Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step40/zero/23.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/25.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step40/zero/4.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step40/zero/4.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step40/zero/4.attention.dense.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_arff_parser.py +542 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_base.py +1441 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_covtype.py +236 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_olivetti_faces.py +156 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_openml.py +1158 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/_twenty_newsgroups.py +561 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/images/README.txt +21 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/images/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/images/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_20news.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_arff_parser.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_california_housing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_covtype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_kddcup99.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_lfw.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_olivetti_faces.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_openml.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_rcv1.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_samples_generator.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_svmlight_format.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_2/__init__.py +0 -0
- venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_2/__pycache__/__init__.cpython-310.pyc +0 -0
ckpts/universal/global_step40/zero/23.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa9f765aa7814461dbecc370b8515288885948e8afbbbbe4b565514bee1d1481
|
3 |
+
size 16778396
|
ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41075e102137caa1e8745c571f82083723c462bf9ff1249ca75595f67f475897
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:48f20aad6c18db2d99498dd71e920c8bb03025779589319272f087c6248d2453
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/23.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e31ca62821543e3cbbac929cd9187fa3c82f07a9a41942a3f2dd8698ddc209eb
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4534d085bc382985eb6cd40e84a61a5079e049be0ea2c05e40cd890f0eda71cd
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef8be073710cc5ec015a0dcd6891e7ed954253af39e802e1844bae546db26dc6
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/24.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c82ab44226b2005a8b55040ac6cac7a56f4cbb9344f4a332697041b457d67478
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/25.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8543fd9fe7fff423557d08ddedc20c96ddda4fd6e4db89e9f4848bf7342e1898
|
3 |
+
size 9387
|
ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8621b78afe936756a9952fa31d3ce1f3f0cc64ac84d1e0b4f3ac2ba23f89fee6
|
3 |
+
size 33555612
|
ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3db1a383ebabc03297f2d5f8d907b1185c656124131e1fd7fdb34465d6decddc
|
3 |
+
size 33555627
|
ckpts/universal/global_step40/zero/25.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c0a3307676c70e489cc33ee5db5e70a3ea50c1c3be1e49668a31a330c32f1811
|
3 |
+
size 33555533
|
ckpts/universal/global_step40/zero/4.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b77231c886bbd3f915b506fcb52525d543f3bbf983ec097d70106ecc3cb270a3
|
3 |
+
size 16778396
|
ckpts/universal/global_step40/zero/4.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13ce3d24964147d1243e591e91c30aa056e0015a6b6d43de7a5678538af3a9fa
|
3 |
+
size 16778411
|
ckpts/universal/global_step40/zero/4.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:212a1c16128c00a974a895b7ce9ac104655436f387808b79dfe1154da1d5ed19
|
3 |
+
size 16778317
|
venv/lib/python3.10/site-packages/sklearn/datasets/_arff_parser.py
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Implementation of ARFF parsers: via LIAC-ARFF and pandas."""
|
2 |
+
import itertools
|
3 |
+
import re
|
4 |
+
from collections import OrderedDict
|
5 |
+
from collections.abc import Generator
|
6 |
+
from typing import List
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import scipy as sp
|
10 |
+
|
11 |
+
from ..externals import _arff
|
12 |
+
from ..externals._arff import ArffSparseDataType
|
13 |
+
from ..utils import (
|
14 |
+
_chunk_generator,
|
15 |
+
check_pandas_support,
|
16 |
+
get_chunk_n_rows,
|
17 |
+
)
|
18 |
+
from ..utils.fixes import pd_fillna
|
19 |
+
|
20 |
+
|
21 |
+
def _split_sparse_columns(
|
22 |
+
arff_data: ArffSparseDataType, include_columns: List
|
23 |
+
) -> ArffSparseDataType:
|
24 |
+
"""Obtains several columns from sparse ARFF representation. Additionally,
|
25 |
+
the column indices are re-labelled, given the columns that are not
|
26 |
+
included. (e.g., when including [1, 2, 3], the columns will be relabelled
|
27 |
+
to [0, 1, 2]).
|
28 |
+
|
29 |
+
Parameters
|
30 |
+
----------
|
31 |
+
arff_data : tuple
|
32 |
+
A tuple of three lists of equal size; first list indicating the value,
|
33 |
+
second the x coordinate and the third the y coordinate.
|
34 |
+
|
35 |
+
include_columns : list
|
36 |
+
A list of columns to include.
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
arff_data_new : tuple
|
41 |
+
Subset of arff data with only the include columns indicated by the
|
42 |
+
include_columns argument.
|
43 |
+
"""
|
44 |
+
arff_data_new: ArffSparseDataType = (list(), list(), list())
|
45 |
+
reindexed_columns = {
|
46 |
+
column_idx: array_idx for array_idx, column_idx in enumerate(include_columns)
|
47 |
+
}
|
48 |
+
for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]):
|
49 |
+
if col_idx in include_columns:
|
50 |
+
arff_data_new[0].append(val)
|
51 |
+
arff_data_new[1].append(row_idx)
|
52 |
+
arff_data_new[2].append(reindexed_columns[col_idx])
|
53 |
+
return arff_data_new
|
54 |
+
|
55 |
+
|
56 |
+
def _sparse_data_to_array(
|
57 |
+
arff_data: ArffSparseDataType, include_columns: List
|
58 |
+
) -> np.ndarray:
|
59 |
+
# turns the sparse data back into an array (can't use toarray() function,
|
60 |
+
# as this does only work on numeric data)
|
61 |
+
num_obs = max(arff_data[1]) + 1
|
62 |
+
y_shape = (num_obs, len(include_columns))
|
63 |
+
reindexed_columns = {
|
64 |
+
column_idx: array_idx for array_idx, column_idx in enumerate(include_columns)
|
65 |
+
}
|
66 |
+
# TODO: improve for efficiency
|
67 |
+
y = np.empty(y_shape, dtype=np.float64)
|
68 |
+
for val, row_idx, col_idx in zip(arff_data[0], arff_data[1], arff_data[2]):
|
69 |
+
if col_idx in include_columns:
|
70 |
+
y[row_idx, reindexed_columns[col_idx]] = val
|
71 |
+
return y
|
72 |
+
|
73 |
+
|
74 |
+
def _post_process_frame(frame, feature_names, target_names):
|
75 |
+
"""Post process a dataframe to select the desired columns in `X` and `y`.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
frame : dataframe
|
80 |
+
The dataframe to split into `X` and `y`.
|
81 |
+
|
82 |
+
feature_names : list of str
|
83 |
+
The list of feature names to populate `X`.
|
84 |
+
|
85 |
+
target_names : list of str
|
86 |
+
The list of target names to populate `y`.
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
X : dataframe
|
91 |
+
The dataframe containing the features.
|
92 |
+
|
93 |
+
y : {series, dataframe} or None
|
94 |
+
The series or dataframe containing the target.
|
95 |
+
"""
|
96 |
+
X = frame[feature_names]
|
97 |
+
if len(target_names) >= 2:
|
98 |
+
y = frame[target_names]
|
99 |
+
elif len(target_names) == 1:
|
100 |
+
y = frame[target_names[0]]
|
101 |
+
else:
|
102 |
+
y = None
|
103 |
+
return X, y
|
104 |
+
|
105 |
+
|
106 |
+
def _liac_arff_parser(
|
107 |
+
gzip_file,
|
108 |
+
output_arrays_type,
|
109 |
+
openml_columns_info,
|
110 |
+
feature_names_to_select,
|
111 |
+
target_names_to_select,
|
112 |
+
shape=None,
|
113 |
+
):
|
114 |
+
"""ARFF parser using the LIAC-ARFF library coded purely in Python.
|
115 |
+
|
116 |
+
This parser is quite slow but consumes a generator. Currently it is needed
|
117 |
+
to parse sparse datasets. For dense datasets, it is recommended to instead
|
118 |
+
use the pandas-based parser, although it does not always handles the
|
119 |
+
dtypes exactly the same.
|
120 |
+
|
121 |
+
Parameters
|
122 |
+
----------
|
123 |
+
gzip_file : GzipFile instance
|
124 |
+
The file compressed to be read.
|
125 |
+
|
126 |
+
output_arrays_type : {"numpy", "sparse", "pandas"}
|
127 |
+
The type of the arrays that will be returned. The possibilities ara:
|
128 |
+
|
129 |
+
- `"numpy"`: both `X` and `y` will be NumPy arrays;
|
130 |
+
- `"sparse"`: `X` will be sparse matrix and `y` will be a NumPy array;
|
131 |
+
- `"pandas"`: `X` will be a pandas DataFrame and `y` will be either a
|
132 |
+
pandas Series or DataFrame.
|
133 |
+
|
134 |
+
columns_info : dict
|
135 |
+
The information provided by OpenML regarding the columns of the ARFF
|
136 |
+
file.
|
137 |
+
|
138 |
+
feature_names_to_select : list of str
|
139 |
+
A list of the feature names to be selected.
|
140 |
+
|
141 |
+
target_names_to_select : list of str
|
142 |
+
A list of the target names to be selected.
|
143 |
+
|
144 |
+
Returns
|
145 |
+
-------
|
146 |
+
X : {ndarray, sparse matrix, dataframe}
|
147 |
+
The data matrix.
|
148 |
+
|
149 |
+
y : {ndarray, dataframe, series}
|
150 |
+
The target.
|
151 |
+
|
152 |
+
frame : dataframe or None
|
153 |
+
A dataframe containing both `X` and `y`. `None` if
|
154 |
+
`output_array_type != "pandas"`.
|
155 |
+
|
156 |
+
categories : list of str or None
|
157 |
+
The names of the features that are categorical. `None` if
|
158 |
+
`output_array_type == "pandas"`.
|
159 |
+
"""
|
160 |
+
|
161 |
+
def _io_to_generator(gzip_file):
|
162 |
+
for line in gzip_file:
|
163 |
+
yield line.decode("utf-8")
|
164 |
+
|
165 |
+
stream = _io_to_generator(gzip_file)
|
166 |
+
|
167 |
+
# find which type (dense or sparse) ARFF type we will have to deal with
|
168 |
+
return_type = _arff.COO if output_arrays_type == "sparse" else _arff.DENSE_GEN
|
169 |
+
# we should not let LIAC-ARFF to encode the nominal attributes with NumPy
|
170 |
+
# arrays to have only numerical values.
|
171 |
+
encode_nominal = not (output_arrays_type == "pandas")
|
172 |
+
arff_container = _arff.load(
|
173 |
+
stream, return_type=return_type, encode_nominal=encode_nominal
|
174 |
+
)
|
175 |
+
columns_to_select = feature_names_to_select + target_names_to_select
|
176 |
+
|
177 |
+
categories = {
|
178 |
+
name: cat
|
179 |
+
for name, cat in arff_container["attributes"]
|
180 |
+
if isinstance(cat, list) and name in columns_to_select
|
181 |
+
}
|
182 |
+
if output_arrays_type == "pandas":
|
183 |
+
pd = check_pandas_support("fetch_openml with as_frame=True")
|
184 |
+
|
185 |
+
columns_info = OrderedDict(arff_container["attributes"])
|
186 |
+
columns_names = list(columns_info.keys())
|
187 |
+
|
188 |
+
# calculate chunksize
|
189 |
+
first_row = next(arff_container["data"])
|
190 |
+
first_df = pd.DataFrame([first_row], columns=columns_names, copy=False)
|
191 |
+
|
192 |
+
row_bytes = first_df.memory_usage(deep=True).sum()
|
193 |
+
chunksize = get_chunk_n_rows(row_bytes)
|
194 |
+
|
195 |
+
# read arff data with chunks
|
196 |
+
columns_to_keep = [col for col in columns_names if col in columns_to_select]
|
197 |
+
dfs = [first_df[columns_to_keep]]
|
198 |
+
for data in _chunk_generator(arff_container["data"], chunksize):
|
199 |
+
dfs.append(
|
200 |
+
pd.DataFrame(data, columns=columns_names, copy=False)[columns_to_keep]
|
201 |
+
)
|
202 |
+
# dfs[0] contains only one row, which may not have enough data to infer to
|
203 |
+
# column's dtype. Here we use `dfs[1]` to configure the dtype in dfs[0]
|
204 |
+
if len(dfs) >= 2:
|
205 |
+
dfs[0] = dfs[0].astype(dfs[1].dtypes)
|
206 |
+
|
207 |
+
# liac-arff parser does not depend on NumPy and uses None to represent
|
208 |
+
# missing values. To be consistent with the pandas parser, we replace
|
209 |
+
# None with np.nan.
|
210 |
+
frame = pd.concat(dfs, ignore_index=True)
|
211 |
+
frame = pd_fillna(pd, frame)
|
212 |
+
del dfs, first_df
|
213 |
+
|
214 |
+
# cast the columns frame
|
215 |
+
dtypes = {}
|
216 |
+
for name in frame.columns:
|
217 |
+
column_dtype = openml_columns_info[name]["data_type"]
|
218 |
+
if column_dtype.lower() == "integer":
|
219 |
+
# Use a pandas extension array instead of np.int64 to be able
|
220 |
+
# to support missing values.
|
221 |
+
dtypes[name] = "Int64"
|
222 |
+
elif column_dtype.lower() == "nominal":
|
223 |
+
dtypes[name] = "category"
|
224 |
+
else:
|
225 |
+
dtypes[name] = frame.dtypes[name]
|
226 |
+
frame = frame.astype(dtypes)
|
227 |
+
|
228 |
+
X, y = _post_process_frame(
|
229 |
+
frame, feature_names_to_select, target_names_to_select
|
230 |
+
)
|
231 |
+
else:
|
232 |
+
arff_data = arff_container["data"]
|
233 |
+
|
234 |
+
feature_indices_to_select = [
|
235 |
+
int(openml_columns_info[col_name]["index"])
|
236 |
+
for col_name in feature_names_to_select
|
237 |
+
]
|
238 |
+
target_indices_to_select = [
|
239 |
+
int(openml_columns_info[col_name]["index"])
|
240 |
+
for col_name in target_names_to_select
|
241 |
+
]
|
242 |
+
|
243 |
+
if isinstance(arff_data, Generator):
|
244 |
+
if shape is None:
|
245 |
+
raise ValueError(
|
246 |
+
"shape must be provided when arr['data'] is a Generator"
|
247 |
+
)
|
248 |
+
if shape[0] == -1:
|
249 |
+
count = -1
|
250 |
+
else:
|
251 |
+
count = shape[0] * shape[1]
|
252 |
+
data = np.fromiter(
|
253 |
+
itertools.chain.from_iterable(arff_data),
|
254 |
+
dtype="float64",
|
255 |
+
count=count,
|
256 |
+
)
|
257 |
+
data = data.reshape(*shape)
|
258 |
+
X = data[:, feature_indices_to_select]
|
259 |
+
y = data[:, target_indices_to_select]
|
260 |
+
elif isinstance(arff_data, tuple):
|
261 |
+
arff_data_X = _split_sparse_columns(arff_data, feature_indices_to_select)
|
262 |
+
num_obs = max(arff_data[1]) + 1
|
263 |
+
X_shape = (num_obs, len(feature_indices_to_select))
|
264 |
+
X = sp.sparse.coo_matrix(
|
265 |
+
(arff_data_X[0], (arff_data_X[1], arff_data_X[2])),
|
266 |
+
shape=X_shape,
|
267 |
+
dtype=np.float64,
|
268 |
+
)
|
269 |
+
X = X.tocsr()
|
270 |
+
y = _sparse_data_to_array(arff_data, target_indices_to_select)
|
271 |
+
else:
|
272 |
+
# This should never happen
|
273 |
+
raise ValueError(
|
274 |
+
f"Unexpected type for data obtained from arff: {type(arff_data)}"
|
275 |
+
)
|
276 |
+
|
277 |
+
is_classification = {
|
278 |
+
col_name in categories for col_name in target_names_to_select
|
279 |
+
}
|
280 |
+
if not is_classification:
|
281 |
+
# No target
|
282 |
+
pass
|
283 |
+
elif all(is_classification):
|
284 |
+
y = np.hstack(
|
285 |
+
[
|
286 |
+
np.take(
|
287 |
+
np.asarray(categories.pop(col_name), dtype="O"),
|
288 |
+
y[:, i : i + 1].astype(int, copy=False),
|
289 |
+
)
|
290 |
+
for i, col_name in enumerate(target_names_to_select)
|
291 |
+
]
|
292 |
+
)
|
293 |
+
elif any(is_classification):
|
294 |
+
raise ValueError(
|
295 |
+
"Mix of nominal and non-nominal targets is not currently supported"
|
296 |
+
)
|
297 |
+
|
298 |
+
# reshape y back to 1-D array, if there is only 1 target column;
|
299 |
+
# back to None if there are not target columns
|
300 |
+
if y.shape[1] == 1:
|
301 |
+
y = y.reshape((-1,))
|
302 |
+
elif y.shape[1] == 0:
|
303 |
+
y = None
|
304 |
+
|
305 |
+
if output_arrays_type == "pandas":
|
306 |
+
return X, y, frame, None
|
307 |
+
return X, y, None, categories
|
308 |
+
|
309 |
+
|
310 |
+
def _pandas_arff_parser(
|
311 |
+
gzip_file,
|
312 |
+
output_arrays_type,
|
313 |
+
openml_columns_info,
|
314 |
+
feature_names_to_select,
|
315 |
+
target_names_to_select,
|
316 |
+
read_csv_kwargs=None,
|
317 |
+
):
|
318 |
+
"""ARFF parser using `pandas.read_csv`.
|
319 |
+
|
320 |
+
This parser uses the metadata fetched directly from OpenML and skips the metadata
|
321 |
+
headers of ARFF file itself. The data is loaded as a CSV file.
|
322 |
+
|
323 |
+
Parameters
|
324 |
+
----------
|
325 |
+
gzip_file : GzipFile instance
|
326 |
+
The GZip compressed file with the ARFF formatted payload.
|
327 |
+
|
328 |
+
output_arrays_type : {"numpy", "sparse", "pandas"}
|
329 |
+
The type of the arrays that will be returned. The possibilities are:
|
330 |
+
|
331 |
+
- `"numpy"`: both `X` and `y` will be NumPy arrays;
|
332 |
+
- `"sparse"`: `X` will be sparse matrix and `y` will be a NumPy array;
|
333 |
+
- `"pandas"`: `X` will be a pandas DataFrame and `y` will be either a
|
334 |
+
pandas Series or DataFrame.
|
335 |
+
|
336 |
+
openml_columns_info : dict
|
337 |
+
The information provided by OpenML regarding the columns of the ARFF
|
338 |
+
file.
|
339 |
+
|
340 |
+
feature_names_to_select : list of str
|
341 |
+
A list of the feature names to be selected to build `X`.
|
342 |
+
|
343 |
+
target_names_to_select : list of str
|
344 |
+
A list of the target names to be selected to build `y`.
|
345 |
+
|
346 |
+
read_csv_kwargs : dict, default=None
|
347 |
+
Keyword arguments to pass to `pandas.read_csv`. It allows to overwrite
|
348 |
+
the default options.
|
349 |
+
|
350 |
+
Returns
|
351 |
+
-------
|
352 |
+
X : {ndarray, sparse matrix, dataframe}
|
353 |
+
The data matrix.
|
354 |
+
|
355 |
+
y : {ndarray, dataframe, series}
|
356 |
+
The target.
|
357 |
+
|
358 |
+
frame : dataframe or None
|
359 |
+
A dataframe containing both `X` and `y`. `None` if
|
360 |
+
`output_array_type != "pandas"`.
|
361 |
+
|
362 |
+
categories : list of str or None
|
363 |
+
The names of the features that are categorical. `None` if
|
364 |
+
`output_array_type == "pandas"`.
|
365 |
+
"""
|
366 |
+
import pandas as pd
|
367 |
+
|
368 |
+
# read the file until the data section to skip the ARFF metadata headers
|
369 |
+
for line in gzip_file:
|
370 |
+
if line.decode("utf-8").lower().startswith("@data"):
|
371 |
+
break
|
372 |
+
|
373 |
+
dtypes = {}
|
374 |
+
for name in openml_columns_info:
|
375 |
+
column_dtype = openml_columns_info[name]["data_type"]
|
376 |
+
if column_dtype.lower() == "integer":
|
377 |
+
# Use Int64 to infer missing values from data
|
378 |
+
# XXX: this line is not covered by our tests. Is this really needed?
|
379 |
+
dtypes[name] = "Int64"
|
380 |
+
elif column_dtype.lower() == "nominal":
|
381 |
+
dtypes[name] = "category"
|
382 |
+
# since we will not pass `names` when reading the ARFF file, we need to translate
|
383 |
+
# `dtypes` from column names to column indices to pass to `pandas.read_csv`
|
384 |
+
dtypes_positional = {
|
385 |
+
col_idx: dtypes[name]
|
386 |
+
for col_idx, name in enumerate(openml_columns_info)
|
387 |
+
if name in dtypes
|
388 |
+
}
|
389 |
+
|
390 |
+
default_read_csv_kwargs = {
|
391 |
+
"header": None,
|
392 |
+
"index_col": False, # always force pandas to not use the first column as index
|
393 |
+
"na_values": ["?"], # missing values are represented by `?`
|
394 |
+
"keep_default_na": False, # only `?` is a missing value given the ARFF specs
|
395 |
+
"comment": "%", # skip line starting by `%` since they are comments
|
396 |
+
"quotechar": '"', # delimiter to use for quoted strings
|
397 |
+
"skipinitialspace": True, # skip spaces after delimiter to follow ARFF specs
|
398 |
+
"escapechar": "\\",
|
399 |
+
"dtype": dtypes_positional,
|
400 |
+
}
|
401 |
+
read_csv_kwargs = {**default_read_csv_kwargs, **(read_csv_kwargs or {})}
|
402 |
+
frame = pd.read_csv(gzip_file, **read_csv_kwargs)
|
403 |
+
try:
|
404 |
+
# Setting the columns while reading the file will select the N first columns
|
405 |
+
# and not raise a ParserError. Instead, we set the columns after reading the
|
406 |
+
# file and raise a ParserError if the number of columns does not match the
|
407 |
+
# number of columns in the metadata given by OpenML.
|
408 |
+
frame.columns = [name for name in openml_columns_info]
|
409 |
+
except ValueError as exc:
|
410 |
+
raise pd.errors.ParserError(
|
411 |
+
"The number of columns provided by OpenML does not match the number of "
|
412 |
+
"columns inferred by pandas when reading the file."
|
413 |
+
) from exc
|
414 |
+
|
415 |
+
columns_to_select = feature_names_to_select + target_names_to_select
|
416 |
+
columns_to_keep = [col for col in frame.columns if col in columns_to_select]
|
417 |
+
frame = frame[columns_to_keep]
|
418 |
+
|
419 |
+
# `pd.read_csv` automatically handles double quotes for quoting non-numeric
|
420 |
+
# CSV cell values. Contrary to LIAC-ARFF, `pd.read_csv` cannot be configured to
|
421 |
+
# consider either single quotes and double quotes as valid quoting chars at
|
422 |
+
# the same time since this case does not occur in regular (non-ARFF) CSV files.
|
423 |
+
# To mimic the behavior of LIAC-ARFF parser, we manually strip single quotes
|
424 |
+
# on categories as a post-processing steps if needed.
|
425 |
+
#
|
426 |
+
# Note however that we intentionally do not attempt to do this kind of manual
|
427 |
+
# post-processing of (non-categorical) string-typed columns because we cannot
|
428 |
+
# resolve the ambiguity of the case of CSV cell with nesting quoting such as
|
429 |
+
# `"'some string value'"` with pandas.
|
430 |
+
single_quote_pattern = re.compile(r"^'(?P<contents>.*)'$")
|
431 |
+
|
432 |
+
def strip_single_quotes(input_string):
|
433 |
+
match = re.search(single_quote_pattern, input_string)
|
434 |
+
if match is None:
|
435 |
+
return input_string
|
436 |
+
|
437 |
+
return match.group("contents")
|
438 |
+
|
439 |
+
categorical_columns = [
|
440 |
+
name
|
441 |
+
for name, dtype in frame.dtypes.items()
|
442 |
+
if isinstance(dtype, pd.CategoricalDtype)
|
443 |
+
]
|
444 |
+
for col in categorical_columns:
|
445 |
+
frame[col] = frame[col].cat.rename_categories(strip_single_quotes)
|
446 |
+
|
447 |
+
X, y = _post_process_frame(frame, feature_names_to_select, target_names_to_select)
|
448 |
+
|
449 |
+
if output_arrays_type == "pandas":
|
450 |
+
return X, y, frame, None
|
451 |
+
else:
|
452 |
+
X, y = X.to_numpy(), y.to_numpy()
|
453 |
+
|
454 |
+
categories = {
|
455 |
+
name: dtype.categories.tolist()
|
456 |
+
for name, dtype in frame.dtypes.items()
|
457 |
+
if isinstance(dtype, pd.CategoricalDtype)
|
458 |
+
}
|
459 |
+
return X, y, None, categories
|
460 |
+
|
461 |
+
|
462 |
+
def load_arff_from_gzip_file(
|
463 |
+
gzip_file,
|
464 |
+
parser,
|
465 |
+
output_type,
|
466 |
+
openml_columns_info,
|
467 |
+
feature_names_to_select,
|
468 |
+
target_names_to_select,
|
469 |
+
shape=None,
|
470 |
+
read_csv_kwargs=None,
|
471 |
+
):
|
472 |
+
"""Load a compressed ARFF file using a given parser.
