Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step20/zero/15.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/17.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/18.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step20/zero/18.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step20/zero/9.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/convert.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/convert_to_parquet.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/commands/__pycache__/test.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/__init__.py +10 -0
- venv/lib/python3.10/site-packages/datasets/download/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/__pycache__/download_config.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/__pycache__/download_manager.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/__pycache__/mock_download_manager.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/__pycache__/streaming_download_manager.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/download/download_config.py +108 -0
- venv/lib/python3.10/site-packages/datasets/download/download_manager.py +448 -0
- venv/lib/python3.10/site-packages/datasets/download/mock_download_manager.py +244 -0
- venv/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py +210 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__pycache__/cache.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py +207 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/__pycache__/csv.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py +203 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__pycache__/json.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/json/json.py +180 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__pycache__/spark.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py +349 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__pycache__/sql.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/sql.py +118 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__init__.py +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/_tenbin.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/webdataset.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/_tenbin.py +285 -0
- venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/webdataset.py +299 -0
- venv/lib/python3.10/site-packages/datasets/parallel/__init__.py +1 -0
- venv/lib/python3.10/site-packages/datasets/parallel/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/parallel/__pycache__/parallel.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/parallel/parallel.py +120 -0
- venv/lib/python3.10/site-packages/datasets/tasks/__init__.py +46 -0
- venv/lib/python3.10/site-packages/datasets/tasks/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/datasets/tasks/__pycache__/audio_classification.cpython-310.pyc +0 -0
ckpts/universal/global_step20/zero/15.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:929555ecf3a84a09dbb0adf6abce9c36ae0b9b84114921beac5066f33a45c7f9
|
3 |
+
size 33555612
|
ckpts/universal/global_step20/zero/17.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0509bc0ff365fd6e8cb292534fb79e5ac1abfa14165d165555b1dd7f194d0aaa
|
3 |
+
size 50332749
|
ckpts/universal/global_step20/zero/18.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aeaa31a4a99e6eba1e9955db4c27f1412e0ea156029115bc4691f1684455a2b6
|
3 |
+
size 16778396
|
ckpts/universal/global_step20/zero/18.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4a546964f06449aeeebda85ccb697d5601209f9c88ecbedcb1a012bcee820eca
|
3 |
+
size 16778317
|
ckpts/universal/global_step20/zero/9.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0f1da3f760ef72009420595c4abe76a9a6633487215813eacadbdd377feb6c6
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/convert.cpython-310.pyc
ADDED
Binary file (6.07 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/convert_to_parquet.cpython-310.pyc
ADDED
Binary file (4.42 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/commands/__pycache__/test.cpython-310.pyc
ADDED
Binary file (5.63 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/__init__.py
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
__all__ = [
|
2 |
+
"DownloadConfig",
|
3 |
+
"DownloadManager",
|
4 |
+
"DownloadMode",
|
5 |
+
"StreamingDownloadManager",
|
6 |
+
]
|
7 |
+
|
8 |
+
from .download_config import DownloadConfig
|
9 |
+
from .download_manager import DownloadManager, DownloadMode
|
10 |
+
from .streaming_download_manager import StreamingDownloadManager
|
venv/lib/python3.10/site-packages/datasets/download/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (434 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/__pycache__/download_config.cpython-310.pyc
ADDED
Binary file (5.65 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/__pycache__/download_manager.cpython-310.pyc
ADDED
Binary file (15.3 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/__pycache__/mock_download_manager.cpython-310.pyc
ADDED
Binary file (8.02 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/__pycache__/streaming_download_manager.cpython-310.pyc
ADDED
Binary file (7.45 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/download/download_config.py
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import copy
|
2 |
+
import warnings
|
3 |
+
from dataclasses import InitVar, dataclass, field
|
4 |
+
from pathlib import Path
|
5 |
+
from typing import Any, Dict, Optional, Union
|
6 |
+
|
7 |
+
from .. import config
|
8 |
+
|
9 |
+
|
10 |
+
@dataclass
|
11 |
+
class DownloadConfig:
|
12 |
+
"""Configuration for our cached path manager.
|
13 |
+
|
14 |
+
Attributes:
|
15 |
+
cache_dir (`str` or `Path`, *optional*):
|
16 |
+
Specify a cache directory to save the file to (overwrite the
|
17 |
+
default cache dir).
|
18 |
+
force_download (`bool`, defaults to `False`):
|
19 |
+
If `True`, re-dowload the file even if it's already cached in
|
20 |
+
the cache dir.
|
21 |
+
resume_download (`bool`, defaults to `False`):
|
22 |
+
If `True`, resume the download if an incompletely received file is
|
23 |
+
found.
|
24 |
+
proxies (`dict`, *optional*):
|
25 |
+
user_agent (`str`, *optional*):
|
26 |
+
Optional string or dict that will be appended to the user-agent on remote
|
27 |
+
requests.
|
28 |
+
extract_compressed_file (`bool`, defaults to `False`):
|
29 |
+
If `True` and the path point to a zip or tar file,
|
30 |
+
extract the compressed file in a folder along the archive.
|
31 |
+
force_extract (`bool`, defaults to `False`):
|
32 |
+
If `True` when `extract_compressed_file` is `True` and the archive
|
33 |
+
was already extracted, re-extract the archive and override the folder where it was extracted.
|
34 |
+
delete_extracted (`bool`, defaults to `False`):
|
35 |
+
Whether to delete (or keep) the extracted files.
|
36 |
+
extract_on_the_fly (`bool`, defaults to `False`):
|
37 |
+
If `True`, extract compressed files while they are being read.
|
38 |
+
use_etag (`bool`, defaults to `True`):
|
39 |
+
Whether to use the ETag HTTP response header to validate the cached files.
|
40 |
+
num_proc (`int`, *optional*):
|
41 |
+
The number of processes to launch to download the files in parallel.
|
42 |
+
max_retries (`int`, default to `1`):
|
43 |
+
The number of times to retry an HTTP request if it fails.
|
44 |
+
token (`str` or `bool`, *optional*):
|
45 |
+
Optional string or boolean to use as Bearer token
|
46 |
+
for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`.
|
47 |
+
use_auth_token (`str` or `bool`, *optional*):
|
48 |
+
Optional string or boolean to use as Bearer token
|
49 |
+
for remote files on the Datasets Hub. If `True`, or not specified, will get token from `~/.huggingface`.
|
50 |
+
|
51 |
+
<Deprecated version="2.14.0">
|
52 |
+
|
53 |
+
`use_auth_token` was deprecated in favor of `token` in version 2.14.0 and will be removed in 3.0.0.
|
54 |
+
|
55 |
+
</Deprecated>
|
56 |
+
|
57 |
+
ignore_url_params (`bool`, defaults to `False`):
|
58 |
+
Whether to strip all query parameters and fragments from
|
59 |
+
the download URL before using it for caching the file.
|
60 |
+
storage_options (`dict`, *optional*):
|
61 |
+
Key/value pairs to be passed on to the dataset file-system backend, if any.
|
62 |
+
download_desc (`str`, *optional*):
|
63 |
+
A description to be displayed alongside with the progress bar while downloading the files.
|
64 |
+
disable_tqdm (`bool`, defaults to `False`):
|
65 |
+
Whether to disable the individual files download progress bar
|
66 |
+
"""
|
67 |
+
|
68 |
+
cache_dir: Optional[Union[str, Path]] = None
|
69 |
+
force_download: bool = False
|
70 |
+
resume_download: bool = False
|
71 |
+
local_files_only: bool = False
|
72 |
+
proxies: Optional[Dict] = None
|
73 |
+
user_agent: Optional[str] = None
|
74 |
+
extract_compressed_file: bool = False
|
75 |
+
force_extract: bool = False
|
76 |
+
delete_extracted: bool = False
|
77 |
+
extract_on_the_fly: bool = False
|
78 |
+
use_etag: bool = True
|
79 |
+
num_proc: Optional[int] = None
|
80 |
+
max_retries: int = 1
|
81 |
+
token: Optional[Union[str, bool]] = None
|
82 |
+
use_auth_token: InitVar[Optional[Union[str, bool]]] = "deprecated"
|
83 |
+
ignore_url_params: bool = False
|
84 |
+
storage_options: Dict[str, Any] = field(default_factory=dict)
|
85 |
+
download_desc: Optional[str] = None
|
86 |
+
disable_tqdm: bool = False
|
87 |
+
|
88 |
+
def __post_init__(self, use_auth_token):
|
89 |
+
if use_auth_token != "deprecated":
|
90 |
+
warnings.warn(
|
91 |
+
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
|
92 |
+
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
|
93 |
+
FutureWarning,
|
94 |
+
)
|
95 |
+
self.token = use_auth_token
|
96 |
+
if "hf" not in self.storage_options:
|
97 |
+
self.storage_options["hf"] = {"token": self.token, "endpoint": config.HF_ENDPOINT}
|
98 |
+
|
99 |
+
def copy(self) -> "DownloadConfig":
|
100 |
+
return self.__class__(**{k: copy.deepcopy(v) for k, v in self.__dict__.items()})
|
101 |
+
|
102 |
+
def __setattr__(self, name, value):
|
103 |
+
if name == "token" and getattr(self, "storage_options", None) is not None:
|
104 |
+
if "hf" not in self.storage_options:
|
105 |
+
self.storage_options["hf"] = {"token": value, "endpoint": config.HF_ENDPOINT}
|
106 |
+
elif getattr(self.storage_options["hf"], "token", None) is None:
|
107 |
+
self.storage_options["hf"]["token"] = value
|
108 |
+
super().__setattr__(name, value)
|
venv/lib/python3.10/site-packages/datasets/download/download_manager.py
ADDED
@@ -0,0 +1,448 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Download manager interface."""
|
17 |
+
|
18 |
+
import enum
|
19 |
+
import io
|
20 |
+
import multiprocessing
|
21 |
+
import os
|
22 |
+
import posixpath
|
23 |
+
import warnings
|
24 |
+
from datetime import datetime
|
25 |
+
from functools import partial
|
26 |
+
from typing import Dict, List, Optional, Union
|
27 |
+
|
28 |
+
import fsspec
|
29 |
+
from fsspec.core import url_to_fs
|
30 |
+
from tqdm.contrib.concurrent import thread_map
|
31 |
+
|
32 |
+
from .. import config
|
33 |
+
from ..utils import tqdm as hf_tqdm
|
34 |
+
from ..utils.deprecation_utils import DeprecatedEnum, deprecated
|
35 |
+
from ..utils.file_utils import (
|
36 |
+
ArchiveIterable,
|
37 |
+
FilesIterable,
|
38 |
+
cached_path,
|
39 |
+
get_from_cache,
|
40 |
+
hash_url_to_filename,
|
41 |
+
is_relative_path,
|
42 |
+
stack_multiprocessing_download_progress_bars,
|
43 |
+
url_or_path_join,
|
44 |
+
)
|
45 |
+
from ..utils.info_utils import get_size_checksum_dict
|
46 |
+
from ..utils.logging import get_logger, tqdm
|
47 |
+
from ..utils.py_utils import NestedDataStructure, map_nested, size_str
|
48 |
+
from ..utils.track import tracked_str
|
49 |
+
from .download_config import DownloadConfig
|
50 |
+
|
51 |
+
|
52 |
+
logger = get_logger(__name__)
|
53 |
+
|
54 |
+
|
55 |
+
class DownloadMode(enum.Enum):
|
56 |
+
"""`Enum` for how to treat pre-existing downloads and data.
|
57 |
+
|
58 |
+
The default mode is `REUSE_DATASET_IF_EXISTS`, which will reuse both
|
59 |
+
raw downloads and the prepared dataset if they exist.
|
60 |
+
|
61 |
+
The generations modes:
|
62 |
+
|
63 |
+
| | Downloads | Dataset |
|
64 |
+
|-------------------------------------|-----------|---------|
|
65 |
+
| `REUSE_DATASET_IF_EXISTS` (default) | Reuse | Reuse |
|
66 |
+
| `REUSE_CACHE_IF_EXISTS` | Reuse | Fresh |
|
67 |
+
| `FORCE_REDOWNLOAD` | Fresh | Fresh |
|
68 |
+
|
69 |
+
"""
|
70 |
+
|
71 |
+
REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists"
|
72 |
+
REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists"
|
73 |
+
FORCE_REDOWNLOAD = "force_redownload"
|
74 |
+
|
75 |
+
|
76 |
+
class GenerateMode(DeprecatedEnum):
|
77 |
+
REUSE_DATASET_IF_EXISTS = "reuse_dataset_if_exists"
|
78 |
+
REUSE_CACHE_IF_EXISTS = "reuse_cache_if_exists"
|
79 |
+
FORCE_REDOWNLOAD = "force_redownload"
|
80 |
+
|
81 |
+
@property
|
82 |
+
def help_message(self):
|
83 |
+
return "Use 'DownloadMode' instead."
|
84 |
+
|
85 |
+
|
86 |
+
class DownloadManager:
|
87 |
+
is_streaming = False
|
88 |
+
|
89 |
+
def __init__(
|
90 |
+
self,
|
91 |
+
dataset_name: Optional[str] = None,
|
92 |
+
data_dir: Optional[str] = None,
|
93 |
+
download_config: Optional[DownloadConfig] = None,
|
94 |
+
base_path: Optional[str] = None,
|
95 |
+
record_checksums=True,
|
96 |
+
):
|
97 |
+
"""Download manager constructor.
|
98 |
+
|
99 |
+
Args:
|
100 |
+
data_dir:
|
101 |
+
can be used to specify a manual directory to get the files from.
|
102 |
+
dataset_name (`str`):
|
103 |
+
name of dataset this instance will be used for. If
|
104 |
+
provided, downloads will contain which datasets they were used for.
|
105 |
+
download_config (`DownloadConfig`):
|
106 |
+
to specify the cache directory and other
|
107 |
+
download options
|
108 |
+
base_path (`str`):
|
109 |
+
base path that is used when relative paths are used to
|
110 |
+
download files. This can be a remote url.
|
111 |
+
record_checksums (`bool`, defaults to `True`):
|
112 |
+
Whether to record the checksums of the downloaded files. If None, the value is inferred from the builder.
|
113 |
+
"""
|
114 |
+
self._dataset_name = dataset_name
|
115 |
+
self._data_dir = data_dir
|
116 |
+
self._base_path = base_path or os.path.abspath(".")
|
117 |
+
# To record what is being used: {url: {num_bytes: int, checksum: str}}
|
118 |
+
self._recorded_sizes_checksums: Dict[str, Dict[str, Optional[Union[int, str]]]] = {}
|
119 |
+
self.record_checksums = record_checksums
|
120 |
+
self.download_config = download_config or DownloadConfig()
|
121 |
+
self.downloaded_paths = {}
|
122 |
+
self.extracted_paths = {}
|
123 |
+
|
124 |
+
@property
|
125 |
+
def manual_dir(self):
|
126 |
+
return self._data_dir
|
127 |
+
|
128 |
+
@property
|
129 |
+
def downloaded_size(self):
|
130 |
+
"""Returns the total size of downloaded files."""
|
131 |
+
return sum(checksums_dict["num_bytes"] for checksums_dict in self._recorded_sizes_checksums.values())
|
132 |
+
|
133 |
+
@staticmethod
|
134 |
+
def ship_files_with_pipeline(downloaded_path_or_paths, pipeline):
|
135 |
+
"""Ship the files using Beam FileSystems to the pipeline temp dir.
|
136 |
+
|
137 |
+
Args:
|
138 |
+
downloaded_path_or_paths (`str` or `list[str]` or `dict[str, str]`):
|
139 |
+
Nested structure containing the
|
140 |
+
downloaded path(s).
|
141 |
+
pipeline ([`utils.beam_utils.BeamPipeline`]):
|
142 |
+
Apache Beam Pipeline.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
`str` or `list[str]` or `dict[str, str]`
|
146 |
+
"""
|
147 |
+
from ..utils.beam_utils import upload_local_to_remote
|
148 |
+
|
149 |
+
remote_dir = pipeline._options.get_all_options().get("temp_location")
|
150 |
+
if remote_dir is None:
|
151 |
+
raise ValueError("You need to specify 'temp_location' in PipelineOptions to upload files")
|
152 |
+
|
153 |
+
def upload(local_file_path):
|
154 |
+
remote_file_path = posixpath.join(
|
155 |
+
remote_dir, config.DOWNLOADED_DATASETS_DIR, os.path.basename(local_file_path)
|
156 |
+
)
|
157 |
+
logger.info(
|
158 |
+
f"Uploading {local_file_path} ({size_str(os.path.getsize(local_file_path))}) to {remote_file_path}."
|
159 |
+
)
|
160 |
+
upload_local_to_remote(local_file_path, remote_file_path)
|
161 |
+
return remote_file_path
|
162 |
+
|
163 |
+
uploaded_path_or_paths = map_nested(
|
164 |
+
lambda local_file_path: upload(local_file_path),
|
165 |
+
downloaded_path_or_paths,
|
166 |
+
)
|
167 |
+
return uploaded_path_or_paths
|
168 |
+
|
169 |
+
def _record_sizes_checksums(self, url_or_urls: NestedDataStructure, downloaded_path_or_paths: NestedDataStructure):
|
170 |
+
"""Record size/checksum of downloaded files."""
|
171 |
+
delay = 5
|
172 |
+
for url, path in hf_tqdm(
|
173 |
+
list(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())),
|
174 |
+
delay=delay,
|
175 |
+
desc="Computing checksums",
|
176 |
+
):
|
177 |
+
# call str to support PathLike objects
|
178 |
+
self._recorded_sizes_checksums[str(url)] = get_size_checksum_dict(
|
179 |
+
path, record_checksum=self.record_checksums
|
180 |
+
)
|
181 |
+
|
182 |
+
@deprecated("Use `.download`/`.download_and_extract` with `fsspec` URLs instead.")
|
183 |
+
def download_custom(self, url_or_urls, custom_download):
|
184 |
+
"""
|
185 |
+
Download given urls(s) by calling `custom_download`.
