START_DOCSTRING,
|
593 |
+
)
|
594 |
+
class DPRReader(DPRPretrainedReader):
|
595 |
+
def __init__(self, config: DPRConfig):
|
596 |
+
super().__init__(config)
|
597 |
+
self.config = config
|
598 |
+
self.span_predictor = DPRSpanPredictor(config)
|
599 |
+
# Initialize weights and apply final processing
|
600 |
+
self.post_init()
|
601 |
+
|
602 |
+
@add_start_docstrings_to_model_forward(DPR_READER_INPUTS_DOCSTRING)
|
603 |
+
@replace_return_docstrings(output_type=DPRReaderOutput, config_class=_CONFIG_FOR_DOC)
|
604 |
+
def forward(
|
605 |
+
self,
|
606 |
+
input_ids: Optional[Tensor] = None,
|
607 |
+
attention_mask: Optional[Tensor] = None,
|
608 |
+
inputs_embeds: Optional[Tensor] = None,
|
609 |
+
output_attentions: Optional[bool] = None,
|
610 |
+
output_hidden_states: Optional[bool] = None,
|
611 |
+
return_dict: Optional[bool] = None,
|
612 |
+
) -> Union[DPRReaderOutput, Tuple[Tensor, ...]]:
|
613 |
+
r"""
|
614 |
+
Return:
|
615 |
+
|
616 |
+
Examples:
|
617 |
+
|
618 |
+
```python
|
619 |
+
>>> from transformers import DPRReader, DPRReaderTokenizer
|
620 |
+
|
621 |
+
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
|
622 |
+
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
|
623 |
+
>>> encoded_inputs = tokenizer(
|
624 |
+
... questions=["What is love ?"],
|
625 |
+
... titles=["Haddaway"],
|
626 |
+
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
|
627 |
+
... return_tensors="pt",
|
628 |
+
... )
|
629 |
+
>>> outputs = model(**encoded_inputs)
|
630 |
+
>>> start_logits = outputs.start_logits
|
631 |
+
>>> end_logits = outputs.end_logits
|
632 |
+
>>> relevance_logits = outputs.relevance_logits
|
633 |
+
```
|
634 |
+
"""
|
635 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
636 |
+
output_hidden_states = (
|
637 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
638 |
+
)
|
639 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
640 |
+
|
641 |
+
if input_ids is not None and inputs_embeds is not None:
|
642 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
643 |
+
elif input_ids is not None:
|
644 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
645 |
+
input_shape = input_ids.size()
|
646 |
+
elif inputs_embeds is not None:
|
647 |
+
input_shape = inputs_embeds.size()[:-1]
|
648 |
+
else:
|
649 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
650 |
+
|
651 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
652 |
+
|
653 |
+
if attention_mask is None:
|
654 |
+
attention_mask = torch.ones(input_shape, device=device)
|
655 |
+
|
656 |
+
return self.span_predictor(
|
657 |
+
input_ids,
|
658 |
+
attention_mask,
|
659 |
+
inputs_embeds=inputs_embeds,
|
660 |
+
output_attentions=output_attentions,
|
661 |
+
output_hidden_states=output_hidden_states,
|
662 |
+
return_dict=return_dict,
|
663 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/dpr/modeling_tf_dpr.py
ADDED
@@ -0,0 +1,797 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 DPR Authors, The Hugging Face Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
""" TensorFlow DPR model for Open Domain Question Answering."""
|
17 |
+
|
18 |
+
from __future__ import annotations
|
19 |
+
|
20 |
+
from dataclasses import dataclass
|
21 |
+
from typing import Tuple, Union
|
22 |
+
|
23 |
+
import tensorflow as tf
|
24 |
+
|
25 |
+
from ...modeling_tf_outputs import TFBaseModelOutputWithPooling
|
26 |
+
from ...modeling_tf_utils import TFModelInputType, TFPreTrainedModel, get_initializer, keras, shape_list, unpack_inputs
|
27 |
+
from ...utils import (
|
28 |
+
ModelOutput,
|
29 |
+
add_start_docstrings,
|
30 |
+
add_start_docstrings_to_model_forward,
|
31 |
+
logging,
|
32 |
+
replace_return_docstrings,
|
33 |
+
)
|
34 |
+
from ..bert.modeling_tf_bert import TFBertMainLayer
|
35 |
+
from .configuration_dpr import DPRConfig
|
36 |
+
|
37 |
+
|
38 |
+
logger = logging.get_logger(__name__)
|
39 |
+
|
40 |
+
_CONFIG_FOR_DOC = "DPRConfig"
|
41 |
+
|
42 |
+
|
43 |
+
from ..deprecated._archive_maps import ( # noqa: F401, E402
|
44 |
+
TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
45 |
+
TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
46 |
+
TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, # noqa: F401, E402
|
47 |
+
)
|
48 |
+
|
49 |
+
|
50 |
+
##########
|
51 |
+
# Outputs
|
52 |
+
##########
|
53 |
+
|
54 |
+
|
55 |
+
@dataclass
|
56 |
+
class TFDPRContextEncoderOutput(ModelOutput):
|
57 |
+
r"""
|
58 |
+
Class for outputs of [`TFDPRContextEncoder`].
|
59 |
+
|
60 |
+
Args:
|
61 |
+
pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`):
|
62 |
+
The DPR encoder outputs the *pooler_output* that corresponds to the context representation. Last layer
|
63 |
+
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
|
64 |
+
This output is to be used to embed contexts for nearest neighbors queries with questions embeddings.
|
65 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
67 |
+
`(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
70 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
"""
|
77 |
+
|
78 |
+
pooler_output: tf.Tensor = None
|
79 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
80 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
81 |
+
|
82 |
+
|
83 |
+
@dataclass
|
84 |
+
class TFDPRQuestionEncoderOutput(ModelOutput):
|
85 |
+
"""
|
86 |
+
Class for outputs of [`TFDPRQuestionEncoder`].
|
87 |
+
|
88 |
+
Args:
|
89 |
+
pooler_output (`tf.Tensor` of shape `(batch_size, embeddings_size)`):
|
90 |
+
The DPR encoder outputs the *pooler_output* that corresponds to the question representation. Last layer
|
91 |
+
hidden-state of the first token of the sequence (classification token) further processed by a Linear layer.
|
92 |
+
This output is to be used to embed questions for nearest neighbors queries with context embeddings.
|
93 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
94 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
95 |
+
`(batch_size, sequence_length, hidden_size)`.
|
96 |
+
|
97 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
98 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
99 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
100 |
+
sequence_length)`.
|
101 |
+
|
102 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
103 |
+
heads.
|
104 |
+
"""
|
105 |
+
|
106 |
+
pooler_output: tf.Tensor = None
|
107 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
108 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
class TFDPRReaderOutput(ModelOutput):
|
113 |
+
"""
|
114 |
+
Class for outputs of [`TFDPRReaderEncoder`].
|
115 |
+
|
116 |
+
Args:
|
117 |
+
start_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`):
|
118 |
+
Logits of the start index of the span for each passage.
|
119 |
+
end_logits (`tf.Tensor` of shape `(n_passages, sequence_length)`):
|
120 |
+
Logits of the end index of the span for each passage.
|
121 |
+
relevance_logits (`tf.Tensor` of shape `(n_passages, )`):
|
122 |
+
Outputs of the QA classifier of the DPRReader that corresponds to the scores of each passage to answer the
|
123 |
+
question, compared to all the other passages.
|
124 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
125 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
126 |
+
`(batch_size, sequence_length, hidden_size)`.
|
127 |
+
|
128 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
129 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
130 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
131 |
+
sequence_length)`.
|
132 |
+
|
133 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
134 |
+
heads.
|
135 |
+
"""
|
136 |
+
|
137 |
+
start_logits: tf.Tensor = None
|
138 |
+
end_logits: tf.Tensor = None
|
139 |
+
relevance_logits: tf.Tensor = None
|
140 |
+
hidden_states: Tuple[tf.Tensor, ...] | None = None
|
141 |
+
attentions: Tuple[tf.Tensor, ...] | None = None
|
142 |
+
|
143 |
+
|
144 |
+
class TFDPREncoderLayer(keras.layers.Layer):
|
145 |
+
base_model_prefix = "bert_model"
|
146 |
+
|
147 |
+
def __init__(self, config: DPRConfig, **kwargs):
|
148 |
+
super().__init__(**kwargs)
|
149 |
+
|
150 |
+
# resolve name conflict with TFBertMainLayer instead of TFBertModel
|
151 |
+
self.bert_model = TFBertMainLayer(config, add_pooling_layer=False, name="bert_model")
|
152 |
+
self.config = config
|
153 |
+
|
154 |
+
if self.config.hidden_size <= 0:
|
155 |
+
raise ValueError("Encoder hidden_size can't be zero")
|
156 |
+
self.projection_dim = config.projection_dim
|
157 |
+
if self.projection_dim > 0:
|
158 |
+
self.encode_proj = keras.layers.Dense(
|
159 |
+
config.projection_dim, kernel_initializer=get_initializer(config.initializer_range), name="encode_proj"
|
160 |
+
)
|
161 |
+
|
162 |
+
@unpack_inputs
|
163 |
+
def call(
|
164 |
+
self,
|
165 |
+
input_ids: tf.Tensor = None,
|
166 |
+
attention_mask: tf.Tensor | None = None,
|
167 |
+
token_type_ids: tf.Tensor | None = None,
|
168 |
+
inputs_embeds: tf.Tensor | None = None,
|
169 |
+
output_attentions: bool = None,
|
170 |
+
output_hidden_states: bool = None,
|
171 |
+
return_dict: bool = None,
|
172 |
+
training: bool = False,
|
173 |
+
) -> Union[TFBaseModelOutputWithPooling, Tuple[tf.Tensor, ...]]:
|
174 |
+
outputs = self.bert_model(
|
175 |
+
input_ids=input_ids,
|
176 |
+
attention_mask=attention_mask,
|
177 |
+
token_type_ids=token_type_ids,
|
178 |
+
inputs_embeds=inputs_embeds,
|
179 |
+
output_attentions=output_attentions,
|
180 |
+
output_hidden_states=output_hidden_states,
|
181 |
+
return_dict=return_dict,
|
182 |
+
training=training,
|
183 |
+
)
|
184 |
+
|
185 |
+
sequence_output = outputs[0]
|
186 |
+
pooled_output = sequence_output[:, 0, :]
|
187 |
+
if self.projection_dim > 0:
|
188 |
+
pooled_output = self.encode_proj(pooled_output)
|
189 |
+
|
190 |
+
if not return_dict:
|
191 |
+
return (sequence_output, pooled_output) + outputs[1:]
|
192 |
+
|
193 |
+
return TFBaseModelOutputWithPooling(
|
194 |
+
last_hidden_state=sequence_output,
|
195 |
+
pooler_output=pooled_output,
|
196 |
+
hidden_states=outputs.hidden_states,
|
197 |
+
attentions=outputs.attentions,
|
198 |
+
)
|
199 |
+
|
200 |
+
@property
|
201 |
+
def embeddings_size(self) -> int:
|
202 |
+
if self.projection_dim > 0:
|
203 |
+
return self.projection_dim
|
204 |
+
return self.bert_model.config.hidden_size
|
205 |
+
|
206 |
+
def build(self, input_shape=None):
|
207 |
+
if self.built:
|
208 |
+
return
|
209 |
+
self.built = True
|
210 |
+
if getattr(self, "bert_model", None) is not None:
|
211 |
+
with tf.name_scope(self.bert_model.name):
|
212 |
+
self.bert_model.build(None)
|
213 |
+
if getattr(self, "encode_proj", None) is not None:
|
214 |
+
with tf.name_scope(self.encode_proj.name):
|
215 |
+
self.encode_proj.build(None)
|
216 |
+
|
217 |
+
|
218 |
+
class TFDPRSpanPredictorLayer(keras.layers.Layer):
|
219 |
+
base_model_prefix = "encoder"
|
220 |
+
|
221 |
+
def __init__(self, config: DPRConfig, **kwargs):
|
222 |
+
super().__init__(**kwargs)
|
223 |
+
self.config = config
|
224 |
+
self.encoder = TFDPREncoderLayer(config, name="encoder")
|
225 |
+
|
226 |
+
self.qa_outputs = keras.layers.Dense(
|
227 |
+
2, kernel_initializer=get_initializer(config.initializer_range), name="qa_outputs"
|
228 |
+
)
|
229 |
+
self.qa_classifier = keras.layers.Dense(
|
230 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="qa_classifier"
|
231 |
+
)
|
232 |
+
|
233 |
+
@unpack_inputs
|
234 |
+
def call(
|
235 |
+
self,
|
236 |
+
input_ids: tf.Tensor = None,
|
237 |
+
attention_mask: tf.Tensor | None = None,
|
238 |
+
inputs_embeds: tf.Tensor | None = None,
|
239 |
+
output_attentions: bool = False,
|
240 |
+
output_hidden_states: bool = False,
|
241 |
+
return_dict: bool = False,
|
242 |
+
training: bool = False,
|
243 |
+
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
|
244 |
+
# notations: N - number of questions in a batch, M - number of passages per questions, L - sequence length
|
245 |
+
n_passages, sequence_length = shape_list(input_ids) if input_ids is not None else shape_list(inputs_embeds)[:2]
|
246 |
+
# feed encoder
|
247 |
+
outputs = self.encoder(
|
248 |
+
input_ids=input_ids,
|
249 |
+
attention_mask=attention_mask,
|
250 |
+
inputs_embeds=inputs_embeds,
|
251 |
+
output_attentions=output_attentions,
|
252 |
+
output_hidden_states=output_hidden_states,
|
253 |
+
return_dict=return_dict,
|
254 |
+
training=training,
|
255 |
+
)
|
256 |
+
sequence_output = outputs[0]
|
257 |
+
|
258 |
+
# compute logits
|
259 |
+
logits = self.qa_outputs(sequence_output)
|
260 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
261 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
262 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
263 |
+
relevance_logits = self.qa_classifier(sequence_output[:, 0, :])
|
264 |
+
|
265 |
+
# resize
|
266 |
+
start_logits = tf.reshape(start_logits, [n_passages, sequence_length])
|
267 |
+
end_logits = tf.reshape(end_logits, [n_passages, sequence_length])
|
268 |
+
relevance_logits = tf.reshape(relevance_logits, [n_passages])
|
269 |
+
|
270 |
+
if not return_dict:
|
271 |
+
return (start_logits, end_logits, relevance_logits) + outputs[2:]
|
272 |
+
|
273 |
+
return TFDPRReaderOutput(
|
274 |
+
start_logits=start_logits,
|
275 |
+
end_logits=end_logits,
|
276 |
+
relevance_logits=relevance_logits,
|
277 |
+
hidden_states=outputs.hidden_states,
|
278 |
+
attentions=outputs.attentions,
|
279 |
+
)
|
280 |
+
|
281 |
+
def build(self, input_shape=None):
|
282 |
+
if self.built:
|
283 |
+
return
|
284 |
+
self.built = True
|
285 |
+
if getattr(self, "encoder", None) is not None:
|
286 |
+
with tf.name_scope(self.encoder.name):
|
287 |
+
self.encoder.build(None)
|
288 |
+
if getattr(self, "qa_outputs", None) is not None:
|
289 |
+
with tf.name_scope(self.qa_outputs.name):
|
290 |
+
self.qa_outputs.build([None, None, self.encoder.embeddings_size])
|
291 |
+
if getattr(self, "qa_classifier", None) is not None:
|
292 |
+
with tf.name_scope(self.qa_classifier.name):
|
293 |
+
self.qa_classifier.build([None, None, self.encoder.embeddings_size])
|
294 |
+
|
295 |
+
|
296 |
+
class TFDPRSpanPredictor(TFPreTrainedModel):
|
297 |
+
base_model_prefix = "encoder"
|
298 |
+
|
299 |
+
def __init__(self, config: DPRConfig, **kwargs):
|
300 |
+
super().__init__(config, **kwargs)
|
301 |
+
self.encoder = TFDPRSpanPredictorLayer(config)
|
302 |
+
|
303 |
+
@unpack_inputs
|
304 |
+
def call(
|
305 |
+
self,
|
306 |
+
input_ids: tf.Tensor = None,
|
307 |
+
attention_mask: tf.Tensor | None = None,
|
308 |
+
token_type_ids: tf.Tensor | None = None,
|
309 |
+
inputs_embeds: tf.Tensor | None = None,
|
310 |
+
output_attentions: bool = False,
|
311 |
+
output_hidden_states: bool = False,
|
312 |
+
return_dict: bool = False,
|
313 |
+
training: bool = False,
|
314 |
+
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
|
315 |
+
outputs = self.encoder(
|
316 |
+
input_ids=input_ids,
|
317 |
+
attention_mask=attention_mask,
|
318 |
+
inputs_embeds=inputs_embeds,
|
319 |
+
output_attentions=output_attentions,
|
320 |
+
output_hidden_states=output_hidden_states,
|
321 |
+
return_dict=return_dict,
|
322 |
+
training=training,
|
323 |
+
)
|
324 |
+
|
325 |
+
return outputs
|
326 |
+
|
327 |
+
|
328 |
+
class TFDPREncoder(TFPreTrainedModel):
|
329 |
+
base_model_prefix = "encoder"
|
330 |
+
|
331 |
+
def __init__(self, config: DPRConfig, **kwargs):
|
332 |
+
super().__init__(config, **kwargs)
|
333 |
+
|
334 |
+
self.encoder = TFDPREncoderLayer(config)
|
335 |
+
|
336 |
+
@unpack_inputs
|
337 |
+
def call(
|
338 |
+
self,
|
339 |
+
input_ids: tf.Tensor = None,
|
340 |
+
attention_mask: tf.Tensor | None = None,
|
341 |
+
token_type_ids: tf.Tensor | None = None,
|
342 |
+
inputs_embeds: tf.Tensor | None = None,
|
343 |
+
output_attentions: bool = False,
|
344 |
+
output_hidden_states: bool = False,
|
345 |
+
return_dict: bool = False,
|
346 |
+
training: bool = False,
|
347 |
+
) -> Union[TFDPRReaderOutput, Tuple[tf.Tensor, ...]]:
|
348 |
+
outputs = self.encoder(
|
349 |
+
input_ids=input_ids,
|
350 |
+
attention_mask=attention_mask,
|
351 |
+
inputs_embeds=inputs_embeds,
|
352 |
+
output_attentions=output_attentions,
|
353 |
+
output_hidden_states=output_hidden_states,
|
354 |
+
return_dict=return_dict,
|
355 |
+
training=training,
|
356 |
+
)
|
357 |
+
return outputs
|
358 |
+
|
359 |
+
|
360 |
+
##################
|
361 |
+
# PreTrainedModel
|
362 |
+
##################
|
363 |
+
|
364 |
+
|
365 |
+
class TFDPRPretrainedContextEncoder(TFPreTrainedModel):
|
366 |
+
"""
|
367 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
368 |
+
models.
|
369 |
+
"""
|
370 |
+
|
371 |
+
config_class = DPRConfig
|
372 |
+
base_model_prefix = "ctx_encoder"
|
373 |
+
|
374 |
+
|
375 |
+
class TFDPRPretrainedQuestionEncoder(TFPreTrainedModel):
|
376 |
+
"""
|
377 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
378 |
+
models.
|
379 |
+
"""
|
380 |
+
|
381 |
+
config_class = DPRConfig
|
382 |
+
base_model_prefix = "question_encoder"
|
383 |
+
|
384 |
+
|
385 |
+
class TFDPRPretrainedReader(TFPreTrainedModel):
|
386 |
+
"""
|
387 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
388 |
+
models.
|
389 |
+
"""
|
390 |
+
|
391 |
+
config_class = DPRConfig
|
392 |
+
base_model_prefix = "reader"
|
393 |
+
|
394 |
+
|
395 |
+
###############
|
396 |
+
# Actual Models
|
397 |
+
###############
|
398 |
+
|
399 |
+
|
400 |
+
TF_DPR_START_DOCSTRING = r"""
|
401 |
+
|
402 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
403 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
404 |
+
etc.)
|
405 |
+
|
406 |
+
This model is also a Tensorflow [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model)
|
407 |
+
subclass. Use it as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to
|
408 |
+
general usage and behavior.
|
409 |
+
|
410 |
+
<Tip>
|
411 |
+
|
412 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
413 |
+
|
414 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
415 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
416 |
+
|
417 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
418 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
419 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
420 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
421 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
422 |
+
positional argument:
|
423 |
+
|
424 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
425 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
426 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
427 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
428 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
429 |
+
|
430 |
+
Note that when creating models and layers with
|
431 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
432 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
433 |
+
|
434 |
+
</Tip>
|
435 |
+
|
436 |
+
Parameters:
|
437 |
+
config ([`DPRConfig`]): Model configuration class with all the parameters of the model.
|
438 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
439 |
+
configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.
|
440 |
+
"""
|
441 |
+
|
442 |
+
TF_DPR_ENCODERS_INPUTS_DOCSTRING = r"""
|
443 |
+
Args:
|
444 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
|
445 |
+
Indices of input sequence tokens in the vocabulary. To match pretraining, DPR input sequence should be
|
446 |
+
formatted with [CLS] and [SEP] tokens as follows:
|
447 |
+
|
448 |
+
(a) For sequence pairs (for a pair title+text for example):
|
449 |
+
|
450 |
+
```
|
451 |
+
tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
452 |
+
token_type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
453 |
+
```
|
454 |
+
|
455 |
+
(b) For single sequences (for a question for example):
|
456 |
+
|
457 |
+
```
|
458 |
+
tokens: [CLS] the dog is hairy . [SEP]
|
459 |
+
token_type_ids: 0 0 0 0 0 0 0
|
460 |
+
```
|
461 |
+
|
462 |
+
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
463 |
+
rather than the left.
|
464 |
+
|
465 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
466 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
467 |
+
|
468 |
+
[What are input IDs?](../glossary#input-ids)
|
469 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
470 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
471 |
+
|
472 |
+
- 1 for tokens that are **not masked**,
|
473 |
+
- 0 for tokens that are **masked**.
|
474 |
+
|
475 |
+
[What are attention masks?](../glossary#attention-mask)
|
476 |
+
token_type_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
477 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
478 |
+
1]`:
|
479 |
+
|
480 |
+
- 0 corresponds to a *sentence A* token,
|
481 |
+
- 1 corresponds to a *sentence B* token.
|
482 |
+
|
483 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
484 |
+
inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
485 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
486 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
487 |
+
model's internal embedding lookup matrix.
|
488 |
+
output_attentions (`bool`, *optional*):
|
489 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
490 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
491 |
+
config will be used instead.
|
492 |
+
output_hidden_states (`bool`, *optional*):
|
493 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
494 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
495 |
+
used instead.
|
496 |
+
return_dict (`bool`, *optional*):
|
497 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
498 |
+
eager mode, in graph mode the value will always be set to True.
|
499 |
+
training (`bool`, *optional*, defaults to `False`):
|
500 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
501 |
+
behaviors between training and evaluation).
|
502 |
+
"""
|
503 |
+
|
504 |
+
TF_DPR_READER_INPUTS_DOCSTRING = r"""
|
505 |
+
Args:
|
506 |
+
input_ids (`Numpy array` or `tf.Tensor` of shapes `(n_passages, sequence_length)`):
|
507 |
+
Indices of input sequence tokens in the vocabulary. It has to be a sequence triplet with 1) the question
|
508 |
+
and 2) the passages titles and 3) the passages texts To match pretraining, DPR `input_ids` sequence should
|
509 |
+
be formatted with [CLS] and [SEP] with the format:
|
510 |
+
|
511 |
+
`[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>`
|
512 |
+
|
513 |
+
DPR is a model with absolute position embeddings so it's usually advised to pad the inputs on the right
|
514 |
+
rather than the left.
|
515 |
+
|
516 |
+
Indices can be obtained using [`DPRReaderTokenizer`]. See this class documentation for more details.
|
517 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length)`, *optional*):
|
518 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
519 |
+
|
520 |
+
- 1 for tokens that are **not masked**,
|
521 |
+
- 0 for tokens that are **masked**.
|
522 |
+
|
523 |
+
[What are attention masks?](../glossary#attention-mask)
|
524 |
+
inputs_embeds (`Numpy array` or `tf.Tensor` of shape `(n_passages, sequence_length, hidden_size)`, *optional*):
|
525 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
526 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
527 |
+
model's internal embedding lookup matrix.
|
528 |
+
output_hidden_states (`bool`, *optional*):
|
529 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
530 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
531 |
+
used instead.
|
532 |
+
return_dict (`bool`, *optional*):
|
533 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
534 |
+
eager mode, in graph mode the value will always be set to True.
|
535 |
+
training (`bool`, *optional*, defaults to `False`):
|
536 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
537 |
+
behaviors between training and evaluation).
|
538 |
+
"""
|
539 |
+
|
540 |
+
|
541 |
+
@add_start_docstrings(
|
542 |
+
"The bare DPRContextEncoder transformer outputting pooler outputs as context representations.",
|
543 |
+
TF_DPR_START_DOCSTRING,
|
544 |
+
)
|
545 |
+
class TFDPRContextEncoder(TFDPRPretrainedContextEncoder):
|
546 |
+
def __init__(self, config: DPRConfig, *args, **kwargs):
|
547 |
+
super().__init__(config, *args, **kwargs)
|
548 |
+
self.ctx_encoder = TFDPREncoderLayer(config, name="ctx_encoder")
|
549 |
+
|
550 |
+
def get_input_embeddings(self):
|
551 |
+
try:
|
552 |
+
return self.ctx_encoder.bert_model.get_input_embeddings()
|
553 |
+
except AttributeError:
|
554 |
+
self.build()
|
555 |
+
return self.ctx_encoder.bert_model.get_input_embeddings()
|
556 |
+
|
557 |
+
@unpack_inputs
|
558 |
+
@add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING)
|
559 |
+
@replace_return_docstrings(output_type=TFDPRContextEncoderOutput, config_class=_CONFIG_FOR_DOC)
|
560 |
+
def call(
|
561 |
+
self,
|
562 |
+
input_ids: TFModelInputType | None = None,
|
563 |
+
attention_mask: tf.Tensor | None = None,
|
564 |
+
token_type_ids: tf.Tensor | None = None,
|
565 |
+
inputs_embeds: tf.Tensor | None = None,
|
566 |
+
output_attentions: bool | None = None,
|
567 |
+
output_hidden_states: bool | None = None,
|
568 |
+
return_dict: bool | None = None,
|
569 |
+
training: bool = False,
|
570 |
+
) -> TFDPRContextEncoderOutput | Tuple[tf.Tensor, ...]:
|
571 |
+
r"""
|
572 |
+
Return:
|
573 |
+
|
574 |
+
Examples:
|
575 |
+
|
576 |
+
```python
|
577 |
+
>>> from transformers import TFDPRContextEncoder, DPRContextEncoderTokenizer
|
578 |
+
|
579 |
+
>>> tokenizer = DPRContextEncoderTokenizer.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base")
|
580 |
+
>>> model = TFDPRContextEncoder.from_pretrained("facebook/dpr-ctx_encoder-single-nq-base", from_pt=True)
|
581 |
+
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"]
|
582 |
+
>>> embeddings = model(input_ids).pooler_output
|
583 |
+
```
|
584 |
+
"""
|
585 |
+
if input_ids is not None and inputs_embeds is not None:
|
586 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
587 |
+
elif input_ids is not None:
|
588 |
+
input_shape = shape_list(input_ids)
|
589 |
+
elif inputs_embeds is not None:
|
590 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
591 |
+
else:
|
592 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
593 |
+
|
594 |
+
if attention_mask is None:
|
595 |
+
attention_mask = (
|
596 |
+
tf.ones(input_shape, dtype=tf.dtypes.int32)
|
597 |
+
if input_ids is None
|
598 |
+
else (input_ids != self.config.pad_token_id)
|
599 |
+
)
|
600 |
+
if token_type_ids is None:
|
601 |
+
token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32)
|
602 |
+
|
603 |
+
outputs = self.ctx_encoder(
|
604 |
+
input_ids=input_ids,
|
605 |
+
attention_mask=attention_mask,
|
606 |
+
token_type_ids=token_type_ids,
|
607 |
+
inputs_embeds=inputs_embeds,
|
608 |
+
output_attentions=output_attentions,
|
609 |
+
output_hidden_states=output_hidden_states,
|
610 |
+
return_dict=return_dict,
|
611 |
+
training=training,
|
612 |
+
)
|
613 |
+
|
614 |
+
if not return_dict:
|
615 |
+
return outputs[1:]
|
616 |
+
|
617 |
+
return TFDPRContextEncoderOutput(
|
618 |
+
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
619 |
+
)
|
620 |
+
|
621 |
+
def build(self, input_shape=None):
|
622 |
+
if self.built:
|
623 |
+
return
|
624 |
+
self.built = True
|
625 |
+
if getattr(self, "ctx_encoder", None) is not None:
|
626 |
+
with tf.name_scope(self.ctx_encoder.name):
|
627 |
+
self.ctx_encoder.build(None)
|
628 |
+
|
629 |
+
|
630 |
+
@add_start_docstrings(
|
631 |
+
"The bare DPRQuestionEncoder transformer outputting pooler outputs as question representations.",
|
632 |
+
TF_DPR_START_DOCSTRING,
|
633 |
+
)
|
634 |
+
class TFDPRQuestionEncoder(TFDPRPretrainedQuestionEncoder):
|
635 |
+
def __init__(self, config: DPRConfig, *args, **kwargs):
|
636 |
+
super().__init__(config, *args, **kwargs)
|
637 |
+
self.question_encoder = TFDPREncoderLayer(config, name="question_encoder")
|
638 |
+
|
639 |
+
def get_input_embeddings(self):
|
640 |
+
try:
|
641 |
+
return self.question_encoder.bert_model.get_input_embeddings()
|
642 |
+
except AttributeError:
|
643 |
+
self.build()
|
644 |
+
return self.question_encoder.bert_model.get_input_embeddings()
|
645 |
+
|
646 |
+
@unpack_inputs
|
647 |
+
@add_start_docstrings_to_model_forward(TF_DPR_ENCODERS_INPUTS_DOCSTRING)
|
648 |
+
@replace_return_docstrings(output_type=TFDPRQuestionEncoderOutput, config_class=_CONFIG_FOR_DOC)
|
649 |
+
def call(
|
650 |
+
self,
|
651 |
+
input_ids: TFModelInputType | None = None,
|
652 |
+
attention_mask: tf.Tensor | None = None,
|
653 |
+
token_type_ids: tf.Tensor | None = None,
|
654 |
+
inputs_embeds: tf.Tensor | None = None,
|
655 |
+
output_attentions: bool | None = None,
|
656 |
+
output_hidden_states: bool | None = None,
|
657 |
+
return_dict: bool | None = None,
|
658 |
+
training: bool = False,
|
659 |
+
) -> TFDPRQuestionEncoderOutput | Tuple[tf.Tensor, ...]:
|
660 |
+
r"""
|
661 |
+
Return:
|
662 |
+
|
663 |
+
Examples:
|
664 |
+
|
665 |
+
```python
|
666 |
+
>>> from transformers import TFDPRQuestionEncoder, DPRQuestionEncoderTokenizer
|
667 |
+
|
668 |
+
>>> tokenizer = DPRQuestionEncoderTokenizer.from_pretrained("facebook/dpr-question_encoder-single-nq-base")
|
669 |
+
>>> model = TFDPRQuestionEncoder.from_pretrained("facebook/dpr-question_encoder-single-nq-base", from_pt=True)
|
670 |
+
>>> input_ids = tokenizer("Hello, is my dog cute ?", return_tensors="tf")["input_ids"]
|
671 |
+
>>> embeddings = model(input_ids).pooler_output
|
672 |
+
```
|
673 |
+
"""
|
674 |
+
if input_ids is not None and inputs_embeds is not None:
|
675 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
676 |
+
elif input_ids is not None:
|
677 |
+
input_shape = shape_list(input_ids)
|
678 |
+
elif inputs_embeds is not None:
|
679 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
680 |
+
else:
|
681 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
682 |
+
|
683 |
+
if attention_mask is None:
|
684 |
+
attention_mask = (
|
685 |
+
tf.ones(input_shape, dtype=tf.dtypes.int32)
|
686 |
+
if input_ids is None
|
687 |
+
else (input_ids != self.config.pad_token_id)
|
688 |
+
)
|
689 |
+
if token_type_ids is None:
|
690 |
+
token_type_ids = tf.zeros(input_shape, dtype=tf.dtypes.int32)
|
691 |
+
|
692 |
+
outputs = self.question_encoder(
|
693 |
+
input_ids=input_ids,
|
694 |
+
attention_mask=attention_mask,
|
695 |
+
token_type_ids=token_type_ids,
|
696 |
+
inputs_embeds=inputs_embeds,
|
697 |
+
output_attentions=output_attentions,
|
698 |
+
output_hidden_states=output_hidden_states,
|
699 |
+
return_dict=return_dict,
|
700 |
+
training=training,
|
701 |
+
)
|
702 |
+
|
703 |
+
if not return_dict:
|
704 |
+
return outputs[1:]
|
705 |
+
return TFDPRQuestionEncoderOutput(
|
706 |
+
pooler_output=outputs.pooler_output, hidden_states=outputs.hidden_states, attentions=outputs.attentions
|
707 |
+
)
|
708 |
+
|
709 |
+
def build(self, input_shape=None):
|
710 |
+
if self.built:
|
711 |
+
return
|
712 |
+
self.built = True
|
713 |
+
if getattr(self, "question_encoder", None) is not None:
|
714 |
+
with tf.name_scope(self.question_encoder.name):
|
715 |
+
self.question_encoder.build(None)
|
716 |
+
|
717 |
+
|
718 |
+
@add_start_docstrings(
|
719 |
+
"The bare DPRReader transformer outputting span predictions.",
|
720 |
+
TF_DPR_START_DOCSTRING,
|
721 |
+
)
|
722 |
+
class TFDPRReader(TFDPRPretrainedReader):
|
723 |
+
def __init__(self, config: DPRConfig, *args, **kwargs):
|
724 |
+
super().__init__(config, *args, **kwargs)
|
725 |
+
self.span_predictor = TFDPRSpanPredictorLayer(config, name="span_predictor")
|
726 |
+
|
727 |
+
def get_input_embeddings(self):
|
728 |
+
try:
|
729 |
+
return self.span_predictor.encoder.bert_model.get_input_embeddings()
|
730 |
+
except AttributeError:
|
731 |
+
self.build()
|
732 |
+
return self.span_predictor.encoder.bert_model.get_input_embeddings()
|
733 |
+
|
734 |
+
@unpack_inputs
|
735 |
+
@add_start_docstrings_to_model_forward(TF_DPR_READER_INPUTS_DOCSTRING)
|
736 |
+
@replace_return_docstrings(output_type=TFDPRReaderOutput, config_class=_CONFIG_FOR_DOC)
|
737 |
+
def call(
|
738 |
+
self,
|
739 |
+
input_ids: TFModelInputType | None = None,
|
740 |
+
attention_mask: tf.Tensor | None = None,
|
741 |
+
inputs_embeds: tf.Tensor | None = None,
|
742 |
+
output_attentions: bool | None = None,
|
743 |
+
output_hidden_states: bool | None = None,
|
744 |
+
return_dict: bool | None = None,
|
745 |
+
training: bool = False,
|
746 |
+
) -> TFDPRReaderOutput | Tuple[tf.Tensor, ...]:
|
747 |
+
r"""
|
748 |
+
Return:
|
749 |
+
|
750 |
+
Examples:
|
751 |
+
|
752 |
+
```python
|
753 |
+
>>> from transformers import TFDPRReader, DPRReaderTokenizer
|
754 |
+
|
755 |
+
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
|
756 |
+
>>> model = TFDPRReader.from_pretrained("facebook/dpr-reader-single-nq-base", from_pt=True)
|
757 |
+
>>> encoded_inputs = tokenizer(
|
758 |
+
... questions=["What is love ?"],
|
759 |
+
... titles=["Haddaway"],
|
760 |
+
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
|
761 |
+
... return_tensors="tf",
|
762 |
+
... )
|
763 |
+
>>> outputs = model(encoded_inputs)
|
764 |
+
>>> start_logits = outputs.start_logits
|
765 |
+
>>> end_logits = outputs.end_logits
|
766 |
+
>>> relevance_logits = outputs.relevance_logits
|
767 |
+
```
|
768 |
+
"""
|
769 |
+
if input_ids is not None and inputs_embeds is not None:
|
770 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
771 |
+
elif input_ids is not None:
|
772 |
+
input_shape = shape_list(input_ids)
|
773 |
+
elif inputs_embeds is not None:
|
774 |
+
input_shape = shape_list(inputs_embeds)[:-1]
|
775 |
+
else:
|
776 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
777 |
+
|
778 |
+
if attention_mask is None:
|
779 |
+
attention_mask = tf.ones(input_shape, dtype=tf.dtypes.int32)
|
780 |
+
|
781 |
+
return self.span_predictor(
|
782 |
+
input_ids=input_ids,
|
783 |
+
attention_mask=attention_mask,
|
784 |
+
inputs_embeds=inputs_embeds,
|
785 |
+
output_attentions=output_attentions,
|
786 |
+
output_hidden_states=output_hidden_states,
|
787 |
+
return_dict=return_dict,
|
788 |
+
training=training,
|
789 |
+
)
|
790 |
+
|
791 |
+
def build(self, input_shape=None):
|
792 |
+
if self.built:
|
793 |
+
return
|
794 |
+
self.built = True
|
795 |
+
if getattr(self, "span_predictor", None) is not None:
|
796 |
+
with tf.name_scope(self.span_predictor.name):
|
797 |
+
self.span_predictor.build(None)
|
venv/lib/python3.10/site-packages/transformers/models/dpr/tokenization_dpr.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for DPR."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
|
23 |
+
from ..bert.tokenization_bert import BertTokenizer
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
29 |
+
|
30 |
+
|
31 |
+
class DPRContextEncoderTokenizer(BertTokenizer):
|
32 |
+
r"""
|
33 |
+
Construct a DPRContextEncoder tokenizer.
|
34 |
+
|
35 |
+
[`DPRContextEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
|
36 |
+
splitting and wordpiece.
|
37 |
+
|
38 |
+
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
|
39 |
+
"""
|
40 |
+
|
41 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
42 |
+
|
43 |
+
|
44 |
+
class DPRQuestionEncoderTokenizer(BertTokenizer):
|
45 |
+
r"""
|
46 |
+
Constructs a DPRQuestionEncoder tokenizer.
|
47 |
+
|
48 |
+
[`DPRQuestionEncoderTokenizer`] is identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
|
49 |
+
splitting and wordpiece.
|
50 |
+
|
51 |
+
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
|
52 |
+
"""
|
53 |
+
|
54 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
55 |
+
|
56 |
+
|
57 |
+
DPRSpanPrediction = collections.namedtuple(
|
58 |
+
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
|
59 |
+
)
|
60 |
+
|
61 |
+
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
|
62 |
+
|
63 |
+
|
64 |
+
CUSTOM_DPR_READER_DOCSTRING = r"""
|
65 |
+
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
|
66 |
+
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
|
67 |
+
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
|
68 |
+
with the format:
|
69 |
+
|
70 |
+
```
|
71 |
+
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
|
72 |
+
```
|
73 |
+
|
74 |
+
Args:
|
75 |
+
questions (`str` or `List[str]`):
|
76 |
+
The questions to be encoded. You can specify one question for many passages. In this case, the question
|
77 |
+
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
|
78 |
+
`titles` or `texts`.
|
79 |
+
titles (`str` or `List[str]`):
|
80 |
+
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
|
81 |
+
texts (`str` or `List[str]`):
|
82 |
+
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
|
83 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
84 |
+
Activates and controls padding. Accepts the following values:
|
85 |
+
|
86 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
|
87 |
+
if provided).
|
88 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
89 |
+
acceptable input length for the model if that argument is not provided.
|
90 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
91 |
+
lengths).
|
92 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
93 |
+
Activates and controls truncation. Accepts the following values:
|
94 |
+
|
95 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
|
96 |
+
the maximum acceptable input length for the model if that argument is not provided. This will truncate
|
97 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
|
98 |
+
of pairs) is provided.
|
99 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
|
100 |
+
acceptable input length for the model if that argument is not provided. This will only truncate the first
|
101 |
+
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
102 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
|
103 |
+
acceptable input length for the model if that argument is not provided. This will only truncate the
|
104 |
+
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
105 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
106 |
+
greater than the model maximum admissible input size).
|
107 |
+
max_length (`int`, *optional*):
|
108 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
109 |
+
|
110 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
111 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
112 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
113 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
114 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
115 |
+
|
116 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
117 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
118 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
119 |
+
return_attention_mask (`bool`, *optional*):
|
120 |
+
Whether or not to return the attention mask. If not set, will return the attention mask according to the
|
121 |
+
specific tokenizer's default, defined by the `return_outputs` attribute.
|
122 |
+
|
123 |
+
[What are attention masks?](../glossary#attention-mask)
|
124 |
+
|
125 |
+
Returns:
|
126 |
+
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
|
127 |
+
|
128 |
+
- `input_ids`: List of token ids to be fed to a model.
|
129 |
+
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
|
130 |
+
"""
|
131 |
+
|
132 |
+
|
133 |
+
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
|
134 |
+
class CustomDPRReaderTokenizerMixin:
|
135 |
+
def __call__(
|
136 |
+
self,
|
137 |
+
questions,
|
138 |
+
titles: Optional[str] = None,
|
139 |
+
texts: Optional[str] = None,
|
140 |
+
padding: Union[bool, str] = False,
|
141 |
+
truncation: Union[bool, str] = False,
|
142 |
+
max_length: Optional[int] = None,
|
143 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
144 |
+
return_attention_mask: Optional[bool] = None,
|
145 |
+
**kwargs,
|
146 |
+
) -> BatchEncoding:
|
147 |
+
if titles is None and texts is None:
|
148 |
+
return super().__call__(
|
149 |
+
questions,
|
150 |
+
padding=padding,
|
151 |
+
truncation=truncation,
|
152 |
+
max_length=max_length,
|
153 |
+
return_tensors=return_tensors,
|
154 |
+
return_attention_mask=return_attention_mask,
|
155 |
+
**kwargs,
|
156 |
+
)
|
157 |
+
elif titles is None or texts is None:
|
158 |
+
text_pair = titles if texts is None else texts
|
159 |
+
return super().__call__(
|
160 |
+
questions,
|
161 |
+
text_pair,
|
162 |
+
padding=padding,
|
163 |
+
truncation=truncation,
|
164 |
+
max_length=max_length,
|
165 |
+
return_tensors=return_tensors,
|
166 |
+
return_attention_mask=return_attention_mask,
|
167 |
+
**kwargs,
|
168 |
+
)
|
169 |
+
titles = titles if not isinstance(titles, str) else [titles]
|
170 |
+
texts = texts if not isinstance(texts, str) else [texts]
|
171 |
+
n_passages = len(titles)
|
172 |
+
questions = questions if not isinstance(questions, str) else [questions] * n_passages
|
173 |
+
if len(titles) != len(texts):
|
174 |
+
raise ValueError(
|
175 |
+
f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
|
176 |
+
)
|
177 |
+
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
|
178 |
+
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
|
179 |
+
encoded_inputs = {
|
180 |
+
"input_ids": [
|
181 |
+
(encoded_question_and_title + encoded_text)[:max_length]
|
182 |
+
if max_length is not None and truncation
|
183 |
+
else encoded_question_and_title + encoded_text
|
184 |
+
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
|
185 |
+
]
|
186 |
+
}
|
187 |
+
if return_attention_mask is not False:
|
188 |
+
attention_mask = []
|
189 |
+
for input_ids in encoded_inputs["input_ids"]:
|
190 |
+
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
|
191 |
+
encoded_inputs["attention_mask"] = attention_mask
|
192 |
+
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
|
193 |
+
|
194 |
+
def decode_best_spans(
|
195 |
+
self,
|
196 |
+
reader_input: BatchEncoding,
|
197 |
+
reader_output: DPRReaderOutput,
|
198 |
+
num_spans: int = 16,
|
199 |
+
max_answer_length: int = 64,
|
200 |
+
num_spans_per_passage: int = 4,
|
201 |
+
) -> List[DPRSpanPrediction]:
|
202 |
+
"""
|
203 |
+
Get the span predictions for the extractive Q&A model.
|
204 |
+
|
205 |
+
Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each
|
206 |
+
*DPRReaderOutput* is a *Tuple* with:
|
207 |
+
|
208 |
+
- **span_score**: `float` that corresponds to the score given by the reader for this span compared to other
|
209 |
+
spans in the same passage. It corresponds to the sum of the start and end logits of the span.
|
210 |
+
- **relevance_score**: `float` that corresponds to the score of the each passage to answer the question,
|
211 |
+
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
|
212 |
+
- **doc_id**: `int` the id of the passage. - **start_index**: `int` the start index of the span
|
213 |
+
(inclusive). - **end_index**: `int` the end index of the span (inclusive).
|
214 |
+
|
215 |
+
Examples:
|
216 |
+
|
217 |
+
```python
|
218 |
+
>>> from transformers import DPRReader, DPRReaderTokenizer
|
219 |
+
|
220 |
+
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
|
221 |
+
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
|
222 |
+
>>> encoded_inputs = tokenizer(
|
223 |
+
... questions=["What is love ?"],
|
224 |
+
... titles=["Haddaway"],
|
225 |
+
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
|
226 |
+
... return_tensors="pt",
|
227 |
+
... )
|
228 |
+
>>> outputs = model(**encoded_inputs)
|
229 |
+
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
|
230 |
+
>>> print(predicted_spans[0].text) # best span
|
231 |
+
a song
|
232 |
+
```"""
|
233 |
+
input_ids = reader_input["input_ids"]
|
234 |
+
start_logits, end_logits, relevance_logits = reader_output[:3]
|
235 |
+
n_passages = len(relevance_logits)
|
236 |
+
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
|
237 |
+
nbest_spans_predictions: List[DPRReaderOutput] = []
|
238 |
+
for doc_id in sorted_docs:
|
239 |
+
sequence_ids = list(input_ids[doc_id])
|
240 |
+
# assuming question & title information is at the beginning of the sequence
|
241 |
+
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
|
242 |
+
if sequence_ids[-1] == self.pad_token_id:
|
243 |
+
sequence_len = sequence_ids.index(self.pad_token_id)
|
244 |
+
else:
|
245 |
+
sequence_len = len(sequence_ids)
|
246 |
+
|
247 |
+
best_spans = self._get_best_spans(
|
248 |
+
start_logits=start_logits[doc_id][passage_offset:sequence_len],
|
249 |
+
end_logits=end_logits[doc_id][passage_offset:sequence_len],
|
250 |
+
max_answer_length=max_answer_length,
|
251 |
+
top_spans=num_spans_per_passage,
|
252 |
+
)
|
253 |
+
for start_index, end_index in best_spans:
|
254 |
+
start_index += passage_offset
|
255 |
+
end_index += passage_offset
|
256 |
+
nbest_spans_predictions.append(
|
257 |
+
DPRSpanPrediction(
|
258 |
+
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
|
259 |
+
relevance_score=relevance_logits[doc_id],
|
260 |
+
doc_id=doc_id,
|
261 |
+
start_index=start_index,
|
262 |
+
end_index=end_index,
|
263 |
+
text=self.decode(sequence_ids[start_index : end_index + 1]),
|
264 |
+
)
|
265 |
+
)
|
266 |
+
if len(nbest_spans_predictions) >= num_spans:
|
267 |
+
break
|
268 |
+
return nbest_spans_predictions[:num_spans]
|
269 |
+
|
270 |
+
def _get_best_spans(
|
271 |
+
self,
|
272 |
+
start_logits: List[int],
|
273 |
+
end_logits: List[int],
|
274 |
+
max_answer_length: int,
|
275 |
+
top_spans: int,
|
276 |
+
) -> List[DPRSpanPrediction]:
|
277 |
+
"""
|
278 |
+
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
|
279 |
+
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
|
280 |
+
"""
|
281 |
+
scores = []
|
282 |
+
for start_index, start_score in enumerate(start_logits):
|
283 |
+
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
|
284 |
+
scores.append(((start_index, start_index + answer_length), start_score + end_score))
|
285 |
+
scores = sorted(scores, key=lambda x: x[1], reverse=True)
|
286 |
+
chosen_span_intervals = []
|
287 |
+
for (start_index, end_index), score in scores:
|
288 |
+
if start_index > end_index:
|
289 |
+
raise ValueError(f"Wrong span indices: [{start_index}:{end_index}]")
|
290 |
+
length = end_index - start_index + 1
|
291 |
+
if length > max_answer_length:
|
292 |
+
raise ValueError(f"Span is too long: {length} > {max_answer_length}")
|
293 |
+
if any(
|
294 |
+
start_index <= prev_start_index <= prev_end_index <= end_index
|
295 |
+
or prev_start_index <= start_index <= end_index <= prev_end_index
|
296 |
+
for (prev_start_index, prev_end_index) in chosen_span_intervals
|
297 |
+
):
|
298 |
+
continue
|
299 |
+
chosen_span_intervals.append((start_index, end_index))
|
300 |
+
|
301 |
+
if len(chosen_span_intervals) == top_spans:
|
302 |
+
break
|
303 |
+
return chosen_span_intervals
|
304 |
+
|
305 |
+
|
306 |
+
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
|
307 |
+
class DPRReaderTokenizer(CustomDPRReaderTokenizerMixin, BertTokenizer):
|
308 |
+
r"""
|
309 |
+
Construct a DPRReader tokenizer.
|
310 |
+
|
311 |
+
[`DPRReaderTokenizer`] is almost identical to [`BertTokenizer`] and runs end-to-end tokenization: punctuation
|
312 |
+
splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts that are
|
313 |
+
combined to be fed to the [`DPRReader`] model.
|
314 |
+
|
315 |
+
Refer to superclass [`BertTokenizer`] for usage examples and documentation concerning parameters.
|
316 |
+
"""
|
317 |
+
|
318 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
319 |
+
model_input_names = ["input_ids", "attention_mask"]
|
venv/lib/python3.10/site-packages/transformers/models/dpr/tokenization_dpr_fast.py
ADDED
@@ -0,0 +1,319 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2018 The HuggingFace Inc. team, The Hugging Face Team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for DPR."""
|
16 |
+
|
17 |
+
|
18 |
+
import collections
|
19 |
+
from typing import List, Optional, Union
|
20 |
+
|
21 |
+
from ...tokenization_utils_base import BatchEncoding
|
22 |
+
from ...utils import TensorType, add_end_docstrings, add_start_docstrings, logging
|
23 |
+
from ..bert.tokenization_bert_fast import BertTokenizerFast
|
24 |
+
from .tokenization_dpr import DPRContextEncoderTokenizer, DPRQuestionEncoderTokenizer, DPRReaderTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"}
|
30 |
+
|
31 |
+
|
32 |
+
class DPRContextEncoderTokenizerFast(BertTokenizerFast):
|
33 |
+
r"""
|
34 |
+
Construct a "fast" DPRContextEncoder tokenizer (backed by HuggingFace's *tokenizers* library).
|
35 |
+
|
36 |
+
[`DPRContextEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
|
37 |
+
punctuation splitting and wordpiece.
|
38 |
+
|
39 |
+
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
|
40 |
+
"""
|
41 |
+
|
42 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
43 |
+
slow_tokenizer_class = DPRContextEncoderTokenizer
|
44 |
+
|
45 |
+
|
46 |
+
class DPRQuestionEncoderTokenizerFast(BertTokenizerFast):
|
47 |
+
r"""
|
48 |
+
Constructs a "fast" DPRQuestionEncoder tokenizer (backed by HuggingFace's *tokenizers* library).
|
49 |
+
|
50 |
+
[`DPRQuestionEncoderTokenizerFast`] is identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
|
51 |
+
punctuation splitting and wordpiece.
|
52 |
+
|
53 |
+
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
|
54 |
+
"""
|
55 |
+
|
56 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
57 |
+
slow_tokenizer_class = DPRQuestionEncoderTokenizer
|
58 |
+
|
59 |
+
|
60 |
+
DPRSpanPrediction = collections.namedtuple(
|
61 |
+
"DPRSpanPrediction", ["span_score", "relevance_score", "doc_id", "start_index", "end_index", "text"]
|
62 |
+
)
|
63 |
+
|
64 |
+
DPRReaderOutput = collections.namedtuple("DPRReaderOutput", ["start_logits", "end_logits", "relevance_logits"])
|
65 |
+
|
66 |
+
|
67 |
+
CUSTOM_DPR_READER_DOCSTRING = r"""
|
68 |
+
Return a dictionary with the token ids of the input strings and other information to give to `.decode_best_spans`.
