Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- venv/lib/python3.10/site-packages/pandas/core/_numba/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py +27 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py +196 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py +125 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py +29 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py +244 -0
- venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py +245 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__init__.py +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/api.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/astype.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/dtypes.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/api.py +85 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/astype.py +301 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/base.py +583 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/common.py +1748 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/concat.py +348 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/dtypes.py +2348 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/generic.py +147 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/inference.py +437 -0
- venv/lib/python3.10/site-packages/pandas/core/dtypes/missing.py +810 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__init__.py +15 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/base.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/categorical.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/indexing.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/base.py +121 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/categorical.py +87 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/generic.py +2852 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/groupby.py +0 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/grouper.py +1102 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/indexing.py +304 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/numba_.py +181 -0
- venv/lib/python3.10/site-packages/pandas/core/groupby/ops.py +1208 -0
- venv/lib/python3.10/site-packages/pandas/core/internals/__pycache__/array_manager.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/pandas/core/internals/__pycache__/blocks.cpython-310.pyc +0 -0
venv/lib/python3.10/site-packages/pandas/core/_numba/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/executor.cpython-310.pyc
ADDED
Binary file (5.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/_numba/__pycache__/extensions.cpython-310.pyc
ADDED
Binary file (15.9 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/__init__.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.core._numba.kernels.mean_ import (
|
2 |
+
grouped_mean,
|
3 |
+
sliding_mean,
|
4 |
+
)
|
5 |
+
from pandas.core._numba.kernels.min_max_ import (
|
6 |
+
grouped_min_max,
|
7 |
+
sliding_min_max,
|
8 |
+
)
|
9 |
+
from pandas.core._numba.kernels.sum_ import (
|
10 |
+
grouped_sum,
|
11 |
+
sliding_sum,
|
12 |
+
)
|
13 |
+
from pandas.core._numba.kernels.var_ import (
|
14 |
+
grouped_var,
|
15 |
+
sliding_var,
|
16 |
+
)
|
17 |
+
|
18 |
+
__all__ = [
|
19 |
+
"sliding_mean",
|
20 |
+
"grouped_mean",
|
21 |
+
"sliding_sum",
|
22 |
+
"grouped_sum",
|
23 |
+
"sliding_var",
|
24 |
+
"grouped_var",
|
25 |
+
"sliding_min_max",
|
26 |
+
"grouped_min_max",
|
27 |
+
]
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/mean_.py
ADDED
@@ -0,0 +1,196 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Numba 1D mean kernels that can be shared by
|
3 |
+
* Dataframe / Series
|
4 |
+
* groupby
|
5 |
+
* rolling / expanding
|
6 |
+
|
7 |
+
Mirrors pandas/_libs/window/aggregation.pyx
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import TYPE_CHECKING
|
12 |
+
|
13 |
+
import numba
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas.core._numba.kernels.shared import is_monotonic_increasing
|
17 |
+
from pandas.core._numba.kernels.sum_ import grouped_kahan_sum
|
18 |
+
|
19 |
+
if TYPE_CHECKING:
|
20 |
+
from pandas._typing import npt
|
21 |
+
|
22 |
+
|
23 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
24 |
+
def add_mean(
|
25 |
+
val: float,
|
26 |
+
nobs: int,
|
27 |
+
sum_x: float,
|
28 |
+
neg_ct: int,
|
29 |
+
compensation: float,
|
30 |
+
num_consecutive_same_value: int,
|
31 |
+
prev_value: float,
|
32 |
+
) -> tuple[int, float, int, float, int, float]:
|
33 |
+
if not np.isnan(val):
|
34 |
+
nobs += 1
|
35 |
+
y = val - compensation
|
36 |
+
t = sum_x + y
|
37 |
+
compensation = t - sum_x - y
|
38 |
+
sum_x = t
|
39 |
+
if val < 0:
|
40 |
+
neg_ct += 1
|
41 |
+
|
42 |
+
if val == prev_value:
|
43 |
+
num_consecutive_same_value += 1
|
44 |
+
else:
|
45 |
+
num_consecutive_same_value = 1
|
46 |
+
prev_value = val
|
47 |
+
|
48 |
+
return nobs, sum_x, neg_ct, compensation, num_consecutive_same_value, prev_value
|
49 |
+
|
50 |
+
|
51 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
52 |
+
def remove_mean(
|
53 |
+
val: float, nobs: int, sum_x: float, neg_ct: int, compensation: float
|
54 |
+
) -> tuple[int, float, int, float]:
|
55 |
+
if not np.isnan(val):
|
56 |
+
nobs -= 1
|
57 |
+
y = -val - compensation
|
58 |
+
t = sum_x + y
|
59 |
+
compensation = t - sum_x - y
|
60 |
+
sum_x = t
|
61 |
+
if val < 0:
|
62 |
+
neg_ct -= 1
|
63 |
+
return nobs, sum_x, neg_ct, compensation
|
64 |
+
|
65 |
+
|
66 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
67 |
+
def sliding_mean(
|
68 |
+
values: np.ndarray,
|
69 |
+
result_dtype: np.dtype,
|
70 |
+
start: np.ndarray,
|
71 |
+
end: np.ndarray,
|
72 |
+
min_periods: int,
|
73 |
+
) -> tuple[np.ndarray, list[int]]:
|
74 |
+
N = len(start)
|
75 |
+
nobs = 0
|
76 |
+
sum_x = 0.0
|
77 |
+
neg_ct = 0
|
78 |
+
compensation_add = 0.0
|
79 |
+
compensation_remove = 0.0
|
80 |
+
|
81 |
+
is_monotonic_increasing_bounds = is_monotonic_increasing(
|
82 |
+
start
|
83 |
+
) and is_monotonic_increasing(end)
|
84 |
+
|
85 |
+
output = np.empty(N, dtype=result_dtype)
|
86 |
+
|
87 |
+
for i in range(N):
|
88 |
+
s = start[i]
|
89 |
+
e = end[i]
|
90 |
+
if i == 0 or not is_monotonic_increasing_bounds:
|
91 |
+
prev_value = values[s]
|
92 |
+
num_consecutive_same_value = 0
|
93 |
+
|
94 |
+
for j in range(s, e):
|
95 |
+
val = values[j]
|
96 |
+
(
|
97 |
+
nobs,
|
98 |
+
sum_x,
|
99 |
+
neg_ct,
|
100 |
+
compensation_add,
|
101 |
+
num_consecutive_same_value,
|
102 |
+
prev_value,
|
103 |
+
) = add_mean(
|
104 |
+
val,
|
105 |
+
nobs,
|
106 |
+
sum_x,
|
107 |
+
neg_ct,
|
108 |
+
compensation_add,
|
109 |
+
num_consecutive_same_value,
|
110 |
+
prev_value, # pyright: ignore[reportGeneralTypeIssues]
|
111 |
+
)
|
112 |
+
else:
|
113 |
+
for j in range(start[i - 1], s):
|
114 |
+
val = values[j]
|
115 |
+
nobs, sum_x, neg_ct, compensation_remove = remove_mean(
|
116 |
+
val, nobs, sum_x, neg_ct, compensation_remove
|
117 |
+
)
|
118 |
+
|
119 |
+
for j in range(end[i - 1], e):
|
120 |
+
val = values[j]
|
121 |
+
(
|
122 |
+
nobs,
|
123 |
+
sum_x,
|
124 |
+
neg_ct,
|
125 |
+
compensation_add,
|
126 |
+
num_consecutive_same_value,
|
127 |
+
prev_value,
|
128 |
+
) = add_mean(
|
129 |
+
val,
|
130 |
+
nobs,
|
131 |
+
sum_x,
|
132 |
+
neg_ct,
|
133 |
+
compensation_add,
|
134 |
+
num_consecutive_same_value,
|
135 |
+
prev_value, # pyright: ignore[reportGeneralTypeIssues]
|
136 |
+
)
|
137 |
+
|
138 |
+
if nobs >= min_periods and nobs > 0:
|
139 |
+
result = sum_x / nobs
|
140 |
+
if num_consecutive_same_value >= nobs:
|
141 |
+
result = prev_value
|
142 |
+
elif neg_ct == 0 and result < 0:
|
143 |
+
result = 0
|
144 |
+
elif neg_ct == nobs and result > 0:
|
145 |
+
result = 0
|
146 |
+
else:
|
147 |
+
result = np.nan
|
148 |
+
|
149 |
+
output[i] = result
|
150 |
+
|
151 |
+
if not is_monotonic_increasing_bounds:
|
152 |
+
nobs = 0
|
153 |
+
sum_x = 0.0
|
154 |
+
neg_ct = 0
|
155 |
+
compensation_remove = 0.0
|
156 |
+
|
157 |
+
# na_position is empty list since float64 can already hold nans
|
158 |
+
# Do list comprehension, since numba cannot figure out that na_pos is
|
159 |
+
# empty list of ints on its own
|
160 |
+
na_pos = [0 for i in range(0)]
|
161 |
+
return output, na_pos
|
162 |
+
|
163 |
+
|
164 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
165 |
+
def grouped_mean(
|
166 |
+
values: np.ndarray,
|
167 |
+
result_dtype: np.dtype,
|
168 |
+
labels: npt.NDArray[np.intp],
|
169 |
+
ngroups: int,
|
170 |
+
min_periods: int,
|
171 |
+
) -> tuple[np.ndarray, list[int]]:
|
172 |
+
output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum(
|
173 |
+
values, result_dtype, labels, ngroups
|
174 |
+
)
|
175 |
+
|
176 |
+
# Post-processing, replace sums that don't satisfy min_periods
|
177 |
+
for lab in range(ngroups):
|
178 |
+
nobs = nobs_arr[lab]
|
179 |
+
num_consecutive_same_value = consecutive_counts[lab]
|
180 |
+
prev_value = prev_vals[lab]
|
181 |
+
sum_x = output[lab]
|
182 |
+
if nobs >= min_periods:
|
183 |
+
if num_consecutive_same_value >= nobs:
|
184 |
+
result = prev_value * nobs
|
185 |
+
else:
|
186 |
+
result = sum_x
|
187 |
+
else:
|
188 |
+
result = np.nan
|
189 |
+
result /= nobs
|
190 |
+
output[lab] = result
|
191 |
+
|
192 |
+
# na_position is empty list since float64 can already hold nans
|
193 |
+
# Do list comprehension, since numba cannot figure out that na_pos is
|
194 |
+
# empty list of ints on its own
|
195 |
+
na_pos = [0 for i in range(0)]
|
196 |
+
return output, na_pos
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/min_max_.py
ADDED
@@ -0,0 +1,125 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Numba 1D min/max kernels that can be shared by
|
3 |
+
* Dataframe / Series
|
4 |
+
* groupby
|
5 |
+
* rolling / expanding
|
6 |
+
|
7 |
+
Mirrors pandas/_libs/window/aggregation.pyx
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import TYPE_CHECKING
|
12 |
+
|
13 |
+
import numba
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from pandas._typing import npt
|
18 |
+
|
19 |
+
|
20 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
21 |
+
def sliding_min_max(
|
22 |
+
values: np.ndarray,
|
23 |
+
result_dtype: np.dtype,
|
24 |
+
start: np.ndarray,
|
25 |
+
end: np.ndarray,
|
26 |
+
min_periods: int,
|
27 |
+
is_max: bool,
|
28 |
+
) -> tuple[np.ndarray, list[int]]:
|
29 |
+
N = len(start)
|
30 |
+
nobs = 0
|
31 |
+
output = np.empty(N, dtype=result_dtype)
|
32 |
+
na_pos = []
|
33 |
+
# Use deque once numba supports it
|
34 |
+
# https://github.com/numba/numba/issues/7417
|
35 |
+
Q: list = []
|
36 |
+
W: list = []
|
37 |
+
for i in range(N):
|
38 |
+
curr_win_size = end[i] - start[i]
|
39 |
+
if i == 0:
|
40 |
+
st = start[i]
|
41 |
+
else:
|
42 |
+
st = end[i - 1]
|
43 |
+
|
44 |
+
for k in range(st, end[i]):
|
45 |
+
ai = values[k]
|
46 |
+
if not np.isnan(ai):
|
47 |
+
nobs += 1
|
48 |
+
elif is_max:
|
49 |
+
ai = -np.inf
|
50 |
+
else:
|
51 |
+
ai = np.inf
|
52 |
+
# Discard previous entries if we find new min or max
|
53 |
+
if is_max:
|
54 |
+
while Q and ((ai >= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]):
|
55 |
+
Q.pop()
|
56 |
+
else:
|
57 |
+
while Q and ((ai <= values[Q[-1]]) or values[Q[-1]] != values[Q[-1]]):
|
58 |
+
Q.pop()
|
59 |
+
Q.append(k)
|
60 |
+
W.append(k)
|
61 |
+
|
62 |
+
# Discard entries outside and left of current window
|
63 |
+
while Q and Q[0] <= start[i] - 1:
|
64 |
+
Q.pop(0)
|
65 |
+
while W and W[0] <= start[i] - 1:
|
66 |
+
if not np.isnan(values[W[0]]):
|
67 |
+
nobs -= 1
|
68 |
+
W.pop(0)
|
69 |
+
|
70 |
+
# Save output based on index in input value array
|
71 |
+
if Q and curr_win_size > 0 and nobs >= min_periods:
|
72 |
+
output[i] = values[Q[0]]
|
73 |
+
else:
|
74 |
+
if values.dtype.kind != "i":
|
75 |
+
output[i] = np.nan
|
76 |
+
else:
|
77 |
+
na_pos.append(i)
|
78 |
+
|
79 |
+
return output, na_pos
|
80 |
+
|
81 |
+
|
82 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
83 |
+
def grouped_min_max(
|
84 |
+
values: np.ndarray,
|
85 |
+
result_dtype: np.dtype,
|
86 |
+
labels: npt.NDArray[np.intp],
|
87 |
+
ngroups: int,
|
88 |
+
min_periods: int,
|
89 |
+
is_max: bool,
|
90 |
+
) -> tuple[np.ndarray, list[int]]:
|
91 |
+
N = len(labels)
|
92 |
+
nobs = np.zeros(ngroups, dtype=np.int64)
|
93 |
+
na_pos = []
|
94 |
+
output = np.empty(ngroups, dtype=result_dtype)
|
95 |
+
|
96 |
+
for i in range(N):
|
97 |
+
lab = labels[i]
|
98 |
+
val = values[i]
|
99 |
+
if lab < 0:
|
100 |
+
continue
|
101 |
+
|
102 |
+
if values.dtype.kind == "i" or not np.isnan(val):
|
103 |
+
nobs[lab] += 1
|
104 |
+
else:
|
105 |
+
# NaN value cannot be a min/max value
|
106 |
+
continue
|
107 |
+
|
108 |
+
if nobs[lab] == 1:
|
109 |
+
# First element in group, set output equal to this
|
110 |
+
output[lab] = val
|
111 |
+
continue
|
112 |
+
|
113 |
+
if is_max:
|
114 |
+
if val > output[lab]:
|
115 |
+
output[lab] = val
|
116 |
+
else:
|
117 |
+
if val < output[lab]:
|
118 |
+
output[lab] = val
|
119 |
+
|
120 |
+
# Set labels that don't satisfy min_periods as np.nan
|
121 |
+
for lab, count in enumerate(nobs):
|
122 |
+
if count < min_periods:
|
123 |
+
na_pos.append(lab)
|
124 |
+
|
125 |
+
return output, na_pos
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/shared.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from typing import TYPE_CHECKING
|
4 |
+
|
5 |
+
import numba
|
6 |
+
|
7 |
+
if TYPE_CHECKING:
|
8 |
+
import numpy as np
|
9 |
+
|
10 |
+
|
11 |
+
@numba.jit(
|
12 |
+
# error: Any? not callable
|
13 |
+
numba.boolean(numba.int64[:]), # type: ignore[misc]
|
14 |
+
nopython=True,
|
15 |
+
nogil=True,
|
16 |
+
parallel=False,
|
17 |
+
)
|
18 |
+
def is_monotonic_increasing(bounds: np.ndarray) -> bool:
|
19 |
+
"""Check if int64 values are monotonically increasing."""
|
20 |
+
n = len(bounds)
|
21 |
+
if n < 2:
|
22 |
+
return True
|
23 |
+
prev = bounds[0]
|
24 |
+
for i in range(1, n):
|
25 |
+
cur = bounds[i]
|
26 |
+
if cur < prev:
|
27 |
+
return False
|
28 |
+
prev = cur
|
29 |
+
return True
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/sum_.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Numba 1D sum kernels that can be shared by
|
3 |
+
* Dataframe / Series
|
4 |
+
* groupby
|
5 |
+
* rolling / expanding
|
6 |
+
|
7 |
+
Mirrors pandas/_libs/window/aggregation.pyx
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import (
|
12 |
+
TYPE_CHECKING,
|
13 |
+
Any,
|
14 |
+
)
|
15 |
+
|
16 |
+
import numba
|
17 |
+
from numba.extending import register_jitable
|
18 |
+
import numpy as np
|
19 |
+
|
20 |
+
if TYPE_CHECKING:
|
21 |
+
from pandas._typing import npt
|
22 |
+
|
23 |
+
from pandas.core._numba.kernels.shared import is_monotonic_increasing
|
24 |
+
|
25 |
+
|
26 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
27 |
+
def add_sum(
|
28 |
+
val: Any,
|
29 |
+
nobs: int,
|
30 |
+
sum_x: Any,
|
31 |
+
compensation: Any,
|
32 |
+
num_consecutive_same_value: int,
|
33 |
+
prev_value: Any,
|
34 |
+
) -> tuple[int, Any, Any, int, Any]:
|
35 |
+
if not np.isnan(val):
|
36 |
+
nobs += 1
|
37 |
+
y = val - compensation
|
38 |
+
t = sum_x + y
|
39 |
+
compensation = t - sum_x - y
|
40 |
+
sum_x = t
|
41 |
+
|
42 |
+
if val == prev_value:
|
43 |
+
num_consecutive_same_value += 1
|
44 |
+
else:
|
45 |
+
num_consecutive_same_value = 1
|
46 |
+
prev_value = val
|
47 |
+
|
48 |
+
return nobs, sum_x, compensation, num_consecutive_same_value, prev_value
|
49 |
+
|
50 |
+
|
51 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
52 |
+
def remove_sum(
|
53 |
+
val: Any, nobs: int, sum_x: Any, compensation: Any
|
54 |
+
) -> tuple[int, Any, Any]:
|
55 |
+
if not np.isnan(val):
|
56 |
+
nobs -= 1
|
57 |
+
y = -val - compensation
|
58 |
+
t = sum_x + y
|
59 |
+
compensation = t - sum_x - y
|
60 |
+
sum_x = t
|
61 |
+
return nobs, sum_x, compensation
|
62 |
+
|
63 |
+
|
64 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
65 |
+
def sliding_sum(
|
66 |
+
values: np.ndarray,
|
67 |
+
result_dtype: np.dtype,
|
68 |
+
start: np.ndarray,
|
69 |
+
end: np.ndarray,
|
70 |
+
min_periods: int,
|
71 |
+
) -> tuple[np.ndarray, list[int]]:
|
72 |
+
dtype = values.dtype
|
73 |
+
|
74 |
+
na_val: object = np.nan
|
75 |
+
if dtype.kind == "i":
|
76 |
+
na_val = 0
|
77 |
+
|
78 |
+
N = len(start)
|
79 |
+
nobs = 0
|
80 |
+
sum_x = 0
|
81 |
+
compensation_add = 0
|
82 |
+
compensation_remove = 0
|
83 |
+
na_pos = []
|
84 |
+
|
85 |
+
is_monotonic_increasing_bounds = is_monotonic_increasing(
|
86 |
+
start
|
87 |
+
) and is_monotonic_increasing(end)
|
88 |
+
|
89 |
+
output = np.empty(N, dtype=result_dtype)
|
90 |
+
|
91 |
+
for i in range(N):
|
92 |
+
s = start[i]
|
93 |
+
e = end[i]
|
94 |
+
if i == 0 or not is_monotonic_increasing_bounds:
|
95 |
+
prev_value = values[s]
|
96 |
+
num_consecutive_same_value = 0
|
97 |
+
|
98 |
+
for j in range(s, e):
|
99 |
+
val = values[j]
|
100 |
+
(
|
101 |
+
nobs,
|
102 |
+
sum_x,
|
103 |
+
compensation_add,
|
104 |
+
num_consecutive_same_value,
|
105 |
+
prev_value,
|
106 |
+
) = add_sum(
|
107 |
+
val,
|
108 |
+
nobs,
|
109 |
+
sum_x,
|
110 |
+
compensation_add,
|
111 |
+
num_consecutive_same_value,
|
112 |
+
prev_value,
|
113 |
+
)
|
114 |
+
else:
|
115 |
+
for j in range(start[i - 1], s):
|
116 |
+
val = values[j]
|
117 |
+
nobs, sum_x, compensation_remove = remove_sum(
|
118 |
+
val, nobs, sum_x, compensation_remove
|
119 |
+
)
|
120 |
+
|
121 |
+
for j in range(end[i - 1], e):
|
122 |
+
val = values[j]
|
123 |
+
(
|
124 |
+
nobs,
|
125 |
+
sum_x,
|
126 |
+
compensation_add,
|
127 |
+
num_consecutive_same_value,
|
128 |
+
prev_value,
|
129 |
+
) = add_sum(
|
130 |
+
val,
|
131 |
+
nobs,
|
132 |
+
sum_x,
|
133 |
+
compensation_add,
|
134 |
+
num_consecutive_same_value,
|
135 |
+
prev_value,
|
136 |
+
)
|
137 |
+
|
138 |
+
if nobs == 0 == min_periods:
|
139 |
+
result: object = 0
|
140 |
+
elif nobs >= min_periods:
|
141 |
+
if num_consecutive_same_value >= nobs:
|
142 |
+
result = prev_value * nobs
|
143 |
+
else:
|
144 |
+
result = sum_x
|
145 |
+
else:
|
146 |
+
result = na_val
|
147 |
+
if dtype.kind == "i":
|
148 |
+
na_pos.append(i)
|
149 |
+
|
150 |
+
output[i] = result
|
151 |
+
|
152 |
+
if not is_monotonic_increasing_bounds:
|
153 |
+
nobs = 0
|
154 |
+
sum_x = 0
|
155 |
+
compensation_remove = 0
|
156 |
+
|
157 |
+
return output, na_pos
|
158 |
+
|
159 |
+
|
160 |
+
# Mypy/pyright don't like the fact that the decorator is untyped
|
161 |
+
@register_jitable # type: ignore[misc]
|
162 |
+
def grouped_kahan_sum(
|
163 |
+
values: np.ndarray,
|
164 |
+
result_dtype: np.dtype,
|
165 |
+
labels: npt.NDArray[np.intp],
|
166 |
+
ngroups: int,
|
167 |
+
) -> tuple[
|
168 |
+
np.ndarray, npt.NDArray[np.int64], np.ndarray, npt.NDArray[np.int64], np.ndarray
|
169 |
+
]:
|
170 |
+
N = len(labels)
|
171 |
+
|
172 |
+
nobs_arr = np.zeros(ngroups, dtype=np.int64)
|
173 |
+
comp_arr = np.zeros(ngroups, dtype=values.dtype)
|
174 |
+
consecutive_counts = np.zeros(ngroups, dtype=np.int64)
|
175 |
+
prev_vals = np.zeros(ngroups, dtype=values.dtype)
|
176 |
+
output = np.zeros(ngroups, dtype=result_dtype)
|
177 |
+
|
178 |
+
for i in range(N):
|
179 |
+
lab = labels[i]
|
180 |
+
val = values[i]
|
181 |
+
|
182 |
+
if lab < 0:
|
183 |
+
continue
|
184 |
+
|
185 |
+
sum_x = output[lab]
|
186 |
+
nobs = nobs_arr[lab]
|
187 |
+
compensation_add = comp_arr[lab]
|
188 |
+
num_consecutive_same_value = consecutive_counts[lab]
|
189 |
+
prev_value = prev_vals[lab]
|
190 |
+
|
191 |
+
(
|
192 |
+
nobs,
|
193 |
+
sum_x,
|
194 |
+
compensation_add,
|
195 |
+
num_consecutive_same_value,
|
196 |
+
prev_value,
|
197 |
+
) = add_sum(
|
198 |
+
val,
|
199 |
+
nobs,
|
200 |
+
sum_x,
|
201 |
+
compensation_add,
|
202 |
+
num_consecutive_same_value,
|
203 |
+
prev_value,
|
204 |
+
)
|
205 |
+
|
206 |
+
output[lab] = sum_x
|
207 |
+
consecutive_counts[lab] = num_consecutive_same_value
|
208 |
+
prev_vals[lab] = prev_value
|
209 |
+
comp_arr[lab] = compensation_add
|
210 |
+
nobs_arr[lab] = nobs
|
211 |
+
return output, nobs_arr, comp_arr, consecutive_counts, prev_vals
|
212 |
+
|
213 |
+
|
214 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
215 |
+
def grouped_sum(
|
216 |
+
values: np.ndarray,
|
217 |
+
result_dtype: np.dtype,
|
218 |
+
labels: npt.NDArray[np.intp],
|
219 |
+
ngroups: int,
|
220 |
+
min_periods: int,
|
221 |
+
) -> tuple[np.ndarray, list[int]]:
|
222 |
+
na_pos = []
|
223 |
+
|
224 |
+
output, nobs_arr, comp_arr, consecutive_counts, prev_vals = grouped_kahan_sum(
|
225 |
+
values, result_dtype, labels, ngroups
|
226 |
+
)
|
227 |
+
|
228 |
+
# Post-processing, replace sums that don't satisfy min_periods
|
229 |
+
for lab in range(ngroups):
|
230 |
+
nobs = nobs_arr[lab]
|
231 |
+
num_consecutive_same_value = consecutive_counts[lab]
|
232 |
+
prev_value = prev_vals[lab]
|
233 |
+
sum_x = output[lab]
|
234 |
+
if nobs >= min_periods:
|
235 |
+
if num_consecutive_same_value >= nobs:
|
236 |
+
result = prev_value * nobs
|
237 |
+
else:
|
238 |
+
result = sum_x
|
239 |
+
else:
|
240 |
+
result = sum_x # Don't change val, will be replaced by nan later
|
241 |
+
na_pos.append(lab)
|
242 |
+
output[lab] = result
|
243 |
+
|
244 |
+
return output, na_pos
|
venv/lib/python3.10/site-packages/pandas/core/_numba/kernels/var_.py
ADDED
@@ -0,0 +1,245 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Numba 1D var kernels that can be shared by
|
3 |
+
* Dataframe / Series
|
4 |
+
* groupby
|
5 |
+
* rolling / expanding
|
6 |
+
|
7 |
+
Mirrors pandas/_libs/window/aggregation.pyx
|
8 |
+
"""
|
9 |
+
from __future__ import annotations
|
10 |
+
|
11 |
+
from typing import TYPE_CHECKING
|
12 |
+
|
13 |
+
import numba
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
if TYPE_CHECKING:
|
17 |
+
from pandas._typing import npt
|
18 |
+
|
19 |
+
from pandas.core._numba.kernels.shared import is_monotonic_increasing
|
20 |
+
|
21 |
+
|
22 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
23 |
+
def add_var(
|
24 |
+
val: float,
|
25 |
+
nobs: int,
|
26 |
+
mean_x: float,
|
27 |
+
ssqdm_x: float,
|
28 |
+
compensation: float,
|
29 |
+
num_consecutive_same_value: int,
|
30 |
+
prev_value: float,
|
31 |
+
) -> tuple[int, float, float, float, int, float]:
|
32 |
+
if not np.isnan(val):
|
33 |
+
if val == prev_value:
|
34 |
+
num_consecutive_same_value += 1
|
35 |
+
else:
|
36 |
+
num_consecutive_same_value = 1
|
37 |
+
prev_value = val
|
38 |
+
|
39 |
+
nobs += 1
|
40 |
+
prev_mean = mean_x - compensation
|
41 |
+
y = val - compensation
|
42 |
+
t = y - mean_x
|
43 |
+
compensation = t + mean_x - y
|
44 |
+
delta = t
|
45 |
+
if nobs:
|
46 |
+
mean_x += delta / nobs
|
47 |
+
else:
|
48 |
+
mean_x = 0
|
49 |
+
ssqdm_x += (val - prev_mean) * (val - mean_x)
|
50 |
+
return nobs, mean_x, ssqdm_x, compensation, num_consecutive_same_value, prev_value
|
51 |
+
|
52 |
+
|
53 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
54 |
+
def remove_var(
|
55 |
+
val: float, nobs: int, mean_x: float, ssqdm_x: float, compensation: float
|
56 |
+
) -> tuple[int, float, float, float]:
|
57 |
+
if not np.isnan(val):
|
58 |
+
nobs -= 1
|
59 |
+
if nobs:
|
60 |
+
prev_mean = mean_x - compensation
|
61 |
+
y = val - compensation
|
62 |
+
t = y - mean_x
|
63 |
+
compensation = t + mean_x - y
|
64 |
+
delta = t
|
65 |
+
mean_x -= delta / nobs
|
66 |
+
ssqdm_x -= (val - prev_mean) * (val - mean_x)
|
67 |
+
else:
|
68 |
+
mean_x = 0
|
69 |
+
ssqdm_x = 0
|
70 |
+
return nobs, mean_x, ssqdm_x, compensation
|
71 |
+
|
72 |
+
|
73 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
74 |
+
def sliding_var(
|
75 |
+
values: np.ndarray,
|
76 |
+
result_dtype: np.dtype,
|
77 |
+
start: np.ndarray,
|
78 |
+
end: np.ndarray,
|
79 |
+
min_periods: int,
|
80 |
+
ddof: int = 1,
|
81 |
+
) -> tuple[np.ndarray, list[int]]:
|
82 |
+
N = len(start)
|
83 |
+
nobs = 0
|
84 |
+
mean_x = 0.0
|
85 |
+
ssqdm_x = 0.0
|
86 |
+
compensation_add = 0.0
|
87 |
+
compensation_remove = 0.0
|
88 |
+
|
89 |
+
min_periods = max(min_periods, 1)
|
90 |
+
is_monotonic_increasing_bounds = is_monotonic_increasing(
|
91 |
+
start
|
92 |
+
) and is_monotonic_increasing(end)
|
93 |
+
|
94 |
+
output = np.empty(N, dtype=result_dtype)
|
95 |
+
|
96 |
+
for i in range(N):
|
97 |
+
s = start[i]
|
98 |
+
e = end[i]
|
99 |
+
if i == 0 or not is_monotonic_increasing_bounds:
|
100 |
+
prev_value = values[s]
|
101 |
+
num_consecutive_same_value = 0
|
102 |
+
|
103 |
+
for j in range(s, e):
|
104 |
+
val = values[j]
|
105 |
+
(
|
106 |
+
nobs,
|
107 |
+
mean_x,
|
108 |
+
ssqdm_x,
|
109 |
+
compensation_add,
|
110 |
+
num_consecutive_same_value,
|
111 |
+
prev_value,
|
112 |
+
) = add_var(
|
113 |
+
val,
|
114 |
+
nobs,
|
115 |
+
mean_x,
|
116 |
+
ssqdm_x,
|
117 |
+
compensation_add,
|
118 |
+
num_consecutive_same_value,
|
119 |
+
prev_value,
|
120 |
+
)
|
121 |
+
else:
|
122 |
+
for j in range(start[i - 1], s):
|
123 |
+
val = values[j]
|
124 |
+
nobs, mean_x, ssqdm_x, compensation_remove = remove_var(
|
125 |
+
val, nobs, mean_x, ssqdm_x, compensation_remove
|
126 |
+
)
|
127 |
+
|
128 |
+
for j in range(end[i - 1], e):
|
129 |
+
val = values[j]
|
130 |
+
(
|
131 |
+
nobs,
|
132 |
+
mean_x,
|
133 |
+
ssqdm_x,
|
134 |
+
compensation_add,
|
135 |
+
num_consecutive_same_value,
|
136 |
+
prev_value,
|
137 |
+
) = add_var(
|
138 |
+
val,
|
139 |
+
nobs,
|
140 |
+
mean_x,
|
141 |
+
ssqdm_x,
|
142 |
+
compensation_add,
|
143 |
+
num_consecutive_same_value,
|
144 |
+
prev_value,
|
145 |
+
)
|
146 |
+
|
147 |
+
if nobs >= min_periods and nobs > ddof:
|
148 |
+
if nobs == 1 or num_consecutive_same_value >= nobs:
|
149 |
+
result = 0.0
|
150 |
+
else:
|
151 |
+
result = ssqdm_x / (nobs - ddof)
|
152 |
+
else:
|
153 |
+
result = np.nan
|
154 |
+
|
155 |
+
output[i] = result
|
156 |
+
|
157 |
+
if not is_monotonic_increasing_bounds:
|
158 |
+
nobs = 0
|
159 |
+
mean_x = 0.0
|
160 |
+
ssqdm_x = 0.0
|
161 |
+
compensation_remove = 0.0
|
162 |
+
|
163 |
+
# na_position is empty list since float64 can already hold nans
|
164 |
+
# Do list comprehension, since numba cannot figure out that na_pos is
|
165 |
+
# empty list of ints on its own
|
166 |
+
na_pos = [0 for i in range(0)]
|
167 |
+
return output, na_pos
|
168 |
+
|
169 |
+
|
170 |
+
@numba.jit(nopython=True, nogil=True, parallel=False)
|
171 |
+
def grouped_var(
|
172 |
+
values: np.ndarray,
|
173 |
+
result_dtype: np.dtype,
|
174 |
+
labels: npt.NDArray[np.intp],
|
175 |
+
ngroups: int,
|
176 |
+
min_periods: int,
|
177 |
+
ddof: int = 1,
|
178 |
+
) -> tuple[np.ndarray, list[int]]:
|
179 |
+
N = len(labels)
|
180 |
+
|
181 |
+
nobs_arr = np.zeros(ngroups, dtype=np.int64)
|
182 |
+
comp_arr = np.zeros(ngroups, dtype=values.dtype)
|
183 |
+
consecutive_counts = np.zeros(ngroups, dtype=np.int64)
|
184 |
+
prev_vals = np.zeros(ngroups, dtype=values.dtype)
|
185 |
+
output = np.zeros(ngroups, dtype=result_dtype)
|
186 |
+
means = np.zeros(ngroups, dtype=result_dtype)
|
187 |
+
|
188 |
+
for i in range(N):
|
189 |
+
lab = labels[i]
|
190 |
+
val = values[i]
|
191 |
+
|
192 |
+
if lab < 0:
|
193 |
+
continue
|
194 |
+
|
195 |
+
mean_x = means[lab]
|
196 |
+
ssqdm_x = output[lab]
|
197 |
+
nobs = nobs_arr[lab]
|
198 |
+
compensation_add = comp_arr[lab]
|
199 |
+
num_consecutive_same_value = consecutive_counts[lab]
|
200 |
+
prev_value = prev_vals[lab]
|
201 |
+
|
202 |
+
(
|
203 |
+
nobs,
|
204 |
+
mean_x,
|
205 |
+
ssqdm_x,
|
206 |
+
compensation_add,
|
207 |
+
num_consecutive_same_value,
|
208 |
+
prev_value,
|
209 |
+
) = add_var(
|
210 |
+
val,
|
211 |
+
nobs,
|
212 |
+
mean_x,
|
213 |
+
ssqdm_x,
|
214 |
+
compensation_add,
|
215 |
+
num_consecutive_same_value,
|
216 |
+
prev_value,
|
217 |
+
)
|
218 |
+
|
219 |
+
output[lab] = ssqdm_x
|
220 |
+
means[lab] = mean_x
|
221 |
+
consecutive_counts[lab] = num_consecutive_same_value
|
222 |
+
prev_vals[lab] = prev_value
|
223 |
+
comp_arr[lab] = compensation_add
|
224 |
+
nobs_arr[lab] = nobs
|
225 |
+
|
226 |
+
# Post-processing, replace vars that don't satisfy min_periods
|
227 |
+
for lab in range(ngroups):
|
228 |
+
nobs = nobs_arr[lab]
|
229 |
+
num_consecutive_same_value = consecutive_counts[lab]
|
230 |
+
ssqdm_x = output[lab]
|
231 |
+
if nobs >= min_periods and nobs > ddof:
|
232 |
+
if nobs == 1 or num_consecutive_same_value >= nobs:
|
233 |
+
result = 0.0
|
234 |
+
else:
|
235 |
+
result = ssqdm_x / (nobs - ddof)
|
236 |
+
else:
|
237 |
+
result = np.nan
|
238 |
+
output[lab] = result
|
239 |
+
|
240 |
+
# Second pass to get the std.dev
|
241 |
+
# na_position is empty list since float64 can already hold nans
|
242 |
+
# Do list comprehension, since numba cannot figure out that na_pos is
|
243 |
+
# empty list of ints on its own
|
244 |
+
na_pos = [0 for i in range(0)]
|
245 |
+
return output, na_pos
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (186 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/api.cpython-310.pyc
ADDED
Binary file (1.28 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/astype.cpython-310.pyc
ADDED
Binary file (6.71 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/base.cpython-310.pyc
ADDED
Binary file (18.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/cast.cpython-310.pyc
ADDED
Binary file (39.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/common.cpython-310.pyc
ADDED
Binary file (42 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/concat.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/dtypes.cpython-310.pyc
ADDED
Binary file (62.6 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/generic.cpython-310.pyc
ADDED
Binary file (3.23 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/inference.cpython-310.pyc
ADDED
Binary file (9.55 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/__pycache__/missing.cpython-310.pyc
ADDED
Binary file (19.5 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/api.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.core.dtypes.common import (
|
2 |
+
is_any_real_numeric_dtype,
|
3 |
+
is_array_like,
|
4 |
+
is_bool,
|
5 |
+
is_bool_dtype,
|
6 |
+
is_categorical_dtype,
|
7 |
+
is_complex,
|
8 |
+
is_complex_dtype,
|
9 |
+
is_datetime64_any_dtype,
|
10 |
+
is_datetime64_dtype,
|
11 |
+
is_datetime64_ns_dtype,
|
12 |
+
is_datetime64tz_dtype,
|
13 |
+
is_dict_like,
|
14 |
+
is_dtype_equal,
|
15 |
+
is_extension_array_dtype,
|
16 |
+
is_file_like,
|
17 |
+
is_float,
|
18 |
+
is_float_dtype,
|
19 |
+
is_hashable,
|
20 |
+
is_int64_dtype,
|
21 |
+
is_integer,
|
22 |
+
is_integer_dtype,
|
23 |
+
is_interval,
|
24 |
+
is_interval_dtype,
|
25 |
+
is_iterator,
|
26 |
+
is_list_like,
|
27 |
+
is_named_tuple,
|
28 |
+
is_number,
|
29 |
+
is_numeric_dtype,
|
30 |
+
is_object_dtype,
|
31 |
+
is_period_dtype,
|
32 |
+
is_re,
|
33 |
+
is_re_compilable,
|
34 |
+
is_scalar,
|
35 |
+
is_signed_integer_dtype,
|
36 |
+
is_sparse,
|
37 |
+
is_string_dtype,
|
38 |
+
is_timedelta64_dtype,
|
39 |
+
is_timedelta64_ns_dtype,
|
40 |
+
is_unsigned_integer_dtype,
|
41 |
+
pandas_dtype,
|
42 |
+
)
|
43 |
+
|
44 |
+
__all__ = [
|
45 |
+
"is_any_real_numeric_dtype",
|
46 |
+
"is_array_like",
|
47 |
+
"is_bool",
|
48 |
+
"is_bool_dtype",
|
49 |
+
"is_categorical_dtype",
|
50 |
+
"is_complex",
|
51 |
+
"is_complex_dtype",
|
52 |
+
"is_datetime64_any_dtype",
|
53 |
+
"is_datetime64_dtype",
|
54 |
+
"is_datetime64_ns_dtype",
|
55 |
+
"is_datetime64tz_dtype",
|
56 |
+
"is_dict_like",
|
57 |
+
"is_dtype_equal",
|
58 |
+
"is_extension_array_dtype",
|
59 |
+
"is_file_like",
|
60 |
+
"is_float",
|
61 |
+
"is_float_dtype",
|
62 |
+
"is_hashable",
|
63 |
+
"is_int64_dtype",
|
64 |
+
"is_integer",
|
65 |
+
"is_integer_dtype",
|
66 |
+
"is_interval",
|
67 |
+
"is_interval_dtype",
|
68 |
+
"is_iterator",
|
69 |
+
"is_list_like",
|
70 |
+
"is_named_tuple",
|
71 |
+
"is_number",
|
72 |
+
"is_numeric_dtype",
|
73 |
+
"is_object_dtype",
|
74 |
+
"is_period_dtype",
|
75 |
+
"is_re",
|
76 |
+
"is_re_compilable",
|
77 |
+
"is_scalar",
|
78 |
+
"is_signed_integer_dtype",
|
79 |
+
"is_sparse",
|
80 |
+
"is_string_dtype",
|
81 |
+
"is_timedelta64_dtype",
|
82 |
+
"is_timedelta64_ns_dtype",
|
83 |
+
"is_unsigned_integer_dtype",
|
84 |
+
"pandas_dtype",
|
85 |
+
]
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/astype.py
ADDED
@@ -0,0 +1,301 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Functions for implementing 'astype' methods according to pandas conventions,
|
3 |
+
particularly ones that differ from numpy.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
import inspect
|
8 |
+
from typing import (
|
9 |
+
TYPE_CHECKING,
|
10 |
+
overload,
|
11 |
+
)
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._libs import lib
|
17 |
+
from pandas._libs.tslibs.timedeltas import array_to_timedelta64
|
18 |
+
from pandas.errors import IntCastingNaNError
|
19 |
+
|
20 |
+
from pandas.core.dtypes.common import (
|
21 |
+
is_object_dtype,
|
22 |
+
is_string_dtype,
|
23 |
+
pandas_dtype,
|
24 |
+
)
|
25 |
+
from pandas.core.dtypes.dtypes import (
|
26 |
+
ExtensionDtype,
|
27 |
+
NumpyEADtype,
|
28 |
+
)
|
29 |
+
|
30 |
+
if TYPE_CHECKING:
|
31 |
+
from pandas._typing import (
|
32 |
+
ArrayLike,
|
33 |
+
DtypeObj,
|
34 |
+
IgnoreRaise,
|
35 |
+
)
|
36 |
+
|
37 |
+
from pandas.core.arrays import ExtensionArray
|
38 |
+
|
39 |
+
_dtype_obj = np.dtype(object)
|
40 |
+
|
41 |
+
|
42 |
+
@overload
|
43 |
+
def _astype_nansafe(
|
44 |
+
arr: np.ndarray, dtype: np.dtype, copy: bool = ..., skipna: bool = ...
|
45 |
+
) -> np.ndarray:
|
46 |
+
...
|
47 |
+
|
48 |
+
|
49 |
+
@overload
|
50 |
+
def _astype_nansafe(
|
51 |
+
arr: np.ndarray, dtype: ExtensionDtype, copy: bool = ..., skipna: bool = ...
|
52 |
+
) -> ExtensionArray:
|
53 |
+
...
|
54 |
+
|
55 |
+
|
56 |
+
def _astype_nansafe(
|
57 |
+
arr: np.ndarray, dtype: DtypeObj, copy: bool = True, skipna: bool = False
|
58 |
+
) -> ArrayLike:
|
59 |
+
"""
|
60 |
+
Cast the elements of an array to a given dtype a nan-safe manner.
|
61 |
+
|
62 |
+
Parameters
|
63 |
+
----------
|
64 |
+
arr : ndarray
|
65 |
+
dtype : np.dtype or ExtensionDtype
|
66 |
+
copy : bool, default True
|
67 |
+
If False, a view will be attempted but may fail, if
|
68 |
+
e.g. the item sizes don't align.
|
69 |
+
skipna: bool, default False
|
70 |
+
Whether or not we should skip NaN when casting as a string-type.
|
71 |
+
|
72 |
+
Raises
|
73 |
+
------
|
74 |
+
ValueError
|
75 |
+
The dtype was a datetime64/timedelta64 dtype, but it had no unit.
|
76 |
+
"""
|
77 |
+
|
78 |
+
# dispatch on extension dtype if needed
|
79 |
+
if isinstance(dtype, ExtensionDtype):
|
80 |
+
return dtype.construct_array_type()._from_sequence(arr, dtype=dtype, copy=copy)
|
81 |
+
|
82 |
+
elif not isinstance(dtype, np.dtype): # pragma: no cover
|
83 |
+
raise ValueError("dtype must be np.dtype or ExtensionDtype")
|
84 |
+
|
85 |
+
if arr.dtype.kind in "mM":
|
86 |
+
from pandas.core.construction import ensure_wrapped_if_datetimelike
|
87 |
+
|
88 |
+
arr = ensure_wrapped_if_datetimelike(arr)
|
89 |
+
res = arr.astype(dtype, copy=copy)
|
90 |
+
return np.asarray(res)
|
91 |
+
|
92 |
+
if issubclass(dtype.type, str):
|
93 |
+
shape = arr.shape
|
94 |
+
if arr.ndim > 1:
|
95 |
+
arr = arr.ravel()
|
96 |
+
return lib.ensure_string_array(
|
97 |
+
arr, skipna=skipna, convert_na_value=False
|
98 |
+
).reshape(shape)
|
99 |
+
|
100 |
+
elif np.issubdtype(arr.dtype, np.floating) and dtype.kind in "iu":
|
101 |
+
return _astype_float_to_int_nansafe(arr, dtype, copy)
|
102 |
+
|
103 |
+
elif arr.dtype == object:
|
104 |
+
# if we have a datetime/timedelta array of objects
|
105 |
+
# then coerce to datetime64[ns] and use DatetimeArray.astype
|
106 |
+
|
107 |
+
if lib.is_np_dtype(dtype, "M"):
|
108 |
+
from pandas.core.arrays import DatetimeArray
|
109 |
+
|
110 |
+
dta = DatetimeArray._from_sequence(arr, dtype=dtype)
|
111 |
+
return dta._ndarray
|
112 |
+
|
113 |
+
elif lib.is_np_dtype(dtype, "m"):
|
114 |
+
from pandas.core.construction import ensure_wrapped_if_datetimelike
|
115 |
+
|
116 |
+
# bc we know arr.dtype == object, this is equivalent to
|
117 |
+
# `np.asarray(to_timedelta(arr))`, but using a lower-level API that
|
118 |
+
# does not require a circular import.
|
119 |
+
tdvals = array_to_timedelta64(arr).view("m8[ns]")
|
120 |
+
|
121 |
+
tda = ensure_wrapped_if_datetimelike(tdvals)
|
122 |
+
return tda.astype(dtype, copy=False)._ndarray
|
123 |
+
|
124 |
+
if dtype.name in ("datetime64", "timedelta64"):
|
125 |
+
msg = (
|
126 |
+
f"The '{dtype.name}' dtype has no unit. Please pass in "
|
127 |
+
f"'{dtype.name}[ns]' instead."
|
128 |
+
)
|
129 |
+
raise ValueError(msg)
|
130 |
+
|
131 |
+
if copy or arr.dtype == object or dtype == object:
|
132 |
+
# Explicit copy, or required since NumPy can't view from / to object.
|
133 |
+
return arr.astype(dtype, copy=True)
|
134 |
+
|
135 |
+
return arr.astype(dtype, copy=copy)
|
136 |
+
|
137 |
+
|
138 |
+
def _astype_float_to_int_nansafe(
|
139 |
+
values: np.ndarray, dtype: np.dtype, copy: bool
|
140 |
+
) -> np.ndarray:
|
141 |
+
"""
|
142 |
+
astype with a check preventing converting NaN to an meaningless integer value.
|
143 |
+
"""
|
144 |
+
if not np.isfinite(values).all():
|
145 |
+
raise IntCastingNaNError(
|
146 |
+
"Cannot convert non-finite values (NA or inf) to integer"
|
147 |
+
)
|
148 |
+
if dtype.kind == "u":
|
149 |
+
# GH#45151
|
150 |
+
if not (values >= 0).all():
|
151 |
+
raise ValueError(f"Cannot losslessly cast from {values.dtype} to {dtype}")
|
152 |
+
with warnings.catch_warnings():
|
153 |
+
warnings.filterwarnings("ignore", category=RuntimeWarning)
|
154 |
+
return values.astype(dtype, copy=copy)
|
155 |
+
|
156 |
+
|
157 |
+
def astype_array(values: ArrayLike, dtype: DtypeObj, copy: bool = False) -> ArrayLike:
|
158 |
+
"""
|
159 |
+
Cast array (ndarray or ExtensionArray) to the new dtype.
|
160 |
+
|
161 |
+
Parameters
|
162 |
+
----------
|
163 |
+
values : ndarray or ExtensionArray
|
164 |
+
dtype : dtype object
|
165 |
+
copy : bool, default False
|
166 |
+
copy if indicated
|
167 |
+
|
168 |
+
Returns
|
169 |
+
-------
|
170 |
+
ndarray or ExtensionArray
|
171 |
+
"""
|
172 |
+
if values.dtype == dtype:
|
173 |
+
if copy:
|
174 |
+
return values.copy()
|
175 |
+
return values
|
176 |
+
|
177 |
+
if not isinstance(values, np.ndarray):
|
178 |
+
# i.e. ExtensionArray
|
179 |
+
values = values.astype(dtype, copy=copy)
|
180 |
+
|
181 |
+
else:
|
182 |
+
values = _astype_nansafe(values, dtype, copy=copy)
|
183 |
+
|
184 |
+
# in pandas we don't store numpy str dtypes, so convert to object
|
185 |
+
if isinstance(dtype, np.dtype) and issubclass(values.dtype.type, str):
|
186 |
+
values = np.array(values, dtype=object)
|
187 |
+
|
188 |
+
return values
|
189 |
+
|
190 |
+
|
191 |
+
def astype_array_safe(
|
192 |
+
values: ArrayLike, dtype, copy: bool = False, errors: IgnoreRaise = "raise"
|
193 |
+
) -> ArrayLike:
|
194 |
+
"""
|
195 |
+
Cast array (ndarray or ExtensionArray) to the new dtype.
|
196 |
+
|
197 |
+
This basically is the implementation for DataFrame/Series.astype and
|
198 |
+
includes all custom logic for pandas (NaN-safety, converting str to object,
|
199 |
+
not allowing )
|
200 |
+
|
201 |
+
Parameters
|
202 |
+
----------
|
203 |
+
values : ndarray or ExtensionArray
|
204 |
+
dtype : str, dtype convertible
|
205 |
+
copy : bool, default False
|
206 |
+
copy if indicated
|
207 |
+
errors : str, {'raise', 'ignore'}, default 'raise'
|
208 |
+
- ``raise`` : allow exceptions to be raised
|
209 |
+
- ``ignore`` : suppress exceptions. On error return original object
|
210 |
+
|
211 |
+
Returns
|
212 |
+
-------
|
213 |
+
ndarray or ExtensionArray
|
214 |
+
"""
|
215 |
+
errors_legal_values = ("raise", "ignore")
|
216 |
+
|
217 |
+
if errors not in errors_legal_values:
|
218 |
+
invalid_arg = (
|
219 |
+
"Expected value of kwarg 'errors' to be one of "
|
220 |
+
f"{list(errors_legal_values)}. Supplied value is '{errors}'"
|
221 |
+
)
|
222 |
+
raise ValueError(invalid_arg)
|
223 |
+
|
224 |
+
if inspect.isclass(dtype) and issubclass(dtype, ExtensionDtype):
|
225 |
+
msg = (
|
226 |
+
f"Expected an instance of {dtype.__name__}, "
|
227 |
+
"but got the class instead. Try instantiating 'dtype'."
|
228 |
+
)
|
229 |
+
raise TypeError(msg)
|
230 |
+
|
231 |
+
dtype = pandas_dtype(dtype)
|
232 |
+
if isinstance(dtype, NumpyEADtype):
|
233 |
+
# Ensure we don't end up with a NumpyExtensionArray
|
234 |
+
dtype = dtype.numpy_dtype
|
235 |
+
|
236 |
+
try:
|
237 |
+
new_values = astype_array(values, dtype, copy=copy)
|
238 |
+
except (ValueError, TypeError):
|
239 |
+
# e.g. _astype_nansafe can fail on object-dtype of strings
|
240 |
+
# trying to convert to float
|
241 |
+
if errors == "ignore":
|
242 |
+
new_values = values
|
243 |
+
else:
|
244 |
+
raise
|
245 |
+
|
246 |
+
return new_values
|
247 |
+
|
248 |
+
|
249 |
+
def astype_is_view(dtype: DtypeObj, new_dtype: DtypeObj) -> bool:
|
250 |
+
"""Checks if astype avoided copying the data.
|
251 |
+
|
252 |
+
Parameters
|
253 |
+
----------
|
254 |
+
dtype : Original dtype
|
255 |
+
new_dtype : target dtype
|
256 |
+
|
257 |
+
Returns
|
258 |
+
-------
|
259 |
+
True if new data is a view or not guaranteed to be a copy, False otherwise
|
260 |
+
"""
|
261 |
+
if isinstance(dtype, np.dtype) and not isinstance(new_dtype, np.dtype):
|
262 |
+
new_dtype, dtype = dtype, new_dtype
|
263 |
+
|
264 |
+
if dtype == new_dtype:
|
265 |
+
return True
|
266 |
+
|
267 |
+
elif isinstance(dtype, np.dtype) and isinstance(new_dtype, np.dtype):
|
268 |
+
# Only equal numpy dtypes avoid a copy
|
269 |
+
return False
|
270 |
+
|
271 |
+
elif is_string_dtype(dtype) and is_string_dtype(new_dtype):
|
272 |
+
# Potentially! a view when converting from object to string
|
273 |
+
return True
|
274 |
+
|
275 |
+
elif is_object_dtype(dtype) and new_dtype.kind == "O":
|
276 |
+
# When the underlying array has dtype object, we don't have to make a copy
|
277 |
+
return True
|
278 |
+
|
279 |
+
elif dtype.kind in "mM" and new_dtype.kind in "mM":
|
280 |
+
dtype = getattr(dtype, "numpy_dtype", dtype)
|
281 |
+
new_dtype = getattr(new_dtype, "numpy_dtype", new_dtype)
|
282 |
+
return getattr(dtype, "unit", None) == getattr(new_dtype, "unit", None)
|
283 |
+
|
284 |
+
numpy_dtype = getattr(dtype, "numpy_dtype", None)
|
285 |
+
new_numpy_dtype = getattr(new_dtype, "numpy_dtype", None)
|
286 |
+
|
287 |
+
if numpy_dtype is None and isinstance(dtype, np.dtype):
|
288 |
+
numpy_dtype = dtype
|
289 |
+
|
290 |
+
if new_numpy_dtype is None and isinstance(new_dtype, np.dtype):
|
291 |
+
new_numpy_dtype = new_dtype
|
292 |
+
|
293 |
+
if numpy_dtype is not None and new_numpy_dtype is not None:
|
294 |
+
# if both have NumPy dtype or one of them is a numpy dtype
|
295 |
+
# they are only a view when the numpy dtypes are equal, e.g.
|
296 |
+
# int64 -> Int64 or int64[pyarrow]
|
297 |
+
# int64 -> Int32 copies
|
298 |
+
return numpy_dtype == new_numpy_dtype
|
299 |
+
|
300 |
+
# Assume this is a view since we don't know for sure if a copy was made
|
301 |
+
return True
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/base.py
ADDED
@@ -0,0 +1,583 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Extend pandas with custom array types.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
Any,
|
9 |
+
TypeVar,
|
10 |
+
cast,
|
11 |
+
overload,
|
12 |
+
)
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._libs import missing as libmissing
|
17 |
+
from pandas._libs.hashtable import object_hash
|
18 |
+
from pandas._libs.properties import cache_readonly
|
19 |
+
from pandas.errors import AbstractMethodError
|
20 |
+
|
21 |
+
from pandas.core.dtypes.generic import (
|
22 |
+
ABCDataFrame,
|
23 |
+
ABCIndex,
|
24 |
+
ABCSeries,
|
25 |
+
)
|
26 |
+
|
27 |
+
if TYPE_CHECKING:
|
28 |
+
from pandas._typing import (
|
29 |
+
DtypeObj,
|
30 |
+
Self,
|
31 |
+
Shape,
|
32 |
+
npt,
|
33 |
+
type_t,
|
34 |
+
)
|
35 |
+
|
36 |
+
from pandas import Index
|
37 |
+
from pandas.core.arrays import ExtensionArray
|
38 |
+
|
39 |
+
# To parameterize on same ExtensionDtype
|
40 |
+
ExtensionDtypeT = TypeVar("ExtensionDtypeT", bound="ExtensionDtype")
|
41 |
+
|
42 |
+
|
43 |
+
class ExtensionDtype:
|
44 |
+
"""
|
45 |
+
A custom data type, to be paired with an ExtensionArray.
|
46 |
+
|
47 |
+
See Also
|
48 |
+
--------
|
49 |
+
extensions.register_extension_dtype: Register an ExtensionType
|
50 |
+
with pandas as class decorator.
|
51 |
+
extensions.ExtensionArray: Abstract base class for custom 1-D array types.
|
52 |
+
|
53 |
+
Notes
|
54 |
+
-----
|
55 |
+
The interface includes the following abstract methods that must
|
56 |
+
be implemented by subclasses:
|
57 |
+
|
58 |
+
* type
|
59 |
+
* name
|
60 |
+
* construct_array_type
|
61 |
+
|
62 |
+
The following attributes and methods influence the behavior of the dtype in
|
63 |
+
pandas operations
|
64 |
+
|
65 |
+
* _is_numeric
|
66 |
+
* _is_boolean
|
67 |
+
* _get_common_dtype
|
68 |
+
|
69 |
+
The `na_value` class attribute can be used to set the default NA value
|
70 |
+
for this type. :attr:`numpy.nan` is used by default.
|
71 |
+
|
72 |
+
ExtensionDtypes are required to be hashable. The base class provides
|
73 |
+
a default implementation, which relies on the ``_metadata`` class
|
74 |
+
attribute. ``_metadata`` should be a tuple containing the strings
|
75 |
+
that define your data type. For example, with ``PeriodDtype`` that's
|
76 |
+
the ``freq`` attribute.
|
77 |
+
|
78 |
+
**If you have a parametrized dtype you should set the ``_metadata``
|
79 |
+
class property**.
|
80 |
+
|
81 |
+
Ideally, the attributes in ``_metadata`` will match the
|
82 |
+
parameters to your ``ExtensionDtype.__init__`` (if any). If any of
|
83 |
+
the attributes in ``_metadata`` don't implement the standard
|
84 |
+
``__eq__`` or ``__hash__``, the default implementations here will not
|
85 |
+
work.
|
86 |
+
|
87 |
+
Examples
|
88 |
+
--------
|
89 |
+
|
90 |
+
For interaction with Apache Arrow (pyarrow), a ``__from_arrow__`` method
|
91 |
+
can be implemented: this method receives a pyarrow Array or ChunkedArray
|
92 |
+
as only argument and is expected to return the appropriate pandas
|
93 |
+
ExtensionArray for this dtype and the passed values:
|
94 |
+
|
95 |
+
>>> import pyarrow
|
96 |
+
>>> from pandas.api.extensions import ExtensionArray
|
97 |
+
>>> class ExtensionDtype:
|
98 |
+
... def __from_arrow__(
|
99 |
+
... self,
|
100 |
+
... array: pyarrow.Array | pyarrow.ChunkedArray
|
101 |
+
... ) -> ExtensionArray:
|
102 |
+
... ...
|
103 |
+
|
104 |
+
This class does not inherit from 'abc.ABCMeta' for performance reasons.
|
105 |
+
Methods and properties required by the interface raise
|
106 |
+
``pandas.errors.AbstractMethodError`` and no ``register`` method is
|
107 |
+
provided for registering virtual subclasses.
|
108 |
+
"""
|
109 |
+
|
110 |
+
_metadata: tuple[str, ...] = ()
|
111 |
+
|
112 |
+
def __str__(self) -> str:
|
113 |
+
return self.name
|
114 |
+
|
115 |
+
def __eq__(self, other: object) -> bool:
|
116 |
+
"""
|
117 |
+
Check whether 'other' is equal to self.
|
118 |
+
|
119 |
+
By default, 'other' is considered equal if either
|
120 |
+
|
121 |
+
* it's a string matching 'self.name'.
|
122 |
+
* it's an instance of this type and all of the attributes
|
123 |
+
in ``self._metadata`` are equal between `self` and `other`.
|
124 |
+
|
125 |
+
Parameters
|
126 |
+
----------
|
127 |
+
other : Any
|
128 |
+
|
129 |
+
Returns
|
130 |
+
-------
|
131 |
+
bool
|
132 |
+
"""
|
133 |
+
if isinstance(other, str):
|
134 |
+
try:
|
135 |
+
other = self.construct_from_string(other)
|
136 |
+
except TypeError:
|
137 |
+
return False
|
138 |
+
if isinstance(other, type(self)):
|
139 |
+
return all(
|
140 |
+
getattr(self, attr) == getattr(other, attr) for attr in self._metadata
|
141 |
+
)
|
142 |
+
return False
|
143 |
+
|
144 |
+
def __hash__(self) -> int:
|
145 |
+
# for python>=3.10, different nan objects have different hashes
|
146 |
+
# we need to avoid that and thus use hash function with old behavior
|
147 |
+
return object_hash(tuple(getattr(self, attr) for attr in self._metadata))
|
148 |
+
|
149 |
+
def __ne__(self, other: object) -> bool:
|
150 |
+
return not self.__eq__(other)
|
151 |
+
|
152 |
+
@property
|
153 |
+
def na_value(self) -> object:
|
154 |
+
"""
|
155 |
+
Default NA value to use for this type.
|
156 |
+
|
157 |
+
This is used in e.g. ExtensionArray.take. This should be the
|
158 |
+
user-facing "boxed" version of the NA value, not the physical NA value
|
159 |
+
for storage. e.g. for JSONArray, this is an empty dictionary.
|
160 |
+
"""
|
161 |
+
return np.nan
|
162 |
+
|
163 |
+
@property
|
164 |
+
def type(self) -> type_t[Any]:
|
165 |
+
"""
|
166 |
+
The scalar type for the array, e.g. ``int``
|
167 |
+
|
168 |
+
It's expected ``ExtensionArray[item]`` returns an instance
|
169 |
+
of ``ExtensionDtype.type`` for scalar ``item``, assuming
|
170 |
+
that value is valid (not NA). NA values do not need to be
|
171 |
+
instances of `type`.
|
172 |
+
"""
|
173 |
+
raise AbstractMethodError(self)
|
174 |
+
|
175 |
+
@property
|
176 |
+
def kind(self) -> str:
|
177 |
+
"""
|
178 |
+
A character code (one of 'biufcmMOSUV'), default 'O'
|
179 |
+
|
180 |
+
This should match the NumPy dtype used when the array is
|
181 |
+
converted to an ndarray, which is probably 'O' for object if
|
182 |
+
the extension type cannot be represented as a built-in NumPy
|
183 |
+
type.
|
184 |
+
|
185 |
+
See Also
|
186 |
+
--------
|
187 |
+
numpy.dtype.kind
|
188 |
+
"""
|
189 |
+
return "O"
|
190 |
+
|
191 |
+
@property
|
192 |
+
def name(self) -> str:
|
193 |
+
"""
|
194 |
+
A string identifying the data type.
|
195 |
+
|
196 |
+
Will be used for display in, e.g. ``Series.dtype``
|
197 |
+
"""
|
198 |
+
raise AbstractMethodError(self)
|
199 |
+
|
200 |
+
@property
|
201 |
+
def names(self) -> list[str] | None:
|
202 |
+
"""
|
203 |
+
Ordered list of field names, or None if there are no fields.
|
204 |
+
|
205 |
+
This is for compatibility with NumPy arrays, and may be removed in the
|
206 |
+
future.
|
207 |
+
"""
|
208 |
+
return None
|
209 |
+
|
210 |
+
@classmethod
|
211 |
+
def construct_array_type(cls) -> type_t[ExtensionArray]:
|
212 |
+
"""
|
213 |
+
Return the array type associated with this dtype.
|
214 |
+
|
215 |
+
Returns
|
216 |
+
-------
|
217 |
+
type
|
218 |
+
"""
|
219 |
+
raise AbstractMethodError(cls)
|
220 |
+
|
221 |
+
def empty(self, shape: Shape) -> ExtensionArray:
|
222 |
+
"""
|
223 |
+
Construct an ExtensionArray of this dtype with the given shape.
|
224 |
+
|
225 |
+
Analogous to numpy.empty.
|
226 |
+
|
227 |
+
Parameters
|
228 |
+
----------
|
229 |
+
shape : int or tuple[int]
|
230 |
+
|
231 |
+
Returns
|
232 |
+
-------
|
233 |
+
ExtensionArray
|
234 |
+
"""
|
235 |
+
cls = self.construct_array_type()
|
236 |
+
return cls._empty(shape, dtype=self)
|
237 |
+
|
238 |
+
@classmethod
|
239 |
+
def construct_from_string(cls, string: str) -> Self:
|
240 |
+
r"""
|
241 |
+
Construct this type from a string.
|
242 |
+
|
243 |
+
This is useful mainly for data types that accept parameters.
|
244 |
+
For example, a period dtype accepts a frequency parameter that
|
245 |
+
can be set as ``period[h]`` (where H means hourly frequency).
|
246 |
+
|
247 |
+
By default, in the abstract class, just the name of the type is
|
248 |
+
expected. But subclasses can overwrite this method to accept
|
249 |
+
parameters.
|
250 |
+
|
251 |
+
Parameters
|
252 |
+
----------
|
253 |
+
string : str
|
254 |
+
The name of the type, for example ``category``.
|
255 |
+
|
256 |
+
Returns
|
257 |
+
-------
|
258 |
+
ExtensionDtype
|
259 |
+
Instance of the dtype.
|
260 |
+
|
261 |
+
Raises
|
262 |
+
------
|
263 |
+
TypeError
|
264 |
+
If a class cannot be constructed from this 'string'.
|
265 |
+
|
266 |
+
Examples
|
267 |
+
--------
|
268 |
+
For extension dtypes with arguments the following may be an
|
269 |
+
adequate implementation.
|
270 |
+
|
271 |
+
>>> import re
|
272 |
+
>>> @classmethod
|
273 |
+
... def construct_from_string(cls, string):
|
274 |
+
... pattern = re.compile(r"^my_type\[(?P<arg_name>.+)\]$")
|
275 |
+
... match = pattern.match(string)
|
276 |
+
... if match:
|
277 |
+
... return cls(**match.groupdict())
|
278 |
+
... else:
|
279 |
+
... raise TypeError(
|
280 |
+
... f"Cannot construct a '{cls.__name__}' from '{string}'"
|
281 |
+
... )
|
282 |
+
"""
|
283 |
+
if not isinstance(string, str):
|
284 |
+
raise TypeError(
|
285 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
286 |
+
)
|
287 |
+
# error: Non-overlapping equality check (left operand type: "str", right
|
288 |
+
# operand type: "Callable[[ExtensionDtype], str]") [comparison-overlap]
|
289 |
+
assert isinstance(cls.name, str), (cls, type(cls.name))
|
290 |
+
if string != cls.name:
|
291 |
+
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
|
292 |
+
return cls()
|
293 |
+
|
294 |
+
@classmethod
|
295 |
+
def is_dtype(cls, dtype: object) -> bool:
|
296 |
+
"""
|
297 |
+
Check if we match 'dtype'.
|
298 |
+
|
299 |
+
Parameters
|
300 |
+
----------
|
301 |
+
dtype : object
|
302 |
+
The object to check.
|
303 |
+
|
304 |
+
Returns
|
305 |
+
-------
|
306 |
+
bool
|
307 |
+
|
308 |
+
Notes
|
309 |
+
-----
|
310 |
+
The default implementation is True if
|
311 |
+
|
312 |
+
1. ``cls.construct_from_string(dtype)`` is an instance
|
313 |
+
of ``cls``.
|
314 |
+
2. ``dtype`` is an object and is an instance of ``cls``
|
315 |
+
3. ``dtype`` has a ``dtype`` attribute, and any of the above
|
316 |
+
conditions is true for ``dtype.dtype``.
|
317 |
+
"""
|
318 |
+
dtype = getattr(dtype, "dtype", dtype)
|
319 |
+
|
320 |
+
if isinstance(dtype, (ABCSeries, ABCIndex, ABCDataFrame, np.dtype)):
|
321 |
+
# https://github.com/pandas-dev/pandas/issues/22960
|
322 |
+
# avoid passing data to `construct_from_string`. This could
|
323 |
+
# cause a FutureWarning from numpy about failing elementwise
|
324 |
+
# comparison from, e.g., comparing DataFrame == 'category'.
|
325 |
+
return False
|
326 |
+
elif dtype is None:
|
327 |
+
return False
|
328 |
+
elif isinstance(dtype, cls):
|
329 |
+
return True
|
330 |
+
if isinstance(dtype, str):
|
331 |
+
try:
|
332 |
+
return cls.construct_from_string(dtype) is not None
|
333 |
+
except TypeError:
|
334 |
+
return False
|
335 |
+
return False
|
336 |
+
|
337 |
+
@property
|
338 |
+
def _is_numeric(self) -> bool:
|
339 |
+
"""
|
340 |
+
Whether columns with this dtype should be considered numeric.
|
341 |
+
|
342 |
+
By default ExtensionDtypes are assumed to be non-numeric.
|
343 |
+
They'll be excluded from operations that exclude non-numeric
|
344 |
+
columns, like (groupby) reductions, plotting, etc.
|
345 |
+
"""
|
346 |
+
return False
|
347 |
+
|
348 |
+
@property
|
349 |
+
def _is_boolean(self) -> bool:
|
350 |
+
"""
|
351 |
+
Whether this dtype should be considered boolean.
|
352 |
+
|
353 |
+
By default, ExtensionDtypes are assumed to be non-numeric.
|
354 |
+
Setting this to True will affect the behavior of several places,
|
355 |
+
e.g.
|
356 |
+
|
357 |
+
* is_bool
|
358 |
+
* boolean indexing
|
359 |
+
|
360 |
+
Returns
|
361 |
+
-------
|
362 |
+
bool
|
363 |
+
"""
|
364 |
+
return False
|
365 |
+
|
366 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
367 |
+
"""
|
368 |
+
Return the common dtype, if one exists.
|
369 |
+
|
370 |
+
Used in `find_common_type` implementation. This is for example used
|
371 |
+
to determine the resulting dtype in a concat operation.
|
372 |
+
|
373 |
+
If no common dtype exists, return None (which gives the other dtypes
|
374 |
+
the chance to determine a common dtype). If all dtypes in the list
|
375 |
+
return None, then the common dtype will be "object" dtype (this means
|
376 |
+
it is never needed to return "object" dtype from this method itself).
|
377 |
+
|
378 |
+
Parameters
|
379 |
+
----------
|
380 |
+
dtypes : list of dtypes
|
381 |
+
The dtypes for which to determine a common dtype. This is a list
|
382 |
+
of np.dtype or ExtensionDtype instances.
|
383 |
+
|
384 |
+
Returns
|
385 |
+
-------
|
386 |
+
Common dtype (np.dtype or ExtensionDtype) or None
|
387 |
+
"""
|
388 |
+
if len(set(dtypes)) == 1:
|
389 |
+
# only itself
|
390 |
+
return self
|
391 |
+
else:
|
392 |
+
return None
|
393 |
+
|
394 |
+
@property
|
395 |
+
def _can_hold_na(self) -> bool:
|
396 |
+
"""
|
397 |
+
Can arrays of this dtype hold NA values?
|
398 |
+
"""
|
399 |
+
return True
|
400 |
+
|
401 |
+
@property
|
402 |
+
def _is_immutable(self) -> bool:
|
403 |
+
"""
|
404 |
+
Can arrays with this dtype be modified with __setitem__? If not, return
|
405 |
+
True.
|
406 |
+
|
407 |
+
Immutable arrays are expected to raise TypeError on __setitem__ calls.
|
408 |
+
"""
|
409 |
+
return False
|
410 |
+
|
411 |
+
@cache_readonly
|
412 |
+
def index_class(self) -> type_t[Index]:
|
413 |
+
"""
|
414 |
+
The Index subclass to return from Index.__new__ when this dtype is
|
415 |
+
encountered.
|
416 |
+
"""
|
417 |
+
from pandas import Index
|
418 |
+
|
419 |
+
return Index
|
420 |
+
|
421 |
+
@property
|
422 |
+
def _supports_2d(self) -> bool:
|
423 |
+
"""
|
424 |
+
Do ExtensionArrays with this dtype support 2D arrays?
|
425 |
+
|
426 |
+
Historically ExtensionArrays were limited to 1D. By returning True here,
|
427 |
+
authors can indicate that their arrays support 2D instances. This can
|
428 |
+
improve performance in some cases, particularly operations with `axis=1`.
|
429 |
+
|
430 |
+
Arrays that support 2D values should:
|
431 |
+
|
432 |
+
- implement Array.reshape
|
433 |
+
- subclass the Dim2CompatTests in tests.extension.base
|
434 |
+
- _concat_same_type should support `axis` keyword
|
435 |
+
- _reduce and reductions should support `axis` keyword
|
436 |
+
"""
|
437 |
+
return False
|
438 |
+
|
439 |
+
@property
|
440 |
+
def _can_fast_transpose(self) -> bool:
|
441 |
+
"""
|
442 |
+
Is transposing an array with this dtype zero-copy?
|
443 |
+
|
444 |
+
Only relevant for cases where _supports_2d is True.
|
445 |
+
"""
|
446 |
+
return False
|
447 |
+
|
448 |
+
|
449 |
+
class StorageExtensionDtype(ExtensionDtype):
|
450 |
+
"""ExtensionDtype that may be backed by more than one implementation."""
|
451 |
+
|
452 |
+
name: str
|
453 |
+
_metadata = ("storage",)
|
454 |
+
|
455 |
+
def __init__(self, storage: str | None = None) -> None:
|
456 |
+
self.storage = storage
|
457 |
+
|
458 |
+
def __repr__(self) -> str:
|
459 |
+
return f"{self.name}[{self.storage}]"
|
460 |
+
|
461 |
+
def __str__(self) -> str:
|
462 |
+
return self.name
|
463 |
+
|
464 |
+
def __eq__(self, other: object) -> bool:
|
465 |
+
if isinstance(other, str) and other == self.name:
|
466 |
+
return True
|
467 |
+
return super().__eq__(other)
|
468 |
+
|
469 |
+
def __hash__(self) -> int:
|
470 |
+
# custom __eq__ so have to override __hash__
|
471 |
+
return super().__hash__()
|
472 |
+
|
473 |
+
@property
|
474 |
+
def na_value(self) -> libmissing.NAType:
|
475 |
+
return libmissing.NA
|
476 |
+
|
477 |
+
|
478 |
+
def register_extension_dtype(cls: type_t[ExtensionDtypeT]) -> type_t[ExtensionDtypeT]:
|
479 |
+
"""
|
480 |
+
Register an ExtensionType with pandas as class decorator.
|
481 |
+
|
482 |
+
This enables operations like ``.astype(name)`` for the name
|
483 |
+
of the ExtensionDtype.
|
484 |
+
|
485 |
+
Returns
|
486 |
+
-------
|
487 |
+
callable
|
488 |
+
A class decorator.
|
489 |
+
|
490 |
+
Examples
|
491 |
+
--------
|
492 |
+
>>> from pandas.api.extensions import register_extension_dtype, ExtensionDtype
|
493 |
+
>>> @register_extension_dtype
|
494 |
+
... class MyExtensionDtype(ExtensionDtype):
|
495 |
+
... name = "myextension"
|
496 |
+
"""
|
497 |
+
_registry.register(cls)
|
498 |
+
return cls
|
499 |
+
|
500 |
+
|
501 |
+
class Registry:
|
502 |
+
"""
|
503 |
+
Registry for dtype inference.
|
504 |
+
|
505 |
+
The registry allows one to map a string repr of a extension
|
506 |
+
dtype to an extension dtype. The string alias can be used in several
|
507 |
+
places, including
|
508 |
+
|
509 |
+
* Series and Index constructors
|
510 |
+
* :meth:`pandas.array`
|
511 |
+
* :meth:`pandas.Series.astype`
|
512 |
+
|
513 |
+
Multiple extension types can be registered.
|
514 |
+
These are tried in order.
|
515 |
+
"""
|
516 |
+
|
517 |
+
def __init__(self) -> None:
|
518 |
+
self.dtypes: list[type_t[ExtensionDtype]] = []
|
519 |
+
|
520 |
+
def register(self, dtype: type_t[ExtensionDtype]) -> None:
|
521 |
+
"""
|
522 |
+
Parameters
|
523 |
+
----------
|
524 |
+
dtype : ExtensionDtype class
|
525 |
+
"""
|
526 |
+
if not issubclass(dtype, ExtensionDtype):
|
527 |
+
raise ValueError("can only register pandas extension dtypes")
|
528 |
+
|
529 |
+
self.dtypes.append(dtype)
|
530 |
+
|
531 |
+
@overload
|
532 |
+
def find(self, dtype: type_t[ExtensionDtypeT]) -> type_t[ExtensionDtypeT]:
|
533 |
+
...
|
534 |
+
|
535 |
+
@overload
|
536 |
+
def find(self, dtype: ExtensionDtypeT) -> ExtensionDtypeT:
|
537 |
+
...
|
538 |
+
|
539 |
+
@overload
|
540 |
+
def find(self, dtype: str) -> ExtensionDtype | None:
|
541 |
+
...
