applied-ai-018 commited on
Commit
dd14b2a
·
verified ·
1 Parent(s): 241ac2a

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +1 -0
  2. ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/exp_avg.pt +3 -0
  3. ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
  4. ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/fp32.pt +3 -0
  5. ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
  6. ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  7. ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
  8. ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
  9. lm-evaluation-harness/tests/testdata/anli_r2-v0-loglikelihood +1 -0
  10. lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_object_extraction-v0-res.json +1 -0
  11. lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-res.json +1 -0
  12. lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_licensor_present-v0-res.json +1 -0
  13. lm-evaluation-harness/tests/testdata/ethics_justice-v0-res.json +1 -0
  14. lm-evaluation-harness/tests/testdata/hendrycksTest-jurisprudence-v0-loglikelihood +1 -0
  15. lm-evaluation-harness/tests/testdata/hendrycksTest-world_religions-v0-loglikelihood +1 -0
  16. lm-evaluation-harness/tests/testdata/logiqa-v0-loglikelihood +1 -0
  17. lm-evaluation-harness/tests/testdata/multirc-v1-loglikelihood +1 -0
  18. lm-evaluation-harness/tests/testdata/pile_europarl-v0-loglikelihood_rolling +1 -0
  19. lm-evaluation-harness/tests/testdata/pile_pile-cc-v0-res.json +1 -0
  20. lm-evaluation-harness/tests/testdata/pile_uspto-v1-loglikelihood_rolling +1 -0
  21. lm-evaluation-harness/tests/testdata/race-v0-loglikelihood +1 -0
  22. lm-evaluation-harness/tests/testdata/wmt20-en-iu-v0-greedy_until +1 -0
  23. lm-evaluation-harness/tests/testdata/wmt20-iu-en-v0-greedy_until +1 -0
  24. lm-evaluation-harness/tests/testdata/wmt20-iu-en-v0-res.json +1 -0
  25. lm-evaluation-harness/tests/testdata/wmt20-km-en-v0-res.json +1 -0
  26. venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 +3 -0
  27. venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc +0 -0
  28. venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc +0 -0
  29. venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/convert_convnextv2_to_pytorch.cpython-310.pyc +0 -0
  30. venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc +0 -0
  31. venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc +0 -0
  32. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py +85 -0
  33. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc +0 -0
  34. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc +0 -0
  35. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc +0 -0
  36. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc +0 -0
  37. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py +126 -0
  38. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py +142 -0
  39. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py +33 -0
  40. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py +326 -0
  41. venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py +482 -0
  42. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py +122 -0
  43. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc +0 -0
  44. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc +0 -0
  45. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc +0 -0
  46. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc +0 -0
  47. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc +0 -0
  48. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc +0 -0
  49. venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/tokenization_pop2piano.cpython-310.pyc +0 -0
  50. venv/lib/python3.10/site-packages/transformers/models/pop2piano/configuration_pop2piano.py +128 -0
.gitattributes CHANGED
@@ -88,3 +88,4 @@ venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libcupti.so.12 filter=lf
88
  venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so filter=lfs diff=lfs merge=lfs -text
89
  venv/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11 filter=lfs diff=lfs merge=lfs -text
90
  venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
 
 
88
  venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_target.so filter=lfs diff=lfs merge=lfs -text
89
  venv/lib/python3.10/site-packages/nvidia/cufft/lib/libcufftw.so.11 filter=lfs diff=lfs merge=lfs -text
90
  venv/lib/python3.10/site-packages/nvidia/cuda_cupti/lib/libnvperf_host.so filter=lfs diff=lfs merge=lfs -text
91
+ venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 filter=lfs diff=lfs merge=lfs -text
ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6e9f0cbfd9aefa690c7b3e0e7d80a9f1335bc3f63e96562fa2c4acf142989a86
3
+ size 9372
ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27a9cbb8e5f303316fce2973a8f0a74a43a81dcde7da2abc0c2cf1d5bfc477a5
3
+ size 9387
ckpts/universal/global_step20/zero/13.post_attention_layernorm.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9bb1f75c0b74d7ccb5b8ea9c854895377cf61b7775fab3ac93f715d60126c90f
3
+ size 9293
ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9a2b5e74a555f20a71f81131c099b52967a6c199141d6da88758acd71380c64
3
+ size 33555612
ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cf248dd22e0cb43a601b9d68269acafa7f03dcb62ec18db84c5fb3bf6db8dee9
3
+ size 33555627
ckpts/universal/global_step20/zero/5.mlp.dense_h_to_4h_swiglu.weight/fp32.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ac084b66a811ddf12d1f1d3adf1ecff5f12ea0a23a360b44ac183a5ddccbd0f2
3
+ size 33555533
ckpts/universal/global_step20/zero/8.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9014c84d7113b83eeba7da3a7d6d1e495be6bf0cacf953e3f78d9e0b314c94cb
3
+ size 33555627
lm-evaluation-harness/tests/testdata/anli_r2-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ d0ea3c3e09d533982c15b4c034439896d6af4bbafb2254d305e20215534a251d
lm-evaluation-harness/tests/testdata/blimp_coordinate_structure_constraint_object_extraction-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_coordinate_structure_constraint_object_extraction": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_coordinate_structure_constraint_object_extraction": 0}}
lm-evaluation-harness/tests/testdata/blimp_principle_A_domain_1-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_principle_A_domain_1": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_principle_A_domain_1": 0}}
lm-evaluation-harness/tests/testdata/blimp_sentential_negation_npi_licensor_present-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"blimp_sentential_negation_npi_licensor_present": {"acc": 0.485, "acc_stderr": 0.0158121796418149}}, "versions": {"blimp_sentential_negation_npi_licensor_present": 0}}
lm-evaluation-harness/tests/testdata/ethics_justice-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"ethics_justice": {"acc": 0.49556213017751477, "acc_stderr": 0.009616784279885177, "em": 0.057692307692307696}}, "versions": {"ethics_justice": 0}}
lm-evaluation-harness/tests/testdata/hendrycksTest-jurisprudence-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ cac440189f1ec778e82f4975d88b74689553ecc5116aaa7f76587a50c1a610e0
lm-evaluation-harness/tests/testdata/hendrycksTest-world_religions-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 97a0f68ba30ea3a6ef1db1a2925c964b09ecc54455a0a930da083e52677815bd
lm-evaluation-harness/tests/testdata/logiqa-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 12495c50454ba5e1ce0753bd18c09aaca516bebd27648d815e37b15229dbf198
lm-evaluation-harness/tests/testdata/multirc-v1-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ 0e793bd6f637a70a04c6f2cda080188fc037961b2f909095fe63f7bdbc4a90c6
lm-evaluation-harness/tests/testdata/pile_europarl-v0-loglikelihood_rolling ADDED
@@ -0,0 +1 @@
 
 
1
+ e67d3dbccd47d308bfc5b0e66b76d0dfc5e386ebfa94e056562c2281c395543f
lm-evaluation-harness/tests/testdata/pile_pile-cc-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"pile_pile-cc": {"bits_per_byte": 0.00011234131907228174, "byte_perplexity": 1.0001123476295946, "word_perplexity": 1.0006738958554477}}, "versions": {"pile_pile-cc": 0}}
lm-evaluation-harness/tests/testdata/pile_uspto-v1-loglikelihood_rolling ADDED
@@ -0,0 +1 @@
 
 
1
+ 789b2bdb31564d512b70f801316f49320a26c83ba361226bac0afb255341d477
lm-evaluation-harness/tests/testdata/race-v0-loglikelihood ADDED
@@ -0,0 +1 @@
 
 
1
+ bdfdfab7fa1c7af0c1e161785e347b1b8071a15cbf971f6f2a9ae8c8e845199f
lm-evaluation-harness/tests/testdata/wmt20-en-iu-v0-greedy_until ADDED
@@ -0,0 +1 @@
 
 
1
+ f5688199890a48f73f2cc04a2152e35190f0e0ddd40e629fa24ee39d423ea389