|
473 |
+
|
474 |
+
Parameters
|
475 |
+
----------
|
476 |
+
gzip_file : GzipFile instance
|
477 |
+
The file compressed to be read.
|
478 |
+
|
479 |
+
parser : {"pandas", "liac-arff"}
|
480 |
+
The parser used to parse the ARFF file. "pandas" is recommended
|
481 |
+
but only supports loading dense datasets.
|
482 |
+
|
483 |
+
output_type : {"numpy", "sparse", "pandas"}
|
484 |
+
The type of the arrays that will be returned. The possibilities ara:
|
485 |
+
|
486 |
+
- `"numpy"`: both `X` and `y` will be NumPy arrays;
|
487 |
+
- `"sparse"`: `X` will be sparse matrix and `y` will be a NumPy array;
|
488 |
+
- `"pandas"`: `X` will be a pandas DataFrame and `y` will be either a
|
489 |
+
pandas Series or DataFrame.
|
490 |
+
|
491 |
+
openml_columns_info : dict
|
492 |
+
The information provided by OpenML regarding the columns of the ARFF
|
493 |
+
file.
|
494 |
+
|
495 |
+
feature_names_to_select : list of str
|
496 |
+
A list of the feature names to be selected.
|
497 |
+
|
498 |
+
target_names_to_select : list of str
|
499 |
+
A list of the target names to be selected.
|
500 |
+
|
501 |
+
read_csv_kwargs : dict, default=None
|
502 |
+
Keyword arguments to pass to `pandas.read_csv`. It allows to overwrite
|
503 |
+
the default options.
|
504 |
+
|
505 |
+
Returns
|
506 |
+
-------
|
507 |
+
X : {ndarray, sparse matrix, dataframe}
|
508 |
+
The data matrix.
|
509 |
+
|
510 |
+
y : {ndarray, dataframe, series}
|
511 |
+
The target.
|
512 |
+
|
513 |
+
frame : dataframe or None
|
514 |
+
A dataframe containing both `X` and `y`. `None` if
|
515 |
+
`output_array_type != "pandas"`.
|
516 |
+
|
517 |
+
categories : list of str or None
|
518 |
+
The names of the features that are categorical. `None` if
|
519 |
+
`output_array_type == "pandas"`.
|
520 |
+
"""
|
521 |
+
if parser == "liac-arff":
|
522 |
+
return _liac_arff_parser(
|
523 |
+
gzip_file,
|
524 |
+
output_type,
|
525 |
+
openml_columns_info,
|
526 |
+
feature_names_to_select,
|
527 |
+
target_names_to_select,
|
528 |
+
shape,
|
529 |
+
)
|
530 |
+
elif parser == "pandas":
|
531 |
+
return _pandas_arff_parser(
|
532 |
+
gzip_file,
|
533 |
+
output_type,
|
534 |
+
openml_columns_info,
|
535 |
+
feature_names_to_select,
|
536 |
+
target_names_to_select,
|
537 |
+
read_csv_kwargs,
|
538 |
+
)
|
539 |
+
else:
|
540 |
+
raise ValueError(
|
541 |
+
f"Unknown parser: '{parser}'. Should be 'liac-arff' or 'pandas'."
|
542 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/datasets/_base.py
ADDED
@@ -0,0 +1,1441 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Base IO code for all datasets
|
3 |
+
"""
|
4 |
+
|
5 |
+
# Copyright (c) 2007 David Cournapeau <[email protected]>
|
6 |
+
# 2010 Fabian Pedregosa <[email protected]>
|
7 |
+
# 2010 Olivier Grisel <[email protected]>
|
8 |
+
# License: BSD 3 clause
|
9 |
+
import csv
|
10 |
+
import gzip
|
11 |
+
import hashlib
|
12 |
+
import os
|
13 |
+
import shutil
|
14 |
+
from collections import namedtuple
|
15 |
+
from importlib import resources
|
16 |
+
from numbers import Integral
|
17 |
+
from os import environ, listdir, makedirs
|
18 |
+
from os.path import expanduser, isdir, join, splitext
|
19 |
+
from pathlib import Path
|
20 |
+
from urllib.request import urlretrieve
|
21 |
+
|
22 |
+
import numpy as np
|
23 |
+
|
24 |
+
from ..preprocessing import scale
|
25 |
+
from ..utils import Bunch, check_pandas_support, check_random_state
|
26 |
+
from ..utils._param_validation import Interval, StrOptions, validate_params
|
27 |
+
|
28 |
+
DATA_MODULE = "sklearn.datasets.data"
|
29 |
+
DESCR_MODULE = "sklearn.datasets.descr"
|
30 |
+
IMAGES_MODULE = "sklearn.datasets.images"
|
31 |
+
|
32 |
+
RemoteFileMetadata = namedtuple("RemoteFileMetadata", ["filename", "url", "checksum"])
|
33 |
+
|
34 |
+
|
35 |
+
@validate_params(
|
36 |
+
{
|
37 |
+
"data_home": [str, os.PathLike, None],
|
38 |
+
},
|
39 |
+
prefer_skip_nested_validation=True,
|
40 |
+
)
|
41 |
+
def get_data_home(data_home=None) -> str:
|
42 |
+
"""Return the path of the scikit-learn data directory.
|
43 |
+
|
44 |
+
This folder is used by some large dataset loaders to avoid downloading the
|
45 |
+
data several times.
|
46 |
+
|
47 |
+
By default the data directory is set to a folder named 'scikit_learn_data' in the
|
48 |
+
user home folder.
|
49 |
+
|
50 |
+
Alternatively, it can be set by the 'SCIKIT_LEARN_DATA' environment
|
51 |
+
variable or programmatically by giving an explicit folder path. The '~'
|
52 |
+
symbol is expanded to the user home folder.
|
53 |
+
|
54 |
+
If the folder does not already exist, it is automatically created.
|
55 |
+
|
56 |
+
Parameters
|
57 |
+
----------
|
58 |
+
data_home : str or path-like, default=None
|
59 |
+
The path to scikit-learn data directory. If `None`, the default path
|
60 |
+
is `~/scikit_learn_data`.
|
61 |
+
|
62 |
+
Returns
|
63 |
+
-------
|
64 |
+
data_home: str
|
65 |
+
The path to scikit-learn data directory.
|
66 |
+
"""
|
67 |
+
if data_home is None:
|
68 |
+
data_home = environ.get("SCIKIT_LEARN_DATA", join("~", "scikit_learn_data"))
|
69 |
+
data_home = expanduser(data_home)
|
70 |
+
makedirs(data_home, exist_ok=True)
|
71 |
+
return data_home
|
72 |
+
|
73 |
+
|
74 |
+
@validate_params(
|
75 |
+
{
|
76 |
+
"data_home": [str, os.PathLike, None],
|
77 |
+
},
|
78 |
+
prefer_skip_nested_validation=True,
|
79 |
+
)
|
80 |
+
def clear_data_home(data_home=None):
|
81 |
+
"""Delete all the content of the data home cache.
|
82 |
+
|
83 |
+
Parameters
|
84 |
+
----------
|
85 |
+
data_home : str or path-like, default=None
|
86 |
+
The path to scikit-learn data directory. If `None`, the default path
|
87 |
+
is `~/scikit_learn_data`.
|
88 |
+
|
89 |
+
Examples
|
90 |
+
--------
|
91 |
+
>>> from sklearn.datasets import clear_data_home
|
92 |
+
>>> clear_data_home() # doctest: +SKIP
|
93 |
+
"""
|
94 |
+
data_home = get_data_home(data_home)
|
95 |
+
shutil.rmtree(data_home)
|
96 |
+
|
97 |
+
|
98 |
+
def _convert_data_dataframe(
|
99 |
+
caller_name, data, target, feature_names, target_names, sparse_data=False
|
100 |
+
):
|
101 |
+
pd = check_pandas_support("{} with as_frame=True".format(caller_name))
|
102 |
+
if not sparse_data:
|
103 |
+
data_df = pd.DataFrame(data, columns=feature_names, copy=False)
|
104 |
+
else:
|
105 |
+
data_df = pd.DataFrame.sparse.from_spmatrix(data, columns=feature_names)
|
106 |
+
|
107 |
+
target_df = pd.DataFrame(target, columns=target_names)
|
108 |
+
combined_df = pd.concat([data_df, target_df], axis=1)
|
109 |
+
X = combined_df[feature_names]
|
110 |
+
y = combined_df[target_names]
|
111 |
+
if y.shape[1] == 1:
|
112 |
+
y = y.iloc[:, 0]
|
113 |
+
return combined_df, X, y
|
114 |
+
|
115 |
+
|
116 |
+
@validate_params(
|
117 |
+
{
|
118 |
+
"container_path": [str, os.PathLike],
|
119 |
+
"description": [str, None],
|
120 |
+
"categories": [list, None],
|
121 |
+
"load_content": ["boolean"],
|
122 |
+
"shuffle": ["boolean"],
|
123 |
+
"encoding": [str, None],
|
124 |
+
"decode_error": [StrOptions({"strict", "ignore", "replace"})],
|
125 |
+
"random_state": ["random_state"],
|
126 |
+
"allowed_extensions": [list, None],
|
127 |
+
},
|
128 |
+
prefer_skip_nested_validation=True,
|
129 |
+
)
|
130 |
+
def load_files(
|
131 |
+
container_path,
|
132 |
+
*,
|
133 |
+
description=None,
|
134 |
+
categories=None,
|
135 |
+
load_content=True,
|
136 |
+
shuffle=True,
|
137 |
+
encoding=None,
|
138 |
+
decode_error="strict",
|
139 |
+
random_state=0,
|
140 |
+
allowed_extensions=None,
|
141 |
+
):
|
142 |
+
"""Load text files with categories as subfolder names.
|
143 |
+
|
144 |
+
Individual samples are assumed to be files stored a two levels folder
|
145 |
+
structure such as the following:
|
146 |
+
|
147 |
+
container_folder/
|
148 |
+
category_1_folder/
|
149 |
+
file_1.txt
|
150 |
+
file_2.txt
|
151 |
+
...
|
152 |
+
file_42.txt
|
153 |
+
category_2_folder/
|
154 |
+
file_43.txt
|
155 |
+
file_44.txt
|
156 |
+
...
|
157 |
+
|
158 |
+
The folder names are used as supervised signal label names. The individual
|
159 |
+
file names are not important.
|
160 |
+
|
161 |
+
This function does not try to extract features into a numpy array or scipy
|
162 |
+
sparse matrix. In addition, if load_content is false it does not try to
|
163 |
+
load the files in memory.
|
164 |
+
|
165 |
+
To use text files in a scikit-learn classification or clustering algorithm,
|
166 |
+
you will need to use the :mod:`~sklearn.feature_extraction.text` module to
|
167 |
+
build a feature extraction transformer that suits your problem.
|
168 |
+
|
169 |
+
If you set load_content=True, you should also specify the encoding of the
|
170 |
+
text using the 'encoding' parameter. For many modern text files, 'utf-8'
|
171 |
+
will be the correct encoding. If you leave encoding equal to None, then the
|
172 |
+
content will be made of bytes instead of Unicode, and you will not be able
|
173 |
+
to use most functions in :mod:`~sklearn.feature_extraction.text`.
|
174 |
+
|
175 |
+
Similar feature extractors should be built for other kind of unstructured
|
176 |
+
data input such as images, audio, video, ...
|
177 |
+
|
178 |
+
If you want files with a specific file extension (e.g. `.txt`) then you
|
179 |
+
can pass a list of those file extensions to `allowed_extensions`.
|
180 |
+
|
181 |
+
Read more in the :ref:`User Guide <datasets>`.
|
182 |
+
|
183 |
+
Parameters
|
184 |
+
----------
|
185 |
+
container_path : str
|
186 |
+
Path to the main folder holding one subfolder per category.
|
187 |
+
|
188 |
+
description : str, default=None
|
189 |
+
A paragraph describing the characteristic of the dataset: its source,
|
190 |
+
reference, etc.
|
191 |
+
|
192 |
+
categories : list of str, default=None
|
193 |
+
If None (default), load all the categories. If not None, list of
|
194 |
+
category names to load (other categories ignored).
|
195 |
+
|
196 |
+
load_content : bool, default=True
|
197 |
+
Whether to load or not the content of the different files. If true a
|
198 |
+
'data' attribute containing the text information is present in the data
|
199 |
+
structure returned. If not, a filenames attribute gives the path to the
|
200 |
+
files.
|
201 |
+
|
202 |
+
shuffle : bool, default=True
|
203 |
+
Whether or not to shuffle the data: might be important for models that
|
204 |
+
make the assumption that the samples are independent and identically
|
205 |
+
distributed (i.i.d.), such as stochastic gradient descent.
|
206 |
+
|
207 |
+
encoding : str, default=None
|
208 |
+
If None, do not try to decode the content of the files (e.g. for images
|
209 |
+
or other non-text content). If not None, encoding to use to decode text
|
210 |
+
files to Unicode if load_content is True.
|
211 |
+
|
212 |
+
decode_error : {'strict', 'ignore', 'replace'}, default='strict'
|
213 |
+
Instruction on what to do if a byte sequence is given to analyze that
|
214 |
+
contains characters not of the given `encoding`. Passed as keyword
|
215 |
+
argument 'errors' to bytes.decode.
|
216 |
+
|
217 |
+
random_state : int, RandomState instance or None, default=0
|
218 |
+
Determines random number generation for dataset shuffling. Pass an int
|
219 |
+
for reproducible output across multiple function calls.
|
220 |
+
See :term:`Glossary <random_state>`.
|
221 |
+
|
222 |
+
allowed_extensions : list of str, default=None
|
223 |
+
List of desired file extensions to filter the files to be loaded.
|
224 |
+
|
225 |
+
Returns
|
226 |
+
-------
|
227 |
+
data : :class:`~sklearn.utils.Bunch`
|
228 |
+
Dictionary-like object, with the following attributes.
|
229 |
+
|
230 |
+
data : list of str
|
231 |
+
Only present when `load_content=True`.
|
232 |
+
The raw text data to learn.
|
233 |
+
target : ndarray
|
234 |
+
The target labels (integer index).
|
235 |
+
target_names : list
|
236 |
+
The names of target classes.
|
237 |
+
DESCR : str
|
238 |
+
The full description of the dataset.
|
239 |
+
filenames: ndarray
|
240 |
+
The filenames holding the dataset.
|
241 |
+
|
242 |
+
Examples
|
243 |
+
--------
|
244 |
+
>>> from sklearn.datasets import load_files
|
245 |
+
>>> container_path = "./"
|
246 |
+
>>> load_files(container_path) # doctest: +SKIP
|
247 |
+
"""
|
248 |
+
|
249 |
+
target = []
|
250 |
+
target_names = []
|
251 |
+
filenames = []
|
252 |
+
|
253 |
+
folders = [
|
254 |
+
f for f in sorted(listdir(container_path)) if isdir(join(container_path, f))
|
255 |
+
]
|
256 |
+
|
257 |
+
if categories is not None:
|
258 |
+
folders = [f for f in folders if f in categories]
|
259 |
+
|
260 |
+
if allowed_extensions is not None:
|
261 |
+
allowed_extensions = frozenset(allowed_extensions)
|
262 |
+
|
263 |
+
for label, folder in enumerate(folders):
|
264 |
+
target_names.append(folder)
|
265 |
+
folder_path = join(container_path, folder)
|
266 |
+
files = sorted(listdir(folder_path))
|
267 |
+
if allowed_extensions is not None:
|
268 |
+
documents = [
|
269 |
+
join(folder_path, file)
|
270 |
+
for file in files
|
271 |
+
if os.path.splitext(file)[1] in allowed_extensions
|
272 |
+
]
|
273 |
+
else:
|
274 |
+
documents = [join(folder_path, file) for file in files]
|
275 |
+
target.extend(len(documents) * [label])
|
276 |
+
filenames.extend(documents)
|
277 |
+
|
278 |
+
# convert to array for fancy indexing
|
279 |
+
filenames = np.array(filenames)
|
280 |
+
target = np.array(target)
|
281 |
+
|
282 |
+
if shuffle:
|
283 |
+
random_state = check_random_state(random_state)
|
284 |
+
indices = np.arange(filenames.shape[0])
|
285 |
+
random_state.shuffle(indices)
|
286 |
+
filenames = filenames[indices]
|
287 |
+
target = target[indices]
|
288 |
+
|
289 |
+
if load_content:
|
290 |
+
data = []
|
291 |
+
for filename in filenames:
|
292 |
+
data.append(Path(filename).read_bytes())
|
293 |
+
if encoding is not None:
|
294 |
+
data = [d.decode(encoding, decode_error) for d in data]
|
295 |
+
return Bunch(
|
296 |
+
data=data,
|
297 |
+
filenames=filenames,
|
298 |
+
target_names=target_names,
|
299 |
+
target=target,
|
300 |
+
DESCR=description,
|
301 |
+
)
|
302 |
+
|
303 |
+
return Bunch(
|
304 |
+
filenames=filenames, target_names=target_names, target=target, DESCR=description
|
305 |
+
)
|
306 |
+
|
307 |
+
|
308 |
+
def load_csv_data(
|
309 |
+
data_file_name,
|
310 |
+
*,
|
311 |
+
data_module=DATA_MODULE,
|
312 |
+
descr_file_name=None,
|
313 |
+
descr_module=DESCR_MODULE,
|
314 |
+
encoding="utf-8",
|
315 |
+
):
|
316 |
+
"""Loads `data_file_name` from `data_module with `importlib.resources`.
|
317 |
+
|
318 |
+
Parameters
|
319 |
+
----------
|
320 |
+
data_file_name : str
|
321 |
+
Name of csv file to be loaded from `data_module/data_file_name`.
|
322 |
+
For example `'wine_data.csv'`.
|
323 |
+
|
324 |
+
data_module : str or module, default='sklearn.datasets.data'
|
325 |
+
Module where data lives. The default is `'sklearn.datasets.data'`.
|
326 |
+
|
327 |
+
descr_file_name : str, default=None
|
328 |
+
Name of rst file to be loaded from `descr_module/descr_file_name`.
|
329 |
+
For example `'wine_data.rst'`. See also :func:`load_descr`.
|
330 |
+
If not None, also returns the corresponding description of
|
331 |
+
the dataset.
|
332 |
+
|
333 |
+
descr_module : str or module, default='sklearn.datasets.descr'
|
334 |
+
Module where `descr_file_name` lives. See also :func:`load_descr`.
|
335 |
+
The default is `'sklearn.datasets.descr'`.
|
336 |
+
|
337 |
+
Returns
|
338 |
+
-------
|
339 |
+
data : ndarray of shape (n_samples, n_features)
|
340 |
+
A 2D array with each row representing one sample and each column
|
341 |
+
representing the features of a given sample.
|
342 |
+
|
343 |
+
target : ndarry of shape (n_samples,)
|
344 |
+
A 1D array holding target variables for all the samples in `data`.
|
345 |
+
For example target[0] is the target variable for data[0].
|
346 |
+
|
347 |
+
target_names : ndarry of shape (n_samples,)
|
348 |
+
A 1D array containing the names of the classifications. For example
|
349 |
+
target_names[0] is the name of the target[0] class.
|
350 |
+
|
351 |
+
descr : str, optional
|
352 |
+
Description of the dataset (the content of `descr_file_name`).
|
353 |
+
Only returned if `descr_file_name` is not None.
|
354 |
+
|
355 |
+
encoding : str, optional
|
356 |
+
Text encoding of the CSV file.
|
357 |
+
|
358 |
+
.. versionadded:: 1.4
|
359 |
+
"""
|
360 |
+
data_path = resources.files(data_module) / data_file_name
|
361 |
+
with data_path.open("r", encoding="utf-8") as csv_file:
|
362 |
+
data_file = csv.reader(csv_file)
|
363 |
+
temp = next(data_file)
|
364 |
+
n_samples = int(temp[0])
|
365 |
+
n_features = int(temp[1])
|
366 |
+
target_names = np.array(temp[2:])
|
367 |
+
data = np.empty((n_samples, n_features))
|
368 |
+
target = np.empty((n_samples,), dtype=int)
|
369 |
+
|
370 |
+
for i, ir in enumerate(data_file):
|
371 |
+
data[i] = np.asarray(ir[:-1], dtype=np.float64)
|
372 |
+
target[i] = np.asarray(ir[-1], dtype=int)
|
373 |
+
|
374 |
+
if descr_file_name is None:
|
375 |
+
return data, target, target_names
|
376 |
+
else:
|
377 |
+
assert descr_module is not None
|
378 |
+
descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
|
379 |
+
return data, target, target_names, descr
|
380 |
+
|
381 |
+
|
382 |
+
def load_gzip_compressed_csv_data(
|
383 |
+
data_file_name,
|
384 |
+
*,
|
385 |
+
data_module=DATA_MODULE,
|
386 |
+
descr_file_name=None,
|
387 |
+
descr_module=DESCR_MODULE,
|
388 |
+
encoding="utf-8",
|
389 |
+
**kwargs,
|
390 |
+
):
|
391 |
+
"""Loads gzip-compressed with `importlib.resources`.
|
392 |
+
|
393 |
+
1) Open resource file with `importlib.resources.open_binary`
|
394 |
+
2) Decompress file obj with `gzip.open`
|
395 |
+
3) Load decompressed data with `np.loadtxt`
|
396 |
+
|
397 |
+
Parameters
|
398 |
+
----------
|
399 |
+
data_file_name : str
|
400 |
+
Name of gzip-compressed csv file (`'*.csv.gz'`) to be loaded from
|
401 |
+
`data_module/data_file_name`. For example `'diabetes_data.csv.gz'`.
|
402 |
+
|
403 |
+
data_module : str or module, default='sklearn.datasets.data'
|
404 |
+
Module where data lives. The default is `'sklearn.datasets.data'`.
|
405 |
+
|
406 |
+
descr_file_name : str, default=None
|
407 |
+
Name of rst file to be loaded from `descr_module/descr_file_name`.
|
408 |
+
For example `'wine_data.rst'`. See also :func:`load_descr`.
|
409 |
+
If not None, also returns the corresponding description of
|
410 |
+
the dataset.
|
411 |
+
|
412 |
+
descr_module : str or module, default='sklearn.datasets.descr'
|
413 |
+
Module where `descr_file_name` lives. See also :func:`load_descr`.
|
414 |
+
The default is `'sklearn.datasets.descr'`.
|
415 |
+
|
416 |
+
encoding : str, default="utf-8"
|
417 |
+
Name of the encoding that the gzip-decompressed file will be
|
418 |
+
decoded with. The default is 'utf-8'.
|
419 |
+
|
420 |
+
**kwargs : dict, optional
|
421 |
+
Keyword arguments to be passed to `np.loadtxt`;
|
422 |
+
e.g. delimiter=','.
|
423 |
+
|
424 |
+
Returns
|
425 |
+
-------
|
426 |
+
data : ndarray of shape (n_samples, n_features)
|
427 |
+
A 2D array with each row representing one sample and each column
|
428 |
+
representing the features and/or target of a given sample.
|
429 |
+
|
430 |
+
descr : str, optional
|
431 |
+
Description of the dataset (the content of `descr_file_name`).
|
432 |
+
Only returned if `descr_file_name` is not None.
|
433 |
+
"""
|
434 |
+
data_path = resources.files(data_module) / data_file_name
|
435 |
+
with data_path.open("rb") as compressed_file:
|
436 |
+
compressed_file = gzip.open(compressed_file, mode="rt", encoding=encoding)
|
437 |
+
data = np.loadtxt(compressed_file, **kwargs)
|
438 |
+
|
439 |
+
if descr_file_name is None:
|
440 |
+
return data
|
441 |
+
else:
|
442 |
+
assert descr_module is not None
|
443 |
+
descr = load_descr(descr_module=descr_module, descr_file_name=descr_file_name)
|
444 |
+
return data, descr
|
445 |
+
|
446 |
+
|
447 |
+
def load_descr(descr_file_name, *, descr_module=DESCR_MODULE, encoding="utf-8"):
|
448 |
+
"""Load `descr_file_name` from `descr_module` with `importlib.resources`.