|
542 |
+
|
543 |
+
@overload
|
544 |
+
def find(
|
545 |
+
self, dtype: npt.DTypeLike
|
546 |
+
) -> type_t[ExtensionDtype] | ExtensionDtype | None:
|
547 |
+
...
|
548 |
+
|
549 |
+
def find(
|
550 |
+
self, dtype: type_t[ExtensionDtype] | ExtensionDtype | npt.DTypeLike
|
551 |
+
) -> type_t[ExtensionDtype] | ExtensionDtype | None:
|
552 |
+
"""
|
553 |
+
Parameters
|
554 |
+
----------
|
555 |
+
dtype : ExtensionDtype class or instance or str or numpy dtype or python type
|
556 |
+
|
557 |
+
Returns
|
558 |
+
-------
|
559 |
+
return the first matching dtype, otherwise return None
|
560 |
+
"""
|
561 |
+
if not isinstance(dtype, str):
|
562 |
+
dtype_type: type_t
|
563 |
+
if not isinstance(dtype, type):
|
564 |
+
dtype_type = type(dtype)
|
565 |
+
else:
|
566 |
+
dtype_type = dtype
|
567 |
+
if issubclass(dtype_type, ExtensionDtype):
|
568 |
+
# cast needed here as mypy doesn't know we have figured
|
569 |
+
# out it is an ExtensionDtype or type_t[ExtensionDtype]
|
570 |
+
return cast("ExtensionDtype | type_t[ExtensionDtype]", dtype)
|
571 |
+
|
572 |
+
return None
|
573 |
+
|
574 |
+
for dtype_type in self.dtypes:
|
575 |
+
try:
|
576 |
+
return dtype_type.construct_from_string(dtype)
|
577 |
+
except TypeError:
|
578 |
+
pass
|
579 |
+
|
580 |
+
return None
|
581 |
+
|
582 |
+
|
583 |
+
_registry = Registry()
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/common.py
ADDED
@@ -0,0 +1,1748 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Common type operations.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
Any,
|
9 |
+
Callable,
|
10 |
+
)
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from pandas._libs import (
|
16 |
+
Interval,
|
17 |
+
Period,
|
18 |
+
algos,
|
19 |
+
lib,
|
20 |
+
)
|
21 |
+
from pandas._libs.tslibs import conversion
|
22 |
+
from pandas.util._exceptions import find_stack_level
|
23 |
+
|
24 |
+
from pandas.core.dtypes.base import _registry as registry
|
25 |
+
from pandas.core.dtypes.dtypes import (
|
26 |
+
CategoricalDtype,
|
27 |
+
DatetimeTZDtype,
|
28 |
+
ExtensionDtype,
|
29 |
+
IntervalDtype,
|
30 |
+
PeriodDtype,
|
31 |
+
SparseDtype,
|
32 |
+
)
|
33 |
+
from pandas.core.dtypes.generic import ABCIndex
|
34 |
+
from pandas.core.dtypes.inference import (
|
35 |
+
is_array_like,
|
36 |
+
is_bool,
|
37 |
+
is_complex,
|
38 |
+
is_dataclass,
|
39 |
+
is_decimal,
|
40 |
+
is_dict_like,
|
41 |
+
is_file_like,
|
42 |
+
is_float,
|
43 |
+
is_hashable,
|
44 |
+
is_integer,
|
45 |
+
is_interval,
|
46 |
+
is_iterator,
|
47 |
+
is_list_like,
|
48 |
+
is_named_tuple,
|
49 |
+
is_nested_list_like,
|
50 |
+
is_number,
|
51 |
+
is_re,
|
52 |
+
is_re_compilable,
|
53 |
+
is_scalar,
|
54 |
+
is_sequence,
|
55 |
+
)
|
56 |
+
|
57 |
+
if TYPE_CHECKING:
|
58 |
+
from pandas._typing import (
|
59 |
+
ArrayLike,
|
60 |
+
DtypeObj,
|
61 |
+
)
|
62 |
+
|
63 |
+
DT64NS_DTYPE = conversion.DT64NS_DTYPE
|
64 |
+
TD64NS_DTYPE = conversion.TD64NS_DTYPE
|
65 |
+
INT64_DTYPE = np.dtype(np.int64)
|
66 |
+
|
67 |
+
# oh the troubles to reduce import time
|
68 |
+
_is_scipy_sparse = None
|
69 |
+
|
70 |
+
ensure_float64 = algos.ensure_float64
|
71 |
+
ensure_int64 = algos.ensure_int64
|
72 |
+
ensure_int32 = algos.ensure_int32
|
73 |
+
ensure_int16 = algos.ensure_int16
|
74 |
+
ensure_int8 = algos.ensure_int8
|
75 |
+
ensure_platform_int = algos.ensure_platform_int
|
76 |
+
ensure_object = algos.ensure_object
|
77 |
+
ensure_uint64 = algos.ensure_uint64
|
78 |
+
|
79 |
+
|
80 |
+
def ensure_str(value: bytes | Any) -> str:
|
81 |
+
"""
|
82 |
+
Ensure that bytes and non-strings get converted into ``str`` objects.
|
83 |
+
"""
|
84 |
+
if isinstance(value, bytes):
|
85 |
+
value = value.decode("utf-8")
|
86 |
+
elif not isinstance(value, str):
|
87 |
+
value = str(value)
|
88 |
+
return value
|
89 |
+
|
90 |
+
|
91 |
+
def ensure_python_int(value: int | np.integer) -> int:
|
92 |
+
"""
|
93 |
+
Ensure that a value is a python int.
|
94 |
+
|
95 |
+
Parameters
|
96 |
+
----------
|
97 |
+
value: int or numpy.integer
|
98 |
+
|
99 |
+
Returns
|
100 |
+
-------
|
101 |
+
int
|
102 |
+
|
103 |
+
Raises
|
104 |
+
------
|
105 |
+
TypeError: if the value isn't an int or can't be converted to one.
|
106 |
+
"""
|
107 |
+
if not (is_integer(value) or is_float(value)):
|
108 |
+
if not is_scalar(value):
|
109 |
+
raise TypeError(
|
110 |
+
f"Value needs to be a scalar value, was type {type(value).__name__}"
|
111 |
+
)
|
112 |
+
raise TypeError(f"Wrong type {type(value)} for value {value}")
|
113 |
+
try:
|
114 |
+
new_value = int(value)
|
115 |
+
assert new_value == value
|
116 |
+
except (TypeError, ValueError, AssertionError) as err:
|
117 |
+
raise TypeError(f"Wrong type {type(value)} for value {value}") from err
|
118 |
+
return new_value
|
119 |
+
|
120 |
+
|
121 |
+
def classes(*klasses) -> Callable:
|
122 |
+
"""Evaluate if the tipo is a subclass of the klasses."""
|
123 |
+
return lambda tipo: issubclass(tipo, klasses)
|
124 |
+
|
125 |
+
|
126 |
+
def _classes_and_not_datetimelike(*klasses) -> Callable:
|
127 |
+
"""
|
128 |
+
Evaluate if the tipo is a subclass of the klasses
|
129 |
+
and not a datetimelike.
|
130 |
+
"""
|
131 |
+
return lambda tipo: (
|
132 |
+
issubclass(tipo, klasses)
|
133 |
+
and not issubclass(tipo, (np.datetime64, np.timedelta64))
|
134 |
+
)
|
135 |
+
|
136 |
+
|
137 |
+
def is_object_dtype(arr_or_dtype) -> bool:
|
138 |
+
"""
|
139 |
+
Check whether an array-like or dtype is of the object dtype.
|
140 |
+
|
141 |
+
Parameters
|
142 |
+
----------
|
143 |
+
arr_or_dtype : array-like or dtype
|
144 |
+
The array-like or dtype to check.
|
145 |
+
|
146 |
+
Returns
|
147 |
+
-------
|
148 |
+
boolean
|
149 |
+
Whether or not the array-like or dtype is of the object dtype.
|
150 |
+
|
151 |
+
Examples
|
152 |
+
--------
|
153 |
+
>>> from pandas.api.types import is_object_dtype
|
154 |
+
>>> is_object_dtype(object)
|
155 |
+
True
|
156 |
+
>>> is_object_dtype(int)
|
157 |
+
False
|
158 |
+
>>> is_object_dtype(np.array([], dtype=object))
|
159 |
+
True
|
160 |
+
>>> is_object_dtype(np.array([], dtype=int))
|
161 |
+
False
|
162 |
+
>>> is_object_dtype([1, 2, 3])
|
163 |
+
False
|
164 |
+
"""
|
165 |
+
return _is_dtype_type(arr_or_dtype, classes(np.object_))
|
166 |
+
|
167 |
+
|
168 |
+
def is_sparse(arr) -> bool:
|
169 |
+
"""
|
170 |
+
Check whether an array-like is a 1-D pandas sparse array.
|
171 |
+
|
172 |
+
.. deprecated:: 2.1.0
|
173 |
+
Use isinstance(dtype, pd.SparseDtype) instead.
|
174 |
+
|
175 |
+
Check that the one-dimensional array-like is a pandas sparse array.
|
176 |
+
Returns True if it is a pandas sparse array, not another type of
|
177 |
+
sparse array.
|
178 |
+
|
179 |
+
Parameters
|
180 |
+
----------
|
181 |
+
arr : array-like
|
182 |
+
Array-like to check.
|
183 |
+
|
184 |
+
Returns
|
185 |
+
-------
|
186 |
+
bool
|
187 |
+
Whether or not the array-like is a pandas sparse array.
|
188 |
+
|
189 |
+
Examples
|
190 |
+
--------
|
191 |
+
Returns `True` if the parameter is a 1-D pandas sparse array.
|
192 |
+
|
193 |
+
>>> from pandas.api.types import is_sparse
|
194 |
+
>>> is_sparse(pd.arrays.SparseArray([0, 0, 1, 0]))
|
195 |
+
True
|
196 |
+
>>> is_sparse(pd.Series(pd.arrays.SparseArray([0, 0, 1, 0])))
|
197 |
+
True
|
198 |
+
|
199 |
+
Returns `False` if the parameter is not sparse.
|
200 |
+
|
201 |
+
>>> is_sparse(np.array([0, 0, 1, 0]))
|
202 |
+
False
|
203 |
+
>>> is_sparse(pd.Series([0, 1, 0, 0]))
|
204 |
+
False
|
205 |
+
|
206 |
+
Returns `False` if the parameter is not a pandas sparse array.
|
207 |
+
|
208 |
+
>>> from scipy.sparse import bsr_matrix
|
209 |
+
>>> is_sparse(bsr_matrix([0, 1, 0, 0]))
|
210 |
+
False
|
211 |
+
|
212 |
+
Returns `False` if the parameter has more than one dimension.
|
213 |
+
"""
|
214 |
+
warnings.warn(
|
215 |
+
"is_sparse is deprecated and will be removed in a future "
|
216 |
+
"version. Check `isinstance(dtype, pd.SparseDtype)` instead.",
|
217 |
+
DeprecationWarning,
|
218 |
+
stacklevel=2,
|
219 |
+
)
|
220 |
+
|
221 |
+
dtype = getattr(arr, "dtype", arr)
|
222 |
+
return isinstance(dtype, SparseDtype)
|
223 |
+
|
224 |
+
|
225 |
+
def is_scipy_sparse(arr) -> bool:
|
226 |
+
"""
|
227 |
+
Check whether an array-like is a scipy.sparse.spmatrix instance.
|
228 |
+
|
229 |
+
Parameters
|
230 |
+
----------
|
231 |
+
arr : array-like
|
232 |
+
The array-like to check.
|
233 |
+
|
234 |
+
Returns
|
235 |
+
-------
|
236 |
+
boolean
|
237 |
+
Whether or not the array-like is a scipy.sparse.spmatrix instance.
|
238 |
+
|
239 |
+
Notes
|
240 |
+
-----
|
241 |
+
If scipy is not installed, this function will always return False.
|
242 |
+
|
243 |
+
Examples
|
244 |
+
--------
|
245 |
+
>>> from scipy.sparse import bsr_matrix
|
246 |
+
>>> is_scipy_sparse(bsr_matrix([1, 2, 3]))
|
247 |
+
True
|
248 |
+
>>> is_scipy_sparse(pd.arrays.SparseArray([1, 2, 3]))
|
249 |
+
False
|
250 |
+
"""
|
251 |
+
global _is_scipy_sparse
|
252 |
+
|
253 |
+
if _is_scipy_sparse is None: # pylint: disable=used-before-assignment
|
254 |
+
try:
|
255 |
+
from scipy.sparse import issparse as _is_scipy_sparse
|
256 |
+
except ImportError:
|
257 |
+
_is_scipy_sparse = lambda _: False
|
258 |
+
|
259 |
+
assert _is_scipy_sparse is not None
|
260 |
+
return _is_scipy_sparse(arr)
|
261 |
+
|
262 |
+
|
263 |
+
def is_datetime64_dtype(arr_or_dtype) -> bool:
|
264 |
+
"""
|
265 |
+
Check whether an array-like or dtype is of the datetime64 dtype.
|
266 |
+
|
267 |
+
Parameters
|
268 |
+
----------
|
269 |
+
arr_or_dtype : array-like or dtype
|
270 |
+
The array-like or dtype to check.
|
271 |
+
|
272 |
+
Returns
|
273 |
+
-------
|
274 |
+
boolean
|
275 |
+
Whether or not the array-like or dtype is of the datetime64 dtype.
|
276 |
+
|
277 |
+
Examples
|
278 |
+
--------
|
279 |
+
>>> from pandas.api.types import is_datetime64_dtype
|
280 |
+
>>> is_datetime64_dtype(object)
|
281 |
+
False
|
282 |
+
>>> is_datetime64_dtype(np.datetime64)
|
283 |
+
True
|
284 |
+
>>> is_datetime64_dtype(np.array([], dtype=int))
|
285 |
+
False
|
286 |
+
>>> is_datetime64_dtype(np.array([], dtype=np.datetime64))
|
287 |
+
True
|
288 |
+
>>> is_datetime64_dtype([1, 2, 3])
|
289 |
+
False
|
290 |
+
"""
|
291 |
+
if isinstance(arr_or_dtype, np.dtype):
|
292 |
+
# GH#33400 fastpath for dtype object
|
293 |
+
return arr_or_dtype.kind == "M"
|
294 |
+
return _is_dtype_type(arr_or_dtype, classes(np.datetime64))
|
295 |
+
|
296 |
+
|
297 |
+
def is_datetime64tz_dtype(arr_or_dtype) -> bool:
|
298 |
+
"""
|
299 |
+
Check whether an array-like or dtype is of a DatetimeTZDtype dtype.
|
300 |
+
|
301 |
+
.. deprecated:: 2.1.0
|
302 |
+
Use isinstance(dtype, pd.DatetimeTZDtype) instead.
|
303 |
+
|
304 |
+
Parameters
|
305 |
+
----------
|
306 |
+
arr_or_dtype : array-like or dtype
|
307 |
+
The array-like or dtype to check.
|
308 |
+
|
309 |
+
Returns
|
310 |
+
-------
|
311 |
+
boolean
|
312 |
+
Whether or not the array-like or dtype is of a DatetimeTZDtype dtype.
|
313 |
+
|
314 |
+
Examples
|
315 |
+
--------
|
316 |
+
>>> from pandas.api.types import is_datetime64tz_dtype
|
317 |
+
>>> is_datetime64tz_dtype(object)
|
318 |
+
False
|
319 |
+
>>> is_datetime64tz_dtype([1, 2, 3])
|
320 |
+
False
|
321 |
+
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3])) # tz-naive
|
322 |
+
False
|
323 |
+
>>> is_datetime64tz_dtype(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
|
324 |
+
True
|
325 |
+
|
326 |
+
>>> from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
327 |
+
>>> dtype = DatetimeTZDtype("ns", tz="US/Eastern")
|
328 |
+
>>> s = pd.Series([], dtype=dtype)
|
329 |
+
>>> is_datetime64tz_dtype(dtype)
|
330 |
+
True
|
331 |
+
>>> is_datetime64tz_dtype(s)
|
332 |
+
True
|
333 |
+
"""
|
334 |
+
# GH#52607
|
335 |
+
warnings.warn(
|
336 |
+
"is_datetime64tz_dtype is deprecated and will be removed in a future "
|
337 |
+
"version. Check `isinstance(dtype, pd.DatetimeTZDtype)` instead.",
|
338 |
+
DeprecationWarning,
|
339 |
+
stacklevel=2,
|
340 |
+
)
|
341 |
+
if isinstance(arr_or_dtype, DatetimeTZDtype):
|
342 |
+
# GH#33400 fastpath for dtype object
|
343 |
+
# GH 34986
|
344 |
+
return True
|
345 |
+
|
346 |
+
if arr_or_dtype is None:
|
347 |
+
return False
|
348 |
+
return DatetimeTZDtype.is_dtype(arr_or_dtype)
|
349 |
+
|
350 |
+
|
351 |
+
def is_timedelta64_dtype(arr_or_dtype) -> bool:
|
352 |
+
"""
|
353 |
+
Check whether an array-like or dtype is of the timedelta64 dtype.
|
354 |
+
|
355 |
+
Parameters
|
356 |
+
----------
|
357 |
+
arr_or_dtype : array-like or dtype
|
358 |
+
The array-like or dtype to check.
|
359 |
+
|
360 |
+
Returns
|
361 |
+
-------
|
362 |
+
boolean
|
363 |
+
Whether or not the array-like or dtype is of the timedelta64 dtype.
|
364 |
+
|
365 |
+
Examples
|
366 |
+
--------
|
367 |
+
>>> from pandas.core.dtypes.common import is_timedelta64_dtype
|
368 |
+
>>> is_timedelta64_dtype(object)
|
369 |
+
False
|
370 |
+
>>> is_timedelta64_dtype(np.timedelta64)
|
371 |
+
True
|
372 |
+
>>> is_timedelta64_dtype([1, 2, 3])
|
373 |
+
False
|
374 |
+
>>> is_timedelta64_dtype(pd.Series([], dtype="timedelta64[ns]"))
|
375 |
+
True
|
376 |
+
>>> is_timedelta64_dtype('0 days')
|
377 |
+
False
|
378 |
+
"""
|
379 |
+
if isinstance(arr_or_dtype, np.dtype):
|
380 |
+
# GH#33400 fastpath for dtype object
|
381 |
+
return arr_or_dtype.kind == "m"
|
382 |
+
|
383 |
+
return _is_dtype_type(arr_or_dtype, classes(np.timedelta64))
|
384 |
+
|
385 |
+
|
386 |
+
def is_period_dtype(arr_or_dtype) -> bool:
|
387 |
+
"""
|
388 |
+
Check whether an array-like or dtype is of the Period dtype.
|
389 |
+
|
390 |
+
.. deprecated:: 2.2.0
|
391 |
+
Use isinstance(dtype, pd.Period) instead.
|
392 |
+
|
393 |
+
Parameters
|
394 |
+
----------
|
395 |
+
arr_or_dtype : array-like or dtype
|
396 |
+
The array-like or dtype to check.
|
397 |
+
|
398 |
+
Returns
|
399 |
+
-------
|
400 |
+
boolean
|
401 |
+
Whether or not the array-like or dtype is of the Period dtype.
|
402 |
+
|
403 |
+
Examples
|
404 |
+
--------
|
405 |
+
>>> from pandas.core.dtypes.common import is_period_dtype
|
406 |
+
>>> is_period_dtype(object)
|
407 |
+
False
|
408 |
+
>>> is_period_dtype(pd.PeriodDtype(freq="D"))
|
409 |
+
True
|
410 |
+
>>> is_period_dtype([1, 2, 3])
|
411 |
+
False
|
412 |
+
>>> is_period_dtype(pd.Period("2017-01-01"))
|
413 |
+
False
|
414 |
+
>>> is_period_dtype(pd.PeriodIndex([], freq="Y"))
|
415 |
+
True
|
416 |
+
"""
|
417 |
+
warnings.warn(
|
418 |
+
"is_period_dtype is deprecated and will be removed in a future version. "
|
419 |
+
"Use `isinstance(dtype, pd.PeriodDtype)` instead",
|
420 |
+
DeprecationWarning,
|
421 |
+
stacklevel=2,
|
422 |
+
)
|
423 |
+
if isinstance(arr_or_dtype, ExtensionDtype):
|
424 |
+
# GH#33400 fastpath for dtype object
|
425 |
+
return arr_or_dtype.type is Period
|
426 |
+
|
427 |
+
if arr_or_dtype is None:
|
428 |
+
return False
|
429 |
+
return PeriodDtype.is_dtype(arr_or_dtype)
|
430 |
+
|
431 |
+
|
432 |
+
def is_interval_dtype(arr_or_dtype) -> bool:
|
433 |
+
"""
|
434 |
+
Check whether an array-like or dtype is of the Interval dtype.
|
435 |
+
|
436 |
+
.. deprecated:: 2.2.0
|
437 |
+
Use isinstance(dtype, pd.IntervalDtype) instead.
|
438 |
+
|
439 |
+
Parameters
|
440 |
+
----------
|
441 |
+
arr_or_dtype : array-like or dtype
|
442 |
+
The array-like or dtype to check.
|
443 |
+
|
444 |
+
Returns
|
445 |
+
-------
|
446 |
+
boolean
|
447 |
+
Whether or not the array-like or dtype is of the Interval dtype.
|
448 |
+
|
449 |
+
Examples
|
450 |
+
--------
|
451 |
+
>>> from pandas.core.dtypes.common import is_interval_dtype
|
452 |
+
>>> is_interval_dtype(object)
|
453 |
+
False
|
454 |
+
>>> is_interval_dtype(pd.IntervalDtype())
|
455 |
+
True
|
456 |
+
>>> is_interval_dtype([1, 2, 3])
|
457 |
+
False
|
458 |
+
>>>
|
459 |
+
>>> interval = pd.Interval(1, 2, closed="right")
|
460 |
+
>>> is_interval_dtype(interval)
|
461 |
+
False
|
462 |
+
>>> is_interval_dtype(pd.IntervalIndex([interval]))
|
463 |
+
True
|
464 |
+
"""
|
465 |
+
# GH#52607
|
466 |
+
warnings.warn(
|
467 |
+
"is_interval_dtype is deprecated and will be removed in a future version. "
|
468 |
+
"Use `isinstance(dtype, pd.IntervalDtype)` instead",
|
469 |
+
DeprecationWarning,
|
470 |
+
stacklevel=2,
|
471 |
+
)
|
472 |
+
if isinstance(arr_or_dtype, ExtensionDtype):
|
473 |
+
# GH#33400 fastpath for dtype object
|
474 |
+
return arr_or_dtype.type is Interval
|
475 |
+
|
476 |
+
if arr_or_dtype is None:
|
477 |
+
return False
|
478 |
+
return IntervalDtype.is_dtype(arr_or_dtype)
|
479 |
+
|
480 |
+
|
481 |
+
def is_categorical_dtype(arr_or_dtype) -> bool:
|
482 |
+
"""
|
483 |
+
Check whether an array-like or dtype is of the Categorical dtype.
|
484 |
+
|
485 |
+
.. deprecated:: 2.2.0
|
486 |
+
Use isinstance(dtype, pd.CategoricalDtype) instead.
|
487 |
+
|
488 |
+
Parameters
|
489 |
+
----------
|
490 |
+
arr_or_dtype : array-like or dtype
|
491 |
+
The array-like or dtype to check.
|
492 |
+
|
493 |
+
Returns
|
494 |
+
-------
|
495 |
+
boolean
|
496 |
+
Whether or not the array-like or dtype is of the Categorical dtype.
|
497 |
+
|
498 |
+
Examples
|
499 |
+
--------
|
500 |
+
>>> from pandas.api.types import is_categorical_dtype
|
501 |
+
>>> from pandas import CategoricalDtype
|
502 |
+
>>> is_categorical_dtype(object)
|
503 |
+
False
|
504 |
+
>>> is_categorical_dtype(CategoricalDtype())
|
505 |
+
True
|
506 |
+
>>> is_categorical_dtype([1, 2, 3])
|
507 |
+
False
|
508 |
+
>>> is_categorical_dtype(pd.Categorical([1, 2, 3]))
|
509 |
+
True
|
510 |
+
>>> is_categorical_dtype(pd.CategoricalIndex([1, 2, 3]))
|
511 |
+
True
|
512 |
+
"""
|
513 |
+
# GH#52527
|
514 |
+
warnings.warn(
|
515 |
+
"is_categorical_dtype is deprecated and will be removed in a future "
|
516 |
+
"version. Use isinstance(dtype, pd.CategoricalDtype) instead",
|
517 |
+
DeprecationWarning,
|
518 |
+
stacklevel=2,
|
519 |
+
)
|
520 |
+
if isinstance(arr_or_dtype, ExtensionDtype):
|
521 |
+
# GH#33400 fastpath for dtype object
|
522 |
+
return arr_or_dtype.name == "category"
|
523 |
+
|
524 |
+
if arr_or_dtype is None:
|
525 |
+
return False
|
526 |
+
return CategoricalDtype.is_dtype(arr_or_dtype)
|
527 |
+
|
528 |
+
|
529 |
+
def is_string_or_object_np_dtype(dtype: np.dtype) -> bool:
|
530 |
+
"""
|
531 |
+
Faster alternative to is_string_dtype, assumes we have a np.dtype object.
|
532 |
+
"""
|
533 |
+
return dtype == object or dtype.kind in "SU"
|
534 |
+
|
535 |
+
|
536 |
+
def is_string_dtype(arr_or_dtype) -> bool:
|
537 |
+
"""
|
538 |
+
Check whether the provided array or dtype is of the string dtype.
|
539 |
+
|
540 |
+
If an array is passed with an object dtype, the elements must be
|
541 |
+
inferred as strings.
|
542 |
+
|
543 |
+
Parameters
|
544 |
+
----------
|
545 |
+
arr_or_dtype : array-like or dtype
|
546 |
+
The array or dtype to check.
|
547 |
+
|
548 |
+
Returns
|
549 |
+
-------
|
550 |
+
boolean
|
551 |
+
Whether or not the array or dtype is of the string dtype.
|
552 |
+
|
553 |
+
Examples
|
554 |
+
--------
|
555 |
+
>>> from pandas.api.types import is_string_dtype
|
556 |
+
>>> is_string_dtype(str)
|
557 |
+
True
|
558 |
+
>>> is_string_dtype(object)
|
559 |
+
True
|
560 |
+
>>> is_string_dtype(int)
|
561 |
+
False
|
562 |
+
>>> is_string_dtype(np.array(['a', 'b']))
|
563 |
+
True
|
564 |
+
>>> is_string_dtype(pd.Series([1, 2]))
|
565 |
+
False
|
566 |
+
>>> is_string_dtype(pd.Series([1, 2], dtype=object))
|
567 |
+
False
|
568 |
+
"""
|
569 |
+
if hasattr(arr_or_dtype, "dtype") and _get_dtype(arr_or_dtype).kind == "O":
|
570 |
+
return is_all_strings(arr_or_dtype)
|
571 |
+
|
572 |
+
def condition(dtype) -> bool:
|
573 |
+
if is_string_or_object_np_dtype(dtype):
|
574 |
+
return True
|
575 |
+
try:
|
576 |
+
return dtype == "string"
|
577 |
+
except TypeError:
|
578 |
+
return False
|
579 |
+
|
580 |
+
return _is_dtype(arr_or_dtype, condition)
|
581 |
+
|
582 |
+
|
583 |
+
def is_dtype_equal(source, target) -> bool:
|
584 |
+
"""
|
585 |
+
Check if two dtypes are equal.
|
586 |
+
|
587 |
+
Parameters
|
588 |
+
----------
|
589 |
+
source : The first dtype to compare
|
590 |
+
target : The second dtype to compare
|
591 |
+
|
592 |
+
Returns
|
593 |
+
-------
|
594 |
+
boolean
|
595 |
+
Whether or not the two dtypes are equal.
|
596 |
+
|
597 |
+
Examples
|
598 |
+
--------
|
599 |
+
>>> is_dtype_equal(int, float)
|
600 |
+
False
|
601 |
+
>>> is_dtype_equal("int", int)
|
602 |
+
True
|
603 |
+
>>> is_dtype_equal(object, "category")
|
604 |
+
False
|
605 |
+
>>> is_dtype_equal(CategoricalDtype(), "category")
|
606 |
+
True
|
607 |
+
>>> is_dtype_equal(DatetimeTZDtype(tz="UTC"), "datetime64")
|
608 |
+
False
|
609 |
+
"""
|
610 |
+
if isinstance(target, str):
|
611 |
+
if not isinstance(source, str):
|
612 |
+
# GH#38516 ensure we get the same behavior from
|
613 |
+
# is_dtype_equal(CDT, "category") and CDT == "category"
|
614 |
+
try:
|
615 |
+
src = _get_dtype(source)
|
616 |
+
if isinstance(src, ExtensionDtype):
|
617 |
+
return src == target
|
618 |
+
except (TypeError, AttributeError, ImportError):
|
619 |
+
return False
|
620 |
+
elif isinstance(source, str):
|
621 |
+
return is_dtype_equal(target, source)
|
622 |
+
|
623 |
+
try:
|
624 |
+
source = _get_dtype(source)
|
625 |
+
target = _get_dtype(target)
|
626 |
+
return source == target
|
627 |
+
except (TypeError, AttributeError, ImportError):
|
628 |
+
# invalid comparison
|
629 |
+
# object == category will hit this
|
630 |
+
return False
|
631 |
+
|
632 |
+
|
633 |
+
def is_integer_dtype(arr_or_dtype) -> bool:
|
634 |
+
"""
|
635 |
+
Check whether the provided array or dtype is of an integer dtype.
|
636 |
+
|
637 |
+
Unlike in `is_any_int_dtype`, timedelta64 instances will return False.
|
638 |
+
|
639 |
+
The nullable Integer dtypes (e.g. pandas.Int64Dtype) are also considered
|
640 |
+
as integer by this function.
|
641 |
+
|
642 |
+
Parameters
|
643 |
+
----------
|
644 |
+
arr_or_dtype : array-like or dtype
|
645 |
+
The array or dtype to check.
|
646 |
+
|
647 |
+
Returns
|
648 |
+
-------
|
649 |
+
boolean
|
650 |
+
Whether or not the array or dtype is of an integer dtype and
|
651 |
+
not an instance of timedelta64.
|
652 |
+
|
653 |
+
Examples
|
654 |
+
--------
|
655 |
+
>>> from pandas.api.types import is_integer_dtype
|
656 |
+
>>> is_integer_dtype(str)
|
657 |
+
False
|
658 |
+
>>> is_integer_dtype(int)
|
659 |
+
True
|
660 |
+
>>> is_integer_dtype(float)
|
661 |
+
False
|
662 |
+
>>> is_integer_dtype(np.uint64)
|
663 |
+
True
|
664 |
+
>>> is_integer_dtype('int8')
|
665 |
+
True
|
666 |
+
>>> is_integer_dtype('Int8')
|
667 |
+
True
|
668 |
+
>>> is_integer_dtype(pd.Int8Dtype)
|
669 |
+
True
|
670 |
+
>>> is_integer_dtype(np.datetime64)
|
671 |
+
False
|
672 |
+
>>> is_integer_dtype(np.timedelta64)
|
673 |
+
False
|
674 |
+
>>> is_integer_dtype(np.array(['a', 'b']))
|
675 |
+
False
|
676 |
+
>>> is_integer_dtype(pd.Series([1, 2]))
|
677 |
+
True
|
678 |
+
>>> is_integer_dtype(np.array([], dtype=np.timedelta64))
|
679 |
+
False
|
680 |
+
>>> is_integer_dtype(pd.Index([1, 2.])) # float
|
681 |
+
False
|
682 |
+
"""
|
683 |
+
return _is_dtype_type(
|
684 |
+
arr_or_dtype, _classes_and_not_datetimelike(np.integer)
|
685 |
+
) or _is_dtype(
|
686 |
+
arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ.kind in "iu"
|
687 |
+
)
|
688 |
+
|
689 |
+
|
690 |
+
def is_signed_integer_dtype(arr_or_dtype) -> bool:
|
691 |
+
"""
|
692 |
+
Check whether the provided array or dtype is of a signed integer dtype.
|
693 |
+
|
694 |
+
Unlike in `is_any_int_dtype`, timedelta64 instances will return False.
|
695 |
+
|
696 |
+
The nullable Integer dtypes (e.g. pandas.Int64Dtype) are also considered
|
697 |
+
as integer by this function.
|
698 |
+
|
699 |
+
Parameters
|
700 |
+
----------
|
701 |
+
arr_or_dtype : array-like or dtype
|
702 |
+
The array or dtype to check.
|
703 |
+
|
704 |
+
Returns
|
705 |
+
-------
|
706 |
+
boolean
|
707 |
+
Whether or not the array or dtype is of a signed integer dtype
|
708 |
+
and not an instance of timedelta64.
|
709 |
+
|
710 |
+
Examples
|
711 |
+
--------
|
712 |
+
>>> from pandas.core.dtypes.common import is_signed_integer_dtype
|
713 |
+
>>> is_signed_integer_dtype(str)
|
714 |
+
False
|
715 |
+
>>> is_signed_integer_dtype(int)
|
716 |
+
True
|
717 |
+
>>> is_signed_integer_dtype(float)
|
718 |
+
False
|
719 |
+
>>> is_signed_integer_dtype(np.uint64) # unsigned
|
720 |
+
False
|
721 |
+
>>> is_signed_integer_dtype('int8')
|
722 |
+
True
|
723 |
+
>>> is_signed_integer_dtype('Int8')
|
724 |
+
True
|
725 |
+
>>> is_signed_integer_dtype(pd.Int8Dtype)
|
726 |
+
True
|
727 |
+
>>> is_signed_integer_dtype(np.datetime64)
|
728 |
+
False
|
729 |
+
>>> is_signed_integer_dtype(np.timedelta64)
|
730 |
+
False
|
731 |
+
>>> is_signed_integer_dtype(np.array(['a', 'b']))
|
732 |
+
False
|
733 |
+
>>> is_signed_integer_dtype(pd.Series([1, 2]))
|
734 |
+
True
|
735 |
+
>>> is_signed_integer_dtype(np.array([], dtype=np.timedelta64))
|
736 |
+
False
|
737 |
+
>>> is_signed_integer_dtype(pd.Index([1, 2.])) # float
|
738 |
+
False
|
739 |
+
>>> is_signed_integer_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned
|
740 |
+
False
|
741 |
+
"""
|
742 |
+
return _is_dtype_type(
|
743 |
+
arr_or_dtype, _classes_and_not_datetimelike(np.signedinteger)
|
744 |
+
) or _is_dtype(
|
745 |
+
arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ.kind == "i"
|
746 |
+
)
|
747 |
+
|
748 |
+
|
749 |
+
def is_unsigned_integer_dtype(arr_or_dtype) -> bool:
|
750 |
+
"""
|
751 |
+
Check whether the provided array or dtype is of an unsigned integer dtype.
|
752 |
+
|
753 |
+
The nullable Integer dtypes (e.g. pandas.UInt64Dtype) are also
|
754 |
+
considered as integer by this function.
|
755 |
+
|
756 |
+
Parameters
|
757 |
+
----------
|
758 |
+
arr_or_dtype : array-like or dtype
|
759 |
+
The array or dtype to check.
|
760 |
+
|
761 |
+
Returns
|
762 |
+
-------
|
763 |
+
boolean
|
764 |
+
Whether or not the array or dtype is of an unsigned integer dtype.
|
765 |
+
|
766 |
+
Examples
|
767 |
+
--------
|
768 |
+
>>> from pandas.api.types import is_unsigned_integer_dtype
|
769 |
+
>>> is_unsigned_integer_dtype(str)
|
770 |
+
False
|
771 |
+
>>> is_unsigned_integer_dtype(int) # signed
|
772 |
+
False
|
773 |
+
>>> is_unsigned_integer_dtype(float)
|
774 |
+
False
|
775 |
+
>>> is_unsigned_integer_dtype(np.uint64)
|
776 |
+
True
|
777 |
+
>>> is_unsigned_integer_dtype('uint8')
|
778 |
+
True
|
779 |
+
>>> is_unsigned_integer_dtype('UInt8')
|
780 |
+
True
|
781 |
+
>>> is_unsigned_integer_dtype(pd.UInt8Dtype)
|
782 |
+
True
|
783 |
+
>>> is_unsigned_integer_dtype(np.array(['a', 'b']))
|
784 |
+
False
|
785 |
+
>>> is_unsigned_integer_dtype(pd.Series([1, 2])) # signed
|
786 |
+
False
|
787 |
+
>>> is_unsigned_integer_dtype(pd.Index([1, 2.])) # float
|
788 |
+
False
|
789 |
+
>>> is_unsigned_integer_dtype(np.array([1, 2], dtype=np.uint32))
|
790 |
+
True
|
791 |
+
"""
|
792 |
+
return _is_dtype_type(
|
793 |
+
arr_or_dtype, _classes_and_not_datetimelike(np.unsignedinteger)
|
794 |
+
) or _is_dtype(
|
795 |
+
arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ.kind == "u"
|
796 |
+
)
|
797 |
+
|
798 |
+
|
799 |
+
def is_int64_dtype(arr_or_dtype) -> bool:
|
800 |
+
"""
|
801 |
+
Check whether the provided array or dtype is of the int64 dtype.
|
802 |
+
|
803 |
+
.. deprecated:: 2.1.0
|
804 |
+
|
805 |
+
is_int64_dtype is deprecated and will be removed in a future
|
806 |
+
version. Use dtype == np.int64 instead.
|
807 |
+
|
808 |
+
Parameters
|
809 |
+
----------
|
810 |
+
arr_or_dtype : array-like or dtype
|
811 |
+
The array or dtype to check.
|
812 |
+
|
813 |
+
Returns
|
814 |
+
-------
|
815 |
+
boolean
|
816 |
+
Whether or not the array or dtype is of the int64 dtype.
|
817 |
+
|
818 |
+
Notes
|
819 |
+
-----
|
820 |
+
Depending on system architecture, the return value of `is_int64_dtype(
|
821 |
+
int)` will be True if the OS uses 64-bit integers and False if the OS
|
822 |
+
uses 32-bit integers.
|
823 |
+
|
824 |
+
Examples
|
825 |
+
--------
|
826 |
+
>>> from pandas.api.types import is_int64_dtype
|
827 |
+
>>> is_int64_dtype(str) # doctest: +SKIP
|
828 |
+
False
|
829 |
+
>>> is_int64_dtype(np.int32) # doctest: +SKIP
|
830 |
+
False
|
831 |
+
>>> is_int64_dtype(np.int64) # doctest: +SKIP
|
832 |
+
True
|
833 |
+
>>> is_int64_dtype('int8') # doctest: +SKIP
|
834 |
+
False
|
835 |
+
>>> is_int64_dtype('Int8') # doctest: +SKIP
|
836 |
+
False
|
837 |
+
>>> is_int64_dtype(pd.Int64Dtype) # doctest: +SKIP
|
838 |
+
True
|
839 |
+
>>> is_int64_dtype(float) # doctest: +SKIP
|
840 |
+
False
|
841 |
+
>>> is_int64_dtype(np.uint64) # unsigned # doctest: +SKIP
|
842 |
+
False
|
843 |
+
>>> is_int64_dtype(np.array(['a', 'b'])) # doctest: +SKIP
|
844 |
+
False
|
845 |
+
>>> is_int64_dtype(np.array([1, 2], dtype=np.int64)) # doctest: +SKIP
|
846 |
+
True
|
847 |
+
>>> is_int64_dtype(pd.Index([1, 2.])) # float # doctest: +SKIP
|
848 |
+
False
|
849 |
+
>>> is_int64_dtype(np.array([1, 2], dtype=np.uint32)) # unsigned # doctest: +SKIP
|
850 |
+
False
|
851 |
+
"""
|
852 |
+
# GH#52564
|
853 |
+
warnings.warn(
|
854 |
+
"is_int64_dtype is deprecated and will be removed in a future "
|
855 |
+
"version. Use dtype == np.int64 instead.",
|
856 |
+
DeprecationWarning,
|
857 |
+
stacklevel=2,
|
858 |
+
)
|
859 |
+
return _is_dtype_type(arr_or_dtype, classes(np.int64))
|
860 |
+
|
861 |
+
|
862 |
+
def is_datetime64_any_dtype(arr_or_dtype) -> bool:
|
863 |
+
"""
|
864 |
+
Check whether the provided array or dtype is of the datetime64 dtype.
|
865 |
+
|
866 |
+
Parameters
|
867 |
+
----------
|
868 |
+
arr_or_dtype : array-like or dtype
|
869 |
+
The array or dtype to check.
|
870 |
+
|
871 |
+
Returns
|
872 |
+
-------
|
873 |
+
bool
|
874 |
+
Whether or not the array or dtype is of the datetime64 dtype.
|
875 |
+
|
876 |
+
Examples
|
877 |
+
--------
|
878 |
+
>>> from pandas.api.types import is_datetime64_any_dtype
|
879 |
+
>>> from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
880 |
+
>>> is_datetime64_any_dtype(str)
|
881 |
+
False
|
882 |
+
>>> is_datetime64_any_dtype(int)
|
883 |
+
False
|
884 |
+
>>> is_datetime64_any_dtype(np.datetime64) # can be tz-naive
|
885 |
+
True
|
886 |
+
>>> is_datetime64_any_dtype(DatetimeTZDtype("ns", "US/Eastern"))
|
887 |
+
True
|
888 |
+
>>> is_datetime64_any_dtype(np.array(['a', 'b']))
|
889 |
+
False
|
890 |
+
>>> is_datetime64_any_dtype(np.array([1, 2]))
|
891 |
+
False
|
892 |
+
>>> is_datetime64_any_dtype(np.array([], dtype="datetime64[ns]"))
|
893 |
+
True
|
894 |
+
>>> is_datetime64_any_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]"))
|
895 |
+
True
|
896 |
+
"""
|
897 |
+
if isinstance(arr_or_dtype, (np.dtype, ExtensionDtype)):
|
898 |
+
# GH#33400 fastpath for dtype object
|
899 |
+
return arr_or_dtype.kind == "M"
|
900 |
+
|
901 |
+
if arr_or_dtype is None:
|
902 |
+
return False
|
903 |
+
|
904 |
+
try:
|
905 |
+
tipo = _get_dtype(arr_or_dtype)
|
906 |
+
except TypeError:
|
907 |
+
return False
|
908 |
+
return lib.is_np_dtype(tipo, "M") or isinstance(tipo, DatetimeTZDtype)
|
909 |
+
|
910 |
+
|
911 |
+
def is_datetime64_ns_dtype(arr_or_dtype) -> bool:
|
912 |
+
"""
|
913 |
+
Check whether the provided array or dtype is of the datetime64[ns] dtype.
|
914 |
+
|
915 |
+
Parameters
|
916 |
+
----------
|
917 |
+
arr_or_dtype : array-like or dtype
|
918 |
+
The array or dtype to check.
|
919 |
+
|
920 |
+
Returns
|
921 |
+
-------
|
922 |
+
bool
|
923 |
+
Whether or not the array or dtype is of the datetime64[ns] dtype.
|
924 |
+
|
925 |
+
Examples
|
926 |
+
--------
|
927 |
+
>>> from pandas.api.types import is_datetime64_ns_dtype
|
928 |
+
>>> from pandas.core.dtypes.dtypes import DatetimeTZDtype
|
929 |
+
>>> is_datetime64_ns_dtype(str)
|
930 |
+
False
|
931 |
+
>>> is_datetime64_ns_dtype(int)
|
932 |
+
False
|
933 |
+
>>> is_datetime64_ns_dtype(np.datetime64) # no unit
|
934 |
+
False
|
935 |
+
>>> is_datetime64_ns_dtype(DatetimeTZDtype("ns", "US/Eastern"))
|
936 |
+
True
|
937 |
+
>>> is_datetime64_ns_dtype(np.array(['a', 'b']))
|
938 |
+
False
|
939 |
+
>>> is_datetime64_ns_dtype(np.array([1, 2]))
|
940 |
+
False
|
941 |
+
>>> is_datetime64_ns_dtype(np.array([], dtype="datetime64")) # no unit
|
942 |
+
False
|
943 |
+
>>> is_datetime64_ns_dtype(np.array([], dtype="datetime64[ps]")) # wrong unit
|
944 |
+
False
|
945 |
+
>>> is_datetime64_ns_dtype(pd.DatetimeIndex([1, 2, 3], dtype="datetime64[ns]"))
|
946 |
+
True
|
947 |
+
"""
|
948 |
+
if arr_or_dtype is None:
|
949 |
+
return False
|
950 |
+
try:
|
951 |
+
tipo = _get_dtype(arr_or_dtype)
|
952 |
+
except TypeError:
|
953 |
+
return False
|
954 |
+
return tipo == DT64NS_DTYPE or (
|
955 |
+
isinstance(tipo, DatetimeTZDtype) and tipo.unit == "ns"
|
956 |
+
)
|
957 |
+
|
958 |
+
|
959 |
+
def is_timedelta64_ns_dtype(arr_or_dtype) -> bool:
|
960 |
+
"""
|
961 |
+
Check whether the provided array or dtype is of the timedelta64[ns] dtype.
|
962 |
+
|
963 |
+
This is a very specific dtype, so generic ones like `np.timedelta64`
|
964 |
+
will return False if passed into this function.
|
965 |
+
|
966 |
+
Parameters
|
967 |
+
----------
|
968 |
+
arr_or_dtype : array-like or dtype
|
969 |
+
The array or dtype to check.
|
970 |
+
|
971 |
+
Returns
|
972 |
+
-------
|
973 |
+
boolean
|
974 |
+
Whether or not the array or dtype is of the timedelta64[ns] dtype.
|
975 |
+
|
976 |
+
Examples
|
977 |
+
--------
|
978 |
+
>>> from pandas.core.dtypes.common import is_timedelta64_ns_dtype
|
979 |
+
>>> is_timedelta64_ns_dtype(np.dtype('m8[ns]'))
|
980 |
+
True
|
981 |
+
>>> is_timedelta64_ns_dtype(np.dtype('m8[ps]')) # Wrong frequency
|
982 |
+
False
|
983 |
+
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype='m8[ns]'))
|
984 |
+
True
|
985 |
+
>>> is_timedelta64_ns_dtype(np.array([1, 2], dtype=np.timedelta64))
|
986 |
+
False
|
987 |
+
"""
|
988 |
+
return _is_dtype(arr_or_dtype, lambda dtype: dtype == TD64NS_DTYPE)
|
989 |
+
|
990 |
+
|
991 |
+
# This exists to silence numpy deprecation warnings, see GH#29553
|
992 |
+
def is_numeric_v_string_like(a: ArrayLike, b) -> bool:
|
993 |
+
"""
|
994 |
+
Check if we are comparing a string-like object to a numeric ndarray.
|
995 |
+
NumPy doesn't like to compare such objects, especially numeric arrays
|
996 |
+
and scalar string-likes.
|
997 |
+
|
998 |
+
Parameters
|
999 |
+
----------
|
1000 |
+
a : array-like, scalar
|
1001 |
+
The first object to check.
|
1002 |
+
b : array-like, scalar
|
1003 |
+
The second object to check.
|
1004 |
+
|
1005 |
+
Returns
|
1006 |
+
-------
|
1007 |
+
boolean
|
1008 |
+
Whether we return a comparing a string-like object to a numeric array.
|
1009 |
+
|
1010 |
+
Examples
|
1011 |
+
--------
|
1012 |
+
>>> is_numeric_v_string_like(np.array([1]), "foo")
|
1013 |
+
True
|
1014 |
+
>>> is_numeric_v_string_like(np.array([1, 2]), np.array(["foo"]))
|
1015 |
+
True
|
1016 |
+
>>> is_numeric_v_string_like(np.array(["foo"]), np.array([1, 2]))
|
1017 |
+
True
|
1018 |
+
>>> is_numeric_v_string_like(np.array([1]), np.array([2]))
|
1019 |
+
False
|
1020 |
+
>>> is_numeric_v_string_like(np.array(["foo"]), np.array(["foo"]))
|
1021 |
+
False
|
1022 |
+
"""
|
1023 |
+
is_a_array = isinstance(a, np.ndarray)
|
1024 |
+
is_b_array = isinstance(b, np.ndarray)
|
1025 |
+
|
1026 |
+
is_a_numeric_array = is_a_array and a.dtype.kind in ("u", "i", "f", "c", "b")
|
1027 |
+
is_b_numeric_array = is_b_array and b.dtype.kind in ("u", "i", "f", "c", "b")
|
1028 |
+
is_a_string_array = is_a_array and a.dtype.kind in ("S", "U")
|
1029 |
+
is_b_string_array = is_b_array and b.dtype.kind in ("S", "U")
|
1030 |
+
|
1031 |
+
is_b_scalar_string_like = not is_b_array and isinstance(b, str)
|
1032 |
+
|
1033 |
+
return (
|
1034 |
+
(is_a_numeric_array and is_b_scalar_string_like)
|
1035 |
+
or (is_a_numeric_array and is_b_string_array)
|
1036 |
+
or (is_b_numeric_array and is_a_string_array)
|
1037 |
+
)
|
1038 |
+
|
1039 |
+
|
1040 |
+
def needs_i8_conversion(dtype: DtypeObj | None) -> bool:
|
1041 |
+
"""
|
1042 |
+
Check whether the dtype should be converted to int64.
|
1043 |
+
|
1044 |
+
Dtype "needs" such a conversion if the dtype is of a datetime-like dtype
|
1045 |
+
|
1046 |
+
Parameters
|
1047 |
+
----------
|
1048 |
+
dtype : np.dtype, ExtensionDtype, or None
|
1049 |
+
|
1050 |
+
Returns
|
1051 |
+
-------
|
1052 |
+
boolean
|
1053 |
+
Whether or not the dtype should be converted to int64.
|
1054 |
+
|
1055 |
+
Examples
|
1056 |
+
--------
|
1057 |
+
>>> needs_i8_conversion(str)
|
1058 |
+
False
|
1059 |
+
>>> needs_i8_conversion(np.int64)
|
1060 |
+
False
|
1061 |
+
>>> needs_i8_conversion(np.datetime64)
|
1062 |
+
False
|
1063 |
+
>>> needs_i8_conversion(np.dtype(np.datetime64))
|
1064 |
+
True
|
1065 |
+
>>> needs_i8_conversion(np.array(['a', 'b']))
|
1066 |
+
False
|
1067 |
+
>>> needs_i8_conversion(pd.Series([1, 2]))
|
1068 |
+
False
|
1069 |
+
>>> needs_i8_conversion(pd.Series([], dtype="timedelta64[ns]"))
|
1070 |
+
False
|
1071 |
+
>>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern"))
|
1072 |
+
False
|
1073 |
+
>>> needs_i8_conversion(pd.DatetimeIndex([1, 2, 3], tz="US/Eastern").dtype)
|
1074 |
+
True
|
1075 |
+
"""
|
1076 |
+
if isinstance(dtype, np.dtype):
|
1077 |
+
return dtype.kind in "mM"
|
1078 |
+
return isinstance(dtype, (PeriodDtype, DatetimeTZDtype))
|
1079 |
+
|
1080 |
+
|
1081 |
+
def is_numeric_dtype(arr_or_dtype) -> bool:
|
1082 |
+
"""
|
1083 |
+
Check whether the provided array or dtype is of a numeric dtype.
|
1084 |
+
|
1085 |
+
Parameters
|
1086 |
+
----------
|
1087 |
+
arr_or_dtype : array-like or dtype
|
1088 |
+
The array or dtype to check.
|
1089 |
+
|
1090 |
+
Returns
|
1091 |
+
-------
|
1092 |
+
boolean
|
1093 |
+
Whether or not the array or dtype is of a numeric dtype.
|
1094 |
+
|
1095 |
+
Examples
|
1096 |
+
--------
|
1097 |
+
>>> from pandas.api.types import is_numeric_dtype
|
1098 |
+
>>> is_numeric_dtype(str)
|
1099 |
+
False
|
1100 |
+
>>> is_numeric_dtype(int)
|
1101 |
+
True
|
1102 |
+
>>> is_numeric_dtype(float)
|
1103 |
+
True
|
1104 |
+
>>> is_numeric_dtype(np.uint64)
|
1105 |
+
True
|
1106 |
+
>>> is_numeric_dtype(np.datetime64)
|
1107 |
+
False
|
1108 |
+
>>> is_numeric_dtype(np.timedelta64)
|
1109 |
+
False
|
1110 |
+
>>> is_numeric_dtype(np.array(['a', 'b']))
|
1111 |
+
False
|
1112 |
+
>>> is_numeric_dtype(pd.Series([1, 2]))
|
1113 |
+
True
|
1114 |
+
>>> is_numeric_dtype(pd.Index([1, 2.]))
|
1115 |
+
True
|
1116 |
+
>>> is_numeric_dtype(np.array([], dtype=np.timedelta64))
|
1117 |
+
False
|
1118 |
+
"""
|
1119 |
+
return _is_dtype_type(
|
1120 |
+
arr_or_dtype, _classes_and_not_datetimelike(np.number, np.bool_)
|
1121 |
+
) or _is_dtype(
|
1122 |
+
arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ._is_numeric
|
1123 |
+
)
|
1124 |
+
|
1125 |
+
|
1126 |
+
def is_any_real_numeric_dtype(arr_or_dtype) -> bool:
|
1127 |
+
"""
|
1128 |
+
Check whether the provided array or dtype is of a real number dtype.
|
1129 |
+
|
1130 |
+
Parameters
|
1131 |
+
----------
|
1132 |
+
arr_or_dtype : array-like or dtype
|
1133 |
+
The array or dtype to check.
|
1134 |
+
|
1135 |
+
Returns
|
1136 |
+
-------
|
1137 |
+
boolean
|
1138 |
+
Whether or not the array or dtype is of a real number dtype.
|
1139 |
+
|
1140 |
+
Examples
|
1141 |
+
--------
|
1142 |
+
>>> from pandas.api.types import is_any_real_numeric_dtype
|
1143 |
+
>>> is_any_real_numeric_dtype(int)
|
1144 |
+
True
|
1145 |
+
>>> is_any_real_numeric_dtype(float)
|
1146 |
+
True
|
1147 |
+
>>> is_any_real_numeric_dtype(object)
|
1148 |
+
False
|
1149 |
+
>>> is_any_real_numeric_dtype(str)
|
1150 |
+
False
|
1151 |
+
>>> is_any_real_numeric_dtype(complex(1, 2))
|
1152 |
+
False
|
1153 |
+
>>> is_any_real_numeric_dtype(bool)
|
1154 |
+
False
|
1155 |
+
"""
|
1156 |
+
return (
|
1157 |
+
is_numeric_dtype(arr_or_dtype)
|
1158 |
+
and not is_complex_dtype(arr_or_dtype)
|
1159 |
+
and not is_bool_dtype(arr_or_dtype)
|
1160 |
+
)
|
1161 |
+
|
1162 |
+
|
1163 |
+
def is_float_dtype(arr_or_dtype) -> bool:
|
1164 |
+
"""
|
1165 |
+
Check whether the provided array or dtype is of a float dtype.
|
1166 |
+
|
1167 |
+
Parameters
|
1168 |
+
----------
|
1169 |
+
arr_or_dtype : array-like or dtype
|
1170 |
+
The array or dtype to check.
|
1171 |
+
|
1172 |
+
Returns
|
1173 |
+
-------
|
1174 |
+
boolean
|
1175 |
+
Whether or not the array or dtype is of a float dtype.
|
1176 |
+
|
1177 |
+
Examples
|
1178 |
+
--------
|
1179 |
+
>>> from pandas.api.types import is_float_dtype
|
1180 |
+
>>> is_float_dtype(str)
|
1181 |
+
False
|
1182 |
+
>>> is_float_dtype(int)
|
1183 |
+
False
|
1184 |
+
>>> is_float_dtype(float)
|
1185 |
+
True
|
1186 |
+
>>> is_float_dtype(np.array(['a', 'b']))
|
1187 |
+
False
|
1188 |
+
>>> is_float_dtype(pd.Series([1, 2]))
|
1189 |
+
False
|
1190 |
+
>>> is_float_dtype(pd.Index([1, 2.]))
|
1191 |
+
True
|
1192 |
+
"""
|
1193 |
+
return _is_dtype_type(arr_or_dtype, classes(np.floating)) or _is_dtype(
|
1194 |
+
arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ.kind in "f"
|
1195 |
+
)
|
1196 |
+
|
1197 |
+
|
1198 |
+
def is_bool_dtype(arr_or_dtype) -> bool:
|
1199 |
+
"""
|
1200 |
+
Check whether the provided array or dtype is of a boolean dtype.
|
1201 |
+
|
1202 |
+
Parameters
|
1203 |
+
----------
|
1204 |
+
arr_or_dtype : array-like or dtype
|
1205 |
+
The array or dtype to check.
|
1206 |
+
|
1207 |
+
Returns
|
1208 |
+
-------
|
1209 |
+
boolean
|
1210 |
+
Whether or not the array or dtype is of a boolean dtype.
|
1211 |
+
|
1212 |
+
Notes
|
1213 |
+
-----
|
1214 |
+
An ExtensionArray is considered boolean when the ``_is_boolean``
|
1215 |
+
attribute is set to True.
|
1216 |
+
|
1217 |
+
Examples
|
1218 |
+
--------
|
1219 |
+
>>> from pandas.api.types import is_bool_dtype
|
1220 |
+
>>> is_bool_dtype(str)
|
1221 |
+
False
|
1222 |
+
>>> is_bool_dtype(int)
|
1223 |
+
False
|
1224 |
+
>>> is_bool_dtype(bool)
|
1225 |
+
True
|
1226 |
+
>>> is_bool_dtype(np.bool_)
|
1227 |
+
True
|
1228 |
+
>>> is_bool_dtype(np.array(['a', 'b']))
|
1229 |
+
False
|
1230 |
+
>>> is_bool_dtype(pd.Series([1, 2]))
|
1231 |
+
False
|
1232 |
+
>>> is_bool_dtype(np.array([True, False]))
|
1233 |
+
True
|
1234 |
+
>>> is_bool_dtype(pd.Categorical([True, False]))
|
1235 |
+
True
|
1236 |
+
>>> is_bool_dtype(pd.arrays.SparseArray([True, False]))
|
1237 |
+
True
|
1238 |
+
"""
|
1239 |
+
if arr_or_dtype is None:
|
1240 |
+
return False
|
1241 |
+
try:
|
1242 |
+
dtype = _get_dtype(arr_or_dtype)
|
1243 |
+
except (TypeError, ValueError):
|
1244 |
+
return False
|
1245 |
+
|
1246 |
+
if isinstance(dtype, CategoricalDtype):
|
1247 |
+
arr_or_dtype = dtype.categories
|
1248 |
+
# now we use the special definition for Index
|
1249 |
+
|
1250 |
+
if isinstance(arr_or_dtype, ABCIndex):
|
1251 |
+
# Allow Index[object] that is all-bools or Index["boolean"]
|
1252 |
+
if arr_or_dtype.inferred_type == "boolean":
|
1253 |
+
if not is_bool_dtype(arr_or_dtype.dtype):
|
1254 |
+
# GH#52680
|
1255 |
+
warnings.warn(
|
1256 |
+
"The behavior of is_bool_dtype with an object-dtype Index "
|
1257 |
+
"of bool objects is deprecated. In a future version, "
|
1258 |
+
"this will return False. Cast the Index to a bool dtype instead.",
|
1259 |
+
DeprecationWarning,
|
1260 |
+
stacklevel=2,
|
1261 |
+
)
|
1262 |
+
return True
|
1263 |
+
return False
|
1264 |
+
elif isinstance(dtype, ExtensionDtype):
|
1265 |
+
return getattr(dtype, "_is_boolean", False)
|
1266 |
+
|
1267 |
+
return issubclass(dtype.type, np.bool_)
|
1268 |
+
|
1269 |
+
|
1270 |
+
def is_1d_only_ea_dtype(dtype: DtypeObj | None) -> bool:
|
1271 |
+
"""
|
1272 |
+
Analogue to is_extension_array_dtype but excluding DatetimeTZDtype.
|
1273 |
+
"""
|
1274 |
+
return isinstance(dtype, ExtensionDtype) and not dtype._supports_2d
|
1275 |
+
|
1276 |
+
|
1277 |
+
def is_extension_array_dtype(arr_or_dtype) -> bool:
|
1278 |
+
"""
|
1279 |
+
Check if an object is a pandas extension array type.
|
1280 |
+
|
1281 |
+
See the :ref:`Use Guide <extending.extension-types>` for more.
|
1282 |
+
|
1283 |
+
Parameters
|
1284 |
+
----------
|
1285 |
+
arr_or_dtype : object
|
1286 |
+
For array-like input, the ``.dtype`` attribute will
|
1287 |
+
be extracted.
|
1288 |
+
|
1289 |
+
Returns
|
1290 |
+
-------
|
1291 |
+
bool
|
1292 |
+
Whether the `arr_or_dtype` is an extension array type.
|
1293 |
+
|
1294 |
+
Notes
|
1295 |
+
-----
|
1296 |
+
This checks whether an object implements the pandas extension
|
1297 |
+
array interface. In pandas, this includes:
|
1298 |
+
|
1299 |
+
* Categorical
|
1300 |
+
* Sparse
|
1301 |
+
* Interval
|
1302 |
+
* Period
|
1303 |
+
* DatetimeArray
|
1304 |
+
* TimedeltaArray
|
1305 |
+
|
1306 |
+
Third-party libraries may implement arrays or types satisfying
|
1307 |
+
this interface as well.
|
1308 |
+
|
1309 |
+
Examples
|
1310 |
+
--------
|
1311 |
+
>>> from pandas.api.types import is_extension_array_dtype
|
1312 |
+
>>> arr = pd.Categorical(['a', 'b'])
|
1313 |
+
>>> is_extension_array_dtype(arr)
|
1314 |
+
True
|
1315 |
+
>>> is_extension_array_dtype(arr.dtype)
|
1316 |
+
True
|
1317 |
+
|
1318 |
+
>>> arr = np.array(['a', 'b'])
|
1319 |
+
>>> is_extension_array_dtype(arr.dtype)
|
1320 |
+
False
|
1321 |
+
"""
|
1322 |
+
dtype = getattr(arr_or_dtype, "dtype", arr_or_dtype)
|
1323 |
+
if isinstance(dtype, ExtensionDtype):
|
1324 |
+
return True
|
1325 |
+
elif isinstance(dtype, np.dtype):
|
1326 |
+
return False
|
1327 |
+
else:
|
1328 |
+
return registry.find(dtype) is not None
|
1329 |
+
|
1330 |
+
|
1331 |
+
def is_ea_or_datetimelike_dtype(dtype: DtypeObj | None) -> bool:
|
1332 |
+
"""
|
1333 |
+
Check for ExtensionDtype, datetime64 dtype, or timedelta64 dtype.
|
1334 |
+
|
1335 |
+
Notes
|
1336 |
+
-----
|
1337 |
+
Checks only for dtype objects, not dtype-castable strings or types.
|
1338 |
+
"""
|
1339 |
+
return isinstance(dtype, ExtensionDtype) or (lib.is_np_dtype(dtype, "mM"))
|
1340 |
+
|
1341 |
+
|
1342 |
+
def is_complex_dtype(arr_or_dtype) -> bool:
|
1343 |
+
"""
|
1344 |
+
Check whether the provided array or dtype is of a complex dtype.
|
1345 |
+
|
1346 |
+
Parameters
|
1347 |
+
----------
|
1348 |
+
arr_or_dtype : array-like or dtype
|
1349 |
+
The array or dtype to check.
|
1350 |
+
|
1351 |
+
Returns
|
1352 |
+
-------
|
1353 |
+
boolean
|
1354 |
+
Whether or not the array or dtype is of a complex dtype.
|
1355 |
+
|
1356 |
+
Examples
|
1357 |
+
--------
|
1358 |
+
>>> from pandas.api.types import is_complex_dtype
|
1359 |
+
>>> is_complex_dtype(str)
|
1360 |
+
False
|
1361 |
+
>>> is_complex_dtype(int)
|
1362 |
+
False
|
1363 |
+
>>> is_complex_dtype(np.complex128)
|
1364 |
+
True
|
1365 |
+
>>> is_complex_dtype(np.array(['a', 'b']))
|
1366 |
+
False
|
1367 |
+
>>> is_complex_dtype(pd.Series([1, 2]))
|
1368 |
+
False
|
1369 |
+
>>> is_complex_dtype(np.array([1 + 1j, 5]))
|
1370 |
+
True
|
1371 |
+
"""
|
1372 |
+
return _is_dtype_type(arr_or_dtype, classes(np.complexfloating))
|
1373 |
+
|
1374 |
+
|
1375 |
+
def _is_dtype(arr_or_dtype, condition) -> bool:
|
1376 |
+
"""
|
1377 |
+
Return true if the condition is satisfied for the arr_or_dtype.
|
1378 |
+
|
1379 |
+
Parameters
|
1380 |
+
----------
|
1381 |
+
arr_or_dtype : array-like, str, np.dtype, or ExtensionArrayType
|
1382 |
+
The array-like or dtype object whose dtype we want to extract.
|
1383 |
+
condition : callable[Union[np.dtype, ExtensionDtype]]
|
1384 |
+
|
1385 |
+
Returns
|
1386 |
+
-------
|
1387 |
+
bool
|
1388 |
+
|
1389 |
+
"""
|
1390 |
+
if arr_or_dtype is None:
|
1391 |
+
return False
|
1392 |
+
try:
|
1393 |
+
dtype = _get_dtype(arr_or_dtype)
|
1394 |
+
except (TypeError, ValueError):
|
1395 |
+
return False
|
1396 |
+
return condition(dtype)
|
1397 |
+
|
1398 |
+
|
1399 |
+
def _get_dtype(arr_or_dtype) -> DtypeObj:
|
1400 |
+
"""
|
1401 |
+
Get the dtype instance associated with an array
|
1402 |
+
or dtype object.
|
1403 |
+
|
1404 |
+
Parameters
|
1405 |
+
----------
|
1406 |
+
arr_or_dtype : array-like or dtype
|
1407 |
+
The array-like or dtype object whose dtype we want to extract.
|
1408 |
+
|
1409 |
+
Returns
|
1410 |
+
-------
|
1411 |
+
obj_dtype : The extract dtype instance from the
|
1412 |
+
passed in array or dtype object.
|
1413 |
+
|
1414 |
+
Raises
|
1415 |
+
------
|
1416 |
+
TypeError : The passed in object is None.
|
1417 |
+
"""
|
1418 |
+
if arr_or_dtype is None:
|
1419 |
+
raise TypeError("Cannot deduce dtype from null object")
|
1420 |
+
|
1421 |
+
# fastpath
|
1422 |
+
if isinstance(arr_or_dtype, np.dtype):
|
1423 |
+
return arr_or_dtype
|
1424 |
+
elif isinstance(arr_or_dtype, type):
|
1425 |
+
return np.dtype(arr_or_dtype)
|
1426 |
+
|
1427 |
+
# if we have an array-like
|
1428 |
+
elif hasattr(arr_or_dtype, "dtype"):
|
1429 |
+
arr_or_dtype = arr_or_dtype.dtype
|
1430 |
+
|
1431 |
+
return pandas_dtype(arr_or_dtype)
|
1432 |
+
|
1433 |
+
|
1434 |
+
def _is_dtype_type(arr_or_dtype, condition) -> bool:
|
1435 |
+
"""
|
1436 |
+
Return true if the condition is satisfied for the arr_or_dtype.
|
1437 |
+
|
1438 |
+
Parameters
|
1439 |
+
----------
|
1440 |
+
arr_or_dtype : array-like or dtype
|
1441 |
+
The array-like or dtype object whose dtype we want to extract.
|
1442 |
+
condition : callable[Union[np.dtype, ExtensionDtypeType]]
|
1443 |
+
|
1444 |
+
Returns
|
1445 |
+
-------
|
1446 |
+
bool : if the condition is satisfied for the arr_or_dtype
|
1447 |
+
"""
|
1448 |
+
if arr_or_dtype is None:
|
1449 |
+
return condition(type(None))
|
1450 |
+
|
1451 |
+
# fastpath
|
1452 |
+
if isinstance(arr_or_dtype, np.dtype):
|
1453 |
+
return condition(arr_or_dtype.type)
|
1454 |
+
elif isinstance(arr_or_dtype, type):
|
1455 |
+
if issubclass(arr_or_dtype, ExtensionDtype):
|
1456 |
+
arr_or_dtype = arr_or_dtype.type
|
1457 |
+
return condition(np.dtype(arr_or_dtype).type)
|
1458 |
+
|
1459 |
+
# if we have an array-like
|
1460 |
+
if hasattr(arr_or_dtype, "dtype"):
|
1461 |
+
arr_or_dtype = arr_or_dtype.dtype
|
1462 |
+
|
1463 |
+
# we are not possibly a dtype
|
1464 |
+
elif is_list_like(arr_or_dtype):
|
1465 |
+
return condition(type(None))
|
1466 |
+
|
1467 |
+
try:
|
1468 |
+
tipo = pandas_dtype(arr_or_dtype).type
|
1469 |
+
except (TypeError, ValueError):
|
1470 |
+
if is_scalar(arr_or_dtype):
|
1471 |
+
return condition(type(None))
|
1472 |
+
|
1473 |
+
return False
|
1474 |
+
|
1475 |
+
return condition(tipo)
|
1476 |
+
|
1477 |
+
|
1478 |
+
def infer_dtype_from_object(dtype) -> type:
|
1479 |
+
"""
|
1480 |
+
Get a numpy dtype.type-style object for a dtype object.
|
1481 |
+
|
1482 |
+
This methods also includes handling of the datetime64[ns] and
|
1483 |
+
datetime64[ns, TZ] objects.
|
1484 |
+
|
1485 |
+
If no dtype can be found, we return ``object``.
|
1486 |
+
|
1487 |
+
Parameters
|
1488 |
+
----------
|
1489 |
+
dtype : dtype, type
|
1490 |
+
The dtype object whose numpy dtype.type-style
|
1491 |
+
object we want to extract.
|
1492 |
+
|
1493 |
+
Returns
|
1494 |
+
-------
|
1495 |
+
type
|
1496 |
+
"""
|
1497 |
+
if isinstance(dtype, type) and issubclass(dtype, np.generic):
|
1498 |
+
# Type object from a dtype
|
1499 |
+
|
1500 |
+
return dtype
|
1501 |
+
elif isinstance(dtype, (np.dtype, ExtensionDtype)):
|
1502 |
+
# dtype object
|
1503 |
+
try:
|
1504 |
+
_validate_date_like_dtype(dtype)
|
1505 |
+
except TypeError:
|
1506 |
+
# Should still pass if we don't have a date-like
|
1507 |
+
pass
|
1508 |
+
if hasattr(dtype, "numpy_dtype"):
|
1509 |
+
# TODO: Implement this properly
|
1510 |
+
# https://github.com/pandas-dev/pandas/issues/52576
|
1511 |
+
return dtype.numpy_dtype.type
|
1512 |
+
return dtype.type
|
1513 |
+
|
1514 |
+
try:
|
1515 |
+
dtype = pandas_dtype(dtype)
|
1516 |
+
except TypeError:
|
1517 |
+
pass
|
1518 |
+
|
1519 |
+
if isinstance(dtype, ExtensionDtype):
|
1520 |
+
return dtype.type
|
1521 |
+
elif isinstance(dtype, str):
|
1522 |
+
# TODO(jreback)
|
1523 |
+
# should deprecate these
|
1524 |
+
if dtype in ["datetimetz", "datetime64tz"]:
|
1525 |
+
return DatetimeTZDtype.type
|
1526 |
+
elif dtype in ["period"]:
|
1527 |
+
raise NotImplementedError
|
1528 |
+
|
1529 |
+
if dtype in ["datetime", "timedelta"]:
|
1530 |
+
dtype += "64"
|
1531 |
+
try:
|
1532 |
+
return infer_dtype_from_object(getattr(np, dtype))
|
1533 |
+
except (AttributeError, TypeError):
|
1534 |
+
# Handles cases like _get_dtype(int) i.e.,
|
1535 |
+
# Python objects that are valid dtypes
|
1536 |
+
# (unlike user-defined types, in general)
|
1537 |
+
#
|
1538 |
+
# TypeError handles the float16 type code of 'e'
|
1539 |
+
# further handle internal types
|
1540 |
+
pass
|
1541 |
+
|
1542 |
+
return infer_dtype_from_object(np.dtype(dtype))
|
1543 |
+
|
1544 |
+
|
1545 |
+
def _validate_date_like_dtype(dtype) -> None:
|
1546 |
+
"""
|
1547 |
+
Check whether the dtype is a date-like dtype. Raises an error if invalid.
|
1548 |
+
|
1549 |
+
Parameters
|
1550 |
+
----------
|
1551 |
+
dtype : dtype, type
|
1552 |
+
The dtype to check.
|
1553 |
+
|
1554 |
+
Raises
|
1555 |
+
------
|
1556 |
+
TypeError : The dtype could not be casted to a date-like dtype.
|
1557 |
+
ValueError : The dtype is an illegal date-like dtype (e.g. the
|
1558 |
+
frequency provided is too specific)
|
1559 |
+
"""
|
1560 |
+
try:
|
1561 |
+
typ = np.datetime_data(dtype)[0]
|
1562 |
+
except ValueError as e:
|
1563 |
+
raise TypeError(e) from e
|
1564 |
+
if typ not in ["generic", "ns"]:
|
1565 |
+
raise ValueError(
|
1566 |
+
f"{repr(dtype.name)} is too specific of a frequency, "
|
1567 |
+
f"try passing {repr(dtype.type.__name__)}"
|
1568 |
+
)
|
1569 |
+
|
1570 |
+
|
1571 |
+
def validate_all_hashable(*args, error_name: str | None = None) -> None:
|
1572 |
+
"""
|
1573 |
+
Return None if all args are hashable, else raise a TypeError.
|
1574 |
+
|
1575 |
+
Parameters
|
1576 |
+
----------
|
1577 |
+
*args
|
1578 |
+
Arguments to validate.
|
1579 |
+
error_name : str, optional
|
1580 |
+
The name to use if error
|
1581 |
+
|
1582 |
+
Raises
|
1583 |
+
------
|
1584 |
+
TypeError : If an argument is not hashable
|
1585 |
+
|
1586 |
+
Returns
|
1587 |
+
-------
|
1588 |
+
None
|
1589 |
+
"""
|
1590 |
+
if not all(is_hashable(arg) for arg in args):
|
1591 |
+
if error_name:
|
1592 |
+
raise TypeError(f"{error_name} must be a hashable type")
|
1593 |
+
raise TypeError("All elements must be hashable")
|
1594 |
+
|
1595 |
+
|
1596 |
+
def pandas_dtype(dtype) -> DtypeObj:
|
1597 |
+
"""
|
1598 |
+
Convert input into a pandas only dtype object or a numpy dtype object.
|
1599 |
+
|
1600 |
+
Parameters
|
1601 |
+
----------
|
1602 |
+
dtype : object to be converted
|
1603 |
+
|
1604 |
+
Returns
|
1605 |
+
-------
|
1606 |
+
np.dtype or a pandas dtype
|
1607 |
+
|
1608 |
+
Raises
|
1609 |
+
------
|
1610 |
+
TypeError if not a dtype
|
1611 |
+
|
1612 |
+
Examples
|
1613 |
+
--------
|
1614 |
+
>>> pd.api.types.pandas_dtype(int)
|
1615 |
+
dtype('int64')
|
1616 |
+
"""
|
1617 |
+
# short-circuit
|
1618 |
+
if isinstance(dtype, np.ndarray):
|
1619 |
+
return dtype.dtype
|
1620 |
+
elif isinstance(dtype, (np.dtype, ExtensionDtype)):
|
1621 |
+
return dtype
|
1622 |
+
|
1623 |
+
# registered extension types
|
1624 |
+
result = registry.find(dtype)
|
1625 |
+
if result is not None:
|
1626 |
+
if isinstance(result, type):
|
1627 |
+
# GH 31356, GH 54592
|
1628 |
+
warnings.warn(
|
1629 |
+
f"Instantiating {result.__name__} without any arguments."
|
1630 |
+
f"Pass a {result.__name__} instance to silence this warning.",
|
1631 |
+
UserWarning,
|
1632 |
+
stacklevel=find_stack_level(),
|
1633 |
+
)
|
1634 |
+
result = result()
|
1635 |
+
return result
|
1636 |
+
|
1637 |
+
# try a numpy dtype
|
1638 |
+
# raise a consistent TypeError if failed
|
1639 |
+
try:
|
1640 |
+
with warnings.catch_warnings():
|
1641 |
+
# GH#51523 - Series.astype(np.integer) doesn't show
|
1642 |
+
# numpy deprecation warning of np.integer
|
1643 |
+
# Hence enabling DeprecationWarning
|
1644 |
+
warnings.simplefilter("always", DeprecationWarning)
|
1645 |
+
npdtype = np.dtype(dtype)
|
1646 |
+
except SyntaxError as err:
|
1647 |
+
# np.dtype uses `eval` which can raise SyntaxError
|
1648 |
+
raise TypeError(f"data type '{dtype}' not understood") from err
|
1649 |
+
|
1650 |
+
# Any invalid dtype (such as pd.Timestamp) should raise an error.
|
1651 |
+
# np.dtype(invalid_type).kind = 0 for such objects. However, this will
|
1652 |
+
# also catch some valid dtypes such as object, np.object_ and 'object'
|
1653 |
+
# which we safeguard against by catching them earlier and returning
|
1654 |
+
# np.dtype(valid_dtype) before this condition is evaluated.
|
1655 |
+
if is_hashable(dtype) and dtype in [
|
1656 |
+
object,
|
1657 |
+
np.object_,
|
1658 |
+
"object",
|
1659 |
+
"O",
|
1660 |
+
"object_",
|
1661 |
+
]:
|
1662 |
+
# check hashability to avoid errors/DeprecationWarning when we get
|
1663 |
+
# here and `dtype` is an array
|
1664 |
+
return npdtype
|
1665 |
+
elif npdtype.kind == "O":
|
1666 |
+
raise TypeError(f"dtype '{dtype}' not understood")
|
1667 |
+
|
1668 |
+
return npdtype
|
1669 |
+
|
1670 |
+
|
1671 |
+
def is_all_strings(value: ArrayLike) -> bool:
|
1672 |
+
"""
|
1673 |
+
Check if this is an array of strings that we should try parsing.