lm-evaluation-harness/tests/testdata/wmt20-iu-en-v0-greedy_until ADDED
@@ -0,0 +1 @@
 
 
1
+ 97bf664a8efa54b5366b8341f77b418106dd0cb26169d5b2d0144e4d3d2bc5c9
lm-evaluation-harness/tests/testdata/wmt20-iu-en-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"wmt20-iu-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.012204628007572778, "chrf_stderr": 8.944407532175802e-05, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-iu-en": 0}}
lm-evaluation-harness/tests/testdata/wmt20-km-en-v0-res.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"results": {"wmt20-km-en": {"bleu": 0.0, "bleu_stderr": 0.0, "chrf": 0.015142474534585969, "chrf_stderr": 0.0001518735048829897, "ter": 1.0, "ter_stderr": 0.0}}, "versions": {"wmt20-km-en": 0}}
venv/lib/python3.10/site-packages/nvidia/nvjitlink/lib/libnvJitLink.so.12 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cbd1488bbef82b8d64c2dd51a9b6aef3f6b0bc3a7a80a9821be48d1c07f700e7
3
+ size 53594512
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.28 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/configuration_convnextv2.cpython-310.pyc ADDED
Binary file (5.07 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/convert_convnextv2_to_pytorch.cpython-310.pyc ADDED
Binary file (9.13 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_convnextv2.cpython-310.pyc ADDED
Binary file (18.7 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/convnextv2/__pycache__/modeling_tf_convnextv2.cpython-310.pyc ADDED
Binary file (22.2 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__init__.py ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2022 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
17
+
18
+
19
+ _import_structure = {
20
+ "configuration_mobilenet_v1": [
21
+ "MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP",
22
+ "MobileNetV1Config",
23
+ "MobileNetV1OnnxConfig",
24
+ ],
25
+ }
26
+
27
+ try:
28
+ if not is_vision_available():
29
+ raise OptionalDependencyNotAvailable()
30
+ except OptionalDependencyNotAvailable:
31
+ pass
32
+ else:
33
+ _import_structure["feature_extraction_mobilenet_v1"] = ["MobileNetV1FeatureExtractor"]
34
+ _import_structure["image_processing_mobilenet_v1"] = ["MobileNetV1ImageProcessor"]
35
+
36
+ try:
37
+ if not is_torch_available():
38
+ raise OptionalDependencyNotAvailable()
39
+ except OptionalDependencyNotAvailable:
40
+ pass
41
+ else:
42
+ _import_structure["modeling_mobilenet_v1"] = [
43
+ "MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST",
44
+ "MobileNetV1ForImageClassification",
45
+ "MobileNetV1Model",
46
+ "MobileNetV1PreTrainedModel",
47
+ "load_tf_weights_in_mobilenet_v1",
48
+ ]
49
+
50
+
51
+ if TYPE_CHECKING:
52
+ from .configuration_mobilenet_v1 import (
53
+ MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP,
54
+ MobileNetV1Config,
55
+ MobileNetV1OnnxConfig,
56
+ )
57
+
58
+ try:
59
+ if not is_vision_available():
60
+ raise OptionalDependencyNotAvailable()
61
+ except OptionalDependencyNotAvailable:
62
+ pass
63
+ else:
64
+ from .feature_extraction_mobilenet_v1 import MobileNetV1FeatureExtractor
65
+ from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor
66
+
67
+ try:
68
+ if not is_torch_available():
69
+ raise OptionalDependencyNotAvailable()
70
+ except OptionalDependencyNotAvailable:
71
+ pass
72
+ else:
73
+ from .modeling_mobilenet_v1 import (
74
+ MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST,
75
+ MobileNetV1ForImageClassification,
76
+ MobileNetV1Model,
77
+ MobileNetV1PreTrainedModel,
78
+ load_tf_weights_in_mobilenet_v1,
79
+ )
80
+
81
+
82
+ else:
83
+ import sys
84
+
85
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.37 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/configuration_mobilenet_v1.cpython-310.pyc ADDED
Binary file (4.88 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/feature_extraction_mobilenet_v1.cpython-310.pyc ADDED
Binary file (1.06 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/__pycache__/image_processing_mobilenet_v1.cpython-310.pyc ADDED
Binary file (12.9 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/configuration_mobilenet_v1.py ADDED
@@ -0,0 +1,126 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ MobileNetV1 model configuration"""
16
+
17
+ from collections import OrderedDict
18
+ from typing import Mapping
19
+
20
+ from packaging import version
21
+
22
+ from ...configuration_utils import PretrainedConfig
23
+ from ...onnx import OnnxConfig
24
+ from ...utils import logging
25
+
26
+
27
+ logger = logging.get_logger(__name__)
28
+
29
+
30
+ from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
31
+
32
+
33
+ class MobileNetV1Config(PretrainedConfig):
34
+ r"""
35
+ This is the configuration class to store the configuration of a [`MobileNetV1Model`]. It is used to instantiate a
36
+ MobileNetV1 model according to the specified arguments, defining the model architecture. Instantiating a
37
+ configuration with the defaults will yield a similar configuration to that of the MobileNetV1
38
+ [google/mobilenet_v1_1.0_224](https://huggingface.co/google/mobilenet_v1_1.0_224) architecture.
39
+
40
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
41
+ documentation from [`PretrainedConfig`] for more information.
42
+
43
+ Args:
44
+ num_channels (`int`, *optional*, defaults to 3):
45
+ The number of input channels.
46
+ image_size (`int`, *optional*, defaults to 224):
47
+ The size (resolution) of each image.
48
+ depth_multiplier (`float`, *optional*, defaults to 1.0):
49
+ Shrinks or expands the number of channels in each layer. Default is 1.0, which starts the network with 32
50
+ channels. This is sometimes also called "alpha" or "width multiplier".
51
+ min_depth (`int`, *optional*, defaults to 8):
52
+ All layers will have at least this many channels.
53
+ hidden_act (`str` or `function`, *optional*, defaults to `"relu6"`):
54
+ The non-linear activation function (function or string) in the Transformer encoder and convolution layers.
55
+ tf_padding (`bool`, *optional*, defaults to `True`):
56
+ Whether to use TensorFlow padding rules on the convolution layers.
57
+ classifier_dropout_prob (`float`, *optional*, defaults to 0.999):
58
+ The dropout ratio for attached classifiers.
59
+ initializer_range (`float`, *optional*, defaults to 0.02):
60
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
61
+ layer_norm_eps (`float`, *optional*, defaults to 0.001):
62
+ The epsilon used by the layer normalization layers.
63
+
64
+ Example:
65
+
66
+ ```python
67
+ >>> from transformers import MobileNetV1Config, MobileNetV1Model
68
+
69
+ >>> # Initializing a "mobilenet_v1_1.0_224" style configuration
70
+ >>> configuration = MobileNetV1Config()
71
+
72
+ >>> # Initializing a model from the "mobilenet_v1_1.0_224" style configuration
73
+ >>> model = MobileNetV1Model(configuration)
74
+
75
+ >>> # Accessing the model configuration
76
+ >>> configuration = model.config
77
+ ```"""
78
+
79
+ model_type = "mobilenet_v1"
80
+
81
+ def __init__(
82
+ self,
83
+ num_channels=3,
84
+ image_size=224,
85
+ depth_multiplier=1.0,
86
+ min_depth=8,
87
+ hidden_act="relu6",
88
+ tf_padding=True,
89
+ classifier_dropout_prob=0.999,
90
+ initializer_range=0.02,
91
+ layer_norm_eps=0.001,
92
+ **kwargs,
93
+ ):
94
+ super().__init__(**kwargs)
95
+
96
+ if depth_multiplier <= 0:
97
+ raise ValueError("depth_multiplier must be greater than zero.")
98
+
99
+ self.num_channels = num_channels
100
+ self.image_size = image_size
101
+ self.depth_multiplier = depth_multiplier
102
+ self.min_depth = min_depth
103
+ self.hidden_act = hidden_act
104
+ self.tf_padding = tf_padding
105
+ self.classifier_dropout_prob = classifier_dropout_prob
106
+ self.initializer_range = initializer_range
107
+ self.layer_norm_eps = layer_norm_eps
108
+
109
+
110
+ class MobileNetV1OnnxConfig(OnnxConfig):
111
+ torch_onnx_minimum_version = version.parse("1.11")
112
+
113
+ @property
114
+ def inputs(self) -> Mapping[str, Mapping[int, str]]:
115
+ return OrderedDict([("pixel_values", {0: "batch"})])
116
+
117
+ @property
118
+ def outputs(self) -> Mapping[str, Mapping[int, str]]:
119
+ if self.task == "image-classification":
120
+ return OrderedDict([("logits", {0: "batch"})])
121
+ else:
122
+ return OrderedDict([("last_hidden_state", {0: "batch"}), ("pooler_output", {0: "batch"})])
123
+
124
+ @property
125
+ def atol_for_validation(self) -> float:
126
+ return 1e-4
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/convert_original_tf_checkpoint_to_pytorch.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Convert MobileNetV1 checkpoints from the tensorflow/models library."""