|
69 |
+
It converts the strings of a question and different passages (title and text) in a sequence of IDs (integers),
|
70 |
+
using the tokenizer and vocabulary. The resulting `input_ids` is a matrix of size `(n_passages, sequence_length)`
|
71 |
+
with the format:
|
72 |
+
|
73 |
+
[CLS] <question token ids> [SEP] <titles ids> [SEP] <texts ids>
|
74 |
+
|
75 |
+
Args:
|
76 |
+
questions (`str` or `List[str]`):
|
77 |
+
The questions to be encoded. You can specify one question for many passages. In this case, the question
|
78 |
+
will be duplicated like `[questions] * n_passages`. Otherwise you have to specify as many questions as in
|
79 |
+
`titles` or `texts`.
|
80 |
+
titles (`str` or `List[str]`):
|
81 |
+
The passages titles to be encoded. This can be a string or a list of strings if there are several passages.
|
82 |
+
texts (`str` or `List[str]`):
|
83 |
+
The passages texts to be encoded. This can be a string or a list of strings if there are several passages.
|
84 |
+
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
|
85 |
+
Activates and controls padding. Accepts the following values:
|
86 |
+
|
87 |
+
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single sequence
|
88 |
+
if provided).
|
89 |
+
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
|
90 |
+
acceptable input length for the model if that argument is not provided.
|
91 |
+
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
|
92 |
+
lengths).
|
93 |
+
truncation (`bool`, `str` or [`~tokenization_utils_base.TruncationStrategy`], *optional*, defaults to `False`):
|
94 |
+
Activates and controls truncation. Accepts the following values:
|
95 |
+
|
96 |
+
- `True` or `'longest_first'`: Truncate to a maximum length specified with the argument `max_length` or to
|
97 |
+
the maximum acceptable input length for the model if that argument is not provided. This will truncate
|
98 |
+
token by token, removing a token from the longest sequence in the pair if a pair of sequences (or a batch
|
99 |
+
of pairs) is provided.
|
100 |
+
- `'only_first'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
|
101 |
+
acceptable input length for the model if that argument is not provided. This will only truncate the first
|
102 |
+
sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
103 |
+
- `'only_second'`: Truncate to a maximum length specified with the argument `max_length` or to the maximum
|
104 |
+
acceptable input length for the model if that argument is not provided. This will only truncate the
|
105 |
+
second sequence of a pair if a pair of sequences (or a batch of pairs) is provided.
|
106 |
+
- `False` or `'do_not_truncate'` (default): No truncation (i.e., can output batch with sequence lengths
|
107 |
+
greater than the model maximum admissible input size).
|
108 |
+
max_length (`int`, *optional*):
|
109 |
+
Controls the maximum length to use by one of the truncation/padding parameters.
|
110 |
+
|
111 |
+
If left unset or set to `None`, this will use the predefined model maximum length if a maximum length
|
112 |
+
is required by one of the truncation/padding parameters. If the model has no specific maximum input
|
113 |
+
length (like XLNet) truncation/padding to a maximum length will be deactivated.
|
114 |
+
return_tensors (`str` or [`~utils.TensorType`], *optional*):
|
115 |
+
If set, will return tensors instead of list of python integers. Acceptable values are:
|
116 |
+
|
117 |
+
- `'tf'`: Return TensorFlow `tf.constant` objects.
|
118 |
+
- `'pt'`: Return PyTorch `torch.Tensor` objects.
|
119 |
+
- `'np'`: Return Numpy `np.ndarray` objects.
|
120 |
+
return_attention_mask (`bool`, *optional*):
|
121 |
+
Whether or not to return the attention mask. If not set, will return the attention mask according to the
|
122 |
+
specific tokenizer's default, defined by the `return_outputs` attribute.
|
123 |
+
|
124 |
+
[What are attention masks?](../glossary#attention-mask)
|
125 |
+
|
126 |
+
Return:
|
127 |
+
`Dict[str, List[List[int]]]`: A dictionary with the following keys:
|
128 |
+
|
129 |
+
- `input_ids`: List of token ids to be fed to a model.
|
130 |
+
- `attention_mask`: List of indices specifying which tokens should be attended to by the model.
|
131 |
+
"""
|
132 |
+
|
133 |
+
|
134 |
+
@add_start_docstrings(CUSTOM_DPR_READER_DOCSTRING)
|
135 |
+
class CustomDPRReaderTokenizerMixin:
|
136 |
+
def __call__(
|
137 |
+
self,
|
138 |
+
questions,
|
139 |
+
titles: Optional[str] = None,
|
140 |
+
texts: Optional[str] = None,
|
141 |
+
padding: Union[bool, str] = False,
|
142 |
+
truncation: Union[bool, str] = False,
|
143 |
+
max_length: Optional[int] = None,
|
144 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
145 |
+
return_attention_mask: Optional[bool] = None,
|
146 |
+
**kwargs,
|
147 |
+
) -> BatchEncoding:
|
148 |
+
if titles is None and texts is None:
|
149 |
+
return super().__call__(
|
150 |
+
questions,
|
151 |
+
padding=padding,
|
152 |
+
truncation=truncation,
|
153 |
+
max_length=max_length,
|
154 |
+
return_tensors=return_tensors,
|
155 |
+
return_attention_mask=return_attention_mask,
|
156 |
+
**kwargs,
|
157 |
+
)
|
158 |
+
elif titles is None or texts is None:
|
159 |
+
text_pair = titles if texts is None else texts
|
160 |
+
return super().__call__(
|
161 |
+
questions,
|
162 |
+
text_pair,
|
163 |
+
padding=padding,
|
164 |
+
truncation=truncation,
|
165 |
+
max_length=max_length,
|
166 |
+
return_tensors=return_tensors,
|
167 |
+
return_attention_mask=return_attention_mask,
|
168 |
+
**kwargs,
|
169 |
+
)
|
170 |
+
titles = titles if not isinstance(titles, str) else [titles]
|
171 |
+
texts = texts if not isinstance(texts, str) else [texts]
|
172 |
+
n_passages = len(titles)
|
173 |
+
questions = questions if not isinstance(questions, str) else [questions] * n_passages
|
174 |
+
assert len(titles) == len(
|
175 |
+
texts
|
176 |
+
), f"There should be as many titles than texts but got {len(titles)} titles and {len(texts)} texts."
|
177 |
+
encoded_question_and_titles = super().__call__(questions, titles, padding=False, truncation=False)["input_ids"]
|
178 |
+
encoded_texts = super().__call__(texts, add_special_tokens=False, padding=False, truncation=False)["input_ids"]
|
179 |
+
encoded_inputs = {
|
180 |
+
"input_ids": [
|
181 |
+
(encoded_question_and_title + encoded_text)[:max_length]
|
182 |
+
if max_length is not None and truncation
|
183 |
+
else encoded_question_and_title + encoded_text
|
184 |
+
for encoded_question_and_title, encoded_text in zip(encoded_question_and_titles, encoded_texts)
|
185 |
+
]
|
186 |
+
}
|
187 |
+
if return_attention_mask is not False:
|
188 |
+
attention_mask = []
|
189 |
+
for input_ids in encoded_inputs["input_ids"]:
|
190 |
+
attention_mask.append([int(input_id != self.pad_token_id) for input_id in input_ids])
|
191 |
+
encoded_inputs["attention_mask"] = attention_mask
|
192 |
+
return self.pad(encoded_inputs, padding=padding, max_length=max_length, return_tensors=return_tensors)
|
193 |
+
|
194 |
+
def decode_best_spans(
|
195 |
+
self,
|
196 |
+
reader_input: BatchEncoding,
|
197 |
+
reader_output: DPRReaderOutput,
|
198 |
+
num_spans: int = 16,
|
199 |
+
max_answer_length: int = 64,
|
200 |
+
num_spans_per_passage: int = 4,
|
201 |
+
) -> List[DPRSpanPrediction]:
|
202 |
+
"""
|
203 |
+
Get the span predictions for the extractive Q&A model.
|
204 |
+
|
205 |
+
Returns: *List* of *DPRReaderOutput* sorted by descending *(relevance_score, span_score)*. Each
|
206 |
+
*DPRReaderOutput* is a *Tuple* with:
|
207 |
+
|
208 |
+
- **span_score**: `float` that corresponds to the score given by the reader for this span compared to other
|
209 |
+
spans in the same passage. It corresponds to the sum of the start and end logits of the span.
|
210 |
+
- **relevance_score**: `float` that corresponds to the score of the each passage to answer the question,
|
211 |
+
compared to all the other passages. It corresponds to the output of the QA classifier of the DPRReader.
|
212 |
+
- **doc_id**: `int` the id of the passage. - ***start_index**: `int` the start index of the span
|
213 |
+
(inclusive). - **end_index**: `int` the end index of the span (inclusive).
|
214 |
+
|
215 |
+
Examples:
|
216 |
+
|
217 |
+
```python
|
218 |
+
>>> from transformers import DPRReader, DPRReaderTokenizer
|
219 |
+
|
220 |
+
>>> tokenizer = DPRReaderTokenizer.from_pretrained("facebook/dpr-reader-single-nq-base")
|
221 |
+
>>> model = DPRReader.from_pretrained("facebook/dpr-reader-single-nq-base")
|
222 |
+
>>> encoded_inputs = tokenizer(
|
223 |
+
... questions=["What is love ?"],
|
224 |
+
... titles=["Haddaway"],
|
225 |
+
... texts=["'What Is Love' is a song recorded by the artist Haddaway"],
|
226 |
+
... return_tensors="pt",
|
227 |
+
... )
|
228 |
+
>>> outputs = model(**encoded_inputs)
|
229 |
+
>>> predicted_spans = tokenizer.decode_best_spans(encoded_inputs, outputs)
|
230 |
+
>>> print(predicted_spans[0].text) # best span
|
231 |
+
a song
|
232 |
+
```"""
|
233 |
+
input_ids = reader_input["input_ids"]
|
234 |
+
start_logits, end_logits, relevance_logits = reader_output[:3]
|
235 |
+
n_passages = len(relevance_logits)
|
236 |
+
sorted_docs = sorted(range(n_passages), reverse=True, key=relevance_logits.__getitem__)
|
237 |
+
nbest_spans_predictions: List[DPRReaderOutput] = []
|
238 |
+
for doc_id in sorted_docs:
|
239 |
+
sequence_ids = list(input_ids[doc_id])
|
240 |
+
# assuming question & title information is at the beginning of the sequence
|
241 |
+
passage_offset = sequence_ids.index(self.sep_token_id, 2) + 1 # second sep id
|
242 |
+
if sequence_ids[-1] == self.pad_token_id:
|
243 |
+
sequence_len = sequence_ids.index(self.pad_token_id)
|
244 |
+
else:
|
245 |
+
sequence_len = len(sequence_ids)
|
246 |
+
|
247 |
+
best_spans = self._get_best_spans(
|
248 |
+
start_logits=start_logits[doc_id][passage_offset:sequence_len],
|
249 |
+
end_logits=end_logits[doc_id][passage_offset:sequence_len],
|
250 |
+
max_answer_length=max_answer_length,
|
251 |
+
top_spans=num_spans_per_passage,
|
252 |
+
)
|
253 |
+
for start_index, end_index in best_spans:
|
254 |
+
start_index += passage_offset
|
255 |
+
end_index += passage_offset
|
256 |
+
nbest_spans_predictions.append(
|
257 |
+
DPRSpanPrediction(
|
258 |
+
span_score=start_logits[doc_id][start_index] + end_logits[doc_id][end_index],
|
259 |
+
relevance_score=relevance_logits[doc_id],
|
260 |
+
doc_id=doc_id,
|
261 |
+
start_index=start_index,
|
262 |
+
end_index=end_index,
|
263 |
+
text=self.decode(sequence_ids[start_index : end_index + 1]),
|
264 |
+
)
|
265 |
+
)
|
266 |
+
if len(nbest_spans_predictions) >= num_spans:
|
267 |
+
break
|
268 |
+
return nbest_spans_predictions[:num_spans]
|
269 |
+
|
270 |
+
def _get_best_spans(
|
271 |
+
self,
|
272 |
+
start_logits: List[int],
|
273 |
+
end_logits: List[int],
|
274 |
+
max_answer_length: int,
|
275 |
+
top_spans: int,
|
276 |
+
) -> List[DPRSpanPrediction]:
|
277 |
+
"""
|
278 |
+
Finds the best answer span for the extractive Q&A model for one passage. It returns the best span by descending
|
279 |
+
`span_score` order and keeping max `top_spans` spans. Spans longer that `max_answer_length` are ignored.
|
280 |
+
"""
|
281 |
+
scores = []
|
282 |
+
for start_index, start_score in enumerate(start_logits):
|
283 |
+
for answer_length, end_score in enumerate(end_logits[start_index : start_index + max_answer_length]):
|
284 |
+
scores.append(((start_index, start_index + answer_length), start_score + end_score))
|
285 |
+
scores = sorted(scores, key=lambda x: x[1], reverse=True)
|
286 |
+
chosen_span_intervals = []
|
287 |
+
for (start_index, end_index), score in scores:
|
288 |
+
assert start_index <= end_index, f"Wrong span indices: [{start_index}:{end_index}]"
|
289 |
+
length = end_index - start_index + 1
|
290 |
+
assert length <= max_answer_length, f"Span is too long: {length} > {max_answer_length}"
|
291 |
+
if any(
|
292 |
+
start_index <= prev_start_index <= prev_end_index <= end_index
|
293 |
+
or prev_start_index <= start_index <= end_index <= prev_end_index
|
294 |
+
for (prev_start_index, prev_end_index) in chosen_span_intervals
|
295 |
+
):
|
296 |
+
continue
|
297 |
+
chosen_span_intervals.append((start_index, end_index))
|
298 |
+
|
299 |
+
if len(chosen_span_intervals) == top_spans:
|
300 |
+
break
|
301 |
+
return chosen_span_intervals
|
302 |
+
|
303 |
+
|
304 |
+
@add_end_docstrings(CUSTOM_DPR_READER_DOCSTRING)
|
305 |
+
class DPRReaderTokenizerFast(CustomDPRReaderTokenizerMixin, BertTokenizerFast):
|
306 |
+
r"""
|
307 |
+
Constructs a "fast" DPRReader tokenizer (backed by HuggingFace's *tokenizers* library).
|
308 |
+
|
309 |
+
[`DPRReaderTokenizerFast`] is almost identical to [`BertTokenizerFast`] and runs end-to-end tokenization:
|
310 |
+
punctuation splitting and wordpiece. The difference is that is has three inputs strings: question, titles and texts
|
311 |
+
that are combined to be fed to the [`DPRReader`] model.
|
312 |
+
|
313 |
+
Refer to superclass [`BertTokenizerFast`] for usage examples and documentation concerning parameters.
|
314 |
+
|
315 |
+
"""
|
316 |
+
|
317 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
318 |
+
model_input_names = ["input_ids", "attention_mask"]
|
319 |
+
slow_tokenizer_class = DPRReaderTokenizer
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__init__.py
ADDED
@@ -0,0 +1,84 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# flake8: noqa
|
2 |
+
# There's no way to ignore "F401 '...' imported but unused" warnings in this
|
3 |
+
# module, but to preserve other warnings. So, don't check this module at all.
|
4 |
+
|
5 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
6 |
+
#
|
7 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
8 |
+
# you may not use this file except in compliance with the License.
|
9 |
+
# You may obtain a copy of the License at
|
10 |
+
#
|
11 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
12 |
+
#
|
13 |
+
# Unless required by applicable law or agreed to in writing, software
|
14 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
15 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
16 |
+
# See the License for the specific language governing permissions and
|
17 |
+
# limitations under the License.
|
18 |
+
from typing import TYPE_CHECKING
|
19 |
+
|
20 |
+
# rely on isort to merge the imports
|
21 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
|
22 |
+
|
23 |
+
|
24 |
+
_import_structure = {
|
25 |
+
"configuration_efficientnet": [
|
26 |
+
"EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
27 |
+
"EfficientNetConfig",
|
28 |
+
"EfficientNetOnnxConfig",
|
29 |
+
]
|
30 |
+
}
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_vision_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["image_processing_efficientnet"] = ["EfficientNetImageProcessor"]
|
39 |
+
|
40 |
+
try:
|
41 |
+
if not is_torch_available():
|
42 |
+
raise OptionalDependencyNotAvailable()
|
43 |
+
except OptionalDependencyNotAvailable:
|
44 |
+
pass
|
45 |
+
else:
|
46 |
+
_import_structure["modeling_efficientnet"] = [
|
47 |
+
"EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST",
|
48 |
+
"EfficientNetForImageClassification",
|
49 |
+
"EfficientNetModel",
|
50 |
+
"EfficientNetPreTrainedModel",
|
51 |
+
]
|
52 |
+
|
53 |
+
if TYPE_CHECKING:
|
54 |
+
from .configuration_efficientnet import (
|
55 |
+
EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
56 |
+
EfficientNetConfig,
|
57 |
+
EfficientNetOnnxConfig,
|
58 |
+
)
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_vision_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
from .image_processing_efficientnet import EfficientNetImageProcessor
|
67 |
+
|
68 |
+
try:
|
69 |
+
if not is_torch_available():
|
70 |
+
raise OptionalDependencyNotAvailable()
|
71 |
+
except OptionalDependencyNotAvailable:
|
72 |
+
pass
|
73 |
+
else:
|
74 |
+
from .modeling_efficientnet import (
|
75 |
+
EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST,
|
76 |
+
EfficientNetForImageClassification,
|
77 |
+
EfficientNetModel,
|
78 |
+
EfficientNetPreTrainedModel,
|
79 |
+
)
|
80 |
+
|
81 |
+
else:
|
82 |
+
import sys
|
83 |
+
|
84 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure)
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/configuration_efficientnet.cpython-310.pyc
ADDED
Binary file (7.31 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/convert_efficientnet_to_pytorch.cpython-310.pyc
ADDED
Binary file (9.38 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/image_processing_efficientnet.cpython-310.pyc
ADDED
Binary file (15.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/__pycache__/modeling_efficientnet.cpython-310.pyc
ADDED
Binary file (18.8 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/configuration_efficientnet.py
ADDED
@@ -0,0 +1,169 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" EfficientNet model configuration"""
|
16 |
+
|
17 |
+
from collections import OrderedDict
|
18 |
+
from typing import List, Mapping
|
19 |
+
|
20 |
+
from packaging import version
|
21 |
+
|
22 |
+
from ...configuration_utils import PretrainedConfig
|
23 |
+
from ...onnx import OnnxConfig
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
from ..deprecated._archive_maps import EFFICIENTNET_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
31 |
+
|
32 |
+
|
33 |
+
class EfficientNetConfig(PretrainedConfig):
|
34 |
+
r"""
|
35 |
+
This is the configuration class to store the configuration of a [`EfficientNetModel`]. It is used to instantiate an
|
36 |
+
EfficientNet model according to the specified arguments, defining the model architecture. Instantiating a
|
37 |
+
configuration with the defaults will yield a similar configuration to that of the EfficientNet
|
38 |
+
[google/efficientnet-b7](https://huggingface.co/google/efficientnet-b7) architecture.
|
39 |
+
|
40 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
41 |
+
documentation from [`PretrainedConfig`] for more information.
|
42 |
+
|
43 |
+
Args:
|
44 |
+
num_channels (`int`, *optional*, defaults to 3):
|
45 |
+
The number of input channels.
|
46 |
+
image_size (`int`, *optional*, defaults to 600):
|
47 |
+
The input image size.
|
48 |
+
width_coefficient (`float`, *optional*, defaults to 2.0):
|
49 |
+
Scaling coefficient for network width at each stage.
|
50 |
+
depth_coefficient (`float`, *optional*, defaults to 3.1):
|
51 |
+
Scaling coefficient for network depth at each stage.
|
52 |
+
depth_divisor `int`, *optional*, defaults to 8):
|
53 |
+
A unit of network width.
|
54 |
+
kernel_sizes (`List[int]`, *optional*, defaults to `[3, 3, 5, 3, 5, 5, 3]`):
|
55 |
+
List of kernel sizes to be used in each block.
|
56 |
+
in_channels (`List[int]`, *optional*, defaults to `[32, 16, 24, 40, 80, 112, 192]`):
|
57 |
+
List of input channel sizes to be used in each block for convolutional layers.
|
58 |
+
out_channels (`List[int]`, *optional*, defaults to `[16, 24, 40, 80, 112, 192, 320]`):
|
59 |
+
List of output channel sizes to be used in each block for convolutional layers.
|
60 |
+
depthwise_padding (`List[int]`, *optional*, defaults to `[]`):
|
61 |
+
List of block indices with square padding.
|
62 |
+
strides (`List[int]`, *optional*, defaults to `[1, 2, 2, 2, 1, 2, 1]`):
|
63 |
+
List of stride sizes to be used in each block for convolutional layers.
|
64 |
+
num_block_repeats (`List[int]`, *optional*, defaults to `[1, 2, 2, 3, 3, 4, 1]`):
|
65 |
+
List of the number of times each block is to repeated.
|
66 |
+
expand_ratios (`List[int]`, *optional*, defaults to `[1, 6, 6, 6, 6, 6, 6]`):
|
67 |
+
List of scaling coefficient of each block.
|
68 |
+
squeeze_expansion_ratio (`float`, *optional*, defaults to 0.25):
|
69 |
+
Squeeze expansion ratio.
|
70 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
|
71 |
+
The non-linear activation function (function or string) in each block. If string, `"gelu"`, `"relu"`,
|
72 |
+
`"selu", `"gelu_new"`, `"silu"` and `"mish"` are supported.
|
73 |
+
hiddem_dim (`int`, *optional*, defaults to 1280):
|
74 |
+
The hidden dimension of the layer before the classification head.
|
75 |
+
pooling_type (`str` or `function`, *optional*, defaults to `"mean"`):
|
76 |
+
Type of final pooling to be applied before the dense classification head. Available options are [`"mean"`,
|
77 |
+
`"max"`]
|
78 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
79 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
80 |
+
batch_norm_eps (`float`, *optional*, defaults to 1e-3):
|
81 |
+
The epsilon used by the batch normalization layers.
|
82 |
+
batch_norm_momentum (`float`, *optional*, defaults to 0.99):
|
83 |
+
The momentum used by the batch normalization layers.
|
84 |
+
dropout_rate (`float`, *optional*, defaults to 0.5):
|
85 |
+
The dropout rate to be applied before final classifier layer.
|
86 |
+
drop_connect_rate (`float`, *optional*, defaults to 0.2):
|
87 |
+
The drop rate for skip connections.
|
88 |
+
|
89 |
+
Example:
|
90 |
+
```python
|
91 |
+
>>> from transformers import EfficientNetConfig, EfficientNetModel
|
92 |
+
|
93 |
+
>>> # Initializing a EfficientNet efficientnet-b7 style configuration
|
94 |
+
>>> configuration = EfficientNetConfig()
|
95 |
+
|
96 |
+
>>> # Initializing a model (with random weights) from the efficientnet-b7 style configuration
|
97 |
+
>>> model = EfficientNetModel(configuration)
|
98 |
+
|
99 |
+
>>> # Accessing the model configuration
|
100 |
+
>>> configuration = model.config
|
101 |
+
```"""
|
102 |
+
|
103 |
+
model_type = "efficientnet"
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
num_channels: int = 3,
|
108 |
+
image_size: int = 600,
|
109 |
+
width_coefficient: float = 2.0,
|
110 |
+
depth_coefficient: float = 3.1,
|
111 |
+
depth_divisor: int = 8,
|
112 |
+
kernel_sizes: List[int] = [3, 3, 5, 3, 5, 5, 3],
|
113 |
+
in_channels: List[int] = [32, 16, 24, 40, 80, 112, 192],
|
114 |
+
out_channels: List[int] = [16, 24, 40, 80, 112, 192, 320],
|
115 |
+
depthwise_padding: List[int] = [],
|
116 |
+
strides: List[int] = [1, 2, 2, 2, 1, 2, 1],
|
117 |
+
num_block_repeats: List[int] = [1, 2, 2, 3, 3, 4, 1],
|
118 |
+
expand_ratios: List[int] = [1, 6, 6, 6, 6, 6, 6],
|
119 |
+
squeeze_expansion_ratio: float = 0.25,
|
120 |
+
hidden_act: str = "swish",
|
121 |
+
hidden_dim: int = 2560,
|
122 |
+
pooling_type: str = "mean",
|
123 |
+
initializer_range: float = 0.02,
|
124 |
+
batch_norm_eps: float = 0.001,
|
125 |
+
batch_norm_momentum: float = 0.99,
|
126 |
+
dropout_rate: float = 0.5,
|
127 |
+
drop_connect_rate: float = 0.2,
|
128 |
+
**kwargs,
|
129 |
+
):
|
130 |
+
super().__init__(**kwargs)
|
131 |
+
|
132 |
+
self.num_channels = num_channels
|
133 |
+
self.image_size = image_size
|
134 |
+
self.width_coefficient = width_coefficient
|
135 |
+
self.depth_coefficient = depth_coefficient
|
136 |
+
self.depth_divisor = depth_divisor
|
137 |
+
self.kernel_sizes = kernel_sizes
|
138 |
+
self.in_channels = in_channels
|
139 |
+
self.out_channels = out_channels
|
140 |
+
self.depthwise_padding = depthwise_padding
|
141 |
+
self.strides = strides
|
142 |
+
self.num_block_repeats = num_block_repeats
|
143 |
+
self.expand_ratios = expand_ratios
|
144 |
+
self.squeeze_expansion_ratio = squeeze_expansion_ratio
|
145 |
+
self.hidden_act = hidden_act
|
146 |
+
self.hidden_dim = hidden_dim
|
147 |
+
self.pooling_type = pooling_type
|
148 |
+
self.initializer_range = initializer_range
|
149 |
+
self.batch_norm_eps = batch_norm_eps
|
150 |
+
self.batch_norm_momentum = batch_norm_momentum
|
151 |
+
self.dropout_rate = dropout_rate
|
152 |
+
self.drop_connect_rate = drop_connect_rate
|
153 |
+
self.num_hidden_layers = sum(num_block_repeats) * 4
|
154 |
+
|
155 |
+
|
156 |
+
class EfficientNetOnnxConfig(OnnxConfig):
|
157 |
+
torch_onnx_minimum_version = version.parse("1.11")
|
158 |
+
|
159 |
+
@property
|
160 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
161 |
+
return OrderedDict(
|
162 |
+
[
|
163 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
164 |
+
]
|
165 |
+
)
|
166 |
+
|
167 |
+
@property
|
168 |
+
def atol_for_validation(self) -> float:
|
169 |
+
return 1e-5
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/convert_efficientnet_to_pytorch.py
ADDED
@@ -0,0 +1,339 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Convert EfficientNet checkpoints from the original repository.
|
16 |
+
|
17 |
+
URL: https://github.com/keras-team/keras/blob/v2.11.0/keras/applications/efficientnet.py"""
|
18 |
+
|
19 |
+
import argparse
|
20 |
+
import json
|
21 |
+
import os
|
22 |
+
|
23 |
+
import numpy as np
|
24 |
+
import PIL
|
25 |
+
import requests
|
26 |
+
import tensorflow.keras.applications.efficientnet as efficientnet
|
27 |
+
import torch
|
28 |
+
from huggingface_hub import hf_hub_download
|
29 |
+
from PIL import Image
|
30 |
+
from tensorflow.keras.preprocessing import image
|
31 |
+
|
32 |
+
from transformers import (
|
33 |
+
EfficientNetConfig,
|
34 |
+
EfficientNetForImageClassification,
|
35 |
+
EfficientNetImageProcessor,
|
36 |
+
)
|
37 |
+
from transformers.utils import logging
|
38 |
+
|
39 |
+
|
40 |
+
logging.set_verbosity_info()
|
41 |
+
logger = logging.get_logger(__name__)
|
42 |
+
|
43 |
+
model_classes = {
|
44 |
+
"b0": efficientnet.EfficientNetB0,
|
45 |
+
"b1": efficientnet.EfficientNetB1,
|
46 |
+
"b2": efficientnet.EfficientNetB2,
|
47 |
+
"b3": efficientnet.EfficientNetB3,
|
48 |
+
"b4": efficientnet.EfficientNetB4,
|
49 |
+
"b5": efficientnet.EfficientNetB5,
|
50 |
+
"b6": efficientnet.EfficientNetB6,
|
51 |
+
"b7": efficientnet.EfficientNetB7,
|
52 |
+
}
|
53 |
+
|
54 |
+
CONFIG_MAP = {
|
55 |
+
"b0": {
|
56 |
+
"hidden_dim": 1280,
|
57 |
+
"width_coef": 1.0,
|
58 |
+
"depth_coef": 1.0,
|
59 |
+
"image_size": 224,
|
60 |
+
"dropout_rate": 0.2,
|
61 |
+
"dw_padding": [],
|
62 |
+
},
|
63 |
+
"b1": {
|
64 |
+
"hidden_dim": 1280,
|
65 |
+
"width_coef": 1.0,
|
66 |
+
"depth_coef": 1.1,
|
67 |
+
"image_size": 240,
|
68 |
+
"dropout_rate": 0.2,
|
69 |
+
"dw_padding": [16],
|
70 |
+
},
|
71 |
+
"b2": {
|
72 |
+
"hidden_dim": 1408,
|
73 |
+
"width_coef": 1.1,
|
74 |
+
"depth_coef": 1.2,
|
75 |
+
"image_size": 260,
|
76 |
+
"dropout_rate": 0.3,
|
77 |
+
"dw_padding": [5, 8, 16],
|
78 |
+
},
|
79 |
+
"b3": {
|
80 |
+
"hidden_dim": 1536,
|
81 |
+
"width_coef": 1.2,
|
82 |
+
"depth_coef": 1.4,
|
83 |
+
"image_size": 300,
|
84 |
+
"dropout_rate": 0.3,
|
85 |
+
"dw_padding": [5, 18],
|
86 |
+
},
|
87 |
+
"b4": {
|
88 |
+
"hidden_dim": 1792,
|
89 |
+
"width_coef": 1.4,
|
90 |
+
"depth_coef": 1.8,
|
91 |
+
"image_size": 380,
|
92 |
+
"dropout_rate": 0.4,
|
93 |
+
"dw_padding": [6],
|
94 |
+
},
|
95 |
+
"b5": {
|
96 |
+
"hidden_dim": 2048,
|
97 |
+
"width_coef": 1.6,
|
98 |
+
"depth_coef": 2.2,
|
99 |
+
"image_size": 456,
|
100 |
+
"dropout_rate": 0.4,
|
101 |
+
"dw_padding": [13, 27],
|
102 |
+
},
|
103 |
+
"b6": {
|
104 |
+
"hidden_dim": 2304,
|
105 |
+
"width_coef": 1.8,
|
106 |
+
"depth_coef": 2.6,
|
107 |
+
"image_size": 528,
|
108 |
+
"dropout_rate": 0.5,
|
109 |
+
"dw_padding": [31],
|
110 |
+
},
|
111 |
+
"b7": {
|
112 |
+
"hidden_dim": 2560,
|
113 |
+
"width_coef": 2.0,
|
114 |
+
"depth_coef": 3.1,
|
115 |
+
"image_size": 600,
|
116 |
+
"dropout_rate": 0.5,
|
117 |
+
"dw_padding": [18],
|
118 |
+
},
|
119 |
+
}
|
120 |
+
|
121 |
+
|
122 |
+
def get_efficientnet_config(model_name):
|
123 |
+
config = EfficientNetConfig()
|
124 |
+
config.hidden_dim = CONFIG_MAP[model_name]["hidden_dim"]
|
125 |
+
config.width_coefficient = CONFIG_MAP[model_name]["width_coef"]
|
126 |
+
config.depth_coefficient = CONFIG_MAP[model_name]["depth_coef"]
|
127 |
+
config.image_size = CONFIG_MAP[model_name]["image_size"]
|
128 |
+
config.dropout_rate = CONFIG_MAP[model_name]["dropout_rate"]
|
129 |
+
config.depthwise_padding = CONFIG_MAP[model_name]["dw_padding"]
|
130 |
+
|
131 |
+
repo_id = "huggingface/label-files"
|
132 |
+
filename = "imagenet-1k-id2label.json"
|
133 |
+
config.num_labels = 1000
|
134 |
+
id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
|
135 |
+
id2label = {int(k): v for k, v in id2label.items()}
|
136 |
+
|
137 |
+
config.id2label = id2label
|
138 |
+
config.label2id = {v: k for k, v in id2label.items()}
|
139 |
+
return config
|
140 |
+
|
141 |
+
|
142 |
+
# We will verify our results on an image of cute cats
|
143 |
+
def prepare_img():
|
144 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
145 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
146 |
+
return im
|
147 |
+
|
148 |
+
|
149 |
+
def convert_image_processor(model_name):
|
150 |
+
size = CONFIG_MAP[model_name]["image_size"]
|
151 |
+
preprocessor = EfficientNetImageProcessor(
|
152 |
+
size={"height": size, "width": size},
|
153 |
+
image_mean=[0.485, 0.456, 0.406],
|
154 |
+
image_std=[0.47853944, 0.4732864, 0.47434163],
|
155 |
+
do_center_crop=False,
|
156 |
+
)
|
157 |
+
return preprocessor
|
158 |
+
|
159 |
+
|
160 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
161 |
+
def rename_keys(original_param_names):
|
162 |
+
block_names = [v.split("_")[0].split("block")[1] for v in original_param_names if v.startswith("block")]
|
163 |
+
block_names = sorted(set(block_names))
|
164 |
+
num_blocks = len(block_names)
|
165 |
+
block_name_mapping = {b: str(i) for b, i in zip(block_names, range(num_blocks))}
|
166 |
+
|
167 |
+
rename_keys = []
|
168 |
+
rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight"))
|
169 |
+
rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight"))
|
170 |
+
rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias"))
|
171 |
+
rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean"))
|
172 |
+
rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var"))
|
173 |
+
|
174 |
+
for b in block_names:
|
175 |
+
hf_b = block_name_mapping[b]
|
176 |
+
rename_keys.append((f"block{b}_expand_conv/kernel:0", f"encoder.blocks.{hf_b}.expansion.expand_conv.weight"))
|
177 |
+
rename_keys.append((f"block{b}_expand_bn/gamma:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.weight"))
|
178 |
+
rename_keys.append((f"block{b}_expand_bn/beta:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.bias"))
|
179 |
+
rename_keys.append(
|
180 |
+
(f"block{b}_expand_bn/moving_mean:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean")
|
181 |
+
)
|
182 |
+
rename_keys.append(
|
183 |
+
(f"block{b}_expand_bn/moving_variance:0", f"encoder.blocks.{hf_b}.expansion.expand_bn.running_var")
|
184 |
+
)
|
185 |
+
rename_keys.append(
|
186 |
+
(f"block{b}_dwconv/depthwise_kernel:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight")
|
187 |
+
)
|
188 |
+
rename_keys.append((f"block{b}_bn/gamma:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight"))
|
189 |
+
rename_keys.append((f"block{b}_bn/beta:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias"))
|
190 |
+
rename_keys.append(
|
191 |
+
(f"block{b}_bn/moving_mean:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean")
|
192 |
+
)
|
193 |
+
rename_keys.append(
|
194 |
+
(f"block{b}_bn/moving_variance:0", f"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var")
|
195 |
+
)
|
196 |
+
|
197 |
+
rename_keys.append((f"block{b}_se_reduce/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight"))
|
198 |
+
rename_keys.append((f"block{b}_se_reduce/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias"))
|
199 |
+
rename_keys.append((f"block{b}_se_expand/kernel:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.weight"))
|
200 |
+
rename_keys.append((f"block{b}_se_expand/bias:0", f"encoder.blocks.{hf_b}.squeeze_excite.expand.bias"))
|
201 |
+
rename_keys.append(
|
202 |
+
(f"block{b}_project_conv/kernel:0", f"encoder.blocks.{hf_b}.projection.project_conv.weight")
|
203 |
+
)
|
204 |
+
rename_keys.append((f"block{b}_project_bn/gamma:0", f"encoder.blocks.{hf_b}.projection.project_bn.weight"))
|
205 |
+
rename_keys.append((f"block{b}_project_bn/beta:0", f"encoder.blocks.{hf_b}.projection.project_bn.bias"))
|
206 |
+
rename_keys.append(
|
207 |
+
(f"block{b}_project_bn/moving_mean:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_mean")
|
208 |
+
)
|
209 |
+
rename_keys.append(
|
210 |
+
(f"block{b}_project_bn/moving_variance:0", f"encoder.blocks.{hf_b}.projection.project_bn.running_var")
|
211 |
+
)
|
212 |
+
|
213 |
+
rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight"))
|
214 |
+
rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight"))
|
215 |
+
rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias"))
|
216 |
+
rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean"))
|
217 |
+
rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var"))
|
218 |
+
|
219 |
+
key_mapping = {}
|
220 |
+
for item in rename_keys:
|
221 |
+
if item[0] in original_param_names:
|
222 |
+
key_mapping[item[0]] = "efficientnet." + item[1]
|
223 |
+
|
224 |
+
key_mapping["predictions/kernel:0"] = "classifier.weight"
|
225 |
+
key_mapping["predictions/bias:0"] = "classifier.bias"
|
226 |
+
return key_mapping
|
227 |
+
|
228 |
+
|
229 |
+
def replace_params(hf_params, tf_params, key_mapping):
|
230 |
+
for key, value in tf_params.items():
|
231 |
+
if "normalization" in key:
|
232 |
+
continue
|
233 |
+
|
234 |
+
hf_key = key_mapping[key]
|
235 |
+
if "_conv" in key and "kernel" in key:
|
236 |
+
new_hf_value = torch.from_numpy(value).permute(3, 2, 0, 1)
|
237 |
+
elif "depthwise_kernel" in key:
|
238 |
+
new_hf_value = torch.from_numpy(value).permute(2, 3, 0, 1)
|
239 |
+
elif "kernel" in key:
|
240 |
+
new_hf_value = torch.from_numpy(np.transpose(value))
|
241 |
+
else:
|
242 |
+
new_hf_value = torch.from_numpy(value)
|
243 |
+
|
244 |
+
# Replace HF parameters with original TF model parameters
|
245 |
+
assert hf_params[hf_key].shape == new_hf_value.shape
|
246 |
+
hf_params[hf_key].copy_(new_hf_value)
|
247 |
+
|
248 |
+
|
249 |
+
@torch.no_grad()
|
250 |
+
def convert_efficientnet_checkpoint(model_name, pytorch_dump_folder_path, save_model, push_to_hub):
|
251 |
+
"""
|
252 |
+
Copy/paste/tweak model's weights to our EfficientNet structure.
|
253 |
+
"""
|
254 |
+
# Load original model
|
255 |
+
original_model = model_classes[model_name](
|
256 |
+
include_top=True,
|
257 |
+
weights="imagenet",
|
258 |
+
input_tensor=None,
|
259 |
+
input_shape=None,
|
260 |
+
pooling=None,
|
261 |
+
classes=1000,
|
262 |
+
classifier_activation="softmax",
|
263 |
+
)
|
264 |
+
|
265 |
+
tf_params = original_model.trainable_variables
|
266 |
+
tf_non_train_params = original_model.non_trainable_variables
|
267 |
+
tf_params = {param.name: param.numpy() for param in tf_params}
|
268 |
+
for param in tf_non_train_params:
|
269 |
+
tf_params[param.name] = param.numpy()
|
270 |
+
tf_param_names = list(tf_params.keys())
|
271 |
+
|
272 |
+
# Load HuggingFace model
|
273 |
+
config = get_efficientnet_config(model_name)
|
274 |
+
hf_model = EfficientNetForImageClassification(config).eval()
|
275 |
+
hf_params = hf_model.state_dict()
|
276 |
+
|
277 |
+
# Create src-to-dst parameter name mapping dictionary
|
278 |
+
print("Converting parameters...")
|
279 |
+
key_mapping = rename_keys(tf_param_names)
|
280 |
+
replace_params(hf_params, tf_params, key_mapping)
|
281 |
+
|
282 |
+
# Initialize preprocessor and preprocess input image
|
283 |
+
preprocessor = convert_image_processor(model_name)
|
284 |
+
inputs = preprocessor(images=prepare_img(), return_tensors="pt")
|
285 |
+
|
286 |
+
# HF model inference
|
287 |
+
hf_model.eval()
|
288 |
+
with torch.no_grad():
|
289 |
+
outputs = hf_model(**inputs)
|
290 |
+
hf_logits = outputs.logits.detach().numpy()
|
291 |
+
|
292 |
+
# Original model inference
|
293 |
+
original_model.trainable = False
|
294 |
+
image_size = CONFIG_MAP[model_name]["image_size"]
|
295 |
+
img = prepare_img().resize((image_size, image_size), resample=PIL.Image.NEAREST)
|
296 |
+
x = image.img_to_array(img)
|
297 |
+
x = np.expand_dims(x, axis=0)
|
298 |
+
original_logits = original_model.predict(x)
|
299 |
+
|
300 |
+
# Check whether original and HF model outputs match -> np.allclose
|
301 |
+
assert np.allclose(original_logits, hf_logits, atol=1e-3), "The predicted logits are not the same."
|
302 |
+
print("Model outputs match!")
|
303 |
+
|
304 |
+
if save_model:
|
305 |
+
# Create folder to save model
|
306 |
+
if not os.path.isdir(pytorch_dump_folder_path):
|
307 |
+
os.mkdir(pytorch_dump_folder_path)
|
308 |
+
# Save converted model and image processor
|
309 |
+
hf_model.save_pretrained(pytorch_dump_folder_path)
|
310 |
+
preprocessor.save_pretrained(pytorch_dump_folder_path)
|
311 |
+
|
312 |
+
if push_to_hub:
|
313 |
+
# Push model and image processor to hub
|
314 |
+
print(f"Pushing converted {model_name} to the hub...")
|
315 |
+
model_name = f"efficientnet-{model_name}"
|
316 |
+
preprocessor.push_to_hub(model_name)
|
317 |
+
hf_model.push_to_hub(model_name)
|
318 |
+
|
319 |
+
|
320 |
+
if __name__ == "__main__":
|
321 |
+
parser = argparse.ArgumentParser()
|
322 |
+
# Required parameters
|
323 |
+
parser.add_argument(
|
324 |
+
"--model_name",
|
325 |
+
default="b0",
|
326 |
+
type=str,
|
327 |
+
help="Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].",
|
328 |
+
)
|
329 |
+
parser.add_argument(
|
330 |
+
"--pytorch_dump_folder_path",
|
331 |
+
default="hf_model",
|
332 |
+
type=str,
|
333 |
+
help="Path to the output PyTorch model directory.",
|
334 |
+
)
|
335 |
+
parser.add_argument("--save_model", action="store_true", help="Save model to local")
|
336 |
+
parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub")
|
337 |
+
|
338 |
+
args = parser.parse_args()
|
339 |
+
convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/image_processing_efficientnet.py
ADDED
@@ -0,0 +1,387 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Image processor class for EfficientNet."""
|
16 |
+
|
17 |
+
from typing import Dict, List, Optional, Union
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
|
22 |
+
from ...image_transforms import rescale, resize, to_channel_dimension_format
|
23 |
+
from ...image_utils import (
|
24 |
+
IMAGENET_STANDARD_MEAN,
|
25 |
+
IMAGENET_STANDARD_STD,
|
26 |
+
ChannelDimension,
|
27 |
+
ImageInput,
|
28 |
+
PILImageResampling,
|
29 |
+
infer_channel_dimension_format,
|
30 |
+
is_scaled_image,
|
31 |
+
make_list_of_images,
|
32 |
+
to_numpy_array,
|
33 |
+
valid_images,
|
34 |
+
validate_kwargs,
|
35 |
+
validate_preprocess_arguments,
|
36 |
+
)
|
37 |
+
from ...utils import TensorType, is_vision_available, logging
|
38 |
+
|
39 |
+
|
40 |
+
if is_vision_available():
|
41 |
+
import PIL
|
42 |
+
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
|
47 |
+
class EfficientNetImageProcessor(BaseImageProcessor):
|
48 |
+
r"""
|
49 |
+
Constructs a EfficientNet image processor.
|
50 |
+
|
51 |
+
Args:
|
52 |
+
do_resize (`bool`, *optional*, defaults to `True`):
|
53 |
+
Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
|
54 |
+
`do_resize` in `preprocess`.
|
55 |
+
size (`Dict[str, int]` *optional*, defaults to `{"height": 346, "width": 346}`):
|
56 |
+
Size of the image after `resize`. Can be overridden by `size` in `preprocess`.
|
57 |
+
resample (`PILImageResampling` filter, *optional*, defaults to 0):
|
58 |
+
Resampling filter to use if resizing the image. Can be overridden by `resample` in `preprocess`.
|
59 |
+
do_center_crop (`bool`, *optional*, defaults to `False`):
|
60 |
+
Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
|
61 |
+
is padded with 0's and then center cropped. Can be overridden by `do_center_crop` in `preprocess`.
|
62 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 289, "width": 289}`):
|
63 |
+
Desired output size when applying center-cropping. Can be overridden by `crop_size` in `preprocess`.
|
64 |
+
rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
|
65 |
+
Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
|
66 |
+
`preprocess` method.
|
67 |
+
rescale_offset (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range]. Can be
|
69 |
+
overridden by the `rescale_factor` parameter in the `preprocess` method.
|
70 |
+
do_rescale (`bool`, *optional*, defaults to `True`):
|
71 |
+
Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
|
72 |
+
parameter in the `preprocess` method.
|
73 |
+
do_normalize (`bool`, *optional*, defaults to `True`):
|
74 |
+
Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
|
75 |
+
method.
|
76 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
|
77 |
+
Mean to use if normalizing the image. This is a float or list of floats the length of the number of
|
78 |
+
channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
|
79 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
|
80 |
+
Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
|
81 |
+
number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
|
82 |
+
include_top (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether to rescale the image again. Should be set to True if the inputs are used for image classification.
|
84 |
+
"""
|
85 |
+
|
86 |
+
model_input_names = ["pixel_values"]
|
87 |
+
|
88 |
+
def __init__(
|
89 |
+
self,
|
90 |
+
do_resize: bool = True,
|
91 |
+
size: Dict[str, int] = None,
|
92 |
+
resample: PILImageResampling = PIL.Image.NEAREST,
|
93 |
+
do_center_crop: bool = False,
|
94 |
+
crop_size: Dict[str, int] = None,
|
95 |
+
rescale_factor: Union[int, float] = 1 / 255,
|
96 |
+
rescale_offset: bool = False,
|
97 |
+
do_rescale: bool = True,
|
98 |
+
do_normalize: bool = True,
|
99 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
100 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
101 |
+
include_top: bool = True,
|
102 |
+
**kwargs,
|
103 |
+
) -> None:
|
104 |
+
super().__init__(**kwargs)
|
105 |
+
size = size if size is not None else {"height": 346, "width": 346}
|
106 |
+
size = get_size_dict(size)
|
107 |
+
crop_size = crop_size if crop_size is not None else {"height": 289, "width": 289}
|
108 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
109 |
+
|
110 |
+
self.do_resize = do_resize
|
111 |
+
self.size = size
|
112 |
+
self.resample = resample
|
113 |
+
self.do_center_crop = do_center_crop
|
114 |
+
self.crop_size = crop_size
|
115 |
+
self.do_rescale = do_rescale
|
116 |
+
self.rescale_factor = rescale_factor
|
117 |
+
self.rescale_offset = rescale_offset
|
118 |
+
self.do_normalize = do_normalize
|
119 |
+
self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
|
120 |
+
self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
|
121 |
+
self.include_top = include_top
|
122 |
+
self._valid_processor_keys = [
|
123 |
+
"images",
|
124 |
+
"do_resize",
|
125 |
+
"size",
|
126 |
+
"resample",
|
127 |
+
"do_center_crop",
|
128 |
+
"crop_size",
|
129 |
+
"do_rescale",
|
130 |
+
"rescale_factor",
|
131 |
+
"rescale_offset",
|
132 |
+
"do_normalize",
|
133 |
+
"image_mean",
|
134 |
+
"image_std",
|
135 |
+
"include_top",
|
136 |
+
"return_tensors",
|
137 |
+
"data_format",
|
138 |
+
"input_data_format",
|
139 |
+
]
|
140 |
+
|
141 |
+
# Copied from transformers.models.vit.image_processing_vit.ViTImageProcessor.resize with PILImageResampling.BILINEAR->PILImageResampling.NEAREST
|
142 |
+
def resize(
|
143 |
+
self,
|
144 |
+
image: np.ndarray,
|
145 |
+
size: Dict[str, int],
|
146 |
+
resample: PILImageResampling = PILImageResampling.NEAREST,
|
147 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
148 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
149 |
+
**kwargs,
|
150 |
+
) -> np.ndarray:
|
151 |
+
"""
|
152 |
+
Resize an image to `(size["height"], size["width"])`.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
image (`np.ndarray`):
|
156 |
+
Image to resize.
|
157 |
+
size (`Dict[str, int]`):
|
158 |
+
Dictionary in the format `{"height": int, "width": int}` specifying the size of the output image.
|
159 |
+
resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.NEAREST`):
|
160 |
+
`PILImageResampling` filter to use when resizing the image e.g. `PILImageResampling.NEAREST`.
|
161 |
+
data_format (`ChannelDimension` or `str`, *optional*):
|
162 |
+
The channel dimension format for the output image. If unset, the channel dimension format of the input
|
163 |
+
image is used. Can be one of:
|
164 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
165 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
166 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
167 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
168 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
169 |
+
from the input image. Can be one of:
|
170 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
171 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
172 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
173 |
+
|
174 |
+
Returns:
|
175 |
+
`np.ndarray`: The resized image.
|
176 |
+
"""
|
177 |
+
size = get_size_dict(size)
|
178 |
+
if "height" not in size or "width" not in size:
|
179 |
+
raise ValueError(f"The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}")
|
180 |
+
output_size = (size["height"], size["width"])
|
181 |
+
return resize(
|
182 |
+
image,
|
183 |
+
size=output_size,
|
184 |
+
resample=resample,
|
185 |
+
data_format=data_format,
|
186 |
+
input_data_format=input_data_format,
|
187 |
+
**kwargs,
|
188 |
+
)
|
189 |
+
|
190 |
+
def rescale(
|
191 |
+
self,
|
192 |
+
image: np.ndarray,
|
193 |
+
scale: Union[int, float],
|
194 |
+
offset: bool = True,
|
195 |
+
data_format: Optional[Union[str, ChannelDimension]] = None,
|
196 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
197 |
+
**kwargs,
|
198 |
+
):
|
199 |
+
"""
|
200 |
+
Rescale an image by a scale factor.
|
201 |
+
|
202 |
+
If `offset` is `True`, the image has its values rescaled by `scale` and then offset by 1. If `scale` is
|
203 |
+
1/127.5, the image is rescaled between [-1, 1].
|
204 |
+
image = image * scale - 1
|
205 |
+
|
206 |
+
If `offset` is `False`, and `scale` is 1/255, the image is rescaled between [0, 1].
|
207 |
+
image = image * scale
|
208 |
+
|
209 |
+
Args:
|
210 |
+
image (`np.ndarray`):
|
211 |
+
Image to rescale.
|
212 |
+
scale (`int` or `float`):
|
213 |
+
Scale to apply to the image.
|
214 |
+
offset (`bool`, *optional*):
|
215 |
+
Whether to scale the image in both negative and positive directions.
|
216 |
+
data_format (`str` or `ChannelDimension`, *optional*):
|
217 |
+
The channel dimension format of the image. If not provided, it will be the same as the input image.
|
218 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
219 |
+
The channel dimension format of the input image. If not provided, it will be inferred.
|
220 |
+
"""
|
221 |
+
rescaled_image = rescale(
|
222 |
+
image, scale=scale, data_format=data_format, input_data_format=input_data_format, **kwargs
|
223 |
+
)
|
224 |
+
|
225 |
+
if offset:
|
226 |
+
rescaled_image = rescaled_image - 1
|
227 |
+
|
228 |
+
return rescaled_image
|
229 |
+
|
230 |
+
def preprocess(
|
231 |
+
self,
|
232 |
+
images: ImageInput,
|
233 |
+
do_resize: bool = None,
|
234 |
+
size: Dict[str, int] = None,
|
235 |
+
resample=None,
|
236 |
+
do_center_crop: bool = None,
|
237 |
+
crop_size: Dict[str, int] = None,
|
238 |
+
do_rescale: bool = None,
|
239 |
+
rescale_factor: float = None,
|
240 |
+
rescale_offset: bool = None,
|
241 |
+
do_normalize: bool = None,
|
242 |
+
image_mean: Optional[Union[float, List[float]]] = None,
|
243 |
+
image_std: Optional[Union[float, List[float]]] = None,
|
244 |
+
include_top: bool = None,
|
245 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
246 |
+
data_format: ChannelDimension = ChannelDimension.FIRST,
|
247 |
+
input_data_format: Optional[Union[str, ChannelDimension]] = None,
|
248 |
+
**kwargs,
|
249 |
+
) -> PIL.Image.Image:
|
250 |
+
"""
|
251 |
+
Preprocess an image or batch of images.