|
1674 |
+
|
1675 |
+
Includes object-dtype ndarray containing all-strings, StringArray,
|
1676 |
+
and Categorical with all-string categories.
|
1677 |
+
Does not include numpy string dtypes.
|
1678 |
+
"""
|
1679 |
+
dtype = value.dtype
|
1680 |
+
|
1681 |
+
if isinstance(dtype, np.dtype):
|
1682 |
+
if len(value) == 0:
|
1683 |
+
return dtype == np.dtype("object")
|
1684 |
+
else:
|
1685 |
+
return dtype == np.dtype("object") and lib.is_string_array(
|
1686 |
+
np.asarray(value), skipna=False
|
1687 |
+
)
|
1688 |
+
elif isinstance(dtype, CategoricalDtype):
|
1689 |
+
return dtype.categories.inferred_type == "string"
|
1690 |
+
return dtype == "string"
|
1691 |
+
|
1692 |
+
|
1693 |
+
__all__ = [
|
1694 |
+
"classes",
|
1695 |
+
"DT64NS_DTYPE",
|
1696 |
+
"ensure_float64",
|
1697 |
+
"ensure_python_int",
|
1698 |
+
"ensure_str",
|
1699 |
+
"infer_dtype_from_object",
|
1700 |
+
"INT64_DTYPE",
|
1701 |
+
"is_1d_only_ea_dtype",
|
1702 |
+
"is_all_strings",
|
1703 |
+
"is_any_real_numeric_dtype",
|
1704 |
+
"is_array_like",
|
1705 |
+
"is_bool",
|
1706 |
+
"is_bool_dtype",
|
1707 |
+
"is_categorical_dtype",
|
1708 |
+
"is_complex",
|
1709 |
+
"is_complex_dtype",
|
1710 |
+
"is_dataclass",
|
1711 |
+
"is_datetime64_any_dtype",
|
1712 |
+
"is_datetime64_dtype",
|
1713 |
+
"is_datetime64_ns_dtype",
|
1714 |
+
"is_datetime64tz_dtype",
|
1715 |
+
"is_decimal",
|
1716 |
+
"is_dict_like",
|
1717 |
+
"is_dtype_equal",
|
1718 |
+
"is_ea_or_datetimelike_dtype",
|
1719 |
+
"is_extension_array_dtype",
|
1720 |
+
"is_file_like",
|
1721 |
+
"is_float_dtype",
|
1722 |
+
"is_int64_dtype",
|
1723 |
+
"is_integer_dtype",
|
1724 |
+
"is_interval",
|
1725 |
+
"is_interval_dtype",
|
1726 |
+
"is_iterator",
|
1727 |
+
"is_named_tuple",
|
1728 |
+
"is_nested_list_like",
|
1729 |
+
"is_number",
|
1730 |
+
"is_numeric_dtype",
|
1731 |
+
"is_object_dtype",
|
1732 |
+
"is_period_dtype",
|
1733 |
+
"is_re",
|
1734 |
+
"is_re_compilable",
|
1735 |
+
"is_scipy_sparse",
|
1736 |
+
"is_sequence",
|
1737 |
+
"is_signed_integer_dtype",
|
1738 |
+
"is_sparse",
|
1739 |
+
"is_string_dtype",
|
1740 |
+
"is_string_or_object_np_dtype",
|
1741 |
+
"is_timedelta64_dtype",
|
1742 |
+
"is_timedelta64_ns_dtype",
|
1743 |
+
"is_unsigned_integer_dtype",
|
1744 |
+
"needs_i8_conversion",
|
1745 |
+
"pandas_dtype",
|
1746 |
+
"TD64NS_DTYPE",
|
1747 |
+
"validate_all_hashable",
|
1748 |
+
]
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/concat.py
ADDED
@@ -0,0 +1,348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Utility functions related to concat.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
cast,
|
9 |
+
)
|
10 |
+
import warnings
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from pandas._libs import lib
|
15 |
+
from pandas.util._exceptions import find_stack_level
|
16 |
+
|
17 |
+
from pandas.core.dtypes.astype import astype_array
|
18 |
+
from pandas.core.dtypes.cast import (
|
19 |
+
common_dtype_categorical_compat,
|
20 |
+
find_common_type,
|
21 |
+
np_find_common_type,
|
22 |
+
)
|
23 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
24 |
+
from pandas.core.dtypes.generic import (
|
25 |
+
ABCCategoricalIndex,
|
26 |
+
ABCSeries,
|
27 |
+
)
|
28 |
+
|
29 |
+
if TYPE_CHECKING:
|
30 |
+
from collections.abc import Sequence
|
31 |
+
|
32 |
+
from pandas._typing import (
|
33 |
+
ArrayLike,
|
34 |
+
AxisInt,
|
35 |
+
DtypeObj,
|
36 |
+
)
|
37 |
+
|
38 |
+
from pandas.core.arrays import (
|
39 |
+
Categorical,
|
40 |
+
ExtensionArray,
|
41 |
+
)
|
42 |
+
|
43 |
+
|
44 |
+
def _is_nonempty(x, axis) -> bool:
|
45 |
+
# filter empty arrays
|
46 |
+
# 1-d dtypes always are included here
|
47 |
+
if x.ndim <= axis:
|
48 |
+
return True
|
49 |
+
return x.shape[axis] > 0
|
50 |
+
|
51 |
+
|
52 |
+
def concat_compat(
|
53 |
+
to_concat: Sequence[ArrayLike], axis: AxisInt = 0, ea_compat_axis: bool = False
|
54 |
+
) -> ArrayLike:
|
55 |
+
"""
|
56 |
+
provide concatenation of an array of arrays each of which is a single
|
57 |
+
'normalized' dtypes (in that for example, if it's object, then it is a
|
58 |
+
non-datetimelike and provide a combined dtype for the resulting array that
|
59 |
+
preserves the overall dtype if possible)
|
60 |
+
|
61 |
+
Parameters
|
62 |
+
----------
|
63 |
+
to_concat : sequence of arrays
|
64 |
+
axis : axis to provide concatenation
|
65 |
+
ea_compat_axis : bool, default False
|
66 |
+
For ExtensionArray compat, behave as if axis == 1 when determining
|
67 |
+
whether to drop empty arrays.
|
68 |
+
|
69 |
+
Returns
|
70 |
+
-------
|
71 |
+
a single array, preserving the combined dtypes
|
72 |
+
"""
|
73 |
+
if len(to_concat) and lib.dtypes_all_equal([obj.dtype for obj in to_concat]):
|
74 |
+
# fastpath!
|
75 |
+
obj = to_concat[0]
|
76 |
+
if isinstance(obj, np.ndarray):
|
77 |
+
to_concat_arrs = cast("Sequence[np.ndarray]", to_concat)
|
78 |
+
return np.concatenate(to_concat_arrs, axis=axis)
|
79 |
+
|
80 |
+
to_concat_eas = cast("Sequence[ExtensionArray]", to_concat)
|
81 |
+
if ea_compat_axis:
|
82 |
+
# We have 1D objects, that don't support axis keyword
|
83 |
+
return obj._concat_same_type(to_concat_eas)
|
84 |
+
elif axis == 0:
|
85 |
+
return obj._concat_same_type(to_concat_eas)
|
86 |
+
else:
|
87 |
+
# e.g. DatetimeArray
|
88 |
+
# NB: We are assuming here that ensure_wrapped_if_arraylike has
|
89 |
+
# been called where relevant.
|
90 |
+
return obj._concat_same_type(
|
91 |
+
# error: Unexpected keyword argument "axis" for "_concat_same_type"
|
92 |
+
# of "ExtensionArray"
|
93 |
+
to_concat_eas,
|
94 |
+
axis=axis, # type: ignore[call-arg]
|
95 |
+
)
|
96 |
+
|
97 |
+
# If all arrays are empty, there's nothing to convert, just short-cut to
|
98 |
+
# the concatenation, #3121.
|
99 |
+
#
|
100 |
+
# Creating an empty array directly is tempting, but the winnings would be
|
101 |
+
# marginal given that it would still require shape & dtype calculation and
|
102 |
+
# np.concatenate which has them both implemented is compiled.
|
103 |
+
orig = to_concat
|
104 |
+
non_empties = [x for x in to_concat if _is_nonempty(x, axis)]
|
105 |
+
if non_empties and axis == 0 and not ea_compat_axis:
|
106 |
+
# ea_compat_axis see GH#39574
|
107 |
+
to_concat = non_empties
|
108 |
+
|
109 |
+
any_ea, kinds, target_dtype = _get_result_dtype(to_concat, non_empties)
|
110 |
+
|
111 |
+
if len(to_concat) < len(orig):
|
112 |
+
_, _, alt_dtype = _get_result_dtype(orig, non_empties)
|
113 |
+
if alt_dtype != target_dtype:
|
114 |
+
# GH#39122
|
115 |
+
warnings.warn(
|
116 |
+
"The behavior of array concatenation with empty entries is "
|
117 |
+
"deprecated. In a future version, this will no longer exclude "
|
118 |
+
"empty items when determining the result dtype. "
|
119 |
+
"To retain the old behavior, exclude the empty entries before "
|
120 |
+
"the concat operation.",
|
121 |
+
FutureWarning,
|
122 |
+
stacklevel=find_stack_level(),
|
123 |
+
)
|
124 |
+
|
125 |
+
if target_dtype is not None:
|
126 |
+
to_concat = [astype_array(arr, target_dtype, copy=False) for arr in to_concat]
|
127 |
+
|
128 |
+
if not isinstance(to_concat[0], np.ndarray):
|
129 |
+
# i.e. isinstance(to_concat[0], ExtensionArray)
|
130 |
+
to_concat_eas = cast("Sequence[ExtensionArray]", to_concat)
|
131 |
+
cls = type(to_concat[0])
|
132 |
+
# GH#53640: eg. for datetime array, axis=1 but 0 is default
|
133 |
+
# However, class method `_concat_same_type()` for some classes
|
134 |
+
# may not support the `axis` keyword
|
135 |
+
if ea_compat_axis or axis == 0:
|
136 |
+
return cls._concat_same_type(to_concat_eas)
|
137 |
+
else:
|
138 |
+
return cls._concat_same_type(
|
139 |
+
to_concat_eas,
|
140 |
+
axis=axis, # type: ignore[call-arg]
|
141 |
+
)
|
142 |
+
else:
|
143 |
+
to_concat_arrs = cast("Sequence[np.ndarray]", to_concat)
|
144 |
+
result = np.concatenate(to_concat_arrs, axis=axis)
|
145 |
+
|
146 |
+
if not any_ea and "b" in kinds and result.dtype.kind in "iuf":
|
147 |
+
# GH#39817 cast to object instead of casting bools to numeric
|
148 |
+
result = result.astype(object, copy=False)
|
149 |
+
return result
|
150 |
+
|
151 |
+
|
152 |
+
def _get_result_dtype(
|
153 |
+
to_concat: Sequence[ArrayLike], non_empties: Sequence[ArrayLike]
|
154 |
+
) -> tuple[bool, set[str], DtypeObj | None]:
|
155 |
+
target_dtype = None
|
156 |
+
|
157 |
+
dtypes = {obj.dtype for obj in to_concat}
|
158 |
+
kinds = {obj.dtype.kind for obj in to_concat}
|
159 |
+
|
160 |
+
any_ea = any(not isinstance(x, np.ndarray) for x in to_concat)
|
161 |
+
if any_ea:
|
162 |
+
# i.e. any ExtensionArrays
|
163 |
+
|
164 |
+
# we ignore axis here, as internally concatting with EAs is always
|
165 |
+
# for axis=0
|
166 |
+
if len(dtypes) != 1:
|
167 |
+
target_dtype = find_common_type([x.dtype for x in to_concat])
|
168 |
+
target_dtype = common_dtype_categorical_compat(to_concat, target_dtype)
|
169 |
+
|
170 |
+
elif not len(non_empties):
|
171 |
+
# we have all empties, but may need to coerce the result dtype to
|
172 |
+
# object if we have non-numeric type operands (numpy would otherwise
|
173 |
+
# cast this to float)
|
174 |
+
if len(kinds) != 1:
|
175 |
+
if not len(kinds - {"i", "u", "f"}) or not len(kinds - {"b", "i", "u"}):
|
176 |
+
# let numpy coerce
|
177 |
+
pass
|
178 |
+
else:
|
179 |
+
# coerce to object
|
180 |
+
target_dtype = np.dtype(object)
|
181 |
+
kinds = {"o"}
|
182 |
+
else:
|
183 |
+
# error: Argument 1 to "np_find_common_type" has incompatible type
|
184 |
+
# "*Set[Union[ExtensionDtype, Any]]"; expected "dtype[Any]"
|
185 |
+
target_dtype = np_find_common_type(*dtypes) # type: ignore[arg-type]
|
186 |
+
|
187 |
+
return any_ea, kinds, target_dtype
|
188 |
+
|
189 |
+
|
190 |
+
def union_categoricals(
|
191 |
+
to_union, sort_categories: bool = False, ignore_order: bool = False
|
192 |
+
) -> Categorical:
|
193 |
+
"""
|
194 |
+
Combine list-like of Categorical-like, unioning categories.
|
195 |
+
|
196 |
+
All categories must have the same dtype.
|
197 |
+
|
198 |
+
Parameters
|
199 |
+
----------
|
200 |
+
to_union : list-like
|
201 |
+
Categorical, CategoricalIndex, or Series with dtype='category'.
|
202 |
+
sort_categories : bool, default False
|
203 |
+
If true, resulting categories will be lexsorted, otherwise
|
204 |
+
they will be ordered as they appear in the data.
|
205 |
+
ignore_order : bool, default False
|
206 |
+
If true, the ordered attribute of the Categoricals will be ignored.
|
207 |
+
Results in an unordered categorical.
|
208 |
+
|
209 |
+
Returns
|
210 |
+
-------
|
211 |
+
Categorical
|
212 |
+
|
213 |
+
Raises
|
214 |
+
------
|
215 |
+
TypeError
|
216 |
+
- all inputs do not have the same dtype
|
217 |
+
- all inputs do not have the same ordered property
|
218 |
+
- all inputs are ordered and their categories are not identical
|
219 |
+
- sort_categories=True and Categoricals are ordered
|
220 |
+
ValueError
|
221 |
+
Empty list of categoricals passed
|
222 |
+
|
223 |
+
Notes
|
224 |
+
-----
|
225 |
+
To learn more about categories, see `link
|
226 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/categorical.html#unioning>`__
|
227 |
+
|
228 |
+
Examples
|
229 |
+
--------
|
230 |
+
If you want to combine categoricals that do not necessarily have
|
231 |
+
the same categories, `union_categoricals` will combine a list-like
|
232 |
+
of categoricals. The new categories will be the union of the
|
233 |
+
categories being combined.
|
234 |
+
|
235 |
+
>>> a = pd.Categorical(["b", "c"])
|
236 |
+
>>> b = pd.Categorical(["a", "b"])
|
237 |
+
>>> pd.api.types.union_categoricals([a, b])
|
238 |
+
['b', 'c', 'a', 'b']
|
239 |
+
Categories (3, object): ['b', 'c', 'a']
|
240 |
+
|
241 |
+
By default, the resulting categories will be ordered as they appear
|
242 |
+
in the `categories` of the data. If you want the categories to be
|
243 |
+
lexsorted, use `sort_categories=True` argument.
|
244 |
+
|
245 |
+
>>> pd.api.types.union_categoricals([a, b], sort_categories=True)
|
246 |
+
['b', 'c', 'a', 'b']
|
247 |
+
Categories (3, object): ['a', 'b', 'c']
|
248 |
+
|
249 |
+
`union_categoricals` also works with the case of combining two
|
250 |
+
categoricals of the same categories and order information (e.g. what
|
251 |
+
you could also `append` for).
|
252 |
+
|
253 |
+
>>> a = pd.Categorical(["a", "b"], ordered=True)
|
254 |
+
>>> b = pd.Categorical(["a", "b", "a"], ordered=True)
|
255 |
+
>>> pd.api.types.union_categoricals([a, b])
|
256 |
+
['a', 'b', 'a', 'b', 'a']
|
257 |
+
Categories (2, object): ['a' < 'b']
|
258 |
+
|
259 |
+
Raises `TypeError` because the categories are ordered and not identical.
|
260 |
+
|
261 |
+
>>> a = pd.Categorical(["a", "b"], ordered=True)
|
262 |
+
>>> b = pd.Categorical(["a", "b", "c"], ordered=True)
|
263 |
+
>>> pd.api.types.union_categoricals([a, b])
|
264 |
+
Traceback (most recent call last):
|
265 |
+
...
|
266 |
+
TypeError: to union ordered Categoricals, all categories must be the same
|
267 |
+
|
268 |
+
Ordered categoricals with different categories or orderings can be
|
269 |
+
combined by using the `ignore_ordered=True` argument.
|
270 |
+
|
271 |
+
>>> a = pd.Categorical(["a", "b", "c"], ordered=True)
|
272 |
+
>>> b = pd.Categorical(["c", "b", "a"], ordered=True)
|
273 |
+
>>> pd.api.types.union_categoricals([a, b], ignore_order=True)
|
274 |
+
['a', 'b', 'c', 'c', 'b', 'a']
|
275 |
+
Categories (3, object): ['a', 'b', 'c']
|
276 |
+
|
277 |
+
`union_categoricals` also works with a `CategoricalIndex`, or `Series`
|
278 |
+
containing categorical data, but note that the resulting array will
|
279 |
+
always be a plain `Categorical`
|
280 |
+
|
281 |
+
>>> a = pd.Series(["b", "c"], dtype='category')
|
282 |
+
>>> b = pd.Series(["a", "b"], dtype='category')
|
283 |
+
>>> pd.api.types.union_categoricals([a, b])
|
284 |
+
['b', 'c', 'a', 'b']
|
285 |
+
Categories (3, object): ['b', 'c', 'a']
|
286 |
+
"""
|
287 |
+
from pandas import Categorical
|
288 |
+
from pandas.core.arrays.categorical import recode_for_categories
|
289 |
+
|
290 |
+
if len(to_union) == 0:
|
291 |
+
raise ValueError("No Categoricals to union")
|
292 |
+
|
293 |
+
def _maybe_unwrap(x):
|
294 |
+
if isinstance(x, (ABCCategoricalIndex, ABCSeries)):
|
295 |
+
return x._values
|
296 |
+
elif isinstance(x, Categorical):
|
297 |
+
return x
|
298 |
+
else:
|
299 |
+
raise TypeError("all components to combine must be Categorical")
|
300 |
+
|
301 |
+
to_union = [_maybe_unwrap(x) for x in to_union]
|
302 |
+
first = to_union[0]
|
303 |
+
|
304 |
+
if not lib.dtypes_all_equal([obj.categories.dtype for obj in to_union]):
|
305 |
+
raise TypeError("dtype of categories must be the same")
|
306 |
+
|
307 |
+
ordered = False
|
308 |
+
if all(first._categories_match_up_to_permutation(other) for other in to_union[1:]):
|
309 |
+
# identical categories - fastpath
|
310 |
+
categories = first.categories
|
311 |
+
ordered = first.ordered
|
312 |
+
|
313 |
+
all_codes = [first._encode_with_my_categories(x)._codes for x in to_union]
|
314 |
+
new_codes = np.concatenate(all_codes)
|
315 |
+
|
316 |
+
if sort_categories and not ignore_order and ordered:
|
317 |
+
raise TypeError("Cannot use sort_categories=True with ordered Categoricals")
|
318 |
+
|
319 |
+
if sort_categories and not categories.is_monotonic_increasing:
|
320 |
+
categories = categories.sort_values()
|
321 |
+
indexer = categories.get_indexer(first.categories)
|
322 |
+
|
323 |
+
from pandas.core.algorithms import take_nd
|
324 |
+
|
325 |
+
new_codes = take_nd(indexer, new_codes, fill_value=-1)
|
326 |
+
elif ignore_order or all(not c.ordered for c in to_union):
|
327 |
+
# different categories - union and recode
|
328 |
+
cats = first.categories.append([c.categories for c in to_union[1:]])
|
329 |
+
categories = cats.unique()
|
330 |
+
if sort_categories:
|
331 |
+
categories = categories.sort_values()
|
332 |
+
|
333 |
+
new_codes = [
|
334 |
+
recode_for_categories(c.codes, c.categories, categories) for c in to_union
|
335 |
+
]
|
336 |
+
new_codes = np.concatenate(new_codes)
|
337 |
+
else:
|
338 |
+
# ordered - to show a proper error message
|
339 |
+
if all(c.ordered for c in to_union):
|
340 |
+
msg = "to union ordered Categoricals, all categories must be the same"
|
341 |
+
raise TypeError(msg)
|
342 |
+
raise TypeError("Categorical.ordered must be the same")
|
343 |
+
|
344 |
+
if ignore_order:
|
345 |
+
ordered = False
|
346 |
+
|
347 |
+
dtype = CategoricalDtype(categories=categories, ordered=ordered)
|
348 |
+
return Categorical._simple_new(new_codes, dtype=dtype)
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/dtypes.py
ADDED
@@ -0,0 +1,2348 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Define extension dtypes.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from datetime import (
|
7 |
+
date,
|
8 |
+
datetime,
|
9 |
+
time,
|
10 |
+
timedelta,
|
11 |
+
)
|
12 |
+
from decimal import Decimal
|
13 |
+
import re
|
14 |
+
from typing import (
|
15 |
+
TYPE_CHECKING,
|
16 |
+
Any,
|
17 |
+
cast,
|
18 |
+
)
|
19 |
+
import warnings
|
20 |
+
|
21 |
+
import numpy as np
|
22 |
+
import pytz
|
23 |
+
|
24 |
+
from pandas._libs import (
|
25 |
+
lib,
|
26 |
+
missing as libmissing,
|
27 |
+
)
|
28 |
+
from pandas._libs.interval import Interval
|
29 |
+
from pandas._libs.properties import cache_readonly
|
30 |
+
from pandas._libs.tslibs import (
|
31 |
+
BaseOffset,
|
32 |
+
NaT,
|
33 |
+
NaTType,
|
34 |
+
Period,
|
35 |
+
Timedelta,
|
36 |
+
Timestamp,
|
37 |
+
timezones,
|
38 |
+
to_offset,
|
39 |
+
tz_compare,
|
40 |
+
)
|
41 |
+
from pandas._libs.tslibs.dtypes import (
|
42 |
+
PeriodDtypeBase,
|
43 |
+
abbrev_to_npy_unit,
|
44 |
+
)
|
45 |
+
from pandas._libs.tslibs.offsets import BDay
|
46 |
+
from pandas.compat import pa_version_under10p1
|
47 |
+
from pandas.errors import PerformanceWarning
|
48 |
+
from pandas.util._exceptions import find_stack_level
|
49 |
+
|
50 |
+
from pandas.core.dtypes.base import (
|
51 |
+
ExtensionDtype,
|
52 |
+
StorageExtensionDtype,
|
53 |
+
register_extension_dtype,
|
54 |
+
)
|
55 |
+
from pandas.core.dtypes.generic import (
|
56 |
+
ABCCategoricalIndex,
|
57 |
+
ABCIndex,
|
58 |
+
ABCRangeIndex,
|
59 |
+
)
|
60 |
+
from pandas.core.dtypes.inference import (
|
61 |
+
is_bool,
|
62 |
+
is_list_like,
|
63 |
+
)
|
64 |
+
|
65 |
+
from pandas.util import capitalize_first_letter
|
66 |
+
|
67 |
+
if not pa_version_under10p1:
|
68 |
+
import pyarrow as pa
|
69 |
+
|
70 |
+
if TYPE_CHECKING:
|
71 |
+
from collections.abc import MutableMapping
|
72 |
+
from datetime import tzinfo
|
73 |
+
|
74 |
+
import pyarrow as pa # noqa: TCH004
|
75 |
+
|
76 |
+
from pandas._typing import (
|
77 |
+
Dtype,
|
78 |
+
DtypeObj,
|
79 |
+
IntervalClosedType,
|
80 |
+
Ordered,
|
81 |
+
Self,
|
82 |
+
npt,
|
83 |
+
type_t,
|
84 |
+
)
|
85 |
+
|
86 |
+
from pandas import (
|
87 |
+
Categorical,
|
88 |
+
CategoricalIndex,
|
89 |
+
DatetimeIndex,
|
90 |
+
Index,
|
91 |
+
IntervalIndex,
|
92 |
+
PeriodIndex,
|
93 |
+
)
|
94 |
+
from pandas.core.arrays import (
|
95 |
+
BaseMaskedArray,
|
96 |
+
DatetimeArray,
|
97 |
+
IntervalArray,
|
98 |
+
NumpyExtensionArray,
|
99 |
+
PeriodArray,
|
100 |
+
SparseArray,
|
101 |
+
)
|
102 |
+
from pandas.core.arrays.arrow import ArrowExtensionArray
|
103 |
+
|
104 |
+
str_type = str
|
105 |
+
|
106 |
+
|
107 |
+
class PandasExtensionDtype(ExtensionDtype):
|
108 |
+
"""
|
109 |
+
A np.dtype duck-typed class, suitable for holding a custom dtype.
|
110 |
+
|
111 |
+
THIS IS NOT A REAL NUMPY DTYPE
|
112 |
+
"""
|
113 |
+
|
114 |
+
type: Any
|
115 |
+
kind: Any
|
116 |
+
# The Any type annotations above are here only because mypy seems to have a
|
117 |
+
# problem dealing with multiple inheritance from PandasExtensionDtype
|
118 |
+
# and ExtensionDtype's @properties in the subclasses below. The kind and
|
119 |
+
# type variables in those subclasses are explicitly typed below.
|
120 |
+
subdtype = None
|
121 |
+
str: str_type
|
122 |
+
num = 100
|
123 |
+
shape: tuple[int, ...] = ()
|
124 |
+
itemsize = 8
|
125 |
+
base: DtypeObj | None = None
|
126 |
+
isbuiltin = 0
|
127 |
+
isnative = 0
|
128 |
+
_cache_dtypes: dict[str_type, PandasExtensionDtype] = {}
|
129 |
+
|
130 |
+
def __repr__(self) -> str_type:
|
131 |
+
"""
|
132 |
+
Return a string representation for a particular object.
|
133 |
+
"""
|
134 |
+
return str(self)
|
135 |
+
|
136 |
+
def __hash__(self) -> int:
|
137 |
+
raise NotImplementedError("sub-classes should implement an __hash__ method")
|
138 |
+
|
139 |
+
def __getstate__(self) -> dict[str_type, Any]:
|
140 |
+
# pickle support; we don't want to pickle the cache
|
141 |
+
return {k: getattr(self, k, None) for k in self._metadata}
|
142 |
+
|
143 |
+
@classmethod
|
144 |
+
def reset_cache(cls) -> None:
|
145 |
+
"""clear the cache"""
|
146 |
+
cls._cache_dtypes = {}
|
147 |
+
|
148 |
+
|
149 |
+
class CategoricalDtypeType(type):
|
150 |
+
"""
|
151 |
+
the type of CategoricalDtype, this metaclass determines subclass ability
|
152 |
+
"""
|
153 |
+
|
154 |
+
|
155 |
+
@register_extension_dtype
|
156 |
+
class CategoricalDtype(PandasExtensionDtype, ExtensionDtype):
|
157 |
+
"""
|
158 |
+
Type for categorical data with the categories and orderedness.
|
159 |
+
|
160 |
+
Parameters
|
161 |
+
----------
|
162 |
+
categories : sequence, optional
|
163 |
+
Must be unique, and must not contain any nulls.
|
164 |
+
The categories are stored in an Index,
|
165 |
+
and if an index is provided the dtype of that index will be used.
|
166 |
+
ordered : bool or None, default False
|
167 |
+
Whether or not this categorical is treated as a ordered categorical.
|
168 |
+
None can be used to maintain the ordered value of existing categoricals when
|
169 |
+
used in operations that combine categoricals, e.g. astype, and will resolve to
|
170 |
+
False if there is no existing ordered to maintain.
|
171 |
+
|
172 |
+
Attributes
|
173 |
+
----------
|
174 |
+
categories
|
175 |
+
ordered
|
176 |
+
|
177 |
+
Methods
|
178 |
+
-------
|
179 |
+
None
|
180 |
+
|
181 |
+
See Also
|
182 |
+
--------
|
183 |
+
Categorical : Represent a categorical variable in classic R / S-plus fashion.
|
184 |
+
|
185 |
+
Notes
|
186 |
+
-----
|
187 |
+
This class is useful for specifying the type of a ``Categorical``
|
188 |
+
independent of the values. See :ref:`categorical.categoricaldtype`
|
189 |
+
for more.
|
190 |
+
|
191 |
+
Examples
|
192 |
+
--------
|
193 |
+
>>> t = pd.CategoricalDtype(categories=['b', 'a'], ordered=True)
|
194 |
+
>>> pd.Series(['a', 'b', 'a', 'c'], dtype=t)
|
195 |
+
0 a
|
196 |
+
1 b
|
197 |
+
2 a
|
198 |
+
3 NaN
|
199 |
+
dtype: category
|
200 |
+
Categories (2, object): ['b' < 'a']
|
201 |
+
|
202 |
+
An empty CategoricalDtype with a specific dtype can be created
|
203 |
+
by providing an empty index. As follows,
|
204 |
+
|
205 |
+
>>> pd.CategoricalDtype(pd.DatetimeIndex([])).categories.dtype
|
206 |
+
dtype('<M8[ns]')
|
207 |
+
"""
|
208 |
+
|
209 |
+
# TODO: Document public vs. private API
|
210 |
+
name = "category"
|
211 |
+
type: type[CategoricalDtypeType] = CategoricalDtypeType
|
212 |
+
kind: str_type = "O"
|
213 |
+
str = "|O08"
|
214 |
+
base = np.dtype("O")
|
215 |
+
_metadata = ("categories", "ordered")
|
216 |
+
_cache_dtypes: dict[str_type, PandasExtensionDtype] = {}
|
217 |
+
_supports_2d = False
|
218 |
+
_can_fast_transpose = False
|
219 |
+
|
220 |
+
def __init__(self, categories=None, ordered: Ordered = False) -> None:
|
221 |
+
self._finalize(categories, ordered, fastpath=False)
|
222 |
+
|
223 |
+
@classmethod
|
224 |
+
def _from_fastpath(
|
225 |
+
cls, categories=None, ordered: bool | None = None
|
226 |
+
) -> CategoricalDtype:
|
227 |
+
self = cls.__new__(cls)
|
228 |
+
self._finalize(categories, ordered, fastpath=True)
|
229 |
+
return self
|
230 |
+
|
231 |
+
@classmethod
|
232 |
+
def _from_categorical_dtype(
|
233 |
+
cls, dtype: CategoricalDtype, categories=None, ordered: Ordered | None = None
|
234 |
+
) -> CategoricalDtype:
|
235 |
+
if categories is ordered is None:
|
236 |
+
return dtype
|
237 |
+
if categories is None:
|
238 |
+
categories = dtype.categories
|
239 |
+
if ordered is None:
|
240 |
+
ordered = dtype.ordered
|
241 |
+
return cls(categories, ordered)
|
242 |
+
|
243 |
+
@classmethod
|
244 |
+
def _from_values_or_dtype(
|
245 |
+
cls,
|
246 |
+
values=None,
|
247 |
+
categories=None,
|
248 |
+
ordered: bool | None = None,
|
249 |
+
dtype: Dtype | None = None,
|
250 |
+
) -> CategoricalDtype:
|
251 |
+
"""
|
252 |
+
Construct dtype from the input parameters used in :class:`Categorical`.
|
253 |
+
|
254 |
+
This constructor method specifically does not do the factorization
|
255 |
+
step, if that is needed to find the categories. This constructor may
|
256 |
+
therefore return ``CategoricalDtype(categories=None, ordered=None)``,
|
257 |
+
which may not be useful. Additional steps may therefore have to be
|
258 |
+
taken to create the final dtype.
|
259 |
+
|
260 |
+
The return dtype is specified from the inputs in this prioritized
|
261 |
+
order:
|
262 |
+
1. if dtype is a CategoricalDtype, return dtype
|
263 |
+
2. if dtype is the string 'category', create a CategoricalDtype from
|
264 |
+
the supplied categories and ordered parameters, and return that.
|
265 |
+
3. if values is a categorical, use value.dtype, but override it with
|
266 |
+
categories and ordered if either/both of those are not None.
|
267 |
+
4. if dtype is None and values is not a categorical, construct the
|
268 |
+
dtype from categories and ordered, even if either of those is None.
|
269 |
+
|
270 |
+
Parameters
|
271 |
+
----------
|
272 |
+
values : list-like, optional
|
273 |
+
The list-like must be 1-dimensional.
|
274 |
+
categories : list-like, optional
|
275 |
+
Categories for the CategoricalDtype.
|
276 |
+
ordered : bool, optional
|
277 |
+
Designating if the categories are ordered.
|
278 |
+
dtype : CategoricalDtype or the string "category", optional
|
279 |
+
If ``CategoricalDtype``, cannot be used together with
|
280 |
+
`categories` or `ordered`.
|
281 |
+
|
282 |
+
Returns
|
283 |
+
-------
|
284 |
+
CategoricalDtype
|
285 |
+
|
286 |
+
Examples
|
287 |
+
--------
|
288 |
+
>>> pd.CategoricalDtype._from_values_or_dtype()
|
289 |
+
CategoricalDtype(categories=None, ordered=None, categories_dtype=None)
|
290 |
+
>>> pd.CategoricalDtype._from_values_or_dtype(
|
291 |
+
... categories=['a', 'b'], ordered=True
|
292 |
+
... )
|
293 |
+
CategoricalDtype(categories=['a', 'b'], ordered=True, categories_dtype=object)
|
294 |
+
>>> dtype1 = pd.CategoricalDtype(['a', 'b'], ordered=True)
|
295 |
+
>>> dtype2 = pd.CategoricalDtype(['x', 'y'], ordered=False)
|
296 |
+
>>> c = pd.Categorical([0, 1], dtype=dtype1)
|
297 |
+
>>> pd.CategoricalDtype._from_values_or_dtype(
|
298 |
+
... c, ['x', 'y'], ordered=True, dtype=dtype2
|
299 |
+
... )
|
300 |
+
Traceback (most recent call last):
|
301 |
+
...
|
302 |
+
ValueError: Cannot specify `categories` or `ordered` together with
|
303 |
+
`dtype`.
|
304 |
+
|
305 |
+
The supplied dtype takes precedence over values' dtype:
|
306 |
+
|
307 |
+
>>> pd.CategoricalDtype._from_values_or_dtype(c, dtype=dtype2)
|
308 |
+
CategoricalDtype(categories=['x', 'y'], ordered=False, categories_dtype=object)
|
309 |
+
"""
|
310 |
+
|
311 |
+
if dtype is not None:
|
312 |
+
# The dtype argument takes precedence over values.dtype (if any)
|
313 |
+
if isinstance(dtype, str):
|
314 |
+
if dtype == "category":
|
315 |
+
if ordered is None and cls.is_dtype(values):
|
316 |
+
# GH#49309 preserve orderedness
|
317 |
+
ordered = values.dtype.ordered
|
318 |
+
|
319 |
+
dtype = CategoricalDtype(categories, ordered)
|
320 |
+
else:
|
321 |
+
raise ValueError(f"Unknown dtype {repr(dtype)}")
|
322 |
+
elif categories is not None or ordered is not None:
|
323 |
+
raise ValueError(
|
324 |
+
"Cannot specify `categories` or `ordered` together with `dtype`."
|
325 |
+
)
|
326 |
+
elif not isinstance(dtype, CategoricalDtype):
|
327 |
+
raise ValueError(f"Cannot not construct CategoricalDtype from {dtype}")
|
328 |
+
elif cls.is_dtype(values):
|
329 |
+
# If no "dtype" was passed, use the one from "values", but honor
|
330 |
+
# the "ordered" and "categories" arguments
|
331 |
+
dtype = values.dtype._from_categorical_dtype(
|
332 |
+
values.dtype, categories, ordered
|
333 |
+
)
|
334 |
+
else:
|
335 |
+
# If dtype=None and values is not categorical, create a new dtype.
|
336 |
+
# Note: This could potentially have categories=None and
|
337 |
+
# ordered=None.
|
338 |
+
dtype = CategoricalDtype(categories, ordered)
|
339 |
+
|
340 |
+
return cast(CategoricalDtype, dtype)
|
341 |
+
|
342 |
+
@classmethod
|
343 |
+
def construct_from_string(cls, string: str_type) -> CategoricalDtype:
|
344 |
+
"""
|
345 |
+
Construct a CategoricalDtype from a string.
|
346 |
+
|
347 |
+
Parameters
|
348 |
+
----------
|
349 |
+
string : str
|
350 |
+
Must be the string "category" in order to be successfully constructed.
|
351 |
+
|
352 |
+
Returns
|
353 |
+
-------
|
354 |
+
CategoricalDtype
|
355 |
+
Instance of the dtype.
|
356 |
+
|
357 |
+
Raises
|
358 |
+
------
|
359 |
+
TypeError
|
360 |
+
If a CategoricalDtype cannot be constructed from the input.
|
361 |
+
"""
|
362 |
+
if not isinstance(string, str):
|
363 |
+
raise TypeError(
|
364 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
365 |
+
)
|
366 |
+
if string != cls.name:
|
367 |
+
raise TypeError(f"Cannot construct a 'CategoricalDtype' from '{string}'")
|
368 |
+
|
369 |
+
# need ordered=None to ensure that operations specifying dtype="category" don't
|
370 |
+
# override the ordered value for existing categoricals
|
371 |
+
return cls(ordered=None)
|
372 |
+
|
373 |
+
def _finalize(self, categories, ordered: Ordered, fastpath: bool = False) -> None:
|
374 |
+
if ordered is not None:
|
375 |
+
self.validate_ordered(ordered)
|
376 |
+
|
377 |
+
if categories is not None:
|
378 |
+
categories = self.validate_categories(categories, fastpath=fastpath)
|
379 |
+
|
380 |
+
self._categories = categories
|
381 |
+
self._ordered = ordered
|
382 |
+
|
383 |
+
def __setstate__(self, state: MutableMapping[str_type, Any]) -> None:
|
384 |
+
# for pickle compat. __get_state__ is defined in the
|
385 |
+
# PandasExtensionDtype superclass and uses the public properties to
|
386 |
+
# pickle -> need to set the settable private ones here (see GH26067)
|
387 |
+
self._categories = state.pop("categories", None)
|
388 |
+
self._ordered = state.pop("ordered", False)
|
389 |
+
|
390 |
+
def __hash__(self) -> int:
|
391 |
+
# _hash_categories returns a uint64, so use the negative
|
392 |
+
# space for when we have unknown categories to avoid a conflict
|
393 |
+
if self.categories is None:
|
394 |
+
if self.ordered:
|
395 |
+
return -1
|
396 |
+
else:
|
397 |
+
return -2
|
398 |
+
# We *do* want to include the real self.ordered here
|
399 |
+
return int(self._hash_categories)
|
400 |
+
|
401 |
+
def __eq__(self, other: object) -> bool:
|
402 |
+
"""
|
403 |
+
Rules for CDT equality:
|
404 |
+
1) Any CDT is equal to the string 'category'
|
405 |
+
2) Any CDT is equal to itself
|
406 |
+
3) Any CDT is equal to a CDT with categories=None regardless of ordered
|
407 |
+
4) A CDT with ordered=True is only equal to another CDT with
|
408 |
+
ordered=True and identical categories in the same order
|
409 |
+
5) A CDT with ordered={False, None} is only equal to another CDT with
|
410 |
+
ordered={False, None} and identical categories, but same order is
|
411 |
+
not required. There is no distinction between False/None.
|
412 |
+
6) Any other comparison returns False
|
413 |
+
"""
|
414 |
+
if isinstance(other, str):
|
415 |
+
return other == self.name
|
416 |
+
elif other is self:
|
417 |
+
return True
|
418 |
+
elif not (hasattr(other, "ordered") and hasattr(other, "categories")):
|
419 |
+
return False
|
420 |
+
elif self.categories is None or other.categories is None:
|
421 |
+
# For non-fully-initialized dtypes, these are only equal to
|
422 |
+
# - the string "category" (handled above)
|
423 |
+
# - other CategoricalDtype with categories=None
|
424 |
+
return self.categories is other.categories
|
425 |
+
elif self.ordered or other.ordered:
|
426 |
+
# At least one has ordered=True; equal if both have ordered=True
|
427 |
+
# and the same values for categories in the same order.
|
428 |
+
return (self.ordered == other.ordered) and self.categories.equals(
|
429 |
+
other.categories
|
430 |
+
)
|
431 |
+
else:
|
432 |
+
# Neither has ordered=True; equal if both have the same categories,
|
433 |
+
# but same order is not necessary. There is no distinction between
|
434 |
+
# ordered=False and ordered=None: CDT(., False) and CDT(., None)
|
435 |
+
# will be equal if they have the same categories.
|
436 |
+
left = self.categories
|
437 |
+
right = other.categories
|
438 |
+
|
439 |
+
# GH#36280 the ordering of checks here is for performance
|
440 |
+
if not left.dtype == right.dtype:
|
441 |
+
return False
|
442 |
+
|
443 |
+
if len(left) != len(right):
|
444 |
+
return False
|
445 |
+
|
446 |
+
if self.categories.equals(other.categories):
|
447 |
+
# Check and see if they happen to be identical categories
|
448 |
+
return True
|
449 |
+
|
450 |
+
if left.dtype != object:
|
451 |
+
# Faster than calculating hash
|
452 |
+
indexer = left.get_indexer(right)
|
453 |
+
# Because left and right have the same length and are unique,
|
454 |
+
# `indexer` not having any -1s implies that there is a
|
455 |
+
# bijection between `left` and `right`.
|
456 |
+
return (indexer != -1).all()
|
457 |
+
|
458 |
+
# With object-dtype we need a comparison that identifies
|
459 |
+
# e.g. int(2) as distinct from float(2)
|
460 |
+
return set(left) == set(right)
|
461 |
+
|
462 |
+
def __repr__(self) -> str_type:
|
463 |
+
if self.categories is None:
|
464 |
+
data = "None"
|
465 |
+
dtype = "None"
|
466 |
+
else:
|
467 |
+
data = self.categories._format_data(name=type(self).__name__)
|
468 |
+
if isinstance(self.categories, ABCRangeIndex):
|
469 |
+
data = str(self.categories._range)
|
470 |
+
data = data.rstrip(", ")
|
471 |
+
dtype = self.categories.dtype
|
472 |
+
|
473 |
+
return (
|
474 |
+
f"CategoricalDtype(categories={data}, ordered={self.ordered}, "
|
475 |
+
f"categories_dtype={dtype})"
|
476 |
+
)
|
477 |
+
|
478 |
+
@cache_readonly
|
479 |
+
def _hash_categories(self) -> int:
|
480 |
+
from pandas.core.util.hashing import (
|
481 |
+
combine_hash_arrays,
|
482 |
+
hash_array,
|
483 |
+
hash_tuples,
|
484 |
+
)
|
485 |
+
|
486 |
+
categories = self.categories
|
487 |
+
ordered = self.ordered
|
488 |
+
|
489 |
+
if len(categories) and isinstance(categories[0], tuple):
|
490 |
+
# assumes if any individual category is a tuple, then all our. ATM
|
491 |
+
# I don't really want to support just some of the categories being
|
492 |
+
# tuples.
|
493 |
+
cat_list = list(categories) # breaks if a np.array of categories
|
494 |
+
cat_array = hash_tuples(cat_list)
|
495 |
+
else:
|
496 |
+
if categories.dtype == "O" and len({type(x) for x in categories}) != 1:
|
497 |
+
# TODO: hash_array doesn't handle mixed types. It casts
|
498 |
+
# everything to a str first, which means we treat
|
499 |
+
# {'1', '2'} the same as {'1', 2}
|
500 |
+
# find a better solution
|
501 |
+
hashed = hash((tuple(categories), ordered))
|
502 |
+
return hashed
|
503 |
+
|
504 |
+
if DatetimeTZDtype.is_dtype(categories.dtype):
|
505 |
+
# Avoid future warning.
|
506 |
+
categories = categories.view("datetime64[ns]")
|
507 |
+
|
508 |
+
cat_array = hash_array(np.asarray(categories), categorize=False)
|
509 |
+
if ordered:
|
510 |
+
cat_array = np.vstack(
|
511 |
+
[cat_array, np.arange(len(cat_array), dtype=cat_array.dtype)]
|
512 |
+
)
|
513 |
+
else:
|
514 |
+
cat_array = np.array([cat_array])
|
515 |
+
combined_hashed = combine_hash_arrays(iter(cat_array), num_items=len(cat_array))
|
516 |
+
return np.bitwise_xor.reduce(combined_hashed)
|
517 |
+
|
518 |
+
@classmethod
|
519 |
+
def construct_array_type(cls) -> type_t[Categorical]:
|
520 |
+
"""
|
521 |
+
Return the array type associated with this dtype.
|
522 |
+
|
523 |
+
Returns
|
524 |
+
-------
|
525 |
+
type
|
526 |
+
"""
|
527 |
+
from pandas import Categorical
|
528 |
+
|
529 |
+
return Categorical
|
530 |
+
|
531 |
+
@staticmethod
|
532 |
+
def validate_ordered(ordered: Ordered) -> None:
|
533 |
+
"""
|
534 |
+
Validates that we have a valid ordered parameter. If
|
535 |
+
it is not a boolean, a TypeError will be raised.
|
536 |
+
|
537 |
+
Parameters
|
538 |
+
----------
|
539 |
+
ordered : object
|
540 |
+
The parameter to be verified.
|
541 |
+
|
542 |
+
Raises
|
543 |
+
------
|
544 |
+
TypeError
|
545 |
+
If 'ordered' is not a boolean.
|
546 |
+
"""
|
547 |
+
if not is_bool(ordered):
|
548 |
+
raise TypeError("'ordered' must either be 'True' or 'False'")
|
549 |
+
|
550 |
+
@staticmethod
|
551 |
+
def validate_categories(categories, fastpath: bool = False) -> Index:
|
552 |
+
"""
|
553 |
+
Validates that we have good categories
|
554 |
+
|
555 |
+
Parameters
|
556 |
+
----------
|
557 |
+
categories : array-like
|
558 |
+
fastpath : bool
|
559 |
+
Whether to skip nan and uniqueness checks
|
560 |
+
|
561 |
+
Returns
|
562 |
+
-------
|
563 |
+
categories : Index
|
564 |
+
"""
|
565 |
+
from pandas.core.indexes.base import Index
|
566 |
+
|
567 |
+
if not fastpath and not is_list_like(categories):
|
568 |
+
raise TypeError(
|
569 |
+
f"Parameter 'categories' must be list-like, was {repr(categories)}"
|
570 |
+
)
|
571 |
+
if not isinstance(categories, ABCIndex):
|
572 |
+
categories = Index._with_infer(categories, tupleize_cols=False)
|
573 |
+
|
574 |
+
if not fastpath:
|
575 |
+
if categories.hasnans:
|
576 |
+
raise ValueError("Categorical categories cannot be null")
|
577 |
+
|
578 |
+
if not categories.is_unique:
|
579 |
+
raise ValueError("Categorical categories must be unique")
|
580 |
+
|
581 |
+
if isinstance(categories, ABCCategoricalIndex):
|
582 |
+
categories = categories.categories
|
583 |
+
|
584 |
+
return categories
|
585 |
+
|
586 |
+
def update_dtype(self, dtype: str_type | CategoricalDtype) -> CategoricalDtype:
|
587 |
+
"""
|
588 |
+
Returns a CategoricalDtype with categories and ordered taken from dtype
|
589 |
+
if specified, otherwise falling back to self if unspecified
|
590 |
+
|
591 |
+
Parameters
|
592 |
+
----------
|
593 |
+
dtype : CategoricalDtype
|
594 |
+
|
595 |
+
Returns
|
596 |
+
-------
|
597 |
+
new_dtype : CategoricalDtype
|
598 |
+
"""
|
599 |
+
if isinstance(dtype, str) and dtype == "category":
|
600 |
+
# dtype='category' should not change anything
|
601 |
+
return self
|
602 |
+
elif not self.is_dtype(dtype):
|
603 |
+
raise ValueError(
|
604 |
+
f"a CategoricalDtype must be passed to perform an update, "
|
605 |
+
f"got {repr(dtype)}"
|
606 |
+
)
|
607 |
+
else:
|
608 |
+
# from here on, dtype is a CategoricalDtype
|
609 |
+
dtype = cast(CategoricalDtype, dtype)
|
610 |
+
|
611 |
+
# update categories/ordered unless they've been explicitly passed as None
|
612 |
+
new_categories = (
|
613 |
+
dtype.categories if dtype.categories is not None else self.categories
|
614 |
+
)
|
615 |
+
new_ordered = dtype.ordered if dtype.ordered is not None else self.ordered
|
616 |
+
|
617 |
+
return CategoricalDtype(new_categories, new_ordered)
|
618 |
+
|
619 |
+
@property
|
620 |
+
def categories(self) -> Index:
|
621 |
+
"""
|
622 |
+
An ``Index`` containing the unique categories allowed.
|
623 |
+
|
624 |
+
Examples
|
625 |
+
--------
|
626 |
+
>>> cat_type = pd.CategoricalDtype(categories=['a', 'b'], ordered=True)
|
627 |
+
>>> cat_type.categories
|
628 |
+
Index(['a', 'b'], dtype='object')
|
629 |
+
"""
|
630 |
+
return self._categories
|
631 |
+
|
632 |
+
@property
|
633 |
+
def ordered(self) -> Ordered:
|
634 |
+
"""
|
635 |
+
Whether the categories have an ordered relationship.
|
636 |
+
|
637 |
+
Examples
|
638 |
+
--------
|
639 |
+
>>> cat_type = pd.CategoricalDtype(categories=['a', 'b'], ordered=True)
|
640 |
+
>>> cat_type.ordered
|
641 |
+
True
|
642 |
+
|
643 |
+
>>> cat_type = pd.CategoricalDtype(categories=['a', 'b'], ordered=False)
|
644 |
+
>>> cat_type.ordered
|
645 |
+
False
|
646 |
+
"""
|
647 |
+
return self._ordered
|
648 |
+
|
649 |
+
@property
|
650 |
+
def _is_boolean(self) -> bool:
|
651 |
+
from pandas.core.dtypes.common import is_bool_dtype
|
652 |
+
|
653 |
+
return is_bool_dtype(self.categories)
|
654 |
+
|
655 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
656 |
+
# check if we have all categorical dtype with identical categories
|
657 |
+
if all(isinstance(x, CategoricalDtype) for x in dtypes):
|
658 |
+
first = dtypes[0]
|
659 |
+
if all(first == other for other in dtypes[1:]):
|
660 |
+
return first
|
661 |
+
|
662 |
+
# special case non-initialized categorical
|
663 |
+
# TODO we should figure out the expected return value in general
|
664 |
+
non_init_cats = [
|
665 |
+
isinstance(x, CategoricalDtype) and x.categories is None for x in dtypes
|
666 |
+
]
|
667 |
+
if all(non_init_cats):
|
668 |
+
return self
|
669 |
+
elif any(non_init_cats):
|
670 |
+
return None
|
671 |
+
|
672 |
+
# categorical is aware of Sparse -> extract sparse subdtypes
|
673 |
+
dtypes = [x.subtype if isinstance(x, SparseDtype) else x for x in dtypes]
|
674 |
+
# extract the categories' dtype
|
675 |
+
non_cat_dtypes = [
|
676 |
+
x.categories.dtype if isinstance(x, CategoricalDtype) else x for x in dtypes
|
677 |
+
]
|
678 |
+
# TODO should categorical always give an answer?
|
679 |
+
from pandas.core.dtypes.cast import find_common_type
|
680 |
+
|
681 |
+
return find_common_type(non_cat_dtypes)
|
682 |
+
|
683 |
+
@cache_readonly
|
684 |
+
def index_class(self) -> type_t[CategoricalIndex]:
|
685 |
+
from pandas import CategoricalIndex
|
686 |
+
|
687 |
+
return CategoricalIndex
|
688 |
+
|
689 |
+
|
690 |
+
@register_extension_dtype
|
691 |
+
class DatetimeTZDtype(PandasExtensionDtype):
|
692 |
+
"""
|
693 |
+
An ExtensionDtype for timezone-aware datetime data.
|
694 |
+
|
695 |
+
**This is not an actual numpy dtype**, but a duck type.
|
696 |
+
|
697 |
+
Parameters
|
698 |
+
----------
|
699 |
+
unit : str, default "ns"
|
700 |
+
The precision of the datetime data. Currently limited
|
701 |
+
to ``"ns"``.
|
702 |
+
tz : str, int, or datetime.tzinfo
|
703 |
+
The timezone.
|
704 |
+
|
705 |
+
Attributes
|
706 |
+
----------
|
707 |
+
unit
|
708 |
+
tz
|
709 |
+
|
710 |
+
Methods
|
711 |
+
-------
|
712 |
+
None
|
713 |
+
|
714 |
+
Raises
|
715 |
+
------
|
716 |
+
ZoneInfoNotFoundError
|
717 |
+
When the requested timezone cannot be found.
|
718 |
+
|
719 |
+
Examples
|
720 |
+
--------
|
721 |
+
>>> from zoneinfo import ZoneInfo
|
722 |
+
>>> pd.DatetimeTZDtype(tz=ZoneInfo('UTC'))
|
723 |
+
datetime64[ns, UTC]
|
724 |
+
|
725 |
+
>>> pd.DatetimeTZDtype(tz=ZoneInfo('Europe/Paris'))
|
726 |
+
datetime64[ns, Europe/Paris]
|
727 |
+
"""
|
728 |
+
|
729 |
+
type: type[Timestamp] = Timestamp
|
730 |
+
kind: str_type = "M"
|
731 |
+
num = 101
|
732 |
+
_metadata = ("unit", "tz")
|
733 |
+
_match = re.compile(r"(datetime64|M8)\[(?P<unit>.+), (?P<tz>.+)\]")
|
734 |
+
_cache_dtypes: dict[str_type, PandasExtensionDtype] = {}
|
735 |
+
_supports_2d = True
|
736 |
+
_can_fast_transpose = True
|
737 |
+
|
738 |
+
@property
|
739 |
+
def na_value(self) -> NaTType:
|
740 |
+
return NaT
|
741 |
+
|
742 |
+
@cache_readonly
|
743 |
+
def base(self) -> DtypeObj: # type: ignore[override]
|
744 |
+
return np.dtype(f"M8[{self.unit}]")
|
745 |
+
|
746 |
+
# error: Signature of "str" incompatible with supertype "PandasExtensionDtype"
|
747 |
+
@cache_readonly
|
748 |
+
def str(self) -> str: # type: ignore[override]
|
749 |
+
return f"|M8[{self.unit}]"
|
750 |
+
|
751 |
+
def __init__(self, unit: str_type | DatetimeTZDtype = "ns", tz=None) -> None:
|
752 |
+
if isinstance(unit, DatetimeTZDtype):
|
753 |
+
# error: "str" has no attribute "tz"
|
754 |
+
unit, tz = unit.unit, unit.tz # type: ignore[attr-defined]
|
755 |
+
|
756 |
+
if unit != "ns":
|
757 |
+
if isinstance(unit, str) and tz is None:
|
758 |
+
# maybe a string like datetime64[ns, tz], which we support for
|
759 |
+
# now.
|
760 |
+
result = type(self).construct_from_string(unit)
|
761 |
+
unit = result.unit
|
762 |
+
tz = result.tz
|
763 |
+
msg = (
|
764 |
+
f"Passing a dtype alias like 'datetime64[ns, {tz}]' "
|
765 |
+
"to DatetimeTZDtype is no longer supported. Use "
|
766 |
+
"'DatetimeTZDtype.construct_from_string()' instead."
|
767 |
+
)
|
768 |
+
raise ValueError(msg)
|
769 |
+
if unit not in ["s", "ms", "us", "ns"]:
|
770 |
+
raise ValueError("DatetimeTZDtype only supports s, ms, us, ns units")
|
771 |
+
|
772 |
+
if tz:
|
773 |
+
tz = timezones.maybe_get_tz(tz)
|
774 |
+
tz = timezones.tz_standardize(tz)
|
775 |
+
elif tz is not None:
|
776 |
+
raise pytz.UnknownTimeZoneError(tz)
|
777 |
+
if tz is None:
|
778 |
+
raise TypeError("A 'tz' is required.")
|
779 |
+
|
780 |
+
self._unit = unit
|
781 |
+
self._tz = tz
|
782 |
+
|
783 |
+
@cache_readonly
|
784 |
+
def _creso(self) -> int:
|
785 |
+
"""
|
786 |
+
The NPY_DATETIMEUNIT corresponding to this dtype's resolution.
|
787 |
+
"""
|
788 |
+
return abbrev_to_npy_unit(self.unit)
|
789 |
+
|
790 |
+
@property
|
791 |
+
def unit(self) -> str_type:
|
792 |
+
"""
|
793 |
+
The precision of the datetime data.
|
794 |
+
|
795 |
+
Examples
|
796 |
+
--------
|
797 |
+
>>> from zoneinfo import ZoneInfo
|
798 |
+
>>> dtype = pd.DatetimeTZDtype(tz=ZoneInfo('America/Los_Angeles'))
|
799 |
+
>>> dtype.unit
|
800 |
+
'ns'
|
801 |
+
"""
|
802 |
+
return self._unit
|
803 |
+
|
804 |
+
@property
|
805 |
+
def tz(self) -> tzinfo:
|
806 |
+
"""
|
807 |
+
The timezone.
|
808 |
+
|
809 |
+
Examples
|
810 |
+
--------
|
811 |
+
>>> from zoneinfo import ZoneInfo
|
812 |
+
>>> dtype = pd.DatetimeTZDtype(tz=ZoneInfo('America/Los_Angeles'))
|
813 |
+
>>> dtype.tz
|
814 |
+
zoneinfo.ZoneInfo(key='America/Los_Angeles')
|
815 |
+
"""
|
816 |
+
return self._tz
|
817 |
+
|
818 |
+
@classmethod
|
819 |
+
def construct_array_type(cls) -> type_t[DatetimeArray]:
|
820 |
+
"""
|
821 |
+
Return the array type associated with this dtype.
|
822 |
+
|
823 |
+
Returns
|
824 |
+
-------
|
825 |
+
type
|
826 |
+
"""
|
827 |
+
from pandas.core.arrays import DatetimeArray
|
828 |
+
|
829 |
+
return DatetimeArray
|
830 |
+
|
831 |
+
@classmethod
|
832 |
+
def construct_from_string(cls, string: str_type) -> DatetimeTZDtype:
|
833 |
+
"""
|
834 |
+
Construct a DatetimeTZDtype from a string.
|
835 |
+
|
836 |
+
Parameters
|
837 |
+
----------
|
838 |
+
string : str
|
839 |
+
The string alias for this DatetimeTZDtype.
|
840 |
+
Should be formatted like ``datetime64[ns, <tz>]``,
|
841 |
+
where ``<tz>`` is the timezone name.
|
842 |
+
|
843 |
+
Examples
|
844 |
+
--------
|
845 |
+
>>> DatetimeTZDtype.construct_from_string('datetime64[ns, UTC]')
|
846 |
+
datetime64[ns, UTC]
|
847 |
+
"""
|
848 |
+
if not isinstance(string, str):
|
849 |
+
raise TypeError(
|
850 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
851 |
+
)
|
852 |
+
|
853 |
+
msg = f"Cannot construct a 'DatetimeTZDtype' from '{string}'"
|
854 |
+
match = cls._match.match(string)
|
855 |
+
if match:
|
856 |
+
d = match.groupdict()
|
857 |
+
try:
|
858 |
+
return cls(unit=d["unit"], tz=d["tz"])
|
859 |
+
except (KeyError, TypeError, ValueError) as err:
|
860 |
+
# KeyError if maybe_get_tz tries and fails to get a
|
861 |
+
# pytz timezone (actually pytz.UnknownTimeZoneError).
|
862 |
+
# TypeError if we pass a nonsense tz;
|
863 |
+
# ValueError if we pass a unit other than "ns"
|
864 |
+
raise TypeError(msg) from err
|
865 |
+
raise TypeError(msg)
|
866 |
+
|
867 |
+
def __str__(self) -> str_type:
|
868 |
+
return f"datetime64[{self.unit}, {self.tz}]"
|
869 |
+
|
870 |
+
@property
|
871 |
+
def name(self) -> str_type:
|
872 |
+
"""A string representation of the dtype."""
|
873 |
+
return str(self)
|
874 |
+
|
875 |
+
def __hash__(self) -> int:
|
876 |
+
# make myself hashable
|
877 |
+
# TODO: update this.
|
878 |
+
return hash(str(self))
|
879 |
+
|
880 |
+
def __eq__(self, other: object) -> bool:
|
881 |
+
if isinstance(other, str):
|
882 |
+
if other.startswith("M8["):
|
883 |
+
other = f"datetime64[{other[3:]}"
|
884 |
+
return other == self.name
|
885 |
+
|
886 |
+
return (
|
887 |
+
isinstance(other, DatetimeTZDtype)
|
888 |
+
and self.unit == other.unit
|
889 |
+
and tz_compare(self.tz, other.tz)
|
890 |
+
)
|
891 |
+
|
892 |
+
def __from_arrow__(self, array: pa.Array | pa.ChunkedArray) -> DatetimeArray:
|
893 |
+
"""
|
894 |
+
Construct DatetimeArray from pyarrow Array/ChunkedArray.
|
895 |
+
|
896 |
+
Note: If the units in the pyarrow Array are the same as this
|
897 |
+
DatetimeDtype, then values corresponding to the integer representation
|
898 |
+
of ``NaT`` (e.g. one nanosecond before :attr:`pandas.Timestamp.min`)
|
899 |
+
are converted to ``NaT``, regardless of the null indicator in the
|
900 |
+
pyarrow array.
|
901 |
+
|
902 |
+
Parameters
|
903 |
+
----------
|
904 |
+
array : pyarrow.Array or pyarrow.ChunkedArray
|
905 |
+
The Arrow array to convert to DatetimeArray.
|
906 |
+
|
907 |
+
Returns
|
908 |
+
-------
|
909 |
+
extension array : DatetimeArray
|
910 |
+
"""
|
911 |
+
import pyarrow
|
912 |
+
|
913 |
+
from pandas.core.arrays import DatetimeArray
|
914 |
+
|
915 |
+
array = array.cast(pyarrow.timestamp(unit=self._unit), safe=True)
|
916 |
+
|
917 |
+
if isinstance(array, pyarrow.Array):
|
918 |
+
np_arr = array.to_numpy(zero_copy_only=False)
|
919 |
+
else:
|
920 |
+
np_arr = array.to_numpy()
|
921 |
+
|
922 |
+
return DatetimeArray._simple_new(np_arr, dtype=self)
|
923 |
+
|
924 |
+
def __setstate__(self, state) -> None:
|
925 |
+
# for pickle compat. __get_state__ is defined in the
|
926 |
+
# PandasExtensionDtype superclass and uses the public properties to
|
927 |
+
# pickle -> need to set the settable private ones here (see GH26067)
|
928 |
+
self._tz = state["tz"]
|
929 |
+
self._unit = state["unit"]
|
930 |
+
|
931 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
932 |
+
if all(isinstance(t, DatetimeTZDtype) and t.tz == self.tz for t in dtypes):
|
933 |
+
np_dtype = np.max([cast(DatetimeTZDtype, t).base for t in [self, *dtypes]])
|
934 |
+
unit = np.datetime_data(np_dtype)[0]
|
935 |
+
return type(self)(unit=unit, tz=self.tz)
|
936 |
+
return super()._get_common_dtype(dtypes)
|
937 |
+
|
938 |
+
@cache_readonly
|
939 |
+
def index_class(self) -> type_t[DatetimeIndex]:
|
940 |
+
from pandas import DatetimeIndex
|
941 |
+
|
942 |
+
return DatetimeIndex
|
943 |
+
|
944 |
+
|
945 |
+
@register_extension_dtype
|
946 |
+
class PeriodDtype(PeriodDtypeBase, PandasExtensionDtype):
|
947 |
+
"""
|
948 |
+
An ExtensionDtype for Period data.
|
949 |
+
|
950 |
+
**This is not an actual numpy dtype**, but a duck type.
|
951 |
+
|
952 |
+
Parameters
|
953 |
+
----------
|
954 |
+
freq : str or DateOffset
|
955 |
+
The frequency of this PeriodDtype.
|
956 |
+
|
957 |
+
Attributes
|
958 |
+
----------
|
959 |
+
freq
|
960 |
+
|
961 |
+
Methods
|
962 |
+
-------
|
963 |
+
None
|
964 |
+
|
965 |
+
Examples
|
966 |
+
--------
|
967 |
+
>>> pd.PeriodDtype(freq='D')
|
968 |
+
period[D]
|
969 |
+
|
970 |
+
>>> pd.PeriodDtype(freq=pd.offsets.MonthEnd())
|
971 |
+
period[M]
|
972 |
+
"""
|
973 |
+
|
974 |
+
type: type[Period] = Period
|
975 |
+
kind: str_type = "O"
|
976 |
+
str = "|O08"
|
977 |
+
base = np.dtype("O")
|
978 |
+
num = 102
|
979 |
+
_metadata = ("freq",)
|
980 |
+
_match = re.compile(r"(P|p)eriod\[(?P<freq>.+)\]")
|
981 |
+
# error: Incompatible types in assignment (expression has type
|
982 |
+
# "Dict[int, PandasExtensionDtype]", base class "PandasExtensionDtype"
|
983 |
+
# defined the type as "Dict[str, PandasExtensionDtype]") [assignment]
|
984 |
+
_cache_dtypes: dict[BaseOffset, int] = {} # type: ignore[assignment]
|
985 |
+
__hash__ = PeriodDtypeBase.__hash__
|
986 |
+
_freq: BaseOffset
|
987 |
+
_supports_2d = True
|
988 |
+
_can_fast_transpose = True
|
989 |
+
|
990 |
+
def __new__(cls, freq) -> PeriodDtype: # noqa: PYI034
|
991 |
+
"""
|
992 |
+
Parameters
|
993 |
+
----------
|
994 |
+
freq : PeriodDtype, BaseOffset, or string
|
995 |
+
"""
|
996 |
+
if isinstance(freq, PeriodDtype):
|
997 |
+
return freq
|
998 |
+
|
999 |
+
if not isinstance(freq, BaseOffset):
|
1000 |
+
freq = cls._parse_dtype_strict(freq)
|
1001 |
+
|
1002 |
+
if isinstance(freq, BDay):
|
1003 |
+
# GH#53446
|
1004 |
+
# TODO(3.0): enforcing this will close GH#10575
|
1005 |
+
warnings.warn(
|
1006 |
+
"PeriodDtype[B] is deprecated and will be removed in a future "
|
1007 |
+
"version. Use a DatetimeIndex with freq='B' instead",
|
1008 |
+
FutureWarning,
|
1009 |
+
stacklevel=find_stack_level(),
|
1010 |
+
)
|
1011 |
+
|
1012 |
+
try:
|
1013 |
+
dtype_code = cls._cache_dtypes[freq]
|
1014 |
+
except KeyError:
|
1015 |
+
dtype_code = freq._period_dtype_code
|
1016 |
+
cls._cache_dtypes[freq] = dtype_code
|
1017 |
+
u = PeriodDtypeBase.__new__(cls, dtype_code, freq.n)
|
1018 |
+
u._freq = freq
|
1019 |
+
return u
|
1020 |
+
|
1021 |
+
def __reduce__(self) -> tuple[type_t[Self], tuple[str_type]]:
|
1022 |
+
return type(self), (self.name,)
|
1023 |
+
|
1024 |
+
@property
|
1025 |
+
def freq(self) -> BaseOffset:
|
1026 |
+
"""
|
1027 |
+
The frequency object of this PeriodDtype.
|
1028 |
+
|
1029 |
+
Examples
|
1030 |
+
--------
|
1031 |
+
>>> dtype = pd.PeriodDtype(freq='D')
|
1032 |
+
>>> dtype.freq
|
1033 |
+
<Day>
|
1034 |
+
"""
|
1035 |
+
return self._freq
|
1036 |
+
|
1037 |
+
@classmethod
|
1038 |
+
def _parse_dtype_strict(cls, freq: str_type) -> BaseOffset:
|
1039 |
+
if isinstance(freq, str): # note: freq is already of type str!
|
1040 |
+
if freq.startswith(("Period[", "period[")):
|
1041 |
+
m = cls._match.search(freq)
|
1042 |
+
if m is not None:
|
1043 |
+
freq = m.group("freq")
|
1044 |
+
|
1045 |
+
freq_offset = to_offset(freq, is_period=True)
|
1046 |
+
if freq_offset is not None:
|
1047 |
+
return freq_offset
|
1048 |
+
|
1049 |
+
raise TypeError(
|
1050 |
+
"PeriodDtype argument should be string or BaseOffset, "
|
1051 |
+
f"got {type(freq).__name__}"
|
1052 |
+
)
|
1053 |
+
|
1054 |
+
@classmethod
|
1055 |
+
def construct_from_string(cls, string: str_type) -> PeriodDtype:
|
1056 |
+
"""
|
1057 |
+
Strict construction from a string, raise a TypeError if not
|
1058 |
+
possible
|
1059 |
+
"""
|
1060 |
+
if (
|
1061 |
+
isinstance(string, str)
|
1062 |
+
and (string.startswith(("period[", "Period[")))
|
1063 |
+
or isinstance(string, BaseOffset)
|
1064 |
+
):
|
1065 |
+
# do not parse string like U as period[U]
|
1066 |
+
# avoid tuple to be regarded as freq
|
1067 |
+
try:
|
1068 |
+
return cls(freq=string)
|
1069 |
+
except ValueError:
|
1070 |
+
pass
|
1071 |
+
if isinstance(string, str):
|
1072 |
+
msg = f"Cannot construct a 'PeriodDtype' from '{string}'"
|
1073 |
+
else:
|
1074 |
+
msg = f"'construct_from_string' expects a string, got {type(string)}"
|
1075 |
+
raise TypeError(msg)
|
1076 |
+
|
1077 |
+
def __str__(self) -> str_type:
|
1078 |
+
return self.name
|
1079 |
+
|
1080 |
+
@property
|
1081 |
+
def name(self) -> str_type:
|
1082 |
+
return f"period[{self._freqstr}]"
|
1083 |
+
|
1084 |
+
@property
|
1085 |
+
def na_value(self) -> NaTType:
|
1086 |
+
return NaT
|
1087 |
+
|
1088 |
+
def __eq__(self, other: object) -> bool:
|
1089 |
+
if isinstance(other, str):
|
1090 |
+
return other in [self.name, capitalize_first_letter(self.name)]
|
1091 |
+
|
1092 |
+
return super().__eq__(other)
|
1093 |
+
|
1094 |
+
def __ne__(self, other: object) -> bool:
|
1095 |
+
return not self.__eq__(other)
|
1096 |
+
|
1097 |
+
@classmethod
|
1098 |
+
def is_dtype(cls, dtype: object) -> bool:
|
1099 |
+
"""
|
1100 |
+
Return a boolean if we if the passed type is an actual dtype that we
|
1101 |
+
can match (via string or type)
|
1102 |
+
"""
|
1103 |
+
if isinstance(dtype, str):
|
1104 |
+
# PeriodDtype can be instantiated from freq string like "U",
|
1105 |
+
# but doesn't regard freq str like "U" as dtype.
|
1106 |
+
if dtype.startswith(("period[", "Period[")):
|
1107 |
+
try:
|
1108 |
+
return cls._parse_dtype_strict(dtype) is not None
|
1109 |
+
except ValueError:
|
1110 |
+
return False
|
1111 |
+
else:
|
1112 |
+
return False
|
1113 |
+
return super().is_dtype(dtype)
|
1114 |
+
|
1115 |
+
@classmethod
|
1116 |
+
def construct_array_type(cls) -> type_t[PeriodArray]:
|
1117 |
+
"""
|
1118 |
+
Return the array type associated with this dtype.
|
1119 |
+
|
1120 |
+
Returns
|
1121 |
+
-------
|
1122 |
+
type
|
1123 |
+
"""
|
1124 |
+
from pandas.core.arrays import PeriodArray
|
1125 |
+
|
1126 |
+
return PeriodArray
|
1127 |
+
|
1128 |
+
def __from_arrow__(self, array: pa.Array | pa.ChunkedArray) -> PeriodArray:
|
1129 |
+
"""
|
1130 |
+
Construct PeriodArray from pyarrow Array/ChunkedArray.
|
1131 |
+
"""
|
1132 |
+
import pyarrow
|
1133 |
+
|
1134 |
+
from pandas.core.arrays import PeriodArray
|
1135 |
+
from pandas.core.arrays.arrow._arrow_utils import (
|
1136 |
+
pyarrow_array_to_numpy_and_mask,
|
1137 |
+
)
|
1138 |
+
|
1139 |
+
if isinstance(array, pyarrow.Array):
|
1140 |
+
chunks = [array]
|
1141 |
+
else:
|
1142 |
+
chunks = array.chunks
|
1143 |
+
|
1144 |
+
results = []
|
1145 |
+
for arr in chunks:
|
1146 |
+
data, mask = pyarrow_array_to_numpy_and_mask(arr, dtype=np.dtype(np.int64))
|
1147 |
+
parr = PeriodArray(data.copy(), dtype=self, copy=False)
|
1148 |
+
# error: Invalid index type "ndarray[Any, dtype[bool_]]" for "PeriodArray";
|
1149 |
+
# expected type "Union[int, Sequence[int], Sequence[bool], slice]"
|
1150 |
+
parr[~mask] = NaT # type: ignore[index]
|
1151 |
+
results.append(parr)
|
1152 |
+
|
1153 |
+
if not results:
|
1154 |
+
return PeriodArray(np.array([], dtype="int64"), dtype=self, copy=False)
|
1155 |
+
return PeriodArray._concat_same_type(results)
|
1156 |
+
|
1157 |
+
@cache_readonly
|
1158 |
+
def index_class(self) -> type_t[PeriodIndex]:
|
1159 |
+
from pandas import PeriodIndex
|
1160 |
+
|
1161 |
+
return PeriodIndex
|
1162 |
+
|
1163 |
+
|
1164 |
+
@register_extension_dtype
|
1165 |
+
class IntervalDtype(PandasExtensionDtype):
|
1166 |
+
"""
|
1167 |
+
An ExtensionDtype for Interval data.
|
1168 |
+
|
1169 |
+
**This is not an actual numpy dtype**, but a duck type.
|
1170 |
+
|
1171 |
+
Parameters
|
1172 |
+
----------
|
1173 |
+
subtype : str, np.dtype
|
1174 |
+
The dtype of the Interval bounds.
|
1175 |
+
|
1176 |
+
Attributes
|
1177 |
+
----------
|
1178 |
+
subtype
|
1179 |
+
|
1180 |
+
Methods
|
1181 |
+
-------
|
1182 |
+
None
|
1183 |
+
|
1184 |
+
Examples
|
1185 |
+
--------
|
1186 |
+
>>> pd.IntervalDtype(subtype='int64', closed='both')
|
1187 |
+
interval[int64, both]
|
1188 |
+
"""
|
1189 |
+
|
1190 |
+
name = "interval"
|
1191 |
+
kind: str_type = "O"
|
1192 |
+
str = "|O08"
|
1193 |
+
base = np.dtype("O")
|
1194 |
+
num = 103
|
1195 |
+
_metadata = (
|
1196 |
+
"subtype",
|
1197 |
+
"closed",
|
1198 |
+
)
|
1199 |
+
|
1200 |
+
_match = re.compile(
|
1201 |
+
r"(I|i)nterval\[(?P<subtype>[^,]+(\[.+\])?)"
|
1202 |
+
r"(, (?P<closed>(right|left|both|neither)))?\]"
|
1203 |
+
)
|
1204 |
+
|
1205 |
+
_cache_dtypes: dict[str_type, PandasExtensionDtype] = {}
|
1206 |
+
_subtype: None | np.dtype
|
1207 |
+
_closed: IntervalClosedType | None
|
1208 |
+
|
1209 |
+
def __init__(self, subtype=None, closed: IntervalClosedType | None = None) -> None:
|
1210 |
+
from pandas.core.dtypes.common import (
|
1211 |
+
is_string_dtype,
|
1212 |
+
pandas_dtype,
|
1213 |
+
)
|
1214 |
+
|
1215 |
+
if closed is not None and closed not in {"right", "left", "both", "neither"}:
|
1216 |
+
raise ValueError("closed must be one of 'right', 'left', 'both', 'neither'")
|
1217 |
+
|
1218 |
+
if isinstance(subtype, IntervalDtype):
|
1219 |
+
if closed is not None and closed != subtype.closed:
|
1220 |
+
raise ValueError(
|
1221 |
+
"dtype.closed and 'closed' do not match. "
|
1222 |
+
"Try IntervalDtype(dtype.subtype, closed) instead."
