Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/7.attention.dense.weight/exp_avg.pt +3 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__init__.py +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/cosine_cdf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/expn_asy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/gammainc_asy.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/gammainc_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/lambertw.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/loggamma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/struve_convergence.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/utils.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wright_bessel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wright_bessel_data.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wrightomega.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/zetac.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/cosine_cdf.py +17 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/expn_asy.py +54 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/gammainc_asy.py +116 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/gammainc_data.py +124 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/lambertw.py +68 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/loggamma.py +43 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/struve_convergence.py +131 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/utils.py +38 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/wright_bessel.py +342 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/wright_bessel_data.py +152 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/wrightomega.py +41 -0
- venv/lib/python3.10/site-packages/scipy/special/_precompute/zetac.py +27 -0
- venv/lib/python3.10/site-packages/scipy/special/special/binom.h +85 -0
- venv/lib/python3.10/site-packages/scipy/special/special/cephes/beta.h +255 -0
- venv/lib/python3.10/site-packages/scipy/special/special/cephes/gamma.h +343 -0
- venv/lib/python3.10/site-packages/scipy/special/special/cephes/psi.h +194 -0
- venv/lib/python3.10/site-packages/scipy/special/special/cephes/zeta.h +172 -0
- venv/lib/python3.10/site-packages/scipy/special/special/config.h +158 -0
- venv/lib/python3.10/site-packages/scipy/special/special/digamma.h +198 -0
- venv/lib/python3.10/site-packages/scipy/special/special/error.h +42 -0
- venv/lib/python3.10/site-packages/scipy/special/special/evalpoly.h +47 -0
- venv/lib/python3.10/site-packages/scipy/special/special/lambertw.h +145 -0
- venv/lib/python3.10/site-packages/scipy/special/special/loggamma.h +158 -0
- venv/lib/python3.10/site-packages/scipy/special/special/trig.h +99 -0
- venv/lib/python3.10/site-packages/scipy/special/special/zlog1.h +35 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdflib.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdft_asymptotic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cython_special.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_dd.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_digamma.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_erfinv.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:28e565deae49903e4e68c02c801899d7ffe7d41431886fac53debb60ac807f55
|
3 |
+
size 50332828
|
ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:90240fedb5e43f6f5ff46c735c9021e51a30ea0ae8d308a36dd70cef798d8647
|
3 |
+
size 50332843
|
ckpts/universal/global_step40/zero/17.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8a0d1c3bdba907587a39c1fb157306d2c704c79d4d43508ef00d9b049bdd6e4
|
3 |
+
size 50332749
|
ckpts/universal/global_step40/zero/7.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:94e7d0ec7249c6edaaf94ea8683e0c39efee4fd85dc0d6098779076664d9699c
|
3 |
+
size 16778396
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (193 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/cosine_cdf.cpython-310.pyc
ADDED
Binary file (722 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/expn_asy.cpython-310.pyc
ADDED
Binary file (2 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/gammainc_asy.cpython-310.pyc
ADDED
Binary file (3.35 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/gammainc_data.cpython-310.pyc
ADDED
Binary file (3.88 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/lambertw.cpython-310.pyc
ADDED
Binary file (2.37 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/loggamma.cpython-310.pyc
ADDED
Binary file (1.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/struve_convergence.cpython-310.pyc
ADDED
Binary file (3.51 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/utils.cpython-310.pyc
ADDED
Binary file (1.46 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wright_bessel.cpython-310.pyc
ADDED
Binary file (13 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wright_bessel_data.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/wrightomega.cpython-310.pyc
ADDED
Binary file (1.35 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/__pycache__/zetac.cpython-310.pyc
ADDED
Binary file (1.08 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/cosine_cdf.py
ADDED
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import mpmath
|
2 |
+
|
3 |
+
|
4 |
+
def f(x):
|
5 |
+
return (mpmath.pi + x + mpmath.sin(x)) / (2*mpmath.pi)
|
6 |
+
|
7 |
+
|
8 |
+
# Note: 40 digits might be overkill; a few more digits than the default
|
9 |
+
# might be sufficient.
|
10 |
+
mpmath.mp.dps = 40
|
11 |
+
ts = mpmath.taylor(f, -mpmath.pi, 20)
|
12 |
+
p, q = mpmath.pade(ts, 9, 10)
|
13 |
+
|
14 |
+
p = [float(c) for c in p]
|
15 |
+
q = [float(c) for c in q]
|
16 |
+
print('p =', p)
|
17 |
+
print('q =', q)
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/expn_asy.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Precompute the polynomials for the asymptotic expansion of the
|
2 |
+
generalized exponential integral.
|
3 |
+
|
4 |
+
Sources
|
5 |
+
-------
|
6 |
+
[1] NIST, Digital Library of Mathematical Functions,
|
7 |
+
https://dlmf.nist.gov/8.20#ii
|
8 |
+
|
9 |
+
"""
|
10 |
+
import os
|
11 |
+
|
12 |
+
try:
|
13 |
+
import sympy
|
14 |
+
from sympy import Poly
|
15 |
+
x = sympy.symbols('x')
|
16 |
+
except ImportError:
|
17 |
+
pass
|
18 |
+
|
19 |
+
|
20 |
+
def generate_A(K):
|
21 |
+
A = [Poly(1, x)]
|
22 |
+
for k in range(K):
|
23 |
+
A.append(Poly(1 - 2*k*x, x)*A[k] + Poly(x*(x + 1))*A[k].diff())
|
24 |
+
return A
|
25 |
+
|
26 |
+
|
27 |
+
WARNING = """\
|
28 |
+
/* This file was automatically generated by _precompute/expn_asy.py.
|
29 |
+
* Do not edit it manually!
|
30 |
+
*/
|
31 |
+
"""
|
32 |
+
|
33 |
+
|
34 |
+
def main():
|
35 |
+
print(__doc__)
|
36 |
+
fn = os.path.join('..', 'cephes', 'expn.h')
|
37 |
+
|
38 |
+
K = 12
|
39 |
+
A = generate_A(K)
|
40 |
+
with open(fn + '.new', 'w') as f:
|
41 |
+
f.write(WARNING)
|
42 |
+
f.write(f"#define nA {len(A)}\n")
|
43 |
+
for k, Ak in enumerate(A):
|
44 |
+
', '.join([str(x.evalf(18)) for x in Ak.coeffs()])
|
45 |
+
f.write(f"static const double A{k}[] = {{tmp}};\n")
|
46 |
+
", ".join([f"A{k}" for k in range(K + 1)])
|
47 |
+
f.write("static const double *A[] = {{tmp}};\n")
|
48 |
+
", ".join([str(Ak.degree()) for Ak in A])
|
49 |
+
f.write("static const int Adegs[] = {{tmp}};\n")
|
50 |
+
os.rename(fn + '.new', fn)
|
51 |
+
|
52 |
+
|
53 |
+
if __name__ == "__main__":
|
54 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/gammainc_asy.py
ADDED
@@ -0,0 +1,116 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Precompute coefficients of Temme's asymptotic expansion for gammainc.
|
3 |
+
|
4 |
+
This takes about 8 hours to run on a 2.3 GHz Macbook Pro with 4GB ram.
|
5 |
+
|
6 |
+
Sources:
|
7 |
+
[1] NIST, "Digital Library of Mathematical Functions",
|
8 |
+
https://dlmf.nist.gov/
|
9 |
+
|
10 |
+
"""
|
11 |
+
import os
|
12 |
+
from scipy.special._precompute.utils import lagrange_inversion
|
13 |
+
|
14 |
+
try:
|
15 |
+
import mpmath as mp
|
16 |
+
except ImportError:
|
17 |
+
pass
|
18 |
+
|
19 |
+
|
20 |
+
def compute_a(n):
|
21 |
+
"""a_k from DLMF 5.11.6"""
|
22 |
+
a = [mp.sqrt(2)/2]
|
23 |
+
for k in range(1, n):
|
24 |
+
ak = a[-1]/k
|
25 |
+
for j in range(1, len(a)):
|
26 |
+
ak -= a[j]*a[-j]/(j + 1)
|
27 |
+
ak /= a[0]*(1 + mp.mpf(1)/(k + 1))
|
28 |
+
a.append(ak)
|
29 |
+
return a
|
30 |
+
|
31 |
+
|
32 |
+
def compute_g(n):
|
33 |
+
"""g_k from DLMF 5.11.3/5.11.5"""
|
34 |
+
a = compute_a(2*n)
|
35 |
+
g = [mp.sqrt(2)*mp.rf(0.5, k)*a[2*k] for k in range(n)]
|
36 |
+
return g
|
37 |
+
|
38 |
+
|
39 |
+
def eta(lam):
|
40 |
+
"""Function from DLMF 8.12.1 shifted to be centered at 0."""
|
41 |
+
if lam > 0:
|
42 |
+
return mp.sqrt(2*(lam - mp.log(lam + 1)))
|
43 |
+
elif lam < 0:
|
44 |
+
return -mp.sqrt(2*(lam - mp.log(lam + 1)))
|
45 |
+
else:
|
46 |
+
return 0
|
47 |
+
|
48 |
+
|
49 |
+
def compute_alpha(n):
|
50 |
+
"""alpha_n from DLMF 8.12.13"""
|
51 |
+
coeffs = mp.taylor(eta, 0, n - 1)
|
52 |
+
return lagrange_inversion(coeffs)
|
53 |
+
|
54 |
+
|
55 |
+
def compute_d(K, N):
|
56 |
+
"""d_{k, n} from DLMF 8.12.12"""
|
57 |
+
M = N + 2*K
|
58 |
+
d0 = [-mp.mpf(1)/3]
|
59 |
+
alpha = compute_alpha(M + 2)
|
60 |
+
for n in range(1, M):
|
61 |
+
d0.append((n + 2)*alpha[n+2])
|
62 |
+
d = [d0]
|
63 |
+
g = compute_g(K)
|
64 |
+
for k in range(1, K):
|
65 |
+
dk = []
|
66 |
+
for n in range(M - 2*k):
|
67 |
+
dk.append((-1)**k*g[k]*d[0][n] + (n + 2)*d[k-1][n+2])
|
68 |
+
d.append(dk)
|
69 |
+
for k in range(K):
|
70 |
+
d[k] = d[k][:N]
|
71 |
+
return d
|
72 |
+
|
73 |
+
|
74 |
+
header = \
|
75 |
+
r"""/* This file was automatically generated by _precomp/gammainc.py.
|
76 |
+
* Do not edit it manually!
|
77 |
+
*/
|
78 |
+
|
79 |
+
#ifndef IGAM_H
|
80 |
+
#define IGAM_H
|
81 |
+
|
82 |
+
#define K {}
|
83 |
+
#define N {}
|
84 |
+
|
85 |
+
static const double d[K][N] =
|
86 |
+
{{"""
|
87 |
+
|
88 |
+
footer = \
|
89 |
+
r"""
|
90 |
+
#endif
|
91 |
+
"""
|
92 |
+
|
93 |
+
|
94 |
+
def main():
|
95 |
+
print(__doc__)
|
96 |
+
K = 25
|
97 |
+
N = 25
|
98 |
+
with mp.workdps(50):
|
99 |
+
d = compute_d(K, N)
|
100 |
+
fn = os.path.join(os.path.dirname(__file__), '..', 'cephes', 'igam.h')
|
101 |
+
with open(fn + '.new', 'w') as f:
|
102 |
+
f.write(header.format(K, N))
|
103 |
+
for k, row in enumerate(d):
|
104 |
+
row = [mp.nstr(x, 17, min_fixed=0, max_fixed=0) for x in row]
|
105 |
+
f.write('{')
|
106 |
+
f.write(", ".join(row))
|
107 |
+
if k < K - 1:
|
108 |
+
f.write('},\n')
|
109 |
+
else:
|
110 |
+
f.write('}};\n')
|
111 |
+
f.write(footer)
|
112 |
+
os.rename(fn + '.new', fn)
|
113 |
+
|
114 |
+
|
115 |
+
if __name__ == "__main__":
|
116 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/gammainc_data.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compute gammainc and gammaincc for large arguments and parameters
|
2 |
+
and save the values to data files for use in tests. We can't just
|
3 |
+
compare to mpmath's gammainc in test_mpmath.TestSystematic because it
|
4 |
+
would take too long.
|
5 |
+
|
6 |
+
Note that mpmath's gammainc is computed using hypercomb, but since it
|
7 |
+
doesn't allow the user to increase the maximum number of terms used in
|
8 |
+
the series it doesn't converge for many arguments. To get around this
|
9 |
+
we copy the mpmath implementation but use more terms.
|
10 |
+
|
11 |
+
This takes about 17 minutes to run on a 2.3 GHz Macbook Pro with 4GB
|
12 |
+
ram.
|
13 |
+
|
14 |
+
Sources:
|
15 |
+
[1] Fredrik Johansson and others. mpmath: a Python library for
|
16 |
+
arbitrary-precision floating-point arithmetic (version 0.19),
|
17 |
+
December 2013. http://mpmath.org/.
|
18 |
+
|
19 |
+
"""
|
20 |
+
import os
|
21 |
+
from time import time
|
22 |
+
import numpy as np
|
23 |
+
from numpy import pi
|
24 |
+
|
25 |
+
from scipy.special._mptestutils import mpf2float
|
26 |
+
|
27 |
+
try:
|
28 |
+
import mpmath as mp
|
29 |
+
except ImportError:
|
30 |
+
pass
|
31 |
+
|
32 |
+
|
33 |
+
def gammainc(a, x, dps=50, maxterms=10**8):
|
34 |
+
"""Compute gammainc exactly like mpmath does but allow for more
|
35 |
+
summands in hypercomb. See
|
36 |
+
|
37 |
+
mpmath/functions/expintegrals.py#L134
|
38 |
+
|
39 |
+
in the mpmath github repository.
|
40 |
+
|
41 |
+
"""
|
42 |
+
with mp.workdps(dps):
|
43 |
+
z, a, b = mp.mpf(a), mp.mpf(x), mp.mpf(x)
|
44 |
+
G = [z]
|
45 |
+
negb = mp.fneg(b, exact=True)
|
46 |
+
|
47 |
+
def h(z):
|
48 |
+
T1 = [mp.exp(negb), b, z], [1, z, -1], [], G, [1], [1+z], b
|
49 |
+
return (T1,)
|
50 |
+
|
51 |
+
res = mp.hypercomb(h, [z], maxterms=maxterms)
|
52 |
+
return mpf2float(res)
|
53 |
+
|
54 |
+
|
55 |
+
def gammaincc(a, x, dps=50, maxterms=10**8):
|
56 |
+
"""Compute gammaincc exactly like mpmath does but allow for more
|
57 |
+
terms in hypercomb. See
|
58 |
+
|
59 |
+
mpmath/functions/expintegrals.py#L187
|
60 |
+
|
61 |
+
in the mpmath github repository.
|
62 |
+
|
63 |
+
"""
|
64 |
+
with mp.workdps(dps):
|
65 |
+
z, a = a, x
|
66 |
+
|
67 |
+
if mp.isint(z):
|
68 |
+
try:
|
69 |
+
# mpmath has a fast integer path
|
70 |
+
return mpf2float(mp.gammainc(z, a=a, regularized=True))
|
71 |
+
except mp.libmp.NoConvergence:
|
72 |
+
pass
|
73 |
+
nega = mp.fneg(a, exact=True)
|
74 |
+
G = [z]
|
75 |
+
# Use 2F0 series when possible; fall back to lower gamma representation
|
76 |
+
try:
|
77 |
+
def h(z):
|
78 |
+
r = z-1
|
79 |
+
return [([mp.exp(nega), a], [1, r], [], G, [1, -r], [], 1/nega)]
|
80 |
+
return mpf2float(mp.hypercomb(h, [z], force_series=True))
|
81 |
+
except mp.libmp.NoConvergence:
|
82 |
+
def h(z):
|
83 |
+
T1 = [], [1, z-1], [z], G, [], [], 0
|
84 |
+
T2 = [-mp.exp(nega), a, z], [1, z, -1], [], G, [1], [1+z], a
|
85 |
+
return T1, T2
|
86 |
+
return mpf2float(mp.hypercomb(h, [z], maxterms=maxterms))
|
87 |
+
|
88 |
+
|
89 |
+
def main():
|
90 |
+
t0 = time()
|
91 |
+
# It would be nice to have data for larger values, but either this
|
92 |
+
# requires prohibitively large precision (dps > 800) or mpmath has
|
93 |
+
# a bug. For example, gammainc(1e20, 1e20, dps=800) returns a
|
94 |
+
# value around 0.03, while the true value should be close to 0.5
|
95 |
+
# (DLMF 8.12.15).
|
96 |
+
print(__doc__)
|
97 |
+
pwd = os.path.dirname(__file__)
|
98 |
+
r = np.logspace(4, 14, 30)
|
99 |
+
ltheta = np.logspace(np.log10(pi/4), np.log10(np.arctan(0.6)), 30)
|
100 |
+
utheta = np.logspace(np.log10(pi/4), np.log10(np.arctan(1.4)), 30)
|
101 |
+
|
102 |
+
regimes = [(gammainc, ltheta), (gammaincc, utheta)]
|
103 |
+
for func, theta in regimes:
|
104 |
+
rg, thetag = np.meshgrid(r, theta)
|
105 |
+
a, x = rg*np.cos(thetag), rg*np.sin(thetag)
|
106 |
+
a, x = a.flatten(), x.flatten()
|
107 |
+
dataset = []
|
108 |
+
for i, (a0, x0) in enumerate(zip(a, x)):
|
109 |
+
if func == gammaincc:
|
110 |
+
# Exploit the fast integer path in gammaincc whenever
|
111 |
+
# possible so that the computation doesn't take too
|
112 |
+
# long
|
113 |
+
a0, x0 = np.floor(a0), np.floor(x0)
|
114 |
+
dataset.append((a0, x0, func(a0, x0)))
|
115 |
+
dataset = np.array(dataset)
|
116 |
+
filename = os.path.join(pwd, '..', 'tests', 'data', 'local',
|
117 |
+
f'{func.__name__}.txt')
|
118 |
+
np.savetxt(filename, dataset)
|
119 |
+
|
120 |
+
print(f"{(time() - t0)/60} minutes elapsed")
|
121 |
+
|
122 |
+
|
123 |
+
if __name__ == "__main__":
|
124 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/lambertw.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compute a Pade approximation for the principal branch of the
|
2 |
+
Lambert W function around 0 and compare it to various other
|
3 |
+
approximations.