|
449 |
+
|
450 |
+
Parameters
|
451 |
+
----------
|
452 |
+
descr_file_name : str, default=None
|
453 |
+
Name of rst file to be loaded from `descr_module/descr_file_name`.
|
454 |
+
For example `'wine_data.rst'`. See also :func:`load_descr`.
|
455 |
+
If not None, also returns the corresponding description of
|
456 |
+
the dataset.
|
457 |
+
|
458 |
+
descr_module : str or module, default='sklearn.datasets.descr'
|
459 |
+
Module where `descr_file_name` lives. See also :func:`load_descr`.
|
460 |
+
The default is `'sklearn.datasets.descr'`.
|
461 |
+
|
462 |
+
encoding : str, default="utf-8"
|
463 |
+
Name of the encoding that `descr_file_name` will be decoded with.
|
464 |
+
The default is 'utf-8'.
|
465 |
+
|
466 |
+
.. versionadded:: 1.4
|
467 |
+
|
468 |
+
Returns
|
469 |
+
-------
|
470 |
+
fdescr : str
|
471 |
+
Content of `descr_file_name`.
|
472 |
+
"""
|
473 |
+
path = resources.files(descr_module) / descr_file_name
|
474 |
+
return path.read_text(encoding=encoding)
|
475 |
+
|
476 |
+
|
477 |
+
@validate_params(
|
478 |
+
{
|
479 |
+
"return_X_y": ["boolean"],
|
480 |
+
"as_frame": ["boolean"],
|
481 |
+
},
|
482 |
+
prefer_skip_nested_validation=True,
|
483 |
+
)
|
484 |
+
def load_wine(*, return_X_y=False, as_frame=False):
|
485 |
+
"""Load and return the wine dataset (classification).
|
486 |
+
|
487 |
+
.. versionadded:: 0.18
|
488 |
+
|
489 |
+
The wine dataset is a classic and very easy multi-class classification
|
490 |
+
dataset.
|
491 |
+
|
492 |
+
================= ==============
|
493 |
+
Classes 3
|
494 |
+
Samples per class [59,71,48]
|
495 |
+
Samples total 178
|
496 |
+
Dimensionality 13
|
497 |
+
Features real, positive
|
498 |
+
================= ==============
|
499 |
+
|
500 |
+
The copy of UCI ML Wine Data Set dataset is downloaded and modified to fit
|
501 |
+
standard format from:
|
502 |
+
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
|
503 |
+
|
504 |
+
Read more in the :ref:`User Guide <wine_dataset>`.
|
505 |
+
|
506 |
+
Parameters
|
507 |
+
----------
|
508 |
+
return_X_y : bool, default=False
|
509 |
+
If True, returns ``(data, target)`` instead of a Bunch object.
|
510 |
+
See below for more information about the `data` and `target` object.
|
511 |
+
|
512 |
+
as_frame : bool, default=False
|
513 |
+
If True, the data is a pandas DataFrame including columns with
|
514 |
+
appropriate dtypes (numeric). The target is
|
515 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
516 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
517 |
+
DataFrames or Series as described below.
|
518 |
+
|
519 |
+
.. versionadded:: 0.23
|
520 |
+
|
521 |
+
Returns
|
522 |
+
-------
|
523 |
+
data : :class:`~sklearn.utils.Bunch`
|
524 |
+
Dictionary-like object, with the following attributes.
|
525 |
+
|
526 |
+
data : {ndarray, dataframe} of shape (178, 13)
|
527 |
+
The data matrix. If `as_frame=True`, `data` will be a pandas
|
528 |
+
DataFrame.
|
529 |
+
target: {ndarray, Series} of shape (178,)
|
530 |
+
The classification target. If `as_frame=True`, `target` will be
|
531 |
+
a pandas Series.
|
532 |
+
feature_names: list
|
533 |
+
The names of the dataset columns.
|
534 |
+
target_names: list
|
535 |
+
The names of target classes.
|
536 |
+
frame: DataFrame of shape (178, 14)
|
537 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
538 |
+
`target`.
|
539 |
+
|
540 |
+
.. versionadded:: 0.23
|
541 |
+
DESCR: str
|
542 |
+
The full description of the dataset.
|
543 |
+
|
544 |
+
(data, target) : tuple if ``return_X_y`` is True
|
545 |
+
A tuple of two ndarrays by default. The first contains a 2D array of shape
|
546 |
+
(178, 13) with each row representing one sample and each column representing
|
547 |
+
the features. The second array of shape (178,) contains the target samples.
|
548 |
+
|
549 |
+
Examples
|
550 |
+
--------
|
551 |
+
Let's say you are interested in the samples 10, 80, and 140, and want to
|
552 |
+
know their class name.
|
553 |
+
|
554 |
+
>>> from sklearn.datasets import load_wine
|
555 |
+
>>> data = load_wine()
|
556 |
+
>>> data.target[[10, 80, 140]]
|
557 |
+
array([0, 1, 2])
|
558 |
+
>>> list(data.target_names)
|
559 |
+
['class_0', 'class_1', 'class_2']
|
560 |
+
"""
|
561 |
+
|
562 |
+
data, target, target_names, fdescr = load_csv_data(
|
563 |
+
data_file_name="wine_data.csv", descr_file_name="wine_data.rst"
|
564 |
+
)
|
565 |
+
|
566 |
+
feature_names = [
|
567 |
+
"alcohol",
|
568 |
+
"malic_acid",
|
569 |
+
"ash",
|
570 |
+
"alcalinity_of_ash",
|
571 |
+
"magnesium",
|
572 |
+
"total_phenols",
|
573 |
+
"flavanoids",
|
574 |
+
"nonflavanoid_phenols",
|
575 |
+
"proanthocyanins",
|
576 |
+
"color_intensity",
|
577 |
+
"hue",
|
578 |
+
"od280/od315_of_diluted_wines",
|
579 |
+
"proline",
|
580 |
+
]
|
581 |
+
|
582 |
+
frame = None
|
583 |
+
target_columns = [
|
584 |
+
"target",
|
585 |
+
]
|
586 |
+
if as_frame:
|
587 |
+
frame, data, target = _convert_data_dataframe(
|
588 |
+
"load_wine", data, target, feature_names, target_columns
|
589 |
+
)
|
590 |
+
|
591 |
+
if return_X_y:
|
592 |
+
return data, target
|
593 |
+
|
594 |
+
return Bunch(
|
595 |
+
data=data,
|
596 |
+
target=target,
|
597 |
+
frame=frame,
|
598 |
+
target_names=target_names,
|
599 |
+
DESCR=fdescr,
|
600 |
+
feature_names=feature_names,
|
601 |
+
)
|
602 |
+
|
603 |
+
|
604 |
+
@validate_params(
|
605 |
+
{"return_X_y": ["boolean"], "as_frame": ["boolean"]},
|
606 |
+
prefer_skip_nested_validation=True,
|
607 |
+
)
|
608 |
+
def load_iris(*, return_X_y=False, as_frame=False):
|
609 |
+
"""Load and return the iris dataset (classification).
|
610 |
+
|
611 |
+
The iris dataset is a classic and very easy multi-class classification
|
612 |
+
dataset.
|
613 |
+
|
614 |
+
================= ==============
|
615 |
+
Classes 3
|
616 |
+
Samples per class 50
|
617 |
+
Samples total 150
|
618 |
+
Dimensionality 4
|
619 |
+
Features real, positive
|
620 |
+
================= ==============
|
621 |
+
|
622 |
+
Read more in the :ref:`User Guide <iris_dataset>`.
|
623 |
+
|
624 |
+
Parameters
|
625 |
+
----------
|
626 |
+
return_X_y : bool, default=False
|
627 |
+
If True, returns ``(data, target)`` instead of a Bunch object. See
|
628 |
+
below for more information about the `data` and `target` object.
|
629 |
+
|
630 |
+
.. versionadded:: 0.18
|
631 |
+
|
632 |
+
as_frame : bool, default=False
|
633 |
+
If True, the data is a pandas DataFrame including columns with
|
634 |
+
appropriate dtypes (numeric). The target is
|
635 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
636 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
637 |
+
DataFrames or Series as described below.
|
638 |
+
|
639 |
+
.. versionadded:: 0.23
|
640 |
+
|
641 |
+
Returns
|
642 |
+
-------
|
643 |
+
data : :class:`~sklearn.utils.Bunch`
|
644 |
+
Dictionary-like object, with the following attributes.
|
645 |
+
|
646 |
+
data : {ndarray, dataframe} of shape (150, 4)
|
647 |
+
The data matrix. If `as_frame=True`, `data` will be a pandas
|
648 |
+
DataFrame.
|
649 |
+
target: {ndarray, Series} of shape (150,)
|
650 |
+
The classification target. If `as_frame=True`, `target` will be
|
651 |
+
a pandas Series.
|
652 |
+
feature_names: list
|
653 |
+
The names of the dataset columns.
|
654 |
+
target_names: list
|
655 |
+
The names of target classes.
|
656 |
+
frame: DataFrame of shape (150, 5)
|
657 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
658 |
+
`target`.
|
659 |
+
|
660 |
+
.. versionadded:: 0.23
|
661 |
+
DESCR: str
|
662 |
+
The full description of the dataset.
|
663 |
+
filename: str
|
664 |
+
The path to the location of the data.
|
665 |
+
|
666 |
+
.. versionadded:: 0.20
|
667 |
+
|
668 |
+
(data, target) : tuple if ``return_X_y`` is True
|
669 |
+
A tuple of two ndarray. The first containing a 2D array of shape
|
670 |
+
(n_samples, n_features) with each row representing one sample and
|
671 |
+
each column representing the features. The second ndarray of shape
|
672 |
+
(n_samples,) containing the target samples.
|
673 |
+
|
674 |
+
.. versionadded:: 0.18
|
675 |
+
|
676 |
+
Notes
|
677 |
+
-----
|
678 |
+
.. versionchanged:: 0.20
|
679 |
+
Fixed two wrong data points according to Fisher's paper.
|
680 |
+
The new version is the same as in R, but not as in the UCI
|
681 |
+
Machine Learning Repository.
|
682 |
+
|
683 |
+
Examples
|
684 |
+
--------
|
685 |
+
Let's say you are interested in the samples 10, 25, and 50, and want to
|
686 |
+
know their class name.
|
687 |
+
|
688 |
+
>>> from sklearn.datasets import load_iris
|
689 |
+
>>> data = load_iris()
|
690 |
+
>>> data.target[[10, 25, 50]]
|
691 |
+
array([0, 0, 1])
|
692 |
+
>>> list(data.target_names)
|
693 |
+
['setosa', 'versicolor', 'virginica']
|
694 |
+
|
695 |
+
See :ref:`sphx_glr_auto_examples_datasets_plot_iris_dataset.py` for a more
|
696 |
+
detailed example of how to work with the iris dataset.
|
697 |
+
"""
|
698 |
+
data_file_name = "iris.csv"
|
699 |
+
data, target, target_names, fdescr = load_csv_data(
|
700 |
+
data_file_name=data_file_name, descr_file_name="iris.rst"
|
701 |
+
)
|
702 |
+
|
703 |
+
feature_names = [
|
704 |
+
"sepal length (cm)",
|
705 |
+
"sepal width (cm)",
|
706 |
+
"petal length (cm)",
|
707 |
+
"petal width (cm)",
|
708 |
+
]
|
709 |
+
|
710 |
+
frame = None
|
711 |
+
target_columns = [
|
712 |
+
"target",
|
713 |
+
]
|
714 |
+
if as_frame:
|
715 |
+
frame, data, target = _convert_data_dataframe(
|
716 |
+
"load_iris", data, target, feature_names, target_columns
|
717 |
+
)
|
718 |
+
|
719 |
+
if return_X_y:
|
720 |
+
return data, target
|
721 |
+
|
722 |
+
return Bunch(
|
723 |
+
data=data,
|
724 |
+
target=target,
|
725 |
+
frame=frame,
|
726 |
+
target_names=target_names,
|
727 |
+
DESCR=fdescr,
|
728 |
+
feature_names=feature_names,
|
729 |
+
filename=data_file_name,
|
730 |
+
data_module=DATA_MODULE,
|
731 |
+
)
|
732 |
+
|
733 |
+
|
734 |
+
@validate_params(
|
735 |
+
{"return_X_y": ["boolean"], "as_frame": ["boolean"]},
|
736 |
+
prefer_skip_nested_validation=True,
|
737 |
+
)
|
738 |
+
def load_breast_cancer(*, return_X_y=False, as_frame=False):
|
739 |
+
"""Load and return the breast cancer wisconsin dataset (classification).
|
740 |
+
|
741 |
+
The breast cancer dataset is a classic and very easy binary classification
|
742 |
+
dataset.
|
743 |
+
|
744 |
+
================= ==============
|
745 |
+
Classes 2
|
746 |
+
Samples per class 212(M),357(B)
|
747 |
+
Samples total 569
|
748 |
+
Dimensionality 30
|
749 |
+
Features real, positive
|
750 |
+
================= ==============
|
751 |
+
|
752 |
+
The copy of UCI ML Breast Cancer Wisconsin (Diagnostic) dataset is
|
753 |
+
downloaded from:
|
754 |
+
https://archive.ics.uci.edu/dataset/17/breast+cancer+wisconsin+diagnostic
|
755 |
+
|
756 |
+
Read more in the :ref:`User Guide <breast_cancer_dataset>`.
|
757 |
+
|
758 |
+
Parameters
|
759 |
+
----------
|
760 |
+
return_X_y : bool, default=False
|
761 |
+
If True, returns ``(data, target)`` instead of a Bunch object.
|
762 |
+
See below for more information about the `data` and `target` object.
|
763 |
+
|
764 |
+
.. versionadded:: 0.18
|
765 |
+
|
766 |
+
as_frame : bool, default=False
|
767 |
+
If True, the data is a pandas DataFrame including columns with
|
768 |
+
appropriate dtypes (numeric). The target is
|
769 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
770 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
771 |
+
DataFrames or Series as described below.
|
772 |
+
|
773 |
+
.. versionadded:: 0.23
|
774 |
+
|
775 |
+
Returns
|
776 |
+
-------
|
777 |
+
data : :class:`~sklearn.utils.Bunch`
|
778 |
+
Dictionary-like object, with the following attributes.
|
779 |
+
|
780 |
+
data : {ndarray, dataframe} of shape (569, 30)
|
781 |
+
The data matrix. If `as_frame=True`, `data` will be a pandas
|
782 |
+
DataFrame.
|
783 |
+
target : {ndarray, Series} of shape (569,)
|
784 |
+
The classification target. If `as_frame=True`, `target` will be
|
785 |
+
a pandas Series.
|
786 |
+
feature_names : ndarray of shape (30,)
|
787 |
+
The names of the dataset columns.
|
788 |
+
target_names : ndarray of shape (2,)
|
789 |
+
The names of target classes.
|
790 |
+
frame : DataFrame of shape (569, 31)
|
791 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
792 |
+
`target`.
|
793 |
+
|
794 |
+
.. versionadded:: 0.23
|
795 |
+
DESCR : str
|
796 |
+
The full description of the dataset.
|
797 |
+
filename : str
|
798 |
+
The path to the location of the data.
|
799 |
+
|
800 |
+
.. versionadded:: 0.20
|
801 |
+
|
802 |
+
(data, target) : tuple if ``return_X_y`` is True
|
803 |
+
A tuple of two ndarrays by default. The first contains a 2D ndarray of
|
804 |
+
shape (569, 30) with each row representing one sample and each column
|
805 |
+
representing the features. The second ndarray of shape (569,) contains
|
806 |
+
the target samples. If `as_frame=True`, both arrays are pandas objects,
|
807 |
+
i.e. `X` a dataframe and `y` a series.
|
808 |
+
|
809 |
+
.. versionadded:: 0.18
|
810 |
+
|
811 |
+
Examples
|
812 |
+
--------
|
813 |
+
Let's say you are interested in the samples 10, 50, and 85, and want to
|
814 |
+
know their class name.
|
815 |
+
|
816 |
+
>>> from sklearn.datasets import load_breast_cancer
|
817 |
+
>>> data = load_breast_cancer()
|
818 |
+
>>> data.target[[10, 50, 85]]
|
819 |
+
array([0, 1, 0])
|
820 |
+
>>> list(data.target_names)
|
821 |
+
['malignant', 'benign']
|
822 |
+
"""
|
823 |
+
data_file_name = "breast_cancer.csv"
|
824 |
+
data, target, target_names, fdescr = load_csv_data(
|
825 |
+
data_file_name=data_file_name, descr_file_name="breast_cancer.rst"
|
826 |
+
)
|
827 |
+
|
828 |
+
feature_names = np.array(
|
829 |
+
[
|
830 |
+
"mean radius",
|
831 |
+
"mean texture",
|
832 |
+
"mean perimeter",
|
833 |
+
"mean area",
|
834 |
+
"mean smoothness",
|
835 |
+
"mean compactness",
|
836 |
+
"mean concavity",
|
837 |
+
"mean concave points",
|
838 |
+
"mean symmetry",
|
839 |
+
"mean fractal dimension",
|
840 |
+
"radius error",
|
841 |
+
"texture error",
|
842 |
+
"perimeter error",
|
843 |
+
"area error",
|
844 |
+
"smoothness error",
|
845 |
+
"compactness error",
|
846 |
+
"concavity error",
|
847 |
+
"concave points error",
|
848 |
+
"symmetry error",
|
849 |
+
"fractal dimension error",
|
850 |
+
"worst radius",
|
851 |
+
"worst texture",
|
852 |
+
"worst perimeter",
|
853 |
+
"worst area",
|
854 |
+
"worst smoothness",
|
855 |
+
"worst compactness",
|
856 |
+
"worst concavity",
|
857 |
+
"worst concave points",
|
858 |
+
"worst symmetry",
|
859 |
+
"worst fractal dimension",
|
860 |
+
]
|
861 |
+
)
|
862 |
+
|
863 |
+
frame = None
|
864 |
+
target_columns = [
|
865 |
+
"target",
|
866 |
+
]
|
867 |
+
if as_frame:
|
868 |
+
frame, data, target = _convert_data_dataframe(
|
869 |
+
"load_breast_cancer", data, target, feature_names, target_columns
|
870 |
+
)
|
871 |
+
|
872 |
+
if return_X_y:
|
873 |
+
return data, target
|
874 |
+
|
875 |
+
return Bunch(
|
876 |
+
data=data,
|
877 |
+
target=target,
|
878 |
+
frame=frame,
|
879 |
+
target_names=target_names,
|
880 |
+
DESCR=fdescr,
|
881 |
+
feature_names=feature_names,
|
882 |
+
filename=data_file_name,
|
883 |
+
data_module=DATA_MODULE,
|
884 |
+
)
|
885 |
+
|
886 |
+
|
887 |
+
@validate_params(
|
888 |
+
{
|
889 |
+
"n_class": [Interval(Integral, 1, 10, closed="both")],
|
890 |
+
"return_X_y": ["boolean"],
|
891 |
+
"as_frame": ["boolean"],
|
892 |
+
},
|
893 |
+
prefer_skip_nested_validation=True,
|
894 |
+
)
|
895 |
+
def load_digits(*, n_class=10, return_X_y=False, as_frame=False):
|
896 |
+
"""Load and return the digits dataset (classification).
|
897 |
+
|
898 |
+
Each datapoint is a 8x8 image of a digit.
|
899 |
+
|
900 |
+
================= ==============
|
901 |
+
Classes 10
|
902 |
+
Samples per class ~180
|
903 |
+
Samples total 1797
|
904 |
+
Dimensionality 64
|
905 |
+
Features integers 0-16
|
906 |
+
================= ==============
|
907 |
+
|
908 |
+
This is a copy of the test set of the UCI ML hand-written digits datasets
|
909 |
+
https://archive.ics.uci.edu/ml/datasets/Optical+Recognition+of+Handwritten+Digits
|
910 |
+
|
911 |
+
Read more in the :ref:`User Guide <digits_dataset>`.
|
912 |
+
|
913 |
+
Parameters
|
914 |
+
----------
|
915 |
+
n_class : int, default=10
|
916 |
+
The number of classes to return. Between 0 and 10.
|
917 |
+
|
918 |
+
return_X_y : bool, default=False
|
919 |
+
If True, returns ``(data, target)`` instead of a Bunch object.
|
920 |
+
See below for more information about the `data` and `target` object.
|
921 |
+
|
922 |
+
.. versionadded:: 0.18
|
923 |
+
|
924 |
+
as_frame : bool, default=False
|
925 |
+
If True, the data is a pandas DataFrame including columns with
|
926 |
+
appropriate dtypes (numeric). The target is
|
927 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
928 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
929 |
+
DataFrames or Series as described below.
|
930 |
+
|
931 |
+
.. versionadded:: 0.23
|
932 |
+
|
933 |
+
Returns
|
934 |
+
-------
|
935 |
+
data : :class:`~sklearn.utils.Bunch`
|
936 |
+
Dictionary-like object, with the following attributes.
|
937 |
+
|
938 |
+
data : {ndarray, dataframe} of shape (1797, 64)
|
939 |
+
The flattened data matrix. If `as_frame=True`, `data` will be
|
940 |
+
a pandas DataFrame.
|
941 |
+
target: {ndarray, Series} of shape (1797,)
|
942 |
+
The classification target. If `as_frame=True`, `target` will be
|
943 |
+
a pandas Series.
|
944 |
+
feature_names: list
|
945 |
+
The names of the dataset columns.
|
946 |
+
target_names: list
|
947 |
+
The names of target classes.
|
948 |
+
|
949 |
+
.. versionadded:: 0.20
|
950 |
+
|
951 |
+
frame: DataFrame of shape (1797, 65)
|
952 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
953 |
+
`target`.
|
954 |
+
|
955 |
+
.. versionadded:: 0.23
|
956 |
+
images: {ndarray} of shape (1797, 8, 8)
|
957 |
+
The raw image data.
|
958 |
+
DESCR: str
|
959 |
+
The full description of the dataset.
|
960 |
+
|
961 |
+
(data, target) : tuple if ``return_X_y`` is True
|
962 |
+
A tuple of two ndarrays by default. The first contains a 2D ndarray of
|
963 |
+
shape (1797, 64) with each row representing one sample and each column
|
964 |
+
representing the features. The second ndarray of shape (1797) contains
|
965 |
+
the target samples. If `as_frame=True`, both arrays are pandas objects,
|
966 |
+
i.e. `X` a dataframe and `y` a series.
|
967 |
+
|
968 |
+
.. versionadded:: 0.18
|
969 |
+
|
970 |
+
Examples
|
971 |
+
--------
|
972 |
+
To load the data and visualize the images::
|
973 |
+
|
974 |
+
>>> from sklearn.datasets import load_digits
|
975 |
+
>>> digits = load_digits()
|
976 |
+
>>> print(digits.data.shape)
|
977 |
+
(1797, 64)
|
978 |
+
>>> import matplotlib.pyplot as plt
|
979 |
+
>>> plt.gray()
|
980 |
+
>>> plt.matshow(digits.images[0])
|
981 |
+
<...>
|
982 |
+
>>> plt.show()
|
983 |
+
"""
|
984 |
+
|
985 |
+
data, fdescr = load_gzip_compressed_csv_data(
|
986 |
+
data_file_name="digits.csv.gz", descr_file_name="digits.rst", delimiter=","
|
987 |
+
)
|
988 |
+
|
989 |
+
target = data[:, -1].astype(int, copy=False)
|
990 |
+
flat_data = data[:, :-1]
|
991 |
+
images = flat_data.view()
|
992 |
+
images.shape = (-1, 8, 8)
|
993 |
+
|
994 |
+
if n_class < 10:
|
995 |
+
idx = target < n_class
|
996 |
+
flat_data, target = flat_data[idx], target[idx]
|
997 |
+
images = images[idx]
|
998 |
+
|
999 |
+
feature_names = [
|
1000 |
+
"pixel_{}_{}".format(row_idx, col_idx)
|
1001 |
+
for row_idx in range(8)
|
1002 |
+
for col_idx in range(8)
|
1003 |
+
]
|
1004 |
+
|
1005 |
+
frame = None
|
1006 |
+
target_columns = [
|
1007 |
+
"target",
|
1008 |
+
]
|
1009 |
+
if as_frame:
|
1010 |
+
frame, flat_data, target = _convert_data_dataframe(
|
1011 |
+
"load_digits", flat_data, target, feature_names, target_columns
|
1012 |
+
)
|
1013 |
+
|
1014 |
+
if return_X_y:
|
1015 |
+
return flat_data, target
|
1016 |
+
|
1017 |
+
return Bunch(
|
1018 |
+
data=flat_data,
|
1019 |
+
target=target,
|
1020 |
+
frame=frame,
|
1021 |
+
feature_names=feature_names,
|
1022 |
+
target_names=np.arange(10),
|
1023 |
+
images=images,
|
1024 |
+
DESCR=fdescr,
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
|
1028 |
+
@validate_params(
|
1029 |
+
{"return_X_y": ["boolean"], "as_frame": ["boolean"], "scaled": ["boolean"]},
|
1030 |
+
prefer_skip_nested_validation=True,
|
1031 |
+
)
|
1032 |
+
def load_diabetes(*, return_X_y=False, as_frame=False, scaled=True):
|
1033 |
+
"""Load and return the diabetes dataset (regression).
