Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +2 -0
- ckpts/universal/global_step20/mp_rank_07_model_states.pt +3 -0
- ckpts/universal/global_step40/zero/3.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- lm-evaluation-harness/tests/testdata/arithmetic_3da-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_complex_NP_island-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/blimp_irregular_past_participle_verbs-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/blimp_passive_2-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_french_age-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/crows_pairs_french_gender-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/hellaswag-v0-loglikelihood +1 -0
- lm-evaluation-harness/tests/testdata/iwslt17-ar-en-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_bookcorpus2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/pile_pubmed-abstracts-v0-loglikelihood_rolling +1 -0
- lm-evaluation-harness/tests/testdata/pile_ubuntu-irc-v1-res.json +1 -0
- lm-evaluation-harness/tests/testdata/piqa-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/prost-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/squad2-v0-res.json +1 -0
- lm-evaluation-harness/tests/testdata/wmt20-ta-en-v0-res.json +1 -0
- venv/lib/python3.10/site-packages/pyarrow/_flight.cpython-310-x86_64-linux-gnu.so +3 -0
- venv/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1600 +3 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/__init__.py +56 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/configuration_dinat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/modeling_dinat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/configuration_dinat.py +152 -0
- venv/lib/python3.10/site-packages/transformers/models/dinat/modeling_dinat.py +976 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/__init__.py +64 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb_fast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb.py +433 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb_fast.py +340 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py +68 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/configuration_nllb_moe.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/modeling_nllb_moe.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py +218 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py +160 -0
- venv/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py +1792 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__init__.py +100 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/configuration_owlvit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/convert_owlvit_original_flax_to_hf.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/feature_extraction_owlvit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/image_processing_owlvit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/modeling_owlvit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/processing_owlvit.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/transformers/models/owlvit/configuration_owlvit.py +383 -0
.gitattributes
CHANGED
@@ -76,3 +76,5 @@ venv/lib/python3.10/site-packages/lxml/objectify.cpython-310-x86_64-linux-gnu.so
|
|
76 |
venv/lib/python3.10/site-packages/pyarrow/_dataset.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
77 |
venv/lib/python3.10/site-packages/lxml/etree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
78 |
venv/lib/python3.10/site-packages/pyarrow/libparquet.so.1600 filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
76 |
venv/lib/python3.10/site-packages/pyarrow/_dataset.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
77 |
venv/lib/python3.10/site-packages/lxml/etree.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
78 |
venv/lib/python3.10/site-packages/pyarrow/libparquet.so.1600 filter=lfs diff=lfs merge=lfs -text
|
79 |
+
venv/lib/python3.10/site-packages/pyarrow/_flight.cpython-310-x86_64-linux-gnu.so filter=lfs diff=lfs merge=lfs -text
|
80 |
+
venv/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1600 filter=lfs diff=lfs merge=lfs -text
|
ckpts/universal/global_step20/mp_rank_07_model_states.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c1363e27ebe9f01e1bfebe941512311c310278a9617088f04a956501eb877652
|
3 |
+
size 4230084
|
ckpts/universal/global_step40/zero/3.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:755cfad2148bad9529e2acf8a360c49adcd9ce49f62187a2c924cea966c899aa
|
3 |
+
size 9387
|
lm-evaluation-harness/tests/testdata/arithmetic_3da-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
c421f9cd5a5001b80e528441da925128177a04db8526ebcdab543a90b33c9ce2
|
lm-evaluation-harness/tests/testdata/blimp_complex_NP_island-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"blimp_complex_NP_island": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_complex_NP_island": 0}}
|
lm-evaluation-harness/tests/testdata/blimp_irregular_past_participle_verbs-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
63ec733873f94ace71cb34112d1c3cd5bb768c26b975fb90acc9b8ba3f4e938e
|
lm-evaluation-harness/tests/testdata/blimp_passive_2-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
755bdfe2c89737c43001ff1dc83d68ad33e444aaf0669af66aaf82dcd09f2eca
|
lm-evaluation-harness/tests/testdata/crows_pairs_french_age-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_french_age": {"likelihood_difference": 0.31896094607685194, "likelihood_difference_stderr": 0.024068391933540753, "pct_stereotype": 0.4444444444444444, "pct_stereotype_stderr": 0.05267171812666418}}, "versions": {"crows_pairs_french_age": 0}}
|
lm-evaluation-harness/tests/testdata/crows_pairs_french_gender-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"crows_pairs_french_gender": {"likelihood_difference": 0.3364019171359413, "likelihood_difference_stderr": 0.012815700745990895, "pct_stereotype": 0.4766355140186916, "pct_stereotype_stderr": 0.027920316348204986}}, "versions": {"crows_pairs_french_gender": 0}}
|
lm-evaluation-harness/tests/testdata/hellaswag-v0-loglikelihood
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
abb808c97d6529eda6c11067837a132c62d25cba0394d720f80cca6df9f7196e
|
lm-evaluation-harness/tests/testdata/iwslt17-ar-en-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"iwslt17-ar-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.015049895477752772, "chrf_stderr": 0.0002940315671893584, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"iwslt17-ar-en": 0}}
|
lm-evaluation-harness/tests/testdata/pile_bookcorpus2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_bookcorpus2": {"bits_per_byte": 1.1631037706429144e-06, "byte_perplexity": 1.000001163104447, "word_perplexity": 1.0000066499426599}}, "versions": {"pile_bookcorpus2": 0}}
|
lm-evaluation-harness/tests/testdata/pile_opensubtitles-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_opensubtitles": {"bits_per_byte": 2.1948356082685497e-05, "byte_perplexity": 1.0000152135568616, "word_perplexity": 1.0000856162053249}}, "versions": {"pile_opensubtitles": 1}}
|
lm-evaluation-harness/tests/testdata/pile_pubmed-abstracts-v0-loglikelihood_rolling
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
66436569a43163afb2caf422d32c5f329899e74c49865d4d13881fd465fd9976
|
lm-evaluation-harness/tests/testdata/pile_ubuntu-irc-v1-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"pile_ubuntu-irc": {"bits_per_byte": 2.3513498942121155e-06, "byte_perplexity": 1.0000016298328778, "word_perplexity": 1.0000108866656874}}, "versions": {"pile_ubuntu-irc": 1}}
|
lm-evaluation-harness/tests/testdata/piqa-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"piqa": {"acc": 0.514145810663765, "acc_norm": 0.5114254624591947, "acc_norm_stderr": 0.01166277802645167, "acc_stderr": 0.011661154475524836}}, "versions": {"piqa": 0}}
|
lm-evaluation-harness/tests/testdata/prost-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"prost": {"acc": 0.24631725021349274, "acc_norm": 0.2581127241673783, "acc_norm_stderr": 0.00319703079646546, "acc_stderr": 0.003147855968061357}}, "versions": {"prost": 0}}
|
lm-evaluation-harness/tests/testdata/squad2-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"squad2": {"HasAns_exact": 0.0, "HasAns_f1": 0.0, "NoAns_exact": 0.0, "NoAns_f1": 0.0, "best_exact": 50.07159100480081, "best_f1": 50.07159100480081, "exact": 0.0, "f1": 0.0}}, "versions": {"squad2": 0}}
|
lm-evaluation-harness/tests/testdata/wmt20-ta-en-v0-res.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"results": {"wmt20-ta-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.013841110664859798, "chrf_stderr": 0.00018476696850880766, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-ta-en": 0}}
|
venv/lib/python3.10/site-packages/pyarrow/_flight.cpython-310-x86_64-linux-gnu.so
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d69b13bb38af740d932b3333f923b1c11be3a42727fe327902cd8384dc6b3874
|
3 |
+
size 1291200
|
venv/lib/python3.10/site-packages/pyarrow/libarrow_substrait.so.1600
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a87b3e5ac91904fc9ace8650052d704711dd74563afb9caf98ca589b71995492
|
3 |
+
size 5332496
|
venv/lib/python3.10/site-packages/transformers/models/dinat/__init__.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
17 |
+
|
18 |
+
|
19 |
+
_import_structure = {"configuration_dinat": ["DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DinatConfig"]}
|
20 |
+
|
21 |
+
|
22 |
+
try:
|
23 |
+
if not is_torch_available():
|
24 |
+
raise OptionalDependencyNotAvailable()
|
25 |
+
except OptionalDependencyNotAvailable:
|
26 |
+
pass
|
27 |
+
else:
|
28 |
+
_import_structure["modeling_dinat"] = [
|
29 |
+
"DINAT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
30 |
+
"DinatForImageClassification",
|
31 |
+
"DinatModel",
|
32 |
+
"DinatPreTrainedModel",
|
33 |
+
"DinatBackbone",
|
34 |
+
]
|
35 |
+
|
36 |
+
if TYPE_CHECKING:
|
37 |
+
from .configuration_dinat import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP, DinatConfig
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_torch_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
from .modeling_dinat import (
|
46 |
+
DINAT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
47 |
+
DinatBackbone,
|
48 |
+
DinatForImageClassification,
|
49 |
+
DinatModel,
|
50 |
+
DinatPreTrainedModel,
|
51 |
+
)
|
52 |
+
|
53 |
+
else:
|
54 |
+
import sys
|
55 |
+
|
56 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (961 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/configuration_dinat.cpython-310.pyc
ADDED
Binary file (6.57 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinat/__pycache__/modeling_dinat.cpython-310.pyc
ADDED
Binary file (32.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/dinat/configuration_dinat.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" Dilated Neighborhood Attention Transformer model configuration"""
|
16 |
+
|
17 |
+
from ...configuration_utils import PretrainedConfig
|
18 |
+
from ...utils import logging
|
19 |
+
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
|
20 |
+
|
21 |
+
|
22 |
+
logger = logging.get_logger(__name__)
|
23 |
+
|
24 |
+
|
25 |
+
from ..deprecated._archive_maps import DINAT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
26 |
+
|
27 |
+
|
28 |
+
class DinatConfig(BackboneConfigMixin, PretrainedConfig):
|
29 |
+
r"""
|
30 |
+
This is the configuration class to store the configuration of a [`DinatModel`]. It is used to instantiate a Dinat
|
31 |
+
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
|
32 |
+
defaults will yield a similar configuration to that of the Dinat
|
33 |
+
[shi-labs/dinat-mini-in1k-224](https://huggingface.co/shi-labs/dinat-mini-in1k-224) architecture.
|
34 |
+
|
35 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
36 |
+
documentation from [`PretrainedConfig`] for more information.
|
37 |
+
|
38 |
+
Args:
|
39 |
+
patch_size (`int`, *optional*, defaults to 4):
|
40 |
+
The size (resolution) of each patch. NOTE: Only patch size of 4 is supported at the moment.
|
41 |
+
num_channels (`int`, *optional*, defaults to 3):
|
42 |
+
The number of input channels.
|
43 |
+
embed_dim (`int`, *optional*, defaults to 64):
|
44 |
+
Dimensionality of patch embedding.
|
45 |
+
depths (`List[int]`, *optional*, defaults to `[3, 4, 6, 5]`):
|
46 |
+
Number of layers in each level of the encoder.
|
47 |
+
num_heads (`List[int]`, *optional*, defaults to `[2, 4, 8, 16]`):
|
48 |
+
Number of attention heads in each layer of the Transformer encoder.
|
49 |
+
kernel_size (`int`, *optional*, defaults to 7):
|
50 |
+
Neighborhood Attention kernel size.
|
51 |
+
dilations (`List[List[int]]`, *optional*, defaults to `[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]]`):
|
52 |
+
Dilation value of each NA layer in the Transformer encoder.
|
53 |
+
mlp_ratio (`float`, *optional*, defaults to 3.0):
|
54 |
+
Ratio of MLP hidden dimensionality to embedding dimensionality.
|
55 |
+
qkv_bias (`bool`, *optional*, defaults to `True`):
|
56 |
+
Whether or not a learnable bias should be added to the queries, keys and values.
|
57 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.0):
|
58 |
+
The dropout probability for all fully connected layers in the embeddings and encoder.
|
59 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.0):
|
60 |
+
The dropout ratio for the attention probabilities.
|
61 |
+
drop_path_rate (`float`, *optional*, defaults to 0.1):
|
62 |
+
Stochastic depth rate.
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder. If string, `"gelu"`, `"relu"`,
|
65 |
+
`"selu"` and `"gelu_new"` are supported.
|
66 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
67 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
68 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
69 |
+
The epsilon used by the layer normalization layers.
|
70 |
+
layer_scale_init_value (`float`, *optional*, defaults to 0.0):
|
71 |
+
The initial value for the layer scale. Disabled if <=0.
|
72 |
+
out_features (`List[str]`, *optional*):
|
73 |
+
If used as backbone, list of features to output. Can be any of `"stem"`, `"stage1"`, `"stage2"`, etc.
|
74 |
+
(depending on how many stages the model has). If unset and `out_indices` is set, will default to the
|
75 |
+
corresponding stages. If unset and `out_indices` is unset, will default to the last stage. Must be in the
|
76 |
+
same order as defined in the `stage_names` attribute.
|
77 |
+
out_indices (`List[int]`, *optional*):
|
78 |
+
If used as backbone, list of indices of features to output. Can be any of 0, 1, 2, etc. (depending on how
|
79 |
+
many stages the model has). If unset and `out_features` is set, will default to the corresponding stages.
|
80 |
+
If unset and `out_features` is unset, will default to the last stage. Must be in the
|
81 |
+
same order as defined in the `stage_names` attribute.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```python
|
86 |
+
>>> from transformers import DinatConfig, DinatModel
|
87 |
+
|
88 |
+
>>> # Initializing a Dinat shi-labs/dinat-mini-in1k-224 style configuration
|
89 |
+
>>> configuration = DinatConfig()
|
90 |
+
|
91 |
+
>>> # Initializing a model (with random weights) from the shi-labs/dinat-mini-in1k-224 style configuration
|
92 |
+
>>> model = DinatModel(configuration)
|
93 |
+
|
94 |
+
>>> # Accessing the model configuration
|
95 |
+
>>> configuration = model.config
|
96 |
+
```"""
|
97 |
+
|
98 |
+
model_type = "dinat"
|
99 |
+
|
100 |
+
attribute_map = {
|
101 |
+
"num_attention_heads": "num_heads",
|
102 |
+
"num_hidden_layers": "num_layers",
|
103 |
+
}
|
104 |
+
|
105 |
+
def __init__(
|
106 |
+
self,
|
107 |
+
patch_size=4,
|
108 |
+
num_channels=3,
|
109 |
+
embed_dim=64,
|
110 |
+
depths=[3, 4, 6, 5],
|
111 |
+
num_heads=[2, 4, 8, 16],
|
112 |
+
kernel_size=7,
|
113 |
+
dilations=[[1, 8, 1], [1, 4, 1, 4], [1, 2, 1, 2, 1, 2], [1, 1, 1, 1, 1]],
|
114 |
+
mlp_ratio=3.0,
|
115 |
+
qkv_bias=True,
|
116 |
+
hidden_dropout_prob=0.0,
|
117 |
+
attention_probs_dropout_prob=0.0,
|
118 |
+
drop_path_rate=0.1,
|
119 |
+
hidden_act="gelu",
|
120 |
+
initializer_range=0.02,
|
121 |
+
layer_norm_eps=1e-5,
|
122 |
+
layer_scale_init_value=0.0,
|
123 |
+
out_features=None,
|
124 |
+
out_indices=None,
|
125 |
+
**kwargs,
|
126 |
+
):
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
|
129 |
+
self.patch_size = patch_size
|
130 |
+
self.num_channels = num_channels
|
131 |
+
self.embed_dim = embed_dim
|
132 |
+
self.depths = depths
|
133 |
+
self.num_layers = len(depths)
|
134 |
+
self.num_heads = num_heads
|
135 |
+
self.kernel_size = kernel_size
|
136 |
+
self.dilations = dilations
|
137 |
+
self.mlp_ratio = mlp_ratio
|
138 |
+
self.qkv_bias = qkv_bias
|
139 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
140 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
141 |
+
self.drop_path_rate = drop_path_rate
|
142 |
+
self.hidden_act = hidden_act
|
143 |
+
self.layer_norm_eps = layer_norm_eps
|
144 |
+
self.initializer_range = initializer_range
|
145 |
+
# we set the hidden_size attribute in order to make Dinat work with VisionEncoderDecoderModel
|
146 |
+
# this indicates the channel dimension after the last stage of the model
|
147 |
+
self.hidden_size = int(embed_dim * 2 ** (len(depths) - 1))
|
148 |
+
self.layer_scale_init_value = layer_scale_init_value
|
149 |
+
self.stage_names = ["stem"] + [f"stage{idx}" for idx in range(1, len(depths) + 1)]
|
150 |
+
self._out_features, self._out_indices = get_aligned_output_features_output_indices(
|
151 |
+
out_features=out_features, out_indices=out_indices, stage_names=self.stage_names
|
152 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/dinat/modeling_dinat.py
ADDED
@@ -0,0 +1,976 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 SHI Labs and The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch Dilated Neighborhood Attention Transformer model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from dataclasses import dataclass
|
20 |
+
from typing import Optional, Tuple, Union
|
21 |
+
|
22 |
+
import torch
|
23 |
+
import torch.utils.checkpoint
|
24 |
+
from torch import nn
|
25 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
26 |
+
|
27 |
+
from ...activations import ACT2FN
|
28 |
+
from ...modeling_outputs import BackboneOutput
|
29 |
+
from ...modeling_utils import PreTrainedModel
|
30 |
+
from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer
|
31 |
+
from ...utils import (
|
32 |
+
ModelOutput,
|
33 |
+
OptionalDependencyNotAvailable,
|
34 |
+
add_code_sample_docstrings,
|
35 |
+
add_start_docstrings,
|
36 |
+
add_start_docstrings_to_model_forward,
|
37 |
+
is_natten_available,
|
38 |
+
logging,
|
39 |
+
replace_return_docstrings,
|
40 |
+
requires_backends,
|
41 |
+
)
|
42 |
+
from ...utils.backbone_utils import BackboneMixin
|
43 |
+
from .configuration_dinat import DinatConfig
|
44 |
+
|
45 |
+
|
46 |
+
if is_natten_available():
|
47 |
+
from natten.functional import natten2dav, natten2dqkrpb
|
48 |
+
else:
|
49 |
+
|
50 |
+
def natten2dqkrpb(*args, **kwargs):
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
|
53 |
+
def natten2dav(*args, **kwargs):
|
54 |
+
raise OptionalDependencyNotAvailable()
|
55 |
+
|
56 |
+
|
57 |
+
logger = logging.get_logger(__name__)
|
58 |
+
|
59 |
+
# General docstring
|
60 |
+
_CONFIG_FOR_DOC = "DinatConfig"
|
61 |
+
|
62 |
+
# Base docstring
|
63 |
+
_CHECKPOINT_FOR_DOC = "shi-labs/dinat-mini-in1k-224"
|
64 |
+
_EXPECTED_OUTPUT_SHAPE = [1, 7, 7, 512]
|
65 |
+
|
66 |
+
# Image classification docstring
|
67 |
+
_IMAGE_CLASS_CHECKPOINT = "shi-labs/dinat-mini-in1k-224"
|
68 |
+
_IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
|
69 |
+
|
70 |
+
|
71 |
+
from ..deprecated._archive_maps import DINAT_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
72 |
+
|
73 |
+
|
74 |
+
# drop_path and DinatDropPath are from the timm library.
|
75 |
+
|
76 |
+
|
77 |
+
@dataclass
|
78 |
+
# Copied from transformers.models.nat.modeling_nat.NatEncoderOutput with Nat->Dinat
|
79 |
+
class DinatEncoderOutput(ModelOutput):
|
80 |
+
"""
|
81 |
+
Dinat encoder's outputs, with potential hidden states and attentions.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
85 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
86 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
87 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
88 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
89 |
+
|
90 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
91 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
92 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
93 |
+
sequence_length)`.
|
94 |
+
|
95 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
96 |
+
heads.
|
97 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
98 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
99 |
+
shape `(batch_size, hidden_size, height, width)`.
|
100 |
+
|
101 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
102 |
+
include the spatial dimensions.
|
103 |
+
"""
|
104 |
+
|
105 |
+
last_hidden_state: torch.FloatTensor = None
|
106 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
107 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
108 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
109 |
+
|
110 |
+
|
111 |
+
@dataclass
|
112 |
+
# Copied from transformers.models.nat.modeling_nat.NatModelOutput with Nat->Dinat
|
113 |
+
class DinatModelOutput(ModelOutput):
|
114 |
+
"""
|
115 |
+
Dinat model's outputs that also contains a pooling of the last hidden states.
|
116 |
+
|
117 |
+
Args:
|
118 |
+
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
|
119 |
+
Sequence of hidden-states at the output of the last layer of the model.
|
120 |
+
pooler_output (`torch.FloatTensor` of shape `(batch_size, hidden_size)`, *optional*, returned when `add_pooling_layer=True` is passed):
|
121 |
+
Average pooling of the last layer hidden-state.
|
122 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
123 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
124 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
125 |
+
|
126 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
127 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
128 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
129 |
+
sequence_length)`.
|
130 |
+
|
131 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
132 |
+
heads.
|
133 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
134 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
135 |
+
shape `(batch_size, hidden_size, height, width)`.
|
136 |
+
|
137 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
138 |
+
include the spatial dimensions.
|
139 |
+
"""
|
140 |
+
|
141 |
+
last_hidden_state: torch.FloatTensor = None
|
142 |
+
pooler_output: Optional[torch.FloatTensor] = None
|
143 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
144 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
145 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
146 |
+
|
147 |
+
|
148 |
+
@dataclass
|
149 |
+
# Copied from transformers.models.nat.modeling_nat.NatImageClassifierOutput with Nat->Dinat
|
150 |
+
class DinatImageClassifierOutput(ModelOutput):
|
151 |
+
"""
|
152 |
+
Dinat outputs for image classification.
|
153 |
+
|
154 |
+
Args:
|
155 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
156 |
+
Classification (or regression if config.num_labels==1) loss.
|
157 |
+
logits (`torch.FloatTensor` of shape `(batch_size, config.num_labels)`):
|
158 |
+
Classification (or regression if config.num_labels==1) scores (before SoftMax).
|
159 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
160 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
161 |
+
shape `(batch_size, sequence_length, hidden_size)`.
|
162 |
+
|
163 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs.
|
164 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
165 |
+
Tuple of `torch.FloatTensor` (one for each stage) of shape `(batch_size, num_heads, sequence_length,
|
166 |
+
sequence_length)`.
|
167 |
+
|
168 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
169 |
+
heads.
|
170 |
+
reshaped_hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
171 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings + one for the output of each stage) of
|
172 |
+
shape `(batch_size, hidden_size, height, width)`.
|
173 |
+
|
174 |
+
Hidden-states of the model at the output of each layer plus the initial embedding outputs reshaped to
|
175 |
+
include the spatial dimensions.
|
176 |
+
"""
|
177 |
+
|
178 |
+
loss: Optional[torch.FloatTensor] = None
|
179 |
+
logits: torch.FloatTensor = None
|
180 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
181 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
182 |
+
reshaped_hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
183 |
+
|
184 |
+
|
185 |
+
# Copied from transformers.models.nat.modeling_nat.NatEmbeddings with Nat->Dinat
|
186 |
+
class DinatEmbeddings(nn.Module):
|
187 |
+
"""
|
188 |
+
Construct the patch and position embeddings.
|
189 |
+
"""
|
190 |
+
|
191 |
+
def __init__(self, config):
|
192 |
+
super().__init__()
|
193 |
+
|
194 |
+
self.patch_embeddings = DinatPatchEmbeddings(config)
|
195 |
+
|
196 |
+
self.norm = nn.LayerNorm(config.embed_dim)
|
197 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
198 |
+
|
199 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> Tuple[torch.Tensor]:
|
200 |
+
embeddings = self.patch_embeddings(pixel_values)
|
201 |
+
embeddings = self.norm(embeddings)
|
202 |
+
|
203 |
+
embeddings = self.dropout(embeddings)
|
204 |
+
|
205 |
+
return embeddings
|
206 |
+
|
207 |
+
|
208 |
+
# Copied from transformers.models.nat.modeling_nat.NatPatchEmbeddings with Nat->Dinat
|
209 |
+
class DinatPatchEmbeddings(nn.Module):
|
210 |
+
"""
|
211 |
+
This class turns `pixel_values` of shape `(batch_size, num_channels, height, width)` into the initial
|
212 |
+
`hidden_states` (patch embeddings) of shape `(batch_size, height, width, hidden_size)` to be consumed by a
|
213 |
+
Transformer.
|
214 |
+
"""
|
215 |
+
|
216 |
+
def __init__(self, config):
|
217 |
+
super().__init__()
|
218 |
+
patch_size = config.patch_size
|
219 |
+
num_channels, hidden_size = config.num_channels, config.embed_dim
|
220 |
+
self.num_channels = num_channels
|
221 |
+
|
222 |
+
if patch_size == 4:
|
223 |
+
pass
|
224 |
+
else:
|
225 |
+
# TODO: Support arbitrary patch sizes.
|
226 |
+
raise ValueError("Dinat only supports patch size of 4 at the moment.")
|
227 |
+
|
228 |
+
self.projection = nn.Sequential(
|
229 |
+
nn.Conv2d(self.num_channels, hidden_size // 2, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
230 |
+
nn.Conv2d(hidden_size // 2, hidden_size, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1)),
|
231 |
+
)
|
232 |
+
|
233 |
+
def forward(self, pixel_values: Optional[torch.FloatTensor]) -> torch.Tensor:
|
234 |
+
_, num_channels, height, width = pixel_values.shape
|
235 |
+
if num_channels != self.num_channels:
|
236 |
+
raise ValueError(
|
237 |
+
"Make sure that the channel dimension of the pixel values match with the one set in the configuration."
|
238 |
+
)
|
239 |
+
embeddings = self.projection(pixel_values)
|
240 |
+
embeddings = embeddings.permute(0, 2, 3, 1)
|
241 |
+
|
242 |
+
return embeddings
|
243 |
+
|
244 |
+
|
245 |
+
# Copied from transformers.models.nat.modeling_nat.NatDownsampler with Nat->Dinat
|
246 |
+
class DinatDownsampler(nn.Module):
|
247 |
+
"""
|
248 |
+
Convolutional Downsampling Layer.
|
249 |
+
|
250 |
+
Args:
|
251 |
+
dim (`int`):
|
252 |
+
Number of input channels.
|
253 |
+
norm_layer (`nn.Module`, *optional*, defaults to `nn.LayerNorm`):
|
254 |
+
Normalization layer class.
|
255 |
+
"""
|
256 |
+
|
257 |
+
def __init__(self, dim: int, norm_layer: nn.Module = nn.LayerNorm) -> None:
|
258 |
+
super().__init__()
|
259 |
+
self.dim = dim
|
260 |
+
self.reduction = nn.Conv2d(dim, 2 * dim, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
|
261 |
+
self.norm = norm_layer(2 * dim)
|
262 |
+
|
263 |
+
def forward(self, input_feature: torch.Tensor) -> torch.Tensor:
|
264 |
+
input_feature = self.reduction(input_feature.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
|
265 |
+
input_feature = self.norm(input_feature)
|
266 |
+
return input_feature
|
267 |
+
|
268 |
+
|
269 |
+
# Copied from transformers.models.beit.modeling_beit.drop_path
|
270 |
+
def drop_path(input: torch.Tensor, drop_prob: float = 0.0, training: bool = False) -> torch.Tensor:
|
271 |
+
"""
|
272 |
+
Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).
|
273 |
+
|
274 |
+
Comment by Ross Wightman: This is the same as the DropConnect impl I created for EfficientNet, etc networks,
|
275 |
+
however, the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
|
276 |
+
See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for changing the
|
277 |
+
layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use 'survival rate' as the
|
278 |
+
argument.
|
279 |
+
"""
|
280 |
+
if drop_prob == 0.0 or not training:
|
281 |
+
return input
|
282 |
+
keep_prob = 1 - drop_prob
|
283 |
+
shape = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets
|
284 |
+
random_tensor = keep_prob + torch.rand(shape, dtype=input.dtype, device=input.device)
|
285 |
+
random_tensor.floor_() # binarize
|
286 |
+
output = input.div(keep_prob) * random_tensor
|
287 |
+
return output
|
288 |
+
|
289 |
+
|
290 |
+
# Copied from transformers.models.beit.modeling_beit.BeitDropPath with Beit->Dinat
|
291 |
+
class DinatDropPath(nn.Module):
|
292 |
+
"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks)."""