|
4 |
+
|
5 |
+
"""
|
6 |
+
import numpy as np
|
7 |
+
|
8 |
+
try:
|
9 |
+
import mpmath
|
10 |
+
import matplotlib.pyplot as plt
|
11 |
+
except ImportError:
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
def lambertw_pade():
|
16 |
+
derivs = [mpmath.diff(mpmath.lambertw, 0, n=n) for n in range(6)]
|
17 |
+
p, q = mpmath.pade(derivs, 3, 2)
|
18 |
+
return p, q
|
19 |
+
|
20 |
+
|
21 |
+
def main():
|
22 |
+
print(__doc__)
|
23 |
+
with mpmath.workdps(50):
|
24 |
+
p, q = lambertw_pade()
|
25 |
+
p, q = p[::-1], q[::-1]
|
26 |
+
print(f"p = {p}")
|
27 |
+
print(f"q = {q}")
|
28 |
+
|
29 |
+
x, y = np.linspace(-1.5, 1.5, 75), np.linspace(-1.5, 1.5, 75)
|
30 |
+
x, y = np.meshgrid(x, y)
|
31 |
+
z = x + 1j*y
|
32 |
+
lambertw_std = []
|
33 |
+
for z0 in z.flatten():
|
34 |
+
lambertw_std.append(complex(mpmath.lambertw(z0)))
|
35 |
+
lambertw_std = np.array(lambertw_std).reshape(x.shape)
|
36 |
+
|
37 |
+
fig, axes = plt.subplots(nrows=3, ncols=1)
|
38 |
+
# Compare Pade approximation to true result
|
39 |
+
p = np.array([float(p0) for p0 in p])
|
40 |
+
q = np.array([float(q0) for q0 in q])
|
41 |
+
pade_approx = np.polyval(p, z)/np.polyval(q, z)
|
42 |
+
pade_err = abs(pade_approx - lambertw_std)
|
43 |
+
axes[0].pcolormesh(x, y, pade_err)
|
44 |
+
# Compare two terms of asymptotic series to true result
|
45 |
+
asy_approx = np.log(z) - np.log(np.log(z))
|
46 |
+
asy_err = abs(asy_approx - lambertw_std)
|
47 |
+
axes[1].pcolormesh(x, y, asy_err)
|
48 |
+
# Compare two terms of the series around the branch point to the
|
49 |
+
# true result
|
50 |
+
p = np.sqrt(2*(np.exp(1)*z + 1))
|
51 |
+
series_approx = -1 + p - p**2/3
|
52 |
+
series_err = abs(series_approx - lambertw_std)
|
53 |
+
im = axes[2].pcolormesh(x, y, series_err)
|
54 |
+
|
55 |
+
fig.colorbar(im, ax=axes.ravel().tolist())
|
56 |
+
plt.show()
|
57 |
+
|
58 |
+
fig, ax = plt.subplots(nrows=1, ncols=1)
|
59 |
+
pade_better = pade_err < asy_err
|
60 |
+
im = ax.pcolormesh(x, y, pade_better)
|
61 |
+
t = np.linspace(-0.3, 0.3)
|
62 |
+
ax.plot(-2.5*abs(t) - 0.2, t, 'r')
|
63 |
+
fig.colorbar(im, ax=ax)
|
64 |
+
plt.show()
|
65 |
+
|
66 |
+
|
67 |
+
if __name__ == '__main__':
|
68 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/loggamma.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Precompute series coefficients for log-Gamma."""
|
2 |
+
|
3 |
+
try:
|
4 |
+
import mpmath
|
5 |
+
except ImportError:
|
6 |
+
pass
|
7 |
+
|
8 |
+
|
9 |
+
def stirling_series(N):
|
10 |
+
with mpmath.workdps(100):
|
11 |
+
coeffs = [mpmath.bernoulli(2*n)/(2*n*(2*n - 1))
|
12 |
+
for n in range(1, N + 1)]
|
13 |
+
return coeffs
|
14 |
+
|
15 |
+
|
16 |
+
def taylor_series_at_1(N):
|
17 |
+
coeffs = []
|
18 |
+
with mpmath.workdps(100):
|
19 |
+
coeffs.append(-mpmath.euler)
|
20 |
+
for n in range(2, N + 1):
|
21 |
+
coeffs.append((-1)**n*mpmath.zeta(n)/n)
|
22 |
+
return coeffs
|
23 |
+
|
24 |
+
|
25 |
+
def main():
|
26 |
+
print(__doc__)
|
27 |
+
print()
|
28 |
+
stirling_coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
|
29 |
+
for x in stirling_series(8)[::-1]]
|
30 |
+
taylor_coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
|
31 |
+
for x in taylor_series_at_1(23)[::-1]]
|
32 |
+
print("Stirling series coefficients")
|
33 |
+
print("----------------------------")
|
34 |
+
print("\n".join(stirling_coeffs))
|
35 |
+
print()
|
36 |
+
print("Taylor series coefficients")
|
37 |
+
print("--------------------------")
|
38 |
+
print("\n".join(taylor_coeffs))
|
39 |
+
print()
|
40 |
+
|
41 |
+
|
42 |
+
if __name__ == '__main__':
|
43 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/struve_convergence.py
ADDED
@@ -0,0 +1,131 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Convergence regions of the expansions used in ``struve.c``
|
3 |
+
|
4 |
+
Note that for v >> z both functions tend rapidly to 0,
|
5 |
+
and for v << -z, they tend to infinity.
|
6 |
+
|
7 |
+
The floating-point functions over/underflow in the lower left and right
|
8 |
+
corners of the figure.
|
9 |
+
|
10 |
+
|
11 |
+
Figure legend
|
12 |
+
=============
|
13 |
+
|
14 |
+
Red region
|
15 |
+
Power series is close (1e-12) to the mpmath result
|
16 |
+
|
17 |
+
Blue region
|
18 |
+
Asymptotic series is close to the mpmath result
|
19 |
+
|
20 |
+
Green region
|
21 |
+
Bessel series is close to the mpmath result
|
22 |
+
|
23 |
+
Dotted colored lines
|
24 |
+
Boundaries of the regions
|
25 |
+
|
26 |
+
Solid colored lines
|
27 |
+
Boundaries estimated by the routine itself. These will be used
|
28 |
+
for determining which of the results to use.
|
29 |
+
|
30 |
+
Black dashed line
|
31 |
+
The line z = 0.7*|v| + 12
|
32 |
+
|
33 |
+
"""
|
34 |
+
import numpy as np
|
35 |
+
import matplotlib.pyplot as plt
|
36 |
+
|
37 |
+
import mpmath
|
38 |
+
|
39 |
+
|
40 |
+
def err_metric(a, b, atol=1e-290):
|
41 |
+
m = abs(a - b) / (atol + abs(b))
|
42 |
+
m[np.isinf(b) & (a == b)] = 0
|
43 |
+
return m
|
44 |
+
|
45 |
+
|
46 |
+
def do_plot(is_h=True):
|
47 |
+
from scipy.special._ufuncs import (_struve_power_series,
|
48 |
+
_struve_asymp_large_z,
|
49 |
+
_struve_bessel_series)
|
50 |
+
|
51 |
+
vs = np.linspace(-1000, 1000, 91)
|
52 |
+
zs = np.sort(np.r_[1e-5, 1.0, np.linspace(0, 700, 91)[1:]])
|
53 |
+
|
54 |
+
rp = _struve_power_series(vs[:,None], zs[None,:], is_h)
|
55 |
+
ra = _struve_asymp_large_z(vs[:,None], zs[None,:], is_h)
|
56 |
+
rb = _struve_bessel_series(vs[:,None], zs[None,:], is_h)
|
57 |
+
|
58 |
+
mpmath.mp.dps = 50
|
59 |
+
if is_h:
|
60 |
+
def sh(v, z):
|
61 |
+
return float(mpmath.struveh(mpmath.mpf(v), mpmath.mpf(z)))
|
62 |
+
else:
|
63 |
+
def sh(v, z):
|
64 |
+
return float(mpmath.struvel(mpmath.mpf(v), mpmath.mpf(z)))
|
65 |
+
ex = np.vectorize(sh, otypes='d')(vs[:,None], zs[None,:])
|
66 |
+
|
67 |
+
err_a = err_metric(ra[0], ex) + 1e-300
|
68 |
+
err_p = err_metric(rp[0], ex) + 1e-300
|
69 |
+
err_b = err_metric(rb[0], ex) + 1e-300
|
70 |
+
|
71 |
+
err_est_a = abs(ra[1]/ra[0])
|
72 |
+
err_est_p = abs(rp[1]/rp[0])
|
73 |
+
err_est_b = abs(rb[1]/rb[0])
|
74 |
+
|
75 |
+
z_cutoff = 0.7*abs(vs) + 12
|
76 |
+
|
77 |
+
levels = [-1000, -12]
|
78 |
+
|
79 |
+
plt.cla()
|
80 |
+
|
81 |
+
plt.hold(1)
|
82 |
+
plt.contourf(vs, zs, np.log10(err_p).T,
|
83 |
+
levels=levels, colors=['r', 'r'], alpha=0.1)
|
84 |
+
plt.contourf(vs, zs, np.log10(err_a).T,
|
85 |
+
levels=levels, colors=['b', 'b'], alpha=0.1)
|
86 |
+
plt.contourf(vs, zs, np.log10(err_b).T,
|
87 |
+
levels=levels, colors=['g', 'g'], alpha=0.1)
|
88 |
+
|
89 |
+
plt.contour(vs, zs, np.log10(err_p).T,
|
90 |
+
levels=levels, colors=['r', 'r'], linestyles=[':', ':'])
|
91 |
+
plt.contour(vs, zs, np.log10(err_a).T,
|
92 |
+
levels=levels, colors=['b', 'b'], linestyles=[':', ':'])
|
93 |
+
plt.contour(vs, zs, np.log10(err_b).T,
|
94 |
+
levels=levels, colors=['g', 'g'], linestyles=[':', ':'])
|
95 |
+
|
96 |
+
lp = plt.contour(vs, zs, np.log10(err_est_p).T,
|
97 |
+
levels=levels, colors=['r', 'r'], linestyles=['-', '-'])
|
98 |
+
la = plt.contour(vs, zs, np.log10(err_est_a).T,
|
99 |
+
levels=levels, colors=['b', 'b'], linestyles=['-', '-'])
|
100 |
+
lb = plt.contour(vs, zs, np.log10(err_est_b).T,
|
101 |
+
levels=levels, colors=['g', 'g'], linestyles=['-', '-'])
|
102 |
+
|
103 |
+
plt.clabel(lp, fmt={-1000: 'P', -12: 'P'})
|
104 |
+
plt.clabel(la, fmt={-1000: 'A', -12: 'A'})
|
105 |
+
plt.clabel(lb, fmt={-1000: 'B', -12: 'B'})
|
106 |
+
|
107 |
+
plt.plot(vs, z_cutoff, 'k--')
|
108 |
+
|
109 |
+
plt.xlim(vs.min(), vs.max())
|
110 |
+
plt.ylim(zs.min(), zs.max())
|
111 |
+
|
112 |
+
plt.xlabel('v')
|
113 |
+
plt.ylabel('z')
|
114 |
+
|
115 |
+
|
116 |
+
def main():
|
117 |
+
plt.clf()
|
118 |
+
plt.subplot(121)
|
119 |
+
do_plot(True)
|
120 |
+
plt.title('Struve H')
|
121 |
+
|
122 |
+
plt.subplot(122)
|
123 |
+
do_plot(False)
|
124 |
+
plt.title('Struve L')
|
125 |
+
|
126 |
+
plt.savefig('struve_convergence.png')
|
127 |
+
plt.show()
|
128 |
+
|
129 |
+
|
130 |
+
if __name__ == "__main__":
|
131 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/utils.py
ADDED
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
try:
|
2 |
+
import mpmath as mp
|
3 |
+
except ImportError:
|
4 |
+
pass
|
5 |
+
|
6 |
+
try:
|
7 |
+
from sympy.abc import x
|
8 |
+
except ImportError:
|
9 |
+
pass
|
10 |
+
|
11 |
+
|
12 |
+
def lagrange_inversion(a):
|
13 |
+
"""Given a series
|
14 |
+
|
15 |
+
f(x) = a[1]*x + a[2]*x**2 + ... + a[n-1]*x**(n - 1),
|
16 |
+
|
17 |
+
use the Lagrange inversion formula to compute a series
|
18 |
+
|
19 |
+
g(x) = b[1]*x + b[2]*x**2 + ... + b[n-1]*x**(n - 1)
|
20 |
+
|
21 |
+
so that f(g(x)) = g(f(x)) = x mod x**n. We must have a[0] = 0, so
|
22 |
+
necessarily b[0] = 0 too.
|
23 |
+
|
24 |
+
The algorithm is naive and could be improved, but speed isn't an
|
25 |
+
issue here and it's easy to read.
|
26 |
+
|
27 |
+
"""
|
28 |
+
n = len(a)
|
29 |
+
f = sum(a[i]*x**i for i in range(n))
|
30 |
+
h = (x/f).series(x, 0, n).removeO()
|
31 |
+
hpower = [h**0]
|
32 |
+
for k in range(n):
|
33 |
+
hpower.append((hpower[-1]*h).expand())
|
34 |
+
b = [mp.mpf(0)]
|
35 |
+
for k in range(1, n):
|
36 |
+
b.append(hpower[k].coeff(x, k - 1)/k)
|
37 |
+
b = [mp.mpf(x) for x in b]
|
38 |
+
return b
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/wright_bessel.py
ADDED
@@ -0,0 +1,342 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Precompute coefficients of several series expansions
|
2 |
+
of Wright's generalized Bessel function Phi(a, b, x).
|
3 |
+
|
4 |
+
See https://dlmf.nist.gov/10.46.E1 with rho=a, beta=b, z=x.
|
5 |
+
"""
|
6 |
+
from argparse import ArgumentParser, RawTextHelpFormatter
|
7 |
+
import numpy as np
|
8 |
+
from scipy.integrate import quad
|
9 |
+
from scipy.optimize import minimize_scalar, curve_fit
|
10 |
+
from time import time
|
11 |
+
|
12 |
+
try:
|
13 |
+
import sympy
|
14 |
+
from sympy import EulerGamma, Rational, S, Sum, \
|
15 |
+
factorial, gamma, gammasimp, pi, polygamma, symbols, zeta
|
16 |
+
from sympy.polys.polyfuncs import horner
|
17 |
+
except ImportError:
|
18 |
+
pass
|
19 |
+
|
20 |
+
|
21 |
+
def series_small_a():
|
22 |
+
"""Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.
|
23 |
+
"""
|
24 |
+
order = 5
|
25 |
+
a, b, x, k = symbols("a b x k")
|
26 |
+
A = [] # terms with a
|
27 |
+
X = [] # terms with x
|
28 |
+
B = [] # terms with b (polygammas)
|
29 |
+
# Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i])
|
30 |
+
expression = Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))
|
31 |
+
expression = gamma(b)/sympy.exp(x) * expression
|
32 |
+
|
33 |
+
# nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
|
34 |
+
for n in range(0, order+1):
|
35 |
+
term = expression.diff(a, n).subs(a, 0).simplify().doit()
|
36 |
+
# set the whole bracket involving polygammas to 1
|
37 |
+
x_part = (term.subs(polygamma(0, b), 1)
|
38 |
+
.replace(polygamma, lambda *args: 0))
|
39 |
+
# sign convention: x part always positive
|
40 |
+
x_part *= (-1)**n
|
41 |
+
|
42 |
+
A.append(a**n/factorial(n))
|
43 |
+
X.append(horner(x_part))
|
44 |
+
B.append(horner((term/x_part).simplify()))
|
45 |
+
|
46 |
+
s = "Tylor series expansion of Phi(a, b, x) in a=0 up to order 5.\n"
|
47 |
+
s += "Phi(a, b, x) = exp(x)/gamma(b) * sum(A[i] * X[i] * B[i], i=0..5)\n"
|
48 |
+
for name, c in zip(['A', 'X', 'B'], [A, X, B]):
|
49 |
+
for i in range(len(c)):
|
50 |
+
s += f"\n{name}[{i}] = " + str(c[i])
|
51 |
+
return s
|
52 |
+
|
53 |
+
|
54 |
+
# expansion of digamma
|
55 |
+
def dg_series(z, n):
|
56 |
+
"""Symbolic expansion of digamma(z) in z=0 to order n.
|
57 |
+
|
58 |
+
See https://dlmf.nist.gov/5.7.E4 and with https://dlmf.nist.gov/5.5.E2
|
59 |
+
"""
|
60 |
+
k = symbols("k")
|
61 |
+
return -1/z - EulerGamma + \
|
62 |
+
sympy.summation((-1)**k * zeta(k) * z**(k-1), (k, 2, n+1))
|
63 |
+
|
64 |
+
|
65 |
+
def pg_series(k, z, n):
|
66 |
+
"""Symbolic expansion of polygamma(k, z) in z=0 to order n."""
|
67 |
+
return sympy.diff(dg_series(z, n+k), z, k)
|
68 |
+
|
69 |
+
|
70 |
+
def series_small_a_small_b():
|
71 |
+
"""Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5.
|
72 |
+
|
73 |
+
Be aware of cancellation of poles in b=0 of digamma(b)/Gamma(b) and
|
74 |
+
polygamma functions.
|
75 |
+
|
76 |
+
digamma(b)/Gamma(b) = -1 - 2*M_EG*b + O(b^2)
|
77 |
+
digamma(b)^2/Gamma(b) = 1/b + 3*M_EG + b*(-5/12*PI^2+7/2*M_EG^2) + O(b^2)
|
78 |
+
polygamma(1, b)/Gamma(b) = 1/b + M_EG + b*(1/12*PI^2 + 1/2*M_EG^2) + O(b^2)
|
79 |
+
and so on.
|
80 |
+
"""
|
81 |
+
order = 5
|
82 |
+
a, b, x, k = symbols("a b x k")
|
83 |
+
M_PI, M_EG, M_Z3 = symbols("M_PI M_EG M_Z3")
|
84 |
+
c_subs = {pi: M_PI, EulerGamma: M_EG, zeta(3): M_Z3}
|
85 |
+
A = [] # terms with a
|
86 |
+
X = [] # terms with x
|
87 |
+
B = [] # terms with b (polygammas expanded)
|
88 |
+
C = [] # terms that generate B
|
89 |
+
# Phi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i])
|
90 |
+
# B[0] = 1
|
91 |
+
# B[k] = sum(C[k] * b**k/k!, k=0..)
|
92 |
+
# Note: C[k] can be obtained from a series expansion of 1/gamma(b).
|
93 |
+
expression = gamma(b)/sympy.exp(x) * \
|
94 |
+
Sum(x**k/factorial(k)/gamma(a*k+b), (k, 0, S.Infinity))
|
95 |
+
|
96 |
+
# nth term of taylor series in a=0: a^n/n! * (d^n Phi(a, b, x)/da^n at a=0)
|
97 |
+
for n in range(0, order+1):
|
98 |
+
term = expression.diff(a, n).subs(a, 0).simplify().doit()
|
99 |
+
# set the whole bracket involving polygammas to 1
|
100 |
+
x_part = (term.subs(polygamma(0, b), 1)
|
101 |
+
.replace(polygamma, lambda *args: 0))
|
102 |
+
# sign convention: x part always positive
|
103 |
+
x_part *= (-1)**n
|
104 |
+
# expansion of polygamma part with 1/gamma(b)
|
105 |
+
pg_part = term/x_part/gamma(b)
|
106 |
+
if n >= 1:
|
107 |
+
# Note: highest term is digamma^n
|
108 |
+
pg_part = pg_part.replace(polygamma,
|
109 |
+
lambda k, x: pg_series(k, x, order+1+n))
|
110 |
+
pg_part = (pg_part.series(b, 0, n=order+1-n)
|
111 |
+
.removeO()
|
112 |
+
.subs(polygamma(2, 1), -2*zeta(3))
|
113 |
+
.simplify()
|
114 |
+
)
|
115 |
+
|
116 |
+
A.append(a**n/factorial(n))
|
117 |
+
X.append(horner(x_part))
|
118 |
+
B.append(pg_part)
|
119 |
+
|
120 |
+
# Calculate C and put in the k!
|
121 |
+
C = sympy.Poly(B[1].subs(c_subs), b).coeffs()
|
122 |
+
C.reverse()
|
123 |
+
for i in range(len(C)):
|
124 |
+
C[i] = (C[i] * factorial(i)).simplify()
|
125 |
+
|
126 |
+
s = "Tylor series expansion of Phi(a, b, x) in a=0 and b=0 up to order 5."