|
186 |
+
|
187 |
+
Args:
|
188 |
+
url_or_urls (`str` or `list` or `dict`):
|
189 |
+
URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
|
190 |
+
custom_download (`Callable[src_url, dst_path]`):
|
191 |
+
The source URL and destination path. For example
|
192 |
+
`tf.io.gfile.copy`, that lets you download from Google storage.
|
193 |
+
|
194 |
+
Returns:
|
195 |
+
downloaded_path(s): `str`, The downloaded paths matching the given input
|
196 |
+
`url_or_urls`.
|
197 |
+
|
198 |
+
Example:
|
199 |
+
|
200 |
+
```py
|
201 |
+
>>> downloaded_files = dl_manager.download_custom('s3://my-bucket/data.zip', custom_download_for_my_private_bucket)
|
202 |
+
```
|
203 |
+
"""
|
204 |
+
cache_dir = self.download_config.cache_dir or config.DOWNLOADED_DATASETS_PATH
|
205 |
+
max_retries = self.download_config.max_retries
|
206 |
+
|
207 |
+
def url_to_downloaded_path(url):
|
208 |
+
return os.path.join(cache_dir, hash_url_to_filename(url))
|
209 |
+
|
210 |
+
downloaded_path_or_paths = map_nested(url_to_downloaded_path, url_or_urls)
|
211 |
+
url_or_urls = NestedDataStructure(url_or_urls)
|
212 |
+
downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
|
213 |
+
for url, path in zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten()):
|
214 |
+
try:
|
215 |
+
get_from_cache(
|
216 |
+
url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
|
217 |
+
)
|
218 |
+
cached = True
|
219 |
+
except FileNotFoundError:
|
220 |
+
cached = False
|
221 |
+
if not cached or self.download_config.force_download:
|
222 |
+
custom_download(url, path)
|
223 |
+
get_from_cache(
|
224 |
+
url, cache_dir=cache_dir, local_files_only=True, use_etag=False, max_retries=max_retries
|
225 |
+
)
|
226 |
+
self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
|
227 |
+
return downloaded_path_or_paths.data
|
228 |
+
|
229 |
+
def download(self, url_or_urls):
|
230 |
+
"""Download given URL(s).
|
231 |
+
|
232 |
+
By default, only one process is used for download. Pass customized `download_config.num_proc` to change this behavior.
|
233 |
+
|
234 |
+
Args:
|
235 |
+
url_or_urls (`str` or `list` or `dict`):
|
236 |
+
URL or `list` or `dict` of URLs to download. Each URL is a `str`.
|
237 |
+
|
238 |
+
Returns:
|
239 |
+
`str` or `list` or `dict`:
|
240 |
+
The downloaded paths matching the given input `url_or_urls`.
|
241 |
+
|
242 |
+
Example:
|
243 |
+
|
244 |
+
```py
|
245 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
246 |
+
```
|
247 |
+
"""
|
248 |
+
download_config = self.download_config.copy()
|
249 |
+
download_config.extract_compressed_file = False
|
250 |
+
if download_config.download_desc is None:
|
251 |
+
download_config.download_desc = "Downloading data"
|
252 |
+
|
253 |
+
download_func = partial(self._download_batched, download_config=download_config)
|
254 |
+
|
255 |
+
start_time = datetime.now()
|
256 |
+
with stack_multiprocessing_download_progress_bars():
|
257 |
+
downloaded_path_or_paths = map_nested(
|
258 |
+
download_func,
|
259 |
+
url_or_urls,
|
260 |
+
map_tuple=True,
|
261 |
+
num_proc=download_config.num_proc,
|
262 |
+
desc="Downloading data files",
|
263 |
+
batched=True,
|
264 |
+
batch_size=-1,
|
265 |
+
)
|
266 |
+
duration = datetime.now() - start_time
|
267 |
+
logger.info(f"Downloading took {duration.total_seconds() // 60} min")
|
268 |
+
url_or_urls = NestedDataStructure(url_or_urls)
|
269 |
+
downloaded_path_or_paths = NestedDataStructure(downloaded_path_or_paths)
|
270 |
+
self.downloaded_paths.update(dict(zip(url_or_urls.flatten(), downloaded_path_or_paths.flatten())))
|
271 |
+
|
272 |
+
start_time = datetime.now()
|
273 |
+
self._record_sizes_checksums(url_or_urls, downloaded_path_or_paths)
|
274 |
+
duration = datetime.now() - start_time
|
275 |
+
logger.info(f"Checksum Computation took {duration.total_seconds() // 60} min")
|
276 |
+
|
277 |
+
return downloaded_path_or_paths.data
|
278 |
+
|
279 |
+
def _download_batched(
|
280 |
+
self,
|
281 |
+
url_or_filenames: List[str],
|
282 |
+
download_config: DownloadConfig,
|
283 |
+
) -> List[str]:
|
284 |
+
if len(url_or_filenames) >= 16:
|
285 |
+
download_config = download_config.copy()
|
286 |
+
download_config.disable_tqdm = True
|
287 |
+
download_func = partial(self._download_single, download_config=download_config)
|
288 |
+
|
289 |
+
fs: fsspec.AbstractFileSystem
|
290 |
+
fs, path = url_to_fs(url_or_filenames[0], **download_config.storage_options)
|
291 |
+
size = 0
|
292 |
+
try:
|
293 |
+
size = fs.info(path).get("size", 0)
|
294 |
+
except Exception:
|
295 |
+
pass
|
296 |
+
max_workers = (
|
297 |
+
config.HF_DATASETS_MULTITHREADING_MAX_WORKERS if size < (20 << 20) else 1
|
298 |
+
) # enable multithreading if files are small
|
299 |
+
|
300 |
+
return thread_map(
|
301 |
+
download_func,
|
302 |
+
url_or_filenames,
|
303 |
+
desc=download_config.download_desc or "Downloading",
|
304 |
+
unit="files",
|
305 |
+
position=multiprocessing.current_process()._identity[-1] # contains the ranks of subprocesses
|
306 |
+
if os.environ.get("HF_DATASETS_STACK_MULTIPROCESSING_DOWNLOAD_PROGRESS_BARS") == "1"
|
307 |
+
and multiprocessing.current_process()._identity
|
308 |
+
else None,
|
309 |
+
max_workers=max_workers,
|
310 |
+
tqdm_class=tqdm,
|
311 |
+
)
|
312 |
+
else:
|
313 |
+
return [
|
314 |
+
self._download_single(url_or_filename, download_config=download_config)
|
315 |
+
for url_or_filename in url_or_filenames
|
316 |
+
]
|
317 |
+
|
318 |
+
def _download_single(self, url_or_filename: str, download_config: DownloadConfig) -> str:
|
319 |
+
url_or_filename = str(url_or_filename)
|
320 |
+
if is_relative_path(url_or_filename):
|
321 |
+
# append the relative path to the base_path
|
322 |
+
url_or_filename = url_or_path_join(self._base_path, url_or_filename)
|
323 |
+
out = cached_path(url_or_filename, download_config=download_config)
|
324 |
+
out = tracked_str(out)
|
325 |
+
out.set_origin(url_or_filename)
|
326 |
+
return out
|
327 |
+
|
328 |
+
def iter_archive(self, path_or_buf: Union[str, io.BufferedReader]):
|
329 |
+
"""Iterate over files within an archive.
|
330 |
+
|
331 |
+
Args:
|
332 |
+
path_or_buf (`str` or `io.BufferedReader`):
|
333 |
+
Archive path or archive binary file object.
|
334 |
+
|
335 |
+
Yields:
|
336 |
+
`tuple[str, io.BufferedReader]`:
|
337 |
+
2-tuple (path_within_archive, file_object).
|
338 |
+
File object is opened in binary mode.
|
339 |
+
|
340 |
+
Example:
|
341 |
+
|
342 |
+
```py
|
343 |
+
>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
344 |
+
>>> files = dl_manager.iter_archive(archive)
|
345 |
+
```
|
346 |
+
"""
|
347 |
+
|
348 |
+
if hasattr(path_or_buf, "read"):
|
349 |
+
return ArchiveIterable.from_buf(path_or_buf)
|
350 |
+
else:
|
351 |
+
return ArchiveIterable.from_urlpath(path_or_buf)
|
352 |
+
|
353 |
+
def iter_files(self, paths: Union[str, List[str]]):
|
354 |
+
"""Iterate over file paths.
|
355 |
+
|
356 |
+
Args:
|
357 |
+
paths (`str` or `list` of `str`):
|
358 |
+
Root paths.
|
359 |
+
|
360 |
+
Yields:
|
361 |
+
`str`: File path.
|
362 |
+
|
363 |
+
Example:
|
364 |
+
|
365 |
+
```py
|
366 |
+
>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
|
367 |
+
>>> files = dl_manager.iter_files(files)
|
368 |
+
```
|
369 |
+
"""
|
370 |
+
return FilesIterable.from_urlpaths(paths)
|
371 |
+
|
372 |
+
def extract(self, path_or_paths, num_proc="deprecated"):
|
373 |
+
"""Extract given path(s).
|
374 |
+
|
375 |
+
Args:
|
376 |
+
path_or_paths (path or `list` or `dict`):
|
377 |
+
Path of file to extract. Each path is a `str`.
|
378 |
+
num_proc (`int`):
|
379 |
+
Use multi-processing if `num_proc` > 1 and the length of
|
380 |
+
`path_or_paths` is larger than `num_proc`.
|
381 |
+
|
382 |
+
<Deprecated version="2.6.2">
|
383 |
+
|
384 |
+
Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.
|
385 |
+
|
386 |
+
</Deprecated>
|
387 |
+
|
388 |
+
Returns:
|
389 |
+
extracted_path(s): `str`, The extracted paths matching the given input
|
390 |
+
path_or_paths.
|
391 |
+
|
392 |
+
Example:
|
393 |
+
|
394 |
+
```py
|
395 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
396 |
+
>>> extracted_files = dl_manager.extract(downloaded_files)
|
397 |
+
```
|
398 |
+
"""
|
399 |
+
if num_proc != "deprecated":
|
400 |
+
warnings.warn(
|
401 |
+
"'num_proc' was deprecated in version 2.6.2 and will be removed in 3.0.0. Pass `DownloadConfig(num_proc=<num_proc>)` to the initializer instead.",
|
402 |
+
FutureWarning,
|
403 |
+
)
|
404 |
+
download_config = self.download_config.copy()
|
405 |
+
download_config.extract_compressed_file = True
|
406 |
+
extract_func = partial(self._download_single, download_config=download_config)
|
407 |
+
extracted_paths = map_nested(
|
408 |
+
extract_func,
|
409 |
+
path_or_paths,
|
410 |
+
num_proc=download_config.num_proc,
|
411 |
+
desc="Extracting data files",
|
412 |
+
)
|
413 |
+
path_or_paths = NestedDataStructure(path_or_paths)
|
414 |
+
extracted_paths = NestedDataStructure(extracted_paths)
|
415 |
+
self.extracted_paths.update(dict(zip(path_or_paths.flatten(), extracted_paths.flatten())))
|
416 |
+
return extracted_paths.data
|
417 |
+
|
418 |
+
def download_and_extract(self, url_or_urls):
|
419 |
+
"""Download and extract given `url_or_urls`.
|
420 |
+
|
421 |
+
Is roughly equivalent to:
|
422 |
+
|
423 |
+
```
|
424 |
+
extracted_paths = dl_manager.extract(dl_manager.download(url_or_urls))
|
425 |
+
```
|
426 |
+
|
427 |
+
Args:
|
428 |
+
url_or_urls (`str` or `list` or `dict`):
|
429 |
+
URL or `list` or `dict` of URLs to download and extract. Each URL is a `str`.
|
430 |
+
|
431 |
+
Returns:
|
432 |
+
extracted_path(s): `str`, extracted paths of given URL(s).
|
433 |
+
"""
|
434 |
+
return self.extract(self.download(url_or_urls))
|
435 |
+
|
436 |
+
def get_recorded_sizes_checksums(self):
|
437 |
+
return self._recorded_sizes_checksums.copy()
|
438 |
+
|
439 |
+
def delete_extracted_files(self):
|
440 |
+
paths_to_delete = set(self.extracted_paths.values()) - set(self.downloaded_paths.values())
|
441 |
+
for key, path in list(self.extracted_paths.items()):
|
442 |
+
if path in paths_to_delete and os.path.isfile(path):
|
443 |
+
os.remove(path)
|
444 |
+
del self.extracted_paths[key]
|
445 |
+
|
446 |
+
def manage_extracted_files(self):
|
447 |
+
if self.download_config.delete_extracted:
|
448 |
+
self.delete_extracted_files()
|
venv/lib/python3.10/site-packages/datasets/download/mock_download_manager.py
ADDED
@@ -0,0 +1,244 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2020 The TensorFlow Datasets Authors.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
# Lint as: python3
|
16 |
+
"""Mock download manager interface."""
|
17 |
+
|
18 |
+
import os
|
19 |
+
import re
|
20 |
+
import urllib.parse
|
21 |
+
from pathlib import Path
|
22 |
+
from typing import Callable, List, Optional, Union
|
23 |
+
from zipfile import ZipFile
|
24 |
+
|
25 |
+
from ..utils.file_utils import cached_path, hf_github_url
|
26 |
+
from ..utils.logging import get_logger
|
27 |
+
from ..utils.version import Version
|
28 |
+
|
29 |
+
|
30 |
+
logger = get_logger(__name__)
|
31 |
+
|
32 |
+
|
33 |
+
class MockDownloadManager:
|
34 |
+
dummy_file_name = "dummy_data"
|
35 |
+
datasets_scripts_dir = "datasets"
|
36 |
+
is_streaming = False
|
37 |
+
|
38 |
+
def __init__(
|
39 |
+
self,
|
40 |
+
dataset_name: str,
|
41 |
+
config: str,
|
42 |
+
version: Union[Version, str],
|
43 |
+
cache_dir: Optional[str] = None,
|
44 |
+
use_local_dummy_data: bool = False,
|
45 |
+
load_existing_dummy_data: bool = True,
|
46 |
+
download_callbacks: Optional[List[Callable]] = None,
|
47 |
+
):
|
48 |
+
self.downloaded_size = 0
|
49 |
+
self.dataset_name = dataset_name
|
50 |
+
self.cache_dir = cache_dir
|
51 |
+
self.use_local_dummy_data = use_local_dummy_data
|
52 |
+
self.config = config
|
53 |
+
# download_callbacks take a single url as input
|
54 |
+
self.download_callbacks: List[Callable] = download_callbacks or []
|
55 |
+
# if False, it doesn't load existing files and it returns the paths of the dummy files relative
|
56 |
+
# to the dummy_data zip file root
|
57 |
+
self.load_existing_dummy_data = load_existing_dummy_data
|
58 |
+
|
59 |
+
# TODO(PVP, QL) might need to make this more general
|
60 |
+
self.version_name = str(version)
|
61 |
+
# to be downloaded
|
62 |
+
self._dummy_file = None
|
63 |
+
self._bucket_url = None
|
64 |
+
|
65 |
+
@property
|
66 |
+
def dummy_file(self):
|
67 |
+
if self._dummy_file is None:
|
68 |
+
self._dummy_file = self.download_dummy_data()
|
69 |
+
return self._dummy_file
|
70 |
+
|
71 |
+
@property
|
72 |
+
def dummy_data_folder(self):
|
73 |
+
if self.config is not None:
|
74 |
+
# structure is dummy / config_name / version_name
|
75 |
+
return os.path.join("dummy", self.config.name, self.version_name)
|
76 |
+
# structure is dummy / version_name
|
77 |
+
return os.path.join("dummy", self.version_name)
|
78 |
+
|
79 |
+
@property
|
80 |
+
def dummy_zip_file(self):
|
81 |
+
return os.path.join(self.dummy_data_folder, "dummy_data.zip")
|
82 |
+
|
83 |
+
def download_dummy_data(self):
|
84 |
+
path_to_dummy_data_dir = (
|
85 |
+
self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data
|
86 |
+
)
|
87 |
+
|
88 |
+
local_path = cached_path(
|
89 |
+
path_to_dummy_data_dir, cache_dir=self.cache_dir, extract_compressed_file=True, force_extract=True
|
90 |
+
)
|
91 |
+
|
92 |
+
return os.path.join(local_path, self.dummy_file_name)
|
93 |
+
|
94 |
+
@property
|
95 |
+
def local_path_to_dummy_data(self):
|
96 |
+
return os.path.join(self.datasets_scripts_dir, self.dataset_name, self.dummy_zip_file)
|
97 |
+
|
98 |
+
@property
|
99 |
+
def github_path_to_dummy_data(self):
|
100 |
+
if self._bucket_url is None:
|
101 |
+
self._bucket_url = hf_github_url(self.dataset_name, self.dummy_zip_file.replace(os.sep, "/"))
|
102 |
+
return self._bucket_url
|
103 |
+
|
104 |
+
@property
|
105 |
+
def manual_dir(self):
|
106 |
+
# return full path if its a dir
|
107 |
+
if os.path.isdir(self.dummy_file):