|
1034 |
+
|
1035 |
+
============== ==================
|
1036 |
+
Samples total 442
|
1037 |
+
Dimensionality 10
|
1038 |
+
Features real, -.2 < x < .2
|
1039 |
+
Targets integer 25 - 346
|
1040 |
+
============== ==================
|
1041 |
+
|
1042 |
+
.. note::
|
1043 |
+
The meaning of each feature (i.e. `feature_names`) might be unclear
|
1044 |
+
(especially for `ltg`) as the documentation of the original dataset is
|
1045 |
+
not explicit. We provide information that seems correct in regard with
|
1046 |
+
the scientific literature in this field of research.
|
1047 |
+
|
1048 |
+
Read more in the :ref:`User Guide <diabetes_dataset>`.
|
1049 |
+
|
1050 |
+
Parameters
|
1051 |
+
----------
|
1052 |
+
return_X_y : bool, default=False
|
1053 |
+
If True, returns ``(data, target)`` instead of a Bunch object.
|
1054 |
+
See below for more information about the `data` and `target` object.
|
1055 |
+
|
1056 |
+
.. versionadded:: 0.18
|
1057 |
+
|
1058 |
+
as_frame : bool, default=False
|
1059 |
+
If True, the data is a pandas DataFrame including columns with
|
1060 |
+
appropriate dtypes (numeric). The target is
|
1061 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
1062 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
1063 |
+
DataFrames or Series as described below.
|
1064 |
+
|
1065 |
+
.. versionadded:: 0.23
|
1066 |
+
|
1067 |
+
scaled : bool, default=True
|
1068 |
+
If True, the feature variables are mean centered and scaled by the
|
1069 |
+
standard deviation times the square root of `n_samples`.
|
1070 |
+
If False, raw data is returned for the feature variables.
|
1071 |
+
|
1072 |
+
.. versionadded:: 1.1
|
1073 |
+
|
1074 |
+
Returns
|
1075 |
+
-------
|
1076 |
+
data : :class:`~sklearn.utils.Bunch`
|
1077 |
+
Dictionary-like object, with the following attributes.
|
1078 |
+
|
1079 |
+
data : {ndarray, dataframe} of shape (442, 10)
|
1080 |
+
The data matrix. If `as_frame=True`, `data` will be a pandas
|
1081 |
+
DataFrame.
|
1082 |
+
target: {ndarray, Series} of shape (442,)
|
1083 |
+
The regression target. If `as_frame=True`, `target` will be
|
1084 |
+
a pandas Series.
|
1085 |
+
feature_names: list
|
1086 |
+
The names of the dataset columns.
|
1087 |
+
frame: DataFrame of shape (442, 11)
|
1088 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
1089 |
+
`target`.
|
1090 |
+
|
1091 |
+
.. versionadded:: 0.23
|
1092 |
+
DESCR: str
|
1093 |
+
The full description of the dataset.
|
1094 |
+
data_filename: str
|
1095 |
+
The path to the location of the data.
|
1096 |
+
target_filename: str
|
1097 |
+
The path to the location of the target.
|
1098 |
+
|
1099 |
+
(data, target) : tuple if ``return_X_y`` is True
|
1100 |
+
Returns a tuple of two ndarray of shape (n_samples, n_features)
|
1101 |
+
A 2D array with each row representing one sample and each column
|
1102 |
+
representing the features and/or target of a given sample.
|
1103 |
+
|
1104 |
+
.. versionadded:: 0.18
|
1105 |
+
|
1106 |
+
Examples
|
1107 |
+
--------
|
1108 |
+
>>> from sklearn.datasets import load_diabetes
|
1109 |
+
>>> diabetes = load_diabetes()
|
1110 |
+
>>> diabetes.target[:3]
|
1111 |
+
array([151., 75., 141.])
|
1112 |
+
>>> diabetes.data.shape
|
1113 |
+
(442, 10)
|
1114 |
+
"""
|
1115 |
+
data_filename = "diabetes_data_raw.csv.gz"
|
1116 |
+
target_filename = "diabetes_target.csv.gz"
|
1117 |
+
data = load_gzip_compressed_csv_data(data_filename)
|
1118 |
+
target = load_gzip_compressed_csv_data(target_filename)
|
1119 |
+
|
1120 |
+
if scaled:
|
1121 |
+
data = scale(data, copy=False)
|
1122 |
+
data /= data.shape[0] ** 0.5
|
1123 |
+
|
1124 |
+
fdescr = load_descr("diabetes.rst")
|
1125 |
+
|
1126 |
+
feature_names = ["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s6"]
|
1127 |
+
|
1128 |
+
frame = None
|
1129 |
+
target_columns = [
|
1130 |
+
"target",
|
1131 |
+
]
|
1132 |
+
if as_frame:
|
1133 |
+
frame, data, target = _convert_data_dataframe(
|
1134 |
+
"load_diabetes", data, target, feature_names, target_columns
|
1135 |
+
)
|
1136 |
+
|
1137 |
+
if return_X_y:
|
1138 |
+
return data, target
|
1139 |
+
|
1140 |
+
return Bunch(
|
1141 |
+
data=data,
|
1142 |
+
target=target,
|
1143 |
+
frame=frame,
|
1144 |
+
DESCR=fdescr,
|
1145 |
+
feature_names=feature_names,
|
1146 |
+
data_filename=data_filename,
|
1147 |
+
target_filename=target_filename,
|
1148 |
+
data_module=DATA_MODULE,
|
1149 |
+
)
|
1150 |
+
|
1151 |
+
|
1152 |
+
@validate_params(
|
1153 |
+
{
|
1154 |
+
"return_X_y": ["boolean"],
|
1155 |
+
"as_frame": ["boolean"],
|
1156 |
+
},
|
1157 |
+
prefer_skip_nested_validation=True,
|
1158 |
+
)
|
1159 |
+
def load_linnerud(*, return_X_y=False, as_frame=False):
|
1160 |
+
"""Load and return the physical exercise Linnerud dataset.
|
1161 |
+
|
1162 |
+
This dataset is suitable for multi-output regression tasks.
|
1163 |
+
|
1164 |
+
============== ============================
|
1165 |
+
Samples total 20
|
1166 |
+
Dimensionality 3 (for both data and target)
|
1167 |
+
Features integer
|
1168 |
+
Targets integer
|
1169 |
+
============== ============================
|
1170 |
+
|
1171 |
+
Read more in the :ref:`User Guide <linnerrud_dataset>`.
|
1172 |
+
|
1173 |
+
Parameters
|
1174 |
+
----------
|
1175 |
+
return_X_y : bool, default=False
|
1176 |
+
If True, returns ``(data, target)`` instead of a Bunch object.
|
1177 |
+
See below for more information about the `data` and `target` object.
|
1178 |
+
|
1179 |
+
.. versionadded:: 0.18
|
1180 |
+
|
1181 |
+
as_frame : bool, default=False
|
1182 |
+
If True, the data is a pandas DataFrame including columns with
|
1183 |
+
appropriate dtypes (numeric, string or categorical). The target is
|
1184 |
+
a pandas DataFrame or Series depending on the number of target columns.
|
1185 |
+
If `return_X_y` is True, then (`data`, `target`) will be pandas
|
1186 |
+
DataFrames or Series as described below.
|
1187 |
+
|
1188 |
+
.. versionadded:: 0.23
|
1189 |
+
|
1190 |
+
Returns
|
1191 |
+
-------
|
1192 |
+
data : :class:`~sklearn.utils.Bunch`
|
1193 |
+
Dictionary-like object, with the following attributes.
|
1194 |
+
|
1195 |
+
data : {ndarray, dataframe} of shape (20, 3)
|
1196 |
+
The data matrix. If `as_frame=True`, `data` will be a pandas
|
1197 |
+
DataFrame.
|
1198 |
+
target: {ndarray, dataframe} of shape (20, 3)
|
1199 |
+
The regression targets. If `as_frame=True`, `target` will be
|
1200 |
+
a pandas DataFrame.
|
1201 |
+
feature_names: list
|
1202 |
+
The names of the dataset columns.
|
1203 |
+
target_names: list
|
1204 |
+
The names of the target columns.
|
1205 |
+
frame: DataFrame of shape (20, 6)
|
1206 |
+
Only present when `as_frame=True`. DataFrame with `data` and
|
1207 |
+
`target`.
|
1208 |
+
|
1209 |
+
.. versionadded:: 0.23
|
1210 |
+
DESCR: str
|
1211 |
+
The full description of the dataset.
|
1212 |
+
data_filename: str
|
1213 |
+
The path to the location of the data.
|
1214 |
+
target_filename: str
|
1215 |
+
The path to the location of the target.
|
1216 |
+
|
1217 |
+
.. versionadded:: 0.20
|
1218 |
+
|
1219 |
+
(data, target) : tuple if ``return_X_y`` is True
|
1220 |
+
Returns a tuple of two ndarrays or dataframe of shape
|
1221 |
+
`(20, 3)`. Each row represents one sample and each column represents the
|
1222 |
+
features in `X` and a target in `y` of a given sample.
|
1223 |
+
|
1224 |
+
.. versionadded:: 0.18
|
1225 |
+
"""
|
1226 |
+
data_filename = "linnerud_exercise.csv"
|
1227 |
+
target_filename = "linnerud_physiological.csv"
|
1228 |
+
|
1229 |
+
data_module_path = resources.files(DATA_MODULE)
|
1230 |
+
# Read header and data
|
1231 |
+
data_path = data_module_path / data_filename
|
1232 |
+
with data_path.open("r", encoding="utf-8") as f:
|
1233 |
+
header_exercise = f.readline().split()
|
1234 |
+
f.seek(0) # reset file obj
|
1235 |
+
data_exercise = np.loadtxt(f, skiprows=1)
|
1236 |
+
|
1237 |
+
target_path = data_module_path / target_filename
|
1238 |
+
with target_path.open("r", encoding="utf-8") as f:
|
1239 |
+
header_physiological = f.readline().split()
|
1240 |
+
f.seek(0) # reset file obj
|
1241 |
+
data_physiological = np.loadtxt(f, skiprows=1)
|
1242 |
+
|
1243 |
+
fdescr = load_descr("linnerud.rst")
|
1244 |
+
|
1245 |
+
frame = None
|
1246 |
+
if as_frame:
|
1247 |
+
(frame, data_exercise, data_physiological) = _convert_data_dataframe(
|
1248 |
+
"load_linnerud",
|
1249 |
+
data_exercise,
|
1250 |
+
data_physiological,
|
1251 |
+
header_exercise,
|
1252 |
+
header_physiological,
|
1253 |
+
)
|
1254 |
+
if return_X_y:
|
1255 |
+
return data_exercise, data_physiological
|
1256 |
+
|
1257 |
+
return Bunch(
|
1258 |
+
data=data_exercise,
|
1259 |
+
feature_names=header_exercise,
|
1260 |
+
target=data_physiological,
|
1261 |
+
target_names=header_physiological,
|
1262 |
+
frame=frame,
|
1263 |
+
DESCR=fdescr,
|
1264 |
+
data_filename=data_filename,
|
1265 |
+
target_filename=target_filename,
|
1266 |
+
data_module=DATA_MODULE,
|
1267 |
+
)
|
1268 |
+
|
1269 |
+
|
1270 |
+
def load_sample_images():
|
1271 |
+
"""Load sample images for image manipulation.
|
1272 |
+
|
1273 |
+
Loads both, ``china`` and ``flower``.
|
1274 |
+
|
1275 |
+
Read more in the :ref:`User Guide <sample_images>`.
|
1276 |
+
|
1277 |
+
Returns
|
1278 |
+
-------
|
1279 |
+
data : :class:`~sklearn.utils.Bunch`
|
1280 |
+
Dictionary-like object, with the following attributes.
|
1281 |
+
|
1282 |
+
images : list of ndarray of shape (427, 640, 3)
|
1283 |
+
The two sample image.
|
1284 |
+
filenames : list
|
1285 |
+
The filenames for the images.
|
1286 |
+
DESCR : str
|
1287 |
+
The full description of the dataset.
|
1288 |
+
|
1289 |
+
Examples
|
1290 |
+
--------
|
1291 |
+
To load the data and visualize the images:
|
1292 |
+
|
1293 |
+
>>> from sklearn.datasets import load_sample_images
|
1294 |
+
>>> dataset = load_sample_images() #doctest: +SKIP
|
1295 |
+
>>> len(dataset.images) #doctest: +SKIP
|
1296 |
+
2
|
1297 |
+
>>> first_img_data = dataset.images[0] #doctest: +SKIP
|
1298 |
+
>>> first_img_data.shape #doctest: +SKIP
|
1299 |
+
(427, 640, 3)
|
1300 |
+
>>> first_img_data.dtype #doctest: +SKIP
|
1301 |
+
dtype('uint8')
|
1302 |
+
"""
|
1303 |
+
try:
|
1304 |
+
from PIL import Image
|
1305 |
+
except ImportError:
|
1306 |
+
raise ImportError(
|
1307 |
+
"The Python Imaging Library (PIL) is required to load data "
|
1308 |
+
"from jpeg files. Please refer to "
|
1309 |
+
"https://pillow.readthedocs.io/en/stable/installation.html "
|
1310 |
+
"for installing PIL."
|
1311 |
+
)
|
1312 |
+
|
1313 |
+
descr = load_descr("README.txt", descr_module=IMAGES_MODULE)
|
1314 |
+
|
1315 |
+
filenames, images = [], []
|
1316 |
+
|
1317 |
+
jpg_paths = sorted(
|
1318 |
+
resource
|
1319 |
+
for resource in resources.files(IMAGES_MODULE).iterdir()
|
1320 |
+
if resource.is_file() and resource.match("*.jpg")
|
1321 |
+
)
|
1322 |
+
|
1323 |
+
for path in jpg_paths:
|
1324 |
+
filenames.append(str(path))
|
1325 |
+
with path.open("rb") as image_file:
|
1326 |
+
pil_image = Image.open(image_file)
|
1327 |
+
image = np.asarray(pil_image)
|
1328 |
+
images.append(image)
|
1329 |
+
|
1330 |
+
return Bunch(images=images, filenames=filenames, DESCR=descr)
|
1331 |
+
|
1332 |
+
|
1333 |
+
@validate_params(
|
1334 |
+
{
|
1335 |
+
"image_name": [StrOptions({"china.jpg", "flower.jpg"})],
|
1336 |
+
},
|
1337 |
+
prefer_skip_nested_validation=True,
|
1338 |
+
)
|
1339 |
+
def load_sample_image(image_name):
|
1340 |
+
"""Load the numpy array of a single sample image.
|
1341 |
+
|
1342 |
+
Read more in the :ref:`User Guide <sample_images>`.
|
1343 |
+
|
1344 |
+
Parameters
|
1345 |
+
----------
|
1346 |
+
image_name : {`china.jpg`, `flower.jpg`}
|
1347 |
+
The name of the sample image loaded.
|
1348 |
+
|
1349 |
+
Returns
|
1350 |
+
-------
|
1351 |
+
img : 3D array
|
1352 |
+
The image as a numpy array: height x width x color.
|
1353 |
+
|
1354 |
+
Examples
|
1355 |
+
--------
|
1356 |
+
|
1357 |
+
>>> from sklearn.datasets import load_sample_image
|
1358 |
+
>>> china = load_sample_image('china.jpg') # doctest: +SKIP
|
1359 |
+
>>> china.dtype # doctest: +SKIP
|
1360 |
+
dtype('uint8')
|
1361 |
+
>>> china.shape # doctest: +SKIP
|
1362 |
+
(427, 640, 3)
|
1363 |
+
>>> flower = load_sample_image('flower.jpg') # doctest: +SKIP
|
1364 |
+
>>> flower.dtype # doctest: +SKIP
|
1365 |
+
dtype('uint8')
|
1366 |
+
>>> flower.shape # doctest: +SKIP
|
1367 |
+
(427, 640, 3)
|
1368 |
+
"""
|
1369 |
+
images = load_sample_images()
|
1370 |
+
index = None
|
1371 |
+
for i, filename in enumerate(images.filenames):
|
1372 |
+
if filename.endswith(image_name):
|
1373 |
+
index = i
|
1374 |
+
break
|
1375 |
+
if index is None:
|
1376 |
+
raise AttributeError("Cannot find sample image: %s" % image_name)
|
1377 |
+
return images.images[index]
|
1378 |
+
|
1379 |
+
|
1380 |
+
def _pkl_filepath(*args, **kwargs):
|
1381 |
+
"""Return filename for Python 3 pickles
|
1382 |
+
|
1383 |
+
args[-1] is expected to be the ".pkl" filename. For compatibility with
|
1384 |
+
older scikit-learn versions, a suffix is inserted before the extension.
|
1385 |
+
|
1386 |
+
_pkl_filepath('/path/to/folder', 'filename.pkl') returns
|
1387 |
+
'/path/to/folder/filename_py3.pkl'
|
1388 |
+
|
1389 |
+
"""
|
1390 |
+
py3_suffix = kwargs.get("py3_suffix", "_py3")
|
1391 |
+
basename, ext = splitext(args[-1])
|
1392 |
+
basename += py3_suffix
|
1393 |
+
new_args = args[:-1] + (basename + ext,)
|
1394 |
+
return join(*new_args)
|
1395 |
+
|
1396 |
+
|
1397 |
+
def _sha256(path):
|
1398 |
+
"""Calculate the sha256 hash of the file at path."""
|
1399 |
+
sha256hash = hashlib.sha256()
|
1400 |
+
chunk_size = 8192
|
1401 |
+
with open(path, "rb") as f:
|
1402 |
+
while True:
|
1403 |
+
buffer = f.read(chunk_size)
|
1404 |
+
if not buffer:
|
1405 |
+
break
|
1406 |
+
sha256hash.update(buffer)
|
1407 |
+
return sha256hash.hexdigest()
|
1408 |
+
|
1409 |
+
|
1410 |
+
def _fetch_remote(remote, dirname=None):
|
1411 |
+
"""Helper function to download a remote dataset into path
|
1412 |
+
|
1413 |
+
Fetch a dataset pointed by remote's url, save into path using remote's
|
1414 |
+
filename and ensure its integrity based on the SHA256 Checksum of the
|
1415 |
+
downloaded file.
|
1416 |
+
|
1417 |
+
Parameters
|
1418 |
+
----------
|
1419 |
+
remote : RemoteFileMetadata
|
1420 |
+
Named tuple containing remote dataset meta information: url, filename
|
1421 |
+
and checksum
|
1422 |
+
|
1423 |
+
dirname : str
|
1424 |
+
Directory to save the file to.
|
1425 |
+
|
1426 |
+
Returns
|
1427 |
+
-------
|
1428 |
+
file_path: str
|
1429 |
+
Full path of the created file.
|
1430 |
+
"""
|
1431 |
+
|
1432 |
+
file_path = remote.filename if dirname is None else join(dirname, remote.filename)
|
1433 |
+
urlretrieve(remote.url, file_path)
|
1434 |
+
checksum = _sha256(file_path)
|
1435 |
+
if remote.checksum != checksum:
|
1436 |
+
raise OSError(
|
1437 |
+
"{} has an SHA256 checksum ({}) "
|
1438 |
+
"differing from expected ({}), "
|
1439 |
+
"file may be corrupted.".format(file_path, checksum, remote.checksum)
|
1440 |
+
)
|
1441 |
+
return file_path
|
venv/lib/python3.10/site-packages/sklearn/datasets/_covtype.py
ADDED
@@ -0,0 +1,236 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Forest covertype dataset.
|
2 |
+
|
3 |
+
A classic dataset for classification benchmarks, featuring categorical and
|
4 |
+
real-valued features.
|
5 |
+
|
6 |
+
The dataset page is available from UCI Machine Learning Repository
|
7 |
+
|
8 |
+
https://archive.ics.uci.edu/ml/datasets/Covertype
|
9 |
+
|
10 |
+
Courtesy of Jock A. Blackard and Colorado State University.
|
11 |
+
"""
|
12 |
+
|
13 |
+
# Author: Lars Buitinck
|
14 |
+
# Peter Prettenhofer <[email protected]>
|
15 |
+
# License: BSD 3 clause
|
16 |
+
|
17 |
+
import logging
|
18 |
+
import os
|
19 |
+
from gzip import GzipFile
|
20 |
+
from os.path import exists, join
|
21 |
+
from tempfile import TemporaryDirectory
|
22 |
+
|
23 |
+
import joblib
|
24 |
+
import numpy as np
|
25 |
+
|
26 |
+
from ..utils import Bunch, check_random_state
|
27 |
+
from ..utils._param_validation import validate_params
|
28 |
+
from . import get_data_home
|
29 |
+
from ._base import (
|
30 |
+
RemoteFileMetadata,
|
31 |
+
_convert_data_dataframe,
|
32 |
+
_fetch_remote,
|
33 |
+
_pkl_filepath,
|
34 |
+
load_descr,
|
35 |
+
)
|
36 |
+
|
37 |
+
# The original data can be found in:
|
38 |
+
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.data.gz
|
39 |
+
ARCHIVE = RemoteFileMetadata(
|
40 |
+
filename="covtype.data.gz",
|
41 |
+
url="https://ndownloader.figshare.com/files/5976039",
|
42 |
+
checksum="614360d0257557dd1792834a85a1cdebfadc3c4f30b011d56afee7ffb5b15771",
|
43 |
+
)
|
44 |
+
|
45 |
+
logger = logging.getLogger(__name__)
|
46 |
+
|
47 |
+
# Column names reference:
|
48 |
+
# https://archive.ics.uci.edu/ml/machine-learning-databases/covtype/covtype.info
|
49 |
+
FEATURE_NAMES = [
|
50 |
+
"Elevation",
|
51 |
+
"Aspect",
|
52 |
+
"Slope",
|
53 |
+
"Horizontal_Distance_To_Hydrology",
|
54 |
+
"Vertical_Distance_To_Hydrology",
|
55 |
+
"Horizontal_Distance_To_Roadways",
|
56 |
+
"Hillshade_9am",
|
57 |
+
"Hillshade_Noon",
|
58 |
+
"Hillshade_3pm",
|
59 |
+
"Horizontal_Distance_To_Fire_Points",
|
60 |
+
]
|
61 |
+
FEATURE_NAMES += [f"Wilderness_Area_{i}" for i in range(4)]
|
62 |
+
FEATURE_NAMES += [f"Soil_Type_{i}" for i in range(40)]
|
63 |
+
TARGET_NAMES = ["Cover_Type"]
|
64 |
+
|
65 |
+
|
66 |
+
@validate_params(
|
67 |
+
{
|
68 |
+
"data_home": [str, os.PathLike, None],
|
69 |
+
"download_if_missing": ["boolean"],
|
70 |
+
"random_state": ["random_state"],
|
71 |
+
"shuffle": ["boolean"],
|
72 |
+
"return_X_y": ["boolean"],
|
73 |
+
"as_frame": ["boolean"],
|
74 |
+
},
|
75 |
+
prefer_skip_nested_validation=True,
|
76 |
+
)
|
77 |
+
def fetch_covtype(
|
78 |
+
*,
|
79 |
+
data_home=None,
|
80 |
+
download_if_missing=True,
|
81 |
+
random_state=None,
|
82 |
+
shuffle=False,
|
83 |
+
return_X_y=False,
|
84 |
+
as_frame=False,
|
85 |
+
):
|
86 |
+
"""Load the covertype dataset (classification).
|
87 |
+
|
88 |
+
Download it if necessary.
|
89 |
+
|
90 |
+
================= ============
|
91 |
+
Classes 7
|
92 |
+
Samples total 581012
|
93 |
+
Dimensionality 54
|
94 |
+
Features int
|
95 |
+
================= ============
|
96 |
+
|
97 |
+
Read more in the :ref:`User Guide <covtype_dataset>`.
