Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- ckpts/universal/global_step80/zero/11.attention.dense.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/11.attention.dense.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/11.attention.dense.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/18.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/18.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/19.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/19.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/19.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/21.input_layernorm.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/21.input_layernorm.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/21.input_layernorm.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/24.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/24.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/exp_avg.pt +3 -0
- ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/exp_avg_sq.pt +3 -0
- ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/fp32.pt +3 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/__init__.py +0 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/__pycache__/__init__.cpython-310.pyc +0 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/__init__.py +0 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn.h +78 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer.h +658 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer_v8.h +658 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train_v8.h +540 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_backend_v8.h +608 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer_v8.h +571 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train.h +219 -0
- venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train_v8.h +219 -0
ckpts/universal/global_step80/zero/11.attention.dense.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f7566f5067671985df8a8f89fc86e21ce144b8a59ec6280b5955cdc1cfa7dae3
|
3 |
+
size 16778396
|
ckpts/universal/global_step80/zero/11.attention.dense.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7e2cb31b1f4b402a0b7bf7c63030e524b266ca6c696ca971dd6a891787358fa8
|
3 |
+
size 16778411
|
ckpts/universal/global_step80/zero/11.attention.dense.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d841023d1450bb37914cb6fdc7d34ee5fba56540bd3ade184d6cefe6d251a16c
|
3 |
+
size 16778317
|
ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:04d5791519a296e02eee73823911cad4e124c45a0c7da4484f7442e87b39148a
|
3 |
+
size 50332828
|
ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa082229d68e2ec0a28a69a6454c96fc9d5784a0f96f1e74874cb2bd184ba58d
|
3 |
+
size 50332843
|
ckpts/universal/global_step80/zero/11.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:01ab8af783b8f4496fe8652a24a0bef827f5fd6a2f61be1273bdc4805ac4d3af
|
3 |
+
size 50332749
|
ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fc6e2094fcf9fd99071afb7717f2acc99da081d042af5991d64a8042a9b739e
|
3 |
+
size 9372
|
ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:91e54f70d468106a676dc9a3f052474d563428b7e1145a40f574ec2635bf6721
|
3 |
+
size 9387
|
ckpts/universal/global_step80/zero/16.post_attention_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:49c8e9d8632e990bdada02d96a5424858168232341b6122bc293f2c933f22b43
|
3 |
+
size 9293
|
ckpts/universal/global_step80/zero/18.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4fd6ec827fa488b66cdb0c221c9e2194c2b0ec0c0338447de5cb1c186daa49ae
|
3 |
+
size 50332828
|
ckpts/universal/global_step80/zero/18.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d99aabe749cec8e83a29b029ad97c853a0a680f9cf21f387dad3ca8676075e19
|
3 |
+
size 50332749
|
ckpts/universal/global_step80/zero/19.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ac673dc7e7d42ba7800681db2625fccdb1b7b6ca5eb81587babd03b97fce1df9
|
3 |
+
size 9372
|
ckpts/universal/global_step80/zero/19.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7869e4da022cfdeb1a78b0874bbf23946254f82d066832fcf006194c7548fd90
|
3 |
+
size 9387
|
ckpts/universal/global_step80/zero/19.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8033eda55db1ed1eb79149d327d128dce325b5158559c0202c16a777cc6f83e
|
3 |
+
size 9293
|
ckpts/universal/global_step80/zero/21.input_layernorm.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5fcb6b4c4222284c5b874e660e42fee12e17ce5d0cdfdd02975e1fa7865c023b
|
3 |
+
size 9372
|
ckpts/universal/global_step80/zero/21.input_layernorm.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ced373d760f510fd4174ed177e6b3d60e1c36c50523e1e25d9378a503f775298