|
108 |
+
return self.dummy_file
|
109 |
+
# else cut off path to file -> example `xsum`.
|
110 |
+
return "/".join(self.dummy_file.replace(os.sep, "/").split("/")[:-1])
|
111 |
+
|
112 |
+
# this function has to be in the manager under this name so that testing works
|
113 |
+
def download_and_extract(self, data_url, *args):
|
114 |
+
if self.load_existing_dummy_data:
|
115 |
+
# dummy data is downloaded and tested
|
116 |
+
dummy_file = self.dummy_file
|
117 |
+
else:
|
118 |
+
# dummy data cannot be downloaded and only the path to dummy file is returned
|
119 |
+
dummy_file = self.dummy_file_name
|
120 |
+
|
121 |
+
# special case when data_url is a dict
|
122 |
+
if isinstance(data_url, dict):
|
123 |
+
return self.create_dummy_data_dict(dummy_file, data_url)
|
124 |
+
elif isinstance(data_url, (list, tuple)):
|
125 |
+
return self.create_dummy_data_list(dummy_file, data_url)
|
126 |
+
else:
|
127 |
+
return self.create_dummy_data_single(dummy_file, data_url)
|
128 |
+
|
129 |
+
# this function has to be in the manager under this name so that testing works
|
130 |
+
def download(self, data_url, *args):
|
131 |
+
return self.download_and_extract(data_url)
|
132 |
+
|
133 |
+
# this function has to be in the manager under this name so that testing works
|
134 |
+
def download_custom(self, data_url, custom_download):
|
135 |
+
return self.download_and_extract(data_url)
|
136 |
+
|
137 |
+
# this function has to be in the manager under this name so that testing works
|
138 |
+
def extract(self, path, *args, **kwargs):
|
139 |
+
return path
|
140 |
+
|
141 |
+
# this function has to be in the manager under this name so that testing works
|
142 |
+
def get_recorded_sizes_checksums(self):
|
143 |
+
return {}
|
144 |
+
|
145 |
+
def create_dummy_data_dict(self, path_to_dummy_data, data_url):
|
146 |
+
dummy_data_dict = {}
|
147 |
+
for key, single_urls in data_url.items():
|
148 |
+
for download_callback in self.download_callbacks:
|
149 |
+
if isinstance(single_urls, list):
|
150 |
+
for single_url in single_urls:
|
151 |
+
download_callback(single_url)
|
152 |
+
else:
|
153 |
+
single_url = single_urls
|
154 |
+
download_callback(single_url)
|
155 |
+
# we force the name of each key to be the last file / folder name of the url path
|
156 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
157 |
+
if isinstance(single_urls, list):
|
158 |
+
value = [os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(x).name)) for x in single_urls]
|
159 |
+
else:
|
160 |
+
single_url = single_urls
|
161 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(Path(single_url).name))
|
162 |
+
dummy_data_dict[key] = value
|
163 |
+
|
164 |
+
# make sure that values are unique
|
165 |
+
if all(isinstance(i, str) for i in dummy_data_dict.values()) and len(set(dummy_data_dict.values())) < len(
|
166 |
+
dummy_data_dict.values()
|
167 |
+
):
|
168 |
+
# append key to value to make its name unique
|
169 |
+
dummy_data_dict = {key: value + key for key, value in dummy_data_dict.items()}
|
170 |
+
|
171 |
+
return dummy_data_dict
|
172 |
+
|
173 |
+
def create_dummy_data_list(self, path_to_dummy_data, data_url):
|
174 |
+
dummy_data_list = []
|
175 |
+
# trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one
|
176 |
+
is_tf_records = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}", url)) for url in data_url)
|
177 |
+
is_pubmed_records = all(
|
178 |
+
url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed") for url in data_url
|
179 |
+
)
|
180 |
+
if data_url and (is_tf_records or is_pubmed_records):
|
181 |
+
data_url = [data_url[0]] * len(data_url)
|
182 |
+
for single_url in data_url:
|
183 |
+
for download_callback in self.download_callbacks:
|
184 |
+
download_callback(single_url)
|
185 |
+
# we force the name of each key to be the last file / folder name of the url path
|
186 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
187 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(single_url.split("/")[-1]))
|
188 |
+
dummy_data_list.append(value)
|
189 |
+
return dummy_data_list
|
190 |
+
|
191 |
+
def create_dummy_data_single(self, path_to_dummy_data, data_url):
|
192 |
+
for download_callback in self.download_callbacks:
|
193 |
+
download_callback(data_url)
|
194 |
+
# we force the name of each key to be the last file / folder name of the url path
|
195 |
+
# if the url has arguments, we need to encode them with urllib.parse.quote_plus
|
196 |
+
value = os.path.join(path_to_dummy_data, urllib.parse.quote_plus(data_url.split("/")[-1]))
|
197 |
+
if os.path.exists(value) or not self.load_existing_dummy_data:
|
198 |
+
return value
|
199 |
+
else:
|
200 |
+
# Backward compatibility, maybe deprecate at one point.
|
201 |
+
# For many datasets with single url calls to dl_manager.download_and_extract,
|
202 |
+
# the dummy_data.zip file is actually the zipped downloaded file
|
203 |
+
# while now we expected the dummy_data.zip file to be a directory containing
|
204 |
+
# the downloaded file.
|
205 |
+
return path_to_dummy_data
|
206 |
+
|
207 |
+
def delete_extracted_files(self):
|
208 |
+
pass
|
209 |
+
|
210 |
+
def manage_extracted_files(self):
|
211 |
+
pass
|
212 |
+
|
213 |
+
def iter_archive(self, path):
|
214 |
+
def _iter_archive_members(path):
|
215 |
+
# this preserves the order of the members inside the ZIP archive
|
216 |
+
dummy_parent_path = Path(self.dummy_file).parent
|
217 |
+
relative_path = path.relative_to(dummy_parent_path)
|
218 |
+
with ZipFile(self.local_path_to_dummy_data) as zip_file:
|
219 |
+
members = zip_file.namelist()
|
220 |
+
for member in members:
|
221 |
+
if member.startswith(relative_path.as_posix()):
|
222 |
+
yield dummy_parent_path.joinpath(member)
|
223 |
+
|
224 |
+
path = Path(path)
|
225 |
+
file_paths = _iter_archive_members(path) if self.use_local_dummy_data else path.rglob("*")
|
226 |
+
for file_path in file_paths:
|
227 |
+
if file_path.is_file() and not file_path.name.startswith((".", "__")):
|
228 |
+
yield file_path.relative_to(path).as_posix(), file_path.open("rb")
|
229 |
+
|
230 |
+
def iter_files(self, paths):
|
231 |
+
if not isinstance(paths, list):
|
232 |
+
paths = [paths]
|
233 |
+
for path in paths:
|
234 |
+
if os.path.isfile(path):
|
235 |
+
yield path
|
236 |
+
else:
|
237 |
+
for dirpath, dirnames, filenames in os.walk(path):
|
238 |
+
if os.path.basename(dirpath).startswith((".", "__")):
|
239 |
+
continue
|
240 |
+
dirnames.sort()
|
241 |
+
for filename in sorted(filenames):
|
242 |
+
if filename.startswith((".", "__")):
|
243 |
+
continue
|
244 |
+
yield os.path.join(dirpath, filename)
|
venv/lib/python3.10/site-packages/datasets/download/streaming_download_manager.py
ADDED
@@ -0,0 +1,210 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import os
|
3 |
+
from typing import Iterable, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
from ..utils.file_utils import ( # noqa: F401 # backward compatibility
|
6 |
+
SINGLE_FILE_COMPRESSION_PROTOCOLS,
|
7 |
+
ArchiveIterable,
|
8 |
+
FilesIterable,
|
9 |
+
_get_extraction_protocol,
|
10 |
+
_get_path_extension,
|
11 |
+
_prepare_path_and_storage_options,
|
12 |
+
is_relative_path,
|
13 |
+
url_or_path_join,
|
14 |
+
xbasename,
|
15 |
+
xdirname,
|
16 |
+
xet_parse,
|
17 |
+
xexists,
|
18 |
+
xgetsize,
|
19 |
+
xglob,
|
20 |
+
xgzip_open,
|
21 |
+
xisdir,
|
22 |
+
xisfile,
|
23 |
+
xjoin,
|
24 |
+
xlistdir,
|
25 |
+
xnumpy_load,
|
26 |
+
xopen,
|
27 |
+
xpandas_read_csv,
|
28 |
+
xpandas_read_excel,
|
29 |
+
xPath,
|
30 |
+
xpyarrow_parquet_read_table,
|
31 |
+
xrelpath,
|
32 |
+
xsio_loadmat,
|
33 |
+
xsplit,
|
34 |
+
xsplitext,
|
35 |
+
xwalk,
|
36 |
+
xxml_dom_minidom_parse,
|
37 |
+
)
|
38 |
+
from ..utils.logging import get_logger
|
39 |
+
from ..utils.py_utils import map_nested
|
40 |
+
from .download_config import DownloadConfig
|
41 |
+
|
42 |
+
|
43 |
+
logger = get_logger(__name__)
|
44 |
+
|
45 |
+
|
46 |
+
class StreamingDownloadManager:
|
47 |
+
"""
|
48 |
+
Download manager that uses the "::" separator to navigate through (possibly remote) compressed archives.
|
49 |
+
Contrary to the regular `DownloadManager`, the `download` and `extract` methods don't actually download nor extract
|
50 |
+
data, but they rather return the path or url that could be opened using the `xopen` function which extends the
|
51 |
+
built-in `open` function to stream data from remote files.
|
52 |
+
"""
|
53 |
+
|
54 |
+
is_streaming = True
|
55 |
+
|
56 |
+
def __init__(
|
57 |
+
self,
|
58 |
+
dataset_name: Optional[str] = None,
|
59 |
+
data_dir: Optional[str] = None,
|
60 |
+
download_config: Optional[DownloadConfig] = None,
|
61 |
+
base_path: Optional[str] = None,
|
62 |
+
):
|
63 |
+
self._dataset_name = dataset_name
|
64 |
+
self._data_dir = data_dir
|
65 |
+
self._base_path = base_path or os.path.abspath(".")
|
66 |
+
self.download_config = download_config or DownloadConfig()
|
67 |
+
|
68 |
+
@property
|
69 |
+
def manual_dir(self):
|
70 |
+
return self._data_dir
|
71 |
+
|
72 |
+
def download(self, url_or_urls):
|
73 |
+
"""Normalize URL(s) of files to stream data from.
|
74 |
+
This is the lazy version of `DownloadManager.download` for streaming.
|
75 |
+
|
76 |
+
Args:
|
77 |
+
url_or_urls (`str` or `list` or `dict`):
|
78 |
+
URL(s) of files to stream data from. Each url is a `str`.
|
79 |
+
|
80 |
+
Returns:
|
81 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input url_or_urls.
|
82 |
+
|
83 |
+
Example:
|
84 |
+
|
85 |
+
```py
|
86 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
87 |
+
```
|
88 |
+
"""
|
89 |
+
url_or_urls = map_nested(self._download_single, url_or_urls, map_tuple=True)
|
90 |
+
return url_or_urls
|
91 |
+
|
92 |
+
def _download_single(self, urlpath: str) -> str:
|
93 |
+
urlpath = str(urlpath)
|
94 |
+
if is_relative_path(urlpath):
|
95 |
+
# append the relative path to the base_path
|
96 |
+
urlpath = url_or_path_join(self._base_path, urlpath)
|
97 |
+
return urlpath
|
98 |
+
|
99 |
+
def extract(self, url_or_urls):
|
100 |
+
"""Add extraction protocol for given url(s) for streaming.
|
101 |
+
|
102 |
+
This is the lazy version of `DownloadManager.extract` for streaming.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
url_or_urls (`str` or `list` or `dict`):
|
106 |
+
URL(s) of files to stream data from. Each url is a `str`.
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`.
|
110 |
+
|
111 |
+
Example:
|
112 |
+
|
113 |
+
```py
|
114 |
+
>>> downloaded_files = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
115 |
+
>>> extracted_files = dl_manager.extract(downloaded_files)
|
116 |
+
```
|
117 |
+
"""
|
118 |
+
urlpaths = map_nested(self._extract, url_or_urls, map_tuple=True)
|
119 |
+
return urlpaths
|
120 |
+
|
121 |
+
def _extract(self, urlpath: str) -> str:
|
122 |
+
urlpath = str(urlpath)
|
123 |
+
protocol = _get_extraction_protocol(urlpath, download_config=self.download_config)
|
124 |
+
# get inner file: zip://train-00000.json.gz::https://foo.bar/data.zip -> zip://train-00000.json.gz
|
125 |
+
path = urlpath.split("::")[0]
|
126 |
+
extension = _get_path_extension(path)
|
127 |
+
if extension in ["tgz", "tar"] or path.endswith((".tar.gz", ".tar.bz2", ".tar.xz")):
|
128 |
+
raise NotImplementedError(
|
129 |
+
f"Extraction protocol for TAR archives like '{urlpath}' is not implemented in streaming mode. "
|
130 |
+
f"Please use `dl_manager.iter_archive` instead.\n\n"
|
131 |
+
f"Example usage:\n\n"
|
132 |
+
f"\turl = dl_manager.download(url)\n"
|
133 |
+
f"\ttar_archive_iterator = dl_manager.iter_archive(url)\n\n"
|
134 |
+
f"\tfor filename, file in tar_archive_iterator:\n"
|
135 |
+
f"\t\t..."
|
136 |
+
)
|
137 |
+
if protocol is None:
|
138 |
+
# no extraction
|
139 |
+
return urlpath
|
140 |
+
elif protocol in SINGLE_FILE_COMPRESSION_PROTOCOLS:
|
141 |
+
# there is one single file which is the uncompressed file
|
142 |
+
inner_file = os.path.basename(urlpath.split("::")[0])
|
143 |
+
inner_file = inner_file[: inner_file.rindex(".")] if "." in inner_file else inner_file
|
144 |
+
return f"{protocol}://{inner_file}::{urlpath}"
|
145 |
+
else:
|
146 |
+
return f"{protocol}://::{urlpath}"
|
147 |
+
|
148 |
+
def download_and_extract(self, url_or_urls):
|
149 |
+
"""Prepare given `url_or_urls` for streaming (add extraction protocol).
|
150 |
+
|
151 |
+
This is the lazy version of `DownloadManager.download_and_extract` for streaming.
|
152 |
+
|
153 |
+
Is equivalent to:
|
154 |
+
|
155 |
+
```
|
156 |
+
urls = dl_manager.extract(dl_manager.download(url_or_urls))
|
157 |
+
```
|
158 |
+
|
159 |
+
Args:
|
160 |
+
url_or_urls (`str` or `list` or `dict`):
|
161 |
+
URL(s) to stream from data from. Each url is a `str`.
|
162 |
+
|
163 |
+
Returns:
|
164 |
+
url(s): (`str` or `list` or `dict`), URL(s) to stream data from matching the given input `url_or_urls`.
|
165 |
+
"""
|
166 |
+
return self.extract(self.download(url_or_urls))
|
167 |
+
|
168 |
+
def iter_archive(self, urlpath_or_buf: Union[str, io.BufferedReader]) -> Iterable[Tuple]:
|
169 |
+
"""Iterate over files within an archive.
|
170 |
+
|
171 |
+
Args:
|
172 |
+
urlpath_or_buf (`str` or `io.BufferedReader`):
|
173 |
+
Archive path or archive binary file object.
|
174 |
+
|
175 |
+
Yields:
|
176 |
+
`tuple[str, io.BufferedReader]`:
|
177 |
+
2-tuple (path_within_archive, file_object).
|
178 |
+
File object is opened in binary mode.
|
179 |
+
|
180 |
+
Example:
|
181 |
+
|
182 |
+
```py
|
183 |
+
>>> archive = dl_manager.download('https://storage.googleapis.com/seldon-datasets/sentence_polarity_v1/rt-polaritydata.tar.gz')
|
184 |
+
>>> files = dl_manager.iter_archive(archive)
|
185 |
+
```
|
186 |
+
"""
|
187 |
+
|
188 |
+
if hasattr(urlpath_or_buf, "read"):
|
189 |
+
return ArchiveIterable.from_buf(urlpath_or_buf)
|
190 |
+
else:
|
191 |
+
return ArchiveIterable.from_urlpath(urlpath_or_buf, download_config=self.download_config)
|
192 |
+
|
193 |
+
def iter_files(self, urlpaths: Union[str, List[str]]) -> Iterable[str]:
|
194 |
+
"""Iterate over files.
|
195 |
+
|
196 |
+
Args:
|
197 |
+
urlpaths (`str` or `list` of `str`):
|
198 |
+
Root paths.
|
199 |
+
|
200 |
+
Yields:
|
201 |
+
str: File URL path.