|
252 |
+
|
253 |
+
Args:
|
254 |
+
images (`ImageInput`):
|
255 |
+
Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
|
256 |
+
passing in images with pixel values between 0 and 1, set `do_rescale=False`.
|
257 |
+
do_resize (`bool`, *optional*, defaults to `self.do_resize`):
|
258 |
+
Whether to resize the image.
|
259 |
+
size (`Dict[str, int]`, *optional*, defaults to `self.size`):
|
260 |
+
Size of the image after `resize`.
|
261 |
+
resample (`PILImageResampling`, *optional*, defaults to `self.resample`):
|
262 |
+
PILImageResampling filter to use if resizing the image Only has an effect if `do_resize` is set to
|
263 |
+
`True`.
|
264 |
+
do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
|
265 |
+
Whether to center crop the image.
|
266 |
+
crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
|
267 |
+
Size of the image after center crop. If one edge the image is smaller than `crop_size`, it will be
|
268 |
+
padded with zeros and then cropped
|
269 |
+
do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
|
270 |
+
Whether to rescale the image values between [0 - 1].
|
271 |
+
rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
|
272 |
+
Rescale factor to rescale the image by if `do_rescale` is set to `True`.
|
273 |
+
rescale_offset (`bool`, *optional*, defaults to `self.rescale_offset`):
|
274 |
+
Whether to rescale the image between [-scale_range, scale_range] instead of [0, scale_range].
|
275 |
+
do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
|
276 |
+
Whether to normalize the image.
|
277 |
+
image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
|
278 |
+
Image mean.
|
279 |
+
image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
|
280 |
+
Image standard deviation.
|
281 |
+
include_top (`bool`, *optional*, defaults to `self.include_top`):
|
282 |
+
Rescales the image again for image classification if set to True.
|
283 |
+
return_tensors (`str` or `TensorType`, *optional*):
|
284 |
+
The type of tensors to return. Can be one of:
|
285 |
+
- `None`: Return a list of `np.ndarray`.
|
286 |
+
- `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
|
287 |
+
- `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
|
288 |
+
- `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
|
289 |
+
- `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
|
290 |
+
data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
|
291 |
+
The channel dimension format for the output image. Can be one of:
|
292 |
+
- `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
293 |
+
- `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
294 |
+
input_data_format (`ChannelDimension` or `str`, *optional*):
|
295 |
+
The channel dimension format for the input image. If unset, the channel dimension format is inferred
|
296 |
+
from the input image. Can be one of:
|
297 |
+
- `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
|
298 |
+
- `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
|
299 |
+
- `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
|
300 |
+
"""
|
301 |
+
do_resize = do_resize if do_resize is not None else self.do_resize
|
302 |
+
resample = resample if resample is not None else self.resample
|
303 |
+
do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
|
304 |
+
do_rescale = do_rescale if do_rescale is not None else self.do_rescale
|
305 |
+
rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
|
306 |
+
rescale_offset = rescale_offset if rescale_offset is not None else self.rescale_offset
|
307 |
+
do_normalize = do_normalize if do_normalize is not None else self.do_normalize
|
308 |
+
image_mean = image_mean if image_mean is not None else self.image_mean
|
309 |
+
image_std = image_std if image_std is not None else self.image_std
|
310 |
+
include_top = include_top if include_top is not None else self.include_top
|
311 |
+
|
312 |
+
size = size if size is not None else self.size
|
313 |
+
size = get_size_dict(size)
|
314 |
+
crop_size = crop_size if crop_size is not None else self.crop_size
|
315 |
+
crop_size = get_size_dict(crop_size, param_name="crop_size")
|
316 |
+
|
317 |
+
images = make_list_of_images(images)
|
318 |
+
|
319 |
+
validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
|
320 |
+
|
321 |
+
if not valid_images(images):
|
322 |
+
raise ValueError(
|
323 |
+
"Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
|
324 |
+
"torch.Tensor, tf.Tensor or jax.ndarray."
|
325 |
+
)
|
326 |
+
validate_preprocess_arguments(
|
327 |
+
do_rescale=do_rescale,
|
328 |
+
rescale_factor=rescale_factor,
|
329 |
+
do_normalize=do_normalize,
|
330 |
+
image_mean=image_mean,
|
331 |
+
image_std=image_std,
|
332 |
+
do_center_crop=do_center_crop,
|
333 |
+
crop_size=crop_size,
|
334 |
+
do_resize=do_resize,
|
335 |
+
size=size,
|
336 |
+
resample=resample,
|
337 |
+
)
|
338 |
+
# All transformations expect numpy arrays.
|
339 |
+
images = [to_numpy_array(image) for image in images]
|
340 |
+
|
341 |
+
if is_scaled_image(images[0]) and do_rescale:
|
342 |
+
logger.warning_once(
|
343 |
+
"It looks like you are trying to rescale already rescaled images. If the input"
|
344 |
+
" images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
|
345 |
+
)
|
346 |
+
|
347 |
+
if input_data_format is None:
|
348 |
+
# We assume that all images have the same channel dimension format.
|
349 |
+
input_data_format = infer_channel_dimension_format(images[0])
|
350 |
+
|
351 |
+
if do_resize:
|
352 |
+
images = [
|
353 |
+
self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
|
354 |
+
for image in images
|
355 |
+
]
|
356 |
+
|
357 |
+
if do_center_crop:
|
358 |
+
images = [
|
359 |
+
self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
|
360 |
+
]
|
361 |
+
|
362 |
+
if do_rescale:
|
363 |
+
images = [
|
364 |
+
self.rescale(
|
365 |
+
image=image, scale=rescale_factor, offset=rescale_offset, input_data_format=input_data_format
|
366 |
+
)
|
367 |
+
for image in images
|
368 |
+
]
|
369 |
+
|
370 |
+
if do_normalize:
|
371 |
+
images = [
|
372 |
+
self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
|
373 |
+
for image in images
|
374 |
+
]
|
375 |
+
|
376 |
+
if include_top:
|
377 |
+
images = [
|
378 |
+
self.normalize(image=image, mean=0, std=image_std, input_data_format=input_data_format)
|
379 |
+
for image in images
|
380 |
+
]
|
381 |
+
|
382 |
+
images = [
|
383 |
+
to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
|
384 |
+
]
|
385 |
+
|
386 |
+
data = {"pixel_values": images}
|
387 |
+
return BatchFeature(data=data, tensor_type=return_tensors)
|
venv/lib/python3.10/site-packages/transformers/models/efficientnet/modeling_efficientnet.py
ADDED
@@ -0,0 +1,648 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 Google Research, Inc. and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch EfficientNet model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.utils.checkpoint
|
23 |
+
from torch import nn
|
24 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
25 |
+
|
26 |
+
from ...activations import ACT2FN
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutputWithNoAttention,
|
29 |
+
BaseModelOutputWithPoolingAndNoAttention,
|
30 |
+
ImageClassifierOutputWithNoAttention,
|
31 |
+
)
|
32 |
+
from ...modeling_utils import PreTrainedModel
|
33 |
+
from ...utils import (
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
logging,
|
38 |
+
)
|
39 |
+
from .configuration_efficientnet import EfficientNetConfig
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
# General docstring
|
45 |
+
_CONFIG_FOR_DOC = "EfficientNetConfig"
|
46 |
+
|
47 |
+
# Base docstring
|
48 |
+
_CHECKPOINT_FOR_DOC = "google/efficientnet-b7"
|
49 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 768, 7, 7]
|
50 |
+
|
51 |
+
# Image classification docstring
|
52 |
+
_IMAGE_CLASS_CHECKPOINT = "google/efficientnet-b7"
|
53 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
54 |
+
|
55 |
+
|
56 |
+
from ..deprecated._archive_maps import EFFICIENTNET_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
57 |
+
|
58 |
+
|
59 |
+
EFFICIENTNET_START_DOCSTRING = r"""
|
60 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
|
61 |
+
as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
62 |
+
behavior.
|
63 |
+
|
64 |
+
Parameters:
|
65 |
+
config ([`EfficientNetConfig`]): Model configuration class with all the parameters of the model.
|
66 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
67 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
68 |
+
"""
|
69 |
+
|
70 |
+
EFFICIENTNET_INPUTS_DOCSTRING = r"""
|
71 |
+
Args:
|
72 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
73 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
|
74 |
+
[`AutoImageProcessor.__call__`] for details.
|
75 |
+
|
76 |
+
output_hidden_states (`bool`, *optional*):
|
77 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
78 |
+
more detail.
|
79 |
+
return_dict (`bool`, *optional*):
|
80 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
81 |
+
"""
|
82 |
+
|
83 |
+
|
84 |
+
def round_filters(config: EfficientNetConfig, num_channels: int):
|
85 |
+
r"""
|
86 |
+
Round number of filters based on depth multiplier.
|
87 |
+
"""
|
88 |
+
divisor = config.depth_divisor
|
89 |
+
num_channels *= config.width_coefficient
|
90 |
+
new_dim = max(divisor, int(num_channels + divisor / 2) // divisor * divisor)
|
91 |
+
|
92 |
+
# Make sure that round down does not go down by more than 10%.
|
93 |
+
if new_dim < 0.9 * num_channels:
|
94 |
+
new_dim += divisor
|
95 |
+
|
96 |
+
return int(new_dim)
|
97 |
+
|
98 |
+
|
99 |
+
def correct_pad(kernel_size: Union[int, Tuple], adjust: bool = True):
|
100 |
+
r"""
|
101 |
+
Utility function to get the tuple padding value for the depthwise convolution.
|
102 |
+
|
103 |
+
Args:
|
104 |
+
kernel_size (`int` or `tuple`):
|
105 |
+
Kernel size of the convolution layers.
|
106 |
+
adjust (`bool`, *optional*, defaults to `True`):
|
107 |
+
Adjusts padding value to apply to right and bottom sides of the input.
|
108 |
+
"""
|
109 |
+
if isinstance(kernel_size, int):
|
110 |
+
kernel_size = (kernel_size, kernel_size)
|
111 |
+
|
112 |
+
correct = (kernel_size[0] // 2, kernel_size[1] // 2)
|
113 |
+
if adjust:
|
114 |
+
return (correct[1] - 1, correct[1], correct[0] - 1, correct[0])
|
115 |
+
else:
|
116 |
+
return (correct[1], correct[1], correct[0], correct[0])
|
117 |
+
|
118 |
+
|
119 |
+
class EfficientNetEmbeddings(nn.Module):
|
120 |
+
r"""
|
121 |
+
A module that corresponds to the stem module of the original work.
|
122 |
+
"""
|
123 |
+
|
124 |
+
def __init__(self, config: EfficientNetConfig):
|
125 |
+
super().__init__()
|
126 |
+
|
127 |
+
self.out_dim = round_filters(config, 32)
|
128 |
+
self.padding = nn.ZeroPad2d(padding=(0, 1, 0, 1))
|
129 |
+
self.convolution = nn.Conv2d(
|
130 |
+
config.num_channels, self.out_dim, kernel_size=3, stride=2, padding="valid", bias=False
|
131 |
+
)
|
132 |
+
self.batchnorm = nn.BatchNorm2d(self.out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum)
|
133 |
+
self.activation = ACT2FN[config.hidden_act]
|
134 |
+
|
135 |
+
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
|
136 |
+
features = self.padding(pixel_values)
|
137 |
+
features = self.convolution(features)
|
138 |
+
features = self.batchnorm(features)
|
139 |
+
features = self.activation(features)
|
140 |
+
|
141 |
+
return features
|
142 |
+
|
143 |
+
|
144 |
+
class EfficientNetDepthwiseConv2d(nn.Conv2d):
|
145 |
+
def __init__(
|
146 |
+
self,
|
147 |
+
in_channels,
|
148 |
+
depth_multiplier=1,
|
149 |
+
kernel_size=3,
|
150 |
+
stride=1,
|
151 |
+
padding=0,
|
152 |
+
dilation=1,
|
153 |
+
bias=True,
|
154 |
+
padding_mode="zeros",
|
155 |
+
):
|
156 |
+
out_channels = in_channels * depth_multiplier
|
157 |
+
super().__init__(
|
158 |
+
in_channels=in_channels,
|
159 |
+
out_channels=out_channels,
|
160 |
+
kernel_size=kernel_size,
|
161 |
+
stride=stride,
|
162 |
+
padding=padding,
|
163 |
+
dilation=dilation,
|
164 |
+
groups=in_channels,
|
165 |
+
bias=bias,
|
166 |
+
padding_mode=padding_mode,
|
167 |
+
)
|
168 |
+
|
169 |
+
|
170 |
+
class EfficientNetExpansionLayer(nn.Module):
|
171 |
+
r"""
|
172 |
+
This corresponds to the expansion phase of each block in the original implementation.
|
173 |
+
"""
|
174 |
+
|
175 |
+
def __init__(self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int):
|
176 |
+
super().__init__()
|
177 |
+
self.expand_conv = nn.Conv2d(
|
178 |
+
in_channels=in_dim,
|
179 |
+
out_channels=out_dim,
|
180 |
+
kernel_size=1,
|
181 |
+
padding="same",
|
182 |
+
bias=False,
|
183 |
+
)
|
184 |
+
self.expand_bn = nn.BatchNorm2d(num_features=out_dim, eps=config.batch_norm_eps)
|
185 |
+
self.expand_act = ACT2FN[config.hidden_act]
|
186 |
+
|
187 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
188 |
+
# Expand phase
|
189 |
+
hidden_states = self.expand_conv(hidden_states)
|
190 |
+
hidden_states = self.expand_bn(hidden_states)
|
191 |
+
hidden_states = self.expand_act(hidden_states)
|
192 |
+
|
193 |
+
return hidden_states
|
194 |
+
|
195 |
+
|
196 |
+
class EfficientNetDepthwiseLayer(nn.Module):
|
197 |
+
r"""
|
198 |
+
This corresponds to the depthwise convolution phase of each block in the original implementation.
|
199 |
+
"""
|
200 |
+
|
201 |
+
def __init__(
|
202 |
+
self,
|
203 |
+
config: EfficientNetConfig,
|
204 |
+
in_dim: int,
|
205 |
+
stride: int,
|
206 |
+
kernel_size: int,
|
207 |
+
adjust_padding: bool,
|
208 |
+
):
|
209 |
+
super().__init__()
|
210 |
+
self.stride = stride
|
211 |
+
conv_pad = "valid" if self.stride == 2 else "same"
|
212 |
+
padding = correct_pad(kernel_size, adjust=adjust_padding)
|
213 |
+
|
214 |
+
self.depthwise_conv_pad = nn.ZeroPad2d(padding=padding)
|
215 |
+
self.depthwise_conv = EfficientNetDepthwiseConv2d(
|
216 |
+
in_dim, kernel_size=kernel_size, stride=stride, padding=conv_pad, bias=False
|
217 |
+
)
|
218 |
+
self.depthwise_norm = nn.BatchNorm2d(
|
219 |
+
num_features=in_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
220 |
+
)
|
221 |
+
self.depthwise_act = ACT2FN[config.hidden_act]
|
222 |
+
|
223 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
224 |
+
# Depthwise convolution
|
225 |
+
if self.stride == 2:
|
226 |
+
hidden_states = self.depthwise_conv_pad(hidden_states)
|
227 |
+
|
228 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
229 |
+
hidden_states = self.depthwise_norm(hidden_states)
|
230 |
+
hidden_states = self.depthwise_act(hidden_states)
|
231 |
+
|
232 |
+
return hidden_states
|
233 |
+
|
234 |
+
|
235 |
+
class EfficientNetSqueezeExciteLayer(nn.Module):
|
236 |
+
r"""
|
237 |
+
This corresponds to the Squeeze and Excitement phase of each block in the original implementation.
|
238 |
+
"""
|
239 |
+
|
240 |
+
def __init__(self, config: EfficientNetConfig, in_dim: int, expand_dim: int, expand: bool = False):
|
241 |
+
super().__init__()
|
242 |
+
self.dim = expand_dim if expand else in_dim
|
243 |
+
self.dim_se = max(1, int(in_dim * config.squeeze_expansion_ratio))
|
244 |
+
|
245 |
+
self.squeeze = nn.AdaptiveAvgPool2d(output_size=1)
|
246 |
+
self.reduce = nn.Conv2d(
|
247 |
+
in_channels=self.dim,
|
248 |
+
out_channels=self.dim_se,
|
249 |
+
kernel_size=1,
|
250 |
+
padding="same",
|
251 |
+
)
|
252 |
+
self.expand = nn.Conv2d(
|
253 |
+
in_channels=self.dim_se,
|
254 |
+
out_channels=self.dim,
|
255 |
+
kernel_size=1,
|
256 |
+
padding="same",
|
257 |
+
)
|
258 |
+
self.act_reduce = ACT2FN[config.hidden_act]
|
259 |
+
self.act_expand = nn.Sigmoid()
|
260 |
+
|
261 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
262 |
+
inputs = hidden_states
|
263 |
+
hidden_states = self.squeeze(hidden_states)
|
264 |
+
hidden_states = self.reduce(hidden_states)
|
265 |
+
hidden_states = self.act_reduce(hidden_states)
|
266 |
+
|
267 |
+
hidden_states = self.expand(hidden_states)
|
268 |
+
hidden_states = self.act_expand(hidden_states)
|
269 |
+
hidden_states = torch.mul(inputs, hidden_states)
|
270 |
+
|
271 |
+
return hidden_states
|
272 |
+
|
273 |
+
|
274 |
+
class EfficientNetFinalBlockLayer(nn.Module):
|
275 |
+
r"""
|
276 |
+
This corresponds to the final phase of each block in the original implementation.
|
277 |
+
"""
|
278 |
+
|
279 |
+
def __init__(
|
280 |
+
self, config: EfficientNetConfig, in_dim: int, out_dim: int, stride: int, drop_rate: float, id_skip: bool
|
281 |
+
):
|
282 |
+
super().__init__()
|
283 |
+
self.apply_dropout = stride == 1 and not id_skip
|
284 |
+
self.project_conv = nn.Conv2d(
|
285 |
+
in_channels=in_dim,
|
286 |
+
out_channels=out_dim,
|
287 |
+
kernel_size=1,
|
288 |
+
padding="same",
|
289 |
+
bias=False,
|
290 |
+
)
|
291 |
+
self.project_bn = nn.BatchNorm2d(
|
292 |
+
num_features=out_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
293 |
+
)
|
294 |
+
self.dropout = nn.Dropout(p=drop_rate)
|
295 |
+
|
296 |
+
def forward(self, embeddings: torch.FloatTensor, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
297 |
+
hidden_states = self.project_conv(hidden_states)
|
298 |
+
hidden_states = self.project_bn(hidden_states)
|
299 |
+
|
300 |
+
if self.apply_dropout:
|
301 |
+
hidden_states = self.dropout(hidden_states)
|
302 |
+
hidden_states = hidden_states + embeddings
|
303 |
+
|
304 |
+
return hidden_states
|
305 |
+
|
306 |
+
|
307 |
+
class EfficientNetBlock(nn.Module):
|
308 |
+
r"""
|
309 |
+
This corresponds to the expansion and depthwise convolution phase of each block in the original implementation.
|
310 |
+
|
311 |
+
Args:
|
312 |
+
config ([`EfficientNetConfig`]):
|
313 |
+
Model configuration class.
|
314 |
+
in_dim (`int`):
|
315 |
+
Number of input channels.
|
316 |
+
out_dim (`int`):
|
317 |
+
Number of output channels.
|
318 |
+
stride (`int`):
|
319 |
+
Stride size to be used in convolution layers.
|
320 |
+
expand_ratio (`int`):
|
321 |
+
Expand ratio to set the output dimensions for the expansion and squeeze-excite layers.
|
322 |
+
kernel_size (`int`):
|
323 |
+
Kernel size for the depthwise convolution layer.
|
324 |
+
drop_rate (`float`):
|
325 |
+
Dropout rate to be used in the final phase of each block.
|
326 |
+
id_skip (`bool`):
|
327 |
+
Whether to apply dropout and sum the final hidden states with the input embeddings during the final phase
|
328 |
+
of each block. Set to `True` for the first block of each stage.
|
329 |
+
adjust_padding (`bool`):
|
330 |
+
Whether to apply padding to only right and bottom side of the input kernel before the depthwise convolution
|
331 |
+
operation, set to `True` for inputs with odd input sizes.
|
332 |
+
"""
|
333 |
+
|
334 |
+
def __init__(
|
335 |
+
self,
|
336 |
+
config: EfficientNetConfig,
|
337 |
+
in_dim: int,
|
338 |
+
out_dim: int,
|
339 |
+
stride: int,
|
340 |
+
expand_ratio: int,
|
341 |
+
kernel_size: int,
|
342 |
+
drop_rate: float,
|
343 |
+
id_skip: bool,
|
344 |
+
adjust_padding: bool,
|
345 |
+
):
|
346 |
+
super().__init__()
|
347 |
+
self.expand_ratio = expand_ratio
|
348 |
+
self.expand = True if self.expand_ratio != 1 else False
|
349 |
+
expand_in_dim = in_dim * expand_ratio
|
350 |
+
|
351 |
+
if self.expand:
|
352 |
+
self.expansion = EfficientNetExpansionLayer(
|
353 |
+
config=config, in_dim=in_dim, out_dim=expand_in_dim, stride=stride
|
354 |
+
)
|
355 |
+
|
356 |
+
self.depthwise_conv = EfficientNetDepthwiseLayer(
|
357 |
+
config=config,
|
358 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
359 |
+
stride=stride,
|
360 |
+
kernel_size=kernel_size,
|
361 |
+
adjust_padding=adjust_padding,
|
362 |
+
)
|
363 |
+
self.squeeze_excite = EfficientNetSqueezeExciteLayer(
|
364 |
+
config=config, in_dim=in_dim, expand_dim=expand_in_dim, expand=self.expand
|
365 |
+
)
|
366 |
+
self.projection = EfficientNetFinalBlockLayer(
|
367 |
+
config=config,
|
368 |
+
in_dim=expand_in_dim if self.expand else in_dim,
|
369 |
+
out_dim=out_dim,
|
370 |
+
stride=stride,
|
371 |
+
drop_rate=drop_rate,
|
372 |
+
id_skip=id_skip,
|
373 |
+
)
|
374 |
+
|
375 |
+
def forward(self, hidden_states: torch.FloatTensor) -> torch.Tensor:
|
376 |
+
embeddings = hidden_states
|
377 |
+
# Expansion and depthwise convolution phase
|
378 |
+
if self.expand_ratio != 1:
|
379 |
+
hidden_states = self.expansion(hidden_states)
|
380 |
+
hidden_states = self.depthwise_conv(hidden_states)
|
381 |
+
|
382 |
+
# Squeeze and excite phase
|
383 |
+
hidden_states = self.squeeze_excite(hidden_states)
|
384 |
+
hidden_states = self.projection(embeddings, hidden_states)
|
385 |
+
return hidden_states
|
386 |
+
|
387 |
+
|
388 |
+
class EfficientNetEncoder(nn.Module):
|
389 |
+
r"""
|
390 |
+
Forward propogates the embeddings through each EfficientNet block.
|
391 |
+
|
392 |
+
Args:
|
393 |
+
config ([`EfficientNetConfig`]):
|
394 |
+
Model configuration class.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, config: EfficientNetConfig):
|
398 |
+
super().__init__()
|
399 |
+
self.config = config
|
400 |
+
self.depth_coefficient = config.depth_coefficient
|
401 |
+
|
402 |
+
def round_repeats(repeats):
|
403 |
+
# Round number of block repeats based on depth multiplier.
|
404 |
+
return int(math.ceil(self.depth_coefficient * repeats))
|
405 |
+
|
406 |
+
num_base_blocks = len(config.in_channels)
|
407 |
+
num_blocks = sum(round_repeats(n) for n in config.num_block_repeats)
|
408 |
+
|
409 |
+
curr_block_num = 0
|
410 |
+
blocks = []
|
411 |
+
for i in range(num_base_blocks):
|
412 |
+
in_dim = round_filters(config, config.in_channels[i])
|
413 |
+
out_dim = round_filters(config, config.out_channels[i])
|
414 |
+
stride = config.strides[i]
|
415 |
+
kernel_size = config.kernel_sizes[i]
|
416 |
+
expand_ratio = config.expand_ratios[i]
|
417 |
+
|
418 |
+
for j in range(round_repeats(config.num_block_repeats[i])):
|
419 |
+
id_skip = True if j == 0 else False
|
420 |
+
stride = 1 if j > 0 else stride
|
421 |
+
in_dim = out_dim if j > 0 else in_dim
|
422 |
+
adjust_padding = False if curr_block_num in config.depthwise_padding else True
|
423 |
+
drop_rate = config.drop_connect_rate * curr_block_num / num_blocks
|
424 |
+
|
425 |
+
block = EfficientNetBlock(
|
426 |
+
config=config,
|
427 |
+
in_dim=in_dim,
|
428 |
+
out_dim=out_dim,
|
429 |
+
stride=stride,
|
430 |
+
kernel_size=kernel_size,
|
431 |
+
expand_ratio=expand_ratio,
|
432 |
+
drop_rate=drop_rate,
|
433 |
+
id_skip=id_skip,
|
434 |
+
adjust_padding=adjust_padding,
|
435 |
+
)
|
436 |
+
blocks.append(block)
|
437 |
+
curr_block_num += 1
|
438 |
+
|
439 |
+
self.blocks = nn.ModuleList(blocks)
|
440 |
+
self.top_conv = nn.Conv2d(
|
441 |
+
in_channels=out_dim,
|
442 |
+
out_channels=round_filters(config, 1280),
|
443 |
+
kernel_size=1,
|
444 |
+
padding="same",
|
445 |
+
bias=False,
|
446 |
+
)
|
447 |
+
self.top_bn = nn.BatchNorm2d(
|
448 |
+
num_features=config.hidden_dim, eps=config.batch_norm_eps, momentum=config.batch_norm_momentum
|
449 |
+
)
|
450 |
+
self.top_activation = ACT2FN[config.hidden_act]
|
451 |
+
|
452 |
+
def forward(
|
453 |
+
self,
|
454 |
+
hidden_states: torch.FloatTensor,
|
455 |
+
output_hidden_states: Optional[bool] = False,
|
456 |
+
return_dict: Optional[bool] = True,
|
457 |
+
) -> BaseModelOutputWithNoAttention:
|
458 |
+
all_hidden_states = (hidden_states,) if output_hidden_states else None
|
459 |
+
|
460 |
+
for block in self.blocks:
|
461 |
+
hidden_states = block(hidden_states)
|
462 |
+
if output_hidden_states:
|
463 |
+
all_hidden_states += (hidden_states,)
|
464 |
+
|
465 |
+
hidden_states = self.top_conv(hidden_states)
|
466 |
+
hidden_states = self.top_bn(hidden_states)
|
467 |
+
hidden_states = self.top_activation(hidden_states)
|
468 |
+
|
469 |
+
if not return_dict:
|
470 |
+
return tuple(v for v in [hidden_states, all_hidden_states] if v is not None)
|
471 |
+
|
472 |
+
return BaseModelOutputWithNoAttention(
|
473 |
+
last_hidden_state=hidden_states,
|
474 |
+
hidden_states=all_hidden_states,
|
475 |
+
)
|
476 |
+
|
477 |
+
|
478 |
+
class EfficientNetPreTrainedModel(PreTrainedModel):
|
479 |
+
"""
|
480 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
481 |
+
models.
|
482 |
+
"""
|
483 |
+
|
484 |
+
config_class = EfficientNetConfig
|
485 |
+
base_model_prefix = "efficientnet"
|
486 |
+
main_input_name = "pixel_values"
|
487 |
+
_no_split_modules = []
|
488 |
+
|
489 |
+
def _init_weights(self, module):
|
490 |
+
"""Initialize the weights"""
|
491 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
492 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
493 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
494 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
495 |
+
if module.bias is not None:
|
496 |
+
module.bias.data.zero_()
|
497 |
+
elif isinstance(module, nn.LayerNorm):
|
498 |
+
module.bias.data.zero_()
|
499 |
+
module.weight.data.fill_(1.0)
|
500 |
+
|
501 |
+
|
502 |
+
@add_start_docstrings(
|
503 |
+
"The bare EfficientNet model outputting raw features without any specific head on top.",
|
504 |
+
EFFICIENTNET_START_DOCSTRING,
|
505 |
+
)
|
506 |
+
class EfficientNetModel(EfficientNetPreTrainedModel):
|
507 |
+
def __init__(self, config: EfficientNetConfig):
|
508 |
+
super().__init__(config)
|
509 |
+
self.config = config
|
510 |
+
self.embeddings = EfficientNetEmbeddings(config)
|
511 |
+
self.encoder = EfficientNetEncoder(config)
|
512 |
+
|
513 |
+
# Final pooling layer
|
514 |
+
if config.pooling_type == "mean":
|
515 |
+
self.pooler = nn.AvgPool2d(config.hidden_dim, ceil_mode=True)
|
516 |
+
elif config.pooling_type == "max":
|
517 |
+
self.pooler = nn.MaxPool2d(config.hidden_dim, ceil_mode=True)
|
518 |
+
else:
|
519 |
+
raise ValueError(f"config.pooling must be one of ['mean', 'max'] got {config.pooling}")
|
520 |
+
|
521 |
+
# Initialize weights and apply final processing
|
522 |
+
self.post_init()
|
523 |
+
|
524 |
+
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
|
525 |
+
@add_code_sample_docstrings(
|
526 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
527 |
+
output_type=BaseModelOutputWithPoolingAndNoAttention,
|
528 |
+
config_class=_CONFIG_FOR_DOC,
|
529 |
+
modality="vision",
|
530 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
531 |
+
)
|
532 |
+
def forward(
|
533 |
+
self,
|
534 |
+
pixel_values: torch.FloatTensor = None,
|
535 |
+
output_hidden_states: Optional[bool] = None,
|
536 |
+
return_dict: Optional[bool] = None,
|
537 |
+
) -> Union[Tuple, BaseModelOutputWithPoolingAndNoAttention]:
|
538 |
+
output_hidden_states = (
|
539 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
540 |
+
)
|
541 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
542 |
+
|
543 |
+
if pixel_values is None:
|
544 |
+
raise ValueError("You have to specify pixel_values")
|
545 |
+
|
546 |
+
embedding_output = self.embeddings(pixel_values)
|
547 |
+
|
548 |
+
encoder_outputs = self.encoder(
|
549 |
+
embedding_output,
|
550 |
+
output_hidden_states=output_hidden_states,
|
551 |
+
return_dict=return_dict,
|
552 |
+
)
|
553 |
+
# Apply pooling
|
554 |
+
last_hidden_state = encoder_outputs[0]
|
555 |
+
pooled_output = self.pooler(last_hidden_state)
|
556 |
+
# Reshape (batch_size, 1280, 1 , 1) -> (batch_size, 1280)
|
557 |
+
pooled_output = pooled_output.reshape(pooled_output.shape[:2])
|
558 |
+
|
559 |
+
if not return_dict:
|
560 |
+
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
|
561 |
+
|
562 |
+
return BaseModelOutputWithPoolingAndNoAttention(
|
563 |
+
last_hidden_state=last_hidden_state,
|
564 |
+
pooler_output=pooled_output,
|
565 |
+
hidden_states=encoder_outputs.hidden_states,
|
566 |
+
)
|
567 |
+
|
568 |
+
|
569 |
+
@add_start_docstrings(
|
570 |
+
"""
|
571 |
+
EfficientNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g.
|
572 |
+
for ImageNet.
|
573 |
+
""",
|
574 |
+
EFFICIENTNET_START_DOCSTRING,
|
575 |
+
)
|
576 |
+
class EfficientNetForImageClassification(EfficientNetPreTrainedModel):
|
577 |
+
def __init__(self, config):
|
578 |
+
super().__init__(config)
|
579 |
+
self.num_labels = config.num_labels
|
580 |
+
self.config = config
|
581 |
+
self.efficientnet = EfficientNetModel(config)
|
582 |
+
# Classifier head
|
583 |
+
self.dropout = nn.Dropout(p=config.dropout_rate)
|
584 |
+
self.classifier = nn.Linear(config.hidden_dim, self.num_labels) if self.num_labels > 0 else nn.Identity()
|
585 |
+
|
586 |
+
# Initialize weights and apply final processing
|
587 |
+
self.post_init()
|
588 |
+
|
589 |
+
@add_start_docstrings_to_model_forward(EFFICIENTNET_INPUTS_DOCSTRING)
|
590 |
+
@add_code_sample_docstrings(
|
591 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
592 |
+
output_type=ImageClassifierOutputWithNoAttention,
|
593 |
+
config_class=_CONFIG_FOR_DOC,
|
594 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
595 |
+
)
|
596 |
+
def forward(
|
597 |
+
self,
|
598 |
+
pixel_values: torch.FloatTensor = None,
|
599 |
+
labels: Optional[torch.LongTensor] = None,
|
600 |
+
output_hidden_states: Optional[bool] = None,
|
601 |
+
return_dict: Optional[bool] = None,
|
602 |
+
) -> Union[Tuple, ImageClassifierOutputWithNoAttention]:
|
603 |
+
r"""
|
604 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
605 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
606 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
607 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
608 |
+
"""
|
609 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
610 |
+
|
611 |
+
outputs = self.efficientnet(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
|
612 |
+
|
613 |
+
pooled_output = outputs.pooler_output if return_dict else outputs[1]
|
614 |
+
pooled_output = self.dropout(pooled_output)
|
615 |
+
logits = self.classifier(pooled_output)
|
616 |
+
|
617 |
+
loss = None
|
618 |
+
if labels is not None:
|
619 |
+
if self.config.problem_type is None:
|
620 |
+
if self.num_labels == 1:
|
621 |
+
self.config.problem_type = "regression"
|
622 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
623 |
+
self.config.problem_type = "single_label_classification"
|
624 |
+
else:
|
625 |
+
self.config.problem_type = "multi_label_classification"
|
626 |
+
|
627 |
+
if self.config.problem_type == "regression":
|
628 |
+
loss_fct = MSELoss()
|
629 |
+
if self.num_labels == 1:
|
630 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
631 |
+
else:
|
632 |
+
loss = loss_fct(logits, labels)
|
633 |
+
elif self.config.problem_type == "single_label_classification":
|
634 |
+
loss_fct = CrossEntropyLoss()
|
635 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
636 |
+
elif self.config.problem_type == "multi_label_classification":
|
637 |
+
loss_fct = BCEWithLogitsLoss()
|
638 |
+
loss = loss_fct(logits, labels)
|
639 |
+
|
640 |
+
if not return_dict:
|
641 |
+
output = (logits,) + outputs[2:]
|
642 |
+
return ((loss,) + output) if loss is not None else output
|
643 |
+
|
644 |
+
return ImageClassifierOutputWithNoAttention(
|
645 |
+
loss=loss,
|
646 |
+
logits=logits,
|
647 |
+
hidden_states=outputs.hidden_states,
|
648 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__init__.py
ADDED
@@ -0,0 +1,103 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_flaubert": ["FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "FlaubertConfig", "FlaubertOnnxConfig"],
|
22 |
+
"tokenization_flaubert": ["FlaubertTokenizer"],
|
23 |
+
}
|
24 |
+
|
25 |
+
try:
|
26 |
+
if not is_torch_available():
|
27 |
+
raise OptionalDependencyNotAvailable()
|
28 |
+
except OptionalDependencyNotAvailable:
|
29 |
+
pass
|
30 |
+
else:
|
31 |
+
_import_structure["modeling_flaubert"] = [
|
32 |
+
"FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
33 |
+
"FlaubertForMultipleChoice",
|
34 |
+
"FlaubertForQuestionAnswering",
|
35 |
+
"FlaubertForQuestionAnsweringSimple",
|
36 |
+
"FlaubertForSequenceClassification",
|
37 |
+
"FlaubertForTokenClassification",
|
38 |
+
"FlaubertModel",
|
39 |
+
"FlaubertWithLMHeadModel",
|
40 |
+
"FlaubertPreTrainedModel",
|
41 |
+
]
|
42 |
+
|
43 |
+
try:
|
44 |
+
if not is_tf_available():
|
45 |
+
raise OptionalDependencyNotAvailable()
|
46 |
+
except OptionalDependencyNotAvailable:
|
47 |
+
pass
|
48 |
+
else:
|
49 |
+
_import_structure["modeling_tf_flaubert"] = [
|
50 |
+
"TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
51 |
+
"TFFlaubertForMultipleChoice",
|
52 |
+
"TFFlaubertForQuestionAnsweringSimple",
|
53 |
+
"TFFlaubertForSequenceClassification",
|
54 |
+
"TFFlaubertForTokenClassification",
|
55 |
+
"TFFlaubertModel",
|
56 |
+
"TFFlaubertPreTrainedModel",
|
57 |
+
"TFFlaubertWithLMHeadModel",
|
58 |
+
]
|
59 |
+
|
60 |
+
|
61 |
+
if TYPE_CHECKING:
|
62 |
+
from .configuration_flaubert import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, FlaubertConfig, FlaubertOnnxConfig
|
63 |
+
from .tokenization_flaubert import FlaubertTokenizer
|
64 |
+
|
65 |
+
try:
|
66 |
+
if not is_torch_available():
|
67 |
+
raise OptionalDependencyNotAvailable()
|
68 |
+
except OptionalDependencyNotAvailable:
|
69 |
+
pass
|
70 |
+
else:
|
71 |
+
from .modeling_flaubert import (
|
72 |
+
FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
73 |
+
FlaubertForMultipleChoice,
|
74 |
+
FlaubertForQuestionAnswering,
|
75 |
+
FlaubertForQuestionAnsweringSimple,
|
76 |
+
FlaubertForSequenceClassification,
|
77 |
+
FlaubertForTokenClassification,
|
78 |
+
FlaubertModel,
|
79 |
+
FlaubertPreTrainedModel,
|
80 |
+
FlaubertWithLMHeadModel,
|
81 |
+
)
|
82 |
+
|
83 |
+
try:
|
84 |
+
if not is_tf_available():
|
85 |
+
raise OptionalDependencyNotAvailable()
|
86 |
+
except OptionalDependencyNotAvailable:
|
87 |
+
pass
|
88 |
+
else:
|
89 |
+
from .modeling_tf_flaubert import (
|
90 |
+
TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
91 |
+
TFFlaubertForMultipleChoice,
|
92 |
+
TFFlaubertForQuestionAnsweringSimple,
|
93 |
+
TFFlaubertForSequenceClassification,
|
94 |
+
TFFlaubertForTokenClassification,
|
95 |
+
TFFlaubertModel,
|
96 |
+
TFFlaubertPreTrainedModel,
|
97 |
+
TFFlaubertWithLMHeadModel,
|
98 |
+
)
|
99 |
+
|
100 |
+
else:
|
101 |
+
import sys
|
102 |
+
|
103 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.79 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/configuration_flaubert.cpython-310.pyc
ADDED
Binary file (10.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_flaubert.cpython-310.pyc
ADDED
Binary file (38.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/modeling_tf_flaubert.cpython-310.pyc
ADDED
Binary file (38.5 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/__pycache__/tokenization_flaubert.cpython-310.pyc
ADDED
Binary file (18.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/configuration_flaubert.py
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Flaubert configuration"""
|
16 |
+
from collections import OrderedDict
|
17 |
+
from typing import Mapping
|
18 |
+
|
19 |
+
from ...configuration_utils import PretrainedConfig
|
20 |
+
from ...onnx import OnnxConfig
|
21 |
+
from ...utils import logging
|
22 |
+
|
23 |
+
|
24 |
+
logger = logging.get_logger(__name__)
|
25 |
+
|
26 |
+
|
27 |
+
from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
28 |
+
|
29 |
+
|
30 |
+
class FlaubertConfig(PretrainedConfig):
|
31 |
+
"""
|
32 |
+
This is the configuration class to store the configuration of a [`FlaubertModel`] or a [`TFFlaubertModel`]. It is
|
33 |
+
used to instantiate a FlauBERT model according to the specified arguments, defining the model architecture.
|
34 |
+
Instantiating a configuration with the defaults will yield a similar configuration to that of the FlauBERT
|
35 |
+
[flaubert/flaubert_base_uncased](https://huggingface.co/flaubert/flaubert_base_uncased) architecture.
|
36 |
+
|
37 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
38 |
+
documentation from [`PretrainedConfig`] for more information.
|
39 |
+
|
40 |
+
Args:
|
41 |
+
pre_norm (`bool`, *optional*, defaults to `False`):
|
42 |
+
Whether to apply the layer normalization before or after the feed forward layer following the attention in
|
43 |
+
each layer (Vaswani et al., Tensor2Tensor for Neural Machine Translation. 2018)
|
44 |
+
layerdrop (`float`, *optional*, defaults to 0.0):
|
45 |
+
Probability to drop layers during training (Fan et al., Reducing Transformer Depth on Demand with
|
46 |
+
Structured Dropout. ICLR 2020)
|
47 |
+
vocab_size (`int`, *optional*, defaults to 30145):
|
48 |
+
Vocabulary size of the FlauBERT model. Defines the number of different tokens that can be represented by
|
49 |
+
the `inputs_ids` passed when calling [`FlaubertModel`] or [`TFFlaubertModel`].
|
50 |
+
emb_dim (`int`, *optional*, defaults to 2048):
|
51 |
+
Dimensionality of the encoder layers and the pooler layer.
|
52 |
+
n_layer (`int`, *optional*, defaults to 12):
|
53 |
+
Number of hidden layers in the Transformer encoder.
|
54 |
+
n_head (`int`, *optional*, defaults to 16):
|
55 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
56 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
57 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
58 |
+
attention_dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for the attention mechanism
|
60 |
+
gelu_activation (`bool`, *optional*, defaults to `True`):
|
61 |
+
Whether or not to use a *gelu* activation instead of *relu*.
|
62 |
+
sinusoidal_embeddings (`bool`, *optional*, defaults to `False`):
|
63 |
+
Whether or not to use sinusoidal positional embeddings instead of absolute positional embeddings.
|
64 |
+
causal (`bool`, *optional*, defaults to `False`):
|
65 |
+
Whether or not the model should behave in a causal manner. Causal models use a triangular attention mask in
|
66 |
+
order to only attend to the left-side context instead if a bidirectional context.
|
67 |
+
asm (`bool`, *optional*, defaults to `False`):
|
68 |
+
Whether or not to use an adaptive log softmax projection layer instead of a linear layer for the prediction
|
69 |
+
layer.
|
70 |
+
n_langs (`int`, *optional*, defaults to 1):
|
71 |
+
The number of languages the model handles. Set to 1 for monolingual models.
|
72 |
+
use_lang_emb (`bool`, *optional*, defaults to `True`)
|
73 |
+
Whether to use language embeddings. Some models use additional language embeddings, see [the multilingual
|
74 |
+
models page](http://huggingface.co/transformers/multilingual.html#xlm-language-embeddings) for information
|
75 |
+
on how to use them.
|
76 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
77 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
78 |
+
just in case (e.g., 512 or 1024 or 2048).
|
79 |
+
embed_init_std (`float`, *optional*, defaults to 2048^-0.5):
|
80 |
+
The standard deviation of the truncated_normal_initializer for initializing the embedding matrices.
|
81 |
+
init_std (`int`, *optional*, defaults to 50257):
|
82 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices except the
|
83 |
+
embedding matrices.
|
84 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
85 |
+
The epsilon used by the layer normalization layers.
|
86 |
+
bos_index (`int`, *optional*, defaults to 0):
|
87 |
+
The index of the beginning of sentence token in the vocabulary.
|
88 |
+
eos_index (`int`, *optional*, defaults to 1):
|
89 |
+
The index of the end of sentence token in the vocabulary.
|
90 |
+
pad_index (`int`, *optional*, defaults to 2):
|
91 |
+
The index of the padding token in the vocabulary.
|
92 |
+
unk_index (`int`, *optional*, defaults to 3):
|
93 |
+
The index of the unknown token in the vocabulary.
|
94 |
+
mask_index (`int`, *optional*, defaults to 5):
|
95 |
+
The index of the masking token in the vocabulary.
|
96 |
+
is_encoder(`bool`, *optional*, defaults to `True`):
|
97 |
+
Whether or not the initialized model should be a transformer encoder or decoder as seen in Vaswani et al.
|
98 |
+
summary_type (`string`, *optional*, defaults to "first"):
|
99 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
100 |
+
|
101 |
+
Has to be one of the following options:
|
102 |
+
|
103 |
+
- `"last"`: Take the last token hidden state (like XLNet).
|
104 |
+
- `"first"`: Take the first token hidden state (like BERT).
|
105 |
+
- `"mean"`: Take the mean of all tokens hidden states.
|
106 |
+
- `"cls_index"`: Supply a Tensor of classification token position (like GPT/GPT-2).
|
107 |
+
- `"attn"`: Not implemented now, use multi-head attention.
|
108 |
+
summary_use_proj (`bool`, *optional*, defaults to `True`):
|
109 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
110 |
+
|
111 |
+
Whether or not to add a projection after the vector extraction.
|
112 |
+
summary_activation (`str`, *optional*):
|
113 |
+
Argument used when doing sequence summary. Used in the sequence classification and multiple choice models.
|
114 |
+
|
115 |
+
Pass `"tanh"` for a tanh activation to the output, any other value will result in no activation.
|
116 |
+
summary_proj_to_labels (`bool`, *optional*, defaults to `True`):
|
117 |
+
Used in the sequence classification and multiple choice models.
|
118 |
+
|
119 |
+
Whether the projection outputs should have `config.num_labels` or `config.hidden_size` classes.
|
120 |
+
summary_first_dropout (`float`, *optional*, defaults to 0.1):
|
121 |
+
Used in the sequence classification and multiple choice models.
|
122 |
+
|
123 |
+
The dropout ratio to be used after the projection and activation.
|
124 |
+
start_n_top (`int`, *optional*, defaults to 5):
|
125 |
+
Used in the SQuAD evaluation script.
|
126 |
+
end_n_top (`int`, *optional*, defaults to 5):
|
127 |
+
Used in the SQuAD evaluation script.
|
128 |
+
mask_token_id (`int`, *optional*, defaults to 0):
|
129 |
+
Model agnostic parameter to identify masked tokens when generating text in an MLM context.
|
130 |
+
lang_id (`int`, *optional*, defaults to 1):
|
131 |
+
The ID of the language used by the model. This parameter is used when generating text in a given language.
|
132 |
+
"""
|
133 |
+
|
134 |
+
model_type = "flaubert"
|
135 |
+
attribute_map = {
|
136 |
+
"hidden_size": "emb_dim",
|
137 |
+
"num_attention_heads": "n_heads",
|
138 |
+
"num_hidden_layers": "n_layers",
|
139 |
+
"n_words": "vocab_size", # For backward compatibility
|
140 |
+
}
|
141 |
+
|
142 |
+
def __init__(
|
143 |
+
self,
|
144 |
+
pre_norm=False,
|
145 |
+
layerdrop=0.0,
|
146 |
+
vocab_size=30145,
|
147 |
+
emb_dim=2048,
|
148 |
+
n_layers=12,
|
149 |
+
n_heads=16,
|
150 |
+
dropout=0.1,
|
151 |
+
attention_dropout=0.1,
|
152 |
+
gelu_activation=True,
|
153 |
+
sinusoidal_embeddings=False,
|
154 |
+
causal=False,
|
155 |
+
asm=False,
|
156 |
+
n_langs=1,
|
157 |
+
use_lang_emb=True,
|
158 |
+
max_position_embeddings=512,
|
159 |
+
embed_init_std=2048**-0.5,
|
160 |
+
layer_norm_eps=1e-12,
|
161 |
+
init_std=0.02,
|
162 |
+
bos_index=0,
|
163 |
+
eos_index=1,
|
164 |
+
pad_index=2,
|
165 |
+
unk_index=3,
|
166 |
+
mask_index=5,
|
167 |
+
is_encoder=True,
|
168 |
+
summary_type="first",
|
169 |
+
summary_use_proj=True,
|
170 |
+
summary_activation=None,
|
171 |
+
summary_proj_to_labels=True,
|
172 |
+
summary_first_dropout=0.1,
|
173 |
+
start_n_top=5,
|
174 |
+
end_n_top=5,
|
175 |
+
mask_token_id=0,
|
176 |
+
lang_id=0,
|
177 |
+
pad_token_id=2,
|
178 |
+
bos_token_id=0,
|
179 |
+
**kwargs,
|
180 |
+
):
|
181 |
+
"""Constructs FlaubertConfig."""
|
182 |
+
self.pre_norm = pre_norm
|
183 |
+
self.layerdrop = layerdrop
|
184 |
+
self.vocab_size = vocab_size
|
185 |
+
self.emb_dim = emb_dim
|
186 |
+
self.n_layers = n_layers
|
187 |
+
self.n_heads = n_heads
|
188 |
+
self.dropout = dropout
|
189 |
+
self.attention_dropout = attention_dropout
|
190 |
+
self.gelu_activation = gelu_activation
|
191 |
+
self.sinusoidal_embeddings = sinusoidal_embeddings
|
192 |
+
self.causal = causal
|
193 |
+
self.asm = asm
|
194 |
+
self.n_langs = n_langs
|
195 |
+
self.use_lang_emb = use_lang_emb
|
196 |
+
self.layer_norm_eps = layer_norm_eps
|
197 |
+
self.bos_index = bos_index
|
198 |
+
self.eos_index = eos_index
|
199 |
+
self.pad_index = pad_index
|
200 |
+
self.unk_index = unk_index
|
201 |
+
self.mask_index = mask_index
|
202 |
+
self.is_encoder = is_encoder
|
203 |
+
self.max_position_embeddings = max_position_embeddings
|
204 |
+
self.embed_init_std = embed_init_std
|
205 |
+
self.init_std = init_std
|
206 |
+
self.summary_type = summary_type
|
207 |
+
self.summary_use_proj = summary_use_proj
|
208 |
+
self.summary_activation = summary_activation
|
209 |
+
self.summary_proj_to_labels = summary_proj_to_labels
|
210 |
+
self.summary_first_dropout = summary_first_dropout
|
211 |
+
self.start_n_top = start_n_top
|
212 |
+
self.end_n_top = end_n_top
|
213 |
+
self.mask_token_id = mask_token_id
|
214 |
+
self.lang_id = lang_id
|
215 |
+
|
216 |
+
if "n_words" in kwargs:
|
217 |
+
self.n_words = kwargs["n_words"]
|
218 |
+
|
219 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, **kwargs)
|
220 |
+
|
221 |
+
|
222 |
+
class FlaubertOnnxConfig(OnnxConfig):
|
223 |
+
@property
|
224 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
225 |
+
if self.task == "multiple-choice":
|
226 |
+
dynamic_axis = {0: "batch", 1: "choice", 2: "sequence"}
|
227 |
+
else:
|
228 |
+
dynamic_axis = {0: "batch", 1: "sequence"}
|
229 |
+
return OrderedDict(
|
230 |
+
[
|
231 |
+
("input_ids", dynamic_axis),
|
232 |
+
("attention_mask", dynamic_axis),
|
233 |
+
]
|
234 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/modeling_flaubert.py
ADDED
@@ -0,0 +1,1302 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Flaubert model, based on XLM."""
|
16 |
+
|
17 |
+
import itertools
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Dict, Optional, Tuple, Union
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
import torch
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import gelu
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
BaseModelOutput,
|
30 |
+
MaskedLMOutput,
|
31 |
+
MultipleChoiceModelOutput,
|
32 |
+
QuestionAnsweringModelOutput,
|
33 |
+
SequenceClassifierOutput,
|
34 |
+
TokenClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel, SequenceSummary, SQuADHead
|
37 |
+
from ...pytorch_utils import apply_chunking_to_forward, find_pruneable_heads_and_indices, prune_linear_layer
|
38 |
+
from ...utils import (
|
39 |
+
ModelOutput,
|
40 |
+
add_code_sample_docstrings,
|
41 |
+
add_start_docstrings,
|
42 |
+
add_start_docstrings_to_model_forward,
|
43 |
+
logging,
|
44 |
+
replace_return_docstrings,
|
45 |
+
)
|
46 |
+
from .configuration_flaubert import FlaubertConfig
|
47 |
+
|
48 |
+
|
49 |
+
logger = logging.get_logger(__name__)
|
50 |
+
|
51 |
+
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
|
52 |
+
_CONFIG_FOR_DOC = "FlaubertConfig"
|
53 |
+
|
54 |
+
|
55 |
+
from ..deprecated._archive_maps import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
56 |
+
|
57 |
+
|
58 |
+
# Copied from transformers.models.xlm.modeling_xlm.create_sinusoidal_embeddings
|
59 |
+
def create_sinusoidal_embeddings(n_pos, dim, out):
|
60 |
+
position_enc = np.array([[pos / np.power(10000, 2 * (j // 2) / dim) for j in range(dim)] for pos in range(n_pos)])
|
61 |
+
out.requires_grad = False
|
62 |
+
out[:, 0::2] = torch.FloatTensor(np.sin(position_enc[:, 0::2]))
|
63 |
+
out[:, 1::2] = torch.FloatTensor(np.cos(position_enc[:, 1::2]))
|
64 |
+
out.detach_()
|
65 |
+
|
66 |
+
|
67 |
+
# Copied from transformers.models.xlm.modeling_xlm.get_masks
|
68 |
+
def get_masks(slen, lengths, causal, padding_mask=None):
|
69 |
+
"""
|
70 |
+
Generate hidden states mask, and optionally an attention mask.