|
127 |
+
s += "\nPhi(a, b, x) = exp(x) * sum(A[i] * X[i] * B[i], i=0..5)\n"
|
128 |
+
s += "B[0] = 1\n"
|
129 |
+
s += "B[i] = sum(C[k+i-1] * b**k/k!, k=0..)\n"
|
130 |
+
s += "\nM_PI = pi"
|
131 |
+
s += "\nM_EG = EulerGamma"
|
132 |
+
s += "\nM_Z3 = zeta(3)"
|
133 |
+
for name, c in zip(['A', 'X'], [A, X]):
|
134 |
+
for i in range(len(c)):
|
135 |
+
s += f"\n{name}[{i}] = "
|
136 |
+
s += str(c[i])
|
137 |
+
# For C, do also compute the values numerically
|
138 |
+
for i in range(len(C)):
|
139 |
+
s += f"\n# C[{i}] = "
|
140 |
+
s += str(C[i])
|
141 |
+
s += f"\nC[{i}] = "
|
142 |
+
s += str(C[i].subs({M_EG: EulerGamma, M_PI: pi, M_Z3: zeta(3)})
|
143 |
+
.evalf(17))
|
144 |
+
|
145 |
+
# Does B have the assumed structure?
|
146 |
+
s += "\n\nTest if B[i] does have the assumed structure."
|
147 |
+
s += "\nC[i] are derived from B[1] alone."
|
148 |
+
s += "\nTest B[2] == C[1] + b*C[2] + b^2/2*C[3] + b^3/6*C[4] + .."
|
149 |
+
test = sum([b**k/factorial(k) * C[k+1] for k in range(order-1)])
|
150 |
+
test = (test - B[2].subs(c_subs)).simplify()
|
151 |
+
s += f"\ntest successful = {test==S(0)}"
|
152 |
+
s += "\nTest B[3] == C[2] + b*C[3] + b^2/2*C[4] + .."
|
153 |
+
test = sum([b**k/factorial(k) * C[k+2] for k in range(order-2)])
|
154 |
+
test = (test - B[3].subs(c_subs)).simplify()
|
155 |
+
s += f"\ntest successful = {test==S(0)}"
|
156 |
+
return s
|
157 |
+
|
158 |
+
|
159 |
+
def asymptotic_series():
|
160 |
+
"""Asymptotic expansion for large x.
|
161 |
+
|
162 |
+
Phi(a, b, x) ~ Z^(1/2-b) * exp((1+a)/a * Z) * sum_k (-1)^k * C_k / Z^k
|
163 |
+
Z = (a*x)^(1/(1+a))
|
164 |
+
|
165 |
+
Wright (1935) lists the coefficients C_0 and C_1 (he calls them a_0 and
|
166 |
+
a_1). With slightly different notation, Paris (2017) lists coefficients
|
167 |
+
c_k up to order k=3.
|
168 |
+
Paris (2017) uses ZP = (1+a)/a * Z (ZP = Z of Paris) and
|
169 |
+
C_k = C_0 * (-a/(1+a))^k * c_k
|
170 |
+
"""
|
171 |
+
order = 8
|
172 |
+
|
173 |
+
class g(sympy.Function):
|
174 |
+
"""Helper function g according to Wright (1935)
|
175 |
+
|
176 |
+
g(n, rho, v) = (1 + (rho+2)/3 * v + (rho+2)*(rho+3)/(2*3) * v^2 + ...)
|
177 |
+
|
178 |
+
Note: Wright (1935) uses square root of above definition.
|
179 |
+
"""
|
180 |
+
nargs = 3
|
181 |
+
|
182 |
+
@classmethod
|
183 |
+
def eval(cls, n, rho, v):
|
184 |
+
if not n >= 0:
|
185 |
+
raise ValueError("must have n >= 0")
|
186 |
+
elif n == 0:
|
187 |
+
return 1
|
188 |
+
else:
|
189 |
+
return g(n-1, rho, v) \
|
190 |
+
+ gammasimp(gamma(rho+2+n)/gamma(rho+2)) \
|
191 |
+
/ gammasimp(gamma(3+n)/gamma(3))*v**n
|
192 |
+
|
193 |
+
class coef_C(sympy.Function):
|
194 |
+
"""Calculate coefficients C_m for integer m.
|
195 |
+
|
196 |
+
C_m is the coefficient of v^(2*m) in the Taylor expansion in v=0 of
|
197 |
+
Gamma(m+1/2)/(2*pi) * (2/(rho+1))^(m+1/2) * (1-v)^(-b)
|
198 |
+
* g(rho, v)^(-m-1/2)
|
199 |
+
"""
|
200 |
+
nargs = 3
|
201 |
+
|
202 |
+
@classmethod
|
203 |
+
def eval(cls, m, rho, beta):
|
204 |
+
if not m >= 0:
|
205 |
+
raise ValueError("must have m >= 0")
|
206 |
+
|
207 |
+
v = symbols("v")
|
208 |
+
expression = (1-v)**(-beta) * g(2*m, rho, v)**(-m-Rational(1, 2))
|
209 |
+
res = expression.diff(v, 2*m).subs(v, 0) / factorial(2*m)
|
210 |
+
res = res * (gamma(m + Rational(1, 2)) / (2*pi)
|
211 |
+
* (2/(rho+1))**(m + Rational(1, 2)))
|
212 |
+
return res
|
213 |
+
|
214 |
+
# in order to have nice ordering/sorting of expressions, we set a = xa.
|
215 |
+
xa, b, xap1 = symbols("xa b xap1")
|
216 |
+
C0 = coef_C(0, xa, b)
|
217 |
+
# a1 = a(1, rho, beta)
|
218 |
+
s = "Asymptotic expansion for large x\n"
|
219 |
+
s += "Phi(a, b, x) = Z**(1/2-b) * exp((1+a)/a * Z) \n"
|
220 |
+
s += " * sum((-1)**k * C[k]/Z**k, k=0..6)\n\n"
|
221 |
+
s += "Z = pow(a * x, 1/(1+a))\n"
|
222 |
+
s += "A[k] = pow(a, k)\n"
|
223 |
+
s += "B[k] = pow(b, k)\n"
|
224 |
+
s += "Ap1[k] = pow(1+a, k)\n\n"
|
225 |
+
s += "C[0] = 1./sqrt(2. * M_PI * Ap1[1])\n"
|
226 |
+
for i in range(1, order+1):
|
227 |
+
expr = (coef_C(i, xa, b) / (C0/(1+xa)**i)).simplify()
|
228 |
+
factor = [x.denominator() for x in sympy.Poly(expr).coeffs()]
|
229 |
+
factor = sympy.lcm(factor)
|
230 |
+
expr = (expr * factor).simplify().collect(b, sympy.factor)
|
231 |
+
expr = expr.xreplace({xa+1: xap1})
|
232 |
+
s += f"C[{i}] = C[0] / ({factor} * Ap1[{i}])\n"
|
233 |
+
s += f"C[{i}] *= {str(expr)}\n\n"
|
234 |
+
import re
|
235 |
+
re_a = re.compile(r'xa\*\*(\d+)')
|
236 |
+
s = re_a.sub(r'A[\1]', s)
|
237 |
+
re_b = re.compile(r'b\*\*(\d+)')
|
238 |
+
s = re_b.sub(r'B[\1]', s)
|
239 |
+
s = s.replace('xap1', 'Ap1[1]')
|
240 |
+
s = s.replace('xa', 'a')
|
241 |
+
# max integer = 2^31-1 = 2,147,483,647. Solution: Put a point after 10
|
242 |
+
# or more digits.
|
243 |
+
re_digits = re.compile(r'(\d{10,})')
|
244 |
+
s = re_digits.sub(r'\1.', s)
|
245 |
+
return s
|
246 |
+
|
247 |
+
|
248 |
+
def optimal_epsilon_integral():
|
249 |
+
"""Fit optimal choice of epsilon for integral representation.
|
250 |
+
|
251 |
+
The integrand of
|
252 |
+
int_0^pi P(eps, a, b, x, phi) * dphi
|
253 |
+
can exhibit oscillatory behaviour. It stems from the cosine of P and can be
|
254 |
+
minimized by minimizing the arc length of the argument
|
255 |
+
f(phi) = eps * sin(phi) - x * eps^(-a) * sin(a * phi) + (1 - b) * phi
|
256 |
+
of cos(f(phi)).
|
257 |
+
We minimize the arc length in eps for a grid of values (a, b, x) and fit a
|
258 |
+
parametric function to it.
|
259 |
+
"""
|
260 |
+
def fp(eps, a, b, x, phi):
|
261 |
+
"""Derivative of f w.r.t. phi."""
|
262 |
+
eps_a = np.power(1. * eps, -a)
|
263 |
+
return eps * np.cos(phi) - a * x * eps_a * np.cos(a * phi) + 1 - b
|
264 |
+
|
265 |
+
def arclength(eps, a, b, x, epsrel=1e-2, limit=100):
|
266 |
+
"""Compute Arc length of f.
|
267 |
+
|
268 |
+
Note that the arc length of a function f from t0 to t1 is given by
|
269 |
+
int_t0^t1 sqrt(1 + f'(t)^2) dt
|
270 |
+
"""
|
271 |
+
return quad(lambda phi: np.sqrt(1 + fp(eps, a, b, x, phi)**2),
|
272 |
+
0, np.pi,
|
273 |
+
epsrel=epsrel, limit=100)[0]
|
274 |
+
|
275 |
+
# grid of minimal arc length values
|
276 |
+
data_a = [1e-3, 0.1, 0.5, 0.9, 1, 2, 4, 5, 6, 8]
|
277 |
+
data_b = [0, 1, 4, 7, 10]
|
278 |
+
data_x = [1, 1.5, 2, 4, 10, 20, 50, 100, 200, 500, 1e3, 5e3, 1e4]
|
279 |
+
data_a, data_b, data_x = np.meshgrid(data_a, data_b, data_x)
|
280 |
+
data_a, data_b, data_x = (data_a.flatten(), data_b.flatten(),
|
281 |
+
data_x.flatten())
|
282 |
+
best_eps = []
|
283 |
+
for i in range(data_x.size):
|
284 |
+
best_eps.append(
|
285 |
+
minimize_scalar(lambda eps: arclength(eps, data_a[i], data_b[i],
|
286 |
+
data_x[i]),
|
287 |
+
bounds=(1e-3, 1000),
|
288 |
+
method='Bounded', options={'xatol': 1e-3}).x
|
289 |
+
)
|
290 |
+
best_eps = np.array(best_eps)
|
291 |
+
# pandas would be nice, but here a dictionary is enough
|
292 |
+
df = {'a': data_a,
|
293 |
+
'b': data_b,
|
294 |
+
'x': data_x,
|
295 |
+
'eps': best_eps,
|
296 |
+
}
|
297 |
+
|
298 |
+
def func(data, A0, A1, A2, A3, A4, A5):
|
299 |
+
"""Compute parametric function to fit."""
|
300 |
+
a = data['a']
|
301 |
+
b = data['b']
|
302 |
+
x = data['x']
|
303 |
+
return (A0 * b * np.exp(-0.5 * a)
|
304 |
+
+ np.exp(A1 + 1 / (1 + a) * np.log(x) - A2 * np.exp(-A3 * a)
|
305 |
+
+ A4 / (1 + np.exp(A5 * a))))
|
306 |
+
|
307 |
+
func_params = list(curve_fit(func, df, df['eps'], method='trf')[0])
|
308 |
+
|
309 |
+
s = "Fit optimal eps for integrand P via minimal arc length\n"
|
310 |
+
s += "with parametric function:\n"
|
311 |
+
s += "optimal_eps = (A0 * b * exp(-a/2) + exp(A1 + 1 / (1 + a) * log(x)\n"
|
312 |
+
s += " - A2 * exp(-A3 * a) + A4 / (1 + exp(A5 * a)))\n\n"
|
313 |
+
s += "Fitted parameters A0 to A5 are:\n"
|
314 |
+
s += ', '.join([f'{x:.5g}' for x in func_params])
|
315 |
+
return s
|
316 |
+
|
317 |
+
|
318 |
+
def main():
|
319 |
+
t0 = time()
|
320 |
+
parser = ArgumentParser(description=__doc__,
|
321 |
+
formatter_class=RawTextHelpFormatter)
|
322 |
+
parser.add_argument('action', type=int, choices=[1, 2, 3, 4],
|
323 |
+
help='chose what expansion to precompute\n'
|
324 |
+
'1 : Series for small a\n'
|
325 |
+
'2 : Series for small a and small b\n'
|
326 |
+
'3 : Asymptotic series for large x\n'
|
327 |
+
' This may take some time (>4h).\n'
|
328 |
+
'4 : Fit optimal eps for integral representation.'
|
329 |
+
)
|
330 |
+
args = parser.parse_args()
|
331 |
+
|
332 |
+
switch = {1: lambda: print(series_small_a()),
|
333 |
+
2: lambda: print(series_small_a_small_b()),
|
334 |
+
3: lambda: print(asymptotic_series()),
|
335 |
+
4: lambda: print(optimal_epsilon_integral())
|
336 |
+
}
|
337 |
+
switch.get(args.action, lambda: print("Invalid input."))()
|
338 |
+
print(f"\n{(time() - t0)/60:.1f} minutes elapsed.\n")
|
339 |
+
|
340 |
+
|
341 |
+
if __name__ == '__main__':
|
342 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/wright_bessel_data.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compute a grid of values for Wright's generalized Bessel function
|
2 |
+
and save the values to data files for use in tests. Using mpmath directly in
|
3 |
+
tests would take too long.
|
4 |
+
|
5 |
+
This takes about 10 minutes to run on a 2.7 GHz i7 Macbook Pro.
|
6 |
+
"""
|
7 |
+
from functools import lru_cache
|
8 |
+
import os
|
9 |
+
from time import time
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
from scipy.special._mptestutils import mpf2float
|
13 |
+
|
14 |
+
try:
|
15 |
+
import mpmath as mp
|
16 |
+
except ImportError:
|
17 |
+
pass
|
18 |
+
|
19 |
+
# exp_inf: smallest value x for which exp(x) == inf
|
20 |
+
exp_inf = 709.78271289338403
|
21 |
+
|
22 |
+
|
23 |
+
# 64 Byte per value
|
24 |
+
@lru_cache(maxsize=100_000)
|
25 |
+
def rgamma_cached(x, dps):
|
26 |
+
with mp.workdps(dps):
|
27 |
+
return mp.rgamma(x)
|
28 |
+
|
29 |
+
|
30 |
+
def mp_wright_bessel(a, b, x, dps=50, maxterms=2000):
|
31 |
+
"""Compute Wright's generalized Bessel function as Series with mpmath.
|
32 |
+
"""
|
33 |
+
with mp.workdps(dps):
|
34 |
+
a, b, x = mp.mpf(a), mp.mpf(b), mp.mpf(x)
|
35 |
+
res = mp.nsum(lambda k: x**k / mp.fac(k)
|
36 |
+
* rgamma_cached(a * k + b, dps=dps),
|
37 |
+
[0, mp.inf],
|
38 |
+
tol=dps, method='s', steps=[maxterms]
|
39 |
+
)
|
40 |
+
return mpf2float(res)
|
41 |
+
|
42 |
+
|
43 |
+
def main():
|
44 |
+
t0 = time()
|
45 |
+
print(__doc__)
|
46 |
+
pwd = os.path.dirname(__file__)
|
47 |
+
eps = np.finfo(float).eps * 100
|
48 |
+
|
49 |
+
a_range = np.array([eps,
|
50 |
+
1e-4 * (1 - eps), 1e-4, 1e-4 * (1 + eps),
|
51 |
+
1e-3 * (1 - eps), 1e-3, 1e-3 * (1 + eps),
|
52 |
+
0.1, 0.5,
|
53 |
+
1 * (1 - eps), 1, 1 * (1 + eps),
|
54 |
+
1.5, 2, 4.999, 5, 10])
|
55 |
+
b_range = np.array([0, eps, 1e-10, 1e-5, 0.1, 1, 2, 10, 20, 100])
|
56 |
+
x_range = np.array([0, eps, 1 - eps, 1, 1 + eps,
|
57 |
+
1.5,
|
58 |
+
2 - eps, 2, 2 + eps,
|
59 |
+
9 - eps, 9, 9 + eps,
|
60 |
+
10 * (1 - eps), 10, 10 * (1 + eps),
|
61 |
+
100 * (1 - eps), 100, 100 * (1 + eps),
|
62 |
+
500, exp_inf, 1e3, 1e5, 1e10, 1e20])
|
63 |
+
|
64 |
+
a_range, b_range, x_range = np.meshgrid(a_range, b_range, x_range,
|
65 |
+
indexing='ij')
|
66 |
+
a_range = a_range.flatten()
|
67 |
+
b_range = b_range.flatten()
|
68 |
+
x_range = x_range.flatten()
|
69 |
+
|
70 |
+
# filter out some values, especially too large x
|
71 |
+
bool_filter = ~((a_range < 5e-3) & (x_range >= exp_inf))
|
72 |
+
bool_filter = bool_filter & ~((a_range < 0.2) & (x_range > exp_inf))
|
73 |
+
bool_filter = bool_filter & ~((a_range < 0.5) & (x_range > 1e3))
|
74 |
+
bool_filter = bool_filter & ~((a_range < 0.56) & (x_range > 5e3))
|
75 |
+
bool_filter = bool_filter & ~((a_range < 1) & (x_range > 1e4))
|
76 |
+
bool_filter = bool_filter & ~((a_range < 1.4) & (x_range > 1e5))
|
77 |
+
bool_filter = bool_filter & ~((a_range < 1.8) & (x_range > 1e6))
|
78 |
+
bool_filter = bool_filter & ~((a_range < 2.2) & (x_range > 1e7))
|
79 |
+
bool_filter = bool_filter & ~((a_range < 2.5) & (x_range > 1e8))
|
80 |
+
bool_filter = bool_filter & ~((a_range < 2.9) & (x_range > 1e9))
|
81 |
+
bool_filter = bool_filter & ~((a_range < 3.3) & (x_range > 1e10))
|
82 |
+
bool_filter = bool_filter & ~((a_range < 3.7) & (x_range > 1e11))
|
83 |
+
bool_filter = bool_filter & ~((a_range < 4) & (x_range > 1e12))
|
84 |
+
bool_filter = bool_filter & ~((a_range < 4.4) & (x_range > 1e13))
|
85 |
+
bool_filter = bool_filter & ~((a_range < 4.7) & (x_range > 1e14))
|
86 |
+
bool_filter = bool_filter & ~((a_range < 5.1) & (x_range > 1e15))
|
87 |
+
bool_filter = bool_filter & ~((a_range < 5.4) & (x_range > 1e16))
|
88 |
+
bool_filter = bool_filter & ~((a_range < 5.8) & (x_range > 1e17))
|
89 |
+
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
|
90 |
+
bool_filter = bool_filter & ~((a_range < 6.2) & (x_range > 1e18))
|
91 |
+
bool_filter = bool_filter & ~((a_range < 6.5) & (x_range > 1e19))
|
92 |
+
bool_filter = bool_filter & ~((a_range < 6.9) & (x_range > 1e20))
|
93 |
+
|
94 |
+
# filter out known values that do not meet the required numerical accuracy
|
95 |
+
# see test test_wright_data_grid_failures
|
96 |
+
failing = np.array([
|
97 |
+
[0.1, 100, 709.7827128933841],
|
98 |
+
[0.5, 10, 709.7827128933841],
|
99 |
+
[0.5, 10, 1000],
|
100 |
+
[0.5, 100, 1000],
|
101 |
+
[1, 20, 100000],
|
102 |
+
[1, 100, 100000],
|
103 |
+
[1.0000000000000222, 20, 100000],
|
104 |
+
[1.0000000000000222, 100, 100000],
|
105 |
+
[1.5, 0, 500],
|
106 |
+
[1.5, 2.220446049250313e-14, 500],
|
107 |
+
[1.5, 1.e-10, 500],
|
108 |
+
[1.5, 1.e-05, 500],
|
109 |
+
[1.5, 0.1, 500],
|
110 |
+
[1.5, 20, 100000],
|
111 |
+
[1.5, 100, 100000],
|
112 |
+
]).tolist()
|
113 |
+
|
114 |
+
does_fail = np.full_like(a_range, False, dtype=bool)
|
115 |
+
for i in range(x_range.size):
|
116 |
+
if [a_range[i], b_range[i], x_range[i]] in failing:
|
117 |
+
does_fail[i] = True
|
118 |
+
|
119 |
+
# filter and flatten
|
120 |
+
a_range = a_range[bool_filter]
|
121 |
+
b_range = b_range[bool_filter]
|
122 |
+
x_range = x_range[bool_filter]
|
123 |
+
does_fail = does_fail[bool_filter]
|
124 |
+
|
125 |
+
dataset = []
|
126 |
+
print(f"Computing {x_range.size} single points.")