|
202 |
+
|
203 |
+
Example:
|
204 |
+
|
205 |
+
```py
|
206 |
+
>>> files = dl_manager.download_and_extract('https://huggingface.co/datasets/beans/resolve/main/data/train.zip')
|
207 |
+
>>> files = dl_manager.iter_files(files)
|
208 |
+
```
|
209 |
+
"""
|
210 |
+
return FilesIterable.from_urlpaths(urlpaths, download_config=self.download_config)
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/__pycache__/cache.cpython-310.pyc
ADDED
Binary file (6.81 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/cache/cache.py
ADDED
@@ -0,0 +1,207 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import glob
|
2 |
+
import json
|
3 |
+
import os
|
4 |
+
import shutil
|
5 |
+
import time
|
6 |
+
import warnings
|
7 |
+
from pathlib import Path
|
8 |
+
from typing import List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import pyarrow as pa
|
11 |
+
|
12 |
+
import datasets
|
13 |
+
import datasets.config
|
14 |
+
import datasets.data_files
|
15 |
+
from datasets.naming import camelcase_to_snakecase, filenames_for_dataset_split
|
16 |
+
|
17 |
+
|
18 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
19 |
+
|
20 |
+
|
21 |
+
def _get_modification_time(cached_directory_path):
|
22 |
+
return (Path(cached_directory_path)).stat().st_mtime
|
23 |
+
|
24 |
+
|
25 |
+
def _find_hash_in_cache(
|
26 |
+
dataset_name: str,
|
27 |
+
config_name: Optional[str],
|
28 |
+
cache_dir: Optional[str],
|
29 |
+
config_kwargs: dict,
|
30 |
+
custom_features: Optional[datasets.Features],
|
31 |
+
) -> Tuple[str, str, str]:
|
32 |
+
if config_name or config_kwargs or custom_features:
|
33 |
+
config_id = datasets.BuilderConfig(config_name or "default").create_config_id(
|
34 |
+
config_kwargs=config_kwargs, custom_features=custom_features
|
35 |
+
)
|
36 |
+
else:
|
37 |
+
config_id = None
|
38 |
+
cache_dir = os.path.expanduser(str(cache_dir or datasets.config.HF_DATASETS_CACHE))
|
39 |
+
namespace_and_dataset_name = dataset_name.split("/")
|
40 |
+
namespace_and_dataset_name[-1] = camelcase_to_snakecase(namespace_and_dataset_name[-1])
|
41 |
+
cached_relative_path = "___".join(namespace_and_dataset_name)
|
42 |
+
cached_datasets_directory_path_root = os.path.join(cache_dir, cached_relative_path)
|
43 |
+
cached_directory_paths = [
|
44 |
+
cached_directory_path
|
45 |
+
for cached_directory_path in glob.glob(
|
46 |
+
os.path.join(cached_datasets_directory_path_root, config_id or "*", "*", "*")
|
47 |
+
)
|
48 |
+
if os.path.isdir(cached_directory_path)
|
49 |
+
and (
|
50 |
+
config_kwargs
|
51 |
+
or custom_features
|
52 |
+
or json.loads(Path(cached_directory_path, "dataset_info.json").read_text(encoding="utf-8"))["config_name"]
|
53 |
+
== Path(cached_directory_path).parts[-3] # no extra params => config_id == config_name
|
54 |
+
)
|
55 |
+
]
|
56 |
+
if not cached_directory_paths:
|
57 |
+
cached_directory_paths = [
|
58 |
+
cached_directory_path
|
59 |
+
for cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", "*", "*"))
|
60 |
+
if os.path.isdir(cached_directory_path)
|
61 |
+
]
|
62 |
+
available_configs = sorted(
|
63 |
+
{Path(cached_directory_path).parts[-3] for cached_directory_path in cached_directory_paths}
|
64 |
+
)
|
65 |
+
raise ValueError(
|
66 |
+
f"Couldn't find cache for {dataset_name}"
|
67 |
+
+ (f" for config '{config_id}'" if config_id else "")
|
68 |
+
+ (f"\nAvailable configs in the cache: {available_configs}" if available_configs else "")
|
69 |
+
)
|
70 |
+
# get most recent
|
71 |
+
cached_directory_path = Path(sorted(cached_directory_paths, key=_get_modification_time)[-1])
|
72 |
+
version, hash = cached_directory_path.parts[-2:]
|
73 |
+
other_configs = [
|
74 |
+
Path(_cached_directory_path).parts[-3]
|
75 |
+
for _cached_directory_path in glob.glob(os.path.join(cached_datasets_directory_path_root, "*", version, hash))
|
76 |
+
if os.path.isdir(_cached_directory_path)
|
77 |
+
and (
|
78 |
+
config_kwargs
|
79 |
+
or custom_features
|
80 |
+
or json.loads(Path(_cached_directory_path, "dataset_info.json").read_text(encoding="utf-8"))["config_name"]
|
81 |
+
== Path(_cached_directory_path).parts[-3] # no extra params => config_id == config_name
|
82 |
+
)
|
83 |
+
]
|
84 |
+
if not config_id and len(other_configs) > 1:
|
85 |
+
raise ValueError(
|
86 |
+
f"There are multiple '{dataset_name}' configurations in the cache: {', '.join(other_configs)}"
|
87 |
+
f"\nPlease specify which configuration to reload from the cache, e.g."
|
88 |
+
f"\n\tload_dataset('{dataset_name}', '{other_configs[0]}')"
|
89 |
+
)
|
90 |
+
config_name = cached_directory_path.parts[-3]
|
91 |
+
warning_msg = (
|
92 |
+
f"Found the latest cached dataset configuration '{config_name}' at {cached_directory_path} "
|
93 |
+
f"(last modified on {time.ctime(_get_modification_time(cached_directory_path))})."
|
94 |
+
)
|
95 |
+
logger.warning(warning_msg)
|
96 |
+
return config_name, version, hash
|
97 |
+
|
98 |
+
|
99 |
+
class Cache(datasets.ArrowBasedBuilder):
|
100 |
+
def __init__(
|
101 |
+
self,
|
102 |
+
cache_dir: Optional[str] = None,
|
103 |
+
dataset_name: Optional[str] = None,
|
104 |
+
config_name: Optional[str] = None,
|
105 |
+
version: Optional[str] = "0.0.0",
|
106 |
+
hash: Optional[str] = None,
|
107 |
+
base_path: Optional[str] = None,
|
108 |
+
info: Optional[datasets.DatasetInfo] = None,
|
109 |
+
features: Optional[datasets.Features] = None,
|
110 |
+
token: Optional[Union[bool, str]] = None,
|
111 |
+
use_auth_token="deprecated",
|
112 |
+
repo_id: Optional[str] = None,
|
113 |
+
data_files: Optional[Union[str, list, dict, datasets.data_files.DataFilesDict]] = None,
|
114 |
+
data_dir: Optional[str] = None,
|
115 |
+
storage_options: Optional[dict] = None,
|
116 |
+
writer_batch_size: Optional[int] = None,
|
117 |
+
name="deprecated",
|
118 |
+
**config_kwargs,
|
119 |
+
):
|
120 |
+
if use_auth_token != "deprecated":
|
121 |
+
warnings.warn(
|
122 |
+
"'use_auth_token' was deprecated in favor of 'token' in version 2.14.0 and will be removed in 3.0.0.\n"
|
123 |
+
f"You can remove this warning by passing 'token={use_auth_token}' instead.",
|
124 |
+
FutureWarning,
|
125 |
+
)
|
126 |
+
token = use_auth_token
|
127 |
+
if name != "deprecated":
|
128 |
+
warnings.warn(
|
129 |
+
"Parameter 'name' was renamed to 'config_name' in version 2.3.0 and will be removed in 3.0.0.",
|
130 |
+
category=FutureWarning,
|
131 |
+
)
|
132 |
+
config_name = name
|
133 |
+
if repo_id is None and dataset_name is None:
|
134 |
+
raise ValueError("repo_id or dataset_name is required for the Cache dataset builder")
|
135 |
+
if data_files is not None:
|
136 |
+
config_kwargs["data_files"] = data_files
|
137 |
+
if data_dir is not None:
|
138 |
+
config_kwargs["data_dir"] = data_dir
|
139 |
+
if hash == "auto" and version == "auto":
|
140 |
+
config_name, version, hash = _find_hash_in_cache(
|
141 |
+
dataset_name=repo_id or dataset_name,
|
142 |
+
config_name=config_name,
|
143 |
+
cache_dir=cache_dir,
|
144 |
+
config_kwargs=config_kwargs,
|
145 |
+
custom_features=features,
|
146 |
+
)
|
147 |
+
elif hash == "auto" or version == "auto":
|
148 |
+
raise NotImplementedError("Pass both hash='auto' and version='auto' instead")
|
149 |
+
super().__init__(
|
150 |
+
cache_dir=cache_dir,
|
151 |
+
dataset_name=dataset_name,
|
152 |
+
config_name=config_name,
|
153 |
+
version=version,
|
154 |
+
hash=hash,
|
155 |
+
base_path=base_path,
|
156 |
+
info=info,
|
157 |
+
token=token,
|
158 |
+
repo_id=repo_id,
|
159 |
+
storage_options=storage_options,
|
160 |
+
writer_batch_size=writer_batch_size,
|
161 |
+
)
|
162 |
+
|
163 |
+
def _info(self) -> datasets.DatasetInfo:
|
164 |
+
return datasets.DatasetInfo()
|
165 |
+
|
166 |
+
def download_and_prepare(self, output_dir: Optional[str] = None, *args, **kwargs):
|
167 |
+
if not os.path.exists(self.cache_dir):
|
168 |
+
raise ValueError(f"Cache directory for {self.dataset_name} doesn't exist at {self.cache_dir}")
|
169 |
+
if output_dir is not None and output_dir != self.cache_dir:
|
170 |
+
shutil.copytree(self.cache_dir, output_dir)
|
171 |
+
|
172 |
+
def _split_generators(self, dl_manager):
|
173 |
+
# used to stream from cache
|
174 |
+
if isinstance(self.info.splits, datasets.SplitDict):
|
175 |
+
split_infos: List[datasets.SplitInfo] = list(self.info.splits.values())
|
176 |
+
else:
|
177 |
+
raise ValueError(f"Missing splits info for {self.dataset_name} in cache directory {self.cache_dir}")
|
178 |
+
return [
|
179 |
+
datasets.SplitGenerator(
|
180 |
+
name=split_info.name,
|
181 |
+
gen_kwargs={
|
182 |
+
"files": filenames_for_dataset_split(
|
183 |
+
self.cache_dir,
|
184 |
+
dataset_name=self.dataset_name,
|
185 |
+
split=split_info.name,
|
186 |
+
filetype_suffix="arrow",
|
187 |
+
shard_lengths=split_info.shard_lengths,
|
188 |
+
)
|
189 |
+
},
|
190 |
+
)
|
191 |
+
for split_info in split_infos
|
192 |
+
]
|
193 |
+
|
194 |
+
def _generate_tables(self, files):
|
195 |
+
# used to stream from cache
|
196 |
+
for file_idx, file in enumerate(files):
|
197 |
+
with open(file, "rb") as f:
|
198 |
+
try:
|
199 |
+
for batch_idx, record_batch in enumerate(pa.ipc.open_stream(f)):
|
200 |
+
pa_table = pa.Table.from_batches([record_batch])
|
201 |
+
# Uncomment for debugging (will print the Arrow table size and elements)
|
202 |
+
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
|
203 |
+
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
|
204 |
+
yield f"{file_idx}_{batch_idx}", pa_table
|
205 |
+
except ValueError as e:
|
206 |
+
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
|
207 |
+
raise
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/__pycache__/csv.cpython-310.pyc
ADDED
Binary file (7.22 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/csv/csv.py
ADDED
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import itertools
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import pyarrow as pa
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
import datasets.config
|
10 |
+
from datasets.features.features import require_storage_cast
|
11 |
+
from datasets.table import table_cast
|
12 |
+
from datasets.utils.py_utils import Literal
|
13 |
+
|
14 |
+
|
15 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
16 |
+
|
17 |
+
_PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS = ["names", "prefix"]
|
18 |
+
_PANDAS_READ_CSV_DEPRECATED_PARAMETERS = ["warn_bad_lines", "error_bad_lines", "mangle_dupe_cols"]
|
19 |
+
_PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS = ["encoding_errors", "on_bad_lines"]
|
20 |
+
_PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS = ["date_format"]
|
21 |
+
_PANDAS_READ_CSV_DEPRECATED_2_2_0_PARAMETERS = ["verbose"]
|
22 |
+
|
23 |
+
|
24 |
+
@dataclass
|
25 |
+
class CsvConfig(datasets.BuilderConfig):
|
26 |
+
"""BuilderConfig for CSV."""
|
27 |
+
|
28 |
+
sep: str = ","
|
29 |
+
delimiter: Optional[str] = None
|
30 |
+
header: Optional[Union[int, List[int], str]] = "infer"
|
31 |
+
names: Optional[List[str]] = None
|
32 |
+
column_names: Optional[List[str]] = None
|
33 |
+
index_col: Optional[Union[int, str, List[int], List[str]]] = None
|
34 |
+
usecols: Optional[Union[List[int], List[str]]] = None
|
35 |
+
prefix: Optional[str] = None
|
36 |
+
mangle_dupe_cols: bool = True
|
37 |
+
engine: Optional[Literal["c", "python", "pyarrow"]] = None
|
38 |
+
converters: Dict[Union[int, str], Callable[[Any], Any]] = None
|
39 |
+
true_values: Optional[list] = None
|
40 |
+
false_values: Optional[list] = None
|
41 |
+
skipinitialspace: bool = False
|
42 |
+
skiprows: Optional[Union[int, List[int]]] = None
|
43 |
+
nrows: Optional[int] = None
|
44 |
+
na_values: Optional[Union[str, List[str]]] = None
|
45 |
+
keep_default_na: bool = True
|
46 |
+
na_filter: bool = True
|
47 |
+
verbose: bool = False
|
48 |
+
skip_blank_lines: bool = True
|
49 |
+
thousands: Optional[str] = None
|
50 |
+
decimal: str = "."
|
51 |
+
lineterminator: Optional[str] = None
|
52 |
+
quotechar: str = '"'
|
53 |
+
quoting: int = 0
|
54 |
+
escapechar: Optional[str] = None
|
55 |
+
comment: Optional[str] = None
|
56 |
+
encoding: Optional[str] = None
|
57 |
+
dialect: Optional[str] = None
|
58 |
+
error_bad_lines: bool = True
|
59 |
+
warn_bad_lines: bool = True
|
60 |
+
skipfooter: int = 0
|
61 |
+
doublequote: bool = True
|
62 |
+
memory_map: bool = False
|
63 |
+
float_precision: Optional[str] = None
|
64 |
+
chunksize: int = 10_000
|
65 |
+
features: Optional[datasets.Features] = None
|
66 |
+
encoding_errors: Optional[str] = "strict"
|
67 |
+
on_bad_lines: Literal["error", "warn", "skip"] = "error"
|
68 |
+
date_format: Optional[str] = None
|
69 |
+
|
70 |
+
def __post_init__(self):
|
71 |
+
if self.delimiter is not None:
|
72 |
+
self.sep = self.delimiter
|
73 |
+
if self.column_names is not None:
|
74 |
+
self.names = self.column_names
|
75 |
+
|
76 |
+
@property
|
77 |
+
def pd_read_csv_kwargs(self):
|
78 |
+
pd_read_csv_kwargs = {
|
79 |
+
"sep": self.sep,
|
80 |
+
"header": self.header,
|
81 |
+
"names": self.names,
|
82 |
+
"index_col": self.index_col,
|
83 |
+
"usecols": self.usecols,
|
84 |
+
"prefix": self.prefix,
|
85 |
+
"mangle_dupe_cols": self.mangle_dupe_cols,
|
86 |
+
"engine": self.engine,
|
87 |
+
"converters": self.converters,
|
88 |
+
"true_values": self.true_values,
|
89 |
+
"false_values": self.false_values,
|
90 |
+
"skipinitialspace": self.skipinitialspace,
|
91 |
+
"skiprows": self.skiprows,
|
92 |
+
"nrows": self.nrows,
|
93 |
+
"na_values": self.na_values,
|
94 |
+
"keep_default_na": self.keep_default_na,
|
95 |
+
"na_filter": self.na_filter,
|
96 |
+
"verbose": self.verbose,
|
97 |
+
"skip_blank_lines": self.skip_blank_lines,
|
98 |
+
"thousands": self.thousands,
|
99 |
+
"decimal": self.decimal,
|
100 |
+
"lineterminator": self.lineterminator,
|
101 |
+
"quotechar": self.quotechar,
|
102 |
+
"quoting": self.quoting,
|
103 |
+
"escapechar": self.escapechar,
|
104 |
+
"comment": self.comment,
|
105 |
+
"encoding": self.encoding,
|
106 |
+
"dialect": self.dialect,
|
107 |
+
"error_bad_lines": self.error_bad_lines,
|
108 |
+
"warn_bad_lines": self.warn_bad_lines,
|
109 |
+
"skipfooter": self.skipfooter,
|
110 |
+
"doublequote": self.doublequote,
|
111 |
+
"memory_map": self.memory_map,
|
112 |
+
"float_precision": self.float_precision,
|
113 |
+
"chunksize": self.chunksize,
|
114 |
+
"encoding_errors": self.encoding_errors,
|
115 |
+
"on_bad_lines": self.on_bad_lines,
|
116 |
+
"date_format": self.date_format,
|
117 |
+
}
|
118 |
+
|
119 |
+
# some kwargs must not be passed if they don't have a default value
|
120 |
+
# some others are deprecated and we can also not pass them if they are the default value
|
121 |
+
for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS:
|
122 |
+
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), pd_read_csv_parameter):
|
123 |
+
del pd_read_csv_kwargs[pd_read_csv_parameter]
|
124 |
+
|
125 |
+
# Remove 1.3 new arguments
|
126 |
+
if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3):
|
127 |
+
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS:
|
128 |
+
del pd_read_csv_kwargs[pd_read_csv_parameter]
|
129 |
+
|
130 |
+
# Remove 2.0 new arguments
|
131 |
+
if not (datasets.config.PANDAS_VERSION.major >= 2):
|
132 |
+
for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS:
|
133 |
+
del pd_read_csv_kwargs[pd_read_csv_parameter]
|
134 |
+
|
135 |
+
# Remove 2.2 deprecated arguments
|
136 |
+
if datasets.config.PANDAS_VERSION.release >= (2, 2):
|
137 |
+
for pd_read_csv_parameter in _PANDAS_READ_CSV_DEPRECATED_2_2_0_PARAMETERS:
|
138 |
+
if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig(), pd_read_csv_parameter):
|
139 |
+
del pd_read_csv_kwargs[pd_read_csv_parameter]
|
140 |
+
|
141 |
+
return pd_read_csv_kwargs
|
142 |
+
|
143 |
+
|
144 |
+
class Csv(datasets.ArrowBasedBuilder):
|
145 |
+
BUILDER_CONFIG_CLASS = CsvConfig
|
146 |
+
|
147 |
+
def _info(self):
|
148 |
+
return datasets.DatasetInfo(features=self.config.features)
|
149 |
+
|
150 |
+
def _split_generators(self, dl_manager):
|
151 |
+
"""We handle string, list and dicts in datafiles"""
|
152 |
+
if not self.config.data_files:
|
153 |
+
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
|
154 |
+
dl_manager.download_config.extract_on_the_fly = True
|
155 |
+
data_files = dl_manager.download_and_extract(self.config.data_files)
|
156 |
+
if isinstance(data_files, (str, list, tuple)):
|
157 |
+
files = data_files
|
158 |
+
if isinstance(files, str):
|
159 |
+
files = [files]
|
160 |
+
files = [dl_manager.iter_files(file) for file in files]
|
161 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})]
|
162 |
+
splits = []
|
163 |
+
for split_name, files in data_files.items():
|
164 |
+
if isinstance(files, str):
|
165 |
+
files = [files]
|
166 |
+
files = [dl_manager.iter_files(file) for file in files]
|
167 |
+
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
|
168 |
+
return splits
|
169 |
+
|
170 |
+
def _cast_table(self, pa_table: pa.Table) -> pa.Table:
|
171 |
+
if self.config.features is not None:
|
172 |
+
schema = self.config.features.arrow_schema
|
173 |
+
if all(not require_storage_cast(feature) for feature in self.config.features.values()):
|
174 |
+
# cheaper cast
|
175 |
+
pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema)
|
176 |
+
else:
|
177 |
+
# more expensive cast; allows str <-> int/float or str to Audio for example
|
178 |
+
pa_table = table_cast(pa_table, schema)
|
179 |
+
return pa_table
|
180 |
+
|
181 |
+
def _generate_tables(self, files):
|
182 |
+
schema = self.config.features.arrow_schema if self.config.features else None
|
183 |
+
# dtype allows reading an int column as str
|
184 |
+
dtype = (
|
185 |
+
{
|
186 |
+
name: dtype.to_pandas_dtype() if not require_storage_cast(feature) else object
|
187 |
+
for name, dtype, feature in zip(schema.names, schema.types, self.config.features.values())
|
188 |
+
}
|
189 |
+
if schema is not None
|
190 |
+
else None
|
191 |
+
)
|
192 |
+
for file_idx, file in enumerate(itertools.chain.from_iterable(files)):
|
193 |
+
csv_file_reader = pd.read_csv(file, iterator=True, dtype=dtype, **self.config.pd_read_csv_kwargs)
|
194 |
+
try:
|
195 |
+
for batch_idx, df in enumerate(csv_file_reader):
|
196 |
+
pa_table = pa.Table.from_pandas(df)
|
197 |
+
# Uncomment for debugging (will print the Arrow table size and elements)
|
198 |
+
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
|
199 |
+
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
|
200 |
+
yield (file_idx, batch_idx), self._cast_table(pa_table)
|
201 |
+
except ValueError as e:
|
202 |
+
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
|
203 |
+
raise
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (198 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/json/__pycache__/json.cpython-310.pyc
ADDED
Binary file (6.3 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/json/json.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import itertools
|
3 |
+
import json
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import Optional
|
6 |
+
|
7 |
+
import pyarrow as pa
|
8 |
+
import pyarrow.json as paj
|
9 |
+
|
10 |
+
import datasets
|
11 |
+
from datasets.table import table_cast
|
12 |
+
from datasets.utils.file_utils import readline
|
13 |
+
|
14 |
+
|
15 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
16 |
+
|
17 |
+
|
18 |
+
@dataclass
|
19 |
+
class JsonConfig(datasets.BuilderConfig):
|
20 |
+
"""BuilderConfig for JSON."""