|
98 |
+
|
99 |
+
Parameters
|
100 |
+
----------
|
101 |
+
data_home : str or path-like, default=None
|
102 |
+
Specify another download and cache folder for the datasets. By default
|
103 |
+
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
104 |
+
|
105 |
+
download_if_missing : bool, default=True
|
106 |
+
If False, raise an OSError if the data is not locally available
|
107 |
+
instead of trying to download the data from the source site.
|
108 |
+
|
109 |
+
random_state : int, RandomState instance or None, default=None
|
110 |
+
Determines random number generation for dataset shuffling. Pass an int
|
111 |
+
for reproducible output across multiple function calls.
|
112 |
+
See :term:`Glossary <random_state>`.
|
113 |
+
|
114 |
+
shuffle : bool, default=False
|
115 |
+
Whether to shuffle dataset.
|
116 |
+
|
117 |
+
return_X_y : bool, default=False
|
118 |
+
If True, returns ``(data.data, data.target)`` instead of a Bunch
|
119 |
+
object.
|
120 |
+
|
121 |
+
.. versionadded:: 0.20
|
122 |
+
|
123 |
+
as_frame : bool, default=False
|
124 |
+
If True, the data is a pandas DataFrame including columns with
|
125 |
+
appropriate dtypes (numeric). The target is a pandas DataFrame or
|
126 |
+
Series depending on the number of target columns. If `return_X_y` is
|
127 |
+
True, then (`data`, `target`) will be pandas DataFrames or Series as
|
128 |
+
described below.
|
129 |
+
|
130 |
+
.. versionadded:: 0.24
|
131 |
+
|
132 |
+
Returns
|
133 |
+
-------
|
134 |
+
dataset : :class:`~sklearn.utils.Bunch`
|
135 |
+
Dictionary-like object, with the following attributes.
|
136 |
+
|
137 |
+
data : ndarray of shape (581012, 54)
|
138 |
+
Each row corresponds to the 54 features in the dataset.
|
139 |
+
target : ndarray of shape (581012,)
|
140 |
+
Each value corresponds to one of
|
141 |
+
the 7 forest covertypes with values
|
142 |
+
ranging between 1 to 7.
|
143 |
+
frame : dataframe of shape (581012, 55)
|
144 |
+
Only present when `as_frame=True`. Contains `data` and `target`.
|
145 |
+
DESCR : str
|
146 |
+
Description of the forest covertype dataset.
|
147 |
+
feature_names : list
|
148 |
+
The names of the dataset columns.
|
149 |
+
target_names: list
|
150 |
+
The names of the target columns.
|
151 |
+
|
152 |
+
(data, target) : tuple if ``return_X_y`` is True
|
153 |
+
A tuple of two ndarray. The first containing a 2D array of
|
154 |
+
shape (n_samples, n_features) with each row representing one
|
155 |
+
sample and each column representing the features. The second
|
156 |
+
ndarray of shape (n_samples,) containing the target samples.
|
157 |
+
|
158 |
+
.. versionadded:: 0.20
|
159 |
+
|
160 |
+
Examples
|
161 |
+
--------
|
162 |
+
>>> from sklearn.datasets import fetch_covtype
|
163 |
+
>>> cov_type = fetch_covtype()
|
164 |
+
>>> cov_type.data.shape
|
165 |
+
(581012, 54)
|
166 |
+
>>> cov_type.target.shape
|
167 |
+
(581012,)
|
168 |
+
>>> # Let's check the 4 first feature names
|
169 |
+
>>> cov_type.feature_names[:4]
|
170 |
+
['Elevation', 'Aspect', 'Slope', 'Horizontal_Distance_To_Hydrology']
|
171 |
+
"""
|
172 |
+
data_home = get_data_home(data_home=data_home)
|
173 |
+
covtype_dir = join(data_home, "covertype")
|
174 |
+
samples_path = _pkl_filepath(covtype_dir, "samples")
|
175 |
+
targets_path = _pkl_filepath(covtype_dir, "targets")
|
176 |
+
available = exists(samples_path) and exists(targets_path)
|
177 |
+
|
178 |
+
if download_if_missing and not available:
|
179 |
+
os.makedirs(covtype_dir, exist_ok=True)
|
180 |
+
|
181 |
+
# Creating temp_dir as a direct subdirectory of the target directory
|
182 |
+
# guarantees that both reside on the same filesystem, so that we can use
|
183 |
+
# os.rename to atomically move the data files to their target location.
|
184 |
+
with TemporaryDirectory(dir=covtype_dir) as temp_dir:
|
185 |
+
logger.info(f"Downloading {ARCHIVE.url}")
|
186 |
+
archive_path = _fetch_remote(ARCHIVE, dirname=temp_dir)
|
187 |
+
Xy = np.genfromtxt(GzipFile(filename=archive_path), delimiter=",")
|
188 |
+
|
189 |
+
X = Xy[:, :-1]
|
190 |
+
y = Xy[:, -1].astype(np.int32, copy=False)
|
191 |
+
|
192 |
+
samples_tmp_path = _pkl_filepath(temp_dir, "samples")
|
193 |
+
joblib.dump(X, samples_tmp_path, compress=9)
|
194 |
+
os.rename(samples_tmp_path, samples_path)
|
195 |
+
|
196 |
+
targets_tmp_path = _pkl_filepath(temp_dir, "targets")
|
197 |
+
joblib.dump(y, targets_tmp_path, compress=9)
|
198 |
+
os.rename(targets_tmp_path, targets_path)
|
199 |
+
|
200 |
+
elif not available and not download_if_missing:
|
201 |
+
raise OSError("Data not found and `download_if_missing` is False")
|
202 |
+
try:
|
203 |
+
X, y
|
204 |
+
except NameError:
|
205 |
+
X = joblib.load(samples_path)
|
206 |
+
y = joblib.load(targets_path)
|
207 |
+
|
208 |
+
if shuffle:
|
209 |
+
ind = np.arange(X.shape[0])
|
210 |
+
rng = check_random_state(random_state)
|
211 |
+
rng.shuffle(ind)
|
212 |
+
X = X[ind]
|
213 |
+
y = y[ind]
|
214 |
+
|
215 |
+
fdescr = load_descr("covtype.rst")
|
216 |
+
|
217 |
+
frame = None
|
218 |
+
if as_frame:
|
219 |
+
frame, X, y = _convert_data_dataframe(
|
220 |
+
caller_name="fetch_covtype",
|
221 |
+
data=X,
|
222 |
+
target=y,
|
223 |
+
feature_names=FEATURE_NAMES,
|
224 |
+
target_names=TARGET_NAMES,
|
225 |
+
)
|
226 |
+
if return_X_y:
|
227 |
+
return X, y
|
228 |
+
|
229 |
+
return Bunch(
|
230 |
+
data=X,
|
231 |
+
target=y,
|
232 |
+
frame=frame,
|
233 |
+
target_names=TARGET_NAMES,
|
234 |
+
feature_names=FEATURE_NAMES,
|
235 |
+
DESCR=fdescr,
|
236 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/datasets/_olivetti_faces.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Modified Olivetti faces dataset.
|
2 |
+
|
3 |
+
The original database was available from (now defunct)
|
4 |
+
|
5 |
+
https://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
|
6 |
+
|
7 |
+
The version retrieved here comes in MATLAB format from the personal
|
8 |
+
web page of Sam Roweis:
|
9 |
+
|
10 |
+
https://cs.nyu.edu/~roweis/
|
11 |
+
"""
|
12 |
+
|
13 |
+
# Copyright (c) 2011 David Warde-Farley <wardefar at iro dot umontreal dot ca>
|
14 |
+
# License: BSD 3 clause
|
15 |
+
|
16 |
+
from os import PathLike, makedirs, remove
|
17 |
+
from os.path import exists
|
18 |
+
|
19 |
+
import joblib
|
20 |
+
import numpy as np
|
21 |
+
from scipy.io import loadmat
|
22 |
+
|
23 |
+
from ..utils import Bunch, check_random_state
|
24 |
+
from ..utils._param_validation import validate_params
|
25 |
+
from . import get_data_home
|
26 |
+
from ._base import RemoteFileMetadata, _fetch_remote, _pkl_filepath, load_descr
|
27 |
+
|
28 |
+
# The original data can be found at:
|
29 |
+
# https://cs.nyu.edu/~roweis/data/olivettifaces.mat
|
30 |
+
FACES = RemoteFileMetadata(
|
31 |
+
filename="olivettifaces.mat",
|
32 |
+
url="https://ndownloader.figshare.com/files/5976027",
|
33 |
+
checksum="b612fb967f2dc77c9c62d3e1266e0c73d5fca46a4b8906c18e454d41af987794",
|
34 |
+
)
|
35 |
+
|
36 |
+
|
37 |
+
@validate_params(
|
38 |
+
{
|
39 |
+
"data_home": [str, PathLike, None],
|
40 |
+
"shuffle": ["boolean"],
|
41 |
+
"random_state": ["random_state"],
|
42 |
+
"download_if_missing": ["boolean"],
|
43 |
+
"return_X_y": ["boolean"],
|
44 |
+
},
|
45 |
+
prefer_skip_nested_validation=True,
|
46 |
+
)
|
47 |
+
def fetch_olivetti_faces(
|
48 |
+
*,
|
49 |
+
data_home=None,
|
50 |
+
shuffle=False,
|
51 |
+
random_state=0,
|
52 |
+
download_if_missing=True,
|
53 |
+
return_X_y=False,
|
54 |
+
):
|
55 |
+
"""Load the Olivetti faces data-set from AT&T (classification).
|
56 |
+
|
57 |
+
Download it if necessary.
|
58 |
+
|
59 |
+
================= =====================
|
60 |
+
Classes 40
|
61 |
+
Samples total 400
|
62 |
+
Dimensionality 4096
|
63 |
+
Features real, between 0 and 1
|
64 |
+
================= =====================
|
65 |
+
|
66 |
+
Read more in the :ref:`User Guide <olivetti_faces_dataset>`.
|
67 |
+
|
68 |
+
Parameters
|
69 |
+
----------
|
70 |
+
data_home : str or path-like, default=None
|
71 |
+
Specify another download and cache folder for the datasets. By default
|
72 |
+
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
73 |
+
|
74 |
+
shuffle : bool, default=False
|
75 |
+
If True the order of the dataset is shuffled to avoid having
|
76 |
+
images of the same person grouped.
|
77 |
+
|
78 |
+
random_state : int, RandomState instance or None, default=0
|
79 |
+
Determines random number generation for dataset shuffling. Pass an int
|
80 |
+
for reproducible output across multiple function calls.
|
81 |
+
See :term:`Glossary <random_state>`.
|
82 |
+
|
83 |
+
download_if_missing : bool, default=True
|
84 |
+
If False, raise an OSError if the data is not locally available
|
85 |
+
instead of trying to download the data from the source site.
|
86 |
+
|
87 |
+
return_X_y : bool, default=False
|
88 |
+
If True, returns `(data, target)` instead of a `Bunch` object. See
|
89 |
+
below for more information about the `data` and `target` object.
|
90 |
+
|
91 |
+
.. versionadded:: 0.22
|
92 |
+
|
93 |
+
Returns
|
94 |
+
-------
|
95 |
+
data : :class:`~sklearn.utils.Bunch`
|
96 |
+
Dictionary-like object, with the following attributes.
|
97 |
+
|
98 |
+
data: ndarray, shape (400, 4096)
|
99 |
+
Each row corresponds to a ravelled
|
100 |
+
face image of original size 64 x 64 pixels.
|
101 |
+
images : ndarray, shape (400, 64, 64)
|
102 |
+
Each row is a face image
|
103 |
+
corresponding to one of the 40 subjects of the dataset.
|
104 |
+
target : ndarray, shape (400,)
|
105 |
+
Labels associated to each face image.
|
106 |
+
Those labels are ranging from 0-39 and correspond to the
|
107 |
+
Subject IDs.
|
108 |
+
DESCR : str
|
109 |
+
Description of the modified Olivetti Faces Dataset.
|
110 |
+
|
111 |
+
(data, target) : tuple if `return_X_y=True`
|
112 |
+
Tuple with the `data` and `target` objects described above.
|
113 |
+
|
114 |
+
.. versionadded:: 0.22
|
115 |
+
"""
|
116 |
+
data_home = get_data_home(data_home=data_home)
|
117 |
+
if not exists(data_home):
|
118 |
+
makedirs(data_home)
|
119 |
+
filepath = _pkl_filepath(data_home, "olivetti.pkz")
|
120 |
+
if not exists(filepath):
|
121 |
+
if not download_if_missing:
|
122 |
+
raise OSError("Data not found and `download_if_missing` is False")
|
123 |
+
|
124 |
+
print("downloading Olivetti faces from %s to %s" % (FACES.url, data_home))
|
125 |
+
mat_path = _fetch_remote(FACES, dirname=data_home)
|
126 |
+
mfile = loadmat(file_name=mat_path)
|
127 |
+
# delete raw .mat data
|
128 |
+
remove(mat_path)
|
129 |
+
|
130 |
+
faces = mfile["faces"].T.copy()
|
131 |
+
joblib.dump(faces, filepath, compress=6)
|
132 |
+
del mfile
|
133 |
+
else:
|
134 |
+
faces = joblib.load(filepath)
|
135 |
+
|
136 |
+
# We want floating point data, but float32 is enough (there is only
|
137 |
+
# one byte of precision in the original uint8s anyway)
|
138 |
+
faces = np.float32(faces)
|
139 |
+
faces = faces - faces.min()
|
140 |
+
faces /= faces.max()
|
141 |
+
faces = faces.reshape((400, 64, 64)).transpose(0, 2, 1)
|
142 |
+
# 10 images per class, 400 images total, each class is contiguous.
|
143 |
+
target = np.array([i // 10 for i in range(400)])
|
144 |
+
if shuffle:
|
145 |
+
random_state = check_random_state(random_state)
|
146 |
+
order = random_state.permutation(len(faces))
|
147 |
+
faces = faces[order]
|
148 |
+
target = target[order]
|
149 |
+
faces_vectorized = faces.reshape(len(faces), -1)
|
150 |
+
|
151 |
+
fdescr = load_descr("olivetti_faces.rst")
|
152 |
+
|
153 |
+
if return_X_y:
|
154 |
+
return faces_vectorized, target
|
155 |
+
|
156 |
+
return Bunch(data=faces_vectorized, images=faces, target=target, DESCR=fdescr)
|
venv/lib/python3.10/site-packages/sklearn/datasets/_openml.py
ADDED
@@ -0,0 +1,1158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gzip
|
2 |
+
import hashlib
|
3 |
+
import json
|
4 |
+
import os
|
5 |
+
import shutil
|
6 |
+
import time
|
7 |
+
from contextlib import closing
|
8 |
+
from functools import wraps
|
9 |
+
from os.path import join
|
10 |
+
from tempfile import TemporaryDirectory
|
11 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
12 |
+
from urllib.error import HTTPError, URLError
|
13 |
+
from urllib.request import Request, urlopen
|
14 |
+
from warnings import warn
|
15 |
+
|
16 |
+
import numpy as np
|
17 |
+
|
18 |
+
from ..utils import (
|
19 |
+
Bunch,
|
20 |
+
check_pandas_support, # noqa # noqa
|
21 |
+
)
|
22 |
+
from ..utils._param_validation import (
|
23 |
+
Integral,
|
24 |
+
Interval,
|
25 |
+
Real,
|
26 |
+
StrOptions,
|
27 |
+
validate_params,
|
28 |
+
)
|
29 |
+
from . import get_data_home
|
30 |
+
from ._arff_parser import load_arff_from_gzip_file
|
31 |
+
|
32 |
+
__all__ = ["fetch_openml"]
|
33 |
+
|
34 |
+
_OPENML_PREFIX = "https://api.openml.org/"
|
35 |
+
_SEARCH_NAME = "api/v1/json/data/list/data_name/{}/limit/2"
|
36 |
+
_DATA_INFO = "api/v1/json/data/{}"
|
37 |
+
_DATA_FEATURES = "api/v1/json/data/features/{}"
|
38 |
+
_DATA_QUALITIES = "api/v1/json/data/qualities/{}"
|
39 |
+
_DATA_FILE = "data/v1/download/{}"
|
40 |
+
|
41 |
+
OpenmlQualitiesType = List[Dict[str, str]]
|
42 |
+
OpenmlFeaturesType = List[Dict[str, str]]
|
43 |
+
|
44 |
+
|
45 |
+
def _get_local_path(openml_path: str, data_home: str) -> str:
|
46 |
+
return os.path.join(data_home, "openml.org", openml_path + ".gz")
|
47 |
+
|
48 |
+
|
49 |
+
def _retry_with_clean_cache(
|
50 |
+
openml_path: str,
|
51 |
+
data_home: Optional[str],
|
52 |
+
no_retry_exception: Optional[Exception] = None,
|
53 |
+
) -> Callable:
|
54 |
+
"""If the first call to the decorated function fails, the local cached
|
55 |
+
file is removed, and the function is called again. If ``data_home`` is
|
56 |
+
``None``, then the function is called once. We can provide a specific
|
57 |
+
exception to not retry on using `no_retry_exception` parameter.
|
58 |
+
"""
|
59 |
+
|
60 |
+
def decorator(f):
|
61 |
+
@wraps(f)
|
62 |
+
def wrapper(*args, **kw):
|
63 |
+
if data_home is None:
|
64 |
+
return f(*args, **kw)
|
65 |
+
try:
|
66 |
+
return f(*args, **kw)
|
67 |
+
except URLError:
|
68 |
+
raise
|
69 |
+
except Exception as exc:
|
70 |
+
if no_retry_exception is not None and isinstance(
|
71 |
+
exc, no_retry_exception
|
72 |
+
):
|
73 |
+
raise
|
74 |
+
warn("Invalid cache, redownloading file", RuntimeWarning)
|
75 |
+
local_path = _get_local_path(openml_path, data_home)
|
76 |
+
if os.path.exists(local_path):
|
77 |
+
os.unlink(local_path)
|
78 |
+
return f(*args, **kw)
|
79 |
+
|
80 |
+
return wrapper
|
81 |
+
|
82 |
+
return decorator
|
83 |
+
|
84 |
+
|
85 |
+
def _retry_on_network_error(
|
86 |
+
n_retries: int = 3, delay: float = 1.0, url: str = ""
|
87 |
+
) -> Callable:
|
88 |
+
"""If the function call results in a network error, call the function again
|
89 |
+
up to ``n_retries`` times with a ``delay`` between each call. If the error
|
90 |
+
has a 412 status code, don't call the function again as this is a specific
|
91 |
+
OpenML error.
|
92 |
+
The url parameter is used to give more information to the user about the
|
93 |
+
error.
|
94 |
+
"""
|
95 |
+
|
96 |
+
def decorator(f):
|
97 |
+
@wraps(f)
|
98 |
+
def wrapper(*args, **kwargs):
|
99 |
+
retry_counter = n_retries
|
100 |
+
while True:
|
101 |
+
try:
|
102 |
+
return f(*args, **kwargs)
|
103 |
+
except (URLError, TimeoutError) as e:
|
104 |
+
# 412 is a specific OpenML error code.
|
105 |
+
if isinstance(e, HTTPError) and e.code == 412:
|
106 |
+
raise
|
107 |
+
if retry_counter == 0:
|
108 |
+
raise
|
109 |
+
warn(
|
110 |
+
f"A network error occurred while downloading {url}. Retrying..."
|
111 |
+
)
|
112 |
+
retry_counter -= 1
|
113 |
+
time.sleep(delay)
|
114 |
+
|
115 |
+
return wrapper
|
116 |
+
|
117 |
+
return decorator
|
118 |
+
|
119 |
+
|
120 |
+
def _open_openml_url(
|
121 |
+
openml_path: str, data_home: Optional[str], n_retries: int = 3, delay: float = 1.0
|
122 |
+
):
|
123 |
+
"""
|
124 |
+
Returns a resource from OpenML.org. Caches it to data_home if required.
|
125 |
+
|
126 |
+
Parameters
|
127 |
+
----------
|
128 |
+
openml_path : str
|
129 |
+
OpenML URL that will be accessed. This will be prefixes with
|
130 |
+
_OPENML_PREFIX.
|
131 |
+
|
132 |
+
data_home : str
|
133 |
+
Directory to which the files will be cached. If None, no caching will
|
134 |
+
be applied.
|
135 |
+
|
136 |
+
n_retries : int, default=3
|
137 |
+
Number of retries when HTTP errors are encountered. Error with status
|
138 |
+
code 412 won't be retried as they represent OpenML generic errors.
|
139 |
+
|
140 |
+
delay : float, default=1.0
|
141 |
+
Number of seconds between retries.
|
142 |
+
|
143 |
+
Returns
|
144 |
+
-------
|
145 |
+
result : stream
|
146 |
+
A stream to the OpenML resource.
|
147 |
+
"""
|
148 |
+
|
149 |
+
def is_gzip_encoded(_fsrc):
|
150 |
+
return _fsrc.info().get("Content-Encoding", "") == "gzip"
|
151 |
+
|
152 |
+
req = Request(_OPENML_PREFIX + openml_path)
|
153 |
+
req.add_header("Accept-encoding", "gzip")
|
154 |
+
|
155 |
+
if data_home is None:
|
156 |
+
fsrc = _retry_on_network_error(n_retries, delay, req.full_url)(urlopen)(req)
|
157 |
+
if is_gzip_encoded(fsrc):
|
158 |
+
return gzip.GzipFile(fileobj=fsrc, mode="rb")
|
159 |
+
return fsrc
|
160 |
+
|
161 |
+
local_path = _get_local_path(openml_path, data_home)
|
162 |
+
dir_name, file_name = os.path.split(local_path)
|
163 |
+
if not os.path.exists(local_path):
|
164 |
+
os.makedirs(dir_name, exist_ok=True)
|
165 |
+
try:
|
166 |
+
# Create a tmpdir as a subfolder of dir_name where the final file will
|
167 |
+
# be moved to if the download is successful. This guarantees that the
|
168 |
+
# renaming operation to the final location is atomic to ensure the
|
169 |
+
# concurrence safety of the dataset caching mechanism.
|
170 |
+
with TemporaryDirectory(dir=dir_name) as tmpdir:
|
171 |
+
with closing(
|
172 |
+
_retry_on_network_error(n_retries, delay, req.full_url)(urlopen)(
|
173 |
+
req
|
174 |
+
)
|
175 |
+
) as fsrc:
|
176 |
+
opener: Callable
|
177 |
+
if is_gzip_encoded(fsrc):
|
178 |
+
opener = open
|
179 |
+
else:
|
180 |
+
opener = gzip.GzipFile
|
181 |
+
with opener(os.path.join(tmpdir, file_name), "wb") as fdst:
|
182 |
+
shutil.copyfileobj(fsrc, fdst)
|
183 |
+
shutil.move(fdst.name, local_path)
|
184 |
+
except Exception:
|
185 |
+
if os.path.exists(local_path):
|
186 |
+
os.unlink(local_path)
|
187 |
+
raise
|
188 |
+
|
189 |
+
# XXX: First time, decompression will not be necessary (by using fsrc), but
|
190 |
+
# it will happen nonetheless
|
191 |
+
return gzip.GzipFile(local_path, "rb")
|
192 |
+
|
193 |
+
|
194 |
+
class OpenMLError(ValueError):
|
195 |
+
"""HTTP 412 is a specific OpenML error code, indicating a generic error"""
|
196 |
+
|
197 |
+
pass
|
198 |
+
|
199 |
+
|
200 |
+
def _get_json_content_from_openml_api(
|
201 |
+
url: str,
|
202 |
+
error_message: Optional[str],
|
203 |
+
data_home: Optional[str],
|
204 |
+
n_retries: int = 3,
|
205 |
+
delay: float = 1.0,
|
206 |
+
) -> Dict:
|
207 |
+
"""
|
208 |
+
Loads json data from the openml api.
|
209 |
+
|
210 |
+
Parameters
|
211 |
+
----------
|
212 |
+
url : str
|
213 |
+
The URL to load from. Should be an official OpenML endpoint.
|
214 |
+
|
215 |
+
error_message : str or None
|
216 |
+
The error message to raise if an acceptable OpenML error is thrown
|
217 |
+
(acceptable error is, e.g., data id not found. Other errors, like 404's
|
218 |
+
will throw the native error message).
|
219 |
+
|
220 |
+
data_home : str or None
|
221 |
+
Location to cache the response. None if no cache is required.
|
222 |
+
|
223 |
+
n_retries : int, default=3
|
224 |
+
Number of retries when HTTP errors are encountered. Error with status
|
225 |
+
code 412 won't be retried as they represent OpenML generic errors.
|
226 |
+
|
227 |
+
delay : float, default=1.0
|
228 |
+
Number of seconds between retries.
|
229 |
+
|
230 |
+
Returns
|
231 |
+
-------
|
232 |
+
json_data : json
|
233 |
+
the json result from the OpenML server if the call was successful.