|
1223 |
+
)
|
1224 |
+
self._subtype = subtype._subtype
|
1225 |
+
self._closed = subtype._closed
|
1226 |
+
elif subtype is None:
|
1227 |
+
# we are called as an empty constructor
|
1228 |
+
# generally for pickle compat
|
1229 |
+
self._subtype = None
|
1230 |
+
self._closed = closed
|
1231 |
+
elif isinstance(subtype, str) and subtype.lower() == "interval":
|
1232 |
+
self._subtype = None
|
1233 |
+
self._closed = closed
|
1234 |
+
else:
|
1235 |
+
if isinstance(subtype, str):
|
1236 |
+
m = IntervalDtype._match.search(subtype)
|
1237 |
+
if m is not None:
|
1238 |
+
gd = m.groupdict()
|
1239 |
+
subtype = gd["subtype"]
|
1240 |
+
if gd.get("closed", None) is not None:
|
1241 |
+
if closed is not None:
|
1242 |
+
if closed != gd["closed"]:
|
1243 |
+
raise ValueError(
|
1244 |
+
"'closed' keyword does not match value "
|
1245 |
+
"specified in dtype string"
|
1246 |
+
)
|
1247 |
+
closed = gd["closed"] # type: ignore[assignment]
|
1248 |
+
|
1249 |
+
try:
|
1250 |
+
subtype = pandas_dtype(subtype)
|
1251 |
+
except TypeError as err:
|
1252 |
+
raise TypeError("could not construct IntervalDtype") from err
|
1253 |
+
if CategoricalDtype.is_dtype(subtype) or is_string_dtype(subtype):
|
1254 |
+
# GH 19016
|
1255 |
+
msg = (
|
1256 |
+
"category, object, and string subtypes are not supported "
|
1257 |
+
"for IntervalDtype"
|
1258 |
+
)
|
1259 |
+
raise TypeError(msg)
|
1260 |
+
self._subtype = subtype
|
1261 |
+
self._closed = closed
|
1262 |
+
|
1263 |
+
@cache_readonly
|
1264 |
+
def _can_hold_na(self) -> bool:
|
1265 |
+
subtype = self._subtype
|
1266 |
+
if subtype is None:
|
1267 |
+
# partially-initialized
|
1268 |
+
raise NotImplementedError(
|
1269 |
+
"_can_hold_na is not defined for partially-initialized IntervalDtype"
|
1270 |
+
)
|
1271 |
+
if subtype.kind in "iu":
|
1272 |
+
return False
|
1273 |
+
return True
|
1274 |
+
|
1275 |
+
@property
|
1276 |
+
def closed(self) -> IntervalClosedType:
|
1277 |
+
return self._closed # type: ignore[return-value]
|
1278 |
+
|
1279 |
+
@property
|
1280 |
+
def subtype(self):
|
1281 |
+
"""
|
1282 |
+
The dtype of the Interval bounds.
|
1283 |
+
|
1284 |
+
Examples
|
1285 |
+
--------
|
1286 |
+
>>> dtype = pd.IntervalDtype(subtype='int64', closed='both')
|
1287 |
+
>>> dtype.subtype
|
1288 |
+
dtype('int64')
|
1289 |
+
"""
|
1290 |
+
return self._subtype
|
1291 |
+
|
1292 |
+
@classmethod
|
1293 |
+
def construct_array_type(cls) -> type[IntervalArray]:
|
1294 |
+
"""
|
1295 |
+
Return the array type associated with this dtype.
|
1296 |
+
|
1297 |
+
Returns
|
1298 |
+
-------
|
1299 |
+
type
|
1300 |
+
"""
|
1301 |
+
from pandas.core.arrays import IntervalArray
|
1302 |
+
|
1303 |
+
return IntervalArray
|
1304 |
+
|
1305 |
+
@classmethod
|
1306 |
+
def construct_from_string(cls, string: str_type) -> IntervalDtype:
|
1307 |
+
"""
|
1308 |
+
attempt to construct this type from a string, raise a TypeError
|
1309 |
+
if its not possible
|
1310 |
+
"""
|
1311 |
+
if not isinstance(string, str):
|
1312 |
+
raise TypeError(
|
1313 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
1314 |
+
)
|
1315 |
+
|
1316 |
+
if string.lower() == "interval" or cls._match.search(string) is not None:
|
1317 |
+
return cls(string)
|
1318 |
+
|
1319 |
+
msg = (
|
1320 |
+
f"Cannot construct a 'IntervalDtype' from '{string}'.\n\n"
|
1321 |
+
"Incorrectly formatted string passed to constructor. "
|
1322 |
+
"Valid formats include Interval or Interval[dtype] "
|
1323 |
+
"where dtype is numeric, datetime, or timedelta"
|
1324 |
+
)
|
1325 |
+
raise TypeError(msg)
|
1326 |
+
|
1327 |
+
@property
|
1328 |
+
def type(self) -> type[Interval]:
|
1329 |
+
return Interval
|
1330 |
+
|
1331 |
+
def __str__(self) -> str_type:
|
1332 |
+
if self.subtype is None:
|
1333 |
+
return "interval"
|
1334 |
+
if self.closed is None:
|
1335 |
+
# Only partially initialized GH#38394
|
1336 |
+
return f"interval[{self.subtype}]"
|
1337 |
+
return f"interval[{self.subtype}, {self.closed}]"
|
1338 |
+
|
1339 |
+
def __hash__(self) -> int:
|
1340 |
+
# make myself hashable
|
1341 |
+
return hash(str(self))
|
1342 |
+
|
1343 |
+
def __eq__(self, other: object) -> bool:
|
1344 |
+
if isinstance(other, str):
|
1345 |
+
return other.lower() in (self.name.lower(), str(self).lower())
|
1346 |
+
elif not isinstance(other, IntervalDtype):
|
1347 |
+
return False
|
1348 |
+
elif self.subtype is None or other.subtype is None:
|
1349 |
+
# None should match any subtype
|
1350 |
+
return True
|
1351 |
+
elif self.closed != other.closed:
|
1352 |
+
return False
|
1353 |
+
else:
|
1354 |
+
return self.subtype == other.subtype
|
1355 |
+
|
1356 |
+
def __setstate__(self, state) -> None:
|
1357 |
+
# for pickle compat. __get_state__ is defined in the
|
1358 |
+
# PandasExtensionDtype superclass and uses the public properties to
|
1359 |
+
# pickle -> need to set the settable private ones here (see GH26067)
|
1360 |
+
self._subtype = state["subtype"]
|
1361 |
+
|
1362 |
+
# backward-compat older pickles won't have "closed" key
|
1363 |
+
self._closed = state.pop("closed", None)
|
1364 |
+
|
1365 |
+
@classmethod
|
1366 |
+
def is_dtype(cls, dtype: object) -> bool:
|
1367 |
+
"""
|
1368 |
+
Return a boolean if we if the passed type is an actual dtype that we
|
1369 |
+
can match (via string or type)
|
1370 |
+
"""
|
1371 |
+
if isinstance(dtype, str):
|
1372 |
+
if dtype.lower().startswith("interval"):
|
1373 |
+
try:
|
1374 |
+
return cls.construct_from_string(dtype) is not None
|
1375 |
+
except (ValueError, TypeError):
|
1376 |
+
return False
|
1377 |
+
else:
|
1378 |
+
return False
|
1379 |
+
return super().is_dtype(dtype)
|
1380 |
+
|
1381 |
+
def __from_arrow__(self, array: pa.Array | pa.ChunkedArray) -> IntervalArray:
|
1382 |
+
"""
|
1383 |
+
Construct IntervalArray from pyarrow Array/ChunkedArray.
|
1384 |
+
"""
|
1385 |
+
import pyarrow
|
1386 |
+
|
1387 |
+
from pandas.core.arrays import IntervalArray
|
1388 |
+
|
1389 |
+
if isinstance(array, pyarrow.Array):
|
1390 |
+
chunks = [array]
|
1391 |
+
else:
|
1392 |
+
chunks = array.chunks
|
1393 |
+
|
1394 |
+
results = []
|
1395 |
+
for arr in chunks:
|
1396 |
+
if isinstance(arr, pyarrow.ExtensionArray):
|
1397 |
+
arr = arr.storage
|
1398 |
+
left = np.asarray(arr.field("left"), dtype=self.subtype)
|
1399 |
+
right = np.asarray(arr.field("right"), dtype=self.subtype)
|
1400 |
+
iarr = IntervalArray.from_arrays(left, right, closed=self.closed)
|
1401 |
+
results.append(iarr)
|
1402 |
+
|
1403 |
+
if not results:
|
1404 |
+
return IntervalArray.from_arrays(
|
1405 |
+
np.array([], dtype=self.subtype),
|
1406 |
+
np.array([], dtype=self.subtype),
|
1407 |
+
closed=self.closed,
|
1408 |
+
)
|
1409 |
+
return IntervalArray._concat_same_type(results)
|
1410 |
+
|
1411 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
1412 |
+
if not all(isinstance(x, IntervalDtype) for x in dtypes):
|
1413 |
+
return None
|
1414 |
+
|
1415 |
+
closed = cast("IntervalDtype", dtypes[0]).closed
|
1416 |
+
if not all(cast("IntervalDtype", x).closed == closed for x in dtypes):
|
1417 |
+
return np.dtype(object)
|
1418 |
+
|
1419 |
+
from pandas.core.dtypes.cast import find_common_type
|
1420 |
+
|
1421 |
+
common = find_common_type([cast("IntervalDtype", x).subtype for x in dtypes])
|
1422 |
+
if common == object:
|
1423 |
+
return np.dtype(object)
|
1424 |
+
return IntervalDtype(common, closed=closed)
|
1425 |
+
|
1426 |
+
@cache_readonly
|
1427 |
+
def index_class(self) -> type_t[IntervalIndex]:
|
1428 |
+
from pandas import IntervalIndex
|
1429 |
+
|
1430 |
+
return IntervalIndex
|
1431 |
+
|
1432 |
+
|
1433 |
+
class NumpyEADtype(ExtensionDtype):
|
1434 |
+
"""
|
1435 |
+
A Pandas ExtensionDtype for NumPy dtypes.
|
1436 |
+
|
1437 |
+
This is mostly for internal compatibility, and is not especially
|
1438 |
+
useful on its own.
|
1439 |
+
|
1440 |
+
Parameters
|
1441 |
+
----------
|
1442 |
+
dtype : object
|
1443 |
+
Object to be converted to a NumPy data type object.
|
1444 |
+
|
1445 |
+
See Also
|
1446 |
+
--------
|
1447 |
+
numpy.dtype
|
1448 |
+
"""
|
1449 |
+
|
1450 |
+
_metadata = ("_dtype",)
|
1451 |
+
_supports_2d = False
|
1452 |
+
_can_fast_transpose = False
|
1453 |
+
|
1454 |
+
def __init__(self, dtype: npt.DTypeLike | NumpyEADtype | None) -> None:
|
1455 |
+
if isinstance(dtype, NumpyEADtype):
|
1456 |
+
# make constructor idempotent
|
1457 |
+
dtype = dtype.numpy_dtype
|
1458 |
+
self._dtype = np.dtype(dtype)
|
1459 |
+
|
1460 |
+
def __repr__(self) -> str:
|
1461 |
+
return f"NumpyEADtype({repr(self.name)})"
|
1462 |
+
|
1463 |
+
@property
|
1464 |
+
def numpy_dtype(self) -> np.dtype:
|
1465 |
+
"""
|
1466 |
+
The NumPy dtype this NumpyEADtype wraps.
|
1467 |
+
"""
|
1468 |
+
return self._dtype
|
1469 |
+
|
1470 |
+
@property
|
1471 |
+
def name(self) -> str:
|
1472 |
+
"""
|
1473 |
+
A bit-width name for this data-type.
|
1474 |
+
"""
|
1475 |
+
return self._dtype.name
|
1476 |
+
|
1477 |
+
@property
|
1478 |
+
def type(self) -> type[np.generic]:
|
1479 |
+
"""
|
1480 |
+
The type object used to instantiate a scalar of this NumPy data-type.
|
1481 |
+
"""
|
1482 |
+
return self._dtype.type
|
1483 |
+
|
1484 |
+
@property
|
1485 |
+
def _is_numeric(self) -> bool:
|
1486 |
+
# exclude object, str, unicode, void.
|
1487 |
+
return self.kind in set("biufc")
|
1488 |
+
|
1489 |
+
@property
|
1490 |
+
def _is_boolean(self) -> bool:
|
1491 |
+
return self.kind == "b"
|
1492 |
+
|
1493 |
+
@classmethod
|
1494 |
+
def construct_from_string(cls, string: str) -> NumpyEADtype:
|
1495 |
+
try:
|
1496 |
+
dtype = np.dtype(string)
|
1497 |
+
except TypeError as err:
|
1498 |
+
if not isinstance(string, str):
|
1499 |
+
msg = f"'construct_from_string' expects a string, got {type(string)}"
|
1500 |
+
else:
|
1501 |
+
msg = f"Cannot construct a 'NumpyEADtype' from '{string}'"
|
1502 |
+
raise TypeError(msg) from err
|
1503 |
+
return cls(dtype)
|
1504 |
+
|
1505 |
+
@classmethod
|
1506 |
+
def construct_array_type(cls) -> type_t[NumpyExtensionArray]:
|
1507 |
+
"""
|
1508 |
+
Return the array type associated with this dtype.
|
1509 |
+
|
1510 |
+
Returns
|
1511 |
+
-------
|
1512 |
+
type
|
1513 |
+
"""
|
1514 |
+
from pandas.core.arrays import NumpyExtensionArray
|
1515 |
+
|
1516 |
+
return NumpyExtensionArray
|
1517 |
+
|
1518 |
+
@property
|
1519 |
+
def kind(self) -> str:
|
1520 |
+
"""
|
1521 |
+
A character code (one of 'biufcmMOSUV') identifying the general kind of data.
|
1522 |
+
"""
|
1523 |
+
return self._dtype.kind
|
1524 |
+
|
1525 |
+
@property
|
1526 |
+
def itemsize(self) -> int:
|
1527 |
+
"""
|
1528 |
+
The element size of this data-type object.
|
1529 |
+
"""
|
1530 |
+
return self._dtype.itemsize
|
1531 |
+
|
1532 |
+
|
1533 |
+
class BaseMaskedDtype(ExtensionDtype):
|
1534 |
+
"""
|
1535 |
+
Base class for dtypes for BaseMaskedArray subclasses.
|
1536 |
+
"""
|
1537 |
+
|
1538 |
+
base = None
|
1539 |
+
type: type
|
1540 |
+
|
1541 |
+
@property
|
1542 |
+
def na_value(self) -> libmissing.NAType:
|
1543 |
+
return libmissing.NA
|
1544 |
+
|
1545 |
+
@cache_readonly
|
1546 |
+
def numpy_dtype(self) -> np.dtype:
|
1547 |
+
"""Return an instance of our numpy dtype"""
|
1548 |
+
return np.dtype(self.type)
|
1549 |
+
|
1550 |
+
@cache_readonly
|
1551 |
+
def kind(self) -> str:
|
1552 |
+
return self.numpy_dtype.kind
|
1553 |
+
|
1554 |
+
@cache_readonly
|
1555 |
+
def itemsize(self) -> int:
|
1556 |
+
"""Return the number of bytes in this dtype"""
|
1557 |
+
return self.numpy_dtype.itemsize
|
1558 |
+
|
1559 |
+
@classmethod
|
1560 |
+
def construct_array_type(cls) -> type_t[BaseMaskedArray]:
|
1561 |
+
"""
|
1562 |
+
Return the array type associated with this dtype.
|
1563 |
+
|
1564 |
+
Returns
|
1565 |
+
-------
|
1566 |
+
type
|
1567 |
+
"""
|
1568 |
+
raise NotImplementedError
|
1569 |
+
|
1570 |
+
@classmethod
|
1571 |
+
def from_numpy_dtype(cls, dtype: np.dtype) -> BaseMaskedDtype:
|
1572 |
+
"""
|
1573 |
+
Construct the MaskedDtype corresponding to the given numpy dtype.
|
1574 |
+
"""
|
1575 |
+
if dtype.kind == "b":
|
1576 |
+
from pandas.core.arrays.boolean import BooleanDtype
|
1577 |
+
|
1578 |
+
return BooleanDtype()
|
1579 |
+
elif dtype.kind in "iu":
|
1580 |
+
from pandas.core.arrays.integer import NUMPY_INT_TO_DTYPE
|
1581 |
+
|
1582 |
+
return NUMPY_INT_TO_DTYPE[dtype]
|
1583 |
+
elif dtype.kind == "f":
|
1584 |
+
from pandas.core.arrays.floating import NUMPY_FLOAT_TO_DTYPE
|
1585 |
+
|
1586 |
+
return NUMPY_FLOAT_TO_DTYPE[dtype]
|
1587 |
+
else:
|
1588 |
+
raise NotImplementedError(dtype)
|
1589 |
+
|
1590 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
1591 |
+
# We unwrap any masked dtypes, find the common dtype we would use
|
1592 |
+
# for that, then re-mask the result.
|
1593 |
+
from pandas.core.dtypes.cast import find_common_type
|
1594 |
+
|
1595 |
+
new_dtype = find_common_type(
|
1596 |
+
[
|
1597 |
+
dtype.numpy_dtype if isinstance(dtype, BaseMaskedDtype) else dtype
|
1598 |
+
for dtype in dtypes
|
1599 |
+
]
|
1600 |
+
)
|
1601 |
+
if not isinstance(new_dtype, np.dtype):
|
1602 |
+
# If we ever support e.g. Masked[DatetimeArray] then this will change
|
1603 |
+
return None
|
1604 |
+
try:
|
1605 |
+
return type(self).from_numpy_dtype(new_dtype)
|
1606 |
+
except (KeyError, NotImplementedError):
|
1607 |
+
return None
|
1608 |
+
|
1609 |
+
|
1610 |
+
@register_extension_dtype
|
1611 |
+
class SparseDtype(ExtensionDtype):
|
1612 |
+
"""
|
1613 |
+
Dtype for data stored in :class:`SparseArray`.
|
1614 |
+
|
1615 |
+
This dtype implements the pandas ExtensionDtype interface.
|
1616 |
+
|
1617 |
+
Parameters
|
1618 |
+
----------
|
1619 |
+
dtype : str, ExtensionDtype, numpy.dtype, type, default numpy.float64
|
1620 |
+
The dtype of the underlying array storing the non-fill value values.
|
1621 |
+
fill_value : scalar, optional
|
1622 |
+
The scalar value not stored in the SparseArray. By default, this
|
1623 |
+
depends on `dtype`.
|
1624 |
+
|
1625 |
+
=========== ==========
|
1626 |
+
dtype na_value
|
1627 |
+
=========== ==========
|
1628 |
+
float ``np.nan``
|
1629 |
+
int ``0``
|
1630 |
+
bool ``False``
|
1631 |
+
datetime64 ``pd.NaT``
|
1632 |
+
timedelta64 ``pd.NaT``
|
1633 |
+
=========== ==========
|
1634 |
+
|
1635 |
+
The default value may be overridden by specifying a `fill_value`.
|
1636 |
+
|
1637 |
+
Attributes
|
1638 |
+
----------
|
1639 |
+
None
|
1640 |
+
|
1641 |
+
Methods
|
1642 |
+
-------
|
1643 |
+
None
|
1644 |
+
|
1645 |
+
Examples
|
1646 |
+
--------
|
1647 |
+
>>> ser = pd.Series([1, 0, 0], dtype=pd.SparseDtype(dtype=int, fill_value=0))
|
1648 |
+
>>> ser
|
1649 |
+
0 1
|
1650 |
+
1 0
|
1651 |
+
2 0
|
1652 |
+
dtype: Sparse[int64, 0]
|
1653 |
+
>>> ser.sparse.density
|
1654 |
+
0.3333333333333333
|
1655 |
+
"""
|
1656 |
+
|
1657 |
+
_is_immutable = True
|
1658 |
+
|
1659 |
+
# We include `_is_na_fill_value` in the metadata to avoid hash collisions
|
1660 |
+
# between SparseDtype(float, 0.0) and SparseDtype(float, nan).
|
1661 |
+
# Without is_na_fill_value in the comparison, those would be equal since
|
1662 |
+
# hash(nan) is (sometimes?) 0.
|
1663 |
+
_metadata = ("_dtype", "_fill_value", "_is_na_fill_value")
|
1664 |
+
|
1665 |
+
def __init__(self, dtype: Dtype = np.float64, fill_value: Any = None) -> None:
|
1666 |
+
if isinstance(dtype, type(self)):
|
1667 |
+
if fill_value is None:
|
1668 |
+
fill_value = dtype.fill_value
|
1669 |
+
dtype = dtype.subtype
|
1670 |
+
|
1671 |
+
from pandas.core.dtypes.common import (
|
1672 |
+
is_string_dtype,
|
1673 |
+
pandas_dtype,
|
1674 |
+
)
|
1675 |
+
from pandas.core.dtypes.missing import na_value_for_dtype
|
1676 |
+
|
1677 |
+
dtype = pandas_dtype(dtype)
|
1678 |
+
if is_string_dtype(dtype):
|
1679 |
+
dtype = np.dtype("object")
|
1680 |
+
if not isinstance(dtype, np.dtype):
|
1681 |
+
# GH#53160
|
1682 |
+
raise TypeError("SparseDtype subtype must be a numpy dtype")
|
1683 |
+
|
1684 |
+
if fill_value is None:
|
1685 |
+
fill_value = na_value_for_dtype(dtype)
|
1686 |
+
|
1687 |
+
self._dtype = dtype
|
1688 |
+
self._fill_value = fill_value
|
1689 |
+
self._check_fill_value()
|
1690 |
+
|
1691 |
+
def __hash__(self) -> int:
|
1692 |
+
# Python3 doesn't inherit __hash__ when a base class overrides
|
1693 |
+
# __eq__, so we explicitly do it here.
|
1694 |
+
return super().__hash__()
|
1695 |
+
|
1696 |
+
def __eq__(self, other: object) -> bool:
|
1697 |
+
# We have to override __eq__ to handle NA values in _metadata.
|
1698 |
+
# The base class does simple == checks, which fail for NA.
|
1699 |
+
if isinstance(other, str):
|
1700 |
+
try:
|
1701 |
+
other = self.construct_from_string(other)
|
1702 |
+
except TypeError:
|
1703 |
+
return False
|
1704 |
+
|
1705 |
+
if isinstance(other, type(self)):
|
1706 |
+
subtype = self.subtype == other.subtype
|
1707 |
+
if self._is_na_fill_value:
|
1708 |
+
# this case is complicated by two things:
|
1709 |
+
# SparseDtype(float, float(nan)) == SparseDtype(float, np.nan)
|
1710 |
+
# SparseDtype(float, np.nan) != SparseDtype(float, pd.NaT)
|
1711 |
+
# i.e. we want to treat any floating-point NaN as equal, but
|
1712 |
+
# not a floating-point NaN and a datetime NaT.
|
1713 |
+
fill_value = (
|
1714 |
+
other._is_na_fill_value
|
1715 |
+
and isinstance(self.fill_value, type(other.fill_value))
|
1716 |
+
or isinstance(other.fill_value, type(self.fill_value))
|
1717 |
+
)
|
1718 |
+
else:
|
1719 |
+
with warnings.catch_warnings():
|
1720 |
+
# Ignore spurious numpy warning
|
1721 |
+
warnings.filterwarnings(
|
1722 |
+
"ignore",
|
1723 |
+
"elementwise comparison failed",
|
1724 |
+
category=DeprecationWarning,
|
1725 |
+
)
|
1726 |
+
|
1727 |
+
fill_value = self.fill_value == other.fill_value
|
1728 |
+
|
1729 |
+
return subtype and fill_value
|
1730 |
+
return False
|
1731 |
+
|
1732 |
+
@property
|
1733 |
+
def fill_value(self):
|
1734 |
+
"""
|
1735 |
+
The fill value of the array.
|
1736 |
+
|
1737 |
+
Converting the SparseArray to a dense ndarray will fill the
|
1738 |
+
array with this value.
|
1739 |
+
|
1740 |
+
.. warning::
|
1741 |
+
|
1742 |
+
It's possible to end up with a SparseArray that has ``fill_value``
|
1743 |
+
values in ``sp_values``. This can occur, for example, when setting
|
1744 |
+
``SparseArray.fill_value`` directly.
|
1745 |
+
"""
|
1746 |
+
return self._fill_value
|
1747 |
+
|
1748 |
+
def _check_fill_value(self) -> None:
|
1749 |
+
if not lib.is_scalar(self._fill_value):
|
1750 |
+
raise ValueError(
|
1751 |
+
f"fill_value must be a scalar. Got {self._fill_value} instead"
|
1752 |
+
)
|
1753 |
+
|
1754 |
+
from pandas.core.dtypes.cast import can_hold_element
|
1755 |
+
from pandas.core.dtypes.missing import (
|
1756 |
+
is_valid_na_for_dtype,
|
1757 |
+
isna,
|
1758 |
+
)
|
1759 |
+
|
1760 |
+
from pandas.core.construction import ensure_wrapped_if_datetimelike
|
1761 |
+
|
1762 |
+
# GH#23124 require fill_value and subtype to match
|
1763 |
+
val = self._fill_value
|
1764 |
+
if isna(val):
|
1765 |
+
if not is_valid_na_for_dtype(val, self.subtype):
|
1766 |
+
warnings.warn(
|
1767 |
+
"Allowing arbitrary scalar fill_value in SparseDtype is "
|
1768 |
+
"deprecated. In a future version, the fill_value must be "
|
1769 |
+
"a valid value for the SparseDtype.subtype.",
|
1770 |
+
FutureWarning,
|
1771 |
+
stacklevel=find_stack_level(),
|
1772 |
+
)
|
1773 |
+
else:
|
1774 |
+
dummy = np.empty(0, dtype=self.subtype)
|
1775 |
+
dummy = ensure_wrapped_if_datetimelike(dummy)
|
1776 |
+
|
1777 |
+
if not can_hold_element(dummy, val):
|
1778 |
+
warnings.warn(
|
1779 |
+
"Allowing arbitrary scalar fill_value in SparseDtype is "
|
1780 |
+
"deprecated. In a future version, the fill_value must be "
|
1781 |
+
"a valid value for the SparseDtype.subtype.",
|
1782 |
+
FutureWarning,
|
1783 |
+
stacklevel=find_stack_level(),
|
1784 |
+
)
|
1785 |
+
|
1786 |
+
@property
|
1787 |
+
def _is_na_fill_value(self) -> bool:
|
1788 |
+
from pandas import isna
|
1789 |
+
|
1790 |
+
return isna(self.fill_value)
|
1791 |
+
|
1792 |
+
@property
|
1793 |
+
def _is_numeric(self) -> bool:
|
1794 |
+
return not self.subtype == object
|
1795 |
+
|
1796 |
+
@property
|
1797 |
+
def _is_boolean(self) -> bool:
|
1798 |
+
return self.subtype.kind == "b"
|
1799 |
+
|
1800 |
+
@property
|
1801 |
+
def kind(self) -> str:
|
1802 |
+
"""
|
1803 |
+
The sparse kind. Either 'integer', or 'block'.
|
1804 |
+
"""
|
1805 |
+
return self.subtype.kind
|
1806 |
+
|
1807 |
+
@property
|
1808 |
+
def type(self):
|
1809 |
+
return self.subtype.type
|
1810 |
+
|
1811 |
+
@property
|
1812 |
+
def subtype(self):
|
1813 |
+
return self._dtype
|
1814 |
+
|
1815 |
+
@property
|
1816 |
+
def name(self) -> str:
|
1817 |
+
return f"Sparse[{self.subtype.name}, {repr(self.fill_value)}]"
|
1818 |
+
|
1819 |
+
def __repr__(self) -> str:
|
1820 |
+
return self.name
|
1821 |
+
|
1822 |
+
@classmethod
|
1823 |
+
def construct_array_type(cls) -> type_t[SparseArray]:
|
1824 |
+
"""
|
1825 |
+
Return the array type associated with this dtype.
|
1826 |
+
|
1827 |
+
Returns
|
1828 |
+
-------
|
1829 |
+
type
|
1830 |
+
"""
|
1831 |
+
from pandas.core.arrays.sparse.array import SparseArray
|
1832 |
+
|
1833 |
+
return SparseArray
|
1834 |
+
|
1835 |
+
@classmethod
|
1836 |
+
def construct_from_string(cls, string: str) -> SparseDtype:
|
1837 |
+
"""
|
1838 |
+
Construct a SparseDtype from a string form.
|
1839 |
+
|
1840 |
+
Parameters
|
1841 |
+
----------
|
1842 |
+
string : str
|
1843 |
+
Can take the following forms.
|
1844 |
+
|
1845 |
+
string dtype
|
1846 |
+
================ ============================
|
1847 |
+
'int' SparseDtype[np.int64, 0]
|
1848 |
+
'Sparse' SparseDtype[np.float64, nan]
|
1849 |
+
'Sparse[int]' SparseDtype[np.int64, 0]
|
1850 |
+
'Sparse[int, 0]' SparseDtype[np.int64, 0]
|
1851 |
+
================ ============================
|
1852 |
+
|
1853 |
+
It is not possible to specify non-default fill values
|
1854 |
+
with a string. An argument like ``'Sparse[int, 1]'``
|
1855 |
+
will raise a ``TypeError`` because the default fill value
|
1856 |
+
for integers is 0.
|
1857 |
+
|
1858 |
+
Returns
|
1859 |
+
-------
|
1860 |
+
SparseDtype
|
1861 |
+
"""
|
1862 |
+
if not isinstance(string, str):
|
1863 |
+
raise TypeError(
|
1864 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
1865 |
+
)
|
1866 |
+
msg = f"Cannot construct a 'SparseDtype' from '{string}'"
|
1867 |
+
if string.startswith("Sparse"):
|
1868 |
+
try:
|
1869 |
+
sub_type, has_fill_value = cls._parse_subtype(string)
|
1870 |
+
except ValueError as err:
|
1871 |
+
raise TypeError(msg) from err
|
1872 |
+
else:
|
1873 |
+
result = SparseDtype(sub_type)
|
1874 |
+
msg = (
|
1875 |
+
f"Cannot construct a 'SparseDtype' from '{string}'.\n\nIt "
|
1876 |
+
"looks like the fill_value in the string is not "
|
1877 |
+
"the default for the dtype. Non-default fill_values "
|
1878 |
+
"are not supported. Use the 'SparseDtype()' "
|
1879 |
+
"constructor instead."
|
1880 |
+
)
|
1881 |
+
if has_fill_value and str(result) != string:
|
1882 |
+
raise TypeError(msg)
|
1883 |
+
return result
|
1884 |
+
else:
|
1885 |
+
raise TypeError(msg)
|
1886 |
+
|
1887 |
+
@staticmethod
|
1888 |
+
def _parse_subtype(dtype: str) -> tuple[str, bool]:
|
1889 |
+
"""
|
1890 |
+
Parse a string to get the subtype
|
1891 |
+
|
1892 |
+
Parameters
|
1893 |
+
----------
|
1894 |
+
dtype : str
|
1895 |
+
A string like
|
1896 |
+
|
1897 |
+
* Sparse[subtype]
|
1898 |
+
* Sparse[subtype, fill_value]
|
1899 |
+
|
1900 |
+
Returns
|
1901 |
+
-------
|
1902 |
+
subtype : str
|
1903 |
+
|
1904 |
+
Raises
|
1905 |
+
------
|
1906 |
+
ValueError
|
1907 |
+
When the subtype cannot be extracted.
|
1908 |
+
"""
|
1909 |
+
xpr = re.compile(r"Sparse\[(?P<subtype>[^,]*)(, )?(?P<fill_value>.*?)?\]$")
|
1910 |
+
m = xpr.match(dtype)
|
1911 |
+
has_fill_value = False
|
1912 |
+
if m:
|
1913 |
+
subtype = m.groupdict()["subtype"]
|
1914 |
+
has_fill_value = bool(m.groupdict()["fill_value"])
|
1915 |
+
elif dtype == "Sparse":
|
1916 |
+
subtype = "float64"
|
1917 |
+
else:
|
1918 |
+
raise ValueError(f"Cannot parse {dtype}")
|
1919 |
+
return subtype, has_fill_value
|
1920 |
+
|
1921 |
+
@classmethod
|
1922 |
+
def is_dtype(cls, dtype: object) -> bool:
|
1923 |
+
dtype = getattr(dtype, "dtype", dtype)
|
1924 |
+
if isinstance(dtype, str) and dtype.startswith("Sparse"):
|
1925 |
+
sub_type, _ = cls._parse_subtype(dtype)
|
1926 |
+
dtype = np.dtype(sub_type)
|
1927 |
+
elif isinstance(dtype, cls):
|
1928 |
+
return True
|
1929 |
+
return isinstance(dtype, np.dtype) or dtype == "Sparse"
|
1930 |
+
|
1931 |
+
def update_dtype(self, dtype) -> SparseDtype:
|
1932 |
+
"""
|
1933 |
+
Convert the SparseDtype to a new dtype.
|
1934 |
+
|
1935 |
+
This takes care of converting the ``fill_value``.
|
1936 |
+
|
1937 |
+
Parameters
|
1938 |
+
----------
|
1939 |
+
dtype : Union[str, numpy.dtype, SparseDtype]
|
1940 |
+
The new dtype to use.
|
1941 |
+
|
1942 |
+
* For a SparseDtype, it is simply returned
|
1943 |
+
* For a NumPy dtype (or str), the current fill value
|
1944 |
+
is converted to the new dtype, and a SparseDtype
|
1945 |
+
with `dtype` and the new fill value is returned.
|
1946 |
+
|
1947 |
+
Returns
|
1948 |
+
-------
|
1949 |
+
SparseDtype
|
1950 |
+
A new SparseDtype with the correct `dtype` and fill value
|
1951 |
+
for that `dtype`.
|
1952 |
+
|
1953 |
+
Raises
|
1954 |
+
------
|
1955 |
+
ValueError
|
1956 |
+
When the current fill value cannot be converted to the
|
1957 |
+
new `dtype` (e.g. trying to convert ``np.nan`` to an
|
1958 |
+
integer dtype).
|
1959 |
+
|
1960 |
+
|
1961 |
+
Examples
|
1962 |
+
--------
|
1963 |
+
>>> SparseDtype(int, 0).update_dtype(float)
|
1964 |
+
Sparse[float64, 0.0]
|
1965 |
+
|
1966 |
+
>>> SparseDtype(int, 1).update_dtype(SparseDtype(float, np.nan))
|
1967 |
+
Sparse[float64, nan]
|
1968 |
+
"""
|
1969 |
+
from pandas.core.dtypes.astype import astype_array
|
1970 |
+
from pandas.core.dtypes.common import pandas_dtype
|
1971 |
+
|
1972 |
+
cls = type(self)
|
1973 |
+
dtype = pandas_dtype(dtype)
|
1974 |
+
|
1975 |
+
if not isinstance(dtype, cls):
|
1976 |
+
if not isinstance(dtype, np.dtype):
|
1977 |
+
raise TypeError("sparse arrays of extension dtypes not supported")
|
1978 |
+
|
1979 |
+
fv_asarray = np.atleast_1d(np.array(self.fill_value))
|
1980 |
+
fvarr = astype_array(fv_asarray, dtype)
|
1981 |
+
# NB: not fv_0d.item(), as that casts dt64->int
|
1982 |
+
fill_value = fvarr[0]
|
1983 |
+
dtype = cls(dtype, fill_value=fill_value)
|
1984 |
+
|
1985 |
+
return dtype
|
1986 |
+
|
1987 |
+
@property
|
1988 |
+
def _subtype_with_str(self):
|
1989 |
+
"""
|
1990 |
+
Whether the SparseDtype's subtype should be considered ``str``.
|
1991 |
+
|
1992 |
+
Typically, pandas will store string data in an object-dtype array.
|
1993 |
+
When converting values to a dtype, e.g. in ``.astype``, we need to
|
1994 |
+
be more specific, we need the actual underlying type.
|
1995 |
+
|
1996 |
+
Returns
|
1997 |
+
-------
|
1998 |
+
>>> SparseDtype(int, 1)._subtype_with_str
|
1999 |
+
dtype('int64')
|
2000 |
+
|
2001 |
+
>>> SparseDtype(object, 1)._subtype_with_str
|
2002 |
+
dtype('O')
|
2003 |
+
|
2004 |
+
>>> dtype = SparseDtype(str, '')
|
2005 |
+
>>> dtype.subtype
|
2006 |
+
dtype('O')
|
2007 |
+
|
2008 |
+
>>> dtype._subtype_with_str
|
2009 |
+
<class 'str'>
|
2010 |
+
"""
|
2011 |
+
if isinstance(self.fill_value, str):
|
2012 |
+
return type(self.fill_value)
|
2013 |
+
return self.subtype
|
2014 |
+
|
2015 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
2016 |
+
# TODO for now only handle SparseDtypes and numpy dtypes => extend
|
2017 |
+
# with other compatible extension dtypes
|
2018 |
+
from pandas.core.dtypes.cast import np_find_common_type
|
2019 |
+
|
2020 |
+
if any(
|
2021 |
+
isinstance(x, ExtensionDtype) and not isinstance(x, SparseDtype)
|
2022 |
+
for x in dtypes
|
2023 |
+
):
|
2024 |
+
return None
|
2025 |
+
|
2026 |
+
fill_values = [x.fill_value for x in dtypes if isinstance(x, SparseDtype)]
|
2027 |
+
fill_value = fill_values[0]
|
2028 |
+
|
2029 |
+
from pandas import isna
|
2030 |
+
|
2031 |
+
# np.nan isn't a singleton, so we may end up with multiple
|
2032 |
+
# NaNs here, so we ignore the all NA case too.
|
2033 |
+
if not (len(set(fill_values)) == 1 or isna(fill_values).all()):
|
2034 |
+
warnings.warn(
|
2035 |
+
"Concatenating sparse arrays with multiple fill "
|
2036 |
+
f"values: '{fill_values}'. Picking the first and "
|
2037 |
+
"converting the rest.",
|
2038 |
+
PerformanceWarning,
|
2039 |
+
stacklevel=find_stack_level(),
|
2040 |
+
)
|
2041 |
+
|
2042 |
+
np_dtypes = (x.subtype if isinstance(x, SparseDtype) else x for x in dtypes)
|
2043 |
+
return SparseDtype(np_find_common_type(*np_dtypes), fill_value=fill_value)
|
2044 |
+
|
2045 |
+
|
2046 |
+
@register_extension_dtype
|
2047 |
+
class ArrowDtype(StorageExtensionDtype):
|
2048 |
+
"""
|
2049 |
+
An ExtensionDtype for PyArrow data types.
|
2050 |
+
|
2051 |
+
.. warning::
|
2052 |
+
|
2053 |
+
ArrowDtype is considered experimental. The implementation and
|
2054 |
+
parts of the API may change without warning.
|
2055 |
+
|
2056 |
+
While most ``dtype`` arguments can accept the "string"
|
2057 |
+
constructor, e.g. ``"int64[pyarrow]"``, ArrowDtype is useful
|
2058 |
+
if the data type contains parameters like ``pyarrow.timestamp``.
|
2059 |
+
|
2060 |
+
Parameters
|
2061 |
+
----------
|
2062 |
+
pyarrow_dtype : pa.DataType
|
2063 |
+
An instance of a `pyarrow.DataType <https://arrow.apache.org/docs/python/api/datatypes.html#factory-functions>`__.
|
2064 |
+
|
2065 |
+
Attributes
|
2066 |
+
----------
|
2067 |
+
pyarrow_dtype
|
2068 |
+
|
2069 |
+
Methods
|
2070 |
+
-------
|
2071 |
+
None
|
2072 |
+
|
2073 |
+
Returns
|
2074 |
+
-------
|
2075 |
+
ArrowDtype
|
2076 |
+
|
2077 |
+
Examples
|
2078 |
+
--------
|
2079 |
+
>>> import pyarrow as pa
|
2080 |
+
>>> pd.ArrowDtype(pa.int64())
|
2081 |
+
int64[pyarrow]
|
2082 |
+
|
2083 |
+
Types with parameters must be constructed with ArrowDtype.
|
2084 |
+
|
2085 |
+
>>> pd.ArrowDtype(pa.timestamp("s", tz="America/New_York"))
|
2086 |
+
timestamp[s, tz=America/New_York][pyarrow]
|
2087 |
+
>>> pd.ArrowDtype(pa.list_(pa.int64()))
|
2088 |
+
list<item: int64>[pyarrow]
|
2089 |
+
"""
|
2090 |
+
|
2091 |
+
_metadata = ("storage", "pyarrow_dtype") # type: ignore[assignment]
|
2092 |
+
|
2093 |
+
def __init__(self, pyarrow_dtype: pa.DataType) -> None:
|
2094 |
+
super().__init__("pyarrow")
|
2095 |
+
if pa_version_under10p1:
|
2096 |
+
raise ImportError("pyarrow>=10.0.1 is required for ArrowDtype")
|
2097 |
+
if not isinstance(pyarrow_dtype, pa.DataType):
|
2098 |
+
raise ValueError(
|
2099 |
+
f"pyarrow_dtype ({pyarrow_dtype}) must be an instance "
|
2100 |
+
f"of a pyarrow.DataType. Got {type(pyarrow_dtype)} instead."
|
2101 |
+
)
|
2102 |
+
self.pyarrow_dtype = pyarrow_dtype
|
2103 |
+
|
2104 |
+
def __repr__(self) -> str:
|
2105 |
+
return self.name
|
2106 |
+
|
2107 |
+
def __hash__(self) -> int:
|
2108 |
+
# make myself hashable
|
2109 |
+
return hash(str(self))
|
2110 |
+
|
2111 |
+
def __eq__(self, other: object) -> bool:
|
2112 |
+
if not isinstance(other, type(self)):
|
2113 |
+
return super().__eq__(other)
|
2114 |
+
return self.pyarrow_dtype == other.pyarrow_dtype
|
2115 |
+
|
2116 |
+
@property
|
2117 |
+
def type(self):
|
2118 |
+
"""
|
2119 |
+
Returns associated scalar type.
|
2120 |
+
"""
|
2121 |
+
pa_type = self.pyarrow_dtype
|
2122 |
+
if pa.types.is_integer(pa_type):
|
2123 |
+
return int
|
2124 |
+
elif pa.types.is_floating(pa_type):
|
2125 |
+
return float
|
2126 |
+
elif pa.types.is_string(pa_type) or pa.types.is_large_string(pa_type):
|
2127 |
+
return str
|
2128 |
+
elif (
|
2129 |
+
pa.types.is_binary(pa_type)
|
2130 |
+
or pa.types.is_fixed_size_binary(pa_type)
|
2131 |
+
or pa.types.is_large_binary(pa_type)
|
2132 |
+
):
|
2133 |
+
return bytes
|
2134 |
+
elif pa.types.is_boolean(pa_type):
|
2135 |
+
return bool
|
2136 |
+
elif pa.types.is_duration(pa_type):
|
2137 |
+
if pa_type.unit == "ns":
|
2138 |
+
return Timedelta
|
2139 |
+
else:
|
2140 |
+
return timedelta
|
2141 |
+
elif pa.types.is_timestamp(pa_type):
|
2142 |
+
if pa_type.unit == "ns":
|
2143 |
+
return Timestamp
|
2144 |
+
else:
|
2145 |
+
return datetime
|
2146 |
+
elif pa.types.is_date(pa_type):
|
2147 |
+
return date
|
2148 |
+
elif pa.types.is_time(pa_type):
|
2149 |
+
return time
|
2150 |
+
elif pa.types.is_decimal(pa_type):
|
2151 |
+
return Decimal
|
2152 |
+
elif pa.types.is_dictionary(pa_type):
|
2153 |
+
# TODO: Potentially change this & CategoricalDtype.type to
|
2154 |
+
# something more representative of the scalar
|
2155 |
+
return CategoricalDtypeType
|
2156 |
+
elif pa.types.is_list(pa_type) or pa.types.is_large_list(pa_type):
|
2157 |
+
return list
|
2158 |
+
elif pa.types.is_fixed_size_list(pa_type):
|
2159 |
+
return list
|
2160 |
+
elif pa.types.is_map(pa_type):
|
2161 |
+
return list
|
2162 |
+
elif pa.types.is_struct(pa_type):
|
2163 |
+
return dict
|
2164 |
+
elif pa.types.is_null(pa_type):
|
2165 |
+
# TODO: None? pd.NA? pa.null?
|
2166 |
+
return type(pa_type)
|
2167 |
+
elif isinstance(pa_type, pa.ExtensionType):
|
2168 |
+
return type(self)(pa_type.storage_type).type
|
2169 |
+
raise NotImplementedError(pa_type)
|
2170 |
+
|
2171 |
+
@property
|
2172 |
+
def name(self) -> str: # type: ignore[override]
|
2173 |
+
"""
|
2174 |
+
A string identifying the data type.
|
2175 |
+
"""
|
2176 |
+
return f"{str(self.pyarrow_dtype)}[{self.storage}]"
|
2177 |
+
|
2178 |
+
@cache_readonly
|
2179 |
+
def numpy_dtype(self) -> np.dtype:
|
2180 |
+
"""Return an instance of the related numpy dtype"""
|
2181 |
+
if pa.types.is_timestamp(self.pyarrow_dtype):
|
2182 |
+
# pa.timestamp(unit).to_pandas_dtype() returns ns units
|
2183 |
+
# regardless of the pyarrow timestamp units.
|
2184 |
+
# This can be removed if/when pyarrow addresses it:
|
2185 |
+
# https://github.com/apache/arrow/issues/34462
|
2186 |
+
return np.dtype(f"datetime64[{self.pyarrow_dtype.unit}]")
|
2187 |
+
if pa.types.is_duration(self.pyarrow_dtype):
|
2188 |
+
# pa.duration(unit).to_pandas_dtype() returns ns units
|
2189 |
+
# regardless of the pyarrow duration units
|
2190 |
+
# This can be removed if/when pyarrow addresses it:
|
2191 |
+
# https://github.com/apache/arrow/issues/34462
|
2192 |
+
return np.dtype(f"timedelta64[{self.pyarrow_dtype.unit}]")
|
2193 |
+
if pa.types.is_string(self.pyarrow_dtype) or pa.types.is_large_string(
|
2194 |
+
self.pyarrow_dtype
|
2195 |
+
):
|
2196 |
+
# pa.string().to_pandas_dtype() = object which we don't want
|
2197 |
+
return np.dtype(str)
|
2198 |
+
try:
|
2199 |
+
return np.dtype(self.pyarrow_dtype.to_pandas_dtype())
|
2200 |
+
except (NotImplementedError, TypeError):
|
2201 |
+
return np.dtype(object)
|
2202 |
+
|
2203 |
+
@cache_readonly
|
2204 |
+
def kind(self) -> str:
|
2205 |
+
if pa.types.is_timestamp(self.pyarrow_dtype):
|
2206 |
+
# To mirror DatetimeTZDtype
|
2207 |
+
return "M"
|
2208 |
+
return self.numpy_dtype.kind
|
2209 |
+
|
2210 |
+
@cache_readonly
|
2211 |
+
def itemsize(self) -> int:
|
2212 |
+
"""Return the number of bytes in this dtype"""
|
2213 |
+
return self.numpy_dtype.itemsize
|
2214 |
+
|
2215 |
+
@classmethod
|
2216 |
+
def construct_array_type(cls) -> type_t[ArrowExtensionArray]:
|
2217 |
+
"""
|
2218 |
+
Return the array type associated with this dtype.
|
2219 |
+
|
2220 |
+
Returns
|
2221 |
+
-------
|
2222 |
+
type
|
2223 |
+
"""
|
2224 |
+
from pandas.core.arrays.arrow import ArrowExtensionArray
|
2225 |
+
|
2226 |
+
return ArrowExtensionArray
|
2227 |
+
|
2228 |
+
@classmethod
|
2229 |
+
def construct_from_string(cls, string: str) -> ArrowDtype:
|
2230 |
+
"""
|
2231 |
+
Construct this type from a string.
|
2232 |
+
|
2233 |
+
Parameters
|
2234 |
+
----------
|
2235 |
+
string : str
|
2236 |
+
string should follow the format f"{pyarrow_type}[pyarrow]"
|
2237 |
+
e.g. int64[pyarrow]
|
2238 |
+
"""
|
2239 |
+
if not isinstance(string, str):
|
2240 |
+
raise TypeError(
|
2241 |
+
f"'construct_from_string' expects a string, got {type(string)}"
|
2242 |
+
)
|
2243 |
+
if not string.endswith("[pyarrow]"):
|
2244 |
+
raise TypeError(f"'{string}' must end with '[pyarrow]'")
|
2245 |
+
if string == "string[pyarrow]":
|
2246 |
+
# Ensure Registry.find skips ArrowDtype to use StringDtype instead
|
2247 |
+
raise TypeError("string[pyarrow] should be constructed by StringDtype")
|
2248 |
+
|
2249 |
+
base_type = string[:-9] # get rid of "[pyarrow]"
|
2250 |
+
try:
|
2251 |
+
pa_dtype = pa.type_for_alias(base_type)
|
2252 |
+
except ValueError as err:
|
2253 |
+
has_parameters = re.search(r"[\[\(].*[\]\)]", base_type)
|
2254 |
+
if has_parameters:
|
2255 |
+
# Fallback to try common temporal types
|
2256 |
+
try:
|
2257 |
+
return cls._parse_temporal_dtype_string(base_type)
|
2258 |
+
except (NotImplementedError, ValueError):
|
2259 |
+
# Fall through to raise with nice exception message below
|
2260 |
+
pass
|
2261 |
+
|
2262 |
+
raise NotImplementedError(
|
2263 |
+
"Passing pyarrow type specific parameters "
|
2264 |
+
f"({has_parameters.group()}) in the string is not supported. "
|
2265 |
+
"Please construct an ArrowDtype object with a pyarrow_dtype "
|
2266 |
+
"instance with specific parameters."
|
2267 |
+
) from err
|
2268 |
+
raise TypeError(f"'{base_type}' is not a valid pyarrow data type.") from err
|
2269 |
+
return cls(pa_dtype)
|
2270 |
+
|
2271 |
+
# TODO(arrow#33642): This can be removed once supported by pyarrow
|
2272 |
+
@classmethod
|
2273 |
+
def _parse_temporal_dtype_string(cls, string: str) -> ArrowDtype:
|
2274 |
+
"""
|
2275 |
+
Construct a temporal ArrowDtype from string.
|
2276 |
+
"""
|
2277 |
+
# we assume
|
2278 |
+
# 1) "[pyarrow]" has already been stripped from the end of our string.
|
2279 |
+
# 2) we know "[" is present
|
2280 |
+
head, tail = string.split("[", 1)
|
2281 |
+
|
2282 |
+
if not tail.endswith("]"):
|
2283 |
+
raise ValueError
|
2284 |
+
tail = tail[:-1]
|
2285 |
+
|
2286 |
+
if head == "timestamp":
|
2287 |
+
assert "," in tail # otherwise type_for_alias should work
|
2288 |
+
unit, tz = tail.split(",", 1)
|
2289 |
+
unit = unit.strip()
|
2290 |
+
tz = tz.strip()
|
2291 |
+
if tz.startswith("tz="):
|
2292 |
+
tz = tz[3:]
|
2293 |
+
|
2294 |
+
pa_type = pa.timestamp(unit, tz=tz)
|
2295 |
+
dtype = cls(pa_type)
|
2296 |
+
return dtype
|
2297 |
+
|
2298 |
+
raise NotImplementedError(string)
|
2299 |
+
|
2300 |
+
@property
|
2301 |
+
def _is_numeric(self) -> bool:
|
2302 |
+
"""
|
2303 |
+
Whether columns with this dtype should be considered numeric.
|
2304 |
+
"""
|
2305 |
+
# TODO: pa.types.is_boolean?
|
2306 |
+
return (
|
2307 |
+
pa.types.is_integer(self.pyarrow_dtype)
|
2308 |
+
or pa.types.is_floating(self.pyarrow_dtype)
|
2309 |
+
or pa.types.is_decimal(self.pyarrow_dtype)
|
2310 |
+
)
|
2311 |
+
|
2312 |
+
@property
|
2313 |
+
def _is_boolean(self) -> bool:
|
2314 |
+
"""
|
2315 |
+
Whether this dtype should be considered boolean.
|
2316 |
+
"""
|
2317 |
+
return pa.types.is_boolean(self.pyarrow_dtype)
|
2318 |
+
|
2319 |
+
def _get_common_dtype(self, dtypes: list[DtypeObj]) -> DtypeObj | None:
|
2320 |
+
# We unwrap any masked dtypes, find the common dtype we would use
|
2321 |
+
# for that, then re-mask the result.
|
2322 |
+
# Mirrors BaseMaskedDtype
|
2323 |
+
from pandas.core.dtypes.cast import find_common_type
|
2324 |
+
|
2325 |
+
null_dtype = type(self)(pa.null())
|
2326 |
+
|
2327 |
+
new_dtype = find_common_type(
|
2328 |
+
[
|
2329 |
+
dtype.numpy_dtype if isinstance(dtype, ArrowDtype) else dtype
|
2330 |
+
for dtype in dtypes
|
2331 |
+
if dtype != null_dtype
|
2332 |
+
]
|
2333 |
+
)
|
2334 |
+
if not isinstance(new_dtype, np.dtype):
|
2335 |
+
return None
|
2336 |
+
try:
|
2337 |
+
pa_dtype = pa.from_numpy_dtype(new_dtype)
|
2338 |
+
return type(self)(pa_dtype)
|
2339 |
+
except NotImplementedError:
|
2340 |
+
return None
|
2341 |
+
|
2342 |
+
def __from_arrow__(self, array: pa.Array | pa.ChunkedArray):
|
2343 |
+
"""
|
2344 |
+
Construct IntegerArray/FloatingArray from pyarrow Array/ChunkedArray.
|
2345 |
+
"""
|
2346 |
+
array_class = self.construct_array_type()
|
2347 |
+
arr = array.cast(self.pyarrow_dtype, safe=True)
|
2348 |
+
return array_class(arr)
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/generic.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" define generic base classes for pandas objects """
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
Type,
|
7 |
+
cast,
|
8 |
+
)
|
9 |
+
|
10 |
+
if TYPE_CHECKING:
|
11 |
+
from pandas import (
|
12 |
+
Categorical,
|
13 |
+
CategoricalIndex,
|
14 |
+
DataFrame,
|
15 |
+
DatetimeIndex,
|
16 |
+
Index,
|
17 |
+
IntervalIndex,
|
18 |
+
MultiIndex,
|
19 |
+
PeriodIndex,
|
20 |
+
RangeIndex,
|
21 |
+
Series,
|
22 |
+
TimedeltaIndex,
|
23 |
+
)
|
24 |
+
from pandas.core.arrays import (
|
25 |
+
DatetimeArray,
|
26 |
+
ExtensionArray,
|
27 |
+
NumpyExtensionArray,
|
28 |
+
PeriodArray,
|
29 |
+
TimedeltaArray,
|
30 |
+
)
|
31 |
+
from pandas.core.generic import NDFrame
|
32 |
+
|
33 |
+
|
34 |
+
# define abstract base classes to enable isinstance type checking on our
|
35 |
+
# objects
|
36 |
+
def create_pandas_abc_type(name, attr, comp):
|
37 |
+
def _check(inst) -> bool:
|
38 |
+
return getattr(inst, attr, "_typ") in comp
|
39 |
+
|
40 |
+
# https://github.com/python/mypy/issues/1006
|
41 |
+
# error: 'classmethod' used with a non-method
|
42 |
+
@classmethod # type: ignore[misc]
|
43 |
+
def _instancecheck(cls, inst) -> bool:
|
44 |
+
return _check(inst) and not isinstance(inst, type)
|
45 |
+
|
46 |
+
@classmethod # type: ignore[misc]
|
47 |
+
def _subclasscheck(cls, inst) -> bool:
|
48 |
+
# Raise instead of returning False
|
49 |
+
# This is consistent with default __subclasscheck__ behavior
|
50 |
+
if not isinstance(inst, type):
|
51 |
+
raise TypeError("issubclass() arg 1 must be a class")
|
52 |
+
|
53 |
+
return _check(inst)
|
54 |
+
|
55 |
+
dct = {"__instancecheck__": _instancecheck, "__subclasscheck__": _subclasscheck}
|
56 |
+
meta = type("ABCBase", (type,), dct)
|
57 |
+
return meta(name, (), dct)
|
58 |
+
|
59 |
+
|
60 |
+
ABCRangeIndex = cast(
|
61 |
+
"Type[RangeIndex]",
|
62 |
+
create_pandas_abc_type("ABCRangeIndex", "_typ", ("rangeindex",)),
|
63 |
+
)
|
64 |
+
ABCMultiIndex = cast(
|
65 |
+
"Type[MultiIndex]",
|
66 |
+
create_pandas_abc_type("ABCMultiIndex", "_typ", ("multiindex",)),
|
67 |
+
)
|
68 |
+
ABCDatetimeIndex = cast(
|
69 |
+
"Type[DatetimeIndex]",
|
70 |
+
create_pandas_abc_type("ABCDatetimeIndex", "_typ", ("datetimeindex",)),
|
71 |
+
)
|
72 |
+
ABCTimedeltaIndex = cast(
|
73 |
+
"Type[TimedeltaIndex]",
|
74 |
+
create_pandas_abc_type("ABCTimedeltaIndex", "_typ", ("timedeltaindex",)),
|
75 |
+
)
|
76 |
+
ABCPeriodIndex = cast(
|
77 |
+
"Type[PeriodIndex]",
|
78 |
+
create_pandas_abc_type("ABCPeriodIndex", "_typ", ("periodindex",)),
|
79 |
+
)
|
80 |
+
ABCCategoricalIndex = cast(
|
81 |
+
"Type[CategoricalIndex]",
|
82 |
+
create_pandas_abc_type("ABCCategoricalIndex", "_typ", ("categoricalindex",)),
|
83 |
+
)
|
84 |
+
ABCIntervalIndex = cast(
|
85 |
+
"Type[IntervalIndex]",
|
86 |
+
create_pandas_abc_type("ABCIntervalIndex", "_typ", ("intervalindex",)),
|
87 |
+
)
|
88 |
+
ABCIndex = cast(
|
89 |
+
"Type[Index]",
|
90 |
+
create_pandas_abc_type(
|
91 |
+
"ABCIndex",
|
92 |
+
"_typ",
|
93 |
+
{
|
94 |
+
"index",
|
95 |
+
"rangeindex",
|
96 |
+
"multiindex",
|
97 |
+
"datetimeindex",
|
98 |
+
"timedeltaindex",
|
99 |
+
"periodindex",
|
100 |
+
"categoricalindex",
|
101 |
+
"intervalindex",
|
102 |
+
},
|
103 |
+
),
|
104 |
+
)
|
105 |
+
|
106 |
+
|
107 |
+
ABCNDFrame = cast(
|
108 |
+
"Type[NDFrame]",
|
109 |
+
create_pandas_abc_type("ABCNDFrame", "_typ", ("series", "dataframe")),
|
110 |
+
)
|
111 |
+
ABCSeries = cast(
|
112 |
+
"Type[Series]",
|
113 |
+
create_pandas_abc_type("ABCSeries", "_typ", ("series",)),
|
114 |
+
)
|
115 |
+
ABCDataFrame = cast(
|
116 |
+
"Type[DataFrame]", create_pandas_abc_type("ABCDataFrame", "_typ", ("dataframe",))
|
117 |
+
)
|
118 |
+
|
119 |
+
ABCCategorical = cast(
|
120 |
+
"Type[Categorical]",
|
121 |
+
create_pandas_abc_type("ABCCategorical", "_typ", ("categorical")),
|
122 |
+
)
|
123 |
+
ABCDatetimeArray = cast(
|
124 |
+
"Type[DatetimeArray]",
|
125 |
+
create_pandas_abc_type("ABCDatetimeArray", "_typ", ("datetimearray")),
|
126 |
+
)
|
127 |
+
ABCTimedeltaArray = cast(
|
128 |
+
"Type[TimedeltaArray]",
|
129 |
+
create_pandas_abc_type("ABCTimedeltaArray", "_typ", ("timedeltaarray")),
|
130 |
+
)
|
131 |
+
ABCPeriodArray = cast(
|
132 |
+
"Type[PeriodArray]",
|
133 |
+
create_pandas_abc_type("ABCPeriodArray", "_typ", ("periodarray",)),
|
134 |
+
)
|
135 |
+
ABCExtensionArray = cast(
|
136 |
+
"Type[ExtensionArray]",
|
137 |
+
create_pandas_abc_type(
|
138 |
+
"ABCExtensionArray",
|
139 |
+
"_typ",
|
140 |
+
# Note: IntervalArray and SparseArray are included bc they have _typ="extension"
|
141 |
+
{"extension", "categorical", "periodarray", "datetimearray", "timedeltaarray"},
|
142 |
+
),
|
143 |
+
)
|
144 |
+
ABCNumpyExtensionArray = cast(
|
145 |
+
"Type[NumpyExtensionArray]",
|
146 |
+
create_pandas_abc_type("ABCNumpyExtensionArray", "_typ", ("npy_extension",)),
|
147 |
+
)
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/inference.py
ADDED
@@ -0,0 +1,437 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
""" basic inference routines """
|
2 |
+
|
3 |
+
from __future__ import annotations
|
4 |
+
|
5 |
+
from collections import abc
|
6 |
+
from numbers import Number
|
7 |
+
import re
|
8 |
+
from re import Pattern
|
9 |
+
from typing import TYPE_CHECKING
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
from pandas._libs import lib
|
14 |
+
|
15 |
+
if TYPE_CHECKING:
|
16 |
+
from collections.abc import Hashable
|
17 |
+
|
18 |
+
from pandas._typing import TypeGuard
|
19 |
+
|
20 |
+
is_bool = lib.is_bool
|
21 |
+
|
22 |
+
is_integer = lib.is_integer
|
23 |
+
|
24 |
+
is_float = lib.is_float
|
25 |
+
|
26 |
+
is_complex = lib.is_complex
|
27 |
+
|
28 |
+
is_scalar = lib.is_scalar
|
29 |
+
|
30 |
+
is_decimal = lib.is_decimal
|
31 |
+
|
32 |
+
is_interval = lib.is_interval
|
33 |
+
|
34 |
+
is_list_like = lib.is_list_like
|
35 |
+
|
36 |
+
is_iterator = lib.is_iterator
|
37 |
+
|
38 |
+
|
39 |
+
def is_number(obj) -> TypeGuard[Number | np.number]:
|
40 |
+
"""
|
41 |
+
Check if the object is a number.
|
42 |
+
|
43 |
+
Returns True when the object is a number, and False if is not.
|
44 |
+
|
45 |
+
Parameters
|
46 |
+
----------
|
47 |
+
obj : any type
|
48 |
+
The object to check if is a number.
|
49 |
+
|
50 |
+
Returns
|
51 |
+
-------
|
52 |
+
bool
|
53 |
+
Whether `obj` is a number or not.
|
54 |
+
|
55 |
+
See Also
|
56 |
+
--------
|
57 |
+
api.types.is_integer: Checks a subgroup of numbers.
|
58 |
+
|
59 |
+
Examples
|
60 |
+
--------
|
61 |
+
>>> from pandas.api.types import is_number
|
62 |
+
>>> is_number(1)
|
63 |
+
True
|
64 |
+
>>> is_number(7.15)
|
65 |
+
True
|
66 |
+
|
67 |
+
Booleans are valid because they are int subclass.
|
68 |
+
|
69 |
+
>>> is_number(False)
|
70 |
+
True
|
71 |
+
|
72 |
+
>>> is_number("foo")
|
73 |
+
False
|
74 |
+
>>> is_number("5")
|
75 |
+
False
|
76 |
+
"""
|
77 |
+
return isinstance(obj, (Number, np.number))
|
78 |
+
|
79 |
+
|
80 |
+
def iterable_not_string(obj) -> bool:
|
81 |
+
"""
|
82 |
+
Check if the object is an iterable but not a string.
|
83 |
+
|
84 |
+
Parameters
|
85 |
+
----------
|
86 |
+
obj : The object to check.
|
87 |
+
|
88 |
+
Returns
|
89 |
+
-------
|
90 |
+
is_iter_not_string : bool
|
91 |
+
Whether `obj` is a non-string iterable.
|
92 |
+
|
93 |
+
Examples
|
94 |
+
--------
|
95 |
+
>>> iterable_not_string([1, 2, 3])
|
96 |
+
True
|
97 |
+
>>> iterable_not_string("foo")
|
98 |
+
False
|
99 |
+
>>> iterable_not_string(1)
|
100 |
+
False
|
101 |
+
"""
|
102 |
+
return isinstance(obj, abc.Iterable) and not isinstance(obj, str)
|
103 |
+
|
104 |
+
|
105 |
+
def is_file_like(obj) -> bool:
|
106 |
+
"""
|
107 |
+
Check if the object is a file-like object.
|
108 |
+
|
109 |
+
For objects to be considered file-like, they must
|
110 |
+
be an iterator AND have either a `read` and/or `write`
|
111 |
+
method as an attribute.
|
112 |
+
|
113 |
+
Note: file-like objects must be iterable, but
|
114 |
+
iterable objects need not be file-like.
|
115 |
+
|
116 |
+
Parameters
|
117 |
+
----------
|
118 |
+
obj : The object to check
|
119 |
+
|
120 |
+
Returns
|
121 |
+
-------
|
122 |
+
bool
|
123 |
+
Whether `obj` has file-like properties.
|
124 |
+
|
125 |
+
Examples
|
126 |
+
--------
|
127 |
+
>>> import io
|
128 |
+
>>> from pandas.api.types import is_file_like
|
129 |
+
>>> buffer = io.StringIO("data")
|
130 |
+
>>> is_file_like(buffer)
|
131 |
+
True
|
132 |
+
>>> is_file_like([1, 2, 3])
|
133 |
+
False
|
134 |
+
"""
|
135 |
+
if not (hasattr(obj, "read") or hasattr(obj, "write")):
|
136 |
+
return False
|
137 |
+
|
138 |
+
return bool(hasattr(obj, "__iter__"))
|
139 |
+
|
140 |
+
|
141 |
+
def is_re(obj) -> TypeGuard[Pattern]:
|
142 |
+
"""
|
143 |
+
Check if the object is a regex pattern instance.
|
144 |
+
|
145 |
+
Parameters
|
146 |
+
----------
|
147 |
+
obj : The object to check
|
148 |
+
|
149 |
+
Returns
|
150 |
+
-------
|
151 |
+
bool
|
152 |
+
Whether `obj` is a regex pattern.
|
153 |
+
|
154 |
+
Examples
|
155 |
+
--------
|
156 |
+
>>> from pandas.api.types import is_re
|
157 |
+
>>> import re
|
158 |
+
>>> is_re(re.compile(".*"))
|
159 |
+
True
|
160 |
+
>>> is_re("foo")
|
161 |
+
False
|
162 |
+
"""
|
163 |
+
return isinstance(obj, Pattern)
|
164 |
+
|
165 |
+
|
166 |
+
def is_re_compilable(obj) -> bool:
|
167 |
+
"""
|
168 |
+
Check if the object can be compiled into a regex pattern instance.
|
169 |
+
|
170 |
+
Parameters
|
171 |
+
----------
|
172 |
+
obj : The object to check
|
173 |
+
|
174 |
+
Returns
|
175 |
+
-------
|
176 |
+
bool
|
177 |
+
Whether `obj` can be compiled as a regex pattern.
|
178 |
+
|
179 |
+
Examples
|
180 |
+
--------
|
181 |
+
>>> from pandas.api.types import is_re_compilable
|
182 |
+
>>> is_re_compilable(".*")
|
183 |
+
True
|
184 |
+
>>> is_re_compilable(1)
|
185 |
+
False
|
186 |
+
"""
|
187 |
+
try:
|
188 |
+
re.compile(obj)
|
189 |
+
except TypeError:
|
190 |
+
return False
|
191 |
+
else:
|
192 |
+
return True
|
193 |
+
|
194 |
+
|
195 |
+
def is_array_like(obj) -> bool:
|
196 |
+
"""
|
197 |
+
Check if the object is array-like.
|
198 |
+
|
199 |
+
For an object to be considered array-like, it must be list-like and
|
200 |
+
have a `dtype` attribute.
|
201 |
+
|
202 |
+
Parameters
|
203 |
+
----------
|
204 |
+
obj : The object to check
|
205 |
+
|
206 |
+
Returns
|
207 |
+
-------
|
208 |
+
is_array_like : bool
|
209 |
+
Whether `obj` has array-like properties.
|
210 |
+
|
211 |
+
Examples
|
212 |
+
--------
|
213 |
+
>>> is_array_like(np.array([1, 2, 3]))
|
214 |
+
True
|
215 |
+
>>> is_array_like(pd.Series(["a", "b"]))
|
216 |
+
True
|
217 |
+
>>> is_array_like(pd.Index(["2016-01-01"]))
|
218 |
+
True
|
219 |
+
>>> is_array_like([1, 2, 3])
|
220 |
+
False
|
221 |
+
>>> is_array_like(("a", "b"))
|
222 |
+
False
|
223 |
+
"""
|
224 |
+
return is_list_like(obj) and hasattr(obj, "dtype")
|
225 |
+
|
226 |
+
|
227 |
+
def is_nested_list_like(obj) -> bool:
|
228 |
+
"""
|
229 |
+
Check if the object is list-like, and that all of its elements
|
230 |
+
are also list-like.
|
231 |
+
|
232 |
+
Parameters
|
233 |
+
----------
|
234 |
+
obj : The object to check
|
235 |
+
|
236 |
+
Returns
|
237 |
+
-------
|
238 |
+
is_list_like : bool
|
239 |
+
Whether `obj` has list-like properties.
|
240 |
+
|
241 |
+
Examples
|
242 |
+
--------
|
243 |
+
>>> is_nested_list_like([[1, 2, 3]])
|
244 |
+
True
|
245 |
+
>>> is_nested_list_like([{1, 2, 3}, {1, 2, 3}])
|
246 |
+
True
|
247 |
+
>>> is_nested_list_like(["foo"])
|
248 |
+
False
|
249 |
+
>>> is_nested_list_like([])
|
250 |
+
False
|
251 |
+
>>> is_nested_list_like([[1, 2, 3], 1])
|
252 |
+
False
|
253 |
+
|
254 |
+
Notes
|
255 |
+
-----
|
256 |
+
This won't reliably detect whether a consumable iterator (e. g.
|
257 |
+
a generator) is a nested-list-like without consuming the iterator.
|
258 |
+
To avoid consuming it, we always return False if the outer container
|
259 |
+
doesn't define `__len__`.
|
260 |
+
|
261 |
+
See Also
|
262 |
+
--------
|
263 |
+
is_list_like
|
264 |
+
"""
|
265 |
+
return (
|
266 |
+
is_list_like(obj)
|
267 |
+
and hasattr(obj, "__len__")
|
268 |
+
and len(obj) > 0
|
269 |
+
and all(is_list_like(item) for item in obj)
|
270 |
+
)
|
271 |
+
|
272 |
+
|
273 |
+
def is_dict_like(obj) -> bool:
|
274 |
+
"""
|
275 |
+
Check if the object is dict-like.
|
276 |
+
|
277 |
+
Parameters
|
278 |
+
----------
|
279 |
+
obj : The object to check
|
280 |
+
|
281 |
+
Returns
|
282 |
+
-------
|
283 |
+
bool
|
284 |
+
Whether `obj` has dict-like properties.
|
285 |
+
|
286 |
+
Examples
|
287 |
+
--------
|
288 |
+
>>> from pandas.api.types import is_dict_like
|
289 |
+
>>> is_dict_like({1: 2})
|
290 |
+
True
|
291 |
+
>>> is_dict_like([1, 2, 3])
|
292 |
+
False
|
293 |
+
>>> is_dict_like(dict)
|
294 |
+
False
|
295 |
+
>>> is_dict_like(dict())
|
296 |
+
True
|
297 |
+
"""
|
298 |
+
dict_like_attrs = ("__getitem__", "keys", "__contains__")
|
299 |
+
return (
|
300 |
+
all(hasattr(obj, attr) for attr in dict_like_attrs)
|
301 |
+
# [GH 25196] exclude classes
|
302 |
+
and not isinstance(obj, type)
|
303 |
+
)
|
304 |
+
|
305 |
+
|
306 |
+
def is_named_tuple(obj) -> bool:
|
307 |
+
"""
|
308 |
+
Check if the object is a named tuple.
|
309 |
+
|
310 |
+
Parameters
|
311 |
+
----------
|
312 |
+
obj : The object to check
|
313 |
+
|
314 |
+
Returns
|
315 |
+
-------
|
316 |
+
bool
|
317 |
+
Whether `obj` is a named tuple.
|
318 |
+
|
319 |
+
Examples
|
320 |
+
--------
|
321 |
+
>>> from collections import namedtuple
|
322 |
+
>>> from pandas.api.types import is_named_tuple
|
323 |
+
>>> Point = namedtuple("Point", ["x", "y"])
|
324 |
+
>>> p = Point(1, 2)
|
325 |
+
>>>
|
326 |
+
>>> is_named_tuple(p)
|
327 |
+
True
|
328 |
+
>>> is_named_tuple((1, 2))
|
329 |
+
False
|
330 |
+
"""
|
331 |
+
return isinstance(obj, abc.Sequence) and hasattr(obj, "_fields")
|
332 |
+
|
333 |
+
|
334 |
+
def is_hashable(obj) -> TypeGuard[Hashable]:
|
335 |
+
"""
|
336 |
+
Return True if hash(obj) will succeed, False otherwise.
|
337 |
+
|
338 |
+
Some types will pass a test against collections.abc.Hashable but fail when
|
339 |
+
they are actually hashed with hash().
|
340 |
+
|
341 |
+
Distinguish between these and other types by trying the call to hash() and
|
342 |
+
seeing if they raise TypeError.
|
343 |
+
|
344 |
+
Returns
|
345 |
+
-------
|
346 |
+
bool
|
347 |
+
|
348 |
+
Examples
|
349 |
+
--------
|
350 |
+
>>> import collections
|
351 |
+
>>> from pandas.api.types import is_hashable
|
352 |
+
>>> a = ([],)
|
353 |
+
>>> isinstance(a, collections.abc.Hashable)
|
354 |
+
True
|
355 |
+
>>> is_hashable(a)
|
356 |
+
False
|
357 |
+
"""
|
358 |
+
# Unfortunately, we can't use isinstance(obj, collections.abc.Hashable),
|
359 |
+
# which can be faster than calling hash. That is because numpy scalars
|
360 |
+
# fail this test.
|
361 |
+
|
362 |
+
# Reconsider this decision once this numpy bug is fixed:
|
363 |
+
# https://github.com/numpy/numpy/issues/5562
|
364 |
+
|
365 |
+
try:
|
366 |
+
hash(obj)
|
367 |
+
except TypeError:
|
368 |
+
return False
|
369 |
+
else:
|
370 |
+
return True
|
371 |
+
|
372 |
+
|
373 |
+
def is_sequence(obj) -> bool:
|
374 |
+
"""
|
375 |
+
Check if the object is a sequence of objects.
|
376 |
+
String types are not included as sequences here.
|
377 |
+
|
378 |
+
Parameters
|
379 |
+
----------
|
380 |
+
obj : The object to check
|
381 |
+
|
382 |
+
Returns
|
383 |
+
-------
|
384 |
+
is_sequence : bool
|
385 |
+
Whether `obj` is a sequence of objects.
|
386 |
+
|
387 |
+
Examples
|
388 |
+
--------
|
389 |
+
>>> l = [1, 2, 3]
|
390 |
+
>>>
|
391 |
+
>>> is_sequence(l)
|
392 |
+
True
|
393 |
+
>>> is_sequence(iter(l))
|
394 |
+
False
|
395 |
+
"""
|
396 |
+
try:
|
397 |
+
iter(obj) # Can iterate over it.
|
398 |
+
len(obj) # Has a length associated with it.
|
399 |
+
return not isinstance(obj, (str, bytes))
|
400 |
+
except (TypeError, AttributeError):
|
401 |
+
return False
|
402 |
+
|
403 |
+
|
404 |
+
def is_dataclass(item) -> bool:
|
405 |
+
"""
|
406 |
+
Checks if the object is a data-class instance
|
407 |
+
|
408 |
+
Parameters
|
409 |
+
----------
|
410 |
+
item : object
|
411 |
+
|
412 |
+
Returns
|
413 |
+
--------
|
414 |
+
is_dataclass : bool
|
415 |
+
True if the item is an instance of a data-class,
|
416 |
+
will return false if you pass the data class itself
|
417 |
+
|
418 |
+
Examples
|
419 |
+
--------
|
420 |
+
>>> from dataclasses import dataclass
|
421 |
+
>>> @dataclass
|
422 |
+
... class Point:
|
423 |
+
... x: int
|
424 |
+
... y: int
|
425 |
+
|
426 |
+
>>> is_dataclass(Point)
|
427 |
+
False
|
428 |
+
>>> is_dataclass(Point(0,2))
|
429 |
+
True
|
430 |
+
|
431 |
+
"""
|
432 |
+
try:
|
433 |
+
import dataclasses
|
434 |
+
|
435 |
+
return dataclasses.is_dataclass(item) and not isinstance(item, type)
|
436 |
+
except ImportError:
|
437 |
+
return False
|
venv/lib/python3.10/site-packages/pandas/core/dtypes/missing.py
ADDED
@@ -0,0 +1,810 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
missing types & inference
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
from decimal import Decimal
|
7 |
+
from functools import partial
|
8 |
+
from typing import (
|
9 |
+
TYPE_CHECKING,
|
10 |
+
overload,
|
11 |
+
)
|
12 |
+
import warnings
|
13 |
+
|
14 |
+
import numpy as np
|
15 |
+
|
16 |
+
from pandas._config import get_option
|
17 |
+
|
18 |
+
from pandas._libs import lib
|
19 |
+
import pandas._libs.missing as libmissing
|
20 |
+
from pandas._libs.tslibs import (
|
21 |
+
NaT,
|
22 |
+
iNaT,
|
23 |
+
)
|
24 |
+
|
25 |
+
from pandas.core.dtypes.common import (
|
26 |
+
DT64NS_DTYPE,
|
27 |
+
TD64NS_DTYPE,
|
28 |
+
ensure_object,
|
29 |
+
is_scalar,
|
30 |
+
is_string_or_object_np_dtype,
|
31 |
+
)
|
32 |
+
from pandas.core.dtypes.dtypes import (
|
33 |
+
CategoricalDtype,
|
34 |
+
DatetimeTZDtype,
|
35 |
+
ExtensionDtype,
|
36 |
+
IntervalDtype,
|
37 |
+
PeriodDtype,
|
38 |
+
)
|
39 |
+
from pandas.core.dtypes.generic import (
|
40 |
+
ABCDataFrame,
|
41 |
+
ABCExtensionArray,
|
42 |
+
ABCIndex,
|
43 |
+
ABCMultiIndex,
|
44 |
+
ABCSeries,
|
45 |
+
)
|
46 |
+
from pandas.core.dtypes.inference import is_list_like
|
47 |
+
|
48 |
+
if TYPE_CHECKING:
|
49 |
+
from re import Pattern
|
50 |
+
|
51 |
+
from pandas._typing import (
|
52 |
+
ArrayLike,
|
53 |
+
DtypeObj,
|
54 |
+
NDFrame,
|
55 |
+
NDFrameT,
|
56 |
+
Scalar,
|
57 |
+
npt,
|
58 |
+
)
|
59 |
+
|
60 |
+
from pandas import Series
|
61 |
+
from pandas.core.indexes.base import Index
|
62 |
+
|
63 |
+
|
64 |
+
isposinf_scalar = libmissing.isposinf_scalar
|
65 |
+
isneginf_scalar = libmissing.isneginf_scalar
|
66 |
+
|
67 |
+
nan_checker = np.isnan
|
68 |
+
INF_AS_NA = False
|
69 |
+
_dtype_object = np.dtype("object")
|
70 |
+
_dtype_str = np.dtype(str)
|
71 |
+
|
72 |
+
|
73 |
+
@overload
|
74 |
+
def isna(obj: Scalar | Pattern) -> bool:
|
75 |
+
...
|
76 |
+
|
77 |
+
|
78 |
+
@overload
|
79 |
+
def isna(
|
80 |
+
obj: ArrayLike | Index | list,
|
81 |
+
) -> npt.NDArray[np.bool_]:
|
82 |
+
...
|
83 |
+
|
84 |
+
|
85 |
+
@overload
|
86 |
+
def isna(obj: NDFrameT) -> NDFrameT:
|
87 |
+
...
|
88 |
+
|
89 |
+
|
90 |
+
# handle unions
|
91 |
+
@overload
|
92 |
+
def isna(obj: NDFrameT | ArrayLike | Index | list) -> NDFrameT | npt.NDArray[np.bool_]:
|
93 |
+
...
|
94 |
+
|
95 |
+
|
96 |
+
@overload
|
97 |
+
def isna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame:
|
98 |
+
...
|
99 |
+
|
100 |
+
|
101 |
+
def isna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame:
|
102 |
+
"""
|
103 |
+
Detect missing values for an array-like object.
|
104 |
+
|
105 |
+
This function takes a scalar or array-like object and indicates
|
106 |
+
whether values are missing (``NaN`` in numeric arrays, ``None`` or ``NaN``
|
107 |
+
in object arrays, ``NaT`` in datetimelike).