|
71 |
+
"""
|
72 |
+
alen = torch.arange(slen, dtype=torch.long, device=lengths.device)
|
73 |
+
if padding_mask is not None:
|
74 |
+
mask = padding_mask
|
75 |
+
else:
|
76 |
+
assert lengths.max().item() <= slen
|
77 |
+
mask = alen < lengths[:, None]
|
78 |
+
|
79 |
+
# attention mask is the same as mask, or triangular inferior attention (causal)
|
80 |
+
bs = lengths.size(0)
|
81 |
+
if causal:
|
82 |
+
attn_mask = alen[None, None, :].repeat(bs, slen, 1) <= alen[None, :, None]
|
83 |
+
else:
|
84 |
+
attn_mask = mask
|
85 |
+
|
86 |
+
# sanity check
|
87 |
+
assert mask.size() == (bs, slen)
|
88 |
+
assert causal is False or attn_mask.size() == (bs, slen, slen)
|
89 |
+
|
90 |
+
return mask, attn_mask
|
91 |
+
|
92 |
+
|
93 |
+
# Copied from transformers.models.xlm.modeling_xlm.MultiHeadAttention
|
94 |
+
class MultiHeadAttention(nn.Module):
|
95 |
+
NEW_ID = itertools.count()
|
96 |
+
|
97 |
+
def __init__(self, n_heads, dim, config):
|
98 |
+
super().__init__()
|
99 |
+
self.layer_id = next(MultiHeadAttention.NEW_ID)
|
100 |
+
self.dim = dim
|
101 |
+
self.n_heads = n_heads
|
102 |
+
self.dropout = config.attention_dropout
|
103 |
+
assert self.dim % self.n_heads == 0
|
104 |
+
|
105 |
+
self.q_lin = nn.Linear(dim, dim)
|
106 |
+
self.k_lin = nn.Linear(dim, dim)
|
107 |
+
self.v_lin = nn.Linear(dim, dim)
|
108 |
+
self.out_lin = nn.Linear(dim, dim)
|
109 |
+
self.pruned_heads = set()
|
110 |
+
|
111 |
+
def prune_heads(self, heads):
|
112 |
+
attention_head_size = self.dim // self.n_heads
|
113 |
+
if len(heads) == 0:
|
114 |
+
return
|
115 |
+
heads, index = find_pruneable_heads_and_indices(heads, self.n_heads, attention_head_size, self.pruned_heads)
|
116 |
+
# Prune linear layers
|
117 |
+
self.q_lin = prune_linear_layer(self.q_lin, index)
|
118 |
+
self.k_lin = prune_linear_layer(self.k_lin, index)
|
119 |
+
self.v_lin = prune_linear_layer(self.v_lin, index)
|
120 |
+
self.out_lin = prune_linear_layer(self.out_lin, index, dim=1)
|
121 |
+
# Update hyper params
|
122 |
+
self.n_heads = self.n_heads - len(heads)
|
123 |
+
self.dim = attention_head_size * self.n_heads
|
124 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
125 |
+
|
126 |
+
def forward(self, input, mask, kv=None, cache=None, head_mask=None, output_attentions=False):
|
127 |
+
"""
|
128 |
+
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
129 |
+
"""
|
130 |
+
# Input is (bs, qlen, dim)
|
131 |
+
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
132 |
+
bs, qlen, dim = input.size()
|
133 |
+
if kv is None:
|
134 |
+
klen = qlen if cache is None else cache["slen"] + qlen
|
135 |
+
else:
|
136 |
+
klen = kv.size(1)
|
137 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
138 |
+
n_heads = self.n_heads
|
139 |
+
dim_per_head = self.dim // n_heads
|
140 |
+
mask_reshape = (bs, 1, qlen, klen) if mask.dim() == 3 else (bs, 1, 1, klen)
|
141 |
+
|
142 |
+
def shape(x):
|
143 |
+
"""projection"""
|
144 |
+
return x.view(bs, -1, self.n_heads, dim_per_head).transpose(1, 2)
|
145 |
+
|
146 |
+
def unshape(x):
|
147 |
+
"""compute context"""
|
148 |
+
return x.transpose(1, 2).contiguous().view(bs, -1, self.n_heads * dim_per_head)
|
149 |
+
|
150 |
+
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
151 |
+
if kv is None:
|
152 |
+
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
153 |
+
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
154 |
+
elif cache is None or self.layer_id not in cache:
|
155 |
+
k = v = kv
|
156 |
+
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
157 |
+
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
158 |
+
|
159 |
+
if cache is not None:
|
160 |
+
if self.layer_id in cache:
|
161 |
+
if kv is None:
|
162 |
+
k_, v_ = cache[self.layer_id]
|
163 |
+
k = torch.cat([k_, k], dim=2) # (bs, n_heads, klen, dim_per_head)
|
164 |
+
v = torch.cat([v_, v], dim=2) # (bs, n_heads, klen, dim_per_head)
|
165 |
+
else:
|
166 |
+
k, v = cache[self.layer_id]
|
167 |
+
cache[self.layer_id] = (k, v)
|
168 |
+
|
169 |
+
q = q / math.sqrt(dim_per_head) # (bs, n_heads, qlen, dim_per_head)
|
170 |
+
scores = torch.matmul(q, k.transpose(2, 3)) # (bs, n_heads, qlen, klen)
|
171 |
+
mask = (mask == 0).view(mask_reshape).expand_as(scores) # (bs, n_heads, qlen, klen)
|
172 |
+
scores.masked_fill_(mask, torch.finfo(scores.dtype).min) # (bs, n_heads, qlen, klen)
|
173 |
+
|
174 |
+
weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) # (bs, n_heads, qlen, klen)
|
175 |
+
weights = nn.functional.dropout(weights, p=self.dropout, training=self.training) # (bs, n_heads, qlen, klen)
|
176 |
+
|
177 |
+
# Mask heads if we want to
|
178 |
+
if head_mask is not None:
|
179 |
+
weights = weights * head_mask
|
180 |
+
|
181 |
+
context = torch.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
182 |
+
context = unshape(context) # (bs, qlen, dim)
|
183 |
+
|
184 |
+
outputs = (self.out_lin(context),)
|
185 |
+
if output_attentions:
|
186 |
+
outputs = outputs + (weights,)
|
187 |
+
return outputs
|
188 |
+
|
189 |
+
|
190 |
+
# Copied from transformers.models.xlm.modeling_xlm.TransformerFFN
|
191 |
+
class TransformerFFN(nn.Module):
|
192 |
+
def __init__(self, in_dim, dim_hidden, out_dim, config):
|
193 |
+
super().__init__()
|
194 |
+
self.dropout = config.dropout
|
195 |
+
self.lin1 = nn.Linear(in_dim, dim_hidden)
|
196 |
+
self.lin2 = nn.Linear(dim_hidden, out_dim)
|
197 |
+
self.act = gelu if config.gelu_activation else nn.functional.relu
|
198 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
199 |
+
self.seq_len_dim = 1
|
200 |
+
|
201 |
+
def forward(self, input):
|
202 |
+
return apply_chunking_to_forward(self.ff_chunk, self.chunk_size_feed_forward, self.seq_len_dim, input)
|
203 |
+
|
204 |
+
def ff_chunk(self, input):
|
205 |
+
x = self.lin1(input)
|
206 |
+
x = self.act(x)
|
207 |
+
x = self.lin2(x)
|
208 |
+
x = nn.functional.dropout(x, p=self.dropout, training=self.training)
|
209 |
+
return x
|
210 |
+
|
211 |
+
|
212 |
+
FLAUBERT_START_DOCSTRING = r"""
|
213 |
+
|
214 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
215 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
216 |
+
etc.)
|
217 |
+
|
218 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
219 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
220 |
+
and behavior.
|
221 |
+
|
222 |
+
Parameters:
|
223 |
+
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
|
224 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
225 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
226 |
+
"""
|
227 |
+
|
228 |
+
FLAUBERT_INPUTS_DOCSTRING = r"""
|
229 |
+
Args:
|
230 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
231 |
+
Indices of input sequence tokens in the vocabulary.
|
232 |
+
|
233 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
234 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
235 |
+
|
236 |
+
[What are input IDs?](../glossary#input-ids)
|
237 |
+
attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
238 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
239 |
+
|
240 |
+
- 1 for tokens that are **not masked**,
|
241 |
+
- 0 for tokens that are **masked**.
|
242 |
+
|
243 |
+
[What are attention masks?](../glossary#attention-mask)
|
244 |
+
token_type_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
245 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
246 |
+
1]`:
|
247 |
+
|
248 |
+
- 0 corresponds to a *sentence A* token,
|
249 |
+
- 1 corresponds to a *sentence B* token.
|
250 |
+
|
251 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
252 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
253 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
254 |
+
config.max_position_embeddings - 1]`.
|
255 |
+
|
256 |
+
[What are position IDs?](../glossary#position-ids)
|
257 |
+
lengths (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
258 |
+
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
|
259 |
+
also use `attention_mask` for the same result (see above), kept here for compatibility. Indices selected in
|
260 |
+
`[0, ..., input_ids.size(-1)]`:
|
261 |
+
cache (`Dict[str, torch.FloatTensor]`, *optional*):
|
262 |
+
Dictionary strings to `torch.FloatTensor` that contains precomputed hidden-states (key and values in the
|
263 |
+
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
|
264 |
+
decoding. The dictionary object will be modified in-place during the forward pass to add newly computed
|
265 |
+
hidden-states.
|
266 |
+
head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
267 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
268 |
+
|
269 |
+
- 1 indicates the head is **not masked**,
|
270 |
+
- 0 indicates the head is **masked**.
|
271 |
+
|
272 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
273 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
274 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
275 |
+
model's internal embedding lookup matrix.
|
276 |
+
output_attentions (`bool`, *optional*):
|
277 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
278 |
+
tensors for more detail.
|
279 |
+
output_hidden_states (`bool`, *optional*):
|
280 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
281 |
+
more detail.
|
282 |
+
return_dict (`bool`, *optional*):
|
283 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
284 |
+
"""
|
285 |
+
|
286 |
+
|
287 |
+
@add_start_docstrings(
|
288 |
+
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
|
289 |
+
FLAUBERT_START_DOCSTRING,
|
290 |
+
)
|
291 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMPredLayer with XLM->Flaubert
|
292 |
+
class FlaubertPredLayer(nn.Module):
|
293 |
+
"""
|
294 |
+
Prediction layer (cross_entropy or adaptive_softmax).
|
295 |
+
"""
|
296 |
+
|
297 |
+
def __init__(self, config):
|
298 |
+
super().__init__()
|
299 |
+
self.asm = config.asm
|
300 |
+
self.n_words = config.n_words
|
301 |
+
self.pad_index = config.pad_index
|
302 |
+
dim = config.emb_dim
|
303 |
+
|
304 |
+
if config.asm is False:
|
305 |
+
self.proj = nn.Linear(dim, config.n_words, bias=True)
|
306 |
+
else:
|
307 |
+
self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
308 |
+
in_features=dim,
|
309 |
+
n_classes=config.n_words,
|
310 |
+
cutoffs=config.asm_cutoffs,
|
311 |
+
div_value=config.asm_div_value,
|
312 |
+
head_bias=True, # default is False
|
313 |
+
)
|
314 |
+
|
315 |
+
def forward(self, x, y=None):
|
316 |
+
"""Compute the loss, and optionally the scores."""
|
317 |
+
outputs = ()
|
318 |
+
if self.asm is False:
|
319 |
+
scores = self.proj(x)
|
320 |
+
outputs = (scores,) + outputs
|
321 |
+
if y is not None:
|
322 |
+
loss = nn.functional.cross_entropy(scores.view(-1, self.n_words), y.view(-1), reduction="mean")
|
323 |
+
outputs = (loss,) + outputs
|
324 |
+
else:
|
325 |
+
scores = self.proj.log_prob(x)
|
326 |
+
outputs = (scores,) + outputs
|
327 |
+
if y is not None:
|
328 |
+
_, loss = self.proj(x, y)
|
329 |
+
outputs = (loss,) + outputs
|
330 |
+
|
331 |
+
return outputs
|
332 |
+
|
333 |
+
|
334 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMPreTrainedModel with XLM->Flaubert
|
335 |
+
class FlaubertPreTrainedModel(PreTrainedModel):
|
336 |
+
"""
|
337 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
338 |
+
models.
|
339 |
+
"""
|
340 |
+
|
341 |
+
config_class = FlaubertConfig
|
342 |
+
load_tf_weights = None
|
343 |
+
base_model_prefix = "transformer"
|
344 |
+
|
345 |
+
def __init__(self, *inputs, **kwargs):
|
346 |
+
super().__init__(*inputs, **kwargs)
|
347 |
+
|
348 |
+
@property
|
349 |
+
def dummy_inputs(self):
|
350 |
+
inputs_list = torch.tensor([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]])
|
351 |
+
attns_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
352 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
353 |
+
langs_list = torch.tensor([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]])
|
354 |
+
else:
|
355 |
+
langs_list = None
|
356 |
+
return {"input_ids": inputs_list, "attention_mask": attns_list, "langs": langs_list}
|
357 |
+
|
358 |
+
def _init_weights(self, module):
|
359 |
+
"""Initialize the weights."""
|
360 |
+
if isinstance(module, nn.Embedding):
|
361 |
+
if self.config is not None and self.config.embed_init_std is not None:
|
362 |
+
nn.init.normal_(module.weight, mean=0, std=self.config.embed_init_std)
|
363 |
+
if module.padding_idx is not None:
|
364 |
+
module.weight.data[module.padding_idx].zero_()
|
365 |
+
if isinstance(module, nn.Linear):
|
366 |
+
if self.config is not None and self.config.init_std is not None:
|
367 |
+
nn.init.normal_(module.weight, mean=0, std=self.config.init_std)
|
368 |
+
if module.bias is not None:
|
369 |
+
nn.init.constant_(module.bias, 0.0)
|
370 |
+
if isinstance(module, nn.LayerNorm):
|
371 |
+
module.bias.data.zero_()
|
372 |
+
module.weight.data.fill_(1.0)
|
373 |
+
if isinstance(module, FlaubertModel) and self.config.sinusoidal_embeddings:
|
374 |
+
create_sinusoidal_embeddings(
|
375 |
+
self.config.max_position_embeddings, self.config.emb_dim, out=module.position_embeddings.weight
|
376 |
+
)
|
377 |
+
|
378 |
+
|
379 |
+
class FlaubertModel(FlaubertPreTrainedModel):
|
380 |
+
def __init__(self, config): # , dico, is_encoder, with_output):
|
381 |
+
super().__init__(config)
|
382 |
+
|
383 |
+
# encoder / decoder, output layer
|
384 |
+
self.is_encoder = config.is_encoder
|
385 |
+
self.is_decoder = not config.is_encoder
|
386 |
+
if self.is_decoder:
|
387 |
+
raise NotImplementedError("Currently Flaubert can only be used as an encoder")
|
388 |
+
# self.with_output = with_output
|
389 |
+
self.causal = config.causal
|
390 |
+
|
391 |
+
# dictionary / languages
|
392 |
+
self.n_langs = config.n_langs
|
393 |
+
self.use_lang_emb = config.use_lang_emb
|
394 |
+
self.n_words = config.n_words
|
395 |
+
self.eos_index = config.eos_index
|
396 |
+
self.pad_index = config.pad_index
|
397 |
+
# self.dico = dico
|
398 |
+
# self.id2lang = config.id2lang
|
399 |
+
# self.lang2id = config.lang2id
|
400 |
+
# assert len(self.dico) == self.n_words
|
401 |
+
# assert len(self.id2lang) == len(self.lang2id) == self.n_langs
|
402 |
+
|
403 |
+
# model parameters
|
404 |
+
self.dim = config.emb_dim # 512 by default
|
405 |
+
self.hidden_dim = self.dim * 4 # 2048 by default
|
406 |
+
self.n_heads = config.n_heads # 8 by default
|
407 |
+
self.n_layers = config.n_layers
|
408 |
+
self.dropout = config.dropout
|
409 |
+
self.attention_dropout = config.attention_dropout
|
410 |
+
assert self.dim % self.n_heads == 0, "transformer dim must be a multiple of n_heads"
|
411 |
+
|
412 |
+
# embeddings
|
413 |
+
self.position_embeddings = nn.Embedding(config.max_position_embeddings, self.dim)
|
414 |
+
if config.n_langs > 1 and config.use_lang_emb:
|
415 |
+
self.lang_embeddings = nn.Embedding(self.n_langs, self.dim)
|
416 |
+
self.embeddings = nn.Embedding(self.n_words, self.dim, padding_idx=self.pad_index)
|
417 |
+
self.layer_norm_emb = nn.LayerNorm(self.dim, eps=config.layer_norm_eps)
|
418 |
+
|
419 |
+
# transformer layers
|
420 |
+
self.attentions = nn.ModuleList()
|
421 |
+
self.layer_norm1 = nn.ModuleList()
|
422 |
+
self.ffns = nn.ModuleList()
|
423 |
+
self.layer_norm2 = nn.ModuleList()
|
424 |
+
# if self.is_decoder:
|
425 |
+
# self.layer_norm15 = nn.ModuleList()
|
426 |
+
# self.encoder_attn = nn.ModuleList()
|
427 |
+
|
428 |
+
for _ in range(self.n_layers):
|
429 |
+
self.attentions.append(MultiHeadAttention(self.n_heads, self.dim, config=config))
|
430 |
+
self.layer_norm1.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
431 |
+
# if self.is_decoder:
|
432 |
+
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
433 |
+
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
434 |
+
self.ffns.append(TransformerFFN(self.dim, self.hidden_dim, self.dim, config=config))
|
435 |
+
self.layer_norm2.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
436 |
+
|
437 |
+
if hasattr(config, "pruned_heads"):
|
438 |
+
pruned_heads = config.pruned_heads.copy().items()
|
439 |
+
config.pruned_heads = {}
|
440 |
+
for layer, heads in pruned_heads:
|
441 |
+
if self.attentions[int(layer)].n_heads == config.n_heads:
|
442 |
+
self.prune_heads({int(layer): list(map(int, heads))})
|
443 |
+
|
444 |
+
# Initialize weights and apply final processing
|
445 |
+
self.post_init()
|
446 |
+
|
447 |
+
self.layerdrop = getattr(config, "layerdrop", 0.0)
|
448 |
+
self.pre_norm = getattr(config, "pre_norm", False)
|
449 |
+
self.register_buffer(
|
450 |
+
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
|
451 |
+
)
|
452 |
+
|
453 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.get_input_embeddings
|
454 |
+
def get_input_embeddings(self):
|
455 |
+
return self.embeddings
|
456 |
+
|
457 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel.set_input_embeddings
|
458 |
+
def set_input_embeddings(self, new_embeddings):
|
459 |
+
self.embeddings = new_embeddings
|
460 |
+
|
461 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMModel._prune_heads
|
462 |
+
def _prune_heads(self, heads_to_prune):
|
463 |
+
"""
|
464 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
465 |
+
class PreTrainedModel
|
466 |
+
"""
|
467 |
+
for layer, heads in heads_to_prune.items():
|
468 |
+
self.attentions[layer].prune_heads(heads)
|
469 |
+
|
470 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
471 |
+
@add_code_sample_docstrings(
|
472 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
473 |
+
output_type=BaseModelOutput,
|
474 |
+
config_class=_CONFIG_FOR_DOC,
|
475 |
+
)
|
476 |
+
def forward(
|
477 |
+
self,
|
478 |
+
input_ids: Optional[torch.LongTensor] = None,
|
479 |
+
attention_mask: Optional[torch.FloatTensor] = None,
|
480 |
+
langs: Optional[torch.Tensor] = None,
|
481 |
+
token_type_ids: Optional[torch.LongTensor] = None,
|
482 |
+
position_ids: Optional[torch.LongTensor] = None,
|
483 |
+
lengths: Optional[torch.LongTensor] = None,
|
484 |
+
cache: Optional[Dict[str, torch.FloatTensor]] = None,
|
485 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
486 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
487 |
+
output_attentions: Optional[bool] = None,
|
488 |
+
output_hidden_states: Optional[bool] = None,
|
489 |
+
return_dict: Optional[bool] = None,
|
490 |
+
) -> Union[Tuple, BaseModelOutput]:
|
491 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
492 |
+
output_hidden_states = (
|
493 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
494 |
+
)
|
495 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
496 |
+
|
497 |
+
# removed: src_enc=None, src_len=None
|
498 |
+
if input_ids is not None:
|
499 |
+
bs, slen = input_ids.size()
|
500 |
+
else:
|
501 |
+
bs, slen = inputs_embeds.size()[:-1]
|
502 |
+
|
503 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
504 |
+
|
505 |
+
if lengths is None:
|
506 |
+
if input_ids is not None:
|
507 |
+
lengths = (input_ids != self.pad_index).sum(dim=1).long()
|
508 |
+
else:
|
509 |
+
lengths = torch.tensor([slen] * bs, device=device)
|
510 |
+
# mask = input_ids != self.pad_index
|
511 |
+
|
512 |
+
# check inputs
|
513 |
+
assert lengths.size(0) == bs
|
514 |
+
assert lengths.max().item() <= slen
|
515 |
+
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
516 |
+
# assert (src_enc is None) == (src_len is None)
|
517 |
+
# if src_enc is not None:
|
518 |
+
# assert self.is_decoder
|
519 |
+
# assert src_enc.size(0) == bs
|
520 |
+
|
521 |
+
# generate masks
|
522 |
+
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
523 |
+
# if self.is_decoder and src_enc is not None:
|
524 |
+
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
525 |
+
|
526 |
+
# Setting the position-ids to the registered buffer in constructor, it helps
|
527 |
+
# when tracing the model without passing position-ids, solves
|
528 |
+
# isues similar to issue #5664
|
529 |
+
if position_ids is None:
|
530 |
+
if hasattr(self, "position_ids"):
|
531 |
+
position_ids = self.position_ids[:, :slen]
|
532 |
+
position_ids = position_ids.expand((bs, slen))
|
533 |
+
else:
|
534 |
+
position_ids = torch.arange(slen, dtype=torch.long, device=device)
|
535 |
+
position_ids = position_ids.unsqueeze(0).expand((bs, slen))
|
536 |
+
else:
|
537 |
+
assert position_ids.size() == (bs, slen) # (slen, bs)
|
538 |
+
# position_ids = position_ids.transpose(0, 1)
|
539 |
+
|
540 |
+
# langs
|
541 |
+
if langs is not None:
|
542 |
+
assert langs.size() == (bs, slen) # (slen, bs)
|
543 |
+
# langs = langs.transpose(0, 1)
|
544 |
+
|
545 |
+
# Prepare head mask if needed
|
546 |
+
head_mask = self.get_head_mask(head_mask, self.config.n_layers)
|
547 |
+
|
548 |
+
# do not recompute cached elements
|
549 |
+
if cache is not None and input_ids is not None:
|
550 |
+
_slen = slen - cache["slen"]
|
551 |
+
input_ids = input_ids[:, -_slen:]
|
552 |
+
position_ids = position_ids[:, -_slen:]
|
553 |
+
if langs is not None:
|
554 |
+
langs = langs[:, -_slen:]
|
555 |
+
mask = mask[:, -_slen:]
|
556 |
+
attn_mask = attn_mask[:, -_slen:]
|
557 |
+
|
558 |
+
# embeddings
|
559 |
+
if inputs_embeds is None:
|
560 |
+
inputs_embeds = self.embeddings(input_ids)
|
561 |
+
|
562 |
+
tensor = inputs_embeds + self.position_embeddings(position_ids).expand_as(inputs_embeds)
|
563 |
+
if langs is not None and self.use_lang_emb and self.config.n_langs > 1:
|
564 |
+
tensor = tensor + self.lang_embeddings(langs)
|
565 |
+
if token_type_ids is not None:
|
566 |
+
tensor = tensor + self.embeddings(token_type_ids)
|
567 |
+
tensor = self.layer_norm_emb(tensor)
|
568 |
+
tensor = nn.functional.dropout(tensor, p=self.dropout, training=self.training)
|
569 |
+
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
570 |
+
|
571 |
+
# transformer layers
|
572 |
+
hidden_states = () if output_hidden_states else None
|
573 |
+
attentions = () if output_attentions else None
|
574 |
+
for i in range(self.n_layers):
|
575 |
+
# LayerDrop
|
576 |
+
if self.training:
|
577 |
+
dropout_probability = torch.rand([])
|
578 |
+
if dropout_probability < self.layerdrop:
|
579 |
+
continue
|
580 |
+
|
581 |
+
if output_hidden_states:
|
582 |
+
hidden_states = hidden_states + (tensor,)
|
583 |
+
|
584 |
+
# self attention
|
585 |
+
if not self.pre_norm:
|
586 |
+
attn_outputs = self.attentions[i](
|
587 |
+
tensor,
|
588 |
+
attn_mask,
|
589 |
+
cache=cache,
|
590 |
+
head_mask=head_mask[i],
|
591 |
+
output_attentions=output_attentions,
|
592 |
+
)
|
593 |
+
attn = attn_outputs[0]
|
594 |
+
if output_attentions:
|
595 |
+
attentions = attentions + (attn_outputs[1],)
|
596 |
+
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
597 |
+
tensor = tensor + attn
|
598 |
+
tensor = self.layer_norm1[i](tensor)
|
599 |
+
else:
|
600 |
+
tensor_normalized = self.layer_norm1[i](tensor)
|
601 |
+
attn_outputs = self.attentions[i](tensor_normalized, attn_mask, cache=cache, head_mask=head_mask[i])
|
602 |
+
attn = attn_outputs[0]
|
603 |
+
if output_attentions:
|
604 |
+
attentions = attentions + (attn_outputs[1],)
|
605 |
+
attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
606 |
+
tensor = tensor + attn
|
607 |
+
|
608 |
+
# encoder attention (for decoder only)
|
609 |
+
# if self.is_decoder and src_enc is not None:
|
610 |
+
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
611 |
+
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
612 |
+
# tensor = tensor + attn
|
613 |
+
# tensor = self.layer_norm15[i](tensor)
|
614 |
+
|
615 |
+
# FFN
|
616 |
+
if not self.pre_norm:
|
617 |
+
tensor = tensor + self.ffns[i](tensor)
|
618 |
+
tensor = self.layer_norm2[i](tensor)
|
619 |
+
else:
|
620 |
+
tensor_normalized = self.layer_norm2[i](tensor)
|
621 |
+
tensor = tensor + self.ffns[i](tensor_normalized)
|
622 |
+
|
623 |
+
tensor *= mask.unsqueeze(-1).to(tensor.dtype)
|
624 |
+
|
625 |
+
# Add last hidden state
|
626 |
+
if output_hidden_states:
|
627 |
+
hidden_states = hidden_states + (tensor,)
|
628 |
+
|
629 |
+
# update cache length
|
630 |
+
if cache is not None:
|
631 |
+
cache["slen"] += tensor.size(1)
|
632 |
+
|
633 |
+
# move back sequence length to dimension 0
|
634 |
+
# tensor = tensor.transpose(0, 1)
|
635 |
+
|
636 |
+
if not return_dict:
|
637 |
+
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
|
638 |
+
|
639 |
+
return BaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
|
640 |
+
|
641 |
+
|
642 |
+
@add_start_docstrings(
|
643 |
+
"""
|
644 |
+
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
645 |
+
embeddings).
|
646 |
+
""",
|
647 |
+
FLAUBERT_START_DOCSTRING,
|
648 |
+
)
|
649 |
+
# Copied transformers.models.xlm.modeling_xlm.XLMWithLMHeadModel with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
650 |
+
class FlaubertWithLMHeadModel(FlaubertPreTrainedModel):
|
651 |
+
_tied_weights_keys = ["pred_layer.proj.weight"]
|
652 |
+
|
653 |
+
def __init__(self, config):
|
654 |
+
super().__init__(config)
|
655 |
+
self.transformer = FlaubertModel(config)
|
656 |
+
self.pred_layer = FlaubertPredLayer(config)
|
657 |
+
|
658 |
+
# Initialize weights and apply final processing
|
659 |
+
self.post_init()
|
660 |
+
|
661 |
+
def get_output_embeddings(self):
|
662 |
+
return self.pred_layer.proj
|
663 |
+
|
664 |
+
def set_output_embeddings(self, new_embeddings):
|
665 |
+
self.pred_layer.proj = new_embeddings
|
666 |
+
|
667 |
+
def prepare_inputs_for_generation(self, input_ids, **kwargs):
|
668 |
+
mask_token_id = self.config.mask_token_id
|
669 |
+
lang_id = self.config.lang_id
|
670 |
+
|
671 |
+
effective_batch_size = input_ids.shape[0]
|
672 |
+
mask_token = torch.full((effective_batch_size, 1), mask_token_id, dtype=torch.long, device=input_ids.device)
|
673 |
+
input_ids = torch.cat([input_ids, mask_token], dim=1)
|
674 |
+
if lang_id is not None:
|
675 |
+
langs = torch.full_like(input_ids, lang_id)
|
676 |
+
else:
|
677 |
+
langs = None
|
678 |
+
return {"input_ids": input_ids, "langs": langs}
|
679 |
+
|
680 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
681 |
+
@add_code_sample_docstrings(
|
682 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
683 |
+
output_type=MaskedLMOutput,
|
684 |
+
config_class=_CONFIG_FOR_DOC,
|
685 |
+
mask="<special1>",
|
686 |
+
)
|
687 |
+
def forward(
|
688 |
+
self,
|
689 |
+
input_ids: Optional[torch.Tensor] = None,
|
690 |
+
attention_mask: Optional[torch.Tensor] = None,
|
691 |
+
langs: Optional[torch.Tensor] = None,
|
692 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
693 |
+
position_ids: Optional[torch.Tensor] = None,
|
694 |
+
lengths: Optional[torch.Tensor] = None,
|
695 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
696 |
+
head_mask: Optional[torch.Tensor] = None,
|
697 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
698 |
+
labels: Optional[torch.Tensor] = None,
|
699 |
+
output_attentions: Optional[bool] = None,
|
700 |
+
output_hidden_states: Optional[bool] = None,
|
701 |
+
return_dict: Optional[bool] = None,
|
702 |
+
) -> Union[Tuple, MaskedLMOutput]:
|
703 |
+
r"""
|
704 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
705 |
+
Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set
|
706 |
+
`labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100`
|
707 |
+
are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]`
|
708 |
+
"""
|
709 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
710 |
+
|
711 |
+
transformer_outputs = self.transformer(
|
712 |
+
input_ids,
|
713 |
+
attention_mask=attention_mask,
|
714 |
+
langs=langs,
|
715 |
+
token_type_ids=token_type_ids,
|
716 |
+
position_ids=position_ids,
|
717 |
+
lengths=lengths,
|
718 |
+
cache=cache,
|
719 |
+
head_mask=head_mask,
|
720 |
+
inputs_embeds=inputs_embeds,
|
721 |
+
output_attentions=output_attentions,
|
722 |
+
output_hidden_states=output_hidden_states,
|
723 |
+
return_dict=return_dict,
|
724 |
+
)
|
725 |
+
|
726 |
+
output = transformer_outputs[0]
|
727 |
+
outputs = self.pred_layer(output, labels) # (loss, logits) or (logits,) depending on if labels are provided.
|
728 |
+
|
729 |
+
if not return_dict:
|
730 |
+
return outputs + transformer_outputs[1:]
|
731 |
+
|
732 |
+
return MaskedLMOutput(
|
733 |
+
loss=outputs[0] if labels is not None else None,
|
734 |
+
logits=outputs[0] if labels is None else outputs[1],
|
735 |
+
hidden_states=transformer_outputs.hidden_states,
|
736 |
+
attentions=transformer_outputs.attentions,
|
737 |
+
)
|
738 |
+
|
739 |
+
|
740 |
+
@add_start_docstrings(
|
741 |
+
"""
|
742 |
+
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
|
743 |
+
e.g. for GLUE tasks.
|
744 |
+
""",
|
745 |
+
FLAUBERT_START_DOCSTRING,
|
746 |
+
)
|
747 |
+
# Copied transformers.models.xlm.modeling_xlm.XLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
748 |
+
class FlaubertForSequenceClassification(FlaubertPreTrainedModel):
|
749 |
+
def __init__(self, config):
|
750 |
+
super().__init__(config)
|
751 |
+
self.num_labels = config.num_labels
|
752 |
+
self.config = config
|
753 |
+
|
754 |
+
self.transformer = FlaubertModel(config)
|
755 |
+
self.sequence_summary = SequenceSummary(config)
|
756 |
+
|
757 |
+
# Initialize weights and apply final processing
|
758 |
+
self.post_init()
|
759 |
+
|
760 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
761 |
+
@add_code_sample_docstrings(
|
762 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
763 |
+
output_type=SequenceClassifierOutput,
|
764 |
+
config_class=_CONFIG_FOR_DOC,
|
765 |
+
)
|
766 |
+
def forward(
|
767 |
+
self,
|
768 |
+
input_ids: Optional[torch.Tensor] = None,
|
769 |
+
attention_mask: Optional[torch.Tensor] = None,
|
770 |
+
langs: Optional[torch.Tensor] = None,
|
771 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
772 |
+
position_ids: Optional[torch.Tensor] = None,
|
773 |
+
lengths: Optional[torch.Tensor] = None,
|
774 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
775 |
+
head_mask: Optional[torch.Tensor] = None,
|
776 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
777 |
+
labels: Optional[torch.Tensor] = None,
|
778 |
+
output_attentions: Optional[bool] = None,
|
779 |
+
output_hidden_states: Optional[bool] = None,
|
780 |
+
return_dict: Optional[bool] = None,
|
781 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
782 |
+
r"""
|
783 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
784 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
785 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
786 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
787 |
+
"""
|
788 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
789 |
+
|
790 |
+
transformer_outputs = self.transformer(
|
791 |
+
input_ids,
|
792 |
+
attention_mask=attention_mask,
|
793 |
+
langs=langs,
|
794 |
+
token_type_ids=token_type_ids,
|
795 |
+
position_ids=position_ids,
|
796 |
+
lengths=lengths,
|
797 |
+
cache=cache,
|
798 |
+
head_mask=head_mask,
|
799 |
+
inputs_embeds=inputs_embeds,
|
800 |
+
output_attentions=output_attentions,
|
801 |
+
output_hidden_states=output_hidden_states,
|
802 |
+
return_dict=return_dict,
|
803 |
+
)
|
804 |
+
|
805 |
+
output = transformer_outputs[0]
|
806 |
+
logits = self.sequence_summary(output)
|
807 |
+
|
808 |
+
loss = None
|
809 |
+
if labels is not None:
|
810 |
+
if self.config.problem_type is None:
|
811 |
+
if self.num_labels == 1:
|
812 |
+
self.config.problem_type = "regression"
|
813 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
814 |
+
self.config.problem_type = "single_label_classification"
|
815 |
+
else:
|
816 |
+
self.config.problem_type = "multi_label_classification"
|
817 |
+
|
818 |
+
if self.config.problem_type == "regression":
|
819 |
+
loss_fct = MSELoss()
|
820 |
+
if self.num_labels == 1:
|
821 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
822 |
+
else:
|
823 |
+
loss = loss_fct(logits, labels)
|
824 |
+
elif self.config.problem_type == "single_label_classification":
|
825 |
+
loss_fct = CrossEntropyLoss()
|
826 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
827 |
+
elif self.config.problem_type == "multi_label_classification":
|
828 |
+
loss_fct = BCEWithLogitsLoss()
|
829 |
+
loss = loss_fct(logits, labels)
|
830 |
+
|
831 |
+
if not return_dict:
|
832 |
+
output = (logits,) + transformer_outputs[1:]
|
833 |
+
return ((loss,) + output) if loss is not None else output
|
834 |
+
|
835 |
+
return SequenceClassifierOutput(
|
836 |
+
loss=loss,
|
837 |
+
logits=logits,
|
838 |
+
hidden_states=transformer_outputs.hidden_states,
|
839 |
+
attentions=transformer_outputs.attentions,
|
840 |
+
)
|
841 |
+
|
842 |
+
|
843 |
+
@add_start_docstrings(
|
844 |
+
"""
|
845 |
+
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
846 |
+
Named-Entity-Recognition (NER) tasks.
|
847 |
+
""",
|
848 |
+
FLAUBERT_START_DOCSTRING,
|
849 |
+
)
|
850 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
851 |
+
class FlaubertForTokenClassification(FlaubertPreTrainedModel):
|
852 |
+
def __init__(self, config):
|
853 |
+
super().__init__(config)
|
854 |
+
self.num_labels = config.num_labels
|
855 |
+
|
856 |
+
self.transformer = FlaubertModel(config)
|
857 |
+
self.dropout = nn.Dropout(config.dropout)
|
858 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
859 |
+
|
860 |
+
# Initialize weights and apply final processing
|
861 |
+
self.post_init()
|
862 |
+
|
863 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
864 |
+
@add_code_sample_docstrings(
|
865 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
866 |
+
output_type=TokenClassifierOutput,
|
867 |
+
config_class=_CONFIG_FOR_DOC,
|
868 |
+
)
|
869 |
+
def forward(
|
870 |
+
self,
|
871 |
+
input_ids: Optional[torch.Tensor] = None,
|
872 |
+
attention_mask: Optional[torch.Tensor] = None,
|
873 |
+
langs: Optional[torch.Tensor] = None,
|
874 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
875 |
+
position_ids: Optional[torch.Tensor] = None,
|
876 |
+
lengths: Optional[torch.Tensor] = None,
|
877 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
878 |
+
head_mask: Optional[torch.Tensor] = None,
|
879 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
880 |
+
labels: Optional[torch.Tensor] = None,
|
881 |
+
output_attentions: Optional[bool] = None,
|
882 |
+
output_hidden_states: Optional[bool] = None,
|
883 |
+
return_dict: Optional[bool] = None,
|
884 |
+
) -> Union[Tuple, TokenClassifierOutput]:
|
885 |
+
r"""
|
886 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
887 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
888 |
+
"""
|
889 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
890 |
+
|
891 |
+
outputs = self.transformer(
|
892 |
+
input_ids,
|
893 |
+
attention_mask=attention_mask,
|
894 |
+
langs=langs,
|
895 |
+
token_type_ids=token_type_ids,
|
896 |
+
position_ids=position_ids,
|
897 |
+
lengths=lengths,
|
898 |
+
cache=cache,
|
899 |
+
head_mask=head_mask,
|
900 |
+
inputs_embeds=inputs_embeds,
|
901 |
+
output_attentions=output_attentions,
|
902 |
+
output_hidden_states=output_hidden_states,
|
903 |
+
return_dict=return_dict,
|
904 |
+
)
|
905 |
+
|
906 |
+
sequence_output = outputs[0]
|
907 |
+
|
908 |
+
sequence_output = self.dropout(sequence_output)
|
909 |
+
logits = self.classifier(sequence_output)
|
910 |
+
|
911 |
+
loss = None
|
912 |
+
if labels is not None:
|
913 |
+
loss_fct = CrossEntropyLoss()
|
914 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
915 |
+
|
916 |
+
if not return_dict:
|
917 |
+
output = (logits,) + outputs[1:]
|
918 |
+
return ((loss,) + output) if loss is not None else output
|
919 |
+
|
920 |
+
return TokenClassifierOutput(
|
921 |
+
loss=loss,
|
922 |
+
logits=logits,
|
923 |
+
hidden_states=outputs.hidden_states,
|
924 |
+
attentions=outputs.attentions,
|
925 |
+
)
|
926 |
+
|
927 |
+
|
928 |
+
@add_start_docstrings(
|
929 |
+
"""
|
930 |
+
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
931 |
+
layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
932 |
+
""",
|
933 |
+
FLAUBERT_START_DOCSTRING,
|
934 |
+
)
|
935 |
+
# Copied from transformers.models.xlm.modeling_xlm.XLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
936 |
+
class FlaubertForQuestionAnsweringSimple(FlaubertPreTrainedModel):
|
937 |
+
def __init__(self, config):
|
938 |
+
super().__init__(config)
|
939 |
+
|
940 |
+
self.transformer = FlaubertModel(config)
|
941 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
942 |
+
|
943 |
+
# Initialize weights and apply final processing
|
944 |
+
self.post_init()
|
945 |
+
|
946 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
947 |
+
@add_code_sample_docstrings(
|
948 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
949 |
+
output_type=QuestionAnsweringModelOutput,
|
950 |
+
config_class=_CONFIG_FOR_DOC,
|
951 |
+
)
|
952 |
+
def forward(
|
953 |
+
self,
|
954 |
+
input_ids: Optional[torch.Tensor] = None,
|
955 |
+
attention_mask: Optional[torch.Tensor] = None,
|
956 |
+
langs: Optional[torch.Tensor] = None,
|
957 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
958 |
+
position_ids: Optional[torch.Tensor] = None,
|
959 |
+
lengths: Optional[torch.Tensor] = None,
|
960 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
961 |
+
head_mask: Optional[torch.Tensor] = None,
|
962 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
963 |
+
start_positions: Optional[torch.Tensor] = None,
|
964 |
+
end_positions: Optional[torch.Tensor] = None,
|
965 |
+
output_attentions: Optional[bool] = None,
|
966 |
+
output_hidden_states: Optional[bool] = None,
|
967 |
+
return_dict: Optional[bool] = None,
|
968 |
+
) -> Union[Tuple, QuestionAnsweringModelOutput]:
|
969 |
+
r"""
|
970 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
971 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
972 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
973 |
+
are not taken into account for computing the loss.
|
974 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
975 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
976 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
977 |
+
are not taken into account for computing the loss.
|
978 |
+
"""
|
979 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
980 |
+
|
981 |
+
transformer_outputs = self.transformer(
|
982 |
+
input_ids,
|
983 |
+
attention_mask=attention_mask,
|
984 |
+
langs=langs,
|
985 |
+
token_type_ids=token_type_ids,
|
986 |
+
position_ids=position_ids,
|
987 |
+
lengths=lengths,
|
988 |
+
cache=cache,
|
989 |
+
head_mask=head_mask,
|
990 |
+
inputs_embeds=inputs_embeds,
|
991 |
+
output_attentions=output_attentions,
|
992 |
+
output_hidden_states=output_hidden_states,
|
993 |
+
return_dict=return_dict,
|
994 |
+
)
|
995 |
+
|
996 |
+
sequence_output = transformer_outputs[0]
|
997 |
+
|
998 |
+
logits = self.qa_outputs(sequence_output)
|
999 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1000 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1001 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1002 |
+
|
1003 |
+
total_loss = None
|
1004 |
+
if start_positions is not None and end_positions is not None:
|
1005 |
+
# If we are on multi-GPU, split add a dimension
|
1006 |
+
if len(start_positions.size()) > 1:
|
1007 |
+
start_positions = start_positions.squeeze(-1)
|
1008 |
+
if len(end_positions.size()) > 1:
|
1009 |
+
end_positions = end_positions.squeeze(-1)
|
1010 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1011 |
+
ignored_index = start_logits.size(1)
|
1012 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1013 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1014 |
+
|
1015 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1016 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1017 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1018 |
+
total_loss = (start_loss + end_loss) / 2
|
1019 |
+
|
1020 |
+
if not return_dict:
|
1021 |
+
output = (start_logits, end_logits) + transformer_outputs[1:]
|
1022 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1023 |
+
|
1024 |
+
return QuestionAnsweringModelOutput(
|
1025 |
+
loss=total_loss,
|
1026 |
+
start_logits=start_logits,
|
1027 |
+
end_logits=end_logits,
|
1028 |
+
hidden_states=transformer_outputs.hidden_states,
|
1029 |
+
attentions=transformer_outputs.attentions,
|
1030 |
+
)
|
1031 |
+
|
1032 |
+
|
1033 |
+
@add_start_docstrings(
|
1034 |
+
"""
|
1035 |
+
Flaubert Model with a beam-search span classification head on top for extractive question-answering tasks like
|
1036 |
+
SQuAD (a linear layers on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1037 |
+
""",
|
1038 |
+
FLAUBERT_START_DOCSTRING,
|
1039 |
+
)
|
1040 |
+
@dataclass
|
1041 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnsweringOutput with XLM->Flaubert
|
1042 |
+
class FlaubertForQuestionAnsweringOutput(ModelOutput):
|
1043 |
+
"""
|
1044 |
+
Base class for outputs of question answering models using a `SquadHead`.
|
1045 |
+
|
1046 |
+
Args:
|
1047 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned if both `start_positions` and `end_positions` are provided):
|
1048 |
+
Classification loss as the sum of start token, end token (and is_impossible if provided) classification
|
1049 |
+
losses.
|
1050 |
+
start_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1051 |
+
Log probabilities for the top config.start_n_top start token possibilities (beam-search).
|
1052 |
+
start_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1053 |
+
Indices for the top config.start_n_top start token possibilities (beam-search).
|
1054 |
+
end_top_log_probs (`torch.FloatTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1055 |
+
Log probabilities for the top `config.start_n_top * config.end_n_top` end token possibilities
|
1056 |
+
(beam-search).
|
1057 |
+
end_top_index (`torch.LongTensor` of shape `(batch_size, config.start_n_top * config.end_n_top)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1058 |
+
Indices for the top `config.start_n_top * config.end_n_top` end token possibilities (beam-search).
|
1059 |
+
cls_logits (`torch.FloatTensor` of shape `(batch_size,)`, *optional*, returned if `start_positions` or `end_positions` is not provided):
|
1060 |
+
Log probabilities for the `is_impossible` label of the answers.
|
1061 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
1062 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer) of
|
1063 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
1064 |
+
|
1065 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
1066 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
1067 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
1068 |
+
sequence_length)`.
|
1069 |
+
|
1070 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
1071 |
+
heads.
|
1072 |
+
"""
|
1073 |
+
|
1074 |
+
loss: Optional[torch.FloatTensor] = None
|
1075 |
+
start_top_log_probs: Optional[torch.FloatTensor] = None
|
1076 |
+
start_top_index: Optional[torch.LongTensor] = None
|
1077 |
+
end_top_log_probs: Optional[torch.FloatTensor] = None
|
1078 |
+
end_top_index: Optional[torch.LongTensor] = None
|
1079 |
+
cls_logits: Optional[torch.FloatTensor] = None
|
1080 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
1081 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
1082 |
+
|
1083 |
+
|
1084 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForQuestionAnswering with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1085 |
+
class FlaubertForQuestionAnswering(FlaubertPreTrainedModel):
|
1086 |
+
def __init__(self, config):
|
1087 |
+
super().__init__(config)
|
1088 |
+
|
1089 |
+
self.transformer = FlaubertModel(config)
|
1090 |
+
self.qa_outputs = SQuADHead(config)
|
1091 |
+
|
1092 |
+
# Initialize weights and apply final processing
|
1093 |
+
self.post_init()
|
1094 |
+
|
1095 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1096 |
+
@replace_return_docstrings(output_type=FlaubertForQuestionAnsweringOutput, config_class=_CONFIG_FOR_DOC)
|
1097 |
+
def forward(
|
1098 |
+
self,
|
1099 |
+
input_ids: Optional[torch.Tensor] = None,
|
1100 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1101 |
+
langs: Optional[torch.Tensor] = None,
|
1102 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1103 |
+
position_ids: Optional[torch.Tensor] = None,
|
1104 |
+
lengths: Optional[torch.Tensor] = None,
|
1105 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
1106 |
+
head_mask: Optional[torch.Tensor] = None,
|
1107 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1108 |
+
start_positions: Optional[torch.Tensor] = None,
|
1109 |
+
end_positions: Optional[torch.Tensor] = None,
|
1110 |
+
is_impossible: Optional[torch.Tensor] = None,
|
1111 |
+
cls_index: Optional[torch.Tensor] = None,
|
1112 |
+
p_mask: Optional[torch.Tensor] = None,
|
1113 |
+
output_attentions: Optional[bool] = None,
|
1114 |
+
output_hidden_states: Optional[bool] = None,
|
1115 |
+
return_dict: Optional[bool] = None,
|
1116 |
+
) -> Union[Tuple, FlaubertForQuestionAnsweringOutput]:
|
1117 |
+
r"""
|
1118 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1119 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1120 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1121 |
+
are not taken into account for computing the loss.
|
1122 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1123 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1124 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1125 |
+
are not taken into account for computing the loss.
|
1126 |
+
is_impossible (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1127 |
+
Labels whether a question has an answer or no answer (SQuAD 2.0)
|
1128 |
+
cls_index (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1129 |
+
Labels for position (index) of the classification token to use as input for computing plausibility of the
|
1130 |
+
answer.
|
1131 |
+
p_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1132 |
+
Optional mask of tokens which can't be in answers (e.g. [CLS], [PAD], ...). 1.0 means token should be
|
1133 |
+
masked. 0.0 mean token is not masked.
|
1134 |
+
|
1135 |
+
Returns:
|
1136 |
+
|
1137 |
+
Example:
|
1138 |
+
|
1139 |
+
```python
|
1140 |
+
>>> from transformers import XLMTokenizer, XLMForQuestionAnswering
|
1141 |
+
>>> import torch
|
1142 |
+
|
1143 |
+
>>> tokenizer = XLMTokenizer.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
1144 |
+
>>> model = XLMForQuestionAnswering.from_pretrained("FacebookAI/xlm-mlm-en-2048")
|
1145 |
+
|
1146 |
+
>>> input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(
|
1147 |
+
... 0
|
1148 |
+
... ) # Batch size 1
|
1149 |
+
>>> start_positions = torch.tensor([1])
|
1150 |
+
>>> end_positions = torch.tensor([3])
|
1151 |
+
|
1152 |
+
>>> outputs = model(input_ids, start_positions=start_positions, end_positions=end_positions)
|
1153 |
+
>>> loss = outputs.loss
|
1154 |
+
```"""
|
1155 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1156 |
+
|
1157 |
+
transformer_outputs = self.transformer(
|
1158 |
+
input_ids,
|
1159 |
+
attention_mask=attention_mask,
|
1160 |
+
langs=langs,
|
1161 |
+
token_type_ids=token_type_ids,
|
1162 |
+
position_ids=position_ids,
|
1163 |
+
lengths=lengths,
|
1164 |
+
cache=cache,
|
1165 |
+
head_mask=head_mask,
|
1166 |
+
inputs_embeds=inputs_embeds,
|
1167 |
+
output_attentions=output_attentions,
|
1168 |
+
output_hidden_states=output_hidden_states,
|
1169 |
+
return_dict=return_dict,
|
1170 |
+
)
|
1171 |
+
|
1172 |
+
output = transformer_outputs[0]
|
1173 |
+
|
1174 |
+
outputs = self.qa_outputs(
|
1175 |
+
output,
|
1176 |
+
start_positions=start_positions,
|
1177 |
+
end_positions=end_positions,
|
1178 |
+
cls_index=cls_index,
|
1179 |
+
is_impossible=is_impossible,
|
1180 |
+
p_mask=p_mask,
|
1181 |
+
return_dict=return_dict,
|
1182 |
+
)
|
1183 |
+
|
1184 |
+
if not return_dict:
|
1185 |
+
return outputs + transformer_outputs[1:]
|
1186 |
+
|
1187 |
+
return FlaubertForQuestionAnsweringOutput(
|
1188 |
+
loss=outputs.loss,
|
1189 |
+
start_top_log_probs=outputs.start_top_log_probs,
|
1190 |
+
start_top_index=outputs.start_top_index,
|
1191 |
+
end_top_log_probs=outputs.end_top_log_probs,
|
1192 |
+
end_top_index=outputs.end_top_index,
|
1193 |
+
cls_logits=outputs.cls_logits,
|
1194 |
+
hidden_states=transformer_outputs.hidden_states,
|
1195 |
+
attentions=transformer_outputs.attentions,
|
1196 |
+
)
|
1197 |
+
|
1198 |
+
|
1199 |
+
@add_start_docstrings(
|
1200 |
+
"""
|
1201 |
+
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1202 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1203 |
+
""",
|
1204 |
+
FLAUBERT_START_DOCSTRING,
|
1205 |
+
)
|
1206 |
+
# Copied from transformer.models.xlm.modeling_xlm.XLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1207 |
+
class FlaubertForMultipleChoice(FlaubertPreTrainedModel):
|
1208 |
+
def __init__(self, config, *inputs, **kwargs):
|
1209 |
+
super().__init__(config, *inputs, **kwargs)
|
1210 |
+
|
1211 |
+
self.transformer = FlaubertModel(config)
|
1212 |
+
self.sequence_summary = SequenceSummary(config)
|
1213 |
+
self.logits_proj = nn.Linear(config.num_labels, 1)
|
1214 |
+
|
1215 |
+
# Initialize weights and apply final processing
|
1216 |
+
self.post_init()
|
1217 |
+
|
1218 |
+
@add_start_docstrings_to_model_forward(
|
1219 |
+
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1220 |
+
)
|
1221 |
+
@add_code_sample_docstrings(
|
1222 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1223 |
+
output_type=MultipleChoiceModelOutput,
|
1224 |
+
config_class=_CONFIG_FOR_DOC,
|
1225 |
+
)
|
1226 |
+
def forward(
|
1227 |
+
self,
|
1228 |
+
input_ids: Optional[torch.Tensor] = None,
|
1229 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1230 |
+
langs: Optional[torch.Tensor] = None,
|
1231 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
1232 |
+
position_ids: Optional[torch.Tensor] = None,
|
1233 |
+
lengths: Optional[torch.Tensor] = None,
|
1234 |
+
cache: Optional[Dict[str, torch.Tensor]] = None,
|
1235 |
+
head_mask: Optional[torch.Tensor] = None,
|
1236 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1237 |
+
labels: Optional[torch.Tensor] = None,
|
1238 |
+
output_attentions: Optional[bool] = None,
|
1239 |
+
output_hidden_states: Optional[bool] = None,
|
1240 |
+
return_dict: Optional[bool] = None,
|
1241 |
+
) -> Union[Tuple, MultipleChoiceModelOutput]:
|
1242 |
+
r"""
|
1243 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1244 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
1245 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
1246 |
+
`input_ids` above)
|
1247 |
+
"""
|
1248 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1249 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
1250 |
+
|
1251 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
1252 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
1253 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
1254 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
1255 |
+
langs = langs.view(-1, langs.size(-1)) if langs is not None else None
|
1256 |
+
inputs_embeds = (
|
1257 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
1258 |
+
if inputs_embeds is not None
|
1259 |
+
else None
|
1260 |
+
)
|
1261 |
+
|
1262 |
+
if lengths is not None:
|
1263 |
+
logger.warning(
|
1264 |
+
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
|
1265 |
+
"attention mask instead."