16
+
17
+
18
+ import argparse
19
+ import json
20
+ import re
21
+ from pathlib import Path
22
+
23
+ import requests
24
+ import torch
25
+ from huggingface_hub import hf_hub_download
26
+ from PIL import Image
27
+
28
+ from transformers import (
29
+ MobileNetV1Config,
30
+ MobileNetV1ForImageClassification,
31
+ MobileNetV1ImageProcessor,
32
+ load_tf_weights_in_mobilenet_v1,
33
+ )
34
+ from transformers.utils import logging
35
+
36
+
37
+ logging.set_verbosity_info()
38
+ logger = logging.get_logger(__name__)
39
+
40
+
41
+ def get_mobilenet_v1_config(model_name):
42
+ config = MobileNetV1Config(layer_norm_eps=0.001)
43
+
44
+ if "_quant" in model_name:
45
+ raise ValueError("Quantized models are not supported.")
46
+
47
+ matches = re.match(r"^mobilenet_v1_([^_]*)_([^_]*)$", model_name)
48
+ if matches:
49
+ config.depth_multiplier = float(matches[1])
50
+ config.image_size = int(matches[2])
51
+
52
+ # The TensorFlow version of MobileNetV1 predicts 1001 classes instead of
53
+ # the usual 1000. The first class (index 0) is "background".
54
+ config.num_labels = 1001
55
+ filename = "imagenet-1k-id2label.json"
56
+ repo_id = "huggingface/label-files"
57
+ id2label = json.load(open(hf_hub_download(repo_id, filename, repo_type="dataset"), "r"))
58
+ id2label = {int(k) + 1: v for k, v in id2label.items()}
59
+ id2label[0] = "background"
60
+ config.id2label = id2label
61
+ config.label2id = {v: k for k, v in id2label.items()}
62
+
63
+ return config
64
+
65
+
66
+ # We will verify our results on an image of cute cats
67
+ def prepare_img():
68
+ url = "http://images.cocodataset.org/val2017/000000039769.jpg"
69
+ im = Image.open(requests.get(url, stream=True).raw)
70
+ return im
71
+
72
+
73
+ @torch.no_grad()
74
+ def convert_movilevit_checkpoint(model_name, checkpoint_path, pytorch_dump_folder_path, push_to_hub=False):
75
+ """
76
+ Copy/paste/tweak model's weights to our MobileNetV1 structure.
77
+ """
78
+ config = get_mobilenet_v1_config(model_name)
79
+
80
+ # Load 🤗 model
81
+ model = MobileNetV1ForImageClassification(config).eval()
82
+
83
+ # Load weights from TensorFlow checkpoint
84
+ load_tf_weights_in_mobilenet_v1(model, config, checkpoint_path)
85
+
86
+ # Check outputs on an image, prepared by MobileNetV1ImageProcessor
87
+ image_processor = MobileNetV1ImageProcessor(
88
+ crop_size={"width": config.image_size, "height": config.image_size},
89
+ size={"shortest_edge": config.image_size + 32},
90
+ )
91
+ encoding = image_processor(images=prepare_img(), return_tensors="pt")
92
+ outputs = model(**encoding)
93
+ logits = outputs.logits
94
+
95
+ assert logits.shape == (1, 1001)
96
+
97
+ if model_name == "mobilenet_v1_1.0_224":
98
+ expected_logits = torch.tensor([-4.1739, -1.1233, 3.1205])
99
+ elif model_name == "mobilenet_v1_0.75_192":
100
+ expected_logits = torch.tensor([-3.9440, -2.3141, -0.3333])
101
+ else:
102
+ expected_logits = None
103
+
104
+ if expected_logits is not None:
105
+ assert torch.allclose(logits[0, :3], expected_logits, atol=1e-4)
106
+
107
+ Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
108
+ print(f"Saving model {model_name} to {pytorch_dump_folder_path}")
109
+ model.save_pretrained(pytorch_dump_folder_path)
110
+ print(f"Saving image processor to {pytorch_dump_folder_path}")
111
+ image_processor.save_pretrained(pytorch_dump_folder_path)
112
+
113
+ if push_to_hub:
114
+ print("Pushing to the hub...")
115
+ repo_id = "google/" + model_name
116
+ image_processor.push_to_hub(repo_id)
117
+ model.push_to_hub(repo_id)
118
+
119
+
120
+ if __name__ == "__main__":
121
+ parser = argparse.ArgumentParser()
122
+ # Required parameters
123
+ parser.add_argument(
124
+ "--model_name",
125
+ default="mobilenet_v1_1.0_224",
126
+ type=str,
127
+ help="Name of the MobileNetV1 model you'd like to convert. Should in the form 'mobilenet_v1_<depth>_<size>'.",
128
+ )
129
+ parser.add_argument(
130
+ "--checkpoint_path", required=True, type=str, help="Path to the original TensorFlow checkpoint (.ckpt file)."
131
+ )
132
+ parser.add_argument(
133
+ "--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
134
+ )
135
+ parser.add_argument(
136
+ "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub."
137
+ )
138
+
139
+ args = parser.parse_args()
140
+ convert_movilevit_checkpoint(
141
+ args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub
142
+ )
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/feature_extraction_mobilenet_v1.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Feature extractor class for MobileNetV1."""
16
+
17
+ import warnings
18
+
19
+ from ...utils import logging
20
+ from .image_processing_mobilenet_v1 import MobileNetV1ImageProcessor
21
+
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+
26
+ class MobileNetV1FeatureExtractor(MobileNetV1ImageProcessor):
27
+ def __init__(self, *args, **kwargs) -> None:
28
+ warnings.warn(
29
+ "The class MobileNetV1FeatureExtractor is deprecated and will be removed in version 5 of Transformers."
30
+ " Please use MobileNetV1ImageProcessor instead.",
31
+ FutureWarning,
32
+ )
33
+ super().__init__(*args, **kwargs)
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/image_processing_mobilenet_v1.py ADDED
@@ -0,0 +1,326 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Image processor class for MobileNetV1."""
16
+
17
+ from typing import Dict, List, Optional, Union
18
+
19
+ import numpy as np
20
+
21
+ from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
22
+ from ...image_transforms import (
23
+ get_resize_output_image_size,
24
+ resize,
25
+ to_channel_dimension_format,
26
+ )
27
+ from ...image_utils import (
28
+ IMAGENET_STANDARD_MEAN,
29
+ IMAGENET_STANDARD_STD,
30
+ ChannelDimension,
31
+ ImageInput,
32
+ PILImageResampling,
33
+ infer_channel_dimension_format,
34
+ is_scaled_image,
35
+ make_list_of_images,
36
+ to_numpy_array,
37
+ valid_images,
38
+ validate_kwargs,
39
+ validate_preprocess_arguments,
40
+ )
41
+ from ...utils import TensorType, logging
42
+
43
+
44
+ logger = logging.get_logger(__name__)
45
+
46
+
47
+ class MobileNetV1ImageProcessor(BaseImageProcessor):
48
+ r"""
49
+ Constructs a MobileNetV1 image processor.
50
+
51
+ Args:
52
+ do_resize (`bool`, *optional*, defaults to `True`):
53
+ Whether to resize the image's (height, width) dimensions to the specified `size`. Can be overridden by
54
+ `do_resize` in the `preprocess` method.
55
+ size (`Dict[str, int]` *optional*, defaults to `{"shortest_edge": 256}`):
56
+ Size of the image after resizing. The shortest edge of the image is resized to size["shortest_edge"], with
57
+ the longest edge resized to keep the input aspect ratio. Can be overridden by `size` in the `preprocess`
58
+ method.
59
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BILINEAR`):
60
+ Resampling filter to use if resizing the image. Can be overridden by the `resample` parameter in the
61
+ `preprocess` method.
62
+ do_center_crop (`bool`, *optional*, defaults to `True`):
63
+ Whether to center crop the image. If the input size is smaller than `crop_size` along any edge, the image
64
+ is padded with 0's and then center cropped. Can be overridden by the `do_center_crop` parameter in the
65
+ `preprocess` method.