|
21 |
+
|
22 |
+
features: Optional[datasets.Features] = None
|
23 |
+
encoding: str = "utf-8"
|
24 |
+
encoding_errors: Optional[str] = None
|
25 |
+
field: Optional[str] = None
|
26 |
+
use_threads: bool = True # deprecated
|
27 |
+
block_size: Optional[int] = None # deprecated
|
28 |
+
chunksize: int = 10 << 20 # 10MB
|
29 |
+
newlines_in_values: Optional[bool] = None
|
30 |
+
|
31 |
+
|
32 |
+
class Json(datasets.ArrowBasedBuilder):
|
33 |
+
BUILDER_CONFIG_CLASS = JsonConfig
|
34 |
+
|
35 |
+
def _info(self):
|
36 |
+
if self.config.block_size is not None:
|
37 |
+
logger.warning("The JSON loader parameter `block_size` is deprecated. Please use `chunksize` instead")
|
38 |
+
self.config.chunksize = self.config.block_size
|
39 |
+
if self.config.use_threads is not True:
|
40 |
+
logger.warning(
|
41 |
+
"The JSON loader parameter `use_threads` is deprecated and doesn't have any effect anymore."
|
42 |
+
)
|
43 |
+
if self.config.newlines_in_values is not None:
|
44 |
+
raise ValueError("The JSON loader parameter `newlines_in_values` is no longer supported")
|
45 |
+
return datasets.DatasetInfo(features=self.config.features)
|
46 |
+
|
47 |
+
def _split_generators(self, dl_manager):
|
48 |
+
"""We handle string, list and dicts in datafiles"""
|
49 |
+
if not self.config.data_files:
|
50 |
+
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
|
51 |
+
dl_manager.download_config.extract_on_the_fly = True
|
52 |
+
data_files = dl_manager.download_and_extract(self.config.data_files)
|
53 |
+
if isinstance(data_files, (str, list, tuple)):
|
54 |
+
files = data_files
|
55 |
+
if isinstance(files, str):
|
56 |
+
files = [files]
|
57 |
+
files = [dl_manager.iter_files(file) for file in files]
|
58 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": files})]
|
59 |
+
splits = []
|
60 |
+
for split_name, files in data_files.items():
|
61 |
+
if isinstance(files, str):
|
62 |
+
files = [files]
|
63 |
+
files = [dl_manager.iter_files(file) for file in files]
|
64 |
+
splits.append(datasets.SplitGenerator(name=split_name, gen_kwargs={"files": files}))
|
65 |
+
return splits
|
66 |
+
|
67 |
+
def _cast_table(self, pa_table: pa.Table) -> pa.Table:
|
68 |
+
if self.config.features is not None:
|
69 |
+
# adding missing columns
|
70 |
+
for column_name in set(self.config.features) - set(pa_table.column_names):
|
71 |
+
type = self.config.features.arrow_schema.field(column_name).type
|
72 |
+
pa_table = pa_table.append_column(column_name, pa.array([None] * len(pa_table), type=type))
|
73 |
+
# more expensive cast to support nested structures with keys in a different order
|
74 |
+
# allows str <-> int/float or str to Audio for example
|
75 |
+
pa_table = table_cast(pa_table, self.config.features.arrow_schema)
|
76 |
+
return pa_table
|
77 |
+
|
78 |
+
def _generate_tables(self, files):
|
79 |
+
for file_idx, file in enumerate(itertools.chain.from_iterable(files)):
|
80 |
+
# If the file is one json object and if we need to look at the list of items in one specific field
|
81 |
+
if self.config.field is not None:
|
82 |
+
with open(file, encoding=self.config.encoding, errors=self.config.encoding_errors) as f:
|
83 |
+
dataset = json.load(f)
|
84 |
+
|
85 |
+
# We keep only the field we are interested in
|
86 |
+
dataset = dataset[self.config.field]
|
87 |
+
|
88 |
+
# We accept two format: a list of dicts or a dict of lists
|
89 |
+
if isinstance(dataset, (list, tuple)):
|
90 |
+
keys = set().union(*[row.keys() for row in dataset])
|
91 |
+
mapping = {col: [row.get(col) for row in dataset] for col in keys}
|
92 |
+
else:
|
93 |
+
mapping = dataset
|
94 |
+
pa_table = pa.Table.from_pydict(mapping)
|
95 |
+
yield file_idx, self._cast_table(pa_table)
|
96 |
+
|
97 |
+
# If the file has one json object per line
|
98 |
+
else:
|
99 |
+
with open(file, "rb") as f:
|
100 |
+
batch_idx = 0
|
101 |
+
# Use block_size equal to the chunk size divided by 32 to leverage multithreading
|
102 |
+
# Set a default minimum value of 16kB if the chunk size is really small
|
103 |
+
block_size = max(self.config.chunksize // 32, 16 << 10)
|
104 |
+
encoding_errors = (
|
105 |
+
self.config.encoding_errors if self.config.encoding_errors is not None else "strict"
|
106 |
+
)
|
107 |
+
while True:
|
108 |
+
batch = f.read(self.config.chunksize)
|
109 |
+
if not batch:
|
110 |
+
break
|
111 |
+
# Finish current line
|
112 |
+
try:
|
113 |
+
batch += f.readline()
|
114 |
+
except (AttributeError, io.UnsupportedOperation):
|
115 |
+
batch += readline(f)
|
116 |
+
# PyArrow only accepts utf-8 encoded bytes
|
117 |
+
if self.config.encoding != "utf-8":
|
118 |
+
batch = batch.decode(self.config.encoding, errors=encoding_errors).encode("utf-8")
|
119 |
+
try:
|
120 |
+
while True:
|
121 |
+
try:
|
122 |
+
pa_table = paj.read_json(
|
123 |
+
io.BytesIO(batch), read_options=paj.ReadOptions(block_size=block_size)
|
124 |
+
)
|
125 |
+
break
|
126 |
+
except (pa.ArrowInvalid, pa.ArrowNotImplementedError) as e:
|
127 |
+
if (
|
128 |
+
isinstance(e, pa.ArrowInvalid)
|
129 |
+
and "straddling" not in str(e)
|
130 |
+
or block_size > len(batch)
|
131 |
+
):
|
132 |
+
raise
|
133 |
+
else:
|
134 |
+
# Increase the block size in case it was too small.
|
135 |
+
# The block size will be reset for the next file.
|
136 |
+
logger.debug(
|
137 |
+
f"Batch of {len(batch)} bytes couldn't be parsed with block_size={block_size}. Retrying with block_size={block_size * 2}."
|
138 |
+
)
|
139 |
+
block_size *= 2
|
140 |
+
except pa.ArrowInvalid as e:
|
141 |
+
try:
|
142 |
+
with open(
|
143 |
+
file, encoding=self.config.encoding, errors=self.config.encoding_errors
|
144 |
+
) as f:
|
145 |
+
dataset = json.load(f)
|
146 |
+
except json.JSONDecodeError:
|
147 |
+
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
|
148 |
+
raise e
|
149 |
+
# If possible, parse the file as a list of json objects/strings and exit the loop
|
150 |
+
if isinstance(dataset, list): # list is the only sequence type supported in JSON
|
151 |
+
try:
|
152 |
+
if dataset and isinstance(dataset[0], str):
|
153 |
+
pa_table_names = (
|
154 |
+
list(self.config.features)
|
155 |
+
if self.config.features is not None
|
156 |
+
else ["text"]
|
157 |
+
)
|
158 |
+
pa_table = pa.Table.from_arrays([pa.array(dataset)], names=pa_table_names)
|
159 |
+
else:
|
160 |
+
keys = set().union(*[row.keys() for row in dataset])
|
161 |
+
mapping = {col: [row.get(col) for row in dataset] for col in keys}
|
162 |
+
pa_table = pa.Table.from_pydict(mapping)
|
163 |
+
except (pa.ArrowInvalid, AttributeError) as e:
|
164 |
+
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
|
165 |
+
raise ValueError(f"Not able to read records in the JSON file at {file}.") from None
|
166 |
+
yield file_idx, self._cast_table(pa_table)
|
167 |
+
break
|
168 |
+
else:
|
169 |
+
logger.error(f"Failed to read file '{file}' with error {type(e)}: {e}")
|
170 |
+
raise ValueError(
|
171 |
+
f"Not able to read records in the JSON file at {file}. "
|
172 |
+
f"You should probably indicate the field of the JSON file containing your records. "
|
173 |
+
f"This JSON file contain the following fields: {str(list(dataset.keys()))}. "
|
174 |
+
f"Select the correct one and provide it as `field='XXX'` to the dataset loading method. "
|
175 |
+
) from None
|
176 |
+
# Uncomment for debugging (will print the Arrow table size and elements)
|
177 |
+
# logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}")
|
178 |
+
# logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows)))
|
179 |
+
yield (file_idx, batch_idx), self._cast_table(pa_table)
|
180 |
+
batch_idx += 1
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (199 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/__pycache__/spark.cpython-310.pyc
ADDED
Binary file (10.5 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/spark/spark.py
ADDED
@@ -0,0 +1,349 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import posixpath
|
3 |
+
import uuid
|
4 |
+
from dataclasses import dataclass
|
5 |
+
from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union
|
6 |
+
|
7 |
+
import numpy as np
|
8 |
+
import pyarrow as pa
|
9 |
+
|
10 |
+
import datasets
|
11 |
+
from datasets.arrow_writer import ArrowWriter, ParquetWriter
|
12 |
+
from datasets.config import MAX_SHARD_SIZE
|
13 |
+
from datasets.filesystems import (
|
14 |
+
is_remote_filesystem,
|
15 |
+
rename,
|
16 |
+
)
|
17 |
+
from datasets.iterable_dataset import _BaseExamplesIterable
|
18 |
+
from datasets.utils.py_utils import convert_file_size_to_int
|
19 |
+
|
20 |
+
|
21 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
22 |
+
|
23 |
+
if TYPE_CHECKING:
|
24 |
+
import pyspark
|
25 |
+
|
26 |
+
|
27 |
+
@dataclass
|
28 |
+
class SparkConfig(datasets.BuilderConfig):
|
29 |
+
"""BuilderConfig for Spark."""
|
30 |
+
|
31 |
+
features: Optional[datasets.Features] = None
|
32 |
+
|
33 |
+
|
34 |
+
def _reorder_dataframe_by_partition(df: "pyspark.sql.DataFrame", new_partition_order: List[int]):
|
35 |
+
df_combined = df.select("*").where(f"part_id = {new_partition_order[0]}")
|
36 |
+
for partition_id in new_partition_order[1:]:
|
37 |
+
partition_df = df.select("*").where(f"part_id = {partition_id}")
|
38 |
+
df_combined = df_combined.union(partition_df)
|
39 |
+
return df_combined
|
40 |
+
|
41 |
+
|
42 |
+
def _generate_iterable_examples(
|
43 |
+
df: "pyspark.sql.DataFrame",
|
44 |
+
partition_order: List[int],
|
45 |
+
):
|
46 |
+
import pyspark
|
47 |
+
|
48 |
+
def generate_fn():
|
49 |
+
df_with_partition_id = df.select("*", pyspark.sql.functions.spark_partition_id().alias("part_id"))
|
50 |
+
partition_df = _reorder_dataframe_by_partition(df_with_partition_id, partition_order)
|
51 |
+
row_id = 0
|
52 |
+
# pipeline next partition in parallel to hide latency
|
53 |
+
rows = partition_df.toLocalIterator(prefetchPartitions=True)
|
54 |
+
curr_partition = -1
|
55 |
+
for row in rows:
|
56 |
+
row_as_dict = row.asDict()
|
57 |
+
part_id = row_as_dict["part_id"]
|
58 |
+
row_as_dict.pop("part_id")
|
59 |
+
if curr_partition != part_id:
|
60 |
+
curr_partition = part_id
|
61 |
+
row_id = 0
|
62 |
+
yield f"{part_id}_{row_id}", row_as_dict
|
63 |
+
row_id += 1
|
64 |
+
|
65 |
+
return generate_fn
|
66 |
+
|
67 |
+
|
68 |
+
class SparkExamplesIterable(_BaseExamplesIterable):
|
69 |
+
def __init__(
|
70 |
+
self,
|
71 |
+
df: "pyspark.sql.DataFrame",
|
72 |
+
partition_order=None,
|
73 |
+
):
|
74 |
+
self.df = df
|
75 |
+
self.partition_order = partition_order or range(self.df.rdd.getNumPartitions())
|
76 |
+
self.generate_examples_fn = _generate_iterable_examples(self.df, self.partition_order)
|
77 |
+
|
78 |
+
def __iter__(self):
|
79 |
+
yield from self.generate_examples_fn()
|
80 |
+
|
81 |
+
def shuffle_data_sources(self, generator: np.random.Generator) -> "SparkExamplesIterable":
|
82 |
+
partition_order = list(range(self.df.rdd.getNumPartitions()))
|
83 |
+
generator.shuffle(partition_order)
|
84 |
+
return SparkExamplesIterable(self.df, partition_order=partition_order)
|
85 |
+
|
86 |
+
def shard_data_sources(self, worker_id: int, num_workers: int) -> "SparkExamplesIterable":
|
87 |
+
partition_order = self.split_shard_indices_by_worker(worker_id, num_workers)
|
88 |
+
return SparkExamplesIterable(self.df, partition_order=partition_order)
|
89 |
+
|
90 |
+
@property
|
91 |
+
def n_shards(self) -> int:
|
92 |
+
return len(self.partition_order)
|
93 |
+
|
94 |
+
|
95 |
+
class Spark(datasets.DatasetBuilder):
|
96 |
+
BUILDER_CONFIG_CLASS = SparkConfig
|
97 |
+
|
98 |
+
def __init__(
|
99 |
+
self,
|
100 |
+
df: "pyspark.sql.DataFrame",
|
101 |
+
cache_dir: str = None,
|
102 |
+
working_dir: str = None,
|
103 |
+
**config_kwargs,
|
104 |
+
):
|
105 |
+
import pyspark
|
106 |
+
|
107 |
+
self._spark = pyspark.sql.SparkSession.builder.getOrCreate()
|
108 |
+
self.df = df
|
109 |
+
self._working_dir = working_dir
|
110 |
+
|
111 |
+
super().__init__(
|
112 |
+
cache_dir=cache_dir,
|
113 |
+
config_name=str(self.df.semanticHash()),
|
114 |
+
**config_kwargs,
|
115 |
+
)
|
116 |
+
|
117 |
+
def _validate_cache_dir(self):
|
118 |
+
# Define this so that we don't reference self in create_cache_and_write_probe, which will result in a pickling
|
119 |
+
# error due to pickling the SparkContext.
|
120 |
+
cache_dir = self._cache_dir
|
121 |
+
|
122 |
+
# Returns the path of the created file.
|
123 |
+
def create_cache_and_write_probe(context):
|
124 |
+
# makedirs with exist_ok will recursively create the directory. It will not throw an error if directories
|
125 |
+
# already exist.
|
126 |
+
os.makedirs(cache_dir, exist_ok=True)
|
127 |
+
probe_file = os.path.join(cache_dir, "fs_test" + uuid.uuid4().hex)
|
128 |
+
# Opening the file in append mode will create a new file unless it already exists, in which case it will not
|
129 |
+
# change the file contents.
|
130 |
+
open(probe_file, "a")
|
131 |
+
return [probe_file]
|
132 |
+
|
133 |
+
if self._spark.conf.get("spark.master", "").startswith("local"):
|
134 |
+
return
|
135 |
+
|
136 |
+
# If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS
|
137 |
+
# accessible to the driver.
|
138 |
+
# TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error.
|
139 |
+
if self._cache_dir:
|
140 |
+
probe = (
|
141 |
+
self._spark.sparkContext.parallelize(range(1), 1).mapPartitions(create_cache_and_write_probe).collect()
|
142 |
+
)
|
143 |
+
if os.path.isfile(probe[0]):
|
144 |
+
return
|
145 |
+
|
146 |
+
raise ValueError(
|
147 |
+
"When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir"
|
148 |
+
)
|
149 |
+
|
150 |
+
def _info(self):
|
151 |
+
return datasets.DatasetInfo(features=self.config.features)
|
152 |
+
|
153 |
+
def _split_generators(self, dl_manager: datasets.download.download_manager.DownloadManager):
|
154 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN)]
|
155 |
+
|
156 |
+
def _repartition_df_if_needed(self, max_shard_size):
|
157 |
+
import pyspark
|
158 |
+
|
159 |
+
def get_arrow_batch_size(it):
|
160 |
+
for batch in it:
|
161 |
+
yield pa.RecordBatch.from_pydict({"batch_bytes": [batch.nbytes]})
|
162 |
+
|
163 |
+
df_num_rows = self.df.count()
|
164 |
+
sample_num_rows = df_num_rows if df_num_rows <= 100 else 100
|
165 |
+
# Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample.