|
1266 |
+
)
|
1267 |
+
lengths = None
|
1268 |
+
|
1269 |
+
transformer_outputs = self.transformer(
|
1270 |
+
input_ids=input_ids,
|
1271 |
+
attention_mask=attention_mask,
|
1272 |
+
langs=langs,
|
1273 |
+
token_type_ids=token_type_ids,
|
1274 |
+
position_ids=position_ids,
|
1275 |
+
lengths=lengths,
|
1276 |
+
cache=cache,
|
1277 |
+
head_mask=head_mask,
|
1278 |
+
inputs_embeds=inputs_embeds,
|
1279 |
+
output_attentions=output_attentions,
|
1280 |
+
output_hidden_states=output_hidden_states,
|
1281 |
+
return_dict=return_dict,
|
1282 |
+
)
|
1283 |
+
output = transformer_outputs[0]
|
1284 |
+
logits = self.sequence_summary(output)
|
1285 |
+
logits = self.logits_proj(logits)
|
1286 |
+
reshaped_logits = logits.view(-1, num_choices)
|
1287 |
+
|
1288 |
+
loss = None
|
1289 |
+
if labels is not None:
|
1290 |
+
loss_fct = CrossEntropyLoss()
|
1291 |
+
loss = loss_fct(reshaped_logits, labels)
|
1292 |
+
|
1293 |
+
if not return_dict:
|
1294 |
+
output = (reshaped_logits,) + transformer_outputs[1:]
|
1295 |
+
return ((loss,) + output) if loss is not None else output
|
1296 |
+
|
1297 |
+
return MultipleChoiceModelOutput(
|
1298 |
+
loss=loss,
|
1299 |
+
logits=reshaped_logits,
|
1300 |
+
hidden_states=transformer_outputs.hidden_states,
|
1301 |
+
attentions=transformer_outputs.attentions,
|
1302 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/modeling_tf_flaubert.py
ADDED
@@ -0,0 +1,1337 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present, Facebook, Inc and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""
|
16 |
+
TF 2.0 Flaubert model.
|
17 |
+
"""
|
18 |
+
|
19 |
+
|
20 |
+
from __future__ import annotations
|
21 |
+
|
22 |
+
import itertools
|
23 |
+
import random
|
24 |
+
import warnings
|
25 |
+
from dataclasses import dataclass
|
26 |
+
from typing import Dict, Optional, Tuple, Union
|
27 |
+
|
28 |
+
import numpy as np
|
29 |
+
import tensorflow as tf
|
30 |
+
|
31 |
+
from ...activations_tf import get_tf_activation
|
32 |
+
from ...modeling_tf_outputs import (
|
33 |
+
TFBaseModelOutput,
|
34 |
+
TFMultipleChoiceModelOutput,
|
35 |
+
TFQuestionAnsweringModelOutput,
|
36 |
+
TFSequenceClassifierOutput,
|
37 |
+
TFTokenClassifierOutput,
|
38 |
+
)
|
39 |
+
from ...modeling_tf_utils import (
|
40 |
+
TFModelInputType,
|
41 |
+
TFMultipleChoiceLoss,
|
42 |
+
TFPreTrainedModel,
|
43 |
+
TFQuestionAnsweringLoss,
|
44 |
+
TFSequenceClassificationLoss,
|
45 |
+
TFSequenceSummary,
|
46 |
+
TFSharedEmbeddings,
|
47 |
+
TFTokenClassificationLoss,
|
48 |
+
get_initializer,
|
49 |
+
keras,
|
50 |
+
keras_serializable,
|
51 |
+
unpack_inputs,
|
52 |
+
)
|
53 |
+
from ...tf_utils import check_embeddings_within_bounds, shape_list, stable_softmax
|
54 |
+
from ...utils import (
|
55 |
+
MULTIPLE_CHOICE_DUMMY_INPUTS,
|
56 |
+
ModelOutput,
|
57 |
+
add_code_sample_docstrings,
|
58 |
+
add_start_docstrings,
|
59 |
+
add_start_docstrings_to_model_forward,
|
60 |
+
logging,
|
61 |
+
)
|
62 |
+
from .configuration_flaubert import FlaubertConfig
|
63 |
+
|
64 |
+
|
65 |
+
logger = logging.get_logger(__name__)
|
66 |
+
|
67 |
+
_CHECKPOINT_FOR_DOC = "flaubert/flaubert_base_cased"
|
68 |
+
_CONFIG_FOR_DOC = "FlaubertConfig"
|
69 |
+
|
70 |
+
|
71 |
+
from ..deprecated._archive_maps import TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
72 |
+
|
73 |
+
|
74 |
+
FLAUBERT_START_DOCSTRING = r"""
|
75 |
+
|
76 |
+
This model inherits from [`TFPreTrainedModel`]. Check the superclass documentation for the generic methods the
|
77 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
78 |
+
etc.)
|
79 |
+
|
80 |
+
This model is also a [keras.Model](https://www.tensorflow.org/api_docs/python/tf/keras/Model) subclass. Use it
|
81 |
+
as a regular TF 2.0 Keras Model and refer to the TF 2.0 documentation for all matter related to general usage and
|
82 |
+
behavior.
|
83 |
+
|
84 |
+
<Tip>
|
85 |
+
|
86 |
+
TensorFlow models and layers in `transformers` accept two formats as input:
|
87 |
+
|
88 |
+
- having all inputs as keyword arguments (like PyTorch models), or
|
89 |
+
- having all inputs as a list, tuple or dict in the first positional argument.
|
90 |
+
|
91 |
+
The reason the second format is supported is that Keras methods prefer this format when passing inputs to models
|
92 |
+
and layers. Because of this support, when using methods like `model.fit()` things should "just work" for you - just
|
93 |
+
pass your inputs and labels in any format that `model.fit()` supports! If, however, you want to use the second
|
94 |
+
format outside of Keras methods like `fit()` and `predict()`, such as when creating your own layers or models with
|
95 |
+
the Keras `Functional` API, there are three possibilities you can use to gather all the input Tensors in the first
|
96 |
+
positional argument:
|
97 |
+
|
98 |
+
- a single Tensor with `input_ids` only and nothing else: `model(input_ids)`
|
99 |
+
- a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
|
100 |
+
`model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
|
101 |
+
- a dictionary with one or several input Tensors associated to the input names given in the docstring:
|
102 |
+
`model({"input_ids": input_ids, "token_type_ids": token_type_ids})`
|
103 |
+
|
104 |
+
Note that when creating models and layers with
|
105 |
+
[subclassing](https://keras.io/guides/making_new_layers_and_models_via_subclassing/) then you don't need to worry
|
106 |
+
about any of this, as you can just pass inputs like you would to any other Python function!
|
107 |
+
|
108 |
+
</Tip>
|
109 |
+
|
110 |
+
Parameters:
|
111 |
+
config ([`FlaubertConfig`]): Model configuration class with all the parameters of the model.
|
112 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
113 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
114 |
+
"""
|
115 |
+
|
116 |
+
FLAUBERT_INPUTS_DOCSTRING = r"""
|
117 |
+
Args:
|
118 |
+
input_ids (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`):
|
119 |
+
Indices of input sequence tokens in the vocabulary.
|
120 |
+
|
121 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and
|
122 |
+
[`PreTrainedTokenizer.encode`] for details.
|
123 |
+
|
124 |
+
[What are input IDs?](../glossary#input-ids)
|
125 |
+
attention_mask (`Numpy array` or `tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
126 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
127 |
+
|
128 |
+
- `1` for tokens that are **not masked**,
|
129 |
+
- `0` for tokens that are **masked**.
|
130 |
+
|
131 |
+
[What are attention masks?](../glossary#attention-mask)
|
132 |
+
langs (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
133 |
+
A parallel sequence of tokens to be used to indicate the language of each token in the input. Indices are
|
134 |
+
languages ids which can be obtained from the language names by using two conversion mappings provided in
|
135 |
+
the configuration of the model (only provided for multilingual models). More precisely, the *language name
|
136 |
+
to language id* mapping is in `model.config.lang2id` (which is a dictionary string to int) and the
|
137 |
+
*language id to language name* mapping is in `model.config.id2lang` (dictionary int to string).
|
138 |
+
|
139 |
+
See usage examples detailed in the [multilingual documentation](../multilingual).
|
140 |
+
token_type_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
141 |
+
Segment token indices to indicate first and second portions of the inputs. Indices are selected in `[0,
|
142 |
+
1]`:
|
143 |
+
|
144 |
+
- `0` corresponds to a *sentence A* token,
|
145 |
+
- `1` corresponds to a *sentence B* token.
|
146 |
+
|
147 |
+
[What are token type IDs?](../glossary#token-type-ids)
|
148 |
+
position_ids (`tf.Tensor` or `Numpy array` of shape `(batch_size, sequence_length)`, *optional*):
|
149 |
+
Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
|
150 |
+
config.max_position_embeddings - 1]`.
|
151 |
+
|
152 |
+
[What are position IDs?](../glossary#position-ids)
|
153 |
+
lengths (`tf.Tensor` or `Numpy array` of shape `(batch_size,)`, *optional*):
|
154 |
+
Length of each sentence that can be used to avoid performing attention on padding token indices. You can
|
155 |
+
also use *attention_mask* for the same result (see above), kept here for compatibility Indices selected in
|
156 |
+
`[0, ..., input_ids.size(-1)]`:
|
157 |
+
cache (`Dict[str, tf.Tensor]`, *optional*):
|
158 |
+
Dictionary string to `tf.FloatTensor` that contains precomputed hidden states (key and values in the
|
159 |
+
attention blocks) as computed by the model (see `cache` output below). Can be used to speed up sequential
|
160 |
+
decoding.
|
161 |
+
|
162 |
+
The dictionary object will be modified in-place during the forward pass to add newly computed
|
163 |
+
hidden-states.
|
164 |
+
head_mask (`Numpy array` or `tf.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*):
|
165 |
+
Mask to nullify selected heads of the self-attention modules. Mask values selected in `[0, 1]`:
|
166 |
+
|
167 |
+
- `1` indicates the head is **not masked**,
|
168 |
+
- `0` indicates the head is **masked**.
|
169 |
+
|
170 |
+
inputs_embeds (`tf.Tensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
171 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
|
172 |
+
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
|
173 |
+
model's internal embedding lookup matrix.
|
174 |
+
output_attentions (`bool`, *optional*):
|
175 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
176 |
+
tensors for more detail. This argument can be used only in eager mode, in graph mode the value in the
|
177 |
+
config will be used instead.
|
178 |
+
output_hidden_states (`bool`, *optional*):
|
179 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
180 |
+
more detail. This argument can be used only in eager mode, in graph mode the value in the config will be
|
181 |
+
used instead.
|
182 |
+
return_dict (`bool`, *optional*):
|
183 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. This argument can be used in
|
184 |
+
eager mode, in graph mode the value will always be set to True.
|
185 |
+
training (`bool`, *optional*, defaults to `False`):
|
186 |
+
Whether or not to use the model in training mode (some modules like dropout modules have different
|
187 |
+
behaviors between training and evaluation).
|
188 |
+
"""
|
189 |
+
|
190 |
+
|
191 |
+
def get_masks(slen, lengths, causal, padding_mask=None):
|
192 |
+
"""
|
193 |
+
Generate hidden states mask, and optionally an attention mask.
|
194 |
+
"""
|
195 |
+
bs = shape_list(lengths)[0]
|
196 |
+
if padding_mask is not None:
|
197 |
+
mask = padding_mask
|
198 |
+
else:
|
199 |
+
# assert lengths.max().item() <= slen
|
200 |
+
alen = tf.range(slen, dtype=lengths.dtype)
|
201 |
+
mask = alen < tf.expand_dims(lengths, axis=1)
|
202 |
+
|
203 |
+
# attention mask is the same as mask, or triangular inferior attention (causal)
|
204 |
+
if causal:
|
205 |
+
attn_mask = tf.less_equal(
|
206 |
+
tf.tile(tf.reshape(alen, (1, 1, slen)), (bs, slen, 1)), tf.reshape(alen, (1, slen, 1))
|
207 |
+
)
|
208 |
+
else:
|
209 |
+
attn_mask = mask
|
210 |
+
|
211 |
+
# sanity check
|
212 |
+
# assert shape_list(mask) == [bs, slen]
|
213 |
+
tf.debugging.assert_equal(shape_list(mask), [bs, slen])
|
214 |
+
if causal:
|
215 |
+
tf.debugging.assert_equal(shape_list(attn_mask), [bs, slen, slen])
|
216 |
+
|
217 |
+
return mask, attn_mask
|
218 |
+
|
219 |
+
|
220 |
+
class TFFlaubertPreTrainedModel(TFPreTrainedModel):
|
221 |
+
"""
|
222 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
223 |
+
models.
|
224 |
+
"""
|
225 |
+
|
226 |
+
config_class = FlaubertConfig
|
227 |
+
base_model_prefix = "transformer"
|
228 |
+
|
229 |
+
@property
|
230 |
+
def dummy_inputs(self):
|
231 |
+
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
|
232 |
+
inputs_list = tf.constant([[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]], dtype=tf.int32)
|
233 |
+
attns_list = tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32)
|
234 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
235 |
+
return {
|
236 |
+
"input_ids": inputs_list,
|
237 |
+
"attention_mask": attns_list,
|
238 |
+
"langs": tf.constant([[1, 1, 0, 0, 1], [1, 1, 1, 0, 0], [1, 0, 0, 1, 1]], dtype=tf.int32),
|
239 |
+
}
|
240 |
+
else:
|
241 |
+
return {"input_ids": inputs_list, "attention_mask": attns_list}
|
242 |
+
|
243 |
+
|
244 |
+
@add_start_docstrings(
|
245 |
+
"The bare Flaubert Model transformer outputting raw hidden-states without any specific head on top.",
|
246 |
+
FLAUBERT_START_DOCSTRING,
|
247 |
+
)
|
248 |
+
class TFFlaubertModel(TFFlaubertPreTrainedModel):
|
249 |
+
def __init__(self, config, *inputs, **kwargs):
|
250 |
+
super().__init__(config, *inputs, **kwargs)
|
251 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
252 |
+
|
253 |
+
@unpack_inputs
|
254 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
255 |
+
@add_code_sample_docstrings(
|
256 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
257 |
+
output_type=TFBaseModelOutput,
|
258 |
+
config_class=_CONFIG_FOR_DOC,
|
259 |
+
)
|
260 |
+
def call(
|
261 |
+
self,
|
262 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
263 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
264 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
265 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
266 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
267 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
268 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
269 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
270 |
+
inputs_embeds: tf.Tensor | None = None,
|
271 |
+
output_attentions: Optional[bool] = None,
|
272 |
+
output_hidden_states: Optional[bool] = None,
|
273 |
+
return_dict: Optional[bool] = None,
|
274 |
+
training: Optional[bool] = False,
|
275 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
276 |
+
outputs = self.transformer(
|
277 |
+
input_ids=input_ids,
|
278 |
+
attention_mask=attention_mask,
|
279 |
+
langs=langs,
|
280 |
+
token_type_ids=token_type_ids,
|
281 |
+
position_ids=position_ids,
|
282 |
+
lengths=lengths,
|
283 |
+
cache=cache,
|
284 |
+
head_mask=head_mask,
|
285 |
+
inputs_embeds=inputs_embeds,
|
286 |
+
output_attentions=output_attentions,
|
287 |
+
output_hidden_states=output_hidden_states,
|
288 |
+
return_dict=return_dict,
|
289 |
+
training=training,
|
290 |
+
)
|
291 |
+
|
292 |
+
return outputs
|
293 |
+
|
294 |
+
def build(self, input_shape=None):
|
295 |
+
if self.built:
|
296 |
+
return
|
297 |
+
self.built = True
|
298 |
+
if getattr(self, "transformer", None) is not None:
|
299 |
+
with tf.name_scope(self.transformer.name):
|
300 |
+
self.transformer.build(None)
|
301 |
+
|
302 |
+
|
303 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMMultiHeadAttention with XLM->Flaubert
|
304 |
+
class TFFlaubertMultiHeadAttention(keras.layers.Layer):
|
305 |
+
NEW_ID = itertools.count()
|
306 |
+
|
307 |
+
def __init__(self, n_heads, dim, config, **kwargs):
|
308 |
+
super().__init__(**kwargs)
|
309 |
+
self.layer_id = next(TFFlaubertMultiHeadAttention.NEW_ID)
|
310 |
+
self.dim = dim
|
311 |
+
self.n_heads = n_heads
|
312 |
+
self.output_attentions = config.output_attentions
|
313 |
+
assert self.dim % self.n_heads == 0
|
314 |
+
|
315 |
+
self.q_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="q_lin")
|
316 |
+
self.k_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="k_lin")
|
317 |
+
self.v_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="v_lin")
|
318 |
+
self.out_lin = keras.layers.Dense(dim, kernel_initializer=get_initializer(config.init_std), name="out_lin")
|
319 |
+
self.dropout = keras.layers.Dropout(config.attention_dropout)
|
320 |
+
self.pruned_heads = set()
|
321 |
+
self.dim = dim
|
322 |
+
|
323 |
+
def prune_heads(self, heads):
|
324 |
+
raise NotImplementedError
|
325 |
+
|
326 |
+
def call(self, input, mask, kv, cache, head_mask, output_attentions, training=False):
|
327 |
+
"""
|
328 |
+
Self-attention (if kv is None) or attention over source sentence (provided by kv).
|
329 |
+
"""
|
330 |
+
# Input is (bs, qlen, dim)
|
331 |
+
# Mask is (bs, klen) (non-causal) or (bs, klen, klen)
|
332 |
+
bs, qlen, dim = shape_list(input)
|
333 |
+
|
334 |
+
if kv is None:
|
335 |
+
klen = qlen if cache is None else cache["slen"] + qlen
|
336 |
+
else:
|
337 |
+
klen = shape_list(kv)[1]
|
338 |
+
|
339 |
+
# assert dim == self.dim, f'Dimensions do not match: {dim} input vs {self.dim} configured'
|
340 |
+
dim_per_head = self.dim // self.n_heads
|
341 |
+
mask_reshape = (bs, 1, qlen, klen) if len(shape_list(mask)) == 3 else (bs, 1, 1, klen)
|
342 |
+
|
343 |
+
def shape(x):
|
344 |
+
"""projection"""
|
345 |
+
return tf.transpose(tf.reshape(x, (bs, -1, self.n_heads, dim_per_head)), perm=(0, 2, 1, 3))
|
346 |
+
|
347 |
+
def unshape(x):
|
348 |
+
"""compute context"""
|
349 |
+
return tf.reshape(tf.transpose(x, perm=(0, 2, 1, 3)), (bs, -1, self.n_heads * dim_per_head))
|
350 |
+
|
351 |
+
q = shape(self.q_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
352 |
+
|
353 |
+
if kv is None:
|
354 |
+
k = shape(self.k_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
355 |
+
v = shape(self.v_lin(input)) # (bs, n_heads, qlen, dim_per_head)
|
356 |
+
elif cache is None or self.layer_id not in cache:
|
357 |
+
k = v = kv
|
358 |
+
k = shape(self.k_lin(k)) # (bs, n_heads, qlen, dim_per_head)
|
359 |
+
v = shape(self.v_lin(v)) # (bs, n_heads, qlen, dim_per_head)
|
360 |
+
|
361 |
+
if cache is not None:
|
362 |
+
if self.layer_id in cache:
|
363 |
+
if kv is None:
|
364 |
+
k_, v_ = cache[self.layer_id]
|
365 |
+
k = tf.concat([k_, k], axis=2) # (bs, n_heads, klen, dim_per_head)
|
366 |
+
v = tf.concat([v_, v], axis=2) # (bs, n_heads, klen, dim_per_head)
|
367 |
+
else:
|
368 |
+
k, v = cache[self.layer_id]
|
369 |
+
|
370 |
+
cache[self.layer_id] = (k, v)
|
371 |
+
|
372 |
+
f_dim_per_head = tf.cast(dim_per_head, dtype=q.dtype)
|
373 |
+
q = tf.multiply(q, tf.math.rsqrt(f_dim_per_head)) # (bs, n_heads, qlen, dim_per_head)
|
374 |
+
k = tf.cast(k, dtype=q.dtype)
|
375 |
+
scores = tf.matmul(q, k, transpose_b=True) # (bs, n_heads, qlen, klen)
|
376 |
+
mask = tf.reshape(mask, mask_reshape) # (bs, n_heads, qlen, klen)
|
377 |
+
# scores.masked_fill_(mask, -float('inf')) # (bs, n_heads, qlen, klen)
|
378 |
+
mask = tf.cast(mask, dtype=scores.dtype)
|
379 |
+
scores = scores - 1e30 * (1.0 - mask)
|
380 |
+
weights = stable_softmax(scores, axis=-1) # (bs, n_heads, qlen, klen)
|
381 |
+
weights = self.dropout(weights, training=training) # (bs, n_heads, qlen, klen)
|
382 |
+
|
383 |
+
# Mask heads if we want to
|
384 |
+
if head_mask is not None:
|
385 |
+
weights = weights * head_mask
|
386 |
+
|
387 |
+
context = tf.matmul(weights, v) # (bs, n_heads, qlen, dim_per_head)
|
388 |
+
context = unshape(context) # (bs, qlen, dim)
|
389 |
+
outputs = (self.out_lin(context),)
|
390 |
+
|
391 |
+
if output_attentions:
|
392 |
+
outputs = outputs + (weights,)
|
393 |
+
|
394 |
+
return outputs
|
395 |
+
|
396 |
+
def build(self, input_shape=None):
|
397 |
+
if self.built:
|
398 |
+
return
|
399 |
+
self.built = True
|
400 |
+
if getattr(self, "q_lin", None) is not None:
|
401 |
+
with tf.name_scope(self.q_lin.name):
|
402 |
+
self.q_lin.build([None, None, self.dim])
|
403 |
+
if getattr(self, "k_lin", None) is not None:
|
404 |
+
with tf.name_scope(self.k_lin.name):
|
405 |
+
self.k_lin.build([None, None, self.dim])
|
406 |
+
if getattr(self, "v_lin", None) is not None:
|
407 |
+
with tf.name_scope(self.v_lin.name):
|
408 |
+
self.v_lin.build([None, None, self.dim])
|
409 |
+
if getattr(self, "out_lin", None) is not None:
|
410 |
+
with tf.name_scope(self.out_lin.name):
|
411 |
+
self.out_lin.build([None, None, self.dim])
|
412 |
+
|
413 |
+
|
414 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMTransformerFFN
|
415 |
+
class TFFlaubertTransformerFFN(keras.layers.Layer):
|
416 |
+
def __init__(self, in_dim, dim_hidden, out_dim, config, **kwargs):
|
417 |
+
super().__init__(**kwargs)
|
418 |
+
|
419 |
+
self.lin1 = keras.layers.Dense(dim_hidden, kernel_initializer=get_initializer(config.init_std), name="lin1")
|
420 |
+
self.lin2 = keras.layers.Dense(out_dim, kernel_initializer=get_initializer(config.init_std), name="lin2")
|
421 |
+
self.act = get_tf_activation("gelu") if config.gelu_activation else get_tf_activation("relu")
|
422 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
423 |
+
self.in_dim = in_dim
|
424 |
+
self.dim_hidden = dim_hidden
|
425 |
+
|
426 |
+
def call(self, input, training=False):
|
427 |
+
x = self.lin1(input)
|
428 |
+
x = self.act(x)
|
429 |
+
x = self.lin2(x)
|
430 |
+
x = self.dropout(x, training=training)
|
431 |
+
|
432 |
+
return x
|
433 |
+
|
434 |
+
def build(self, input_shape=None):
|
435 |
+
if self.built:
|
436 |
+
return
|
437 |
+
self.built = True
|
438 |
+
if getattr(self, "lin1", None) is not None:
|
439 |
+
with tf.name_scope(self.lin1.name):
|
440 |
+
self.lin1.build([None, None, self.in_dim])
|
441 |
+
if getattr(self, "lin2", None) is not None:
|
442 |
+
with tf.name_scope(self.lin2.name):
|
443 |
+
self.lin2.build([None, None, self.dim_hidden])
|
444 |
+
|
445 |
+
|
446 |
+
@keras_serializable
|
447 |
+
class TFFlaubertMainLayer(keras.layers.Layer):
|
448 |
+
config_class = FlaubertConfig
|
449 |
+
|
450 |
+
def __init__(self, config, **kwargs):
|
451 |
+
super().__init__(**kwargs)
|
452 |
+
|
453 |
+
self.config = config
|
454 |
+
self.n_heads = config.n_heads
|
455 |
+
self.n_langs = config.n_langs
|
456 |
+
self.dim = config.emb_dim
|
457 |
+
self.hidden_dim = self.dim * 4
|
458 |
+
self.n_words = config.n_words
|
459 |
+
self.pad_index = config.pad_index
|
460 |
+
self.causal = config.causal
|
461 |
+
self.n_layers = config.n_layers
|
462 |
+
self.use_lang_emb = config.use_lang_emb
|
463 |
+
self.layerdrop = getattr(config, "layerdrop", 0.0)
|
464 |
+
self.pre_norm = getattr(config, "pre_norm", False)
|
465 |
+
self.output_attentions = config.output_attentions
|
466 |
+
self.output_hidden_states = config.output_hidden_states
|
467 |
+
self.return_dict = config.use_return_dict
|
468 |
+
self.max_position_embeddings = config.max_position_embeddings
|
469 |
+
self.embed_init_std = config.embed_init_std
|
470 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
471 |
+
self.embeddings = TFSharedEmbeddings(
|
472 |
+
self.n_words, self.dim, initializer_range=config.embed_init_std, name="embeddings"
|
473 |
+
)
|
474 |
+
self.layer_norm_emb = keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name="layer_norm_emb")
|
475 |
+
self.attentions = []
|
476 |
+
self.layer_norm1 = []
|
477 |
+
self.ffns = []
|
478 |
+
self.layer_norm2 = []
|
479 |
+
|
480 |
+
for i in range(self.n_layers):
|
481 |
+
self.attentions.append(
|
482 |
+
TFFlaubertMultiHeadAttention(self.n_heads, self.dim, config=config, name=f"attentions_._{i}")
|
483 |
+
)
|
484 |
+
self.layer_norm1.append(
|
485 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm1_._{i}")
|
486 |
+
)
|
487 |
+
# if self.is_decoder:
|
488 |
+
# self.layer_norm15.append(nn.LayerNorm(self.dim, eps=config.layer_norm_eps))
|
489 |
+
# self.encoder_attn.append(MultiHeadAttention(self.n_heads, self.dim, dropout=self.attention_dropout))
|
490 |
+
self.ffns.append(
|
491 |
+
TFFlaubertTransformerFFN(self.dim, self.hidden_dim, self.dim, config=config, name=f"ffns_._{i}")
|
492 |
+
)
|
493 |
+
self.layer_norm2.append(
|
494 |
+
keras.layers.LayerNormalization(epsilon=config.layer_norm_eps, name=f"layer_norm2_._{i}")
|
495 |
+
)
|
496 |
+
|
497 |
+
def build(self, input_shape=None):
|
498 |
+
with tf.name_scope("position_embeddings"):
|
499 |
+
self.position_embeddings = self.add_weight(
|
500 |
+
name="embeddings",
|
501 |
+
shape=[self.max_position_embeddings, self.dim],
|
502 |
+
initializer=get_initializer(self.embed_init_std),
|
503 |
+
)
|
504 |
+
|
505 |
+
if self.n_langs > 1 and self.use_lang_emb:
|
506 |
+
with tf.name_scope("lang_embeddings"):
|
507 |
+
self.lang_embeddings = self.add_weight(
|
508 |
+
name="embeddings",
|
509 |
+
shape=[self.n_langs, self.dim],
|
510 |
+
initializer=get_initializer(self.embed_init_std),
|
511 |
+
)
|
512 |
+
|
513 |
+
if self.built:
|
514 |
+
return
|
515 |
+
self.built = True
|
516 |
+
if getattr(self, "embeddings", None) is not None:
|
517 |
+
with tf.name_scope(self.embeddings.name):
|
518 |
+
self.embeddings.build(None)
|
519 |
+
if getattr(self, "layer_norm_emb", None) is not None:
|
520 |
+
with tf.name_scope(self.layer_norm_emb.name):
|
521 |
+
self.layer_norm_emb.build([None, None, self.dim])
|
522 |
+
for layer in self.attentions:
|
523 |
+
with tf.name_scope(layer.name):
|
524 |
+
layer.build(None)
|
525 |
+
for layer in self.layer_norm1:
|
526 |
+
with tf.name_scope(layer.name):
|
527 |
+
layer.build([None, None, self.dim])
|
528 |
+
for layer in self.ffns:
|
529 |
+
with tf.name_scope(layer.name):
|
530 |
+
layer.build(None)
|
531 |
+
for layer in self.layer_norm2:
|
532 |
+
with tf.name_scope(layer.name):
|
533 |
+
layer.build([None, None, self.dim])
|
534 |
+
|
535 |
+
def get_input_embeddings(self):
|
536 |
+
return self.embeddings
|
537 |
+
|
538 |
+
def set_input_embeddings(self, value):
|
539 |
+
self.embeddings.weight = value
|
540 |
+
self.embeddings.vocab_size = shape_list(value)[0]
|
541 |
+
|
542 |
+
@unpack_inputs
|
543 |
+
def call(
|
544 |
+
self,
|
545 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
546 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
547 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
548 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
549 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
550 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
551 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
552 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
553 |
+
inputs_embeds: tf.Tensor | None = None,
|
554 |
+
output_attentions: Optional[bool] = None,
|
555 |
+
output_hidden_states: Optional[bool] = None,
|
556 |
+
return_dict: Optional[bool] = None,
|
557 |
+
training: Optional[bool] = False,
|
558 |
+
) -> Union[Tuple, TFBaseModelOutput]:
|
559 |
+
# removed: src_enc=None, src_len=None
|
560 |
+
|
561 |
+
if input_ids is not None and inputs_embeds is not None:
|
562 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
563 |
+
elif input_ids is not None:
|
564 |
+
bs, slen = shape_list(input_ids)
|
565 |
+
elif inputs_embeds is not None:
|
566 |
+
bs, slen = shape_list(inputs_embeds)[:2]
|
567 |
+
else:
|
568 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
569 |
+
|
570 |
+
if lengths is None:
|
571 |
+
if input_ids is not None:
|
572 |
+
lengths = tf.reduce_sum(
|
573 |
+
tf.cast(tf.not_equal(input_ids, self.pad_index), dtype=input_ids.dtype), axis=1
|
574 |
+
)
|
575 |
+
else:
|
576 |
+
lengths = tf.convert_to_tensor([slen] * bs)
|
577 |
+
# mask = input_ids != self.pad_index
|
578 |
+
|
579 |
+
# check inputs
|
580 |
+
# assert shape_list(lengths)[0] == bs
|
581 |
+
(
|
582 |
+
tf.debugging.assert_equal(shape_list(lengths)[0], bs),
|
583 |
+
f"Expected batch size {shape_list(lengths)[0]} and received batch size {bs} mismatched",
|
584 |
+
)
|
585 |
+
# assert lengths.max().item() <= slen
|
586 |
+
# input_ids = input_ids.transpose(0, 1) # batch size as dimension 0
|
587 |
+
# assert (src_enc is None) == (src_len is None)
|
588 |
+
# if src_enc is not None:
|
589 |
+
# assert self.is_decoder
|
590 |
+
# assert src_enc.size(0) == bs
|
591 |
+
|
592 |
+
# generate masks
|
593 |
+
mask, attn_mask = get_masks(slen, lengths, self.causal, padding_mask=attention_mask)
|
594 |
+
# if self.is_decoder and src_enc is not None:
|
595 |
+
# src_mask = torch.arange(src_len.max(), dtype=torch.long, device=lengths.device) < src_len[:, None]
|
596 |
+
|
597 |
+
# position_ids
|
598 |
+
if position_ids is None:
|
599 |
+
position_ids = tf.expand_dims(tf.range(slen), axis=0)
|
600 |
+
position_ids = tf.tile(position_ids, (bs, 1))
|
601 |
+
|
602 |
+
# assert shape_list(position_ids) == [bs, slen] # (slen, bs)
|
603 |
+
(
|
604 |
+
tf.debugging.assert_equal(shape_list(position_ids), [bs, slen]),
|
605 |
+
f"Position id shape {shape_list(position_ids)} and input shape {[bs, slen]} mismatched",
|
606 |
+
)
|
607 |
+
# position_ids = position_ids.transpose(0, 1)
|
608 |
+
|
609 |
+
# langs
|
610 |
+
if langs is not None:
|
611 |
+
# assert shape_list(langs) == [bs, slen] # (slen, bs)
|
612 |
+
(
|
613 |
+
tf.debugging.assert_equal(shape_list(langs), [bs, slen]),
|
614 |
+
f"Lang shape {shape_list(langs)} and input shape {[bs, slen]} mismatched",
|
615 |
+
)
|
616 |
+
# langs = langs.transpose(0, 1)
|
617 |
+
|
618 |
+
# Prepare head mask if needed
|
619 |
+
# 1.0 in head_mask indicate we keep the head
|
620 |
+
# attention_probs has shape bsz x n_heads x N x N
|
621 |
+
# input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
622 |
+
# and head_mask is converted to shape [num_hidden_layers x batch x num_heads x qlen x klen]
|
623 |
+
if head_mask is not None:
|
624 |
+
raise NotImplementedError
|
625 |
+
else:
|
626 |
+
head_mask = [None] * self.n_layers
|
627 |
+
|
628 |
+
# do not recompute cached elements
|
629 |
+
if cache is not None and input_ids is not None:
|
630 |
+
_slen = slen - cache["slen"]
|
631 |
+
input_ids = input_ids[:, -_slen:]
|
632 |
+
position_ids = position_ids[:, -_slen:]
|
633 |
+
if langs is not None:
|
634 |
+
langs = langs[:, -_slen:]
|
635 |
+
mask = mask[:, -_slen:]
|
636 |
+
attn_mask = attn_mask[:, -_slen:]
|
637 |
+
|
638 |
+
# embeddings
|
639 |
+
if inputs_embeds is None:
|
640 |
+
check_embeddings_within_bounds(input_ids, self.embeddings.vocab_size)
|
641 |
+
inputs_embeds = self.embeddings(input_ids)
|
642 |
+
|
643 |
+
tensor = inputs_embeds + tf.gather(self.position_embeddings, position_ids)
|
644 |
+
|
645 |
+
if langs is not None and self.use_lang_emb:
|
646 |
+
tensor = tensor + tf.gather(self.lang_embeddings, langs)
|
647 |
+
if token_type_ids is not None:
|
648 |
+
tensor = tensor + self.embeddings(token_type_ids)
|
649 |
+
|
650 |
+
tensor = self.layer_norm_emb(tensor)
|
651 |
+
tensor = self.dropout(tensor, training=training)
|
652 |
+
mask = tf.cast(mask, dtype=tensor.dtype)
|
653 |
+
tensor = tensor * tf.expand_dims(mask, axis=-1)
|
654 |
+
|
655 |
+
# hidden_states and attentions cannot be None in graph mode.
|
656 |
+
hidden_states = () if output_hidden_states else None
|
657 |
+
attentions = () if output_attentions else None
|
658 |
+
|
659 |
+
# transformer layers
|
660 |
+
for i in range(self.n_layers):
|
661 |
+
# LayerDrop
|
662 |
+
dropout_probability = random.uniform(0, 1)
|
663 |
+
|
664 |
+
if training and (dropout_probability < self.layerdrop):
|
665 |
+
continue
|
666 |
+
|
667 |
+
if output_hidden_states:
|
668 |
+
hidden_states = hidden_states + (tensor,)
|
669 |
+
|
670 |
+
# self attention
|
671 |
+
if not self.pre_norm:
|
672 |
+
attn_outputs = self.attentions[i](
|
673 |
+
tensor,
|
674 |
+
attn_mask,
|
675 |
+
None,
|
676 |
+
cache,
|
677 |
+
head_mask[i],
|
678 |
+
output_attentions,
|
679 |
+
training=training,
|
680 |
+
)
|
681 |
+
attn = attn_outputs[0]
|
682 |
+
|
683 |
+
if output_attentions:
|
684 |
+
attentions = attentions + (attn_outputs[1],)
|
685 |
+
|
686 |
+
attn = self.dropout(attn, training=training)
|
687 |
+
tensor = tensor + attn
|
688 |
+
tensor = self.layer_norm1[i](tensor)
|
689 |
+
else:
|
690 |
+
tensor_normalized = self.layer_norm1[i](tensor)
|
691 |
+
attn_outputs = self.attentions[i](
|
692 |
+
tensor_normalized,
|
693 |
+
attn_mask,
|
694 |
+
None,
|
695 |
+
cache,
|
696 |
+
head_mask[i],
|
697 |
+
output_attentions,
|
698 |
+
training=training,
|
699 |
+
)
|
700 |
+
attn = attn_outputs[0]
|
701 |
+
|
702 |
+
if output_attentions:
|
703 |
+
attentions = attentions + (attn_outputs[1],)
|
704 |
+
|
705 |
+
attn = self.dropout(attn, training=training)
|
706 |
+
tensor = tensor + attn
|
707 |
+
|
708 |
+
# encoder attention (for decoder only)
|
709 |
+
# if self.is_decoder and src_enc is not None:
|
710 |
+
# attn = self.encoder_attn[i](tensor, src_mask, kv=src_enc, cache=cache)
|
711 |
+
# attn = nn.functional.dropout(attn, p=self.dropout, training=self.training)
|
712 |
+
# tensor = tensor + attn
|
713 |
+
# tensor = self.layer_norm15[i](tensor)
|
714 |
+
|
715 |
+
# FFN
|
716 |
+
if not self.pre_norm:
|
717 |
+
tensor = tensor + self.ffns[i](tensor)
|
718 |
+
tensor = self.layer_norm2[i](tensor)
|
719 |
+
else:
|
720 |
+
tensor_normalized = self.layer_norm2[i](tensor)
|
721 |
+
tensor = tensor + self.ffns[i](tensor_normalized)
|
722 |
+
|
723 |
+
tensor = tensor * tf.expand_dims(mask, axis=-1)
|
724 |
+
|
725 |
+
# Add last hidden state
|
726 |
+
if output_hidden_states:
|
727 |
+
hidden_states = hidden_states + (tensor,)
|
728 |
+
|
729 |
+
# update cache length
|
730 |
+
if cache is not None:
|
731 |
+
cache["slen"] += tensor.size(1)
|
732 |
+
|
733 |
+
# move back sequence length to dimension 0
|
734 |
+
# tensor = tensor.transpose(0, 1)
|
735 |
+
|
736 |
+
if not return_dict:
|
737 |
+
return tuple(v for v in [tensor, hidden_states, attentions] if v is not None)
|
738 |
+
|
739 |
+
return TFBaseModelOutput(last_hidden_state=tensor, hidden_states=hidden_states, attentions=attentions)
|
740 |
+
|
741 |
+
|
742 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMPredLayer
|
743 |
+
class TFFlaubertPredLayer(keras.layers.Layer):
|
744 |
+
"""
|
745 |
+
Prediction layer (cross_entropy or adaptive_softmax).
|
746 |
+
"""
|
747 |
+
|
748 |
+
def __init__(self, config, input_embeddings, **kwargs):
|
749 |
+
super().__init__(**kwargs)
|
750 |
+
|
751 |
+
self.asm = config.asm
|
752 |
+
self.n_words = config.n_words
|
753 |
+
self.pad_index = config.pad_index
|
754 |
+
|
755 |
+
if config.asm is False:
|
756 |
+
self.input_embeddings = input_embeddings
|
757 |
+
else:
|
758 |
+
raise NotImplementedError
|
759 |
+
# self.proj = nn.AdaptiveLogSoftmaxWithLoss(
|
760 |
+
# in_features=dim,
|
761 |
+
# n_classes=config.n_words,
|
762 |
+
# cutoffs=config.asm_cutoffs,
|
763 |
+
# div_value=config.asm_div_value,
|
764 |
+
# head_bias=True, # default is False
|
765 |
+
# )
|
766 |
+
|
767 |
+
def build(self, input_shape):
|
768 |
+
# The output weights are the same as the input embeddings, but there is an output-only bias for each token.
|
769 |
+
self.bias = self.add_weight(shape=(self.n_words,), initializer="zeros", trainable=True, name="bias")
|
770 |
+
|
771 |
+
super().build(input_shape)
|
772 |
+
|
773 |
+
def get_output_embeddings(self):
|
774 |
+
return self.input_embeddings
|
775 |
+
|
776 |
+
def set_output_embeddings(self, value):
|
777 |
+
self.input_embeddings.weight = value
|
778 |
+
self.input_embeddings.vocab_size = shape_list(value)[0]
|
779 |
+
|
780 |
+
def get_bias(self):
|
781 |
+
return {"bias": self.bias}
|
782 |
+
|
783 |
+
def set_bias(self, value):
|
784 |
+
self.bias = value["bias"]
|
785 |
+
self.vocab_size = shape_list(value["bias"])[0]
|
786 |
+
|
787 |
+
def call(self, hidden_states):
|
788 |
+
hidden_states = self.input_embeddings(hidden_states, mode="linear")
|
789 |
+
hidden_states = hidden_states + self.bias
|
790 |
+
|
791 |
+
return hidden_states
|
792 |
+
|
793 |
+
|
794 |
+
@dataclass
|
795 |
+
class TFFlaubertWithLMHeadModelOutput(ModelOutput):
|
796 |
+
"""
|
797 |
+
Base class for [`TFFlaubertWithLMHeadModel`] outputs.
|
798 |
+
|
799 |
+
Args:
|
800 |
+
logits (`tf.Tensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
801 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
802 |
+
hidden_states (`tuple(tf.Tensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
803 |
+
Tuple of `tf.Tensor` (one for the output of the embeddings + one for the output of each layer) of shape
|
804 |
+
`(batch_size, sequence_length, hidden_size)`.
|
805 |
+
|
806 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
807 |
+
attentions (`tuple(tf.Tensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
808 |
+
Tuple of `tf.Tensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
809 |
+
sequence_length)`.
|
810 |
+
|
811 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
812 |
+
heads.
|
813 |
+
"""
|
814 |
+
|
815 |
+
logits: tf.Tensor = None
|
816 |
+
hidden_states: Tuple[tf.Tensor] | None = None
|
817 |
+
attentions: Tuple[tf.Tensor] | None = None
|
818 |
+
|
819 |
+
|
820 |
+
@add_start_docstrings(
|
821 |
+
"""
|
822 |
+
The Flaubert Model transformer with a language modeling head on top (linear layer with weights tied to the input
|
823 |
+
embeddings).
|
824 |
+
""",
|
825 |
+
FLAUBERT_START_DOCSTRING,
|
826 |
+
)
|
827 |
+
class TFFlaubertWithLMHeadModel(TFFlaubertPreTrainedModel):
|
828 |
+
def __init__(self, config, *inputs, **kwargs):
|
829 |
+
super().__init__(config, *inputs, **kwargs)
|
830 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
831 |
+
self.pred_layer = TFFlaubertPredLayer(config, self.transformer.embeddings, name="pred_layer_._proj")
|
832 |
+
# Flaubert does not have past caching features
|
833 |
+
self.supports_xla_generation = False
|
834 |
+
|
835 |
+
def get_lm_head(self):
|
836 |
+
return self.pred_layer
|
837 |
+
|
838 |
+
def get_prefix_bias_name(self):
|
839 |
+
warnings.warn("The method get_prefix_bias_name is deprecated. Please use `get_bias` instead.", FutureWarning)
|
840 |
+
return self.name + "/" + self.pred_layer.name
|
841 |
+
|
842 |
+
def prepare_inputs_for_generation(self, inputs, **kwargs):
|
843 |
+
mask_token_id = self.config.mask_token_id
|
844 |
+
lang_id = self.config.lang_id
|
845 |
+
|
846 |
+
effective_batch_size = inputs.shape[0]
|
847 |
+
mask_token = tf.fill((effective_batch_size, 1), 1) * mask_token_id
|
848 |
+
inputs = tf.concat([inputs, mask_token], axis=1)
|
849 |
+
|
850 |
+
if lang_id is not None:
|
851 |
+
langs = tf.ones_like(inputs) * lang_id
|
852 |
+
else:
|
853 |
+
langs = None
|
854 |
+
return {"input_ids": inputs, "langs": langs}
|
855 |
+
|
856 |
+
@unpack_inputs
|
857 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING)
|
858 |
+
@add_code_sample_docstrings(
|
859 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
860 |
+
output_type=TFFlaubertWithLMHeadModelOutput,
|
861 |
+
config_class=_CONFIG_FOR_DOC,
|
862 |
+
)
|
863 |
+
def call(
|
864 |
+
self,
|
865 |
+
input_ids: np.ndarray | tf.Tensor | None = None,
|
866 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
867 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
868 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
869 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
870 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
871 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
872 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
873 |
+
inputs_embeds: tf.Tensor | None = None,
|
874 |
+
output_attentions: Optional[bool] = None,
|
875 |
+
output_hidden_states: Optional[bool] = None,
|
876 |
+
return_dict: Optional[bool] = None,
|
877 |
+
training: Optional[bool] = False,
|
878 |
+
) -> Union[Tuple, TFFlaubertWithLMHeadModelOutput]:
|
879 |
+
transformer_outputs = self.transformer(
|
880 |
+
input_ids=input_ids,
|
881 |
+
attention_mask=attention_mask,
|
882 |
+
langs=langs,
|
883 |
+
token_type_ids=token_type_ids,
|
884 |
+
position_ids=position_ids,
|
885 |
+
lengths=lengths,
|
886 |
+
cache=cache,
|
887 |
+
head_mask=head_mask,
|
888 |
+
inputs_embeds=inputs_embeds,
|
889 |
+
output_attentions=output_attentions,
|
890 |
+
output_hidden_states=output_hidden_states,
|
891 |
+
return_dict=return_dict,
|
892 |
+
training=training,
|
893 |
+
)
|
894 |
+
output = transformer_outputs[0]
|
895 |
+
outputs = self.pred_layer(output)
|
896 |
+
|
897 |
+
if not return_dict:
|
898 |
+
return (outputs,) + transformer_outputs[1:]
|
899 |
+
|
900 |
+
return TFFlaubertWithLMHeadModelOutput(
|
901 |
+
logits=outputs, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions
|
902 |
+
)
|
903 |
+
|
904 |
+
def build(self, input_shape=None):
|
905 |
+
if self.built:
|
906 |
+
return
|
907 |
+
self.built = True
|
908 |
+
if getattr(self, "transformer", None) is not None:
|
909 |
+
with tf.name_scope(self.transformer.name):
|
910 |
+
self.transformer.build(None)
|
911 |
+
if getattr(self, "pred_layer", None) is not None:
|
912 |
+
with tf.name_scope(self.pred_layer.name):
|
913 |
+
self.pred_layer.build(None)
|
914 |
+
|
915 |
+
|
916 |
+
@add_start_docstrings(
|
917 |
+
"""
|
918 |
+
Flaubert Model with a sequence classification/regression head on top (a linear layer on top of the pooled output)
|
919 |
+
e.g. for GLUE tasks.
|
920 |
+
""",
|
921 |
+
FLAUBERT_START_DOCSTRING,
|
922 |
+
)
|
923 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForSequenceClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
924 |
+
class TFFlaubertForSequenceClassification(TFFlaubertPreTrainedModel, TFSequenceClassificationLoss):
|
925 |
+
def __init__(self, config, *inputs, **kwargs):
|
926 |
+
super().__init__(config, *inputs, **kwargs)
|
927 |
+
self.num_labels = config.num_labels
|
928 |
+
|
929 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
930 |
+
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
|
931 |
+
|
932 |
+
@unpack_inputs
|
933 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
934 |
+
@add_code_sample_docstrings(
|
935 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
936 |
+
output_type=TFSequenceClassifierOutput,
|
937 |
+
config_class=_CONFIG_FOR_DOC,
|
938 |
+
)
|
939 |
+
def call(
|
940 |
+
self,
|
941 |
+
input_ids: TFModelInputType | None = None,
|
942 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
943 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
944 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
945 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
946 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
947 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
948 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
949 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
950 |
+
output_attentions: Optional[bool] = None,
|
951 |
+
output_hidden_states: Optional[bool] = None,
|
952 |
+
return_dict: Optional[bool] = None,
|
953 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
954 |
+
training: bool = False,
|
955 |
+
) -> Union[TFSequenceClassifierOutput, Tuple[tf.Tensor]]:
|
956 |
+
r"""
|
957 |
+
labels (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
958 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
959 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
960 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
961 |
+
"""
|
962 |
+
transformer_outputs = self.transformer(
|
963 |
+
input_ids=input_ids,
|
964 |
+
attention_mask=attention_mask,
|
965 |
+
langs=langs,
|
966 |
+
token_type_ids=token_type_ids,
|
967 |
+
position_ids=position_ids,
|
968 |
+
lengths=lengths,
|
969 |
+
cache=cache,
|
970 |
+
head_mask=head_mask,
|
971 |
+
inputs_embeds=inputs_embeds,
|
972 |
+
output_attentions=output_attentions,
|
973 |
+
output_hidden_states=output_hidden_states,
|
974 |
+
return_dict=return_dict,
|
975 |
+
training=training,
|
976 |
+
)
|
977 |
+
output = transformer_outputs[0]
|
978 |
+
|
979 |
+
logits = self.sequence_summary(output)
|
980 |
+
|
981 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
982 |
+
|
983 |
+
if not return_dict:
|
984 |
+
output = (logits,) + transformer_outputs[1:]
|
985 |
+
return ((loss,) + output) if loss is not None else output
|
986 |
+
|
987 |
+
return TFSequenceClassifierOutput(
|
988 |
+
loss=loss,
|
989 |
+
logits=logits,
|
990 |
+
hidden_states=transformer_outputs.hidden_states,
|
991 |
+
attentions=transformer_outputs.attentions,
|
992 |
+
)
|
993 |
+
|
994 |
+
def build(self, input_shape=None):
|
995 |
+
if self.built:
|
996 |
+
return
|
997 |
+
self.built = True
|
998 |
+
if getattr(self, "transformer", None) is not None:
|
999 |
+
with tf.name_scope(self.transformer.name):
|
1000 |
+
self.transformer.build(None)
|
1001 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1002 |
+
with tf.name_scope(self.sequence_summary.name):
|
1003 |
+
self.sequence_summary.build(None)
|
1004 |
+
|
1005 |
+
|
1006 |
+
@add_start_docstrings(
|
1007 |
+
"""
|
1008 |
+
Flaubert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
|
1009 |
+
layer on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1010 |
+
""",
|
1011 |
+
FLAUBERT_START_DOCSTRING,
|
1012 |
+
)
|
1013 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForQuestionAnsweringSimple with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1014 |
+
class TFFlaubertForQuestionAnsweringSimple(TFFlaubertPreTrainedModel, TFQuestionAnsweringLoss):
|
1015 |
+
def __init__(self, config, *inputs, **kwargs):
|
1016 |
+
super().__init__(config, *inputs, **kwargs)
|
1017 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1018 |
+
self.qa_outputs = keras.layers.Dense(
|
1019 |
+
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="qa_outputs"
|
1020 |
+
)
|
1021 |
+
self.config = config
|
1022 |
+
|
1023 |
+
@unpack_inputs
|
1024 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1025 |
+
@add_code_sample_docstrings(
|
1026 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1027 |
+
output_type=TFQuestionAnsweringModelOutput,
|
1028 |
+
config_class=_CONFIG_FOR_DOC,
|
1029 |
+
)
|
1030 |
+
def call(
|
1031 |
+
self,
|
1032 |
+
input_ids: TFModelInputType | None = None,
|
1033 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1034 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1035 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1036 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1037 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1038 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1039 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1040 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1041 |
+
output_attentions: Optional[bool] = None,
|
1042 |
+
output_hidden_states: Optional[bool] = None,
|
1043 |
+
return_dict: Optional[bool] = None,
|
1044 |
+
start_positions: np.ndarray | tf.Tensor | None = None,
|
1045 |
+
end_positions: np.ndarray | tf.Tensor | None = None,
|
1046 |
+
training: bool = False,
|
1047 |
+
) -> Union[TFQuestionAnsweringModelOutput, Tuple[tf.Tensor]]:
|
1048 |
+
r"""
|
1049 |
+
start_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1050 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1051 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1052 |
+
are not taken into account for computing the loss.