|
293 |
+
|
294 |
+
def __init__(self, drop_prob: Optional[float] = None) -> None:
|
295 |
+
super().__init__()
|
296 |
+
self.drop_prob = drop_prob
|
297 |
+
|
298 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
299 |
+
return drop_path(hidden_states, self.drop_prob, self.training)
|
300 |
+
|
301 |
+
def extra_repr(self) -> str:
|
302 |
+
return "p={}".format(self.drop_prob)
|
303 |
+
|
304 |
+
|
305 |
+
class NeighborhoodAttention(nn.Module):
|
306 |
+
def __init__(self, config, dim, num_heads, kernel_size, dilation):
|
307 |
+
super().__init__()
|
308 |
+
if dim % num_heads != 0:
|
309 |
+
raise ValueError(
|
310 |
+
f"The hidden size ({dim}) is not a multiple of the number of attention heads ({num_heads})"
|
311 |
+
)
|
312 |
+
|
313 |
+
self.num_attention_heads = num_heads
|
314 |
+
self.attention_head_size = int(dim / num_heads)
|
315 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
316 |
+
self.kernel_size = kernel_size
|
317 |
+
self.dilation = dilation
|
318 |
+
|
319 |
+
# rpb is learnable relative positional biases; same concept is used Swin.
|
320 |
+
self.rpb = nn.Parameter(torch.zeros(num_heads, (2 * self.kernel_size - 1), (2 * self.kernel_size - 1)))
|
321 |
+
|
322 |
+
self.query = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
323 |
+
self.key = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
324 |
+
self.value = nn.Linear(self.all_head_size, self.all_head_size, bias=config.qkv_bias)
|
325 |
+
|
326 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
327 |
+
|
328 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttention.transpose_for_scores with Nat->Dinat
|
329 |
+
def transpose_for_scores(self, x):
|
330 |
+
new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
|
331 |
+
x = x.view(new_x_shape)
|
332 |
+
return x.permute(0, 3, 1, 2, 4)
|
333 |
+
|
334 |
+
def forward(
|
335 |
+
self,
|
336 |
+
hidden_states: torch.Tensor,
|
337 |
+
output_attentions: Optional[bool] = False,
|
338 |
+
) -> Tuple[torch.Tensor]:
|
339 |
+
query_layer = self.transpose_for_scores(self.query(hidden_states))
|
340 |
+
key_layer = self.transpose_for_scores(self.key(hidden_states))
|
341 |
+
value_layer = self.transpose_for_scores(self.value(hidden_states))
|
342 |
+
|
343 |
+
# Apply the scale factor before computing attention weights. It's usually more efficient because
|
344 |
+
# attention weights are typically a bigger tensor compared to query.
|
345 |
+
# It gives identical results because scalars are commutable in matrix multiplication.
|
346 |
+
query_layer = query_layer / math.sqrt(self.attention_head_size)
|
347 |
+
|
348 |
+
# Compute NA between "query" and "key" to get the raw attention scores, and add relative positional biases.
|
349 |
+
attention_scores = natten2dqkrpb(query_layer, key_layer, self.rpb, self.kernel_size, self.dilation)
|
350 |
+
|
351 |
+
# Normalize the attention scores to probabilities.
|
352 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
353 |
+
|
354 |
+
# This is actually dropping out entire tokens to attend to, which might
|
355 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
356 |
+
attention_probs = self.dropout(attention_probs)
|
357 |
+
|
358 |
+
context_layer = natten2dav(attention_probs, value_layer, self.kernel_size, self.dilation)
|
359 |
+
context_layer = context_layer.permute(0, 2, 3, 1, 4).contiguous()
|
360 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
361 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
362 |
+
|
363 |
+
outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
|
364 |
+
|
365 |
+
return outputs
|
366 |
+
|
367 |
+
|
368 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionOutput
|
369 |
+
class NeighborhoodAttentionOutput(nn.Module):
|
370 |
+
def __init__(self, config, dim):
|
371 |
+
super().__init__()
|
372 |
+
self.dense = nn.Linear(dim, dim)
|
373 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
374 |
+
|
375 |
+
def forward(self, hidden_states: torch.Tensor, input_tensor: torch.Tensor) -> torch.Tensor:
|
376 |
+
hidden_states = self.dense(hidden_states)
|
377 |
+
hidden_states = self.dropout(hidden_states)
|
378 |
+
|
379 |
+
return hidden_states
|
380 |
+
|
381 |
+
|
382 |
+
class NeighborhoodAttentionModule(nn.Module):
|
383 |
+
def __init__(self, config, dim, num_heads, kernel_size, dilation):
|
384 |
+
super().__init__()
|
385 |
+
self.self = NeighborhoodAttention(config, dim, num_heads, kernel_size, dilation)
|
386 |
+
self.output = NeighborhoodAttentionOutput(config, dim)
|
387 |
+
self.pruned_heads = set()
|
388 |
+
|
389 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.prune_heads
|
390 |
+
def prune_heads(self, heads):
|
391 |
+
if len(heads) == 0:
|
392 |
+
return
|
393 |
+
heads, index = find_pruneable_heads_and_indices(
|
394 |
+
heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
|
395 |
+
)
|
396 |
+
|
397 |
+
# Prune linear layers
|
398 |
+
self.self.query = prune_linear_layer(self.self.query, index)
|
399 |
+
self.self.key = prune_linear_layer(self.self.key, index)
|
400 |
+
self.self.value = prune_linear_layer(self.self.value, index)
|
401 |
+
self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
|
402 |
+
|
403 |
+
# Update hyper params and store pruned heads
|
404 |
+
self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
|
405 |
+
self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
|
406 |
+
self.pruned_heads = self.pruned_heads.union(heads)
|
407 |
+
|
408 |
+
# Copied from transformers.models.nat.modeling_nat.NeighborhoodAttentionModule.forward
|
409 |
+
def forward(
|
410 |
+
self,
|
411 |
+
hidden_states: torch.Tensor,
|
412 |
+
output_attentions: Optional[bool] = False,
|
413 |
+
) -> Tuple[torch.Tensor]:
|
414 |
+
self_outputs = self.self(hidden_states, output_attentions)
|
415 |
+
attention_output = self.output(self_outputs[0], hidden_states)
|
416 |
+
outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them
|
417 |
+
return outputs
|
418 |
+
|
419 |
+
|
420 |
+
# Copied from transformers.models.nat.modeling_nat.NatIntermediate with Nat->Dinat
|
421 |
+
class DinatIntermediate(nn.Module):
|
422 |
+
def __init__(self, config, dim):
|
423 |
+
super().__init__()
|
424 |
+
self.dense = nn.Linear(dim, int(config.mlp_ratio * dim))
|
425 |
+
if isinstance(config.hidden_act, str):
|
426 |
+
self.intermediate_act_fn = ACT2FN[config.hidden_act]
|
427 |
+
else:
|
428 |
+
self.intermediate_act_fn = config.hidden_act
|
429 |
+
|
430 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
431 |
+
hidden_states = self.dense(hidden_states)
|
432 |
+
hidden_states = self.intermediate_act_fn(hidden_states)
|
433 |
+
return hidden_states
|
434 |
+
|
435 |
+
|
436 |
+
# Copied from transformers.models.nat.modeling_nat.NatOutput with Nat->Dinat
|
437 |
+
class DinatOutput(nn.Module):
|
438 |
+
def __init__(self, config, dim):
|
439 |
+
super().__init__()
|
440 |
+
self.dense = nn.Linear(int(config.mlp_ratio * dim), dim)
|
441 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
442 |
+
|
443 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
444 |
+
hidden_states = self.dense(hidden_states)
|
445 |
+
hidden_states = self.dropout(hidden_states)
|
446 |
+
return hidden_states
|
447 |
+
|
448 |
+
|
449 |
+
class DinatLayer(nn.Module):
|
450 |
+
def __init__(self, config, dim, num_heads, dilation, drop_path_rate=0.0):
|
451 |
+
super().__init__()
|
452 |
+
self.chunk_size_feed_forward = config.chunk_size_feed_forward
|
453 |
+
self.kernel_size = config.kernel_size
|
454 |
+
self.dilation = dilation
|
455 |
+
self.window_size = self.kernel_size * self.dilation
|
456 |
+
self.layernorm_before = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
457 |
+
self.attention = NeighborhoodAttentionModule(
|
458 |
+
config, dim, num_heads, kernel_size=self.kernel_size, dilation=self.dilation
|
459 |
+
)
|
460 |
+
self.drop_path = DinatDropPath(drop_path_rate) if drop_path_rate > 0.0 else nn.Identity()
|
461 |
+
self.layernorm_after = nn.LayerNorm(dim, eps=config.layer_norm_eps)
|
462 |
+
self.intermediate = DinatIntermediate(config, dim)
|
463 |
+
self.output = DinatOutput(config, dim)
|
464 |
+
self.layer_scale_parameters = (
|
465 |
+
nn.Parameter(config.layer_scale_init_value * torch.ones((2, dim)), requires_grad=True)
|
466 |
+
if config.layer_scale_init_value > 0
|
467 |
+
else None
|
468 |
+
)
|
469 |
+
|
470 |
+
def maybe_pad(self, hidden_states, height, width):
|
471 |
+
window_size = self.window_size
|
472 |
+
pad_values = (0, 0, 0, 0, 0, 0)
|
473 |
+
if height < window_size or width < window_size:
|
474 |
+
pad_l = pad_t = 0
|
475 |
+
pad_r = max(0, window_size - width)
|
476 |
+
pad_b = max(0, window_size - height)
|
477 |
+
pad_values = (0, 0, pad_l, pad_r, pad_t, pad_b)
|
478 |
+
hidden_states = nn.functional.pad(hidden_states, pad_values)
|
479 |
+
return hidden_states, pad_values
|
480 |
+
|
481 |
+
def forward(
|
482 |
+
self,
|
483 |
+
hidden_states: torch.Tensor,
|
484 |
+
output_attentions: Optional[bool] = False,
|
485 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
486 |
+
batch_size, height, width, channels = hidden_states.size()
|
487 |
+
shortcut = hidden_states
|
488 |
+
|
489 |
+
hidden_states = self.layernorm_before(hidden_states)
|
490 |
+
# pad hidden_states if they are smaller than kernel size x dilation
|
491 |
+
hidden_states, pad_values = self.maybe_pad(hidden_states, height, width)
|
492 |
+
|
493 |
+
_, height_pad, width_pad, _ = hidden_states.shape
|
494 |
+
|
495 |
+
attention_outputs = self.attention(hidden_states, output_attentions=output_attentions)
|
496 |
+
|
497 |
+
attention_output = attention_outputs[0]
|
498 |
+
|
499 |
+
was_padded = pad_values[3] > 0 or pad_values[5] > 0
|
500 |
+
if was_padded:
|
501 |
+
attention_output = attention_output[:, :height, :width, :].contiguous()
|
502 |
+
|
503 |
+
if self.layer_scale_parameters is not None:
|
504 |
+
attention_output = self.layer_scale_parameters[0] * attention_output
|
505 |
+
|
506 |
+
hidden_states = shortcut + self.drop_path(attention_output)
|
507 |
+
|
508 |
+
layer_output = self.layernorm_after(hidden_states)
|
509 |
+
layer_output = self.output(self.intermediate(layer_output))
|
510 |
+
|
511 |
+
if self.layer_scale_parameters is not None:
|
512 |
+
layer_output = self.layer_scale_parameters[1] * layer_output
|
513 |
+
|
514 |
+
layer_output = hidden_states + self.drop_path(layer_output)
|
515 |
+
|
516 |
+
layer_outputs = (layer_output, attention_outputs[1]) if output_attentions else (layer_output,)
|
517 |
+
return layer_outputs
|
518 |
+
|
519 |
+
|
520 |
+
class DinatStage(nn.Module):
|
521 |
+
def __init__(self, config, dim, depth, num_heads, dilations, drop_path_rate, downsample):
|
522 |
+
super().__init__()
|
523 |
+
self.config = config
|
524 |
+
self.dim = dim
|
525 |
+
self.layers = nn.ModuleList(
|
526 |
+
[
|
527 |
+
DinatLayer(
|
528 |
+
config=config,
|
529 |
+
dim=dim,
|
530 |
+
num_heads=num_heads,
|
531 |
+
dilation=dilations[i],
|
532 |
+
drop_path_rate=drop_path_rate[i],
|
533 |
+
)
|
534 |
+
for i in range(depth)
|
535 |
+
]
|
536 |
+
)
|
537 |
+
|
538 |
+
# patch merging layer
|
539 |
+
if downsample is not None:
|
540 |
+
self.downsample = downsample(dim=dim, norm_layer=nn.LayerNorm)
|
541 |
+
else:
|
542 |
+
self.downsample = None
|
543 |
+
|
544 |
+
self.pointing = False
|
545 |
+
|
546 |
+
# Copied from transformers.models.nat.modeling_nat.NatStage.forward
|
547 |
+
def forward(
|
548 |
+
self,
|
549 |
+
hidden_states: torch.Tensor,
|
550 |
+
output_attentions: Optional[bool] = False,
|
551 |
+
) -> Tuple[torch.Tensor]:
|
552 |
+
_, height, width, _ = hidden_states.size()
|
553 |
+
for i, layer_module in enumerate(self.layers):
|
554 |
+
layer_outputs = layer_module(hidden_states, output_attentions)
|
555 |
+
hidden_states = layer_outputs[0]
|
556 |
+
|
557 |
+
hidden_states_before_downsampling = hidden_states
|
558 |
+
if self.downsample is not None:
|
559 |
+
hidden_states = self.downsample(hidden_states_before_downsampling)
|
560 |
+
|
561 |
+
stage_outputs = (hidden_states, hidden_states_before_downsampling)
|
562 |
+
|
563 |
+
if output_attentions:
|
564 |
+
stage_outputs += layer_outputs[1:]
|
565 |
+
return stage_outputs
|
566 |
+
|
567 |
+
|
568 |
+
class DinatEncoder(nn.Module):
|
569 |
+
def __init__(self, config):
|
570 |
+
super().__init__()
|
571 |
+
self.num_levels = len(config.depths)
|
572 |
+
self.config = config
|
573 |
+
dpr = [x.item() for x in torch.linspace(0, config.drop_path_rate, sum(config.depths))]
|
574 |
+
self.levels = nn.ModuleList(
|
575 |
+
[
|
576 |
+
DinatStage(
|
577 |
+
config=config,
|
578 |
+
dim=int(config.embed_dim * 2**i_layer),
|
579 |
+
depth=config.depths[i_layer],
|
580 |
+
num_heads=config.num_heads[i_layer],
|
581 |
+
dilations=config.dilations[i_layer],
|
582 |
+
drop_path_rate=dpr[sum(config.depths[:i_layer]) : sum(config.depths[: i_layer + 1])],
|
583 |
+
downsample=DinatDownsampler if (i_layer < self.num_levels - 1) else None,
|
584 |
+
)
|
585 |
+
for i_layer in range(self.num_levels)
|
586 |
+
]
|
587 |
+
)
|
588 |
+
|
589 |
+
# Copied from transformers.models.nat.modeling_nat.NatEncoder.forward with Nat->Dinat
|
590 |
+
def forward(
|
591 |
+
self,
|
592 |
+
hidden_states: torch.Tensor,
|
593 |
+
output_attentions: Optional[bool] = False,
|
594 |
+
output_hidden_states: Optional[bool] = False,
|
595 |
+
output_hidden_states_before_downsampling: Optional[bool] = False,
|
596 |
+
return_dict: Optional[bool] = True,
|
597 |
+
) -> Union[Tuple, DinatEncoderOutput]:
|
598 |
+
all_hidden_states = () if output_hidden_states else None
|
599 |
+
all_reshaped_hidden_states = () if output_hidden_states else None
|
600 |
+
all_self_attentions = () if output_attentions else None
|
601 |
+
|
602 |
+
if output_hidden_states:
|
603 |
+
# rearrange b h w c -> b c h w
|
604 |
+
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
|
605 |
+
all_hidden_states += (hidden_states,)
|
606 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
607 |
+
|
608 |
+
for i, layer_module in enumerate(self.levels):
|
609 |
+
layer_outputs = layer_module(hidden_states, output_attentions)
|
610 |
+
|
611 |
+
hidden_states = layer_outputs[0]
|
612 |
+
hidden_states_before_downsampling = layer_outputs[1]
|
613 |
+
|
614 |
+
if output_hidden_states and output_hidden_states_before_downsampling:
|
615 |
+
# rearrange b h w c -> b c h w
|
616 |
+
reshaped_hidden_state = hidden_states_before_downsampling.permute(0, 3, 1, 2)
|
617 |
+
all_hidden_states += (hidden_states_before_downsampling,)
|
618 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
619 |
+
elif output_hidden_states and not output_hidden_states_before_downsampling:
|
620 |
+
# rearrange b h w c -> b c h w
|
621 |
+
reshaped_hidden_state = hidden_states.permute(0, 3, 1, 2)
|
622 |
+
all_hidden_states += (hidden_states,)
|
623 |
+
all_reshaped_hidden_states += (reshaped_hidden_state,)
|
624 |
+
|
625 |
+
if output_attentions:
|
626 |
+
all_self_attentions += layer_outputs[2:]
|
627 |
+
|
628 |
+
if not return_dict:
|
629 |
+
return tuple(v for v in [hidden_states, all_hidden_states, all_self_attentions] if v is not None)
|
630 |
+
|
631 |
+
return DinatEncoderOutput(
|
632 |
+
last_hidden_state=hidden_states,
|
633 |
+
hidden_states=all_hidden_states,
|
634 |
+
attentions=all_self_attentions,
|
635 |
+
reshaped_hidden_states=all_reshaped_hidden_states,
|
636 |
+
)
|
637 |
+
|
638 |
+
|
639 |
+
class DinatPreTrainedModel(PreTrainedModel):
|
640 |
+
"""
|
641 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
642 |
+
models.
|
643 |
+
"""
|
644 |
+
|
645 |
+
config_class = DinatConfig
|
646 |
+
base_model_prefix = "dinat"
|
647 |
+
main_input_name = "pixel_values"
|
648 |
+
|
649 |
+
def _init_weights(self, module):
|
650 |
+
"""Initialize the weights"""
|
651 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
652 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
653 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
654 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
655 |
+
if module.bias is not None:
|
656 |
+
module.bias.data.zero_()
|
657 |
+
elif isinstance(module, nn.LayerNorm):
|
658 |
+
module.bias.data.zero_()
|
659 |
+
module.weight.data.fill_(1.0)
|
660 |
+
|
661 |
+
|
662 |
+
DINAT_START_DOCSTRING = r"""
|
663 |
+
This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use
|
664 |
+
it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
|
665 |
+
behavior.
|
666 |
+
|
667 |
+
Parameters:
|
668 |
+
config ([`DinatConfig`]): Model configuration class with all the parameters of the model.
|
669 |
+
Initializing with a config file does not load the weights associated with the model, only the
|
670 |
+
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
671 |
+
"""
|
672 |
+
|
673 |
+
DINAT_INPUTS_DOCSTRING = r"""
|
674 |
+
Args:
|
675 |
+
pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
|
676 |
+
Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`ViTImageProcessor.__call__`]
|
677 |
+
for details.
|
678 |
+
|
679 |
+
output_attentions (`bool`, *optional*):
|
680 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
681 |
+
tensors for more detail.
|
682 |
+
output_hidden_states (`bool`, *optional*):
|
683 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
684 |
+
more detail.
|
685 |
+
return_dict (`bool`, *optional*):
|
686 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
687 |
+
"""
|
688 |
+
|
689 |
+
|
690 |
+
@add_start_docstrings(
|
691 |
+
"The bare Dinat Model transformer outputting raw hidden-states without any specific head on top.",
|
692 |
+
DINAT_START_DOCSTRING,
|
693 |
+
)
|
694 |
+
# Copied from transformers.models.nat.modeling_nat.NatModel with Nat->Dinat, NAT->DINAT
|
695 |
+
class DinatModel(DinatPreTrainedModel):
|
696 |
+
def __init__(self, config, add_pooling_layer=True):
|
697 |
+
super().__init__(config)
|
698 |
+
|
699 |
+
requires_backends(self, ["natten"])
|
700 |
+
|
701 |
+
self.config = config
|
702 |
+
self.num_levels = len(config.depths)
|
703 |
+
self.num_features = int(config.embed_dim * 2 ** (self.num_levels - 1))
|
704 |
+
|
705 |
+
self.embeddings = DinatEmbeddings(config)
|
706 |
+
self.encoder = DinatEncoder(config)
|
707 |
+
|
708 |
+
self.layernorm = nn.LayerNorm(self.num_features, eps=config.layer_norm_eps)
|
709 |
+
self.pooler = nn.AdaptiveAvgPool1d(1) if add_pooling_layer else None
|
710 |
+
|
711 |
+
# Initialize weights and apply final processing
|
712 |
+
self.post_init()
|
713 |
+
|
714 |
+
def get_input_embeddings(self):
|
715 |
+
return self.embeddings.patch_embeddings
|
716 |
+
|
717 |
+
def _prune_heads(self, heads_to_prune):
|
718 |
+
"""
|
719 |
+
Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base
|
720 |
+
class PreTrainedModel
|
721 |
+
"""
|
722 |
+
for layer, heads in heads_to_prune.items():
|
723 |
+
self.encoder.layer[layer].attention.prune_heads(heads)
|
724 |
+
|
725 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
726 |
+
@add_code_sample_docstrings(
|
727 |
+
checkpoint=_CHECKPOINT_FOR_DOC,
|
728 |
+
output_type=DinatModelOutput,
|
729 |
+
config_class=_CONFIG_FOR_DOC,
|
730 |
+
modality="vision",
|
731 |
+
expected_output=_EXPECTED_OUTPUT_SHAPE,
|
732 |
+
)
|
733 |
+
def forward(
|
734 |
+
self,
|
735 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
736 |
+
output_attentions: Optional[bool] = None,
|
737 |
+
output_hidden_states: Optional[bool] = None,
|
738 |
+
return_dict: Optional[bool] = None,
|
739 |
+
) -> Union[Tuple, DinatModelOutput]:
|
740 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
741 |
+
output_hidden_states = (
|
742 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
743 |
+
)
|
744 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
745 |
+
|
746 |
+
if pixel_values is None:
|
747 |
+
raise ValueError("You have to specify pixel_values")
|
748 |
+
|
749 |
+
embedding_output = self.embeddings(pixel_values)
|
750 |
+
|
751 |
+
encoder_outputs = self.encoder(
|
752 |
+
embedding_output,
|
753 |
+
output_attentions=output_attentions,
|
754 |
+
output_hidden_states=output_hidden_states,
|
755 |
+
return_dict=return_dict,
|
756 |
+
)
|
757 |
+
|
758 |
+
sequence_output = encoder_outputs[0]
|
759 |
+
sequence_output = self.layernorm(sequence_output)
|
760 |
+
|
761 |
+
pooled_output = None
|
762 |
+
if self.pooler is not None:
|
763 |
+
pooled_output = self.pooler(sequence_output.flatten(1, 2).transpose(1, 2))
|
764 |
+
pooled_output = torch.flatten(pooled_output, 1)
|
765 |
+
|
766 |
+
if not return_dict:
|
767 |
+
output = (sequence_output, pooled_output) + encoder_outputs[1:]
|
768 |
+
|
769 |
+
return output
|
770 |
+
|
771 |
+
return DinatModelOutput(
|
772 |
+
last_hidden_state=sequence_output,
|
773 |
+
pooler_output=pooled_output,
|
774 |
+
hidden_states=encoder_outputs.hidden_states,
|
775 |
+
attentions=encoder_outputs.attentions,
|
776 |
+
reshaped_hidden_states=encoder_outputs.reshaped_hidden_states,
|
777 |
+
)
|
778 |
+
|
779 |
+
|
780 |
+
@add_start_docstrings(
|
781 |
+
"""
|
782 |
+
Dinat Model transformer with an image classification head on top (a linear layer on top of the final hidden state
|
783 |
+
of the [CLS] token) e.g. for ImageNet.
|
784 |
+
""",
|
785 |
+
DINAT_START_DOCSTRING,
|
786 |
+
)
|
787 |
+
class DinatForImageClassification(DinatPreTrainedModel):
|
788 |
+
def __init__(self, config):
|
789 |
+
super().__init__(config)
|
790 |
+
|
791 |
+
requires_backends(self, ["natten"])
|
792 |
+
|
793 |
+
self.num_labels = config.num_labels
|
794 |
+
self.dinat = DinatModel(config)
|
795 |
+
|
796 |
+
# Classifier head
|
797 |
+
self.classifier = (
|
798 |
+
nn.Linear(self.dinat.num_features, config.num_labels) if config.num_labels > 0 else nn.Identity()
|
799 |
+
)
|
800 |
+
|
801 |
+
# Initialize weights and apply final processing
|
802 |
+
self.post_init()
|
803 |
+
|
804 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
805 |
+
@add_code_sample_docstrings(
|
806 |
+
checkpoint=_IMAGE_CLASS_CHECKPOINT,
|
807 |
+
output_type=DinatImageClassifierOutput,
|
808 |
+
config_class=_CONFIG_FOR_DOC,
|
809 |
+
expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
|
810 |
+
)
|
811 |
+
def forward(
|
812 |
+
self,
|
813 |
+
pixel_values: Optional[torch.FloatTensor] = None,
|
814 |
+
labels: Optional[torch.LongTensor] = None,
|
815 |
+
output_attentions: Optional[bool] = None,
|
816 |
+
output_hidden_states: Optional[bool] = None,
|
817 |
+
return_dict: Optional[bool] = None,
|
818 |
+
) -> Union[Tuple, DinatImageClassifierOutput]:
|
819 |
+
r"""
|
820 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
821 |
+
Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
|
822 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
823 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
824 |
+
"""
|
825 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
826 |
+
|
827 |
+
outputs = self.dinat(
|
828 |
+
pixel_values,
|
829 |
+
output_attentions=output_attentions,
|
830 |
+
output_hidden_states=output_hidden_states,
|
831 |
+
return_dict=return_dict,
|
832 |
+
)
|
833 |
+
|
834 |
+
pooled_output = outputs[1]
|
835 |
+
|
836 |
+
logits = self.classifier(pooled_output)
|
837 |
+
|
838 |
+
loss = None
|
839 |
+
if labels is not None:
|
840 |
+
if self.config.problem_type is None:
|
841 |
+
if self.num_labels == 1:
|
842 |
+
self.config.problem_type = "regression"
|
843 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
844 |
+
self.config.problem_type = "single_label_classification"
|
845 |
+
else:
|
846 |
+
self.config.problem_type = "multi_label_classification"
|
847 |
+
|
848 |
+
if self.config.problem_type == "regression":
|
849 |
+
loss_fct = MSELoss()
|
850 |
+
if self.num_labels == 1:
|
851 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
852 |
+
else:
|
853 |
+
loss = loss_fct(logits, labels)
|
854 |
+
elif self.config.problem_type == "single_label_classification":
|
855 |
+
loss_fct = CrossEntropyLoss()
|
856 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
857 |
+
elif self.config.problem_type == "multi_label_classification":
|
858 |
+
loss_fct = BCEWithLogitsLoss()
|
859 |
+
loss = loss_fct(logits, labels)
|
860 |
+
|
861 |
+
if not return_dict:
|
862 |
+
output = (logits,) + outputs[2:]
|
863 |
+
return ((loss,) + output) if loss is not None else output
|
864 |
+
|
865 |
+
return DinatImageClassifierOutput(
|
866 |
+
loss=loss,
|
867 |
+
logits=logits,
|
868 |
+
hidden_states=outputs.hidden_states,
|
869 |
+
attentions=outputs.attentions,
|
870 |
+
reshaped_hidden_states=outputs.reshaped_hidden_states,
|
871 |
+
)
|
872 |
+
|
873 |
+
|
874 |
+
@add_start_docstrings(
|
875 |
+
"NAT backbone, to be used with frameworks like DETR and MaskFormer.",
|
876 |
+
DINAT_START_DOCSTRING,
|
877 |
+
)
|
878 |
+
class DinatBackbone(DinatPreTrainedModel, BackboneMixin):
|
879 |
+
def __init__(self, config):
|
880 |
+
super().__init__(config)
|
881 |
+
super()._init_backbone(config)
|
882 |
+
|
883 |
+
requires_backends(self, ["natten"])
|
884 |
+
|
885 |
+
self.embeddings = DinatEmbeddings(config)
|
886 |
+
self.encoder = DinatEncoder(config)
|
887 |
+
self.num_features = [config.embed_dim] + [int(config.embed_dim * 2**i) for i in range(len(config.depths))]
|
888 |
+
|
889 |
+
# Add layer norms to hidden states of out_features
|
890 |
+
hidden_states_norms = {}
|
891 |
+
for stage, num_channels in zip(self._out_features, self.channels):
|
892 |
+
hidden_states_norms[stage] = nn.LayerNorm(num_channels)
|
893 |
+
self.hidden_states_norms = nn.ModuleDict(hidden_states_norms)
|
894 |
+
|
895 |
+
# Initialize weights and apply final processing
|
896 |
+
self.post_init()
|
897 |
+
|
898 |
+
def get_input_embeddings(self):
|
899 |
+
return self.embeddings.patch_embeddings
|
900 |
+
|
901 |
+
@add_start_docstrings_to_model_forward(DINAT_INPUTS_DOCSTRING)
|
902 |
+
@replace_return_docstrings(output_type=BackboneOutput, config_class=_CONFIG_FOR_DOC)
|
903 |
+
def forward(
|
904 |
+
self,
|
905 |
+
pixel_values: torch.Tensor,
|
906 |
+
output_hidden_states: Optional[bool] = None,
|
907 |
+
output_attentions: Optional[bool] = None,
|
908 |
+
return_dict: Optional[bool] = None,
|
909 |
+
) -> BackboneOutput:
|
910 |
+
"""
|
911 |
+
Returns:
|
912 |
+
|
913 |
+
Examples:
|
914 |
+
|
915 |
+
```python
|
916 |
+
>>> from transformers import AutoImageProcessor, AutoBackbone
|
917 |
+
>>> import torch
|
918 |
+
>>> from PIL import Image
|
919 |
+
>>> import requests
|
920 |
+
|
921 |
+
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
922 |
+
>>> image = Image.open(requests.get(url, stream=True).raw)
|
923 |
+
|
924 |
+
>>> processor = AutoImageProcessor.from_pretrained("shi-labs/nat-mini-in1k-224")
|
925 |
+
>>> model = AutoBackbone.from_pretrained(
|
926 |
+
... "shi-labs/nat-mini-in1k-224", out_features=["stage1", "stage2", "stage3", "stage4"]
|
927 |
+
... )
|
928 |
+
|
929 |
+
>>> inputs = processor(image, return_tensors="pt")
|
930 |
+
|
931 |
+
>>> outputs = model(**inputs)
|
932 |
+
|
933 |
+
>>> feature_maps = outputs.feature_maps
|
934 |
+
>>> list(feature_maps[-1].shape)
|
935 |
+
[1, 512, 7, 7]
|
936 |
+
```"""
|
937 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
938 |
+
output_hidden_states = (
|
939 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
940 |
+
)
|
941 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
942 |
+
|
943 |
+
embedding_output = self.embeddings(pixel_values)
|
944 |
+
|
945 |
+
outputs = self.encoder(
|
946 |
+
embedding_output,
|
947 |
+
output_attentions=output_attentions,
|
948 |
+
output_hidden_states=True,
|
949 |
+
output_hidden_states_before_downsampling=True,
|
950 |
+
return_dict=True,
|
951 |
+
)
|
952 |
+
|
953 |
+
hidden_states = outputs.reshaped_hidden_states
|
954 |
+
|
955 |
+
feature_maps = ()
|
956 |
+
for stage, hidden_state in zip(self.stage_names, hidden_states):
|
957 |
+
if stage in self.out_features:
|
958 |
+
batch_size, num_channels, height, width = hidden_state.shape
|
959 |
+
hidden_state = hidden_state.permute(0, 2, 3, 1).contiguous()
|
960 |
+
hidden_state = hidden_state.view(batch_size, height * width, num_channels)
|
961 |
+
hidden_state = self.hidden_states_norms[stage](hidden_state)
|
962 |
+
hidden_state = hidden_state.view(batch_size, height, width, num_channels)
|
963 |
+
hidden_state = hidden_state.permute(0, 3, 1, 2).contiguous()
|
964 |
+
feature_maps += (hidden_state,)
|
965 |
+
|
966 |
+
if not return_dict:
|
967 |
+
output = (feature_maps,)
|
968 |
+
if output_hidden_states:
|
969 |
+
output += (outputs.hidden_states,)
|
970 |
+
return output
|
971 |
+
|
972 |
+
return BackboneOutput(
|
973 |
+
feature_maps=feature_maps,
|
974 |
+
hidden_states=outputs.hidden_states if output_hidden_states else None,
|
975 |
+
attentions=outputs.attentions,
|
976 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/nllb/__init__.py
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_sentencepiece_available,
|
20 |
+
is_tokenizers_available,
|
21 |
+
is_torch_available,
|
22 |
+
)
|
23 |
+
|
24 |
+
|
25 |
+
_import_structure = {}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_sentencepiece_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["tokenization_nllb"] = ["NllbTokenizer"]
|
34 |
+
|
35 |
+
try:
|
36 |
+
if not is_tokenizers_available():
|
37 |
+
raise OptionalDependencyNotAvailable()
|
38 |
+
except OptionalDependencyNotAvailable:
|
39 |
+
pass
|
40 |
+
else:
|
41 |
+
_import_structure["tokenization_nllb_fast"] = ["NllbTokenizerFast"]
|
42 |
+
|
43 |
+
|
44 |
+
if TYPE_CHECKING:
|
45 |
+
try:
|
46 |
+
if not is_sentencepiece_available():
|
47 |
+
raise OptionalDependencyNotAvailable()
|
48 |
+
except OptionalDependencyNotAvailable:
|
49 |
+
pass
|
50 |
+
else:
|
51 |
+
from .tokenization_nllb import NllbTokenizer
|
52 |
+
|
53 |
+
try:
|
54 |
+
if not is_tokenizers_available():
|
55 |
+
raise OptionalDependencyNotAvailable()
|
56 |
+
except OptionalDependencyNotAvailable:
|
57 |
+
pass
|
58 |
+
else:
|
59 |
+
from .tokenization_nllb_fast import NllbTokenizerFast
|
60 |
+
|
61 |
+
else:
|
62 |
+
import sys
|
63 |
+
|
64 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (936 Bytes). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb.cpython-310.pyc
ADDED
Binary file (18.2 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb/__pycache__/tokenization_nllb_fast.cpython-310.pyc
ADDED
Binary file (13.9 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb.py
ADDED
@@ -0,0 +1,433 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import Any, Dict, List, Optional, Tuple
|
19 |
+
|
20 |
+
import sentencepiece as spm
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer
|
23 |
+
from ...utils import logging
|
24 |
+
|
25 |
+
|
26 |
+
logger = logging.get_logger(__name__)
|
27 |
+
|
28 |
+
SPIECE_UNDERLINE = "▁"
|
29 |
+
|
30 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model"}
|
31 |
+
|
32 |
+
|
33 |
+
FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip
|
34 |
+
|
35 |
+
|
36 |
+
class NllbTokenizer(PreTrainedTokenizer):
|
37 |
+
"""
|
38 |
+
Construct an NLLB tokenizer.