|
127 |
+
print("Tests will fail for the following data points:")
|
128 |
+
for i in range(x_range.size):
|
129 |
+
a = a_range[i]
|
130 |
+
b = b_range[i]
|
131 |
+
x = x_range[i]
|
132 |
+
# take care of difficult corner cases
|
133 |
+
maxterms = 1000
|
134 |
+
if a < 1e-6 and x >= exp_inf/10:
|
135 |
+
maxterms = 2000
|
136 |
+
f = mp_wright_bessel(a, b, x, maxterms=maxterms)
|
137 |
+
if does_fail[i]:
|
138 |
+
print("failing data point a, b, x, value = "
|
139 |
+
f"[{a}, {b}, {x}, {f}]")
|
140 |
+
else:
|
141 |
+
dataset.append((a, b, x, f))
|
142 |
+
dataset = np.array(dataset)
|
143 |
+
|
144 |
+
filename = os.path.join(pwd, '..', 'tests', 'data', 'local',
|
145 |
+
'wright_bessel.txt')
|
146 |
+
np.savetxt(filename, dataset)
|
147 |
+
|
148 |
+
print(f"{(time() - t0)/60:.1f} minutes elapsed")
|
149 |
+
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/wrightomega.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
|
3 |
+
try:
|
4 |
+
import mpmath
|
5 |
+
except ImportError:
|
6 |
+
pass
|
7 |
+
|
8 |
+
|
9 |
+
def mpmath_wrightomega(x):
|
10 |
+
return mpmath.lambertw(mpmath.exp(x), mpmath.mpf('-0.5'))
|
11 |
+
|
12 |
+
|
13 |
+
def wrightomega_series_error(x):
|
14 |
+
series = x
|
15 |
+
desired = mpmath_wrightomega(x)
|
16 |
+
return abs(series - desired) / desired
|
17 |
+
|
18 |
+
|
19 |
+
def wrightomega_exp_error(x):
|
20 |
+
exponential_approx = mpmath.exp(x)
|
21 |
+
desired = mpmath_wrightomega(x)
|
22 |
+
return abs(exponential_approx - desired) / desired
|
23 |
+
|
24 |
+
|
25 |
+
def main():
|
26 |
+
desired_error = 2 * np.finfo(float).eps
|
27 |
+
print('Series Error')
|
28 |
+
for x in [1e5, 1e10, 1e15, 1e20]:
|
29 |
+
with mpmath.workdps(100):
|
30 |
+
error = wrightomega_series_error(x)
|
31 |
+
print(x, error, error < desired_error)
|
32 |
+
|
33 |
+
print('Exp error')
|
34 |
+
for x in [-10, -25, -50, -100, -200, -400, -700, -740]:
|
35 |
+
with mpmath.workdps(100):
|
36 |
+
error = wrightomega_exp_error(x)
|
37 |
+
print(x, error, error < desired_error)
|
38 |
+
|
39 |
+
|
40 |
+
if __name__ == '__main__':
|
41 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/_precompute/zetac.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Compute the Taylor series for zeta(x) - 1 around x = 0."""
|
2 |
+
try:
|
3 |
+
import mpmath
|
4 |
+
except ImportError:
|
5 |
+
pass
|
6 |
+
|
7 |
+
|
8 |
+
def zetac_series(N):
|
9 |
+
coeffs = []
|
10 |
+
with mpmath.workdps(100):
|
11 |
+
coeffs.append(-1.5)
|
12 |
+
for n in range(1, N):
|
13 |
+
coeff = mpmath.diff(mpmath.zeta, 0, n)/mpmath.factorial(n)
|
14 |
+
coeffs.append(coeff)
|
15 |
+
return coeffs
|
16 |
+
|
17 |
+
|
18 |
+
def main():
|
19 |
+
print(__doc__)
|
20 |
+
coeffs = zetac_series(10)
|
21 |
+
coeffs = [mpmath.nstr(x, 20, min_fixed=0, max_fixed=0)
|
22 |
+
for x in coeffs]
|
23 |
+
print("\n".join(coeffs[::-1]))
|
24 |
+
|
25 |
+
|
26 |
+
if __name__ == '__main__':
|
27 |
+
main()
|
venv/lib/python3.10/site-packages/scipy/special/special/binom.h
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2024.
|
2 |
+
*
|
3 |
+
* Original authors: Pauli Virtanen, Eric Moore
|
4 |
+
*/
|
5 |
+
|
6 |
+
// Binomial coefficient
|
7 |
+
|
8 |
+
#pragma once
|
9 |
+
|
10 |
+
#include "config.h"
|
11 |
+
|
12 |
+
#include "cephes/beta.h"
|
13 |
+
#include "cephes/gamma.h"
|
14 |
+
|
15 |
+
namespace special {
|
16 |
+
|
17 |
+
SPECFUN_HOST_DEVICE inline double binom(double n, double k) {
|
18 |
+
double kx, nx, num, den, dk, sgn;
|
19 |
+
|
20 |
+
if (n < 0) {
|
21 |
+
nx = std::floor(n);
|
22 |
+
if (n == nx) {
|
23 |
+
// Undefined
|
24 |
+
return std::numeric_limits<double>::quiet_NaN();
|
25 |
+
}
|
26 |
+
}
|
27 |
+
|
28 |
+
kx = std::floor(k);
|
29 |
+
if (k == kx && (std::abs(n) > 1E-8 || n == 0)) {
|
30 |
+
/* Integer case: use multiplication formula for less rounding
|
31 |
+
* error for cases where the result is an integer.
|
32 |
+
*
|
33 |
+
* This cannot be used for small nonzero n due to loss of
|
34 |
+
* precision. */
|
35 |
+
nx = std::floor(n);
|
36 |
+
if (nx == n && kx > nx / 2 && nx > 0) {
|
37 |
+
// Reduce kx by symmetry
|
38 |
+
kx = nx - kx;
|
39 |
+
}
|
40 |
+
|
41 |
+
if (kx >= 0 && kx < 20) {
|
42 |
+
num = 1.0;
|
43 |
+
den = 1.0;
|
44 |
+
for (int i = 1; i < 1 + static_cast<int>(kx); i++) {
|
45 |
+
num *= i + n - kx;
|
46 |
+
den *= i;
|
47 |
+
if (std::abs(num) > 1E50) {
|
48 |
+
num /= den;
|
49 |
+
den = 1.0;
|
50 |
+
}
|
51 |
+
}
|
52 |
+
return num / den;
|
53 |
+
}
|
54 |
+
}
|
55 |
+
|
56 |
+
// general case
|
57 |
+
if (n >= 1E10 * k and k > 0) {
|
58 |
+
// avoid under/overflows intermediate results
|
59 |
+
return std::exp(-cephes::lbeta(1 + n - k, 1 + k) - std::log(n + 1));
|
60 |
+
}
|
61 |
+
if (k > 1E8 * std::abs(n)) {
|
62 |
+
// avoid loss of precision
|
63 |
+
num = cephes::Gamma(1 + n) / std::abs(k) + cephes::Gamma(1 + n) * n / (2 * k * k); // + ...
|
64 |
+
num /= M_PI * std::pow(std::abs(k), n);
|
65 |
+
if (k > 0) {
|
66 |
+
kx = std::floor(k);
|
67 |
+
if (static_cast<int>(kx) == kx) {
|
68 |
+
dk = k - kx;
|
69 |
+
sgn = (static_cast<int>(kx) % 2 == 0) ? 1 : -1;
|
70 |
+
} else {
|
71 |
+
dk = k;
|
72 |
+
sgn = 1;
|
73 |
+
}
|
74 |
+
return num * std::sin((dk - n) * M_PI) * sgn;
|
75 |
+
}
|
76 |
+
kx = std::floor(k);
|
77 |
+
if (static_cast<int>(kx) == kx) {
|
78 |
+
return 0;
|
79 |
+
}
|
80 |
+
return num * std::sin(k * M_PI);
|
81 |
+
}
|
82 |
+
return 1 / (n + 1) / cephes::beta(1 + n - k, 1 + k);
|
83 |
+
}
|
84 |
+
|
85 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/cephes/beta.h
ADDED
@@ -0,0 +1,255 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated into C++ by SciPy developers in 2024.
|
2 |
+
* Original header with Copyright information appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* beta.c
|
6 |
+
*
|
7 |
+
* Beta function
|
8 |
+
*
|
9 |
+
*
|
10 |
+
*
|
11 |
+
* SYNOPSIS:
|
12 |
+
*
|
13 |
+
* double a, b, y, beta();
|
14 |
+
*
|
15 |
+
* y = beta( a, b );
|
16 |
+
*
|
17 |
+
*
|
18 |
+
*
|
19 |
+
* DESCRIPTION:
|
20 |
+
*
|
21 |
+
* - -
|
22 |
+
* | (a) | (b)
|
23 |
+
* beta( a, b ) = -----------.
|
24 |
+
* -
|
25 |
+
* | (a+b)
|
26 |
+
*
|
27 |
+
* For large arguments the logarithm of the function is
|
28 |
+
* evaluated using lgam(), then exponentiated.
|
29 |
+
*
|
30 |
+
*
|
31 |
+
*
|
32 |
+
* ACCURACY:
|
33 |
+
*
|
34 |
+
* Relative error:
|
35 |
+
* arithmetic domain # trials peak rms
|
36 |
+
* IEEE 0,30 30000 8.1e-14 1.1e-14
|
37 |
+
*
|
38 |
+
* ERROR MESSAGES:
|
39 |
+
*
|
40 |
+
* message condition value returned
|
41 |
+
* beta overflow log(beta) > MAXLOG 0.0
|
42 |
+
* a or b <0 integer 0.0
|
43 |
+
*
|
44 |
+
*/
|
45 |
+
|
46 |
+
/*
|
47 |
+
* Cephes Math Library Release 2.0: April, 1987
|
48 |
+
* Copyright 1984, 1987 by Stephen L. Moshier
|
49 |
+
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
50 |
+
*/
|
51 |
+
#pragma once
|
52 |
+
|
53 |
+
#include "../config.h"
|
54 |
+
#include "const.h"
|
55 |
+
#include "gamma.h"
|
56 |
+
|
57 |
+
namespace special {
|
58 |
+
namespace cephes {
|
59 |
+
|
60 |
+
SPECFUN_HOST_DEVICE double beta(double, double);
|
61 |
+
SPECFUN_HOST_DEVICE double lbeta(double, double);
|
62 |
+
|
63 |
+
namespace detail {
|
64 |
+
constexpr double beta_ASYMP_FACTOR = 1e6;
|
65 |
+
|
66 |
+
/*
|
67 |
+
* Asymptotic expansion for ln(|B(a, b)|) for a > ASYMP_FACTOR*max(|b|, 1).
|
68 |
+
*/
|
69 |
+
SPECFUN_HOST_DEVICE inline double lbeta_asymp(double a, double b, int *sgn) {
|
70 |
+
double r = lgam_sgn(b, sgn);
|
71 |
+
r -= b * std::log(a);
|
72 |
+
|
73 |
+
r += b * (1 - b) / (2 * a);
|
74 |
+
r += b * (1 - b) * (1 - 2 * b) / (12 * a * a);
|
75 |
+
r += -b * b * (1 - b) * (1 - b) / (12 * a * a * a);
|
76 |
+
|
77 |
+
return r;
|
78 |
+
}
|
79 |
+
|
80 |
+
/*
|
81 |
+
* Special case for a negative integer argument
|
82 |
+
*/
|
83 |
+
|
84 |
+
SPECFUN_HOST_DEVICE inline double beta_negint(int a, double b) {
|
85 |
+
int sgn;
|
86 |
+
if (b == static_cast<int>(b) && 1 - a - b > 0) {
|
87 |
+
sgn = (static_cast<int>(b) % 2 == 0) ? 1 : -1;
|
88 |
+
return sgn * special::cephes::beta(1 - a - b, b);
|
89 |
+
} else {
|
90 |
+
set_error("lbeta", SF_ERROR_OVERFLOW, NULL);
|
91 |
+
return std::numeric_limits<double>::infinity();
|
92 |
+
}
|
93 |
+
}
|
94 |
+
|
95 |
+
SPECFUN_HOST_DEVICE inline double lbeta_negint(int a, double b) {
|
96 |
+
double r;
|
97 |
+
if (b == static_cast<int>(b) && 1 - a - b > 0) {
|
98 |
+
r = special::cephes::lbeta(1 - a - b, b);
|
99 |
+
return r;
|
100 |
+
} else {
|
101 |
+
set_error("lbeta", SF_ERROR_OVERFLOW, NULL);
|
102 |
+
return std::numeric_limits<double>::infinity();
|
103 |
+
}
|
104 |
+
}
|
105 |
+
} // namespace detail
|
106 |
+
|
107 |
+
SPECFUN_HOST_DEVICE inline double beta(double a, double b) {
|
108 |
+
double y;
|
109 |
+
int sign = 1;
|
110 |
+
|
111 |
+
if (a <= 0.0) {
|
112 |
+
if (a == std::floor(a)) {
|
113 |
+
if (a == static_cast<int>(a)) {
|
114 |
+
return detail::beta_negint(static_cast<int>(a), b);
|
115 |
+
} else {
|
116 |
+
goto overflow;
|
117 |
+
}
|
118 |
+
}
|
119 |
+
}
|
120 |
+
|
121 |
+
if (b <= 0.0) {
|
122 |
+
if (b == std::floor(b)) {
|
123 |
+
if (b == static_cast<int>(b)) {
|
124 |
+
return detail::beta_negint(static_cast<int>(b), a);
|
125 |
+
} else {
|
126 |
+
goto overflow;
|
127 |
+
}
|
128 |
+
}
|
129 |
+
}
|
130 |
+
|
131 |
+
if (std::abs(a) < std::abs(b)) {
|
132 |
+
y = a;
|
133 |
+
a = b;
|
134 |
+
b = y;
|
135 |
+
}
|
136 |
+
|
137 |
+
if (std::abs(a) > detail::beta_ASYMP_FACTOR * std::abs(b) && a > detail::beta_ASYMP_FACTOR) {
|
138 |
+
/* Avoid loss of precision in lgam(a + b) - lgam(a) */
|
139 |
+
y = detail::lbeta_asymp(a, b, &sign);
|
140 |
+
return sign * std::exp(y);
|
141 |
+
}
|
142 |
+
|
143 |
+
y = a + b;
|
144 |
+
if (std::abs(y) > detail::MAXGAM || std::abs(a) > detail::MAXGAM || std::abs(b) > detail::MAXGAM) {
|
145 |
+
int sgngam;
|
146 |
+
y = detail::lgam_sgn(y, &sgngam);
|
147 |
+
sign *= sgngam; /* keep track of the sign */
|
148 |
+
y = detail::lgam_sgn(b, &sgngam) - y;
|
149 |
+
sign *= sgngam;
|
150 |
+
y = detail::lgam_sgn(a, &sgngam) + y;
|
151 |
+
sign *= sgngam;
|
152 |
+
if (y > detail::MAXLOG) {
|
153 |
+
goto overflow;
|
154 |
+
}
|
155 |
+
return (sign * std::exp(y));
|
156 |
+
}
|
157 |
+
|
158 |
+
y = Gamma(y);
|
159 |
+
a = Gamma(a);
|
160 |
+
b = Gamma(b);
|
161 |
+
if (y == 0.0)
|
162 |
+
goto overflow;
|
163 |
+
|
164 |
+
if (std::abs(std::abs(a) - std::abs(y)) > std::abs(std::abs(b) - std::abs(y))) {
|
165 |
+
y = b / y;
|
166 |
+
y *= a;
|
167 |
+
} else {
|
168 |
+
y = a / y;
|
169 |
+
y *= b;
|
170 |
+
}
|
171 |
+
|
172 |
+
return (y);
|
173 |
+
|
174 |
+
overflow:
|
175 |
+
set_error("beta", SF_ERROR_OVERFLOW, NULL);
|
176 |
+
return (sign * std::numeric_limits<double>::infinity());
|
177 |
+
}
|
178 |
+
|
179 |
+
/* Natural log of |beta|. */
|
180 |
+
|
181 |
+
SPECFUN_HOST_DEVICE inline double lbeta(double a, double b) {
|
182 |
+
double y;
|
183 |
+
int sign;
|
184 |
+
|
185 |
+
sign = 1;
|
186 |
+
|
187 |
+
if (a <= 0.0) {
|
188 |
+
if (a == std::floor(a)) {
|
189 |
+
if (a == static_cast<int>(a)) {
|
190 |
+
return detail::lbeta_negint(static_cast<int>(a), b);
|
191 |
+
} else {
|
192 |
+
goto over;
|
193 |
+
}
|
194 |
+
}
|
195 |
+
}
|
196 |
+
|
197 |
+
if (b <= 0.0) {
|
198 |
+
if (b == std::floor(b)) {
|
199 |
+
if (b == static_cast<int>(b)) {
|
200 |
+
return detail::lbeta_negint(static_cast<int>(b), a);
|
201 |
+
} else {
|
202 |
+
goto over;
|
203 |
+
}
|
204 |
+
}
|
205 |
+
}
|
206 |
+
|
207 |
+
if (std::abs(a) < std::abs(b)) {
|
208 |
+
y = a;
|
209 |
+
a = b;
|
210 |
+
b = y;
|
211 |
+
}
|
212 |
+
|
213 |
+
if (std::abs(a) > detail::beta_ASYMP_FACTOR * std::abs(b) && a > detail::beta_ASYMP_FACTOR) {
|
214 |
+
/* Avoid loss of precision in lgam(a + b) - lgam(a) */
|
215 |
+
y = detail::lbeta_asymp(a, b, &sign);
|
216 |
+
return y;
|
217 |
+
}
|
218 |
+
|
219 |
+
y = a + b;
|
220 |
+
if (std::abs(y) > detail::MAXGAM || std::abs(a) > detail::MAXGAM || std::abs(b) > detail::MAXGAM) {
|
221 |
+
int sgngam;
|
222 |
+
y = detail::lgam_sgn(y, &sgngam);
|
223 |
+
sign *= sgngam; /* keep track of the sign */
|
224 |
+
y = detail::lgam_sgn(b, &sgngam) - y;
|
225 |
+
sign *= sgngam;
|
226 |
+
y = detail::lgam_sgn(a, &sgngam) + y;
|
227 |
+
sign *= sgngam;
|
228 |
+
return (y);
|
229 |
+
}
|
230 |
+
|
231 |
+
y = Gamma(y);
|
232 |
+
a = Gamma(a);
|
233 |
+
b = Gamma(b);
|
234 |
+
if (y == 0.0) {
|
235 |
+
over:
|
236 |
+
set_error("lbeta", SF_ERROR_OVERFLOW, NULL);
|
237 |
+
return (sign * std::numeric_limits<double>::infinity());
|
238 |
+
}
|
239 |
+
|
240 |
+
if (std::abs(std::abs(a) - std::abs(y)) > std::abs(std::abs(b) - std::abs(y))) {
|
241 |
+
y = b / y;
|
242 |
+
y *= a;
|
243 |
+
} else {
|
244 |
+
y = a / y;
|
245 |
+
y *= b;
|
246 |
+
}
|
247 |
+
|
248 |
+
if (y < 0) {
|
249 |
+
y = -y;
|
250 |
+
}
|
251 |
+
|
252 |
+
return (std::log(y));
|
253 |
+
}
|
254 |
+
} // namespace cephes
|
255 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/cephes/gamma.h
ADDED
@@ -0,0 +1,343 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated into C++ by SciPy developers in 2024.