|
1053 |
+
end_positions (`tf.Tensor` of shape `(batch_size,)`, *optional*):
|
1054 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1055 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
1056 |
+
are not taken into account for computing the loss.
|
1057 |
+
"""
|
1058 |
+
transformer_outputs = self.transformer(
|
1059 |
+
input_ids=input_ids,
|
1060 |
+
attention_mask=attention_mask,
|
1061 |
+
langs=langs,
|
1062 |
+
token_type_ids=token_type_ids,
|
1063 |
+
position_ids=position_ids,
|
1064 |
+
lengths=lengths,
|
1065 |
+
cache=cache,
|
1066 |
+
head_mask=head_mask,
|
1067 |
+
inputs_embeds=inputs_embeds,
|
1068 |
+
output_attentions=output_attentions,
|
1069 |
+
output_hidden_states=output_hidden_states,
|
1070 |
+
return_dict=return_dict,
|
1071 |
+
training=training,
|
1072 |
+
)
|
1073 |
+
sequence_output = transformer_outputs[0]
|
1074 |
+
|
1075 |
+
logits = self.qa_outputs(sequence_output)
|
1076 |
+
start_logits, end_logits = tf.split(logits, 2, axis=-1)
|
1077 |
+
start_logits = tf.squeeze(start_logits, axis=-1)
|
1078 |
+
end_logits = tf.squeeze(end_logits, axis=-1)
|
1079 |
+
|
1080 |
+
loss = None
|
1081 |
+
if start_positions is not None and end_positions is not None:
|
1082 |
+
labels = {"start_position": start_positions}
|
1083 |
+
labels["end_position"] = end_positions
|
1084 |
+
loss = self.hf_compute_loss(labels, (start_logits, end_logits))
|
1085 |
+
|
1086 |
+
if not return_dict:
|
1087 |
+
output = (start_logits, end_logits) + transformer_outputs[1:]
|
1088 |
+
return ((loss,) + output) if loss is not None else output
|
1089 |
+
|
1090 |
+
return TFQuestionAnsweringModelOutput(
|
1091 |
+
loss=loss,
|
1092 |
+
start_logits=start_logits,
|
1093 |
+
end_logits=end_logits,
|
1094 |
+
hidden_states=transformer_outputs.hidden_states,
|
1095 |
+
attentions=transformer_outputs.attentions,
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
def build(self, input_shape=None):
|
1099 |
+
if self.built:
|
1100 |
+
return
|
1101 |
+
self.built = True
|
1102 |
+
if getattr(self, "transformer", None) is not None:
|
1103 |
+
with tf.name_scope(self.transformer.name):
|
1104 |
+
self.transformer.build(None)
|
1105 |
+
if getattr(self, "qa_outputs", None) is not None:
|
1106 |
+
with tf.name_scope(self.qa_outputs.name):
|
1107 |
+
self.qa_outputs.build([None, None, self.config.hidden_size])
|
1108 |
+
|
1109 |
+
|
1110 |
+
@add_start_docstrings(
|
1111 |
+
"""
|
1112 |
+
Flaubert Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for
|
1113 |
+
Named-Entity-Recognition (NER) tasks.
|
1114 |
+
""",
|
1115 |
+
FLAUBERT_START_DOCSTRING,
|
1116 |
+
)
|
1117 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForTokenClassification with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1118 |
+
class TFFlaubertForTokenClassification(TFFlaubertPreTrainedModel, TFTokenClassificationLoss):
|
1119 |
+
def __init__(self, config, *inputs, **kwargs):
|
1120 |
+
super().__init__(config, *inputs, **kwargs)
|
1121 |
+
self.num_labels = config.num_labels
|
1122 |
+
|
1123 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1124 |
+
self.dropout = keras.layers.Dropout(config.dropout)
|
1125 |
+
self.classifier = keras.layers.Dense(
|
1126 |
+
config.num_labels, kernel_initializer=get_initializer(config.init_std), name="classifier"
|
1127 |
+
)
|
1128 |
+
self.config = config
|
1129 |
+
|
1130 |
+
@unpack_inputs
|
1131 |
+
@add_start_docstrings_to_model_forward(FLAUBERT_INPUTS_DOCSTRING.format("batch_size, sequence_length"))
|
1132 |
+
@add_code_sample_docstrings(
|
1133 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1134 |
+
output_type=TFTokenClassifierOutput,
|
1135 |
+
config_class=_CONFIG_FOR_DOC,
|
1136 |
+
)
|
1137 |
+
def call(
|
1138 |
+
self,
|
1139 |
+
input_ids: TFModelInputType | None = None,
|
1140 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1141 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1142 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1143 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1144 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1145 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1146 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1147 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1148 |
+
output_attentions: Optional[bool] = None,
|
1149 |
+
output_hidden_states: Optional[bool] = None,
|
1150 |
+
return_dict: Optional[bool] = None,
|
1151 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1152 |
+
training: bool = False,
|
1153 |
+
) -> Union[TFTokenClassifierOutput, Tuple[tf.Tensor]]:
|
1154 |
+
r"""
|
1155 |
+
labels (`tf.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1156 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
1157 |
+
"""
|
1158 |
+
transformer_outputs = self.transformer(
|
1159 |
+
input_ids=input_ids,
|
1160 |
+
attention_mask=attention_mask,
|
1161 |
+
langs=langs,
|
1162 |
+
token_type_ids=token_type_ids,
|
1163 |
+
position_ids=position_ids,
|
1164 |
+
lengths=lengths,
|
1165 |
+
cache=cache,
|
1166 |
+
head_mask=head_mask,
|
1167 |
+
inputs_embeds=inputs_embeds,
|
1168 |
+
output_attentions=output_attentions,
|
1169 |
+
output_hidden_states=output_hidden_states,
|
1170 |
+
return_dict=return_dict,
|
1171 |
+
training=training,
|
1172 |
+
)
|
1173 |
+
sequence_output = transformer_outputs[0]
|
1174 |
+
|
1175 |
+
sequence_output = self.dropout(sequence_output, training=training)
|
1176 |
+
logits = self.classifier(sequence_output)
|
1177 |
+
|
1178 |
+
loss = None if labels is None else self.hf_compute_loss(labels, logits)
|
1179 |
+
|
1180 |
+
if not return_dict:
|
1181 |
+
output = (logits,) + transformer_outputs[1:]
|
1182 |
+
return ((loss,) + output) if loss is not None else output
|
1183 |
+
|
1184 |
+
return TFTokenClassifierOutput(
|
1185 |
+
loss=loss,
|
1186 |
+
logits=logits,
|
1187 |
+
hidden_states=transformer_outputs.hidden_states,
|
1188 |
+
attentions=transformer_outputs.attentions,
|
1189 |
+
)
|
1190 |
+
|
1191 |
+
def build(self, input_shape=None):
|
1192 |
+
if self.built:
|
1193 |
+
return
|
1194 |
+
self.built = True
|
1195 |
+
if getattr(self, "transformer", None) is not None:
|
1196 |
+
with tf.name_scope(self.transformer.name):
|
1197 |
+
self.transformer.build(None)
|
1198 |
+
if getattr(self, "classifier", None) is not None:
|
1199 |
+
with tf.name_scope(self.classifier.name):
|
1200 |
+
self.classifier.build([None, None, self.config.hidden_size])
|
1201 |
+
|
1202 |
+
|
1203 |
+
@add_start_docstrings(
|
1204 |
+
"""
|
1205 |
+
Flaubert Model with a multiple choice classification head on top (a linear layer on top of the pooled output and a
|
1206 |
+
softmax) e.g. for RocStories/SWAG tasks.
|
1207 |
+
""",
|
1208 |
+
FLAUBERT_START_DOCSTRING,
|
1209 |
+
)
|
1210 |
+
# Copied from transformers.models.xlm.modeling_tf_xlm.TFXLMForMultipleChoice with XLM_INPUTS->FLAUBERT_INPUTS,XLM->Flaubert
|
1211 |
+
class TFFlaubertForMultipleChoice(TFFlaubertPreTrainedModel, TFMultipleChoiceLoss):
|
1212 |
+
def __init__(self, config, *inputs, **kwargs):
|
1213 |
+
super().__init__(config, *inputs, **kwargs)
|
1214 |
+
|
1215 |
+
self.transformer = TFFlaubertMainLayer(config, name="transformer")
|
1216 |
+
self.sequence_summary = TFSequenceSummary(config, initializer_range=config.init_std, name="sequence_summary")
|
1217 |
+
self.logits_proj = keras.layers.Dense(
|
1218 |
+
1, kernel_initializer=get_initializer(config.initializer_range), name="logits_proj"
|
1219 |
+
)
|
1220 |
+
self.config = config
|
1221 |
+
|
1222 |
+
@property
|
1223 |
+
def dummy_inputs(self):
|
1224 |
+
"""
|
1225 |
+
Dummy inputs to build the network.
|
1226 |
+
|
1227 |
+
Returns:
|
1228 |
+
tf.Tensor with dummy inputs
|
1229 |
+
"""
|
1230 |
+
# Sometimes Flaubert has language embeddings so don't forget to build them as well if needed
|
1231 |
+
if self.config.use_lang_emb and self.config.n_langs > 1:
|
1232 |
+
return {
|
1233 |
+
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1234 |
+
"langs": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1235 |
+
}
|
1236 |
+
else:
|
1237 |
+
return {
|
1238 |
+
"input_ids": tf.constant(MULTIPLE_CHOICE_DUMMY_INPUTS, dtype=tf.int32),
|
1239 |
+
}
|
1240 |
+
|
1241 |
+
@unpack_inputs
|
1242 |
+
@add_start_docstrings_to_model_forward(
|
1243 |
+
FLAUBERT_INPUTS_DOCSTRING.format("batch_size, num_choices, sequence_length")
|
1244 |
+
)
|
1245 |
+
@add_code_sample_docstrings(
|
1246 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1247 |
+
output_type=TFMultipleChoiceModelOutput,
|
1248 |
+
config_class=_CONFIG_FOR_DOC,
|
1249 |
+
)
|
1250 |
+
def call(
|
1251 |
+
self,
|
1252 |
+
input_ids: TFModelInputType | None = None,
|
1253 |
+
attention_mask: np.ndarray | tf.Tensor | None = None,
|
1254 |
+
langs: np.ndarray | tf.Tensor | None = None,
|
1255 |
+
token_type_ids: np.ndarray | tf.Tensor | None = None,
|
1256 |
+
position_ids: np.ndarray | tf.Tensor | None = None,
|
1257 |
+
lengths: np.ndarray | tf.Tensor | None = None,
|
1258 |
+
cache: Optional[Dict[str, tf.Tensor]] = None,
|
1259 |
+
head_mask: np.ndarray | tf.Tensor | None = None,
|
1260 |
+
inputs_embeds: np.ndarray | tf.Tensor | None = None,
|
1261 |
+
output_attentions: Optional[bool] = None,
|
1262 |
+
output_hidden_states: Optional[bool] = None,
|
1263 |
+
return_dict: Optional[bool] = None,
|
1264 |
+
labels: np.ndarray | tf.Tensor | None = None,
|
1265 |
+
training: bool = False,
|
1266 |
+
) -> Union[TFMultipleChoiceModelOutput, Tuple[tf.Tensor]]:
|
1267 |
+
if input_ids is not None:
|
1268 |
+
num_choices = shape_list(input_ids)[1]
|
1269 |
+
seq_length = shape_list(input_ids)[2]
|
1270 |
+
else:
|
1271 |
+
num_choices = shape_list(inputs_embeds)[1]
|
1272 |
+
seq_length = shape_list(inputs_embeds)[2]
|
1273 |
+
|
1274 |
+
flat_input_ids = tf.reshape(input_ids, (-1, seq_length)) if input_ids is not None else None
|
1275 |
+
flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
|
1276 |
+
flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
|
1277 |
+
flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None
|
1278 |
+
flat_langs = tf.reshape(langs, (-1, seq_length)) if langs is not None else None
|
1279 |
+
flat_inputs_embeds = (
|
1280 |
+
tf.reshape(inputs_embeds, (-1, seq_length, shape_list(inputs_embeds)[3]))
|
1281 |
+
if inputs_embeds is not None
|
1282 |
+
else None
|
1283 |
+
)
|
1284 |
+
|
1285 |
+
if lengths is not None:
|
1286 |
+
logger.warning(
|
1287 |
+
"The `lengths` parameter cannot be used with the Flaubert multiple choice models. Please use the "
|
1288 |
+
"attention mask instead.",
|
1289 |
+
)
|
1290 |
+
lengths = None
|
1291 |
+
|
1292 |
+
transformer_outputs = self.transformer(
|
1293 |
+
flat_input_ids,
|
1294 |
+
flat_attention_mask,
|
1295 |
+
flat_langs,
|
1296 |
+
flat_token_type_ids,
|
1297 |
+
flat_position_ids,
|
1298 |
+
lengths,
|
1299 |
+
cache,
|
1300 |
+
head_mask,
|
1301 |
+
flat_inputs_embeds,
|
1302 |
+
output_attentions,
|
1303 |
+
output_hidden_states,
|
1304 |
+
return_dict=return_dict,
|
1305 |
+
training=training,
|
1306 |
+
)
|
1307 |
+
output = transformer_outputs[0]
|
1308 |
+
logits = self.sequence_summary(output)
|
1309 |
+
logits = self.logits_proj(logits)
|
1310 |
+
reshaped_logits = tf.reshape(logits, (-1, num_choices))
|
1311 |
+
|
1312 |
+
loss = None if labels is None else self.hf_compute_loss(labels, reshaped_logits)
|
1313 |
+
|
1314 |
+
if not return_dict:
|
1315 |
+
output = (reshaped_logits,) + transformer_outputs[1:]
|
1316 |
+
return ((loss,) + output) if loss is not None else output
|
1317 |
+
|
1318 |
+
return TFMultipleChoiceModelOutput(
|
1319 |
+
loss=loss,
|
1320 |
+
logits=reshaped_logits,
|
1321 |
+
hidden_states=transformer_outputs.hidden_states,
|
1322 |
+
attentions=transformer_outputs.attentions,
|
1323 |
+
)
|
1324 |
+
|
1325 |
+
def build(self, input_shape=None):
|
1326 |
+
if self.built:
|
1327 |
+
return
|
1328 |
+
self.built = True
|
1329 |
+
if getattr(self, "transformer", None) is not None:
|
1330 |
+
with tf.name_scope(self.transformer.name):
|
1331 |
+
self.transformer.build(None)
|
1332 |
+
if getattr(self, "sequence_summary", None) is not None:
|
1333 |
+
with tf.name_scope(self.sequence_summary.name):
|
1334 |
+
self.sequence_summary.build(None)
|
1335 |
+
if getattr(self, "logits_proj", None) is not None:
|
1336 |
+
with tf.name_scope(self.logits_proj.name):
|
1337 |
+
self.logits_proj.build([None, None, self.config.num_labels])
|
venv/lib/python3.10/site-packages/transformers/models/flaubert/tokenization_flaubert.py
ADDED
@@ -0,0 +1,565 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2019-present CNRS, Facebook Inc. and the HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Tokenization classes for Flaubert."""
|
16 |
+
|
17 |
+
|
18 |
+
import json
|
19 |
+
import os
|
20 |
+
import re
|
21 |
+
import unicodedata
|
22 |
+
from typing import List, Optional, Tuple
|
23 |
+
|
24 |
+
from ...tokenization_utils import PreTrainedTokenizer
|
25 |
+
from ...utils import logging
|
26 |
+
|
27 |
+
|
28 |
+
logger = logging.get_logger(__name__)
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {
|
31 |
+
"vocab_file": "vocab.json",
|
32 |
+
"merges_file": "merges.txt",
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
def convert_to_unicode(text):
|
37 |
+
"""
|
38 |
+
Converts `text` to Unicode (if it's not already), assuming UTF-8 input.
|
39 |
+
"""
|
40 |
+
|
41 |
+
def ensure_text(s, encoding="utf-8", errors="strict"):
|
42 |
+
if isinstance(s, bytes):
|
43 |
+
return s.decode(encoding, errors)
|
44 |
+
elif isinstance(s, str):
|
45 |
+
return s
|
46 |
+
else:
|
47 |
+
raise TypeError(f"not expecting type '{type(s)}'")
|
48 |
+
|
49 |
+
return ensure_text(text, encoding="utf-8", errors="ignore")
|
50 |
+
|
51 |
+
|
52 |
+
# Copied from transformers.models.xlm.tokenization_xlm.get_pairs
|
53 |
+
def get_pairs(word):
|
54 |
+
"""
|
55 |
+
Return set of symbol pairs in a word. word is represented as tuple of symbols (symbols being variable-length
|
56 |
+
strings)
|
57 |
+
"""
|
58 |
+
pairs = set()
|
59 |
+
prev_char = word[0]
|
60 |
+
for char in word[1:]:
|
61 |
+
pairs.add((prev_char, char))
|
62 |
+
prev_char = char
|
63 |
+
return pairs
|
64 |
+
|
65 |
+
|
66 |
+
# Copied from transformers.models.xlm.tokenization_xlm.replace_unicode_punct
|
67 |
+
def replace_unicode_punct(text):
|
68 |
+
"""
|
69 |
+
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/replace-unicode-punctuation.perl
|
70 |
+
"""
|
71 |
+
text = text.replace(",", ",")
|
72 |
+
text = re.sub(r"。\s*", ". ", text)
|
73 |
+
text = text.replace("、", ",")
|
74 |
+
text = text.replace("”", '"')
|
75 |
+
text = text.replace("“", '"')
|
76 |
+
text = text.replace("∶", ":")
|
77 |
+
text = text.replace(":", ":")
|
78 |
+
text = text.replace("?", "?")
|
79 |
+
text = text.replace("《", '"')
|
80 |
+
text = text.replace("》", '"')
|
81 |
+
text = text.replace(")", ")")
|
82 |
+
text = text.replace("!", "!")
|
83 |
+
text = text.replace("(", "(")
|
84 |
+
text = text.replace(";", ";")
|
85 |
+
text = text.replace("1", "1")
|
86 |
+
text = text.replace("」", '"')
|
87 |
+
text = text.replace("「", '"')
|
88 |
+
text = text.replace("0", "0")
|
89 |
+
text = text.replace("3", "3")
|
90 |
+
text = text.replace("2", "2")
|
91 |
+
text = text.replace("5", "5")
|
92 |
+
text = text.replace("6", "6")
|
93 |
+
text = text.replace("9", "9")
|
94 |
+
text = text.replace("7", "7")
|
95 |
+
text = text.replace("8", "8")
|
96 |
+
text = text.replace("4", "4")
|
97 |
+
text = re.sub(r".\s*", ". ", text)
|
98 |
+
text = text.replace("~", "~")
|
99 |
+
text = text.replace("’", "'")
|
100 |
+
text = text.replace("…", "...")
|
101 |
+
text = text.replace("━", "-")
|
102 |
+
text = text.replace("〈", "<")
|
103 |
+
text = text.replace("〉", ">")
|
104 |
+
text = text.replace("【", "[")
|
105 |
+
text = text.replace("】", "]")
|
106 |
+
text = text.replace("%", "%")
|
107 |
+
return text
|
108 |
+
|
109 |
+
|
110 |
+
# Copied from transformers.models.xlm.tokenization_xlm.remove_non_printing_char
|
111 |
+
def remove_non_printing_char(text):
|
112 |
+
"""
|
113 |
+
Port of https://github.com/moses-smt/mosesdecoder/blob/master/scripts/tokenizer/remove-non-printing-char.perl
|
114 |
+
"""
|
115 |
+
output = []
|
116 |
+
for char in text:
|
117 |
+
cat = unicodedata.category(char)
|
118 |
+
if cat.startswith("C"):
|
119 |
+
continue
|
120 |
+
output.append(char)
|
121 |
+
return "".join(output)
|
122 |
+
|
123 |
+
|
124 |
+
class FlaubertTokenizer(PreTrainedTokenizer):
|
125 |
+
"""
|
126 |
+
Construct a Flaubert tokenizer. Based on Byte-Pair Encoding. The tokenization process is the following:
|
127 |
+
|
128 |
+
- Moses preprocessing and tokenization.
|
129 |
+
- Normalizing all inputs text.
|
130 |
+
- The arguments `special_tokens` and the function `set_special_tokens`, can be used to add additional symbols (like
|
131 |
+
"__classify__") to a vocabulary.
|
132 |
+
- The argument `do_lowercase` controls lower casing (automatically set for pretrained vocabularies).
|
133 |
+
|
134 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
135 |
+
this superclass for more information regarding those methods.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
vocab_file (`str`):
|
139 |
+
Vocabulary file.
|
140 |
+
merges_file (`str`):
|
141 |
+
Merges file.
|
142 |
+
do_lowercase (`bool`, *optional*, defaults to `False`):
|
143 |
+
Controls lower casing.
|
144 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
145 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
146 |
+
token instead.
|
147 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
148 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
149 |
+
|
150 |
+
<Tip>
|
151 |
+
|
152 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
153 |
+
sequence. The token used is the `cls_token`.
|
154 |
+
|
155 |
+
</Tip>
|
156 |
+
|
157 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
158 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
159 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
160 |
+
token of a sequence built with special tokens.
|
161 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
162 |
+
The token used for padding, for example when batching sequences of different lengths.
|
163 |
+
cls_token (`str`, *optional*, defaults to `"</s>"`):
|
164 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
165 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
166 |
+
mask_token (`str`, *optional*, defaults to `"<special1>"`):
|
167 |
+
The token used for masking values. This is the token used when training this model with masked language
|
168 |
+
modeling. This is the token which the model will try to predict.
|
169 |
+
additional_special_tokens (`List[str]`, *optional*, defaults to `['<special0>', '<special1>', '<special2>', '<special3>', '<special4>', '<special5>', '<special6>', '<special7>', '<special8>', '<special9>']`):
|
170 |
+
List of additional special tokens.
|
171 |
+
lang2id (`Dict[str, int]`, *optional*):
|
172 |
+
Dictionary mapping languages string identifiers to their IDs.
|
173 |
+
id2lang (`Dict[int, str]`, *optional*):
|
174 |
+
Dictionary mapping language IDs to their string identifiers.
|
175 |
+
"""
|
176 |
+
|
177 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
178 |
+
|
179 |
+
def __init__(
|
180 |
+
self,
|
181 |
+
vocab_file,
|
182 |
+
merges_file,
|
183 |
+
do_lowercase=False,
|
184 |
+
unk_token="<unk>",
|
185 |
+
bos_token="<s>",
|
186 |
+
sep_token="</s>",
|
187 |
+
pad_token="<pad>",
|
188 |
+
cls_token="</s>",
|
189 |
+
mask_token="<special1>",
|
190 |
+
additional_special_tokens=[
|
191 |
+
"<special0>",
|
192 |
+
"<special1>",
|
193 |
+
"<special2>",
|
194 |
+
"<special3>",
|
195 |
+
"<special4>",
|
196 |
+
"<special5>",
|
197 |
+
"<special6>",
|
198 |
+
"<special7>",
|
199 |
+
"<special8>",
|
200 |
+
"<special9>",
|
201 |
+
],
|
202 |
+
lang2id=None,
|
203 |
+
id2lang=None,
|
204 |
+
**kwargs,
|
205 |
+
):
|
206 |
+
do_lowercase_and_remove_accent = kwargs.pop("do_lowercase_and_remove_accent", None)
|
207 |
+
if do_lowercase_and_remove_accent is not None:
|
208 |
+
logger.warning(
|
209 |
+
"`do_lowercase_and_remove_accent` is passed as a keyword argument, but this won't do anything."
|
210 |
+
" `FlaubertTokenizer` will always set it to `False`."
|
211 |
+
)
|
212 |
+
# always `False`
|
213 |
+
self.do_lowercase_and_remove_accent = False
|
214 |
+
|
215 |
+
self.do_lowercase = do_lowercase
|
216 |
+
|
217 |
+
try:
|
218 |
+
import sacremoses
|
219 |
+
except ImportError:
|
220 |
+
raise ImportError(
|
221 |
+
"You need to install sacremoses to use FlaubertTokenizer. "
|
222 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
223 |
+
)
|
224 |
+
|
225 |
+
self.sm = sacremoses
|
226 |
+
|
227 |
+
# cache of sm.MosesPunctNormalizer instance
|
228 |
+
self.cache_moses_punct_normalizer = {}
|
229 |
+
# cache of sm.MosesTokenizer instance
|
230 |
+
self.cache_moses_tokenizer = {}
|
231 |
+
self.lang_with_custom_tokenizer = {"zh", "th", "ja"}
|
232 |
+
self.lang2id = lang2id
|
233 |
+
self.id2lang = id2lang
|
234 |
+
if lang2id is not None and id2lang is not None:
|
235 |
+
assert len(lang2id) == len(id2lang)
|
236 |
+
|
237 |
+
self.ja_word_tokenizer = None
|
238 |
+
self.zh_word_tokenizer = None
|
239 |
+
|
240 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
241 |
+
self.encoder = json.load(vocab_handle)
|
242 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
243 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
244 |
+
merges = merges_handle.read().split("\n")[:-1]
|
245 |
+
merges = [tuple(merge.split()[:2]) for merge in merges]
|
246 |
+
self.bpe_ranks = dict(zip(merges, range(len(merges))))
|
247 |
+
self.cache = {}
|
248 |
+
|
249 |
+
super().__init__(
|
250 |
+
unk_token=unk_token,
|
251 |
+
bos_token=bos_token,
|
252 |
+
sep_token=sep_token,
|
253 |
+
pad_token=pad_token,
|
254 |
+
cls_token=cls_token,
|
255 |
+
mask_token=mask_token,
|
256 |
+
additional_special_tokens=additional_special_tokens,
|
257 |
+
lang2id=lang2id,
|
258 |
+
id2lang=id2lang,
|
259 |
+
**kwargs,
|
260 |
+
)
|
261 |
+
|
262 |
+
@property
|
263 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.do_lower_case
|
264 |
+
def do_lower_case(self):
|
265 |
+
return self.do_lowercase_and_remove_accent
|
266 |
+
|
267 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_punct_norm
|
268 |
+
def moses_punct_norm(self, text, lang):
|
269 |
+
if lang not in self.cache_moses_punct_normalizer:
|
270 |
+
punct_normalizer = self.sm.MosesPunctNormalizer(lang=lang)
|
271 |
+
self.cache_moses_punct_normalizer[lang] = punct_normalizer
|
272 |
+
else:
|
273 |
+
punct_normalizer = self.cache_moses_punct_normalizer[lang]
|
274 |
+
return punct_normalizer.normalize(text)
|
275 |
+
|
276 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_tokenize
|
277 |
+
def moses_tokenize(self, text, lang):
|
278 |
+
if lang not in self.cache_moses_tokenizer:
|
279 |
+
moses_tokenizer = self.sm.MosesTokenizer(lang=lang)
|
280 |
+
self.cache_moses_tokenizer[lang] = moses_tokenizer
|
281 |
+
else:
|
282 |
+
moses_tokenizer = self.cache_moses_tokenizer[lang]
|
283 |
+
return moses_tokenizer.tokenize(text, return_str=False, escape=False)
|
284 |
+
|
285 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.moses_pipeline
|
286 |
+
def moses_pipeline(self, text, lang):
|
287 |
+
text = replace_unicode_punct(text)
|
288 |
+
text = self.moses_punct_norm(text, lang)
|
289 |
+
text = remove_non_printing_char(text)
|
290 |
+
return text
|
291 |
+
|
292 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.ja_tokenize
|
293 |
+
def ja_tokenize(self, text):
|
294 |
+
if self.ja_word_tokenizer is None:
|
295 |
+
try:
|
296 |
+
import Mykytea
|
297 |
+
|
298 |
+
self.ja_word_tokenizer = Mykytea.Mykytea(
|
299 |
+
f"-model {os.path.expanduser('~')}/local/share/kytea/model.bin"
|
300 |
+
)
|
301 |
+
except (AttributeError, ImportError):
|
302 |
+
logger.error(
|
303 |
+
"Make sure you install KyTea (https://github.com/neubig/kytea) and it's python wrapper"
|
304 |
+
" (https://github.com/chezou/Mykytea-python) with the following steps"
|
305 |
+
)
|
306 |
+
logger.error("1. git clone [email protected]:neubig/kytea.git && cd kytea")
|
307 |
+
logger.error("2. autoreconf -i")
|
308 |
+
logger.error("3. ./configure --prefix=$HOME/local")
|
309 |
+
logger.error("4. make && make install")
|
310 |
+
logger.error("5. pip install kytea")
|
311 |
+
raise
|
312 |
+
return list(self.ja_word_tokenizer.getWS(text))
|
313 |
+
|
314 |
+
@property
|
315 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.vocab_size
|
316 |
+
def vocab_size(self):
|
317 |
+
return len(self.encoder)
|
318 |
+
|
319 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_vocab
|
320 |
+
def get_vocab(self):
|
321 |
+
return dict(self.encoder, **self.added_tokens_encoder)
|
322 |
+
|
323 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.bpe
|
324 |
+
def bpe(self, token):
|
325 |
+
word = tuple(token[:-1]) + (token[-1] + "</w>",)
|
326 |
+
if token in self.cache:
|
327 |
+
return self.cache[token]
|
328 |
+
pairs = get_pairs(word)
|
329 |
+
|
330 |
+
if not pairs:
|
331 |
+
return token + "</w>"
|
332 |
+
|
333 |
+
while True:
|
334 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
335 |
+
if bigram not in self.bpe_ranks:
|
336 |
+
break
|
337 |
+
first, second = bigram
|
338 |
+
new_word = []
|
339 |
+
i = 0
|
340 |
+
while i < len(word):
|
341 |
+
try:
|
342 |
+
j = word.index(first, i)
|
343 |
+
except ValueError:
|
344 |
+
new_word.extend(word[i:])
|
345 |
+
break
|
346 |
+
else:
|
347 |
+
new_word.extend(word[i:j])
|
348 |
+
i = j
|
349 |
+
|
350 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
351 |
+
new_word.append(first + second)
|
352 |
+
i += 2
|
353 |
+
else:
|
354 |
+
new_word.append(word[i])
|
355 |
+
i += 1
|
356 |
+
new_word = tuple(new_word)
|
357 |
+
word = new_word
|
358 |
+
if len(word) == 1:
|
359 |
+
break
|
360 |
+
else:
|
361 |
+
pairs = get_pairs(word)
|
362 |
+
word = " ".join(word)
|
363 |
+
if word == "\n </w>":
|
364 |
+
word = "\n</w>"
|
365 |
+
self.cache[token] = word
|
366 |
+
return word
|
367 |
+
|
368 |
+
def preprocess_text(self, text):
|
369 |
+
text = text.replace("``", '"').replace("''", '"')
|
370 |
+
text = convert_to_unicode(text)
|
371 |
+
text = unicodedata.normalize("NFC", text)
|
372 |
+
|
373 |
+
if self.do_lowercase:
|
374 |
+
text = text.lower()
|
375 |
+
|
376 |
+
return text
|
377 |
+
|
378 |
+
def _tokenize(self, text, bypass_tokenizer=False):
|
379 |
+
"""
|
380 |
+
Tokenize a string given language code using Moses.
|
381 |
+
|
382 |
+
Details of tokenization:
|
383 |
+
|
384 |
+
- [sacremoses](https://github.com/alvations/sacremoses): port of Moses
|
385 |
+
- Install with `pip install sacremoses`
|
386 |
+
|
387 |
+
Args:
|
388 |
+
- bypass_tokenizer: Allow users to preprocess and tokenize the sentences externally (default = False)
|
389 |
+
(bool). If True, we only apply BPE.
|
390 |
+
|
391 |
+
Returns:
|
392 |
+
List of tokens.
|
393 |
+
"""
|
394 |
+
lang = "fr"
|
395 |
+
if lang and self.lang2id and lang not in self.lang2id:
|
396 |
+
logger.error(
|
397 |
+
"Supplied language code not found in lang2id mapping. Please check that your language is supported by"
|
398 |
+
" the loaded pretrained model."
|
399 |
+
)
|
400 |
+
|
401 |
+
if bypass_tokenizer:
|
402 |
+
text = text.split()
|
403 |
+
else:
|
404 |
+
text = self.preprocess_text(text)
|
405 |
+
text = self.moses_pipeline(text, lang=lang)
|
406 |
+
text = self.moses_tokenize(text, lang=lang)
|
407 |
+
|
408 |
+
split_tokens = []
|
409 |
+
for token in text:
|
410 |
+
if token:
|
411 |
+
split_tokens.extend(list(self.bpe(token).split(" ")))
|
412 |
+
|
413 |
+
return split_tokens
|
414 |
+
|
415 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_token_to_id
|
416 |
+
def _convert_token_to_id(self, token):
|
417 |
+
"""Converts a token (str) in an id using the vocab."""
|
418 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
419 |
+
|
420 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer._convert_id_to_token
|
421 |
+
def _convert_id_to_token(self, index):
|
422 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
423 |
+
return self.decoder.get(index, self.unk_token)
|
424 |
+
|
425 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.convert_tokens_to_string
|
426 |
+
def convert_tokens_to_string(self, tokens):
|
427 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
428 |
+
out_string = "".join(tokens).replace("</w>", " ").strip()
|
429 |
+
return out_string
|
430 |
+
|
431 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.build_inputs_with_special_tokens
|
432 |
+
def build_inputs_with_special_tokens(
|
433 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
434 |
+
) -> List[int]:
|
435 |
+
"""
|
436 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
437 |
+
adding special tokens. An XLM sequence has the following format:
|
438 |
+
|
439 |
+
- single sequence: `<s> X </s>`
|
440 |
+
- pair of sequences: `<s> A </s> B </s>`
|
441 |
+
|
442 |
+
Args:
|
443 |
+
token_ids_0 (`List[int]`):
|
444 |
+
List of IDs to which the special tokens will be added.
|
445 |
+
token_ids_1 (`List[int]`, *optional*):
|
446 |
+
Optional second list of IDs for sequence pairs.
|
447 |
+
|
448 |
+
Returns:
|
449 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
450 |
+
|
451 |
+
"""
|
452 |
+
bos = [self.bos_token_id]
|
453 |
+
sep = [self.sep_token_id]
|
454 |
+
|
455 |
+
if token_ids_1 is None:
|
456 |
+
return bos + token_ids_0 + sep
|
457 |
+
return bos + token_ids_0 + sep + token_ids_1 + sep
|
458 |
+
|
459 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.get_special_tokens_mask
|
460 |
+
def get_special_tokens_mask(
|
461 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
462 |
+
) -> List[int]:
|
463 |
+
"""
|
464 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
465 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
466 |
+
|
467 |
+
Args:
|
468 |
+
token_ids_0 (`List[int]`):
|
469 |
+
List of IDs.
|
470 |
+
token_ids_1 (`List[int]`, *optional*):
|
471 |
+
Optional second list of IDs for sequence pairs.
|
472 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
473 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
474 |
+
|
475 |
+
Returns:
|
476 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
477 |
+
"""
|
478 |
+
|
479 |
+
if already_has_special_tokens:
|
480 |
+
return super().get_special_tokens_mask(
|
481 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
482 |
+
)
|
483 |
+
|
484 |
+
if token_ids_1 is not None:
|
485 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
486 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
487 |
+
|
488 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.create_token_type_ids_from_sequences
|
489 |
+
def create_token_type_ids_from_sequences(
|
490 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
491 |
+
) -> List[int]:
|
492 |
+
"""
|
493 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. An XLM sequence
|
494 |
+
pair mask has the following format:
|
495 |
+
|
496 |
+
```
|
497 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
498 |
+
| first sequence | second sequence |
|
499 |
+
```
|
500 |
+
|
501 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
502 |
+
|
503 |
+
Args:
|
504 |
+
token_ids_0 (`List[int]`):
|
505 |
+
List of IDs.
|
506 |
+
token_ids_1 (`List[int]`, *optional*):
|
507 |
+
Optional second list of IDs for sequence pairs.
|
508 |
+
|
509 |
+
Returns:
|
510 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
511 |
+
"""
|
512 |
+
sep = [self.sep_token_id]
|
513 |
+
cls = [self.cls_token_id]
|
514 |
+
if token_ids_1 is None:
|
515 |
+
return len(cls + token_ids_0 + sep) * [0]
|
516 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
517 |
+
|
518 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.save_vocabulary
|
519 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
520 |
+
if not os.path.isdir(save_directory):
|
521 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
522 |
+
return
|
523 |
+
vocab_file = os.path.join(
|
524 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
525 |
+
)
|
526 |
+
merge_file = os.path.join(
|
527 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
528 |
+
)
|
529 |
+
|
530 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
531 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
532 |
+
|
533 |
+
index = 0
|
534 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
535 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
536 |
+
if index != token_index:
|
537 |
+
logger.warning(
|
538 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
539 |
+
" Please check that the tokenizer is not corrupted!"
|
540 |
+
)
|
541 |
+
index = token_index
|
542 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
543 |
+
index += 1
|
544 |
+
|
545 |
+
return vocab_file, merge_file
|
546 |
+
|
547 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__getstate__
|
548 |
+
def __getstate__(self):
|
549 |
+
state = self.__dict__.copy()
|
550 |
+
state["sm"] = None
|
551 |
+
return state
|
552 |
+
|
553 |
+
# Copied from transformers.models.xlm.tokenization_xlm.XLMTokenizer.__setstate__
|
554 |
+
def __setstate__(self, d):
|
555 |
+
self.__dict__ = d
|
556 |
+
|
557 |
+
try:
|
558 |
+
import sacremoses
|
559 |
+
except ImportError:
|
560 |
+
raise ImportError(
|
561 |
+
"You need to install sacremoses to use XLMTokenizer. "
|
562 |
+
"See https://pypi.org/project/sacremoses/ for installation."
|
563 |
+
)
|
564 |
+
|
565 |
+
self.sm = sacremoses
|
venv/lib/python3.10/site-packages/transformers/models/mvp/__init__.py
ADDED
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {
|
20 |
+
"configuration_mvp": ["MVP_PRETRAINED_CONFIG_ARCHIVE_MAP", "MvpConfig", "MvpOnnxConfig"],
|
21 |
+
"tokenization_mvp": ["MvpTokenizer"],
|
22 |
+
}
|
23 |
+
|
24 |
+
try:
|
25 |
+
if not is_tokenizers_available():
|
26 |
+
raise OptionalDependencyNotAvailable()
|
27 |
+
except OptionalDependencyNotAvailable:
|
28 |
+
pass
|
29 |
+
else:
|
30 |
+
_import_structure["tokenization_mvp_fast"] = ["MvpTokenizerFast"]
|
31 |
+
|
32 |
+
try:
|
33 |
+
if not is_torch_available():
|
34 |
+
raise OptionalDependencyNotAvailable()
|
35 |
+
except OptionalDependencyNotAvailable:
|
36 |
+
pass
|
37 |
+
else:
|
38 |
+
_import_structure["modeling_mvp"] = [
|
39 |
+
"MVP_PRETRAINED_MODEL_ARCHIVE_LIST",
|
40 |
+
"MvpForCausalLM",
|
41 |
+
"MvpForConditionalGeneration",
|
42 |
+
"MvpForQuestionAnswering",
|
43 |
+
"MvpForSequenceClassification",
|
44 |
+
"MvpModel",
|
45 |
+
"MvpPreTrainedModel",
|
46 |
+
]
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig
|
50 |
+
from .tokenization_mvp import MvpTokenizer
|
51 |
+
|
52 |
+
try:
|
53 |
+
if not is_tokenizers_available():
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
except OptionalDependencyNotAvailable:
|
56 |
+
pass
|
57 |
+
else:
|
58 |
+
from .tokenization_mvp_fast import MvpTokenizerFast
|
59 |
+
|
60 |
+
try:
|
61 |
+
if not is_torch_available():
|
62 |
+
raise OptionalDependencyNotAvailable()
|
63 |
+
except OptionalDependencyNotAvailable:
|
64 |
+
pass
|
65 |
+
else:
|
66 |
+
from .modeling_mvp import (
|
67 |
+
MVP_PRETRAINED_MODEL_ARCHIVE_LIST,
|
68 |
+
MvpForCausalLM,
|
69 |
+
MvpForConditionalGeneration,
|
70 |
+
MvpForQuestionAnswering,
|
71 |
+
MvpForSequenceClassification,
|
72 |
+
MvpModel,
|
73 |
+
MvpPreTrainedModel,
|
74 |
+
)
|
75 |
+
|
76 |
+
else:
|
77 |
+
import sys
|
78 |
+
|
79 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/configuration_mvp.cpython-310.pyc
ADDED
Binary file (7.02 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/modeling_mvp.cpython-310.pyc
ADDED
Binary file (64.3 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp.cpython-310.pyc
ADDED
Binary file (15.1 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mvp/__pycache__/tokenization_mvp_fast.cpython-310.pyc
ADDED
Binary file (9.57 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/mvp/configuration_mvp.py
ADDED
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" MVP model configuration"""
|
16 |
+
import warnings
|
17 |
+
|
18 |
+
from ...configuration_utils import PretrainedConfig
|
19 |
+
from ...utils import logging
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
class MvpConfig(PretrainedConfig):
|
26 |
+
r"""
|
27 |
+
This is the configuration class to store the configuration of a [`MvpModel`]. It is used to instantiate a MVP model
|
28 |
+
according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
29 |
+
defaults will yield a similar configuration to that of the MVP [RUCAIBox/mvp](https://huggingface.co/RUCAIBox/mvp)
|
30 |
+
architecture.
|
31 |
+
|
32 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
33 |
+
documentation from [`PretrainedConfig`] for more information.
|
34 |
+
|
35 |
+
|
36 |
+
Args:
|
37 |
+
vocab_size (`int`, *optional*, defaults to 50267):
|
38 |
+
Vocabulary size of the MVP model. Defines the number of different tokens that can be represented by the
|
39 |
+
`inputs_ids` passed when calling [`MvpModel`].
|
40 |
+
d_model (`int`, *optional*, defaults to 1024):
|
41 |
+
Dimensionality of the layers and the pooler layer.
|
42 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
43 |
+
Number of encoder layers.
|
44 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
45 |
+
Number of decoder layers.
|
46 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
47 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
48 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
49 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
50 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
51 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
52 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
53 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
54 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
55 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
56 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
57 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
59 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
62 |
+
The dropout ratio for activations inside the fully connected layer.
|
63 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
64 |
+
The dropout ratio for classifier.
|
65 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
66 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
67 |
+
just in case (e.g., 512 or 1024 or 2048).
|
68 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
69 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
70 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
71 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
72 |
+
for more details.
|
73 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
74 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
75 |
+
for more details.
|
76 |
+
scale_embedding (`bool`, *optional*, defaults to `False`):
|
77 |
+
Scale embeddings by diving by sqrt(d_model).
|
78 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
79 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
80 |
+
forced_eos_token_id (`int`, *optional*, defaults to 2):
|
81 |
+
The id of the token to force as the last generated token when `max_length` is reached. Usually set to
|
82 |
+
`eos_token_id`.
|
83 |
+
use_prompt (`bool`, *optional*, defaults to `False`):
|
84 |
+
Whether or not to use prompt.
|
85 |
+
prompt_length (`int`, *optional*, defaults to 100):
|
86 |
+
The length of prompt.
|
87 |
+
prompt_mid_dim (`int`, *optional*, defaults to 800):
|
88 |
+
Dimensionality of the "intermediate" layer in prompt.
|
89 |
+
Example:
|
90 |
+
|
91 |
+
```python
|
92 |
+
>>> from transformers import MvpConfig, MvpModel
|
93 |
+
|
94 |
+
>>> # Initializing a MVP RUCAIBox/mvp style configuration
|
95 |
+
>>> configuration = MvpConfig()
|
96 |
+
|
97 |
+
>>> # Initializing a model (with random weights) from the RUCAIBox/mvp style configuration
|
98 |
+
>>> model = MvpModel(configuration)
|
99 |
+
|
100 |
+
>>> # Accessing the model configuration
|
101 |
+
>>> configuration = model.config
|
102 |
+
```"""
|
103 |
+
|
104 |
+
model_type = "mvp"
|
105 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
106 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
107 |
+
|
108 |
+
def __init__(
|
109 |
+
self,
|
110 |
+
vocab_size=50267,
|
111 |
+
max_position_embeddings=1024,
|
112 |
+
encoder_layers=12,
|
113 |
+
encoder_ffn_dim=4096,
|
114 |
+
encoder_attention_heads=16,
|
115 |
+
decoder_layers=12,
|
116 |
+
decoder_ffn_dim=4096,
|
117 |
+
decoder_attention_heads=16,
|
118 |
+
encoder_layerdrop=0.0,
|
119 |
+
decoder_layerdrop=0.0,
|
120 |
+
activation_function="gelu",
|
121 |
+
d_model=1024,
|
122 |
+
dropout=0.1,
|
123 |
+
attention_dropout=0.0,
|
124 |
+
activation_dropout=0.0,
|
125 |
+
init_std=0.02,
|
126 |
+
classifier_dropout=0.0,
|
127 |
+
scale_embedding=False,
|
128 |
+
use_cache=True,
|
129 |
+
pad_token_id=1,
|
130 |
+
bos_token_id=0,
|
131 |
+
eos_token_id=2,
|
132 |
+
is_encoder_decoder=True,
|
133 |
+
decoder_start_token_id=2,
|
134 |
+
forced_eos_token_id=2,
|
135 |
+
use_prompt=False,
|
136 |
+
prompt_length=100,
|
137 |
+
prompt_mid_dim=800,
|
138 |
+
**kwargs,
|
139 |
+
):
|
140 |
+
self.vocab_size = vocab_size
|
141 |
+
self.max_position_embeddings = max_position_embeddings
|
142 |
+
self.d_model = d_model
|
143 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
144 |
+
self.encoder_layers = encoder_layers
|
145 |
+
self.encoder_attention_heads = encoder_attention_heads
|
146 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
147 |
+
self.decoder_layers = decoder_layers
|
148 |
+
self.decoder_attention_heads = decoder_attention_heads
|
149 |
+
self.dropout = dropout
|
150 |
+
self.attention_dropout = attention_dropout
|
151 |
+
self.activation_dropout = activation_dropout
|
152 |
+
self.activation_function = activation_function
|
153 |
+
self.init_std = init_std
|
154 |
+
self.encoder_layerdrop = encoder_layerdrop
|
155 |
+
self.decoder_layerdrop = decoder_layerdrop
|
156 |
+
self.classifier_dropout = classifier_dropout
|
157 |
+
self.use_cache = use_cache
|
158 |
+
self.num_hidden_layers = encoder_layers
|
159 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
160 |
+
self.use_prompt = use_prompt
|
161 |
+
self.prompt_length = prompt_length
|
162 |
+
self.prompt_mid_dim = prompt_mid_dim
|
163 |
+
|
164 |
+
super().__init__(
|
165 |
+
pad_token_id=pad_token_id,
|
166 |
+
bos_token_id=bos_token_id,
|
167 |
+
eos_token_id=eos_token_id,
|
168 |
+
is_encoder_decoder=is_encoder_decoder,
|
169 |
+
decoder_start_token_id=decoder_start_token_id,
|
170 |
+
forced_eos_token_id=forced_eos_token_id,
|
171 |
+
**kwargs,
|
172 |
+
)
|
173 |
+
|
174 |
+
if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
|
175 |
+
self.forced_bos_token_id = self.bos_token_id
|
176 |
+
warnings.warn(
|
177 |
+
f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
|
178 |
+
"The config can simply be saved and uploaded again to be fixed."
|
179 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/mvp/modeling_mvp.py
ADDED
@@ -0,0 +1,2009 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Fairseq Authors and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch MVP model."""
|
16 |
+
import copy
|
17 |
+
import math
|
18 |
+
from typing import List, Optional, Tuple, Union
|
19 |
+
|
20 |
+
import torch
|
21 |
+
import torch.utils.checkpoint
|
22 |
+
from torch import nn
|
23 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
27 |
+
from ...modeling_outputs import (
|
28 |
+
BaseModelOutput,
|
29 |
+
BaseModelOutputWithPastAndCrossAttentions,
|
30 |
+
CausalLMOutputWithCrossAttentions,
|
31 |
+
Seq2SeqLMOutput,
|
32 |
+
Seq2SeqModelOutput,
|
33 |
+
Seq2SeqQuestionAnsweringModelOutput,
|
34 |
+
Seq2SeqSequenceClassifierOutput,
|
35 |
+
)
|
36 |
+
from ...modeling_utils import PreTrainedModel
|
37 |
+
from ...utils import (
|
38 |
+
add_code_sample_docstrings,
|
39 |
+
add_end_docstrings,
|
40 |
+
add_start_docstrings,
|
41 |
+
add_start_docstrings_to_model_forward,
|
42 |
+
logging,
|
43 |
+
replace_return_docstrings,
|
44 |
+
)
|
45 |
+
from .configuration_mvp import MvpConfig
|
46 |
+
|
47 |
+
|
48 |
+
logger = logging.get_logger(__name__)
|
49 |
+
|
50 |
+
_CHECKPOINT_FOR_DOC = "RUCAIBox/mvp"
|
51 |
+
_CONFIG_FOR_DOC = "MvpConfig"
|
52 |
+
|
53 |
+
# Base model docstring
|
54 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 8, 1024]
|
55 |
+
|
56 |
+
|
57 |
+
from ..deprecated._archive_maps import MVP_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
61 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
62 |
+
"""
|
63 |
+
Shift input ids one token to the right.
|
64 |
+
"""
|
65 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
66 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
67 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
68 |
+
|
69 |
+
if pad_token_id is None:
|
70 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
71 |
+
# replace possible -100 values in labels by `pad_token_id`
|
72 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
73 |
+
|
74 |
+
return shifted_input_ids
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.bart.modeling_bart.BartLearnedPositionalEmbedding with Bart->MVP
|
78 |
+
class MvpLearnedPositionalEmbedding(nn.Embedding):
|
79 |
+
"""
|
80 |
+
This module learns positional embeddings up to a fixed maximum size.
|
81 |
+
"""
|
82 |
+
|
83 |
+
def __init__(self, num_embeddings: int, embedding_dim: int):
|
84 |
+
# MVP is set up so that if padding_idx is specified then offset the embedding ids by 2
|
85 |
+
# and adjust num_embeddings appropriately. Other models don't have this hack
|
86 |
+
self.offset = 2
|
87 |
+
super().__init__(num_embeddings + self.offset, embedding_dim)
|
88 |
+
|
89 |
+
def forward(self, input_ids: torch.Tensor, past_key_values_length: int = 0):
|
90 |
+
"""`input_ids' shape is expected to be [bsz x seqlen]."""