|
39 |
+
|
40 |
+
Adapted from [`RobertaTokenizer`] and [`XLNetTokenizer`]. Based on
|
41 |
+
[SentencePiece](https://github.com/google/sentencepiece).
|
42 |
+
|
43 |
+
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
|
44 |
+
<tokens> <eos>` for target language documents.
|
45 |
+
|
46 |
+
Examples:
|
47 |
+
|
48 |
+
```python
|
49 |
+
>>> from transformers import NllbTokenizer
|
50 |
+
|
51 |
+
>>> tokenizer = NllbTokenizer.from_pretrained(
|
52 |
+
... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
|
53 |
+
... )
|
54 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
55 |
+
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
|
56 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
|
57 |
+
```
|
58 |
+
|
59 |
+
Args:
|
60 |
+
vocab_file (`str`):
|
61 |
+
Path to the vocabulary file.
|
62 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
63 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
64 |
+
|
65 |
+
<Tip>
|
66 |
+
|
67 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
68 |
+
sequence. The token used is the `cls_token`.
|
69 |
+
|
70 |
+
</Tip>
|
71 |
+
|
72 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
73 |
+
The end of sequence token.
|
74 |
+
|
75 |
+
<Tip>
|
76 |
+
|
77 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
78 |
+
The token used is the `sep_token`.
|
79 |
+
|
80 |
+
</Tip>
|
81 |
+
|
82 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
83 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
84 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
85 |
+
token of a sequence built with special tokens.
|
86 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
87 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
88 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
89 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
90 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
91 |
+
token instead.
|
92 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
93 |
+
The token used for padding, for example when batching sequences of different lengths.
|
94 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
95 |
+
The token used for masking values. This is the token used when training this model with masked language
|
96 |
+
modeling. This is the token which the model will try to predict.
|
97 |
+
tokenizer_file (`str`, *optional*):
|
98 |
+
The path to a tokenizer file to use instead of the vocab file.
|
99 |
+
src_lang (`str`, *optional*):
|
100 |
+
The language to use as source language for translation.
|
101 |
+
tgt_lang (`str`, *optional*):
|
102 |
+
The language to use as target language for translation.
|
103 |
+
sp_model_kwargs (`Dict[str, str]`):
|
104 |
+
Additional keyword arguments to pass to the model initialization.
|
105 |
+
"""
|
106 |
+
|
107 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
108 |
+
model_input_names = ["input_ids", "attention_mask"]
|
109 |
+
|
110 |
+
prefix_tokens: List[int] = []
|
111 |
+
suffix_tokens: List[int] = []
|
112 |
+
|
113 |
+
def __init__(
|
114 |
+
self,
|
115 |
+
vocab_file,
|
116 |
+
bos_token="<s>",
|
117 |
+
eos_token="</s>",
|
118 |
+
sep_token="</s>",
|
119 |
+
cls_token="<s>",
|
120 |
+
unk_token="<unk>",
|
121 |
+
pad_token="<pad>",
|
122 |
+
mask_token="<mask>",
|
123 |
+
tokenizer_file=None,
|
124 |
+
src_lang=None,
|
125 |
+
tgt_lang=None,
|
126 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
127 |
+
additional_special_tokens=None,
|
128 |
+
legacy_behaviour=False,
|
129 |
+
**kwargs,
|
130 |
+
):
|
131 |
+
if additional_special_tokens is None:
|
132 |
+
additional_special_tokens = FAIRSEQ_LANGUAGE_CODES
|
133 |
+
bos_token = AddedToken(bos_token, normalized=False, special=True) if isinstance(bos_token, str) else bos_token
|
134 |
+
pad_token = AddedToken(pad_token, normalized=False, special=True) if isinstance(pad_token, str) else pad_token
|
135 |
+
eos_token = AddedToken(eos_token, normalized=False, special=True) if isinstance(eos_token, str) else eos_token
|
136 |
+
unk_token = AddedToken(unk_token, normalized=False, special=True) if isinstance(unk_token, str) else unk_token
|
137 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
138 |
+
mask_token = (
|
139 |
+
AddedToken(mask_token, normalized=True, lstrip=True, special=True)
|
140 |
+
if isinstance(mask_token, str)
|
141 |
+
else mask_token
|
142 |
+
)
|
143 |
+
|
144 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
145 |
+
self.legacy_behaviour = legacy_behaviour
|
146 |
+
|
147 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
148 |
+
self.sp_model.Load(str(vocab_file))
|
149 |
+
self.vocab_file = vocab_file
|
150 |
+
# Original fairseq vocab and spm vocab must be "aligned":
|
151 |
+
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
|
152 |
+
# -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ----
|
153 |
+
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a'
|
154 |
+
# spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s'
|
155 |
+
|
156 |
+
# unk token needs to be in the vocab with correct index
|
157 |
+
self._added_tokens_decoder = {0: bos_token, 1: pad_token, 2: eos_token, 3: unk_token}
|
158 |
+
# The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab
|
159 |
+
self.fairseq_offset = 1
|
160 |
+
self.sp_model_size = len(self.sp_model)
|
161 |
+
|
162 |
+
# Everything that follows is kept for BC and will be removed in v4.38
|
163 |
+
self._fairseq_tokens_to_ids = {"<s>": 0, "<pad>": 1, "</s>": 2, "<unk>": 3}
|
164 |
+
language_codes = FAIRSEQ_LANGUAGE_CODES if additional_special_tokens is None else additional_special_tokens
|
165 |
+
self._lang_code_to_id = {
|
166 |
+
code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(language_codes)
|
167 |
+
}
|
168 |
+
self._id_to_lang_code = {v: k for k, v in self._lang_code_to_id.items()}
|
169 |
+
self._fairseq_tokens_to_ids["<mask>"] = len(self.sp_model) + len(self.lang_code_to_id) + self.fairseq_offset
|
170 |
+
|
171 |
+
self._fairseq_tokens_to_ids.update(self.lang_code_to_id)
|
172 |
+
self._fairseq_ids_to_tokens = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
|
173 |
+
|
174 |
+
super().__init__(
|
175 |
+
bos_token=bos_token,
|
176 |
+
eos_token=eos_token,
|
177 |
+
unk_token=unk_token,
|
178 |
+
sep_token=sep_token,
|
179 |
+
cls_token=cls_token,
|
180 |
+
pad_token=pad_token,
|
181 |
+
mask_token=mask_token,
|
182 |
+
tokenizer_file=tokenizer_file,
|
183 |
+
src_lang=src_lang,
|
184 |
+
tgt_lang=tgt_lang,
|
185 |
+
additional_special_tokens=additional_special_tokens,
|
186 |
+
sp_model_kwargs=self.sp_model_kwargs,
|
187 |
+
legacy_behaviour=legacy_behaviour,
|
188 |
+
**kwargs,
|
189 |
+
)
|
190 |
+
|
191 |
+
self._src_lang = src_lang if src_lang is not None else "eng_Latn"
|
192 |
+
self.cur_lang_code_id = self.convert_tokens_to_ids(self._src_lang)
|
193 |
+
self.tgt_lang = tgt_lang
|
194 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
195 |
+
|
196 |
+
def __getstate__(self):
|
197 |
+
state = self.__dict__.copy()
|
198 |
+
state["sp_model"] = None
|
199 |
+
state["sp_model_proto"] = self.sp_model.serialized_model_proto()
|
200 |
+
return state
|
201 |
+
|
202 |
+
def __setstate__(self, d):
|
203 |
+
self.__dict__ = d
|
204 |
+
|
205 |
+
# for backward compatibility
|
206 |
+
if not hasattr(self, "sp_model_kwargs"):
|
207 |
+
self.sp_model_kwargs = {}
|
208 |
+
|
209 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
210 |
+
self.sp_model.LoadFromSerializedProto(self.sp_model_proto)
|
211 |
+
|
212 |
+
@property
|
213 |
+
def vocab_size(self):
|
214 |
+
return len(self.sp_model) + self.fairseq_offset
|
215 |
+
|
216 |
+
@property
|
217 |
+
def src_lang(self) -> str:
|
218 |
+
return self._src_lang
|
219 |
+
|
220 |
+
@property
|
221 |
+
def lang_code_to_id(self):
|
222 |
+
logger.warning_once(
|
223 |
+
"the `lang_code_to_id` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`"
|
224 |
+
" this attribute will be removed in `transformers` v4.38"
|
225 |
+
)
|
226 |
+
return self._lang_code_to_id
|
227 |
+
|
228 |
+
@property
|
229 |
+
def fairseq_tokens_to_ids(self):
|
230 |
+
logger.warning_once(
|
231 |
+
"the `fairseq_tokens_to_ids` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`"
|
232 |
+
" this attribute will be removed in `transformers` v4.38"
|
233 |
+
)
|
234 |
+
return self._fairseq_tokens_to_ids
|
235 |
+
|
236 |
+
@property
|
237 |
+
def id_to_lang_code(self):
|
238 |
+
logger.warning_once(
|
239 |
+
"the `id_to_lang_code` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`"
|
240 |
+
" this attribute will be removed in `transformers` v4.38"
|
241 |
+
)
|
242 |
+
return self._id_to_lang_code
|
243 |
+
|
244 |
+
@property
|
245 |
+
def fairseq_ids_to_tokens(self):
|
246 |
+
logger.warning_once(
|
247 |
+
"the `_fairseq_ids_to_tokens` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`"
|
248 |
+
" this attribute will be removed in `transformers` v4.38"
|
249 |
+
)
|
250 |
+
return self._fairseq_ids_to_tokens
|
251 |
+
|
252 |
+
@src_lang.setter
|
253 |
+
def src_lang(self, new_src_lang: str) -> None:
|
254 |
+
self._src_lang = new_src_lang
|
255 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
256 |
+
|
257 |
+
def get_special_tokens_mask(
|
258 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
259 |
+
) -> List[int]:
|
260 |
+
"""
|
261 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
262 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
263 |
+
|
264 |
+
Args:
|
265 |
+
token_ids_0 (`List[int]`):
|
266 |
+
List of IDs.
|
267 |
+
token_ids_1 (`List[int]`, *optional*):
|
268 |
+
Optional second list of IDs for sequence pairs.
|
269 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
270 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
271 |
+
|
272 |
+
Returns:
|
273 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
274 |
+
"""
|
275 |
+
|
276 |
+
if already_has_special_tokens:
|
277 |
+
return super().get_special_tokens_mask(
|
278 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
279 |
+
)
|
280 |
+
|
281 |
+
prefix_ones = [1] * len(self.prefix_tokens)
|
282 |
+
suffix_ones = [1] * len(self.suffix_tokens)
|
283 |
+
if token_ids_1 is None:
|
284 |
+
return prefix_ones + ([0] * len(token_ids_0)) + suffix_ones
|
285 |
+
return prefix_ones + ([0] * len(token_ids_0)) + ([0] * len(token_ids_1)) + suffix_ones
|
286 |
+
|
287 |
+
def build_inputs_with_special_tokens(
|
288 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
289 |
+
) -> List[int]:
|
290 |
+
"""
|
291 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
292 |
+
adding special tokens. An NLLB sequence has the following format, where `X` represents the sequence:
|
293 |
+
|
294 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
295 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
296 |
+
|
297 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
298 |
+
separator.
|
299 |
+
|
300 |
+
Args:
|
301 |
+
token_ids_0 (`List[int]`):
|
302 |
+
List of IDs to which the special tokens will be added.
|
303 |
+
token_ids_1 (`List[int]`, *optional*):
|
304 |
+
Optional second list of IDs for sequence pairs.
|
305 |
+
|
306 |
+
Returns:
|
307 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
308 |
+
"""
|
309 |
+
if token_ids_1 is None:
|
310 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
311 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
312 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
313 |
+
|
314 |
+
def create_token_type_ids_from_sequences(
|
315 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
316 |
+
) -> List[int]:
|
317 |
+
"""
|
318 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
|
319 |
+
make use of token type ids, therefore a list of zeros is returned.
|
320 |
+
|
321 |
+
Args:
|
322 |
+
token_ids_0 (`List[int]`):
|
323 |
+
List of IDs.
|
324 |
+
token_ids_1 (`List[int]`, *optional*):
|
325 |
+
Optional second list of IDs for sequence pairs.
|
326 |
+
|
327 |
+
Returns:
|
328 |
+
`List[int]`: List of zeros.
|
329 |
+
|
330 |
+
"""
|
331 |
+
|
332 |
+
sep = [self.sep_token_id]
|
333 |
+
cls = [self.cls_token_id]
|
334 |
+
|
335 |
+
if token_ids_1 is None:
|
336 |
+
return len(cls + token_ids_0 + sep) * [0]
|
337 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
338 |
+
|
339 |
+
def _build_translation_inputs(
|
340 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
341 |
+
):
|
342 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
343 |
+
if src_lang is None or tgt_lang is None:
|
344 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
345 |
+
self.src_lang = src_lang
|
346 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
347 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
348 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
349 |
+
return inputs
|
350 |
+
|
351 |
+
def get_vocab(self):
|
352 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
353 |
+
vocab.update(self.added_tokens_encoder)
|
354 |
+
return vocab
|
355 |
+
|
356 |
+
def _tokenize(self, text: str) -> List[str]:
|
357 |
+
return self.sp_model.encode(text, out_type=str)
|
358 |
+
|
359 |
+
def _convert_token_to_id(self, token):
|
360 |
+
"""Converts a token (str) in an id using the vocab."""
|
361 |
+
spm_id = self.sp_model.PieceToId(token)
|
362 |
+
# Need to return unknown token if the SP model returned 0
|
363 |
+
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
|
364 |
+
|
365 |
+
def _convert_id_to_token(self, index):
|
366 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
367 |
+
return self.sp_model.IdToPiece(index - self.fairseq_offset)
|
368 |
+
|
369 |
+
def convert_tokens_to_string(self, tokens):
|
370 |
+
"""Converts a sequence of tokens (strings for sub-words) in a single string."""
|
371 |
+
out_string = "".join(tokens).replace(SPIECE_UNDERLINE, " ").strip()
|
372 |
+
return out_string
|
373 |
+
|
374 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
375 |
+
if not os.path.isdir(save_directory):
|
376 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
|
377 |
+
return
|
378 |
+
out_vocab_file = os.path.join(
|
379 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
380 |
+
)
|
381 |
+
|
382 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file):
|
383 |
+
copyfile(self.vocab_file, out_vocab_file)
|
384 |
+
elif not os.path.isfile(self.vocab_file):
|
385 |
+
with open(out_vocab_file, "wb") as fi:
|
386 |
+
content_spiece_model = self.sp_model.serialized_model_proto()
|
387 |
+
fi.write(content_spiece_model)
|
388 |
+
|
389 |
+
return (out_vocab_file,)
|
390 |
+
|
391 |
+
def prepare_seq2seq_batch(
|
392 |
+
self,
|
393 |
+
src_texts: List[str],
|
394 |
+
src_lang: str = "eng_Latn",
|
395 |
+
tgt_texts: Optional[List[str]] = None,
|
396 |
+
tgt_lang: str = "fra_Latn",
|
397 |
+
**kwargs,
|
398 |
+
) -> BatchEncoding:
|
399 |
+
self.src_lang = src_lang
|
400 |
+
self.tgt_lang = tgt_lang
|
401 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
402 |
+
|
403 |
+
def _switch_to_input_mode(self):
|
404 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
405 |
+
|
406 |
+
def _switch_to_target_mode(self):
|
407 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
408 |
+
|
409 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
410 |
+
"""Reset the special tokens to the source lang setting.
|
411 |
+
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
|
412 |
+
- In default mode: Prefix=[src_lang_code], suffix = [eos]
|
413 |
+
"""
|
414 |
+
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
415 |
+
if self.legacy_behaviour:
|
416 |
+
self.prefix_tokens = []
|
417 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
418 |
+
else:
|
419 |
+
self.prefix_tokens = [self.cur_lang_code]
|
420 |
+
self.suffix_tokens = [self.eos_token_id]
|
421 |
+
|
422 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
423 |
+
"""Reset the special tokens to the target lang setting.
|
424 |
+
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
|
425 |
+
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
|
426 |
+
"""
|
427 |
+
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
428 |
+
if self.legacy_behaviour:
|
429 |
+
self.prefix_tokens = []
|
430 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
431 |
+
else:
|
432 |
+
self.prefix_tokens = [self.cur_lang_code]
|
433 |
+
self.suffix_tokens = [self.eos_token_id]
|
venv/lib/python3.10/site-packages/transformers/models/nllb/tokenization_nllb_fast.py
ADDED
@@ -0,0 +1,340 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The Facebook AI Research Team Authors and The HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
|
16 |
+
import os
|
17 |
+
from shutil import copyfile
|
18 |
+
from typing import List, Optional, Tuple
|
19 |
+
|
20 |
+
from tokenizers import processors
|
21 |
+
|
22 |
+
from ...tokenization_utils import AddedToken, BatchEncoding
|
23 |
+
from ...tokenization_utils_fast import PreTrainedTokenizerFast
|
24 |
+
from ...utils import is_sentencepiece_available, logging
|
25 |
+
|
26 |
+
|
27 |
+
if is_sentencepiece_available():
|
28 |
+
from .tokenization_nllb import NllbTokenizer
|
29 |
+
else:
|
30 |
+
NllbTokenizer = None
|
31 |
+
|
32 |
+
|
33 |
+
logger = logging.get_logger(__name__)
|
34 |
+
|
35 |
+
|
36 |
+
VOCAB_FILES_NAMES = {"vocab_file": "sentencepiece.bpe.model", "tokenizer_file": "tokenizer.json"}
|
37 |
+
|
38 |
+
|
39 |
+
FAIRSEQ_LANGUAGE_CODES = ['ace_Arab', 'ace_Latn', 'acm_Arab', 'acq_Arab', 'aeb_Arab', 'afr_Latn', 'ajp_Arab', 'aka_Latn', 'amh_Ethi', 'apc_Arab', 'arb_Arab', 'ars_Arab', 'ary_Arab', 'arz_Arab', 'asm_Beng', 'ast_Latn', 'awa_Deva', 'ayr_Latn', 'azb_Arab', 'azj_Latn', 'bak_Cyrl', 'bam_Latn', 'ban_Latn', 'bel_Cyrl', 'bem_Latn', 'ben_Beng', 'bho_Deva', 'bjn_Arab', 'bjn_Latn', 'bod_Tibt', 'bos_Latn', 'bug_Latn', 'bul_Cyrl', 'cat_Latn', 'ceb_Latn', 'ces_Latn', 'cjk_Latn', 'ckb_Arab', 'crh_Latn', 'cym_Latn', 'dan_Latn', 'deu_Latn', 'dik_Latn', 'dyu_Latn', 'dzo_Tibt', 'ell_Grek', 'eng_Latn', 'epo_Latn', 'est_Latn', 'eus_Latn', 'ewe_Latn', 'fao_Latn', 'pes_Arab', 'fij_Latn', 'fin_Latn', 'fon_Latn', 'fra_Latn', 'fur_Latn', 'fuv_Latn', 'gla_Latn', 'gle_Latn', 'glg_Latn', 'grn_Latn', 'guj_Gujr', 'hat_Latn', 'hau_Latn', 'heb_Hebr', 'hin_Deva', 'hne_Deva', 'hrv_Latn', 'hun_Latn', 'hye_Armn', 'ibo_Latn', 'ilo_Latn', 'ind_Latn', 'isl_Latn', 'ita_Latn', 'jav_Latn', 'jpn_Jpan', 'kab_Latn', 'kac_Latn', 'kam_Latn', 'kan_Knda', 'kas_Arab', 'kas_Deva', 'kat_Geor', 'knc_Arab', 'knc_Latn', 'kaz_Cyrl', 'kbp_Latn', 'kea_Latn', 'khm_Khmr', 'kik_Latn', 'kin_Latn', 'kir_Cyrl', 'kmb_Latn', 'kon_Latn', 'kor_Hang', 'kmr_Latn', 'lao_Laoo', 'lvs_Latn', 'lij_Latn', 'lim_Latn', 'lin_Latn', 'lit_Latn', 'lmo_Latn', 'ltg_Latn', 'ltz_Latn', 'lua_Latn', 'lug_Latn', 'luo_Latn', 'lus_Latn', 'mag_Deva', 'mai_Deva', 'mal_Mlym', 'mar_Deva', 'min_Latn', 'mkd_Cyrl', 'plt_Latn', 'mlt_Latn', 'mni_Beng', 'khk_Cyrl', 'mos_Latn', 'mri_Latn', 'zsm_Latn', 'mya_Mymr', 'nld_Latn', 'nno_Latn', 'nob_Latn', 'npi_Deva', 'nso_Latn', 'nus_Latn', 'nya_Latn', 'oci_Latn', 'gaz_Latn', 'ory_Orya', 'pag_Latn', 'pan_Guru', 'pap_Latn', 'pol_Latn', 'por_Latn', 'prs_Arab', 'pbt_Arab', 'quy_Latn', 'ron_Latn', 'run_Latn', 'rus_Cyrl', 'sag_Latn', 'san_Deva', 'sat_Beng', 'scn_Latn', 'shn_Mymr', 'sin_Sinh', 'slk_Latn', 'slv_Latn', 'smo_Latn', 'sna_Latn', 'snd_Arab', 'som_Latn', 'sot_Latn', 'spa_Latn', 'als_Latn', 'srd_Latn', 'srp_Cyrl', 'ssw_Latn', 'sun_Latn', 'swe_Latn', 'swh_Latn', 'szl_Latn', 'tam_Taml', 'tat_Cyrl', 'tel_Telu', 'tgk_Cyrl', 'tgl_Latn', 'tha_Thai', 'tir_Ethi', 'taq_Latn', 'taq_Tfng', 'tpi_Latn', 'tsn_Latn', 'tso_Latn', 'tuk_Latn', 'tum_Latn', 'tur_Latn', 'twi_Latn', 'tzm_Tfng', 'uig_Arab', 'ukr_Cyrl', 'umb_Latn', 'urd_Arab', 'uzn_Latn', 'vec_Latn', 'vie_Latn', 'war_Latn', 'wol_Latn', 'xho_Latn', 'ydd_Hebr', 'yor_Latn', 'yue_Hant', 'zho_Hans', 'zho_Hant', 'zul_Latn'] # fmt: skip
|
40 |
+
|
41 |
+
|
42 |
+
class NllbTokenizerFast(PreTrainedTokenizerFast):
|
43 |
+
"""
|
44 |
+
Construct a "fast" NLLB tokenizer (backed by HuggingFace's *tokenizers* library). Based on
|
45 |
+
[BPE](https://huggingface.co/docs/tokenizers/python/latest/components.html?highlight=BPE#models).
|
46 |
+
|
47 |
+
This tokenizer inherits from [`PreTrainedTokenizerFast`] which contains most of the main methods. Users should
|
48 |
+
refer to this superclass for more information regarding those methods.
|
49 |
+
|
50 |
+
The tokenization method is `<tokens> <eos> <language code>` for source language documents, and `<language code>
|
51 |
+
<tokens> <eos>` for target language documents.
|
52 |
+
|
53 |
+
Examples:
|
54 |
+
|
55 |
+
```python
|
56 |
+
>>> from transformers import NllbTokenizerFast
|
57 |
+
|
58 |
+
>>> tokenizer = NllbTokenizerFast.from_pretrained(
|
59 |
+
... "facebook/nllb-200-distilled-600M", src_lang="eng_Latn", tgt_lang="fra_Latn"
|
60 |
+
... )
|
61 |
+
>>> example_english_phrase = " UN Chief Says There Is No Military Solution in Syria"
|
62 |
+
>>> expected_translation_french = "Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie."
|
63 |
+
>>> inputs = tokenizer(example_english_phrase, text_target=expected_translation_french, return_tensors="pt")
|
64 |
+
```
|
65 |
+
|
66 |
+
Args:
|
67 |
+
vocab_file (`str`):
|
68 |
+
Path to the vocabulary file.