|
166 |
+
approx_bytes_per_row = (
|
167 |
+
self.df.limit(sample_num_rows)
|
168 |
+
.repartition(1)
|
169 |
+
.mapInArrow(get_arrow_batch_size, "batch_bytes: long")
|
170 |
+
.agg(pyspark.sql.functions.sum("batch_bytes").alias("sample_bytes"))
|
171 |
+
.collect()[0]
|
172 |
+
.sample_bytes
|
173 |
+
/ sample_num_rows
|
174 |
+
)
|
175 |
+
approx_total_size = approx_bytes_per_row * df_num_rows
|
176 |
+
if approx_total_size > max_shard_size:
|
177 |
+
# Make sure there is at least one row per partition.
|
178 |
+
new_num_partitions = min(df_num_rows, int(approx_total_size / max_shard_size))
|
179 |
+
self.df = self.df.repartition(new_num_partitions)
|
180 |
+
|
181 |
+
def _prepare_split_single(
|
182 |
+
self,
|
183 |
+
fpath: str,
|
184 |
+
file_format: str,
|
185 |
+
max_shard_size: int,
|
186 |
+
) -> Iterable[Tuple[int, bool, Union[int, tuple]]]:
|
187 |
+
import pyspark
|
188 |
+
|
189 |
+
writer_class = ParquetWriter if file_format == "parquet" else ArrowWriter
|
190 |
+
working_fpath = os.path.join(self._working_dir, os.path.basename(fpath)) if self._working_dir else fpath
|
191 |
+
embed_local_files = file_format == "parquet"
|
192 |
+
|
193 |
+
# Define these so that we don't reference self in write_arrow, which will result in a pickling error due to
|
194 |
+
# pickling the SparkContext.
|
195 |
+
features = self.config.features
|
196 |
+
writer_batch_size = self._writer_batch_size
|
197 |
+
storage_options = self._fs.storage_options
|
198 |
+
|
199 |
+
def write_arrow(it):
|
200 |
+
# Within the same SparkContext, no two task attempts will share the same attempt ID.
|
201 |
+
task_id = pyspark.TaskContext().taskAttemptId()
|
202 |
+
first_batch = next(it, None)
|
203 |
+
if first_batch is None:
|
204 |
+
# Some partitions might not receive any data.
|
205 |
+
return pa.RecordBatch.from_arrays(
|
206 |
+
[[task_id], [0], [0]],
|
207 |
+
names=["task_id", "num_examples", "num_bytes"],
|
208 |
+
)
|
209 |
+
shard_id = 0
|
210 |
+
writer = writer_class(
|
211 |
+
features=features,
|
212 |
+
path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
|
213 |
+
writer_batch_size=writer_batch_size,
|
214 |
+
storage_options=storage_options,
|
215 |
+
embed_local_files=embed_local_files,
|
216 |
+
)
|
217 |
+
table = pa.Table.from_batches([first_batch])
|
218 |
+
writer.write_table(table)
|
219 |
+
for batch in it:
|
220 |
+
if max_shard_size is not None and writer._num_bytes >= max_shard_size:
|
221 |
+
num_examples, num_bytes = writer.finalize()
|
222 |
+
writer.close()
|
223 |
+
yield pa.RecordBatch.from_arrays(
|
224 |
+
[[task_id], [num_examples], [num_bytes]],
|
225 |
+
names=["task_id", "num_examples", "num_bytes"],
|
226 |
+
)
|
227 |
+
shard_id += 1
|
228 |
+
writer = writer_class(
|
229 |
+
features=writer._features,
|
230 |
+
path=working_fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
|
231 |
+
writer_batch_size=writer_batch_size,
|
232 |
+
storage_options=storage_options,
|
233 |
+
embed_local_files=embed_local_files,
|
234 |
+
)
|
235 |
+
table = pa.Table.from_batches([batch])
|
236 |
+
writer.write_table(table)
|
237 |
+
|
238 |
+
if writer._num_bytes > 0:
|
239 |
+
num_examples, num_bytes = writer.finalize()
|
240 |
+
writer.close()
|
241 |
+
yield pa.RecordBatch.from_arrays(
|
242 |
+
[[task_id], [num_examples], [num_bytes]],
|
243 |
+
names=["task_id", "num_examples", "num_bytes"],
|
244 |
+
)
|
245 |
+
|
246 |
+
if working_fpath != fpath:
|
247 |
+
for file in os.listdir(os.path.dirname(working_fpath)):
|
248 |
+
dest = os.path.join(os.path.dirname(fpath), os.path.basename(file))
|
249 |
+
shutil.move(file, dest)
|
250 |
+
|
251 |
+
stats = (
|
252 |
+
self.df.mapInArrow(write_arrow, "task_id: long, num_examples: long, num_bytes: long")
|
253 |
+
.groupBy("task_id")
|
254 |
+
.agg(
|
255 |
+
pyspark.sql.functions.sum("num_examples").alias("total_num_examples"),
|
256 |
+
pyspark.sql.functions.sum("num_bytes").alias("total_num_bytes"),
|
257 |
+
pyspark.sql.functions.count("num_bytes").alias("num_shards"),
|
258 |
+
pyspark.sql.functions.collect_list("num_examples").alias("shard_lengths"),
|
259 |
+
)
|
260 |
+
.collect()
|
261 |
+
)
|
262 |
+
for row in stats:
|
263 |
+
yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths)
|
264 |
+
|
265 |
+
def _prepare_split(
|
266 |
+
self,
|
267 |
+
split_generator: "datasets.SplitGenerator",
|
268 |
+
file_format: str = "arrow",
|
269 |
+
max_shard_size: Optional[Union[str, int]] = None,
|
270 |
+
num_proc: Optional[int] = None,
|
271 |
+
**kwargs,
|
272 |
+
):
|
273 |
+
self._validate_cache_dir()
|
274 |
+
|
275 |
+
max_shard_size = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE)
|
276 |
+
self._repartition_df_if_needed(max_shard_size)
|
277 |
+
is_local = not is_remote_filesystem(self._fs)
|
278 |
+
path_join = os.path.join if is_local else posixpath.join
|
279 |
+
|
280 |
+
SUFFIX = "-TTTTT-SSSSS-of-NNNNN"
|
281 |
+
fname = f"{self.name}-{split_generator.name}{SUFFIX}.{file_format}"
|
282 |
+
fpath = path_join(self._output_dir, fname)
|
283 |
+
|
284 |
+
total_num_examples = 0
|
285 |
+
total_num_bytes = 0
|
286 |
+
total_shards = 0
|
287 |
+
task_id_and_num_shards = []
|
288 |
+
all_shard_lengths = []
|
289 |
+
|
290 |
+
for task_id, content in self._prepare_split_single(fpath, file_format, max_shard_size):
|
291 |
+
(
|
292 |
+
num_examples,
|
293 |
+
num_bytes,
|
294 |
+
num_shards,
|
295 |
+
shard_lengths,
|
296 |
+
) = content
|
297 |
+
if num_bytes > 0:
|
298 |
+
total_num_examples += num_examples
|
299 |
+
total_num_bytes += num_bytes
|
300 |
+
total_shards += num_shards
|
301 |
+
task_id_and_num_shards.append((task_id, num_shards))
|
302 |
+
all_shard_lengths.extend(shard_lengths)
|
303 |
+
|
304 |
+
split_generator.split_info.num_examples = total_num_examples
|
305 |
+
split_generator.split_info.num_bytes = total_num_bytes
|
306 |
+
|
307 |
+
# should rename everything at the end
|
308 |
+
logger.debug(f"Renaming {total_shards} shards.")
|
309 |
+
if total_shards > 1:
|
310 |
+
split_generator.split_info.shard_lengths = all_shard_lengths
|
311 |
+
|
312 |
+
# Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a
|
313 |
+
# pickling error due to pickling the SparkContext.
|
314 |
+
fs = self._fs
|
315 |
+
|
316 |
+
# use the -SSSSS-of-NNNNN pattern
|
317 |
+
def _rename_shard(
|
318 |
+
task_id: int,
|
319 |
+
shard_id: int,
|
320 |
+
global_shard_id: int,
|
321 |
+
):
|
322 |
+
rename(
|
323 |
+
fs,
|
324 |
+
fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
|
325 |
+
fpath.replace("TTTTT-SSSSS", f"{global_shard_id:05d}").replace("NNNNN", f"{total_shards:05d}"),
|
326 |
+
)
|
327 |
+
|
328 |
+
args = []
|
329 |
+
global_shard_id = 0
|
330 |
+
for i in range(len(task_id_and_num_shards)):
|
331 |
+
task_id, num_shards = task_id_and_num_shards[i]
|
332 |
+
for shard_id in range(num_shards):
|
333 |
+
args.append([task_id, shard_id, global_shard_id])
|
334 |
+
global_shard_id += 1
|
335 |
+
self._spark.sparkContext.parallelize(args, len(args)).map(lambda args: _rename_shard(*args)).collect()
|
336 |
+
else:
|
337 |
+
# don't use any pattern
|
338 |
+
shard_id = 0
|
339 |
+
task_id = task_id_and_num_shards[0][0]
|
340 |
+
self._rename(
|
341 |
+
fpath.replace("SSSSS", f"{shard_id:05d}").replace("TTTTT", f"{task_id:05d}"),
|
342 |
+
fpath.replace(SUFFIX, ""),
|
343 |
+
)
|
344 |
+
|
345 |
+
def _get_examples_iterable_for_split(
|
346 |
+
self,
|
347 |
+
split_generator: "datasets.SplitGenerator",
|
348 |
+
) -> SparkExamplesIterable:
|
349 |
+
return SparkExamplesIterable(self.df)
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (197 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/__pycache__/sql.cpython-310.pyc
ADDED
Binary file (4.47 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/sql/sql.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys
|
2 |
+
from dataclasses import dataclass
|
3 |
+
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
|
4 |
+
|
5 |
+
import pandas as pd
|
6 |
+
import pyarrow as pa
|
7 |
+
|
8 |
+
import datasets
|
9 |
+
import datasets.config
|
10 |
+
from datasets.features.features import require_storage_cast
|
11 |
+
from datasets.table import table_cast
|
12 |
+
|
13 |
+
|
14 |
+
if TYPE_CHECKING:
|
15 |
+
import sqlite3
|
16 |
+
|
17 |
+
import sqlalchemy
|
18 |
+
|
19 |
+
|
20 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
21 |
+
|
22 |
+
|
23 |
+
@dataclass
|
24 |
+
class SqlConfig(datasets.BuilderConfig):
|
25 |
+
"""BuilderConfig for SQL."""
|
26 |
+
|
27 |
+
sql: Union[str, "sqlalchemy.sql.Selectable"] = None
|
28 |
+
con: Union[str, "sqlalchemy.engine.Connection", "sqlalchemy.engine.Engine", "sqlite3.Connection"] = None
|
29 |
+
index_col: Optional[Union[str, List[str]]] = None
|
30 |
+
coerce_float: bool = True
|
31 |
+
params: Optional[Union[List, Tuple, Dict]] = None
|
32 |
+
parse_dates: Optional[Union[List, Dict]] = None
|
33 |
+
columns: Optional[List[str]] = None
|
34 |
+
chunksize: Optional[int] = 10_000
|
35 |
+
features: Optional[datasets.Features] = None
|
36 |
+
|
37 |
+
def __post_init__(self):
|
38 |
+
if self.sql is None:
|
39 |
+
raise ValueError("sql must be specified")
|
40 |
+
if self.con is None:
|
41 |
+
raise ValueError("con must be specified")
|
42 |
+
|
43 |
+
def create_config_id(
|
44 |
+
self,
|
45 |
+
config_kwargs: dict,
|
46 |
+
custom_features: Optional[datasets.Features] = None,
|
47 |
+
) -> str:
|
48 |
+
config_kwargs = config_kwargs.copy()
|
49 |
+
# We need to stringify the Selectable object to make its hash deterministic
|
50 |
+
|
51 |
+
# The process of stringifying is explained here: http://docs.sqlalchemy.org/en/latest/faq/sqlexpressions.html
|
52 |
+
sql = config_kwargs["sql"]
|
53 |
+
if not isinstance(sql, str):
|
54 |
+
if datasets.config.SQLALCHEMY_AVAILABLE and "sqlalchemy" in sys.modules:
|
55 |
+
import sqlalchemy
|
56 |
+
|
57 |
+
if isinstance(sql, sqlalchemy.sql.Selectable):
|
58 |
+
engine = sqlalchemy.create_engine(config_kwargs["con"].split("://")[0] + "://")
|
59 |
+
sql_str = str(sql.compile(dialect=engine.dialect))
|
60 |
+
config_kwargs["sql"] = sql_str
|
61 |
+
else:
|
62 |
+
raise TypeError(
|
63 |
+
f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}"
|
64 |
+
)
|
65 |
+
else:
|
66 |
+
raise TypeError(
|
67 |
+
f"Supported types for 'sql' are string and sqlalchemy.sql.Selectable but got {type(sql)}: {sql}"
|
68 |
+
)
|
69 |
+
con = config_kwargs["con"]
|
70 |
+
if not isinstance(con, str):
|
71 |
+
config_kwargs["con"] = id(con)
|
72 |
+
logger.info(
|
73 |
+
f"SQL connection 'con' of type {type(con)} couldn't be hashed properly. To enable hashing, specify 'con' as URI string instead."
|
74 |
+
)
|
75 |
+
|
76 |
+
return super().create_config_id(config_kwargs, custom_features=custom_features)
|
77 |
+
|
78 |
+
@property
|
79 |
+
def pd_read_sql_kwargs(self):
|
80 |
+
pd_read_sql_kwargs = {
|
81 |
+
"index_col": self.index_col,
|
82 |
+
"columns": self.columns,
|
83 |
+
"params": self.params,
|
84 |
+
"coerce_float": self.coerce_float,
|
85 |
+
"parse_dates": self.parse_dates,
|
86 |
+
}
|
87 |
+
return pd_read_sql_kwargs
|
88 |
+
|
89 |
+
|
90 |
+
class Sql(datasets.ArrowBasedBuilder):
|
91 |
+
BUILDER_CONFIG_CLASS = SqlConfig
|
92 |
+
|
93 |
+
def _info(self):
|
94 |
+
return datasets.DatasetInfo(features=self.config.features)
|
95 |
+
|
96 |
+
def _split_generators(self, dl_manager):
|
97 |
+
return [datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={})]
|
98 |
+
|
99 |
+
def _cast_table(self, pa_table: pa.Table) -> pa.Table:
|
100 |
+
if self.config.features is not None:
|
101 |
+
schema = self.config.features.arrow_schema
|
102 |
+
if all(not require_storage_cast(feature) for feature in self.config.features.values()):
|
103 |
+
# cheaper cast
|
104 |
+
pa_table = pa.Table.from_arrays([pa_table[field.name] for field in schema], schema=schema)
|
105 |
+
else:
|
106 |
+
# more expensive cast; allows str <-> int/float or str to Audio for example
|
107 |
+
pa_table = table_cast(pa_table, schema)
|
108 |
+
return pa_table
|
109 |
+
|
110 |
+
def _generate_tables(self):
|
111 |
+
chunksize = self.config.chunksize
|
112 |
+
sql_reader = pd.read_sql(
|
113 |
+
self.config.sql, self.config.con, chunksize=chunksize, **self.config.pd_read_sql_kwargs
|
114 |
+
)
|
115 |
+
sql_reader = [sql_reader] if chunksize is None else sql_reader
|
116 |
+
for chunk_idx, df in enumerate(sql_reader):
|
117 |
+
pa_table = pa.Table.from_pandas(df)
|
118 |
+
yield chunk_idx, self._cast_table(pa_table)
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (204 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/_tenbin.cpython-310.pyc
ADDED
Binary file (8.84 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/__pycache__/webdataset.cpython-310.pyc
ADDED
Binary file (6.11 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/_tenbin.py
ADDED
@@ -0,0 +1,285 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#
|
2 |
+
# Copyright (c) 2017-2021 NVIDIA CORPORATION. All rights reserved.
|
3 |
+
# This file coems from the WebDataset library.
|
4 |
+
# See the LICENSE file for licensing terms (BSD-style).
|
5 |
+
#
|
6 |
+
|
7 |
+
"""
|
8 |
+
Binary tensor encodings for PyTorch and NumPy.
|
9 |
+
|
10 |
+
This defines efficient binary encodings for tensors. The format is 8 byte
|
11 |
+
aligned and can be used directly for computations when transmitted, say,
|
12 |
+
via RDMA. The format is supported by WebDataset with the `.ten` filename
|
13 |
+
extension. It is also used by Tensorcom, Tensorcom RDMA, and can be used
|
14 |
+
for fast tensor storage with LMDB and in disk files (which can be memory
|
15 |
+
mapped)
|
16 |
+
|
17 |
+
Data is encoded as a series of chunks:
|
18 |
+
|
19 |
+
- magic number (int64)
|
20 |
+
- length in bytes (int64)
|
21 |
+
- bytes (multiple of 64 bytes long)
|
22 |
+
|
23 |
+
Arrays are a header chunk followed by a data chunk.