|
91 |
+
|
92 |
+
bsz, seq_len = input_ids.shape[:2]
|
93 |
+
positions = torch.arange(
|
94 |
+
past_key_values_length, past_key_values_length + seq_len, dtype=torch.long, device=self.weight.device
|
95 |
+
).expand(bsz, -1)
|
96 |
+
|
97 |
+
return super().forward(positions + self.offset)
|
98 |
+
|
99 |
+
|
100 |
+
class MvpAttention(nn.Module):
|
101 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
embed_dim: int,
|
106 |
+
num_heads: int,
|
107 |
+
dropout: float = 0.0,
|
108 |
+
is_decoder: bool = False,
|
109 |
+
bias: bool = True,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
self.embed_dim = embed_dim
|
113 |
+
self.num_heads = num_heads
|
114 |
+
self.dropout = dropout
|
115 |
+
self.head_dim = embed_dim // num_heads
|
116 |
+
|
117 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
118 |
+
raise ValueError(
|
119 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
120 |
+
f" and `num_heads`: {num_heads})."
|
121 |
+
)
|
122 |
+
self.scaling = self.head_dim**-0.5
|
123 |
+
self.is_decoder = is_decoder
|
124 |
+
|
125 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
126 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
127 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
128 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
129 |
+
|
130 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
131 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
132 |
+
|
133 |
+
def forward(
|
134 |
+
self,
|
135 |
+
hidden_states: torch.Tensor,
|
136 |
+
key_value_states: Optional[torch.Tensor] = None,
|
137 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
138 |
+
attention_mask: Optional[torch.Tensor] = None,
|
139 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
140 |
+
attn_prompt: Optional[torch.Tensor] = None,
|
141 |
+
output_attentions: bool = False,
|
142 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
143 |
+
"""Input shape: Batch x Time x Channel"""
|
144 |
+
|
145 |
+
# if key_value_states are provided this layer is used as a cross-attention layer
|
146 |
+
# for the decoder
|
147 |
+
is_cross_attention = key_value_states is not None
|
148 |
+
|
149 |
+
bsz, tgt_len, _ = hidden_states.size()
|
150 |
+
|
151 |
+
# get query proj
|
152 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
153 |
+
# get key, value proj
|
154 |
+
if is_cross_attention and past_key_value is not None:
|
155 |
+
# reuse k,v, cross_attentions
|
156 |
+
key_states = past_key_value[0]
|
157 |
+
value_states = past_key_value[1]
|
158 |
+
elif is_cross_attention:
|
159 |
+
# cross_attentions
|
160 |
+
key_states = self._shape(self.k_proj(key_value_states), -1, bsz)
|
161 |
+
value_states = self._shape(self.v_proj(key_value_states), -1, bsz)
|
162 |
+
elif past_key_value is not None:
|
163 |
+
# reuse k, v, self_attention
|
164 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
165 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
166 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
167 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
168 |
+
else:
|
169 |
+
# self_attention
|
170 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
171 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
172 |
+
|
173 |
+
if self.is_decoder:
|
174 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
175 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
176 |
+
# key/value_states (first "if" case)
|
177 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
178 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
179 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
180 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
181 |
+
past_key_value = (key_states, value_states)
|
182 |
+
|
183 |
+
if attn_prompt is not None:
|
184 |
+
key_states = torch.cat([attn_prompt[0].expand(bsz, -1, -1, -1), key_states], dim=2)
|
185 |
+
value_states = torch.cat([attn_prompt[1].expand(bsz, -1, -1, -1), value_states], dim=2)
|
186 |
+
if attention_mask is not None:
|
187 |
+
prompt_mask = torch.zeros(bsz, 1, tgt_len, attn_prompt[0].size(1)).to(attention_mask.device)
|
188 |
+
attention_mask = torch.cat([prompt_mask, attention_mask], dim=(-1))
|
189 |
+
|
190 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
191 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
192 |
+
key_states = key_states.view(*proj_shape)
|
193 |
+
value_states = value_states.view(*proj_shape)
|
194 |
+
|
195 |
+
src_len = key_states.size(1)
|
196 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
197 |
+
|
198 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
199 |
+
raise ValueError(
|
200 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
201 |
+
f" {attn_weights.size()}"
|
202 |
+
)
|
203 |
+
|
204 |
+
if attention_mask is not None:
|
205 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
206 |
+
raise ValueError(
|
207 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
208 |
+
)
|
209 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
210 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
211 |
+
|
212 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
213 |
+
|
214 |
+
if layer_head_mask is not None:
|
215 |
+
if layer_head_mask.size() != (self.num_heads,):
|
216 |
+
raise ValueError(
|
217 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
218 |
+
f" {layer_head_mask.size()}"
|
219 |
+
)
|
220 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
221 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
222 |
+
|
223 |
+
if output_attentions:
|
224 |
+
# this operation is a bit awkward, but it's required to
|
225 |
+
# make sure that attn_weights keeps its gradient.
|
226 |
+
# In order to do so, attn_weights have to be reshaped
|
227 |
+
# twice and have to be reused in the following
|
228 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
229 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
230 |
+
else:
|
231 |
+
attn_weights_reshaped = None
|
232 |
+
|
233 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
234 |
+
|
235 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
236 |
+
|
237 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
238 |
+
raise ValueError(
|
239 |
+
f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
|
240 |
+
f" {attn_output.size()}"
|
241 |
+
)
|
242 |
+
|
243 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
244 |
+
attn_output = attn_output.transpose(1, 2)
|
245 |
+
|
246 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
247 |
+
# partitioned aross GPUs when using tensor-parallelism.
|
248 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
249 |
+
|
250 |
+
attn_output = self.out_proj(attn_output)
|
251 |
+
|
252 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
253 |
+
|
254 |
+
|
255 |
+
class MvpEncoderLayer(nn.Module):
|
256 |
+
def __init__(self, config: MvpConfig):
|
257 |
+
super().__init__()
|
258 |
+
self.embed_dim = config.d_model
|
259 |
+
self.self_attn = MvpAttention(
|
260 |
+
embed_dim=self.embed_dim,
|
261 |
+
num_heads=config.encoder_attention_heads,
|
262 |
+
dropout=config.attention_dropout,
|
263 |
+
)
|
264 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
265 |
+
self.dropout = config.dropout
|
266 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
267 |
+
self.activation_dropout = config.activation_dropout
|
268 |
+
self.fc1 = nn.Linear(self.embed_dim, config.encoder_ffn_dim)
|
269 |
+
self.fc2 = nn.Linear(config.encoder_ffn_dim, self.embed_dim)
|
270 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
271 |
+
|
272 |
+
def forward(
|
273 |
+
self,
|
274 |
+
hidden_states: torch.FloatTensor,
|
275 |
+
attention_mask: torch.FloatTensor,
|
276 |
+
layer_head_mask: torch.FloatTensor,
|
277 |
+
self_attn_prompt: torch.FloatTensor,
|
278 |
+
output_attentions: Optional[bool] = False,
|
279 |
+
) -> Tuple[torch.FloatTensor, Optional[torch.FloatTensor]]:
|
280 |
+
"""
|
281 |
+
Args:
|
282 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
283 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
284 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
285 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
286 |
+
`(encoder_attention_heads,)`.
|
287 |
+
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
|
288 |
+
`(2, encoder_attention_heads, pro_len, head_dim)`.
|
289 |
+
output_attentions (`bool`, *optional*):
|
290 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
291 |
+
returned tensors for more detail.
|
292 |
+
"""
|
293 |
+
residual = hidden_states
|
294 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
295 |
+
hidden_states=hidden_states,
|
296 |
+
attention_mask=attention_mask,
|
297 |
+
layer_head_mask=layer_head_mask,
|
298 |
+
attn_prompt=self_attn_prompt,
|
299 |
+
output_attentions=output_attentions,
|
300 |
+
)
|
301 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
302 |
+
hidden_states = residual + hidden_states
|
303 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
304 |
+
|
305 |
+
residual = hidden_states
|
306 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
307 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
308 |
+
hidden_states = self.fc2(hidden_states)
|
309 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
310 |
+
hidden_states = residual + hidden_states
|
311 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
312 |
+
|
313 |
+
if hidden_states.dtype == torch.float16 and (
|
314 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
315 |
+
):
|
316 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
317 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
318 |
+
|
319 |
+
outputs = (hidden_states,)
|
320 |
+
|
321 |
+
if output_attentions:
|
322 |
+
outputs += (attn_weights,)
|
323 |
+
|
324 |
+
return outputs
|
325 |
+
|
326 |
+
|
327 |
+
class MvpDecoderLayer(nn.Module):
|
328 |
+
def __init__(self, config: MvpConfig):
|
329 |
+
super().__init__()
|
330 |
+
self.embed_dim = config.d_model
|
331 |
+
|
332 |
+
self.self_attn = MvpAttention(
|
333 |
+
embed_dim=self.embed_dim,
|
334 |
+
num_heads=config.decoder_attention_heads,
|
335 |
+
dropout=config.attention_dropout,
|
336 |
+
is_decoder=True,
|
337 |
+
)
|
338 |
+
self.dropout = config.dropout
|
339 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
340 |
+
self.activation_dropout = config.activation_dropout
|
341 |
+
|
342 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
343 |
+
self.encoder_attn = MvpAttention(
|
344 |
+
self.embed_dim,
|
345 |
+
config.decoder_attention_heads,
|
346 |
+
dropout=config.attention_dropout,
|
347 |
+
is_decoder=True,
|
348 |
+
)
|
349 |
+
self.encoder_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
350 |
+
self.fc1 = nn.Linear(self.embed_dim, config.decoder_ffn_dim)
|
351 |
+
self.fc2 = nn.Linear(config.decoder_ffn_dim, self.embed_dim)
|
352 |
+
self.final_layer_norm = nn.LayerNorm(self.embed_dim)
|
353 |
+
|
354 |
+
def forward(
|
355 |
+
self,
|
356 |
+
hidden_states: torch.Tensor,
|
357 |
+
attention_mask: Optional[torch.Tensor] = None,
|
358 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
359 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
360 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
361 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
362 |
+
self_attn_prompt: Optional[torch.Tensor] = None,
|
363 |
+
cross_attn_prompt: Optional[torch.Tensor] = None,
|
364 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
365 |
+
output_attentions: Optional[bool] = False,
|
366 |
+
use_cache: Optional[bool] = True,
|
367 |
+
) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
|
368 |
+
"""
|
369 |
+
Args:
|
370 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
371 |
+
attention_mask (`torch.FloatTensor`): attention mask of size
|
372 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
373 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
374 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
375 |
+
encoder_attention_mask (`torch.FloatTensor`): encoder attention mask of size
|
376 |
+
`(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
|
377 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
378 |
+
`(encoder_attention_heads,)`.
|
379 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`): mask for cross-attention heads in a given layer of
|
380 |
+
size `(decoder_attention_heads,)`.
|
381 |
+
self_attn_prompt (`torch.FloatTensor`): prompt of self attention of shape
|
382 |
+
`(2, decoder_attention_heads, pro_len, head_dim)`.
|
383 |
+
cross_attn_prompt (`torch.FloatTensor`): prompt of cross attention of shape
|
384 |
+
`(2, decoder_attention_heads, pro_len, head_dim)`.
|
385 |
+
past_key_value (`Tuple(torch.FloatTensor)`): cached past key and value projection states
|
386 |
+
output_attentions (`bool`, *optional*):
|
387 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
388 |
+
returned tensors for more detail.
|
389 |
+
"""
|
390 |
+
residual = hidden_states
|
391 |
+
|
392 |
+
# Self Attention
|
393 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
394 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
395 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
396 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
397 |
+
hidden_states=hidden_states,
|
398 |
+
past_key_value=self_attn_past_key_value,
|
399 |
+
attention_mask=attention_mask,
|
400 |
+
layer_head_mask=layer_head_mask,
|
401 |
+
attn_prompt=self_attn_prompt,
|
402 |
+
output_attentions=output_attentions,
|
403 |
+
)
|
404 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
405 |
+
hidden_states = residual + hidden_states
|
406 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
407 |
+
|
408 |
+
# Cross-Attention Block
|
409 |
+
cross_attn_present_key_value = None
|
410 |
+
cross_attn_weights = None
|
411 |
+
if encoder_hidden_states is not None:
|
412 |
+
residual = hidden_states
|
413 |
+
|
414 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
415 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
416 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.encoder_attn(
|
417 |
+
hidden_states=hidden_states,
|
418 |
+
key_value_states=encoder_hidden_states,
|
419 |
+
attention_mask=encoder_attention_mask,
|
420 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
421 |
+
attn_prompt=cross_attn_prompt,
|
422 |
+
past_key_value=cross_attn_past_key_value,
|
423 |
+
output_attentions=output_attentions,
|
424 |
+
)
|
425 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
426 |
+
hidden_states = residual + hidden_states
|
427 |
+
hidden_states = self.encoder_attn_layer_norm(hidden_states)
|
428 |
+
|
429 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
430 |
+
present_key_value = present_key_value + cross_attn_present_key_value
|
431 |
+
|
432 |
+
# Fully Connected
|
433 |
+
residual = hidden_states
|
434 |
+
hidden_states = self.activation_fn(self.fc1(hidden_states))
|
435 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.activation_dropout, training=self.training)
|
436 |
+
hidden_states = self.fc2(hidden_states)
|
437 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
438 |
+
hidden_states = residual + hidden_states
|
439 |
+
hidden_states = self.final_layer_norm(hidden_states)
|
440 |
+
|
441 |
+
outputs = (hidden_states,)
|
442 |
+
|
443 |
+
if output_attentions:
|
444 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
445 |
+
|
446 |
+
if use_cache:
|
447 |
+
outputs += (present_key_value,)
|
448 |
+
|
449 |
+
return outputs
|
450 |
+
|
451 |
+
|
452 |
+
# Copied from transformers.models.bart.modeling_bart.BartClassificationHead with Bart->MVP
|
453 |
+
class MvpClassificationHead(nn.Module):
|
454 |
+
"""Head for sentence-level classification tasks."""
|
455 |
+
|
456 |
+
def __init__(
|
457 |
+
self,
|
458 |
+
input_dim: int,
|
459 |
+
inner_dim: int,
|
460 |
+
num_classes: int,
|
461 |
+
pooler_dropout: float,
|
462 |
+
):
|
463 |
+
super().__init__()
|
464 |
+
self.dense = nn.Linear(input_dim, inner_dim)
|
465 |
+
self.dropout = nn.Dropout(p=pooler_dropout)
|
466 |
+
self.out_proj = nn.Linear(inner_dim, num_classes)
|
467 |
+
|
468 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
469 |
+
hidden_states = self.dropout(hidden_states)
|
470 |
+
hidden_states = self.dense(hidden_states)
|
471 |
+
hidden_states = torch.tanh(hidden_states)
|
472 |
+
hidden_states = self.dropout(hidden_states)
|
473 |
+
hidden_states = self.out_proj(hidden_states)
|
474 |
+
return hidden_states
|
475 |
+
|
476 |
+
|
477 |
+
class MvpPrompt(nn.Module):
|
478 |
+
"""Layer-wise prompt for encoder or decoder."""
|
479 |
+
|
480 |
+
def __init__(self, config, num_layers, num_heads):
|
481 |
+
super().__init__()
|
482 |
+
self.prompt_length = config.prompt_length
|
483 |
+
self.num_layers = num_layers
|
484 |
+
self.num_heads = num_heads
|
485 |
+
self.head_dim = config.d_model // num_heads
|
486 |
+
self.dropout = nn.Dropout(p=config.dropout)
|
487 |
+
self.prompt_embedding = nn.Embedding(config.prompt_length, config.d_model)
|
488 |
+
self.prompt_trans = nn.Sequential(
|
489 |
+
nn.Linear(config.d_model, config.prompt_mid_dim),
|
490 |
+
nn.GELU(),
|
491 |
+
nn.Linear(config.prompt_mid_dim, num_layers * 2 * config.d_model),
|
492 |
+
)
|
493 |
+
|
494 |
+
def forward(self, prompt_ids: torch.Tensor) -> Tuple[torch.Tensor]:
|
495 |
+
prompt = self.prompt_trans(self.prompt_embedding(prompt_ids))
|
496 |
+
prompt = prompt.view(self.prompt_length, self.num_layers * 2, self.num_heads, self.head_dim)
|
497 |
+
prompt = self.dropout(prompt)
|
498 |
+
prompt = prompt.permute([1, 2, 0, 3]).split(2)
|
499 |
+
return prompt
|
500 |
+
|
501 |
+
|
502 |
+
class MvpPreTrainedModel(PreTrainedModel):
|
503 |
+
config_class = MvpConfig
|
504 |
+
base_model_prefix = "model"
|
505 |
+
supports_gradient_checkpointing = True
|
506 |
+
|
507 |
+
def _init_weights(self, module):
|
508 |
+
std = self.config.init_std
|
509 |
+
if isinstance(module, nn.Linear):
|
510 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
511 |
+
if module.bias is not None:
|
512 |
+
module.bias.data.zero_()
|
513 |
+
elif isinstance(module, nn.Embedding):
|
514 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
515 |
+
if module.padding_idx is not None:
|
516 |
+
module.weight.data[module.padding_idx].zero_()
|
517 |
+
|
518 |
+
@property
|
519 |
+
def dummy_inputs(self):
|
520 |
+
pad_token = self.config.pad_token_id
|
521 |
+
input_ids = torch.tensor([[0, 6, 10, 4, 2], [0, 8, 12, 2, pad_token]], device=self.device)
|
522 |
+
dummy_inputs = {
|
523 |
+
"attention_mask": input_ids.ne(pad_token),
|
524 |
+
"input_ids": input_ids,
|
525 |
+
}
|
526 |
+
return dummy_inputs
|
527 |
+
|
528 |
+
|
529 |
+
MVP_START_DOCSTRING = r"""
|
530 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
531 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
532 |
+
etc.)
|
533 |
+
|
534 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
535 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
536 |
+
and behavior.
|
537 |
+
|
538 |
+
Parameters:
|
539 |
+
config ([`MvpConfig`]):
|
540 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
541 |
+
load the weights associated with the model, only the configuration. Check out the
|
542 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
543 |
+
"""
|
544 |
+
|
545 |
+
MVP_INPUTS_DOCSTRING = r"""
|
546 |
+
Args:
|
547 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
548 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
549 |
+
it.
|
550 |
+
|
551 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
552 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
553 |
+
|
554 |
+
[What are input IDs?](../glossary#input-ids)
|
555 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
556 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
557 |
+
|
558 |
+
- 1 for tokens that are **not masked**,
|
559 |
+
- 0 for tokens that are **masked**.
|
560 |
+
|
561 |
+
[What are attention masks?](../glossary#attention-mask)
|
562 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
563 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
564 |
+
|
565 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
566 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
567 |
+
|
568 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
569 |
+
|
570 |
+
Mvp uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values`
|
571 |
+
is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`).
|
572 |
+
|
573 |
+
For translation and summarization training, `decoder_input_ids` should be provided. If no
|
574 |
+
`decoder_input_ids` is provided, the model will create this tensor by shifting the `input_ids` to the right
|
575 |
+
for denoising pre-training following the paper.
|
576 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
577 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
578 |
+
be used by default.
|
579 |
+
|
580 |
+
If you want to change padding behavior, you should read [`modeling_mvp._prepare_decoder_attention_mask`]
|
581 |
+
and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
|
582 |
+
information on the default strategy.
|
583 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
584 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
585 |
+
|
586 |
+
- 1 indicates the head is **not masked**,
|
587 |
+
- 0 indicates the head is **masked**.
|
588 |
+
|
589 |
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
590 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
591 |
+
|
592 |
+
- 1 indicates the head is **not masked**,
|
593 |
+
- 0 indicates the head is **masked**.
|
594 |
+
|
595 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
596 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
|
597 |
+
1]`:
|
598 |
+
|
599 |
+
- 1 indicates the head is **not masked**,
|
600 |
+
- 0 indicates the head is **masked**.
|
601 |
+
|
602 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
603 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
604 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
605 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
606 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
607 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
608 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
609 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
610 |
+
|
611 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
612 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
613 |
+
|
614 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
615 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
616 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
617 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
618 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
619 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
620 |
+
than the model's internal embedding lookup matrix.
|
621 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
622 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
623 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
624 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
625 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
626 |
+
|
627 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
628 |
+
of `inputs_embeds`.
|
629 |
+
use_cache (`bool`, *optional*):
|
630 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
631 |
+
`past_key_values`).
|
632 |
+
output_attentions (`bool`, *optional*):
|
633 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
634 |
+
tensors for more detail.
|
635 |
+
output_hidden_states (`bool`, *optional*):
|
636 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
637 |
+
more detail.
|
638 |
+
return_dict (`bool`, *optional*):
|
639 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
640 |
+
"""
|
641 |
+
|
642 |
+
MVP_CONDITIONAL_GENERATION_EXAMPLE = r"""
|
643 |
+
Example of summarization:
|
644 |
+
|
645 |
+
Fine-tuning a model
|
646 |
+
```python
|
647 |
+
>>> import torch
|
648 |
+
>>> from transformers import AutoTokenizer, MvpForConditionalGeneration
|
649 |
+
|
650 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
|
651 |
+
>>> model = MvpForConditionalGeneration.from_pretrained("RUCAIBox/mvp")
|
652 |
+
|
653 |
+
>>> inputs = tokenizer(
|
654 |
+
... "Summarize: You may want to stick it to your boss and leave your job, but don't do it if these are your reasons.",
|
655 |
+
... return_tensors="pt",
|
656 |
+
... )
|
657 |
+
>>> labels = tokenizer("Bad Reasons To Quit Your Job", return_tensors="pt")["input_ids"]
|
658 |
+
|
659 |
+
>>> loss = model(**inputs, labels=labels).loss
|
660 |
+
>>> loss.backward()
|
661 |
+
```
|
662 |
+
|
663 |
+
Inference after the model fine-tuned
|
664 |
+
```python
|
665 |
+
>>> with torch.no_grad():
|
666 |
+
... generated_ids = model.generate(**inputs)
|
667 |
+
|
668 |
+
>>> generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
669 |
+
```
|
670 |
+
"""
|
671 |
+
|
672 |
+
MVP_SEQUENCE_CLASSIFICATION_SAMPLE = r"""
|
673 |
+
Example of single-label classification:
|
674 |
+
|
675 |
+
Fine-tuning a model on `num_labels` classes
|
676 |
+
```python
|
677 |
+
>>> import torch
|
678 |
+
>>> from transformers import AutoTokenizer, MvpForSequenceClassification
|
679 |
+
|
680 |
+
>>> num_labels = 2 # for example, this is a binary classification task
|
681 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
|
682 |
+
>>> model = MvpForSequenceClassification.from_pretrained("RUCAIBox/mvp", num_labels=num_labels)
|
683 |
+
|
684 |
+
>>> inputs = tokenizer("Classify: Hello, my dog is cute", return_tensors="pt")
|
685 |
+
>>> labels = torch.tensor(1) # the real label for inputs
|
686 |
+
|
687 |
+
>>> loss = model(**inputs, labels=labels).loss
|
688 |
+
>>> loss.backward()
|
689 |
+
```
|
690 |
+
|
691 |
+
Inference after the model fine-tuned
|
692 |
+
```python
|
693 |
+
>>> with torch.no_grad():
|
694 |
+
... logits = model(**inputs).logits
|
695 |
+
|
696 |
+
>>> predicted_class_id = logits.argmax()
|
697 |
+
```
|
698 |
+
"""
|
699 |
+
|
700 |
+
MVP_QUESTION_ANSWERING_SAMPLE = r"""
|
701 |
+
Example:
|
702 |
+
|
703 |
+
Fine-tuning a model for extrative question answering, and our model also supports generative question answering
|
704 |
+
using `BartForConditionalGeneration`
|
705 |
+
```python
|
706 |
+
>>> import torch
|
707 |
+
>>> from transformers import AutoTokenizer, MvpForQuestionAnswering
|
708 |
+
|
709 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
|
710 |
+
>>> model = MvpForQuestionAnswering.from_pretrained("RUCAIBox/mvp")
|
711 |
+
|
712 |
+
>>> inputs = tokenizer(
|
713 |
+
... "Answer the following question: Who was Jim Henson? [SEP] Jim Henson was a nice puppet",
|
714 |
+
... return_tensors="pt",
|
715 |
+
... )
|
716 |
+
>>> target_start_index = torch.tensor([18])
|
717 |
+
>>> target_end_index = torch.tensor([19])
|
718 |
+
|
719 |
+
>>> loss = model(**inputs, start_positions=target_start_index, end_positions=target_end_index).loss
|
720 |
+
>>> loss.backward()
|
721 |
+
```
|
722 |
+
|
723 |
+
Inference after the model fine-tuned
|
724 |
+
```python
|
725 |
+
>>> with torch.no_grad():
|
726 |
+
... outputs = model(**inputs)
|
727 |
+
|
728 |
+
>>> answer_start_index = outputs.start_logits.argmax()
|
729 |
+
>>> answer_end_index = outputs.end_logits.argmax()
|
730 |
+
|
731 |
+
>>> predict_answer_tokens = inputs.input_ids[0, answer_start_index : answer_end_index + 1]
|
732 |
+
>>> predict_answer = tokenizer.decode(predict_answer_tokens)
|
733 |
+
```
|
734 |
+
"""
|
735 |
+
|
736 |
+
|
737 |
+
class MvpEncoder(MvpPreTrainedModel):
|
738 |
+
"""
|
739 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
740 |
+
[`MvpEncoderLayer`].
|
741 |
+
|
742 |
+
Args:
|
743 |
+
config: MvpConfig
|
744 |
+
embed_tokens (nn.Embedding): output embedding
|
745 |
+
use_prompt (bool): whether to use prompt
|
746 |
+
"""
|
747 |
+
|
748 |
+
def __init__(
|
749 |
+
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
|
750 |
+
):
|
751 |
+
super().__init__(config)
|
752 |
+
|
753 |
+
self.dropout = config.dropout
|
754 |
+
self.layerdrop = config.encoder_layerdrop
|
755 |
+
|
756 |
+
embed_dim = config.d_model
|
757 |
+
self.padding_idx = config.pad_token_id
|
758 |
+
self.max_source_positions = config.max_position_embeddings
|
759 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
760 |
+
|
761 |
+
if embed_tokens is not None:
|
762 |
+
self.embed_tokens = embed_tokens
|
763 |
+
else:
|
764 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
765 |
+
|
766 |
+
self.embed_positions = MvpLearnedPositionalEmbedding(
|
767 |
+
config.max_position_embeddings,
|
768 |
+
embed_dim,
|
769 |
+
)
|
770 |
+
self.layers = nn.ModuleList([MvpEncoderLayer(config) for _ in range(config.encoder_layers)])
|
771 |
+
self.layernorm_embedding = nn.LayerNorm(embed_dim)
|
772 |
+
|
773 |
+
self.use_prompt = use_prompt
|
774 |
+
if use_prompt:
|
775 |
+
self.prompt_length = config.prompt_length
|
776 |
+
self.self_attn_prompt = MvpPrompt(
|
777 |
+
config,
|
778 |
+
config.encoder_layers,
|
779 |
+
config.encoder_attention_heads,
|
780 |
+
)
|
781 |
+
|
782 |
+
self.gradient_checkpointing = False
|
783 |
+
# Initialize weights and apply final processing
|
784 |
+
self.post_init()
|
785 |
+
|
786 |
+
def get_input_embeddings(self):
|
787 |
+
return self.embed_tokens
|
788 |
+
|
789 |
+
def set_input_embeddings(self, value):
|
790 |
+
self.embed_tokens = value
|
791 |
+
|
792 |
+
def forward(
|
793 |
+
self,
|
794 |
+
input_ids: torch.LongTensor = None,
|
795 |
+
attention_mask: Optional[torch.Tensor] = None,
|
796 |
+
head_mask: Optional[torch.Tensor] = None,
|
797 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
798 |
+
output_attentions: Optional[bool] = None,
|
799 |
+
output_hidden_states: Optional[bool] = None,
|
800 |
+
return_dict: Optional[bool] = None,
|
801 |
+
) -> Union[Tuple, BaseModelOutput]:
|
802 |
+
r"""
|
803 |
+
Args:
|
804 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
805 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
806 |
+
provide it.
|
807 |
+
|
808 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
809 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
810 |
+
|
811 |
+
[What are input IDs?](../glossary#input-ids)
|
812 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
813 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
814 |
+
|
815 |
+
- 1 for tokens that are **not masked**,
|
816 |
+
- 0 for tokens that are **masked**.
|
817 |
+
|
818 |
+
[What are attention masks?](../glossary#attention-mask)
|
819 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
820 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
821 |
+
|
822 |
+
- 1 indicates the head is **not masked**,
|
823 |
+
- 0 indicates the head is **masked**.
|
824 |
+
|
825 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
826 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
827 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
828 |
+
than the model's internal embedding lookup matrix.
|
829 |
+
output_attentions (`bool`, *optional*):
|
830 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
831 |
+
returned tensors for more detail.
|
832 |
+
output_hidden_states (`bool`, *optional*):
|
833 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
834 |
+
for more detail.
|
835 |
+
return_dict (`bool`, *optional*):
|
836 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
837 |
+
"""
|
838 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
839 |
+
output_hidden_states = (
|
840 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
841 |
+
)
|
842 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
843 |
+
|
844 |
+
# retrieve input_ids and inputs_embeds
|
845 |
+
if input_ids is not None and inputs_embeds is not None:
|
846 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
847 |
+
elif input_ids is not None:
|
848 |
+
input = input_ids
|
849 |
+
input_shape = input.shape
|
850 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
851 |
+
elif inputs_embeds is not None:
|
852 |
+
input_shape = inputs_embeds.size()[:-1]
|
853 |
+
input = inputs_embeds[:, :, -1]
|
854 |
+
else:
|
855 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
856 |
+
|
857 |
+
if inputs_embeds is None:
|
858 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
859 |
+
|
860 |
+
embed_pos = self.embed_positions(input)
|
861 |
+
|
862 |
+
hidden_states = inputs_embeds + embed_pos
|
863 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
864 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
865 |
+
|
866 |
+
# layer-wise prompt
|
867 |
+
if self.use_prompt:
|
868 |
+
prompt_ids = torch.arange(self.prompt_length).to(self.device)
|
869 |
+
self_attn_prompt = self.self_attn_prompt(prompt_ids)
|
870 |
+
|
871 |
+
# expand attention_mask
|
872 |
+
if attention_mask is not None:
|
873 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
874 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
875 |
+
|
876 |
+
encoder_states = () if output_hidden_states else None
|
877 |
+
all_attentions = () if output_attentions else None
|
878 |
+
|
879 |
+
# check if head_mask has a correct number of layers specified if desired
|
880 |
+
if head_mask is not None:
|
881 |
+
if head_mask.size()[0] != (len(self.layers)):
|
882 |
+
raise ValueError(
|
883 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
884 |
+
f" {head_mask.size()[0]}."
|
885 |
+
)
|
886 |
+
|
887 |
+
for idx, encoder_layer in enumerate(self.layers):
|
888 |
+
if output_hidden_states:
|
889 |
+
encoder_states = encoder_states + (hidden_states,)
|
890 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
891 |
+
to_drop = False
|
892 |
+
if self.training:
|
893 |
+
dropout_probability = torch.rand([])
|
894 |
+
if dropout_probability < self.layerdrop: # skip the layer
|
895 |
+
to_drop = True
|
896 |
+
|
897 |
+
if to_drop:
|
898 |
+
layer_outputs = (None, None)
|
899 |
+
else:
|
900 |
+
if self.gradient_checkpointing and self.training:
|
901 |
+
layer_outputs = self._gradient_checkpointing_func(
|
902 |
+
encoder_layer.__call__,
|
903 |
+
hidden_states,
|
904 |
+
attention_mask,
|
905 |
+
(head_mask[idx] if head_mask is not None else None),
|
906 |
+
(self_attn_prompt[idx] if self.use_prompt else None),
|
907 |
+
output_attentions,
|
908 |
+
)
|
909 |
+
else:
|
910 |
+
layer_outputs = encoder_layer(
|
911 |
+
hidden_states,
|
912 |
+
attention_mask,
|
913 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
914 |
+
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
|
915 |
+
output_attentions=output_attentions,
|
916 |
+
)
|
917 |
+
|
918 |
+
hidden_states = layer_outputs[0]
|
919 |
+
|
920 |
+
if output_attentions:
|
921 |
+
all_attentions = all_attentions + (layer_outputs[1],)
|
922 |
+
|
923 |
+
if output_hidden_states:
|
924 |
+
encoder_states = encoder_states + (hidden_states,)
|
925 |
+
|
926 |
+
if not return_dict:
|
927 |
+
return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
|
928 |
+
return BaseModelOutput(
|
929 |
+
last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
|
930 |
+
)
|
931 |
+
|
932 |
+
|
933 |
+
class MvpDecoder(MvpPreTrainedModel):
|
934 |
+
"""
|
935 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`MvpDecoderLayer`]
|
936 |
+
|
937 |
+
Args:
|
938 |
+
config: MvpConfig
|
939 |
+
embed_tokens (nn.Embedding): output embedding
|
940 |
+
use_prompt (bool): whether to use prompt
|
941 |
+
"""
|
942 |
+
|
943 |
+
def __init__(
|
944 |
+
self, config: MvpConfig, embed_tokens: Optional[nn.Embedding] = None, use_prompt: Optional[bool] = False
|
945 |
+
):
|
946 |
+
super().__init__(config)
|
947 |
+
self.dropout = config.dropout
|
948 |
+
self.layerdrop = config.decoder_layerdrop
|
949 |
+
self.padding_idx = config.pad_token_id
|
950 |
+
self.max_target_positions = config.max_position_embeddings
|
951 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
952 |
+
|
953 |
+
if embed_tokens is not None:
|
954 |
+
self.embed_tokens = embed_tokens
|
955 |
+
else:
|
956 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
957 |
+
|
958 |
+
self.embed_positions = MvpLearnedPositionalEmbedding(
|
959 |
+
config.max_position_embeddings,
|
960 |
+
config.d_model,
|
961 |
+
)
|
962 |
+
self.layers = nn.ModuleList([MvpDecoderLayer(config) for _ in range(config.decoder_layers)])
|
963 |
+
self.layernorm_embedding = nn.LayerNorm(config.d_model)
|
964 |
+
|
965 |
+
self.use_prompt = use_prompt
|
966 |
+
if use_prompt:
|
967 |
+
self.prompt_length = config.prompt_length
|
968 |
+
self.self_attn_prompt = MvpPrompt(
|
969 |
+
config,
|
970 |
+
config.decoder_layers,
|
971 |
+
config.decoder_attention_heads,
|
972 |
+
)
|
973 |
+
self.cross_attn_prompt = MvpPrompt(
|
974 |
+
config,
|
975 |
+
config.decoder_layers,
|
976 |
+
config.decoder_attention_heads,
|
977 |
+
)
|
978 |
+
|
979 |
+
self.gradient_checkpointing = False
|
980 |
+
# Initialize weights and apply final processing
|
981 |
+
self.post_init()
|
982 |
+
|
983 |
+
def get_input_embeddings(self):
|
984 |
+
return self.embed_tokens
|
985 |
+
|
986 |
+
def set_input_embeddings(self, value):
|
987 |
+
self.embed_tokens = value
|
988 |
+
|
989 |
+
def forward(
|
990 |
+
self,
|
991 |
+
input_ids: torch.LongTensor = None,
|
992 |
+
attention_mask: Optional[torch.Tensor] = None,
|
993 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
994 |
+
encoder_attention_mask: Optional[torch.LongTensor] = None,
|
995 |
+
head_mask: Optional[torch.Tensor] = None,
|
996 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
997 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
998 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
999 |
+
use_cache: Optional[bool] = None,
|
1000 |
+
output_attentions: Optional[bool] = None,
|
1001 |
+
output_hidden_states: Optional[bool] = None,
|
1002 |
+
return_dict: Optional[bool] = None,
|
1003 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
1004 |
+
r"""
|
1005 |
+
Args:
|
1006 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1007 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1008 |
+
provide it.
|
1009 |
+
|
1010 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1011 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1012 |
+
|
1013 |
+
[What are input IDs?](../glossary#input-ids)
|
1014 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1015 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1016 |
+
|
1017 |
+
- 1 for tokens that are **not masked**,
|
1018 |
+
- 0 for tokens that are **masked**.
|
1019 |
+
|
1020 |
+
[What are attention masks?](../glossary#attention-mask)
|
1021 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1022 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1023 |
+
of the decoder.
|
1024 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1025 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1026 |
+
selected in `[0, 1]`:
|
1027 |
+
|
1028 |
+
- 1 for tokens that are **not masked**,
|
1029 |
+
- 0 for tokens that are **masked**.
|
1030 |
+
|
1031 |
+
[What are attention masks?](../glossary#attention-mask)
|
1032 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1033 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1034 |
+
|
1035 |
+
- 1 indicates the head is **not masked**,
|
1036 |
+
- 0 indicates the head is **masked**.
|
1037 |
+
|
1038 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1039 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
1040 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
1041 |
+
|
1042 |
+
- 1 indicates the head is **not masked**,
|
1043 |
+
- 0 indicates the head is **masked**.
|
1044 |
+
|
1045 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1046 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1047 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1048 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1049 |
+
|
1050 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1051 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1052 |
+
|
1053 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1054 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1055 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1056 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1057 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1058 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1059 |
+
than the model's internal embedding lookup matrix.
|
1060 |
+
output_attentions (`bool`, *optional*):
|
1061 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1062 |
+
returned tensors for more detail.
|
1063 |
+
output_hidden_states (`bool`, *optional*):
|
1064 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1065 |
+
for more detail.
|
1066 |
+
return_dict (`bool`, *optional*):
|
1067 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1068 |
+
"""
|
1069 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1070 |
+
output_hidden_states = (
|
1071 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1072 |
+
)
|
1073 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1074 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1075 |
+
|
1076 |
+
# retrieve input_ids and inputs_embeds
|
1077 |
+
if input_ids is not None and inputs_embeds is not None:
|
1078 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1079 |
+
elif input_ids is not None:
|
1080 |
+
input = input_ids
|
1081 |
+
input_shape = input_ids.shape
|
1082 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1083 |
+
elif inputs_embeds is not None:
|
1084 |
+
input_shape = inputs_embeds.size()[:-1]
|
1085 |
+
input = inputs_embeds[:, :, -1]
|
1086 |
+
else:
|
1087 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1088 |
+
|
1089 |
+
# past_key_values_length
|
1090 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1091 |
+
|
1092 |
+
if inputs_embeds is None:
|
1093 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1094 |
+
|
1095 |
+
attention_mask = _prepare_4d_causal_attention_mask(
|
1096 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1097 |
+
)
|
1098 |
+
|
1099 |
+
# expand encoder attention mask
|
1100 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1101 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1102 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
1103 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1104 |
+
)
|
1105 |
+
|
1106 |
+
# embed positions
|
1107 |
+
positions = self.embed_positions(input, past_key_values_length)
|
1108 |
+
|
1109 |
+
hidden_states = inputs_embeds + positions
|
1110 |
+
hidden_states = self.layernorm_embedding(hidden_states)
|
1111 |
+
|
1112 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1113 |
+
|
1114 |
+
# layer-wise prompt
|
1115 |
+
if self.use_prompt:
|
1116 |
+
prompt_ids = torch.arange(self.prompt_length).to(self.device)
|
1117 |
+
self_attn_prompt = self.self_attn_prompt(prompt_ids)
|
1118 |
+
cross_attn_prompt = self.cross_attn_prompt(prompt_ids)
|
1119 |
+
|
1120 |
+
if self.gradient_checkpointing and self.training:
|
1121 |
+
if use_cache:
|
1122 |
+
logger.warning_once(
|
1123 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1124 |
+
)
|
1125 |
+
use_cache = False
|
1126 |
+
|
1127 |
+
# decoder layers
|
1128 |
+
all_hidden_states = () if output_hidden_states else None
|
1129 |
+
all_self_attns = () if output_attentions else None
|
1130 |
+
all_cross_attentions = () if (output_attentions and encoder_hidden_states is not None) else None
|
1131 |
+
next_decoder_cache = () if use_cache else None
|
1132 |
+
|
1133 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1134 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1135 |
+
if attn_mask is not None:
|
1136 |
+
if attn_mask.size()[0] != (len(self.layers)):
|
1137 |
+
raise ValueError(
|
1138 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1139 |
+
f" {head_mask.size()[0]}."
|
1140 |
+
)
|
1141 |
+
|
1142 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1143 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1144 |
+
if output_hidden_states:
|
1145 |
+
all_hidden_states += (hidden_states,)
|
1146 |
+
if self.training:
|
1147 |
+
dropout_probability = torch.rand([])
|
1148 |
+
if dropout_probability < self.layerdrop:
|
1149 |
+
continue
|
1150 |
+
|
1151 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1152 |
+
|
1153 |
+
if self.gradient_checkpointing and self.training:
|
1154 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1155 |
+
decoder_layer.__call__,
|
1156 |
+
hidden_states,
|
1157 |
+
attention_mask,
|
1158 |
+
encoder_hidden_states,
|
1159 |
+
encoder_attention_mask,
|
1160 |
+
head_mask[idx] if head_mask is not None else None,
|
1161 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None,
|
1162 |
+
self_attn_prompt[idx] if self.use_prompt else None,
|
1163 |
+
cross_attn_prompt[idx] if self.use_prompt else None,
|
1164 |
+
None,
|
1165 |
+
output_attentions,
|
1166 |
+
use_cache,
|
1167 |
+
)
|
1168 |
+
else:
|
1169 |
+
layer_outputs = decoder_layer(
|
1170 |
+
hidden_states,
|
1171 |
+
attention_mask=attention_mask,
|
1172 |
+
encoder_hidden_states=encoder_hidden_states,
|
1173 |
+
encoder_attention_mask=encoder_attention_mask,
|
1174 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1175 |
+
cross_attn_layer_head_mask=(
|
1176 |
+
cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1177 |
+
),
|
1178 |
+
self_attn_prompt=(self_attn_prompt[idx] if self.use_prompt else None),
|
1179 |
+
cross_attn_prompt=(cross_attn_prompt[idx] if self.use_prompt else None),
|
1180 |
+
past_key_value=past_key_value,
|
1181 |
+
output_attentions=output_attentions,
|
1182 |
+
use_cache=use_cache,
|
1183 |
+
)
|
1184 |
+
hidden_states = layer_outputs[0]
|
1185 |
+
|
1186 |
+
if use_cache:
|
1187 |
+
next_decoder_cache += (layer_outputs[3 if output_attentions else 1],)
|
1188 |
+
|
1189 |
+
if output_attentions:
|
1190 |
+
all_self_attns += (layer_outputs[1],)
|
1191 |
+
|
1192 |
+
if encoder_hidden_states is not None:
|
1193 |
+
all_cross_attentions += (layer_outputs[2],)
|
1194 |
+
|
1195 |
+
# add hidden states from the last decoder layer
|
1196 |
+
if output_hidden_states:
|
1197 |
+
all_hidden_states += (hidden_states,)
|
1198 |
+
|
1199 |
+
next_cache = next_decoder_cache if use_cache else None
|
1200 |
+
if not return_dict:
|
1201 |
+
return tuple(
|
1202 |
+
v
|
1203 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_cross_attentions]
|
1204 |
+
if v is not None
|
1205 |
+
)
|
1206 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
1207 |
+
last_hidden_state=hidden_states,
|
1208 |
+
past_key_values=next_cache,
|
1209 |
+
hidden_states=all_hidden_states,
|
1210 |
+
attentions=all_self_attns,
|
1211 |
+
cross_attentions=all_cross_attentions,
|
1212 |
+
)
|
1213 |
+
|
1214 |
+
|
1215 |
+
@add_start_docstrings(
|
1216 |
+
"The bare MVP Model outputting raw hidden-states without any specific head on top.",
|
1217 |
+
MVP_START_DOCSTRING,
|
1218 |
+
)
|
1219 |
+
class MvpModel(MvpPreTrainedModel):
|
1220 |
+
_keys_to_ignore_on_load_unexpected = ["final_logits_bias"]
|
1221 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1222 |
+
|
1223 |
+
def __init__(self, config: MvpConfig):
|
1224 |
+
super().__init__(config)
|
1225 |
+
|
1226 |
+
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
1227 |
+
self.use_prompt = config.use_prompt
|
1228 |
+
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
1229 |
+
|
1230 |
+
self.encoder = MvpEncoder(config, self.shared, config.use_prompt)
|
1231 |
+
self.decoder = MvpDecoder(config, self.shared, config.use_prompt)
|
1232 |
+
|
1233 |
+
# Initialize weights and apply final processing
|
1234 |
+
self.post_init()
|
1235 |
+
|
1236 |
+
def get_input_embeddings(self):
|
1237 |
+
return self.shared
|
1238 |
+
|
1239 |
+
def set_input_embeddings(self, value):
|
1240 |
+
self.shared = value
|
1241 |
+
self.encoder.embed_tokens = self.shared
|
1242 |
+
self.decoder.embed_tokens = self.shared
|
1243 |
+
|
1244 |
+
def get_encoder(self):
|
1245 |
+
return self.encoder
|
1246 |
+
|
1247 |
+
def get_decoder(self):
|
1248 |
+
return self.decoder
|
1249 |
+
|
1250 |
+
def set_lightweight_tuning(self):
|
1251 |
+
assert self.use_prompt, "If you want to use lightweight tuning, make sure that `use_prompt=True`."
|
1252 |
+
|
1253 |
+
self.requires_grad_(False)
|
1254 |
+
self.encoder.self_attn_prompt.requires_grad_(True)
|
1255 |
+
self.decoder.self_attn_prompt.requires_grad_(True)
|
1256 |
+
self.decoder.cross_attn_prompt.requires_grad_(True)
|
1257 |
+
|
1258 |
+
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
|
1259 |
+
@add_code_sample_docstrings(
|
1260 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
1261 |
+
output_type=Seq2SeqModelOutput,
|
1262 |
+
config_class=_CONFIG_FOR_DOC,
|
1263 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
1264 |
+
)
|
1265 |
+
def forward(
|
1266 |
+
self,
|
1267 |
+
input_ids: torch.LongTensor = None,
|
1268 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1269 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1270 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1271 |
+
head_mask: Optional[torch.Tensor] = None,
|
1272 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1273 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1274 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1275 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1276 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1277 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1278 |
+
use_cache: Optional[bool] = None,
|
1279 |
+
output_attentions: Optional[bool] = None,
|
1280 |
+
output_hidden_states: Optional[bool] = None,
|
1281 |
+
return_dict: Optional[bool] = None,
|
1282 |
+
) -> Union[Tuple, Seq2SeqModelOutput]:
|
1283 |
+
# different to other models, Mvp automatically creates decoder_input_ids from
|
1284 |
+
# input_ids if no decoder_input_ids are provided
|
1285 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1286 |
+
if input_ids is None:
|
1287 |
+
raise ValueError(
|
1288 |
+
"If no `decoder_input_ids` or `decoder_inputs_embeds` are "
|
1289 |
+
"passed, `input_ids` cannot be `None`. Please pass either "
|
1290 |
+
"`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`."
|
1291 |
+
)
|
1292 |
+
|
1293 |
+
decoder_input_ids = shift_tokens_right(
|
1294 |
+
input_ids, self.config.pad_token_id, self.config.decoder_start_token_id
|
1295 |
+
)
|
1296 |
+
|
1297 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1298 |
+
output_hidden_states = (
|
1299 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1300 |
+
)
|
1301 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1302 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1303 |
+
|
1304 |
+
if encoder_outputs is None:
|
1305 |
+
encoder_outputs = self.encoder(
|
1306 |
+
input_ids=input_ids,
|
1307 |
+
attention_mask=attention_mask,
|
1308 |
+
head_mask=head_mask,
|
1309 |
+
inputs_embeds=inputs_embeds,
|
1310 |
+
output_attentions=output_attentions,
|
1311 |
+
output_hidden_states=output_hidden_states,
|
1312 |
+
return_dict=return_dict,
|
1313 |
+
)
|
1314 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1315 |
+
elif return_dict and not isinstance(encoder_outputs, BaseModelOutput):
|
1316 |
+
encoder_outputs = BaseModelOutput(
|
1317 |
+
last_hidden_state=encoder_outputs[0],
|
1318 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1319 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1320 |
+
)
|
1321 |
+
|
1322 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1323 |
+
decoder_outputs = self.decoder(
|
1324 |
+
input_ids=decoder_input_ids,
|
1325 |
+
attention_mask=decoder_attention_mask,
|
1326 |
+
encoder_hidden_states=encoder_outputs[0],
|
1327 |
+
encoder_attention_mask=attention_mask,
|
1328 |
+
head_mask=decoder_head_mask,
|
1329 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1330 |
+
past_key_values=past_key_values,
|
1331 |
+
inputs_embeds=decoder_inputs_embeds,
|
1332 |
+
use_cache=use_cache,
|
1333 |
+
output_attentions=output_attentions,
|
1334 |
+
output_hidden_states=output_hidden_states,
|
1335 |
+
return_dict=return_dict,
|
1336 |
+
)
|
1337 |
+
|
1338 |
+
if not return_dict:
|
1339 |
+
return decoder_outputs + encoder_outputs
|
1340 |
+
|
1341 |
+
return Seq2SeqModelOutput(
|
1342 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1343 |
+
past_key_values=decoder_outputs.past_key_values,
|
1344 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1345 |
+
decoder_attentions=decoder_outputs.attentions,
|
1346 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1347 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1348 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1349 |
+
encoder_attentions=encoder_outputs.attentions,
|
1350 |
+
)
|
1351 |
+
|
1352 |
+
|
1353 |
+
@add_start_docstrings(
|
1354 |
+
"The MVP Model with a language modeling head. Can be used for various text generation tasks.", MVP_START_DOCSTRING
|
1355 |
+
)
|
1356 |
+
class MvpForConditionalGeneration(MvpPreTrainedModel):
|
1357 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
|
1358 |
+
|
1359 |
+
def __init__(self, config: MvpConfig):
|
1360 |
+
super().__init__(config)
|
1361 |
+
self.model = MvpModel(config)
|
1362 |
+
self.register_buffer("final_logits_bias", torch.zeros((1, self.model.shared.num_embeddings)))
|
1363 |
+
self.lm_head = nn.Linear(config.d_model, self.model.shared.num_embeddings, bias=False)
|
1364 |
+
|
1365 |
+
# Initialize weights and apply final processing
|
1366 |
+
self.post_init()
|
1367 |
+
|
1368 |
+
def get_encoder(self):
|
1369 |
+
return self.model.get_encoder()
|
1370 |
+
|
1371 |
+
def get_decoder(self):
|
1372 |
+
return self.model.get_decoder()
|
1373 |
+
|
1374 |
+
def resize_token_embeddings(self, new_num_tokens: int, pad_to_multiple_of: Optional[int] = None) -> nn.Embedding:
|
1375 |
+
new_embeddings = super().resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1376 |
+
self._resize_final_logits_bias(new_num_tokens)
|
1377 |
+
return new_embeddings
|
1378 |
+
|
1379 |
+
def _resize_final_logits_bias(self, new_num_tokens: int) -> None:
|
1380 |
+
old_num_tokens = self.final_logits_bias.shape[-1]
|
1381 |
+
if new_num_tokens <= old_num_tokens:
|
1382 |
+
new_bias = self.final_logits_bias[:, :new_num_tokens]
|
1383 |
+
else:
|
1384 |
+
extra_bias = torch.zeros((1, new_num_tokens - old_num_tokens), device=self.final_logits_bias.device)
|
1385 |
+
new_bias = torch.cat([self.final_logits_bias, extra_bias], dim=1)
|
1386 |
+
self.register_buffer("final_logits_bias", new_bias)
|
1387 |
+
|
1388 |
+
def get_output_embeddings(self):
|
1389 |
+
return self.lm_head
|
1390 |
+
|
1391 |
+
def set_output_embeddings(self, new_embeddings):
|
1392 |
+
self.lm_head = new_embeddings
|
1393 |
+
|
1394 |
+
def set_lightweight_tuning(self):
|
1395 |
+
self.model.set_lightweight_tuning()
|
1396 |
+
self.lm_head.requires_grad_(False)
|
1397 |
+
|
1398 |
+
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
|
1399 |
+
@replace_return_docstrings(output_type=Seq2SeqLMOutput, config_class=_CONFIG_FOR_DOC)
|
1400 |
+
@add_end_docstrings(MVP_CONDITIONAL_GENERATION_EXAMPLE)
|
1401 |
+
def forward(
|
1402 |
+
self,
|
1403 |
+
input_ids: torch.LongTensor = None,
|
1404 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1405 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1406 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1407 |
+
head_mask: Optional[torch.Tensor] = None,
|
1408 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1409 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1410 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1411 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1412 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1413 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1414 |
+
labels: Optional[torch.LongTensor] = None,
|
1415 |
+
use_cache: Optional[bool] = None,
|
1416 |
+
output_attentions: Optional[bool] = None,
|
1417 |
+
output_hidden_states: Optional[bool] = None,
|
1418 |
+
return_dict: Optional[bool] = None,
|
1419 |
+
) -> Union[Tuple, Seq2SeqLMOutput]:
|
1420 |
+
r"""
|
1421 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1422 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1423 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1424 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1425 |
+
|
1426 |
+
Returns:
|
1427 |
+
"""
|
1428 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1429 |
+
|
1430 |
+
if labels is not None:
|
1431 |
+
if use_cache:
|
1432 |
+
logger.warning("The `use_cache` argument is changed to `False` since `labels` is provided.")