|
69 |
+
bos_token (`str`, *optional*, defaults to `"<s>"`):
|
70 |
+
The beginning of sequence token that was used during pretraining. Can be used a sequence classifier token.
|
71 |
+
|
72 |
+
<Tip>
|
73 |
+
|
74 |
+
When building a sequence using special tokens, this is not the token that is used for the beginning of
|
75 |
+
sequence. The token used is the `cls_token`.
|
76 |
+
|
77 |
+
</Tip>
|
78 |
+
|
79 |
+
eos_token (`str`, *optional*, defaults to `"</s>"`):
|
80 |
+
The end of sequence token.
|
81 |
+
|
82 |
+
<Tip>
|
83 |
+
|
84 |
+
When building a sequence using special tokens, this is not the token that is used for the end of sequence.
|
85 |
+
The token used is the `sep_token`.
|
86 |
+
|
87 |
+
</Tip>
|
88 |
+
|
89 |
+
sep_token (`str`, *optional*, defaults to `"</s>"`):
|
90 |
+
The separator token, which is used when building a sequence from multiple sequences, e.g. two sequences for
|
91 |
+
sequence classification or for a text and a question for question answering. It is also used as the last
|
92 |
+
token of a sequence built with special tokens.
|
93 |
+
cls_token (`str`, *optional*, defaults to `"<s>"`):
|
94 |
+
The classifier token which is used when doing sequence classification (classification of the whole sequence
|
95 |
+
instead of per-token classification). It is the first token of the sequence when built with special tokens.
|
96 |
+
unk_token (`str`, *optional*, defaults to `"<unk>"`):
|
97 |
+
The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this
|
98 |
+
token instead.
|
99 |
+
pad_token (`str`, *optional*, defaults to `"<pad>"`):
|
100 |
+
The token used for padding, for example when batching sequences of different lengths.
|
101 |
+
mask_token (`str`, *optional*, defaults to `"<mask>"`):
|
102 |
+
The token used for masking values. This is the token used when training this model with masked language
|
103 |
+
modeling. This is the token which the model will try to predict.
|
104 |
+
tokenizer_file (`str`, *optional*):
|
105 |
+
The path to a tokenizer file to use instead of the vocab file.
|
106 |
+
src_lang (`str`, *optional*):
|
107 |
+
The language to use as source language for translation.
|
108 |
+
tgt_lang (`str`, *optional*):
|
109 |
+
The language to use as target language for translation.
|
110 |
+
"""
|
111 |
+
|
112 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
113 |
+
model_input_names = ["input_ids", "attention_mask"]
|
114 |
+
slow_tokenizer_class = NllbTokenizer
|
115 |
+
|
116 |
+
prefix_tokens: List[int] = []
|
117 |
+
suffix_tokens: List[int] = []
|
118 |
+
|
119 |
+
def __init__(
|
120 |
+
self,
|
121 |
+
vocab_file=None,
|
122 |
+
tokenizer_file=None,
|
123 |
+
bos_token="<s>",
|
124 |
+
eos_token="</s>",
|
125 |
+
sep_token="</s>",
|
126 |
+
cls_token="<s>",
|
127 |
+
unk_token="<unk>",
|
128 |
+
pad_token="<pad>",
|
129 |
+
mask_token="<mask>",
|
130 |
+
src_lang=None,
|
131 |
+
tgt_lang=None,
|
132 |
+
additional_special_tokens=None,
|
133 |
+
legacy_behaviour=False,
|
134 |
+
**kwargs,
|
135 |
+
):
|
136 |
+
if additional_special_tokens is None:
|
137 |
+
additional_special_tokens = FAIRSEQ_LANGUAGE_CODES
|
138 |
+
|
139 |
+
self.vocab_file = vocab_file
|
140 |
+
# Mask token behave like a normal word, i.e. include the space before it
|
141 |
+
mask_token = (
|
142 |
+
AddedToken(mask_token, normalized=True, lstrip=True, special=True)
|
143 |
+
if isinstance(mask_token, str)
|
144 |
+
else mask_token
|
145 |
+
)
|
146 |
+
self.legacy_behaviour = legacy_behaviour
|
147 |
+
super().__init__(
|
148 |
+
vocab_file=vocab_file,
|
149 |
+
tokenizer_file=tokenizer_file,
|
150 |
+
bos_token=bos_token,
|
151 |
+
eos_token=eos_token,
|
152 |
+
sep_token=sep_token,
|
153 |
+
cls_token=cls_token,
|
154 |
+
unk_token=unk_token,
|
155 |
+
pad_token=pad_token,
|
156 |
+
src_lang=src_lang,
|
157 |
+
tgt_lang=tgt_lang,
|
158 |
+
mask_token=mask_token,
|
159 |
+
additional_special_tokens=additional_special_tokens,
|
160 |
+
legacy_behaviour=legacy_behaviour,
|
161 |
+
**kwargs,
|
162 |
+
)
|
163 |
+
|
164 |
+
self._lang_code_to_id = {
|
165 |
+
lang_code: self.convert_tokens_to_ids(str(lang_code)) for lang_code in additional_special_tokens
|
166 |
+
}
|
167 |
+
|
168 |
+
self._src_lang = src_lang if src_lang is not None else "eng_Latn"
|
169 |
+
self.cur_lang_code = self.convert_tokens_to_ids(self._src_lang)
|
170 |
+
self.tgt_lang = tgt_lang
|
171 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
172 |
+
|
173 |
+
@property
|
174 |
+
def lang_code_to_id(self):
|
175 |
+
logger.warning_once(
|
176 |
+
"the `lang_code_to_id` attribute is deprecated. The logic is natively handled in the `tokenizer.adder_tokens_decoder`"
|
177 |
+
" this attribute will be removed in `transformers` v4.38"
|
178 |
+
)
|
179 |
+
return self._lang_code_to_id
|
180 |
+
|
181 |
+
@property
|
182 |
+
def can_save_slow_tokenizer(self) -> bool:
|
183 |
+
return os.path.isfile(self.vocab_file) if self.vocab_file else False
|
184 |
+
|
185 |
+
@property
|
186 |
+
def src_lang(self) -> str:
|
187 |
+
return self._src_lang
|
188 |
+
|
189 |
+
@src_lang.setter
|
190 |
+
def src_lang(self, new_src_lang: str) -> None:
|
191 |
+
self._src_lang = new_src_lang
|
192 |
+
self.set_src_lang_special_tokens(self._src_lang)
|
193 |
+
|
194 |
+
def build_inputs_with_special_tokens(
|
195 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
196 |
+
) -> List[int]:
|
197 |
+
"""
|
198 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
199 |
+
adding special tokens. The special tokens depend on calling set_lang.
|
200 |
+
|
201 |
+
An NLLB sequence has the following format, where `X` represents the sequence:
|
202 |
+
|
203 |
+
- `input_ids` (for encoder) `X [eos, src_lang_code]`
|
204 |
+
- `decoder_input_ids`: (for decoder) `X [eos, tgt_lang_code]`
|
205 |
+
|
206 |
+
BOS is never used. Pairs of sequences are not the expected use case, but they will be handled without a
|
207 |
+
separator.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
token_ids_0 (`List[int]`):
|
211 |
+
List of IDs to which the special tokens will be added.
|
212 |
+
token_ids_1 (`List[int]`, *optional*):
|
213 |
+
Optional second list of IDs for sequence pairs.
|
214 |
+
|
215 |
+
Returns:
|
216 |
+
`List[int]`: list of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
217 |
+
"""
|
218 |
+
if token_ids_1 is None:
|
219 |
+
return self.prefix_tokens + token_ids_0 + self.suffix_tokens
|
220 |
+
# We don't expect to process pairs, but leave the pair logic for API consistency
|
221 |
+
return self.prefix_tokens + token_ids_0 + token_ids_1 + self.suffix_tokens
|
222 |
+
|
223 |
+
def create_token_type_ids_from_sequences(
|
224 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
225 |
+
) -> List[int]:
|
226 |
+
"""
|
227 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. nllb does not
|
228 |
+
make use of token type ids, therefore a list of zeros is returned.
|
229 |
+
|
230 |
+
Args:
|
231 |
+
token_ids_0 (`List[int]`):
|
232 |
+
List of IDs.
|
233 |
+
token_ids_1 (`List[int]`, *optional*):
|
234 |
+
Optional second list of IDs for sequence pairs.
|
235 |
+
|
236 |
+
Returns:
|
237 |
+
`List[int]`: List of zeros.
|
238 |
+
|
239 |
+
"""
|
240 |
+
|
241 |
+
sep = [self.sep_token_id]
|
242 |
+
cls = [self.cls_token_id]
|
243 |
+
|
244 |
+
if token_ids_1 is None:
|
245 |
+
return len(cls + token_ids_0 + sep) * [0]
|
246 |
+
return len(cls + token_ids_0 + sep + sep + token_ids_1 + sep) * [0]
|
247 |
+
|
248 |
+
def _build_translation_inputs(
|
249 |
+
self, raw_inputs, return_tensors: str, src_lang: Optional[str], tgt_lang: Optional[str], **extra_kwargs
|
250 |
+
):
|
251 |
+
"""Used by translation pipeline, to prepare inputs for the generate function"""
|
252 |
+
if src_lang is None or tgt_lang is None:
|
253 |
+
raise ValueError("Translation requires a `src_lang` and a `tgt_lang` for this model")
|
254 |
+
self.src_lang = src_lang
|
255 |
+
inputs = self(raw_inputs, add_special_tokens=True, return_tensors=return_tensors, **extra_kwargs)
|
256 |
+
tgt_lang_id = self.convert_tokens_to_ids(tgt_lang)
|
257 |
+
inputs["forced_bos_token_id"] = tgt_lang_id
|
258 |
+
return inputs
|
259 |
+
|
260 |
+
def prepare_seq2seq_batch(
|
261 |
+
self,
|
262 |
+
src_texts: List[str],
|
263 |
+
src_lang: str = "eng_Latn",
|
264 |
+
tgt_texts: Optional[List[str]] = None,
|
265 |
+
tgt_lang: str = "fra_Latn",
|
266 |
+
**kwargs,
|
267 |
+
) -> BatchEncoding:
|
268 |
+
self.src_lang = src_lang
|
269 |
+
self.tgt_lang = tgt_lang
|
270 |
+
return super().prepare_seq2seq_batch(src_texts, tgt_texts, **kwargs)
|
271 |
+
|
272 |
+
def _switch_to_input_mode(self):
|
273 |
+
return self.set_src_lang_special_tokens(self.src_lang)
|
274 |
+
|
275 |
+
def _switch_to_target_mode(self):
|
276 |
+
return self.set_tgt_lang_special_tokens(self.tgt_lang)
|
277 |
+
|
278 |
+
def set_src_lang_special_tokens(self, src_lang) -> None:
|
279 |
+
"""Reset the special tokens to the source lang setting.
|
280 |
+
- In legacy mode: No prefix and suffix=[eos, src_lang_code].
|
281 |
+
- In default mode: Prefix=[src_lang_code], suffix = [eos]
|
282 |
+
"""
|
283 |
+
self.cur_lang_code = self.convert_tokens_to_ids(src_lang)
|
284 |
+
|
285 |
+
if self.legacy_behaviour:
|
286 |
+
self.prefix_tokens = []
|
287 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
288 |
+
else:
|
289 |
+
self.prefix_tokens = [self.cur_lang_code]
|
290 |
+
self.suffix_tokens = [self.eos_token_id]
|
291 |
+
|
292 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
293 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
294 |
+
|
295 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
296 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
297 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
298 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
299 |
+
)
|
300 |
+
|
301 |
+
def set_tgt_lang_special_tokens(self, lang: str) -> None:
|
302 |
+
"""Reset the special tokens to the target lang setting.
|
303 |
+
- In legacy mode: No prefix and suffix=[eos, tgt_lang_code].
|
304 |
+
- In default mode: Prefix=[tgt_lang_code], suffix = [eos]
|
305 |
+
"""
|
306 |
+
self.cur_lang_code = self.convert_tokens_to_ids(lang)
|
307 |
+
if self.legacy_behaviour:
|
308 |
+
self.prefix_tokens = []
|
309 |
+
self.suffix_tokens = [self.eos_token_id, self.cur_lang_code]
|
310 |
+
else:
|
311 |
+
self.prefix_tokens = [self.cur_lang_code]
|
312 |
+
self.suffix_tokens = [self.eos_token_id]
|
313 |
+
|
314 |
+
prefix_tokens_str = self.convert_ids_to_tokens(self.prefix_tokens)
|
315 |
+
suffix_tokens_str = self.convert_ids_to_tokens(self.suffix_tokens)
|
316 |
+
|
317 |
+
self._tokenizer.post_processor = processors.TemplateProcessing(
|
318 |
+
single=prefix_tokens_str + ["$A"] + suffix_tokens_str,
|
319 |
+
pair=prefix_tokens_str + ["$A", "$B"] + suffix_tokens_str,
|
320 |
+
special_tokens=list(zip(prefix_tokens_str + suffix_tokens_str, self.prefix_tokens + self.suffix_tokens)),
|
321 |
+
)
|
322 |
+
|
323 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
324 |
+
if not self.can_save_slow_tokenizer:
|
325 |
+
raise ValueError(
|
326 |
+
"Your fast tokenizer does not have the necessary information to save the vocabulary for a slow "
|
327 |
+
"tokenizer."
|
328 |
+
)
|
329 |
+
|
330 |
+
if not os.path.isdir(save_directory):
|
331 |
+
logger.error(f"Vocabulary path ({save_directory}) should be a directory.")
|
332 |
+
return
|
333 |
+
out_vocab_file = os.path.join(
|
334 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
|
335 |
+
)
|
336 |
+
|
337 |
+
if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file):
|
338 |
+
copyfile(self.vocab_file, out_vocab_file)
|
339 |
+
|
340 |
+
return (out_vocab_file,)
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__init__.py
ADDED
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
from typing import TYPE_CHECKING
|
16 |
+
|
17 |
+
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
|
18 |
+
|
19 |
+
|
20 |
+
_import_structure = {
|
21 |
+
"configuration_nllb_moe": [
|
22 |
+
"NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
23 |
+
"NllbMoeConfig",
|
24 |
+
]
|
25 |
+
}
|
26 |
+
|
27 |
+
try:
|
28 |
+
if not is_torch_available():
|
29 |
+
raise OptionalDependencyNotAvailable()
|
30 |
+
except OptionalDependencyNotAvailable:
|
31 |
+
pass
|
32 |
+
else:
|
33 |
+
_import_structure["modeling_nllb_moe"] = [
|
34 |
+
"NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST",
|
35 |
+
"NllbMoeForConditionalGeneration",
|
36 |
+
"NllbMoeModel",
|
37 |
+
"NllbMoePreTrainedModel",
|
38 |
+
"NllbMoeTop2Router",
|
39 |
+
"NllbMoeSparseMLP",
|
40 |
+
]
|
41 |
+
|
42 |
+
|
43 |
+
if TYPE_CHECKING:
|
44 |
+
from .configuration_nllb_moe import (
|
45 |
+
NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
46 |
+
NllbMoeConfig,
|
47 |
+
)
|
48 |
+
|
49 |
+
try:
|
50 |
+
if not is_torch_available():
|
51 |
+
raise OptionalDependencyNotAvailable()
|
52 |
+
except OptionalDependencyNotAvailable:
|
53 |
+
pass
|
54 |
+
else:
|
55 |
+
from .modeling_nllb_moe import (
|
56 |
+
NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST,
|
57 |
+
NllbMoeForConditionalGeneration,
|
58 |
+
NllbMoeModel,
|
59 |
+
NllbMoePreTrainedModel,
|
60 |
+
NllbMoeSparseMLP,
|
61 |
+
NllbMoeTop2Router,
|
62 |
+
)
|
63 |
+
|
64 |
+
|
65 |
+
else:
|
66 |
+
import sys
|
67 |
+
|
68 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.03 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/configuration_nllb_moe.cpython-310.pyc
ADDED
Binary file (9.48 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.cpython-310.pyc
ADDED
Binary file (4.46 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/__pycache__/modeling_nllb_moe.cpython-310.pyc
ADDED
Binary file (56.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/configuration_nllb_moe.py
ADDED
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023, HuggingFace Inc.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" NLLB-MoE model configuration"""
|
16 |
+
from ...configuration_utils import PretrainedConfig
|
17 |
+
from ...utils import logging
|
18 |
+
|
19 |
+
|
20 |
+
logger = logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
24 |
+
|
25 |
+
|
26 |
+
class NllbMoeConfig(PretrainedConfig):
|
27 |
+
r"""
|
28 |
+
This is the configuration class to store the configuration of a [`NllbMoeModel`]. It is used to instantiate an
|
29 |
+
NLLB-MoE model according to the specified arguments, defining the model architecture. Instantiating a configuration
|
30 |
+
with the defaults will yield a similar configuration to that of the NLLB-MoE
|
31 |
+
[facebook/nllb-moe-54b](https://huggingface.co/facebook/nllb-moe-54b) architecture.
|
32 |
+
|
33 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
34 |
+
documentation from [`PretrainedConfig`] for more information.
|
35 |
+
|
36 |
+
|
37 |
+
Args:
|
38 |
+
vocab_size (`int`, *optional*, defaults to 50265):
|
39 |
+
Vocabulary size of the NllbMoe model. Defines the number of different tokens that can be represented by the
|
40 |
+
`inputs_ids` passed when calling [`NllbMoeModel`] or
|
41 |
+
d_model (`int`, *optional*, defaults to 1024):
|
42 |
+
Dimensionality of the layers and the pooler layer.
|
43 |
+
encoder_layers (`int`, *optional*, defaults to 12):
|
44 |
+
Number of encoder layers.
|
45 |
+
decoder_layers (`int`, *optional*, defaults to 12):
|
46 |
+
Number of decoder layers.
|
47 |
+
encoder_attention_heads (`int`, *optional*, defaults to 16):
|
48 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
49 |
+
decoder_attention_heads (`int`, *optional*, defaults to 16):
|
50 |
+
Number of attention heads for each attention layer in the Transformer decoder.
|
51 |
+
decoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
52 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
|
53 |
+
encoder_ffn_dim (`int`, *optional*, defaults to 4096):
|
54 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in encoder.
|
55 |
+
activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
|
56 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
57 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
58 |
+
dropout (`float`, *optional*, defaults to 0.1):
|
59 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
60 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
61 |
+
The dropout ratio for the attention probabilities.
|
62 |
+
activation_dropout (`float`, *optional*, defaults to 0.0):
|
63 |
+
The dropout ratio for activations inside the fully connected layer.
|
64 |
+
classifier_dropout (`float`, *optional*, defaults to 0.0):
|
65 |
+
The dropout ratio for classifier.
|
66 |
+
max_position_embeddings (`int`, *optional*, defaults to 1024):
|
67 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
68 |
+
just in case (e.g., 512 or 1024 or 2048).
|
69 |
+
init_std (`float`, *optional*, defaults to 0.02):
|
70 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
71 |
+
encoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
72 |
+
The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
73 |
+
for more details.
|
74 |
+
decoder_layerdrop (`float`, *optional*, defaults to 0.0):
|
75 |
+
The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
|
76 |
+
for more details.
|
77 |
+
second_expert_policy ( `str`, *optional*, default to `"all"`):
|
78 |
+
The policy used for the sampling the probability of being sampled to a second expert for each token.
|
79 |
+
normalize_router_prob_before_dropping (`bool`, *optional*, defaults to `True`):
|
80 |
+
Whether or not to normalize the router probabilities before applying a mask based on the experts capacity
|
81 |
+
(capacity dropping).
|
82 |
+
batch_prioritized_routing (`bool`, *optional*, defaults to `True`):
|
83 |
+
Whether or not to orders the tokens by their router probabilities before capacity dropping. This means that
|
84 |
+
the tokens that have the highest probabilities will be routed before other tokens that might be further in
|
85 |
+
the sequence.
|
86 |
+
moe_eval_capacity_token_fraction (`float`, *optional*, defaults to 1.0):
|
87 |
+
Fraction of tokens as capacity during validation, if set to negative, uses the same as training. Should be
|
88 |
+
in range: (0.0, 1.0].
|
89 |
+
num_experts (`int`, *optional*, defaults to 128):
|
90 |
+
Number of experts for each NllbMoeSparseMlp layer.
|
91 |
+
expert_capacity (`int`, *optional*, defaults to 64):
|
92 |
+
Number of tokens that can be stored in each expert.
|
93 |
+
encoder_sparse_step (`int`, *optional*, defaults to 4):
|
94 |
+
Frequency of the sparse layers in the encoder. 4 means that one out of 4 layers will be sparse.
|
95 |
+
decoder_sparse_step (`int`, *optional*, defaults to 4):
|
96 |
+
Frequency of the sparse layers in the decoder. 4 means that one out of 4 layers will be sparse.
|
97 |
+
router_dtype (`str`, *optional*, default to `"float32"`):
|
98 |
+
The `dtype` used for the routers. It is preferable to keep the `dtype` to `"float32"` as specified in the
|
99 |
+
*selective precision* discussion in [the paper](https://arxiv.org/abs/2101.03961).
|
100 |
+
router_ignore_padding_tokens (`bool`, *optional*, defaults to `False`):
|
101 |
+
Whether to ignore padding tokens when routing. if `False`, the padding tokens are not routed to any
|
102 |
+
experts.
|
103 |
+
router_bias (`bool`, *optional*, defaults to `False`):
|
104 |
+
Whether or not the classifier of the router should have a bias.
|
105 |
+
moe_token_dropout (`float`, *optional*, defualt ot 0.2):
|
106 |
+
Masking rate for MoE expert output masking (EOM), which is implemented via a Dropout2d on the expert
|
107 |
+
outputs.
|
108 |
+
output_router_logits (`bool`, *optional*, defaults to `False`):
|
109 |
+
Whether or not to return the router logits. Only set to `True` to get the auxiliary loss when training.
|
110 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
111 |
+
Whether or not the model should return the last key/values attentions (not used by all models).
|
112 |
+
|
113 |
+
Example:
|
114 |
+
|
115 |
+
```python
|
116 |
+
>>> from transformers import NllbMoeModel, NllbMoeConfig
|
117 |
+
|
118 |
+
>>> # Initializing a NllbMoe facebook/nllb-moe-54b style configuration
|
119 |
+
>>> configuration = NllbMoeConfig()
|
120 |
+
|
121 |
+
>>> # Initializing a model from the facebook/nllb-moe-54b style configuration
|
122 |
+
>>> model = NllbMoeModel(configuration)
|
123 |
+
|
124 |
+
>>> # Accessing the model configuration
|
125 |
+
>>> configuration = model.config
|
126 |
+
```"""
|
127 |
+
|
128 |
+
model_type = "nllb-moe"
|
129 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
130 |
+
attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
|
131 |
+
|
132 |
+
def __init__(
|
133 |
+
self,
|
134 |
+
vocab_size=128112,
|
135 |
+
max_position_embeddings=1024,
|
136 |
+
encoder_layers=12,
|
137 |
+
encoder_ffn_dim=4096,
|
138 |
+
encoder_attention_heads=16,
|
139 |
+
decoder_layers=12,
|
140 |
+
decoder_ffn_dim=4096,
|
141 |
+
decoder_attention_heads=16,
|
142 |
+
encoder_layerdrop=0.05,
|
143 |
+
decoder_layerdrop=0.05,
|
144 |
+
use_cache=True,
|
145 |
+
is_encoder_decoder=True,
|
146 |
+
activation_function="relu",
|
147 |
+
d_model=1024,
|
148 |
+
dropout=0.1,
|
149 |
+
attention_dropout=0.1,
|
150 |
+
activation_dropout=0.0,
|
151 |
+
init_std=0.02,
|
152 |
+
decoder_start_token_id=2,
|
153 |
+
scale_embedding=True,
|
154 |
+
router_bias=False,
|
155 |
+
router_dtype="float32",
|
156 |
+
router_ignore_padding_tokens=False,
|
157 |
+
num_experts=128,
|
158 |
+
expert_capacity=64,
|
159 |
+
encoder_sparse_step=4,
|
160 |
+
decoder_sparse_step=4,
|
161 |
+
router_z_loss_coef=0.001,
|
162 |
+
router_aux_loss_coef=0.001,
|
163 |
+
second_expert_policy="all",
|
164 |
+
normalize_router_prob_before_dropping=False,
|
165 |
+
batch_prioritized_routing=False,
|
166 |
+
moe_eval_capacity_token_fraction=1.0,
|
167 |
+
moe_token_dropout=0.2,
|
168 |
+
pad_token_id=1,
|
169 |
+
bos_token_id=0,
|
170 |
+
eos_token_id=2,
|
171 |
+
output_router_logits=False,
|
172 |
+
**kwargs,
|
173 |
+
):
|
174 |
+
self.vocab_size = vocab_size
|
175 |
+
self.max_position_embeddings = max_position_embeddings
|
176 |
+
self.d_model = d_model
|
177 |
+
self.encoder_ffn_dim = encoder_ffn_dim
|
178 |
+
self.encoder_layers = encoder_layers
|
179 |
+
self.encoder_attention_heads = encoder_attention_heads
|
180 |
+
self.decoder_ffn_dim = decoder_ffn_dim
|
181 |
+
self.decoder_layers = decoder_layers
|
182 |
+
self.decoder_attention_heads = decoder_attention_heads
|
183 |
+
self.dropout = dropout
|
184 |
+
self.attention_dropout = attention_dropout
|
185 |
+
self.activation_dropout = activation_dropout
|
186 |
+
self.activation_function = activation_function
|
187 |
+
self.init_std = init_std
|
188 |
+
self.encoder_layerdrop = encoder_layerdrop
|
189 |
+
self.decoder_layerdrop = decoder_layerdrop
|
190 |
+
self.use_cache = use_cache
|
191 |
+
self.num_hidden_layers = encoder_layers
|
192 |
+
self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
|
193 |
+
self.router_z_loss_coef = router_z_loss_coef
|
194 |
+
self.router_aux_loss_coef = router_aux_loss_coef
|
195 |
+
self.decoder_sparse_step = decoder_sparse_step
|
196 |
+
self.encoder_sparse_step = encoder_sparse_step
|
197 |
+
self.num_experts = num_experts
|
198 |
+
self.expert_capacity = expert_capacity
|
199 |
+
self.router_bias = router_bias
|
200 |
+
if router_dtype not in ["float32", "float16", "bfloat16"]:
|
201 |
+
raise ValueError(f"`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}")
|
202 |
+
self.router_dtype = router_dtype
|
203 |
+
|
204 |
+
self.router_ignore_padding_tokens = router_ignore_padding_tokens
|
205 |
+
self.batch_prioritized_routing = batch_prioritized_routing
|
206 |
+
self.second_expert_policy = second_expert_policy
|
207 |
+
self.normalize_router_prob_before_dropping = normalize_router_prob_before_dropping
|
208 |
+
self.moe_eval_capacity_token_fraction = moe_eval_capacity_token_fraction
|
209 |
+
self.moe_token_dropout = moe_token_dropout
|
210 |
+
self.output_router_logits = output_router_logits
|
211 |
+
super().__init__(
|
212 |
+
pad_token_id=pad_token_id,
|
213 |
+
bos_token_id=bos_token_id,
|
214 |
+
eos_token_id=eos_token_id,
|
215 |
+
is_encoder_decoder=is_encoder_decoder,
|
216 |
+
decoder_start_token_id=decoder_start_token_id,
|
217 |
+
**kwargs,
|
218 |
+
)
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/convert_nllb_moe_sharded_original_checkpoint_to_pytorch.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
import argparse
|
15 |
+
import json
|
16 |
+
import os
|
17 |
+
|
18 |
+
import torch
|
19 |
+
from torch import nn
|
20 |
+
|
21 |
+
from transformers import NllbMoeConfig, NllbMoeModel
|
22 |
+
from transformers.modeling_utils import dtype_byte_size
|
23 |
+
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
|
24 |
+
|
25 |
+
|
26 |
+
def remove_ignore_keys_(state_dict):
|
27 |
+
ignore_keys = [
|
28 |
+
"encoder.version",
|
29 |
+
"decoder.version",
|
30 |
+
"model.encoder.version",
|
31 |
+
"model.decoder.version",
|
32 |
+
"decoder.output_projection.weight",
|
33 |
+
"_float_tensor",
|
34 |
+
"encoder.embed_positions._float_tensor",
|
35 |
+
"decoder.embed_positions._float_tensor",
|
36 |
+
]
|
37 |
+
for k in ignore_keys:
|
38 |
+
state_dict.pop(k, None)
|
39 |
+
|
40 |
+
|
41 |
+
def make_linear_from_emb(emb):
|
42 |
+
vocab_size, emb_size = emb.weight.shape
|
43 |
+
lin_layer = nn.Linear(vocab_size, emb_size, bias=False)
|
44 |
+
lin_layer.weight.data = emb.weight.data
|
45 |
+
return lin_layer
|
46 |
+
|
47 |
+
|
48 |
+
def rename_fairseq_keys(state_dict, expert_idx=None):
|
49 |
+
new_dict = {}
|
50 |
+
for old_key in state_dict.keys():
|
51 |
+
key = old_key
|
52 |
+
if "moe_layer.experts." in key:
|
53 |
+
if expert_idx is not None:
|
54 |
+
key = key.replace("moe_layer.experts.0", f"ffn.experts.expert_{expert_idx}")
|
55 |
+
else:
|
56 |
+
key = key.replace("moe_layer.experts.", "ffn.experts.expert_")
|
57 |
+
if "gate" in key:
|
58 |
+
key = key.replace(".moe_layer.gate.wg", ".ffn.router.classifier")
|
59 |
+
if "fc2" and "experts" not in key:
|
60 |
+
key = key.replace(".fc2.", ".ffn.fc2.")