66
+ crop_size (`Dict[str, int]`, *optional*, defaults to `{"height": 224, "width": 224}`):
67
+ Desired output size when applying center-cropping. Only has an effect if `do_center_crop` is set to `True`.
68
+ Can be overridden by the `crop_size` parameter in the `preprocess` method.
69
+ do_rescale (`bool`, *optional*, defaults to `True`):
70
+ Whether to rescale the image by the specified scale `rescale_factor`. Can be overridden by the `do_rescale`
71
+ parameter in the `preprocess` method.
72
+ rescale_factor (`int` or `float`, *optional*, defaults to `1/255`):
73
+ Scale factor to use if rescaling the image. Can be overridden by the `rescale_factor` parameter in the
74
+ `preprocess` method.
75
+ do_normalize:
76
+ Whether to normalize the image. Can be overridden by the `do_normalize` parameter in the `preprocess`
77
+ method.
78
+ image_mean (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_MEAN`):
79
+ Mean to use if normalizing the image. This is a float or list of floats the length of the number of
80
+ channels in the image. Can be overridden by the `image_mean` parameter in the `preprocess` method.
81
+ image_std (`float` or `List[float]`, *optional*, defaults to `IMAGENET_STANDARD_STD`):
82
+ Standard deviation to use if normalizing the image. This is a float or list of floats the length of the
83
+ number of channels in the image. Can be overridden by the `image_std` parameter in the `preprocess` method.
84
+ """
85
+
86
+ model_input_names = ["pixel_values"]
87
+
88
+ def __init__(
89
+ self,
90
+ do_resize: bool = True,
91
+ size: Optional[Dict[str, int]] = None,
92
+ resample: PILImageResampling = PILImageResampling.BILINEAR,
93
+ do_center_crop: bool = True,
94
+ crop_size: Dict[str, int] = None,
95
+ do_rescale: bool = True,
96
+ rescale_factor: Union[int, float] = 1 / 255,
97
+ do_normalize: bool = True,
98
+ image_mean: Optional[Union[float, List[float]]] = None,
99
+ image_std: Optional[Union[float, List[float]]] = None,
100
+ **kwargs,
101
+ ) -> None:
102
+ super().__init__(**kwargs)
103
+ size = size if size is not None else {"shortest_edge": 256}
104
+ size = get_size_dict(size, default_to_square=False)
105
+ crop_size = crop_size if crop_size is not None else {"height": 224, "width": 224}
106
+ crop_size = get_size_dict(crop_size)
107
+ self.do_resize = do_resize
108
+ self.size = size
109
+ self.resample = resample
110
+ self.do_center_crop = do_center_crop
111
+ self.crop_size = crop_size
112
+ self.do_rescale = do_rescale
113
+ self.rescale_factor = rescale_factor
114
+ self.do_normalize = do_normalize
115
+ self.image_mean = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
116
+ self.image_std = image_std if image_std is not None else IMAGENET_STANDARD_STD
117
+ self._valid_processor_keys = [
118
+ "images",
119
+ "do_resize",
120
+ "size",
121
+ "resample",
122
+ "do_center_crop",
123
+ "crop_size",
124
+ "do_rescale",
125
+ "rescale_factor",
126
+ "do_normalize",
127
+ "image_mean",
128
+ "image_std",
129
+ "return_tensors",
130
+ "data_format",
131
+ "input_data_format",
132
+ ]
133
+
134
+ # Copied from transformers.models.clip.image_processing_clip.CLIPImageProcessor.resize
135
+ def resize(
136
+ self,
137
+ image: np.ndarray,
138
+ size: Dict[str, int],
139
+ resample: PILImageResampling = PILImageResampling.BICUBIC,
140
+ data_format: Optional[Union[str, ChannelDimension]] = None,
141
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
142
+ **kwargs,
143
+ ) -> np.ndarray:
144
+ """
145
+ Resize an image. The shortest edge of the image is resized to size["shortest_edge"], with the longest edge
146
+ resized to keep the input aspect ratio.
147
+
148
+ Args:
149
+ image (`np.ndarray`):
150
+ Image to resize.
151
+ size (`Dict[str, int]`):
152
+ Size of the output image.
153
+ resample (`PILImageResampling`, *optional*, defaults to `PILImageResampling.BICUBIC`):
154
+ Resampling filter to use when resiizing the image.
155
+ data_format (`str` or `ChannelDimension`, *optional*):
156
+ The channel dimension format of the image. If not provided, it will be the same as the input image.
157
+ input_data_format (`ChannelDimension` or `str`, *optional*):
158
+ The channel dimension format of the input image. If not provided, it will be inferred.
159
+ """
160
+ default_to_square = True
161
+ if "shortest_edge" in size:
162
+ size = size["shortest_edge"]
163
+ default_to_square = False
164
+ elif "height" in size and "width" in size:
165
+ size = (size["height"], size["width"])
166
+ else:
167
+ raise ValueError("Size must contain either 'shortest_edge' or 'height' and 'width'.")
168
+
169
+ output_size = get_resize_output_image_size(
170
+ image,
171
+ size=size,
172
+ default_to_square=default_to_square,
173
+ input_data_format=input_data_format,
174
+ )
175
+ return resize(
176
+ image,
177
+ size=output_size,
178
+ resample=resample,
179
+ data_format=data_format,
180
+ input_data_format=input_data_format,
181
+ **kwargs,
182
+ )
183
+
184
+ def preprocess(
185
+ self,
186
+ images: ImageInput,
187
+ do_resize: Optional[bool] = None,
188
+ size: Dict[str, int] = None,
189
+ resample: PILImageResampling = None,
190
+ do_center_crop: bool = None,
191
+ crop_size: Dict[str, int] = None,
192
+ do_rescale: Optional[bool] = None,
193
+ rescale_factor: Optional[float] = None,
194
+ do_normalize: Optional[bool] = None,
195
+ image_mean: Optional[Union[float, List[float]]] = None,
196
+ image_std: Optional[Union[float, List[float]]] = None,
197
+ return_tensors: Optional[Union[str, TensorType]] = None,
198
+ data_format: Union[str, ChannelDimension] = ChannelDimension.FIRST,
199
+ input_data_format: Optional[Union[str, ChannelDimension]] = None,
200
+ **kwargs,
201
+ ):
202
+ """
203
+ Preprocess an image or batch of images.
204
+
205
+ Args:
206
+ images (`ImageInput`):
207
+ Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If
208
+ passing in images with pixel values between 0 and 1, set `do_rescale=False`.
209
+ do_resize (`bool`, *optional*, defaults to `self.do_resize`):
210
+ Whether to resize the image.
211
+ size (`Dict[str, int]`, *optional*, defaults to `self.size`):
212
+ Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with
213
+ the longest edge resized to keep the input aspect ratio.
214
+ resample (`PILImageResampling` filter, *optional*, defaults to `self.resample`):
215
+ `PILImageResampling` filter to use if resizing the image e.g. `PILImageResampling.BILINEAR`. Only has
216
+ an effect if `do_resize` is set to `True`.
217
+ do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`):
218
+ Whether to center crop the image.
219
+ crop_size (`Dict[str, int]`, *optional*, defaults to `self.crop_size`):
220
+ Size of the center crop. Only has an effect if `do_center_crop` is set to `True`.
221
+ do_rescale (`bool`, *optional*, defaults to `self.do_rescale`):
222
+ Whether to rescale the image values between [0 - 1].
223
+ rescale_factor (`float`, *optional*, defaults to `self.rescale_factor`):
224
+ Rescale factor to rescale the image by if `do_rescale` is set to `True`.
225
+ do_normalize (`bool`, *optional*, defaults to `self.do_normalize`):
226
+ Whether to normalize the image.
227
+ image_mean (`float` or `List[float]`, *optional*, defaults to `self.image_mean`):
228
+ Image mean to use if `do_normalize` is set to `True`.
229
+ image_std (`float` or `List[float]`, *optional*, defaults to `self.image_std`):
230
+ Image standard deviation to use if `do_normalize` is set to `True`.
231
+ return_tensors (`str` or `TensorType`, *optional*):
232
+ The type of tensors to return. Can be one of:
233
+ - Unset: Return a list of `np.ndarray`.
234
+ - `TensorType.TENSORFLOW` or `'tf'`: Return a batch of type `tf.Tensor`.