|
3 |
+
size 9387
|
ckpts/universal/global_step80/zero/21.input_layernorm.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc0e7f0670b869e13b1356d6529af2cf88388d054a6bace11eaaaad7e09362e3
|
3 |
+
size 9293
|
ckpts/universal/global_step80/zero/24.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3971bd282b74a9cd2063e8c82062d6fafc9525165270ea450d01951f6e65f925
|
3 |
+
size 50332828
|
ckpts/universal/global_step80/zero/24.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2c6760514aa6a1e3a222f3ff353f4b6834d6f35aa7320a97b7ae1bcb48efc0bc
|
3 |
+
size 50332749
|
ckpts/universal/global_step80/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e5bf8c2e23fcc1695e1e7e619a939d10f9e747ce051c7d225c747aee9065d130
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/24.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65d977508f49050388ea05befbfb7fadb8e618141efce263cb6a46369d1e2e32
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcb0d78d6f3b0379571087b6fe8b081a8417d7954d9889b373f468571f2d20d3
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d41ac49c0f9ed433c267bcb0f7dfe3b641182004b3b466d247dfa646d5a1098a
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/25.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:862d90cdaf7ca031497bedcb04e5bb612802b82cbc81a7503f5bf9ee2a179735
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d8c6d14a7789772c3a175f9cff703a4f51c05bb07d25cfcf1be1129623d2423c
|
3 |
+
size 50332828
|
ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9050dc6776552f44e30c741269f4b0ba9e09326cc1d74888dd344720d9640718
|
3 |
+
size 50332843
|
ckpts/universal/global_step80/zero/3.attention.query_key_value.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a0ed6a43dd1dbdad2ea51a94f4c50d9134623c8d41e3145c5bacdfce45d3cc99
|
3 |
+
size 50332749
|
ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2daa7985fa46801c82654522326a0ca3bf4604f26e016e616178088cecc3198a
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5f35635607ee177e3b28126afdcf911b3e4896cac26823735e6f46cfb423db88
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/3.mlp.dense_h_to_4h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a7685de9c7d9489d67f83245d617aa1bc6b5b3237b35e2ab27aa0739f1276bca
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8cc200f752e7d7855fdeba8e18ebf23e8872c3763cd3b08528dea7a26885ed8b
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea5f426dfb9791e4ee72b71f3aeab5e5926673653bad506726929793700a31a3
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/4.mlp.dense_h_to_4h_swiglu.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0e5723d9fd14f02a56e3fd1115a858336892eaeeb6a36deecb90933c04ba549f
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f23ba23eef6ffa2b32618d7e003fe80f54eda0df7f87a123471fc36d6006728c
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:33e92ca64faf505cc00a339ab37300dc1602363d932e64017bb584b6787999c6
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/7.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cfbb9d24a045a0cb8b63706902e6fcf07ec858525ff10cae692028d468fd5aa4
|
3 |
+
size 33555533
|
ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/exp_avg.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1c9a9fbcef7e549c7d8dc6866f6f0ffb386e486d712b17e1fb15905d6cd227d
|
3 |
+
size 33555612
|
ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/exp_avg_sq.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:68fe6468b9b326e6a7acaeb7c95b410875e2b7457609447f4966c2b5eace5b2f
|
3 |
+
size 33555627
|
ckpts/universal/global_step80/zero/9.mlp.dense_4h_to_h.weight/fp32.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:43beff4dabca9a09d685c7052422ab9bab2809e72bf57e63b60ce30108792261
|
3 |
+
size 33555533
|
venv/lib/python3.10/site-packages/nvidia/cudnn/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/nvidia/cudnn/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (180 Bytes). View file
|
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/__init__.py
ADDED
File without changes
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn.h
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn : Neural Networks Library
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_H_)
|
55 |
+
#define CUDNN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
#include "cudnn_adv_train.h"
|
65 |
+
#include "cudnn_cnn_infer.h"
|
66 |
+
#include "cudnn_cnn_train.h"
|
67 |
+
|
68 |
+
#include "cudnn_backend.h"
|
69 |
+
|
70 |
+
#if defined(__cplusplus)
|