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
----------
|
111 |
+
obj : scalar or array-like
|
112 |
+
Object to check for null or missing values.
|
113 |
+
|
114 |
+
Returns
|
115 |
+
-------
|
116 |
+
bool or array-like of bool
|
117 |
+
For scalar input, returns a scalar boolean.
|
118 |
+
For array input, returns an array of boolean indicating whether each
|
119 |
+
corresponding element is missing.
|
120 |
+
|
121 |
+
See Also
|
122 |
+
--------
|
123 |
+
notna : Boolean inverse of pandas.isna.
|
124 |
+
Series.isna : Detect missing values in a Series.
|
125 |
+
DataFrame.isna : Detect missing values in a DataFrame.
|
126 |
+
Index.isna : Detect missing values in an Index.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
--------
|
130 |
+
Scalar arguments (including strings) result in a scalar boolean.
|
131 |
+
|
132 |
+
>>> pd.isna('dog')
|
133 |
+
False
|
134 |
+
|
135 |
+
>>> pd.isna(pd.NA)
|
136 |
+
True
|
137 |
+
|
138 |
+
>>> pd.isna(np.nan)
|
139 |
+
True
|
140 |
+
|
141 |
+
ndarrays result in an ndarray of booleans.
|
142 |
+
|
143 |
+
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
|
144 |
+
>>> array
|
145 |
+
array([[ 1., nan, 3.],
|
146 |
+
[ 4., 5., nan]])
|
147 |
+
>>> pd.isna(array)
|
148 |
+
array([[False, True, False],
|
149 |
+
[False, False, True]])
|
150 |
+
|
151 |
+
For indexes, an ndarray of booleans is returned.
|
152 |
+
|
153 |
+
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
|
154 |
+
... "2017-07-08"])
|
155 |
+
>>> index
|
156 |
+
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
|
157 |
+
dtype='datetime64[ns]', freq=None)
|
158 |
+
>>> pd.isna(index)
|
159 |
+
array([False, False, True, False])
|
160 |
+
|
161 |
+
For Series and DataFrame, the same type is returned, containing booleans.
|
162 |
+
|
163 |
+
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
|
164 |
+
>>> df
|
165 |
+
0 1 2
|
166 |
+
0 ant bee cat
|
167 |
+
1 dog None fly
|
168 |
+
>>> pd.isna(df)
|
169 |
+
0 1 2
|
170 |
+
0 False False False
|
171 |
+
1 False True False
|
172 |
+
|
173 |
+
>>> pd.isna(df[1])
|
174 |
+
0 False
|
175 |
+
1 True
|
176 |
+
Name: 1, dtype: bool
|
177 |
+
"""
|
178 |
+
return _isna(obj)
|
179 |
+
|
180 |
+
|
181 |
+
isnull = isna
|
182 |
+
|
183 |
+
|
184 |
+
def _isna(obj, inf_as_na: bool = False):
|
185 |
+
"""
|
186 |
+
Detect missing values, treating None, NaN or NA as null. Infinite
|
187 |
+
values will also be treated as null if inf_as_na is True.
|
188 |
+
|
189 |
+
Parameters
|
190 |
+
----------
|
191 |
+
obj: ndarray or object value
|
192 |
+
Input array or scalar value.
|
193 |
+
inf_as_na: bool
|
194 |
+
Whether to treat infinity as null.
|
195 |
+
|
196 |
+
Returns
|
197 |
+
-------
|
198 |
+
boolean ndarray or boolean
|
199 |
+
"""
|
200 |
+
if is_scalar(obj):
|
201 |
+
return libmissing.checknull(obj, inf_as_na=inf_as_na)
|
202 |
+
elif isinstance(obj, ABCMultiIndex):
|
203 |
+
raise NotImplementedError("isna is not defined for MultiIndex")
|
204 |
+
elif isinstance(obj, type):
|
205 |
+
return False
|
206 |
+
elif isinstance(obj, (np.ndarray, ABCExtensionArray)):
|
207 |
+
return _isna_array(obj, inf_as_na=inf_as_na)
|
208 |
+
elif isinstance(obj, ABCIndex):
|
209 |
+
# Try to use cached isna, which also short-circuits for integer dtypes
|
210 |
+
# and avoids materializing RangeIndex._values
|
211 |
+
if not obj._can_hold_na:
|
212 |
+
return obj.isna()
|
213 |
+
return _isna_array(obj._values, inf_as_na=inf_as_na)
|
214 |
+
|
215 |
+
elif isinstance(obj, ABCSeries):
|
216 |
+
result = _isna_array(obj._values, inf_as_na=inf_as_na)
|
217 |
+
# box
|
218 |
+
result = obj._constructor(result, index=obj.index, name=obj.name, copy=False)
|
219 |
+
return result
|
220 |
+
elif isinstance(obj, ABCDataFrame):
|
221 |
+
return obj.isna()
|
222 |
+
elif isinstance(obj, list):
|
223 |
+
return _isna_array(np.asarray(obj, dtype=object), inf_as_na=inf_as_na)
|
224 |
+
elif hasattr(obj, "__array__"):
|
225 |
+
return _isna_array(np.asarray(obj), inf_as_na=inf_as_na)
|
226 |
+
else:
|
227 |
+
return False
|
228 |
+
|
229 |
+
|
230 |
+
def _use_inf_as_na(key) -> None:
|
231 |
+
"""
|
232 |
+
Option change callback for na/inf behaviour.
|
233 |
+
|
234 |
+
Choose which replacement for numpy.isnan / -numpy.isfinite is used.
|
235 |
+
|
236 |
+
Parameters
|
237 |
+
----------
|
238 |
+
flag: bool
|
239 |
+
True means treat None, NaN, INF, -INF as null (old way),
|
240 |
+
False means None and NaN are null, but INF, -INF are not null
|
241 |
+
(new way).
|
242 |
+
|
243 |
+
Notes
|
244 |
+
-----
|
245 |
+
This approach to setting global module values is discussed and
|
246 |
+
approved here:
|
247 |
+
|
248 |
+
* https://stackoverflow.com/questions/4859217/
|
249 |
+
programmatically-creating-variables-in-python/4859312#4859312
|
250 |
+
"""
|
251 |
+
inf_as_na = get_option(key)
|
252 |
+
globals()["_isna"] = partial(_isna, inf_as_na=inf_as_na)
|
253 |
+
if inf_as_na:
|
254 |
+
globals()["nan_checker"] = lambda x: ~np.isfinite(x)
|
255 |
+
globals()["INF_AS_NA"] = True
|
256 |
+
else:
|
257 |
+
globals()["nan_checker"] = np.isnan
|
258 |
+
globals()["INF_AS_NA"] = False
|
259 |
+
|
260 |
+
|
261 |
+
def _isna_array(values: ArrayLike, inf_as_na: bool = False):
|
262 |
+
"""
|
263 |
+
Return an array indicating which values of the input array are NaN / NA.
|
264 |
+
|
265 |
+
Parameters
|
266 |
+
----------
|
267 |
+
obj: ndarray or ExtensionArray
|
268 |
+
The input array whose elements are to be checked.
|
269 |
+
inf_as_na: bool
|
270 |
+
Whether or not to treat infinite values as NA.
|
271 |
+
|
272 |
+
Returns
|
273 |
+
-------
|
274 |
+
array-like
|
275 |
+
Array of boolean values denoting the NA status of each element.
|
276 |
+
"""
|
277 |
+
dtype = values.dtype
|
278 |
+
|
279 |
+
if not isinstance(values, np.ndarray):
|
280 |
+
# i.e. ExtensionArray
|
281 |
+
if inf_as_na and isinstance(dtype, CategoricalDtype):
|
282 |
+
result = libmissing.isnaobj(values.to_numpy(), inf_as_na=inf_as_na)
|
283 |
+
else:
|
284 |
+
# error: Incompatible types in assignment (expression has type
|
285 |
+
# "Union[ndarray[Any, Any], ExtensionArraySupportsAnyAll]", variable has
|
286 |
+
# type "ndarray[Any, dtype[bool_]]")
|
287 |
+
result = values.isna() # type: ignore[assignment]
|
288 |
+
elif isinstance(values, np.rec.recarray):
|
289 |
+
# GH 48526
|
290 |
+
result = _isna_recarray_dtype(values, inf_as_na=inf_as_na)
|
291 |
+
elif is_string_or_object_np_dtype(values.dtype):
|
292 |
+
result = _isna_string_dtype(values, inf_as_na=inf_as_na)
|
293 |
+
elif dtype.kind in "mM":
|
294 |
+
# this is the NaT pattern
|
295 |
+
result = values.view("i8") == iNaT
|
296 |
+
else:
|
297 |
+
if inf_as_na:
|
298 |
+
result = ~np.isfinite(values)
|
299 |
+
else:
|
300 |
+
result = np.isnan(values)
|
301 |
+
|
302 |
+
return result
|
303 |
+
|
304 |
+
|
305 |
+
def _isna_string_dtype(values: np.ndarray, inf_as_na: bool) -> npt.NDArray[np.bool_]:
|
306 |
+
# Working around NumPy ticket 1542
|
307 |
+
dtype = values.dtype
|
308 |
+
|
309 |
+
if dtype.kind in ("S", "U"):
|
310 |
+
result = np.zeros(values.shape, dtype=bool)
|
311 |
+
else:
|
312 |
+
if values.ndim in {1, 2}:
|
313 |
+
result = libmissing.isnaobj(values, inf_as_na=inf_as_na)
|
314 |
+
else:
|
315 |
+
# 0-D, reached via e.g. mask_missing
|
316 |
+
result = libmissing.isnaobj(values.ravel(), inf_as_na=inf_as_na)
|
317 |
+
result = result.reshape(values.shape)
|
318 |
+
|
319 |
+
return result
|
320 |
+
|
321 |
+
|
322 |
+
def _has_record_inf_value(record_as_array: np.ndarray) -> np.bool_:
|
323 |
+
is_inf_in_record = np.zeros(len(record_as_array), dtype=bool)
|
324 |
+
for i, value in enumerate(record_as_array):
|
325 |
+
is_element_inf = False
|
326 |
+
try:
|
327 |
+
is_element_inf = np.isinf(value)
|
328 |
+
except TypeError:
|
329 |
+
is_element_inf = False
|
330 |
+
is_inf_in_record[i] = is_element_inf
|
331 |
+
|
332 |
+
return np.any(is_inf_in_record)
|
333 |
+
|
334 |
+
|
335 |
+
def _isna_recarray_dtype(
|
336 |
+
values: np.rec.recarray, inf_as_na: bool
|
337 |
+
) -> npt.NDArray[np.bool_]:
|
338 |
+
result = np.zeros(values.shape, dtype=bool)
|
339 |
+
for i, record in enumerate(values):
|
340 |
+
record_as_array = np.array(record.tolist())
|
341 |
+
does_record_contain_nan = isna_all(record_as_array)
|
342 |
+
does_record_contain_inf = False
|
343 |
+
if inf_as_na:
|
344 |
+
does_record_contain_inf = bool(_has_record_inf_value(record_as_array))
|
345 |
+
result[i] = np.any(
|
346 |
+
np.logical_or(does_record_contain_nan, does_record_contain_inf)
|
347 |
+
)
|
348 |
+
|
349 |
+
return result
|
350 |
+
|
351 |
+
|
352 |
+
@overload
|
353 |
+
def notna(obj: Scalar) -> bool:
|
354 |
+
...
|
355 |
+
|
356 |
+
|
357 |
+
@overload
|
358 |
+
def notna(
|
359 |
+
obj: ArrayLike | Index | list,
|
360 |
+
) -> npt.NDArray[np.bool_]:
|
361 |
+
...
|
362 |
+
|
363 |
+
|
364 |
+
@overload
|
365 |
+
def notna(obj: NDFrameT) -> NDFrameT:
|
366 |
+
...
|
367 |
+
|
368 |
+
|
369 |
+
# handle unions
|
370 |
+
@overload
|
371 |
+
def notna(obj: NDFrameT | ArrayLike | Index | list) -> NDFrameT | npt.NDArray[np.bool_]:
|
372 |
+
...
|
373 |
+
|
374 |
+
|
375 |
+
@overload
|
376 |
+
def notna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame:
|
377 |
+
...
|
378 |
+
|
379 |
+
|
380 |
+
def notna(obj: object) -> bool | npt.NDArray[np.bool_] | NDFrame:
|
381 |
+
"""
|
382 |
+
Detect non-missing values for an array-like object.
|
383 |
+
|
384 |
+
This function takes a scalar or array-like object and indicates
|
385 |
+
whether values are valid (not missing, which is ``NaN`` in numeric
|
386 |
+
arrays, ``None`` or ``NaN`` in object arrays, ``NaT`` in datetimelike).
|
387 |
+
|
388 |
+
Parameters
|
389 |
+
----------
|
390 |
+
obj : array-like or object value
|
391 |
+
Object to check for *not* null or *non*-missing values.
|
392 |
+
|
393 |
+
Returns
|
394 |
+
-------
|
395 |
+
bool or array-like of bool
|
396 |
+
For scalar input, returns a scalar boolean.
|
397 |
+
For array input, returns an array of boolean indicating whether each
|
398 |
+
corresponding element is valid.
|
399 |
+
|
400 |
+
See Also
|
401 |
+
--------
|
402 |
+
isna : Boolean inverse of pandas.notna.
|
403 |
+
Series.notna : Detect valid values in a Series.
|
404 |
+
DataFrame.notna : Detect valid values in a DataFrame.
|
405 |
+
Index.notna : Detect valid values in an Index.
|
406 |
+
|
407 |
+
Examples
|
408 |
+
--------
|
409 |
+
Scalar arguments (including strings) result in a scalar boolean.
|
410 |
+
|
411 |
+
>>> pd.notna('dog')
|
412 |
+
True
|
413 |
+
|
414 |
+
>>> pd.notna(pd.NA)
|
415 |
+
False
|
416 |
+
|
417 |
+
>>> pd.notna(np.nan)
|
418 |
+
False
|
419 |
+
|
420 |
+
ndarrays result in an ndarray of booleans.
|
421 |
+
|
422 |
+
>>> array = np.array([[1, np.nan, 3], [4, 5, np.nan]])
|
423 |
+
>>> array
|
424 |
+
array([[ 1., nan, 3.],
|
425 |
+
[ 4., 5., nan]])
|
426 |
+
>>> pd.notna(array)
|
427 |
+
array([[ True, False, True],
|
428 |
+
[ True, True, False]])
|
429 |
+
|
430 |
+
For indexes, an ndarray of booleans is returned.
|
431 |
+
|
432 |
+
>>> index = pd.DatetimeIndex(["2017-07-05", "2017-07-06", None,
|
433 |
+
... "2017-07-08"])
|
434 |
+
>>> index
|
435 |
+
DatetimeIndex(['2017-07-05', '2017-07-06', 'NaT', '2017-07-08'],
|
436 |
+
dtype='datetime64[ns]', freq=None)
|
437 |
+
>>> pd.notna(index)
|
438 |
+
array([ True, True, False, True])
|
439 |
+
|
440 |
+
For Series and DataFrame, the same type is returned, containing booleans.
|
441 |
+
|
442 |
+
>>> df = pd.DataFrame([['ant', 'bee', 'cat'], ['dog', None, 'fly']])
|
443 |
+
>>> df
|
444 |
+
0 1 2
|
445 |
+
0 ant bee cat
|
446 |
+
1 dog None fly
|
447 |
+
>>> pd.notna(df)
|
448 |
+
0 1 2
|
449 |
+
0 True True True
|
450 |
+
1 True False True
|
451 |
+
|
452 |
+
>>> pd.notna(df[1])
|
453 |
+
0 True
|
454 |
+
1 False
|
455 |
+
Name: 1, dtype: bool
|
456 |
+
"""
|
457 |
+
res = isna(obj)
|
458 |
+
if isinstance(res, bool):
|
459 |
+
return not res
|
460 |
+
return ~res
|
461 |
+
|
462 |
+
|
463 |
+
notnull = notna
|
464 |
+
|
465 |
+
|
466 |
+
def array_equivalent(
|
467 |
+
left,
|
468 |
+
right,
|
469 |
+
strict_nan: bool = False,
|
470 |
+
dtype_equal: bool = False,
|
471 |
+
) -> bool:
|
472 |
+
"""
|
473 |
+
True if two arrays, left and right, have equal non-NaN elements, and NaNs
|
474 |
+
in corresponding locations. False otherwise. It is assumed that left and
|
475 |
+
right are NumPy arrays of the same dtype. The behavior of this function
|
476 |
+
(particularly with respect to NaNs) is not defined if the dtypes are
|
477 |
+
different.
|
478 |
+
|
479 |
+
Parameters
|
480 |
+
----------
|
481 |
+
left, right : ndarrays
|
482 |
+
strict_nan : bool, default False
|
483 |
+
If True, consider NaN and None to be different.
|
484 |
+
dtype_equal : bool, default False
|
485 |
+
Whether `left` and `right` are known to have the same dtype
|
486 |
+
according to `is_dtype_equal`. Some methods like `BlockManager.equals`.
|
487 |
+
require that the dtypes match. Setting this to ``True`` can improve
|
488 |
+
performance, but will give different results for arrays that are
|
489 |
+
equal but different dtypes.
|
490 |
+
|
491 |
+
Returns
|
492 |
+
-------
|
493 |
+
b : bool
|
494 |
+
Returns True if the arrays are equivalent.
|
495 |
+
|
496 |
+
Examples
|
497 |
+
--------
|
498 |
+
>>> array_equivalent(
|
499 |
+
... np.array([1, 2, np.nan]),
|
500 |
+
... np.array([1, 2, np.nan]))
|
501 |
+
True
|
502 |
+
>>> array_equivalent(
|
503 |
+
... np.array([1, np.nan, 2]),
|
504 |
+
... np.array([1, 2, np.nan]))
|
505 |
+
False
|
506 |
+
"""
|
507 |
+
left, right = np.asarray(left), np.asarray(right)
|
508 |
+
|
509 |
+
# shape compat
|
510 |
+
if left.shape != right.shape:
|
511 |
+
return False
|
512 |
+
|
513 |
+
if dtype_equal:
|
514 |
+
# fastpath when we require that the dtypes match (Block.equals)
|
515 |
+
if left.dtype.kind in "fc":
|
516 |
+
return _array_equivalent_float(left, right)
|
517 |
+
elif left.dtype.kind in "mM":
|
518 |
+
return _array_equivalent_datetimelike(left, right)
|
519 |
+
elif is_string_or_object_np_dtype(left.dtype):
|
520 |
+
# TODO: fastpath for pandas' StringDtype
|
521 |
+
return _array_equivalent_object(left, right, strict_nan)
|
522 |
+
else:
|
523 |
+
return np.array_equal(left, right)
|
524 |
+
|
525 |
+
# Slow path when we allow comparing different dtypes.
|
526 |
+
# Object arrays can contain None, NaN and NaT.
|
527 |
+
# string dtypes must be come to this path for NumPy 1.7.1 compat
|
528 |
+
if left.dtype.kind in "OSU" or right.dtype.kind in "OSU":
|
529 |
+
# Note: `in "OSU"` is non-trivially faster than `in ["O", "S", "U"]`
|
530 |
+
# or `in ("O", "S", "U")`
|
531 |
+
return _array_equivalent_object(left, right, strict_nan)
|
532 |
+
|
533 |
+
# NaNs can occur in float and complex arrays.
|
534 |
+
if left.dtype.kind in "fc":
|
535 |
+
if not (left.size and right.size):
|
536 |
+
return True
|
537 |
+
return ((left == right) | (isna(left) & isna(right))).all()
|
538 |
+
|
539 |
+
elif left.dtype.kind in "mM" or right.dtype.kind in "mM":
|
540 |
+
# datetime64, timedelta64, Period
|
541 |
+
if left.dtype != right.dtype:
|
542 |
+
return False
|
543 |
+
|
544 |
+
left = left.view("i8")
|
545 |
+
right = right.view("i8")
|
546 |
+
|
547 |
+
# if we have structured dtypes, compare first
|
548 |
+
if (
|
549 |
+
left.dtype.type is np.void or right.dtype.type is np.void
|
550 |
+
) and left.dtype != right.dtype:
|
551 |
+
return False
|
552 |
+
|
553 |
+
return np.array_equal(left, right)
|
554 |
+
|
555 |
+
|
556 |
+
def _array_equivalent_float(left: np.ndarray, right: np.ndarray) -> bool:
|
557 |
+
return bool(((left == right) | (np.isnan(left) & np.isnan(right))).all())
|
558 |
+
|
559 |
+
|
560 |
+
def _array_equivalent_datetimelike(left: np.ndarray, right: np.ndarray):
|
561 |
+
return np.array_equal(left.view("i8"), right.view("i8"))
|
562 |
+
|
563 |
+
|
564 |
+
def _array_equivalent_object(left: np.ndarray, right: np.ndarray, strict_nan: bool):
|
565 |
+
left = ensure_object(left)
|
566 |
+
right = ensure_object(right)
|
567 |
+
|
568 |
+
mask: npt.NDArray[np.bool_] | None = None
|
569 |
+
if strict_nan:
|
570 |
+
mask = isna(left) & isna(right)
|
571 |
+
if not mask.any():
|
572 |
+
mask = None
|
573 |
+
|
574 |
+
try:
|
575 |
+
if mask is None:
|
576 |
+
return lib.array_equivalent_object(left, right)
|
577 |
+
if not lib.array_equivalent_object(left[~mask], right[~mask]):
|
578 |
+
return False
|
579 |
+
left_remaining = left[mask]
|
580 |
+
right_remaining = right[mask]
|
581 |
+
except ValueError:
|
582 |
+
# can raise a ValueError if left and right cannot be
|
583 |
+
# compared (e.g. nested arrays)
|
584 |
+
left_remaining = left
|
585 |
+
right_remaining = right
|
586 |
+
|
587 |
+
for left_value, right_value in zip(left_remaining, right_remaining):
|
588 |
+
if left_value is NaT and right_value is not NaT:
|
589 |
+
return False
|
590 |
+
|
591 |
+
elif left_value is libmissing.NA and right_value is not libmissing.NA:
|
592 |
+
return False
|
593 |
+
|
594 |
+
elif isinstance(left_value, float) and np.isnan(left_value):
|
595 |
+
if not isinstance(right_value, float) or not np.isnan(right_value):
|
596 |
+
return False
|
597 |
+
else:
|
598 |
+
with warnings.catch_warnings():
|
599 |
+
# suppress numpy's "elementwise comparison failed"
|
600 |
+
warnings.simplefilter("ignore", DeprecationWarning)
|
601 |
+
try:
|
602 |
+
if np.any(np.asarray(left_value != right_value)):
|
603 |
+
return False
|
604 |
+
except TypeError as err:
|
605 |
+
if "boolean value of NA is ambiguous" in str(err):
|
606 |
+
return False
|
607 |
+
raise
|
608 |
+
except ValueError:
|
609 |
+
# numpy can raise a ValueError if left and right cannot be
|
610 |
+
# compared (e.g. nested arrays)
|
611 |
+
return False
|
612 |
+
return True
|
613 |
+
|
614 |
+
|
615 |
+
def array_equals(left: ArrayLike, right: ArrayLike) -> bool:
|
616 |
+
"""
|
617 |
+
ExtensionArray-compatible implementation of array_equivalent.
|
618 |
+
"""
|
619 |
+
if left.dtype != right.dtype:
|
620 |
+
return False
|
621 |
+
elif isinstance(left, ABCExtensionArray):
|
622 |
+
return left.equals(right)
|
623 |
+
else:
|
624 |
+
return array_equivalent(left, right, dtype_equal=True)
|
625 |
+
|
626 |
+
|
627 |
+
def infer_fill_value(val):
|
628 |
+
"""
|
629 |
+
infer the fill value for the nan/NaT from the provided
|
630 |
+
scalar/ndarray/list-like if we are a NaT, return the correct dtyped
|
631 |
+
element to provide proper block construction
|
632 |
+
"""
|
633 |
+
if not is_list_like(val):
|
634 |
+
val = [val]
|
635 |
+
val = np.asarray(val)
|
636 |
+
if val.dtype.kind in "mM":
|
637 |
+
return np.array("NaT", dtype=val.dtype)
|
638 |
+
elif val.dtype == object:
|
639 |
+
dtype = lib.infer_dtype(ensure_object(val), skipna=False)
|
640 |
+
if dtype in ["datetime", "datetime64"]:
|
641 |
+
return np.array("NaT", dtype=DT64NS_DTYPE)
|
642 |
+
elif dtype in ["timedelta", "timedelta64"]:
|
643 |
+
return np.array("NaT", dtype=TD64NS_DTYPE)
|
644 |
+
return np.array(np.nan, dtype=object)
|
645 |
+
elif val.dtype.kind == "U":
|
646 |
+
return np.array(np.nan, dtype=val.dtype)
|
647 |
+
return np.nan
|
648 |
+
|
649 |
+
|
650 |
+
def construct_1d_array_from_inferred_fill_value(
|
651 |
+
value: object, length: int
|
652 |
+
) -> ArrayLike:
|
653 |
+
# Find our empty_value dtype by constructing an array
|
654 |
+
# from our value and doing a .take on it
|
655 |
+
from pandas.core.algorithms import take_nd
|
656 |
+
from pandas.core.construction import sanitize_array
|
657 |
+
from pandas.core.indexes.base import Index
|
658 |
+
|
659 |
+
arr = sanitize_array(value, Index(range(1)), copy=False)
|
660 |
+
taker = -1 * np.ones(length, dtype=np.intp)
|
661 |
+
return take_nd(arr, taker)
|
662 |
+
|
663 |
+
|
664 |
+
def maybe_fill(arr: np.ndarray) -> np.ndarray:
|
665 |
+
"""
|
666 |
+
Fill numpy.ndarray with NaN, unless we have a integer or boolean dtype.
|
667 |
+
"""
|
668 |
+
if arr.dtype.kind not in "iub":
|
669 |
+
arr.fill(np.nan)
|
670 |
+
return arr
|
671 |
+
|
672 |
+
|
673 |
+
def na_value_for_dtype(dtype: DtypeObj, compat: bool = True):
|
674 |
+
"""
|
675 |
+
Return a dtype compat na value
|
676 |
+
|
677 |
+
Parameters
|
678 |
+
----------
|
679 |
+
dtype : string / dtype
|
680 |
+
compat : bool, default True
|
681 |
+
|
682 |
+
Returns
|
683 |
+
-------
|
684 |
+
np.dtype or a pandas dtype
|
685 |
+
|
686 |
+
Examples
|
687 |
+
--------
|
688 |
+
>>> na_value_for_dtype(np.dtype('int64'))
|
689 |
+
0
|
690 |
+
>>> na_value_for_dtype(np.dtype('int64'), compat=False)
|
691 |
+
nan
|
692 |
+
>>> na_value_for_dtype(np.dtype('float64'))
|
693 |
+
nan
|
694 |
+
>>> na_value_for_dtype(np.dtype('bool'))
|
695 |
+
False
|
696 |
+
>>> na_value_for_dtype(np.dtype('datetime64[ns]'))
|
697 |
+
numpy.datetime64('NaT')
|
698 |
+
"""
|
699 |
+
|
700 |
+
if isinstance(dtype, ExtensionDtype):
|
701 |
+
return dtype.na_value
|
702 |
+
elif dtype.kind in "mM":
|
703 |
+
unit = np.datetime_data(dtype)[0]
|
704 |
+
return dtype.type("NaT", unit)
|
705 |
+
elif dtype.kind == "f":
|
706 |
+
return np.nan
|
707 |
+
elif dtype.kind in "iu":
|
708 |
+
if compat:
|
709 |
+
return 0
|
710 |
+
return np.nan
|
711 |
+
elif dtype.kind == "b":
|
712 |
+
if compat:
|
713 |
+
return False
|
714 |
+
return np.nan
|
715 |
+
return np.nan
|
716 |
+
|
717 |
+
|
718 |
+
def remove_na_arraylike(arr: Series | Index | np.ndarray):
|
719 |
+
"""
|
720 |
+
Return array-like containing only true/non-NaN values, possibly empty.
|
721 |
+
"""
|
722 |
+
if isinstance(arr.dtype, ExtensionDtype):
|
723 |
+
return arr[notna(arr)]
|
724 |
+
else:
|
725 |
+
return arr[notna(np.asarray(arr))]
|
726 |
+
|
727 |
+
|
728 |
+
def is_valid_na_for_dtype(obj, dtype: DtypeObj) -> bool:
|
729 |
+
"""
|
730 |
+
isna check that excludes incompatible dtypes
|
731 |
+
|
732 |
+
Parameters
|
733 |
+
----------
|
734 |
+
obj : object
|
735 |
+
dtype : np.datetime64, np.timedelta64, DatetimeTZDtype, or PeriodDtype
|
736 |
+
|
737 |
+
Returns
|
738 |
+
-------
|
739 |
+
bool
|
740 |
+
"""
|
741 |
+
if not lib.is_scalar(obj) or not isna(obj):
|
742 |
+
return False
|
743 |
+
elif dtype.kind == "M":
|
744 |
+
if isinstance(dtype, np.dtype):
|
745 |
+
# i.e. not tzaware
|
746 |
+
return not isinstance(obj, (np.timedelta64, Decimal))
|
747 |
+
# we have to rule out tznaive dt64("NaT")
|
748 |
+
return not isinstance(obj, (np.timedelta64, np.datetime64, Decimal))
|
749 |
+
elif dtype.kind == "m":
|
750 |
+
return not isinstance(obj, (np.datetime64, Decimal))
|
751 |
+
elif dtype.kind in "iufc":
|
752 |
+
# Numeric
|
753 |
+
return obj is not NaT and not isinstance(obj, (np.datetime64, np.timedelta64))
|
754 |
+
elif dtype.kind == "b":
|
755 |
+
# We allow pd.NA, None, np.nan in BooleanArray (same as IntervalDtype)
|
756 |
+
return lib.is_float(obj) or obj is None or obj is libmissing.NA
|
757 |
+
|
758 |
+
elif dtype == _dtype_str:
|
759 |
+
# numpy string dtypes to avoid float np.nan
|
760 |
+
return not isinstance(obj, (np.datetime64, np.timedelta64, Decimal, float))
|
761 |
+
|
762 |
+
elif dtype == _dtype_object:
|
763 |
+
# This is needed for Categorical, but is kind of weird
|
764 |
+
return True
|
765 |
+
|
766 |
+
elif isinstance(dtype, PeriodDtype):
|
767 |
+
return not isinstance(obj, (np.datetime64, np.timedelta64, Decimal))
|
768 |
+
|
769 |
+
elif isinstance(dtype, IntervalDtype):
|
770 |
+
return lib.is_float(obj) or obj is None or obj is libmissing.NA
|
771 |
+
|
772 |
+
elif isinstance(dtype, CategoricalDtype):
|
773 |
+
return is_valid_na_for_dtype(obj, dtype.categories.dtype)
|
774 |
+
|
775 |
+
# fallback, default to allowing NaN, None, NA, NaT
|
776 |
+
return not isinstance(obj, (np.datetime64, np.timedelta64, Decimal))
|
777 |
+
|
778 |
+
|
779 |
+
def isna_all(arr: ArrayLike) -> bool:
|
780 |
+
"""
|
781 |
+
Optimized equivalent to isna(arr).all()
|
782 |
+
"""
|
783 |
+
total_len = len(arr)
|
784 |
+
|
785 |
+
# Usually it's enough to check but a small fraction of values to see if
|
786 |
+
# a block is NOT null, chunks should help in such cases.
|
787 |
+
# parameters 1000 and 40 were chosen arbitrarily
|
788 |
+
chunk_len = max(total_len // 40, 1000)
|
789 |
+
|
790 |
+
dtype = arr.dtype
|
791 |
+
if lib.is_np_dtype(dtype, "f"):
|
792 |
+
checker = nan_checker
|
793 |
+
|
794 |
+
elif (lib.is_np_dtype(dtype, "mM")) or isinstance(
|
795 |
+
dtype, (DatetimeTZDtype, PeriodDtype)
|
796 |
+
):
|
797 |
+
# error: Incompatible types in assignment (expression has type
|
798 |
+
# "Callable[[Any], Any]", variable has type "ufunc")
|
799 |
+
checker = lambda x: np.asarray(x.view("i8")) == iNaT # type: ignore[assignment]
|
800 |
+
|
801 |
+
else:
|
802 |
+
# error: Incompatible types in assignment (expression has type "Callable[[Any],
|
803 |
+
# Any]", variable has type "ufunc")
|
804 |
+
checker = lambda x: _isna_array( # type: ignore[assignment]
|
805 |
+
x, inf_as_na=INF_AS_NA
|
806 |
+
)
|
807 |
+
|
808 |
+
return all(
|
809 |
+
checker(arr[i : i + chunk_len]).all() for i in range(0, total_len, chunk_len)
|
810 |
+
)
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__init__.py
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pandas.core.groupby.generic import (
|
2 |
+
DataFrameGroupBy,
|
3 |
+
NamedAgg,
|
4 |
+
SeriesGroupBy,
|
5 |
+
)
|
6 |
+
from pandas.core.groupby.groupby import GroupBy
|
7 |
+
from pandas.core.groupby.grouper import Grouper
|
8 |
+
|
9 |
+
__all__ = [
|
10 |
+
"DataFrameGroupBy",
|
11 |
+
"NamedAgg",
|
12 |
+
"SeriesGroupBy",
|
13 |
+
"GroupBy",
|
14 |
+
"Grouper",
|
15 |
+
]
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (462 Bytes). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/base.cpython-310.pyc
ADDED
Binary file (1.42 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/categorical.cpython-310.pyc
ADDED
Binary file (2.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/groupby.cpython-310.pyc
ADDED
Binary file (159 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/grouper.cpython-310.pyc
ADDED
Binary file (26.3 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/indexing.cpython-310.pyc
ADDED
Binary file (9.75 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/numba_.cpython-310.pyc
ADDED
Binary file (4.52 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/__pycache__/ops.cpython-310.pyc
ADDED
Binary file (29 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/base.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Provide basic components for groupby.
|
3 |
+
"""
|
4 |
+
from __future__ import annotations
|
5 |
+
|
6 |
+
import dataclasses
|
7 |
+
from typing import TYPE_CHECKING
|
8 |
+
|
9 |
+
if TYPE_CHECKING:
|
10 |
+
from collections.abc import Hashable
|
11 |
+
|
12 |
+
|
13 |
+
@dataclasses.dataclass(order=True, frozen=True)
|
14 |
+
class OutputKey:
|
15 |
+
label: Hashable
|
16 |
+
position: int
|
17 |
+
|
18 |
+
|
19 |
+
# special case to prevent duplicate plots when catching exceptions when
|
20 |
+
# forwarding methods from NDFrames
|
21 |
+
plotting_methods = frozenset(["plot", "hist"])
|
22 |
+
|
23 |
+
# cythonized transformations or canned "agg+broadcast", which do not
|
24 |
+
# require postprocessing of the result by transform.
|
25 |
+
cythonized_kernels = frozenset(["cumprod", "cumsum", "shift", "cummin", "cummax"])
|
26 |
+
|
27 |
+
# List of aggregation/reduction functions.
|
28 |
+
# These map each group to a single numeric value
|
29 |
+
reduction_kernels = frozenset(
|
30 |
+
[
|
31 |
+
"all",
|
32 |
+
"any",
|
33 |
+
"corrwith",
|
34 |
+
"count",
|
35 |
+
"first",
|
36 |
+
"idxmax",
|
37 |
+
"idxmin",
|
38 |
+
"last",
|
39 |
+
"max",
|
40 |
+
"mean",
|
41 |
+
"median",
|
42 |
+
"min",
|
43 |
+
"nunique",
|
44 |
+
"prod",
|
45 |
+
# as long as `quantile`'s signature accepts only
|
46 |
+
# a single quantile value, it's a reduction.
|
47 |
+
# GH#27526 might change that.
|
48 |
+
"quantile",
|
49 |
+
"sem",
|
50 |
+
"size",
|
51 |
+
"skew",
|
52 |
+
"std",
|
53 |
+
"sum",
|
54 |
+
"var",
|
55 |
+
]
|
56 |
+
)
|
57 |
+
|
58 |
+
# List of transformation functions.
|
59 |
+
# a transformation is a function that, for each group,
|
60 |
+
# produces a result that has the same shape as the group.
|
61 |
+
|
62 |
+
|
63 |
+
transformation_kernels = frozenset(
|
64 |
+
[
|
65 |
+
"bfill",
|
66 |
+
"cumcount",
|
67 |
+
"cummax",
|
68 |
+
"cummin",
|
69 |
+
"cumprod",
|
70 |
+
"cumsum",
|
71 |
+
"diff",
|
72 |
+
"ffill",
|
73 |
+
"fillna",
|
74 |
+
"ngroup",
|
75 |
+
"pct_change",
|
76 |
+
"rank",
|
77 |
+
"shift",
|
78 |
+
]
|
79 |
+
)
|
80 |
+
|
81 |
+
# these are all the public methods on Grouper which don't belong
|
82 |
+
# in either of the above lists
|
83 |
+
groupby_other_methods = frozenset(
|
84 |
+
[
|
85 |
+
"agg",
|
86 |
+
"aggregate",
|
87 |
+
"apply",
|
88 |
+
"boxplot",
|
89 |
+
# corr and cov return ngroups*ncolumns rows, so they
|
90 |
+
# are neither a transformation nor a reduction
|
91 |
+
"corr",
|
92 |
+
"cov",
|
93 |
+
"describe",
|
94 |
+
"dtypes",
|
95 |
+
"expanding",
|
96 |
+
"ewm",
|
97 |
+
"filter",
|
98 |
+
"get_group",
|
99 |
+
"groups",
|
100 |
+
"head",
|
101 |
+
"hist",
|
102 |
+
"indices",
|
103 |
+
"ndim",
|
104 |
+
"ngroups",
|
105 |
+
"nth",
|
106 |
+
"ohlc",
|
107 |
+
"pipe",
|
108 |
+
"plot",
|
109 |
+
"resample",
|
110 |
+
"rolling",
|
111 |
+
"tail",
|
112 |
+
"take",
|
113 |
+
"transform",
|
114 |
+
"sample",
|
115 |
+
"value_counts",
|
116 |
+
]
|
117 |
+
)
|
118 |
+
# Valid values of `name` for `groupby.transform(name)`
|
119 |
+
# NOTE: do NOT edit this directly. New additions should be inserted
|
120 |
+
# into the appropriate list above.
|
121 |
+
transform_kernel_allowlist = reduction_kernels | transformation_kernels
|
venv/lib/python3.10/site-packages/pandas/core/groupby/categorical.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
import numpy as np
|
4 |
+
|
5 |
+
from pandas.core.algorithms import unique1d
|
6 |
+
from pandas.core.arrays.categorical import (
|
7 |
+
Categorical,
|
8 |
+
CategoricalDtype,
|
9 |
+
recode_for_categories,
|
10 |
+
)
|
11 |
+
|
12 |
+
|
13 |
+
def recode_for_groupby(
|
14 |
+
c: Categorical, sort: bool, observed: bool
|
15 |
+
) -> tuple[Categorical, Categorical | None]:
|
16 |
+
"""
|
17 |
+
Code the categories to ensure we can groupby for categoricals.
|
18 |
+
|
19 |
+
If observed=True, we return a new Categorical with the observed
|
20 |
+
categories only.
|
21 |
+
|
22 |
+
If sort=False, return a copy of self, coded with categories as
|
23 |
+
returned by .unique(), followed by any categories not appearing in
|
24 |
+
the data. If sort=True, return self.
|
25 |
+
|
26 |
+
This method is needed solely to ensure the categorical index of the
|
27 |
+
GroupBy result has categories in the order of appearance in the data
|
28 |
+
(GH-8868).
|
29 |
+
|
30 |
+
Parameters
|
31 |
+
----------
|
32 |
+
c : Categorical
|
33 |
+
sort : bool
|
34 |
+
The value of the sort parameter groupby was called with.
|
35 |
+
observed : bool
|
36 |
+
Account only for the observed values
|
37 |
+
|
38 |
+
Returns
|
39 |
+
-------
|
40 |
+
Categorical
|
41 |
+
If sort=False, the new categories are set to the order of
|
42 |
+
appearance in codes (unless ordered=True, in which case the
|
43 |
+
original order is preserved), followed by any unrepresented
|
44 |
+
categories in the original order.
|
45 |
+
Categorical or None
|
46 |
+
If we are observed, return the original categorical, otherwise None
|
47 |
+
"""
|
48 |
+
# we only care about observed values
|
49 |
+
if observed:
|
50 |
+
# In cases with c.ordered, this is equivalent to
|
51 |
+
# return c.remove_unused_categories(), c
|
52 |
+
|
53 |
+
unique_codes = unique1d(c.codes)
|
54 |
+
|
55 |
+
take_codes = unique_codes[unique_codes != -1]
|
56 |
+
if sort:
|
57 |
+
take_codes = np.sort(take_codes)
|
58 |
+
|
59 |
+
# we recode according to the uniques
|
60 |
+
categories = c.categories.take(take_codes)
|
61 |
+
codes = recode_for_categories(c.codes, c.categories, categories)
|
62 |
+
|
63 |
+
# return a new categorical that maps our new codes
|
64 |
+
# and categories
|
65 |
+
dtype = CategoricalDtype(categories, ordered=c.ordered)
|
66 |
+
return Categorical._simple_new(codes, dtype=dtype), c
|
67 |
+
|
68 |
+
# Already sorted according to c.categories; all is fine
|
69 |
+
if sort:
|
70 |
+
return c, None
|
71 |
+
|
72 |
+
# sort=False should order groups in as-encountered order (GH-8868)
|
73 |
+
|
74 |
+
# xref GH:46909: Re-ordering codes faster than using (set|add|reorder)_categories
|
75 |
+
all_codes = np.arange(c.categories.nunique())
|
76 |
+
# GH 38140: exclude nan from indexer for categories
|
77 |
+
unique_notnan_codes = unique1d(c.codes[c.codes != -1])
|
78 |
+
if sort:
|
79 |
+
unique_notnan_codes = np.sort(unique_notnan_codes)
|
80 |
+
if len(all_codes) > len(unique_notnan_codes):
|
81 |
+
# GH 13179: All categories need to be present, even if missing from the data
|
82 |
+
missing_codes = np.setdiff1d(all_codes, unique_notnan_codes, assume_unique=True)
|
83 |
+
take_codes = np.concatenate((unique_notnan_codes, missing_codes))
|
84 |
+
else:
|
85 |
+
take_codes = unique_notnan_codes
|
86 |
+
|
87 |
+
return Categorical(c, c.unique().categories.take(take_codes)), None
|
venv/lib/python3.10/site-packages/pandas/core/groupby/generic.py
ADDED
@@ -0,0 +1,2852 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Define the SeriesGroupBy and DataFrameGroupBy
|
3 |
+
classes that hold the groupby interfaces (and some implementations).
|
4 |
+
|
5 |
+
These are user facing as the result of the ``df.groupby(...)`` operations,
|
6 |
+
which here returns a DataFrameGroupBy object.
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
from collections import abc
|
11 |
+
from functools import partial
|
12 |
+
from textwrap import dedent
|
13 |
+
from typing import (
|
14 |
+
TYPE_CHECKING,
|
15 |
+
Any,
|
16 |
+
Callable,
|
17 |
+
Literal,
|
18 |
+
NamedTuple,
|
19 |
+
TypeVar,
|
20 |
+
Union,
|
21 |
+
cast,
|
22 |
+
)
|
23 |
+
import warnings
|
24 |
+
|
25 |
+
import numpy as np
|
26 |
+
|
27 |
+
from pandas._libs import (
|
28 |
+
Interval,
|
29 |
+
lib,
|
30 |
+
)
|
31 |
+
from pandas._libs.hashtable import duplicated
|
32 |
+
from pandas.errors import SpecificationError
|
33 |
+
from pandas.util._decorators import (
|
34 |
+
Appender,
|
35 |
+
Substitution,
|
36 |
+
doc,
|
37 |
+
)
|
38 |
+
from pandas.util._exceptions import find_stack_level
|
39 |
+
|
40 |
+
from pandas.core.dtypes.common import (
|
41 |
+
ensure_int64,
|
42 |
+
is_bool,
|
43 |
+
is_dict_like,
|
44 |
+
is_integer_dtype,
|
45 |
+
is_list_like,
|
46 |
+
is_numeric_dtype,
|
47 |
+
is_scalar,
|
48 |
+
)
|
49 |
+
from pandas.core.dtypes.dtypes import (
|
50 |
+
CategoricalDtype,
|
51 |
+
IntervalDtype,
|
52 |
+
)
|
53 |
+
from pandas.core.dtypes.inference import is_hashable
|
54 |
+
from pandas.core.dtypes.missing import (
|
55 |
+
isna,
|
56 |
+
notna,
|
57 |
+
)
|
58 |
+
|
59 |
+
from pandas.core import algorithms
|
60 |
+
from pandas.core.apply import (
|
61 |
+
GroupByApply,
|
62 |
+
maybe_mangle_lambdas,
|
63 |
+
reconstruct_func,
|
64 |
+
validate_func_kwargs,
|
65 |
+
warn_alias_replacement,
|
66 |
+
)
|
67 |
+
import pandas.core.common as com
|
68 |
+
from pandas.core.frame import DataFrame
|
69 |
+
from pandas.core.groupby import (
|
70 |
+
base,
|
71 |
+
ops,
|
72 |
+
)
|
73 |
+
from pandas.core.groupby.groupby import (
|
74 |
+
GroupBy,
|
75 |
+
GroupByPlot,
|
76 |
+
_agg_template_frame,
|
77 |
+
_agg_template_series,
|
78 |
+
_apply_docs,
|
79 |
+
_transform_template,
|
80 |
+
)
|
81 |
+
from pandas.core.indexes.api import (
|
82 |
+
Index,
|
83 |
+
MultiIndex,
|
84 |
+
all_indexes_same,
|
85 |
+
default_index,
|
86 |
+
)
|
87 |
+
from pandas.core.series import Series
|
88 |
+
from pandas.core.sorting import get_group_index
|
89 |
+
from pandas.core.util.numba_ import maybe_use_numba
|
90 |
+
|
91 |
+
from pandas.plotting import boxplot_frame_groupby
|
92 |
+
|
93 |
+
if TYPE_CHECKING:
|
94 |
+
from collections.abc import (
|
95 |
+
Hashable,
|
96 |
+
Mapping,
|
97 |
+
Sequence,
|
98 |
+
)
|
99 |
+
|
100 |
+
from pandas._typing import (
|
101 |
+
ArrayLike,
|
102 |
+
Axis,
|
103 |
+
AxisInt,
|
104 |
+
CorrelationMethod,
|
105 |
+
FillnaOptions,
|
106 |
+
IndexLabel,
|
107 |
+
Manager,
|
108 |
+
Manager2D,
|
109 |
+
SingleManager,
|
110 |
+
TakeIndexer,
|
111 |
+
)
|
112 |
+
|
113 |
+
from pandas import Categorical
|
114 |
+
from pandas.core.generic import NDFrame
|
115 |
+
|
116 |
+
# TODO(typing) the return value on this callable should be any *scalar*.
|
117 |
+
AggScalar = Union[str, Callable[..., Any]]
|
118 |
+
# TODO: validate types on ScalarResult and move to _typing
|
119 |
+
# Blocked from using by https://github.com/python/mypy/issues/1484
|
120 |
+
# See note at _mangle_lambda_list
|
121 |
+
ScalarResult = TypeVar("ScalarResult")
|
122 |
+
|
123 |
+
|
124 |
+
class NamedAgg(NamedTuple):
|
125 |
+
"""
|
126 |
+
Helper for column specific aggregation with control over output column names.
|
127 |
+
|
128 |
+
Subclass of typing.NamedTuple.
|
129 |
+
|
130 |
+
Parameters
|
131 |
+
----------
|
132 |
+
column : Hashable
|
133 |
+
Column label in the DataFrame to apply aggfunc.
|
134 |
+
aggfunc : function or str
|
135 |
+
Function to apply to the provided column. If string, the name of a built-in
|
136 |
+
pandas function.
|
137 |
+
|
138 |
+
Examples
|
139 |
+
--------
|
140 |
+
>>> df = pd.DataFrame({"key": [1, 1, 2], "a": [-1, 0, 1], 1: [10, 11, 12]})
|
141 |
+
>>> agg_a = pd.NamedAgg(column="a", aggfunc="min")
|
142 |
+
>>> agg_1 = pd.NamedAgg(column=1, aggfunc=lambda x: np.mean(x))
|
143 |
+
>>> df.groupby("key").agg(result_a=agg_a, result_1=agg_1)
|
144 |
+
result_a result_1
|
145 |
+
key
|
146 |
+
1 -1 10.5
|
147 |
+
2 1 12.0
|
148 |
+
"""
|
149 |
+
|
150 |
+
column: Hashable
|
151 |
+
aggfunc: AggScalar
|
152 |
+
|
153 |
+
|
154 |
+
class SeriesGroupBy(GroupBy[Series]):
|
155 |
+
def _wrap_agged_manager(self, mgr: Manager) -> Series:
|
156 |
+
out = self.obj._constructor_from_mgr(mgr, axes=mgr.axes)
|
157 |
+
out._name = self.obj.name
|
158 |
+
return out
|
159 |
+
|
160 |
+
def _get_data_to_aggregate(
|
161 |
+
self, *, numeric_only: bool = False, name: str | None = None
|
162 |
+
) -> SingleManager:
|
163 |
+
ser = self._obj_with_exclusions
|
164 |
+
single = ser._mgr
|
165 |
+
if numeric_only and not is_numeric_dtype(ser.dtype):
|
166 |
+
# GH#41291 match Series behavior
|
167 |
+
kwd_name = "numeric_only"
|
168 |
+
raise TypeError(
|
169 |
+
f"Cannot use {kwd_name}=True with "
|
170 |
+
f"{type(self).__name__}.{name} and non-numeric dtypes."
|
171 |
+
)
|
172 |
+
return single
|
173 |
+
|
174 |
+
_agg_examples_doc = dedent(
|
175 |
+
"""
|
176 |
+
Examples
|
177 |
+
--------
|
178 |
+
>>> s = pd.Series([1, 2, 3, 4])
|
179 |
+
|
180 |
+
>>> s
|
181 |
+
0 1
|
182 |
+
1 2
|
183 |
+
2 3
|
184 |
+
3 4
|
185 |
+
dtype: int64
|
186 |
+
|
187 |
+
>>> s.groupby([1, 1, 2, 2]).min()
|
188 |
+
1 1
|
189 |
+
2 3
|
190 |
+
dtype: int64
|
191 |
+
|
192 |
+
>>> s.groupby([1, 1, 2, 2]).agg('min')
|
193 |
+
1 1
|
194 |
+
2 3
|
195 |
+
dtype: int64
|
196 |
+
|
197 |
+
>>> s.groupby([1, 1, 2, 2]).agg(['min', 'max'])
|
198 |
+
min max
|
199 |
+
1 1 2
|
200 |
+
2 3 4
|
201 |
+
|
202 |
+
The output column names can be controlled by passing
|
203 |
+
the desired column names and aggregations as keyword arguments.
|
204 |
+
|
205 |
+
>>> s.groupby([1, 1, 2, 2]).agg(
|
206 |
+
... minimum='min',
|
207 |
+
... maximum='max',
|
208 |
+
... )
|
209 |
+
minimum maximum
|
210 |
+
1 1 2
|
211 |
+
2 3 4
|
212 |
+
|
213 |
+
.. versionchanged:: 1.3.0
|
214 |
+
|
215 |
+
The resulting dtype will reflect the return value of the aggregating function.
|
216 |
+
|
217 |
+
>>> s.groupby([1, 1, 2, 2]).agg(lambda x: x.astype(float).min())
|
218 |
+
1 1.0
|
219 |
+
2 3.0
|
220 |
+
dtype: float64
|
221 |
+
"""
|
222 |
+
)
|
223 |
+
|
224 |
+
@Appender(
|
225 |
+
_apply_docs["template"].format(
|
226 |
+
input="series", examples=_apply_docs["series_examples"]
|
227 |
+
)
|
228 |
+
)
|
229 |
+
def apply(self, func, *args, **kwargs) -> Series:
|
230 |
+
return super().apply(func, *args, **kwargs)
|
231 |
+
|
232 |
+
@doc(_agg_template_series, examples=_agg_examples_doc, klass="Series")
|
233 |
+
def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
|
234 |
+
relabeling = func is None
|
235 |
+
columns = None
|
236 |
+
if relabeling:
|
237 |
+
columns, func = validate_func_kwargs(kwargs)
|
238 |
+
kwargs = {}
|
239 |
+
|
240 |
+
if isinstance(func, str):
|
241 |
+
if maybe_use_numba(engine) and engine is not None:
|
242 |
+
# Not all agg functions support numba, only propagate numba kwargs
|
243 |
+
# if user asks for numba, and engine is not None
|
244 |
+
# (if engine is None, the called function will handle the case where
|
245 |
+
# numba is requested via the global option)
|
246 |
+
kwargs["engine"] = engine
|
247 |
+
if engine_kwargs is not None:
|
248 |
+
kwargs["engine_kwargs"] = engine_kwargs
|
249 |
+
return getattr(self, func)(*args, **kwargs)
|
250 |
+
|
251 |
+
elif isinstance(func, abc.Iterable):
|
252 |
+
# Catch instances of lists / tuples
|
253 |
+
# but not the class list / tuple itself.
|
254 |
+
func = maybe_mangle_lambdas(func)
|
255 |
+
kwargs["engine"] = engine
|
256 |
+
kwargs["engine_kwargs"] = engine_kwargs
|
257 |
+
ret = self._aggregate_multiple_funcs(func, *args, **kwargs)
|
258 |
+
if relabeling:
|
259 |
+
# columns is not narrowed by mypy from relabeling flag
|
260 |
+
assert columns is not None # for mypy
|
261 |
+
ret.columns = columns
|
262 |
+
if not self.as_index:
|
263 |
+
ret = ret.reset_index()
|
264 |
+
return ret
|
265 |
+
|
266 |
+
else:
|
267 |
+
cyfunc = com.get_cython_func(func)
|
268 |
+
if cyfunc and not args and not kwargs:
|
269 |
+
warn_alias_replacement(self, func, cyfunc)
|
270 |
+
return getattr(self, cyfunc)()
|
271 |
+
|
272 |
+
if maybe_use_numba(engine):
|
273 |
+
return self._aggregate_with_numba(
|
274 |
+
func, *args, engine_kwargs=engine_kwargs, **kwargs
|
275 |
+
)
|
276 |
+
|
277 |
+
if self.ngroups == 0:
|
278 |
+
# e.g. test_evaluate_with_empty_groups without any groups to
|
279 |
+
# iterate over, we have no output on which to do dtype
|
280 |
+
# inference. We default to using the existing dtype.
|
281 |
+
# xref GH#51445
|
282 |
+
obj = self._obj_with_exclusions
|
283 |
+
return self.obj._constructor(
|
284 |
+
[],
|
285 |
+
name=self.obj.name,
|
286 |
+
index=self._grouper.result_index,
|
287 |
+
dtype=obj.dtype,
|
288 |
+
)
|
289 |
+
|
290 |
+
if self._grouper.nkeys > 1:
|
291 |
+
return self._python_agg_general(func, *args, **kwargs)
|
292 |
+
|
293 |
+
try:
|
294 |
+
return self._python_agg_general(func, *args, **kwargs)
|
295 |
+
except KeyError:
|
296 |
+
# KeyError raised in test_groupby.test_basic is bc the func does
|
297 |
+
# a dictionary lookup on group.name, but group name is not
|
298 |
+
# pinned in _python_agg_general, only in _aggregate_named
|
299 |
+
result = self._aggregate_named(func, *args, **kwargs)
|
300 |
+
|
301 |
+
warnings.warn(
|
302 |
+
"Pinning the groupby key to each group in "
|
303 |
+
f"{type(self).__name__}.agg is deprecated, and cases that "
|
304 |
+
"relied on it will raise in a future version. "
|
305 |
+
"If your operation requires utilizing the groupby keys, "
|
306 |
+
"iterate over the groupby object instead.",
|
307 |
+
FutureWarning,
|
308 |
+
stacklevel=find_stack_level(),
|
309 |
+
)
|
310 |
+
|
311 |
+
# result is a dict whose keys are the elements of result_index
|
312 |
+
result = Series(result, index=self._grouper.result_index)
|
313 |
+
result = self._wrap_aggregated_output(result)
|
314 |
+
return result
|
315 |
+
|
316 |
+
agg = aggregate
|
317 |
+
|
318 |
+
def _python_agg_general(self, func, *args, **kwargs):
|
319 |
+
orig_func = func
|
320 |
+
func = com.is_builtin_func(func)
|
321 |
+
if orig_func != func:
|
322 |
+
alias = com._builtin_table_alias[func]
|
323 |
+
warn_alias_replacement(self, orig_func, alias)
|
324 |
+
f = lambda x: func(x, *args, **kwargs)
|
325 |
+
|
326 |
+
obj = self._obj_with_exclusions
|
327 |
+
result = self._grouper.agg_series(obj, f)
|
328 |
+
res = obj._constructor(result, name=obj.name)
|
329 |
+
return self._wrap_aggregated_output(res)
|
330 |
+
|
331 |
+
def _aggregate_multiple_funcs(self, arg, *args, **kwargs) -> DataFrame:
|
332 |
+
if isinstance(arg, dict):
|
333 |
+
if self.as_index:
|
334 |
+
# GH 15931
|
335 |
+
raise SpecificationError("nested renamer is not supported")
|
336 |
+
else:
|
337 |
+
# GH#50684 - This accidentally worked in 1.x
|
338 |
+
msg = (
|
339 |
+
"Passing a dictionary to SeriesGroupBy.agg is deprecated "
|
340 |
+
"and will raise in a future version of pandas. Pass a list "
|
341 |
+
"of aggregations instead."
|
342 |
+
)
|
343 |
+
warnings.warn(
|
344 |
+
message=msg,
|
345 |
+
category=FutureWarning,
|
346 |
+
stacklevel=find_stack_level(),
|
347 |
+
)
|
348 |
+
arg = list(arg.items())
|
349 |
+
elif any(isinstance(x, (tuple, list)) for x in arg):
|
350 |
+
arg = [(x, x) if not isinstance(x, (tuple, list)) else x for x in arg]
|
351 |
+
else:
|
352 |
+
# list of functions / function names
|
353 |
+
columns = (com.get_callable_name(f) or f for f in arg)
|
354 |
+
arg = zip(columns, arg)
|
355 |
+
|
356 |
+
results: dict[base.OutputKey, DataFrame | Series] = {}
|
357 |
+
with com.temp_setattr(self, "as_index", True):
|
358 |
+
# Combine results using the index, need to adjust index after
|
359 |
+
# if as_index=False (GH#50724)
|
360 |
+
for idx, (name, func) in enumerate(arg):
|
361 |
+
key = base.OutputKey(label=name, position=idx)
|
362 |
+
results[key] = self.aggregate(func, *args, **kwargs)
|
363 |
+
|
364 |
+
if any(isinstance(x, DataFrame) for x in results.values()):
|
365 |
+
from pandas import concat
|
366 |
+
|
367 |
+
res_df = concat(
|
368 |
+
results.values(), axis=1, keys=[key.label for key in results]
|
369 |
+
)
|
370 |
+
return res_df
|
371 |
+
|
372 |
+
indexed_output = {key.position: val for key, val in results.items()}
|
373 |
+
output = self.obj._constructor_expanddim(indexed_output, index=None)
|
374 |
+
output.columns = Index(key.label for key in results)
|
375 |
+
|
376 |
+
return output
|
377 |
+
|
378 |
+
def _wrap_applied_output(
|
379 |
+
self,
|
380 |
+
data: Series,
|
381 |
+
values: list[Any],
|
382 |
+
not_indexed_same: bool = False,
|
383 |
+
is_transform: bool = False,
|
384 |
+
) -> DataFrame | Series:
|
385 |
+
"""
|
386 |
+
Wrap the output of SeriesGroupBy.apply into the expected result.
|
387 |
+
|
388 |
+
Parameters
|
389 |
+
----------
|
390 |
+
data : Series
|
391 |
+
Input data for groupby operation.
|
392 |
+
values : List[Any]
|
393 |
+
Applied output for each group.
|
394 |
+
not_indexed_same : bool, default False
|
395 |
+
Whether the applied outputs are not indexed the same as the group axes.
|
396 |
+
|
397 |
+
Returns
|
398 |
+
-------
|
399 |
+
DataFrame or Series
|
400 |
+
"""
|
401 |
+
if len(values) == 0:
|
402 |
+
# GH #6265
|
403 |
+
if is_transform:
|
404 |
+
# GH#47787 see test_group_on_empty_multiindex
|
405 |
+
res_index = data.index
|
406 |
+
else:
|
407 |
+
res_index = self._grouper.result_index
|
408 |
+
|
409 |
+
return self.obj._constructor(
|
410 |
+
[],
|
411 |
+
name=self.obj.name,
|
412 |
+
index=res_index,
|
413 |
+
dtype=data.dtype,
|
414 |
+
)
|
415 |
+
assert values is not None
|
416 |
+
|
417 |
+
if isinstance(values[0], dict):
|
418 |
+
# GH #823 #24880
|
419 |
+
index = self._grouper.result_index
|
420 |
+
res_df = self.obj._constructor_expanddim(values, index=index)
|
421 |
+
res_df = self._reindex_output(res_df)
|
422 |
+
# if self.observed is False,
|
423 |
+
# keep all-NaN rows created while re-indexing
|
424 |
+
res_ser = res_df.stack(future_stack=True)
|
425 |
+
res_ser.name = self.obj.name
|
426 |
+
return res_ser
|
427 |
+
elif isinstance(values[0], (Series, DataFrame)):
|
428 |
+
result = self._concat_objects(
|
429 |
+
values,
|
430 |
+
not_indexed_same=not_indexed_same,
|
431 |
+
is_transform=is_transform,
|
432 |
+
)
|
433 |
+
if isinstance(result, Series):
|
434 |
+
result.name = self.obj.name
|
435 |
+
if not self.as_index and not_indexed_same:
|
436 |
+
result = self._insert_inaxis_grouper(result)
|
437 |
+
result.index = default_index(len(result))
|
438 |
+
return result
|
439 |
+
else:
|
440 |
+
# GH #6265 #24880
|
441 |
+
result = self.obj._constructor(
|
442 |
+
data=values, index=self._grouper.result_index, name=self.obj.name
|
443 |
+
)
|
444 |
+
if not self.as_index:
|
445 |
+
result = self._insert_inaxis_grouper(result)
|
446 |
+
result.index = default_index(len(result))
|
447 |
+
return self._reindex_output(result)
|
448 |
+
|
449 |
+
def _aggregate_named(self, func, *args, **kwargs):
|
450 |
+
# Note: this is very similar to _aggregate_series_pure_python,
|
451 |
+
# but that does not pin group.name
|
452 |
+
result = {}
|
453 |
+
initialized = False
|
454 |
+
|
455 |
+
for name, group in self._grouper.get_iterator(
|
456 |
+
self._obj_with_exclusions, axis=self.axis
|
457 |
+
):
|
458 |
+
# needed for pandas/tests/groupby/test_groupby.py::test_basic_aggregations
|
459 |
+
object.__setattr__(group, "name", name)
|
460 |
+
|
461 |
+
output = func(group, *args, **kwargs)
|
462 |
+
output = ops.extract_result(output)
|
463 |
+
if not initialized:
|
464 |
+
# We only do this validation on the first iteration
|
465 |
+
ops.check_result_array(output, group.dtype)
|
466 |
+
initialized = True
|
467 |
+
result[name] = output
|
468 |
+
|
469 |
+
return result
|
470 |
+
|
471 |
+
__examples_series_doc = dedent(
|
472 |
+
"""
|
473 |
+
>>> ser = pd.Series([390.0, 350.0, 30.0, 20.0],
|
474 |
+
... index=["Falcon", "Falcon", "Parrot", "Parrot"],
|
475 |
+
... name="Max Speed")
|
476 |
+
>>> grouped = ser.groupby([1, 1, 2, 2])
|
477 |
+
>>> grouped.transform(lambda x: (x - x.mean()) / x.std())
|
478 |
+
Falcon 0.707107
|
479 |
+
Falcon -0.707107
|
480 |
+
Parrot 0.707107
|
481 |
+
Parrot -0.707107
|
482 |
+
Name: Max Speed, dtype: float64
|
483 |
+
|
484 |
+
Broadcast result of the transformation
|
485 |
+
|
486 |
+
>>> grouped.transform(lambda x: x.max() - x.min())
|
487 |
+
Falcon 40.0
|
488 |
+
Falcon 40.0
|
489 |
+
Parrot 10.0
|
490 |
+
Parrot 10.0
|
491 |
+
Name: Max Speed, dtype: float64
|
492 |
+
|
493 |
+
>>> grouped.transform("mean")
|
494 |
+
Falcon 370.0
|
495 |
+
Falcon 370.0
|
496 |
+
Parrot 25.0
|
497 |
+
Parrot 25.0
|
498 |
+
Name: Max Speed, dtype: float64
|
499 |
+
|
500 |
+
.. versionchanged:: 1.3.0
|
501 |
+
|
502 |
+
The resulting dtype will reflect the return value of the passed ``func``,
|
503 |
+
for example:
|
504 |
+
|
505 |
+
>>> grouped.transform(lambda x: x.astype(int).max())
|
506 |
+
Falcon 390
|
507 |
+
Falcon 390
|
508 |
+
Parrot 30
|
509 |
+
Parrot 30
|
510 |
+
Name: Max Speed, dtype: int64
|
511 |
+
"""
|
512 |
+
)
|
513 |
+
|
514 |
+
@Substitution(klass="Series", example=__examples_series_doc)
|
515 |
+
@Appender(_transform_template)
|
516 |
+
def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
|
517 |
+
return self._transform(
|
518 |
+
func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
|
519 |
+
)
|
520 |
+
|
521 |
+
def _cython_transform(
|
522 |
+
self, how: str, numeric_only: bool = False, axis: AxisInt = 0, **kwargs
|
523 |
+
):
|
524 |
+
assert axis == 0 # handled by caller
|
525 |
+
|
526 |
+
obj = self._obj_with_exclusions
|
527 |
+
|
528 |
+
try:
|
529 |
+
result = self._grouper._cython_operation(
|
530 |
+
"transform", obj._values, how, axis, **kwargs
|
531 |
+
)
|
532 |
+
except NotImplementedError as err:
|
533 |
+
# e.g. test_groupby_raises_string
|
534 |
+
raise TypeError(f"{how} is not supported for {obj.dtype} dtype") from err
|
535 |
+
|
536 |
+
return obj._constructor(result, index=self.obj.index, name=obj.name)
|
537 |
+
|
538 |
+
def _transform_general(
|
539 |
+
self, func: Callable, engine, engine_kwargs, *args, **kwargs
|
540 |
+
) -> Series:
|
541 |
+
"""
|
542 |
+
Transform with a callable `func`.
|
543 |
+
"""
|
544 |
+
if maybe_use_numba(engine):
|
545 |
+
return self._transform_with_numba(
|
546 |
+
func, *args, engine_kwargs=engine_kwargs, **kwargs
|
547 |
+
)
|
548 |
+
assert callable(func)
|
549 |
+
klass = type(self.obj)
|
550 |
+
|
551 |
+
results = []
|
552 |
+
for name, group in self._grouper.get_iterator(
|
553 |
+
self._obj_with_exclusions, axis=self.axis
|
554 |
+
):
|
555 |
+
# this setattr is needed for test_transform_lambda_with_datetimetz
|
556 |
+
object.__setattr__(group, "name", name)
|
557 |
+
res = func(group, *args, **kwargs)
|
558 |
+
|
559 |
+
results.append(klass(res, index=group.index))
|
560 |
+
|
561 |
+
# check for empty "results" to avoid concat ValueError
|
562 |
+
if results:
|
563 |
+
from pandas.core.reshape.concat import concat
|
564 |
+
|
565 |
+
concatenated = concat(results)
|
566 |
+
result = self._set_result_index_ordered(concatenated)
|
567 |
+
else:
|
568 |
+
result = self.obj._constructor(dtype=np.float64)
|
569 |
+
|
570 |
+
result.name = self.obj.name
|
571 |
+
return result
|
572 |
+
|
573 |
+
def filter(self, func, dropna: bool = True, *args, **kwargs):
|
574 |
+
"""
|
575 |
+
Filter elements from groups that don't satisfy a criterion.
|
576 |
+
|
577 |
+
Elements from groups are filtered if they do not satisfy the
|
578 |
+
boolean criterion specified by func.
|
579 |
+
|
580 |
+
Parameters
|
581 |
+
----------
|
582 |
+
func : function
|
583 |
+
Criterion to apply to each group. Should return True or False.
|
584 |
+
dropna : bool
|
585 |
+
Drop groups that do not pass the filter. True by default; if False,
|
586 |
+
groups that evaluate False are filled with NaNs.
|
587 |
+
|
588 |
+
Returns
|
589 |
+
-------
|
590 |
+
Series
|
591 |
+
|
592 |
+
Notes
|
593 |
+
-----
|
594 |
+
Functions that mutate the passed object can produce unexpected
|
595 |
+
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
|
596 |
+
for more details.
|
597 |
+
|
598 |
+
Examples
|
599 |
+
--------
|
600 |
+
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
|
601 |
+
... 'foo', 'bar'],
|
602 |
+
... 'B' : [1, 2, 3, 4, 5, 6],
|
603 |
+
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
|
604 |
+
>>> grouped = df.groupby('A')
|
605 |
+
>>> df.groupby('A').B.filter(lambda x: x.mean() > 3.)
|
606 |
+
1 2
|
607 |
+
3 4
|
608 |
+
5 6
|
609 |
+
Name: B, dtype: int64
|
610 |
+
"""
|
611 |
+
if isinstance(func, str):
|
612 |
+
wrapper = lambda x: getattr(x, func)(*args, **kwargs)
|
613 |
+
else:
|
614 |
+
wrapper = lambda x: func(x, *args, **kwargs)
|
615 |
+
|
616 |
+
# Interpret np.nan as False.
|
617 |
+
def true_and_notna(x) -> bool:
|
618 |
+
b = wrapper(x)
|
619 |
+
return notna(b) and b
|
620 |
+
|
621 |
+
try:
|
622 |
+
indices = [
|
623 |
+
self._get_index(name)
|
624 |
+
for name, group in self._grouper.get_iterator(
|
625 |
+
self._obj_with_exclusions, axis=self.axis
|
626 |
+
)
|
627 |
+
if true_and_notna(group)
|
628 |
+
]
|
629 |
+
except (ValueError, TypeError) as err:
|
630 |
+
raise TypeError("the filter must return a boolean result") from err
|
631 |
+
|
632 |
+
filtered = self._apply_filter(indices, dropna)
|
633 |
+
return filtered
|
634 |
+
|
635 |
+
def nunique(self, dropna: bool = True) -> Series | DataFrame:
|
636 |
+
"""
|
637 |
+
Return number of unique elements in the group.
|
638 |
+
|
639 |
+
Returns
|
640 |
+
-------
|
641 |
+
Series
|
642 |
+
Number of unique values within each group.