|
24 |
+
Header chunks have the following structure:
|
25 |
+
|
26 |
+
- dtype (int64)
|
27 |
+
- 8 byte array name
|
28 |
+
- ndim (int64)
|
29 |
+
- dim[0]
|
30 |
+
- dim[1]
|
31 |
+
- ...
|
32 |
+
"""
|
33 |
+
|
34 |
+
import struct
|
35 |
+
import sys
|
36 |
+
|
37 |
+
import numpy as np
|
38 |
+
|
39 |
+
|
40 |
+
def bytelen(a):
|
41 |
+
"""Determine the length of a in bytes."""
|
42 |
+
if hasattr(a, "nbytes"):
|
43 |
+
return a.nbytes
|
44 |
+
elif isinstance(a, (bytearray, bytes)):
|
45 |
+
return len(a)
|
46 |
+
else:
|
47 |
+
raise ValueError(a, "cannot determine nbytes")
|
48 |
+
|
49 |
+
|
50 |
+
def bytedata(a):
|
51 |
+
"""Return a the raw data corresponding to a."""
|
52 |
+
if isinstance(a, (bytearray, bytes, memoryview)):
|
53 |
+
return a
|
54 |
+
elif hasattr(a, "data"):
|
55 |
+
return a.data
|
56 |
+
else:
|
57 |
+
raise ValueError(a, "cannot return bytedata")
|
58 |
+
|
59 |
+
|
60 |
+
# tables for converting between long/short NumPy dtypes
|
61 |
+
|
62 |
+
long_to_short = """
|
63 |
+
float16 f2
|
64 |
+
float32 f4
|
65 |
+
float64 f8
|
66 |
+
int8 i1
|
67 |
+
int16 i2
|
68 |
+
int32 i4
|
69 |
+
int64 i8
|
70 |
+
uint8 u1
|
71 |
+
uint16 u2
|
72 |
+
unit32 u4
|
73 |
+
uint64 u8
|
74 |
+
""".strip()
|
75 |
+
long_to_short = [x.split() for x in long_to_short.split("\n")]
|
76 |
+
long_to_short = {x[0]: x[1] for x in long_to_short}
|
77 |
+
short_to_long = {v: k for k, v in long_to_short.items()}
|
78 |
+
|
79 |
+
|
80 |
+
def check_acceptable_input_type(data, allow64):
|
81 |
+
"""Check that the data has an acceptable type for tensor encoding.
|
82 |
+
|
83 |
+
:param data: array
|
84 |
+
:param allow64: allow 64 bit types
|
85 |
+
"""
|
86 |
+
for a in data:
|
87 |
+
if a.dtype.name not in long_to_short:
|
88 |
+
raise ValueError("unsupported dataypte")
|
89 |
+
if not allow64 and a.dtype.name not in ["float64", "int64", "uint64"]:
|
90 |
+
raise ValueError("64 bit datatypes not allowed unless explicitly enabled")
|
91 |
+
|
92 |
+
|
93 |
+
def str64(s):
|
94 |
+
"""Convert a string to an int64."""
|
95 |
+
s = s + "\0" * (8 - len(s))
|
96 |
+
s = s.encode("ascii")
|
97 |
+
return struct.unpack("@q", s)[0]
|
98 |
+
|
99 |
+
|
100 |
+
def unstr64(i):
|
101 |
+
"""Convert an int64 to a string."""
|
102 |
+
b = struct.pack("@q", i)
|
103 |
+
return b.decode("ascii").strip("\0")
|
104 |
+
|
105 |
+
|
106 |
+
def check_infos(data, infos, required_infos=None):
|
107 |
+
"""Verify the info strings."""
|
108 |
+
if required_infos is False or required_infos is None:
|
109 |
+
return data
|
110 |
+
if required_infos is True:
|
111 |
+
return data, infos
|
112 |
+
if not isinstance(required_infos, (tuple, list)):
|
113 |
+
raise ValueError("required_infos must be tuple or list")
|
114 |
+
for required, actual in zip(required_infos, infos):
|
115 |
+
raise ValueError(f"actual info {actual} doesn't match required info {required}")
|
116 |
+
return data
|
117 |
+
|
118 |
+
|
119 |
+
def encode_header(a, info=""):
|
120 |
+
"""Encode an array header as a byte array."""
|
121 |
+
if a.ndim >= 10:
|
122 |
+
raise ValueError("too many dimensions")
|
123 |
+
if a.nbytes != np.prod(a.shape) * a.itemsize:
|
124 |
+
raise ValueError("mismatch between size and shape")
|
125 |
+
if a.dtype.name not in long_to_short:
|
126 |
+
raise ValueError("unsupported array type")
|
127 |
+
header = [str64(long_to_short[a.dtype.name]), str64(info), len(a.shape)] + list(a.shape)
|
128 |
+
return bytedata(np.array(header, dtype="i8"))
|
129 |
+
|
130 |
+
|
131 |
+
def decode_header(h):
|
132 |
+
"""Decode a byte array into an array header."""
|
133 |
+
h = np.frombuffer(h, dtype="i8")
|
134 |
+
if unstr64(h[0]) not in short_to_long:
|
135 |
+
raise ValueError("unsupported array type")
|
136 |
+
dtype = np.dtype(short_to_long[unstr64(h[0])])
|
137 |
+
info = unstr64(h[1])
|
138 |
+
rank = int(h[2])
|
139 |
+
shape = tuple(h[3 : 3 + rank])
|
140 |
+
return shape, dtype, info
|
141 |
+
|
142 |
+
|
143 |
+
def encode_list(l, infos=None): # noqa: E741
|
144 |
+
"""Given a list of arrays, encode them into a list of byte arrays."""
|
145 |
+
if infos is None:
|
146 |
+
infos = [""]
|
147 |
+
else:
|
148 |
+
if len(l) != len(infos):
|
149 |
+
raise ValueError(f"length of list {l} must muatch length of infos {infos}")
|
150 |
+
result = []
|
151 |
+
for i, a in enumerate(l):
|
152 |
+
header = encode_header(a, infos[i % len(infos)])
|
153 |
+
result += [header, bytedata(a)]
|
154 |
+
return result
|
155 |
+
|
156 |
+
|
157 |
+
def decode_list(l, infos=False): # noqa: E741
|
158 |
+
"""Given a list of byte arrays, decode them into arrays."""
|
159 |
+
result = []
|
160 |
+
infos0 = []
|
161 |
+
for header, data in zip(l[::2], l[1::2]):
|
162 |
+
shape, dtype, info = decode_header(header)
|
163 |
+
a = np.frombuffer(data, dtype=dtype, count=np.prod(shape)).reshape(*shape)
|
164 |
+
result += [a]
|
165 |
+
infos0 += [info]
|
166 |
+
return check_infos(result, infos0, infos)
|
167 |
+
|
168 |
+
|
169 |
+
magic_str = "~TenBin~"
|
170 |
+
magic = str64(magic_str)
|
171 |
+
magic_bytes = unstr64(magic).encode("ascii")
|
172 |
+
|
173 |
+
|
174 |
+
def roundup(n, k=64):
|
175 |
+
"""Round up to the next multiple of 64."""
|
176 |
+
return k * ((n + k - 1) // k)
|
177 |
+
|
178 |
+
|
179 |
+
def encode_chunks(l): # noqa: E741
|
180 |
+
"""Encode a list of chunks into a single byte array, with lengths and magics.."""
|
181 |
+
size = sum(16 + roundup(b.nbytes) for b in l)
|
182 |
+
result = bytearray(size)
|
183 |
+
offset = 0
|
184 |
+
for b in l:
|
185 |
+
result[offset : offset + 8] = magic_bytes
|
186 |
+
offset += 8
|
187 |
+
result[offset : offset + 8] = struct.pack("@q", b.nbytes)
|
188 |
+
offset += 8
|
189 |
+
result[offset : offset + bytelen(b)] = b
|
190 |
+
offset += roundup(bytelen(b))
|
191 |
+
return result
|
192 |
+
|
193 |
+
|
194 |
+
def decode_chunks(buf):
|
195 |
+
"""Decode a byte array into a list of chunks."""
|
196 |
+
result = []
|
197 |
+
offset = 0
|
198 |
+
total = bytelen(buf)
|
199 |
+
while offset < total:
|
200 |
+
if magic_bytes != buf[offset : offset + 8]:
|
201 |
+
raise ValueError("magic bytes mismatch")
|
202 |
+
offset += 8
|
203 |
+
nbytes = struct.unpack("@q", buf[offset : offset + 8])[0]
|
204 |
+
offset += 8
|
205 |
+
b = buf[offset : offset + nbytes]
|
206 |
+
offset += roundup(nbytes)
|
207 |
+
result.append(b)
|
208 |
+
return result
|
209 |
+
|
210 |
+
|
211 |
+
def encode_buffer(l, infos=None): # noqa: E741
|
212 |
+
"""Encode a list of arrays into a single byte array."""
|
213 |
+
if not isinstance(l, list):
|
214 |
+
raise ValueError("requires list")
|
215 |
+
return encode_chunks(encode_list(l, infos=infos))
|
216 |
+
|
217 |
+
|
218 |
+
def decode_buffer(buf, infos=False):
|
219 |
+
"""Decode a byte array into a list of arrays."""
|
220 |
+
return decode_list(decode_chunks(buf), infos=infos)
|
221 |
+
|
222 |
+
|
223 |
+
def write_chunk(stream, buf):
|
224 |
+
"""Write a byte chunk to the stream with magics, length, and padding."""
|
225 |
+
nbytes = bytelen(buf)
|
226 |
+
stream.write(magic_bytes)
|
227 |
+
stream.write(struct.pack("@q", nbytes))
|
228 |
+
stream.write(bytedata(buf))
|
229 |
+
padding = roundup(nbytes) - nbytes
|
230 |
+
if padding > 0:
|
231 |
+
stream.write(b"\0" * padding)
|
232 |
+
|
233 |
+
|
234 |
+
def read_chunk(stream):
|
235 |
+
"""Read a byte chunk from a stream with magics, length, and padding."""
|
236 |
+
magic = stream.read(8)
|
237 |
+
if magic == b"":
|
238 |
+
return None
|
239 |
+
if magic != magic_bytes:
|
240 |
+
raise ValueError("magic number does not match")
|
241 |
+
nbytes = stream.read(8)
|
242 |
+
nbytes = struct.unpack("@q", nbytes)[0]
|
243 |
+
if nbytes < 0:
|
244 |
+
raise ValueError("negative nbytes")
|
245 |
+
data = stream.read(nbytes)
|
246 |
+
padding = roundup(nbytes) - nbytes
|
247 |
+
if padding > 0:
|
248 |
+
stream.read(padding)
|
249 |
+
return data
|
250 |
+
|
251 |
+
|
252 |
+
def write(stream, l, infos=None): # noqa: E741
|
253 |
+
"""Write a list of arrays to a stream, with magics, length, and padding."""
|
254 |
+
for chunk in encode_list(l, infos=infos):
|
255 |
+
write_chunk(stream, chunk)
|
256 |
+
|
257 |
+
|
258 |
+
def read(stream, n=sys.maxsize, infos=False):
|
259 |
+
"""Read a list of arrays from a stream, with magics, length, and padding."""
|
260 |
+
chunks = []
|
261 |
+
for _ in range(n):
|
262 |
+
header = read_chunk(stream)
|
263 |
+
if header is None:
|
264 |
+
break
|
265 |
+
data = read_chunk(stream)
|
266 |
+
if data is None:
|
267 |
+
raise ValueError("premature EOF")
|
268 |
+
chunks += [header, data]
|
269 |
+
return decode_list(chunks, infos=infos)
|
270 |
+
|
271 |
+
|
272 |
+
def save(fname, *args, infos=None, nocheck=False):
|
273 |
+
"""Save a list of arrays to a file, with magics, length, and padding."""
|
274 |
+
if not nocheck and not fname.endswith(".ten"):
|
275 |
+
raise ValueError("file name should end in .ten")
|
276 |
+
with open(fname, "wb") as stream:
|
277 |
+
write(stream, args, infos=infos)
|
278 |
+
|
279 |
+
|
280 |
+
def load(fname, infos=False, nocheck=False):
|
281 |
+
"""Read a list of arrays from a file, with magics, length, and padding."""
|
282 |
+
if not nocheck and not fname.endswith(".ten"):
|
283 |
+
raise ValueError("file name should end in .ten")
|
284 |
+
with open(fname, "rb") as stream:
|
285 |
+
return read(stream, infos=infos)
|
venv/lib/python3.10/site-packages/datasets/packaged_modules/webdataset/webdataset.py
ADDED
@@ -0,0 +1,299 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import io
|
2 |
+
import json
|
3 |
+
from itertools import islice
|
4 |
+
from typing import Any, Callable, Dict, List
|
5 |
+
|
6 |
+
import numpy as np
|
7 |
+
import pyarrow as pa
|
8 |
+
|
9 |
+
import datasets
|
10 |
+
|
11 |
+
|
12 |
+
logger = datasets.utils.logging.get_logger(__name__)
|
13 |
+
|
14 |
+
|
15 |
+
class WebDataset(datasets.GeneratorBasedBuilder):
|
16 |
+
DEFAULT_WRITER_BATCH_SIZE = 100
|
17 |
+
IMAGE_EXTENSIONS: List[str] # definition at the bottom of the script
|
18 |
+
AUDIO_EXTENSIONS: List[str] # definition at the bottom of the script
|
19 |
+
DECODERS: Dict[str, Callable[[Any], Any]] # definition at the bottom of the script
|
20 |
+
NUM_EXAMPLES_FOR_FEATURES_INFERENCE = 5
|
21 |
+
|
22 |
+
@classmethod
|
23 |
+
def _get_pipeline_from_tar(cls, tar_path, tar_iterator):
|
24 |
+
current_example = {}
|
25 |
+
for filename, f in tar_iterator:
|
26 |
+
if "." in filename:
|
27 |
+
example_key, field_name = filename.split(".", 1)
|
28 |
+
if current_example and current_example["__key__"] != example_key:
|
29 |
+
yield current_example
|
30 |
+
current_example = {}
|
31 |
+
current_example["__key__"] = example_key
|
32 |
+
current_example["__url__"] = tar_path
|
33 |
+
current_example[field_name.lower()] = f.read()
|
34 |
+
if field_name in cls.DECODERS:
|
35 |
+
current_example[field_name] = cls.DECODERS[field_name](current_example[field_name])
|
36 |
+
if current_example:
|
37 |
+
yield current_example
|
38 |
+
|
39 |
+
def _info(self) -> datasets.DatasetInfo:
|
40 |
+
return datasets.DatasetInfo()
|
41 |
+
|
42 |
+
def _split_generators(self, dl_manager):
|
43 |
+
"""We handle string, list and dicts in datafiles"""
|
44 |
+
# Download the data files
|
45 |
+
if not self.config.data_files:
|
46 |
+
raise ValueError(f"At least one data file must be specified, but got data_files={self.config.data_files}")
|
47 |
+
data_files = dl_manager.download(self.config.data_files)
|
48 |
+
if isinstance(data_files, (str, list, tuple)):
|
49 |
+
tar_paths = data_files
|
50 |
+
if isinstance(tar_paths, str):
|
51 |
+
tar_paths = [tar_paths]
|
52 |
+
tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths]
|
53 |
+
splits = [
|
54 |
+
datasets.SplitGenerator(
|
55 |
+
name=datasets.Split.TRAIN, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators}
|
56 |
+
)
|
57 |
+
]
|
58 |
+
else:
|
59 |
+
splits = []
|
60 |
+
for split_name, tar_paths in data_files.items():
|
61 |
+
if isinstance(tar_paths, str):
|
62 |
+
tar_paths = [tar_paths]
|
63 |
+
tar_iterators = [dl_manager.iter_archive(tar_path) for tar_path in tar_paths]
|
64 |
+
splits.append(
|
65 |
+
datasets.SplitGenerator(
|
66 |
+
name=split_name, gen_kwargs={"tar_paths": tar_paths, "tar_iterators": tar_iterators}
|
67 |
+
)
|
68 |
+
)
|
69 |
+
if not self.info.features:
|
70 |
+
# Get one example to get the feature types
|
71 |
+
pipeline = self._get_pipeline_from_tar(tar_paths[0], tar_iterators[0])
|
72 |
+
first_examples = list(islice(pipeline, self.NUM_EXAMPLES_FOR_FEATURES_INFERENCE))
|
73 |
+
if any(example.keys() != first_examples[0].keys() for example in first_examples):
|
74 |
+
raise ValueError(
|
75 |
+
"The TAR archives of the dataset should be in WebDataset format, "
|
76 |
+
"but the files in the archive don't share the same prefix or the same types."