71 |
+
extern "C" {
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
}
|
76 |
+
#endif
|
77 |
+
|
78 |
+
#endif /* CUDNN_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer.h
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_infer : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_INFER_H_)
|
55 |
+
#define CUDNN_ADV_INFER_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_ADV_INFER_MAJOR 8
|
65 |
+
#define CUDNN_ADV_INFER_MINOR 9
|
66 |
+
#define CUDNN_ADV_INFER_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_ADV_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_INFER_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_ADV_INFER_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN ADV INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* BASIC RNN API */
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_FWD_MODE_INFERENCE = 0,
|
81 |
+
CUDNN_FWD_MODE_TRAINING = 1,
|
82 |
+
} cudnnForwardMode_t;
|
83 |
+
|
84 |
+
typedef enum {
|
85 |
+
CUDNN_RNN_RELU = 0, /* basic RNN cell type with ReLu activation */
|
86 |
+
CUDNN_RNN_TANH = 1, /* basic RNN cell type with tanh activation */
|
87 |
+
CUDNN_LSTM = 2, /* LSTM with optional recurrent projection and clipping */
|
88 |
+
CUDNN_GRU = 3, /* Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1); */
|
89 |
+
} cudnnRNNMode_t;
|
90 |
+
|
91 |
+
typedef enum {
|
92 |
+
CUDNN_RNN_NO_BIAS = 0, /* rnn cell formulas do not use biases */
|
93 |
+
CUDNN_RNN_SINGLE_INP_BIAS = 1, /* rnn cell formulas use one input bias in input GEMM */
|
94 |
+
CUDNN_RNN_DOUBLE_BIAS = 2, /* default, rnn cell formulas use two bias vectors */
|
95 |
+
CUDNN_RNN_SINGLE_REC_BIAS = 3 /* rnn cell formulas use one recurrent bias in recurrent GEMM */
|
96 |
+
} cudnnRNNBiasMode_t;
|
97 |
+
|
98 |
+
typedef enum {
|
99 |
+
CUDNN_UNIDIRECTIONAL = 0, /* single direction network */
|
100 |
+
CUDNN_BIDIRECTIONAL = 1, /* output concatination at each layer */
|
101 |
+
} cudnnDirectionMode_t;
|
102 |
+
|
103 |
+
typedef enum {
|
104 |
+
CUDNN_LINEAR_INPUT = 0, /* adjustable weight matrix in first layer input GEMM */
|
105 |
+
CUDNN_SKIP_INPUT = 1, /* fixed identity matrix in the first layer input GEMM */
|
106 |
+
} cudnnRNNInputMode_t;
|
107 |
+
|
108 |
+
typedef enum {
|
109 |
+
CUDNN_RNN_CLIP_NONE = 0, /* disables LSTM cell clipping */
|
110 |
+
CUDNN_RNN_CLIP_MINMAX = 1, /* enables LSTM cell clipping */
|
111 |
+
} cudnnRNNClipMode_t;
|
112 |
+
|
113 |
+
typedef enum {
|
114 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED = 0, /* padded, outer stride from one time-step to the next */
|
115 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED = 1, /* sequence length sorted and packed as in basic RNN api */
|
116 |
+
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED = 2, /* padded, outer stride from one batch to the next */
|
117 |
+
} cudnnRNNDataLayout_t;
|
118 |
+
|
119 |
+
/* Legacy type for backward compatibility */
|
120 |
+
typedef unsigned cudnnRNNPaddingMode_t;
|
121 |
+
|
122 |
+
/* For auxFlags in cudnnSetRNNDescriptor_v8() and cudnnSetRNNPaddingMode() */
|
123 |
+
#define CUDNN_RNN_PADDED_IO_DISABLED 0
|
124 |
+
#define CUDNN_RNN_PADDED_IO_ENABLED (1U << 0)
|
125 |
+
|
126 |
+
struct cudnnRNNStruct;
|
127 |
+
typedef struct cudnnRNNStruct *cudnnRNNDescriptor_t;
|
128 |
+
|
129 |
+
struct cudnnPersistentRNNPlan;
|
130 |
+
typedef struct cudnnPersistentRNNPlan *cudnnPersistentRNNPlan_t;
|
131 |
+
|
132 |
+
struct cudnnRNNDataStruct;
|
133 |
+
typedef struct cudnnRNNDataStruct *cudnnRNNDataDescriptor_t;
|
134 |
+
|
135 |
+
cudnnStatus_t CUDNNWINAPI
|
136 |
+
cudnnCreateRNNDescriptor(cudnnRNNDescriptor_t *rnnDesc);
|
137 |
+
|
138 |
+
cudnnStatus_t CUDNNWINAPI
|
139 |
+
cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnSetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
143 |
+
cudnnRNNAlgo_t algo,
|
144 |
+
cudnnRNNMode_t cellMode,
|
145 |
+
cudnnRNNBiasMode_t biasMode,
|
146 |
+
cudnnDirectionMode_t dirMode,
|
147 |
+
cudnnRNNInputMode_t inputMode,
|
148 |
+
cudnnDataType_t dataType,
|
149 |
+
cudnnDataType_t mathPrec,
|
150 |
+
cudnnMathType_t mathType,
|
151 |
+
int32_t inputSize,
|
152 |
+
int32_t hiddenSize,
|
153 |
+
int32_t projSize,
|
154 |
+
int32_t numLayers,
|
155 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
156 |
+
uint32_t auxFlags);
|
157 |
+
|
158 |
+
cudnnStatus_t CUDNNWINAPI
|
159 |
+
cudnnGetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
160 |
+
cudnnRNNAlgo_t *algo,
|
161 |
+
cudnnRNNMode_t *cellMode,
|
162 |
+
cudnnRNNBiasMode_t *biasMode,
|
163 |
+