|
234 |
+
An exception otherwise.
|
235 |
+
"""
|
236 |
+
|
237 |
+
@_retry_with_clean_cache(url, data_home=data_home)
|
238 |
+
def _load_json():
|
239 |
+
with closing(
|
240 |
+
_open_openml_url(url, data_home, n_retries=n_retries, delay=delay)
|
241 |
+
) as response:
|
242 |
+
return json.loads(response.read().decode("utf-8"))
|
243 |
+
|
244 |
+
try:
|
245 |
+
return _load_json()
|
246 |
+
except HTTPError as error:
|
247 |
+
# 412 is an OpenML specific error code, indicating a generic error
|
248 |
+
# (e.g., data not found)
|
249 |
+
if error.code != 412:
|
250 |
+
raise error
|
251 |
+
|
252 |
+
# 412 error, not in except for nicer traceback
|
253 |
+
raise OpenMLError(error_message)
|
254 |
+
|
255 |
+
|
256 |
+
def _get_data_info_by_name(
|
257 |
+
name: str,
|
258 |
+
version: Union[int, str],
|
259 |
+
data_home: Optional[str],
|
260 |
+
n_retries: int = 3,
|
261 |
+
delay: float = 1.0,
|
262 |
+
):
|
263 |
+
"""
|
264 |
+
Utilizes the openml dataset listing api to find a dataset by
|
265 |
+
name/version
|
266 |
+
OpenML api function:
|
267 |
+
https://www.openml.org/api_docs#!/data/get_data_list_data_name_data_name
|
268 |
+
|
269 |
+
Parameters
|
270 |
+
----------
|
271 |
+
name : str
|
272 |
+
name of the dataset
|
273 |
+
|
274 |
+
version : int or str
|
275 |
+
If version is an integer, the exact name/version will be obtained from
|
276 |
+
OpenML. If version is a string (value: "active") it will take the first
|
277 |
+
version from OpenML that is annotated as active. Any other string
|
278 |
+
values except "active" are treated as integer.
|
279 |
+
|
280 |
+
data_home : str or None
|
281 |
+
Location to cache the response. None if no cache is required.
|
282 |
+
|
283 |
+
n_retries : int, default=3
|
284 |
+
Number of retries when HTTP errors are encountered. Error with status
|
285 |
+
code 412 won't be retried as they represent OpenML generic errors.
|
286 |
+
|
287 |
+
delay : float, default=1.0
|
288 |
+
Number of seconds between retries.
|
289 |
+
|
290 |
+
Returns
|
291 |
+
-------
|
292 |
+
first_dataset : json
|
293 |
+
json representation of the first dataset object that adhired to the
|
294 |
+
search criteria
|
295 |
+
|
296 |
+
"""
|
297 |
+
if version == "active":
|
298 |
+
# situation in which we return the oldest active version
|
299 |
+
url = _SEARCH_NAME.format(name) + "/status/active/"
|
300 |
+
error_msg = "No active dataset {} found.".format(name)
|
301 |
+
json_data = _get_json_content_from_openml_api(
|
302 |
+
url,
|
303 |
+
error_msg,
|
304 |
+
data_home=data_home,
|
305 |
+
n_retries=n_retries,
|
306 |
+
delay=delay,
|
307 |
+
)
|
308 |
+
res = json_data["data"]["dataset"]
|
309 |
+
if len(res) > 1:
|
310 |
+
first_version = version = res[0]["version"]
|
311 |
+
warning_msg = (
|
312 |
+
"Multiple active versions of the dataset matching the name"
|
313 |
+
f" {name} exist. Versions may be fundamentally different, "
|
314 |
+
f"returning version {first_version}. "
|
315 |
+
"Available versions:\n"
|
316 |
+
)
|
317 |
+
for r in res:
|
318 |
+
warning_msg += f"- version {r['version']}, status: {r['status']}\n"
|
319 |
+
warning_msg += (
|
320 |
+
f" url: https://www.openml.org/search?type=data&id={r['did']}\n"
|
321 |
+
)
|
322 |
+
warn(warning_msg)
|
323 |
+
return res[0]
|
324 |
+
|
325 |
+
# an integer version has been provided
|
326 |
+
url = (_SEARCH_NAME + "/data_version/{}").format(name, version)
|
327 |
+
try:
|
328 |
+
json_data = _get_json_content_from_openml_api(
|
329 |
+
url,
|
330 |
+
error_message=None,
|
331 |
+
data_home=data_home,
|
332 |
+
n_retries=n_retries,
|
333 |
+
delay=delay,
|
334 |
+
)
|
335 |
+
except OpenMLError:
|
336 |
+
# we can do this in 1 function call if OpenML does not require the
|
337 |
+
# specification of the dataset status (i.e., return datasets with a
|
338 |
+
# given name / version regardless of active, deactivated, etc. )
|
339 |
+
# TODO: feature request OpenML.
|
340 |
+
url += "/status/deactivated"
|
341 |
+
error_msg = "Dataset {} with version {} not found.".format(name, version)
|
342 |
+
json_data = _get_json_content_from_openml_api(
|
343 |
+
url,
|
344 |
+
error_msg,
|
345 |
+
data_home=data_home,
|
346 |
+
n_retries=n_retries,
|
347 |
+
delay=delay,
|
348 |
+
)
|
349 |
+
|
350 |
+
return json_data["data"]["dataset"][0]
|
351 |
+
|
352 |
+
|
353 |
+
def _get_data_description_by_id(
|
354 |
+
data_id: int,
|
355 |
+
data_home: Optional[str],
|
356 |
+
n_retries: int = 3,
|
357 |
+
delay: float = 1.0,
|
358 |
+
) -> Dict[str, Any]:
|
359 |
+
# OpenML API function: https://www.openml.org/api_docs#!/data/get_data_id
|
360 |
+
url = _DATA_INFO.format(data_id)
|
361 |
+
error_message = "Dataset with data_id {} not found.".format(data_id)
|
362 |
+
json_data = _get_json_content_from_openml_api(
|
363 |
+
url,
|
364 |
+
error_message,
|
365 |
+
data_home=data_home,
|
366 |
+
n_retries=n_retries,
|
367 |
+
delay=delay,
|
368 |
+
)
|
369 |
+
return json_data["data_set_description"]
|
370 |
+
|
371 |
+
|
372 |
+
def _get_data_features(
|
373 |
+
data_id: int,
|
374 |
+
data_home: Optional[str],
|
375 |
+
n_retries: int = 3,
|
376 |
+
delay: float = 1.0,
|
377 |
+
) -> OpenmlFeaturesType:
|
378 |
+
# OpenML function:
|
379 |
+
# https://www.openml.org/api_docs#!/data/get_data_features_id
|
380 |
+
url = _DATA_FEATURES.format(data_id)
|
381 |
+
error_message = "Dataset with data_id {} not found.".format(data_id)
|
382 |
+
json_data = _get_json_content_from_openml_api(
|
383 |
+
url,
|
384 |
+
error_message,
|
385 |
+
data_home=data_home,
|
386 |
+
n_retries=n_retries,
|
387 |
+
delay=delay,
|
388 |
+
)
|
389 |
+
return json_data["data_features"]["feature"]
|
390 |
+
|
391 |
+
|
392 |
+
def _get_data_qualities(
|
393 |
+
data_id: int,
|
394 |
+
data_home: Optional[str],
|
395 |
+
n_retries: int = 3,
|
396 |
+
delay: float = 1.0,
|
397 |
+
) -> OpenmlQualitiesType:
|
398 |
+
# OpenML API function:
|
399 |
+
# https://www.openml.org/api_docs#!/data/get_data_qualities_id
|
400 |
+
url = _DATA_QUALITIES.format(data_id)
|
401 |
+
error_message = "Dataset with data_id {} not found.".format(data_id)
|
402 |
+
json_data = _get_json_content_from_openml_api(
|
403 |
+
url,
|
404 |
+
error_message,
|
405 |
+
data_home=data_home,
|
406 |
+
n_retries=n_retries,
|
407 |
+
delay=delay,
|
408 |
+
)
|
409 |
+
# the qualities might not be available, but we still try to process
|
410 |
+
# the data
|
411 |
+
return json_data.get("data_qualities", {}).get("quality", [])
|
412 |
+
|
413 |
+
|
414 |
+
def _get_num_samples(data_qualities: OpenmlQualitiesType) -> int:
|
415 |
+
"""Get the number of samples from data qualities.
|
416 |
+
|
417 |
+
Parameters
|
418 |
+
----------
|
419 |
+
data_qualities : list of dict
|
420 |
+
Used to retrieve the number of instances (samples) in the dataset.
|
421 |
+
|
422 |
+
Returns
|
423 |
+
-------
|
424 |
+
n_samples : int
|
425 |
+
The number of samples in the dataset or -1 if data qualities are
|
426 |
+
unavailable.
|
427 |
+
"""
|
428 |
+
# If the data qualities are unavailable, we return -1
|
429 |
+
default_n_samples = -1
|
430 |
+
|
431 |
+
qualities = {d["name"]: d["value"] for d in data_qualities}
|
432 |
+
return int(float(qualities.get("NumberOfInstances", default_n_samples)))
|
433 |
+
|
434 |
+
|
435 |
+
def _load_arff_response(
|
436 |
+
url: str,
|
437 |
+
data_home: Optional[str],
|
438 |
+
parser: str,
|
439 |
+
output_type: str,
|
440 |
+
openml_columns_info: dict,
|
441 |
+
feature_names_to_select: List[str],
|
442 |
+
target_names_to_select: List[str],
|
443 |
+
shape: Optional[Tuple[int, int]],
|
444 |
+
md5_checksum: str,
|
445 |
+
n_retries: int = 3,
|
446 |
+
delay: float = 1.0,
|
447 |
+
read_csv_kwargs: Optional[Dict] = None,
|
448 |
+
):
|
449 |
+
"""Load the ARFF data associated with the OpenML URL.
|
450 |
+
|
451 |
+
In addition of loading the data, this function will also check the
|
452 |
+
integrity of the downloaded file from OpenML using MD5 checksum.
|
453 |
+
|
454 |
+
Parameters
|
455 |
+
----------
|
456 |
+
url : str
|
457 |
+
The URL of the ARFF file on OpenML.
|
458 |
+
|
459 |
+
data_home : str
|
460 |
+
The location where to cache the data.
|
461 |
+
|
462 |
+
parser : {"liac-arff", "pandas"}
|
463 |
+
The parser used to parse the ARFF file.
|
464 |
+
|
465 |
+
output_type : {"numpy", "pandas", "sparse"}
|
466 |
+
The type of the arrays that will be returned. The possibilities are:
|
467 |
+
|
468 |
+
- `"numpy"`: both `X` and `y` will be NumPy arrays;
|
469 |
+
- `"sparse"`: `X` will be sparse matrix and `y` will be a NumPy array;
|
470 |
+
- `"pandas"`: `X` will be a pandas DataFrame and `y` will be either a
|
471 |
+
pandas Series or DataFrame.
|
472 |
+
|
473 |
+
openml_columns_info : dict
|
474 |
+
The information provided by OpenML regarding the columns of the ARFF
|
475 |
+
file.
|
476 |
+
|
477 |
+
feature_names_to_select : list of str
|
478 |
+
The list of the features to be selected.
|
479 |
+
|
480 |
+
target_names_to_select : list of str
|
481 |
+
The list of the target variables to be selected.
|
482 |
+
|
483 |
+
shape : tuple or None
|
484 |
+
With `parser="liac-arff"`, when using a generator to load the data,
|
485 |
+
one needs to provide the shape of the data beforehand.
|
486 |
+
|
487 |
+
md5_checksum : str
|
488 |
+
The MD5 checksum provided by OpenML to check the data integrity.
|
489 |
+
|
490 |
+
n_retries : int, default=3
|
491 |
+
The number of times to retry downloading the data if it fails.
|
492 |
+
|
493 |
+
delay : float, default=1.0
|
494 |
+
The delay between two consecutive downloads in seconds.
|
495 |
+
|
496 |
+
read_csv_kwargs : dict, default=None
|
497 |
+
Keyword arguments to pass to `pandas.read_csv` when using the pandas parser.
|
498 |
+
It allows to overwrite the default options.
|
499 |
+
|
500 |
+
.. versionadded:: 1.3
|
501 |
+
|
502 |
+
Returns
|
503 |
+
-------
|
504 |
+
X : {ndarray, sparse matrix, dataframe}
|
505 |
+
The data matrix.
|
506 |
+
|
507 |
+
y : {ndarray, dataframe, series}
|
508 |
+
The target.
|
509 |
+
|
510 |
+
frame : dataframe or None
|
511 |
+
A dataframe containing both `X` and `y`. `None` if
|
512 |
+
`output_array_type != "pandas"`.
|
513 |
+
|
514 |
+
categories : list of str or None
|
515 |
+
The names of the features that are categorical. `None` if
|
516 |
+
`output_array_type == "pandas"`.
|
517 |
+
"""
|
518 |
+
gzip_file = _open_openml_url(url, data_home, n_retries=n_retries, delay=delay)
|
519 |
+
with closing(gzip_file):
|
520 |
+
md5 = hashlib.md5()
|
521 |
+
for chunk in iter(lambda: gzip_file.read(4096), b""):
|
522 |
+
md5.update(chunk)
|
523 |
+
actual_md5_checksum = md5.hexdigest()
|
524 |
+
|
525 |
+
if actual_md5_checksum != md5_checksum:
|
526 |
+
raise ValueError(
|
527 |
+
f"md5 checksum of local file for {url} does not match description: "
|
528 |
+
f"expected: {md5_checksum} but got {actual_md5_checksum}. "
|
529 |
+
"Downloaded file could have been modified / corrupted, clean cache "
|
530 |
+
"and retry..."
|
531 |
+
)
|
532 |
+
|
533 |
+
def _open_url_and_load_gzip_file(url, data_home, n_retries, delay, arff_params):
|
534 |
+
gzip_file = _open_openml_url(url, data_home, n_retries=n_retries, delay=delay)
|
535 |
+
with closing(gzip_file):
|
536 |
+
return load_arff_from_gzip_file(gzip_file, **arff_params)
|
537 |
+
|
538 |
+
arff_params: Dict = dict(
|
539 |
+
parser=parser,
|
540 |
+
output_type=output_type,
|
541 |
+
openml_columns_info=openml_columns_info,
|
542 |
+
feature_names_to_select=feature_names_to_select,
|
543 |
+
target_names_to_select=target_names_to_select,
|
544 |
+
shape=shape,
|
545 |
+
read_csv_kwargs=read_csv_kwargs or {},
|
546 |
+
)
|
547 |
+
try:
|
548 |
+
X, y, frame, categories = _open_url_and_load_gzip_file(
|
549 |
+
url, data_home, n_retries, delay, arff_params
|
550 |
+
)
|
551 |
+
except Exception as exc:
|
552 |
+
if parser != "pandas":
|
553 |
+
raise
|
554 |
+
|
555 |
+
from pandas.errors import ParserError
|
556 |
+
|
557 |
+
if not isinstance(exc, ParserError):
|
558 |
+
raise
|
559 |
+
|
560 |
+
# A parsing error could come from providing the wrong quotechar
|
561 |
+
# to pandas. By default, we use a double quote. Thus, we retry
|
562 |
+
# with a single quote before to raise the error.
|
563 |
+
arff_params["read_csv_kwargs"].update(quotechar="'")
|
564 |
+
X, y, frame, categories = _open_url_and_load_gzip_file(
|
565 |
+
url, data_home, n_retries, delay, arff_params
|
566 |
+
)
|
567 |
+
|
568 |
+
return X, y, frame, categories
|
569 |
+
|
570 |
+
|
571 |
+
def _download_data_to_bunch(
|
572 |
+
url: str,
|
573 |
+
sparse: bool,
|
574 |
+
data_home: Optional[str],
|
575 |
+
*,
|
576 |
+
as_frame: bool,
|
577 |
+
openml_columns_info: List[dict],
|
578 |
+
data_columns: List[str],
|
579 |
+
target_columns: List[str],
|
580 |
+
shape: Optional[Tuple[int, int]],
|
581 |
+
md5_checksum: str,
|
582 |
+
n_retries: int = 3,
|
583 |
+
delay: float = 1.0,
|
584 |
+
parser: str,
|
585 |
+
read_csv_kwargs: Optional[Dict] = None,
|
586 |
+
):
|
587 |
+
"""Download ARFF data, load it to a specific container and create to Bunch.
|
588 |
+
|
589 |
+
This function has a mechanism to retry/cache/clean the data.
|
590 |
+
|
591 |
+
Parameters
|
592 |
+
----------
|
593 |
+
url : str
|
594 |
+
The URL of the ARFF file on OpenML.
|
595 |
+
|
596 |
+
sparse : bool
|
597 |
+
Whether the dataset is expected to use the sparse ARFF format.
|
598 |
+
|
599 |
+
data_home : str
|
600 |
+
The location where to cache the data.
|
601 |
+
|
602 |
+
as_frame : bool
|
603 |
+
Whether or not to return the data into a pandas DataFrame.
|
604 |
+
|
605 |
+
openml_columns_info : list of dict
|
606 |
+
The information regarding the columns provided by OpenML for the
|
607 |
+
ARFF dataset. The information is stored as a list of dictionaries.
|
608 |
+
|
609 |
+
data_columns : list of str
|
610 |
+
The list of the features to be selected.
|
611 |
+
|
612 |
+
target_columns : list of str
|
613 |
+
The list of the target variables to be selected.
|
614 |
+
|
615 |
+
shape : tuple or None
|
616 |
+
With `parser="liac-arff"`, when using a generator to load the data,
|
617 |
+
one needs to provide the shape of the data beforehand.
|
618 |
+
|
619 |
+
md5_checksum : str
|
620 |
+
The MD5 checksum provided by OpenML to check the data integrity.
|
621 |
+
|
622 |
+
n_retries : int, default=3
|
623 |
+
Number of retries when HTTP errors are encountered. Error with status
|
624 |
+
code 412 won't be retried as they represent OpenML generic errors.
|
625 |
+
|
626 |
+
delay : float, default=1.0
|
627 |
+
Number of seconds between retries.
|
628 |
+
|
629 |
+
parser : {"liac-arff", "pandas"}
|
630 |
+
The parser used to parse the ARFF file.
|
631 |
+
|
632 |
+
read_csv_kwargs : dict, default=None
|
633 |
+
Keyword arguments to pass to `pandas.read_csv` when using the pandas parser.
|
634 |
+
It allows to overwrite the default options.
|
635 |
+
|
636 |
+
.. versionadded:: 1.3
|
637 |
+
|
638 |
+
Returns
|
639 |
+
-------
|
640 |
+
data : :class:`~sklearn.utils.Bunch`
|
641 |
+
Dictionary-like object, with the following attributes.
|
642 |
+
|
643 |
+
X : {ndarray, sparse matrix, dataframe}
|
644 |
+
The data matrix.
|
645 |
+
y : {ndarray, dataframe, series}
|
646 |
+
The target.
|
647 |
+
frame : dataframe or None
|
648 |
+
A dataframe containing both `X` and `y`. `None` if
|
649 |
+
`output_array_type != "pandas"`.
|
650 |
+
categories : list of str or None
|
651 |
+
The names of the features that are categorical. `None` if
|
652 |
+
`output_array_type == "pandas"`.
|
653 |
+
"""
|
654 |
+
# Prepare which columns and data types should be returned for the X and y
|
655 |
+
features_dict = {feature["name"]: feature for feature in openml_columns_info}
|
656 |
+
|
657 |
+
if sparse:
|
658 |
+
output_type = "sparse"
|
659 |
+
elif as_frame:
|
660 |
+
output_type = "pandas"
|
661 |
+
else:
|
662 |
+
output_type = "numpy"
|
663 |
+
|
664 |
+
# XXX: target columns should all be categorical or all numeric
|
665 |
+
_verify_target_data_type(features_dict, target_columns)
|
666 |
+
for name in target_columns:
|
667 |
+
column_info = features_dict[name]
|
668 |
+
n_missing_values = int(column_info["number_of_missing_values"])
|
669 |
+
if n_missing_values > 0:
|
670 |
+
raise ValueError(
|
671 |
+
f"Target column '{column_info['name']}' has {n_missing_values} missing "
|
672 |
+
"values. Missing values are not supported for target columns."
|
673 |
+
)
|
674 |
+
|
675 |
+
no_retry_exception = None
|
676 |
+
if parser == "pandas":
|
677 |
+
# If we get a ParserError with pandas, then we don't want to retry and we raise
|
678 |
+
# early.
|
679 |
+
from pandas.errors import ParserError
|
680 |
+
|
681 |
+
no_retry_exception = ParserError
|
682 |
+
|
683 |
+
X, y, frame, categories = _retry_with_clean_cache(
|
684 |
+
url, data_home, no_retry_exception
|
685 |
+
)(_load_arff_response)(
|
686 |
+
url,
|
687 |
+
data_home,
|
688 |
+
parser=parser,
|
689 |
+
output_type=output_type,
|
690 |
+
openml_columns_info=features_dict,
|
691 |
+
feature_names_to_select=data_columns,
|
692 |
+
target_names_to_select=target_columns,
|
693 |
+
shape=shape,
|
694 |
+
md5_checksum=md5_checksum,
|
695 |
+
n_retries=n_retries,
|
696 |
+
delay=delay,
|
697 |
+
read_csv_kwargs=read_csv_kwargs,
|
698 |
+
)
|
699 |
+
|
700 |
+
return Bunch(
|
701 |
+
data=X,
|
702 |
+
target=y,
|
703 |
+
frame=frame,
|
704 |
+
categories=categories,
|
705 |
+
feature_names=data_columns,
|
706 |
+
target_names=target_columns,
|
707 |
+
)
|
708 |
+
|
709 |
+
|
710 |
+
def _verify_target_data_type(features_dict, target_columns):
|
711 |
+
# verifies the data type of the y array in case there are multiple targets
|
712 |
+
# (throws an error if these targets do not comply with sklearn support)
|
713 |
+
if not isinstance(target_columns, list):
|
714 |
+
raise ValueError("target_column should be list, got: %s" % type(target_columns))
|
715 |
+
found_types = set()
|
716 |
+
for target_column in target_columns:
|
717 |
+
if target_column not in features_dict:
|
718 |
+
raise KeyError(f"Could not find target_column='{target_column}'")
|
719 |
+
if features_dict[target_column]["data_type"] == "numeric":
|
720 |
+
found_types.add(np.float64)
|
721 |
+
else:
|
722 |
+
found_types.add(object)
|
723 |
+
|
724 |
+
# note: we compare to a string, not boolean
|
725 |
+
if features_dict[target_column]["is_ignore"] == "true":
|
726 |
+
warn(f"target_column='{target_column}' has flag is_ignore.")
|
727 |
+
if features_dict[target_column]["is_row_identifier"] == "true":
|
728 |
+
warn(f"target_column='{target_column}' has flag is_row_identifier.")
|
729 |
+
if len(found_types) > 1:
|
730 |
+
raise ValueError(
|
731 |
+
"Can only handle homogeneous multi-target datasets, "
|
732 |
+
"i.e., all targets are either numeric or "
|
733 |
+
"categorical."
|
734 |
+
)
|
735 |
+
|
736 |
+
|
737 |
+
def _valid_data_column_names(features_list, target_columns):
|
738 |
+
# logic for determining on which columns can be learned. Note that from the
|
739 |
+
# OpenML guide follows that columns that have the `is_row_identifier` or
|
740 |
+
# `is_ignore` flag, these can not be learned on. Also target columns are
|
741 |
+
# excluded.
|
742 |
+
valid_data_column_names = []
|
743 |
+
for feature in features_list:
|
744 |
+
if (
|
745 |
+
feature["name"] not in target_columns
|
746 |
+
and feature["is_ignore"] != "true"
|
747 |
+
and feature["is_row_identifier"] != "true"
|
748 |
+
):
|
749 |
+
valid_data_column_names.append(feature["name"])
|
750 |
+
return valid_data_column_names
|
751 |
+
|
752 |
+
|
753 |
+
@validate_params(
|
754 |
+
{
|
755 |
+
"name": [str, None],
|
756 |
+
"version": [Interval(Integral, 1, None, closed="left"), StrOptions({"active"})],
|
757 |
+
"data_id": [Interval(Integral, 1, None, closed="left"), None],
|
758 |
+
"data_home": [str, os.PathLike, None],
|
759 |
+
"target_column": [str, list, None],
|
760 |
+
"cache": [bool],
|
761 |
+
"return_X_y": [bool],
|
762 |
+
"as_frame": [bool, StrOptions({"auto"})],
|
763 |
+
"n_retries": [Interval(Integral, 1, None, closed="left")],
|
764 |
+
"delay": [Interval(Real, 0, None, closed="right")],
|
765 |
+
"parser": [
|
766 |
+
StrOptions({"auto", "pandas", "liac-arff"}),
|
767 |
+
],
|
768 |
+
"read_csv_kwargs": [dict, None],
|
769 |
+
},
|
770 |
+
prefer_skip_nested_validation=True,
|
771 |
+
)
|
772 |
+
def fetch_openml(
|
773 |
+
name: Optional[str] = None,
|
774 |
+
*,
|
775 |
+
version: Union[str, int] = "active",
|
776 |
+
data_id: Optional[int] = None,
|
777 |
+
data_home: Optional[Union[str, os.PathLike]] = None,
|
778 |
+
target_column: Optional[Union[str, List]] = "default-target",
|
779 |
+
cache: bool = True,
|
780 |
+
return_X_y: bool = False,
|
781 |
+
as_frame: Union[str, bool] = "auto",
|
782 |
+
n_retries: int = 3,
|
783 |
+
delay: float = 1.0,
|
784 |
+
parser: str = "auto",
|
785 |
+
read_csv_kwargs: Optional[Dict] = None,
|
786 |
+
):
|
787 |
+
"""Fetch dataset from openml by name or dataset id.