|
2 |
+
* Original header with Copyright information appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/*
|
6 |
+
* Gamma function
|
7 |
+
*
|
8 |
+
*
|
9 |
+
*
|
10 |
+
* SYNOPSIS:
|
11 |
+
*
|
12 |
+
* double x, y, Gamma();
|
13 |
+
*
|
14 |
+
* y = Gamma( x );
|
15 |
+
*
|
16 |
+
*
|
17 |
+
*
|
18 |
+
* DESCRIPTION:
|
19 |
+
*
|
20 |
+
* Returns Gamma function of the argument. The result is
|
21 |
+
* correctly signed.
|
22 |
+
*
|
23 |
+
* Arguments |x| <= 34 are reduced by recurrence and the function
|
24 |
+
* approximated by a rational function of degree 6/7 in the
|
25 |
+
* interval (2,3). Large arguments are handled by Stirling's
|
26 |
+
* formula. Large negative arguments are made positive using
|
27 |
+
* a reflection formula.
|
28 |
+
*
|
29 |
+
*
|
30 |
+
* ACCURACY:
|
31 |
+
*
|
32 |
+
* Relative error:
|
33 |
+
* arithmetic domain # trials peak rms
|
34 |
+
* IEEE -170,-33 20000 2.3e-15 3.3e-16
|
35 |
+
* IEEE -33, 33 20000 9.4e-16 2.2e-16
|
36 |
+
* IEEE 33, 171.6 20000 2.3e-15 3.2e-16
|
37 |
+
*
|
38 |
+
* Error for arguments outside the test range will be larger
|
39 |
+
* owing to error amplification by the exponential function.
|
40 |
+
*
|
41 |
+
*/
|
42 |
+
|
43 |
+
/* lgam()
|
44 |
+
*
|
45 |
+
* Natural logarithm of Gamma function
|
46 |
+
*
|
47 |
+
*
|
48 |
+
*
|
49 |
+
* SYNOPSIS:
|
50 |
+
*
|
51 |
+
* double x, y, lgam();
|
52 |
+
*
|
53 |
+
* y = lgam( x );
|
54 |
+
*
|
55 |
+
*
|
56 |
+
*
|
57 |
+
* DESCRIPTION:
|
58 |
+
*
|
59 |
+
* Returns the base e (2.718...) logarithm of the absolute
|
60 |
+
* value of the Gamma function of the argument.
|
61 |
+
*
|
62 |
+
* For arguments greater than 13, the logarithm of the Gamma
|
63 |
+
* function is approximated by the logarithmic version of
|
64 |
+
* Stirling's formula using a polynomial approximation of
|
65 |
+
* degree 4. Arguments between -33 and +33 are reduced by
|
66 |
+
* recurrence to the interval [2,3] of a rational approximation.
|
67 |
+
* The cosecant reflection formula is employed for arguments
|
68 |
+
* less than -33.
|
69 |
+
*
|
70 |
+
* Arguments greater than MAXLGM return INFINITY and an error
|
71 |
+
* message. MAXLGM = 2.556348e305 for IEEE arithmetic.
|
72 |
+
*
|
73 |
+
*
|
74 |
+
*
|
75 |
+
* ACCURACY:
|
76 |
+
*
|
77 |
+
*
|
78 |
+
* arithmetic domain # trials peak rms
|
79 |
+
* IEEE 0, 3 28000 5.4e-16 1.1e-16
|
80 |
+
* IEEE 2.718, 2.556e305 40000 3.5e-16 8.3e-17
|
81 |
+
* The error criterion was relative when the function magnitude
|
82 |
+
* was greater than one but absolute when it was less than one.
|
83 |
+
*
|
84 |
+
* The following test used the relative error criterion, though
|
85 |
+
* at certain points the relative error could be much higher than
|
86 |
+
* indicated.
|
87 |
+
* IEEE -200, -4 10000 4.8e-16 1.3e-16
|
88 |
+
*
|
89 |
+
*/
|
90 |
+
|
91 |
+
/*
|
92 |
+
* Cephes Math Library Release 2.2: July, 1992
|
93 |
+
* Copyright 1984, 1987, 1989, 1992 by Stephen L. Moshier
|
94 |
+
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
95 |
+
*/
|
96 |
+
#pragma once
|
97 |
+
|
98 |
+
#include "../config.h"
|
99 |
+
#include "../error.h"
|
100 |
+
#include "polevl.h"
|
101 |
+
|
102 |
+
namespace special {
|
103 |
+
namespace cephes {
|
104 |
+
namespace detail {
|
105 |
+
constexpr double gamma_P[] = {1.60119522476751861407E-4, 1.19135147006586384913E-3, 1.04213797561761569935E-2,
|
106 |
+
4.76367800457137231464E-2, 2.07448227648435975150E-1, 4.94214826801497100753E-1,
|
107 |
+
9.99999999999999996796E-1};
|
108 |
+
|
109 |
+
constexpr double gamma_Q[] = {-2.31581873324120129819E-5, 5.39605580493303397842E-4, -4.45641913851797240494E-3,
|
110 |
+
1.18139785222060435552E-2, 3.58236398605498653373E-2, -2.34591795718243348568E-1,
|
111 |
+
7.14304917030273074085E-2, 1.00000000000000000320E0};
|
112 |
+
|
113 |
+
constexpr double MAXGAM = 171.624376956302725;
|
114 |
+
constexpr double LOGPI = 1.14472988584940017414;
|
115 |
+
|
116 |
+
/* Stirling's formula for the Gamma function */
|
117 |
+
constexpr double gamma_STIR[5] = {
|
118 |
+
7.87311395793093628397E-4, -2.29549961613378126380E-4, -2.68132617805781232825E-3,
|
119 |
+
3.47222221605458667310E-3, 8.33333333333482257126E-2,
|
120 |
+
};
|
121 |
+
|
122 |
+
constexpr double MAXSTIR = 143.01608;
|
123 |
+
constexpr double SQTPI = 2.50662827463100050242E0;
|
124 |
+
|
125 |
+
/* Gamma function computed by Stirling's formula.
|
126 |
+
* The polynomial STIR is valid for 33 <= x <= 172.
|
127 |
+
*/
|
128 |
+
SPECFUN_HOST_DEVICE inline double stirf(double x) {
|
129 |
+
double y, w, v;
|
130 |
+
|
131 |
+
if (x >= MAXGAM) {
|
132 |
+
return (std::numeric_limits<double>::infinity());
|
133 |
+
}
|
134 |
+
w = 1.0 / x;
|
135 |
+
w = 1.0 + w * special::cephes::polevl(w, gamma_STIR, 4);
|
136 |
+
y = std::exp(x);
|
137 |
+
if (x > MAXSTIR) { /* Avoid overflow in pow() */
|
138 |
+
v = std::pow(x, 0.5 * x - 0.25);
|
139 |
+
y = v * (v / y);
|
140 |
+
} else {
|
141 |
+
y = std::pow(x, x - 0.5) / y;
|
142 |
+
}
|
143 |
+
y = SQTPI * y * w;
|
144 |
+
return (y);
|
145 |
+
}
|
146 |
+
} // namespace detail
|
147 |
+
|
148 |
+
SPECFUN_HOST_DEVICE inline double Gamma(double x) {
|
149 |
+
double p, q, z;
|
150 |
+
int i;
|
151 |
+
int sgngam = 1;
|
152 |
+
|
153 |
+
if (!std::isfinite(x)) {
|
154 |
+
return x;
|
155 |
+
}
|
156 |
+
q = std::abs(x);
|
157 |
+
|
158 |
+
if (q > 33.0) {
|
159 |
+
if (x < 0.0) {
|
160 |
+
p = floor(q);
|
161 |
+
if (p == q) {
|
162 |
+
gamnan:
|
163 |
+
set_error("Gamma", SF_ERROR_OVERFLOW, NULL);
|
164 |
+
return (std::numeric_limits<double>::infinity());
|
165 |
+
}
|
166 |
+
i = p;
|
167 |
+
if ((i & 1) == 0) {
|
168 |
+
sgngam = -1;
|
169 |
+
}
|
170 |
+
z = q - p;
|
171 |
+
if (z > 0.5) {
|
172 |
+
p += 1.0;
|
173 |
+
z = q - p;
|
174 |
+
}
|
175 |
+
z = q * std::sin(M_PI * z);
|
176 |
+
if (z == 0.0) {
|
177 |
+
return (sgngam * std::numeric_limits<double>::infinity());
|
178 |
+
}
|
179 |
+
z = std::abs(z);
|
180 |
+
z = M_PI / (z * detail::stirf(q));
|
181 |
+
} else {
|
182 |
+
z = detail::stirf(x);
|
183 |
+
}
|
184 |
+
return (sgngam * z);
|
185 |
+
}
|
186 |
+
|
187 |
+
z = 1.0;
|
188 |
+
while (x >= 3.0) {
|
189 |
+
x -= 1.0;
|
190 |
+
z *= x;
|
191 |
+
}
|
192 |
+
|
193 |
+
while (x < 0.0) {
|
194 |
+
if (x > -1.E-9) {
|
195 |
+
goto small;
|
196 |
+
}
|
197 |
+
z /= x;
|
198 |
+
x += 1.0;
|
199 |
+
}
|
200 |
+
|
201 |
+
while (x < 2.0) {
|
202 |
+
if (x < 1.e-9) {
|
203 |
+
goto small;
|
204 |
+
}
|
205 |
+
z /= x;
|
206 |
+
x += 1.0;
|
207 |
+
}
|
208 |
+
|
209 |
+
if (x == 2.0) {
|
210 |
+
return (z);
|
211 |
+
}
|
212 |
+
|
213 |
+
x -= 2.0;
|
214 |
+
p = polevl(x, detail::gamma_P, 6);
|
215 |
+
q = polevl(x, detail::gamma_Q, 7);
|
216 |
+
return (z * p / q);
|
217 |
+
|
218 |
+
small:
|
219 |
+
if (x == 0.0) {
|
220 |
+
goto gamnan;
|
221 |
+
} else
|
222 |
+
return (z / ((1.0 + 0.5772156649015329 * x) * x));
|
223 |
+
}
|
224 |
+
|
225 |
+
namespace detail {
|
226 |
+
/* A[]: Stirling's formula expansion of log Gamma
|
227 |
+
* B[], C[]: log Gamma function between 2 and 3
|
228 |
+
*/
|
229 |
+
constexpr double gamma_A[] = {8.11614167470508450300E-4, -5.95061904284301438324E-4, 7.93650340457716943945E-4,
|
230 |
+
-2.77777777730099687205E-3, 8.33333333333331927722E-2};
|
231 |
+
|
232 |
+
constexpr double gamma_B[] = {-1.37825152569120859100E3, -3.88016315134637840924E4, -3.31612992738871184744E5,
|
233 |
+
-1.16237097492762307383E6, -1.72173700820839662146E6, -8.53555664245765465627E5};
|
234 |
+
|
235 |
+
constexpr double gamma_C[] = {
|
236 |
+
/* 1.00000000000000000000E0, */
|
237 |
+
-3.51815701436523470549E2, -1.70642106651881159223E4, -2.20528590553854454839E5,
|
238 |
+
-1.13933444367982507207E6, -2.53252307177582951285E6, -2.01889141433532773231E6};
|
239 |
+
|
240 |
+
/* log( sqrt( 2*pi ) ) */
|
241 |
+
constexpr double LS2PI = 0.91893853320467274178;
|
242 |
+
|
243 |
+
constexpr double MAXLGM = 2.556348e305;
|
244 |
+
|
245 |
+
SPECFUN_HOST_DEVICE double lgam_sgn(double x, int *sign) {
|
246 |
+
double p, q, u, w, z;
|
247 |
+
int i;
|
248 |
+
|
249 |
+
*sign = 1;
|
250 |
+
|
251 |
+
if (!std::isfinite(x)) {
|
252 |
+
return x;
|
253 |
+
}
|
254 |
+
|
255 |
+
if (x < -34.0) {
|
256 |
+
q = -x;
|
257 |
+
w = lgam_sgn(q, sign);
|
258 |
+
p = floor(q);
|
259 |
+
if (p == q) {
|
260 |
+
lgsing:
|
261 |
+
set_error("lgam", SF_ERROR_SINGULAR, NULL);
|
262 |
+
return (std::numeric_limits<double>::infinity());
|
263 |
+
}
|
264 |
+
i = p;
|
265 |
+
if ((i & 1) == 0) {
|
266 |
+
*sign = -1;
|
267 |
+
} else {
|
268 |
+
*sign = 1;
|
269 |
+
}
|
270 |
+
z = q - p;
|
271 |
+
if (z > 0.5) {
|
272 |
+
p += 1.0;
|
273 |
+
z = p - q;
|
274 |
+
}
|
275 |
+
z = q * std::sin(M_PI * z);
|
276 |
+
if (z == 0.0) {
|
277 |
+
goto lgsing;
|
278 |
+
}
|
279 |
+
/* z = log(M_PI) - log( z ) - w; */
|
280 |
+
z = LOGPI - std::log(z) - w;
|
281 |
+
return (z);
|
282 |
+
}
|
283 |
+
|
284 |
+
if (x < 13.0) {
|
285 |
+
z = 1.0;
|
286 |
+
p = 0.0;
|
287 |
+
u = x;
|
288 |
+
while (u >= 3.0) {
|
289 |
+
p -= 1.0;
|
290 |
+
u = x + p;
|
291 |
+
z *= u;
|
292 |
+
}
|
293 |
+
while (u < 2.0) {
|
294 |
+
if (u == 0.0) {
|
295 |
+
goto lgsing;
|
296 |
+
}
|
297 |
+
z /= u;
|
298 |
+
p += 1.0;
|
299 |
+
u = x + p;
|
300 |
+
}
|
301 |
+
if (z < 0.0) {
|
302 |
+
*sign = -1;
|
303 |
+
z = -z;
|
304 |
+
} else {
|
305 |
+
*sign = 1;
|
306 |
+
}
|
307 |
+
if (u == 2.0) {
|
308 |
+
return (std::log(z));
|
309 |
+
}
|
310 |
+
p -= 2.0;
|
311 |
+
x = x + p;
|
312 |
+
p = x * polevl(x, gamma_B, 5) / p1evl(x, gamma_C, 6);
|
313 |
+
return (std::log(z) + p);
|
314 |
+
}
|
315 |
+
|
316 |
+
if (x > MAXLGM) {
|
317 |
+
return (*sign * std::numeric_limits<double>::infinity());
|
318 |
+
}
|
319 |
+
|
320 |
+
q = (x - 0.5) * std::log(x) - x + LS2PI;
|
321 |
+
if (x > 1.0e8) {
|
322 |
+
return (q);
|
323 |
+
}
|
324 |
+
|
325 |
+
p = 1.0 / (x * x);
|
326 |
+
if (x >= 1000.0) {
|
327 |
+
q += ((7.9365079365079365079365e-4 * p - 2.7777777777777777777778e-3) * p + 0.0833333333333333333333) /
|
328 |
+
x;
|
329 |
+
} else {
|
330 |
+
q += polevl(p, gamma_A, 4) / x;
|
331 |
+
}
|
332 |
+
return (q);
|
333 |
+
}
|
334 |
+
} // namespace detail
|
335 |
+
|
336 |
+
/* Logarithm of Gamma function */
|
337 |
+
SPECFUN_HOST_DEVICE double lgam(double x) {
|
338 |
+
int sign;
|
339 |
+
return detail::lgam_sgn(x, &sign);
|
340 |
+
}
|
341 |
+
|
342 |
+
} // namespace cephes
|
343 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/cephes/psi.h
ADDED
@@ -0,0 +1,194 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated into C++ by SciPy developers in 2024.
|
2 |
+
* Original header with Copyright information appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* psi.c
|
6 |
+
*
|
7 |
+
* Psi (digamma) function
|
8 |
+
*
|
9 |
+
*
|
10 |
+
* SYNOPSIS:
|
11 |
+
*
|
12 |
+
* double x, y, psi();
|
13 |
+
*
|
14 |
+
* y = psi( x );
|
15 |
+
*
|
16 |
+
*
|
17 |
+
* DESCRIPTION:
|
18 |
+
*
|
19 |
+
* d -
|
20 |
+
* psi(x) = -- ln | (x)
|
21 |
+
* dx
|
22 |
+
*
|
23 |
+
* is the logarithmic derivative of the gamma function.
|
24 |
+
* For integer x,
|
25 |
+
* n-1
|
26 |
+
* -
|
27 |
+
* psi(n) = -EUL + > 1/k.
|
28 |
+
* -
|
29 |
+
* k=1
|
30 |
+
*
|
31 |
+
* This formula is used for 0 < n <= 10. If x is negative, it
|
32 |
+
* is transformed to a positive argument by the reflection
|
33 |
+
* formula psi(1-x) = psi(x) + pi cot(pi x).
|
34 |
+
* For general positive x, the argument is made greater than 10
|
35 |
+
* using the recurrence psi(x+1) = psi(x) + 1/x.
|
36 |
+
* Then the following asymptotic expansion is applied:
|
37 |
+
*
|
38 |
+
* inf. B
|
39 |
+
* - 2k
|
40 |
+
* psi(x) = log(x) - 1/2x - > -------
|
41 |
+
* - 2k
|
42 |
+
* k=1 2k x
|
43 |
+
*
|
44 |
+
* where the B2k are Bernoulli numbers.
|
45 |
+
*
|
46 |
+
* ACCURACY:
|
47 |
+
* Relative error (except absolute when |psi| < 1):
|
48 |
+
* arithmetic domain # trials peak rms
|
49 |
+
* IEEE 0,30 30000 1.3e-15 1.4e-16
|
50 |
+
* IEEE -30,0 40000 1.5e-15 2.2e-16
|
51 |
+
*
|
52 |
+
* ERROR MESSAGES:
|
53 |
+
* message condition value returned
|
54 |
+
* psi singularity x integer <=0 INFINITY
|
55 |
+
*/
|
56 |
+
|
57 |
+
/*
|
58 |
+
* Cephes Math Library Release 2.8: June, 2000
|
59 |
+
* Copyright 1984, 1987, 1992, 2000 by Stephen L. Moshier
|
60 |
+
*/
|
61 |
+
|
62 |
+
/*
|
63 |
+
* Code for the rational approximation on [1, 2] is:
|
64 |
+
*
|
65 |
+
* (C) Copyright John Maddock 2006.
|
66 |
+
* Use, modification and distribution are subject to the
|
67 |
+
* Boost Software License, Version 1.0. (See accompanying file
|
68 |
+
* LICENSE_1_0.txt or copy at https://www.boost.org/LICENSE_1_0.txt)
|
69 |
+
*/
|
70 |
+
#pragma once
|
71 |
+
|
72 |
+
#include "../config.h"
|
73 |
+
#include "../error.h"
|
74 |
+
#include "const.h"
|
75 |
+
#include "polevl.h"
|
76 |
+
|
77 |
+
namespace special {
|
78 |
+
namespace cephes {
|
79 |
+
namespace detail {
|
80 |
+
constexpr double psi_A[] = {8.33333333333333333333E-2, -2.10927960927960927961E-2, 7.57575757575757575758E-3,
|
81 |
+
-4.16666666666666666667E-3, 3.96825396825396825397E-3, -8.33333333333333333333E-3,
|
82 |
+
8.33333333333333333333E-2};
|
83 |
+
|
84 |
+
constexpr float psi_Y = 0.99558162689208984f;
|
85 |
+
|
86 |
+
constexpr double psi_root1 = 1569415565.0 / 1073741824.0;
|
87 |
+
constexpr double psi_root2 = (381566830.0 / 1073741824.0) / 1073741824.0;
|
88 |
+
constexpr double psi_root3 = 0.9016312093258695918615325266959189453125e-19;
|
89 |
+
|
90 |
+
constexpr double psi_P[] = {-0.0020713321167745952, -0.045251321448739056, -0.28919126444774784,
|
91 |
+
-0.65031853770896507, -0.32555031186804491, 0.25479851061131551};
|
92 |
+
constexpr double psi_Q[] = {-0.55789841321675513e-6,
|
93 |
+
0.0021284987017821144,
|
94 |
+
0.054151797245674225,
|
95 |
+
0.43593529692665969,
|
96 |
+
1.4606242909763515,
|
97 |
+
2.0767117023730469,
|
98 |
+
1.0};
|
99 |
+
|
100 |
+
SPECFUN_HOST_DEVICE double digamma_imp_1_2(double x) {
|
101 |
+
/*
|
102 |
+
* Rational approximation on [1, 2] taken from Boost.