|
61 |
+
if "fc1" and "experts" not in key:
|
62 |
+
key = key.replace(".fc1.", ".ffn.fc1.")
|
63 |
+
if ".encoder_attn." in key:
|
64 |
+
key = key.replace(".encoder_attn.", ".cross_attention.")
|
65 |
+
if "encoder_attn_layer_norm" in key:
|
66 |
+
key = key.replace("encoder_attn_layer_norm", "cross_attention_layer_norm")
|
67 |
+
if "final_layer_norm" in key:
|
68 |
+
key = key.replace("final_layer_norm", "ff_layer_norm")
|
69 |
+
new_dict[key] = state_dict[old_key]
|
70 |
+
return new_dict
|
71 |
+
|
72 |
+
|
73 |
+
def shard_on_the_fly(switch_checkpoint_path, dump_path, num_experts, dtype, weights_name: str = WEIGHTS_NAME):
|
74 |
+
sharded_state_dicts = []
|
75 |
+
total_size = 0
|
76 |
+
os.makedirs(dump_path, exist_ok=True)
|
77 |
+
|
78 |
+
for expert in range(num_experts):
|
79 |
+
expert_path = switch_checkpoint_path + f"-rank-{expert}.pt"
|
80 |
+
if os.path.isfile(expert_path):
|
81 |
+
expert_state = torch.load(expert_path)["model"]
|
82 |
+
remove_ignore_keys_(expert_state)
|
83 |
+
expert_state = rename_fairseq_keys(expert_state, expert)
|
84 |
+
save_path = os.path.join(
|
85 |
+
dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin")
|
86 |
+
)
|
87 |
+
torch.save(expert_state, save_path)
|
88 |
+
sharded_state_dicts.append(expert_state.keys())
|
89 |
+
total_size += sum([value.numel() for key, value in expert_state.items()]) * dtype_byte_size(
|
90 |
+
expert_state[list(expert_state)[0]].dtype
|
91 |
+
)
|
92 |
+
|
93 |
+
# Add the last block
|
94 |
+
save_path = os.path.join(dump_path, weights_name.replace(".bin", f"-{len(sharded_state_dicts)+1:05d}-of-???.bin"))
|
95 |
+
shared_weights = torch.load(switch_checkpoint_path + "-shared.pt")["model"]
|
96 |
+
remove_ignore_keys_(shared_weights)
|
97 |
+
shared_weights = rename_fairseq_keys(shared_weights, None)
|
98 |
+
shared_weights["shared.weight"] = shared_weights["decoder.embed_tokens.weight"]
|
99 |
+
sharded_state_dicts.append(shared_weights.keys())
|
100 |
+
|
101 |
+
# If we only have the shared weights (dummy model/experts saved on the same file)
|
102 |
+
if len(sharded_state_dicts) == 1:
|
103 |
+
save_path = os.path.join(dump_path, weights_name)
|
104 |
+
torch.save(shared_weights, save_path)
|
105 |
+
return {weights_name: sharded_state_dicts[0]}, None
|
106 |
+
else:
|
107 |
+
torch.save(shared_weights, save_path)
|
108 |
+
# Otherwise, let's build the index
|
109 |
+
weight_map = {}
|
110 |
+
for idx, shard in enumerate(sharded_state_dicts):
|
111 |
+
shard_file = weights_name.replace(".bin", f"-{idx+1:05d}-of-{len(sharded_state_dicts):05d}.bin")
|
112 |
+
temp_filename = os.path.join(dump_path, weights_name.replace(".bin", f"-{idx+1:05d}-of-???.bin"))
|
113 |
+
os.rename(temp_filename, os.path.join(dump_path, shard_file))
|
114 |
+
for key in shard:
|
115 |
+
weight_map[key] = shard_file
|
116 |
+
|
117 |
+
# Add the metadata
|
118 |
+
metadata = {"total_size": total_size}
|
119 |
+
index = {"metadata": metadata, "weight_map": weight_map}
|
120 |
+
|
121 |
+
with open(os.path.join(dump_path, WEIGHTS_INDEX_NAME), "w", encoding="utf-8") as f:
|
122 |
+
content = json.dumps(index, indent=2, sort_keys=True) + "\n"
|
123 |
+
f.write(content)
|
124 |
+
|
125 |
+
return metadata, index
|
126 |
+
|
127 |
+
|
128 |
+
if __name__ == "__main__":
|
129 |
+
parser = argparse.ArgumentParser()
|
130 |
+
# Required parameters
|
131 |
+
parser.add_argument(
|
132 |
+
"--nllb_moe_checkpoint_path",
|
133 |
+
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
|
134 |
+
type=str,
|
135 |
+
required=False,
|
136 |
+
help="Path to a directory containing a folder per layer. Follows the original Google format.",
|
137 |
+
)
|
138 |
+
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
|
139 |
+
parser.add_argument(
|
140 |
+
"--pytorch_dump_folder_path",
|
141 |
+
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
|
142 |
+
type=str,
|
143 |
+
required=False,
|
144 |
+
help="Path to the output pytorch model.",
|
145 |
+
)
|
146 |
+
args = parser.parse_args()
|
147 |
+
metadata, index = shard_on_the_fly(
|
148 |
+
args.nllb_moe_checkpoint_path,
|
149 |
+
args.pytorch_dump_folder_path,
|
150 |
+
128,
|
151 |
+
args.dtype,
|
152 |
+
)
|
153 |
+
|
154 |
+
config = NllbMoeConfig.from_pretrained(
|
155 |
+
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
|
156 |
+
)
|
157 |
+
config.save_pretrained(args.pytorch_dump_folder_path)
|
158 |
+
model = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
|
159 |
+
print("Done")
|
160 |
+
model.save_pretrained(args.pytorch_dump_folder_path)
|
venv/lib/python3.10/site-packages/transformers/models/nllb_moe/modeling_nllb_moe.py
ADDED
@@ -0,0 +1,1792 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2023 NllbMoe Authors and HuggingFace Inc. team.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" PyTorch NLLB-MoE model."""
|
16 |
+
|
17 |
+
|
18 |
+
import math
|
19 |
+
from typing import List, Optional, Tuple, Union
|
20 |
+
|
21 |
+
import torch
|
22 |
+
import torch.nn as nn
|
23 |
+
from torch.nn import CrossEntropyLoss
|
24 |
+
|
25 |
+
from ...activations import ACT2FN
|
26 |
+
from ...integrations.deepspeed import is_deepspeed_zero3_enabled
|
27 |
+
from ...modeling_attn_mask_utils import _prepare_4d_attention_mask, _prepare_4d_causal_attention_mask
|
28 |
+
from ...modeling_outputs import (
|
29 |
+
MoEModelOutput,
|
30 |
+
MoEModelOutputWithPastAndCrossAttentions,
|
31 |
+
Seq2SeqMoEModelOutput,
|
32 |
+
Seq2SeqMoEOutput,
|
33 |
+
)
|
34 |
+
from ...modeling_utils import PreTrainedModel
|
35 |
+
from ...utils import (
|
36 |
+
add_end_docstrings,
|
37 |
+
add_start_docstrings,
|
38 |
+
add_start_docstrings_to_model_forward,
|
39 |
+
logging,
|
40 |
+
replace_return_docstrings,
|
41 |
+
)
|
42 |
+
from .configuration_nllb_moe import NllbMoeConfig
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__)
|
46 |
+
|
47 |
+
_CONFIG_FOR_DOC = "NllbMoeConfig"
|
48 |
+
_CHECKPOINT_FOR_DOC = "hf-internal-testing/dummy-nllb-moe-2-experts"
|
49 |
+
_REAL_CHECKPOINT_FOR_DOC = "facebook/nllb-moe-54b"
|
50 |
+
|
51 |
+
|
52 |
+
####################################################
|
53 |
+
# This dict contains ids and associated url
|
54 |
+
# for the pretrained weights provided with the models
|
55 |
+
####################################################
|
56 |
+
|
57 |
+
from ..deprecated._archive_maps import NLLB_MOE_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
|
58 |
+
|
59 |
+
|
60 |
+
# Copied from transformers.models.bart.modeling_bart.shift_tokens_right
|
61 |
+
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
|
62 |
+
"""
|
63 |
+
Shift input ids one token to the right.
|
64 |
+
"""
|
65 |
+
shifted_input_ids = input_ids.new_zeros(input_ids.shape)
|
66 |
+
shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
|
67 |
+
shifted_input_ids[:, 0] = decoder_start_token_id
|
68 |
+
|
69 |
+
if pad_token_id is None:
|
70 |
+
raise ValueError("self.model.config.pad_token_id has to be defined.")
|
71 |
+
# replace possible -100 values in labels by `pad_token_id`
|
72 |
+
shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)
|
73 |
+
|
74 |
+
return shifted_input_ids
|
75 |
+
|
76 |
+
|
77 |
+
# Copied from transformers.models.roberta.modeling_roberta.create_position_ids_from_input_ids
|
78 |
+
def create_position_ids_from_input_ids(input_ids, padding_idx, past_key_values_length=0):
|
79 |
+
"""
|
80 |
+
Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols
|
81 |
+
are ignored. This is modified from fairseq's `utils.make_positions`.
|
82 |
+
|
83 |
+
Args:
|
84 |
+
x: torch.Tensor x:
|
85 |
+
|
86 |
+
Returns: torch.Tensor
|
87 |
+
"""
|
88 |
+
# The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA.
|
89 |
+
mask = input_ids.ne(padding_idx).int()
|
90 |
+
incremental_indices = (torch.cumsum(mask, dim=1).type_as(mask) + past_key_values_length) * mask
|
91 |
+
return incremental_indices.long() + padding_idx
|
92 |
+
|
93 |
+
|
94 |
+
def load_balancing_loss_func(router_probs: torch.Tensor, expert_indices: torch.Tensor) -> float:
|
95 |
+
r"""
|
96 |
+
Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
|
97 |
+
|
98 |
+
See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
|
99 |
+
function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
|
100 |
+
experts is too unbalanced.
|
101 |
+
|
102 |
+
Args:
|
103 |
+
router_probs (`torch.Tensor`):
|
104 |
+
Probability assigned to each expert per token. Shape: [batch_size, seqeunce_length, num_experts].
|
105 |
+
expert_indices (`torch.Tensor`):
|
106 |
+
Indices tensor of shape [batch_size, seqeunce_length] identifying the selected expert for a given token.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
The auxiliary loss.
|
110 |
+
"""
|
111 |
+
if router_probs is None:
|
112 |
+
return 0
|
113 |
+
|
114 |
+
num_experts = router_probs.shape[-1]
|
115 |
+
|
116 |
+
# cast the expert indices to int64, otherwise one-hot encoding will fail
|
117 |
+
if expert_indices.dtype != torch.int64:
|
118 |
+
expert_indices = expert_indices.to(torch.int64)
|
119 |
+
|
120 |
+
if len(expert_indices.shape) == 2:
|
121 |
+
expert_indices = expert_indices.unsqueeze(2)
|
122 |
+
|
123 |
+
expert_mask = torch.nn.functional.one_hot(expert_indices, num_experts)
|
124 |
+
|
125 |
+
# For a given token, determine if it was routed to a given expert.
|
126 |
+
expert_mask = torch.max(expert_mask, axis=-2).values
|
127 |
+
|
128 |
+
# cast to float32 otherwise mean will fail
|
129 |
+
expert_mask = expert_mask.to(torch.float32)
|
130 |
+
tokens_per_group_and_expert = torch.mean(expert_mask, axis=-2)
|
131 |
+
|
132 |
+
router_prob_per_group_and_expert = torch.mean(router_probs, axis=-2)
|
133 |
+
return torch.mean(tokens_per_group_and_expert * router_prob_per_group_and_expert) * (num_experts**2)
|
134 |
+
|
135 |
+
|
136 |
+
# Copied from transformers.models.m2m_100.modeling_m2m_100.M2M100SinusoidalPositionalEmbedding
|
137 |
+
class NllbMoeSinusoidalPositionalEmbedding(nn.Module):
|
138 |
+
"""This module produces sinusoidal positional embeddings of any length."""
|
139 |
+
|
140 |
+
def __init__(self, num_positions: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
141 |
+
super().__init__()
|
142 |
+
self.offset = 2
|
143 |
+
self.embedding_dim = embedding_dim
|
144 |
+
self.padding_idx = padding_idx
|
145 |
+
self.make_weights(num_positions + self.offset, embedding_dim, padding_idx)
|
146 |
+
|
147 |
+
def make_weights(self, num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
148 |
+
emb_weights = self.get_embedding(num_embeddings, embedding_dim, padding_idx)
|
149 |
+
if hasattr(self, "weights"):
|
150 |
+
# in forward put the weights on the correct dtype and device of the param
|
151 |
+
emb_weights = emb_weights.to(dtype=self.weights.dtype, device=self.weights.device)
|
152 |
+
|
153 |
+
self.register_buffer("weights", emb_weights, persistent=False)
|
154 |
+
|
155 |
+
@staticmethod
|
156 |
+
def get_embedding(num_embeddings: int, embedding_dim: int, padding_idx: Optional[int] = None):
|
157 |
+
"""
|
158 |
+
Build sinusoidal embeddings.
|
159 |
+
|
160 |
+
This matches the implementation in tensor2tensor, but differs slightly from the description in Section 3.5 of
|
161 |
+
"Attention Is All You Need".
|
162 |
+
"""
|
163 |
+
half_dim = embedding_dim // 2
|
164 |
+
emb = math.log(10000) / (half_dim - 1)
|
165 |
+
emb = torch.exp(torch.arange(half_dim, dtype=torch.int64).float() * -emb)
|
166 |
+
emb = torch.arange(num_embeddings, dtype=torch.int64).float().unsqueeze(1) * emb.unsqueeze(0)
|
167 |
+
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1)
|
168 |
+
if embedding_dim % 2 == 1:
|
169 |
+
# zero pad
|
170 |
+
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1)
|
171 |
+
if padding_idx is not None:
|
172 |
+
emb[padding_idx, :] = 0
|
173 |
+
|
174 |
+
return emb.to(torch.get_default_dtype())
|
175 |
+
|
176 |
+
@torch.no_grad()
|
177 |
+
def forward(
|
178 |
+
self, input_ids: torch.Tensor = None, inputs_embeds: torch.Tensor = None, past_key_values_length: int = 0
|
179 |
+
):
|
180 |
+
if input_ids is not None:
|
181 |
+
bsz, seq_len = input_ids.size()
|
182 |
+
# Create the position ids from the input token ids. Any padded tokens remain padded.
|
183 |
+
position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx, past_key_values_length).to(
|
184 |
+
input_ids.device
|
185 |
+
)
|
186 |
+
else:
|
187 |
+
bsz, seq_len = inputs_embeds.size()[:-1]
|
188 |
+
position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds, past_key_values_length)
|
189 |
+
|
190 |
+
# expand embeddings if needed
|
191 |
+
max_pos = self.padding_idx + 1 + seq_len + past_key_values_length
|
192 |
+
if max_pos > self.weights.size(0):
|
193 |
+
self.make_weights(max_pos + self.offset, self.embedding_dim, self.padding_idx)
|
194 |
+
|
195 |
+
return self.weights.index_select(0, position_ids.view(-1)).view(bsz, seq_len, self.weights.shape[-1]).detach()
|
196 |
+
|
197 |
+
def create_position_ids_from_inputs_embeds(self, inputs_embeds, past_key_values_length):
|
198 |
+
"""
|
199 |
+
We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids.
|
200 |
+
|
201 |
+
Args:
|
202 |
+
inputs_embeds: torch.Tensor
|
203 |
+
|
204 |
+
Returns: torch.Tensor
|
205 |
+
"""
|
206 |
+
input_shape = inputs_embeds.size()[:-1]
|
207 |
+
sequence_length = input_shape[1]
|
208 |
+
|
209 |
+
position_ids = torch.arange(
|
210 |
+
self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device
|
211 |
+
)
|
212 |
+
return position_ids.unsqueeze(0).expand(input_shape).contiguous() + past_key_values_length
|
213 |
+
|
214 |
+
|
215 |
+
class NllbMoeTop2Router(nn.Module):
|
216 |
+
"""
|
217 |
+
Router using tokens choose top-2 experts assignment.
|
218 |
+
|
219 |
+
This router uses the same mechanism as in NLLB-MoE from the fairseq repository. Items are sorted by router_probs
|
220 |
+
and then routed to their choice of expert until the expert's expert_capacity is reached. **There is no guarantee
|
221 |
+
that each token is processed by an expert**, or that each expert receives at least one token.
|
222 |
+
|
223 |
+
The router combining weights are also returned to make sure that the states that are not updated will be masked.
|
224 |
+
|
225 |
+
"""
|
226 |
+
|
227 |
+
def __init__(self, config: NllbMoeConfig):
|
228 |
+
super().__init__()
|
229 |
+
self.num_experts = config.num_experts
|
230 |
+
self.expert_capacity = config.expert_capacity
|
231 |
+
self.classifier = nn.Linear(config.hidden_size, self.num_experts, bias=config.router_bias)
|
232 |
+
self.router_ignore_padding_tokens = config.router_ignore_padding_tokens
|
233 |
+
self.dtype = getattr(torch, config.router_dtype)
|
234 |
+
|
235 |
+
self.second_expert_policy = config.second_expert_policy
|
236 |
+
self.normalize_router_prob_before_dropping = config.normalize_router_prob_before_dropping
|
237 |
+
self.batch_prioritized_routing = config.batch_prioritized_routing
|
238 |
+
self.moe_eval_capacity_token_fraction = config.moe_eval_capacity_token_fraction
|
239 |
+
|
240 |
+
def _cast_classifier(self):
|
241 |
+
r"""
|
242 |
+
`bitsandbytes` `Linear8bitLt` layers does not support manual casting Therefore we need to check if they are an
|
243 |
+
instance of the `Linear8bitLt` class by checking special attributes.
|
244 |
+
"""
|
245 |
+
if not (hasattr(self.classifier, "SCB") or hasattr(self.classifier, "CB")):
|
246 |
+
self.classifier = self.classifier.to(self.dtype)
|
247 |
+
|
248 |
+
def normalize_router_probabilities(self, router_probs, top_1_mask, top_2_mask):
|
249 |
+
top_1_max_probs = (router_probs * top_1_mask).sum(dim=1)
|
250 |
+
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
|
251 |
+
denom_s = torch.clamp(top_1_max_probs + top_2_max_probs, min=torch.finfo(router_probs.dtype).eps)
|
252 |
+
top_1_max_probs = top_1_max_probs / denom_s
|
253 |
+
top_2_max_probs = top_2_max_probs / denom_s
|
254 |
+
return top_1_max_probs, top_2_max_probs
|
255 |
+
|
256 |
+
def route_tokens(
|
257 |
+
self,
|
258 |
+
router_logits: torch.Tensor,
|
259 |
+
input_dtype: torch.dtype = torch.float32,
|
260 |
+
padding_mask: Optional[torch.LongTensor] = None,
|
261 |
+
) -> Tuple:
|
262 |
+
"""
|
263 |
+
Computes the `dispatch_mask` and the `dispatch_weights` for each experts. The masks are adapted to the expert
|
264 |
+
capacity.
|
265 |
+
"""
|
266 |
+
nb_tokens = router_logits.shape[0]
|
267 |
+
# Apply Softmax and cast back to the original `dtype`
|
268 |
+
router_probs = nn.functional.softmax(router_logits, dim=-1, dtype=self.dtype).to(input_dtype)
|
269 |
+
top_1_expert_index = torch.argmax(router_probs, dim=-1)
|
270 |
+
top_1_mask = torch.nn.functional.one_hot(top_1_expert_index, num_classes=self.num_experts)
|
271 |
+
|
272 |
+
if self.second_expert_policy == "sampling":
|
273 |
+
gumbel = torch.distributions.gumbel.Gumbel(0, 1).rsample
|
274 |
+
router_logits += gumbel(router_logits.shape).to(router_logits.device)
|
275 |
+
|
276 |
+
# replace top_1_expert_index with min values
|
277 |
+
logits_except_top_1 = router_logits.masked_fill(top_1_mask.bool(), float("-inf"))
|
278 |
+
top_2_expert_index = torch.argmax(logits_except_top_1, dim=-1)
|
279 |
+
top_2_mask = torch.nn.functional.one_hot(top_2_expert_index, num_classes=self.num_experts)
|
280 |
+
|
281 |
+
if self.normalize_router_prob_before_dropping:
|
282 |
+
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
|
283 |
+
router_probs, top_1_mask, top_2_mask
|
284 |
+
)
|
285 |
+
|
286 |
+
if self.second_expert_policy == "random":
|
287 |
+
top_2_max_probs = (router_probs * top_2_mask).sum(dim=1)
|
288 |
+
sampled = (2 * top_2_max_probs) > torch.rand_like(top_2_max_probs.float())
|
289 |
+
top_2_mask = top_2_mask * sampled.repeat(self.num_experts, 1).transpose(1, 0)
|
290 |
+
|
291 |
+
if padding_mask is not None and not self.router_ignore_padding_tokens:
|
292 |
+
if len(padding_mask.shape) == 4:
|
293 |
+
# only get the last causal mask
|
294 |
+
padding_mask = padding_mask[:, :, -1, :].reshape(-1)[-nb_tokens:]
|
295 |
+
non_padding = ~padding_mask.bool()
|
296 |
+
top_1_mask = top_1_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
|
297 |
+
top_2_mask = top_2_mask * non_padding.unsqueeze(-1).to(top_1_mask.dtype)
|
298 |
+
|
299 |
+
if self.batch_prioritized_routing:
|
300 |
+
# sort tokens based on their routing probability
|
301 |
+
# to make sure important tokens are routed, first
|
302 |
+
importance_scores = -1 * router_probs.max(dim=1)[0]
|
303 |
+
sorted_top_1_mask = top_1_mask[importance_scores.argsort(dim=0)]
|
304 |
+
sorted_cumsum1 = (torch.cumsum(sorted_top_1_mask, dim=0) - 1) * sorted_top_1_mask
|
305 |
+
locations1 = sorted_cumsum1[importance_scores.argsort(dim=0).argsort(dim=0)]
|
306 |
+
|
307 |
+
sorted_top_2_mask = top_2_mask[importance_scores.argsort(dim=0)]
|
308 |
+
sorted_cumsum2 = (torch.cumsum(sorted_top_2_mask, dim=0) - 1) * sorted_top_2_mask
|
309 |
+
locations2 = sorted_cumsum2[importance_scores.argsort(dim=0).argsort(dim=0)]
|
310 |
+
# Update 2nd's location by accounting for locations of 1st
|
311 |
+
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
|
312 |
+
|
313 |
+
else:
|
314 |
+
locations1 = torch.cumsum(top_1_mask, dim=0) - 1
|
315 |
+
locations2 = torch.cumsum(top_2_mask, dim=0) - 1
|
316 |
+
# Update 2nd's location by accounting for locations of 1st
|
317 |
+
locations2 += torch.sum(top_1_mask, dim=0, keepdim=True)
|
318 |
+
|
319 |
+
if not self.training and self.moe_eval_capacity_token_fraction > 0:
|
320 |
+
self.expert_capacity = math.ceil(self.moe_eval_capacity_token_fraction * nb_tokens)
|
321 |
+
else:
|
322 |
+
capacity = 2 * math.ceil(nb_tokens / self.num_experts)
|
323 |
+
self.expert_capacity = capacity if self.expert_capacity is None else self.expert_capacity
|
324 |
+
|
325 |
+
# Remove locations outside capacity from ( cumsum < capacity = False will not be routed)
|
326 |
+
top_1_mask = top_1_mask * torch.lt(locations1, self.expert_capacity)
|
327 |
+
top_2_mask = top_2_mask * torch.lt(locations2, self.expert_capacity)
|
328 |
+
|
329 |
+
if not self.normalize_router_prob_before_dropping:
|
330 |
+
top_1_max_probs, top_2_max_probs = self.normalize_router_probabilities(
|
331 |
+
router_probs, top_1_mask, top_2_mask
|
332 |
+
)
|
333 |
+
|
334 |
+
# Calculate combine_weights and dispatch_mask
|
335 |
+
gates1 = top_1_max_probs[:, None] * top_1_mask
|
336 |
+
gates2 = top_2_max_probs[:, None] * top_2_mask
|
337 |
+
router_probs = gates1 + gates2
|
338 |
+
|
339 |
+
return top_1_mask, router_probs
|
340 |
+
|
341 |
+
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.LongTensor] = None) -> Tuple:
|
342 |
+
r"""
|
343 |
+
The hidden states are reshaped to simplify the computation of the router probabilities (combining weights for
|
344 |
+
each experts.)
|
345 |
+
|
346 |
+
Args:
|
347 |
+
hidden_states (`torch.Tensor`):
|
348 |
+
(batch_size, sequence_length, hidden_dim) from which router probabilities are computed.
|
349 |
+
Returns:
|
350 |
+
top_1_mask (`torch.Tensor` of shape (batch_size, sequence_length)):
|
351 |
+
Index tensor of shape [batch_size, sequence_length] corresponding to the expert selected for each token
|
352 |
+
using the top1 probabilities of the router.
|
353 |
+
router_probabilities (`torch.Tensor` of shape (batch_size, sequence_length, nump_experts)):
|
354 |
+
Tensor of shape (batch_size, sequence_length, num_experts) corresponding to the probabilities for each
|
355 |
+
token and expert. Used for routing tokens to experts.
|
356 |
+
router_logits (`torch.Tensor` of shape (batch_size, sequence_length))):
|
357 |
+
Logits tensor of shape (batch_size, sequence_length, num_experts) corresponding to raw router logits.
|
358 |
+
This is used later for computing router z-loss.
|
359 |
+
"""
|
360 |
+
self.input_dtype = hidden_states.dtype
|
361 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
362 |
+
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
|
363 |
+
hidden_states = hidden_states.to(self.dtype)
|
364 |
+
self._cast_classifier()
|
365 |
+
router_logits = self.classifier(hidden_states)
|
366 |
+
top_1_mask, router_probs = self.route_tokens(router_logits, self.input_dtype, padding_mask)
|
367 |
+
return top_1_mask, router_probs
|
368 |
+
|
369 |
+
|
370 |
+
class NllbMoeDenseActDense(nn.Module):
|
371 |
+
def __init__(self, config: NllbMoeConfig, ffn_dim: int):
|
372 |
+
super().__init__()
|
373 |
+
self.fc1 = nn.Linear(config.d_model, ffn_dim)
|
374 |
+
self.fc2 = nn.Linear(ffn_dim, config.d_model)
|
375 |
+
self.dropout = nn.Dropout(config.activation_dropout)
|
376 |
+
self.act = ACT2FN[config.activation_function]
|
377 |
+
|
378 |
+
def forward(self, hidden_states):
|
379 |
+
hidden_states = self.fc1(hidden_states)
|
380 |
+
hidden_states = self.act(hidden_states)
|
381 |
+
hidden_states = self.dropout(hidden_states)
|
382 |
+
if (
|
383 |
+
isinstance(self.fc2.weight, torch.Tensor)
|
384 |
+
and hidden_states.dtype != self.fc2.weight.dtype
|
385 |
+
and (self.fc2.weight.dtype != torch.int8 and self.fc2.weight.dtype != torch.uint8)
|
386 |
+
):
|
387 |
+
hidden_states = hidden_states.to(self.fc2.weight.dtype)
|
388 |
+
hidden_states = self.fc2(hidden_states)
|
389 |
+
return hidden_states
|
390 |
+
|
391 |
+
|
392 |
+
class NllbMoeSparseMLP(nn.Module):
|
393 |
+
r"""
|
394 |
+
Implementation of the NLLB-MoE sparse MLP module.
|
395 |
+
"""
|
396 |
+
|
397 |
+
def __init__(self, config: NllbMoeConfig, ffn_dim: int, expert_class: nn.Module = NllbMoeDenseActDense):
|
398 |
+
super().__init__()
|
399 |
+
self.router = NllbMoeTop2Router(config)
|
400 |
+
self.moe_token_dropout = config.moe_token_dropout
|
401 |
+
self.token_dropout = nn.Dropout(self.moe_token_dropout)
|
402 |
+
self.num_experts = config.num_experts
|
403 |
+
|
404 |
+
self.experts = nn.ModuleDict()
|
405 |
+
for idx in range(self.num_experts):
|
406 |
+
self.experts[f"expert_{idx}"] = expert_class(config, ffn_dim)
|
407 |
+
|
408 |
+
def forward(self, hidden_states: torch.Tensor, padding_mask: Optional[torch.Tensor] = False):
|
409 |
+
r"""
|
410 |
+
The goal of this forward pass is to have the same number of operation as the equivalent `NllbMoeDenseActDense`
|
411 |
+
(mlp) layer. This means that all of the hidden states should be processed at most twice ( since we are using a
|
412 |
+
top_2 gating mecanism). This means that we keep the complexity to O(batch_size x sequence_length x hidden_dim)
|
413 |
+
instead of O(num_experts x batch_size x sequence_length x hidden_dim).