235
+ - `TensorType.PYTORCH` or `'pt'`: Return a batch of type `torch.Tensor`.
236
+ - `TensorType.NUMPY` or `'np'`: Return a batch of type `np.ndarray`.
237
+ - `TensorType.JAX` or `'jax'`: Return a batch of type `jax.numpy.ndarray`.
238
+ data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`):
239
+ The channel dimension format for the output image. Can be one of:
240
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
241
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
242
+ - Unset: Use the channel dimension format of the input image.
243
+ input_data_format (`ChannelDimension` or `str`, *optional*):
244
+ The channel dimension format for the input image. If unset, the channel dimension format is inferred
245
+ from the input image. Can be one of:
246
+ - `"channels_first"` or `ChannelDimension.FIRST`: image in (num_channels, height, width) format.
247
+ - `"channels_last"` or `ChannelDimension.LAST`: image in (height, width, num_channels) format.
248
+ - `"none"` or `ChannelDimension.NONE`: image in (height, width) format.
249
+ """
250
+ do_resize = do_resize if do_resize is not None else self.do_resize
251
+ size = size if size is not None else self.size
252
+ size = get_size_dict(size, default_to_square=False)
253
+ resample = resample if resample is not None else self.resample
254
+ do_center_crop = do_center_crop if do_center_crop is not None else self.do_center_crop
255
+ crop_size = crop_size if crop_size is not None else self.crop_size
256
+ crop_size = get_size_dict(crop_size)
257
+ do_rescale = do_rescale if do_rescale is not None else self.do_rescale
258
+ rescale_factor = rescale_factor if rescale_factor is not None else self.rescale_factor
259
+ do_normalize = do_normalize if do_normalize is not None else self.do_normalize
260
+ image_mean = image_mean if image_mean is not None else self.image_mean
261
+ image_std = image_std if image_std is not None else self.image_std
262
+
263
+ images = make_list_of_images(images)
264
+
265
+ validate_kwargs(captured_kwargs=kwargs.keys(), valid_processor_keys=self._valid_processor_keys)
266
+
267
+ if not valid_images(images):
268
+ raise ValueError(
269
+ "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, "
270
+ "torch.Tensor, tf.Tensor or jax.ndarray."
271
+ )
272
+ validate_preprocess_arguments(
273
+ do_rescale=do_rescale,
274
+ rescale_factor=rescale_factor,
275
+ do_normalize=do_normalize,
276
+ image_mean=image_mean,
277
+ image_std=image_std,
278
+ do_center_crop=do_center_crop,
279
+ crop_size=crop_size,
280
+ do_resize=do_resize,
281
+ size=size,
282
+ resample=resample,
283
+ )
284
+
285
+ # All transformations expect numpy arrays.
286
+ images = [to_numpy_array(image) for image in images]
287
+
288
+ if is_scaled_image(images[0]) and do_rescale:
289
+ logger.warning_once(
290
+ "It looks like you are trying to rescale already rescaled images. If the input"
291
+ " images have pixel values between 0 and 1, set `do_rescale=False` to avoid rescaling them again."
292
+ )
293
+
294
+ if input_data_format is None:
295
+ # We assume that all images have the same channel dimension format.
296
+ input_data_format = infer_channel_dimension_format(images[0])
297
+
298
+ if do_resize:
299
+ images = [
300
+ self.resize(image=image, size=size, resample=resample, input_data_format=input_data_format)
301
+ for image in images
302
+ ]
303
+
304
+ if do_center_crop:
305
+ images = [
306
+ self.center_crop(image=image, size=crop_size, input_data_format=input_data_format) for image in images
307
+ ]
308
+
309
+ if do_rescale:
310
+ images = [
311
+ self.rescale(image=image, scale=rescale_factor, input_data_format=input_data_format)
312
+ for image in images
313
+ ]
314
+
315
+ if do_normalize:
316
+ images = [
317
+ self.normalize(image=image, mean=image_mean, std=image_std, input_data_format=input_data_format)
318
+ for image in images
319
+ ]
320
+
321
+ images = [
322
+ to_channel_dimension_format(image, data_format, input_channel_dim=input_data_format) for image in images
323
+ ]
324
+
325
+ data = {"pixel_values": images}
326
+ return BatchFeature(data=data, tensor_type=return_tensors)
venv/lib/python3.10/site-packages/transformers/models/mobilenet_v1/modeling_mobilenet_v1.py ADDED
@@ -0,0 +1,482 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2022 Apple Inc. and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch MobileNetV1 model."""
16
+
17
+
18
+ from typing import Optional, Union
19
+
20
+ import torch
21
+ from torch import nn
22
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
23
+
24
+ from ...activations import ACT2FN
25
+ from ...modeling_outputs import BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention
26
+ from ...modeling_utils import PreTrainedModel
27
+ from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging
28
+ from .configuration_mobilenet_v1 import MobileNetV1Config
29
+
30
+
31
+ logger = logging.get_logger(__name__)
32
+
33
+
34
+ # General docstring
35
+ _CONFIG_FOR_DOC = "MobileNetV1Config"
36
+
37
+ # Base docstring
38
+ _CHECKPOINT_FOR_DOC = "google/mobilenet_v1_1.0_224"
39
+ _EXPECTED_OUTPUT_SHAPE = [1, 1024, 7, 7]
40
+
41
+ # Image classification docstring
42
+ _IMAGE_CLASS_CHECKPOINT = "google/mobilenet_v1_1.0_224"
43
+ _IMAGE_CLASS_EXPECTED_OUTPUT = "tabby, tabby cat"
44
+
45
+
46
+ from ..deprecated._archive_maps import MOBILENET_V1_PRETRAINED_MODEL_ARCHIVE_LIST # noqa: F401, E402
47
+
48
+
49
+ def _build_tf_to_pytorch_map(model, config, tf_weights=None):
50
+ """
51
+ A map of modules from TF to PyTorch.
52
+ """
53
+
54
+ tf_to_pt_map = {}
55
+
56
+ if isinstance(model, MobileNetV1ForImageClassification):
57
+ backbone = model.mobilenet_v1
58
+ else:
59
+ backbone = model
60
+
61
+ prefix = "MobilenetV1/Conv2d_0/"
62
+ tf_to_pt_map[prefix + "weights"] = backbone.conv_stem.convolution.weight
63
+ tf_to_pt_map[prefix + "BatchNorm/beta"] = backbone.conv_stem.normalization.bias
64
+ tf_to_pt_map[prefix + "BatchNorm/gamma"] = backbone.conv_stem.normalization.weight
65
+ tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = backbone.conv_stem.normalization.running_mean
66
+ tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = backbone.conv_stem.normalization.running_var
67
+
68
+ for i in range(13):
69
+ tf_index = i + 1
70
+ pt_index = i * 2
71
+
72
+ pointer = backbone.layer[pt_index]
73
+ prefix = f"MobilenetV1/Conv2d_{tf_index}_depthwise/"
74
+ tf_to_pt_map[prefix + "depthwise_weights"] = pointer.convolution.weight
75
+ tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias
76
+ tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight
77
+ tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean
78
+ tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var
79
+
80
+ pointer = backbone.layer[pt_index + 1]
81
+ prefix = f"MobilenetV1/Conv2d_{tf_index}_pointwise/"
82
+ tf_to_pt_map[prefix + "weights"] = pointer.convolution.weight
83
+ tf_to_pt_map[prefix + "BatchNorm/beta"] = pointer.normalization.bias
84
+ tf_to_pt_map[prefix + "BatchNorm/gamma"] = pointer.normalization.weight
85
+ tf_to_pt_map[prefix + "BatchNorm/moving_mean"] = pointer.normalization.running_mean
86
+ tf_to_pt_map[prefix + "BatchNorm/moving_variance"] = pointer.normalization.running_var
87
+
88
+ if isinstance(model, MobileNetV1ForImageClassification):
89
+ prefix = "MobilenetV1/Logits/Conv2d_1c_1x1/"
90
+ tf_to_pt_map[prefix + "weights"] = model.classifier.weight
91
+ tf_to_pt_map[prefix + "biases"] = model.classifier.bias
92
+
93
+ return tf_to_pt_map
94
+
95
+
96
+ def load_tf_weights_in_mobilenet_v1(model, config, tf_checkpoint_path):
97
+ """Load TensorFlow checkpoints in a PyTorch model."""