|
103 |
+
*
|
104 |
+
* Now for the approximation, we use the form:
|
105 |
+
*
|
106 |
+
* digamma(x) = (x - root) * (Y + R(x-1))
|
107 |
+
*
|
108 |
+
* Where root is the location of the positive root of digamma,
|
109 |
+
* Y is a constant, and R is optimised for low absolute error
|
110 |
+
* compared to Y.
|
111 |
+
*
|
112 |
+
* Maximum Deviation Found: 1.466e-18
|
113 |
+
* At double precision, max error found: 2.452e-17
|
114 |
+
*/
|
115 |
+
double r, g;
|
116 |
+
|
117 |
+
g = x - psi_root1;
|
118 |
+
g -= psi_root2;
|
119 |
+
g -= psi_root3;
|
120 |
+
r = special::cephes::polevl(x - 1.0, psi_P, 5) / special::cephes::polevl(x - 1.0, psi_Q, 6);
|
121 |
+
|
122 |
+
return g * psi_Y + g * r;
|
123 |
+
}
|
124 |
+
|
125 |
+
SPECFUN_HOST_DEVICE double psi_asy(double x) {
|
126 |
+
double y, z;
|
127 |
+
|
128 |
+
if (x < 1.0e17) {
|
129 |
+
z = 1.0 / (x * x);
|
130 |
+
y = z * special::cephes::polevl(z, psi_A, 6);
|
131 |
+
} else {
|
132 |
+
y = 0.0;
|
133 |
+
}
|
134 |
+
|
135 |
+
return std::log(x) - (0.5 / x) - y;
|
136 |
+
}
|
137 |
+
} // namespace detail
|
138 |
+
|
139 |
+
SPECFUN_HOST_DEVICE double psi(double x) {
|
140 |
+
double y = 0.0;
|
141 |
+
double q, r;
|
142 |
+
int i, n;
|
143 |
+
|
144 |
+
if (std::isnan(x)) {
|
145 |
+
return x;
|
146 |
+
} else if (x == std::numeric_limits<double>::infinity()) {
|
147 |
+
return x;
|
148 |
+
} else if (x == -std::numeric_limits<double>::infinity()) {
|
149 |
+
return std::numeric_limits<double>::quiet_NaN();
|
150 |
+
} else if (x == 0) {
|
151 |
+
set_error("psi", SF_ERROR_SINGULAR, NULL);
|
152 |
+
return std::copysign(std::numeric_limits<double>::infinity(), -x);
|
153 |
+
} else if (x < 0.0) {
|
154 |
+
/* argument reduction before evaluating tan(pi * x) */
|
155 |
+
r = std::modf(x, &q);
|
156 |
+
if (r == 0.0) {
|
157 |
+
set_error("psi", SF_ERROR_SINGULAR, NULL);
|
158 |
+
return std::numeric_limits<double>::quiet_NaN();
|
159 |
+
}
|
160 |
+
y = -M_PI / std::tan(M_PI * r);
|
161 |
+
x = 1.0 - x;
|
162 |
+
}
|
163 |
+
|
164 |
+
/* check for positive integer up to 10 */
|
165 |
+
if ((x <= 10.0) && (x == std::floor(x))) {
|
166 |
+
n = static_cast<int>(x);
|
167 |
+
for (i = 1; i < n; i++) {
|
168 |
+
y += 1.0 / i;
|
169 |
+
}
|
170 |
+
y -= detail::SCIPY_EULER;
|
171 |
+
return y;
|
172 |
+
}
|
173 |
+
|
174 |
+
/* use the recurrence relation to move x into [1, 2] */
|
175 |
+
if (x < 1.0) {
|
176 |
+
y -= 1.0 / x;
|
177 |
+
x += 1.0;
|
178 |
+
} else if (x < 10.0) {
|
179 |
+
while (x > 2.0) {
|
180 |
+
x -= 1.0;
|
181 |
+
y += 1.0 / x;
|
182 |
+
}
|
183 |
+
}
|
184 |
+
if ((1.0 <= x) && (x <= 2.0)) {
|
185 |
+
y += detail::digamma_imp_1_2(x);
|
186 |
+
return y;
|
187 |
+
}
|
188 |
+
|
189 |
+
/* x is large, use the asymptotic series */
|
190 |
+
y += detail::psi_asy(x);
|
191 |
+
return y;
|
192 |
+
}
|
193 |
+
} // namespace cephes
|
194 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/cephes/zeta.h
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated into C++ by SciPy developers in 2024.
|
2 |
+
* Original header with Copyright information appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* zeta.c
|
6 |
+
*
|
7 |
+
* Riemann zeta function of two arguments
|
8 |
+
*
|
9 |
+
*
|
10 |
+
*
|
11 |
+
* SYNOPSIS:
|
12 |
+
*
|
13 |
+
* double x, q, y, zeta();
|
14 |
+
*
|
15 |
+
* y = zeta( x, q );
|
16 |
+
*
|
17 |
+
*
|
18 |
+
*
|
19 |
+
* DESCRIPTION:
|
20 |
+
*
|
21 |
+
*
|
22 |
+
*
|
23 |
+
* inf.
|
24 |
+
* - -x
|
25 |
+
* zeta(x,q) = > (k+q)
|
26 |
+
* -
|
27 |
+
* k=0
|
28 |
+
*
|
29 |
+
* where x > 1 and q is not a negative integer or zero.
|
30 |
+
* The Euler-Maclaurin summation formula is used to obtain
|
31 |
+
* the expansion
|
32 |
+
*
|
33 |
+
* n
|
34 |
+
* - -x
|
35 |
+
* zeta(x,q) = > (k+q)
|
36 |
+
* -
|
37 |
+
* k=1
|
38 |
+
*
|
39 |
+
* 1-x inf. B x(x+1)...(x+2j)
|
40 |
+
* (n+q) 1 - 2j
|
41 |
+
* + --------- - ------- + > --------------------
|
42 |
+
* x-1 x - x+2j+1
|
43 |
+
* 2(n+q) j=1 (2j)! (n+q)
|
44 |
+
*
|
45 |
+
* where the B2j are Bernoulli numbers. Note that (see zetac.c)
|
46 |
+
* zeta(x,1) = zetac(x) + 1.
|
47 |
+
*
|
48 |
+
*
|
49 |
+
*
|
50 |
+
* ACCURACY:
|
51 |
+
*
|
52 |
+
*
|
53 |
+
*
|
54 |
+
* REFERENCE:
|
55 |
+
*
|
56 |
+
* Gradshteyn, I. S., and I. M. Ryzhik, Tables of Integrals,
|
57 |
+
* Series, and Products, p. 1073; Academic Press, 1980.
|
58 |
+
*
|
59 |
+
*/
|
60 |
+
|
61 |
+
/*
|
62 |
+
* Cephes Math Library Release 2.0: April, 1987
|
63 |
+
* Copyright 1984, 1987 by Stephen L. Moshier
|
64 |
+
* Direct inquiries to 30 Frost Street, Cambridge, MA 02140
|
65 |
+
*/
|
66 |
+
#pragma once
|
67 |
+
|
68 |
+
#include "../config.h"
|
69 |
+
#include "../error.h"
|
70 |
+
#include "const.h"
|
71 |
+
|
72 |
+
namespace special {
|
73 |
+
namespace cephes {
|
74 |
+
|
75 |
+
namespace detail {
|
76 |
+
/* Expansion coefficients
|
77 |
+
* for Euler-Maclaurin summation formula
|
78 |
+
* (2k)! / B2k
|
79 |
+
* where B2k are Bernoulli numbers
|
80 |
+
*/
|
81 |
+
constexpr double zeta_A[] = {
|
82 |
+
12.0,
|
83 |
+
-720.0,
|
84 |
+
30240.0,
|
85 |
+
-1209600.0,
|
86 |
+
47900160.0,
|
87 |
+
-1.8924375803183791606e9, /*1.307674368e12/691 */
|
88 |
+
7.47242496e10,
|
89 |
+
-2.950130727918164224e12, /*1.067062284288e16/3617 */
|
90 |
+
1.1646782814350067249e14, /*5.109094217170944e18/43867 */
|
91 |
+
-4.5979787224074726105e15, /*8.028576626982912e20/174611 */
|
92 |
+
1.8152105401943546773e17, /*1.5511210043330985984e23/854513 */
|
93 |
+
-7.1661652561756670113e18 /*1.6938241367317436694528e27/236364091 */
|
94 |
+
};
|
95 |
+
|
96 |
+
/* 30 Nov 86 -- error in third coefficient fixed */
|
97 |
+
} // namespace detail
|
98 |
+
|
99 |
+
SPECFUN_HOST_DEVICE double zeta(double x, double q) {
|
100 |
+
int i;
|
101 |
+
double a, b, k, s, t, w;
|
102 |
+
|
103 |
+
if (x == 1.0)
|
104 |
+
goto retinf;
|
105 |
+
|
106 |
+
if (x < 1.0) {
|
107 |
+
domerr:
|
108 |
+
set_error("zeta", SF_ERROR_DOMAIN, NULL);
|
109 |
+
return (std::numeric_limits<double>::quiet_NaN());
|
110 |
+
}
|
111 |
+
|
112 |
+
if (q <= 0.0) {
|
113 |
+
if (q == floor(q)) {
|
114 |
+
set_error("zeta", SF_ERROR_SINGULAR, NULL);
|
115 |
+
retinf:
|
116 |
+
return (std::numeric_limits<double>::infinity());
|
117 |
+
}
|
118 |
+
if (x != std::floor(x))
|
119 |
+
goto domerr; /* because q^-x not defined */
|
120 |
+
}
|
121 |
+
|
122 |
+
/* Asymptotic expansion
|
123 |
+
* https://dlmf.nist.gov/25.11#E43
|
124 |
+
*/
|
125 |
+
if (q > 1e8) {
|
126 |
+
return (1 / (x - 1) + 1 / (2 * q)) * std::pow(q, 1 - x);
|
127 |
+
}
|
128 |
+
|
129 |
+
/* Euler-Maclaurin summation formula */
|
130 |
+
|
131 |
+
/* Permit negative q but continue sum until n+q > +9 .
|
132 |
+
* This case should be handled by a reflection formula.
|
133 |
+
* If q<0 and x is an integer, there is a relation to
|
134 |
+
* the polyGamma function.
|
135 |
+
*/
|
136 |
+
s = std::pow(q, -x);
|
137 |
+
a = q;
|
138 |
+
i = 0;
|
139 |
+
b = 0.0;
|
140 |
+
while ((i < 9) || (a <= 9.0)) {
|
141 |
+
i += 1;
|
142 |
+
a += 1.0;
|
143 |
+
b = std::pow(a, -x);
|
144 |
+
s += b;
|
145 |
+
if (std::abs(b / s) < detail::MACHEP)
|
146 |
+
goto done;
|
147 |
+
}
|
148 |
+
|
149 |
+
w = a;
|
150 |
+
s += b * w / (x - 1.0);
|
151 |
+
s -= 0.5 * b;
|
152 |
+
a = 1.0;
|
153 |
+
k = 0.0;
|
154 |
+
for (i = 0; i < 12; i++) {
|
155 |
+
a *= x + k;
|
156 |
+
b /= w;
|
157 |
+
t = a * b / detail::zeta_A[i];
|
158 |
+
s = s + t;
|
159 |
+
t = std::abs(t / s);
|
160 |
+
if (t < detail::MACHEP)
|
161 |
+
goto done;
|
162 |
+
k += 1.0;
|
163 |
+
a *= x + k;
|
164 |
+
b /= w;
|
165 |
+
k += 1.0;
|
166 |
+
}
|
167 |
+
done:
|
168 |
+
return (s);
|
169 |
+
}
|
170 |
+
|
171 |
+
} // namespace cephes
|
172 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/config.h
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// Define math constants if they are not available
|
4 |
+
#ifndef M_E
|
5 |
+
#define M_E 2.71828182845904523536
|
6 |
+
#endif
|
7 |
+
|
8 |
+
#ifndef M_LOG2E
|
9 |
+
#define M_LOG2E 1.44269504088896340736
|
10 |
+
#endif
|
11 |
+
|
12 |
+
#ifndef M_LOG10E
|
13 |
+
#define M_LOG10E 0.434294481903251827651
|
14 |
+
#endif
|
15 |
+
|
16 |
+
#ifndef M_LN2
|
17 |
+
#define M_LN2 0.693147180559945309417
|
18 |
+
#endif
|
19 |
+
|
20 |
+
#ifndef M_LN10
|
21 |
+
#define M_LN10 2.30258509299404568402
|
22 |
+
#endif
|
23 |
+
|
24 |
+
#ifndef M_PI
|
25 |
+
#define M_PI 3.14159265358979323846
|
26 |
+
#endif
|
27 |
+
|
28 |
+
#ifndef M_PI_2
|
29 |
+
#define M_PI_2 1.57079632679489661923
|
30 |
+
#endif
|
31 |
+
|
32 |
+
#ifndef M_PI_4
|
33 |
+
#define M_PI_4 0.785398163397448309616
|
34 |
+
#endif
|
35 |
+
|
36 |
+
#ifndef M_1_PI
|
37 |
+
#define M_1_PI 0.318309886183790671538
|
38 |
+
#endif
|
39 |
+
|
40 |
+
#ifndef M_2_PI
|
41 |
+
#define M_2_PI 0.636619772367581343076
|
42 |
+
#endif
|
43 |
+
|
44 |
+
#ifndef M_2_SQRTPI
|
45 |
+
#define M_2_SQRTPI 1.12837916709551257390
|
46 |
+
#endif
|
47 |
+
|
48 |
+
#ifndef M_SQRT2
|
49 |
+
#define M_SQRT2 1.41421356237309504880
|
50 |
+
#endif
|
51 |
+
|
52 |
+
#ifndef M_SQRT1_2
|
53 |
+
#define M_SQRT1_2 0.707106781186547524401
|
54 |
+
#endif
|
55 |
+
|
56 |
+
#ifdef __CUDACC__
|
57 |
+
#define SPECFUN_HOST_DEVICE __host__ __device__
|
58 |
+
|
59 |
+
#include <cuda/std/cmath>
|
60 |
+
#include <cuda/std/limits>
|
61 |
+
|
62 |
+
// Fallback to global namespace for functions unsupported on NVRTC Jit
|
63 |
+
#ifdef _LIBCUDACXX_COMPILER_NVRTC
|
64 |
+
#include <cuda_runtime.h>
|
65 |
+
#endif
|
66 |
+
|
67 |
+
namespace std {
|
68 |
+
|
69 |
+
SPECFUN_HOST_DEVICE inline double abs(double num) { return cuda::std::abs(num); }
|
70 |
+
|
71 |
+
SPECFUN_HOST_DEVICE inline double exp(double num) { return cuda::std::exp(num); }
|
72 |
+
|
73 |
+
SPECFUN_HOST_DEVICE inline double log(double num) { return cuda::std::log(num); }
|
74 |
+
|
75 |
+
SPECFUN_HOST_DEVICE inline double sqrt(double num) { return cuda::std::sqrt(num); }
|
76 |
+
|
77 |
+
SPECFUN_HOST_DEVICE inline bool isnan(double num) { return cuda::std::isnan(num); }
|
78 |
+
|
79 |
+
SPECFUN_HOST_DEVICE inline bool isfinite(double num) { return cuda::std::isfinite(num); }
|
80 |
+
|
81 |
+
SPECFUN_HOST_DEVICE inline double pow(double x, double y) { return cuda::std::pow(x, y); }
|
82 |
+
|
83 |
+
SPECFUN_HOST_DEVICE inline double sin(double x) { return cuda::std::sin(x); }
|
84 |
+
|
85 |
+
SPECFUN_HOST_DEVICE inline double tan(double x) { return cuda::std::tan(x); }
|
86 |
+
|
87 |
+
SPECFUN_HOST_DEVICE inline double sinh(double x) { return cuda::std::sinh(x); }
|
88 |
+
|
89 |
+
SPECFUN_HOST_DEVICE inline double cosh(double x) { return cuda::std::cosh(x); }
|
90 |
+
|
91 |
+
SPECFUN_HOST_DEVICE inline bool signbit(double x) { return cuda::std::signbit(x); }
|
92 |
+
|
93 |
+
// Fallback to global namespace for functions unsupported on NVRTC
|
94 |
+
#ifndef _LIBCUDACXX_COMPILER_NVRTC
|
95 |
+
SPECFUN_HOST_DEVICE inline double ceil(double x) { return cuda::std::ceil(x); }
|
96 |
+
SPECFUN_HOST_DEVICE inline double floor(double x) { return cuda::std::floor(x); }
|
97 |
+
SPECFUN_HOST_DEVICE inline double trunc(double x) { return cuda::std::trunc(x); }
|
98 |
+
SPECFUN_HOST_DEVICE inline double fma(double x, double y, double z) { return cuda::std::fma(x, y, z); }
|
99 |
+
SPECFUN_HOST_DEVICE inline double copysign(double x, double y) { return cuda::std::copysign(x, y); }
|
100 |
+
SPECFUN_HOST_DEVICE inline double modf(double value, double *iptr) { return cuda::std::modf(value, iptr); }
|
101 |
+
|
102 |
+
#else
|
103 |
+
SPECFUN_HOST_DEVICE inline double ceil(double x) { return ::ceil(x); }
|
104 |
+
SPECFUN_HOST_DEVICE inline double floor(double x) { return ::floor(x); }
|
105 |
+
SPECFUN_HOST_DEVICE inline double trunc(double x) { return ::trunc(x); }
|
106 |
+
SPECFUN_HOST_DEVICE inline double fma(double x, double y, double z) { return ::fma(x, y, z); }
|
107 |
+
SPECFUN_HOST_DEVICE inline double copysign(double x, double y) { return ::copysign(x, y); }
|
108 |
+
SPECFUN_HOST_DEVICE inline double modf(double value, double *iptr) { return ::modf(value, iptr); }
|
109 |
+
#endif
|
110 |
+
|
111 |
+
template <typename T>
|
112 |
+
using numeric_limits = cuda::std::numeric_limits<T>;
|
113 |
+
|
114 |
+
// Must use thrust for complex types in order to support CuPy
|
115 |
+
template <typename T>
|
116 |
+
using complex = thrust::complex<T>;
|
117 |
+
|
118 |
+
template <typename T>
|
119 |
+
SPECFUN_HOST_DEVICE T abs(const complex<T> &z) {
|
120 |
+
return thrust::abs(z);
|
121 |
+
}
|
122 |
+
|
123 |
+
template <typename T>
|
124 |
+
SPECFUN_HOST_DEVICE complex<T> exp(const complex<T> &z) {
|
125 |
+
return thrust::exp(z);
|
126 |
+
}
|
127 |
+
|
128 |
+
template <typename T>
|
129 |
+
SPECFUN_HOST_DEVICE complex<T> log(const complex<T> &z) {
|
130 |
+
return thrust::log(z);
|
131 |
+
}
|
132 |
+
|
133 |
+
template <typename T>
|
134 |
+
SPECFUN_HOST_DEVICE T norm(const complex<T> &z) {
|
135 |
+
return thrust::norm(z);
|
136 |
+
}
|
137 |
+
|
138 |
+
template <typename T>
|
139 |
+
SPECFUN_HOST_DEVICE complex<T> sqrt(const complex<T> &z) {
|
140 |
+
return thrust::sqrt(z);
|
141 |
+
}
|
142 |
+
|
143 |
+
template <typename T>
|
144 |
+
SPECFUN_HOST_DEVICE complex<T> conj(const complex<T> &z) {
|
145 |
+
return thrust::conj(z);
|
146 |
+
}
|
147 |
+
|
148 |
+
} // namespace std
|
149 |
+
|
150 |
+
#else
|
151 |
+
#define SPECFUN_HOST_DEVICE
|
152 |
+
|
153 |
+
#include <cmath>
|
154 |
+
#include <complex>
|
155 |
+
#include <limits>
|
156 |
+
#include <math.h>
|
157 |
+
|
158 |
+
#endif
|
venv/lib/python3.10/site-packages/scipy/special/special/digamma.h
ADDED
@@ -0,0 +1,198 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2024.