|
414 |
+
|
415 |
+
1- Get the `router_probs` from the `router`. The shape of the `router_mask` is `(batch_size X sequence_length,
|
416 |
+
num_expert)` and corresponds to the boolean version of the `router_probs`. The inputs are masked using the
|
417 |
+
`router_mask`.
|
418 |
+
|
419 |
+
2- Dispatch the hidden_states to its associated experts. The router probabilities are used to weight the
|
420 |
+
contribution of each experts when updating the masked hidden states.
|
421 |
+
|
422 |
+
Args:
|
423 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
|
424 |
+
The hidden states
|
425 |
+
padding_mask (`torch.Tensor`, *optional*, defaults to `False`):
|
426 |
+
Attention mask. Can be in the causal form or not.
|
427 |
+
|
428 |
+
Returns:
|
429 |
+
hidden_states (`torch.Tensor` of shape `(batch_size, sequence_length, hidden_dim)`):
|
430 |
+
Updated hidden states
|
431 |
+
router_logits (`torch.Tensor` of shape `(batch_size, sequence_length, num_experts)`):
|
432 |
+
Needed for computing the loss
|
433 |
+
|
434 |
+
"""
|
435 |
+
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
436 |
+
|
437 |
+
top_1_mask, router_probs = self.router(hidden_states, padding_mask)
|
438 |
+
router_mask = router_probs.bool()
|
439 |
+
hidden_states = hidden_states.reshape((batch_size * sequence_length), hidden_dim)
|
440 |
+
masked_hidden_states = torch.einsum("bm,be->ebm", hidden_states, router_mask)
|
441 |
+
for idx, expert in enumerate(self.experts.values()):
|
442 |
+
token_indices = router_mask[:, idx]
|
443 |
+
combining_weights = router_probs[token_indices, idx]
|
444 |
+
expert_output = expert(masked_hidden_states[idx, token_indices])
|
445 |
+
if self.moe_token_dropout > 0:
|
446 |
+
if self.training:
|
447 |
+
expert_output = self.token_dropout(expert_output)
|
448 |
+
else:
|
449 |
+
expert_output *= 1 - self.moe_token_dropout
|
450 |
+
masked_hidden_states[idx, token_indices] = torch.einsum("b,be->be", combining_weights, expert_output)
|
451 |
+
hidden_states = masked_hidden_states.sum(dim=0).reshape(batch_size, sequence_length, hidden_dim)
|
452 |
+
|
453 |
+
top_1_expert_index = torch.argmax(top_1_mask, dim=-1)
|
454 |
+
return hidden_states, (router_probs, top_1_expert_index)
|
455 |
+
|
456 |
+
|
457 |
+
# Copied from transformers.models.bart.modeling_bart.BartAttention with Bart->NllbMoe,key_value_states->encoder_hidden_states
|
458 |
+
class NllbMoeAttention(nn.Module):
|
459 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
460 |
+
|
461 |
+
def __init__(
|
462 |
+
self,
|
463 |
+
embed_dim: int,
|
464 |
+
num_heads: int,
|
465 |
+
dropout: float = 0.0,
|
466 |
+
is_decoder: bool = False,
|
467 |
+
bias: bool = True,
|
468 |
+
is_causal: bool = False,
|
469 |
+
config: Optional[NllbMoeConfig] = None,
|
470 |
+
):
|
471 |
+
super().__init__()
|
472 |
+
self.embed_dim = embed_dim
|
473 |
+
self.num_heads = num_heads
|
474 |
+
self.dropout = dropout
|
475 |
+
self.head_dim = embed_dim // num_heads
|
476 |
+
self.config = config
|
477 |
+
|
478 |
+
if (self.head_dim * num_heads) != self.embed_dim:
|
479 |
+
raise ValueError(
|
480 |
+
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim}"
|
481 |
+
f" and `num_heads`: {num_heads})."
|
482 |
+
)
|
483 |
+
self.scaling = self.head_dim**-0.5
|
484 |
+
self.is_decoder = is_decoder
|
485 |
+
self.is_causal = is_causal
|
486 |
+
|
487 |
+
self.k_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
488 |
+
self.v_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
489 |
+
self.q_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
490 |
+
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
|
491 |
+
|
492 |
+
def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
|
493 |
+
return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
|
494 |
+
|
495 |
+
def forward(
|
496 |
+
self,
|
497 |
+
hidden_states: torch.Tensor,
|
498 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
499 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
500 |
+
attention_mask: Optional[torch.Tensor] = None,
|
501 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
502 |
+
output_attentions: bool = False,
|
503 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
504 |
+
"""Input shape: Batch x Time x Channel"""
|
505 |
+
|
506 |
+
# if encoder_hidden_states are provided this layer is used as a cross-attention layer
|
507 |
+
# for the decoder
|
508 |
+
is_cross_attention = encoder_hidden_states is not None
|
509 |
+
|
510 |
+
bsz, tgt_len, _ = hidden_states.size()
|
511 |
+
|
512 |
+
# get query proj
|
513 |
+
query_states = self.q_proj(hidden_states) * self.scaling
|
514 |
+
# get key, value proj
|
515 |
+
# `past_key_value[0].shape[2] == encoder_hidden_states.shape[1]`
|
516 |
+
# is checking that the `sequence_length` of the `past_key_value` is the same as
|
517 |
+
# the provided `encoder_hidden_states` to support prefix tuning
|
518 |
+
if (
|
519 |
+
is_cross_attention
|
520 |
+
and past_key_value is not None
|
521 |
+
and past_key_value[0].shape[2] == encoder_hidden_states.shape[1]
|
522 |
+
):
|
523 |
+
# reuse k,v, cross_attentions
|
524 |
+
key_states = past_key_value[0]
|
525 |
+
value_states = past_key_value[1]
|
526 |
+
elif is_cross_attention:
|
527 |
+
# cross_attentions
|
528 |
+
key_states = self._shape(self.k_proj(encoder_hidden_states), -1, bsz)
|
529 |
+
value_states = self._shape(self.v_proj(encoder_hidden_states), -1, bsz)
|
530 |
+
elif past_key_value is not None:
|
531 |
+
# reuse k, v, self_attention
|
532 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
533 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
534 |
+
key_states = torch.cat([past_key_value[0], key_states], dim=2)
|
535 |
+
value_states = torch.cat([past_key_value[1], value_states], dim=2)
|
536 |
+
else:
|
537 |
+
# self_attention
|
538 |
+
key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
|
539 |
+
value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
|
540 |
+
|
541 |
+
if self.is_decoder:
|
542 |
+
# if cross_attention save Tuple(torch.Tensor, torch.Tensor) of all cross attention key/value_states.
|
543 |
+
# Further calls to cross_attention layer can then reuse all cross-attention
|
544 |
+
# key/value_states (first "if" case)
|
545 |
+
# if uni-directional self-attention (decoder) save Tuple(torch.Tensor, torch.Tensor) of
|
546 |
+
# all previous decoder key/value_states. Further calls to uni-directional self-attention
|
547 |
+
# can concat previous decoder key/value_states to current projected key/value_states (third "elif" case)
|
548 |
+
# if encoder bi-directional self-attention `past_key_value` is always `None`
|
549 |
+
past_key_value = (key_states, value_states)
|
550 |
+
|
551 |
+
proj_shape = (bsz * self.num_heads, -1, self.head_dim)
|
552 |
+
query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
|
553 |
+
key_states = key_states.reshape(*proj_shape)
|
554 |
+
value_states = value_states.reshape(*proj_shape)
|
555 |
+
|
556 |
+
src_len = key_states.size(1)
|
557 |
+
attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
|
558 |
+
|
559 |
+
if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
|
560 |
+
raise ValueError(
|
561 |
+
f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
|
562 |
+
f" {attn_weights.size()}"
|
563 |
+
)
|
564 |
+
|
565 |
+
if attention_mask is not None:
|
566 |
+
if attention_mask.size() != (bsz, 1, tgt_len, src_len):
|
567 |
+
raise ValueError(
|
568 |
+
f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
|
569 |
+
)
|
570 |
+
attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
|
571 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
572 |
+
|
573 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
574 |
+
|
575 |
+
if layer_head_mask is not None:
|
576 |
+
if layer_head_mask.size() != (self.num_heads,):
|
577 |
+
raise ValueError(
|
578 |
+
f"Head mask for a single layer should be of size {(self.num_heads,)}, but is"
|
579 |
+
f" {layer_head_mask.size()}"
|
580 |
+
)
|
581 |
+
attn_weights = layer_head_mask.view(1, -1, 1, 1) * attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
582 |
+
attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
|
583 |
+
|
584 |
+
if output_attentions:
|
585 |
+
# this operation is a bit awkward, but it's required to
|
586 |
+
# make sure that attn_weights keeps its gradient.
|
587 |
+
# In order to do so, attn_weights have to be reshaped
|
588 |
+
# twice and have to be reused in the following
|
589 |
+
attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
|
590 |
+
attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
|
591 |
+
else:
|
592 |
+
attn_weights_reshaped = None
|
593 |
+
|
594 |
+
attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
|
595 |
+
|
596 |
+
attn_output = torch.bmm(attn_probs, value_states)
|
597 |
+
|
598 |
+
if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
|
599 |
+
raise ValueError(
|
600 |
+
f"`attn_output` should be of size {(bsz * self.num_heads, tgt_len, self.head_dim)}, but is"
|
601 |
+
f" {attn_output.size()}"
|
602 |
+
)
|
603 |
+
|
604 |
+
attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
|
605 |
+
attn_output = attn_output.transpose(1, 2)
|
606 |
+
|
607 |
+
# Use the `embed_dim` from the config (stored in the class) rather than `hidden_state` because `attn_output` can be
|
608 |
+
# partitioned across GPUs when using tensor-parallelism.
|
609 |
+
attn_output = attn_output.reshape(bsz, tgt_len, self.embed_dim)
|
610 |
+
|
611 |
+
attn_output = self.out_proj(attn_output)
|
612 |
+
|
613 |
+
return attn_output, attn_weights_reshaped, past_key_value
|
614 |
+
|
615 |
+
|
616 |
+
class NllbMoeEncoderLayer(nn.Module):
|
617 |
+
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
|
618 |
+
super().__init__()
|
619 |
+
self.embed_dim = config.d_model
|
620 |
+
self.is_sparse = is_sparse
|
621 |
+
self.self_attn = NllbMoeAttention(
|
622 |
+
embed_dim=self.embed_dim,
|
623 |
+
num_heads=config.encoder_attention_heads,
|
624 |
+
dropout=config.attention_dropout,
|
625 |
+
)
|
626 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
627 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
628 |
+
if not self.is_sparse:
|
629 |
+
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.encoder_ffn_dim)
|
630 |
+
else:
|
631 |
+
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.encoder_ffn_dim)
|
632 |
+
self.ff_layer_norm = nn.LayerNorm(config.d_model)
|
633 |
+
self.ff_dropout = nn.Dropout(config.activation_dropout)
|
634 |
+
|
635 |
+
def forward(
|
636 |
+
self,
|
637 |
+
hidden_states: torch.Tensor,
|
638 |
+
attention_mask: torch.Tensor,
|
639 |
+
layer_head_mask: torch.Tensor,
|
640 |
+
output_attentions: bool = False,
|
641 |
+
output_router_logits: bool = False,
|
642 |
+
) -> torch.Tensor:
|
643 |
+
"""
|
644 |
+
Args:
|
645 |
+
hidden_states (`torch.FloatTensor`):
|
646 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
647 |
+
attention_mask (`torch.FloatTensor`):
|
648 |
+
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
|
649 |
+
large negative values.
|
650 |
+
layer_head_mask (`torch.FloatTensor`): mask for attention heads in a given layer of size
|
651 |
+
`(encoder_attention_heads,)`.
|
652 |
+
output_attentions (`bool`, *optional*):
|
653 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
654 |
+
returned tensors for more detail.
|
655 |
+
"""
|
656 |
+
residual = hidden_states
|
657 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
658 |
+
hidden_states, attn_weights, _ = self.self_attn(
|
659 |
+
hidden_states=hidden_states,
|
660 |
+
attention_mask=attention_mask,
|
661 |
+
layer_head_mask=layer_head_mask,
|
662 |
+
output_attentions=output_attentions,
|
663 |
+
)
|
664 |
+
hidden_states = self.attn_dropout(hidden_states)
|
665 |
+
hidden_states = residual + hidden_states
|
666 |
+
|
667 |
+
residual = hidden_states
|
668 |
+
|
669 |
+
hidden_states = self.ff_layer_norm(hidden_states)
|
670 |
+
if self.is_sparse:
|
671 |
+
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
|
672 |
+
else:
|
673 |
+
# router_states set to None to track which layers have None gradients.
|
674 |
+
hidden_states, router_states = self.ffn(hidden_states), None
|
675 |
+
|
676 |
+
hidden_states = self.ff_dropout(hidden_states)
|
677 |
+
|
678 |
+
hidden_states = residual + hidden_states
|
679 |
+
|
680 |
+
if hidden_states.dtype == torch.float16 and (
|
681 |
+
torch.isinf(hidden_states).any() or torch.isnan(hidden_states).any()
|
682 |
+
):
|
683 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
684 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
685 |
+
|
686 |
+
outputs = (hidden_states,)
|
687 |
+
|
688 |
+
if output_attentions:
|
689 |
+
outputs += (attn_weights,)
|
690 |
+
|
691 |
+
if output_router_logits:
|
692 |
+
outputs += (router_states,)
|
693 |
+
|
694 |
+
return outputs
|
695 |
+
|
696 |
+
|
697 |
+
class NllbMoeDecoderLayer(nn.Module):
|
698 |
+
def __init__(self, config: NllbMoeConfig, is_sparse: bool = False):
|
699 |
+
super().__init__()
|
700 |
+
self.embed_dim = config.d_model
|
701 |
+
self.is_sparse = is_sparse
|
702 |
+
self.self_attn = NllbMoeAttention(
|
703 |
+
embed_dim=self.embed_dim,
|
704 |
+
num_heads=config.decoder_attention_heads,
|
705 |
+
dropout=config.attention_dropout,
|
706 |
+
is_decoder=True,
|
707 |
+
)
|
708 |
+
self.dropout = config.dropout
|
709 |
+
self.activation_fn = ACT2FN[config.activation_function]
|
710 |
+
self.attn_dropout = nn.Dropout(config.dropout)
|
711 |
+
|
712 |
+
self.self_attn_layer_norm = nn.LayerNorm(self.embed_dim)
|
713 |
+
self.cross_attention = NllbMoeAttention(
|
714 |
+
self.embed_dim, config.decoder_attention_heads, config.attention_dropout, is_decoder=True
|
715 |
+
)
|
716 |
+
self.cross_attention_layer_norm = nn.LayerNorm(self.embed_dim)
|
717 |
+
if not self.is_sparse:
|
718 |
+
self.ffn = NllbMoeDenseActDense(config, ffn_dim=config.decoder_ffn_dim)
|
719 |
+
else:
|
720 |
+
self.ffn = NllbMoeSparseMLP(config, ffn_dim=config.decoder_ffn_dim)
|
721 |
+
self.ff_layer_norm = nn.LayerNorm(config.d_model)
|
722 |
+
self.ff_dropout = nn.Dropout(config.activation_dropout)
|
723 |
+
|
724 |
+
def forward(
|
725 |
+
self,
|
726 |
+
hidden_states: torch.Tensor,
|
727 |
+
attention_mask: Optional[torch.Tensor] = None,
|
728 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
729 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
730 |
+
layer_head_mask: Optional[torch.Tensor] = None,
|
731 |
+
cross_attn_layer_head_mask: Optional[torch.Tensor] = None,
|
732 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
733 |
+
output_attentions: Optional[bool] = False,
|
734 |
+
output_router_logits: Optional[bool] = False,
|
735 |
+
use_cache: Optional[bool] = True,
|
736 |
+
) -> torch.Tensor:
|
737 |
+
"""
|
738 |
+
Args:
|
739 |
+
hidden_states (`torch.FloatTensor`):
|
740 |
+
input to the layer of shape `(batch, seq_len, embed_dim)`
|
741 |
+
attention_mask (`torch.FloatTensor`):
|
742 |
+
attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very
|
743 |
+
large negative values.
|
744 |
+
encoder_hidden_states (`torch.FloatTensor`):
|
745 |
+
cross attention input to the layer of shape `(batch, seq_len, embed_dim)`
|
746 |
+
encoder_attention_mask (`torch.FloatTensor`):
|
747 |
+
encoder attention mask of size `(batch, 1, tgt_len, src_len)` where padding elements are indicated by
|
748 |
+
very large negative values.
|
749 |
+
layer_head_mask (`torch.FloatTensor`):
|
750 |
+
mask for attention heads in a given layer of size `(encoder_attention_heads,)`.
|
751 |
+
cross_attn_layer_head_mask (`torch.FloatTensor`):
|
752 |
+
mask for cross-attention heads in a given layer of size `(decoder_attention_heads,)`.
|
753 |
+
past_key_value (`Tuple(torch.FloatTensor)`):
|
754 |
+
cached past key and value projection states
|
755 |
+
output_attentions (`bool`, *optional*):
|
756 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
757 |
+
returned tensors for more detail.
|
758 |
+
"""
|
759 |
+
residual = hidden_states
|
760 |
+
hidden_states = self.self_attn_layer_norm(hidden_states)
|
761 |
+
|
762 |
+
# Self Attention
|
763 |
+
# decoder uni-directional self-attention cached key/values tuple is at positions 1,2
|
764 |
+
self_attn_past_key_value = past_key_value[:2] if past_key_value is not None else None
|
765 |
+
# add present self-attn cache to positions 1,2 of present_key_value tuple
|
766 |
+
hidden_states, self_attn_weights, present_key_value = self.self_attn(
|
767 |
+
hidden_states=hidden_states,
|
768 |
+
past_key_value=self_attn_past_key_value,
|
769 |
+
attention_mask=attention_mask,
|
770 |
+
layer_head_mask=layer_head_mask,
|
771 |
+
output_attentions=output_attentions,
|
772 |
+
)
|
773 |
+
hidden_states = self.attn_dropout(hidden_states)
|
774 |
+
hidden_states = residual + hidden_states
|
775 |
+
|
776 |
+
# Cross-Attention Block
|
777 |
+
cross_attn_present_key_value = None
|
778 |
+
cross_attn_weights = None
|
779 |
+
if encoder_hidden_states is not None:
|
780 |
+
residual = hidden_states
|
781 |
+
hidden_states = self.cross_attention_layer_norm(hidden_states)
|
782 |
+
|
783 |
+
# cross_attn cached key/values tuple is at positions 3,4 of present_key_value tuple
|
784 |
+
cross_attn_past_key_value = past_key_value[-2:] if past_key_value is not None else None
|
785 |
+
hidden_states, cross_attn_weights, cross_attn_present_key_value = self.cross_attention(
|
786 |
+
hidden_states=hidden_states,
|
787 |
+
encoder_hidden_states=encoder_hidden_states,
|
788 |
+
past_key_value=cross_attn_past_key_value,
|
789 |
+
attention_mask=encoder_attention_mask,
|
790 |
+
layer_head_mask=cross_attn_layer_head_mask,
|
791 |
+
output_attentions=output_attentions,
|
792 |
+
)
|
793 |
+
hidden_states = self.attn_dropout(hidden_states)
|
794 |
+
hidden_states = residual + hidden_states
|
795 |
+
|
796 |
+
# add cross-attn to positions 3,4 of present_key_value tuple
|
797 |
+
present_key_value += cross_attn_present_key_value
|
798 |
+
|
799 |
+
# Fully Connected
|
800 |
+
residual = hidden_states
|
801 |
+
|
802 |
+
hidden_states = self.ff_layer_norm(hidden_states)
|
803 |
+
if self.is_sparse:
|
804 |
+
hidden_states, router_states = self.ffn(hidden_states, attention_mask)
|
805 |
+
else:
|
806 |
+
hidden_states, router_states = self.ffn(hidden_states), None
|
807 |
+
|
808 |
+
hidden_states = self.ff_dropout(hidden_states)
|
809 |
+
|
810 |
+
hidden_states = residual + hidden_states
|
811 |
+
|
812 |
+
# clamp inf values to enable fp16 training
|
813 |
+
if hidden_states.dtype == torch.float16 and torch.isinf(hidden_states).any():
|
814 |
+
clamp_value = torch.finfo(hidden_states.dtype).max - 1000
|
815 |
+
hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value)
|
816 |
+
|
817 |
+
outputs = (hidden_states, present_key_value)
|
818 |
+
|
819 |
+
if output_attentions:
|
820 |
+
outputs += (self_attn_weights, cross_attn_weights)
|
821 |
+
|
822 |
+
if output_router_logits:
|
823 |
+
outputs += (router_states,)
|
824 |
+
|
825 |
+
return outputs
|
826 |
+
|
827 |
+
|
828 |
+
class NllbMoePreTrainedModel(PreTrainedModel):
|
829 |
+
config_class = NllbMoeConfig
|
830 |
+
base_model_prefix = "model"
|
831 |
+
supports_gradient_checkpointing = True
|
832 |
+
_no_split_modules = ["NllbMoeEncoderLayer", "NllbMoeDecoderLayer"]
|
833 |
+
|
834 |
+
def _init_weights(self, module):
|
835 |
+
"""Initialize the weights"""
|
836 |
+
std = self.config.init_std
|
837 |
+
if isinstance(module, nn.Linear):
|
838 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
839 |
+
if module.bias is not None:
|
840 |
+
module.bias.data.zero_()
|
841 |
+
elif isinstance(module, nn.Embedding):
|
842 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
843 |
+
if module.padding_idx is not None:
|
844 |
+
module.weight.data[module.padding_idx].zero_()
|
845 |
+
|
846 |
+
|
847 |
+
NLLB_MOE_START_DOCSTRING = r"""
|
848 |
+
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
|
849 |
+
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
|
850 |
+
etc.)
|
851 |
+
|
852 |
+
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
|
853 |
+
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
|
854 |
+
and behavior.
|
855 |
+
|
856 |
+
Parameters:
|
857 |
+
config ([`NllbMoeConfig`]):
|
858 |
+
Model configuration class with all the parameters of the model. Initializing with a config file does not
|
859 |
+
load the weights associated with the model, only the configuration. Check out the
|
860 |
+
[`~PreTrainedModel.from_pretrained`] method to load the model weights.
|
861 |
+
"""
|
862 |
+
|
863 |
+
NLLB_MOE_GENERATION_EXAMPLE = r"""
|
864 |
+
Translation example:
|
865 |
+
|
866 |
+
```python
|
867 |
+
>>> from transformers import AutoTokenizer, NllbMoeForConditionalGeneration
|
868 |
+
|
869 |
+
>>> model = NllbMoeForConditionalGeneration.from_pretrained("facebook/nllb-moe-54b")
|
870 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("facebook/nllb-moe-54b")
|
871 |
+
|
872 |
+
>>> text_to_translate = "Life is like a box of chocolates"
|
873 |
+
>>> model_inputs = tokenizer(text_to_translate, return_tensors="pt")
|
874 |
+
|
875 |
+
>>> # translate to French
|
876 |
+
>>> gen_tokens = model.generate(**model_inputs, forced_bos_token_id=tokenizer.get_lang_id("eng_Latn"))
|
877 |
+
>>> print(tokenizer.batch_decode(gen_tokens, skip_special_tokens=True))
|
878 |
+
```
|
879 |
+
"""
|
880 |
+
|
881 |
+
NLLB_MOE_INPUTS_DOCSTRING = r"""
|
882 |
+
Args:
|
883 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
884 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
|
885 |
+
it.
|
886 |
+
|
887 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
888 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
889 |
+
|
890 |
+
[What are input IDs?](../glossary#input-ids)
|
891 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
892 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
893 |
+
|
894 |
+
- 1 for tokens that are **not masked**,
|
895 |
+
- 0 for tokens that are **masked**.
|
896 |
+
|
897 |
+
[What are attention masks?](../glossary#attention-mask)
|
898 |
+
decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
899 |
+
Indices of decoder input sequence tokens in the vocabulary.
|
900 |
+
|
901 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
902 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
903 |
+
|
904 |
+
[What are decoder input IDs?](../glossary#decoder-input-ids)
|
905 |
+
|
906 |
+
NllbMoe uses the `eos_token_id` as the starting token for `decoder_input_ids` generation. If
|
907 |
+
`past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
|
908 |
+
`past_key_values`).
|
909 |
+
decoder_attention_mask (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*):
|
910 |
+
Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also
|
911 |
+
be used by default.
|
912 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
913 |
+
Mask to nullify selected heads of the attention modules in the encoder. Mask values selected in `[0, 1]`:
|
914 |
+
|
915 |
+
- 1 indicates the head is **not masked**,
|
916 |
+
- 0 indicates the head is **masked**.
|
917 |
+
|
918 |
+
decoder_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
919 |
+
Mask to nullify selected heads of the attention modules in the decoder. Mask values selected in `[0, 1]`:
|
920 |
+
|
921 |
+
- 1 indicates the head is **not masked**,
|
922 |
+
- 0 indicates the head is **masked**.
|
923 |
+
|
924 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
925 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0,
|
926 |
+
1]`:
|
927 |
+
|
928 |
+
- 1 indicates the head is **not masked**,
|
929 |
+
- 0 indicates the head is **masked**.
|
930 |
+
encoder_outputs (`tuple(tuple(torch.FloatTensor)`, *optional*):
|
931 |
+
Tuple consists of (`last_hidden_state`, *optional*: `hidden_states`, *optional*: `attentions`)
|
932 |
+
`last_hidden_state` of shape `(batch_size, sequence_length, hidden_size)`, *optional*) is a sequence of
|
933 |
+
hidden-states at the output of the last layer of the encoder. Used in the cross-attention of the decoder.
|
934 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
935 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
|
936 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
|
937 |
+
`(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
938 |
+
|
939 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
|
940 |
+
blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
941 |
+
|
942 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
|
943 |
+
don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
|
944 |
+
`decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
945 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
946 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
947 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
948 |
+
than the model's internal embedding lookup matrix.
|
949 |
+
decoder_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, target_sequence_length, hidden_size)`, *optional*):
|
950 |
+
Optionally, instead of passing `decoder_input_ids` you can choose to directly pass an embedded
|
951 |
+
representation. If `past_key_values` is used, optionally only the last `decoder_inputs_embeds` have to be
|
952 |
+
input (see `past_key_values`). This is useful if you want more control over how to convert
|
953 |
+
`decoder_input_ids` indices into associated vectors than the model's internal embedding lookup matrix.
|
954 |
+
|
955 |
+
If `decoder_input_ids` and `decoder_inputs_embeds` are both unset, `decoder_inputs_embeds` takes the value
|
956 |
+
of `inputs_embeds`.
|
957 |
+
use_cache (`bool`, *optional*):
|
958 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
|
959 |
+
`past_key_values`).
|
960 |
+
output_attentions (`bool`, *optional*):
|
961 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
|
962 |
+
tensors for more detail.
|
963 |
+
output_hidden_states (`bool`, *optional*):
|
964 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
|
965 |
+
more detail.
|
966 |
+
output_router_logits (`bool`, *optional*):
|
967 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
|
968 |
+
should not be returned during inference.
|
969 |
+
return_dict (`bool`, *optional*):
|
970 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
971 |
+
"""
|
972 |
+
|
973 |
+
|
974 |
+
class NllbMoeEncoder(NllbMoePreTrainedModel):
|
975 |
+
"""
|
976 |
+
Transformer encoder consisting of *config.encoder_layers* self attention layers. Each layer is a
|
977 |
+
[`NllbMoeEncoderLayer`].
|
978 |
+
|
979 |
+
Args:
|
980 |
+
config:
|
981 |
+
NllbMoeConfig
|
982 |
+
embed_tokens (nn.Embedding):
|
983 |
+
output embedding
|
984 |
+
"""
|
985 |
+
|
986 |
+
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
|
987 |
+
super().__init__(config)
|
988 |
+
|
989 |
+
self.dropout = config.dropout
|
990 |
+
self.layerdrop = config.encoder_layerdrop
|
991 |
+
|
992 |
+
embed_dim = config.d_model
|
993 |
+
self.padding_idx = config.pad_token_id
|
994 |
+
self.max_source_positions = config.max_position_embeddings
|
995 |
+
self.embed_scale = math.sqrt(embed_dim) if config.scale_embedding else 1.0
|
996 |
+
|
997 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, embed_dim, self.padding_idx)
|
998 |
+
|
999 |
+
if embed_tokens is not None:
|
1000 |
+
self.embed_tokens.weight = embed_tokens.weight
|
1001 |
+
|
1002 |
+
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
|
1003 |
+
config.max_position_embeddings,
|
1004 |
+
embed_dim,
|
1005 |
+
self.padding_idx,
|
1006 |
+
)
|
1007 |
+
sparse_step = config.encoder_sparse_step
|
1008 |
+
self.layers = nn.ModuleList()
|
1009 |
+
for i in range(config.encoder_layers):
|
1010 |
+
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
|
1011 |
+
self.layers.append(NllbMoeEncoderLayer(config, is_sparse))
|
1012 |
+
|
1013 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
1014 |
+
|
1015 |
+
self.gradient_checkpointing = False
|
1016 |
+
# Initialize weights and apply final processing
|
1017 |
+
self.post_init()
|
1018 |
+
|
1019 |
+
def forward(
|
1020 |
+
self,
|
1021 |
+
input_ids: Optional[torch.Tensor] = None,
|
1022 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1023 |
+
head_mask: Optional[torch.Tensor] = None,
|
1024 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1025 |
+
output_attentions: Optional[bool] = None,
|
1026 |
+
output_hidden_states: Optional[bool] = None,
|
1027 |
+
output_router_logits: Optional[bool] = None,
|
1028 |
+
return_dict: Optional[bool] = None,
|
1029 |
+
):
|
1030 |
+
r"""
|
1031 |
+
Args:
|
1032 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1033 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1034 |
+
provide it.
|
1035 |
+
|
1036 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1037 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1038 |
+
|
1039 |
+
[What are input IDs?](../glossary#input-ids)
|
1040 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1041 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1042 |
+
|
1043 |
+
- 1 for tokens that are **not masked**,
|
1044 |
+
- 0 for tokens that are **masked**.
|
1045 |
+
|
1046 |
+
[What are attention masks?](../glossary#attention-mask)
|
1047 |
+
head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
|
1048 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1049 |
+
|
1050 |
+
- 1 indicates the head is **not masked**,
|
1051 |
+
- 0 indicates the head is **masked**.
|
1052 |
+
|
1053 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1054 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1055 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1056 |
+
than the model's internal embedding lookup matrix.
|
1057 |
+
output_attentions (`bool`, *optional*):
|
1058 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1059 |
+
returned tensors for more detail.
|
1060 |
+
output_hidden_states (`bool`, *optional*):
|
1061 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1062 |
+
for more detail.
|
1063 |
+
output_router_logits (`bool`, *optional*):
|
1064 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
1065 |
+
and should not be returned during inference.
|
1066 |
+
return_dict (`bool`, *optional*):
|
1067 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1068 |
+
"""
|
1069 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1070 |
+
output_hidden_states = (
|
1071 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1072 |
+
)
|
1073 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1074 |
+
|
1075 |
+
# retrieve input_ids and inputs_embeds
|
1076 |
+
if input_ids is not None and inputs_embeds is not None:
|
1077 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
1078 |
+
elif input_ids is not None:
|
1079 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
1080 |
+
input_shape = input_ids.size()
|
1081 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1082 |
+
elif inputs_embeds is not None:
|
1083 |
+
input_shape = inputs_embeds.size()[:-1]
|
1084 |
+
else:
|
1085 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
1086 |
+
|
1087 |
+
if inputs_embeds is None:
|
1088 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1089 |
+
|
1090 |
+
embed_pos = self.embed_positions(input_ids, inputs_embeds)
|
1091 |
+
embed_pos = embed_pos.to(inputs_embeds.device)
|
1092 |
+
|
1093 |
+
hidden_states = inputs_embeds + embed_pos
|
1094 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1095 |
+
|
1096 |
+
# expand attention_mask
|
1097 |
+
if attention_mask is not None:
|
1098 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1099 |
+
attention_mask = _prepare_4d_attention_mask(attention_mask, inputs_embeds.dtype)
|
1100 |
+
|
1101 |
+
encoder_states = () if output_hidden_states else None
|
1102 |
+
all_router_probs = () if output_router_logits else None
|
1103 |
+
all_attentions = () if output_attentions else None
|
1104 |
+
|
1105 |
+
# check if head_mask has a correct number of layers specified if desired
|
1106 |
+
if head_mask is not None:
|
1107 |
+
if head_mask.size()[0] != len(self.layers):
|
1108 |
+
raise ValueError(
|
1109 |
+
f"The head_mask should be specified for {len(self.layers)} layers, but it is for"
|
1110 |
+
f" {head_mask.size()[0]}."