|
788 |
+
|
789 |
+
Datasets are uniquely identified by either an integer ID or by a
|
790 |
+
combination of name and version (i.e. there might be multiple
|
791 |
+
versions of the 'iris' dataset). Please give either name or data_id
|
792 |
+
(not both). In case a name is given, a version can also be
|
793 |
+
provided.
|
794 |
+
|
795 |
+
Read more in the :ref:`User Guide <openml>`.
|
796 |
+
|
797 |
+
.. versionadded:: 0.20
|
798 |
+
|
799 |
+
.. note:: EXPERIMENTAL
|
800 |
+
|
801 |
+
The API is experimental (particularly the return value structure),
|
802 |
+
and might have small backward-incompatible changes without notice
|
803 |
+
or warning in future releases.
|
804 |
+
|
805 |
+
Parameters
|
806 |
+
----------
|
807 |
+
name : str, default=None
|
808 |
+
String identifier of the dataset. Note that OpenML can have multiple
|
809 |
+
datasets with the same name.
|
810 |
+
|
811 |
+
version : int or 'active', default='active'
|
812 |
+
Version of the dataset. Can only be provided if also ``name`` is given.
|
813 |
+
If 'active' the oldest version that's still active is used. Since
|
814 |
+
there may be more than one active version of a dataset, and those
|
815 |
+
versions may fundamentally be different from one another, setting an
|
816 |
+
exact version is highly recommended.
|
817 |
+
|
818 |
+
data_id : int, default=None
|
819 |
+
OpenML ID of the dataset. The most specific way of retrieving a
|
820 |
+
dataset. If data_id is not given, name (and potential version) are
|
821 |
+
used to obtain a dataset.
|
822 |
+
|
823 |
+
data_home : str or path-like, default=None
|
824 |
+
Specify another download and cache folder for the data sets. By default
|
825 |
+
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
826 |
+
|
827 |
+
target_column : str, list or None, default='default-target'
|
828 |
+
Specify the column name in the data to use as target. If
|
829 |
+
'default-target', the standard target column a stored on the server
|
830 |
+
is used. If ``None``, all columns are returned as data and the
|
831 |
+
target is ``None``. If list (of strings), all columns with these names
|
832 |
+
are returned as multi-target (Note: not all scikit-learn classifiers
|
833 |
+
can handle all types of multi-output combinations).
|
834 |
+
|
835 |
+
cache : bool, default=True
|
836 |
+
Whether to cache the downloaded datasets into `data_home`.
|
837 |
+
|
838 |
+
return_X_y : bool, default=False
|
839 |
+
If True, returns ``(data, target)`` instead of a Bunch object. See
|
840 |
+
below for more information about the `data` and `target` objects.
|
841 |
+
|
842 |
+
as_frame : bool or 'auto', default='auto'
|
843 |
+
If True, the data is a pandas DataFrame including columns with
|
844 |
+
appropriate dtypes (numeric, string or categorical). The target is
|
845 |
+
a pandas DataFrame or Series depending on the number of target_columns.
|
846 |
+
The Bunch will contain a ``frame`` attribute with the target and the
|
847 |
+
data. If ``return_X_y`` is True, then ``(data, target)`` will be pandas
|
848 |
+
DataFrames or Series as describe above.
|
849 |
+
|
850 |
+
If `as_frame` is 'auto', the data and target will be converted to
|
851 |
+
DataFrame or Series as if `as_frame` is set to True, unless the dataset
|
852 |
+
is stored in sparse format.
|
853 |
+
|
854 |
+
If `as_frame` is False, the data and target will be NumPy arrays and
|
855 |
+
the `data` will only contain numerical values when `parser="liac-arff"`
|
856 |
+
where the categories are provided in the attribute `categories` of the
|
857 |
+
`Bunch` instance. When `parser="pandas"`, no ordinal encoding is made.
|
858 |
+
|
859 |
+
.. versionchanged:: 0.24
|
860 |
+
The default value of `as_frame` changed from `False` to `'auto'`
|
861 |
+
in 0.24.
|
862 |
+
|
863 |
+
n_retries : int, default=3
|
864 |
+
Number of retries when HTTP errors or network timeouts are encountered.
|
865 |
+
Error with status code 412 won't be retried as they represent OpenML
|
866 |
+
generic errors.
|
867 |
+
|
868 |
+
delay : float, default=1.0
|
869 |
+
Number of seconds between retries.
|
870 |
+
|
871 |
+
parser : {"auto", "pandas", "liac-arff"}, default="auto"
|
872 |
+
Parser used to load the ARFF file. Two parsers are implemented:
|
873 |
+
|
874 |
+
- `"pandas"`: this is the most efficient parser. However, it requires
|
875 |
+
pandas to be installed and can only open dense datasets.
|
876 |
+
- `"liac-arff"`: this is a pure Python ARFF parser that is much less
|
877 |
+
memory- and CPU-efficient. It deals with sparse ARFF datasets.
|
878 |
+
|
879 |
+
If `"auto"`, the parser is chosen automatically such that `"liac-arff"`
|
880 |
+
is selected for sparse ARFF datasets, otherwise `"pandas"` is selected.
|
881 |
+
|
882 |
+
.. versionadded:: 1.2
|
883 |
+
.. versionchanged:: 1.4
|
884 |
+
The default value of `parser` changes from `"liac-arff"` to
|
885 |
+
`"auto"`.
|
886 |
+
|
887 |
+
read_csv_kwargs : dict, default=None
|
888 |
+
Keyword arguments passed to :func:`pandas.read_csv` when loading the data
|
889 |
+
from a ARFF file and using the pandas parser. It can allow to
|
890 |
+
overwrite some default parameters.
|
891 |
+
|
892 |
+
.. versionadded:: 1.3
|
893 |
+
|
894 |
+
Returns
|
895 |
+
-------
|
896 |
+
data : :class:`~sklearn.utils.Bunch`
|
897 |
+
Dictionary-like object, with the following attributes.
|
898 |
+
|
899 |
+
data : np.array, scipy.sparse.csr_matrix of floats, or pandas DataFrame
|
900 |
+
The feature matrix. Categorical features are encoded as ordinals.
|
901 |
+
target : np.array, pandas Series or DataFrame
|
902 |
+
The regression target or classification labels, if applicable.
|
903 |
+
Dtype is float if numeric, and object if categorical. If
|
904 |
+
``as_frame`` is True, ``target`` is a pandas object.
|
905 |
+
DESCR : str
|
906 |
+
The full description of the dataset.
|
907 |
+
feature_names : list
|
908 |
+
The names of the dataset columns.
|
909 |
+
target_names: list
|
910 |
+
The names of the target columns.
|
911 |
+
|
912 |
+
.. versionadded:: 0.22
|
913 |
+
|
914 |
+
categories : dict or None
|
915 |
+
Maps each categorical feature name to a list of values, such
|
916 |
+
that the value encoded as i is ith in the list. If ``as_frame``
|
917 |
+
is True, this is None.
|
918 |
+
details : dict
|
919 |
+
More metadata from OpenML.
|
920 |
+
frame : pandas DataFrame
|
921 |
+
Only present when `as_frame=True`. DataFrame with ``data`` and
|
922 |
+
``target``.
|
923 |
+
|
924 |
+
(data, target) : tuple if ``return_X_y`` is True
|
925 |
+
|
926 |
+
.. note:: EXPERIMENTAL
|
927 |
+
|
928 |
+
This interface is **experimental** and subsequent releases may
|
929 |
+
change attributes without notice (although there should only be
|
930 |
+
minor changes to ``data`` and ``target``).
|
931 |
+
|
932 |
+
Missing values in the 'data' are represented as NaN's. Missing values
|
933 |
+
in 'target' are represented as NaN's (numerical target) or None
|
934 |
+
(categorical target).
|
935 |
+
|
936 |
+
Notes
|
937 |
+
-----
|
938 |
+
The `"pandas"` and `"liac-arff"` parsers can lead to different data types
|
939 |
+
in the output. The notable differences are the following:
|
940 |
+
|
941 |
+
- The `"liac-arff"` parser always encodes categorical features as `str` objects.
|
942 |
+
To the contrary, the `"pandas"` parser instead infers the type while
|
943 |
+
reading and numerical categories will be casted into integers whenever
|
944 |
+
possible.
|
945 |
+
- The `"liac-arff"` parser uses float64 to encode numerical features
|
946 |
+
tagged as 'REAL' and 'NUMERICAL' in the metadata. The `"pandas"`
|
947 |
+
parser instead infers if these numerical features corresponds
|
948 |
+
to integers and uses panda's Integer extension dtype.
|
949 |
+
- In particular, classification datasets with integer categories are
|
950 |
+
typically loaded as such `(0, 1, ...)` with the `"pandas"` parser while
|
951 |
+
`"liac-arff"` will force the use of string encoded class labels such as
|
952 |
+
`"0"`, `"1"` and so on.
|
953 |
+
- The `"pandas"` parser will not strip single quotes - i.e. `'` - from
|
954 |
+
string columns. For instance, a string `'my string'` will be kept as is
|
955 |
+
while the `"liac-arff"` parser will strip the single quotes. For
|
956 |
+
categorical columns, the single quotes are stripped from the values.
|
957 |
+
|
958 |
+
In addition, when `as_frame=False` is used, the `"liac-arff"` parser
|
959 |
+
returns ordinally encoded data where the categories are provided in the
|
960 |
+
attribute `categories` of the `Bunch` instance. Instead, `"pandas"` returns
|
961 |
+
a NumPy array were the categories are not encoded.
|
962 |
+
|
963 |
+
Examples
|
964 |
+
--------
|
965 |
+
>>> from sklearn.datasets import fetch_openml
|
966 |
+
>>> adult = fetch_openml("adult", version=2) # doctest: +SKIP
|
967 |
+
>>> adult.frame.info() # doctest: +SKIP
|
968 |
+
<class 'pandas.core.frame.DataFrame'>
|
969 |
+
RangeIndex: 48842 entries, 0 to 48841
|
970 |
+
Data columns (total 15 columns):
|
971 |
+
# Column Non-Null Count Dtype
|
972 |
+
--- ------ -------------- -----
|
973 |
+
0 age 48842 non-null int64
|
974 |
+
1 workclass 46043 non-null category
|
975 |
+
2 fnlwgt 48842 non-null int64
|
976 |
+
3 education 48842 non-null category
|
977 |
+
4 education-num 48842 non-null int64
|
978 |
+
5 marital-status 48842 non-null category
|
979 |
+
6 occupation 46033 non-null category
|
980 |
+
7 relationship 48842 non-null category
|
981 |
+
8 race 48842 non-null category
|
982 |
+
9 sex 48842 non-null category
|
983 |
+
10 capital-gain 48842 non-null int64
|
984 |
+
11 capital-loss 48842 non-null int64
|
985 |
+
12 hours-per-week 48842 non-null int64
|
986 |
+
13 native-country 47985 non-null category
|
987 |
+
14 class 48842 non-null category
|
988 |
+
dtypes: category(9), int64(6)
|
989 |
+
memory usage: 2.7 MB
|
990 |
+
"""
|
991 |
+
if cache is False:
|
992 |
+
# no caching will be applied
|
993 |
+
data_home = None
|
994 |
+
else:
|
995 |
+
data_home = get_data_home(data_home=data_home)
|
996 |
+
data_home = join(str(data_home), "openml")
|
997 |
+
|
998 |
+
# check valid function arguments. data_id XOR (name, version) should be
|
999 |
+
# provided
|
1000 |
+
if name is not None:
|
1001 |
+
# OpenML is case-insensitive, but the caching mechanism is not
|
1002 |
+
# convert all data names (str) to lower case
|
1003 |
+
name = name.lower()
|
1004 |
+
if data_id is not None:
|
1005 |
+
raise ValueError(
|
1006 |
+
"Dataset data_id={} and name={} passed, but you can only "
|
1007 |
+
"specify a numeric data_id or a name, not "
|
1008 |
+
"both.".format(data_id, name)
|
1009 |
+
)
|
1010 |
+
data_info = _get_data_info_by_name(
|
1011 |
+
name, version, data_home, n_retries=n_retries, delay=delay
|
1012 |
+
)
|
1013 |
+
data_id = data_info["did"]
|
1014 |
+
elif data_id is not None:
|
1015 |
+
# from the previous if statement, it is given that name is None
|
1016 |
+
if version != "active":
|
1017 |
+
raise ValueError(
|
1018 |
+
"Dataset data_id={} and version={} passed, but you can only "
|
1019 |
+
"specify a numeric data_id or a version, not "
|
1020 |
+
"both.".format(data_id, version)
|
1021 |
+
)
|
1022 |
+
else:
|
1023 |
+
raise ValueError(
|
1024 |
+
"Neither name nor data_id are provided. Please provide name or data_id."
|
1025 |
+
)
|
1026 |
+
|
1027 |
+
data_description = _get_data_description_by_id(data_id, data_home)
|
1028 |
+
if data_description["status"] != "active":
|
1029 |
+
warn(
|
1030 |
+
"Version {} of dataset {} is inactive, meaning that issues have "
|
1031 |
+
"been found in the dataset. Try using a newer version from "
|
1032 |
+
"this URL: {}".format(
|
1033 |
+
data_description["version"],
|
1034 |
+
data_description["name"],
|
1035 |
+
data_description["url"],
|
1036 |
+
)
|
1037 |
+
)
|
1038 |
+
if "error" in data_description:
|
1039 |
+
warn(
|
1040 |
+
"OpenML registered a problem with the dataset. It might be "
|
1041 |
+
"unusable. Error: {}".format(data_description["error"])
|
1042 |
+
)
|
1043 |
+
if "warning" in data_description:
|
1044 |
+
warn(
|
1045 |
+
"OpenML raised a warning on the dataset. It might be "
|
1046 |
+
"unusable. Warning: {}".format(data_description["warning"])
|
1047 |
+
)
|
1048 |
+
|
1049 |
+
return_sparse = data_description["format"].lower() == "sparse_arff"
|
1050 |
+
as_frame = not return_sparse if as_frame == "auto" else as_frame
|
1051 |
+
if parser == "auto":
|
1052 |
+
parser_ = "liac-arff" if return_sparse else "pandas"
|
1053 |
+
else:
|
1054 |
+
parser_ = parser
|
1055 |
+
|
1056 |
+
if parser_ == "pandas":
|
1057 |
+
try:
|
1058 |
+
check_pandas_support("`fetch_openml`")
|
1059 |
+
except ImportError as exc:
|
1060 |
+
if as_frame:
|
1061 |
+
err_msg = (
|
1062 |
+
"Returning pandas objects requires pandas to be installed. "
|
1063 |
+
"Alternatively, explicitly set `as_frame=False` and "
|
1064 |
+
"`parser='liac-arff'`."
|
1065 |
+
)
|
1066 |
+
else:
|
1067 |
+
err_msg = (
|
1068 |
+
f"Using `parser={parser!r}` wit dense data requires pandas to be "
|
1069 |
+
"installed. Alternatively, explicitly set `parser='liac-arff'`."
|
1070 |
+
)
|
1071 |
+
raise ImportError(err_msg) from exc
|
1072 |
+
|
1073 |
+
if return_sparse:
|
1074 |
+
if as_frame:
|
1075 |
+
raise ValueError(
|
1076 |
+
"Sparse ARFF datasets cannot be loaded with as_frame=True. "
|
1077 |
+
"Use as_frame=False or as_frame='auto' instead."
|
1078 |
+
)
|
1079 |
+
if parser_ == "pandas":
|
1080 |
+
raise ValueError(
|
1081 |
+
f"Sparse ARFF datasets cannot be loaded with parser={parser!r}. "
|
1082 |
+
"Use parser='liac-arff' or parser='auto' instead."
|
1083 |
+
)
|
1084 |
+
|
1085 |
+
# download data features, meta-info about column types
|
1086 |
+
features_list = _get_data_features(data_id, data_home)
|
1087 |
+
|
1088 |
+
if not as_frame:
|
1089 |
+
for feature in features_list:
|
1090 |
+
if "true" in (feature["is_ignore"], feature["is_row_identifier"]):
|
1091 |
+
continue
|
1092 |
+
if feature["data_type"] == "string":
|
1093 |
+
raise ValueError(
|
1094 |
+
"STRING attributes are not supported for "
|
1095 |
+
"array representation. Try as_frame=True"
|
1096 |
+
)
|
1097 |
+
|
1098 |
+
if target_column == "default-target":
|
1099 |
+
# determines the default target based on the data feature results
|
1100 |
+
# (which is currently more reliable than the data description;
|
1101 |
+
# see issue: https://github.com/openml/OpenML/issues/768)
|
1102 |
+
target_columns = [
|
1103 |
+
feature["name"]
|
1104 |
+
for feature in features_list
|
1105 |
+
if feature["is_target"] == "true"
|
1106 |
+
]
|
1107 |
+
elif isinstance(target_column, str):
|
1108 |
+
# for code-simplicity, make target_column by default a list
|
1109 |
+
target_columns = [target_column]
|
1110 |
+
elif target_column is None:
|
1111 |
+
target_columns = []
|
1112 |
+
else:
|
1113 |
+
# target_column already is of type list
|
1114 |
+
target_columns = target_column
|
1115 |
+
data_columns = _valid_data_column_names(features_list, target_columns)
|
1116 |
+
|
1117 |
+
shape: Optional[Tuple[int, int]]
|
1118 |
+
# determine arff encoding to return
|
1119 |
+
if not return_sparse:
|
1120 |
+
# The shape must include the ignored features to keep the right indexes
|
1121 |
+
# during the arff data conversion.
|
1122 |
+
data_qualities = _get_data_qualities(data_id, data_home)
|
1123 |
+
shape = _get_num_samples(data_qualities), len(features_list)
|
1124 |
+
else:
|
1125 |
+
shape = None
|
1126 |
+
|
1127 |
+
# obtain the data
|
1128 |
+
url = _DATA_FILE.format(data_description["file_id"])
|
1129 |
+
bunch = _download_data_to_bunch(
|
1130 |
+
url,
|
1131 |
+
return_sparse,
|
1132 |
+
data_home,
|
1133 |
+
as_frame=bool(as_frame),
|
1134 |
+
openml_columns_info=features_list,
|
1135 |
+
shape=shape,
|
1136 |
+
target_columns=target_columns,
|
1137 |
+
data_columns=data_columns,
|
1138 |
+
md5_checksum=data_description["md5_checksum"],
|
1139 |
+
n_retries=n_retries,
|
1140 |
+
delay=delay,
|
1141 |
+
parser=parser_,
|
1142 |
+
read_csv_kwargs=read_csv_kwargs,
|
1143 |
+
)
|
1144 |
+
|
1145 |
+
if return_X_y:
|
1146 |
+
return bunch.data, bunch.target
|
1147 |
+
|
1148 |
+
description = "{}\n\nDownloaded from openml.org.".format(
|
1149 |
+
data_description.pop("description")
|
1150 |
+
)
|
1151 |
+
|
1152 |
+
bunch.update(
|
1153 |
+
DESCR=description,
|
1154 |
+
details=data_description,
|
1155 |
+
url="https://www.openml.org/d/{}".format(data_id),
|
1156 |
+
)
|
1157 |
+
|
1158 |
+
return bunch
|
venv/lib/python3.10/site-packages/sklearn/datasets/_twenty_newsgroups.py
ADDED
@@ -0,0 +1,561 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Caching loader for the 20 newsgroups text classification dataset.
|
2 |
+
|
3 |
+
|
4 |
+
The description of the dataset is available on the official website at:
|
5 |
+
|
6 |
+
http://people.csail.mit.edu/jrennie/20Newsgroups/
|
7 |
+
|
8 |
+
Quoting the introduction:
|
9 |
+
|
10 |
+
The 20 Newsgroups data set is a collection of approximately 20,000
|
11 |
+
newsgroup documents, partitioned (nearly) evenly across 20 different
|
12 |
+
newsgroups. To the best of my knowledge, it was originally collected
|
13 |
+
by Ken Lang, probably for his Newsweeder: Learning to filter netnews
|
14 |
+
paper, though he does not explicitly mention this collection. The 20
|
15 |
+
newsgroups collection has become a popular data set for experiments
|
16 |
+
in text applications of machine learning techniques, such as text
|
17 |
+
classification and text clustering.
|
18 |
+
|
19 |
+
This dataset loader will download the recommended "by date" variant of the
|
20 |
+
dataset and which features a point in time split between the train and
|
21 |
+
test sets. The compressed dataset size is around 14 Mb compressed. Once
|
22 |
+
uncompressed the train set is 52 MB and the test set is 34 MB.
|
23 |
+
"""
|
24 |
+
# Copyright (c) 2011 Olivier Grisel <[email protected]>
|
25 |
+
# License: BSD 3 clause
|
26 |
+
|
27 |
+
import codecs
|
28 |
+
import logging
|
29 |
+
import os
|
30 |
+
import pickle
|
31 |
+
import re
|
32 |
+
import shutil
|
33 |
+
import tarfile
|
34 |
+
from contextlib import suppress
|
35 |
+
|
36 |
+
import joblib
|
37 |
+
import numpy as np
|
38 |
+
import scipy.sparse as sp
|
39 |
+
|
40 |
+
from .. import preprocessing
|
41 |
+
from ..feature_extraction.text import CountVectorizer
|
42 |
+
from ..utils import Bunch, check_random_state
|
43 |
+
from ..utils._param_validation import StrOptions, validate_params
|
44 |
+
from . import get_data_home, load_files
|
45 |
+
from ._base import (
|
46 |
+
RemoteFileMetadata,
|
47 |
+
_convert_data_dataframe,
|
48 |
+
_fetch_remote,
|
49 |
+
_pkl_filepath,
|
50 |
+
load_descr,
|
51 |
+
)
|
52 |
+
|
53 |
+
logger = logging.getLogger(__name__)
|
54 |
+
|
55 |
+
# The original data can be found at:
|
56 |
+
# https://people.csail.mit.edu/jrennie/20Newsgroups/20news-bydate.tar.gz
|
57 |
+
ARCHIVE = RemoteFileMetadata(
|
58 |
+
filename="20news-bydate.tar.gz",
|
59 |
+
url="https://ndownloader.figshare.com/files/5975967",
|
60 |
+
checksum="8f1b2514ca22a5ade8fbb9cfa5727df95fa587f4c87b786e15c759fa66d95610",
|
61 |
+
)
|
62 |
+
|
63 |
+
CACHE_NAME = "20news-bydate.pkz"
|
64 |
+
TRAIN_FOLDER = "20news-bydate-train"
|
65 |
+
TEST_FOLDER = "20news-bydate-test"
|
66 |
+
|
67 |
+
|
68 |
+
def _download_20newsgroups(target_dir, cache_path):
|
69 |
+
"""Download the 20 newsgroups data and stored it as a zipped pickle."""