|
2 |
+
* Original header comment appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* An implementation of the digamma function for complex arguments.
|
6 |
+
*
|
7 |
+
* Author: Josh Wilson
|
8 |
+
*
|
9 |
+
* Distributed under the same license as Scipy.
|
10 |
+
*
|
11 |
+
* Sources:
|
12 |
+
* [1] "The Digital Library of Mathematical Functions", dlmf.nist.gov
|
13 |
+
*
|
14 |
+
* [2] mpmath (version 0.19), http://mpmath.org
|
15 |
+
*/
|
16 |
+
|
17 |
+
#pragma once
|
18 |
+
|
19 |
+
#include "cephes/psi.h"
|
20 |
+
#include "cephes/zeta.h"
|
21 |
+
#include "config.h"
|
22 |
+
#include "error.h"
|
23 |
+
#include "trig.h"
|
24 |
+
|
25 |
+
namespace special {
|
26 |
+
namespace detail {
|
27 |
+
// All of the following were computed with mpmath
|
28 |
+
// Location of the positive root
|
29 |
+
constexpr double digamma_posroot = 1.4616321449683623;
|
30 |
+
// Value of the positive root
|
31 |
+
constexpr double digamma_posrootval = -9.2412655217294275e-17;
|
32 |
+
// Location of the negative root
|
33 |
+
constexpr double digamma_negroot = -0.504083008264455409;
|
34 |
+
// Value of the negative root
|
35 |
+
constexpr double digamma_negrootval = 7.2897639029768949e-17;
|
36 |
+
|
37 |
+
template <typename T>
|
38 |
+
SPECFUN_HOST_DEVICE T digamma_zeta_series(T z, double root, double rootval) {
|
39 |
+
T res = rootval;
|
40 |
+
T coeff = -1.0;
|
41 |
+
|
42 |
+
z = z - root;
|
43 |
+
T term;
|
44 |
+
for (int n = 1; n < 100; n++) {
|
45 |
+
coeff *= -z;
|
46 |
+
term = coeff * cephes::zeta(n + 1, root);
|
47 |
+
res += term;
|
48 |
+
if (std::abs(term) < std::numeric_limits<double>::epsilon() * std::abs(res)) {
|
49 |
+
break;
|
50 |
+
}
|
51 |
+
}
|
52 |
+
return res;
|
53 |
+
}
|
54 |
+
|
55 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> digamma_forward_recurrence(std::complex<double> z,
|
56 |
+
std::complex<double> psiz, int n) {
|
57 |
+
/* Compute digamma(z + n) using digamma(z) using the recurrence
|
58 |
+
* relation
|
59 |
+
*
|
60 |
+
* digamma(z + 1) = digamma(z) + 1/z.
|
61 |
+
*
|
62 |
+
* See https://dlmf.nist.gov/5.5#E2 */
|
63 |
+
std::complex<double> res = psiz;
|
64 |
+
|
65 |
+
for (int k = 0; k < n; k++) {
|
66 |
+
res += 1.0 / (z + static_cast<double>(k));
|
67 |
+
}
|
68 |
+
return res;
|
69 |
+
}
|
70 |
+
|
71 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> digamma_backward_recurrence(std::complex<double> z,
|
72 |
+
std::complex<double> psiz, int n) {
|
73 |
+
/* Compute digamma(z - n) using digamma(z) and a recurrence relation. */
|
74 |
+
std::complex<double> res = psiz;
|
75 |
+
|
76 |
+
for (int k = 1; k < n + 1; k++) {
|
77 |
+
res -= 1.0 / (z - static_cast<double>(k));
|
78 |
+
}
|
79 |
+
return res;
|
80 |
+
}
|
81 |
+
|
82 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> digamma_asymptotic_series(std::complex<double> z) {
|
83 |
+
/* Evaluate digamma using an asymptotic series. See
|
84 |
+
*
|
85 |
+
* https://dlmf.nist.gov/5.11#E2 */
|
86 |
+
double bernoulli2k[] = {
|
87 |
+
0.166666666666666667, -0.0333333333333333333, 0.0238095238095238095, -0.0333333333333333333,
|
88 |
+
0.0757575757575757576, -0.253113553113553114, 1.16666666666666667, -7.09215686274509804,
|
89 |
+
54.9711779448621554, -529.124242424242424, 6192.12318840579710, -86580.2531135531136,
|
90 |
+
1425517.16666666667, -27298231.0678160920, 601580873.900642368, -15116315767.0921569};
|
91 |
+
std::complex<double> rzz = 1.0 / z / z;
|
92 |
+
std::complex<double> zfac = 1.0;
|
93 |
+
std::complex<double> term;
|
94 |
+
std::complex<double> res;
|
95 |
+
|
96 |
+
if (!(std::isfinite(z.real()) && std::isfinite(z.imag()))) {
|
97 |
+
/* Check for infinity (or nan) and return early.
|
98 |
+
* Result of division by complex infinity is implementation dependent.
|
99 |
+
* and has been observed to vary between C++ stdlib and CUDA stdlib.
|
100 |
+
*/
|
101 |
+
return std::log(z);
|
102 |
+
}
|
103 |
+
|
104 |
+
res = std::log(z) - 0.5 / z;
|
105 |
+
|
106 |
+
for (int k = 1; k < 17; k++) {
|
107 |
+
zfac *= rzz;
|
108 |
+
term = -bernoulli2k[k - 1] * zfac / (2 * static_cast<double>(k));
|
109 |
+
res += term;
|
110 |
+
if (std::abs(term) < std::numeric_limits<double>::epsilon() * std::abs(res)) {
|
111 |
+
break;
|
112 |
+
}
|
113 |
+
}
|
114 |
+
return res;
|
115 |
+
}
|
116 |
+
|
117 |
+
} // namespace detail
|
118 |
+
|
119 |
+
SPECFUN_HOST_DEVICE inline double digamma(double z) {
|
120 |
+
/* Wrap Cephes' psi to take advantage of the series expansion around
|
121 |
+
* the smallest negative zero.
|
122 |
+
*/
|
123 |
+
if (std::abs(z - detail::digamma_negroot) < 0.3) {
|
124 |
+
return detail::digamma_zeta_series(z, detail::digamma_negroot, detail::digamma_negrootval);
|
125 |
+
}
|
126 |
+
return cephes::psi(z);
|
127 |
+
}
|
128 |
+
|
129 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> digamma(std::complex<double> z) {
|
130 |
+
/*
|
131 |
+
* Compute the digamma function for complex arguments. The strategy
|
132 |
+
* is:
|
133 |
+
*
|
134 |
+
* - Around the two zeros closest to the origin (posroot and negroot)
|
135 |
+
* use a Taylor series with precomputed zero order coefficient.
|
136 |
+
* - If close to the origin, use a recurrence relation to step away
|
137 |
+
* from the origin.
|
138 |
+
* - If close to the negative real axis, use the reflection formula
|
139 |
+
* to move to the right halfplane.
|
140 |
+
* - If |z| is large (> 16), use the asymptotic series.
|
141 |
+
* - If |z| is small, use a recurrence relation to make |z| large
|
142 |
+
* enough to use the asymptotic series.
|
143 |
+
*/
|
144 |
+
double absz = std::abs(z);
|
145 |
+
std::complex<double> res = 0;
|
146 |
+
/* Use the asymptotic series for z away from the negative real axis
|
147 |
+
* with abs(z) > smallabsz. */
|
148 |
+
int smallabsz = 16;
|
149 |
+
/* Use the reflection principle for z with z.real < 0 that are within
|
150 |
+
* smallimag of the negative real axis.
|
151 |
+
* int smallimag = 6 # unused below except in a comment */
|
152 |
+
|
153 |
+
if (z.real() <= 0.0 && std::ceil(z.real()) == z) {
|
154 |
+
// Poles
|
155 |
+
set_error("digamma", SF_ERROR_SINGULAR, NULL);
|
156 |
+
return {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()};
|
157 |
+
}
|
158 |
+
if (std::abs(z - detail::digamma_negroot) < 0.3) {
|
159 |
+
// First negative root.
|
160 |
+
return detail::digamma_zeta_series(z, detail::digamma_negroot, detail::digamma_negrootval);
|
161 |
+
}
|
162 |
+
|
163 |
+
if (z.real() < 0 and std::abs(z.imag()) < smallabsz) {
|
164 |
+
/* Reflection formula for digamma. See
|
165 |
+
*
|
166 |
+
*https://dlmf.nist.gov/5.5#E4
|
167 |
+
*/
|
168 |
+
res = -M_PI * cospi(z) / sinpi(z);
|
169 |
+
z = 1.0 - z;
|
170 |
+
absz = std::abs(z);
|
171 |
+
}
|
172 |
+
|
173 |
+
if (absz < 0.5) {
|
174 |
+
/* Use one step of the recurrence relation to step away from
|
175 |
+
* the pole. */
|
176 |
+
res = -1.0 / z;
|
177 |
+
z += 1.0;
|
178 |
+
absz = std::abs(z);
|
179 |
+
}
|
180 |
+
|
181 |
+
if (std::abs(z - detail::digamma_posroot) < 0.5) {
|
182 |
+
res += detail::digamma_zeta_series(z, detail::digamma_posroot, detail::digamma_posrootval);
|
183 |
+
} else if (absz > smallabsz) {
|
184 |
+
res += detail::digamma_asymptotic_series(z);
|
185 |
+
} else if (z.real() >= 0.0) {
|
186 |
+
double n = std::trunc(smallabsz - absz) + 1;
|
187 |
+
std::complex<double> init = detail::digamma_asymptotic_series(z + n);
|
188 |
+
res += detail::digamma_backward_recurrence(z + n, init, n);
|
189 |
+
} else {
|
190 |
+
// z.real() < 0, absz < smallabsz, and z.imag() > smallimag
|
191 |
+
double n = std::trunc(smallabsz - absz) - 1;
|
192 |
+
std::complex<double> init = detail::digamma_asymptotic_series(z - n);
|
193 |
+
res += detail::digamma_forward_recurrence(z - n, init, n);
|
194 |
+
}
|
195 |
+
return res;
|
196 |
+
}
|
197 |
+
|
198 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/error.h
ADDED
@@ -0,0 +1,42 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#pragma once
|
2 |
+
|
3 |
+
// should be included from config.h, but that won't work until we've cleanly separated out the C and C++ parts of the
|
4 |
+
// code
|
5 |
+
#ifdef __CUDACC__
|
6 |
+
#define SPECFUN_HOST_DEVICE __host__ __device__
|
7 |
+
#else
|
8 |
+
#define SPECFUN_HOST_DEVICE
|
9 |
+
#endif
|
10 |
+
|
11 |
+
#ifdef __cplusplus
|
12 |
+
extern "C" {
|
13 |
+
#endif
|
14 |
+
|
15 |
+
typedef enum {
|
16 |
+
SF_ERROR_OK = 0, /* no error */
|
17 |
+
SF_ERROR_SINGULAR, /* singularity encountered */
|
18 |
+
SF_ERROR_UNDERFLOW, /* floating point underflow */
|
19 |
+
SF_ERROR_OVERFLOW, /* floating point overflow */
|
20 |
+
SF_ERROR_SLOW, /* too many iterations required */
|
21 |
+
SF_ERROR_LOSS, /* loss of precision */
|
22 |
+
SF_ERROR_NO_RESULT, /* no result obtained */
|
23 |
+
SF_ERROR_DOMAIN, /* out of domain */
|
24 |
+
SF_ERROR_ARG, /* invalid input parameter */
|
25 |
+
SF_ERROR_OTHER, /* unclassified error */
|
26 |
+
SF_ERROR__LAST
|
27 |
+
} sf_error_t;
|
28 |
+
|
29 |
+
#ifdef __cplusplus
|
30 |
+
namespace special {
|
31 |
+
|
32 |
+
#ifndef SP_SPECFUN_ERROR
|
33 |
+
SPECFUN_HOST_DEVICE inline void set_error(const char *func_name, sf_error_t code, const char *fmt, ...) {
|
34 |
+
// nothing
|
35 |
+
}
|
36 |
+
#else
|
37 |
+
void set_error(const char *func_name, sf_error_t code, const char *fmt, ...);
|
38 |
+
#endif
|
39 |
+
} // namespace special
|
40 |
+
|
41 |
+
} // closes extern "C"
|
42 |
+
#endif
|
venv/lib/python3.10/site-packages/scipy/special/special/evalpoly.h
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2024.
|
2 |
+
*
|
3 |
+
* Original author: Josh Wilson, 2016.
|
4 |
+
*/
|
5 |
+
|
6 |
+
/* Evaluate polynomials.
|
7 |
+
*
|
8 |
+
* All of the coefficients are stored in reverse order, i.e. if the
|
9 |
+
* polynomial is
|
10 |
+
*
|
11 |
+
* u_n x^n + u_{n - 1} x^{n - 1} + ... + u_0,
|
12 |
+
*
|
13 |
+
* then coeffs[0] = u_n, coeffs[1] = u_{n - 1}, ..., coeffs[n] = u_0.
|
14 |
+
*
|
15 |
+
* References
|
16 |
+
* ----------
|
17 |
+
* [1] Knuth, "The Art of Computer Programming, Volume II"
|
18 |
+
*/
|
19 |
+
|
20 |
+
#pragma once
|
21 |
+
|
22 |
+
#include "config.h"
|
23 |
+
|
24 |
+
namespace special {
|
25 |
+
|
26 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> cevalpoly(const double *coeffs, int degree, std::complex<double> z) {
|
27 |
+
/* Evaluate a polynomial with real coefficients at a complex point.
|
28 |
+
*
|
29 |
+
* Uses equation (3) in section 4.6.4 of [1]. Note that it is more
|
30 |
+
* efficient than Horner's method.
|
31 |
+
*/
|
32 |
+
double a = coeffs[0];
|
33 |
+
double b = coeffs[1];
|
34 |
+
double r = 2 * z.real();
|
35 |
+
double s = std::norm(z);
|
36 |
+
double tmp;
|
37 |
+
|
38 |
+
for (int j = 2; j < degree + 1; j++) {
|
39 |
+
tmp = b;
|
40 |
+
b = std::fma(-s, a, coeffs[j]);
|
41 |
+
a = std::fma(r, a, tmp);
|
42 |
+
}
|
43 |
+
|
44 |
+
return z * a + b;
|
45 |
+
}
|
46 |
+
|
47 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/lambertw.h
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2023.
|
2 |
+
* Original header with Copyright information appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* Implementation of the Lambert W function [1]. Based on MPMath
|
6 |
+
* Implementation [2], and documentation [3].
|
7 |
+
*
|
8 |
+
* Copyright: Yosef Meller, 2009
|
9 |
+
* Author email: [email protected]
|
10 |
+
*
|
11 |
+
* Distributed under the same license as SciPy
|
12 |
+
*
|
13 |
+
*
|
14 |
+
* References:
|
15 |
+
* [1] On the Lambert W function, Adv. Comp. Math. 5 (1996) 329-359,
|
16 |
+
* available online: https://web.archive.org/web/20230123211413/https://cs.uwaterloo.ca/research/tr/1993/03/W.pdf
|
17 |
+
* [2] mpmath source code,
|
18 |
+
https://github.com/mpmath/mpmath/blob/c5939823669e1bcce151d89261b802fe0d8978b4/mpmath/functions/functions.py#L435-L461
|
19 |
+
* [3]
|
20 |
+
https://web.archive.org/web/20230504171447/https://mpmath.org/doc/current/functions/powers.html#lambert-w-function
|
21 |
+
*
|
22 |
+
|
23 |
+
* TODO: use a series expansion when extremely close to the branch point
|
24 |
+
* at `-1/e` and make sure that the proper branch is chosen there.
|
25 |
+
*/
|
26 |
+
|
27 |
+
#pragma once
|
28 |
+
|
29 |
+
#include "config.h"
|
30 |
+
#include "error.h"
|
31 |
+
#include "evalpoly.h"
|
32 |
+
|
33 |
+
namespace special {
|
34 |
+
constexpr double EXPN1 = 0.36787944117144232159553; // exp(-1)
|
35 |
+
constexpr double OMEGA = 0.56714329040978387299997; // W(1, 0)
|
36 |
+
|
37 |
+
namespace detail {
|
38 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> lambertw_branchpt(std::complex<double> z) {
|
39 |
+
// Series for W(z, 0) around the branch point; see 4.22 in [1].
|
40 |
+
double coeffs[] = {-1.0 / 3.0, 1.0, -1.0};
|
41 |
+
std::complex<double> p = std::sqrt(2.0 * (M_E * z + 1.0));
|
42 |
+
|
43 |
+
return cevalpoly(coeffs, 2, p);
|
44 |
+
}
|
45 |
+
|
46 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> lambertw_pade0(std::complex<double> z) {
|
47 |
+
// (3, 2) Pade approximation for W(z, 0) around 0.
|
48 |
+
double num[] = {12.85106382978723404255, 12.34042553191489361902, 1.0};
|
49 |
+
double denom[] = {32.53191489361702127660, 14.34042553191489361702, 1.0};
|
50 |
+
|
51 |
+
/* This only gets evaluated close to 0, so we don't need a more
|
52 |
+
* careful algorithm that avoids overflow in the numerator for
|
53 |
+
* large z. */
|
54 |
+
return z * cevalpoly(num, 2, z) / cevalpoly(denom, 2, z);
|
55 |
+
}
|
56 |
+
|
57 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> lambertw_asy(std::complex<double> z, long k) {
|
58 |
+
/* Compute the W function using the first two terms of the
|
59 |
+
* asymptotic series. See 4.20 in [1].