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
for idx, encoder_layer in enumerate(self.layers):
|
1114 |
+
if output_hidden_states:
|
1115 |
+
encoder_states = encoder_states + (hidden_states,)
|
1116 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1117 |
+
dropout_probability = torch.rand([])
|
1118 |
+
if self.training and (dropout_probability < self.layerdrop): # skip the layer
|
1119 |
+
layer_outputs = (None, None, None)
|
1120 |
+
else:
|
1121 |
+
if self.gradient_checkpointing and self.training:
|
1122 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1123 |
+
encoder_layer.__call__,
|
1124 |
+
hidden_states,
|
1125 |
+
attention_mask,
|
1126 |
+
(head_mask[idx] if head_mask is not None else None),
|
1127 |
+
output_attentions,
|
1128 |
+
)
|
1129 |
+
else:
|
1130 |
+
layer_outputs = encoder_layer(
|
1131 |
+
hidden_states,
|
1132 |
+
attention_mask,
|
1133 |
+
layer_head_mask=(head_mask[idx] if head_mask is not None else None),
|
1134 |
+
output_attentions=output_attentions,
|
1135 |
+
output_router_logits=output_router_logits,
|
1136 |
+
)
|
1137 |
+
|
1138 |
+
hidden_states = layer_outputs[0]
|
1139 |
+
|
1140 |
+
if output_attentions:
|
1141 |
+
all_attentions += (layer_outputs[1],)
|
1142 |
+
|
1143 |
+
if output_router_logits:
|
1144 |
+
all_router_probs += (layer_outputs[-1],)
|
1145 |
+
|
1146 |
+
last_hidden_state = self.layer_norm(hidden_states)
|
1147 |
+
|
1148 |
+
if output_hidden_states:
|
1149 |
+
encoder_states += (last_hidden_state,)
|
1150 |
+
|
1151 |
+
if not return_dict:
|
1152 |
+
return tuple(
|
1153 |
+
v for v in [last_hidden_state, encoder_states, all_attentions, all_router_probs] if v is not None
|
1154 |
+
)
|
1155 |
+
|
1156 |
+
return MoEModelOutput(
|
1157 |
+
last_hidden_state=last_hidden_state,
|
1158 |
+
hidden_states=encoder_states,
|
1159 |
+
attentions=all_attentions,
|
1160 |
+
router_probs=all_router_probs,
|
1161 |
+
)
|
1162 |
+
|
1163 |
+
|
1164 |
+
class NllbMoeDecoder(NllbMoePreTrainedModel):
|
1165 |
+
"""
|
1166 |
+
Transformer decoder consisting of *config.decoder_layers* layers. Each layer is a [`NllbMoeDecoderLayer`]
|
1167 |
+
|
1168 |
+
Args:
|
1169 |
+
config:
|
1170 |
+
NllbMoeConfig
|
1171 |
+
embed_tokens (nn.Embedding):
|
1172 |
+
output embedding
|
1173 |
+
"""
|
1174 |
+
|
1175 |
+
def __init__(self, config: NllbMoeConfig, embed_tokens: Optional[nn.Embedding] = None):
|
1176 |
+
super().__init__(config)
|
1177 |
+
self.dropout = config.dropout
|
1178 |
+
self.layerdrop = config.decoder_layerdrop
|
1179 |
+
self.padding_idx = config.pad_token_id
|
1180 |
+
self.max_target_positions = config.max_position_embeddings
|
1181 |
+
self.embed_scale = math.sqrt(config.d_model) if config.scale_embedding else 1.0
|
1182 |
+
|
1183 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.d_model, self.padding_idx)
|
1184 |
+
|
1185 |
+
if embed_tokens is not None:
|
1186 |
+
self.embed_tokens.weight = embed_tokens.weight
|
1187 |
+
|
1188 |
+
self.embed_positions = NllbMoeSinusoidalPositionalEmbedding(
|
1189 |
+
config.max_position_embeddings,
|
1190 |
+
config.d_model,
|
1191 |
+
self.padding_idx,
|
1192 |
+
)
|
1193 |
+
|
1194 |
+
sparse_step = config.decoder_sparse_step
|
1195 |
+
self.layers = nn.ModuleList()
|
1196 |
+
for i in range(config.decoder_layers):
|
1197 |
+
is_sparse = (i + 1) % sparse_step == 0 if sparse_step > 0 else False
|
1198 |
+
self.layers.append(NllbMoeDecoderLayer(config, is_sparse))
|
1199 |
+
|
1200 |
+
self.layer_norm = nn.LayerNorm(config.d_model)
|
1201 |
+
|
1202 |
+
self.gradient_checkpointing = False
|
1203 |
+
# Initialize weights and apply final processing
|
1204 |
+
self.post_init()
|
1205 |
+
|
1206 |
+
def forward(
|
1207 |
+
self,
|
1208 |
+
input_ids: Optional[torch.Tensor] = None,
|
1209 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1210 |
+
encoder_hidden_states: Optional[torch.Tensor] = None,
|
1211 |
+
encoder_attention_mask: Optional[torch.Tensor] = None,
|
1212 |
+
head_mask: Optional[torch.Tensor] = None,
|
1213 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1214 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1215 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
1216 |
+
use_cache: Optional[bool] = None,
|
1217 |
+
output_attentions: Optional[bool] = None,
|
1218 |
+
output_hidden_states: Optional[bool] = None,
|
1219 |
+
output_router_logits: Optional[bool] = None,
|
1220 |
+
return_dict: Optional[bool] = None,
|
1221 |
+
):
|
1222 |
+
r"""
|
1223 |
+
Args:
|
1224 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
|
1225 |
+
Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you
|
1226 |
+
provide it.
|
1227 |
+
|
1228 |
+
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
|
1229 |
+
[`PreTrainedTokenizer.__call__`] for details.
|
1230 |
+
|
1231 |
+
[What are input IDs?](../glossary#input-ids)
|
1232 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1233 |
+
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
|
1234 |
+
|
1235 |
+
- 1 for tokens that are **not masked**,
|
1236 |
+
- 0 for tokens that are **masked**.
|
1237 |
+
|
1238 |
+
[What are attention masks?](../glossary#attention-mask)
|
1239 |
+
encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, encoder_sequence_length, hidden_size)`, *optional*):
|
1240 |
+
Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
|
1241 |
+
of the decoder.
|
1242 |
+
encoder_attention_mask (`torch.LongTensor` of shape `(batch_size, encoder_sequence_length)`, *optional*):
|
1243 |
+
Mask to avoid performing cross-attention on padding tokens indices of encoder input_ids. Mask values
|
1244 |
+
selected in `[0, 1]`:
|
1245 |
+
|
1246 |
+
- 1 for tokens that are **not masked**,
|
1247 |
+
- 0 for tokens that are **masked**.
|
1248 |
+
|
1249 |
+
[What are attention masks?](../glossary#attention-mask)
|
1250 |
+
head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1251 |
+
Mask to nullify selected heads of the attention modules. Mask values selected in `[0, 1]`:
|
1252 |
+
|
1253 |
+
- 1 indicates the head is **not masked**,
|
1254 |
+
- 0 indicates the head is **masked**.
|
1255 |
+
|
1256 |
+
cross_attn_head_mask (`torch.Tensor` of shape `(decoder_layers, decoder_attention_heads)`, *optional*):
|
1257 |
+
Mask to nullify selected heads of the cross-attention modules in the decoder to avoid performing
|
1258 |
+
cross-attention on hidden heads. Mask values selected in `[0, 1]`:
|
1259 |
+
|
1260 |
+
- 1 indicates the head is **not masked**,
|
1261 |
+
- 0 indicates the head is **masked**.
|
1262 |
+
|
1263 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
1264 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
|
1265 |
+
shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of
|
1266 |
+
shape `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
|
1267 |
+
|
1268 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks and in the
|
1269 |
+
cross-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
|
1270 |
+
|
1271 |
+
If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those
|
1272 |
+
that don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of
|
1273 |
+
all `decoder_input_ids` of shape `(batch_size, sequence_length)`.
|
1274 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
1275 |
+
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
|
1276 |
+
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
|
1277 |
+
than the model's internal embedding lookup matrix.
|
1278 |
+
output_attentions (`bool`, *optional*):
|
1279 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
1280 |
+
returned tensors for more detail.
|
1281 |
+
output_hidden_states (`bool`, *optional*):
|
1282 |
+
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
|
1283 |
+
for more detail.
|
1284 |
+
output_router_logits (`bool`, *optional*):
|
1285 |
+
Whether or not to return the logits of all the routers. They are useful for computing the router loss,
|
1286 |
+
and should not be returned during inference.
|
1287 |
+
return_dict (`bool`, *optional*):
|
1288 |
+
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
|
1289 |
+
"""
|
1290 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1291 |
+
output_hidden_states = (
|
1292 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
1293 |
+
)
|
1294 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1295 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1296 |
+
|
1297 |
+
# retrieve input_ids and inputs_embeds
|
1298 |
+
if input_ids is not None and inputs_embeds is not None:
|
1299 |
+
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
1300 |
+
elif input_ids is not None:
|
1301 |
+
input_shape = input_ids.size()
|
1302 |
+
input_ids = input_ids.view(-1, input_shape[-1])
|
1303 |
+
elif inputs_embeds is not None:
|
1304 |
+
input_shape = inputs_embeds.size()[:-1]
|
1305 |
+
else:
|
1306 |
+
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
1307 |
+
|
1308 |
+
# past_key_values_length
|
1309 |
+
past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
|
1310 |
+
|
1311 |
+
if inputs_embeds is None:
|
1312 |
+
inputs_embeds = self.embed_tokens(input_ids) * self.embed_scale
|
1313 |
+
|
1314 |
+
# create causal mask
|
1315 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1316 |
+
combined_attention_mask = _prepare_4d_causal_attention_mask(
|
1317 |
+
attention_mask, input_shape, inputs_embeds, past_key_values_length
|
1318 |
+
)
|
1319 |
+
|
1320 |
+
# expand encoder attention mask
|
1321 |
+
if encoder_hidden_states is not None and encoder_attention_mask is not None:
|
1322 |
+
# [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
|
1323 |
+
encoder_attention_mask = _prepare_4d_attention_mask(
|
1324 |
+
encoder_attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]
|
1325 |
+
)
|
1326 |
+
|
1327 |
+
# embed positions
|
1328 |
+
positions = self.embed_positions(input_ids, inputs_embeds, past_key_values_length)
|
1329 |
+
positions = positions.to(inputs_embeds.device)
|
1330 |
+
|
1331 |
+
hidden_states = inputs_embeds + positions
|
1332 |
+
|
1333 |
+
hidden_states = nn.functional.dropout(hidden_states, p=self.dropout, training=self.training)
|
1334 |
+
|
1335 |
+
if self.gradient_checkpointing and self.training:
|
1336 |
+
if use_cache:
|
1337 |
+
logger.warning_once(
|
1338 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting" " `use_cache=False`..."
|
1339 |
+
)
|
1340 |
+
use_cache = False
|
1341 |
+
|
1342 |
+
# decoder layers
|
1343 |
+
all_hidden_states = () if output_hidden_states else None
|
1344 |
+
all_self_attns = () if output_attentions else None
|
1345 |
+
all_router_probs = () if output_router_logits else None
|
1346 |
+
all_cross_attentions = () if output_attentions else None
|
1347 |
+
present_key_value_states = () if use_cache else None
|
1348 |
+
|
1349 |
+
# check if head_mask/cross_attn_head_mask has a correct number of layers specified if desired
|
1350 |
+
for attn_mask, mask_name in zip([head_mask, cross_attn_head_mask], ["head_mask", "cross_attn_head_mask"]):
|
1351 |
+
if attn_mask is not None:
|
1352 |
+
if attn_mask.size()[0] != len(self.layers):
|
1353 |
+
raise ValueError(
|
1354 |
+
f"The `{mask_name}` should be specified for {len(self.layers)} layers, but it is for"
|
1355 |
+
f" {head_mask.size()[0]}."
|
1356 |
+
)
|
1357 |
+
deepspeed_zero3_is_enabled = is_deepspeed_zero3_enabled()
|
1358 |
+
|
1359 |
+
for idx, decoder_layer in enumerate(self.layers):
|
1360 |
+
if output_hidden_states:
|
1361 |
+
all_hidden_states += (hidden_states,)
|
1362 |
+
|
1363 |
+
# add LayerDrop (see https://arxiv.org/abs/1909.11556 for description)
|
1364 |
+
dropout_probability = torch.rand([])
|
1365 |
+
|
1366 |
+
skip_the_layer = True if self.training and (dropout_probability < self.layerdrop) else False
|
1367 |
+
if not skip_the_layer or deepspeed_zero3_is_enabled:
|
1368 |
+
layer_head_mask = head_mask[idx] if head_mask is not None else None
|
1369 |
+
cross_attn_layer_head_mask = cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None
|
1370 |
+
|
1371 |
+
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
1372 |
+
|
1373 |
+
# under deepspeed zero3 all gpus must run in sync
|
1374 |
+
if self.gradient_checkpointing and self.training:
|
1375 |
+
if use_cache:
|
1376 |
+
logger.warning_once(
|
1377 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
1378 |
+
)
|
1379 |
+
use_cache = False
|
1380 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1381 |
+
decoder_layer.forward,
|
1382 |
+
hidden_states,
|
1383 |
+
combined_attention_mask,
|
1384 |
+
encoder_hidden_states,
|
1385 |
+
encoder_attention_mask,
|
1386 |
+
layer_head_mask,
|
1387 |
+
cross_attn_layer_head_mask,
|
1388 |
+
None, # past_key_value is always None with gradient checkpointing
|
1389 |
+
use_cache,
|
1390 |
+
output_attentions,
|
1391 |
+
)
|
1392 |
+
else:
|
1393 |
+
layer_outputs = decoder_layer(
|
1394 |
+
hidden_states,
|
1395 |
+
attention_mask=combined_attention_mask,
|
1396 |
+
encoder_hidden_states=encoder_hidden_states,
|
1397 |
+
encoder_attention_mask=encoder_attention_mask,
|
1398 |
+
layer_head_mask=layer_head_mask,
|
1399 |
+
cross_attn_layer_head_mask=cross_attn_layer_head_mask,
|
1400 |
+
past_key_value=past_key_value,
|
1401 |
+
use_cache=use_cache,
|
1402 |
+
output_attentions=output_attentions,
|
1403 |
+
output_router_logits=output_router_logits,
|
1404 |
+
)
|
1405 |
+
|
1406 |
+
hidden_states = layer_outputs[0]
|
1407 |
+
|
1408 |
+
if skip_the_layer:
|
1409 |
+
continue
|
1410 |
+
|
1411 |
+
if use_cache:
|
1412 |
+
present_key_value_states += (layer_outputs[1],)
|
1413 |
+
|
1414 |
+
if output_attentions:
|
1415 |
+
all_self_attns += (layer_outputs[2],)
|
1416 |
+
all_cross_attentions += (layer_outputs[3],)
|
1417 |
+
|
1418 |
+
if output_router_logits:
|
1419 |
+
all_router_probs += (layer_outputs[-1],)
|
1420 |
+
|
1421 |
+
hidden_states = self.layer_norm(hidden_states)
|
1422 |
+
|
1423 |
+
# Add last layer
|
1424 |
+
if output_hidden_states:
|
1425 |
+
all_hidden_states += (hidden_states,)
|
1426 |
+
|
1427 |
+
if not return_dict:
|
1428 |
+
return tuple(
|
1429 |
+
v
|
1430 |
+
for v in [
|
1431 |
+
hidden_states,
|
1432 |
+
present_key_value_states,
|
1433 |
+
all_hidden_states,
|
1434 |
+
all_self_attns,
|
1435 |
+
all_cross_attentions,
|
1436 |
+
all_router_probs,
|
1437 |
+
]
|
1438 |
+
if v is not None
|
1439 |
+
)
|
1440 |
+
return MoEModelOutputWithPastAndCrossAttentions(
|
1441 |
+
last_hidden_state=hidden_states,
|
1442 |
+
past_key_values=present_key_value_states,
|
1443 |
+
hidden_states=all_hidden_states,
|
1444 |
+
attentions=all_self_attns,
|
1445 |
+
cross_attentions=all_cross_attentions,
|
1446 |
+
router_probs=all_router_probs,
|
1447 |
+
)
|
1448 |
+
|
1449 |
+
|
1450 |
+
@add_start_docstrings(
|
1451 |
+
"The bare NllbMoe Model outputting raw hidden-states without any specific head on top.",
|
1452 |
+
NLLB_MOE_START_DOCSTRING,
|
1453 |
+
)
|
1454 |
+
class NllbMoeModel(NllbMoePreTrainedModel):
|
1455 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"]
|
1456 |
+
|
1457 |
+
def __init__(self, config: NllbMoeConfig):
|
1458 |
+
super().__init__(config)
|
1459 |
+
|
1460 |
+
padding_idx, vocab_size = config.pad_token_id, config.vocab_size
|
1461 |
+
self.shared = nn.Embedding(vocab_size, config.d_model, padding_idx)
|
1462 |
+
|
1463 |
+
self.encoder = NllbMoeEncoder(config, self.shared)
|
1464 |
+
self.decoder = NllbMoeDecoder(config, self.shared)
|
1465 |
+
|
1466 |
+
# Initialize weights and apply final processing
|
1467 |
+
self.post_init()
|
1468 |
+
|
1469 |
+
def get_input_embeddings(self):
|
1470 |
+
return self.shared
|
1471 |
+
|
1472 |
+
def set_input_embeddings(self, value):
|
1473 |
+
self.shared = value
|
1474 |
+
self.encoder.embed_tokens = self.shared
|
1475 |
+
self.decoder.embed_tokens = self.shared
|
1476 |
+
|
1477 |
+
def _tie_weights(self):
|
1478 |
+
if self.config.tie_word_embeddings:
|
1479 |
+
self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared)
|
1480 |
+
self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared)
|
1481 |
+
|
1482 |
+
def get_encoder(self):
|
1483 |
+
return self.encoder
|
1484 |
+
|
1485 |
+
def get_decoder(self):
|
1486 |
+
return self.decoder
|
1487 |
+
|
1488 |
+
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
|
1489 |
+
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
|
1490 |
+
@replace_return_docstrings(output_type=Seq2SeqMoEModelOutput, config_class=_CONFIG_FOR_DOC)
|
1491 |
+
def forward(
|
1492 |
+
self,
|
1493 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1494 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1495 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1496 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1497 |
+
head_mask: Optional[torch.Tensor] = None,
|
1498 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1499 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1500 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1501 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1502 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1503 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1504 |
+
use_cache: Optional[bool] = None,
|
1505 |
+
output_attentions: Optional[bool] = None,
|
1506 |
+
output_hidden_states: Optional[bool] = None,
|
1507 |
+
output_router_logits: Optional[bool] = None,
|
1508 |
+
return_dict: Optional[bool] = None,
|
1509 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEModelOutput]:
|
1510 |
+
r"""
|
1511 |
+
Returns:
|
1512 |
+
|
1513 |
+
Example:
|
1514 |
+
|
1515 |
+
```python
|
1516 |
+
>>> from transformers import AutoTokenizer, NllbMoeModel
|
1517 |
+
|
1518 |
+
>>> tokenizer = AutoTokenizer.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
|
1519 |
+
>>> model = SwitchTransformersModel.from_pretrained("hf-internal-testing/random-nllb-moe-2-experts")
|
1520 |
+
|
1521 |
+
>>> input_ids = tokenizer(
|
1522 |
+
... "Studies have been shown that owning a dog is good for you", return_tensors="pt"
|
1523 |
+
... ).input_ids # Batch size 1
|
1524 |
+
>>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1
|
1525 |
+
|
1526 |
+
>>> # preprocess: Prepend decoder_input_ids with start token which is pad token for NllbMoeModel
|
1527 |
+
>>> decoder_input_ids = model._shift_right(decoder_input_ids)
|
1528 |
+
|
1529 |
+
>>> # forward pass
|
1530 |
+
>>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids)
|
1531 |
+
>>> last_hidden_states = outputs.last_hidden_state
|
1532 |
+
```"""
|
1533 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1534 |
+
if encoder_outputs is None:
|
1535 |
+
encoder_outputs = self.encoder(
|
1536 |
+
input_ids=input_ids,
|
1537 |
+
attention_mask=attention_mask,
|
1538 |
+
head_mask=head_mask,
|
1539 |
+
inputs_embeds=inputs_embeds,
|
1540 |
+
output_attentions=output_attentions,
|
1541 |
+
output_hidden_states=output_hidden_states,
|
1542 |
+
output_router_logits=output_router_logits,
|
1543 |
+
return_dict=return_dict,
|
1544 |
+
)
|
1545 |
+
# If the user passed a tuple for encoder_outputs, we wrap it in a BaseModelOutput when return_dict=True
|
1546 |
+
elif return_dict and not isinstance(encoder_outputs, MoEModelOutput):
|
1547 |
+
encoder_outputs = MoEModelOutput(
|
1548 |
+
last_hidden_state=encoder_outputs[0],
|
1549 |
+
hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None,
|
1550 |
+
attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None,
|
1551 |
+
router_probs=encoder_outputs[3] if len(encoder_outputs) > 3 else None,
|
1552 |
+
)
|
1553 |
+
|
1554 |
+
# decoder outputs consists of (dec_features, past_key_value, dec_hidden, dec_attn)
|
1555 |
+
decoder_outputs = self.decoder(
|
1556 |
+
input_ids=decoder_input_ids,
|
1557 |
+
attention_mask=decoder_attention_mask,
|
1558 |
+
encoder_hidden_states=encoder_outputs[0],
|
1559 |
+
encoder_attention_mask=attention_mask,
|
1560 |
+
head_mask=decoder_head_mask,
|
1561 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1562 |
+
past_key_values=past_key_values,
|
1563 |
+
inputs_embeds=decoder_inputs_embeds,
|
1564 |
+
use_cache=use_cache,
|
1565 |
+
output_attentions=output_attentions,
|
1566 |
+
output_hidden_states=output_hidden_states,
|
1567 |
+
output_router_logits=output_router_logits,
|
1568 |
+
return_dict=return_dict,
|
1569 |
+
)
|
1570 |
+
|
1571 |
+
if not return_dict:
|
1572 |
+
return decoder_outputs + encoder_outputs
|
1573 |
+
|
1574 |
+
return Seq2SeqMoEModelOutput(
|
1575 |
+
past_key_values=decoder_outputs.past_key_values,
|
1576 |
+
cross_attentions=decoder_outputs.cross_attentions,
|
1577 |
+
last_hidden_state=decoder_outputs.last_hidden_state,
|
1578 |
+
encoder_last_hidden_state=encoder_outputs.last_hidden_state,
|
1579 |
+
encoder_hidden_states=encoder_outputs.hidden_states,
|
1580 |
+
decoder_hidden_states=decoder_outputs.hidden_states,
|
1581 |
+
encoder_attentions=encoder_outputs.attentions,
|
1582 |
+
decoder_attentions=decoder_outputs.attentions,
|
1583 |
+
encoder_router_logits=encoder_outputs.router_probs,
|
1584 |
+
decoder_router_logits=decoder_outputs.router_probs,
|
1585 |
+
)
|
1586 |
+
|
1587 |
+
|
1588 |
+
@add_start_docstrings(
|
1589 |
+
"The NllbMoe Model with a language modeling head. Can be used for summarization.", NLLB_MOE_START_DOCSTRING
|
1590 |
+
)
|
1591 |
+
class NllbMoeForConditionalGeneration(NllbMoePreTrainedModel):
|
1592 |
+
base_model_prefix = "model"
|
1593 |
+
_tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"]
|
1594 |
+
|
1595 |
+
def __init__(self, config: NllbMoeConfig):
|
1596 |
+
super().__init__(config)
|
1597 |
+
self.model = NllbMoeModel(config)
|
1598 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
1599 |
+
|
1600 |
+
self.router_z_loss_coef = config.router_z_loss_coef
|
1601 |
+
self.router_aux_loss_coef = config.router_aux_loss_coef
|
1602 |
+
# Initialize weights and apply final processing
|
1603 |
+
self.post_init()
|
1604 |
+
|
1605 |
+
def get_encoder(self):
|
1606 |
+
return self.model.get_encoder()
|
1607 |
+
|
1608 |
+
def get_decoder(self):
|
1609 |
+
return self.model.get_decoder()
|
1610 |
+
|
1611 |
+
def get_output_embeddings(self):
|
1612 |
+
return self.lm_head
|
1613 |
+
|
1614 |
+
def set_output_embeddings(self, new_embeddings):
|
1615 |
+
self.lm_head = new_embeddings
|
1616 |
+
|
1617 |
+
@add_start_docstrings_to_model_forward(NLLB_MOE_INPUTS_DOCSTRING)
|
1618 |
+
@replace_return_docstrings(output_type=Seq2SeqMoEOutput, config_class=_CONFIG_FOR_DOC)
|
1619 |
+
@add_end_docstrings(NLLB_MOE_GENERATION_EXAMPLE)
|
1620 |
+
def forward(
|
1621 |
+
self,
|
1622 |
+
input_ids: Optional[torch.LongTensor] = None,
|
1623 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1624 |
+
decoder_input_ids: Optional[torch.LongTensor] = None,
|
1625 |
+
decoder_attention_mask: Optional[torch.LongTensor] = None,
|
1626 |
+
head_mask: Optional[torch.Tensor] = None,
|
1627 |
+
decoder_head_mask: Optional[torch.Tensor] = None,
|
1628 |
+
cross_attn_head_mask: Optional[torch.Tensor] = None,
|
1629 |
+
encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1630 |
+
past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
|
1631 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1632 |
+
decoder_inputs_embeds: Optional[torch.FloatTensor] = None,
|
1633 |
+
labels: Optional[torch.LongTensor] = None,
|
1634 |
+
use_cache: Optional[bool] = None,
|
1635 |
+
output_attentions: Optional[bool] = None,
|
1636 |
+
output_hidden_states: Optional[bool] = None,
|
1637 |
+
output_router_logits: Optional[bool] = None,
|
1638 |
+
return_dict: Optional[bool] = None,
|
1639 |
+
) -> Union[Tuple[torch.Tensor], Seq2SeqMoEOutput]:
|
1640 |
+
r"""
|
1641 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
1642 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
1643 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
1644 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
1645 |
+
|
1646 |
+
Returns:
|
1647 |
+
"""
|
1648 |
+
return_dict = return_dict if return_dict is not None else self.config.return_dict
|
1649 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
1650 |
+
output_router_logits = (
|
1651 |
+
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
1652 |
+
)
|
1653 |
+
if labels is not None:
|
1654 |
+
if decoder_input_ids is None:
|
1655 |
+
decoder_input_ids = shift_tokens_right(
|
1656 |
+
labels, self.config.pad_token_id, self.config.decoder_start_token_id
|
1657 |
+
)
|
1658 |
+
|
1659 |
+
outputs = self.model(
|
1660 |
+
input_ids,
|
1661 |
+
attention_mask=attention_mask,
|
1662 |
+
decoder_input_ids=decoder_input_ids,
|
1663 |
+
encoder_outputs=encoder_outputs,
|
1664 |
+
decoder_attention_mask=decoder_attention_mask,
|
1665 |
+
head_mask=head_mask,
|
1666 |
+
decoder_head_mask=decoder_head_mask,
|
1667 |
+
cross_attn_head_mask=cross_attn_head_mask,
|
1668 |
+
past_key_values=past_key_values,
|
1669 |
+
inputs_embeds=inputs_embeds,