|
643 |
+
|
644 |
+
Examples
|
645 |
+
--------
|
646 |
+
For SeriesGroupby:
|
647 |
+
|
648 |
+
>>> lst = ['a', 'a', 'b', 'b']
|
649 |
+
>>> ser = pd.Series([1, 2, 3, 3], index=lst)
|
650 |
+
>>> ser
|
651 |
+
a 1
|
652 |
+
a 2
|
653 |
+
b 3
|
654 |
+
b 3
|
655 |
+
dtype: int64
|
656 |
+
>>> ser.groupby(level=0).nunique()
|
657 |
+
a 2
|
658 |
+
b 1
|
659 |
+
dtype: int64
|
660 |
+
|
661 |
+
For Resampler:
|
662 |
+
|
663 |
+
>>> ser = pd.Series([1, 2, 3, 3], index=pd.DatetimeIndex(
|
664 |
+
... ['2023-01-01', '2023-01-15', '2023-02-01', '2023-02-15']))
|
665 |
+
>>> ser
|
666 |
+
2023-01-01 1
|
667 |
+
2023-01-15 2
|
668 |
+
2023-02-01 3
|
669 |
+
2023-02-15 3
|
670 |
+
dtype: int64
|
671 |
+
>>> ser.resample('MS').nunique()
|
672 |
+
2023-01-01 2
|
673 |
+
2023-02-01 1
|
674 |
+
Freq: MS, dtype: int64
|
675 |
+
"""
|
676 |
+
ids, _, ngroups = self._grouper.group_info
|
677 |
+
val = self.obj._values
|
678 |
+
codes, uniques = algorithms.factorize(val, use_na_sentinel=dropna, sort=False)
|
679 |
+
|
680 |
+
if self._grouper.has_dropped_na:
|
681 |
+
mask = ids >= 0
|
682 |
+
ids = ids[mask]
|
683 |
+
codes = codes[mask]
|
684 |
+
|
685 |
+
group_index = get_group_index(
|
686 |
+
labels=[ids, codes],
|
687 |
+
shape=(ngroups, len(uniques)),
|
688 |
+
sort=False,
|
689 |
+
xnull=dropna,
|
690 |
+
)
|
691 |
+
|
692 |
+
if dropna:
|
693 |
+
mask = group_index >= 0
|
694 |
+
if (~mask).any():
|
695 |
+
ids = ids[mask]
|
696 |
+
group_index = group_index[mask]
|
697 |
+
|
698 |
+
mask = duplicated(group_index, "first")
|
699 |
+
res = np.bincount(ids[~mask], minlength=ngroups)
|
700 |
+
res = ensure_int64(res)
|
701 |
+
|
702 |
+
ri = self._grouper.result_index
|
703 |
+
result: Series | DataFrame = self.obj._constructor(
|
704 |
+
res, index=ri, name=self.obj.name
|
705 |
+
)
|
706 |
+
if not self.as_index:
|
707 |
+
result = self._insert_inaxis_grouper(result)
|
708 |
+
result.index = default_index(len(result))
|
709 |
+
return self._reindex_output(result, fill_value=0)
|
710 |
+
|
711 |
+
@doc(Series.describe)
|
712 |
+
def describe(self, percentiles=None, include=None, exclude=None) -> Series:
|
713 |
+
return super().describe(
|
714 |
+
percentiles=percentiles, include=include, exclude=exclude
|
715 |
+
)
|
716 |
+
|
717 |
+
def value_counts(
|
718 |
+
self,
|
719 |
+
normalize: bool = False,
|
720 |
+
sort: bool = True,
|
721 |
+
ascending: bool = False,
|
722 |
+
bins=None,
|
723 |
+
dropna: bool = True,
|
724 |
+
) -> Series | DataFrame:
|
725 |
+
name = "proportion" if normalize else "count"
|
726 |
+
|
727 |
+
if bins is None:
|
728 |
+
result = self._value_counts(
|
729 |
+
normalize=normalize, sort=sort, ascending=ascending, dropna=dropna
|
730 |
+
)
|
731 |
+
result.name = name
|
732 |
+
return result
|
733 |
+
|
734 |
+
from pandas.core.reshape.merge import get_join_indexers
|
735 |
+
from pandas.core.reshape.tile import cut
|
736 |
+
|
737 |
+
ids, _, _ = self._grouper.group_info
|
738 |
+
val = self.obj._values
|
739 |
+
|
740 |
+
index_names = self._grouper.names + [self.obj.name]
|
741 |
+
|
742 |
+
if isinstance(val.dtype, CategoricalDtype) or (
|
743 |
+
bins is not None and not np.iterable(bins)
|
744 |
+
):
|
745 |
+
# scalar bins cannot be done at top level
|
746 |
+
# in a backward compatible way
|
747 |
+
# GH38672 relates to categorical dtype
|
748 |
+
ser = self.apply(
|
749 |
+
Series.value_counts,
|
750 |
+
normalize=normalize,
|
751 |
+
sort=sort,
|
752 |
+
ascending=ascending,
|
753 |
+
bins=bins,
|
754 |
+
)
|
755 |
+
ser.name = name
|
756 |
+
ser.index.names = index_names
|
757 |
+
return ser
|
758 |
+
|
759 |
+
# groupby removes null keys from groupings
|
760 |
+
mask = ids != -1
|
761 |
+
ids, val = ids[mask], val[mask]
|
762 |
+
|
763 |
+
lab: Index | np.ndarray
|
764 |
+
if bins is None:
|
765 |
+
lab, lev = algorithms.factorize(val, sort=True)
|
766 |
+
llab = lambda lab, inc: lab[inc]
|
767 |
+
else:
|
768 |
+
# lab is a Categorical with categories an IntervalIndex
|
769 |
+
cat_ser = cut(Series(val, copy=False), bins, include_lowest=True)
|
770 |
+
cat_obj = cast("Categorical", cat_ser._values)
|
771 |
+
lev = cat_obj.categories
|
772 |
+
lab = lev.take(
|
773 |
+
cat_obj.codes,
|
774 |
+
allow_fill=True,
|
775 |
+
fill_value=lev._na_value,
|
776 |
+
)
|
777 |
+
llab = lambda lab, inc: lab[inc]._multiindex.codes[-1]
|
778 |
+
|
779 |
+
if isinstance(lab.dtype, IntervalDtype):
|
780 |
+
# TODO: should we do this inside II?
|
781 |
+
lab_interval = cast(Interval, lab)
|
782 |
+
|
783 |
+
sorter = np.lexsort((lab_interval.left, lab_interval.right, ids))
|
784 |
+
else:
|
785 |
+
sorter = np.lexsort((lab, ids))
|
786 |
+
|
787 |
+
ids, lab = ids[sorter], lab[sorter]
|
788 |
+
|
789 |
+
# group boundaries are where group ids change
|
790 |
+
idchanges = 1 + np.nonzero(ids[1:] != ids[:-1])[0]
|
791 |
+
idx = np.r_[0, idchanges]
|
792 |
+
if not len(ids):
|
793 |
+
idx = idchanges
|
794 |
+
|
795 |
+
# new values are where sorted labels change
|
796 |
+
lchanges = llab(lab, slice(1, None)) != llab(lab, slice(None, -1))
|
797 |
+
inc = np.r_[True, lchanges]
|
798 |
+
if not len(val):
|
799 |
+
inc = lchanges
|
800 |
+
inc[idx] = True # group boundaries are also new values
|
801 |
+
out = np.diff(np.nonzero(np.r_[inc, True])[0]) # value counts
|
802 |
+
|
803 |
+
# num. of times each group should be repeated
|
804 |
+
rep = partial(np.repeat, repeats=np.add.reduceat(inc, idx))
|
805 |
+
|
806 |
+
# multi-index components
|
807 |
+
codes = self._grouper.reconstructed_codes
|
808 |
+
codes = [rep(level_codes) for level_codes in codes] + [llab(lab, inc)]
|
809 |
+
levels = [ping._group_index for ping in self._grouper.groupings] + [lev]
|
810 |
+
|
811 |
+
if dropna:
|
812 |
+
mask = codes[-1] != -1
|
813 |
+
if mask.all():
|
814 |
+
dropna = False
|
815 |
+
else:
|
816 |
+
out, codes = out[mask], [level_codes[mask] for level_codes in codes]
|
817 |
+
|
818 |
+
if normalize:
|
819 |
+
out = out.astype("float")
|
820 |
+
d = np.diff(np.r_[idx, len(ids)])
|
821 |
+
if dropna:
|
822 |
+
m = ids[lab == -1]
|
823 |
+
np.add.at(d, m, -1)
|
824 |
+
acc = rep(d)[mask]
|
825 |
+
else:
|
826 |
+
acc = rep(d)
|
827 |
+
out /= acc
|
828 |
+
|
829 |
+
if sort and bins is None:
|
830 |
+
cat = ids[inc][mask] if dropna else ids[inc]
|
831 |
+
sorter = np.lexsort((out if ascending else -out, cat))
|
832 |
+
out, codes[-1] = out[sorter], codes[-1][sorter]
|
833 |
+
|
834 |
+
if bins is not None:
|
835 |
+
# for compat. with libgroupby.value_counts need to ensure every
|
836 |
+
# bin is present at every index level, null filled with zeros
|
837 |
+
diff = np.zeros(len(out), dtype="bool")
|
838 |
+
for level_codes in codes[:-1]:
|
839 |
+
diff |= np.r_[True, level_codes[1:] != level_codes[:-1]]
|
840 |
+
|
841 |
+
ncat, nbin = diff.sum(), len(levels[-1])
|
842 |
+
|
843 |
+
left = [np.repeat(np.arange(ncat), nbin), np.tile(np.arange(nbin), ncat)]
|
844 |
+
|
845 |
+
right = [diff.cumsum() - 1, codes[-1]]
|
846 |
+
|
847 |
+
# error: Argument 1 to "get_join_indexers" has incompatible type
|
848 |
+
# "List[ndarray[Any, Any]]"; expected "List[Union[Union[ExtensionArray,
|
849 |
+
# ndarray[Any, Any]], Index, Series]]
|
850 |
+
_, idx = get_join_indexers(
|
851 |
+
left, right, sort=False, how="left" # type: ignore[arg-type]
|
852 |
+
)
|
853 |
+
if idx is not None:
|
854 |
+
out = np.where(idx != -1, out[idx], 0)
|
855 |
+
|
856 |
+
if sort:
|
857 |
+
sorter = np.lexsort((out if ascending else -out, left[0]))
|
858 |
+
out, left[-1] = out[sorter], left[-1][sorter]
|
859 |
+
|
860 |
+
# build the multi-index w/ full levels
|
861 |
+
def build_codes(lev_codes: np.ndarray) -> np.ndarray:
|
862 |
+
return np.repeat(lev_codes[diff], nbin)
|
863 |
+
|
864 |
+
codes = [build_codes(lev_codes) for lev_codes in codes[:-1]]
|
865 |
+
codes.append(left[-1])
|
866 |
+
|
867 |
+
mi = MultiIndex(
|
868 |
+
levels=levels, codes=codes, names=index_names, verify_integrity=False
|
869 |
+
)
|
870 |
+
|
871 |
+
if is_integer_dtype(out.dtype):
|
872 |
+
out = ensure_int64(out)
|
873 |
+
result = self.obj._constructor(out, index=mi, name=name)
|
874 |
+
if not self.as_index:
|
875 |
+
result = result.reset_index()
|
876 |
+
return result
|
877 |
+
|
878 |
+
def fillna(
|
879 |
+
self,
|
880 |
+
value: object | ArrayLike | None = None,
|
881 |
+
method: FillnaOptions | None = None,
|
882 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
883 |
+
inplace: bool = False,
|
884 |
+
limit: int | None = None,
|
885 |
+
downcast: dict | None | lib.NoDefault = lib.no_default,
|
886 |
+
) -> Series | None:
|
887 |
+
"""
|
888 |
+
Fill NA/NaN values using the specified method within groups.
|
889 |
+
|
890 |
+
.. deprecated:: 2.2.0
|
891 |
+
This method is deprecated and will be removed in a future version.
|
892 |
+
Use the :meth:`.SeriesGroupBy.ffill` or :meth:`.SeriesGroupBy.bfill`
|
893 |
+
for forward or backward filling instead. If you want to fill with a
|
894 |
+
single value, use :meth:`Series.fillna` instead.
|
895 |
+
|
896 |
+
Parameters
|
897 |
+
----------
|
898 |
+
value : scalar, dict, Series, or DataFrame
|
899 |
+
Value to use to fill holes (e.g. 0), alternately a
|
900 |
+
dict/Series/DataFrame of values specifying which value to use for
|
901 |
+
each index (for a Series) or column (for a DataFrame). Values not
|
902 |
+
in the dict/Series/DataFrame will not be filled. This value cannot
|
903 |
+
be a list. Users wanting to use the ``value`` argument and not ``method``
|
904 |
+
should prefer :meth:`.Series.fillna` as this
|
905 |
+
will produce the same result and be more performant.
|
906 |
+
method : {{'bfill', 'ffill', None}}, default None
|
907 |
+
Method to use for filling holes. ``'ffill'`` will propagate
|
908 |
+
the last valid observation forward within a group.
|
909 |
+
``'bfill'`` will use next valid observation to fill the gap.
|
910 |
+
axis : {0 or 'index', 1 or 'columns'}
|
911 |
+
Unused, only for compatibility with :meth:`DataFrameGroupBy.fillna`.
|
912 |
+
inplace : bool, default False
|
913 |
+
Broken. Do not set to True.
|
914 |
+
limit : int, default None
|
915 |
+
If method is specified, this is the maximum number of consecutive
|
916 |
+
NaN values to forward/backward fill within a group. In other words,
|
917 |
+
if there is a gap with more than this number of consecutive NaNs,
|
918 |
+
it will only be partially filled. If method is not specified, this is the
|
919 |
+
maximum number of entries along the entire axis where NaNs will be
|
920 |
+
filled. Must be greater than 0 if not None.
|
921 |
+
downcast : dict, default is None
|
922 |
+
A dict of item->dtype of what to downcast if possible,
|
923 |
+
or the string 'infer' which will try to downcast to an appropriate
|
924 |
+
equal type (e.g. float64 to int64 if possible).
|
925 |
+
|
926 |
+
Returns
|
927 |
+
-------
|
928 |
+
Series
|
929 |
+
Object with missing values filled within groups.
|
930 |
+
|
931 |
+
See Also
|
932 |
+
--------
|
933 |
+
ffill : Forward fill values within a group.
|
934 |
+
bfill : Backward fill values within a group.
|
935 |
+
|
936 |
+
Examples
|
937 |
+
--------
|
938 |
+
For SeriesGroupBy:
|
939 |
+
|
940 |
+
>>> lst = ['cat', 'cat', 'cat', 'mouse', 'mouse']
|
941 |
+
>>> ser = pd.Series([1, None, None, 2, None], index=lst)
|
942 |
+
>>> ser
|
943 |
+
cat 1.0
|
944 |
+
cat NaN
|
945 |
+
cat NaN
|
946 |
+
mouse 2.0
|
947 |
+
mouse NaN
|
948 |
+
dtype: float64
|
949 |
+
>>> ser.groupby(level=0).fillna(0, limit=1)
|
950 |
+
cat 1.0
|
951 |
+
cat 0.0
|
952 |
+
cat NaN
|
953 |
+
mouse 2.0
|
954 |
+
mouse 0.0
|
955 |
+
dtype: float64
|
956 |
+
"""
|
957 |
+
warnings.warn(
|
958 |
+
f"{type(self).__name__}.fillna is deprecated and "
|
959 |
+
"will be removed in a future version. Use obj.ffill() or obj.bfill() "
|
960 |
+
"for forward or backward filling instead. If you want to fill with a "
|
961 |
+
f"single value, use {type(self.obj).__name__}.fillna instead",
|
962 |
+
FutureWarning,
|
963 |
+
stacklevel=find_stack_level(),
|
964 |
+
)
|
965 |
+
result = self._op_via_apply(
|
966 |
+
"fillna",
|
967 |
+
value=value,
|
968 |
+
method=method,
|
969 |
+
axis=axis,
|
970 |
+
inplace=inplace,
|
971 |
+
limit=limit,
|
972 |
+
downcast=downcast,
|
973 |
+
)
|
974 |
+
return result
|
975 |
+
|
976 |
+
def take(
|
977 |
+
self,
|
978 |
+
indices: TakeIndexer,
|
979 |
+
axis: Axis | lib.NoDefault = lib.no_default,
|
980 |
+
**kwargs,
|
981 |
+
) -> Series:
|
982 |
+
"""
|
983 |
+
Return the elements in the given *positional* indices in each group.
|
984 |
+
|
985 |
+
This means that we are not indexing according to actual values in
|
986 |
+
the index attribute of the object. We are indexing according to the
|
987 |
+
actual position of the element in the object.
|
988 |
+
|
989 |
+
If a requested index does not exist for some group, this method will raise.
|
990 |
+
To get similar behavior that ignores indices that don't exist, see
|
991 |
+
:meth:`.SeriesGroupBy.nth`.
|
992 |
+
|
993 |
+
Parameters
|
994 |
+
----------
|
995 |
+
indices : array-like
|
996 |
+
An array of ints indicating which positions to take in each group.
|
997 |
+
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
998 |
+
The axis on which to select elements. ``0`` means that we are
|
999 |
+
selecting rows, ``1`` means that we are selecting columns.
|
1000 |
+
For `SeriesGroupBy` this parameter is unused and defaults to 0.
|
1001 |
+
|
1002 |
+
.. deprecated:: 2.1.0
|
1003 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
1004 |
+
the axis keyword is not necessary.
|
1005 |
+
|
1006 |
+
**kwargs
|
1007 |
+
For compatibility with :meth:`numpy.take`. Has no effect on the
|
1008 |
+
output.
|
1009 |
+
|
1010 |
+
Returns
|
1011 |
+
-------
|
1012 |
+
Series
|
1013 |
+
A Series containing the elements taken from each group.
|
1014 |
+
|
1015 |
+
See Also
|
1016 |
+
--------
|
1017 |
+
Series.take : Take elements from a Series along an axis.
|
1018 |
+
Series.loc : Select a subset of a DataFrame by labels.
|
1019 |
+
Series.iloc : Select a subset of a DataFrame by positions.
|
1020 |
+
numpy.take : Take elements from an array along an axis.
|
1021 |
+
SeriesGroupBy.nth : Similar to take, won't raise if indices don't exist.
|
1022 |
+
|
1023 |
+
Examples
|
1024 |
+
--------
|
1025 |
+
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
|
1026 |
+
... ('parrot', 'bird', 24.0),
|
1027 |
+
... ('lion', 'mammal', 80.5),
|
1028 |
+
... ('monkey', 'mammal', np.nan),
|
1029 |
+
... ('rabbit', 'mammal', 15.0)],
|
1030 |
+
... columns=['name', 'class', 'max_speed'],
|
1031 |
+
... index=[4, 3, 2, 1, 0])
|
1032 |
+
>>> df
|
1033 |
+
name class max_speed
|
1034 |
+
4 falcon bird 389.0
|
1035 |
+
3 parrot bird 24.0
|
1036 |
+
2 lion mammal 80.5
|
1037 |
+
1 monkey mammal NaN
|
1038 |
+
0 rabbit mammal 15.0
|
1039 |
+
>>> gb = df["name"].groupby([1, 1, 2, 2, 2])
|
1040 |
+
|
1041 |
+
Take elements at positions 0 and 1 along the axis 0 in each group (default).
|
1042 |
+
|
1043 |
+
>>> gb.take([0, 1])
|
1044 |
+
1 4 falcon
|
1045 |
+
3 parrot
|
1046 |
+
2 2 lion
|
1047 |
+
1 monkey
|
1048 |
+
Name: name, dtype: object
|
1049 |
+
|
1050 |
+
We may take elements using negative integers for positive indices,
|
1051 |
+
starting from the end of the object, just like with Python lists.
|
1052 |
+
|
1053 |
+
>>> gb.take([-1, -2])
|
1054 |
+
1 3 parrot
|
1055 |
+
4 falcon
|
1056 |
+
2 0 rabbit
|
1057 |
+
1 monkey
|
1058 |
+
Name: name, dtype: object
|
1059 |
+
"""
|
1060 |
+
result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs)
|
1061 |
+
return result
|
1062 |
+
|
1063 |
+
def skew(
|
1064 |
+
self,
|
1065 |
+
axis: Axis | lib.NoDefault = lib.no_default,
|
1066 |
+
skipna: bool = True,
|
1067 |
+
numeric_only: bool = False,
|
1068 |
+
**kwargs,
|
1069 |
+
) -> Series:
|
1070 |
+
"""
|
1071 |
+
Return unbiased skew within groups.
|
1072 |
+
|
1073 |
+
Normalized by N-1.
|
1074 |
+
|
1075 |
+
Parameters
|
1076 |
+
----------
|
1077 |
+
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
1078 |
+
Axis for the function to be applied on.
|
1079 |
+
This parameter is only for compatibility with DataFrame and is unused.
|
1080 |
+
|
1081 |
+
.. deprecated:: 2.1.0
|
1082 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
1083 |
+
the axis keyword is not necessary.
|
1084 |
+
|
1085 |
+
skipna : bool, default True
|
1086 |
+
Exclude NA/null values when computing the result.
|
1087 |
+
|
1088 |
+
numeric_only : bool, default False
|
1089 |
+
Include only float, int, boolean columns. Not implemented for Series.
|
1090 |
+
|
1091 |
+
**kwargs
|
1092 |
+
Additional keyword arguments to be passed to the function.
|
1093 |
+
|
1094 |
+
Returns
|
1095 |
+
-------
|
1096 |
+
Series
|
1097 |
+
|
1098 |
+
See Also
|
1099 |
+
--------
|
1100 |
+
Series.skew : Return unbiased skew over requested axis.
|
1101 |
+
|
1102 |
+
Examples
|
1103 |
+
--------
|
1104 |
+
>>> ser = pd.Series([390., 350., 357., np.nan, 22., 20., 30.],
|
1105 |
+
... index=['Falcon', 'Falcon', 'Falcon', 'Falcon',
|
1106 |
+
... 'Parrot', 'Parrot', 'Parrot'],
|
1107 |
+
... name="Max Speed")
|
1108 |
+
>>> ser
|
1109 |
+
Falcon 390.0
|
1110 |
+
Falcon 350.0
|
1111 |
+
Falcon 357.0
|
1112 |
+
Falcon NaN
|
1113 |
+
Parrot 22.0
|
1114 |
+
Parrot 20.0
|
1115 |
+
Parrot 30.0
|
1116 |
+
Name: Max Speed, dtype: float64
|
1117 |
+
>>> ser.groupby(level=0).skew()
|
1118 |
+
Falcon 1.525174
|
1119 |
+
Parrot 1.457863
|
1120 |
+
Name: Max Speed, dtype: float64
|
1121 |
+
>>> ser.groupby(level=0).skew(skipna=False)
|
1122 |
+
Falcon NaN
|
1123 |
+
Parrot 1.457863
|
1124 |
+
Name: Max Speed, dtype: float64
|
1125 |
+
"""
|
1126 |
+
if axis is lib.no_default:
|
1127 |
+
axis = 0
|
1128 |
+
|
1129 |
+
if axis != 0:
|
1130 |
+
result = self._op_via_apply(
|
1131 |
+
"skew",
|
1132 |
+
axis=axis,
|
1133 |
+
skipna=skipna,
|
1134 |
+
numeric_only=numeric_only,
|
1135 |
+
**kwargs,
|
1136 |
+
)
|
1137 |
+
return result
|
1138 |
+
|
1139 |
+
def alt(obj):
|
1140 |
+
# This should not be reached since the cython path should raise
|
1141 |
+
# TypeError and not NotImplementedError.
|
1142 |
+
raise TypeError(f"'skew' is not supported for dtype={obj.dtype}")
|
1143 |
+
|
1144 |
+
return self._cython_agg_general(
|
1145 |
+
"skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs
|
1146 |
+
)
|
1147 |
+
|
1148 |
+
@property
|
1149 |
+
@doc(Series.plot.__doc__)
|
1150 |
+
def plot(self) -> GroupByPlot:
|
1151 |
+
result = GroupByPlot(self)
|
1152 |
+
return result
|
1153 |
+
|
1154 |
+
@doc(Series.nlargest.__doc__)
|
1155 |
+
def nlargest(
|
1156 |
+
self, n: int = 5, keep: Literal["first", "last", "all"] = "first"
|
1157 |
+
) -> Series:
|
1158 |
+
f = partial(Series.nlargest, n=n, keep=keep)
|
1159 |
+
data = self._obj_with_exclusions
|
1160 |
+
# Don't change behavior if result index happens to be the same, i.e.
|
1161 |
+
# already ordered and n >= all group sizes.
|
1162 |
+
result = self._python_apply_general(f, data, not_indexed_same=True)
|
1163 |
+
return result
|
1164 |
+
|
1165 |
+
@doc(Series.nsmallest.__doc__)
|
1166 |
+
def nsmallest(
|
1167 |
+
self, n: int = 5, keep: Literal["first", "last", "all"] = "first"
|
1168 |
+
) -> Series:
|
1169 |
+
f = partial(Series.nsmallest, n=n, keep=keep)
|
1170 |
+
data = self._obj_with_exclusions
|
1171 |
+
# Don't change behavior if result index happens to be the same, i.e.
|
1172 |
+
# already ordered and n >= all group sizes.
|
1173 |
+
result = self._python_apply_general(f, data, not_indexed_same=True)
|
1174 |
+
return result
|
1175 |
+
|
1176 |
+
@doc(Series.idxmin.__doc__)
|
1177 |
+
def idxmin(
|
1178 |
+
self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
|
1179 |
+
) -> Series:
|
1180 |
+
return self._idxmax_idxmin("idxmin", axis=axis, skipna=skipna)
|
1181 |
+
|
1182 |
+
@doc(Series.idxmax.__doc__)
|
1183 |
+
def idxmax(
|
1184 |
+
self, axis: Axis | lib.NoDefault = lib.no_default, skipna: bool = True
|
1185 |
+
) -> Series:
|
1186 |
+
return self._idxmax_idxmin("idxmax", axis=axis, skipna=skipna)
|
1187 |
+
|
1188 |
+
@doc(Series.corr.__doc__)
|
1189 |
+
def corr(
|
1190 |
+
self,
|
1191 |
+
other: Series,
|
1192 |
+
method: CorrelationMethod = "pearson",
|
1193 |
+
min_periods: int | None = None,
|
1194 |
+
) -> Series:
|
1195 |
+
result = self._op_via_apply(
|
1196 |
+
"corr", other=other, method=method, min_periods=min_periods
|
1197 |
+
)
|
1198 |
+
return result
|
1199 |
+
|
1200 |
+
@doc(Series.cov.__doc__)
|
1201 |
+
def cov(
|
1202 |
+
self, other: Series, min_periods: int | None = None, ddof: int | None = 1
|
1203 |
+
) -> Series:
|
1204 |
+
result = self._op_via_apply(
|
1205 |
+
"cov", other=other, min_periods=min_periods, ddof=ddof
|
1206 |
+
)
|
1207 |
+
return result
|
1208 |
+
|
1209 |
+
@property
|
1210 |
+
def is_monotonic_increasing(self) -> Series:
|
1211 |
+
"""
|
1212 |
+
Return whether each group's values are monotonically increasing.
|
1213 |
+
|
1214 |
+
Returns
|
1215 |
+
-------
|
1216 |
+
Series
|
1217 |
+
|
1218 |
+
Examples
|
1219 |
+
--------
|
1220 |
+
>>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot'])
|
1221 |
+
>>> s.groupby(level=0).is_monotonic_increasing
|
1222 |
+
Falcon False
|
1223 |
+
Parrot True
|
1224 |
+
dtype: bool
|
1225 |
+
"""
|
1226 |
+
return self.apply(lambda ser: ser.is_monotonic_increasing)
|
1227 |
+
|
1228 |
+
@property
|
1229 |
+
def is_monotonic_decreasing(self) -> Series:
|
1230 |
+
"""
|
1231 |
+
Return whether each group's values are monotonically decreasing.
|
1232 |
+
|
1233 |
+
Returns
|
1234 |
+
-------
|
1235 |
+
Series
|
1236 |
+
|
1237 |
+
Examples
|
1238 |
+
--------
|
1239 |
+
>>> s = pd.Series([2, 1, 3, 4], index=['Falcon', 'Falcon', 'Parrot', 'Parrot'])
|
1240 |
+
>>> s.groupby(level=0).is_monotonic_decreasing
|
1241 |
+
Falcon True
|
1242 |
+
Parrot False
|
1243 |
+
dtype: bool
|
1244 |
+
"""
|
1245 |
+
return self.apply(lambda ser: ser.is_monotonic_decreasing)
|
1246 |
+
|
1247 |
+
@doc(Series.hist.__doc__)
|
1248 |
+
def hist(
|
1249 |
+
self,
|
1250 |
+
by=None,
|
1251 |
+
ax=None,
|
1252 |
+
grid: bool = True,
|
1253 |
+
xlabelsize: int | None = None,
|
1254 |
+
xrot: float | None = None,
|
1255 |
+
ylabelsize: int | None = None,
|
1256 |
+
yrot: float | None = None,
|
1257 |
+
figsize: tuple[int, int] | None = None,
|
1258 |
+
bins: int | Sequence[int] = 10,
|
1259 |
+
backend: str | None = None,
|
1260 |
+
legend: bool = False,
|
1261 |
+
**kwargs,
|
1262 |
+
):
|
1263 |
+
result = self._op_via_apply(
|
1264 |
+
"hist",
|
1265 |
+
by=by,
|
1266 |
+
ax=ax,
|
1267 |
+
grid=grid,
|
1268 |
+
xlabelsize=xlabelsize,
|
1269 |
+
xrot=xrot,
|
1270 |
+
ylabelsize=ylabelsize,
|
1271 |
+
yrot=yrot,
|
1272 |
+
figsize=figsize,
|
1273 |
+
bins=bins,
|
1274 |
+
backend=backend,
|
1275 |
+
legend=legend,
|
1276 |
+
**kwargs,
|
1277 |
+
)
|
1278 |
+
return result
|
1279 |
+
|
1280 |
+
@property
|
1281 |
+
@doc(Series.dtype.__doc__)
|
1282 |
+
def dtype(self) -> Series:
|
1283 |
+
return self.apply(lambda ser: ser.dtype)
|
1284 |
+
|
1285 |
+
def unique(self) -> Series:
|
1286 |
+
"""
|
1287 |
+
Return unique values for each group.
|
1288 |
+
|
1289 |
+
It returns unique values for each of the grouped values. Returned in
|
1290 |
+
order of appearance. Hash table-based unique, therefore does NOT sort.
|
1291 |
+
|
1292 |
+
Returns
|
1293 |
+
-------
|
1294 |
+
Series
|
1295 |
+
Unique values for each of the grouped values.
|
1296 |
+
|
1297 |
+
See Also
|
1298 |
+
--------
|
1299 |
+
Series.unique : Return unique values of Series object.
|
1300 |
+
|
1301 |
+
Examples
|
1302 |
+
--------
|
1303 |
+
>>> df = pd.DataFrame([('Chihuahua', 'dog', 6.1),
|
1304 |
+
... ('Beagle', 'dog', 15.2),
|
1305 |
+
... ('Chihuahua', 'dog', 6.9),
|
1306 |
+
... ('Persian', 'cat', 9.2),
|
1307 |
+
... ('Chihuahua', 'dog', 7),
|
1308 |
+
... ('Persian', 'cat', 8.8)],
|
1309 |
+
... columns=['breed', 'animal', 'height_in'])
|
1310 |
+
>>> df
|
1311 |
+
breed animal height_in
|
1312 |
+
0 Chihuahua dog 6.1
|
1313 |
+
1 Beagle dog 15.2
|
1314 |
+
2 Chihuahua dog 6.9
|
1315 |
+
3 Persian cat 9.2
|
1316 |
+
4 Chihuahua dog 7.0
|
1317 |
+
5 Persian cat 8.8
|
1318 |
+
>>> ser = df.groupby('animal')['breed'].unique()
|
1319 |
+
>>> ser
|
1320 |
+
animal
|
1321 |
+
cat [Persian]
|
1322 |
+
dog [Chihuahua, Beagle]
|
1323 |
+
Name: breed, dtype: object
|
1324 |
+
"""
|
1325 |
+
result = self._op_via_apply("unique")
|
1326 |
+
return result
|
1327 |
+
|
1328 |
+
|
1329 |
+
class DataFrameGroupBy(GroupBy[DataFrame]):
|
1330 |
+
_agg_examples_doc = dedent(
|
1331 |
+
"""
|
1332 |
+
Examples
|
1333 |
+
--------
|
1334 |
+
>>> data = {"A": [1, 1, 2, 2],
|
1335 |
+
... "B": [1, 2, 3, 4],
|
1336 |
+
... "C": [0.362838, 0.227877, 1.267767, -0.562860]}
|
1337 |
+
>>> df = pd.DataFrame(data)
|
1338 |
+
>>> df
|
1339 |
+
A B C
|
1340 |
+
0 1 1 0.362838
|
1341 |
+
1 1 2 0.227877
|
1342 |
+
2 2 3 1.267767
|
1343 |
+
3 2 4 -0.562860
|
1344 |
+
|
1345 |
+
The aggregation is for each column.
|
1346 |
+
|
1347 |
+
>>> df.groupby('A').agg('min')
|
1348 |
+
B C
|
1349 |
+
A
|
1350 |
+
1 1 0.227877
|
1351 |
+
2 3 -0.562860
|
1352 |
+
|
1353 |
+
Multiple aggregations
|
1354 |
+
|
1355 |
+
>>> df.groupby('A').agg(['min', 'max'])
|
1356 |
+
B C
|
1357 |
+
min max min max
|
1358 |
+
A
|
1359 |
+
1 1 2 0.227877 0.362838
|
1360 |
+
2 3 4 -0.562860 1.267767
|
1361 |
+
|
1362 |
+
Select a column for aggregation
|
1363 |
+
|
1364 |
+
>>> df.groupby('A').B.agg(['min', 'max'])
|
1365 |
+
min max
|
1366 |
+
A
|
1367 |
+
1 1 2
|
1368 |
+
2 3 4
|
1369 |
+
|
1370 |
+
User-defined function for aggregation
|
1371 |
+
|
1372 |
+
>>> df.groupby('A').agg(lambda x: sum(x) + 2)
|
1373 |
+
B C
|
1374 |
+
A
|
1375 |
+
1 5 2.590715
|
1376 |
+
2 9 2.704907
|
1377 |
+
|
1378 |
+
Different aggregations per column
|
1379 |
+
|
1380 |
+
>>> df.groupby('A').agg({'B': ['min', 'max'], 'C': 'sum'})
|
1381 |
+
B C
|
1382 |
+
min max sum
|
1383 |
+
A
|
1384 |
+
1 1 2 0.590715
|
1385 |
+
2 3 4 0.704907
|
1386 |
+
|
1387 |
+
To control the output names with different aggregations per column,
|
1388 |
+
pandas supports "named aggregation"
|
1389 |
+
|
1390 |
+
>>> df.groupby("A").agg(
|
1391 |
+
... b_min=pd.NamedAgg(column="B", aggfunc="min"),
|
1392 |
+
... c_sum=pd.NamedAgg(column="C", aggfunc="sum")
|
1393 |
+
... )
|
1394 |
+
b_min c_sum
|
1395 |
+
A
|
1396 |
+
1 1 0.590715
|
1397 |
+
2 3 0.704907
|
1398 |
+
|
1399 |
+
- The keywords are the *output* column names
|
1400 |
+
- The values are tuples whose first element is the column to select
|
1401 |
+
and the second element is the aggregation to apply to that column.
|
1402 |
+
Pandas provides the ``pandas.NamedAgg`` namedtuple with the fields
|
1403 |
+
``['column', 'aggfunc']`` to make it clearer what the arguments are.
|
1404 |
+
As usual, the aggregation can be a callable or a string alias.
|
1405 |
+
|
1406 |
+
See :ref:`groupby.aggregate.named` for more.
|
1407 |
+
|
1408 |
+
.. versionchanged:: 1.3.0
|
1409 |
+
|
1410 |
+
The resulting dtype will reflect the return value of the aggregating function.
|
1411 |
+
|
1412 |
+
>>> df.groupby("A")[["B"]].agg(lambda x: x.astype(float).min())
|
1413 |
+
B
|
1414 |
+
A
|
1415 |
+
1 1.0
|
1416 |
+
2 3.0
|
1417 |
+
"""
|
1418 |
+
)
|
1419 |
+
|
1420 |
+
@doc(_agg_template_frame, examples=_agg_examples_doc, klass="DataFrame")
|
1421 |
+
def aggregate(self, func=None, *args, engine=None, engine_kwargs=None, **kwargs):
|
1422 |
+
relabeling, func, columns, order = reconstruct_func(func, **kwargs)
|
1423 |
+
func = maybe_mangle_lambdas(func)
|
1424 |
+
|
1425 |
+
if maybe_use_numba(engine):
|
1426 |
+
# Not all agg functions support numba, only propagate numba kwargs
|
1427 |
+
# if user asks for numba
|
1428 |
+
kwargs["engine"] = engine
|
1429 |
+
kwargs["engine_kwargs"] = engine_kwargs
|
1430 |
+
|
1431 |
+
op = GroupByApply(self, func, args=args, kwargs=kwargs)
|
1432 |
+
result = op.agg()
|
1433 |
+
if not is_dict_like(func) and result is not None:
|
1434 |
+
# GH #52849
|
1435 |
+
if not self.as_index and is_list_like(func):
|
1436 |
+
return result.reset_index()
|
1437 |
+
else:
|
1438 |
+
return result
|
1439 |
+
elif relabeling:
|
1440 |
+
# this should be the only (non-raising) case with relabeling
|
1441 |
+
# used reordered index of columns
|
1442 |
+
result = cast(DataFrame, result)
|
1443 |
+
result = result.iloc[:, order]
|
1444 |
+
result = cast(DataFrame, result)
|
1445 |
+
# error: Incompatible types in assignment (expression has type
|
1446 |
+
# "Optional[List[str]]", variable has type
|
1447 |
+
# "Union[Union[Union[ExtensionArray, ndarray[Any, Any]],
|
1448 |
+
# Index, Series], Sequence[Any]]")
|
1449 |
+
result.columns = columns # type: ignore[assignment]
|
1450 |
+
|
1451 |
+
if result is None:
|
1452 |
+
# Remove the kwargs we inserted
|
1453 |
+
# (already stored in engine, engine_kwargs arguments)
|
1454 |
+
if "engine" in kwargs:
|
1455 |
+
del kwargs["engine"]
|
1456 |
+
del kwargs["engine_kwargs"]
|
1457 |
+
# at this point func is not a str, list-like, dict-like,
|
1458 |
+
# or a known callable(e.g. sum)
|
1459 |
+
if maybe_use_numba(engine):
|
1460 |
+
return self._aggregate_with_numba(
|
1461 |
+
func, *args, engine_kwargs=engine_kwargs, **kwargs
|
1462 |
+
)
|
1463 |
+
# grouper specific aggregations
|
1464 |
+
if self._grouper.nkeys > 1:
|
1465 |
+
# test_groupby_as_index_series_scalar gets here with 'not self.as_index'
|
1466 |
+
return self._python_agg_general(func, *args, **kwargs)
|
1467 |
+
elif args or kwargs:
|
1468 |
+
# test_pass_args_kwargs gets here (with and without as_index)
|
1469 |
+
# can't return early
|
1470 |
+
result = self._aggregate_frame(func, *args, **kwargs)
|
1471 |
+
|
1472 |
+
elif self.axis == 1:
|
1473 |
+
# _aggregate_multiple_funcs does not allow self.axis == 1
|
1474 |
+
# Note: axis == 1 precludes 'not self.as_index', see __init__
|
1475 |
+
result = self._aggregate_frame(func)
|
1476 |
+
return result
|
1477 |
+
|
1478 |
+
else:
|
1479 |
+
# try to treat as if we are passing a list
|
1480 |
+
gba = GroupByApply(self, [func], args=(), kwargs={})
|
1481 |
+
try:
|
1482 |
+
result = gba.agg()
|
1483 |
+
|
1484 |
+
except ValueError as err:
|
1485 |
+
if "No objects to concatenate" not in str(err):
|
1486 |
+
raise
|
1487 |
+
# _aggregate_frame can fail with e.g. func=Series.mode,
|
1488 |
+
# where it expects 1D values but would be getting 2D values
|
1489 |
+
# In other tests, using aggregate_frame instead of GroupByApply
|
1490 |
+
# would give correct values but incorrect dtypes
|
1491 |
+
# object vs float64 in test_cython_agg_empty_buckets
|
1492 |
+
# float64 vs int64 in test_category_order_apply
|
1493 |
+
result = self._aggregate_frame(func)
|
1494 |
+
|
1495 |
+
else:
|
1496 |
+
# GH#32040, GH#35246
|
1497 |
+
# e.g. test_groupby_as_index_select_column_sum_empty_df
|
1498 |
+
result = cast(DataFrame, result)
|
1499 |
+
result.columns = self._obj_with_exclusions.columns.copy()
|
1500 |
+
|
1501 |
+
if not self.as_index:
|
1502 |
+
result = self._insert_inaxis_grouper(result)
|
1503 |
+
result.index = default_index(len(result))
|
1504 |
+
|
1505 |
+
return result
|
1506 |
+
|
1507 |
+
agg = aggregate
|
1508 |
+
|
1509 |
+
def _python_agg_general(self, func, *args, **kwargs):
|
1510 |
+
orig_func = func
|
1511 |
+
func = com.is_builtin_func(func)
|
1512 |
+
if orig_func != func:
|
1513 |
+
alias = com._builtin_table_alias[func]
|
1514 |
+
warn_alias_replacement(self, orig_func, alias)
|
1515 |
+
f = lambda x: func(x, *args, **kwargs)
|
1516 |
+
|
1517 |
+
if self.ngroups == 0:
|
1518 |
+
# e.g. test_evaluate_with_empty_groups different path gets different
|
1519 |
+
# result dtype in empty case.
|
1520 |
+
return self._python_apply_general(f, self._selected_obj, is_agg=True)
|
1521 |
+
|
1522 |
+
obj = self._obj_with_exclusions
|
1523 |
+
if self.axis == 1:
|
1524 |
+
obj = obj.T
|
1525 |
+
|
1526 |
+
if not len(obj.columns):
|
1527 |
+
# e.g. test_margins_no_values_no_cols
|
1528 |
+
return self._python_apply_general(f, self._selected_obj)
|
1529 |
+
|
1530 |
+
output: dict[int, ArrayLike] = {}
|
1531 |
+
for idx, (name, ser) in enumerate(obj.items()):
|
1532 |
+
result = self._grouper.agg_series(ser, f)
|
1533 |
+
output[idx] = result
|
1534 |
+
|
1535 |
+
res = self.obj._constructor(output)
|
1536 |
+
res.columns = obj.columns.copy(deep=False)
|
1537 |
+
return self._wrap_aggregated_output(res)
|
1538 |
+
|
1539 |
+
def _aggregate_frame(self, func, *args, **kwargs) -> DataFrame:
|
1540 |
+
if self._grouper.nkeys != 1:
|
1541 |
+
raise AssertionError("Number of keys must be 1")
|
1542 |
+
|
1543 |
+
obj = self._obj_with_exclusions
|
1544 |
+
|
1545 |
+
result: dict[Hashable, NDFrame | np.ndarray] = {}
|
1546 |
+
for name, grp_df in self._grouper.get_iterator(obj, self.axis):
|
1547 |
+
fres = func(grp_df, *args, **kwargs)
|
1548 |
+
result[name] = fres
|
1549 |
+
|
1550 |
+
result_index = self._grouper.result_index
|
1551 |
+
other_ax = obj.axes[1 - self.axis]
|
1552 |
+
out = self.obj._constructor(result, index=other_ax, columns=result_index)
|
1553 |
+
if self.axis == 0:
|
1554 |
+
out = out.T
|
1555 |
+
|
1556 |
+
return out
|
1557 |
+
|
1558 |
+
def _wrap_applied_output(
|
1559 |
+
self,
|
1560 |
+
data: DataFrame,
|
1561 |
+
values: list,
|
1562 |
+
not_indexed_same: bool = False,
|
1563 |
+
is_transform: bool = False,
|
1564 |
+
):
|
1565 |
+
if len(values) == 0:
|
1566 |
+
if is_transform:
|
1567 |
+
# GH#47787 see test_group_on_empty_multiindex
|
1568 |
+
res_index = data.index
|
1569 |
+
else:
|
1570 |
+
res_index = self._grouper.result_index
|
1571 |
+
|
1572 |
+
result = self.obj._constructor(index=res_index, columns=data.columns)
|
1573 |
+
result = result.astype(data.dtypes, copy=False)
|
1574 |
+
return result
|
1575 |
+
|
1576 |
+
# GH12824
|
1577 |
+
# using values[0] here breaks test_groupby_apply_none_first
|
1578 |
+
first_not_none = next(com.not_none(*values), None)
|
1579 |
+
|
1580 |
+
if first_not_none is None:
|
1581 |
+
# GH9684 - All values are None, return an empty frame.
|
1582 |
+
return self.obj._constructor()
|
1583 |
+
elif isinstance(first_not_none, DataFrame):
|
1584 |
+
return self._concat_objects(
|
1585 |
+
values,
|
1586 |
+
not_indexed_same=not_indexed_same,
|
1587 |
+
is_transform=is_transform,
|
1588 |
+
)
|
1589 |
+
|
1590 |
+
key_index = self._grouper.result_index if self.as_index else None
|
1591 |
+
|
1592 |
+
if isinstance(first_not_none, (np.ndarray, Index)):
|
1593 |
+
# GH#1738: values is list of arrays of unequal lengths
|
1594 |
+
# fall through to the outer else clause
|
1595 |
+
# TODO: sure this is right? we used to do this
|
1596 |
+
# after raising AttributeError above
|
1597 |
+
# GH 18930
|
1598 |
+
if not is_hashable(self._selection):
|
1599 |
+
# error: Need type annotation for "name"
|
1600 |
+
name = tuple(self._selection) # type: ignore[var-annotated, arg-type]
|
1601 |
+
else:
|
1602 |
+
# error: Incompatible types in assignment
|
1603 |
+
# (expression has type "Hashable", variable
|
1604 |
+
# has type "Tuple[Any, ...]")
|
1605 |
+
name = self._selection # type: ignore[assignment]
|
1606 |
+
return self.obj._constructor_sliced(values, index=key_index, name=name)
|
1607 |
+
elif not isinstance(first_not_none, Series):
|
1608 |
+
# values are not series or array-like but scalars
|
1609 |
+
# self._selection not passed through to Series as the
|
1610 |
+
# result should not take the name of original selection
|
1611 |
+
# of columns
|
1612 |
+
if self.as_index:
|
1613 |
+
return self.obj._constructor_sliced(values, index=key_index)
|
1614 |
+
else:
|
1615 |
+
result = self.obj._constructor(values, columns=[self._selection])
|
1616 |
+
result = self._insert_inaxis_grouper(result)
|
1617 |
+
return result
|
1618 |
+
else:
|
1619 |
+
# values are Series
|
1620 |
+
return self._wrap_applied_output_series(
|
1621 |
+
values,
|
1622 |
+
not_indexed_same,
|
1623 |
+
first_not_none,
|
1624 |
+
key_index,
|
1625 |
+
is_transform,
|
1626 |
+
)
|
1627 |
+
|
1628 |
+
def _wrap_applied_output_series(
|
1629 |
+
self,
|
1630 |
+
values: list[Series],
|
1631 |
+
not_indexed_same: bool,
|
1632 |
+
first_not_none,
|
1633 |
+
key_index: Index | None,
|
1634 |
+
is_transform: bool,
|
1635 |
+
) -> DataFrame | Series:
|
1636 |
+
kwargs = first_not_none._construct_axes_dict()
|
1637 |
+
backup = Series(**kwargs)
|
1638 |
+
values = [x if (x is not None) else backup for x in values]
|
1639 |
+
|
1640 |
+
all_indexed_same = all_indexes_same(x.index for x in values)
|
1641 |
+
|
1642 |
+
if not all_indexed_same:
|
1643 |
+
# GH 8467
|
1644 |
+
return self._concat_objects(
|
1645 |
+
values,
|
1646 |
+
not_indexed_same=True,
|
1647 |
+
is_transform=is_transform,
|
1648 |
+
)
|
1649 |
+
|
1650 |
+
# Combine values
|
1651 |
+
# vstack+constructor is faster than concat and handles MI-columns
|
1652 |
+
stacked_values = np.vstack([np.asarray(v) for v in values])
|
1653 |
+
|
1654 |
+
if self.axis == 0:
|
1655 |
+
index = key_index
|
1656 |
+
columns = first_not_none.index.copy()
|
1657 |
+
if columns.name is None:
|
1658 |
+
# GH6124 - propagate name of Series when it's consistent
|
1659 |
+
names = {v.name for v in values}
|
1660 |
+
if len(names) == 1:
|
1661 |
+
columns.name = next(iter(names))
|
1662 |
+
else:
|
1663 |
+
index = first_not_none.index
|
1664 |
+
columns = key_index
|
1665 |
+
stacked_values = stacked_values.T
|
1666 |
+
|
1667 |
+
if stacked_values.dtype == object:
|
1668 |
+
# We'll have the DataFrame constructor do inference
|
1669 |
+
stacked_values = stacked_values.tolist()
|
1670 |
+
result = self.obj._constructor(stacked_values, index=index, columns=columns)
|
1671 |
+
|
1672 |
+
if not self.as_index:
|
1673 |
+
result = self._insert_inaxis_grouper(result)
|
1674 |
+
|
1675 |
+
return self._reindex_output(result)
|
1676 |
+
|
1677 |
+
def _cython_transform(
|
1678 |
+
self,
|
1679 |
+
how: str,
|
1680 |
+
numeric_only: bool = False,
|
1681 |
+
axis: AxisInt = 0,
|
1682 |
+
**kwargs,
|
1683 |
+
) -> DataFrame:
|
1684 |
+
assert axis == 0 # handled by caller
|
1685 |
+
|
1686 |
+
# With self.axis == 0, we have multi-block tests
|
1687 |
+
# e.g. test_rank_min_int, test_cython_transform_frame
|
1688 |
+
# test_transform_numeric_ret
|
1689 |
+
# With self.axis == 1, _get_data_to_aggregate does a transpose
|
1690 |
+
# so we always have a single block.
|
1691 |
+
mgr: Manager2D = self._get_data_to_aggregate(
|
1692 |
+
numeric_only=numeric_only, name=how
|
1693 |
+
)
|
1694 |
+
|
1695 |
+
def arr_func(bvalues: ArrayLike) -> ArrayLike:
|
1696 |
+
return self._grouper._cython_operation(
|
1697 |
+
"transform", bvalues, how, 1, **kwargs
|
1698 |
+
)
|
1699 |
+
|
1700 |
+
# We could use `mgr.apply` here and not have to set_axis, but
|
1701 |
+
# we would have to do shape gymnastics for ArrayManager compat
|
1702 |
+
res_mgr = mgr.grouped_reduce(arr_func)
|
1703 |
+
res_mgr.set_axis(1, mgr.axes[1])
|
1704 |
+
|
1705 |
+
res_df = self.obj._constructor_from_mgr(res_mgr, axes=res_mgr.axes)
|
1706 |
+
res_df = self._maybe_transpose_result(res_df)
|
1707 |
+
return res_df
|
1708 |
+
|
1709 |
+
def _transform_general(self, func, engine, engine_kwargs, *args, **kwargs):
|
1710 |
+
if maybe_use_numba(engine):
|
1711 |
+
return self._transform_with_numba(
|
1712 |
+
func, *args, engine_kwargs=engine_kwargs, **kwargs
|
1713 |
+
)
|
1714 |
+
from pandas.core.reshape.concat import concat
|
1715 |
+
|
1716 |
+
applied = []
|
1717 |
+
obj = self._obj_with_exclusions
|
1718 |
+
gen = self._grouper.get_iterator(obj, axis=self.axis)
|
1719 |
+
fast_path, slow_path = self._define_paths(func, *args, **kwargs)
|
1720 |
+
|
1721 |
+
# Determine whether to use slow or fast path by evaluating on the first group.
|
1722 |
+
# Need to handle the case of an empty generator and process the result so that
|
1723 |
+
# it does not need to be computed again.
|
1724 |
+
try:
|
1725 |
+
name, group = next(gen)
|
1726 |
+
except StopIteration:
|
1727 |
+
pass
|
1728 |
+
else:
|
1729 |
+
# 2023-02-27 No tests broken by disabling this pinning
|
1730 |
+
object.__setattr__(group, "name", name)
|
1731 |
+
try:
|
1732 |
+
path, res = self._choose_path(fast_path, slow_path, group)
|
1733 |
+
except ValueError as err:
|
1734 |
+
# e.g. test_transform_with_non_scalar_group
|
1735 |
+
msg = "transform must return a scalar value for each group"
|
1736 |
+
raise ValueError(msg) from err
|
1737 |
+
if group.size > 0:
|
1738 |
+
res = _wrap_transform_general_frame(self.obj, group, res)
|
1739 |
+
applied.append(res)
|
1740 |
+
|
1741 |
+
# Compute and process with the remaining groups
|
1742 |
+
for name, group in gen:
|
1743 |
+
if group.size == 0:
|
1744 |
+
continue
|
1745 |
+
# 2023-02-27 No tests broken by disabling this pinning
|
1746 |
+
object.__setattr__(group, "name", name)
|
1747 |
+
res = path(group)
|
1748 |
+
|
1749 |
+
res = _wrap_transform_general_frame(self.obj, group, res)
|
1750 |
+
applied.append(res)
|
1751 |
+
|
1752 |
+
concat_index = obj.columns if self.axis == 0 else obj.index
|
1753 |
+
other_axis = 1 if self.axis == 0 else 0 # switches between 0 & 1
|
1754 |
+
concatenated = concat(applied, axis=self.axis, verify_integrity=False)
|
1755 |
+
concatenated = concatenated.reindex(concat_index, axis=other_axis, copy=False)
|
1756 |
+
return self._set_result_index_ordered(concatenated)
|
1757 |
+
|
1758 |
+
__examples_dataframe_doc = dedent(
|
1759 |
+
"""
|
1760 |
+
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
|
1761 |
+
... 'foo', 'bar'],
|
1762 |
+
... 'B' : ['one', 'one', 'two', 'three',
|
1763 |
+
... 'two', 'two'],
|
1764 |
+
... 'C' : [1, 5, 5, 2, 5, 5],
|
1765 |
+
... 'D' : [2.0, 5., 8., 1., 2., 9.]})
|
1766 |
+
>>> grouped = df.groupby('A')[['C', 'D']]
|
1767 |
+
>>> grouped.transform(lambda x: (x - x.mean()) / x.std())
|
1768 |
+
C D
|
1769 |
+
0 -1.154701 -0.577350
|
1770 |
+
1 0.577350 0.000000
|
1771 |
+
2 0.577350 1.154701
|
1772 |
+
3 -1.154701 -1.000000
|
1773 |
+
4 0.577350 -0.577350
|
1774 |
+
5 0.577350 1.000000
|
1775 |
+
|
1776 |
+
Broadcast result of the transformation
|
1777 |
+
|
1778 |
+
>>> grouped.transform(lambda x: x.max() - x.min())
|
1779 |
+
C D
|
1780 |
+
0 4.0 6.0
|
1781 |
+
1 3.0 8.0
|
1782 |
+
2 4.0 6.0
|
1783 |
+
3 3.0 8.0
|
1784 |
+
4 4.0 6.0
|
1785 |
+
5 3.0 8.0
|
1786 |
+
|
1787 |
+
>>> grouped.transform("mean")
|
1788 |
+
C D
|
1789 |
+
0 3.666667 4.0
|
1790 |
+
1 4.000000 5.0
|
1791 |
+
2 3.666667 4.0
|
1792 |
+
3 4.000000 5.0
|
1793 |
+
4 3.666667 4.0
|
1794 |
+
5 4.000000 5.0
|
1795 |
+
|
1796 |
+
.. versionchanged:: 1.3.0
|
1797 |
+
|
1798 |
+
The resulting dtype will reflect the return value of the passed ``func``,
|
1799 |
+
for example:
|
1800 |
+
|
1801 |
+
>>> grouped.transform(lambda x: x.astype(int).max())
|
1802 |
+
C D
|
1803 |
+
0 5 8
|
1804 |
+
1 5 9
|
1805 |
+
2 5 8
|
1806 |
+
3 5 9
|
1807 |
+
4 5 8
|
1808 |
+
5 5 9
|
1809 |
+
"""
|
1810 |
+
)
|
1811 |
+
|
1812 |
+
@Substitution(klass="DataFrame", example=__examples_dataframe_doc)
|
1813 |
+
@Appender(_transform_template)
|
1814 |
+
def transform(self, func, *args, engine=None, engine_kwargs=None, **kwargs):
|
1815 |
+
return self._transform(
|
1816 |
+
func, *args, engine=engine, engine_kwargs=engine_kwargs, **kwargs
|
1817 |
+
)
|
1818 |
+
|
1819 |
+
def _define_paths(self, func, *args, **kwargs):
|
1820 |
+
if isinstance(func, str):
|
1821 |
+
fast_path = lambda group: getattr(group, func)(*args, **kwargs)
|
1822 |
+
slow_path = lambda group: group.apply(
|
1823 |
+
lambda x: getattr(x, func)(*args, **kwargs), axis=self.axis
|
1824 |
+
)
|
1825 |
+
else:
|
1826 |
+
fast_path = lambda group: func(group, *args, **kwargs)
|
1827 |
+
slow_path = lambda group: group.apply(
|
1828 |
+
lambda x: func(x, *args, **kwargs), axis=self.axis
|
1829 |
+
)
|
1830 |
+
return fast_path, slow_path
|
1831 |
+
|
1832 |
+
def _choose_path(self, fast_path: Callable, slow_path: Callable, group: DataFrame):
|
1833 |
+
path = slow_path
|
1834 |
+
res = slow_path(group)
|
1835 |
+
|
1836 |
+
if self.ngroups == 1:
|
1837 |
+
# no need to evaluate multiple paths when only
|
1838 |
+
# a single group exists
|
1839 |
+
return path, res
|
1840 |
+
|
1841 |
+
# if we make it here, test if we can use the fast path
|
1842 |
+
try:
|
1843 |
+
res_fast = fast_path(group)
|
1844 |
+
except AssertionError:
|
1845 |
+
raise # pragma: no cover
|
1846 |
+
except Exception:
|
1847 |
+
# GH#29631 For user-defined function, we can't predict what may be
|
1848 |
+
# raised; see test_transform.test_transform_fastpath_raises
|
1849 |
+
return path, res
|
1850 |
+
|
1851 |
+
# verify fast path returns either:
|
1852 |
+
# a DataFrame with columns equal to group.columns
|
1853 |
+
# OR a Series with index equal to group.columns
|
1854 |
+
if isinstance(res_fast, DataFrame):
|
1855 |
+
if not res_fast.columns.equals(group.columns):
|
1856 |
+
return path, res
|
1857 |
+
elif isinstance(res_fast, Series):
|
1858 |
+
if not res_fast.index.equals(group.columns):
|
1859 |
+
return path, res
|
1860 |
+
else:
|
1861 |
+
return path, res
|
1862 |
+
|
1863 |
+
if res_fast.equals(res):
|
1864 |
+
path = fast_path
|
1865 |
+
|
1866 |
+
return path, res
|
1867 |
+
|
1868 |
+
def filter(self, func, dropna: bool = True, *args, **kwargs):
|
1869 |
+
"""
|
1870 |
+
Filter elements from groups that don't satisfy a criterion.
|
1871 |
+
|
1872 |
+
Elements from groups are filtered if they do not satisfy the
|
1873 |
+
boolean criterion specified by func.
|
1874 |
+
|
1875 |
+
Parameters
|
1876 |
+
----------
|
1877 |
+
func : function
|
1878 |
+
Criterion to apply to each group. Should return True or False.
|
1879 |
+
dropna : bool
|
1880 |
+
Drop groups that do not pass the filter. True by default; if False,
|
1881 |
+
groups that evaluate False are filled with NaNs.
|
1882 |
+
|
1883 |
+
Returns
|
1884 |
+
-------
|
1885 |
+
DataFrame
|
1886 |
+
|
1887 |
+
Notes
|
1888 |
+
-----
|
1889 |
+
Each subframe is endowed the attribute 'name' in case you need to know
|
1890 |
+
which group you are working on.
|
1891 |
+
|
1892 |
+
Functions that mutate the passed object can produce unexpected
|
1893 |
+
behavior or errors and are not supported. See :ref:`gotchas.udf-mutation`
|
1894 |
+
for more details.
|
1895 |
+
|
1896 |
+
Examples
|
1897 |
+
--------
|
1898 |
+
>>> df = pd.DataFrame({'A' : ['foo', 'bar', 'foo', 'bar',
|
1899 |
+
... 'foo', 'bar'],
|
1900 |
+
... 'B' : [1, 2, 3, 4, 5, 6],
|
1901 |
+
... 'C' : [2.0, 5., 8., 1., 2., 9.]})
|
1902 |
+
>>> grouped = df.groupby('A')
|
1903 |
+
>>> grouped.filter(lambda x: x['B'].mean() > 3.)
|
1904 |
+
A B C
|
1905 |
+
1 bar 2 5.0
|
1906 |
+
3 bar 4 1.0
|
1907 |
+
5 bar 6 9.0
|
1908 |
+
"""
|
1909 |
+
indices = []
|
1910 |
+
|
1911 |
+
obj = self._selected_obj
|
1912 |
+
gen = self._grouper.get_iterator(obj, axis=self.axis)
|
1913 |
+
|
1914 |
+
for name, group in gen:
|
1915 |
+
# 2023-02-27 no tests are broken this pinning, but it is documented in the
|
1916 |
+
# docstring above.
|
1917 |
+
object.__setattr__(group, "name", name)
|
1918 |
+
|
1919 |
+
res = func(group, *args, **kwargs)
|
1920 |
+
|
1921 |
+
try:
|
1922 |
+
res = res.squeeze()
|
1923 |
+
except AttributeError: # allow e.g., scalars and frames to pass
|
1924 |
+
pass
|
1925 |
+
|
1926 |
+
# interpret the result of the filter
|
1927 |
+
if is_bool(res) or (is_scalar(res) and isna(res)):
|
1928 |
+
if notna(res) and res:
|
1929 |
+
indices.append(self._get_index(name))
|
1930 |
+
else:
|
1931 |
+
# non scalars aren't allowed
|
1932 |
+
raise TypeError(
|
1933 |
+
f"filter function returned a {type(res).__name__}, "
|
1934 |
+
"but expected a scalar bool"
|
1935 |
+
)
|
1936 |
+
|
1937 |
+
return self._apply_filter(indices, dropna)
|
1938 |
+
|
1939 |
+
def __getitem__(self, key) -> DataFrameGroupBy | SeriesGroupBy:
|
1940 |
+
if self.axis == 1:
|
1941 |
+
# GH 37725
|
1942 |
+
raise ValueError("Cannot subset columns when using axis=1")
|
1943 |
+
# per GH 23566
|
1944 |
+
if isinstance(key, tuple) and len(key) > 1:
|
1945 |
+
# if len == 1, then it becomes a SeriesGroupBy and this is actually
|
1946 |
+
# valid syntax, so don't raise
|
1947 |
+
raise ValueError(
|
1948 |
+
"Cannot subset columns with a tuple with more than one element. "
|
1949 |
+
"Use a list instead."
|
1950 |
+
)
|
1951 |
+
return super().__getitem__(key)
|
1952 |
+
|
1953 |
+
def _gotitem(self, key, ndim: int, subset=None):
|
1954 |
+
"""
|
1955 |
+
sub-classes to define
|
1956 |
+
return a sliced object
|
1957 |
+
|
1958 |
+
Parameters
|
1959 |
+
----------
|
1960 |
+
key : string / list of selections
|
1961 |
+
ndim : {1, 2}
|
1962 |
+
requested ndim of result
|
1963 |
+
subset : object, default None
|
1964 |
+
subset to act on
|
1965 |
+
"""
|
1966 |
+
if ndim == 2:
|
1967 |
+
if subset is None:
|
1968 |
+
subset = self.obj
|
1969 |
+
return DataFrameGroupBy(
|
1970 |
+
subset,
|
1971 |
+
self.keys,
|
1972 |
+
axis=self.axis,
|
1973 |
+
level=self.level,
|
1974 |
+
grouper=self._grouper,
|
1975 |
+
exclusions=self.exclusions,
|
1976 |
+
selection=key,
|
1977 |
+
as_index=self.as_index,
|
1978 |
+
sort=self.sort,
|
1979 |
+
group_keys=self.group_keys,
|
1980 |
+
observed=self.observed,
|
1981 |
+
dropna=self.dropna,
|
1982 |
+
)
|
1983 |
+
elif ndim == 1:
|
1984 |
+
if subset is None:
|
1985 |
+
subset = self.obj[key]
|
1986 |
+
return SeriesGroupBy(
|
1987 |
+
subset,
|
1988 |
+
self.keys,
|
1989 |
+
level=self.level,
|
1990 |
+
grouper=self._grouper,
|
1991 |
+
exclusions=self.exclusions,
|
1992 |
+
selection=key,
|
1993 |
+
as_index=self.as_index,
|
1994 |
+
sort=self.sort,
|
1995 |
+
group_keys=self.group_keys,
|
1996 |
+
observed=self.observed,
|
1997 |
+
dropna=self.dropna,
|
1998 |
+
)
|
1999 |
+
|
2000 |
+
raise AssertionError("invalid ndim for _gotitem")
|
2001 |
+
|
2002 |
+
def _get_data_to_aggregate(
|
2003 |
+
self, *, numeric_only: bool = False, name: str | None = None
|
2004 |
+
) -> Manager2D:
|
2005 |
+
obj = self._obj_with_exclusions
|
2006 |
+
if self.axis == 1:
|
2007 |
+
mgr = obj.T._mgr
|
2008 |
+
else:
|
2009 |
+
mgr = obj._mgr
|
2010 |
+
|
2011 |
+
if numeric_only:
|
2012 |
+
mgr = mgr.get_numeric_data()
|
2013 |
+
return mgr
|
2014 |
+
|
2015 |
+
def _wrap_agged_manager(self, mgr: Manager2D) -> DataFrame:
|
2016 |
+
return self.obj._constructor_from_mgr(mgr, axes=mgr.axes)
|
2017 |
+
|
2018 |
+
def _apply_to_column_groupbys(self, func) -> DataFrame:
|
2019 |
+
from pandas.core.reshape.concat import concat
|
2020 |
+
|
2021 |
+
obj = self._obj_with_exclusions
|
2022 |
+
columns = obj.columns
|
2023 |
+
sgbs = [
|
2024 |
+
SeriesGroupBy(
|
2025 |
+
obj.iloc[:, i],
|
2026 |
+
selection=colname,
|
2027 |
+
grouper=self._grouper,
|
2028 |
+
exclusions=self.exclusions,
|
2029 |
+
observed=self.observed,
|
2030 |
+
)
|
2031 |
+
for i, colname in enumerate(obj.columns)
|
2032 |
+
]
|
2033 |
+
results = [func(sgb) for sgb in sgbs]
|
2034 |
+
|
2035 |
+
if not len(results):
|
2036 |
+
# concat would raise
|
2037 |
+
res_df = DataFrame([], columns=columns, index=self._grouper.result_index)
|
2038 |
+
else:
|
2039 |
+
res_df = concat(results, keys=columns, axis=1)
|
2040 |
+
|
2041 |
+
if not self.as_index:
|
2042 |
+
res_df.index = default_index(len(res_df))
|
2043 |
+
res_df = self._insert_inaxis_grouper(res_df)
|
2044 |
+
return res_df
|
2045 |
+
|
2046 |
+
def nunique(self, dropna: bool = True) -> DataFrame:
|
2047 |
+
"""
|
2048 |
+
Return DataFrame with counts of unique elements in each position.
|
2049 |
+
|
2050 |
+
Parameters
|
2051 |
+
----------
|
2052 |
+
dropna : bool, default True
|
2053 |
+
Don't include NaN in the counts.
|
2054 |
+
|
2055 |
+
Returns
|
2056 |
+
-------
|
2057 |
+
nunique: DataFrame
|
2058 |
+
|
2059 |
+
Examples
|
2060 |
+
--------
|
2061 |
+
>>> df = pd.DataFrame({'id': ['spam', 'egg', 'egg', 'spam',
|
2062 |
+
... 'ham', 'ham'],
|
2063 |
+
... 'value1': [1, 5, 5, 2, 5, 5],
|
2064 |
+
... 'value2': list('abbaxy')})
|
2065 |
+
>>> df
|
2066 |
+
id value1 value2
|
2067 |
+
0 spam 1 a
|
2068 |
+
1 egg 5 b
|
2069 |
+
2 egg 5 b
|
2070 |
+
3 spam 2 a
|
2071 |
+
4 ham 5 x
|
2072 |
+
5 ham 5 y
|
2073 |
+
|
2074 |
+
>>> df.groupby('id').nunique()
|
2075 |
+
value1 value2
|
2076 |
+
id
|
2077 |
+
egg 1 1
|
2078 |
+
ham 1 2
|
2079 |
+
spam 2 1
|
2080 |
+
|
2081 |
+
Check for rows with the same id but conflicting values:
|
2082 |
+
|
2083 |
+
>>> df.groupby('id').filter(lambda g: (g.nunique() > 1).any())
|
2084 |
+
id value1 value2
|
2085 |
+
0 spam 1 a
|
2086 |
+
3 spam 2 a
|
2087 |
+
4 ham 5 x
|
2088 |
+
5 ham 5 y
|
2089 |
+
"""
|
2090 |
+
|
2091 |
+
if self.axis != 0:
|
2092 |
+
# see test_groupby_crash_on_nunique
|
2093 |
+
return self._python_apply_general(
|
2094 |
+
lambda sgb: sgb.nunique(dropna), self._obj_with_exclusions, is_agg=True
|
2095 |
+
)
|
2096 |
+
|
2097 |
+
return self._apply_to_column_groupbys(lambda sgb: sgb.nunique(dropna))
|
2098 |
+
|
2099 |
+
def idxmax(
|
2100 |
+
self,
|
2101 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
2102 |
+
skipna: bool = True,
|
2103 |
+
numeric_only: bool = False,
|
2104 |
+
) -> DataFrame:
|
2105 |
+
"""
|
2106 |
+
Return index of first occurrence of maximum over requested axis.
|
2107 |
+
|
2108 |
+
NA/null values are excluded.
|
2109 |
+
|
2110 |
+
Parameters
|
2111 |
+
----------
|
2112 |
+
axis : {{0 or 'index', 1 or 'columns'}}, default None
|
2113 |
+
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
|
2114 |
+
If axis is not provided, grouper's axis is used.
|
2115 |
+
|
2116 |
+
.. versionchanged:: 2.0.0
|
2117 |
+
|
2118 |
+
.. deprecated:: 2.1.0
|
2119 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
2120 |
+
the axis keyword is not necessary.
|
2121 |
+
|
2122 |
+
skipna : bool, default True
|
2123 |
+
Exclude NA/null values. If an entire row/column is NA, the result
|
2124 |
+
will be NA.
|
2125 |
+
numeric_only : bool, default False
|
2126 |
+
Include only `float`, `int` or `boolean` data.
|
2127 |
+
|
2128 |
+
.. versionadded:: 1.5.0
|
2129 |
+
|
2130 |
+
Returns
|
2131 |
+
-------
|
2132 |
+
Series
|
2133 |
+
Indexes of maxima along the specified axis.
|
2134 |
+
|
2135 |
+
Raises
|
2136 |
+
------
|
2137 |
+
ValueError
|
2138 |
+
* If the row/column is empty
|
2139 |
+
|
2140 |
+
See Also
|
2141 |
+
--------
|
2142 |
+
Series.idxmax : Return index of the maximum element.
|
2143 |
+
|
2144 |
+
Notes
|
2145 |
+
-----
|
2146 |
+
This method is the DataFrame version of ``ndarray.argmax``.
|
2147 |
+
|
2148 |
+
Examples
|
2149 |
+
--------
|
2150 |
+
Consider a dataset containing food consumption in Argentina.
|
2151 |
+
|
2152 |
+
>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
|
2153 |
+
... 'co2_emissions': [37.2, 19.66, 1712]},
|
2154 |
+
... index=['Pork', 'Wheat Products', 'Beef'])
|
2155 |
+
|
2156 |
+
>>> df
|
2157 |
+
consumption co2_emissions
|
2158 |
+
Pork 10.51 37.20
|
2159 |
+
Wheat Products 103.11 19.66
|
2160 |
+
Beef 55.48 1712.00
|
2161 |
+
|
2162 |
+
By default, it returns the index for the maximum value in each column.
|
2163 |
+
|
2164 |
+
>>> df.idxmax()
|
2165 |
+
consumption Wheat Products
|
2166 |
+
co2_emissions Beef
|
2167 |
+
dtype: object
|
2168 |
+
|
2169 |
+
To return the index for the maximum value in each row, use ``axis="columns"``.
|
2170 |
+
|
2171 |
+
>>> df.idxmax(axis="columns")
|
2172 |
+
Pork co2_emissions
|
2173 |
+
Wheat Products consumption
|
2174 |
+
Beef co2_emissions
|
2175 |
+
dtype: object
|
2176 |
+
"""
|
2177 |
+
return self._idxmax_idxmin(
|
2178 |
+
"idxmax", axis=axis, numeric_only=numeric_only, skipna=skipna
|
2179 |
+
)
|
2180 |
+
|
2181 |
+
def idxmin(
|
2182 |
+
self,
|
2183 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
2184 |
+
skipna: bool = True,
|
2185 |
+
numeric_only: bool = False,
|
2186 |
+
) -> DataFrame:
|
2187 |
+
"""
|
2188 |
+
Return index of first occurrence of minimum over requested axis.
|
2189 |
+
|
2190 |
+
NA/null values are excluded.
|
2191 |
+
|
2192 |
+
Parameters
|
2193 |
+
----------
|
2194 |
+
axis : {{0 or 'index', 1 or 'columns'}}, default None
|
2195 |
+
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for column-wise.
|
2196 |
+
If axis is not provided, grouper's axis is used.
|
2197 |
+
|
2198 |
+
.. versionchanged:: 2.0.0
|
2199 |
+
|
2200 |
+
.. deprecated:: 2.1.0
|
2201 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
2202 |
+
the axis keyword is not necessary.
|
2203 |
+
|
2204 |
+
skipna : bool, default True
|
2205 |
+
Exclude NA/null values. If an entire row/column is NA, the result
|
2206 |
+
will be NA.
|
2207 |
+
numeric_only : bool, default False
|
2208 |
+
Include only `float`, `int` or `boolean` data.
|
2209 |
+
|
2210 |
+
.. versionadded:: 1.5.0
|
2211 |
+
|
2212 |
+
Returns
|
2213 |
+
-------
|
2214 |
+
Series
|
2215 |
+
Indexes of minima along the specified axis.
|
2216 |
+
|
2217 |
+
Raises
|
2218 |
+
------
|
2219 |
+
ValueError
|
2220 |
+
* If the row/column is empty
|
2221 |
+
|
2222 |
+
See Also
|
2223 |
+
--------
|
2224 |
+
Series.idxmin : Return index of the minimum element.
|
2225 |
+
|
2226 |
+
Notes
|
2227 |
+
-----
|
2228 |
+
This method is the DataFrame version of ``ndarray.argmin``.
|
2229 |
+
|
2230 |
+
Examples
|
2231 |
+
--------
|
2232 |
+
Consider a dataset containing food consumption in Argentina.
|
2233 |
+
|
2234 |
+
>>> df = pd.DataFrame({'consumption': [10.51, 103.11, 55.48],
|
2235 |
+
... 'co2_emissions': [37.2, 19.66, 1712]},
|
2236 |
+
... index=['Pork', 'Wheat Products', 'Beef'])
|
2237 |
+
|
2238 |
+
>>> df
|
2239 |
+
consumption co2_emissions
|
2240 |
+
Pork 10.51 37.20
|
2241 |
+
Wheat Products 103.11 19.66
|
2242 |
+
Beef 55.48 1712.00
|
2243 |
+
|
2244 |
+
By default, it returns the index for the minimum value in each column.
|
2245 |
+
|
2246 |
+
>>> df.idxmin()
|
2247 |
+
consumption Pork
|
2248 |
+
co2_emissions Wheat Products
|
2249 |
+
dtype: object
|
2250 |
+
|
2251 |
+
To return the index for the minimum value in each row, use ``axis="columns"``.
|
2252 |
+
|
2253 |
+
>>> df.idxmin(axis="columns")
|
2254 |
+
Pork consumption
|
2255 |
+
Wheat Products co2_emissions
|
2256 |
+
Beef consumption
|
2257 |
+
dtype: object
|
2258 |
+
"""
|
2259 |
+
return self._idxmax_idxmin(
|
2260 |
+
"idxmin", axis=axis, numeric_only=numeric_only, skipna=skipna
|
2261 |
+
)
|
2262 |
+
|
2263 |
+
boxplot = boxplot_frame_groupby
|
2264 |
+
|
2265 |
+
def value_counts(
|
2266 |
+
self,
|
2267 |
+
subset: Sequence[Hashable] | None = None,
|
2268 |
+
normalize: bool = False,
|
2269 |
+
sort: bool = True,
|
2270 |
+
ascending: bool = False,
|
2271 |
+
dropna: bool = True,
|
2272 |
+
) -> DataFrame | Series:
|
2273 |
+
"""
|
2274 |
+
Return a Series or DataFrame containing counts of unique rows.
|
2275 |
+
|
2276 |
+
.. versionadded:: 1.4.0
|
2277 |
+
|
2278 |
+
Parameters
|
2279 |
+
----------
|
2280 |
+
subset : list-like, optional
|
2281 |
+
Columns to use when counting unique combinations.
|
2282 |
+
normalize : bool, default False
|
2283 |
+
Return proportions rather than frequencies.
|
2284 |
+
sort : bool, default True
|
2285 |
+
Sort by frequencies.
|
2286 |
+
ascending : bool, default False
|
2287 |
+
Sort in ascending order.
|
2288 |
+
dropna : bool, default True
|
2289 |
+
Don't include counts of rows that contain NA values.
|
2290 |
+
|
2291 |
+
Returns
|
2292 |
+
-------
|
2293 |
+
Series or DataFrame
|
2294 |
+
Series if the groupby as_index is True, otherwise DataFrame.
|
2295 |
+
|
2296 |
+
See Also
|
2297 |
+
--------
|
2298 |
+
Series.value_counts: Equivalent method on Series.
|
2299 |
+
DataFrame.value_counts: Equivalent method on DataFrame.
|
2300 |
+
SeriesGroupBy.value_counts: Equivalent method on SeriesGroupBy.
|
2301 |
+
|
2302 |
+
Notes
|
2303 |
+
-----
|
2304 |
+
- If the groupby as_index is True then the returned Series will have a
|
2305 |
+
MultiIndex with one level per input column.
|
2306 |
+
- If the groupby as_index is False then the returned DataFrame will have an
|
2307 |
+
additional column with the value_counts. The column is labelled 'count' or
|
2308 |
+
'proportion', depending on the ``normalize`` parameter.
|
2309 |
+
|
2310 |
+
By default, rows that contain any NA values are omitted from
|
2311 |
+
the result.
|
2312 |
+
|
2313 |
+
By default, the result will be in descending order so that the
|
2314 |
+
first element of each group is the most frequently-occurring row.