|
1433 |
+
use_cache = False
|
1434 |
+
if decoder_input_ids is None and decoder_inputs_embeds is None:
|
1435 |
+
decoder_input_ids = shift_tokens_right(
|
1436 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1437 |
+
)
|
1438 |
+
|
1439 |
+
outputs = self.model(
|
1440 |
+
input_ids,
|
1441 |
+
attention_mask=attention_mask,
|
1442 |
+
decoder_input_ids=decoder_input_ids,
|
1443 |
+
encoder_outputs=encoder_outputs,
|
1444 |
+
decoder_attention_mask=decoder_attention_mask,
|
1445 |
+
head_mask=head_mask,
|
1446 |
+
decoder_head_mask=decoder_head_mask,
|
1447 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1448 |
+
past_key_values=past_key_values,
|
1449 |
+
inputs_embeds=inputs_embeds,
|
1450 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1451 |
+
use_cache=use_cache,
|
1452 |
+
output_attentions=output_attentions,
|
1453 |
+
output_hidden_states=output_hidden_states,
|
1454 |
+
return_dict=return_dict,
|
1455 |
+
)
|
1456 |
+
lm_logits = self.lm_head(outputs[0]) + self.final_logits_bias
|
1457 |
+
|
1458 |
+
masked_lm_loss = None
|
1459 |
+
if labels is not None:
|
1460 |
+
loss_fct = CrossEntropyLoss()
|
1461 |
+
masked_lm_loss = loss_fct(lm_logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1462 |
+
|
1463 |
+
if not return_dict:
|
1464 |
+
output = (lm_logits,) + outputs[1:]
|
1465 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
1466 |
+
|
1467 |
+
return Seq2SeqLMOutput(
|
1468 |
+
loss=masked_lm_loss,
|
1469 |
+
logits=lm_logits,
|
1470 |
+
past_key_values=outputs.past_key_values,
|
1471 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1472 |
+
decoder_attentions=outputs.decoder_attentions,
|
1473 |
+
cross_attentions=outputs.cross_attentions,
|
1474 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1475 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1476 |
+
encoder_attentions=outputs.encoder_attentions,
|
1477 |
+
)
|
1478 |
+
|
1479 |
+
def prepare_inputs_for_generation(
|
1480 |
+
self,
|
1481 |
+
decoder_input_ids,
|
1482 |
+
past_key_values=None,
|
1483 |
+
attention_mask=None,
|
1484 |
+
head_mask=None,
|
1485 |
+
decoder_head_mask=None,
|
1486 |
+
cross_attn_head_mask=None,
|
1487 |
+
use_cache=None,
|
1488 |
+
encoder_outputs=None,
|
1489 |
+
**kwargs,
|
1490 |
+
):
|
1491 |
+
# cut decoder_input_ids if past is used
|
1492 |
+
if past_key_values is not None:
|
1493 |
+
past_length = past_key_values[0][0].shape[2]
|
1494 |
+
|
1495 |
+
# Some generation methods already pass only the last input ID
|
1496 |
+
if decoder_input_ids.shape[1] > past_length:
|
1497 |
+
remove_prefix_length = past_length
|
1498 |
+
else:
|
1499 |
+
# Default to old behavior: keep only final ID
|
1500 |
+
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
1501 |
+
|
1502 |
+
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
1503 |
+
|
1504 |
+
return {
|
1505 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1506 |
+
"encoder_outputs": encoder_outputs,
|
1507 |
+
"past_key_values": past_key_values,
|
1508 |
+
"decoder_input_ids": decoder_input_ids,
|
1509 |
+
"attention_mask": attention_mask,
|
1510 |
+
"head_mask": head_mask,
|
1511 |
+
"decoder_head_mask": decoder_head_mask,
|
1512 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1513 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1514 |
+
}
|
1515 |
+
|
1516 |
+
def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor):
|
1517 |
+
return shift_tokens_right(labels, self.config.pad_token_id, self.config.decoder_start_token_id)
|
1518 |
+
|
1519 |
+
@staticmethod
|
1520 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1521 |
+
reordered_past = ()
|
1522 |
+
for layer_past in past_key_values:
|
1523 |
+
# cached cross_attention states don't have to be reordered -> they are always the same
|
1524 |
+
reordered_past += (
|
1525 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past[:2])
|
1526 |
+
+ layer_past[2:],
|
1527 |
+
)
|
1528 |
+
return reordered_past
|
1529 |
+
|
1530 |
+
|
1531 |
+
@add_start_docstrings(
|
1532 |
+
"""
|
1533 |
+
Mvp model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE
|
1534 |
+
tasks.
|
1535 |
+
""",
|
1536 |
+
MVP_START_DOCSTRING,
|
1537 |
+
)
|
1538 |
+
class MvpForSequenceClassification(MvpPreTrainedModel):
|
1539 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1540 |
+
|
1541 |
+
def __init__(self, config: MvpConfig, **kwargs):
|
1542 |
+
super().__init__(config, **kwargs)
|
1543 |
+
self.model = MvpModel(config)
|
1544 |
+
self.classification_head = MvpClassificationHead(
|
1545 |
+
config.d_model,
|
1546 |
+
config.d_model,
|
1547 |
+
config.num_labels,
|
1548 |
+
config.classifier_dropout,
|
1549 |
+
)
|
1550 |
+
|
1551 |
+
# Initialize weights and apply final processing
|
1552 |
+
self.post_init()
|
1553 |
+
|
1554 |
+
def set_lightweight_tuning(self):
|
1555 |
+
self.model.set_lightweight_tuning()
|
1556 |
+
self.classification_head.requires_grad_(False)
|
1557 |
+
|
1558 |
+
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
|
1559 |
+
@add_end_docstrings(MVP_SEQUENCE_CLASSIFICATION_SAMPLE)
|
1560 |
+
def forward(
|
1561 |
+
self,
|
1562 |
+
input_ids: torch.LongTensor = None,
|
1563 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1564 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1565 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1566 |
+
head_mask: Optional[torch.Tensor] = None,
|
1567 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1568 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1569 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1570 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1571 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1572 |
+
labels: Optional[torch.LongTensor] = None,
|
1573 |
+
use_cache: Optional[bool] = None,
|
1574 |
+
output_attentions: Optional[bool] = None,
|
1575 |
+
output_hidden_states: Optional[bool] = None,
|
1576 |
+
return_dict: Optional[bool] = None,
|
1577 |
+
) -> Union[Tuple, Seq2SeqSequenceClassifierOutput]:
|
1578 |
+
r"""
|
1579 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1580 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
1581 |
+
config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
1582 |
+
"""
|
1583 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1584 |
+
if labels is not None:
|
1585 |
+
use_cache = False
|
1586 |
+
|
1587 |
+
if input_ids is None and inputs_embeds is not None:
|
1588 |
+
raise NotImplementedError(
|
1589 |
+
f"Passing input embeddings is currently not supported for {self.__class__.__name__}"
|
1590 |
+
)
|
1591 |
+
|
1592 |
+
outputs = self.model(
|
1593 |
+
input_ids,
|
1594 |
+
attention_mask=attention_mask,
|
1595 |
+
decoder_input_ids=decoder_input_ids,
|
1596 |
+
decoder_attention_mask=decoder_attention_mask,
|
1597 |
+
head_mask=head_mask,
|
1598 |
+
decoder_head_mask=decoder_head_mask,
|
1599 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1600 |
+
encoder_outputs=encoder_outputs,
|
1601 |
+
inputs_embeds=inputs_embeds,
|
1602 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1603 |
+
use_cache=use_cache,
|
1604 |
+
output_attentions=output_attentions,
|
1605 |
+
output_hidden_states=output_hidden_states,
|
1606 |
+
return_dict=return_dict,
|
1607 |
+
)
|
1608 |
+
hidden_states = outputs[0] # last hidden state
|
1609 |
+
|
1610 |
+
eos_mask = input_ids.eq(self.config.eos_token_id).to(hidden_states.device)
|
1611 |
+
|
1612 |
+
if len(torch.unique_consecutive(eos_mask.sum(1))) > 1:
|
1613 |
+
raise ValueError("All examples must have the same number of <eos> tokens.")
|
1614 |
+
sentence_representation = hidden_states[eos_mask, :].view(hidden_states.size(0), -1, hidden_states.size(-1))[
|
1615 |
+
:, -1, :
|
1616 |
+
]
|
1617 |
+
logits = self.classification_head(sentence_representation)
|
1618 |
+
|
1619 |
+
loss = None
|
1620 |
+
if labels is not None:
|
1621 |
+
if self.config.problem_type is None:
|
1622 |
+
if self.config.num_labels == 1:
|
1623 |
+
self.config.problem_type = "regression"
|
1624 |
+
elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
1625 |
+
self.config.problem_type = "single_label_classification"
|
1626 |
+
else:
|
1627 |
+
self.config.problem_type = "multi_label_classification"
|
1628 |
+
|
1629 |
+
if self.config.problem_type == "regression":
|
1630 |
+
loss_fct = MSELoss()
|
1631 |
+
if self.config.num_labels == 1:
|
1632 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
1633 |
+
else:
|
1634 |
+
loss = loss_fct(logits, labels)
|
1635 |
+
elif self.config.problem_type == "single_label_classification":
|
1636 |
+
loss_fct = CrossEntropyLoss()
|
1637 |
+
loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1))
|
1638 |
+
elif self.config.problem_type == "multi_label_classification":
|
1639 |
+
loss_fct = BCEWithLogitsLoss()
|
1640 |
+
loss = loss_fct(logits, labels)
|
1641 |
+
if not return_dict:
|
1642 |
+
output = (logits,) + outputs[1:]
|
1643 |
+
return ((loss,) + output) if loss is not None else output
|
1644 |
+
|
1645 |
+
return Seq2SeqSequenceClassifierOutput(
|
1646 |
+
loss=loss,
|
1647 |
+
logits=logits,
|
1648 |
+
past_key_values=outputs.past_key_values,
|
1649 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1650 |
+
decoder_attentions=outputs.decoder_attentions,
|
1651 |
+
cross_attentions=outputs.cross_attentions,
|
1652 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1653 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1654 |
+
encoder_attentions=outputs.encoder_attentions,
|
1655 |
+
)
|
1656 |
+
|
1657 |
+
|
1658 |
+
@add_start_docstrings(
|
1659 |
+
"""
|
1660 |
+
MVP Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear layer
|
1661 |
+
on top of the hidden-states output to compute `span start logits` and `span end logits`).
|
1662 |
+
""",
|
1663 |
+
MVP_START_DOCSTRING,
|
1664 |
+
)
|
1665 |
+
class MvpForQuestionAnswering(MvpPreTrainedModel):
|
1666 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1667 |
+
|
1668 |
+
def __init__(self, config):
|
1669 |
+
super().__init__(config)
|
1670 |
+
|
1671 |
+
config.num_labels = 2
|
1672 |
+
self.num_labels = config.num_labels
|
1673 |
+
|
1674 |
+
self.model = MvpModel(config)
|
1675 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
1676 |
+
|
1677 |
+
# Initialize weights and apply final processing
|
1678 |
+
self.post_init()
|
1679 |
+
|
1680 |
+
def set_lightweight_tuning(self):
|
1681 |
+
self.model.set_lightweight_tuning()
|
1682 |
+
self.qa_outputs.requires_grad_(False)
|
1683 |
+
|
1684 |
+
@add_start_docstrings_to_model_forward(MVP_INPUTS_DOCSTRING)
|
1685 |
+
@add_end_docstrings(MVP_QUESTION_ANSWERING_SAMPLE)
|
1686 |
+
def forward(
|
1687 |
+
self,
|
1688 |
+
input_ids: torch.Tensor = None,
|
1689 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1690 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1691 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1692 |
+
head_mask: Optional[torch.Tensor] = None,
|
1693 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1694 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1695 |
+
encoder_outputs: Optional[List[torch.FloatTensor]] = None,
|
1696 |
+
start_positions: Optional[torch.LongTensor] = None,
|
1697 |
+
end_positions: Optional[torch.LongTensor] = None,
|
1698 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1699 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1700 |
+
use_cache: Optional[bool] = None,
|
1701 |
+
output_attentions: Optional[bool] = None,
|
1702 |
+
output_hidden_states: Optional[bool] = None,
|
1703 |
+
return_dict: Optional[bool] = None,
|
1704 |
+
) -> Union[Tuple, Seq2SeqQuestionAnsweringModelOutput]:
|
1705 |
+
r"""
|
1706 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1707 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
1708 |
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
1709 |
+
are not taken into account for computing the loss.
|
1710 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
1711 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
1712 |
+
Positions are clamped to the length of the sequence (*sequence_length*). Position outside of the sequence
|
1713 |
+
are not taken into account for computing the loss.
|
1714 |
+
"""
|
1715 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1716 |
+
if start_positions is not None and end_positions is not None:
|
1717 |
+
use_cache = False
|
1718 |
+
|
1719 |
+
outputs = self.model(
|
1720 |
+
input_ids,
|
1721 |
+
attention_mask=attention_mask,
|
1722 |
+
decoder_input_ids=decoder_input_ids,
|
1723 |
+
decoder_attention_mask=decoder_attention_mask,
|
1724 |
+
head_mask=head_mask,
|
1725 |
+
decoder_head_mask=decoder_head_mask,
|
1726 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1727 |
+
encoder_outputs=encoder_outputs,
|
1728 |
+
inputs_embeds=inputs_embeds,
|
1729 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1730 |
+
use_cache=use_cache,
|
1731 |
+
output_attentions=output_attentions,
|
1732 |
+
output_hidden_states=output_hidden_states,
|
1733 |
+
return_dict=return_dict,
|
1734 |
+
)
|
1735 |
+
|
1736 |
+
sequence_output = outputs[0]
|
1737 |
+
|
1738 |
+
logits = self.qa_outputs(sequence_output)
|
1739 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
1740 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
1741 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
1742 |
+
|
1743 |
+
total_loss = None
|
1744 |
+
if start_positions is not None and end_positions is not None:
|
1745 |
+
# If we are on multi-GPU, split add a dimension
|
1746 |
+
if len(start_positions.size()) > 1:
|
1747 |
+
start_positions = start_positions.squeeze(-1)
|
1748 |
+
if len(end_positions.size()) > 1:
|
1749 |
+
end_positions = end_positions.squeeze(-1)
|
1750 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
1751 |
+
ignored_index = start_logits.size(1)
|
1752 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
1753 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
1754 |
+
|
1755 |
+
loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
|
1756 |
+
start_loss = loss_fct(start_logits, start_positions)
|
1757 |
+
end_loss = loss_fct(end_logits, end_positions)
|
1758 |
+
total_loss = (start_loss + end_loss) / 2
|
1759 |
+
|
1760 |
+
if not return_dict:
|
1761 |
+
output = (
|
1762 |
+
start_logits,
|
1763 |
+
end_logits,
|
1764 |
+
) + outputs[1:]
|
1765 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
1766 |
+
|
1767 |
+
return Seq2SeqQuestionAnsweringModelOutput(
|
1768 |
+
loss=total_loss,
|
1769 |
+
start_logits=start_logits,
|
1770 |
+
end_logits=end_logits,
|
1771 |
+
past_key_values=outputs.past_key_values,
|
1772 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1773 |
+
decoder_attentions=outputs.decoder_attentions,
|
1774 |
+
cross_attentions=outputs.cross_attentions,
|
1775 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1776 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1777 |
+
encoder_attentions=outputs.encoder_attentions,
|
1778 |
+
)
|
1779 |
+
|
1780 |
+
|
1781 |
+
# Copied from transformers.models.bart.modeling_bart.BartDecoderWrapper with Bart->Mvp
|
1782 |
+
class MvpDecoderWrapper(MvpPreTrainedModel):
|
1783 |
+
"""
|
1784 |
+
This wrapper class is a helper class to correctly load pretrained checkpoints when the causal language model is
|
1785 |
+
used in combination with the [`EncoderDecoderModel`] framework.
|
1786 |
+
"""
|
1787 |
+
|
1788 |
+
def __init__(self, config):
|
1789 |
+
super().__init__(config)
|
1790 |
+
self.decoder = MvpDecoder(config)
|
1791 |
+
|
1792 |
+
def forward(self, *args, **kwargs):
|
1793 |
+
return self.decoder(*args, **kwargs)
|
1794 |
+
|
1795 |
+
|
1796 |
+
class MvpForCausalLM(MvpPreTrainedModel):
|
1797 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1798 |
+
|
1799 |
+
def __init__(self, config):
|
1800 |
+
config = copy.deepcopy(config)
|
1801 |
+
config.is_decoder = True
|
1802 |
+
config.is_encoder_decoder = False
|
1803 |
+
super().__init__(config)
|
1804 |
+
self.model = MvpDecoderWrapper(config)
|
1805 |
+
|
1806 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
1807 |
+
|
1808 |
+
# Initialize weights and apply final processing
|
1809 |
+
self.post_init()
|
1810 |
+
|
1811 |
+
def get_input_embeddings(self):
|
1812 |
+
return self.model.decoder.embed_tokens
|
1813 |
+
|
1814 |
+
def set_input_embeddings(self, value):
|
1815 |
+
self.model.decoder.embed_tokens = value
|
1816 |
+
|
1817 |
+
def get_output_embeddings(self):
|
1818 |
+
return self.lm_head
|
1819 |
+
|
1820 |
+
def set_output_embeddings(self, new_embeddings):
|
1821 |
+
self.lm_head = new_embeddings
|
1822 |
+
|
1823 |
+
def set_decoder(self, decoder):
|
1824 |
+
self.model.decoder = decoder
|
1825 |
+
|
1826 |
+
def get_decoder(self):
|
1827 |
+
return self.model.decoder
|
1828 |
+
|
1829 |
+
def set_lightweight_tuning(self):
|
1830 |
+
self.model.set_lightweight_tuning()
|
1831 |
+
self.lm_head.requires_grad_(False)
|
1832 |
+
|
1833 |
+
@replace_return_docstrings(output_type=CausalLMOutputWithCrossAttentions, config_class=_CONFIG_FOR_DOC)
|
1834 |
+
def forward(
|
1835 |
+
self,
|
1836 |
+
input_ids: torch.LongTensor = None,
|
1837 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1838 |
+
encoder_hidden_states: Optional[torch.FloatTensor] = None,
|
1839 |
+
encoder_attention_mask: Optional[torch.FloatTensor] = None,
|
1840 |
+
head_mask: Optional[torch.Tensor] = None,
|
1841 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1842 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1843 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1844 |
+
labels: Optional[torch.LongTensor] = None,
|
1845 |
+
use_cache: Optional[bool] = None,
|
1846 |
+
output_attentions: Optional[bool] = None,
|
1847 |
+
output_hidden_states: Optional[bool] = None,
|
1848 |
+
return_dict: Optional[bool] = None,
|
1849 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
1850 |
+
r"""
|
1851 |
+
Args:
|
1852 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1853 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1854 |
+
provide it.
|
1855 |
+
|
1856 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1857 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1858 |
+
|
1859 |
+
[What are input IDs?](../glossary#input-ids)
|
1860 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1861 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1862 |
+
|
1863 |
+
- 1 for tokens that are **not masked**,
|
1864 |
+
- 0 for tokens that are **masked**.
|
1865 |
+
|
1866 |
+
[What are attention masks?](../glossary#attention-mask)
|
1867 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1868 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1869 |
+
if the model is configured as a decoder.
|
1870 |
+
encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1871 |
+
Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used
|
1872 |
+
in the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
|
1873 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1874 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1875 |
+
|
1876 |
+
- 1 indicates the head is **not masked**,
|
1877 |
+
- 0 indicates the head is **masked**.
|
1878 |
+
|
1879 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1880 |
+
Mask to nullify selected heads of the cross-attention modules. Mask values selected in `[0, 1]`:
|
1881 |
+
|
1882 |
+
- 1 indicates the head is **not masked**,
|
1883 |
+
- 0 indicates the head is **masked**.
|
1884 |
+
|
1885 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1886 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1887 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1888 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`. The two additional
|
1889 |
+
tensors are only required when the model is used as a decoder in a Sequence to Sequence model.
|
1890 |
+
|
1891 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1892 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1893 |
+
|
1894 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1895 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1896 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1897 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1898 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1899 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1900 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1901 |
+
use_cache (`bool`, *optional*):
|
1902 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
1903 |
+
(see `past_key_values`).
|
1904 |
+
|
1905 |
+
- 1 for tokens that are **not masked**,
|
1906 |
+
- 0 for tokens that are **masked**.
|
1907 |
+
output_attentions (`bool`, *optional*):
|
1908 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1909 |
+
returned tensors for more detail.
|
1910 |
+
output_hidden_states (`bool`, *optional*):
|
1911 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1912 |
+
for more detail.
|
1913 |
+
return_dict (`bool`, *optional*):
|
1914 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1915 |
+
|
1916 |
+
Returns:
|
1917 |
+
|
1918 |
+
Example:
|
1919 |
+
|
1920 |
+
```python
|
1921 |
+
>>> from transformers import AutoTokenizer, MvpForCausalLM
|
1922 |
+
|
1923 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("RUCAIBox/mvp")
|
1924 |
+
>>> model = MvpForCausalLM.from_pretrained("RUCAIBox/mvp", add_cross_attention=False)
|
1925 |
+
|
1926 |
+
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
1927 |
+
>>> outputs = model(**inputs)
|
1928 |
+
|
1929 |
+
>>> logits = outputs.logits
|
1930 |
+
>>> list(logits.shape)
|
1931 |
+
[1, 8, 50267]
|
1932 |
+
```"""
|
1933 |
+
|
1934 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1935 |
+
output_hidden_states = (
|
1936 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1937 |
+
)
|
1938 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
1939 |
+
|
1940 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1941 |
+
outputs = self.model.decoder(
|
1942 |
+
input_ids=input_ids,
|
1943 |
+
attention_mask=attention_mask,
|
1944 |
+
encoder_hidden_states=encoder_hidden_states,
|
1945 |
+
encoder_attention_mask=encoder_attention_mask,
|
1946 |
+
head_mask=head_mask,
|
1947 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1948 |
+
past_key_values=past_key_values,
|
1949 |
+
inputs_embeds=inputs_embeds,
|
1950 |
+
use_cache=use_cache,
|
1951 |
+
output_attentions=output_attentions,
|
1952 |
+
output_hidden_states=output_hidden_states,
|
1953 |
+
return_dict=return_dict,
|
1954 |
+
)
|
1955 |
+
|
1956 |
+
logits = self.lm_head(outputs[0])
|
1957 |
+
|
1958 |
+
loss = None
|
1959 |
+
if labels is not None:
|
1960 |
+
loss_fct = CrossEntropyLoss()
|
1961 |
+
loss = loss_fct(logits.view(-1, self.config.vocab_size), labels.view(-1))
|
1962 |
+
|
1963 |
+
if not return_dict:
|
1964 |
+
output = (logits,) + outputs[1:]
|
1965 |
+
return (loss,) + output if loss is not None else output
|
1966 |
+
|
1967 |
+
return CausalLMOutputWithCrossAttentions(
|
1968 |
+
loss=loss,
|
1969 |
+
logits=logits,
|
1970 |
+
past_key_values=outputs.past_key_values,
|
1971 |
+
hidden_states=outputs.hidden_states,
|
1972 |
+
attentions=outputs.attentions,
|
1973 |
+
cross_attentions=outputs.cross_attentions,
|
1974 |
+
)
|
1975 |
+
|
1976 |
+
def prepare_inputs_for_generation(
|
1977 |
+
self, input_ids, past_key_values=None, attention_mask=None, use_cache=None, **kwargs
|
1978 |
+
):
|
1979 |
+
# if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
|
1980 |
+
if attention_mask is None:
|
1981 |
+
attention_mask = input_ids.new_ones(input_ids.shape)
|
1982 |
+
|
1983 |
+
if past_key_values:
|
1984 |
+
past_length = past_key_values[0][0].shape[2]
|
1985 |
+
|
1986 |
+
# Some generation methods already pass only the last input ID
|
1987 |
+
if input_ids.shape[1] > past_length:
|
1988 |
+
remove_prefix_length = past_length
|
1989 |
+
else:
|
1990 |
+
# Default to old behavior: keep only final ID
|
1991 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
1992 |
+
|
1993 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
1994 |
+
# first step, decoder_cached_states are empty
|
1995 |
+
return {
|
1996 |
+
"input_ids": input_ids, # encoder_outputs is defined. input_ids not needed
|
1997 |
+
"attention_mask": attention_mask,
|
1998 |
+
"past_key_values": past_key_values,
|
1999 |
+
"use_cache": use_cache,
|
2000 |
+
}
|
2001 |
+
|
2002 |
+
@staticmethod
|
2003 |
+
def _reorder_cache(past_key_values, beam_idx):
|
2004 |
+
reordered_past = ()
|
2005 |
+
for layer_past in past_key_values:
|
2006 |
+
reordered_past += (
|
2007 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
2008 |
+
)
|
2009 |
+
return reordered_past
|
venv/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp.py
ADDED
@@ -0,0 +1,391 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
import os
|
18 |
+
from functools import lru_cache
|
19 |
+
from typing import List, Optional, Tuple
|
20 |
+
|
21 |
+
import regex as re
|
22 |
+
|
23 |
+
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
|
24 |
+
from ...utils import logging
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt"}
|
31 |
+
|
32 |
+
# See all MVP models at https://huggingface.co/models?filter=mvp
|
33 |
+
|
34 |
+
|
35 |
+
@lru_cache()
|
36 |
+
def bytes_to_unicode():
|
37 |
+
"""
|
38 |
+
Returns list of utf-8 byte and a mapping to unicode strings. We specifically avoids mapping to whitespace/control
|
39 |
+
characters the bpe code barfs on.
|
40 |
+
|
41 |
+
The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab
|
42 |
+
if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for
|
43 |
+
decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup
|
44 |
+
tables between utf-8 bytes and unicode strings.
|
45 |
+
"""
|
46 |
+
bs = (
|
47 |
+
list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1))
|
48 |
+
)
|
49 |
+
cs = bs[:]
|
50 |
+
n = 0
|
51 |
+
for b in range(2**8):
|
52 |
+
if b not in bs:
|
53 |
+
bs.append(b)
|
54 |
+
cs.append(2**8 + n)
|
55 |
+
n += 1
|
56 |
+
cs = [chr(n) for n in cs]
|
57 |
+
return dict(zip(bs, cs))
|
58 |
+
|
59 |
+
|
60 |
+
def get_pairs(word):
|
61 |
+
"""
|
62 |
+
Return set of symbol pairs in a word.
|
63 |
+
|
64 |
+
Word is represented as tuple of symbols (symbols being variable-length strings).
|
65 |
+
"""
|
66 |
+
pairs = set()
|
67 |
+
prev_char = word[0]
|
68 |
+
for char in word[1:]:
|
69 |
+
pairs.add((prev_char, char))
|
70 |
+
prev_char = char
|
71 |
+
return pairs
|
72 |
+
|
73 |
+
|
74 |
+
class MvpTokenizer(PreTrainedTokenizer):
|
75 |
+
"""
|
76 |
+
Constructs a MVP tokenizer, which is smilar to the RoBERTa tokenizer, using byte-level Byte-Pair-Encoding.
|
77 |
+
|
78 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
79 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
80 |
+
|
81 |
+
```python
|
82 |
+
>>> from transformers import MvpTokenizer
|
83 |
+
|
84 |
+
>>> tokenizer = MvpTokenizer.from_pretrained("RUCAIBox/mvp")
|
85 |
+
>>> tokenizer("Hello world")["input_ids"]
|
86 |
+
[0, 31414, 232, 2]
|
87 |
+
|
88 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
89 |
+
[0, 20920, 232, 2]
|
90 |
+
```
|
91 |
+
|
92 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
93 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
94 |
+
|
95 |
+
<Tip>
|
96 |
+
|
97 |
+
When used with `is_split_into_words=True`, this tokenizer will add a space before each word (even the first one).
|
98 |
+
|
99 |
+
</Tip>
|
100 |
+
|
101 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
|
102 |
+
this superclass for more information regarding those methods.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
vocab_file (`str`):
|
106 |
+
Path to the vocabulary file.
|
107 |
+
merges_file (`str`):
|
108 |
+
Path to the merges file.
|
109 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
110 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
111 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
112 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
113 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
114 |
+
|
115 |
+
<Tip>
|
116 |
+
|
117 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
118 |
+
sequence. The token used is the `cls_token`.
|
119 |
+
|
120 |
+
</Tip>
|
121 |
+
|
122 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
123 |
+
The end of sequence token.
|
124 |
+
|
125 |
+
<Tip>
|
126 |
+
|
127 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
128 |
+
The token used is the `sep_token`.
|
129 |
+
|
130 |
+
</Tip>
|
131 |
+
|
132 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
133 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
134 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
135 |
+
token of a sequence built with special tokens.
|
136 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
137 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
138 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
139 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
140 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
141 |
+
token instead.
|
142 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
143 |
+
The token used for padding, for example when batching sequences of different lengths.
|
144 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
145 |
+
The token used for masking values. This is the token used when training this model with masked language
|
146 |
+
modeling. This is the token which the model will try to predict.
|
147 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
148 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
149 |
+
other word. (MVP tokenizer detect beginning of words by the preceding space).
|
150 |
+
"""
|
151 |
+
|
152 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
153 |
+
model_input_names = ["input_ids", "attention_mask"]
|
154 |
+
|
155 |
+
def __init__(
|
156 |
+
self,
|
157 |
+
vocab_file,
|
158 |
+
merges_file,
|
159 |
+
errors="replace",
|
160 |
+
bos_token="<s>",
|
161 |
+
eos_token="</s>",
|
162 |
+
sep_token="</s>",
|
163 |
+
cls_token="<s>",
|
164 |
+
unk_token="<unk>",
|
165 |
+
pad_token="<pad>",
|
166 |
+
mask_token="<mask>",
|
167 |
+
add_prefix_space=False,
|
168 |
+
**kwargs,
|
169 |
+
):
|
170 |
+
bos_token = AddedToken(bos_token, special=True) if isinstance(bos_token, str) else bos_token
|
171 |
+
eos_token = AddedToken(eos_token, special=True) if isinstance(eos_token, str) else eos_token
|
172 |
+
sep_token = AddedToken(sep_token, special=True) if isinstance(sep_token, str) else sep_token
|
173 |
+
cls_token = AddedToken(cls_token, special=True) if isinstance(cls_token, str) else cls_token
|
174 |
+
unk_token = AddedToken(unk_token, special=True) if isinstance(unk_token, str) else unk_token
|
175 |
+
pad_token = AddedToken(pad_token, special=True) if isinstance(pad_token, str) else pad_token
|
176 |
+
|
177 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
178 |
+
mask_token = AddedToken(mask_token, lstrip=True, special=True) if isinstance(mask_token, str) else mask_token
|
179 |
+
with open(vocab_file, encoding="utf-8") as vocab_handle:
|
180 |
+
self.encoder = json.load(vocab_handle)
|
181 |
+
self.decoder = {v: k for k, v in self.encoder.items()}
|
182 |
+
self.errors = errors # how to handle errors in decoding
|
183 |
+
self.byte_encoder = bytes_to_unicode()
|
184 |
+
self.byte_decoder = {v: k for k, v in self.byte_encoder.items()}
|
185 |
+
with open(merges_file, encoding="utf-8") as merges_handle:
|
186 |
+
bpe_merges = merges_handle.read().split("\n")[1:-1]
|
187 |
+
bpe_merges = [tuple(merge.split()) for merge in bpe_merges]
|
188 |
+
self.bpe_ranks = dict(zip(bpe_merges, range(len(bpe_merges))))
|
189 |
+
self.cache = {}
|
190 |
+
self.add_prefix_space = add_prefix_space
|
191 |
+
|
192 |
+
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
|
193 |
+
self.pat = re.compile(r"""'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+""")
|
194 |
+
|
195 |
+
super().__init__(
|
196 |
+
errors=errors,
|
197 |
+
bos_token=bos_token,
|
198 |
+
eos_token=eos_token,
|
199 |
+
unk_token=unk_token,
|
200 |
+
sep_token=sep_token,
|
201 |
+
cls_token=cls_token,
|
202 |
+
pad_token=pad_token,
|
203 |
+
mask_token=mask_token,
|
204 |
+
add_prefix_space=add_prefix_space,
|
205 |
+
**kwargs,
|
206 |
+
)
|
207 |
+
|
208 |
+
@property
|
209 |
+
def vocab_size(self):
|
210 |
+
return len(self.encoder)
|
211 |
+
|
212 |
+
def get_vocab(self):
|
213 |
+
vocab = self.encoder.copy()
|
214 |
+
vocab.update(self.added_tokens_encoder)
|
215 |
+
return vocab
|
216 |
+
|
217 |
+
def bpe(self, token):
|
218 |
+
if token in self.cache:
|
219 |
+
return self.cache[token]
|
220 |
+
word = tuple(token)
|
221 |
+
pairs = get_pairs(word)
|
222 |
+
|
223 |
+
if not pairs:
|
224 |
+
return token
|
225 |
+
|
226 |
+
while True:
|
227 |
+
bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float("inf")))
|
228 |
+
if bigram not in self.bpe_ranks:
|
229 |
+
break
|
230 |
+
first, second = bigram
|
231 |
+
new_word = []
|
232 |
+
i = 0
|
233 |
+
while i < len(word):
|
234 |
+
try:
|
235 |
+
j = word.index(first, i)
|
236 |
+
except ValueError:
|
237 |
+
new_word.extend(word[i:])
|
238 |
+
break
|
239 |
+
else:
|
240 |
+
new_word.extend(word[i:j])
|
241 |
+
i = j
|
242 |
+
|
243 |
+
if word[i] == first and i < len(word) - 1 and word[i + 1] == second:
|
244 |
+
new_word.append(first + second)
|
245 |
+
i += 2
|
246 |
+
else:
|
247 |
+
new_word.append(word[i])
|
248 |
+
i += 1
|
249 |
+
new_word = tuple(new_word)
|
250 |
+
word = new_word
|
251 |
+
if len(word) == 1:
|
252 |
+
break
|
253 |
+
else:
|
254 |
+
pairs = get_pairs(word)
|
255 |
+
word = " ".join(word)
|
256 |
+
self.cache[token] = word
|
257 |
+
return word
|
258 |
+
|
259 |
+
def _tokenize(self, text):
|
260 |
+
"""Tokenize a string."""
|
261 |
+
bpe_tokens = []
|
262 |
+
for token in re.findall(self.pat, text):
|
263 |
+
token = "".join(
|
264 |
+
self.byte_encoder[b] for b in token.encode("utf-8")
|
265 |
+
) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
|
266 |
+
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(token).split(" "))
|
267 |
+
return bpe_tokens
|
268 |
+
|
269 |
+
def _convert_token_to_id(self, token):
|
270 |
+
"""Converts a token (str) in an id using the vocab."""
|
271 |
+
return self.encoder.get(token, self.encoder.get(self.unk_token))
|
272 |
+
|
273 |
+
def _convert_id_to_token(self, index):
|
274 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
275 |
+
return self.decoder.get(index)
|
276 |
+
|
277 |
+
def convert_tokens_to_string(self, tokens):
|
278 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
279 |
+
text = "".join(tokens)
|
280 |
+
text = bytearray([self.byte_decoder[c] for c in text]).decode("utf-8", errors=self.errors)
|
281 |
+
return text
|
282 |
+
|
283 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
284 |
+
if not os.path.isdir(save_directory):
|
285 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
286 |
+
return
|
287 |
+
vocab_file = os.path.join(
|
288 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
289 |
+
)
|
290 |
+
merge_file = os.path.join(
|
291 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"]
|
292 |
+
)
|
293 |
+
|
294 |
+
with open(vocab_file, "w", encoding="utf-8") as f:
|
295 |
+
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
|
296 |
+
|
297 |
+
index = 0
|
298 |
+
with open(merge_file, "w", encoding="utf-8") as writer:
|
299 |
+
writer.write("#version: 0.2\n")
|
300 |
+
for bpe_tokens, token_index in sorted(self.bpe_ranks.items(), key=lambda kv: kv[1]):
|
301 |
+
if index != token_index:
|
302 |
+
logger.warning(
|
303 |
+
f"Saving vocabulary to {merge_file}: BPE merge indices are not consecutive."
|
304 |
+
" Please check that the tokenizer is not corrupted!"
|
305 |
+
)
|
306 |
+
index = token_index
|
307 |
+
writer.write(" ".join(bpe_tokens) + "\n")
|
308 |
+
index += 1
|
309 |
+
|
310 |
+
return vocab_file, merge_file
|
311 |
+
|
312 |
+
def build_inputs_with_special_tokens(
|
313 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
314 |
+
) -> List[int]:
|
315 |
+
"""
|
316 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
317 |
+
adding special tokens. A MVP sequence has the following format:
|
318 |
+
|
319 |
+
- single sequence: `<s> X </s>`
|
320 |
+
- pair of sequences: `<s> A </s></s> B </s>`
|
321 |
+
|
322 |
+
Args:
|
323 |
+
token_ids_0 (`List[int]`):
|
324 |
+
List of IDs to which the special tokens will be added.
|
325 |
+
token_ids_1 (`List[int]`, *optional*):
|
326 |
+
Optional second list of IDs for sequence pairs.
|
327 |
+
|
328 |
+
Returns:
|
329 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
330 |
+
"""
|
331 |
+
if token_ids_1 is None:
|
332 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
333 |
+
cls = [self.cls_token_id]
|
334 |
+
sep = [self.sep_token_id]
|
335 |
+
return cls + token_ids_0 + sep + sep + token_ids_1 + sep
|
336 |
+
|
337 |
+
def get_special_tokens_mask(
|
338 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
339 |
+
) -> List[int]:
|
340 |
+
"""
|
341 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
342 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
343 |
+
|
344 |
+
Args:
|
345 |
+
token_ids_0 (`List[int]`):
|
346 |
+
List of IDs.
|
347 |
+
token_ids_1 (`List[int]`, *optional*):
|
348 |
+
Optional second list of IDs for sequence pairs.
|
349 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
350 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
351 |
+
|
352 |
+
Returns:
|
353 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
354 |
+
"""
|
355 |
+
if already_has_special_tokens:
|
356 |
+
return super().get_special_tokens_mask(
|
357 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
358 |
+
)
|
359 |
+
|
360 |
+
if token_ids_1 is None:
|
361 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
362 |
+
return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1]
|
363 |
+
|
364 |
+
def create_token_type_ids_from_sequences(
|
365 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
366 |
+
) -> List[int]:
|
367 |
+
"""
|
368 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not
|
369 |
+
make use of token type ids, therefore a list of zeros is returned.
|
370 |
+
|
371 |
+
Args:
|
372 |
+
token_ids_0 (`List[int]`):
|
373 |
+
List of IDs.
|
374 |
+
token_ids_1 (`List[int]`, *optional*):
|
375 |
+
Optional second list of IDs for sequence pairs.
|
376 |
+
|
377 |
+
Returns:
|
378 |
+
`List[int]`: List of zeros.
|
379 |
+
"""
|
380 |
+
sep = [self.sep_token_id]
|
381 |
+
cls = [self.cls_token_id]
|
382 |
+
|
383 |
+
if token_ids_1 is None:
|
384 |
+
return len(cls + token_ids_0 + sep) * [0]
|
385 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
386 |
+
|
387 |
+
def prepare_for_tokenization(self, text, is_split_into_words=False, **kwargs):
|
388 |
+
add_prefix_space = kwargs.pop("add_prefix_space", self.add_prefix_space)
|
389 |
+
if (is_split_into_words or add_prefix_space) and (len(text) > 0 and not text[0].isspace()):
|
390 |
+
text = " " + text
|
391 |
+
return (text, kwargs)
|
venv/lib/python3.10/site-packages/transformers/models/mvp/tokenization_mvp_fast.py
ADDED
@@ -0,0 +1,279 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import json
|
17 |
+
from typing import List, Optional, Tuple
|
18 |
+
|
19 |
+
from tokenizers import pre_tokenizers, processors
|
20 |
+
|
21 |
+
from ...tokenization_utils_base import AddedToken, BatchEncoding
|
22 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
23 |
+
from ...utils import logging
|
24 |
+
from .tokenization_mvp import MvpTokenizer
|
25 |
+
|
26 |
+
|
27 |
+
logger = logging.get_logger(__name__)
|
28 |
+
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json", "merges_file": "merges.txt", "tokenizer_file": "tokenizer.json"}
|
31 |
+
|
32 |
+
# See all MVP models at https://huggingface.co/models?filter=mvp
|
33 |
+
|
34 |
+
|
35 |
+
class MvpTokenizerFast(PreTrainedTokenizerFast):
|
36 |
+
r"""
|
37 |
+
Construct a "fast" MVP tokenizer (backed by HuggingFace's *tokenizers* library), derived from the GPT-2 tokenizer,
|
38 |
+
using byte-level Byte-Pair-Encoding.
|
39 |
+
|
40 |
+
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
|
41 |
+
be encoded differently whether it is at the beginning of the sentence (without space) or not:
|
42 |
+
|
43 |
+
```python
|
44 |
+
>>> from transformers import MvpTokenizerFast
|
45 |
+
|
46 |
+
>>> tokenizer = MvpTokenizerFast.from_pretrained("RUCAIBox/mvp")
|
47 |
+
>>> tokenizer("Hello world")["input_ids"]
|
48 |
+
[0, 31414, 232, 2]
|
49 |
+
|
50 |
+
>>> tokenizer(" Hello world")["input_ids"]
|
51 |
+
[0, 20920, 232, 2]
|
52 |
+
```
|
53 |
+
|
54 |
+
You can get around that behavior by passing `add_prefix_space=True` when instantiating this tokenizer or when you
|
55 |
+
call it on some text, but since the model was not pretrained this way, it might yield a decrease in performance.
|
56 |
+
|
57 |
+
<Tip>
|
58 |
+
|
59 |
+
When used with `is_split_into_words=True`, this tokenizer needs to be instantiated with `add_prefix_space=True`.
|
60 |
+
|
61 |
+
</Tip>
|
62 |
+
|
63 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
64 |
+
refer to this superclass for more information regarding those methods.
|
65 |
+
|
66 |
+
Args:
|
67 |
+
vocab_file (`str`):
|
68 |
+
Path to the vocabulary file.
|
69 |
+
merges_file (`str`):
|
70 |
+
Path to the merges file.
|
71 |
+
errors (`str`, *optional*, defaults to `"replace"`):
|
72 |
+
Paradigm to follow when decoding bytes to UTF-8. See
|
73 |
+
[bytes.decode](https://docs.python.org/3/library/stdtypes.html#bytes.decode) for more information.
|
74 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
75 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
76 |
+
|
77 |
+
<Tip>
|
78 |
+
|
79 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
80 |
+
sequence. The token used is the `cls_token`.
|
81 |
+
|
82 |
+
</Tip>
|
83 |
+
|
84 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
85 |
+
The end of sequence token.
|
86 |
+
|
87 |
+
<Tip>
|
88 |
+
|
89 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
90 |
+
The token used is the `sep_token`.
|
91 |
+
|
92 |
+
</Tip>
|
93 |
+
|
94 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
95 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
96 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
97 |
+
token of a sequence built with special tokens.
|
98 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
99 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
100 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
101 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
102 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
103 |
+
token instead.
|
104 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
105 |
+
The token used for padding, for example when batching sequences of different lengths.
|
106 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
107 |
+
The token used for masking values. This is the token used when training this model with masked language
|
108 |
+
modeling. This is the token which the model will try to predict.
|
109 |
+
add_prefix_space (`bool`, *optional*, defaults to `False`):
|
110 |
+
Whether or not to add an initial space to the input. This allows to treat the leading word just as any
|
111 |
+
other word. (MVP tokenizer detect beginning of words by the preceding space).
|
112 |
+
trim_offsets (`bool`, *optional*, defaults to `True`):
|
113 |
+
Whether the post processing step should trim offsets to avoid including whitespaces.
|
114 |
+
"""
|
115 |
+
|
116 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
117 |
+
model_input_names = ["input_ids", "attention_mask"]
|
118 |
+
slow_tokenizer_class = MvpTokenizer
|
119 |
+
|
120 |
+
def __init__(
|
121 |
+
self,
|
122 |
+
vocab_file=None,
|
123 |
+
merges_file=None,
|
124 |
+
tokenizer_file=None,
|
125 |
+
errors="replace",
|
126 |
+
bos_token="<s>",
|
127 |
+
eos_token="</s>",
|
128 |
+
sep_token="</s>",
|
129 |
+
cls_token="<s>",
|
130 |
+
unk_token="<unk>",
|
131 |
+
pad_token="<pad>",
|
132 |
+
mask_token="<mask>",
|
133 |
+
add_prefix_space=False,
|
134 |
+
trim_offsets=True,
|
135 |
+
**kwargs,
|
136 |
+
):
|
137 |
+
bos_token = AddedToken(bos_token, lstrip=False, rstrip=False) if isinstance(bos_token, str) else bos_token
|
138 |
+
eos_token = AddedToken(eos_token, lstrip=False, rstrip=False) if isinstance(eos_token, str) else eos_token
|
139 |
+
sep_token = AddedToken(sep_token, lstrip=False, rstrip=False) if isinstance(sep_token, str) else sep_token
|
140 |
+
cls_token = AddedToken(cls_token, lstrip=False, rstrip=False) if isinstance(cls_token, str) else cls_token
|
141 |
+
unk_token = AddedToken(unk_token, lstrip=False, rstrip=False) if isinstance(unk_token, str) else unk_token
|
142 |
+
pad_token = AddedToken(pad_token, lstrip=False, rstrip=False) if isinstance(pad_token, str) else pad_token
|
143 |
+
|
144 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
145 |
+
mask_token = AddedToken(mask_token, lstrip=True, rstrip=False) if isinstance(mask_token, str) else mask_token
|
146 |
+
super().__init__(
|
147 |
+
vocab_file,
|
148 |
+
merges_file,
|
149 |
+
tokenizer_file=tokenizer_file,
|
150 |
+
errors=errors,
|
151 |
+
bos_token=bos_token,
|
152 |
+
eos_token=eos_token,
|
153 |
+
sep_token=sep_token,
|
154 |
+
cls_token=cls_token,
|
155 |
+
unk_token=unk_token,
|
156 |
+
pad_token=pad_token,
|
157 |
+
mask_token=mask_token,
|
158 |
+
add_prefix_space=add_prefix_space,
|
159 |
+
trim_offsets=trim_offsets,
|
160 |
+
**kwargs,
|
161 |
+
)
|
162 |
+
|
163 |
+
pre_tok_state = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__())
|
164 |
+
if pre_tok_state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
165 |
+
pre_tok_class = getattr(pre_tokenizers, pre_tok_state.pop("type"))
|
166 |
+
pre_tok_state["add_prefix_space"] = add_prefix_space
|
167 |
+
self.backend_tokenizer.pre_tokenizer = pre_tok_class(**pre_tok_state)
|
168 |
+
|
169 |
+
self.add_prefix_space = add_prefix_space
|
170 |
+
|
171 |
+
# the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__`
|
172 |
+
tokenizer_component = "post_processor"
|
173 |
+
tokenizer_component_instance = getattr(self.backend_tokenizer, tokenizer_component, None)
|
174 |
+
if tokenizer_component_instance:
|
175 |
+
state = json.loads(tokenizer_component_instance.__getstate__())
|
176 |
+
|
177 |
+
# The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class`
|
178 |
+
if "sep" in state:
|
179 |
+
state["sep"] = tuple(state["sep"])
|
180 |
+
if "cls" in state:
|
181 |
+
state["cls"] = tuple(state["cls"])
|
182 |
+
|
183 |
+
changes_to_apply = False
|
184 |
+
|
185 |
+
if state.get("add_prefix_space", add_prefix_space) != add_prefix_space:
|
186 |
+
state["add_prefix_space"] = add_prefix_space
|
187 |
+
changes_to_apply = True
|
188 |
+
|
189 |
+
if state.get("trim_offsets", trim_offsets) != trim_offsets:
|
190 |
+
state["trim_offsets"] = trim_offsets
|
191 |
+
changes_to_apply = True
|
192 |
+
|
193 |
+
if changes_to_apply:
|
194 |
+
component_class = getattr(processors, state.pop("type"))
|
195 |
+
new_value = component_class(**state)
|
196 |
+
setattr(self.backend_tokenizer, tokenizer_component, new_value)
|
197 |
+
|
198 |
+
@property
|
199 |
+
def mask_token(self) -> str:
|
200 |
+
"""
|
201 |
+
`str`: Mask token, to use when training a model with masked-language modeling. Log an error if used while not
|
202 |
+
having been set.
|
203 |
+
|
204 |
+
MVP tokenizer has a special mask token to be usable in the fill-mask pipeline. The mask token will greedily
|
205 |
+
comprise the space before the *<mask>*.
|
206 |
+
"""
|
207 |
+
if self._mask_token is None:
|
208 |
+
if self.verbose:
|
209 |
+
logger.error("Using mask_token, but it is not set yet.")
|
210 |
+
return None
|
211 |
+
return str(self._mask_token)
|
212 |
+
|
213 |
+
@mask_token.setter
|
214 |
+
def mask_token(self, value):
|
215 |
+
"""
|
216 |
+
Overriding the default behavior of the mask token to have it eat the space before it.
|
217 |
+
|
218 |
+
This is needed to preserve backward compatibility with all the previously used models based on Mvp.
|
219 |
+
"""
|
220 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
221 |
+
# So we set lstrip to True
|
222 |
+
value = AddedToken(value, lstrip=True, rstrip=False) if isinstance(value, str) else value
|
223 |
+
self._mask_token = value
|
224 |
+
|
225 |
+
def _batch_encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
226 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
227 |
+
|
228 |
+
if is_split_into_words and not self.add_prefix_space:
|
229 |
+
raise ValueError(
|
230 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
231 |
+
"to use it with pretokenized inputs."
|
232 |
+
)
|
233 |
+
|
234 |
+
return super()._batch_encode_plus(*args, **kwargs)
|
235 |
+
|
236 |
+
def _encode_plus(self, *args, **kwargs) -> BatchEncoding:
|
237 |
+
is_split_into_words = kwargs.get("is_split_into_words", False)
|
238 |
+
|
239 |
+
if is_split_into_words and not self.add_prefix_space:
|
240 |
+
raise ValueError(
|
241 |
+
f"You need to instantiate {self.__class__.__name__} with add_prefix_space=True "
|
242 |
+
"to use it with pretokenized inputs."
|
243 |
+
)
|
244 |
+
|
245 |
+
return super()._encode_plus(*args, **kwargs)
|
246 |
+
|
247 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
248 |
+
files = self._tokenizer.model.save(save_directory, name=filename_prefix)
|
249 |
+
return tuple(files)
|
250 |
+
|
251 |
+
def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None):
|
252 |
+
output = [self.bos_token_id] + token_ids_0 + [self.eos_token_id]
|
253 |
+
if token_ids_1 is None:
|
254 |
+
return output
|
255 |
+
|
256 |
+
return output + [self.eos_token_id] + token_ids_1 + [self.eos_token_id]
|
257 |
+
|
258 |
+
def create_token_type_ids_from_sequences(
|
259 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
260 |
+
) -> List[int]:
|
261 |
+
"""
|
262 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. MVP does not
|
263 |
+
make use of token type ids, therefore a list of zeros is returned.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
token_ids_0 (`List[int]`):
|
267 |
+
List of IDs.
|
268 |
+
token_ids_1 (`List[int]`, *optional*):
|
269 |
+
Optional second list of IDs for sequence pairs.
|
270 |
+
|
271 |
+
Returns:
|
272 |
+
`List[int]`: List of zeros.
|
273 |
+
"""
|
274 |
+
sep = [self.sep_token_id]
|
275 |
+
cls = [self.cls_token_id]
|
276 |
+
|
277 |
+
if token_ids_1 is None:
|
278 |
+
return len(cls + token_ids_0 + sep) * [0]
|
279 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|