98
+ try:
99
+ import numpy as np
100
+ import tensorflow as tf
101
+ except ImportError:
102
+ logger.error(
103
+ "Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
104
+ "https://www.tensorflow.org/install/ for installation instructions."
105
+ )
106
+ raise
107
+
108
+ # Load weights from TF model
109
+ init_vars = tf.train.list_variables(tf_checkpoint_path)
110
+ tf_weights = {}
111
+ for name, shape in init_vars:
112
+ logger.info(f"Loading TF weight {name} with shape {shape}")
113
+ array = tf.train.load_variable(tf_checkpoint_path, name)
114
+ tf_weights[name] = array
115
+
116
+ # Build TF to PyTorch weights loading map
117
+ tf_to_pt_map = _build_tf_to_pytorch_map(model, config, tf_weights)
118
+
119
+ for name, pointer in tf_to_pt_map.items():
120
+ logger.info(f"Importing {name}")
121
+ if name not in tf_weights:
122
+ logger.info(f"{name} not in tf pre-trained weights, skipping")
123
+ continue
124
+
125
+ array = tf_weights[name]
126
+
127
+ if "depthwise_weights" in name:
128
+ logger.info("Transposing depthwise")
129
+ array = np.transpose(array, (2, 3, 0, 1))
130
+ elif "weights" in name:
131
+ logger.info("Transposing")
132
+ if len(pointer.shape) == 2: # copying into linear layer
133
+ array = array.squeeze().transpose()
134
+ else:
135
+ array = np.transpose(array, (3, 2, 0, 1))
136
+
137
+ if pointer.shape != array.shape:
138
+ raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched")
139
+
140
+ logger.info(f"Initialize PyTorch weight {name} {array.shape}")
141
+ pointer.data = torch.from_numpy(array)
142
+
143
+ tf_weights.pop(name, None)
144
+ tf_weights.pop(name + "/RMSProp", None)
145
+ tf_weights.pop(name + "/RMSProp_1", None)
146
+ tf_weights.pop(name + "/ExponentialMovingAverage", None)
147
+
148
+ logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}")
149
+ return model
150
+
151
+
152
+ def apply_tf_padding(features: torch.Tensor, conv_layer: nn.Conv2d) -> torch.Tensor:
153
+ """
154
+ Apply TensorFlow-style "SAME" padding to a convolution layer. See the notes at:
155
+ https://www.tensorflow.org/api_docs/python/tf/nn#notes_on_padding_2
156
+ """
157
+ in_height, in_width = features.shape[-2:]
158
+ stride_height, stride_width = conv_layer.stride
159
+ kernel_height, kernel_width = conv_layer.kernel_size
160
+
161
+ if in_height % stride_height == 0:
162
+ pad_along_height = max(kernel_height - stride_height, 0)
163
+ else:
164
+ pad_along_height = max(kernel_height - (in_height % stride_height), 0)
165
+
166
+ if in_width % stride_width == 0:
167
+ pad_along_width = max(kernel_width - stride_width, 0)
168
+ else:
169
+ pad_along_width = max(kernel_width - (in_width % stride_width), 0)
170
+
171
+ pad_left = pad_along_width // 2
172
+ pad_right = pad_along_width - pad_left
173
+ pad_top = pad_along_height // 2
174
+ pad_bottom = pad_along_height - pad_top
175
+
176
+ padding = (pad_left, pad_right, pad_top, pad_bottom)
177
+ return nn.functional.pad(features, padding, "constant", 0.0)
178
+
179
+
180
+ class MobileNetV1ConvLayer(nn.Module):
181
+ def __init__(
182
+ self,
183
+ config: MobileNetV1Config,
184
+ in_channels: int,
185
+ out_channels: int,
186
+ kernel_size: int,
187
+ stride: Optional[int] = 1,
188
+ groups: Optional[int] = 1,
189
+ bias: bool = False,
190
+ use_normalization: Optional[bool] = True,
191
+ use_activation: Optional[bool or str] = True,
192
+ ) -> None:
193
+ super().__init__()
194
+ self.config = config
195
+
196
+ if in_channels % groups != 0:
197
+ raise ValueError(f"Input channels ({in_channels}) are not divisible by {groups} groups.")
198
+ if out_channels % groups != 0:
199
+ raise ValueError(f"Output channels ({out_channels}) are not divisible by {groups} groups.")
200
+
201
+ padding = 0 if config.tf_padding else int((kernel_size - 1) / 2)
202
+
203
+ self.convolution = nn.Conv2d(
204
+ in_channels=in_channels,
205
+ out_channels=out_channels,
206
+ kernel_size=kernel_size,
207
+ stride=stride,
208
+ padding=padding,
209
+ groups=groups,
210
+ bias=bias,
211
+ padding_mode="zeros",
212
+ )
213
+
214
+ if use_normalization:
215
+ self.normalization = nn.BatchNorm2d(
216
+ num_features=out_channels,
217
+ eps=config.layer_norm_eps,
218
+ momentum=0.9997,
219
+ affine=True,
220
+ track_running_stats=True,
221
+ )
222
+ else:
223
+ self.normalization = None
224
+
225
+ if use_activation:
226
+ if isinstance(use_activation, str):
227
+ self.activation = ACT2FN[use_activation]
228
+ elif isinstance(config.hidden_act, str):
229
+ self.activation = ACT2FN[config.hidden_act]
230
+ else:
231
+ self.activation = config.hidden_act
232
+ else:
233
+ self.activation = None
234
+
235
+ def forward(self, features: torch.Tensor) -> torch.Tensor:
236
+ if self.config.tf_padding:
237
+ features = apply_tf_padding(features, self.convolution)
238
+ features = self.convolution(features)
239
+ if self.normalization is not None:
240
+ features = self.normalization(features)
241
+ if self.activation is not None:
242
+ features = self.activation(features)
243
+ return features
244
+
245
+
246
+ class MobileNetV1PreTrainedModel(PreTrainedModel):
247
+ """
248
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
249
+ models.
250
+ """
251
+
252
+ config_class = MobileNetV1Config
253
+ load_tf_weights = load_tf_weights_in_mobilenet_v1
254
+ base_model_prefix = "mobilenet_v1"
255
+ main_input_name = "pixel_values"
256
+ supports_gradient_checkpointing = False
257
+
258
+ def _init_weights(self, module: Union[nn.Linear, nn.Conv2d]) -> None:
259
+ """Initialize the weights"""
260
+ if isinstance(module, (nn.Linear, nn.Conv2d)):
261
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
262
+ if module.bias is not None:
263
+ module.bias.data.zero_()
264
+ elif isinstance(module, nn.BatchNorm2d):
265
+ module.bias.data.zero_()
266
+ module.weight.data.fill_(1.0)
267
+
268
+
269
+ MOBILENET_V1_START_DOCSTRING = r"""
270
+ This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it
271
+ as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and
272
+ behavior.
273
+
274
+ Parameters:
275
+ config ([`MobileNetV1Config`]): Model configuration class with all the parameters of the model.
276
+ Initializing with a config file does not load the weights associated with the model, only the
277
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
278
+ """
279
+
280
+ MOBILENET_V1_INPUTS_DOCSTRING = r"""
281
+ Args:
282
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
283
+ Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See
284
+ [`MobileNetV1ImageProcessor.__call__`] for details.
285
+ output_hidden_states (`bool`, *optional*):
286
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
287
+ more detail.