|
2315 |
+
|
2316 |
+
Examples
|
2317 |
+
--------
|
2318 |
+
>>> df = pd.DataFrame({
|
2319 |
+
... 'gender': ['male', 'male', 'female', 'male', 'female', 'male'],
|
2320 |
+
... 'education': ['low', 'medium', 'high', 'low', 'high', 'low'],
|
2321 |
+
... 'country': ['US', 'FR', 'US', 'FR', 'FR', 'FR']
|
2322 |
+
... })
|
2323 |
+
|
2324 |
+
>>> df
|
2325 |
+
gender education country
|
2326 |
+
0 male low US
|
2327 |
+
1 male medium FR
|
2328 |
+
2 female high US
|
2329 |
+
3 male low FR
|
2330 |
+
4 female high FR
|
2331 |
+
5 male low FR
|
2332 |
+
|
2333 |
+
>>> df.groupby('gender').value_counts()
|
2334 |
+
gender education country
|
2335 |
+
female high FR 1
|
2336 |
+
US 1
|
2337 |
+
male low FR 2
|
2338 |
+
US 1
|
2339 |
+
medium FR 1
|
2340 |
+
Name: count, dtype: int64
|
2341 |
+
|
2342 |
+
>>> df.groupby('gender').value_counts(ascending=True)
|
2343 |
+
gender education country
|
2344 |
+
female high FR 1
|
2345 |
+
US 1
|
2346 |
+
male low US 1
|
2347 |
+
medium FR 1
|
2348 |
+
low FR 2
|
2349 |
+
Name: count, dtype: int64
|
2350 |
+
|
2351 |
+
>>> df.groupby('gender').value_counts(normalize=True)
|
2352 |
+
gender education country
|
2353 |
+
female high FR 0.50
|
2354 |
+
US 0.50
|
2355 |
+
male low FR 0.50
|
2356 |
+
US 0.25
|
2357 |
+
medium FR 0.25
|
2358 |
+
Name: proportion, dtype: float64
|
2359 |
+
|
2360 |
+
>>> df.groupby('gender', as_index=False).value_counts()
|
2361 |
+
gender education country count
|
2362 |
+
0 female high FR 1
|
2363 |
+
1 female high US 1
|
2364 |
+
2 male low FR 2
|
2365 |
+
3 male low US 1
|
2366 |
+
4 male medium FR 1
|
2367 |
+
|
2368 |
+
>>> df.groupby('gender', as_index=False).value_counts(normalize=True)
|
2369 |
+
gender education country proportion
|
2370 |
+
0 female high FR 0.50
|
2371 |
+
1 female high US 0.50
|
2372 |
+
2 male low FR 0.50
|
2373 |
+
3 male low US 0.25
|
2374 |
+
4 male medium FR 0.25
|
2375 |
+
"""
|
2376 |
+
return self._value_counts(subset, normalize, sort, ascending, dropna)
|
2377 |
+
|
2378 |
+
def fillna(
|
2379 |
+
self,
|
2380 |
+
value: Hashable | Mapping | Series | DataFrame | None = None,
|
2381 |
+
method: FillnaOptions | None = None,
|
2382 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
2383 |
+
inplace: bool = False,
|
2384 |
+
limit: int | None = None,
|
2385 |
+
downcast=lib.no_default,
|
2386 |
+
) -> DataFrame | None:
|
2387 |
+
"""
|
2388 |
+
Fill NA/NaN values using the specified method within groups.
|
2389 |
+
|
2390 |
+
.. deprecated:: 2.2.0
|
2391 |
+
This method is deprecated and will be removed in a future version.
|
2392 |
+
Use the :meth:`.DataFrameGroupBy.ffill` or :meth:`.DataFrameGroupBy.bfill`
|
2393 |
+
for forward or backward filling instead. If you want to fill with a
|
2394 |
+
single value, use :meth:`DataFrame.fillna` instead.
|
2395 |
+
|
2396 |
+
Parameters
|
2397 |
+
----------
|
2398 |
+
value : scalar, dict, Series, or DataFrame
|
2399 |
+
Value to use to fill holes (e.g. 0), alternately a
|
2400 |
+
dict/Series/DataFrame of values specifying which value to use for
|
2401 |
+
each index (for a Series) or column (for a DataFrame). Values not
|
2402 |
+
in the dict/Series/DataFrame will not be filled. This value cannot
|
2403 |
+
be a list. Users wanting to use the ``value`` argument and not ``method``
|
2404 |
+
should prefer :meth:`.DataFrame.fillna` as this
|
2405 |
+
will produce the same result and be more performant.
|
2406 |
+
method : {{'bfill', 'ffill', None}}, default None
|
2407 |
+
Method to use for filling holes. ``'ffill'`` will propagate
|
2408 |
+
the last valid observation forward within a group.
|
2409 |
+
``'bfill'`` will use next valid observation to fill the gap.
|
2410 |
+
axis : {0 or 'index', 1 or 'columns'}
|
2411 |
+
Axis along which to fill missing values. When the :class:`DataFrameGroupBy`
|
2412 |
+
``axis`` argument is ``0``, using ``axis=1`` here will produce
|
2413 |
+
the same results as :meth:`.DataFrame.fillna`. When the
|
2414 |
+
:class:`DataFrameGroupBy` ``axis`` argument is ``1``, using ``axis=0``
|
2415 |
+
or ``axis=1`` here will produce the same results.
|
2416 |
+
inplace : bool, default False
|
2417 |
+
Broken. Do not set to True.
|
2418 |
+
limit : int, default None
|
2419 |
+
If method is specified, this is the maximum number of consecutive
|
2420 |
+
NaN values to forward/backward fill within a group. In other words,
|
2421 |
+
if there is a gap with more than this number of consecutive NaNs,
|
2422 |
+
it will only be partially filled. If method is not specified, this is the
|
2423 |
+
maximum number of entries along the entire axis where NaNs will be
|
2424 |
+
filled. Must be greater than 0 if not None.
|
2425 |
+
downcast : dict, default is None
|
2426 |
+
A dict of item->dtype of what to downcast if possible,
|
2427 |
+
or the string 'infer' which will try to downcast to an appropriate
|
2428 |
+
equal type (e.g. float64 to int64 if possible).
|
2429 |
+
|
2430 |
+
Returns
|
2431 |
+
-------
|
2432 |
+
DataFrame
|
2433 |
+
Object with missing values filled.
|
2434 |
+
|
2435 |
+
See Also
|
2436 |
+
--------
|
2437 |
+
ffill : Forward fill values within a group.
|
2438 |
+
bfill : Backward fill values within a group.
|
2439 |
+
|
2440 |
+
Examples
|
2441 |
+
--------
|
2442 |
+
>>> df = pd.DataFrame(
|
2443 |
+
... {
|
2444 |
+
... "key": [0, 0, 1, 1, 1],
|
2445 |
+
... "A": [np.nan, 2, np.nan, 3, np.nan],
|
2446 |
+
... "B": [2, 3, np.nan, np.nan, np.nan],
|
2447 |
+
... "C": [np.nan, np.nan, 2, np.nan, np.nan],
|
2448 |
+
... }
|
2449 |
+
... )
|
2450 |
+
>>> df
|
2451 |
+
key A B C
|
2452 |
+
0 0 NaN 2.0 NaN
|
2453 |
+
1 0 2.0 3.0 NaN
|
2454 |
+
2 1 NaN NaN 2.0
|
2455 |
+
3 1 3.0 NaN NaN
|
2456 |
+
4 1 NaN NaN NaN
|
2457 |
+
|
2458 |
+
Propagate non-null values forward or backward within each group along columns.
|
2459 |
+
|
2460 |
+
>>> df.groupby("key").fillna(method="ffill")
|
2461 |
+
A B C
|
2462 |
+
0 NaN 2.0 NaN
|
2463 |
+
1 2.0 3.0 NaN
|
2464 |
+
2 NaN NaN 2.0
|
2465 |
+
3 3.0 NaN 2.0
|
2466 |
+
4 3.0 NaN 2.0
|
2467 |
+
|
2468 |
+
>>> df.groupby("key").fillna(method="bfill")
|
2469 |
+
A B C
|
2470 |
+
0 2.0 2.0 NaN
|
2471 |
+
1 2.0 3.0 NaN
|
2472 |
+
2 3.0 NaN 2.0
|
2473 |
+
3 3.0 NaN NaN
|
2474 |
+
4 NaN NaN NaN
|
2475 |
+
|
2476 |
+
Propagate non-null values forward or backward within each group along rows.
|
2477 |
+
|
2478 |
+
>>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="ffill").T
|
2479 |
+
key A B C
|
2480 |
+
0 0.0 0.0 2.0 2.0
|
2481 |
+
1 0.0 2.0 3.0 3.0
|
2482 |
+
2 1.0 1.0 NaN 2.0
|
2483 |
+
3 1.0 3.0 NaN NaN
|
2484 |
+
4 1.0 1.0 NaN NaN
|
2485 |
+
|
2486 |
+
>>> df.T.groupby(np.array([0, 0, 1, 1])).fillna(method="bfill").T
|
2487 |
+
key A B C
|
2488 |
+
0 0.0 NaN 2.0 NaN
|
2489 |
+
1 0.0 2.0 3.0 NaN
|
2490 |
+
2 1.0 NaN 2.0 2.0
|
2491 |
+
3 1.0 3.0 NaN NaN
|
2492 |
+
4 1.0 NaN NaN NaN
|
2493 |
+
|
2494 |
+
Only replace the first NaN element within a group along rows.
|
2495 |
+
|
2496 |
+
>>> df.groupby("key").fillna(method="ffill", limit=1)
|
2497 |
+
A B C
|
2498 |
+
0 NaN 2.0 NaN
|
2499 |
+
1 2.0 3.0 NaN
|
2500 |
+
2 NaN NaN 2.0
|
2501 |
+
3 3.0 NaN 2.0
|
2502 |
+
4 3.0 NaN NaN
|
2503 |
+
"""
|
2504 |
+
warnings.warn(
|
2505 |
+
f"{type(self).__name__}.fillna is deprecated and "
|
2506 |
+
"will be removed in a future version. Use obj.ffill() or obj.bfill() "
|
2507 |
+
"for forward or backward filling instead. If you want to fill with a "
|
2508 |
+
f"single value, use {type(self.obj).__name__}.fillna instead",
|
2509 |
+
FutureWarning,
|
2510 |
+
stacklevel=find_stack_level(),
|
2511 |
+
)
|
2512 |
+
|
2513 |
+
result = self._op_via_apply(
|
2514 |
+
"fillna",
|
2515 |
+
value=value,
|
2516 |
+
method=method,
|
2517 |
+
axis=axis,
|
2518 |
+
inplace=inplace,
|
2519 |
+
limit=limit,
|
2520 |
+
downcast=downcast,
|
2521 |
+
)
|
2522 |
+
return result
|
2523 |
+
|
2524 |
+
def take(
|
2525 |
+
self,
|
2526 |
+
indices: TakeIndexer,
|
2527 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
2528 |
+
**kwargs,
|
2529 |
+
) -> DataFrame:
|
2530 |
+
"""
|
2531 |
+
Return the elements in the given *positional* indices in each group.
|
2532 |
+
|
2533 |
+
This means that we are not indexing according to actual values in
|
2534 |
+
the index attribute of the object. We are indexing according to the
|
2535 |
+
actual position of the element in the object.
|
2536 |
+
|
2537 |
+
If a requested index does not exist for some group, this method will raise.
|
2538 |
+
To get similar behavior that ignores indices that don't exist, see
|
2539 |
+
:meth:`.DataFrameGroupBy.nth`.
|
2540 |
+
|
2541 |
+
Parameters
|
2542 |
+
----------
|
2543 |
+
indices : array-like
|
2544 |
+
An array of ints indicating which positions to take.
|
2545 |
+
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
2546 |
+
The axis on which to select elements. ``0`` means that we are
|
2547 |
+
selecting rows, ``1`` means that we are selecting columns.
|
2548 |
+
|
2549 |
+
.. deprecated:: 2.1.0
|
2550 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
2551 |
+
the axis keyword is not necessary.
|
2552 |
+
|
2553 |
+
**kwargs
|
2554 |
+
For compatibility with :meth:`numpy.take`. Has no effect on the
|
2555 |
+
output.
|
2556 |
+
|
2557 |
+
Returns
|
2558 |
+
-------
|
2559 |
+
DataFrame
|
2560 |
+
An DataFrame containing the elements taken from each group.
|
2561 |
+
|
2562 |
+
See Also
|
2563 |
+
--------
|
2564 |
+
DataFrame.take : Take elements from a Series along an axis.
|
2565 |
+
DataFrame.loc : Select a subset of a DataFrame by labels.
|
2566 |
+
DataFrame.iloc : Select a subset of a DataFrame by positions.
|
2567 |
+
numpy.take : Take elements from an array along an axis.
|
2568 |
+
|
2569 |
+
Examples
|
2570 |
+
--------
|
2571 |
+
>>> df = pd.DataFrame([('falcon', 'bird', 389.0),
|
2572 |
+
... ('parrot', 'bird', 24.0),
|
2573 |
+
... ('lion', 'mammal', 80.5),
|
2574 |
+
... ('monkey', 'mammal', np.nan),
|
2575 |
+
... ('rabbit', 'mammal', 15.0)],
|
2576 |
+
... columns=['name', 'class', 'max_speed'],
|
2577 |
+
... index=[4, 3, 2, 1, 0])
|
2578 |
+
>>> df
|
2579 |
+
name class max_speed
|
2580 |
+
4 falcon bird 389.0
|
2581 |
+
3 parrot bird 24.0
|
2582 |
+
2 lion mammal 80.5
|
2583 |
+
1 monkey mammal NaN
|
2584 |
+
0 rabbit mammal 15.0
|
2585 |
+
>>> gb = df.groupby([1, 1, 2, 2, 2])
|
2586 |
+
|
2587 |
+
Take elements at positions 0 and 1 along the axis 0 (default).
|
2588 |
+
|
2589 |
+
Note how the indices selected in the result do not correspond to
|
2590 |
+
our input indices 0 and 1. That's because we are selecting the 0th
|
2591 |
+
and 1st rows, not rows whose indices equal 0 and 1.
|
2592 |
+
|
2593 |
+
>>> gb.take([0, 1])
|
2594 |
+
name class max_speed
|
2595 |
+
1 4 falcon bird 389.0
|
2596 |
+
3 parrot bird 24.0
|
2597 |
+
2 2 lion mammal 80.5
|
2598 |
+
1 monkey mammal NaN
|
2599 |
+
|
2600 |
+
The order of the specified indices influences the order in the result.
|
2601 |
+
Here, the order is swapped from the previous example.
|
2602 |
+
|
2603 |
+
>>> gb.take([1, 0])
|
2604 |
+
name class max_speed
|
2605 |
+
1 3 parrot bird 24.0
|
2606 |
+
4 falcon bird 389.0
|
2607 |
+
2 1 monkey mammal NaN
|
2608 |
+
2 lion mammal 80.5
|
2609 |
+
|
2610 |
+
Take elements at indices 1 and 2 along the axis 1 (column selection).
|
2611 |
+
|
2612 |
+
We may take elements using negative integers for positive indices,
|
2613 |
+
starting from the end of the object, just like with Python lists.
|
2614 |
+
|
2615 |
+
>>> gb.take([-1, -2])
|
2616 |
+
name class max_speed
|
2617 |
+
1 3 parrot bird 24.0
|
2618 |
+
4 falcon bird 389.0
|
2619 |
+
2 0 rabbit mammal 15.0
|
2620 |
+
1 monkey mammal NaN
|
2621 |
+
"""
|
2622 |
+
result = self._op_via_apply("take", indices=indices, axis=axis, **kwargs)
|
2623 |
+
return result
|
2624 |
+
|
2625 |
+
def skew(
|
2626 |
+
self,
|
2627 |
+
axis: Axis | None | lib.NoDefault = lib.no_default,
|
2628 |
+
skipna: bool = True,
|
2629 |
+
numeric_only: bool = False,
|
2630 |
+
**kwargs,
|
2631 |
+
) -> DataFrame:
|
2632 |
+
"""
|
2633 |
+
Return unbiased skew within groups.
|
2634 |
+
|
2635 |
+
Normalized by N-1.
|
2636 |
+
|
2637 |
+
Parameters
|
2638 |
+
----------
|
2639 |
+
axis : {0 or 'index', 1 or 'columns', None}, default 0
|
2640 |
+
Axis for the function to be applied on.
|
2641 |
+
|
2642 |
+
Specifying ``axis=None`` will apply the aggregation across both axes.
|
2643 |
+
|
2644 |
+
.. versionadded:: 2.0.0
|
2645 |
+
|
2646 |
+
.. deprecated:: 2.1.0
|
2647 |
+
For axis=1, operate on the underlying object instead. Otherwise
|
2648 |
+
the axis keyword is not necessary.
|
2649 |
+
|
2650 |
+
skipna : bool, default True
|
2651 |
+
Exclude NA/null values when computing the result.
|
2652 |
+
|
2653 |
+
numeric_only : bool, default False
|
2654 |
+
Include only float, int, boolean columns.
|
2655 |
+
|
2656 |
+
**kwargs
|
2657 |
+
Additional keyword arguments to be passed to the function.
|
2658 |
+
|
2659 |
+
Returns
|
2660 |
+
-------
|
2661 |
+
DataFrame
|
2662 |
+
|
2663 |
+
See Also
|
2664 |
+
--------
|
2665 |
+
DataFrame.skew : Return unbiased skew over requested axis.
|
2666 |
+
|
2667 |
+
Examples
|
2668 |
+
--------
|
2669 |
+
>>> arrays = [['falcon', 'parrot', 'cockatoo', 'kiwi',
|
2670 |
+
... 'lion', 'monkey', 'rabbit'],
|
2671 |
+
... ['bird', 'bird', 'bird', 'bird',
|
2672 |
+
... 'mammal', 'mammal', 'mammal']]
|
2673 |
+
>>> index = pd.MultiIndex.from_arrays(arrays, names=('name', 'class'))
|
2674 |
+
>>> df = pd.DataFrame({'max_speed': [389.0, 24.0, 70.0, np.nan,
|
2675 |
+
... 80.5, 21.5, 15.0]},
|
2676 |
+
... index=index)
|
2677 |
+
>>> df
|
2678 |
+
max_speed
|
2679 |
+
name class
|
2680 |
+
falcon bird 389.0
|
2681 |
+
parrot bird 24.0
|
2682 |
+
cockatoo bird 70.0
|
2683 |
+
kiwi bird NaN
|
2684 |
+
lion mammal 80.5
|
2685 |
+
monkey mammal 21.5
|
2686 |
+
rabbit mammal 15.0
|
2687 |
+
>>> gb = df.groupby(["class"])
|
2688 |
+
>>> gb.skew()
|
2689 |
+
max_speed
|
2690 |
+
class
|
2691 |
+
bird 1.628296
|
2692 |
+
mammal 1.669046
|
2693 |
+
>>> gb.skew(skipna=False)
|
2694 |
+
max_speed
|
2695 |
+
class
|
2696 |
+
bird NaN
|
2697 |
+
mammal 1.669046
|
2698 |
+
"""
|
2699 |
+
if axis is lib.no_default:
|
2700 |
+
axis = 0
|
2701 |
+
|
2702 |
+
if axis != 0:
|
2703 |
+
result = self._op_via_apply(
|
2704 |
+
"skew",
|
2705 |
+
axis=axis,
|
2706 |
+
skipna=skipna,
|
2707 |
+
numeric_only=numeric_only,
|
2708 |
+
**kwargs,
|
2709 |
+
)
|
2710 |
+
return result
|
2711 |
+
|
2712 |
+
def alt(obj):
|
2713 |
+
# This should not be reached since the cython path should raise
|
2714 |
+
# TypeError and not NotImplementedError.
|
2715 |
+
raise TypeError(f"'skew' is not supported for dtype={obj.dtype}")
|
2716 |
+
|
2717 |
+
return self._cython_agg_general(
|
2718 |
+
"skew", alt=alt, skipna=skipna, numeric_only=numeric_only, **kwargs
|
2719 |
+
)
|
2720 |
+
|
2721 |
+
@property
|
2722 |
+
@doc(DataFrame.plot.__doc__)
|
2723 |
+
def plot(self) -> GroupByPlot:
|
2724 |
+
result = GroupByPlot(self)
|
2725 |
+
return result
|
2726 |
+
|
2727 |
+
@doc(DataFrame.corr.__doc__)
|
2728 |
+
def corr(
|
2729 |
+
self,
|
2730 |
+
method: str | Callable[[np.ndarray, np.ndarray], float] = "pearson",
|
2731 |
+
min_periods: int = 1,
|
2732 |
+
numeric_only: bool = False,
|
2733 |
+
) -> DataFrame:
|
2734 |
+
result = self._op_via_apply(
|
2735 |
+
"corr", method=method, min_periods=min_periods, numeric_only=numeric_only
|
2736 |
+
)
|
2737 |
+
return result
|
2738 |
+
|
2739 |
+
@doc(DataFrame.cov.__doc__)
|
2740 |
+
def cov(
|
2741 |
+
self,
|
2742 |
+
min_periods: int | None = None,
|
2743 |
+
ddof: int | None = 1,
|
2744 |
+
numeric_only: bool = False,
|
2745 |
+
) -> DataFrame:
|
2746 |
+
result = self._op_via_apply(
|
2747 |
+
"cov", min_periods=min_periods, ddof=ddof, numeric_only=numeric_only
|
2748 |
+
)
|
2749 |
+
return result
|
2750 |
+
|
2751 |
+
@doc(DataFrame.hist.__doc__)
|
2752 |
+
def hist(
|
2753 |
+
self,
|
2754 |
+
column: IndexLabel | None = None,
|
2755 |
+
by=None,
|
2756 |
+
grid: bool = True,
|
2757 |
+
xlabelsize: int | None = None,
|
2758 |
+
xrot: float | None = None,
|
2759 |
+
ylabelsize: int | None = None,
|
2760 |
+
yrot: float | None = None,
|
2761 |
+
ax=None,
|
2762 |
+
sharex: bool = False,
|
2763 |
+
sharey: bool = False,
|
2764 |
+
figsize: tuple[int, int] | None = None,
|
2765 |
+
layout: tuple[int, int] | None = None,
|
2766 |
+
bins: int | Sequence[int] = 10,
|
2767 |
+
backend: str | None = None,
|
2768 |
+
legend: bool = False,
|
2769 |
+
**kwargs,
|
2770 |
+
):
|
2771 |
+
result = self._op_via_apply(
|
2772 |
+
"hist",
|
2773 |
+
column=column,
|
2774 |
+
by=by,
|
2775 |
+
grid=grid,
|
2776 |
+
xlabelsize=xlabelsize,
|
2777 |
+
xrot=xrot,
|
2778 |
+
ylabelsize=ylabelsize,
|
2779 |
+
yrot=yrot,
|
2780 |
+
ax=ax,
|
2781 |
+
sharex=sharex,
|
2782 |
+
sharey=sharey,
|
2783 |
+
figsize=figsize,
|
2784 |
+
layout=layout,
|
2785 |
+
bins=bins,
|
2786 |
+
backend=backend,
|
2787 |
+
legend=legend,
|
2788 |
+
**kwargs,
|
2789 |
+
)
|
2790 |
+
return result
|
2791 |
+
|
2792 |
+
@property
|
2793 |
+
@doc(DataFrame.dtypes.__doc__)
|
2794 |
+
def dtypes(self) -> Series:
|
2795 |
+
# GH#51045
|
2796 |
+
warnings.warn(
|
2797 |
+
f"{type(self).__name__}.dtypes is deprecated and will be removed in "
|
2798 |
+
"a future version. Check the dtypes on the base object instead",
|
2799 |
+
FutureWarning,
|
2800 |
+
stacklevel=find_stack_level(),
|
2801 |
+
)
|
2802 |
+
|
2803 |
+
# error: Incompatible return value type (got "DataFrame", expected "Series")
|
2804 |
+
return self._python_apply_general( # type: ignore[return-value]
|
2805 |
+
lambda df: df.dtypes, self._selected_obj
|
2806 |
+
)
|
2807 |
+
|
2808 |
+
@doc(DataFrame.corrwith.__doc__)
|
2809 |
+
def corrwith(
|
2810 |
+
self,
|
2811 |
+
other: DataFrame | Series,
|
2812 |
+
axis: Axis | lib.NoDefault = lib.no_default,
|
2813 |
+
drop: bool = False,
|
2814 |
+
method: CorrelationMethod = "pearson",
|
2815 |
+
numeric_only: bool = False,
|
2816 |
+
) -> DataFrame:
|
2817 |
+
result = self._op_via_apply(
|
2818 |
+
"corrwith",
|
2819 |
+
other=other,
|
2820 |
+
axis=axis,
|
2821 |
+
drop=drop,
|
2822 |
+
method=method,
|
2823 |
+
numeric_only=numeric_only,
|
2824 |
+
)
|
2825 |
+
return result
|
2826 |
+
|
2827 |
+
|
2828 |
+
def _wrap_transform_general_frame(
|
2829 |
+
obj: DataFrame, group: DataFrame, res: DataFrame | Series
|
2830 |
+
) -> DataFrame:
|
2831 |
+
from pandas import concat
|
2832 |
+
|
2833 |
+
if isinstance(res, Series):
|
2834 |
+
# we need to broadcast across the
|
2835 |
+
# other dimension; this will preserve dtypes
|
2836 |
+
# GH14457
|
2837 |
+
if res.index.is_(obj.index):
|
2838 |
+
res_frame = concat([res] * len(group.columns), axis=1)
|
2839 |
+
res_frame.columns = group.columns
|
2840 |
+
res_frame.index = group.index
|
2841 |
+
else:
|
2842 |
+
res_frame = obj._constructor(
|
2843 |
+
np.tile(res.values, (len(group.index), 1)),
|
2844 |
+
columns=group.columns,
|
2845 |
+
index=group.index,
|
2846 |
+
)
|
2847 |
+
assert isinstance(res_frame, DataFrame)
|
2848 |
+
return res_frame
|
2849 |
+
elif isinstance(res, DataFrame) and not res.index.is_(group.index):
|
2850 |
+
return res._align_frame(group)[0]
|
2851 |
+
else:
|
2852 |
+
return res
|
venv/lib/python3.10/site-packages/pandas/core/groupby/groupby.py
ADDED
The diff for this file is too large to render.
See raw diff
|
|
venv/lib/python3.10/site-packages/pandas/core/groupby/grouper.py
ADDED
@@ -0,0 +1,1102 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Provide user facing operators for doing the split part of the
|
3 |
+
split-apply-combine paradigm.
|
4 |
+
"""
|
5 |
+
from __future__ import annotations
|
6 |
+
|
7 |
+
from typing import (
|
8 |
+
TYPE_CHECKING,
|
9 |
+
final,
|
10 |
+
)
|
11 |
+
import warnings
|
12 |
+
|
13 |
+
import numpy as np
|
14 |
+
|
15 |
+
from pandas._config import (
|
16 |
+
using_copy_on_write,
|
17 |
+
warn_copy_on_write,
|
18 |
+
)
|
19 |
+
|
20 |
+
from pandas._libs import lib
|
21 |
+
from pandas._libs.tslibs import OutOfBoundsDatetime
|
22 |
+
from pandas.errors import InvalidIndexError
|
23 |
+
from pandas.util._decorators import cache_readonly
|
24 |
+
from pandas.util._exceptions import find_stack_level
|
25 |
+
|
26 |
+
from pandas.core.dtypes.common import (
|
27 |
+
is_list_like,
|
28 |
+
is_scalar,
|
29 |
+
)
|
30 |
+
from pandas.core.dtypes.dtypes import CategoricalDtype
|
31 |
+
|
32 |
+
from pandas.core import algorithms
|
33 |
+
from pandas.core.arrays import (
|
34 |
+
Categorical,
|
35 |
+
ExtensionArray,
|
36 |
+
)
|
37 |
+
import pandas.core.common as com
|
38 |
+
from pandas.core.frame import DataFrame
|
39 |
+
from pandas.core.groupby import ops
|
40 |
+
from pandas.core.groupby.categorical import recode_for_groupby
|
41 |
+
from pandas.core.indexes.api import (
|
42 |
+
CategoricalIndex,
|
43 |
+
Index,
|
44 |
+
MultiIndex,
|
45 |
+
)
|
46 |
+
from pandas.core.series import Series
|
47 |
+
|
48 |
+
from pandas.io.formats.printing import pprint_thing
|
49 |
+
|
50 |
+
if TYPE_CHECKING:
|
51 |
+
from collections.abc import (
|
52 |
+
Hashable,
|
53 |
+
Iterator,
|
54 |
+
)
|
55 |
+
|
56 |
+
from pandas._typing import (
|
57 |
+
ArrayLike,
|
58 |
+
Axis,
|
59 |
+
NDFrameT,
|
60 |
+
npt,
|
61 |
+
)
|
62 |
+
|
63 |
+
from pandas.core.generic import NDFrame
|
64 |
+
|
65 |
+
|
66 |
+
class Grouper:
|
67 |
+
"""
|
68 |
+
A Grouper allows the user to specify a groupby instruction for an object.
|
69 |
+
|
70 |
+
This specification will select a column via the key parameter, or if the
|
71 |
+
level and/or axis parameters are given, a level of the index of the target
|
72 |
+
object.
|
73 |
+
|
74 |
+
If `axis` and/or `level` are passed as keywords to both `Grouper` and
|
75 |
+
`groupby`, the values passed to `Grouper` take precedence.
|
76 |
+
|
77 |
+
Parameters
|
78 |
+
----------
|
79 |
+
key : str, defaults to None
|
80 |
+
Groupby key, which selects the grouping column of the target.
|
81 |
+
level : name/number, defaults to None
|
82 |
+
The level for the target index.
|
83 |
+
freq : str / frequency object, defaults to None
|
84 |
+
This will groupby the specified frequency if the target selection
|
85 |
+
(via key or level) is a datetime-like object. For full specification
|
86 |
+
of available frequencies, please see `here
|
87 |
+
<https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases>`_.
|
88 |
+
axis : str, int, defaults to 0
|
89 |
+
Number/name of the axis.
|
90 |
+
sort : bool, default to False
|
91 |
+
Whether to sort the resulting labels.
|
92 |
+
closed : {'left' or 'right'}
|
93 |
+
Closed end of interval. Only when `freq` parameter is passed.
|
94 |
+
label : {'left' or 'right'}
|
95 |
+
Interval boundary to use for labeling.
|
96 |
+
Only when `freq` parameter is passed.
|
97 |
+
convention : {'start', 'end', 'e', 's'}
|
98 |
+
If grouper is PeriodIndex and `freq` parameter is passed.
|
99 |
+
|
100 |
+
origin : Timestamp or str, default 'start_day'
|
101 |
+
The timestamp on which to adjust the grouping. The timezone of origin must
|
102 |
+
match the timezone of the index.
|
103 |
+
If string, must be one of the following:
|
104 |
+
|
105 |
+
- 'epoch': `origin` is 1970-01-01
|
106 |
+
- 'start': `origin` is the first value of the timeseries
|
107 |
+
- 'start_day': `origin` is the first day at midnight of the timeseries
|
108 |
+
|
109 |
+
- 'end': `origin` is the last value of the timeseries
|
110 |
+
- 'end_day': `origin` is the ceiling midnight of the last day
|
111 |
+
|
112 |
+
.. versionadded:: 1.3.0
|
113 |
+
|
114 |
+
offset : Timedelta or str, default is None
|
115 |
+
An offset timedelta added to the origin.
|
116 |
+
|
117 |
+
dropna : bool, default True
|
118 |
+
If True, and if group keys contain NA values, NA values together with
|
119 |
+
row/column will be dropped. If False, NA values will also be treated as
|
120 |
+
the key in groups.
|
121 |
+
|
122 |
+
Returns
|
123 |
+
-------
|
124 |
+
Grouper or pandas.api.typing.TimeGrouper
|
125 |
+
A TimeGrouper is returned if ``freq`` is not ``None``. Otherwise, a Grouper
|
126 |
+
is returned.
|
127 |
+
|
128 |
+
Examples
|
129 |
+
--------
|
130 |
+
``df.groupby(pd.Grouper(key="Animal"))`` is equivalent to ``df.groupby('Animal')``
|
131 |
+
|
132 |
+
>>> df = pd.DataFrame(
|
133 |
+
... {
|
134 |
+
... "Animal": ["Falcon", "Parrot", "Falcon", "Falcon", "Parrot"],
|
135 |
+
... "Speed": [100, 5, 200, 300, 15],
|
136 |
+
... }
|
137 |
+
... )
|
138 |
+
>>> df
|
139 |
+
Animal Speed
|
140 |
+
0 Falcon 100
|
141 |
+
1 Parrot 5
|
142 |
+
2 Falcon 200
|
143 |
+
3 Falcon 300
|
144 |
+
4 Parrot 15
|
145 |
+
>>> df.groupby(pd.Grouper(key="Animal")).mean()
|
146 |
+
Speed
|
147 |
+
Animal
|
148 |
+
Falcon 200.0
|
149 |
+
Parrot 10.0
|
150 |
+
|
151 |
+
Specify a resample operation on the column 'Publish date'
|
152 |
+
|
153 |
+
>>> df = pd.DataFrame(
|
154 |
+
... {
|
155 |
+
... "Publish date": [
|
156 |
+
... pd.Timestamp("2000-01-02"),
|
157 |
+
... pd.Timestamp("2000-01-02"),
|
158 |
+
... pd.Timestamp("2000-01-09"),
|
159 |
+
... pd.Timestamp("2000-01-16")
|
160 |
+
... ],
|
161 |
+
... "ID": [0, 1, 2, 3],
|
162 |
+
... "Price": [10, 20, 30, 40]
|
163 |
+
... }
|
164 |
+
... )
|
165 |
+
>>> df
|
166 |
+
Publish date ID Price
|
167 |
+
0 2000-01-02 0 10
|
168 |
+
1 2000-01-02 1 20
|
169 |
+
2 2000-01-09 2 30
|
170 |
+
3 2000-01-16 3 40
|
171 |
+
>>> df.groupby(pd.Grouper(key="Publish date", freq="1W")).mean()
|
172 |
+
ID Price
|
173 |
+
Publish date
|
174 |
+
2000-01-02 0.5 15.0
|
175 |
+
2000-01-09 2.0 30.0
|
176 |
+
2000-01-16 3.0 40.0
|
177 |
+
|
178 |
+
If you want to adjust the start of the bins based on a fixed timestamp:
|
179 |
+
|
180 |
+
>>> start, end = '2000-10-01 23:30:00', '2000-10-02 00:30:00'
|
181 |
+
>>> rng = pd.date_range(start, end, freq='7min')
|
182 |
+
>>> ts = pd.Series(np.arange(len(rng)) * 3, index=rng)
|
183 |
+
>>> ts
|
184 |
+
2000-10-01 23:30:00 0
|
185 |
+
2000-10-01 23:37:00 3
|
186 |
+
2000-10-01 23:44:00 6
|
187 |
+
2000-10-01 23:51:00 9
|
188 |
+
2000-10-01 23:58:00 12
|
189 |
+
2000-10-02 00:05:00 15
|
190 |
+
2000-10-02 00:12:00 18
|
191 |
+
2000-10-02 00:19:00 21
|
192 |
+
2000-10-02 00:26:00 24
|
193 |
+
Freq: 7min, dtype: int64
|
194 |
+
|
195 |
+
>>> ts.groupby(pd.Grouper(freq='17min')).sum()
|
196 |
+
2000-10-01 23:14:00 0
|
197 |
+
2000-10-01 23:31:00 9
|
198 |
+
2000-10-01 23:48:00 21
|
199 |
+
2000-10-02 00:05:00 54
|
200 |
+
2000-10-02 00:22:00 24
|
201 |
+
Freq: 17min, dtype: int64
|
202 |
+
|
203 |
+
>>> ts.groupby(pd.Grouper(freq='17min', origin='epoch')).sum()
|
204 |
+
2000-10-01 23:18:00 0
|
205 |
+
2000-10-01 23:35:00 18
|
206 |
+
2000-10-01 23:52:00 27
|
207 |
+
2000-10-02 00:09:00 39
|
208 |
+
2000-10-02 00:26:00 24
|
209 |
+
Freq: 17min, dtype: int64
|
210 |
+
|
211 |
+
>>> ts.groupby(pd.Grouper(freq='17min', origin='2000-01-01')).sum()
|
212 |
+
2000-10-01 23:24:00 3
|
213 |
+
2000-10-01 23:41:00 15
|
214 |
+
2000-10-01 23:58:00 45
|
215 |
+
2000-10-02 00:15:00 45
|
216 |
+
Freq: 17min, dtype: int64
|
217 |
+
|
218 |
+
If you want to adjust the start of the bins with an `offset` Timedelta, the two
|
219 |
+
following lines are equivalent:
|
220 |
+
|
221 |
+
>>> ts.groupby(pd.Grouper(freq='17min', origin='start')).sum()
|
222 |
+
2000-10-01 23:30:00 9
|
223 |
+
2000-10-01 23:47:00 21
|
224 |
+
2000-10-02 00:04:00 54
|
225 |
+
2000-10-02 00:21:00 24
|
226 |
+
Freq: 17min, dtype: int64
|
227 |
+
|
228 |
+
>>> ts.groupby(pd.Grouper(freq='17min', offset='23h30min')).sum()
|
229 |
+
2000-10-01 23:30:00 9
|
230 |
+
2000-10-01 23:47:00 21
|
231 |
+
2000-10-02 00:04:00 54
|
232 |
+
2000-10-02 00:21:00 24
|
233 |
+
Freq: 17min, dtype: int64
|
234 |
+
|
235 |
+
To replace the use of the deprecated `base` argument, you can now use `offset`,
|
236 |
+
in this example it is equivalent to have `base=2`:
|
237 |
+
|
238 |
+
>>> ts.groupby(pd.Grouper(freq='17min', offset='2min')).sum()
|
239 |
+
2000-10-01 23:16:00 0
|
240 |
+
2000-10-01 23:33:00 9
|
241 |
+
2000-10-01 23:50:00 36
|
242 |
+
2000-10-02 00:07:00 39
|
243 |
+
2000-10-02 00:24:00 24
|
244 |
+
Freq: 17min, dtype: int64
|
245 |
+
"""
|
246 |
+
|
247 |
+
sort: bool
|
248 |
+
dropna: bool
|
249 |
+
_gpr_index: Index | None
|
250 |
+
_grouper: Index | None
|
251 |
+
|
252 |
+
_attributes: tuple[str, ...] = ("key", "level", "freq", "axis", "sort", "dropna")
|
253 |
+
|
254 |
+
def __new__(cls, *args, **kwargs):
|
255 |
+
if kwargs.get("freq") is not None:
|
256 |
+
from pandas.core.resample import TimeGrouper
|
257 |
+
|
258 |
+
cls = TimeGrouper
|
259 |
+
return super().__new__(cls)
|
260 |
+
|
261 |
+
def __init__(
|
262 |
+
self,
|
263 |
+
key=None,
|
264 |
+
level=None,
|
265 |
+
freq=None,
|
266 |
+
axis: Axis | lib.NoDefault = lib.no_default,
|
267 |
+
sort: bool = False,
|
268 |
+
dropna: bool = True,
|
269 |
+
) -> None:
|
270 |
+
if type(self) is Grouper:
|
271 |
+
# i.e. not TimeGrouper
|
272 |
+
if axis is not lib.no_default:
|
273 |
+
warnings.warn(
|
274 |
+
"Grouper axis keyword is deprecated and will be removed in a "
|
275 |
+
"future version. To group on axis=1, use obj.T.groupby(...) "
|
276 |
+
"instead",
|
277 |
+
FutureWarning,
|
278 |
+
stacklevel=find_stack_level(),
|
279 |
+
)
|
280 |
+
else:
|
281 |
+
axis = 0
|
282 |
+
if axis is lib.no_default:
|
283 |
+
axis = 0
|
284 |
+
|
285 |
+
self.key = key
|
286 |
+
self.level = level
|
287 |
+
self.freq = freq
|
288 |
+
self.axis = axis
|
289 |
+
self.sort = sort
|
290 |
+
self.dropna = dropna
|
291 |
+
|
292 |
+
self._grouper_deprecated = None
|
293 |
+
self._indexer_deprecated: npt.NDArray[np.intp] | None = None
|
294 |
+
self._obj_deprecated = None
|
295 |
+
self._gpr_index = None
|
296 |
+
self.binner = None
|
297 |
+
self._grouper = None
|
298 |
+
self._indexer: npt.NDArray[np.intp] | None = None
|
299 |
+
|
300 |
+
def _get_grouper(
|
301 |
+
self, obj: NDFrameT, validate: bool = True
|
302 |
+
) -> tuple[ops.BaseGrouper, NDFrameT]:
|
303 |
+
"""
|
304 |
+
Parameters
|
305 |
+
----------
|
306 |
+
obj : Series or DataFrame
|
307 |
+
validate : bool, default True
|
308 |
+
if True, validate the grouper
|
309 |
+
|
310 |
+
Returns
|
311 |
+
-------
|
312 |
+
a tuple of grouper, obj (possibly sorted)
|
313 |
+
"""
|
314 |
+
obj, _, _ = self._set_grouper(obj)
|
315 |
+
grouper, _, obj = get_grouper(
|
316 |
+
obj,
|
317 |
+
[self.key],
|
318 |
+
axis=self.axis,
|
319 |
+
level=self.level,
|
320 |
+
sort=self.sort,
|
321 |
+
validate=validate,
|
322 |
+
dropna=self.dropna,
|
323 |
+
)
|
324 |
+
# Without setting this, subsequent lookups to .groups raise
|
325 |
+
# error: Incompatible types in assignment (expression has type "BaseGrouper",
|
326 |
+
# variable has type "None")
|
327 |
+
self._grouper_deprecated = grouper # type: ignore[assignment]
|
328 |
+
|
329 |
+
return grouper, obj
|
330 |
+
|
331 |
+
def _set_grouper(
|
332 |
+
self, obj: NDFrameT, sort: bool = False, *, gpr_index: Index | None = None
|
333 |
+
) -> tuple[NDFrameT, Index, npt.NDArray[np.intp] | None]:
|
334 |
+
"""
|
335 |
+
given an object and the specifications, setup the internal grouper
|
336 |
+
for this particular specification
|
337 |
+
|
338 |
+
Parameters
|
339 |
+
----------
|
340 |
+
obj : Series or DataFrame
|
341 |
+
sort : bool, default False
|
342 |
+
whether the resulting grouper should be sorted
|
343 |
+
gpr_index : Index or None, default None
|
344 |
+
|
345 |
+
Returns
|
346 |
+
-------
|
347 |
+
NDFrame
|
348 |
+
Index
|
349 |
+
np.ndarray[np.intp] | None
|
350 |
+
"""
|
351 |
+
assert obj is not None
|
352 |
+
|
353 |
+
if self.key is not None and self.level is not None:
|
354 |
+
raise ValueError("The Grouper cannot specify both a key and a level!")
|
355 |
+
|
356 |
+
# Keep self._grouper value before overriding
|
357 |
+
if self._grouper is None:
|
358 |
+
# TODO: What are we assuming about subsequent calls?
|
359 |
+
self._grouper = gpr_index
|
360 |
+
self._indexer = self._indexer_deprecated
|
361 |
+
|
362 |
+
# the key must be a valid info item
|
363 |
+
if self.key is not None:
|
364 |
+
key = self.key
|
365 |
+
# The 'on' is already defined
|
366 |
+
if getattr(gpr_index, "name", None) == key and isinstance(obj, Series):
|
367 |
+
# Sometimes self._grouper will have been resorted while
|
368 |
+
# obj has not. In this case there is a mismatch when we
|
369 |
+
# call self._grouper.take(obj.index) so we need to undo the sorting
|
370 |
+
# before we call _grouper.take.
|
371 |
+
assert self._grouper is not None
|
372 |
+
if self._indexer is not None:
|
373 |
+
reverse_indexer = self._indexer.argsort()
|
374 |
+
unsorted_ax = self._grouper.take(reverse_indexer)
|
375 |
+
ax = unsorted_ax.take(obj.index)
|
376 |
+
else:
|
377 |
+
ax = self._grouper.take(obj.index)
|
378 |
+
else:
|
379 |
+
if key not in obj._info_axis:
|
380 |
+
raise KeyError(f"The grouper name {key} is not found")
|
381 |
+
ax = Index(obj[key], name=key)
|
382 |
+
|
383 |
+
else:
|
384 |
+
ax = obj._get_axis(self.axis)
|
385 |
+
if self.level is not None:
|
386 |
+
level = self.level
|
387 |
+
|
388 |
+
# if a level is given it must be a mi level or
|
389 |
+
# equivalent to the axis name
|
390 |
+
if isinstance(ax, MultiIndex):
|
391 |
+
level = ax._get_level_number(level)
|
392 |
+
ax = Index(ax._get_level_values(level), name=ax.names[level])
|
393 |
+
|
394 |
+
else:
|
395 |
+
if level not in (0, ax.name):
|
396 |
+
raise ValueError(f"The level {level} is not valid")
|
397 |
+
|
398 |
+
# possibly sort
|
399 |
+
indexer: npt.NDArray[np.intp] | None = None
|
400 |
+
if (self.sort or sort) and not ax.is_monotonic_increasing:
|
401 |
+
# use stable sort to support first, last, nth
|
402 |
+
# TODO: why does putting na_position="first" fix datetimelike cases?
|
403 |
+
indexer = self._indexer_deprecated = ax.array.argsort(
|
404 |
+
kind="mergesort", na_position="first"
|
405 |
+
)
|
406 |
+
ax = ax.take(indexer)
|
407 |
+
obj = obj.take(indexer, axis=self.axis)
|
408 |
+
|
409 |
+
# error: Incompatible types in assignment (expression has type
|
410 |
+
# "NDFrameT", variable has type "None")
|
411 |
+
self._obj_deprecated = obj # type: ignore[assignment]
|
412 |
+
self._gpr_index = ax
|
413 |
+
return obj, ax, indexer
|
414 |
+
|
415 |
+
@final
|
416 |
+
@property
|
417 |
+
def ax(self) -> Index:
|
418 |
+
warnings.warn(
|
419 |
+
f"{type(self).__name__}.ax is deprecated and will be removed in a "
|
420 |
+
"future version. Use Resampler.ax instead",
|
421 |
+
FutureWarning,
|
422 |
+
stacklevel=find_stack_level(),
|
423 |
+
)
|
424 |
+
index = self._gpr_index
|
425 |
+
if index is None:
|
426 |
+
raise ValueError("_set_grouper must be called before ax is accessed")
|
427 |
+
return index
|
428 |
+
|
429 |
+
@final
|
430 |
+
@property
|
431 |
+
def indexer(self):
|
432 |
+
warnings.warn(
|
433 |
+
f"{type(self).__name__}.indexer is deprecated and will be removed "
|
434 |
+
"in a future version. Use Resampler.indexer instead.",
|
435 |
+
FutureWarning,
|
436 |
+
stacklevel=find_stack_level(),
|
437 |
+
)
|
438 |
+
return self._indexer_deprecated
|
439 |
+
|
440 |
+
@final
|
441 |
+
@property
|
442 |
+
def obj(self):
|
443 |
+
# TODO(3.0): enforcing these deprecations on Grouper should close
|
444 |
+
# GH#25564, GH#41930
|
445 |
+
warnings.warn(
|
446 |
+
f"{type(self).__name__}.obj is deprecated and will be removed "
|
447 |
+
"in a future version. Use GroupBy.indexer instead.",
|
448 |
+
FutureWarning,
|
449 |
+
stacklevel=find_stack_level(),
|
450 |
+
)
|
451 |
+
return self._obj_deprecated
|
452 |
+
|
453 |
+
@final
|
454 |
+
@property
|
455 |
+
def grouper(self):
|
456 |
+
warnings.warn(
|
457 |
+
f"{type(self).__name__}.grouper is deprecated and will be removed "
|
458 |
+
"in a future version. Use GroupBy.grouper instead.",
|
459 |
+
FutureWarning,
|
460 |
+
stacklevel=find_stack_level(),
|
461 |
+
)
|
462 |
+
return self._grouper_deprecated
|
463 |
+
|
464 |
+
@final
|
465 |
+
@property
|
466 |
+
def groups(self):
|
467 |
+
warnings.warn(
|
468 |
+
f"{type(self).__name__}.groups is deprecated and will be removed "
|
469 |
+
"in a future version. Use GroupBy.groups instead.",
|
470 |
+
FutureWarning,
|
471 |
+
stacklevel=find_stack_level(),
|
472 |
+
)
|
473 |
+
# error: "None" has no attribute "groups"
|
474 |
+
return self._grouper_deprecated.groups # type: ignore[attr-defined]
|
475 |
+
|
476 |
+
@final
|
477 |
+
def __repr__(self) -> str:
|
478 |
+
attrs_list = (
|
479 |
+
f"{attr_name}={repr(getattr(self, attr_name))}"
|
480 |
+
for attr_name in self._attributes
|
481 |
+
if getattr(self, attr_name) is not None
|
482 |
+
)
|
483 |
+
attrs = ", ".join(attrs_list)
|
484 |
+
cls_name = type(self).__name__
|
485 |
+
return f"{cls_name}({attrs})"
|
486 |
+
|
487 |
+
|
488 |
+
@final
|
489 |
+
class Grouping:
|
490 |
+
"""
|
491 |
+
Holds the grouping information for a single key
|
492 |
+
|
493 |
+
Parameters
|
494 |
+
----------
|
495 |
+
index : Index
|
496 |
+
grouper :
|
497 |
+
obj : DataFrame or Series
|
498 |
+
name : Label
|
499 |
+
level :
|
500 |
+
observed : bool, default False
|
501 |
+
If we are a Categorical, use the observed values
|
502 |
+
in_axis : if the Grouping is a column in self.obj and hence among
|
503 |
+
Groupby.exclusions list
|
504 |
+
dropna : bool, default True
|
505 |
+
Whether to drop NA groups.
|
506 |
+
uniques : Array-like, optional
|
507 |
+
When specified, will be used for unique values. Enables including empty groups
|
508 |
+
in the result for a BinGrouper. Must not contain duplicates.
|
509 |
+
|
510 |
+
Attributes
|
511 |
+
-------
|
512 |
+
indices : dict
|
513 |
+
Mapping of {group -> index_list}
|
514 |
+
codes : ndarray
|
515 |
+
Group codes
|
516 |
+
group_index : Index or None
|
517 |
+
unique groups
|
518 |
+
groups : dict
|
519 |
+
Mapping of {group -> label_list}
|
520 |
+
"""
|
521 |
+
|
522 |
+
_codes: npt.NDArray[np.signedinteger] | None = None
|
523 |
+
_all_grouper: Categorical | None
|
524 |
+
_orig_cats: Index | None
|
525 |
+
_index: Index
|
526 |
+
|
527 |
+
def __init__(
|
528 |
+
self,
|
529 |
+
index: Index,
|
530 |
+
grouper=None,
|
531 |
+
obj: NDFrame | None = None,
|
532 |
+
level=None,
|
533 |
+
sort: bool = True,
|
534 |
+
observed: bool = False,
|
535 |
+
in_axis: bool = False,
|
536 |
+
dropna: bool = True,
|
537 |
+
uniques: ArrayLike | None = None,
|
538 |
+
) -> None:
|
539 |
+
self.level = level
|
540 |
+
self._orig_grouper = grouper
|
541 |
+
grouping_vector = _convert_grouper(index, grouper)
|
542 |
+
self._all_grouper = None
|
543 |
+
self._orig_cats = None
|
544 |
+
self._index = index
|
545 |
+
self._sort = sort
|
546 |
+
self.obj = obj
|
547 |
+
self._observed = observed
|
548 |
+
self.in_axis = in_axis
|
549 |
+
self._dropna = dropna
|
550 |
+
self._uniques = uniques
|
551 |
+
|
552 |
+
# we have a single grouper which may be a myriad of things,
|
553 |
+
# some of which are dependent on the passing in level
|
554 |
+
|
555 |
+
ilevel = self._ilevel
|
556 |
+
if ilevel is not None:
|
557 |
+
# In extant tests, the new self.grouping_vector matches
|
558 |
+
# `index.get_level_values(ilevel)` whenever
|
559 |
+
# mapper is None and isinstance(index, MultiIndex)
|
560 |
+
if isinstance(index, MultiIndex):
|
561 |
+
index_level = index.get_level_values(ilevel)
|
562 |
+
else:
|
563 |
+
index_level = index
|
564 |
+
|
565 |
+
if grouping_vector is None:
|
566 |
+
grouping_vector = index_level
|
567 |
+
else:
|
568 |
+
mapper = grouping_vector
|
569 |
+
grouping_vector = index_level.map(mapper)
|
570 |
+
|
571 |
+
# a passed Grouper like, directly get the grouper in the same way
|
572 |
+
# as single grouper groupby, use the group_info to get codes
|
573 |
+
elif isinstance(grouping_vector, Grouper):
|
574 |
+
# get the new grouper; we already have disambiguated
|
575 |
+
# what key/level refer to exactly, don't need to
|
576 |
+
# check again as we have by this point converted these
|
577 |
+
# to an actual value (rather than a pd.Grouper)
|
578 |
+
assert self.obj is not None # for mypy
|
579 |
+
newgrouper, newobj = grouping_vector._get_grouper(self.obj, validate=False)
|
580 |
+
self.obj = newobj
|
581 |
+
|
582 |
+
if isinstance(newgrouper, ops.BinGrouper):
|
583 |
+
# TODO: can we unwrap this and get a tighter typing
|
584 |
+
# for self.grouping_vector?
|
585 |
+
grouping_vector = newgrouper
|
586 |
+
else:
|
587 |
+
# ops.BaseGrouper
|
588 |
+
# TODO: 2023-02-03 no test cases with len(newgrouper.groupings) > 1.
|
589 |
+
# If that were to occur, would we be throwing out information?
|
590 |
+
# error: Cannot determine type of "grouping_vector" [has-type]
|
591 |
+
ng = newgrouper.groupings[0].grouping_vector # type: ignore[has-type]
|
592 |
+
# use Index instead of ndarray so we can recover the name
|
593 |
+
grouping_vector = Index(ng, name=newgrouper.result_index.name)
|
594 |
+
|
595 |
+
elif not isinstance(
|
596 |
+
grouping_vector, (Series, Index, ExtensionArray, np.ndarray)
|
597 |
+
):
|
598 |
+
# no level passed
|
599 |
+
if getattr(grouping_vector, "ndim", 1) != 1:
|
600 |
+
t = str(type(grouping_vector))
|
601 |
+
raise ValueError(f"Grouper for '{t}' not 1-dimensional")
|
602 |
+
|
603 |
+
grouping_vector = index.map(grouping_vector)
|
604 |
+
|
605 |
+
if not (
|
606 |
+
hasattr(grouping_vector, "__len__")
|
607 |
+
and len(grouping_vector) == len(index)
|
608 |
+
):
|
609 |
+
grper = pprint_thing(grouping_vector)
|
610 |
+
errmsg = (
|
611 |
+
"Grouper result violates len(labels) == "
|
612 |
+
f"len(data)\nresult: {grper}"
|
613 |
+
)
|
614 |
+
raise AssertionError(errmsg)
|
615 |
+
|
616 |
+
if isinstance(grouping_vector, np.ndarray):
|
617 |
+
if grouping_vector.dtype.kind in "mM":
|
618 |
+
# if we have a date/time-like grouper, make sure that we have
|
619 |
+
# Timestamps like
|
620 |
+
# TODO 2022-10-08 we only have one test that gets here and
|
621 |
+
# values are already in nanoseconds in that case.
|
622 |
+
grouping_vector = Series(grouping_vector).to_numpy()
|
623 |
+
elif isinstance(getattr(grouping_vector, "dtype", None), CategoricalDtype):
|
624 |
+
# a passed Categorical
|
625 |
+
self._orig_cats = grouping_vector.categories
|
626 |
+
grouping_vector, self._all_grouper = recode_for_groupby(
|
627 |
+
grouping_vector, sort, observed
|
628 |
+
)
|
629 |
+
|
630 |
+
self.grouping_vector = grouping_vector
|
631 |
+
|
632 |
+
def __repr__(self) -> str:
|
633 |
+
return f"Grouping({self.name})"
|
634 |
+
|
635 |
+
def __iter__(self) -> Iterator:
|
636 |
+
return iter(self.indices)
|
637 |
+
|
638 |
+
@cache_readonly
|
639 |
+
def _passed_categorical(self) -> bool:
|
640 |
+
dtype = getattr(self.grouping_vector, "dtype", None)
|
641 |
+
return isinstance(dtype, CategoricalDtype)
|
642 |
+
|
643 |
+
@cache_readonly
|
644 |
+
def name(self) -> Hashable:
|
645 |
+
ilevel = self._ilevel
|
646 |
+
if ilevel is not None:
|
647 |
+
return self._index.names[ilevel]
|
648 |
+
|
649 |
+
if isinstance(self._orig_grouper, (Index, Series)):
|
650 |
+
return self._orig_grouper.name
|
651 |
+
|
652 |
+
elif isinstance(self.grouping_vector, ops.BaseGrouper):
|
653 |
+
return self.grouping_vector.result_index.name
|
654 |
+
|
655 |
+
elif isinstance(self.grouping_vector, Index):
|
656 |
+
return self.grouping_vector.name
|
657 |
+
|
658 |
+
# otherwise we have ndarray or ExtensionArray -> no name
|
659 |
+
return None
|
660 |
+
|
661 |
+
@cache_readonly
|
662 |
+
def _ilevel(self) -> int | None:
|
663 |
+
"""
|
664 |
+
If necessary, converted index level name to index level position.
|
665 |
+
"""
|
666 |
+
level = self.level
|
667 |
+
if level is None:
|
668 |
+
return None
|
669 |
+
if not isinstance(level, int):
|
670 |
+
index = self._index
|
671 |
+
if level not in index.names:
|
672 |
+
raise AssertionError(f"Level {level} not in index")
|
673 |
+
return index.names.index(level)
|
674 |
+
return level
|
675 |
+
|
676 |
+
@property
|
677 |
+
def ngroups(self) -> int:
|
678 |
+
return len(self._group_index)
|
679 |
+
|
680 |
+
@cache_readonly
|
681 |
+
def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
|
682 |
+
# we have a list of groupers
|
683 |
+
if isinstance(self.grouping_vector, ops.BaseGrouper):
|
684 |
+
return self.grouping_vector.indices
|
685 |
+
|
686 |
+
values = Categorical(self.grouping_vector)
|
687 |
+
return values._reverse_indexer()
|
688 |
+
|
689 |
+
@property
|
690 |
+
def codes(self) -> npt.NDArray[np.signedinteger]:
|
691 |
+
return self._codes_and_uniques[0]
|
692 |
+
|
693 |
+
@cache_readonly
|
694 |
+
def _group_arraylike(self) -> ArrayLike:
|
695 |
+
"""
|
696 |
+
Analogous to result_index, but holding an ArrayLike to ensure
|
697 |
+
we can retain ExtensionDtypes.
|
698 |
+
"""
|
699 |
+
if self._all_grouper is not None:
|
700 |
+
# retain dtype for categories, including unobserved ones
|
701 |
+
return self._result_index._values
|
702 |
+
|
703 |
+
elif self._passed_categorical:
|
704 |
+
return self._group_index._values
|
705 |
+
|
706 |
+
return self._codes_and_uniques[1]
|
707 |
+
|
708 |
+
@property
|
709 |
+
def group_arraylike(self) -> ArrayLike:
|
710 |
+
"""
|
711 |
+
Analogous to result_index, but holding an ArrayLike to ensure
|
712 |
+
we can retain ExtensionDtypes.
|
713 |
+
"""
|
714 |
+
warnings.warn(
|
715 |
+
"group_arraylike is deprecated and will be removed in a future "
|
716 |
+
"version of pandas",
|
717 |
+
category=FutureWarning,
|
718 |
+
stacklevel=find_stack_level(),
|
719 |
+
)
|
720 |
+
return self._group_arraylike
|
721 |
+
|
722 |
+
@cache_readonly
|
723 |
+
def _result_index(self) -> Index:
|
724 |
+
# result_index retains dtype for categories, including unobserved ones,
|
725 |
+
# which group_index does not
|
726 |
+
if self._all_grouper is not None:
|
727 |
+
group_idx = self._group_index
|
728 |
+
assert isinstance(group_idx, CategoricalIndex)
|
729 |
+
cats = self._orig_cats
|
730 |
+
# set_categories is dynamically added
|
731 |
+
return group_idx.set_categories(cats) # type: ignore[attr-defined]
|
732 |
+
return self._group_index
|
733 |
+
|
734 |
+
@property
|
735 |
+
def result_index(self) -> Index:
|
736 |
+
warnings.warn(
|
737 |
+
"result_index is deprecated and will be removed in a future "
|
738 |
+
"version of pandas",
|
739 |
+
category=FutureWarning,
|
740 |
+
stacklevel=find_stack_level(),
|
741 |
+
)
|
742 |
+
return self._result_index
|
743 |
+
|
744 |
+
@cache_readonly
|
745 |
+
def _group_index(self) -> Index:
|
746 |
+
codes, uniques = self._codes_and_uniques
|
747 |
+
if not self._dropna and self._passed_categorical:
|
748 |
+
assert isinstance(uniques, Categorical)
|
749 |
+
if self._sort and (codes == len(uniques)).any():
|
750 |
+
# Add NA value on the end when sorting
|
751 |
+
uniques = Categorical.from_codes(
|
752 |
+
np.append(uniques.codes, [-1]), uniques.categories, validate=False
|
753 |
+
)
|
754 |
+
elif len(codes) > 0:
|
755 |
+
# Need to determine proper placement of NA value when not sorting
|
756 |
+
cat = self.grouping_vector
|
757 |
+
na_idx = (cat.codes < 0).argmax()
|
758 |
+
if cat.codes[na_idx] < 0:
|
759 |
+
# count number of unique codes that comes before the nan value
|
760 |
+
na_unique_idx = algorithms.nunique_ints(cat.codes[:na_idx])
|
761 |
+
new_codes = np.insert(uniques.codes, na_unique_idx, -1)
|
762 |
+
uniques = Categorical.from_codes(
|
763 |
+
new_codes, uniques.categories, validate=False
|
764 |
+
)
|
765 |
+
return Index._with_infer(uniques, name=self.name)
|
766 |
+
|
767 |
+
@property
|
768 |
+
def group_index(self) -> Index:
|
769 |
+
warnings.warn(
|
770 |
+
"group_index is deprecated and will be removed in a future "
|
771 |
+
"version of pandas",
|
772 |
+
category=FutureWarning,
|
773 |
+
stacklevel=find_stack_level(),
|
774 |
+
)
|
775 |
+
return self._group_index
|
776 |
+
|
777 |
+
@cache_readonly
|
778 |
+
def _codes_and_uniques(self) -> tuple[npt.NDArray[np.signedinteger], ArrayLike]:
|
779 |
+
uniques: ArrayLike
|
780 |
+
if self._passed_categorical:
|
781 |
+
# we make a CategoricalIndex out of the cat grouper
|
782 |
+
# preserving the categories / ordered attributes;
|
783 |
+
# doesn't (yet - GH#46909) handle dropna=False
|
784 |
+
cat = self.grouping_vector
|
785 |
+
categories = cat.categories
|
786 |
+
|
787 |
+
if self._observed:
|
788 |
+
ucodes = algorithms.unique1d(cat.codes)
|
789 |
+
ucodes = ucodes[ucodes != -1]
|
790 |
+
if self._sort:
|
791 |
+
ucodes = np.sort(ucodes)
|
792 |
+
else:
|
793 |
+
ucodes = np.arange(len(categories))
|
794 |
+
|
795 |
+
uniques = Categorical.from_codes(
|
796 |
+
codes=ucodes, categories=categories, ordered=cat.ordered, validate=False
|
797 |
+
)
|
798 |
+
|
799 |
+
codes = cat.codes
|
800 |
+
if not self._dropna:
|
801 |
+
na_mask = codes < 0
|
802 |
+
if np.any(na_mask):
|
803 |
+
if self._sort:
|
804 |
+
# Replace NA codes with `largest code + 1`
|
805 |
+
na_code = len(categories)
|
806 |
+
codes = np.where(na_mask, na_code, codes)
|
807 |
+
else:
|
808 |
+
# Insert NA code into the codes based on first appearance
|
809 |
+
# A negative code must exist, no need to check codes[na_idx] < 0
|
810 |
+
na_idx = na_mask.argmax()
|
811 |
+
# count number of unique codes that comes before the nan value
|
812 |
+
na_code = algorithms.nunique_ints(codes[:na_idx])
|
813 |
+
codes = np.where(codes >= na_code, codes + 1, codes)
|
814 |
+
codes = np.where(na_mask, na_code, codes)
|
815 |
+
|
816 |
+
if not self._observed:
|
817 |
+
uniques = uniques.reorder_categories(self._orig_cats)
|
818 |
+
|
819 |
+
return codes, uniques
|
820 |
+
|
821 |
+
elif isinstance(self.grouping_vector, ops.BaseGrouper):
|
822 |
+
# we have a list of groupers
|
823 |
+
codes = self.grouping_vector.codes_info
|
824 |
+
uniques = self.grouping_vector.result_index._values
|
825 |
+
elif self._uniques is not None:
|
826 |
+
# GH#50486 Code grouping_vector using _uniques; allows
|
827 |
+
# including uniques that are not present in grouping_vector.
|
828 |
+
cat = Categorical(self.grouping_vector, categories=self._uniques)
|
829 |
+
codes = cat.codes
|
830 |
+
uniques = self._uniques
|
831 |
+
else:
|
832 |
+
# GH35667, replace dropna=False with use_na_sentinel=False
|
833 |
+
# error: Incompatible types in assignment (expression has type "Union[
|
834 |
+
# ndarray[Any, Any], Index]", variable has type "Categorical")
|
835 |
+
codes, uniques = algorithms.factorize( # type: ignore[assignment]
|
836 |
+
self.grouping_vector, sort=self._sort, use_na_sentinel=self._dropna
|
837 |
+
)
|
838 |
+
return codes, uniques
|
839 |
+
|
840 |
+
@cache_readonly
|
841 |
+
def groups(self) -> dict[Hashable, np.ndarray]:
|
842 |
+
cats = Categorical.from_codes(self.codes, self._group_index, validate=False)
|
843 |
+
return self._index.groupby(cats)
|
844 |
+
|
845 |
+
|
846 |
+
def get_grouper(
|
847 |
+
obj: NDFrameT,
|
848 |
+
key=None,
|
849 |
+
axis: Axis = 0,
|
850 |
+
level=None,
|
851 |
+
sort: bool = True,
|
852 |
+
observed: bool = False,
|
853 |
+
validate: bool = True,
|
854 |
+
dropna: bool = True,
|
855 |
+
) -> tuple[ops.BaseGrouper, frozenset[Hashable], NDFrameT]:
|
856 |
+
"""
|
857 |
+
Create and return a BaseGrouper, which is an internal
|
858 |
+
mapping of how to create the grouper indexers.
|
859 |
+
This may be composed of multiple Grouping objects, indicating
|
860 |
+
multiple groupers
|
861 |
+
|
862 |
+
Groupers are ultimately index mappings. They can originate as:
|
863 |
+
index mappings, keys to columns, functions, or Groupers
|
864 |
+
|
865 |
+
Groupers enable local references to axis,level,sort, while
|
866 |
+
the passed in axis, level, and sort are 'global'.
|
867 |
+
|
868 |
+
This routine tries to figure out what the passing in references
|
869 |
+
are and then creates a Grouping for each one, combined into
|
870 |
+
a BaseGrouper.
|
871 |
+
|
872 |
+
If observed & we have a categorical grouper, only show the observed
|
873 |
+
values.
|
874 |
+
|
875 |
+
If validate, then check for key/level overlaps.
|
876 |
+
|
877 |
+
"""
|
878 |
+
group_axis = obj._get_axis(axis)
|
879 |
+
|
880 |
+
# validate that the passed single level is compatible with the passed
|
881 |
+
# axis of the object
|
882 |
+
if level is not None:
|
883 |
+
# TODO: These if-block and else-block are almost same.
|
884 |
+
# MultiIndex instance check is removable, but it seems that there are
|
885 |
+
# some processes only for non-MultiIndex in else-block,
|
886 |
+
# eg. `obj.index.name != level`. We have to consider carefully whether
|
887 |
+
# these are applicable for MultiIndex. Even if these are applicable,
|
888 |
+
# we need to check if it makes no side effect to subsequent processes
|
889 |
+
# on the outside of this condition.
|
890 |
+
# (GH 17621)
|
891 |
+
if isinstance(group_axis, MultiIndex):
|
892 |
+
if is_list_like(level) and len(level) == 1:
|
893 |
+
level = level[0]
|
894 |
+
|
895 |
+
if key is None and is_scalar(level):
|
896 |
+
# Get the level values from group_axis
|
897 |
+
key = group_axis.get_level_values(level)
|
898 |
+
level = None
|
899 |
+
|
900 |
+
else:
|
901 |
+
# allow level to be a length-one list-like object
|
902 |
+
# (e.g., level=[0])
|
903 |
+
# GH 13901
|
904 |
+
if is_list_like(level):
|
905 |
+
nlevels = len(level)
|
906 |
+
if nlevels == 1:
|
907 |
+
level = level[0]
|
908 |
+
elif nlevels == 0:
|
909 |
+
raise ValueError("No group keys passed!")
|
910 |
+
else:
|
911 |
+
raise ValueError("multiple levels only valid with MultiIndex")
|
912 |
+
|
913 |
+
if isinstance(level, str):
|
914 |
+
if obj._get_axis(axis).name != level:
|
915 |
+
raise ValueError(
|
916 |
+
f"level name {level} is not the name "
|
917 |
+
f"of the {obj._get_axis_name(axis)}"
|
918 |
+
)
|
919 |
+
elif level > 0 or level < -1:
|
920 |
+
raise ValueError("level > 0 or level < -1 only valid with MultiIndex")
|
921 |
+
|
922 |
+
# NOTE: `group_axis` and `group_axis.get_level_values(level)`
|
923 |
+
# are same in this section.
|
924 |
+
level = None
|
925 |
+
key = group_axis
|
926 |
+
|
927 |
+
# a passed-in Grouper, directly convert
|
928 |
+
if isinstance(key, Grouper):
|
929 |
+
grouper, obj = key._get_grouper(obj, validate=False)
|
930 |
+
if key.key is None:
|
931 |
+
return grouper, frozenset(), obj
|
932 |
+
else:
|
933 |
+
return grouper, frozenset({key.key}), obj
|
934 |
+
|
935 |
+
# already have a BaseGrouper, just return it
|
936 |
+
elif isinstance(key, ops.BaseGrouper):
|
937 |
+
return key, frozenset(), obj
|
938 |
+
|
939 |
+
if not isinstance(key, list):
|
940 |
+
keys = [key]
|
941 |
+
match_axis_length = False
|
942 |
+
else:
|
943 |
+
keys = key
|
944 |
+
match_axis_length = len(keys) == len(group_axis)
|
945 |
+
|
946 |
+
# what are we after, exactly?
|
947 |
+
any_callable = any(callable(g) or isinstance(g, dict) for g in keys)
|
948 |
+
any_groupers = any(isinstance(g, (Grouper, Grouping)) for g in keys)
|
949 |
+
any_arraylike = any(
|
950 |
+
isinstance(g, (list, tuple, Series, Index, np.ndarray)) for g in keys
|
951 |
+
)
|
952 |
+
|
953 |
+
# is this an index replacement?
|
954 |
+
if (
|
955 |
+
not any_callable
|
956 |
+
and not any_arraylike
|
957 |
+
and not any_groupers
|
958 |
+
and match_axis_length
|
959 |
+
and level is None
|
960 |
+
):
|
961 |
+
if isinstance(obj, DataFrame):
|
962 |
+
all_in_columns_index = all(
|
963 |
+
g in obj.columns or g in obj.index.names for g in keys
|
964 |
+
)
|
965 |
+
else:
|
966 |
+
assert isinstance(obj, Series)
|
967 |
+
all_in_columns_index = all(g in obj.index.names for g in keys)
|
968 |
+
|
969 |
+
if not all_in_columns_index:
|
970 |
+
keys = [com.asarray_tuplesafe(keys)]
|
971 |
+
|
972 |
+
if isinstance(level, (tuple, list)):
|
973 |
+
if key is None:
|
974 |
+
keys = [None] * len(level)
|
975 |
+
levels = level
|
976 |
+
else:
|
977 |
+
levels = [level] * len(keys)
|
978 |
+
|
979 |
+
groupings: list[Grouping] = []
|
980 |
+
exclusions: set[Hashable] = set()
|
981 |
+
|
982 |
+
# if the actual grouper should be obj[key]
|
983 |
+
def is_in_axis(key) -> bool:
|
984 |
+
if not _is_label_like(key):
|
985 |
+
if obj.ndim == 1:
|
986 |
+
return False
|
987 |
+
|
988 |
+
# items -> .columns for DataFrame, .index for Series
|
989 |
+
items = obj.axes[-1]
|
990 |
+
try:
|
991 |
+
items.get_loc(key)
|
992 |
+
except (KeyError, TypeError, InvalidIndexError):
|
993 |
+
# TypeError shows up here if we pass e.g. an Index
|
994 |
+
return False
|
995 |
+
|
996 |
+
return True
|
997 |
+
|
998 |
+
# if the grouper is obj[name]
|
999 |
+
def is_in_obj(gpr) -> bool:
|
1000 |
+
if not hasattr(gpr, "name"):
|
1001 |
+
return False
|
1002 |
+
if using_copy_on_write() or warn_copy_on_write():
|
1003 |
+
# For the CoW case, we check the references to determine if the
|
1004 |
+
# series is part of the object
|
1005 |
+
try:
|
1006 |
+
obj_gpr_column = obj[gpr.name]
|
1007 |
+
except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime):
|
1008 |
+
return False
|
1009 |
+
if isinstance(gpr, Series) and isinstance(obj_gpr_column, Series):
|
1010 |
+
return gpr._mgr.references_same_values( # type: ignore[union-attr]
|
1011 |
+
obj_gpr_column._mgr, 0 # type: ignore[arg-type]
|
1012 |
+
)
|
1013 |
+
return False
|
1014 |
+
try:
|
1015 |
+
return gpr is obj[gpr.name]
|
1016 |
+
except (KeyError, IndexError, InvalidIndexError, OutOfBoundsDatetime):
|
1017 |
+
# IndexError reached in e.g. test_skip_group_keys when we pass
|
1018 |
+
# lambda here
|
1019 |
+
# InvalidIndexError raised on key-types inappropriate for index,
|
1020 |
+
# e.g. DatetimeIndex.get_loc(tuple())
|
1021 |
+
# OutOfBoundsDatetime raised when obj is a Series with DatetimeIndex
|
1022 |
+
# and gpr.name is month str
|
1023 |
+
return False
|
1024 |
+
|
1025 |
+
for gpr, level in zip(keys, levels):
|
1026 |
+
if is_in_obj(gpr): # df.groupby(df['name'])
|
1027 |
+
in_axis = True
|
1028 |
+
exclusions.add(gpr.name)
|
1029 |
+
|
1030 |
+
elif is_in_axis(gpr): # df.groupby('name')
|
1031 |
+
if obj.ndim != 1 and gpr in obj:
|
1032 |
+
if validate:
|
1033 |
+
obj._check_label_or_level_ambiguity(gpr, axis=axis)
|
1034 |
+
in_axis, name, gpr = True, gpr, obj[gpr]
|
1035 |
+
if gpr.ndim != 1:
|
1036 |
+
# non-unique columns; raise here to get the name in the
|
1037 |
+
# exception message
|
1038 |
+
raise ValueError(f"Grouper for '{name}' not 1-dimensional")
|
1039 |
+
exclusions.add(name)
|
1040 |
+
elif obj._is_level_reference(gpr, axis=axis):
|
1041 |
+
in_axis, level, gpr = False, gpr, None
|
1042 |
+
else:
|
1043 |
+
raise KeyError(gpr)
|
1044 |
+
elif isinstance(gpr, Grouper) and gpr.key is not None:
|
1045 |
+
# Add key to exclusions
|
1046 |
+
exclusions.add(gpr.key)
|
1047 |
+
in_axis = True
|
1048 |
+
else:
|
1049 |
+
in_axis = False
|
1050 |
+
|
1051 |
+
# create the Grouping
|
1052 |
+
# allow us to passing the actual Grouping as the gpr
|
1053 |
+
ping = (
|
1054 |
+
Grouping(
|
1055 |
+
group_axis,
|
1056 |
+
gpr,
|
1057 |
+
obj=obj,
|
1058 |
+
level=level,
|
1059 |
+
sort=sort,
|
1060 |
+
observed=observed,
|
1061 |
+
in_axis=in_axis,
|
1062 |
+
dropna=dropna,
|
1063 |
+
)
|
1064 |
+
if not isinstance(gpr, Grouping)
|
1065 |
+
else gpr
|
1066 |
+
)
|
1067 |
+
|
1068 |
+
groupings.append(ping)
|
1069 |
+
|
1070 |
+
if len(groupings) == 0 and len(obj):
|
1071 |
+
raise ValueError("No group keys passed!")