|
70 |
+
train_path = os.path.join(target_dir, TRAIN_FOLDER)
|
71 |
+
test_path = os.path.join(target_dir, TEST_FOLDER)
|
72 |
+
|
73 |
+
os.makedirs(target_dir, exist_ok=True)
|
74 |
+
|
75 |
+
logger.info("Downloading dataset from %s (14 MB)", ARCHIVE.url)
|
76 |
+
archive_path = _fetch_remote(ARCHIVE, dirname=target_dir)
|
77 |
+
|
78 |
+
logger.debug("Decompressing %s", archive_path)
|
79 |
+
tarfile.open(archive_path, "r:gz").extractall(path=target_dir)
|
80 |
+
|
81 |
+
with suppress(FileNotFoundError):
|
82 |
+
os.remove(archive_path)
|
83 |
+
|
84 |
+
# Store a zipped pickle
|
85 |
+
cache = dict(
|
86 |
+
train=load_files(train_path, encoding="latin1"),
|
87 |
+
test=load_files(test_path, encoding="latin1"),
|
88 |
+
)
|
89 |
+
compressed_content = codecs.encode(pickle.dumps(cache), "zlib_codec")
|
90 |
+
with open(cache_path, "wb") as f:
|
91 |
+
f.write(compressed_content)
|
92 |
+
|
93 |
+
shutil.rmtree(target_dir)
|
94 |
+
return cache
|
95 |
+
|
96 |
+
|
97 |
+
def strip_newsgroup_header(text):
|
98 |
+
"""
|
99 |
+
Given text in "news" format, strip the headers, by removing everything
|
100 |
+
before the first blank line.
|
101 |
+
|
102 |
+
Parameters
|
103 |
+
----------
|
104 |
+
text : str
|
105 |
+
The text from which to remove the signature block.
|
106 |
+
"""
|
107 |
+
_before, _blankline, after = text.partition("\n\n")
|
108 |
+
return after
|
109 |
+
|
110 |
+
|
111 |
+
_QUOTE_RE = re.compile(
|
112 |
+
r"(writes in|writes:|wrote:|says:|said:" r"|^In article|^Quoted from|^\||^>)"
|
113 |
+
)
|
114 |
+
|
115 |
+
|
116 |
+
def strip_newsgroup_quoting(text):
|
117 |
+
"""
|
118 |
+
Given text in "news" format, strip lines beginning with the quote
|
119 |
+
characters > or |, plus lines that often introduce a quoted section
|
120 |
+
(for example, because they contain the string 'writes:'.)
|
121 |
+
|
122 |
+
Parameters
|
123 |
+
----------
|
124 |
+
text : str
|
125 |
+
The text from which to remove the signature block.
|
126 |
+
"""
|
127 |
+
good_lines = [line for line in text.split("\n") if not _QUOTE_RE.search(line)]
|
128 |
+
return "\n".join(good_lines)
|
129 |
+
|
130 |
+
|
131 |
+
def strip_newsgroup_footer(text):
|
132 |
+
"""
|
133 |
+
Given text in "news" format, attempt to remove a signature block.
|
134 |
+
|
135 |
+
As a rough heuristic, we assume that signatures are set apart by either
|
136 |
+
a blank line or a line made of hyphens, and that it is the last such line
|
137 |
+
in the file (disregarding blank lines at the end).
|
138 |
+
|
139 |
+
Parameters
|
140 |
+
----------
|
141 |
+
text : str
|
142 |
+
The text from which to remove the signature block.
|
143 |
+
"""
|
144 |
+
lines = text.strip().split("\n")
|
145 |
+
for line_num in range(len(lines) - 1, -1, -1):
|
146 |
+
line = lines[line_num]
|
147 |
+
if line.strip().strip("-") == "":
|
148 |
+
break
|
149 |
+
|
150 |
+
if line_num > 0:
|
151 |
+
return "\n".join(lines[:line_num])
|
152 |
+
else:
|
153 |
+
return text
|
154 |
+
|
155 |
+
|
156 |
+
@validate_params(
|
157 |
+
{
|
158 |
+
"data_home": [str, os.PathLike, None],
|
159 |
+
"subset": [StrOptions({"train", "test", "all"})],
|
160 |
+
"categories": ["array-like", None],
|
161 |
+
"shuffle": ["boolean"],
|
162 |
+
"random_state": ["random_state"],
|
163 |
+
"remove": [tuple],
|
164 |
+
"download_if_missing": ["boolean"],
|
165 |
+
"return_X_y": ["boolean"],
|
166 |
+
},
|
167 |
+
prefer_skip_nested_validation=True,
|
168 |
+
)
|
169 |
+
def fetch_20newsgroups(
|
170 |
+
*,
|
171 |
+
data_home=None,
|
172 |
+
subset="train",
|
173 |
+
categories=None,
|
174 |
+
shuffle=True,
|
175 |
+
random_state=42,
|
176 |
+
remove=(),
|
177 |
+
download_if_missing=True,
|
178 |
+
return_X_y=False,
|
179 |
+
):
|
180 |
+
"""Load the filenames and data from the 20 newsgroups dataset \
|
181 |
+
(classification).
|
182 |
+
|
183 |
+
Download it if necessary.
|
184 |
+
|
185 |
+
================= ==========
|
186 |
+
Classes 20
|
187 |
+
Samples total 18846
|
188 |
+
Dimensionality 1
|
189 |
+
Features text
|
190 |
+
================= ==========
|
191 |
+
|
192 |
+
Read more in the :ref:`User Guide <20newsgroups_dataset>`.
|
193 |
+
|
194 |
+
Parameters
|
195 |
+
----------
|
196 |
+
data_home : str or path-like, default=None
|
197 |
+
Specify a download and cache folder for the datasets. If None,
|
198 |
+
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
199 |
+
|
200 |
+
subset : {'train', 'test', 'all'}, default='train'
|
201 |
+
Select the dataset to load: 'train' for the training set, 'test'
|
202 |
+
for the test set, 'all' for both, with shuffled ordering.
|
203 |
+
|
204 |
+
categories : array-like, dtype=str, default=None
|
205 |
+
If None (default), load all the categories.
|
206 |
+
If not None, list of category names to load (other categories
|
207 |
+
ignored).
|
208 |
+
|
209 |
+
shuffle : bool, default=True
|
210 |
+
Whether or not to shuffle the data: might be important for models that
|
211 |
+
make the assumption that the samples are independent and identically
|
212 |
+
distributed (i.i.d.), such as stochastic gradient descent.
|
213 |
+
|
214 |
+
random_state : int, RandomState instance or None, default=42
|
215 |
+
Determines random number generation for dataset shuffling. Pass an int
|
216 |
+
for reproducible output across multiple function calls.
|
217 |
+
See :term:`Glossary <random_state>`.
|
218 |
+
|
219 |
+
remove : tuple, default=()
|
220 |
+
May contain any subset of ('headers', 'footers', 'quotes'). Each of
|
221 |
+
these are kinds of text that will be detected and removed from the
|
222 |
+
newsgroup posts, preventing classifiers from overfitting on
|
223 |
+
metadata.
|
224 |
+
|
225 |
+
'headers' removes newsgroup headers, 'footers' removes blocks at the
|
226 |
+
ends of posts that look like signatures, and 'quotes' removes lines
|
227 |
+
that appear to be quoting another post.
|
228 |
+
|
229 |
+
'headers' follows an exact standard; the other filters are not always
|
230 |
+
correct.
|
231 |
+
|
232 |
+
download_if_missing : bool, default=True
|
233 |
+
If False, raise an OSError if the data is not locally available
|
234 |
+
instead of trying to download the data from the source site.
|
235 |
+
|
236 |
+
return_X_y : bool, default=False
|
237 |
+
If True, returns `(data.data, data.target)` instead of a Bunch
|
238 |
+
object.
|
239 |
+
|
240 |
+
.. versionadded:: 0.22
|
241 |
+
|
242 |
+
Returns
|
243 |
+
-------
|
244 |
+
bunch : :class:`~sklearn.utils.Bunch`
|
245 |
+
Dictionary-like object, with the following attributes.
|
246 |
+
|
247 |
+
data : list of shape (n_samples,)
|
248 |
+
The data list to learn.
|
249 |
+
target: ndarray of shape (n_samples,)
|
250 |
+
The target labels.
|
251 |
+
filenames: list of shape (n_samples,)
|
252 |
+
The path to the location of the data.
|
253 |
+
DESCR: str
|
254 |
+
The full description of the dataset.
|
255 |
+
target_names: list of shape (n_classes,)
|
256 |
+
The names of target classes.
|
257 |
+
|
258 |
+
(data, target) : tuple if `return_X_y=True`
|
259 |
+
A tuple of two ndarrays. The first contains a 2D array of shape
|
260 |
+
(n_samples, n_classes) with each row representing one sample and each
|
261 |
+
column representing the features. The second array of shape
|
262 |
+
(n_samples,) contains the target samples.
|
263 |
+
|
264 |
+
.. versionadded:: 0.22
|
265 |
+
"""
|
266 |
+
|
267 |
+
data_home = get_data_home(data_home=data_home)
|
268 |
+
cache_path = _pkl_filepath(data_home, CACHE_NAME)
|
269 |
+
twenty_home = os.path.join(data_home, "20news_home")
|
270 |
+
cache = None
|
271 |
+
if os.path.exists(cache_path):
|
272 |
+
try:
|
273 |
+
with open(cache_path, "rb") as f:
|
274 |
+
compressed_content = f.read()
|
275 |
+
uncompressed_content = codecs.decode(compressed_content, "zlib_codec")
|
276 |
+
cache = pickle.loads(uncompressed_content)
|
277 |
+
except Exception as e:
|
278 |
+
print(80 * "_")
|
279 |
+
print("Cache loading failed")
|
280 |
+
print(80 * "_")
|
281 |
+
print(e)
|
282 |
+
|
283 |
+
if cache is None:
|
284 |
+
if download_if_missing:
|
285 |
+
logger.info("Downloading 20news dataset. This may take a few minutes.")
|
286 |
+
cache = _download_20newsgroups(
|
287 |
+
target_dir=twenty_home, cache_path=cache_path
|
288 |
+
)
|
289 |
+
else:
|
290 |
+
raise OSError("20Newsgroups dataset not found")
|
291 |
+
|
292 |
+
if subset in ("train", "test"):
|
293 |
+
data = cache[subset]
|
294 |
+
elif subset == "all":
|
295 |
+
data_lst = list()
|
296 |
+
target = list()
|
297 |
+
filenames = list()
|
298 |
+
for subset in ("train", "test"):
|
299 |
+
data = cache[subset]
|
300 |
+
data_lst.extend(data.data)
|
301 |
+
target.extend(data.target)
|
302 |
+
filenames.extend(data.filenames)
|
303 |
+
|
304 |
+
data.data = data_lst
|
305 |
+
data.target = np.array(target)
|
306 |
+
data.filenames = np.array(filenames)
|
307 |
+
|
308 |
+
fdescr = load_descr("twenty_newsgroups.rst")
|
309 |
+
|
310 |
+
data.DESCR = fdescr
|
311 |
+
|
312 |
+
if "headers" in remove:
|
313 |
+
data.data = [strip_newsgroup_header(text) for text in data.data]
|
314 |
+
if "footers" in remove:
|
315 |
+
data.data = [strip_newsgroup_footer(text) for text in data.data]
|
316 |
+
if "quotes" in remove:
|
317 |
+
data.data = [strip_newsgroup_quoting(text) for text in data.data]
|
318 |
+
|
319 |
+
if categories is not None:
|
320 |
+
labels = [(data.target_names.index(cat), cat) for cat in categories]
|
321 |
+
# Sort the categories to have the ordering of the labels
|
322 |
+
labels.sort()
|
323 |
+
labels, categories = zip(*labels)
|
324 |
+
mask = np.isin(data.target, labels)
|
325 |
+
data.filenames = data.filenames[mask]
|
326 |
+
data.target = data.target[mask]
|
327 |
+
# searchsorted to have continuous labels
|
328 |
+
data.target = np.searchsorted(labels, data.target)
|
329 |
+
data.target_names = list(categories)
|
330 |
+
# Use an object array to shuffle: avoids memory copy
|
331 |
+
data_lst = np.array(data.data, dtype=object)
|
332 |
+
data_lst = data_lst[mask]
|
333 |
+
data.data = data_lst.tolist()
|
334 |
+
|
335 |
+
if shuffle:
|
336 |
+
random_state = check_random_state(random_state)
|
337 |
+
indices = np.arange(data.target.shape[0])
|
338 |
+
random_state.shuffle(indices)
|
339 |
+
data.filenames = data.filenames[indices]
|
340 |
+
data.target = data.target[indices]
|
341 |
+
# Use an object array to shuffle: avoids memory copy
|
342 |
+
data_lst = np.array(data.data, dtype=object)
|
343 |
+
data_lst = data_lst[indices]
|
344 |
+
data.data = data_lst.tolist()
|
345 |
+
|
346 |
+
if return_X_y:
|
347 |
+
return data.data, data.target
|
348 |
+
|
349 |
+
return data
|
350 |
+
|
351 |
+
|
352 |
+
@validate_params(
|
353 |
+
{
|
354 |
+
"subset": [StrOptions({"train", "test", "all"})],
|
355 |
+
"remove": [tuple],
|
356 |
+
"data_home": [str, os.PathLike, None],
|
357 |
+
"download_if_missing": ["boolean"],
|
358 |
+
"return_X_y": ["boolean"],
|
359 |
+
"normalize": ["boolean"],
|
360 |
+
"as_frame": ["boolean"],
|
361 |
+
},
|
362 |
+
prefer_skip_nested_validation=True,
|
363 |
+
)
|
364 |
+
def fetch_20newsgroups_vectorized(
|
365 |
+
*,
|
366 |
+
subset="train",
|
367 |
+
remove=(),
|
368 |
+
data_home=None,
|
369 |
+
download_if_missing=True,
|
370 |
+
return_X_y=False,
|
371 |
+
normalize=True,
|
372 |
+
as_frame=False,
|
373 |
+
):
|
374 |
+
"""Load and vectorize the 20 newsgroups dataset (classification).
|
375 |
+
|
376 |
+
Download it if necessary.
|
377 |
+
|
378 |
+
This is a convenience function; the transformation is done using the
|
379 |
+
default settings for
|
380 |
+
:class:`~sklearn.feature_extraction.text.CountVectorizer`. For more
|
381 |
+
advanced usage (stopword filtering, n-gram extraction, etc.), combine
|
382 |
+
fetch_20newsgroups with a custom
|
383 |
+
:class:`~sklearn.feature_extraction.text.CountVectorizer`,
|
384 |
+
:class:`~sklearn.feature_extraction.text.HashingVectorizer`,
|
385 |
+
:class:`~sklearn.feature_extraction.text.TfidfTransformer` or
|
386 |
+
:class:`~sklearn.feature_extraction.text.TfidfVectorizer`.
|
387 |
+
|
388 |
+
The resulting counts are normalized using
|
389 |
+
:func:`sklearn.preprocessing.normalize` unless normalize is set to False.
|
390 |
+
|
391 |
+
================= ==========
|
392 |
+
Classes 20
|
393 |
+
Samples total 18846
|
394 |
+
Dimensionality 130107
|
395 |
+
Features real
|
396 |
+
================= ==========
|
397 |
+
|
398 |
+
Read more in the :ref:`User Guide <20newsgroups_dataset>`.
|
399 |
+
|
400 |
+
Parameters
|
401 |
+
----------
|
402 |
+
subset : {'train', 'test', 'all'}, default='train'
|
403 |
+
Select the dataset to load: 'train' for the training set, 'test'
|
404 |
+
for the test set, 'all' for both, with shuffled ordering.
|
405 |
+
|
406 |
+
remove : tuple, default=()
|
407 |
+
May contain any subset of ('headers', 'footers', 'quotes'). Each of
|
408 |
+
these are kinds of text that will be detected and removed from the
|
409 |
+
newsgroup posts, preventing classifiers from overfitting on
|
410 |
+
metadata.
|
411 |
+
|
412 |
+
'headers' removes newsgroup headers, 'footers' removes blocks at the
|
413 |
+
ends of posts that look like signatures, and 'quotes' removes lines
|
414 |
+
that appear to be quoting another post.
|
415 |
+
|
416 |
+
data_home : str or path-like, default=None
|
417 |
+
Specify an download and cache folder for the datasets. If None,
|
418 |
+
all scikit-learn data is stored in '~/scikit_learn_data' subfolders.
|
419 |
+
|
420 |
+
download_if_missing : bool, default=True
|
421 |
+
If False, raise an OSError if the data is not locally available
|
422 |
+
instead of trying to download the data from the source site.
|
423 |
+
|
424 |
+
return_X_y : bool, default=False
|
425 |
+
If True, returns ``(data.data, data.target)`` instead of a Bunch
|
426 |
+
object.
|
427 |
+
|
428 |
+
.. versionadded:: 0.20
|
429 |
+
|
430 |
+
normalize : bool, default=True
|
431 |
+
If True, normalizes each document's feature vector to unit norm using
|
432 |
+
:func:`sklearn.preprocessing.normalize`.
|
433 |
+
|
434 |
+
.. versionadded:: 0.22
|
435 |
+
|
436 |
+
as_frame : bool, default=False
|
437 |
+
If True, the data is a pandas DataFrame including columns with
|
438 |
+
appropriate dtypes (numeric, string, or categorical). The target is
|
439 |
+
a pandas DataFrame or Series depending on the number of
|
440 |
+
`target_columns`.
|
441 |
+
|
442 |
+
.. versionadded:: 0.24
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
bunch : :class:`~sklearn.utils.Bunch`
|
447 |
+
Dictionary-like object, with the following attributes.
|
448 |
+
|
449 |
+
data: {sparse matrix, dataframe} of shape (n_samples, n_features)
|
450 |
+
The input data matrix. If ``as_frame`` is `True`, ``data`` is
|
451 |
+
a pandas DataFrame with sparse columns.
|
452 |
+
target: {ndarray, series} of shape (n_samples,)
|
453 |
+
The target labels. If ``as_frame`` is `True`, ``target`` is a
|
454 |
+
pandas Series.
|
455 |
+
target_names: list of shape (n_classes,)
|
456 |
+
The names of target classes.
|
457 |
+
DESCR: str
|
458 |
+
The full description of the dataset.
|
459 |
+
frame: dataframe of shape (n_samples, n_features + 1)
|
460 |
+
Only present when `as_frame=True`. Pandas DataFrame with ``data``
|
461 |
+
and ``target``.
|
462 |
+
|
463 |
+
.. versionadded:: 0.24
|
464 |
+
|
465 |
+
(data, target) : tuple if ``return_X_y`` is True
|
466 |
+
`data` and `target` would be of the format defined in the `Bunch`
|
467 |
+
description above.
|
468 |
+
|
469 |
+
.. versionadded:: 0.20
|
470 |
+
"""
|
471 |
+
data_home = get_data_home(data_home=data_home)
|
472 |
+
filebase = "20newsgroup_vectorized"
|
473 |
+
if remove:
|
474 |
+
filebase += "remove-" + "-".join(remove)
|
475 |
+
target_file = _pkl_filepath(data_home, filebase + ".pkl")
|
476 |
+
|
477 |
+
# we shuffle but use a fixed seed for the memoization
|
478 |
+
data_train = fetch_20newsgroups(
|
479 |
+
data_home=data_home,
|
480 |
+
subset="train",
|
481 |
+
categories=None,
|
482 |
+
shuffle=True,
|
483 |
+
random_state=12,
|
484 |
+
remove=remove,
|
485 |
+
download_if_missing=download_if_missing,
|
486 |
+
)
|
487 |
+
|
488 |
+
data_test = fetch_20newsgroups(
|
489 |
+
data_home=data_home,
|
490 |
+
subset="test",
|
491 |
+
categories=None,
|
492 |
+
shuffle=True,
|
493 |
+
random_state=12,
|
494 |
+
remove=remove,
|
495 |
+
download_if_missing=download_if_missing,
|
496 |
+
)
|
497 |
+
|
498 |
+
if os.path.exists(target_file):
|
499 |
+
try:
|
500 |
+
X_train, X_test, feature_names = joblib.load(target_file)
|
501 |
+
except ValueError as e:
|
502 |
+
raise ValueError(
|
503 |
+
f"The cached dataset located in {target_file} was fetched "
|
504 |
+
"with an older scikit-learn version and it is not compatible "
|
505 |
+
"with the scikit-learn version imported. You need to "
|
506 |
+
f"manually delete the file: {target_file}."
|
507 |
+
) from e
|
508 |
+
else:
|
509 |
+
vectorizer = CountVectorizer(dtype=np.int16)
|
510 |
+
X_train = vectorizer.fit_transform(data_train.data).tocsr()
|
511 |
+
X_test = vectorizer.transform(data_test.data).tocsr()
|
512 |
+
feature_names = vectorizer.get_feature_names_out()
|
513 |
+
|
514 |
+
joblib.dump((X_train, X_test, feature_names), target_file, compress=9)
|
515 |
+
|
516 |
+
# the data is stored as int16 for compactness
|
517 |
+
# but normalize needs floats
|
518 |
+
if normalize:
|
519 |
+
X_train = X_train.astype(np.float64)
|
520 |
+
X_test = X_test.astype(np.float64)
|
521 |
+
preprocessing.normalize(X_train, copy=False)
|
522 |
+
preprocessing.normalize(X_test, copy=False)
|
523 |
+
|
524 |
+
target_names = data_train.target_names
|
525 |
+
|
526 |
+
if subset == "train":
|
527 |
+
data = X_train
|
528 |
+
target = data_train.target
|
529 |
+
elif subset == "test":
|
530 |
+
data = X_test
|
531 |
+
target = data_test.target
|
532 |
+
elif subset == "all":
|
533 |
+
data = sp.vstack((X_train, X_test)).tocsr()
|
534 |
+
target = np.concatenate((data_train.target, data_test.target))
|
535 |
+
|
536 |
+
fdescr = load_descr("twenty_newsgroups.rst")
|
537 |
+
|
538 |
+
frame = None
|
539 |
+
target_name = ["category_class"]
|
540 |
+
|
541 |
+
if as_frame:
|
542 |
+
frame, data, target = _convert_data_dataframe(
|
543 |
+
"fetch_20newsgroups_vectorized",
|
544 |
+
data,
|
545 |
+
target,
|
546 |
+
feature_names,
|
547 |
+
target_names=target_name,
|
548 |
+
sparse_data=True,
|
549 |
+
)
|
550 |
+
|
551 |
+
if return_X_y:
|
552 |
+
return data, target
|
553 |
+
|
554 |
+
return Bunch(
|
555 |
+
data=data,
|
556 |
+
target=target,
|
557 |
+
frame=frame,
|
558 |
+
target_names=target_names,
|
559 |
+
feature_names=feature_names,
|
560 |
+
DESCR=fdescr,
|
561 |
+
)
|
venv/lib/python3.10/site-packages/sklearn/datasets/images/README.txt
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Image: china.jpg
|
2 |
+
Released under a creative commons license. [1]
|
3 |
+
Attribution: Some rights reserved by danielbuechele [2]
|
4 |
+
Retrieved 21st August, 2011 from [3] by Robert Layton
|
5 |
+
|
6 |
+
[1] https://creativecommons.org/licenses/by/2.0/
|
7 |
+
[2] https://www.flickr.com/photos/danielbuechele/
|
8 |
+
[3] https://www.flickr.com/photos/danielbuechele/6061409035/sizes/z/in/photostream/
|
9 |
+
|
10 |
+
|
11 |
+
Image: flower.jpg
|
12 |
+
Released under a creative commons license. [1]
|
13 |
+
Attribution: Some rights reserved by danielbuechele [2]
|
14 |
+
Retrieved 21st August, 2011 from [3] by Robert Layton
|
15 |
+
|
16 |
+
[1] https://creativecommons.org/licenses/by/2.0/
|
17 |
+
[2] https://www.flickr.com/photos/vultilion/
|
18 |
+
[3] https://www.flickr.com/photos/vultilion/6056698931/sizes/z/in/photostream/
|
19 |
+
|
20 |
+
|
21 |
+
|
venv/lib/python3.10/site-packages/sklearn/datasets/images/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/images/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (191 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (190 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_20news.cpython-310.pyc
ADDED
Binary file (4.23 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_arff_parser.cpython-310.pyc
ADDED
Binary file (4.75 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_base.cpython-310.pyc
ADDED
Binary file (10.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_california_housing.cpython-310.pyc
ADDED
Binary file (1.51 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_common.cpython-310.pyc
ADDED
Binary file (3.79 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_covtype.cpython-310.pyc
ADDED
Binary file (2.04 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_kddcup99.cpython-310.pyc
ADDED
Binary file (2.69 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_lfw.cpython-310.pyc
ADDED
Binary file (5.82 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_olivetti_faces.cpython-310.pyc
ADDED
Binary file (1.11 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_openml.cpython-310.pyc
ADDED
Binary file (36.5 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_rcv1.cpython-310.pyc
ADDED
Binary file (1.92 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_samples_generator.cpython-310.pyc
ADDED
Binary file (19.9 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/__pycache__/test_svmlight_format.cpython-310.pyc
ADDED
Binary file (16 kB). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (195 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (202 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (207 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1119/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (210 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_1590/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (210 Bytes). View file
|
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_2/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/sklearn/datasets/tests/data/openml/id_2/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (207 Bytes). View file
|
|