288
+ return_dict (`bool`, *optional*):
289
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
290
+ """
291
+
292
+
293
+ @add_start_docstrings(
294
+ "The bare MobileNetV1 model outputting raw hidden-states without any specific head on top.",
295
+ MOBILENET_V1_START_DOCSTRING,
296
+ )
297
+ class MobileNetV1Model(MobileNetV1PreTrainedModel):
298
+ def __init__(self, config: MobileNetV1Config, add_pooling_layer: bool = True):
299
+ super().__init__(config)
300
+ self.config = config
301
+
302
+ depth = 32
303
+ out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
304
+
305
+ self.conv_stem = MobileNetV1ConvLayer(
306
+ config,
307
+ in_channels=config.num_channels,
308
+ out_channels=out_channels,
309
+ kernel_size=3,
310
+ stride=2,
311
+ )
312
+
313
+ strides = [1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1]
314
+
315
+ self.layer = nn.ModuleList()
316
+ for i in range(13):
317
+ in_channels = out_channels
318
+
319
+ if strides[i] == 2 or i == 0:
320
+ depth *= 2
321
+ out_channels = max(int(depth * config.depth_multiplier), config.min_depth)
322
+
323
+ self.layer.append(
324
+ MobileNetV1ConvLayer(
325
+ config,
326
+ in_channels=in_channels,
327
+ out_channels=in_channels,
328
+ kernel_size=3,
329
+ stride=strides[i],
330
+ groups=in_channels,
331
+ )
332
+ )
333
+
334
+ self.layer.append(
335
+ MobileNetV1ConvLayer(
336
+ config,
337
+ in_channels=in_channels,
338
+ out_channels=out_channels,
339
+ kernel_size=1,
340
+ )
341
+ )
342
+
343
+ self.pooler = nn.AdaptiveAvgPool2d((1, 1)) if add_pooling_layer else None
344
+
345
+ # Initialize weights and apply final processing
346
+ self.post_init()
347
+
348
+ def _prune_heads(self, heads_to_prune):
349
+ raise NotImplementedError
350
+
351
+ @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
352
+ @add_code_sample_docstrings(
353
+ checkpoint=_CHECKPOINT_FOR_DOC,
354
+ output_type=BaseModelOutputWithPoolingAndNoAttention,
355
+ config_class=_CONFIG_FOR_DOC,
356
+ modality="vision",
357
+ expected_output=_EXPECTED_OUTPUT_SHAPE,
358
+ )
359
+ def forward(
360
+ self,
361
+ pixel_values: Optional[torch.Tensor] = None,
362
+ output_hidden_states: Optional[bool] = None,
363
+ return_dict: Optional[bool] = None,
364
+ ) -> Union[tuple, BaseModelOutputWithPoolingAndNoAttention]:
365
+ output_hidden_states = (
366
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
367
+ )
368
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
369
+
370
+ if pixel_values is None:
371
+ raise ValueError("You have to specify pixel_values")
372
+
373
+ hidden_states = self.conv_stem(pixel_values)
374
+
375
+ all_hidden_states = () if output_hidden_states else None
376
+
377
+ for i, layer_module in enumerate(self.layer):
378
+ hidden_states = layer_module(hidden_states)
379
+
380
+ if output_hidden_states:
381
+ all_hidden_states = all_hidden_states + (hidden_states,)
382
+
383
+ last_hidden_state = hidden_states
384
+
385
+ if self.pooler is not None:
386
+ pooled_output = torch.flatten(self.pooler(last_hidden_state), start_dim=1)
387
+ else:
388
+ pooled_output = None
389
+
390
+ if not return_dict:
391
+ return tuple(v for v in [last_hidden_state, pooled_output, all_hidden_states] if v is not None)
392
+
393
+ return BaseModelOutputWithPoolingAndNoAttention(
394
+ last_hidden_state=last_hidden_state,
395
+ pooler_output=pooled_output,
396
+ hidden_states=all_hidden_states,
397
+ )
398
+
399
+
400
+ @add_start_docstrings(
401
+ """
402
+ MobileNetV1 model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
403
+ ImageNet.
404
+ """,
405
+ MOBILENET_V1_START_DOCSTRING,
406
+ )
407
+ class MobileNetV1ForImageClassification(MobileNetV1PreTrainedModel):
408
+ def __init__(self, config: MobileNetV1Config) -> None:
409
+ super().__init__(config)
410
+
411
+ self.num_labels = config.num_labels
412
+ self.mobilenet_v1 = MobileNetV1Model(config)
413
+
414
+ last_hidden_size = self.mobilenet_v1.layer[-1].convolution.out_channels
415
+
416
+ # Classifier head
417
+ self.dropout = nn.Dropout(config.classifier_dropout_prob, inplace=True)
418
+ self.classifier = nn.Linear(last_hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
419
+
420
+ # Initialize weights and apply final processing
421
+ self.post_init()
422
+
423
+ @add_start_docstrings_to_model_forward(MOBILENET_V1_INPUTS_DOCSTRING)
424
+ @add_code_sample_docstrings(
425
+ checkpoint=_IMAGE_CLASS_CHECKPOINT,
426
+ output_type=ImageClassifierOutputWithNoAttention,
427
+ config_class=_CONFIG_FOR_DOC,
428
+ expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT,
429
+ )
430
+ def forward(
431
+ self,
432
+ pixel_values: Optional[torch.Tensor] = None,
433
+ output_hidden_states: Optional[bool] = None,
434
+ labels: Optional[torch.Tensor] = None,
435
+ return_dict: Optional[bool] = None,
436
+ ) -> Union[tuple, ImageClassifierOutputWithNoAttention]:
437
+ r"""
438
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
439
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
440
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss). If
441
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
442
+ """
443
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
444
+
445
+ outputs = self.mobilenet_v1(pixel_values, output_hidden_states=output_hidden_states, return_dict=return_dict)
446
+
447
+ pooled_output = outputs.pooler_output if return_dict else outputs[1]
448
+
449
+ logits = self.classifier(self.dropout(pooled_output))
450
+
451
+ loss = None
452
+ if labels is not None:
453
+ if self.config.problem_type is None:
454
+ if self.num_labels == 1:
455
+ self.config.problem_type = "regression"
456
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
457
+ self.config.problem_type = "single_label_classification"
458
+ else:
459
+ self.config.problem_type = "multi_label_classification"
460
+
461
+ if self.config.problem_type == "regression":
462
+ loss_fct = MSELoss()
463
+ if self.num_labels == 1:
464
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
465
+ else:
466
+ loss = loss_fct(logits, labels)
467
+ elif self.config.problem_type == "single_label_classification":
468
+ loss_fct = CrossEntropyLoss()
469
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
470
+ elif self.config.problem_type == "multi_label_classification":
471
+ loss_fct = BCEWithLogitsLoss()
472
+ loss = loss_fct(logits, labels)
473
+
474
+ if not return_dict:
475
+ output = (logits,) + outputs[2:]
476
+ return ((loss,) + output) if loss is not None else output
477
+
478
+ return ImageClassifierOutputWithNoAttention(
479
+ loss=loss,
480
+ logits=logits,
481
+ hidden_states=outputs.hidden_states,
482
+ )
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__init__.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2023 The HuggingFace Team. All rights reserved.