|
1072 |
+
if len(groupings) == 0:
|
1073 |
+
groupings.append(Grouping(Index([], dtype="int"), np.array([], dtype=np.intp)))
|
1074 |
+
|
1075 |
+
# create the internals grouper
|
1076 |
+
grouper = ops.BaseGrouper(group_axis, groupings, sort=sort, dropna=dropna)
|
1077 |
+
return grouper, frozenset(exclusions), obj
|
1078 |
+
|
1079 |
+
|
1080 |
+
def _is_label_like(val) -> bool:
|
1081 |
+
return isinstance(val, (str, tuple)) or (val is not None and is_scalar(val))
|
1082 |
+
|
1083 |
+
|
1084 |
+
def _convert_grouper(axis: Index, grouper):
|
1085 |
+
if isinstance(grouper, dict):
|
1086 |
+
return grouper.get
|
1087 |
+
elif isinstance(grouper, Series):
|
1088 |
+
if grouper.index.equals(axis):
|
1089 |
+
return grouper._values
|
1090 |
+
else:
|
1091 |
+
return grouper.reindex(axis)._values
|
1092 |
+
elif isinstance(grouper, MultiIndex):
|
1093 |
+
return grouper._values
|
1094 |
+
elif isinstance(grouper, (list, tuple, Index, Categorical, np.ndarray)):
|
1095 |
+
if len(grouper) != len(axis):
|
1096 |
+
raise ValueError("Grouper and axis must be same length")
|
1097 |
+
|
1098 |
+
if isinstance(grouper, (list, tuple)):
|
1099 |
+
grouper = com.asarray_tuplesafe(grouper)
|
1100 |
+
return grouper
|
1101 |
+
else:
|
1102 |
+
return grouper
|
venv/lib/python3.10/site-packages/pandas/core/groupby/indexing.py
ADDED
@@ -0,0 +1,304 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from __future__ import annotations
|
2 |
+
|
3 |
+
from collections.abc import Iterable
|
4 |
+
from typing import (
|
5 |
+
TYPE_CHECKING,
|
6 |
+
Literal,
|
7 |
+
cast,
|
8 |
+
)
|
9 |
+
|
10 |
+
import numpy as np
|
11 |
+
|
12 |
+
from pandas.util._decorators import (
|
13 |
+
cache_readonly,
|
14 |
+
doc,
|
15 |
+
)
|
16 |
+
|
17 |
+
from pandas.core.dtypes.common import (
|
18 |
+
is_integer,
|
19 |
+
is_list_like,
|
20 |
+
)
|
21 |
+
|
22 |
+
if TYPE_CHECKING:
|
23 |
+
from pandas._typing import PositionalIndexer
|
24 |
+
|
25 |
+
from pandas import (
|
26 |
+
DataFrame,
|
27 |
+
Series,
|
28 |
+
)
|
29 |
+
from pandas.core.groupby import groupby
|
30 |
+
|
31 |
+
|
32 |
+
class GroupByIndexingMixin:
|
33 |
+
"""
|
34 |
+
Mixin for adding ._positional_selector to GroupBy.
|
35 |
+
"""
|
36 |
+
|
37 |
+
@cache_readonly
|
38 |
+
def _positional_selector(self) -> GroupByPositionalSelector:
|
39 |
+
"""
|
40 |
+
Return positional selection for each group.
|
41 |
+
|
42 |
+
``groupby._positional_selector[i:j]`` is similar to
|
43 |
+
``groupby.apply(lambda x: x.iloc[i:j])``
|
44 |
+
but much faster and preserves the original index and order.
|
45 |
+
|
46 |
+
``_positional_selector[]`` is compatible with and extends :meth:`~GroupBy.head`
|
47 |
+
and :meth:`~GroupBy.tail`. For example:
|
48 |
+
|
49 |
+
- ``head(5)``
|
50 |
+
- ``_positional_selector[5:-5]``
|
51 |
+
- ``tail(5)``
|
52 |
+
|
53 |
+
together return all the rows.
|
54 |
+
|
55 |
+
Allowed inputs for the index are:
|
56 |
+
|
57 |
+
- An integer valued iterable, e.g. ``range(2, 4)``.
|
58 |
+
- A comma separated list of integers and slices, e.g. ``5``, ``2, 4``, ``2:4``.
|
59 |
+
|
60 |
+
The output format is the same as :meth:`~GroupBy.head` and
|
61 |
+
:meth:`~GroupBy.tail`, namely
|
62 |
+
a subset of the ``DataFrame`` or ``Series`` with the index and order preserved.
|
63 |
+
|
64 |
+
Returns
|
65 |
+
-------
|
66 |
+
Series
|
67 |
+
The filtered subset of the original Series.
|
68 |
+
DataFrame
|
69 |
+
The filtered subset of the original DataFrame.
|
70 |
+
|
71 |
+
See Also
|
72 |
+
--------
|
73 |
+
DataFrame.iloc : Purely integer-location based indexing for selection by
|
74 |
+
position.
|
75 |
+
GroupBy.head : Return first n rows of each group.
|
76 |
+
GroupBy.tail : Return last n rows of each group.
|
77 |
+
GroupBy.nth : Take the nth row from each group if n is an int, or a
|
78 |
+
subset of rows, if n is a list of ints.
|
79 |
+
|
80 |
+
Notes
|
81 |
+
-----
|
82 |
+
- The slice step cannot be negative.
|
83 |
+
- If the index specification results in overlaps, the item is not duplicated.
|
84 |
+
- If the index specification changes the order of items, then
|
85 |
+
they are returned in their original order.
|
86 |
+
By contrast, ``DataFrame.iloc`` can change the row order.
|
87 |
+
- ``groupby()`` parameters such as as_index and dropna are ignored.
|
88 |
+
|
89 |
+
The differences between ``_positional_selector[]`` and :meth:`~GroupBy.nth`
|
90 |
+
with ``as_index=False`` are:
|
91 |
+
|
92 |
+
- Input to ``_positional_selector`` can include
|
93 |
+
one or more slices whereas ``nth``
|
94 |
+
just handles an integer or a list of integers.
|
95 |
+
- ``_positional_selector`` can accept a slice relative to the
|
96 |
+
last row of each group.
|
97 |
+
- ``_positional_selector`` does not have an equivalent to the
|
98 |
+
``nth()`` ``dropna`` parameter.
|
99 |
+
|
100 |
+
Examples
|
101 |
+
--------
|
102 |
+
>>> df = pd.DataFrame([["a", 1], ["a", 2], ["a", 3], ["b", 4], ["b", 5]],
|
103 |
+
... columns=["A", "B"])
|
104 |
+
>>> df.groupby("A")._positional_selector[1:2]
|
105 |
+
A B
|
106 |
+
1 a 2
|
107 |
+
4 b 5
|
108 |
+
|
109 |
+
>>> df.groupby("A")._positional_selector[1, -1]
|
110 |
+
A B
|
111 |
+
1 a 2
|
112 |
+
2 a 3
|
113 |
+
4 b 5
|
114 |
+
"""
|
115 |
+
if TYPE_CHECKING:
|
116 |
+
# pylint: disable-next=used-before-assignment
|
117 |
+
groupby_self = cast(groupby.GroupBy, self)
|
118 |
+
else:
|
119 |
+
groupby_self = self
|
120 |
+
|
121 |
+
return GroupByPositionalSelector(groupby_self)
|
122 |
+
|
123 |
+
def _make_mask_from_positional_indexer(
|
124 |
+
self,
|
125 |
+
arg: PositionalIndexer | tuple,
|
126 |
+
) -> np.ndarray:
|
127 |
+
if is_list_like(arg):
|
128 |
+
if all(is_integer(i) for i in cast(Iterable, arg)):
|
129 |
+
mask = self._make_mask_from_list(cast(Iterable[int], arg))
|
130 |
+
else:
|
131 |
+
mask = self._make_mask_from_tuple(cast(tuple, arg))
|
132 |
+
|
133 |
+
elif isinstance(arg, slice):
|
134 |
+
mask = self._make_mask_from_slice(arg)
|
135 |
+
elif is_integer(arg):
|
136 |
+
mask = self._make_mask_from_int(cast(int, arg))
|
137 |
+
else:
|
138 |
+
raise TypeError(
|
139 |
+
f"Invalid index {type(arg)}. "
|
140 |
+
"Must be integer, list-like, slice or a tuple of "
|
141 |
+
"integers and slices"
|
142 |
+
)
|
143 |
+
|
144 |
+
if isinstance(mask, bool):
|
145 |
+
if mask:
|
146 |
+
mask = self._ascending_count >= 0
|
147 |
+
else:
|
148 |
+
mask = self._ascending_count < 0
|
149 |
+
|
150 |
+
return cast(np.ndarray, mask)
|
151 |
+
|
152 |
+
def _make_mask_from_int(self, arg: int) -> np.ndarray:
|
153 |
+
if arg >= 0:
|
154 |
+
return self._ascending_count == arg
|
155 |
+
else:
|
156 |
+
return self._descending_count == (-arg - 1)
|
157 |
+
|
158 |
+
def _make_mask_from_list(self, args: Iterable[int]) -> bool | np.ndarray:
|
159 |
+
positive = [arg for arg in args if arg >= 0]
|
160 |
+
negative = [-arg - 1 for arg in args if arg < 0]
|
161 |
+
|
162 |
+
mask: bool | np.ndarray = False
|
163 |
+
|
164 |
+
if positive:
|
165 |
+
mask |= np.isin(self._ascending_count, positive)
|
166 |
+
|
167 |
+
if negative:
|
168 |
+
mask |= np.isin(self._descending_count, negative)
|
169 |
+
|
170 |
+
return mask
|
171 |
+
|
172 |
+
def _make_mask_from_tuple(self, args: tuple) -> bool | np.ndarray:
|
173 |
+
mask: bool | np.ndarray = False
|
174 |
+
|
175 |
+
for arg in args:
|
176 |
+
if is_integer(arg):
|
177 |
+
mask |= self._make_mask_from_int(cast(int, arg))
|
178 |
+
elif isinstance(arg, slice):
|
179 |
+
mask |= self._make_mask_from_slice(arg)
|
180 |
+
else:
|
181 |
+
raise ValueError(
|
182 |
+
f"Invalid argument {type(arg)}. Should be int or slice."
|
183 |
+
)
|
184 |
+
|
185 |
+
return mask
|
186 |
+
|
187 |
+
def _make_mask_from_slice(self, arg: slice) -> bool | np.ndarray:
|
188 |
+
start = arg.start
|
189 |
+
stop = arg.stop
|
190 |
+
step = arg.step
|
191 |
+
|
192 |
+
if step is not None and step < 0:
|
193 |
+
raise ValueError(f"Invalid step {step}. Must be non-negative")
|
194 |
+
|
195 |
+
mask: bool | np.ndarray = True
|
196 |
+
|
197 |
+
if step is None:
|
198 |
+
step = 1
|
199 |
+
|
200 |
+
if start is None:
|
201 |
+
if step > 1:
|
202 |
+
mask &= self._ascending_count % step == 0
|
203 |
+
|
204 |
+
elif start >= 0:
|
205 |
+
mask &= self._ascending_count >= start
|
206 |
+
|
207 |
+
if step > 1:
|
208 |
+
mask &= (self._ascending_count - start) % step == 0
|
209 |
+
|
210 |
+
else:
|
211 |
+
mask &= self._descending_count < -start
|
212 |
+
|
213 |
+
offset_array = self._descending_count + start + 1
|
214 |
+
limit_array = (
|
215 |
+
self._ascending_count + self._descending_count + (start + 1)
|
216 |
+
) < 0
|
217 |
+
offset_array = np.where(limit_array, self._ascending_count, offset_array)
|
218 |
+
|
219 |
+
mask &= offset_array % step == 0
|
220 |
+
|
221 |
+
if stop is not None:
|
222 |
+
if stop >= 0:
|
223 |
+
mask &= self._ascending_count < stop
|
224 |
+
else:
|
225 |
+
mask &= self._descending_count >= -stop
|
226 |
+
|
227 |
+
return mask
|
228 |
+
|
229 |
+
@cache_readonly
|
230 |
+
def _ascending_count(self) -> np.ndarray:
|
231 |
+
if TYPE_CHECKING:
|
232 |
+
groupby_self = cast(groupby.GroupBy, self)
|
233 |
+
else:
|
234 |
+
groupby_self = self
|
235 |
+
|
236 |
+
return groupby_self._cumcount_array()
|
237 |
+
|
238 |
+
@cache_readonly
|
239 |
+
def _descending_count(self) -> np.ndarray:
|
240 |
+
if TYPE_CHECKING:
|
241 |
+
groupby_self = cast(groupby.GroupBy, self)
|
242 |
+
else:
|
243 |
+
groupby_self = self
|
244 |
+
|
245 |
+
return groupby_self._cumcount_array(ascending=False)
|
246 |
+
|
247 |
+
|
248 |
+
@doc(GroupByIndexingMixin._positional_selector)
|
249 |
+
class GroupByPositionalSelector:
|
250 |
+
def __init__(self, groupby_object: groupby.GroupBy) -> None:
|
251 |
+
self.groupby_object = groupby_object
|
252 |
+
|
253 |
+
def __getitem__(self, arg: PositionalIndexer | tuple) -> DataFrame | Series:
|
254 |
+
"""
|
255 |
+
Select by positional index per group.
|
256 |
+
|
257 |
+
Implements GroupBy._positional_selector
|
258 |
+
|
259 |
+
Parameters
|
260 |
+
----------
|
261 |
+
arg : PositionalIndexer | tuple
|
262 |
+
Allowed values are:
|
263 |
+
- int
|
264 |
+
- int valued iterable such as list or range
|
265 |
+
- slice with step either None or positive
|
266 |
+
- tuple of integers and slices
|
267 |
+
|
268 |
+
Returns
|
269 |
+
-------
|
270 |
+
Series
|
271 |
+
The filtered subset of the original groupby Series.
|
272 |
+
DataFrame
|
273 |
+
The filtered subset of the original groupby DataFrame.
|
274 |
+
|
275 |
+
See Also
|
276 |
+
--------
|
277 |
+
DataFrame.iloc : Integer-location based indexing for selection by position.
|
278 |
+
GroupBy.head : Return first n rows of each group.
|
279 |
+
GroupBy.tail : Return last n rows of each group.
|
280 |
+
GroupBy._positional_selector : Return positional selection for each group.
|
281 |
+
GroupBy.nth : Take the nth row from each group if n is an int, or a
|
282 |
+
subset of rows, if n is a list of ints.
|
283 |
+
"""
|
284 |
+
mask = self.groupby_object._make_mask_from_positional_indexer(arg)
|
285 |
+
return self.groupby_object._mask_selected_obj(mask)
|
286 |
+
|
287 |
+
|
288 |
+
class GroupByNthSelector:
|
289 |
+
"""
|
290 |
+
Dynamically substituted for GroupBy.nth to enable both call and index
|
291 |
+
"""
|
292 |
+
|
293 |
+
def __init__(self, groupby_object: groupby.GroupBy) -> None:
|
294 |
+
self.groupby_object = groupby_object
|
295 |
+
|
296 |
+
def __call__(
|
297 |
+
self,
|
298 |
+
n: PositionalIndexer | tuple,
|
299 |
+
dropna: Literal["any", "all", None] = None,
|
300 |
+
) -> DataFrame | Series:
|
301 |
+
return self.groupby_object._nth(n, dropna)
|
302 |
+
|
303 |
+
def __getitem__(self, n: PositionalIndexer | tuple) -> DataFrame | Series:
|
304 |
+
return self.groupby_object._nth(n)
|
venv/lib/python3.10/site-packages/pandas/core/groupby/numba_.py
ADDED
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Common utilities for Numba operations with groupby ops"""
|
2 |
+
from __future__ import annotations
|
3 |
+
|
4 |
+
import functools
|
5 |
+
import inspect
|
6 |
+
from typing import (
|
7 |
+
TYPE_CHECKING,
|
8 |
+
Any,
|
9 |
+
Callable,
|
10 |
+
)
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
|
14 |
+
from pandas.compat._optional import import_optional_dependency
|
15 |
+
|
16 |
+
from pandas.core.util.numba_ import (
|
17 |
+
NumbaUtilError,
|
18 |
+
jit_user_function,
|
19 |
+
)
|
20 |
+
|
21 |
+
if TYPE_CHECKING:
|
22 |
+
from pandas._typing import Scalar
|
23 |
+
|
24 |
+
|
25 |
+
def validate_udf(func: Callable) -> None:
|
26 |
+
"""
|
27 |
+
Validate user defined function for ops when using Numba with groupby ops.
|
28 |
+
|
29 |
+
The first signature arguments should include:
|
30 |
+
|
31 |
+
def f(values, index, ...):
|
32 |
+
...
|
33 |
+
|
34 |
+
Parameters
|
35 |
+
----------
|
36 |
+
func : function, default False
|
37 |
+
user defined function
|
38 |
+
|
39 |
+
Returns
|
40 |
+
-------
|
41 |
+
None
|
42 |
+
|
43 |
+
Raises
|
44 |
+
------
|
45 |
+
NumbaUtilError
|
46 |
+
"""
|
47 |
+
if not callable(func):
|
48 |
+
raise NotImplementedError(
|
49 |
+
"Numba engine can only be used with a single function."
|
50 |
+
)
|
51 |
+
udf_signature = list(inspect.signature(func).parameters.keys())
|
52 |
+
expected_args = ["values", "index"]
|
53 |
+
min_number_args = len(expected_args)
|
54 |
+
if (
|
55 |
+
len(udf_signature) < min_number_args
|
56 |
+
or udf_signature[:min_number_args] != expected_args
|
57 |
+
):
|
58 |
+
raise NumbaUtilError(
|
59 |
+
f"The first {min_number_args} arguments to {func.__name__} must be "
|
60 |
+
f"{expected_args}"
|
61 |
+
)
|
62 |
+
|
63 |
+
|
64 |
+
@functools.cache
|
65 |
+
def generate_numba_agg_func(
|
66 |
+
func: Callable[..., Scalar],
|
67 |
+
nopython: bool,
|
68 |
+
nogil: bool,
|
69 |
+
parallel: bool,
|
70 |
+
) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]:
|
71 |
+
"""
|
72 |
+
Generate a numba jitted agg function specified by values from engine_kwargs.
|
73 |
+
|
74 |
+
1. jit the user's function
|
75 |
+
2. Return a groupby agg function with the jitted function inline
|
76 |
+
|
77 |
+
Configurations specified in engine_kwargs apply to both the user's
|
78 |
+
function _AND_ the groupby evaluation loop.
|
79 |
+
|
80 |
+
Parameters
|
81 |
+
----------
|
82 |
+
func : function
|
83 |
+
function to be applied to each group and will be JITed
|
84 |
+
nopython : bool
|
85 |
+
nopython to be passed into numba.jit
|
86 |
+
nogil : bool
|
87 |
+
nogil to be passed into numba.jit
|
88 |
+
parallel : bool
|
89 |
+
parallel to be passed into numba.jit
|
90 |
+
|
91 |
+
Returns
|
92 |
+
-------
|
93 |
+
Numba function
|
94 |
+
"""
|
95 |
+
numba_func = jit_user_function(func)
|
96 |
+
if TYPE_CHECKING:
|
97 |
+
import numba
|
98 |
+
else:
|
99 |
+
numba = import_optional_dependency("numba")
|
100 |
+
|
101 |
+
@numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
|
102 |
+
def group_agg(
|
103 |
+
values: np.ndarray,
|
104 |
+
index: np.ndarray,
|
105 |
+
begin: np.ndarray,
|
106 |
+
end: np.ndarray,
|
107 |
+
num_columns: int,
|
108 |
+
*args: Any,
|
109 |
+
) -> np.ndarray:
|
110 |
+
assert len(begin) == len(end)
|
111 |
+
num_groups = len(begin)
|
112 |
+
|
113 |
+
result = np.empty((num_groups, num_columns))
|
114 |
+
for i in numba.prange(num_groups):
|
115 |
+
group_index = index[begin[i] : end[i]]
|
116 |
+
for j in numba.prange(num_columns):
|
117 |
+
group = values[begin[i] : end[i], j]
|
118 |
+
result[i, j] = numba_func(group, group_index, *args)
|
119 |
+
return result
|
120 |
+
|
121 |
+
return group_agg
|
122 |
+
|
123 |
+
|
124 |
+
@functools.cache
|
125 |
+
def generate_numba_transform_func(
|
126 |
+
func: Callable[..., np.ndarray],
|
127 |
+
nopython: bool,
|
128 |
+
nogil: bool,
|
129 |
+
parallel: bool,
|
130 |
+
) -> Callable[[np.ndarray, np.ndarray, np.ndarray, np.ndarray, int, Any], np.ndarray]:
|
131 |
+
"""
|
132 |
+
Generate a numba jitted transform function specified by values from engine_kwargs.
|
133 |
+
|
134 |
+
1. jit the user's function
|
135 |
+
2. Return a groupby transform function with the jitted function inline
|
136 |
+
|
137 |
+
Configurations specified in engine_kwargs apply to both the user's
|
138 |
+
function _AND_ the groupby evaluation loop.
|
139 |
+
|
140 |
+
Parameters
|
141 |
+
----------
|
142 |
+
func : function
|
143 |
+
function to be applied to each window and will be JITed
|
144 |
+
nopython : bool
|
145 |
+
nopython to be passed into numba.jit
|
146 |
+
nogil : bool
|
147 |
+
nogil to be passed into numba.jit
|
148 |
+
parallel : bool
|
149 |
+
parallel to be passed into numba.jit
|
150 |
+
|
151 |
+
Returns
|
152 |
+
-------
|
153 |
+
Numba function
|
154 |
+
"""
|
155 |
+
numba_func = jit_user_function(func)
|
156 |
+
if TYPE_CHECKING:
|
157 |
+
import numba
|
158 |
+
else:
|
159 |
+
numba = import_optional_dependency("numba")
|
160 |
+
|
161 |
+
@numba.jit(nopython=nopython, nogil=nogil, parallel=parallel)
|
162 |
+
def group_transform(
|
163 |
+
values: np.ndarray,
|
164 |
+
index: np.ndarray,
|
165 |
+
begin: np.ndarray,
|
166 |
+
end: np.ndarray,
|
167 |
+
num_columns: int,
|
168 |
+
*args: Any,
|
169 |
+
) -> np.ndarray:
|
170 |
+
assert len(begin) == len(end)
|
171 |
+
num_groups = len(begin)
|
172 |
+
|
173 |
+
result = np.empty((len(values), num_columns))
|
174 |
+
for i in numba.prange(num_groups):
|
175 |
+
group_index = index[begin[i] : end[i]]
|
176 |
+
for j in numba.prange(num_columns):
|
177 |
+
group = values[begin[i] : end[i], j]
|
178 |
+
result[begin[i] : end[i], j] = numba_func(group, group_index, *args)
|
179 |
+
return result
|
180 |
+
|
181 |
+
return group_transform
|
venv/lib/python3.10/site-packages/pandas/core/groupby/ops.py
ADDED
@@ -0,0 +1,1208 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Provide classes to perform the groupby aggregate operations.
|
3 |
+
|
4 |
+
These are not exposed to the user and provide implementations of the grouping
|
5 |
+
operations, primarily in cython. These classes (BaseGrouper and BinGrouper)
|
6 |
+
are contained *in* the SeriesGroupBy and DataFrameGroupBy objects.
|
7 |
+
"""
|
8 |
+
from __future__ import annotations
|
9 |
+
|
10 |
+
import collections
|
11 |
+
import functools
|
12 |
+
from typing import (
|
13 |
+
TYPE_CHECKING,
|
14 |
+
Callable,
|
15 |
+
Generic,
|
16 |
+
final,
|
17 |
+
)
|
18 |
+
|
19 |
+
import numpy as np
|
20 |
+
|
21 |
+
from pandas._libs import (
|
22 |
+
NaT,
|
23 |
+
lib,
|
24 |
+
)
|
25 |
+
import pandas._libs.groupby as libgroupby
|
26 |
+
from pandas._typing import (
|
27 |
+
ArrayLike,
|
28 |
+
AxisInt,
|
29 |
+
NDFrameT,
|
30 |
+
Shape,
|
31 |
+
npt,
|
32 |
+
)
|
33 |
+
from pandas.errors import AbstractMethodError
|
34 |
+
from pandas.util._decorators import cache_readonly
|
35 |
+
|
36 |
+
from pandas.core.dtypes.cast import (
|
37 |
+
maybe_cast_pointwise_result,
|
38 |
+
maybe_downcast_to_dtype,
|
39 |
+
)
|
40 |
+
from pandas.core.dtypes.common import (
|
41 |
+
ensure_float64,
|
42 |
+
ensure_int64,
|
43 |
+
ensure_platform_int,
|
44 |
+
ensure_uint64,
|
45 |
+
is_1d_only_ea_dtype,
|
46 |
+
)
|
47 |
+
from pandas.core.dtypes.missing import (
|
48 |
+
isna,
|
49 |
+
maybe_fill,
|
50 |
+
)
|
51 |
+
|
52 |
+
from pandas.core.frame import DataFrame
|
53 |
+
from pandas.core.groupby import grouper
|
54 |
+
from pandas.core.indexes.api import (
|
55 |
+
CategoricalIndex,
|
56 |
+
Index,
|
57 |
+
MultiIndex,
|
58 |
+
ensure_index,
|
59 |
+
)
|
60 |
+
from pandas.core.series import Series
|
61 |
+
from pandas.core.sorting import (
|
62 |
+
compress_group_index,
|
63 |
+
decons_obs_group_ids,
|
64 |
+
get_flattened_list,
|
65 |
+
get_group_index,
|
66 |
+
get_group_index_sorter,
|
67 |
+
get_indexer_dict,
|
68 |
+
)
|
69 |
+
|
70 |
+
if TYPE_CHECKING:
|
71 |
+
from collections.abc import (
|
72 |
+
Hashable,
|
73 |
+
Iterator,
|
74 |
+
Sequence,
|
75 |
+
)
|
76 |
+
|
77 |
+
from pandas.core.generic import NDFrame
|
78 |
+
|
79 |
+
|
80 |
+
def check_result_array(obj, dtype) -> None:
|
81 |
+
# Our operation is supposed to be an aggregation/reduction. If
|
82 |
+
# it returns an ndarray, this likely means an invalid operation has
|
83 |
+
# been passed. See test_apply_without_aggregation, test_agg_must_agg
|
84 |
+
if isinstance(obj, np.ndarray):
|
85 |
+
if dtype != object:
|
86 |
+
# If it is object dtype, the function can be a reduction/aggregation
|
87 |
+
# and still return an ndarray e.g. test_agg_over_numpy_arrays
|
88 |
+
raise ValueError("Must produce aggregated value")
|
89 |
+
|
90 |
+
|
91 |
+
def extract_result(res):
|
92 |
+
"""
|
93 |
+
Extract the result object, it might be a 0-dim ndarray
|
94 |
+
or a len-1 0-dim, or a scalar
|
95 |
+
"""
|
96 |
+
if hasattr(res, "_values"):
|
97 |
+
# Preserve EA
|
98 |
+
res = res._values
|
99 |
+
if res.ndim == 1 and len(res) == 1:
|
100 |
+
# see test_agg_lambda_with_timezone, test_resampler_grouper.py::test_apply
|
101 |
+
res = res[0]
|
102 |
+
return res
|
103 |
+
|
104 |
+
|
105 |
+
class WrappedCythonOp:
|
106 |
+
"""
|
107 |
+
Dispatch logic for functions defined in _libs.groupby
|
108 |
+
|
109 |
+
Parameters
|
110 |
+
----------
|
111 |
+
kind: str
|
112 |
+
Whether the operation is an aggregate or transform.
|
113 |
+
how: str
|
114 |
+
Operation name, e.g. "mean".
|
115 |
+
has_dropped_na: bool
|
116 |
+
True precisely when dropna=True and the grouper contains a null value.
|
117 |
+
"""
|
118 |
+
|
119 |
+
# Functions for which we do _not_ attempt to cast the cython result
|
120 |
+
# back to the original dtype.
|
121 |
+
cast_blocklist = frozenset(
|
122 |
+
["any", "all", "rank", "count", "size", "idxmin", "idxmax"]
|
123 |
+
)
|
124 |
+
|
125 |
+
def __init__(self, kind: str, how: str, has_dropped_na: bool) -> None:
|
126 |
+
self.kind = kind
|
127 |
+
self.how = how
|
128 |
+
self.has_dropped_na = has_dropped_na
|
129 |
+
|
130 |
+
_CYTHON_FUNCTIONS: dict[str, dict] = {
|
131 |
+
"aggregate": {
|
132 |
+
"any": functools.partial(libgroupby.group_any_all, val_test="any"),
|
133 |
+
"all": functools.partial(libgroupby.group_any_all, val_test="all"),
|
134 |
+
"sum": "group_sum",
|
135 |
+
"prod": "group_prod",
|
136 |
+
"idxmin": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmin"),
|
137 |
+
"idxmax": functools.partial(libgroupby.group_idxmin_idxmax, name="idxmax"),
|
138 |
+
"min": "group_min",
|
139 |
+
"max": "group_max",
|
140 |
+
"mean": "group_mean",
|
141 |
+
"median": "group_median_float64",
|
142 |
+
"var": "group_var",
|
143 |
+
"std": functools.partial(libgroupby.group_var, name="std"),
|
144 |
+
"sem": functools.partial(libgroupby.group_var, name="sem"),
|
145 |
+
"skew": "group_skew",
|
146 |
+
"first": "group_nth",
|
147 |
+
"last": "group_last",
|
148 |
+
"ohlc": "group_ohlc",
|
149 |
+
},
|
150 |
+
"transform": {
|
151 |
+
"cumprod": "group_cumprod",
|
152 |
+
"cumsum": "group_cumsum",
|
153 |
+
"cummin": "group_cummin",
|
154 |
+
"cummax": "group_cummax",
|
155 |
+
"rank": "group_rank",
|
156 |
+
},
|
157 |
+
}
|
158 |
+
|
159 |
+
_cython_arity = {"ohlc": 4} # OHLC
|
160 |
+
|
161 |
+
@classmethod
|
162 |
+
def get_kind_from_how(cls, how: str) -> str:
|
163 |
+
if how in cls._CYTHON_FUNCTIONS["aggregate"]:
|
164 |
+
return "aggregate"
|
165 |
+
return "transform"
|
166 |
+
|
167 |
+
# Note: we make this a classmethod and pass kind+how so that caching
|
168 |
+
# works at the class level and not the instance level
|
169 |
+
@classmethod
|
170 |
+
@functools.cache
|
171 |
+
def _get_cython_function(
|
172 |
+
cls, kind: str, how: str, dtype: np.dtype, is_numeric: bool
|
173 |
+
):
|
174 |
+
dtype_str = dtype.name
|
175 |
+
ftype = cls._CYTHON_FUNCTIONS[kind][how]
|
176 |
+
|
177 |
+
# see if there is a fused-type version of function
|
178 |
+
# only valid for numeric
|
179 |
+
if callable(ftype):
|
180 |
+
f = ftype
|
181 |
+
else:
|
182 |
+
f = getattr(libgroupby, ftype)
|
183 |
+
if is_numeric:
|
184 |
+
return f
|
185 |
+
elif dtype == np.dtype(object):
|
186 |
+
if how in ["median", "cumprod"]:
|
187 |
+
# no fused types -> no __signatures__
|
188 |
+
raise NotImplementedError(
|
189 |
+
f"function is not implemented for this dtype: "
|
190 |
+
f"[how->{how},dtype->{dtype_str}]"
|
191 |
+
)
|
192 |
+
elif how in ["std", "sem", "idxmin", "idxmax"]:
|
193 |
+
# We have a partial object that does not have __signatures__
|
194 |
+
return f
|
195 |
+
elif how == "skew":
|
196 |
+
# _get_cython_vals will convert to float64
|
197 |
+
pass
|
198 |
+
elif "object" not in f.__signatures__:
|
199 |
+
# raise NotImplementedError here rather than TypeError later
|
200 |
+
raise NotImplementedError(
|
201 |
+
f"function is not implemented for this dtype: "
|
202 |
+
f"[how->{how},dtype->{dtype_str}]"
|
203 |
+
)
|
204 |
+
return f
|
205 |
+
else:
|
206 |
+
raise NotImplementedError(
|
207 |
+
"This should not be reached. Please report a bug at "
|
208 |
+
"github.com/pandas-dev/pandas/",
|
209 |
+
dtype,
|
210 |
+
)
|
211 |
+
|
212 |
+
def _get_cython_vals(self, values: np.ndarray) -> np.ndarray:
|
213 |
+
"""
|
214 |
+
Cast numeric dtypes to float64 for functions that only support that.
|
215 |
+
|
216 |
+
Parameters
|
217 |
+
----------
|
218 |
+
values : np.ndarray
|
219 |
+
|
220 |
+
Returns
|
221 |
+
-------
|
222 |
+
values : np.ndarray
|
223 |
+
"""
|
224 |
+
how = self.how
|
225 |
+
|
226 |
+
if how in ["median", "std", "sem", "skew"]:
|
227 |
+
# median only has a float64 implementation
|
228 |
+
# We should only get here with is_numeric, as non-numeric cases
|
229 |
+
# should raise in _get_cython_function
|
230 |
+
values = ensure_float64(values)
|
231 |
+
|
232 |
+
elif values.dtype.kind in "iu":
|
233 |
+
if how in ["var", "mean"] or (
|
234 |
+
self.kind == "transform" and self.has_dropped_na
|
235 |
+
):
|
236 |
+
# has_dropped_na check need for test_null_group_str_transformer
|
237 |
+
# result may still include NaN, so we have to cast
|
238 |
+
values = ensure_float64(values)
|
239 |
+
|
240 |
+
elif how in ["sum", "ohlc", "prod", "cumsum", "cumprod"]:
|
241 |
+
# Avoid overflow during group op
|
242 |
+
if values.dtype.kind == "i":
|
243 |
+
values = ensure_int64(values)
|
244 |
+
else:
|
245 |
+
values = ensure_uint64(values)
|
246 |
+
|
247 |
+
return values
|
248 |
+
|
249 |
+
def _get_output_shape(self, ngroups: int, values: np.ndarray) -> Shape:
|
250 |
+
how = self.how
|
251 |
+
kind = self.kind
|
252 |
+
|
253 |
+
arity = self._cython_arity.get(how, 1)
|
254 |
+
|
255 |
+
out_shape: Shape
|
256 |
+
if how == "ohlc":
|
257 |
+
out_shape = (ngroups, arity)
|
258 |
+
elif arity > 1:
|
259 |
+
raise NotImplementedError(
|
260 |
+
"arity of more than 1 is not supported for the 'how' argument"
|
261 |
+
)
|
262 |
+
elif kind == "transform":
|
263 |
+
out_shape = values.shape
|
264 |
+
else:
|
265 |
+
out_shape = (ngroups,) + values.shape[1:]
|
266 |
+
return out_shape
|
267 |
+
|
268 |
+
def _get_out_dtype(self, dtype: np.dtype) -> np.dtype:
|
269 |
+
how = self.how
|
270 |
+
|
271 |
+
if how == "rank":
|
272 |
+
out_dtype = "float64"
|
273 |
+
elif how in ["idxmin", "idxmax"]:
|
274 |
+
# The Cython implementation only produces the row number; we'll take
|
275 |
+
# from the index using this in post processing
|
276 |
+
out_dtype = "intp"
|
277 |
+
else:
|
278 |
+
if dtype.kind in "iufcb":
|
279 |
+
out_dtype = f"{dtype.kind}{dtype.itemsize}"
|
280 |
+
else:
|
281 |
+
out_dtype = "object"
|
282 |
+
return np.dtype(out_dtype)
|
283 |
+
|
284 |
+
def _get_result_dtype(self, dtype: np.dtype) -> np.dtype:
|
285 |
+
"""
|
286 |
+
Get the desired dtype of a result based on the
|
287 |
+
input dtype and how it was computed.
|
288 |
+
|
289 |
+
Parameters
|
290 |
+
----------
|
291 |
+
dtype : np.dtype
|
292 |
+
|
293 |
+
Returns
|
294 |
+
-------
|
295 |
+
np.dtype
|
296 |
+
The desired dtype of the result.
|
297 |
+
"""
|
298 |
+
how = self.how
|
299 |
+
|
300 |
+
if how in ["sum", "cumsum", "sum", "prod", "cumprod"]:
|
301 |
+
if dtype == np.dtype(bool):
|
302 |
+
return np.dtype(np.int64)
|
303 |
+
elif how in ["mean", "median", "var", "std", "sem"]:
|
304 |
+
if dtype.kind in "fc":
|
305 |
+
return dtype
|
306 |
+
elif dtype.kind in "iub":
|
307 |
+
return np.dtype(np.float64)
|
308 |
+
return dtype
|
309 |
+
|
310 |
+
@final
|
311 |
+
def _cython_op_ndim_compat(
|
312 |
+
self,
|
313 |
+
values: np.ndarray,
|
314 |
+
*,
|
315 |
+
min_count: int,
|
316 |
+
ngroups: int,
|
317 |
+
comp_ids: np.ndarray,
|
318 |
+
mask: npt.NDArray[np.bool_] | None = None,
|
319 |
+
result_mask: npt.NDArray[np.bool_] | None = None,
|
320 |
+
**kwargs,
|
321 |
+
) -> np.ndarray:
|
322 |
+
if values.ndim == 1:
|
323 |
+
# expand to 2d, dispatch, then squeeze if appropriate
|
324 |
+
values2d = values[None, :]
|
325 |
+
if mask is not None:
|
326 |
+
mask = mask[None, :]
|
327 |
+
if result_mask is not None:
|
328 |
+
result_mask = result_mask[None, :]
|
329 |
+
res = self._call_cython_op(
|
330 |
+
values2d,
|
331 |
+
min_count=min_count,
|
332 |
+
ngroups=ngroups,
|
333 |
+
comp_ids=comp_ids,
|
334 |
+
mask=mask,
|
335 |
+
result_mask=result_mask,
|
336 |
+
**kwargs,
|
337 |
+
)
|
338 |
+
if res.shape[0] == 1:
|
339 |
+
return res[0]
|
340 |
+
|
341 |
+
# otherwise we have OHLC
|
342 |
+
return res.T
|
343 |
+
|
344 |
+
return self._call_cython_op(
|
345 |
+
values,
|
346 |
+
min_count=min_count,
|
347 |
+
ngroups=ngroups,
|
348 |
+
comp_ids=comp_ids,
|
349 |
+
mask=mask,
|
350 |
+
result_mask=result_mask,
|
351 |
+
**kwargs,
|
352 |
+
)
|
353 |
+
|
354 |
+
@final
|
355 |
+
def _call_cython_op(
|
356 |
+
self,
|
357 |
+
values: np.ndarray, # np.ndarray[ndim=2]
|
358 |
+
*,
|
359 |
+
min_count: int,
|
360 |
+
ngroups: int,
|
361 |
+
comp_ids: np.ndarray,
|
362 |
+
mask: npt.NDArray[np.bool_] | None,
|
363 |
+
result_mask: npt.NDArray[np.bool_] | None,
|
364 |
+
**kwargs,
|
365 |
+
) -> np.ndarray: # np.ndarray[ndim=2]
|
366 |
+
orig_values = values
|
367 |
+
|
368 |
+
dtype = values.dtype
|
369 |
+
is_numeric = dtype.kind in "iufcb"
|
370 |
+
|
371 |
+
is_datetimelike = dtype.kind in "mM"
|
372 |
+
|
373 |
+
if is_datetimelike:
|
374 |
+
values = values.view("int64")
|
375 |
+
is_numeric = True
|
376 |
+
elif dtype.kind == "b":
|
377 |
+
values = values.view("uint8")
|
378 |
+
if values.dtype == "float16":
|
379 |
+
values = values.astype(np.float32)
|
380 |
+
|
381 |
+
if self.how in ["any", "all"]:
|
382 |
+
if mask is None:
|
383 |
+
mask = isna(values)
|
384 |
+
if dtype == object:
|
385 |
+
if kwargs["skipna"]:
|
386 |
+
# GH#37501: don't raise on pd.NA when skipna=True
|
387 |
+
if mask.any():
|
388 |
+
# mask on original values computed separately
|
389 |
+
values = values.copy()
|
390 |
+
values[mask] = True
|
391 |
+
values = values.astype(bool, copy=False).view(np.int8)
|
392 |
+
is_numeric = True
|
393 |
+
|
394 |
+
values = values.T
|
395 |
+
if mask is not None:
|
396 |
+
mask = mask.T
|
397 |
+
if result_mask is not None:
|
398 |
+
result_mask = result_mask.T
|
399 |
+
|
400 |
+
out_shape = self._get_output_shape(ngroups, values)
|
401 |
+
func = self._get_cython_function(self.kind, self.how, values.dtype, is_numeric)
|
402 |
+
values = self._get_cython_vals(values)
|
403 |
+
out_dtype = self._get_out_dtype(values.dtype)
|
404 |
+
|
405 |
+
result = maybe_fill(np.empty(out_shape, dtype=out_dtype))
|
406 |
+
if self.kind == "aggregate":
|
407 |
+
counts = np.zeros(ngroups, dtype=np.int64)
|
408 |
+
if self.how in [
|
409 |
+
"idxmin",
|
410 |
+
"idxmax",
|
411 |
+
"min",
|
412 |
+
"max",
|
413 |
+
"mean",
|
414 |
+
"last",
|
415 |
+
"first",
|
416 |
+
"sum",
|
417 |
+
]:
|
418 |
+
func(
|
419 |
+
out=result,
|
420 |
+
counts=counts,
|
421 |
+
values=values,
|
422 |
+
labels=comp_ids,
|
423 |
+
min_count=min_count,
|
424 |
+
mask=mask,
|
425 |
+
result_mask=result_mask,
|
426 |
+
is_datetimelike=is_datetimelike,
|
427 |
+
**kwargs,
|
428 |
+
)
|
429 |
+
elif self.how in ["sem", "std", "var", "ohlc", "prod", "median"]:
|
430 |
+
if self.how in ["std", "sem"]:
|
431 |
+
kwargs["is_datetimelike"] = is_datetimelike
|
432 |
+
func(
|
433 |
+
result,
|
434 |
+
counts,
|
435 |
+
values,
|
436 |
+
comp_ids,
|
437 |
+
min_count=min_count,
|
438 |
+
mask=mask,
|
439 |
+
result_mask=result_mask,
|
440 |
+
**kwargs,
|
441 |
+
)
|
442 |
+
elif self.how in ["any", "all"]:
|
443 |
+
func(
|
444 |
+
out=result,
|
445 |
+
values=values,
|
446 |
+
labels=comp_ids,
|
447 |
+
mask=mask,
|
448 |
+
result_mask=result_mask,
|
449 |
+
**kwargs,
|
450 |
+
)
|
451 |
+
result = result.astype(bool, copy=False)
|
452 |
+
elif self.how in ["skew"]:
|
453 |
+
func(
|
454 |
+
out=result,
|
455 |
+
counts=counts,
|
456 |
+
values=values,
|
457 |
+
labels=comp_ids,
|
458 |
+
mask=mask,
|
459 |
+
result_mask=result_mask,
|
460 |
+
**kwargs,
|
461 |
+
)
|
462 |
+
if dtype == object:
|
463 |
+
result = result.astype(object)
|
464 |
+
|
465 |
+
else:
|
466 |
+
raise NotImplementedError(f"{self.how} is not implemented")
|
467 |
+
else:
|
468 |
+
# TODO: min_count
|
469 |
+
if self.how != "rank":
|
470 |
+
# TODO: should rank take result_mask?
|
471 |
+
kwargs["result_mask"] = result_mask
|
472 |
+
func(
|
473 |
+
out=result,
|
474 |
+
values=values,
|
475 |
+
labels=comp_ids,
|
476 |
+
ngroups=ngroups,
|
477 |
+
is_datetimelike=is_datetimelike,
|
478 |
+
mask=mask,
|
479 |
+
**kwargs,
|
480 |
+
)
|
481 |
+
|
482 |
+
if self.kind == "aggregate" and self.how not in ["idxmin", "idxmax"]:
|
483 |
+
# i.e. counts is defined. Locations where count<min_count
|
484 |
+
# need to have the result set to np.nan, which may require casting,
|
485 |
+
# see GH#40767. For idxmin/idxmax is handled specially via post-processing
|
486 |
+
if result.dtype.kind in "iu" and not is_datetimelike:
|
487 |
+
# if the op keeps the int dtypes, we have to use 0
|
488 |
+
cutoff = max(0 if self.how in ["sum", "prod"] else 1, min_count)
|
489 |
+
empty_groups = counts < cutoff
|
490 |
+
if empty_groups.any():
|
491 |
+
if result_mask is not None:
|
492 |
+
assert result_mask[empty_groups].all()
|
493 |
+
else:
|
494 |
+
# Note: this conversion could be lossy, see GH#40767
|
495 |
+
result = result.astype("float64")
|
496 |
+
result[empty_groups] = np.nan
|
497 |
+
|
498 |
+
result = result.T
|
499 |
+
|
500 |
+
if self.how not in self.cast_blocklist:
|
501 |
+
# e.g. if we are int64 and need to restore to datetime64/timedelta64
|
502 |
+
# "rank" is the only member of cast_blocklist we get here
|
503 |
+
# Casting only needed for float16, bool, datetimelike,
|
504 |
+
# and self.how in ["sum", "prod", "ohlc", "cumprod"]
|
505 |
+
res_dtype = self._get_result_dtype(orig_values.dtype)
|
506 |
+
op_result = maybe_downcast_to_dtype(result, res_dtype)
|
507 |
+
else:
|
508 |
+
op_result = result
|
509 |
+
|
510 |
+
return op_result
|
511 |
+
|
512 |
+
@final
|
513 |
+
def _validate_axis(self, axis: AxisInt, values: ArrayLike) -> None:
|
514 |
+
if values.ndim > 2:
|
515 |
+
raise NotImplementedError("number of dimensions is currently limited to 2")
|
516 |
+
if values.ndim == 2:
|
517 |
+
assert axis == 1, axis
|
518 |
+
elif not is_1d_only_ea_dtype(values.dtype):
|
519 |
+
# Note: it is *not* the case that axis is always 0 for 1-dim values,
|
520 |
+
# as we can have 1D ExtensionArrays that we need to treat as 2D
|
521 |
+
assert axis == 0
|
522 |
+
|
523 |
+
@final
|
524 |
+
def cython_operation(
|
525 |
+
self,
|
526 |
+
*,
|
527 |
+
values: ArrayLike,
|
528 |
+
axis: AxisInt,
|
529 |
+
min_count: int = -1,
|
530 |
+
comp_ids: np.ndarray,
|
531 |
+
ngroups: int,
|
532 |
+
**kwargs,
|
533 |
+
) -> ArrayLike:
|
534 |
+
"""
|
535 |
+
Call our cython function, with appropriate pre- and post- processing.
|
536 |
+
"""
|
537 |
+
self._validate_axis(axis, values)
|
538 |
+
|
539 |
+
if not isinstance(values, np.ndarray):
|
540 |
+
# i.e. ExtensionArray
|
541 |
+
return values._groupby_op(
|
542 |
+
how=self.how,
|
543 |
+
has_dropped_na=self.has_dropped_na,
|
544 |
+
min_count=min_count,
|
545 |
+
ngroups=ngroups,
|
546 |
+
ids=comp_ids,
|
547 |
+
**kwargs,
|
548 |
+
)
|
549 |
+
|
550 |
+
return self._cython_op_ndim_compat(
|
551 |
+
values,
|
552 |
+
min_count=min_count,
|
553 |
+
ngroups=ngroups,
|
554 |
+
comp_ids=comp_ids,
|
555 |
+
mask=None,
|
556 |
+
**kwargs,
|
557 |
+
)
|
558 |
+
|
559 |
+
|
560 |
+
class BaseGrouper:
|
561 |
+
"""
|
562 |
+
This is an internal Grouper class, which actually holds
|
563 |
+
the generated groups
|
564 |
+
|
565 |
+
Parameters
|
566 |
+
----------
|
567 |
+
axis : Index
|
568 |
+
groupings : Sequence[Grouping]
|
569 |
+
all the grouping instances to handle in this grouper
|
570 |
+
for example for grouper list to groupby, need to pass the list
|
571 |
+
sort : bool, default True
|
572 |
+
whether this grouper will give sorted result or not
|
573 |
+
|
574 |
+
"""
|
575 |
+
|
576 |
+
axis: Index
|
577 |
+
|
578 |
+
def __init__(
|
579 |
+
self,
|
580 |
+
axis: Index,
|
581 |
+
groupings: Sequence[grouper.Grouping],
|
582 |
+
sort: bool = True,
|
583 |
+
dropna: bool = True,
|
584 |
+
) -> None:
|
585 |
+
assert isinstance(axis, Index), axis
|
586 |
+
|
587 |
+
self.axis = axis
|
588 |
+
self._groupings: list[grouper.Grouping] = list(groupings)
|
589 |
+
self._sort = sort
|
590 |
+
self.dropna = dropna
|
591 |
+
|
592 |
+
@property
|
593 |
+
def groupings(self) -> list[grouper.Grouping]:
|
594 |
+
return self._groupings
|
595 |
+
|
596 |
+
@property
|
597 |
+
def shape(self) -> Shape:
|
598 |
+
return tuple(ping.ngroups for ping in self.groupings)
|
599 |
+
|
600 |
+
def __iter__(self) -> Iterator[Hashable]:
|
601 |
+
return iter(self.indices)
|
602 |
+
|
603 |
+
@property
|
604 |
+
def nkeys(self) -> int:
|
605 |
+
return len(self.groupings)
|
606 |
+
|
607 |
+
def get_iterator(
|
608 |
+
self, data: NDFrameT, axis: AxisInt = 0
|
609 |
+
) -> Iterator[tuple[Hashable, NDFrameT]]:
|
610 |
+
"""
|
611 |
+
Groupby iterator
|
612 |
+
|
613 |
+
Returns
|
614 |
+
-------
|
615 |
+
Generator yielding sequence of (name, subsetted object)
|
616 |
+
for each group
|
617 |
+
"""
|
618 |
+
splitter = self._get_splitter(data, axis=axis)
|
619 |
+
keys = self.group_keys_seq
|
620 |
+
yield from zip(keys, splitter)
|
621 |
+
|
622 |
+
@final
|
623 |
+
def _get_splitter(self, data: NDFrame, axis: AxisInt = 0) -> DataSplitter:
|
624 |
+
"""
|
625 |
+
Returns
|
626 |
+
-------
|
627 |
+
Generator yielding subsetted objects
|
628 |
+
"""
|
629 |
+
ids, _, ngroups = self.group_info
|
630 |
+
return _get_splitter(
|
631 |
+
data,
|
632 |
+
ids,
|
633 |
+
ngroups,
|
634 |
+
sorted_ids=self._sorted_ids,
|
635 |
+
sort_idx=self._sort_idx,
|
636 |
+
axis=axis,
|
637 |
+
)
|
638 |
+
|
639 |
+
@final
|
640 |
+
@cache_readonly
|
641 |
+
def group_keys_seq(self):
|
642 |
+
if len(self.groupings) == 1:
|
643 |
+
return self.levels[0]
|
644 |
+
else:
|
645 |
+
ids, _, ngroups = self.group_info
|
646 |
+
|
647 |
+
# provide "flattened" iterator for multi-group setting
|
648 |
+
return get_flattened_list(ids, ngroups, self.levels, self.codes)
|
649 |
+
|
650 |
+
@cache_readonly
|
651 |
+
def indices(self) -> dict[Hashable, npt.NDArray[np.intp]]:
|
652 |
+
"""dict {group name -> group indices}"""
|
653 |
+
if len(self.groupings) == 1 and isinstance(self.result_index, CategoricalIndex):
|
654 |
+
# This shows unused categories in indices GH#38642
|
655 |
+
return self.groupings[0].indices
|
656 |
+
codes_list = [ping.codes for ping in self.groupings]
|
657 |
+
keys = [ping._group_index for ping in self.groupings]
|
658 |
+
return get_indexer_dict(codes_list, keys)
|
659 |
+
|
660 |
+
@final
|
661 |
+
def result_ilocs(self) -> npt.NDArray[np.intp]:
|
662 |
+
"""
|
663 |
+
Get the original integer locations of result_index in the input.
|
664 |
+
"""
|
665 |
+
# Original indices are where group_index would go via sorting.
|
666 |
+
# But when dropna is true, we need to remove null values while accounting for
|
667 |
+
# any gaps that then occur because of them.
|
668 |
+
group_index = get_group_index(
|
669 |
+
self.codes, self.shape, sort=self._sort, xnull=True
|
670 |
+
)
|
671 |
+
group_index, _ = compress_group_index(group_index, sort=self._sort)
|
672 |
+
|
673 |
+
if self.has_dropped_na:
|
674 |
+
mask = np.where(group_index >= 0)
|
675 |
+
# Count how many gaps are caused by previous null values for each position
|
676 |
+
null_gaps = np.cumsum(group_index == -1)[mask]
|
677 |
+
group_index = group_index[mask]
|
678 |
+
|
679 |
+
result = get_group_index_sorter(group_index, self.ngroups)
|
680 |
+
|
681 |
+
if self.has_dropped_na:
|
682 |
+
# Shift by the number of prior null gaps
|
683 |
+
result += np.take(null_gaps, result)
|
684 |
+
|
685 |
+
return result
|
686 |
+
|
687 |
+
@final
|
688 |
+
@property
|
689 |
+
def codes(self) -> list[npt.NDArray[np.signedinteger]]:
|
690 |
+
return [ping.codes for ping in self.groupings]
|
691 |
+
|
692 |
+
@property
|
693 |
+
def levels(self) -> list[Index]:
|
694 |
+
return [ping._group_index for ping in self.groupings]
|
695 |
+
|
696 |
+
@property
|
697 |
+
def names(self) -> list[Hashable]:
|
698 |
+
return [ping.name for ping in self.groupings]
|
699 |
+
|
700 |
+
@final
|
701 |
+
def size(self) -> Series:
|
702 |
+
"""
|
703 |
+
Compute group sizes.
|
704 |
+
"""
|
705 |
+
ids, _, ngroups = self.group_info
|
706 |
+
out: np.ndarray | list
|
707 |
+
if ngroups:
|
708 |
+
out = np.bincount(ids[ids != -1], minlength=ngroups)
|
709 |
+
else:
|
710 |
+
out = []
|
711 |
+
return Series(out, index=self.result_index, dtype="int64", copy=False)
|
712 |
+
|
713 |
+
@cache_readonly
|
714 |
+
def groups(self) -> dict[Hashable, np.ndarray]:
|
715 |
+
"""dict {group name -> group labels}"""
|
716 |
+
if len(self.groupings) == 1:
|
717 |
+
return self.groupings[0].groups
|
718 |
+
else:
|
719 |
+
to_groupby = []
|
720 |
+
for ping in self.groupings:
|
721 |
+
gv = ping.grouping_vector
|
722 |
+
if not isinstance(gv, BaseGrouper):
|
723 |
+
to_groupby.append(gv)
|
724 |
+
else:
|
725 |
+
to_groupby.append(gv.groupings[0].grouping_vector)
|
726 |
+
index = MultiIndex.from_arrays(to_groupby)
|
727 |
+
return self.axis.groupby(index)
|
728 |
+
|
729 |
+
@final
|
730 |
+
@cache_readonly
|
731 |
+
def is_monotonic(self) -> bool:
|
732 |
+
# return if my group orderings are monotonic
|
733 |
+
return Index(self.group_info[0]).is_monotonic_increasing
|
734 |
+
|
735 |
+
@final
|
736 |
+
@cache_readonly
|
737 |
+
def has_dropped_na(self) -> bool:
|
738 |
+
"""
|
739 |
+
Whether grouper has null value(s) that are dropped.
|
740 |
+
"""
|
741 |
+
return bool((self.group_info[0] < 0).any())
|
742 |
+
|
743 |
+
@cache_readonly
|
744 |
+
def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
|
745 |
+
comp_ids, obs_group_ids = self._get_compressed_codes()
|
746 |
+
|
747 |
+
ngroups = len(obs_group_ids)
|
748 |
+
comp_ids = ensure_platform_int(comp_ids)
|
749 |
+
|
750 |
+
return comp_ids, obs_group_ids, ngroups
|
751 |
+
|
752 |
+
@cache_readonly
|
753 |
+
def codes_info(self) -> npt.NDArray[np.intp]:
|
754 |
+
# return the codes of items in original grouped axis
|
755 |
+
ids, _, _ = self.group_info
|
756 |
+
return ids
|
757 |
+
|
758 |
+
@final
|
759 |
+
def _get_compressed_codes(
|
760 |
+
self,
|
761 |
+
) -> tuple[npt.NDArray[np.signedinteger], npt.NDArray[np.intp]]:
|
762 |
+
# The first returned ndarray may have any signed integer dtype
|
763 |
+
if len(self.groupings) > 1:
|
764 |
+
group_index = get_group_index(self.codes, self.shape, sort=True, xnull=True)
|
765 |
+
return compress_group_index(group_index, sort=self._sort)
|
766 |
+
# FIXME: compress_group_index's second return value is int64, not intp
|
767 |
+
|
768 |
+
ping = self.groupings[0]
|
769 |
+
return ping.codes, np.arange(len(ping._group_index), dtype=np.intp)
|
770 |
+
|
771 |
+
@final
|
772 |
+
@cache_readonly
|
773 |
+
def ngroups(self) -> int:
|
774 |
+
return len(self.result_index)
|
775 |
+
|
776 |
+
@property
|
777 |
+
def reconstructed_codes(self) -> list[npt.NDArray[np.intp]]:
|
778 |
+
codes = self.codes
|
779 |
+
ids, obs_ids, _ = self.group_info
|
780 |
+
return decons_obs_group_ids(ids, obs_ids, self.shape, codes, xnull=True)
|
781 |
+
|
782 |
+
@cache_readonly
|
783 |
+
def result_index(self) -> Index:
|
784 |
+
if len(self.groupings) == 1:
|
785 |
+
return self.groupings[0]._result_index.rename(self.names[0])
|
786 |
+
|
787 |
+
codes = self.reconstructed_codes
|
788 |
+
levels = [ping._result_index for ping in self.groupings]
|
789 |
+
return MultiIndex(
|
790 |
+
levels=levels, codes=codes, verify_integrity=False, names=self.names
|
791 |
+
)
|
792 |
+
|
793 |
+
@final
|
794 |
+
def get_group_levels(self) -> list[ArrayLike]:
|
795 |
+
# Note: only called from _insert_inaxis_grouper, which
|
796 |
+
# is only called for BaseGrouper, never for BinGrouper
|
797 |
+
if len(self.groupings) == 1:
|
798 |
+
return [self.groupings[0]._group_arraylike]
|
799 |
+
|
800 |
+
name_list = []
|
801 |
+
for ping, codes in zip(self.groupings, self.reconstructed_codes):
|
802 |
+
codes = ensure_platform_int(codes)
|
803 |
+
levels = ping._group_arraylike.take(codes)
|
804 |
+
|
805 |
+
name_list.append(levels)
|
806 |
+
|
807 |
+
return name_list
|
808 |
+
|
809 |
+
# ------------------------------------------------------------
|
810 |
+
# Aggregation functions
|
811 |
+
|
812 |
+
@final
|
813 |
+
def _cython_operation(
|
814 |
+
self,
|
815 |
+
kind: str,
|
816 |
+
values,
|
817 |
+
how: str,
|
818 |
+
axis: AxisInt,
|
819 |
+
min_count: int = -1,
|
820 |
+
**kwargs,
|
821 |
+
) -> ArrayLike:
|
822 |
+
"""
|
823 |
+
Returns the values of a cython operation.
|
824 |
+
"""
|
825 |
+
assert kind in ["transform", "aggregate"]
|
826 |
+
|
827 |
+
cy_op = WrappedCythonOp(kind=kind, how=how, has_dropped_na=self.has_dropped_na)
|
828 |
+
|
829 |
+
ids, _, _ = self.group_info
|
830 |
+
ngroups = self.ngroups
|
831 |
+
return cy_op.cython_operation(
|
832 |
+
values=values,
|
833 |
+
axis=axis,
|
834 |
+
min_count=min_count,
|
835 |
+
comp_ids=ids,
|
836 |
+
ngroups=ngroups,
|
837 |
+
**kwargs,
|
838 |
+
)
|
839 |
+
|
840 |
+
@final
|
841 |
+
def agg_series(
|
842 |
+
self, obj: Series, func: Callable, preserve_dtype: bool = False
|
843 |
+
) -> ArrayLike:
|
844 |
+
"""
|
845 |
+
Parameters
|
846 |
+
----------
|
847 |
+
obj : Series
|
848 |
+
func : function taking a Series and returning a scalar-like
|
849 |
+
preserve_dtype : bool
|
850 |
+
Whether the aggregation is known to be dtype-preserving.
|
851 |
+
|
852 |
+
Returns
|
853 |
+
-------
|
854 |
+
np.ndarray or ExtensionArray
|
855 |
+
"""
|
856 |
+
|
857 |
+
if not isinstance(obj._values, np.ndarray):
|
858 |
+
# we can preserve a little bit more aggressively with EA dtype
|
859 |
+
# because maybe_cast_pointwise_result will do a try/except
|
860 |
+
# with _from_sequence. NB we are assuming here that _from_sequence
|
861 |
+
# is sufficiently strict that it casts appropriately.
|
862 |
+
preserve_dtype = True
|
863 |
+
|
864 |
+
result = self._aggregate_series_pure_python(obj, func)
|
865 |
+
|
866 |
+
npvalues = lib.maybe_convert_objects(result, try_float=False)
|
867 |
+
if preserve_dtype:
|
868 |
+
out = maybe_cast_pointwise_result(npvalues, obj.dtype, numeric_only=True)
|
869 |
+
else:
|
870 |
+
out = npvalues
|
871 |
+
return out
|
872 |
+
|
873 |
+
@final
|
874 |
+
def _aggregate_series_pure_python(
|
875 |
+
self, obj: Series, func: Callable
|
876 |
+
) -> npt.NDArray[np.object_]:
|
877 |
+
_, _, ngroups = self.group_info
|
878 |
+
|
879 |
+
result = np.empty(ngroups, dtype="O")
|
880 |
+
initialized = False
|
881 |
+
|
882 |
+
splitter = self._get_splitter(obj, axis=0)
|
883 |
+
|
884 |
+
for i, group in enumerate(splitter):
|
885 |
+
res = func(group)
|
886 |
+
res = extract_result(res)
|
887 |
+
|
888 |
+
if not initialized:
|
889 |
+
# We only do this validation on the first iteration
|
890 |
+
check_result_array(res, group.dtype)
|
891 |
+
initialized = True
|
892 |
+
|
893 |
+
result[i] = res
|
894 |
+
|
895 |
+
return result
|
896 |
+
|
897 |
+
@final
|
898 |
+
def apply_groupwise(
|
899 |
+
self, f: Callable, data: DataFrame | Series, axis: AxisInt = 0
|
900 |
+
) -> tuple[list, bool]:
|
901 |
+
mutated = False
|
902 |
+
splitter = self._get_splitter(data, axis=axis)
|
903 |
+
group_keys = self.group_keys_seq
|
904 |
+
result_values = []
|
905 |
+
|
906 |
+
# This calls DataSplitter.__iter__
|
907 |
+
zipped = zip(group_keys, splitter)
|
908 |
+
|
909 |
+
for key, group in zipped:
|
910 |
+
# Pinning name is needed for
|
911 |
+
# test_group_apply_once_per_group,
|
912 |
+
# test_inconsistent_return_type, test_set_group_name,
|
913 |
+
# test_group_name_available_in_inference_pass,
|
914 |
+
# test_groupby_multi_timezone
|
915 |
+
object.__setattr__(group, "name", key)
|
916 |
+
|
917 |
+
# group might be modified
|
918 |
+
group_axes = group.axes
|
919 |
+
res = f(group)
|
920 |
+
if not mutated and not _is_indexed_like(res, group_axes, axis):
|
921 |
+
mutated = True
|
922 |
+
result_values.append(res)
|
923 |
+
# getattr pattern for __name__ is needed for functools.partial objects
|
924 |
+
if len(group_keys) == 0 and getattr(f, "__name__", None) in [
|
925 |
+
"skew",
|
926 |
+
"sum",
|
927 |
+
"prod",
|
928 |
+
]:
|
929 |
+
# If group_keys is empty, then no function calls have been made,
|
930 |
+
# so we will not have raised even if this is an invalid dtype.
|
931 |
+
# So do one dummy call here to raise appropriate TypeError.
|
932 |
+
f(data.iloc[:0])
|
933 |
+
|
934 |
+
return result_values, mutated
|
935 |
+
|
936 |
+
# ------------------------------------------------------------
|
937 |
+
# Methods for sorting subsets of our GroupBy's object
|
938 |
+
|
939 |
+
@final
|
940 |
+
@cache_readonly
|
941 |
+
def _sort_idx(self) -> npt.NDArray[np.intp]:
|
942 |
+
# Counting sort indexer
|
943 |
+
ids, _, ngroups = self.group_info
|
944 |
+
return get_group_index_sorter(ids, ngroups)
|
945 |
+
|
946 |
+
@final
|
947 |
+
@cache_readonly
|
948 |
+
def _sorted_ids(self) -> npt.NDArray[np.intp]:
|
949 |
+
ids, _, _ = self.group_info
|
950 |
+
return ids.take(self._sort_idx)
|
951 |
+
|
952 |
+
|
953 |
+
class BinGrouper(BaseGrouper):
|
954 |
+
"""
|
955 |
+
This is an internal Grouper class
|
956 |
+
|
957 |
+
Parameters
|
958 |
+
----------
|
959 |
+
bins : the split index of binlabels to group the item of axis
|
960 |
+
binlabels : the label list
|
961 |
+
indexer : np.ndarray[np.intp], optional
|
962 |
+
the indexer created by Grouper
|
963 |
+
some groupers (TimeGrouper) will sort its axis and its
|
964 |
+
group_info is also sorted, so need the indexer to reorder
|
965 |
+
|
966 |
+
Examples
|
967 |
+
--------
|
968 |
+
bins: [2, 4, 6, 8, 10]
|
969 |
+
binlabels: DatetimeIndex(['2005-01-01', '2005-01-03',
|
970 |
+
'2005-01-05', '2005-01-07', '2005-01-09'],
|
971 |
+
dtype='datetime64[ns]', freq='2D')
|
972 |
+
|
973 |
+
the group_info, which contains the label of each item in grouped
|
974 |
+
axis, the index of label in label list, group number, is
|
975 |
+
|
976 |
+
(array([0, 0, 1, 1, 2, 2, 3, 3, 4, 4]), array([0, 1, 2, 3, 4]), 5)
|
977 |
+
|
978 |
+
means that, the grouped axis has 10 items, can be grouped into 5
|
979 |
+
labels, the first and second items belong to the first label, the
|
980 |
+
third and forth items belong to the second label, and so on
|
981 |
+
|
982 |
+
"""
|
983 |
+
|
984 |
+
bins: npt.NDArray[np.int64]
|
985 |
+
binlabels: Index
|
986 |
+
|
987 |
+
def __init__(
|
988 |
+
self,
|
989 |
+
bins,
|
990 |
+
binlabels,
|
991 |
+
indexer=None,
|
992 |
+
) -> None:
|
993 |
+
self.bins = ensure_int64(bins)
|
994 |
+
self.binlabels = ensure_index(binlabels)
|
995 |
+
self.indexer = indexer
|
996 |
+
|
997 |
+
# These lengths must match, otherwise we could call agg_series
|
998 |
+
# with empty self.bins, which would raise later.
|
999 |
+
assert len(self.binlabels) == len(self.bins)
|
1000 |
+
|
1001 |
+
@cache_readonly
|
1002 |
+
def groups(self):
|
1003 |
+
"""dict {group name -> group labels}"""
|
1004 |
+
# this is mainly for compat
|
1005 |
+
# GH 3881
|
1006 |
+
result = {
|
1007 |
+
key: value
|
1008 |
+
for key, value in zip(self.binlabels, self.bins)
|
1009 |
+
if key is not NaT
|
1010 |
+
}
|
1011 |
+
return result
|
1012 |
+
|
1013 |
+
@property
|
1014 |
+
def nkeys(self) -> int:
|
1015 |
+
# still matches len(self.groupings), but we can hard-code
|
1016 |
+
return 1
|
1017 |
+
|
1018 |
+
@cache_readonly
|
1019 |
+
def codes_info(self) -> npt.NDArray[np.intp]:
|
1020 |
+
# return the codes of items in original grouped axis
|
1021 |
+
ids, _, _ = self.group_info
|
1022 |
+
if self.indexer is not None:
|
1023 |
+
sorter = np.lexsort((ids, self.indexer))
|
1024 |
+
ids = ids[sorter]
|
1025 |
+
return ids
|
1026 |
+
|
1027 |
+
def get_iterator(self, data: NDFrame, axis: AxisInt = 0):
|
1028 |
+
"""
|
1029 |
+
Groupby iterator
|
1030 |
+
|
1031 |
+
Returns
|
1032 |
+
-------
|
1033 |
+
Generator yielding sequence of (name, subsetted object)
|
1034 |
+
for each group
|
1035 |
+
"""
|
1036 |
+
if axis == 0:
|
1037 |
+
slicer = lambda start, edge: data.iloc[start:edge]
|
1038 |
+
else:
|
1039 |
+
slicer = lambda start, edge: data.iloc[:, start:edge]
|
1040 |
+
|
1041 |
+
length = len(data.axes[axis])
|
1042 |
+
|
1043 |
+
start = 0
|
1044 |
+
for edge, label in zip(self.bins, self.binlabels):
|
1045 |
+
if label is not NaT:
|
1046 |
+
yield label, slicer(start, edge)
|
1047 |
+
start = edge
|
1048 |
+
|
1049 |
+
if start < length:
|
1050 |
+
yield self.binlabels[-1], slicer(start, None)
|
1051 |
+
|
1052 |
+
@cache_readonly
|
1053 |
+
def indices(self):
|
1054 |
+
indices = collections.defaultdict(list)
|
1055 |
+
|
1056 |
+
i = 0
|
1057 |
+
for label, bin in zip(self.binlabels, self.bins):
|
1058 |
+
if i < bin:
|
1059 |
+
if label is not NaT:
|
1060 |
+
indices[label] = list(range(i, bin))
|
1061 |
+
i = bin
|
1062 |
+
return indices
|
1063 |
+
|
1064 |
+
@cache_readonly
|
1065 |
+
def group_info(self) -> tuple[npt.NDArray[np.intp], npt.NDArray[np.intp], int]:
|
1066 |
+
ngroups = self.ngroups
|
1067 |
+
obs_group_ids = np.arange(ngroups, dtype=np.intp)
|
1068 |
+
rep = np.diff(np.r_[0, self.bins])
|
1069 |
+
|
1070 |
+
rep = ensure_platform_int(rep)
|
1071 |
+
if ngroups == len(self.bins):
|
1072 |
+
comp_ids = np.repeat(np.arange(ngroups), rep)
|
1073 |
+
else:
|
1074 |
+
comp_ids = np.repeat(np.r_[-1, np.arange(ngroups)], rep)
|
1075 |
+
|
1076 |
+
return (
|
1077 |
+
ensure_platform_int(comp_ids),
|
1078 |
+
obs_group_ids,
|
1079 |
+
ngroups,
|
1080 |
+
)
|
1081 |
+
|
1082 |
+
@cache_readonly
|
1083 |
+
def reconstructed_codes(self) -> list[np.ndarray]:
|
1084 |
+
# get unique result indices, and prepend 0 as groupby starts from the first
|
1085 |
+
return [np.r_[0, np.flatnonzero(self.bins[1:] != self.bins[:-1]) + 1]]
|
1086 |
+
|
1087 |
+
@cache_readonly
|
1088 |
+
def result_index(self) -> Index:
|
1089 |
+
if len(self.binlabels) != 0 and isna(self.binlabels[0]):
|
1090 |
+
return self.binlabels[1:]
|
1091 |
+
|
1092 |
+
return self.binlabels
|
1093 |
+
|
1094 |
+
@property
|
1095 |
+
def levels(self) -> list[Index]:
|
1096 |
+
return [self.binlabels]
|
1097 |
+
|
1098 |
+
@property
|
1099 |
+
def names(self) -> list[Hashable]:
|
1100 |
+
return [self.binlabels.name]
|
1101 |
+
|
1102 |
+
@property
|
1103 |
+
def groupings(self) -> list[grouper.Grouping]:
|
1104 |
+
lev = self.binlabels
|
1105 |
+
codes = self.group_info[0]
|
1106 |
+
labels = lev.take(codes)
|
1107 |
+
ping = grouper.Grouping(
|
1108 |
+
labels, labels, in_axis=False, level=None, uniques=lev._values
|
1109 |
+
)
|
1110 |
+
return [ping]
|
1111 |
+
|
1112 |
+
|
1113 |
+
def _is_indexed_like(obj, axes, axis: AxisInt) -> bool:
|
1114 |
+
if isinstance(obj, Series):
|
1115 |
+
if len(axes) > 1:
|
1116 |
+
return False
|
1117 |
+
return obj.axes[axis].equals(axes[axis])
|
1118 |
+
elif isinstance(obj, DataFrame):
|
1119 |
+
return obj.axes[axis].equals(axes[axis])
|
1120 |
+
|
1121 |
+
return False
|
1122 |
+
|
1123 |
+
|
1124 |
+
# ----------------------------------------------------------------------
|
1125 |
+
# Splitting / application
|
1126 |
+
|
1127 |
+
|
1128 |
+
class DataSplitter(Generic[NDFrameT]):
|
1129 |
+
def __init__(
|
1130 |
+
self,
|
1131 |
+
data: NDFrameT,
|
1132 |
+
labels: npt.NDArray[np.intp],
|
1133 |
+
ngroups: int,
|
1134 |
+
*,
|
1135 |
+
sort_idx: npt.NDArray[np.intp],
|
1136 |
+
sorted_ids: npt.NDArray[np.intp],
|
1137 |
+
axis: AxisInt = 0,
|
1138 |
+
) -> None:
|
1139 |
+
self.data = data
|
1140 |
+
self.labels = ensure_platform_int(labels) # _should_ already be np.intp
|
1141 |
+
self.ngroups = ngroups
|
1142 |
+
|
1143 |
+
self._slabels = sorted_ids
|
1144 |
+
self._sort_idx = sort_idx
|
1145 |
+
|
1146 |
+
self.axis = axis
|
1147 |
+
assert isinstance(axis, int), axis
|
1148 |
+
|
1149 |
+
def __iter__(self) -> Iterator:
|
1150 |
+
sdata = self._sorted_data
|
1151 |
+
|
1152 |
+
if self.ngroups == 0:
|
1153 |
+
# we are inside a generator, rather than raise StopIteration
|
1154 |
+
# we merely return signal the end
|
1155 |
+
return
|
1156 |
+
|
1157 |
+
starts, ends = lib.generate_slices(self._slabels, self.ngroups)
|
1158 |
+
|
1159 |
+
for start, end in zip(starts, ends):
|
1160 |
+
yield self._chop(sdata, slice(start, end))
|
1161 |
+
|
1162 |
+
@cache_readonly
|
1163 |
+
def _sorted_data(self) -> NDFrameT:
|
1164 |
+
return self.data.take(self._sort_idx, axis=self.axis)
|
1165 |
+
|
1166 |
+
def _chop(self, sdata, slice_obj: slice) -> NDFrame:
|
1167 |
+
raise AbstractMethodError(self)
|
1168 |
+
|
1169 |
+
|
1170 |
+
class SeriesSplitter(DataSplitter):
|
1171 |
+
def _chop(self, sdata: Series, slice_obj: slice) -> Series:
|
1172 |
+
# fastpath equivalent to `sdata.iloc[slice_obj]`
|
1173 |
+
mgr = sdata._mgr.get_slice(slice_obj)
|
1174 |
+
ser = sdata._constructor_from_mgr(mgr, axes=mgr.axes)
|
1175 |
+
ser._name = sdata.name
|
1176 |
+
return ser.__finalize__(sdata, method="groupby")
|
1177 |
+
|
1178 |
+
|
1179 |
+
class FrameSplitter(DataSplitter):
|
1180 |
+
def _chop(self, sdata: DataFrame, slice_obj: slice) -> DataFrame:
|
1181 |
+
# Fastpath equivalent to:
|
1182 |
+
# if self.axis == 0:
|
1183 |
+
# return sdata.iloc[slice_obj]
|
1184 |
+
# else:
|
1185 |
+
# return sdata.iloc[:, slice_obj]
|
1186 |
+
mgr = sdata._mgr.get_slice(slice_obj, axis=1 - self.axis)
|
1187 |
+
df = sdata._constructor_from_mgr(mgr, axes=mgr.axes)
|
1188 |
+
return df.__finalize__(sdata, method="groupby")
|
1189 |
+
|
1190 |
+
|
1191 |
+
def _get_splitter(
|
1192 |
+
data: NDFrame,
|
1193 |
+
labels: npt.NDArray[np.intp],
|
1194 |
+
ngroups: int,
|
1195 |
+
*,
|
1196 |
+
sort_idx: npt.NDArray[np.intp],
|
1197 |
+
sorted_ids: npt.NDArray[np.intp],
|
1198 |
+
axis: AxisInt = 0,
|
1199 |
+
) -> DataSplitter:
|
1200 |
+
if isinstance(data, Series):
|
1201 |
+
klass: type[DataSplitter] = SeriesSplitter
|
1202 |
+
else:
|
1203 |
+
# i.e. DataFrame
|
1204 |
+
klass = FrameSplitter
|
1205 |
+
|
1206 |
+
return klass(
|
1207 |
+
data, labels, ngroups, sort_idx=sort_idx, sorted_ids=sorted_ids, axis=axis
|
1208 |
+
)
|
venv/lib/python3.10/site-packages/pandas/core/internals/__pycache__/array_manager.cpython-310.pyc
ADDED
Binary file (39.1 kB). View file
|
|
venv/lib/python3.10/site-packages/pandas/core/internals/__pycache__/blocks.cpython-310.pyc
ADDED
Binary file (59.5 kB). View file
|
|