|
77 |
+
)
|
78 |
+
pa_tables = [pa.Table.from_pylist([example]) for example in first_examples]
|
79 |
+
if datasets.config.PYARROW_VERSION.major < 14:
|
80 |
+
inferred_arrow_schema = pa.concat_tables(pa_tables, promote=True).schema
|
81 |
+
else:
|
82 |
+
inferred_arrow_schema = pa.concat_tables(pa_tables, promote_options="default").schema
|
83 |
+
features = datasets.Features.from_arrow_schema(inferred_arrow_schema)
|
84 |
+
|
85 |
+
# Set Image types
|
86 |
+
for field_name in first_examples[0]:
|
87 |
+
extension = field_name.rsplit(".", 1)[-1]
|
88 |
+
if extension in self.IMAGE_EXTENSIONS:
|
89 |
+
features[field_name] = datasets.Image()
|
90 |
+
# Set Audio types
|
91 |
+
for field_name in first_examples[0]:
|
92 |
+
extension = field_name.rsplit(".", 1)[-1]
|
93 |
+
if extension in self.AUDIO_EXTENSIONS:
|
94 |
+
features[field_name] = datasets.Audio()
|
95 |
+
self.info.features = features
|
96 |
+
|
97 |
+
return splits
|
98 |
+
|
99 |
+
def _generate_examples(self, tar_paths, tar_iterators):
|
100 |
+
image_field_names = [
|
101 |
+
field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Image)
|
102 |
+
]
|
103 |
+
audio_field_names = [
|
104 |
+
field_name for field_name, feature in self.info.features.items() if isinstance(feature, datasets.Audio)
|
105 |
+
]
|
106 |
+
for tar_idx, (tar_path, tar_iterator) in enumerate(zip(tar_paths, tar_iterators)):
|
107 |
+
for example_idx, example in enumerate(self._get_pipeline_from_tar(tar_path, tar_iterator)):
|
108 |
+
for field_name in image_field_names + audio_field_names:
|
109 |
+
example[field_name] = {"path": example["__key__"] + "." + field_name, "bytes": example[field_name]}
|
110 |
+
yield f"{tar_idx}_{example_idx}", example
|
111 |
+
|
112 |
+
|
113 |
+
# Obtained with:
|
114 |
+
# ```
|
115 |
+
# import PIL.Image
|
116 |
+
# IMAGE_EXTENSIONS = []
|
117 |
+
# PIL.Image.init()
|
118 |
+
# for ext, format in PIL.Image.EXTENSION.items():
|
119 |
+
# if format in PIL.Image.OPEN:
|
120 |
+
# IMAGE_EXTENSIONS.append(ext[1:])
|
121 |
+
# ```
|
122 |
+
# We intentionally do not run this code on launch because:
|
123 |
+
# (1) Pillow is an optional dependency, so importing Pillow in global namespace is not allowed
|
124 |
+
# (2) To ensure the list of supported extensions is deterministic
|
125 |
+
IMAGE_EXTENSIONS = [
|
126 |
+
"blp",
|
127 |
+
"bmp",
|
128 |
+
"dib",
|
129 |
+
"bufr",
|
130 |
+
"cur",
|
131 |
+
"pcx",
|
132 |
+
"dcx",
|
133 |
+
"dds",
|
134 |
+
"ps",
|
135 |
+
"eps",
|
136 |
+
"fit",
|
137 |
+
"fits",
|
138 |
+
"fli",
|
139 |
+
"flc",
|
140 |
+
"ftc",
|
141 |
+
"ftu",
|
142 |
+
"gbr",
|
143 |
+
"gif",
|
144 |
+
"grib",
|
145 |
+
"h5",
|
146 |
+
"hdf",
|
147 |
+
"png",
|
148 |
+
"apng",
|
149 |
+
"jp2",
|
150 |
+
"j2k",
|
151 |
+
"jpc",
|
152 |
+
"jpf",
|
153 |
+
"jpx",
|
154 |
+
"j2c",
|
155 |
+
"icns",
|
156 |
+
"ico",
|
157 |
+
"im",
|
158 |
+
"iim",
|
159 |
+
"tif",
|
160 |
+
"tiff",
|
161 |
+
"jfif",
|
162 |
+
"jpe",
|
163 |
+
"jpg",
|
164 |
+
"jpeg",
|
165 |
+
"mpg",
|
166 |
+
"mpeg",
|
167 |
+
"msp",
|
168 |
+
"pcd",
|
169 |
+
"pxr",
|
170 |
+
"pbm",
|
171 |
+
"pgm",
|
172 |
+
"ppm",
|
173 |
+
"pnm",
|
174 |
+
"psd",
|
175 |
+
"bw",
|
176 |
+
"rgb",
|
177 |
+
"rgba",
|
178 |
+
"sgi",
|
179 |
+
"ras",
|
180 |
+
"tga",
|
181 |
+
"icb",
|
182 |
+
"vda",
|
183 |
+
"vst",
|
184 |
+
"webp",
|
185 |
+
"wmf",
|
186 |
+
"emf",
|
187 |
+
"xbm",
|
188 |
+
"xpm",
|
189 |
+
]
|
190 |
+
WebDataset.IMAGE_EXTENSIONS = IMAGE_EXTENSIONS
|
191 |
+
|
192 |
+
|
193 |
+
# Obtained with:
|
194 |
+
# ```
|
195 |
+
# import soundfile as sf
|
196 |
+
#
|
197 |
+
# AUDIO_EXTENSIONS = [f".{format.lower()}" for format in sf.available_formats().keys()]
|
198 |
+
#
|
199 |
+
# # .mp3 is currently decoded via `torchaudio`, .opus decoding is supported if version of `libsndfile` >= 1.0.30:
|
200 |
+
# AUDIO_EXTENSIONS.extend([".mp3", ".opus"])
|
201 |
+
# ```
|
202 |
+
# We intentionally do not run this code on launch because:
|
203 |
+
# (1) Soundfile is an optional dependency, so importing it in global namespace is not allowed
|
204 |
+
# (2) To ensure the list of supported extensions is deterministic
|
205 |
+
AUDIO_EXTENSIONS = [
|
206 |
+
"aiff",
|
207 |
+
"au",
|
208 |
+
"avr",
|
209 |
+
"caf",
|
210 |
+
"flac",
|
211 |
+
"htk",
|
212 |
+
"svx",
|
213 |
+
"mat4",
|
214 |
+
"mat5",
|
215 |
+
"mpc2k",
|
216 |
+
"ogg",
|
217 |
+
"paf",
|
218 |
+
"pvf",
|
219 |
+
"raw",
|
220 |
+
"rf64",
|
221 |
+
"sd2",
|
222 |
+
"sds",
|
223 |
+
"ircam",
|
224 |
+
"voc",
|
225 |
+
"w64",
|
226 |
+
"wav",
|
227 |
+
"nist",
|
228 |
+
"wavex",
|
229 |
+
"wve",
|
230 |
+
"xi",
|
231 |
+
"mp3",
|
232 |
+
"opus",
|
233 |
+
]
|
234 |
+
WebDataset.AUDIO_EXTENSIONS = AUDIO_EXTENSIONS
|
235 |
+
|
236 |
+
|
237 |
+
def text_loads(data: bytes):
|
238 |
+
return data.decode("utf-8")
|
239 |
+
|
240 |
+
|
241 |
+
def tenbin_loads(data: bytes):
|
242 |
+
from . import _tenbin
|
243 |
+
|
244 |
+
return _tenbin.decode_buffer(data)
|
245 |
+
|
246 |
+
|
247 |
+
def msgpack_loads(data: bytes):
|
248 |
+
import msgpack
|
249 |
+
|
250 |
+
return msgpack.unpackb(data)
|
251 |
+
|
252 |
+
|
253 |
+
def npy_loads(data: bytes):
|
254 |
+
import numpy.lib.format
|
255 |
+
|
256 |
+
stream = io.BytesIO(data)
|
257 |
+
return numpy.lib.format.read_array(stream, allow_pickle=False)
|
258 |
+
|
259 |
+
|
260 |
+
def npz_loads(data: bytes):
|
261 |
+
return np.load(io.BytesIO(data), allow_pickle=False)
|
262 |
+
|
263 |
+
|
264 |
+
def cbor_loads(data: bytes):
|
265 |
+
import cbor
|
266 |
+
|
267 |
+
return cbor.loads(data)
|
268 |
+
|
269 |
+
|
270 |
+
# Obtained by checking `decoders` in `webdataset.autodecode`
|
271 |
+
# and removing unsafe extension decoders.
|
272 |
+
# Removed Pickle decoders:
|
273 |
+
# - "pyd": lambda data: pickle.loads(data)
|
274 |
+
# - "pickle": lambda data: pickle.loads(data)
|
275 |
+
# Removed Torch decoders:
|
276 |
+
# - "pth": lambda data: torch_loads(data)
|
277 |
+
# Modified NumPy decoders to fix CVE-2019-6446 (add allow_pickle=False):
|
278 |
+
# - "npy": npy_loads,
|
279 |
+
# - "npz": lambda data: np.load(io.BytesIO(data)),
|
280 |
+
DECODERS = {
|
281 |
+
"txt": text_loads,
|
282 |
+
"text": text_loads,
|
283 |
+
"transcript": text_loads,
|
284 |
+
"cls": int,
|
285 |
+
"cls2": int,
|
286 |
+
"index": int,
|
287 |
+
"inx": int,
|
288 |
+
"id": int,
|
289 |
+
"json": json.loads,
|
290 |
+
"jsn": json.loads,
|
291 |
+
"ten": tenbin_loads,
|
292 |
+
"tb": tenbin_loads,
|
293 |
+
"mp": msgpack_loads,
|
294 |
+
"msg": msgpack_loads,
|
295 |
+
"npy": npy_loads,
|
296 |
+
"npz": npz_loads,
|
297 |
+
"cbor": cbor_loads,
|
298 |
+
}
|
299 |
+
WebDataset.DECODERS = DECODERS
|
venv/lib/python3.10/site-packages/datasets/parallel/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .parallel import parallel_backend, parallel_map, ParallelBackendConfig # noqa F401
|
venv/lib/python3.10/site-packages/datasets/parallel/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (289 Bytes). View file
|
|
venv/lib/python3.10/site-packages/datasets/parallel/__pycache__/parallel.cpython-310.pyc
ADDED
Binary file (4.56 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/parallel/parallel.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import contextlib
|
2 |
+
from multiprocessing import Pool, RLock
|
3 |
+
|
4 |
+
from tqdm.auto import tqdm
|
5 |
+
|
6 |
+
from ..utils import experimental, logging
|
7 |
+
|
8 |
+
|
9 |
+
logger = logging.get_logger(__name__)
|
10 |
+
|
11 |
+
|
12 |
+
class ParallelBackendConfig:
|
13 |
+
backend_name = None
|
14 |
+
|
15 |
+
|
16 |
+
@experimental
|
17 |
+
def parallel_map(function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, single_map_nested_func):
|
18 |
+
"""
|
19 |
+
**Experimental.** Apply a function to iterable elements in parallel, where the implementation uses either
|
20 |
+
multiprocessing.Pool or joblib for parallelization.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
function (`Callable[[Any], Any]`): Function to be applied to `iterable`.
|
24 |
+
iterable (`list`, `tuple` or `np.ndarray`): Iterable elements to apply function to.
|
25 |
+
num_proc (`int`): Number of processes (if no backend specified) or jobs (using joblib).
|
26 |
+
types (`tuple`): Additional types (besides `dict` values) to apply `function` recursively to their elements.
|
27 |
+
disable_tqdm (`bool`): Whether to disable the tqdm progressbar.
|
28 |
+
desc (`str`): Prefix for the tqdm progressbar.
|
29 |
+
single_map_nested_func (`Callable`): Map function that applies `function` to an element from `iterable`.
|
30 |
+
Takes a tuple of function, data_struct, types, rank, disable_tqdm, desc as input, where data_struct is an
|
31 |
+
element of `iterable`, and `rank` is used for progress bar.
|
32 |
+
"""
|
33 |
+
if ParallelBackendConfig.backend_name is None:
|
34 |
+
return _map_with_multiprocessing_pool(
|
35 |
+
function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, single_map_nested_func
|
36 |
+
)
|
37 |
+
|
38 |
+
return _map_with_joblib(
|
39 |
+
function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, single_map_nested_func
|
40 |
+
)
|
41 |
+
|
42 |
+
|
43 |
+
def _map_with_multiprocessing_pool(
|
44 |
+
function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, single_map_nested_func
|
45 |
+
):
|
46 |
+
num_proc = num_proc if num_proc <= len(iterable) else len(iterable)
|
47 |
+
split_kwds = [] # We organize the splits ourselve (contiguous splits)
|
48 |
+
for index in range(num_proc):
|
49 |
+
div = len(iterable) // num_proc
|
50 |
+
mod = len(iterable) % num_proc
|
51 |
+
start = div * index + min(index, mod)
|
52 |
+
end = start + div + (1 if index < mod else 0)
|
53 |
+
split_kwds.append((function, iterable[start:end], batched, batch_size, types, index, disable_tqdm, desc))
|
54 |
+
|
55 |
+
if len(iterable) != sum(len(i[1]) for i in split_kwds):
|
56 |
+
raise ValueError(
|
57 |
+
f"Error dividing inputs iterable among processes. "
|
58 |
+
f"Total number of objects {len(iterable)}, "
|
59 |
+
f"length: {sum(len(i[1]) for i in split_kwds)}"
|
60 |
+
)
|
61 |
+
|
62 |
+
logger.info(
|
63 |
+
f"Spawning {num_proc} processes for {len(iterable)} objects in slices of {[len(i[1]) for i in split_kwds]}"
|
64 |
+
)
|
65 |
+
initargs, initializer = None, None
|
66 |
+
if not disable_tqdm:
|
67 |
+
initargs, initializer = (RLock(),), tqdm.set_lock
|
68 |
+
with Pool(num_proc, initargs=initargs, initializer=initializer) as pool:
|
69 |
+
mapped = pool.map(single_map_nested_func, split_kwds)
|
70 |
+
logger.info(f"Finished {num_proc} processes")
|
71 |
+
mapped = [obj for proc_res in mapped for obj in proc_res]
|
72 |
+
logger.info(f"Unpacked {len(mapped)} objects")
|
73 |
+
|
74 |
+
return mapped
|
75 |
+
|
76 |
+
|
77 |
+
def _map_with_joblib(
|
78 |
+
function, iterable, num_proc, batched, batch_size, types, disable_tqdm, desc, single_map_nested_func
|
79 |
+
):
|
80 |
+
# progress bar is not yet supported for _map_with_joblib, because tqdm couldn't accurately be applied to joblib,
|
81 |
+
# and it requires monkey-patching joblib internal classes which is subject to change
|
82 |
+
import joblib
|
83 |
+
|
84 |
+
with joblib.parallel_backend(ParallelBackendConfig.backend_name, n_jobs=num_proc):
|
85 |
+
return joblib.Parallel()(
|
86 |
+
joblib.delayed(single_map_nested_func)((function, obj, batched, batch_size, types, None, True, None))
|
87 |
+
for obj in iterable
|
88 |
+
)
|
89 |
+
|
90 |
+
|
91 |
+
@experimental
|
92 |
+
@contextlib.contextmanager
|
93 |
+
def parallel_backend(backend_name: str):
|
94 |
+
"""
|
95 |
+
**Experimental.** Configures the parallel backend for parallelized dataset loading, which uses the parallelization
|
96 |
+
implemented by joblib.
|
97 |
+
|
98 |
+
Args:
|
99 |
+
backend_name (str): Name of backend for parallelization implementation, has to be supported by joblib.
|
100 |
+
|
101 |
+
Example usage:
|
102 |
+
```py
|
103 |
+
with parallel_backend('spark'):
|
104 |
+
dataset = load_dataset(..., num_proc=2)
|
105 |
+
```
|
106 |
+
"""
|
107 |
+
ParallelBackendConfig.backend_name = backend_name
|
108 |
+
|
109 |
+
if backend_name == "spark":
|
110 |
+
from joblibspark import register_spark
|
111 |
+
|
112 |
+
register_spark()
|
113 |
+
|
114 |
+
# TODO: call create_cache_and_write_probe if "download" in steps
|
115 |
+
# TODO: raise NotImplementedError when Dataset.map etc is called
|
116 |
+
|
117 |
+
try:
|
118 |
+
yield
|
119 |
+
finally:
|
120 |
+
ParallelBackendConfig.backend_name = None
|
venv/lib/python3.10/site-packages/datasets/tasks/__init__.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import Optional
|
2 |
+
|
3 |
+
from ..utils.logging import get_logger
|
4 |
+
from .audio_classification import AudioClassification
|
5 |
+
from .automatic_speech_recognition import AutomaticSpeechRecognition
|
6 |
+
from .base import TaskTemplate
|
7 |
+
from .image_classification import ImageClassification
|
8 |
+
from .language_modeling import LanguageModeling
|
9 |
+
from .question_answering import QuestionAnsweringExtractive
|
10 |
+
from .summarization import Summarization
|
11 |
+
from .text_classification import TextClassification
|
12 |
+
|
13 |
+
|
14 |
+
__all__ = [
|
15 |
+
"AutomaticSpeechRecognition",
|
16 |
+
"AudioClassification",
|
17 |
+
"ImageClassification",
|
18 |
+
"LanguageModeling",
|
19 |
+
"QuestionAnsweringExtractive",
|
20 |
+
"Summarization",
|
21 |
+
"TaskTemplate",
|
22 |
+
"TextClassification",
|
23 |
+
]
|
24 |
+
|
25 |
+
logger = get_logger(__name__)
|
26 |
+
|
27 |
+
|
28 |
+
NAME2TEMPLATE = {
|
29 |
+
AutomaticSpeechRecognition.task: AutomaticSpeechRecognition,
|
30 |
+
AudioClassification.task: AudioClassification,
|
31 |
+
ImageClassification.task: ImageClassification,
|
32 |
+
LanguageModeling.task: LanguageModeling,
|
33 |
+
QuestionAnsweringExtractive.task: QuestionAnsweringExtractive,
|
34 |
+
Summarization.task: Summarization,
|
35 |
+
TextClassification.task: TextClassification,
|
36 |
+
}
|
37 |
+
|
38 |
+
|
39 |
+
def task_template_from_dict(task_template_dict: dict) -> Optional[TaskTemplate]:
|
40 |
+
"""Create one of the supported task templates in :py:mod:`datasets.tasks` from a dictionary."""
|
41 |
+
task_name = task_template_dict.get("task")
|
42 |
+
if task_name is None:
|
43 |
+
logger.warning(f"Couldn't find template for task '{task_name}'. Available templates: {list(NAME2TEMPLATE)}")
|
44 |
+
return None
|
45 |
+
template = NAME2TEMPLATE.get(task_name)
|
46 |
+
return template.from_dict(task_template_dict)
|
venv/lib/python3.10/site-packages/datasets/tasks/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (1.4 kB). View file
|
|
venv/lib/python3.10/site-packages/datasets/tasks/__pycache__/audio_classification.cpython-310.pyc
ADDED
Binary file (1.64 kB). View file
|
|