2
+ #
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ from typing import TYPE_CHECKING
15
+
16
+ from ...utils import (
17
+ OptionalDependencyNotAvailable,
18
+ _LazyModule,
19
+ is_essentia_available,
20
+ is_librosa_available,
21
+ is_pretty_midi_available,
22
+ is_scipy_available,
23
+ is_torch_available,
24
+ )
25
+
26
+
27
+ _import_structure = {
28
+ "configuration_pop2piano": ["POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP", "Pop2PianoConfig"],
29
+ }
30
+
31
+ try:
32
+ if not is_torch_available():
33
+ raise OptionalDependencyNotAvailable()
34
+ except OptionalDependencyNotAvailable:
35
+ pass
36
+ else:
37
+ _import_structure["modeling_pop2piano"] = [
38
+ "POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST",
39
+ "Pop2PianoForConditionalGeneration",
40
+ "Pop2PianoPreTrainedModel",
41
+ ]
42
+
43
+ try:
44
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
45
+ raise OptionalDependencyNotAvailable()
46
+ except OptionalDependencyNotAvailable:
47
+ pass
48
+ else:
49
+ _import_structure["feature_extraction_pop2piano"] = ["Pop2PianoFeatureExtractor"]
50
+
51
+ try:
52
+ if not (is_pretty_midi_available() and is_torch_available()):
53
+ raise OptionalDependencyNotAvailable()
54
+ except OptionalDependencyNotAvailable:
55
+ pass
56
+ else:
57
+ _import_structure["tokenization_pop2piano"] = ["Pop2PianoTokenizer"]
58
+
59
+ try:
60
+ if not (
61
+ is_pretty_midi_available()
62
+ and is_torch_available()
63
+ and is_librosa_available()
64
+ and is_essentia_available()
65
+ and is_scipy_available()
66
+ ):
67
+ raise OptionalDependencyNotAvailable()
68
+ except OptionalDependencyNotAvailable:
69
+ pass
70
+ else:
71
+ _import_structure["processing_pop2piano"] = ["Pop2PianoProcessor"]
72
+
73
+
74
+ if TYPE_CHECKING:
75
+ from .configuration_pop2piano import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP, Pop2PianoConfig
76
+
77
+ try:
78
+ if not is_torch_available():
79
+ raise OptionalDependencyNotAvailable()
80
+ except OptionalDependencyNotAvailable:
81
+ pass
82
+ else:
83
+ from .modeling_pop2piano import (
84
+ POP2PIANO_PRETRAINED_MODEL_ARCHIVE_LIST,
85
+ Pop2PianoForConditionalGeneration,
86
+ Pop2PianoPreTrainedModel,
87
+ )
88
+
89
+ try:
90
+ if not (is_librosa_available() and is_essentia_available() and is_scipy_available() and is_torch_available()):
91
+ raise OptionalDependencyNotAvailable()
92
+ except OptionalDependencyNotAvailable:
93
+ pass
94
+ else:
95
+ from .feature_extraction_pop2piano import Pop2PianoFeatureExtractor
96
+
97
+ try:
98
+ if not (is_pretty_midi_available() and is_torch_available()):
99
+ raise OptionalDependencyNotAvailable()
100
+ except OptionalDependencyNotAvailable:
101
+ pass
102
+ else:
103
+ from .tokenization_pop2piano import Pop2PianoTokenizer
104
+
105
+ try:
106
+ if not (
107
+ is_pretty_midi_available()
108
+ and is_torch_available()
109
+ and is_librosa_available()
110
+ and is_essentia_available()
111
+ and is_scipy_available()
112
+ ):
113
+ raise OptionalDependencyNotAvailable()
114
+ except OptionalDependencyNotAvailable:
115
+ pass
116
+ else:
117
+ from .processing_pop2piano import Pop2PianoProcessor
118
+
119
+ else:
120
+ import sys
121
+
122
+ sys.modules[__name__] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (1.77 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/configuration_pop2piano.cpython-310.pyc ADDED
Binary file (5.14 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/convert_pop2piano_weights_to_hf.cpython-310.pyc ADDED
Binary file (4.22 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/feature_extraction_pop2piano.cpython-310.pyc ADDED
Binary file (14.5 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/modeling_pop2piano.cpython-310.pyc ADDED
Binary file (40.7 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/processing_pop2piano.cpython-310.pyc ADDED
Binary file (4.58 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/__pycache__/tokenization_pop2piano.cpython-310.pyc ADDED
Binary file (24.7 kB). View file
 
venv/lib/python3.10/site-packages/transformers/models/pop2piano/configuration_pop2piano.py ADDED
@@ -0,0 +1,128 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ Pop2Piano model configuration"""
16
+
17
+
18
+ from ...configuration_utils import PretrainedConfig
19
+ from ...utils import logging
20
+
21
+
22
+ logger = logging.get_logger(__name__)
23
+
24
+
25
+ from ..deprecated._archive_maps import POP2PIANO_PRETRAINED_CONFIG_ARCHIVE_MAP # noqa: F401, E402
26
+
27
+
28
+ class Pop2PianoConfig(PretrainedConfig):
29
+ r"""
30
+ This is the configuration class to store the configuration of a [`Pop2PianoForConditionalGeneration`]. It is used
31
+ to instantiate a Pop2PianoForConditionalGeneration model according to the specified arguments, defining the model
32
+ architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the
33
+ Pop2Piano [sweetcocoa/pop2piano](https://huggingface.co/sweetcocoa/pop2piano) architecture.
34
+
35
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
36
+ documentation from [`PretrainedConfig`] for more information.
37
+
38
+ Arguments:
39
+ vocab_size (`int`, *optional*, defaults to 2400):
40
+ Vocabulary size of the `Pop2PianoForConditionalGeneration` model. Defines the number of different tokens
41
+ that can be represented by the `inputs_ids` passed when calling [`Pop2PianoForConditionalGeneration`].
42
+ composer_vocab_size (`int`, *optional*, defaults to 21):
43
+ Denotes the number of composers.
44
+ d_model (`int`, *optional*, defaults to 512):
45
+ Size of the encoder layers and the pooler layer.
46
+ d_kv (`int`, *optional*, defaults to 64):
47
+ Size of the key, query, value projections per attention head. The `inner_dim` of the projection layer will
48
+ be defined as `num_heads * d_kv`.
49
+ d_ff (`int`, *optional*, defaults to 2048):
50
+ Size of the intermediate feed forward layer in each `Pop2PianoBlock`.
51
+ num_layers (`int`, *optional*, defaults to 6):
52
+ Number of hidden layers in the Transformer encoder.
53
+ num_decoder_layers (`int`, *optional*):
54
+ Number of hidden layers in the Transformer decoder. Will use the same value as `num_layers` if not set.
55
+ num_heads (`int`, *optional*, defaults to 8):
56
+ Number of attention heads for each attention layer in the Transformer encoder.
57
+ relative_attention_num_buckets (`int`, *optional*, defaults to 32):
58
+ The number of buckets to use for each attention layer.
59
+ relative_attention_max_distance (`int`, *optional*, defaults to 128):
60
+ The maximum distance of the longer sequences for the bucket separation.
61
+ dropout_rate (`float`, *optional*, defaults to 0.1):
62
+ The ratio for all dropout layers.
63
+ layer_norm_epsilon (`float`, *optional*, defaults to 1e-6):
64
+ The epsilon used by the layer normalization layers.
65
+ initializer_factor (`float`, *optional*, defaults to 1.0):
66
+ A factor for initializing all weight matrices (should be kept to 1.0, used internally for initialization
67
+ testing).
68
+ feed_forward_proj (`string`, *optional*, defaults to `"gated-gelu"`):
69
+ Type of feed forward layer to be used. Should be one of `"relu"` or `"gated-gelu"`.
70
+ use_cache (`bool`, *optional*, defaults to `True`):
71
+ Whether or not the model should return the last key/values attentions (not used by all models).
72
+ dense_act_fn (`string`, *optional*, defaults to `"relu"`):
73
+ Type of Activation Function to be used in `Pop2PianoDenseActDense` and in `Pop2PianoDenseGatedActDense`.
74
+ """
75
+
76
+ model_type = "pop2piano"
77
+ keys_to_ignore_at_inference = ["past_key_values"]
78
+
79
+ def __init__(
80
+ self,
81
+ vocab_size=2400,
82
+ composer_vocab_size=21,
83
+ d_model=512,
84
+ d_kv=64,
85
+ d_ff=2048,
86
+ num_layers=6,
87
+ num_decoder_layers=None,
88
+ num_heads=8,
89
+ relative_attention_num_buckets=32,
90
+ relative_attention_max_distance=128,
91
+ dropout_rate=0.1,
92
+ layer_norm_epsilon=1e-6,
93
+ initializer_factor=1.0,
94
+ feed_forward_proj="gated-gelu", # noqa
95
+ is_encoder_decoder=True,
96
+ use_cache=True,
97
+ pad_token_id=0,
98
+ eos_token_id=1,
99
+ dense_act_fn="relu",
100
+ **kwargs,
101
+ ):
102
+ self.vocab_size = vocab_size
103
+ self.composer_vocab_size = composer_vocab_size
104
+ self.d_model = d_model
105
+ self.d_kv = d_kv
106
+ self.d_ff = d_ff
107
+ self.num_layers = num_layers
108
+ self.num_decoder_layers = num_decoder_layers if num_decoder_layers is not None else self.num_layers
109
+ self.num_heads = num_heads
110
+ self.relative_attention_num_buckets = relative_attention_num_buckets
111
+ self.relative_attention_max_distance = relative_attention_max_distance
112
+ self.dropout_rate = dropout_rate
113
+ self.layer_norm_epsilon = layer_norm_epsilon
114
+ self.initializer_factor = initializer_factor
115
+ self.feed_forward_proj = feed_forward_proj
116
+ self.use_cache = use_cache
117
+ self.dense_act_fn = dense_act_fn
118
+ self.is_gated_act = self.feed_forward_proj.split("-")[0] == "gated"
119
+ self.hidden_size = self.d_model
120
+ self.num_attention_heads = num_heads
121
+ self.num_hidden_layers = num_layers
122
+
123
+ super().__init__(
124
+ pad_token_id=pad_token_id,
125
+ eos_token_id=eos_token_id,
126
+ is_encoder_decoder=is_encoder_decoder,
127
+ **kwargs,
128
+ )