|
60 |
+
*/
|
61 |
+
std::complex<double> w = std::log(z) + 2.0 * M_PI * k * std::complex<double>(0, 1);
|
62 |
+
return w - std::log(w);
|
63 |
+
}
|
64 |
+
|
65 |
+
} // namespace detail
|
66 |
+
|
67 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> lambertw(std::complex<double> z, long k, double tol) {
|
68 |
+
double absz;
|
69 |
+
std::complex<double> w;
|
70 |
+
std::complex<double> ew, wew, wewz, wn;
|
71 |
+
|
72 |
+
if (std::isnan(z.real()) || std::isnan(z.imag())) {
|
73 |
+
return z;
|
74 |
+
}
|
75 |
+
if (z.real() == std::numeric_limits<double>::infinity()) {
|
76 |
+
return z + 2.0 * M_PI * k * std::complex<double>(0, 1);
|
77 |
+
}
|
78 |
+
if (z.real() == -std::numeric_limits<double>::infinity()) {
|
79 |
+
return -z + (2.0 * M_PI * k + M_PI) * std::complex<double>(0, 1);
|
80 |
+
}
|
81 |
+
if (z == 0.0) {
|
82 |
+
if (k == 0) {
|
83 |
+
return z;
|
84 |
+
}
|
85 |
+
set_error("lambertw", SF_ERROR_SINGULAR, NULL);
|
86 |
+
return -std::numeric_limits<double>::infinity();
|
87 |
+
}
|
88 |
+
if (z == 1.0 && k == 0) {
|
89 |
+
// Split out this case because the asymptotic series blows up
|
90 |
+
return OMEGA;
|
91 |
+
}
|
92 |
+
|
93 |
+
absz = std::abs(z);
|
94 |
+
// Get an initial guess for Halley's method
|
95 |
+
if (k == 0) {
|
96 |
+
if (std::abs(z + EXPN1) < 0.3) {
|
97 |
+
w = detail::lambertw_branchpt(z);
|
98 |
+
} else if (-1.0 < z.real() && z.real() < 1.5 && std::abs(z.imag()) < 1.0 &&
|
99 |
+
-2.5 * std::abs(z.imag()) - 0.2 < z.real()) {
|
100 |
+
/* Empirically determined decision boundary where the Pade
|
101 |
+
* approximation is more accurate. */
|
102 |
+
w = detail::lambertw_pade0(z);
|
103 |
+
} else {
|
104 |
+
w = detail::lambertw_asy(z, k);
|
105 |
+
}
|
106 |
+
} else if (k == -1) {
|
107 |
+
if (absz <= EXPN1 && z.imag() == 0.0 && z.real() < 0.0) {
|
108 |
+
w = std::log(-z.real());
|
109 |
+
} else {
|
110 |
+
w = detail::lambertw_asy(z, k);
|
111 |
+
}
|
112 |
+
} else {
|
113 |
+
w = detail::lambertw_asy(z, k);
|
114 |
+
}
|
115 |
+
|
116 |
+
// Halley's method; see 5.9 in [1]
|
117 |
+
if (w.real() >= 0) {
|
118 |
+
// Rearrange the formula to avoid overflow in exp
|
119 |
+
for (int i = 0; i < 100; i++) {
|
120 |
+
ew = std::exp(-w);
|
121 |
+
wewz = w - z * ew;
|
122 |
+
wn = w - wewz / (w + 1.0 - (w + 2.0) * wewz / (2.0 * w + 2.0));
|
123 |
+
if (std::abs(wn - w) <= tol * std::abs(wn)) {
|
124 |
+
return wn;
|
125 |
+
}
|
126 |
+
w = wn;
|
127 |
+
}
|
128 |
+
} else {
|
129 |
+
for (int i = 0; i < 100; i++) {
|
130 |
+
ew = std::exp(w);
|
131 |
+
wew = w * ew;
|
132 |
+
wewz = wew - z;
|
133 |
+
wn = w - wewz / (wew + ew - (w + 2.0) * wewz / (2.0 * w + 2.0));
|
134 |
+
if (std::abs(wn - w) <= tol * std::abs(wn)) {
|
135 |
+
return wn;
|
136 |
+
}
|
137 |
+
w = wn;
|
138 |
+
}
|
139 |
+
}
|
140 |
+
|
141 |
+
set_error("lambertw", SF_ERROR_SLOW, "iteration failed to converge: %g + %gj", z.real(), z.imag());
|
142 |
+
return {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()};
|
143 |
+
}
|
144 |
+
|
145 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/loggamma.h
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2024.
|
2 |
+
* Original header comment appears below.
|
3 |
+
*/
|
4 |
+
|
5 |
+
/* An implementation of the principal branch of the logarithm of
|
6 |
+
* Gamma. Also contains implementations of Gamma and 1/Gamma which are
|
7 |
+
* easily computed from log-Gamma.
|
8 |
+
*
|
9 |
+
* Author: Josh Wilson
|
10 |
+
*
|
11 |
+
* Distributed under the same license as Scipy.
|
12 |
+
*
|
13 |
+
* References
|
14 |
+
* ----------
|
15 |
+
* [1] Hare, "Computing the Principal Branch of log-Gamma",
|
16 |
+
* Journal of Algorithms, 1997.
|
17 |
+
*
|
18 |
+
* [2] Julia,
|
19 |
+
* https://github.com/JuliaLang/julia/blob/master/base/special/gamma.jl
|
20 |
+
*/
|
21 |
+
|
22 |
+
#pragma once
|
23 |
+
|
24 |
+
#include "cephes/gamma.h"
|
25 |
+
#include "config.h"
|
26 |
+
#include "error.h"
|
27 |
+
#include "evalpoly.h"
|
28 |
+
#include "trig.h"
|
29 |
+
#include "zlog1.h"
|
30 |
+
|
31 |
+
namespace special {
|
32 |
+
|
33 |
+
namespace detail {
|
34 |
+
constexpr double loggamma_SMALLX = 7;
|
35 |
+
constexpr double loggamma_SMALLY = 7;
|
36 |
+
constexpr double loggamma_HLOG2PI = 0.918938533204672742; // log(2*pi)/2
|
37 |
+
constexpr double loggamma_LOGPI = 1.1447298858494001741434262; // log(pi)
|
38 |
+
constexpr double loggamma_TAYLOR_RADIUS = 0.2;
|
39 |
+
|
40 |
+
SPECFUN_HOST_DEVICE std::complex<double> loggamma_stirling(std::complex<double> z) {
|
41 |
+
/* Stirling series for log-Gamma
|
42 |
+
*
|
43 |
+
* The coefficients are B[2*n]/(2*n*(2*n - 1)) where B[2*n] is the
|
44 |
+
* (2*n)th Bernoulli number. See (1.1) in [1].
|
45 |
+
*/
|
46 |
+
double coeffs[] = {-2.955065359477124183E-2, 6.4102564102564102564E-3, -1.9175269175269175269E-3,
|
47 |
+
8.4175084175084175084E-4, -5.952380952380952381E-4, 7.9365079365079365079E-4,
|
48 |
+
-2.7777777777777777778E-3, 8.3333333333333333333E-2};
|
49 |
+
std::complex<double> rz = 1.0 / z;
|
50 |
+
std::complex<double> rzz = rz / z;
|
51 |
+
|
52 |
+
return (z - 0.5) * std::log(z) - z + loggamma_HLOG2PI + rz * cevalpoly(coeffs, 7, rzz);
|
53 |
+
}
|
54 |
+
|
55 |
+
SPECFUN_HOST_DEVICE std::complex<double> loggamma_recurrence(std::complex<double> z) {
|
56 |
+
/* Backward recurrence relation.
|
57 |
+
*
|
58 |
+
* See Proposition 2.2 in [1] and the Julia implementation [2].
|
59 |
+
*
|
60 |
+
*/
|
61 |
+
int signflips = 0;
|
62 |
+
int sb = 0;
|
63 |
+
std::complex<double> shiftprod = z;
|
64 |
+
|
65 |
+
z += 1.0;
|
66 |
+
int nsb;
|
67 |
+
while (z.real() <= loggamma_SMALLX) {
|
68 |
+
shiftprod *= z;
|
69 |
+
nsb = std::signbit(shiftprod.imag());
|
70 |
+
signflips += nsb != 0 && sb == 0 ? 1 : 0;
|
71 |
+
sb = nsb;
|
72 |
+
z += 1.0;
|
73 |
+
}
|
74 |
+
return loggamma_stirling(z) - std::log(shiftprod) - signflips * 2 * M_PI * std::complex<double>(0, 1);
|
75 |
+
}
|
76 |
+
|
77 |
+
SPECFUN_HOST_DEVICE std::complex<double> loggamma_taylor(std::complex<double> z) {
|
78 |
+
/* Taylor series for log-Gamma around z = 1.
|
79 |
+
*
|
80 |
+
* It is
|
81 |
+
*
|
82 |
+
* loggamma(z + 1) = -gamma*z + zeta(2)*z**2/2 - zeta(3)*z**3/3 ...
|
83 |
+
*
|
84 |
+
* where gamma is the Euler-Mascheroni constant.
|
85 |
+
*/
|
86 |
+
|
87 |
+
double coeffs[] = {
|
88 |
+
-4.3478266053040259361E-2, 4.5454556293204669442E-2, -4.7619070330142227991E-2, 5.000004769810169364E-2,
|
89 |
+
-5.2631679379616660734E-2, 5.5555767627403611102E-2, -5.8823978658684582339E-2, 6.2500955141213040742E-2,
|
90 |
+
-6.6668705882420468033E-2, 7.1432946295361336059E-2, -7.6932516411352191473E-2, 8.3353840546109004025E-2,
|
91 |
+
-9.0954017145829042233E-2, 1.0009945751278180853E-1, -1.1133426586956469049E-1, 1.2550966952474304242E-1,
|
92 |
+
-1.4404989676884611812E-1, 1.6955717699740818995E-1, -2.0738555102867398527E-1, 2.7058080842778454788E-1,
|
93 |
+
-4.0068563438653142847E-1, 8.2246703342411321824E-1, -5.7721566490153286061E-1};
|
94 |
+
|
95 |
+
z -= 1.0;
|
96 |
+
return z * cevalpoly(coeffs, 22, z);
|
97 |
+
}
|
98 |
+
} // namespace detail
|
99 |
+
|
100 |
+
SPECFUN_HOST_DEVICE inline double loggamma(double x) {
|
101 |
+
if (x < 0.0) {
|
102 |
+
return std::numeric_limits<double>::quiet_NaN();
|
103 |
+
}
|
104 |
+
return cephes::lgam(x);
|
105 |
+
}
|
106 |
+
|
107 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> loggamma(std::complex<double> z) {
|
108 |
+
// Compute the principal branch of log-Gamma
|
109 |
+
|
110 |
+
if (std::isnan(z.real()) || std::isnan(z.imag())) {
|
111 |
+
return {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()};
|
112 |
+
}
|
113 |
+
if (z.real() <= 0 and z == std::floor(z.real())) {
|
114 |
+
set_error("loggamma", SF_ERROR_SINGULAR, NULL);
|
115 |
+
return {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()};
|
116 |
+
}
|
117 |
+
if (z.real() > detail::loggamma_SMALLX || std::abs(z.imag()) > detail::loggamma_SMALLY) {
|
118 |
+
return detail::loggamma_stirling(z);
|
119 |
+
}
|
120 |
+
if (std::abs(z - 1.0) < detail::loggamma_TAYLOR_RADIUS) {
|
121 |
+
return detail::loggamma_taylor(z);
|
122 |
+
}
|
123 |
+
if (std::abs(z - 2.0) < detail::loggamma_TAYLOR_RADIUS) {
|
124 |
+
// Recurrence relation and the Taylor series around 1.
|
125 |
+
return detail::zlog1(z - 1.0) + detail::loggamma_taylor(z - 1.0);
|
126 |
+
}
|
127 |
+
if (z.real() < 0.1) {
|
128 |
+
// Reflection formula; see Proposition 3.1 in [1]
|
129 |
+
double tmp = std::copysign(2 * M_PI, z.imag()) * std::floor(0.5 * z.real() + 0.25);
|
130 |
+
return std::complex<double>(detail::loggamma_LOGPI, tmp) - std::log(sinpi(z)) - loggamma(1.0 - z);
|
131 |
+
}
|
132 |
+
if (std::signbit(z.imag()) == 0) {
|
133 |
+
// z.imag() >= 0 but is not -0.0
|
134 |
+
return detail::loggamma_recurrence(z);
|
135 |
+
}
|
136 |
+
return std::conj(detail::loggamma_recurrence(std::conj(z)));
|
137 |
+
}
|
138 |
+
|
139 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> gamma(std::complex<double> z) {
|
140 |
+
// Compute Gamma(z) using loggamma.
|
141 |
+
if (z.real() <= 0 && z == std::floor(z.real())) {
|
142 |
+
// Poles
|
143 |
+
set_error("gamma", SF_ERROR_SINGULAR, NULL);
|
144 |
+
return {std::numeric_limits<double>::quiet_NaN(), std::numeric_limits<double>::quiet_NaN()};
|
145 |
+
}
|
146 |
+
return std::exp(loggamma(z));
|
147 |
+
}
|
148 |
+
|
149 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> rgamma(std::complex<double> z) {
|
150 |
+
// Compute 1/Gamma(z) using loggamma.
|
151 |
+
if (z.real() <= 0 && z == std::floor(z.real())) {
|
152 |
+
// Zeros at 0, -1, -2, ...
|
153 |
+
return 0.0;
|
154 |
+
}
|
155 |
+
return std::exp(-loggamma(z));
|
156 |
+
}
|
157 |
+
|
158 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/trig.h
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2023.
|
2 |
+
*
|
3 |
+
* Original author: Josh Wilson, 2016.
|
4 |
+
*/
|
5 |
+
|
6 |
+
/* Implement sin(pi*z) and cos(pi*z) for complex z. Since the periods
|
7 |
+
* of these functions are integral (and thus better representable in
|
8 |
+
* floating point), it's possible to compute them with greater accuracy
|
9 |
+
* than sin(z), cos(z).
|
10 |
+
*/
|
11 |
+
|
12 |
+
#pragma once
|
13 |
+
|
14 |
+
#include "cephes/trig.h"
|
15 |
+
#include "config.h"
|
16 |
+
#include "evalpoly.h"
|
17 |
+
|
18 |
+
namespace special {
|
19 |
+
|
20 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> sinpi(std::complex<double> z) {
|
21 |
+
double x = z.real();
|
22 |
+
double piy = M_PI * z.imag();
|
23 |
+
double abspiy = std::abs(piy);
|
24 |
+
double sinpix = cephes::sinpi(x);
|
25 |
+
double cospix = cephes::cospi(x);
|
26 |
+
|
27 |
+
if (abspiy < 700) {
|
28 |
+
return {sinpix * std::cosh(piy), cospix * std::sinh(piy)};
|
29 |
+
}
|
30 |
+
|
31 |
+
/* Have to be careful--sinh/cosh could overflow while cos/sin are small.
|
32 |
+
* At this large of values
|
33 |
+
*
|
34 |
+
* cosh(y) ~ exp(y)/2
|
35 |
+
* sinh(y) ~ sgn(y)*exp(y)/2
|
36 |
+
*
|
37 |
+
* so we can compute exp(y/2), scale by the right factor of sin/cos
|
38 |
+
* and then multiply by exp(y/2) to avoid overflow. */
|
39 |
+
double exphpiy = std::exp(abspiy / 2);
|
40 |
+
double coshfac;
|
41 |
+
double sinhfac;
|
42 |
+
if (exphpiy == std::numeric_limits<double>::infinity()) {
|
43 |
+
if (sinpix == 0.0) {
|
44 |
+
// Preserve the sign of zero.
|
45 |
+
coshfac = std::copysign(0.0, sinpix);
|
46 |
+
} else {
|
47 |
+
coshfac = std::copysign(std::numeric_limits<double>::infinity(), sinpix);
|
48 |
+
}
|
49 |
+
if (cospix == 0.0) {
|
50 |
+
// Preserve the sign of zero.
|
51 |
+
sinhfac = std::copysign(0.0, cospix);
|
52 |
+
} else {
|
53 |
+
sinhfac = std::copysign(std::numeric_limits<double>::infinity(), cospix);
|
54 |
+
}
|
55 |
+
return {coshfac, sinhfac};
|
56 |
+
}
|
57 |
+
|
58 |
+
coshfac = 0.5 * sinpix * exphpiy;
|
59 |
+
sinhfac = 0.5 * cospix * exphpiy;
|
60 |
+
return {coshfac * exphpiy, sinhfac * exphpiy};
|
61 |
+
}
|
62 |
+
|
63 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> cospi(std::complex<double> z) {
|
64 |
+
double x = z.real();
|
65 |
+
double piy = M_PI * z.imag();
|
66 |
+
double abspiy = std::abs(piy);
|
67 |
+
double sinpix = cephes::sinpi(x);
|
68 |
+
double cospix = cephes::cospi(x);
|
69 |
+
|
70 |
+
if (abspiy < 700) {
|
71 |
+
return {cospix * std::cosh(piy), -sinpix * std::sinh(piy)};
|
72 |
+
}
|
73 |
+
|
74 |
+
// See csinpi(z) for an idea of what's going on here.
|
75 |
+
double exphpiy = std::exp(abspiy / 2);
|
76 |
+
double coshfac;
|
77 |
+
double sinhfac;
|
78 |
+
if (exphpiy == std::numeric_limits<double>::infinity()) {
|
79 |
+
if (sinpix == 0.0) {
|
80 |
+
// Preserve the sign of zero.
|
81 |
+
coshfac = std::copysign(0.0, cospix);
|
82 |
+
} else {
|
83 |
+
coshfac = std::copysign(std::numeric_limits<double>::infinity(), cospix);
|
84 |
+
}
|
85 |
+
if (cospix == 0.0) {
|
86 |
+
// Preserve the sign of zero.
|
87 |
+
sinhfac = std::copysign(0.0, sinpix);
|
88 |
+
} else {
|
89 |
+
sinhfac = std::copysign(std::numeric_limits<double>::infinity(), sinpix);
|
90 |
+
}
|
91 |
+
return {coshfac, sinhfac};
|
92 |
+
}
|
93 |
+
|
94 |
+
coshfac = 0.5 * cospix * exphpiy;
|
95 |
+
sinhfac = 0.5 * sinpix * exphpiy;
|
96 |
+
return {coshfac * exphpiy, sinhfac * exphpiy};
|
97 |
+
}
|
98 |
+
|
99 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/special/zlog1.h
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/* Translated from Cython into C++ by SciPy developers in 2023.
|
2 |
+
*
|
3 |
+
* Original author: Josh Wilson, 2016.
|
4 |
+
*/
|
5 |
+
|
6 |
+
#pragma once
|
7 |
+
|
8 |
+
#include "config.h"
|
9 |
+
|
10 |
+
namespace special {
|
11 |
+
namespace detail {
|
12 |
+
|
13 |
+
SPECFUN_HOST_DEVICE inline std::complex<double> zlog1(std::complex<double> z) {
|
14 |
+
/* Compute log, paying special attention to accuracy around 1. We
|
15 |
+
* implement this ourselves because some systems (most notably the
|
16 |
+
* Travis CI machines) are weak in this regime. */
|
17 |
+
std::complex<double> coeff = -1.0;
|
18 |
+
std::complex<double> res = 0.0;
|
19 |
+
|
20 |
+
if (std::abs(z - 1.0) > 0.1) {
|
21 |
+
return std::log(z);
|
22 |
+
}
|
23 |
+
|
24 |
+
z -= 1.0;
|
25 |
+
for (int n = 1; n < 17; n++) {
|
26 |
+
coeff *= -z;
|
27 |
+
res += coeff / static_cast<double>(n);
|
28 |
+
if (std::abs(res / coeff) < std::numeric_limits<double>::epsilon()) {
|
29 |
+
break;
|
30 |
+
}
|
31 |
+
}
|
32 |
+
return res;
|
33 |
+
}
|
34 |
+
} // namespace detail
|
35 |
+
} // namespace special
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (187 Bytes). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdflib.cpython-310.pyc
ADDED
Binary file (17.1 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cdft_asymptotic.cpython-310.pyc
ADDED
Binary file (1.34 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_cython_special.cpython-310.pyc
ADDED
Binary file (11.8 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_dd.cpython-310.pyc
ADDED
Binary file (1.3 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_digamma.cpython-310.pyc
ADDED
Binary file (1.59 kB). View file
|
|
venv/lib/python3.10/site-packages/scipy/special/tests/__pycache__/test_erfinv.cpython-310.pyc
ADDED
Binary file (2.41 kB). View file
|
|