|
1670 |
+
decoder_inputs_embeds=decoder_inputs_embeds,
|
1671 |
+
use_cache=use_cache,
|
1672 |
+
output_attentions=output_attentions,
|
1673 |
+
output_hidden_states=output_hidden_states,
|
1674 |
+
output_router_logits=output_router_logits,
|
1675 |
+
return_dict=return_dict,
|
1676 |
+
)
|
1677 |
+
lm_logits = self.lm_head(outputs[0])
|
1678 |
+
|
1679 |
+
loss = None
|
1680 |
+
encoder_aux_loss = None
|
1681 |
+
decoder_aux_loss = None
|
1682 |
+
|
1683 |
+
if labels is not None:
|
1684 |
+
loss_fct = CrossEntropyLoss(ignore_index=-100)
|
1685 |
+
# todo check in the config if router loss enables
|
1686 |
+
|
1687 |
+
if output_router_logits:
|
1688 |
+
encoder_router_logits = outputs[-1]
|
1689 |
+
decoder_router_logits = outputs[3 if output_attentions else 4]
|
1690 |
+
|
1691 |
+
# Compute the router loss (z_loss + auxiliary loss) for each router in the encoder and decoder
|
1692 |
+
encoder_router_logits, encoder_expert_indexes = self._unpack_router_logits(encoder_router_logits)
|
1693 |
+
encoder_aux_loss = load_balancing_loss_func(encoder_router_logits, encoder_expert_indexes)
|
1694 |
+
|
1695 |
+
decoder_router_logits, decoder_expert_indexes = self._unpack_router_logits(decoder_router_logits)
|
1696 |
+
decoder_aux_loss = load_balancing_loss_func(decoder_router_logits, decoder_expert_indexes)
|
1697 |
+
|
1698 |
+
loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1))
|
1699 |
+
|
1700 |
+
if output_router_logits and labels is not None:
|
1701 |
+
aux_loss = self.router_aux_loss_coef * (encoder_aux_loss + decoder_aux_loss)
|
1702 |
+
loss = loss + aux_loss
|
1703 |
+
|
1704 |
+
output = (loss,) if loss is not None else ()
|
1705 |
+
if not return_dict:
|
1706 |
+
output += (lm_logits,)
|
1707 |
+
if output_router_logits: # only return the loss if they are not None
|
1708 |
+
output += (
|
1709 |
+
encoder_aux_loss,
|
1710 |
+
decoder_aux_loss,
|
1711 |
+
*outputs[1:],
|
1712 |
+
)
|
1713 |
+
else:
|
1714 |
+
output += outputs[1:]
|
1715 |
+
|
1716 |
+
return output
|
1717 |
+
|
1718 |
+
return Seq2SeqMoEOutput(
|
1719 |
+
loss=loss,
|
1720 |
+
logits=lm_logits,
|
1721 |
+
past_key_values=outputs.past_key_values,
|
1722 |
+
cross_attentions=outputs.cross_attentions,
|
1723 |
+
encoder_aux_loss=encoder_aux_loss,
|
1724 |
+
decoder_aux_loss=decoder_aux_loss,
|
1725 |
+
encoder_last_hidden_state=outputs.encoder_last_hidden_state,
|
1726 |
+
encoder_hidden_states=outputs.encoder_hidden_states,
|
1727 |
+
decoder_hidden_states=outputs.decoder_hidden_states,
|
1728 |
+
encoder_attentions=outputs.encoder_attentions,
|
1729 |
+
decoder_attentions=outputs.decoder_attentions,
|
1730 |
+
encoder_router_logits=outputs.encoder_router_logits,
|
1731 |
+
decoder_router_logits=outputs.decoder_router_logits,
|
1732 |
+
)
|
1733 |
+
|
1734 |
+
def _unpack_router_logits(self, router_outputs):
|
1735 |
+
total_router_logits = []
|
1736 |
+
total_expert_indexes = []
|
1737 |
+
for router_output in router_outputs:
|
1738 |
+
if router_output is not None:
|
1739 |
+
router_logits, expert_indexes = router_output
|
1740 |
+
total_router_logits.append(router_logits)
|
1741 |
+
total_expert_indexes.append(expert_indexes)
|
1742 |
+
|
1743 |
+
total_router_logits = torch.cat(total_router_logits, dim=1) if len(total_router_logits) > 0 else None
|
1744 |
+
total_expert_indexes = torch.stack(total_expert_indexes, dim=1) if len(total_expert_indexes) > 0 else None
|
1745 |
+
return total_router_logits, total_expert_indexes
|
1746 |
+
|
1747 |
+
# Copied from transfomers.models.switch_transformers.SwitchTransformersForConditionalGeneration.prepare_inputs_for_generation
|
1748 |
+
def prepare_inputs_for_generation(
|
1749 |
+
self,
|
1750 |
+
decoder_input_ids,
|
1751 |
+
past_key_values=None,
|
1752 |
+
attention_mask=None,
|
1753 |
+
head_mask=None,
|
1754 |
+
decoder_head_mask=None,
|
1755 |
+
cross_attn_head_mask=None,
|
1756 |
+
use_cache=None,
|
1757 |
+
encoder_outputs=None,
|
1758 |
+
**kwargs,
|
1759 |
+
):
|
1760 |
+
# cut decoder_input_ids if past is used
|
1761 |
+
if past_key_values is not None:
|
1762 |
+
past_length = past_key_values[0][0].shape[2]
|
1763 |
+
|
1764 |
+
# Some generation methods already pass only the last input ID
|
1765 |
+
if decoder_input_ids.shape[1] > past_length:
|
1766 |
+
remove_prefix_length = past_length
|
1767 |
+
else:
|
1768 |
+
# Default to old behavior: keep only final ID
|
1769 |
+
remove_prefix_length = decoder_input_ids.shape[1] - 1
|
1770 |
+
|
1771 |
+
decoder_input_ids = decoder_input_ids[:, remove_prefix_length:]
|
1772 |
+
|
1773 |
+
return {
|
1774 |
+
"input_ids": None, # encoder_outputs is defined. input_ids not needed
|
1775 |
+
"encoder_outputs": encoder_outputs,
|
1776 |
+
"past_key_values": past_key_values,
|
1777 |
+
"decoder_input_ids": decoder_input_ids,
|
1778 |
+
"attention_mask": attention_mask,
|
1779 |
+
"head_mask": head_mask,
|
1780 |
+
"decoder_head_mask": decoder_head_mask,
|
1781 |
+
"cross_attn_head_mask": cross_attn_head_mask,
|
1782 |
+
"use_cache": use_cache, # change this to avoid caching (presumably for debugging)
|
1783 |
+
}
|
1784 |
+
|
1785 |
+
@staticmethod
|
1786 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1787 |
+
reordered_past = ()
|
1788 |
+
for layer_past in past_key_values:
|
1789 |
+
reordered_past += (
|
1790 |
+
tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
|
1791 |
+
)
|
1792 |
+
return reordered_past
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__init__.py
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2022 The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
from typing import TYPE_CHECKING
|
15 |
+
|
16 |
+
from ...utils import (
|
17 |
+
OptionalDependencyNotAvailable,
|
18 |
+
_LazyModule,
|
19 |
+
is_flax_available,
|
20 |
+
is_tf_available,
|
21 |
+
is_tokenizers_available,
|
22 |
+
is_torch_available,
|
23 |
+
is_vision_available,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
_import_structure = {
|
28 |
+
"configuration_owlvit": [
|
29 |
+
"OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP",
|
30 |
+
"OwlViTConfig",
|
31 |
+
"OwlViTOnnxConfig",
|
32 |
+
"OwlViTTextConfig",
|
33 |
+
"OwlViTVisionConfig",
|
34 |
+
],
|
35 |
+
"processing_owlvit": ["OwlViTProcessor"],
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
try:
|
40 |
+
if not is_vision_available():
|
41 |
+
raise OptionalDependencyNotAvailable()
|
42 |
+
except OptionalDependencyNotAvailable:
|
43 |
+
pass
|
44 |
+
else:
|
45 |
+
_import_structure["feature_extraction_owlvit"] = ["OwlViTFeatureExtractor"]
|
46 |
+
_import_structure["image_processing_owlvit"] = ["OwlViTImageProcessor"]
|
47 |
+
|
48 |
+
try:
|
49 |
+
if not is_torch_available():
|
50 |
+
raise OptionalDependencyNotAvailable()
|
51 |
+
except OptionalDependencyNotAvailable:
|
52 |
+
pass
|
53 |
+
else:
|
54 |
+
_import_structure["modeling_owlvit"] = [
|
55 |
+
"OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST",
|
56 |
+
"OwlViTModel",
|
57 |
+
"OwlViTPreTrainedModel",
|
58 |
+
"OwlViTTextModel",
|
59 |
+
"OwlViTVisionModel",
|
60 |
+
"OwlViTForObjectDetection",
|
61 |
+
]
|
62 |
+
|
63 |
+
if TYPE_CHECKING:
|
64 |
+
from .configuration_owlvit import (
|
65 |
+
OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP,
|
66 |
+
OwlViTConfig,
|
67 |
+
OwlViTOnnxConfig,
|
68 |
+
OwlViTTextConfig,
|
69 |
+
OwlViTVisionConfig,
|
70 |
+
)
|
71 |
+
from .processing_owlvit import OwlViTProcessor
|
72 |
+
|
73 |
+
try:
|
74 |
+
if not is_vision_available():
|
75 |
+
raise OptionalDependencyNotAvailable()
|
76 |
+
except OptionalDependencyNotAvailable:
|
77 |
+
pass
|
78 |
+
else:
|
79 |
+
from .feature_extraction_owlvit import OwlViTFeatureExtractor
|
80 |
+
from .image_processing_owlvit import OwlViTImageProcessor
|
81 |
+
|
82 |
+
try:
|
83 |
+
if not is_torch_available():
|
84 |
+
raise OptionalDependencyNotAvailable()
|
85 |
+
except OptionalDependencyNotAvailable:
|
86 |
+
pass
|
87 |
+
else:
|
88 |
+
from .modeling_owlvit import (
|
89 |
+
OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
|
90 |
+
OwlViTForObjectDetection,
|
91 |
+
OwlViTModel,
|
92 |
+
OwlViTPreTrainedModel,
|
93 |
+
OwlViTTextModel,
|
94 |
+
OwlViTVisionModel,
|
95 |
+
)
|
96 |
+
|
97 |
+
else:
|
98 |
+
import sys
|
99 |
+
|
100 |
+
sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.55 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/configuration_owlvit.cpython-310.pyc
ADDED
Binary file (14.6 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/convert_owlvit_original_flax_to_hf.cpython-310.pyc
ADDED
Binary file (9.53 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/feature_extraction_owlvit.cpython-310.pyc
ADDED
Binary file (1.02 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/image_processing_owlvit.cpython-310.pyc
ADDED
Binary file (23 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/modeling_owlvit.cpython-310.pyc
ADDED
Binary file (55.7 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/__pycache__/processing_owlvit.cpython-310.pyc
ADDED
Binary file (9.52 kB). View file
|
|
venv/lib/python3.10/site-packages/transformers/models/owlvit/configuration_owlvit.py
ADDED
@@ -0,0 +1,383 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2022 The HuggingFace Inc. team. All rights reserved.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
""" OWL-ViT model configuration"""
|
16 |
+
|
17 |
+
import os
|
18 |
+
from collections import OrderedDict
|
19 |
+
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
|
20 |
+
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from ...processing_utils import ProcessorMixin
|
24 |
+
from ...utils import TensorType
|
25 |
+
|
26 |
+
from ...configuration_utils import PretrainedConfig
|
27 |
+
from ...onnx import OnnxConfig
|
28 |
+
from ...utils import logging
|
29 |
+
|
30 |
+
|
31 |
+
logger = logging.get_logger(__name__)
|
32 |
+
|
33 |
+
|
34 |
+
from ..deprecated._archive_maps import OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
|
35 |
+
|
36 |
+
|
37 |
+
class OwlViTTextConfig(PretrainedConfig):
|
38 |
+
r"""
|
39 |
+
This is the configuration class to store the configuration of an [`OwlViTTextModel`]. It is used to instantiate an
|
40 |
+
OwlViT text encoder according to the specified arguments, defining the model architecture. Instantiating a
|
41 |
+
configuration with the defaults will yield a similar configuration to that of the OwlViT
|
42 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
43 |
+
|
44 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
45 |
+
documentation from [`PretrainedConfig`] for more information.
|
46 |
+
|
47 |
+
|
48 |
+
Args:
|
49 |
+
vocab_size (`int`, *optional*, defaults to 49408):
|
50 |
+
Vocabulary size of the OWL-ViT text model. Defines the number of different tokens that can be represented
|
51 |
+
by the `inputs_ids` passed when calling [`OwlViTTextModel`].
|
52 |
+
hidden_size (`int`, *optional*, defaults to 512):
|
53 |
+
Dimensionality of the encoder layers and the pooler layer.
|
54 |
+
intermediate_size (`int`, *optional*, defaults to 2048):
|
55 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
56 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
57 |
+
Number of hidden layers in the Transformer encoder.
|
58 |
+
num_attention_heads (`int`, *optional*, defaults to 8):
|
59 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
60 |
+
max_position_embeddings (`int`, *optional*, defaults to 16):
|
61 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
62 |
+
just in case (e.g., 512 or 1024 or 2048).
|
63 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
64 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
65 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
66 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
67 |
+
The epsilon used by the layer normalization layers.
|
68 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
69 |
+
The dropout ratio for the attention probabilities.
|
70 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
71 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
72 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
73 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
74 |
+
testing).
|
75 |
+
pad_token_id (`int`, *optional*, defaults to 0):
|
76 |
+
The id of the padding token in the input sequences.
|
77 |
+
bos_token_id (`int`, *optional*, defaults to 49406):
|
78 |
+
The id of the beginning-of-sequence token in the input sequences.
|
79 |
+
eos_token_id (`int`, *optional*, defaults to 49407):
|
80 |
+
The id of the end-of-sequence token in the input sequences.
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
```python
|
85 |
+
>>> from transformers import OwlViTTextConfig, OwlViTTextModel
|
86 |
+
|
87 |
+
>>> # Initializing a OwlViTTextModel with google/owlvit-base-patch32 style configuration
|
88 |
+
>>> configuration = OwlViTTextConfig()
|
89 |
+
|
90 |
+
>>> # Initializing a OwlViTTextConfig from the google/owlvit-base-patch32 style configuration
|
91 |
+
>>> model = OwlViTTextModel(configuration)
|
92 |
+
|
93 |
+
>>> # Accessing the model configuration
|
94 |
+
>>> configuration = model.config
|
95 |
+
```"""
|
96 |
+
|
97 |
+
model_type = "owlvit_text_model"
|
98 |
+
|
99 |
+
def __init__(
|
100 |
+
self,
|
101 |
+
vocab_size=49408,
|
102 |
+
hidden_size=512,
|
103 |
+
intermediate_size=2048,
|
104 |
+
num_hidden_layers=12,
|
105 |
+
num_attention_heads=8,
|
106 |
+
max_position_embeddings=16,
|
107 |
+
hidden_act="quick_gelu",
|
108 |
+
layer_norm_eps=1e-5,
|
109 |
+
attention_dropout=0.0,
|
110 |
+
initializer_range=0.02,
|
111 |
+
initializer_factor=1.0,
|
112 |
+
pad_token_id=0,
|
113 |
+
bos_token_id=49406,
|
114 |
+
eos_token_id=49407,
|
115 |
+
**kwargs,
|
116 |
+
):
|
117 |
+
super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
|
118 |
+
|
119 |
+
self.vocab_size = vocab_size
|
120 |
+
self.hidden_size = hidden_size
|
121 |
+
self.intermediate_size = intermediate_size
|
122 |
+
self.num_hidden_layers = num_hidden_layers
|
123 |
+
self.num_attention_heads = num_attention_heads
|
124 |
+
self.max_position_embeddings = max_position_embeddings
|
125 |
+
self.hidden_act = hidden_act
|
126 |
+
self.layer_norm_eps = layer_norm_eps
|
127 |
+
self.attention_dropout = attention_dropout
|
128 |
+
self.initializer_range = initializer_range
|
129 |
+
self.initializer_factor = initializer_factor
|
130 |
+
|
131 |
+
@classmethod
|
132 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
133 |
+
cls._set_token_in_kwargs(kwargs)
|
134 |
+
|
135 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
136 |
+
|
137 |
+
# get the text config dict if we are loading from OwlViTConfig
|
138 |
+
if config_dict.get("model_type") == "owlvit":
|
139 |
+
config_dict = config_dict["text_config"]
|
140 |
+
|
141 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
142 |
+
logger.warning(
|
143 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
144 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
145 |
+
)
|
146 |
+
|
147 |
+
return cls.from_dict(config_dict, **kwargs)
|
148 |
+
|
149 |
+
|
150 |
+
class OwlViTVisionConfig(PretrainedConfig):
|
151 |
+
r"""
|
152 |
+
This is the configuration class to store the configuration of an [`OwlViTVisionModel`]. It is used to instantiate
|
153 |
+
an OWL-ViT image encoder according to the specified arguments, defining the model architecture. Instantiating a
|
154 |
+
configuration with the defaults will yield a similar configuration to that of the OWL-ViT
|
155 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
156 |
+
|
157 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
158 |
+
documentation from [`PretrainedConfig`] for more information.
|
159 |
+
|
160 |
+
Args:
|
161 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
162 |
+
Dimensionality of the encoder layers and the pooler layer.
|
163 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
164 |
+
Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
|
165 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
166 |
+
Number of hidden layers in the Transformer encoder.
|
167 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
168 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
169 |
+
num_channels (`int`, *optional*, defaults to 3):
|
170 |
+
Number of channels in the input images.
|
171 |
+
image_size (`int`, *optional*, defaults to 768):
|
172 |
+
The size (resolution) of each image.
|
173 |
+
patch_size (`int`, *optional*, defaults to 32):
|
174 |
+
The size (resolution) of each patch.
|
175 |
+
hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
|
176 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
177 |
+
`"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
|
178 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-05):
|
179 |
+
The epsilon used by the layer normalization layers.
|
180 |
+
attention_dropout (`float`, *optional*, defaults to 0.0):
|
181 |
+
The dropout ratio for the attention probabilities.
|
182 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
183 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
184 |
+
initializer_factor (`float`, *optional*, defaults to 1.0):
|
185 |
+
A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
|
186 |
+
testing).
|
187 |
+
|
188 |
+
Example:
|
189 |
+
|
190 |
+
```python
|
191 |
+
>>> from transformers import OwlViTVisionConfig, OwlViTVisionModel
|
192 |
+
|
193 |
+
>>> # Initializing a OwlViTVisionModel with google/owlvit-base-patch32 style configuration
|
194 |
+
>>> configuration = OwlViTVisionConfig()
|
195 |
+
|
196 |
+
>>> # Initializing a OwlViTVisionModel model from the google/owlvit-base-patch32 style configuration
|
197 |
+
>>> model = OwlViTVisionModel(configuration)
|
198 |
+
|
199 |
+
>>> # Accessing the model configuration
|
200 |
+
>>> configuration = model.config
|
201 |
+
```"""
|
202 |
+
|
203 |
+
model_type = "owlvit_vision_model"
|
204 |
+
|
205 |
+
def __init__(
|
206 |
+
self,
|
207 |
+
hidden_size=768,
|
208 |
+
intermediate_size=3072,
|
209 |
+
num_hidden_layers=12,
|
210 |
+
num_attention_heads=12,
|
211 |
+
num_channels=3,
|
212 |
+
image_size=768,
|
213 |
+
patch_size=32,
|
214 |
+
hidden_act="quick_gelu",
|
215 |
+
layer_norm_eps=1e-5,
|
216 |
+
attention_dropout=0.0,
|
217 |
+
initializer_range=0.02,
|
218 |
+
initializer_factor=1.0,
|
219 |
+
**kwargs,
|
220 |
+
):
|
221 |
+
super().__init__(**kwargs)
|
222 |
+
|
223 |
+
self.hidden_size = hidden_size
|
224 |
+
self.intermediate_size = intermediate_size
|
225 |
+
self.num_hidden_layers = num_hidden_layers
|
226 |
+
self.num_attention_heads = num_attention_heads
|
227 |
+
self.num_channels = num_channels
|
228 |
+
self.image_size = image_size
|
229 |
+
self.patch_size = patch_size
|
230 |
+
self.hidden_act = hidden_act
|
231 |
+
self.layer_norm_eps = layer_norm_eps
|
232 |
+
self.attention_dropout = attention_dropout
|
233 |
+
self.initializer_range = initializer_range
|
234 |
+
self.initializer_factor = initializer_factor
|
235 |
+
|
236 |
+
@classmethod
|
237 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
238 |
+
cls._set_token_in_kwargs(kwargs)
|
239 |
+
|
240 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
241 |
+
|
242 |
+
# get the vision config dict if we are loading from OwlViTConfig
|
243 |
+
if config_dict.get("model_type") == "owlvit":
|
244 |
+
config_dict = config_dict["vision_config"]
|
245 |
+
|
246 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
247 |
+
logger.warning(
|
248 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
249 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
250 |
+
)
|
251 |
+
|
252 |
+
return cls.from_dict(config_dict, **kwargs)
|
253 |
+
|
254 |
+
|
255 |
+
class OwlViTConfig(PretrainedConfig):
|
256 |
+
r"""
|
257 |
+
[`OwlViTConfig`] is the configuration class to store the configuration of an [`OwlViTModel`]. It is used to
|
258 |
+
instantiate an OWL-ViT model according to the specified arguments, defining the text model and vision model
|
259 |
+
configs. Instantiating a configuration with the defaults will yield a similar configuration to that of the OWL-ViT
|
260 |
+
[google/owlvit-base-patch32](https://huggingface.co/google/owlvit-base-patch32) architecture.
|
261 |
+
|
262 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
263 |
+
documentation from [`PretrainedConfig`] for more information.
|
264 |
+
|
265 |
+
Args:
|
266 |
+
text_config (`dict`, *optional*):
|
267 |
+
Dictionary of configuration options used to initialize [`OwlViTTextConfig`].
|
268 |
+
vision_config (`dict`, *optional*):
|
269 |
+
Dictionary of configuration options used to initialize [`OwlViTVisionConfig`].
|
270 |
+
projection_dim (`int`, *optional*, defaults to 512):
|
271 |
+
Dimensionality of text and vision projection layers.
|
272 |
+
logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
|
273 |
+
The inital value of the *logit_scale* parameter. Default is used as per the original OWL-ViT
|
274 |
+
implementation.
|
275 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
276 |
+
Whether or not the model should return a dictionary. If `False`, returns a tuple.
|
277 |
+
kwargs (*optional*):
|
278 |
+
Dictionary of keyword arguments.
|
279 |
+
"""
|
280 |
+
|
281 |
+
model_type = "owlvit"
|
282 |
+
|
283 |
+
def __init__(
|
284 |
+
self,
|
285 |
+
text_config=None,
|
286 |
+
vision_config=None,
|
287 |
+
projection_dim=512,
|
288 |
+
logit_scale_init_value=2.6592,
|
289 |
+
return_dict=True,
|
290 |
+
**kwargs,
|
291 |
+
):
|
292 |
+
super().__init__(**kwargs)
|
293 |
+
|
294 |
+
if text_config is None:
|
295 |
+
text_config = {}
|
296 |
+
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values.")
|
297 |
+
|
298 |
+
if vision_config is None:
|
299 |
+
vision_config = {}
|
300 |
+
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values.")
|
301 |
+
|
302 |
+
self.text_config = OwlViTTextConfig(**text_config)
|
303 |
+
self.vision_config = OwlViTVisionConfig(**vision_config)
|
304 |
+
|
305 |
+
self.projection_dim = projection_dim
|
306 |
+
self.logit_scale_init_value = logit_scale_init_value
|
307 |
+
self.return_dict = return_dict
|
308 |
+
self.initializer_factor = 1.0
|
309 |
+
|
310 |
+
@classmethod
|
311 |
+
def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
|
312 |
+
cls._set_token_in_kwargs(kwargs)
|
313 |
+
|
314 |
+
config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
|
315 |
+
|
316 |
+
if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
|
317 |
+
logger.warning(
|
318 |
+
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
|
319 |
+
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
|
320 |
+
)
|
321 |
+
|
322 |
+
return cls.from_dict(config_dict, **kwargs)
|
323 |
+
|
324 |
+
@classmethod
|
325 |
+
def from_text_vision_configs(cls, text_config: Dict, vision_config: Dict, **kwargs):
|
326 |
+
r"""
|
327 |
+
Instantiate a [`OwlViTConfig`] (or a derived class) from owlvit text model configuration and owlvit vision
|
328 |
+
model configuration.
|
329 |
+
|
330 |
+
Returns:
|
331 |
+
[`OwlViTConfig`]: An instance of a configuration object
|
332 |
+
"""
|
333 |
+
config_dict = {}
|
334 |
+
config_dict["text_config"] = text_config
|
335 |
+
config_dict["vision_config"] = vision_config
|
336 |
+
|
337 |
+
return cls.from_dict(config_dict, **kwargs)
|
338 |
+
|
339 |
+
|
340 |
+
class OwlViTOnnxConfig(OnnxConfig):
|
341 |
+
@property
|
342 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
343 |
+
return OrderedDict(
|
344 |
+
[
|
345 |
+
("input_ids", {0: "batch", 1: "sequence"}),
|
346 |
+
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
|
347 |
+
("attention_mask", {0: "batch", 1: "sequence"}),
|
348 |
+
]
|
349 |
+
)
|
350 |
+
|
351 |
+
@property
|
352 |
+
def outputs(self) -> Mapping[str, Mapping[int, str]]:
|
353 |
+
return OrderedDict(
|
354 |
+
[
|
355 |
+
("logits_per_image", {0: "batch"}),
|
356 |
+
("logits_per_text", {0: "batch"}),
|
357 |
+
("text_embeds", {0: "batch"}),
|
358 |
+
("image_embeds", {0: "batch"}),
|
359 |
+
]
|
360 |
+
)
|
361 |
+
|
362 |
+
@property
|
363 |
+
def atol_for_validation(self) -> float:
|
364 |
+
return 1e-4
|
365 |
+
|
366 |
+
def generate_dummy_inputs(
|
367 |
+
self,
|
368 |
+
processor: "ProcessorMixin",
|
369 |
+
batch_size: int = -1,
|
370 |
+
seq_length: int = -1,
|
371 |
+
framework: Optional["TensorType"] = None,
|
372 |
+
) -> Mapping[str, Any]:
|
373 |
+
text_input_dict = super().generate_dummy_inputs(
|
374 |
+
processor.tokenizer, batch_size=batch_size, seq_length=seq_length, framework=framework
|
375 |
+
)
|
376 |
+
image_input_dict = super().generate_dummy_inputs(
|
377 |
+
processor.image_processor, batch_size=batch_size, framework=framework
|
378 |
+
)
|
379 |
+
return {**text_input_dict, **image_input_dict}
|
380 |
+
|
381 |
+
@property
|
382 |
+
def default_onnx_opset(self) -> int:
|
383 |
+
return 14
|