cudnnDirectionMode_t *dirMode,
|
164 |
+
cudnnRNNInputMode_t *inputMode,
|
165 |
+
cudnnDataType_t *dataType,
|
166 |
+
cudnnDataType_t *mathPrec,
|
167 |
+
cudnnMathType_t *mathType,
|
168 |
+
int32_t *inputSize,
|
169 |
+
int32_t *hiddenSize,
|
170 |
+
int32_t *projSize,
|
171 |
+
int32_t *numLayers,
|
172 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
173 |
+
uint32_t *auxFlags);
|
174 |
+
|
175 |
+
/*
|
176 |
+
* mathPrec in cudnnSetRNNDescriptor_v6() specifies compute precision
|
177 |
+
* compute precision is further modified by cudnnSetRNNMatrixMathType()
|
178 |
+
* dataType in cudnnGetRNNParamsSize() and wDesc specify weight storage
|
179 |
+
* dropout is between RNN layers, not between recurrent steps
|
180 |
+
*/
|
181 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnSetRNNDescriptor_v6(cudnnHandle_t handle,
|
183 |
+
cudnnRNNDescriptor_t rnnDesc,
|
184 |
+
const int hiddenSize,
|
185 |
+
const int numLayers,
|
186 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
187 |
+
cudnnRNNInputMode_t inputMode,
|
188 |
+
cudnnDirectionMode_t direction,
|
189 |
+
cudnnRNNMode_t cellMode,
|
190 |
+
cudnnRNNAlgo_t algo,
|
191 |
+
cudnnDataType_t mathPrec);
|
192 |
+
|
193 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
194 |
+
cudnnGetRNNDescriptor_v6(cudnnHandle_t handle,
|
195 |
+
cudnnRNNDescriptor_t rnnDesc,
|
196 |
+
int *hiddenSize,
|
197 |
+
int *numLayers,
|
198 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
199 |
+
cudnnRNNInputMode_t *inputMode,
|
200 |
+
cudnnDirectionMode_t *direction,
|
201 |
+
cudnnRNNMode_t *cellMode,
|
202 |
+
cudnnRNNAlgo_t *algo,
|
203 |
+
cudnnDataType_t *mathPrec);
|
204 |
+
|
205 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t mType);
|
207 |
+
|
208 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
209 |
+
cudnnGetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t *mType);
|
210 |
+
|
211 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnSetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t biasMode);
|
213 |
+
|
214 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnGetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t *biasMode);
|
216 |
+
|
217 |
+
cudnnStatus_t CUDNNWINAPI
|
218 |
+
cudnnRNNSetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
219 |
+
cudnnRNNClipMode_t clipMode,
|
220 |
+
cudnnNanPropagation_t clipNanOpt,
|
221 |
+
double lclip,
|
222 |
+
double rclip);
|
223 |
+
|
224 |
+
cudnnStatus_t CUDNNWINAPI
|
225 |
+
cudnnRNNGetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
226 |
+
cudnnRNNClipMode_t *clipMode,
|
227 |
+
cudnnNanPropagation_t *clipNanOpt,
|
228 |
+
double *lclip,
|
229 |
+
double *rclip);
|
230 |
+
|
231 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
232 |
+
cudnnRNNSetClip(cudnnHandle_t handle,
|
233 |
+
cudnnRNNDescriptor_t rnnDesc,
|
234 |
+
cudnnRNNClipMode_t clipMode,
|
235 |
+
cudnnNanPropagation_t clipNanOpt,
|
236 |
+
double lclip,
|
237 |
+
double rclip);
|
238 |
+
|
239 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
240 |
+
cudnnRNNGetClip(cudnnHandle_t handle,
|
241 |
+
cudnnRNNDescriptor_t rnnDesc,
|
242 |
+
cudnnRNNClipMode_t *clipMode,
|
243 |
+
cudnnNanPropagation_t *clipNanOpt,
|
244 |
+
double *lclip,
|
245 |
+
double *rclip);
|
246 |
+
|
247 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
248 |
+
cudnnSetRNNProjectionLayers(cudnnHandle_t handle,
|
249 |
+
cudnnRNNDescriptor_t rnnDesc,
|
250 |
+
const int recProjSize,
|
251 |
+
const int outProjSize);
|
252 |
+
|
253 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
254 |
+
cudnnGetRNNProjectionLayers(cudnnHandle_t handle,
|
255 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
256 |
+
int *recProjSize,
|
257 |
+
int *outProjSize);
|
258 |
+
|
259 |
+
/* Expensive. Creates the plan for the specific settings. */
|
260 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
261 |
+
cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const int minibatch,
|
263 |
+
const cudnnDataType_t dataType,
|
264 |
+
cudnnPersistentRNNPlan_t *plan);
|
265 |
+
|
266 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
267 |
+
cudnnDestroyPersistentRNNPlan(cudnnPersistentRNNPlan_t plan);
|
268 |
+
|
269 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
270 |
+
cudnnSetPersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc, cudnnPersistentRNNPlan_t plan);
|
271 |
+
|
272 |
+
cudnnStatus_t CUDNNWINAPI
|
273 |
+
cudnnBuildRNNDynamic(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, int miniBatch);
|
274 |
+
|
275 |
+
/* dataType in weight descriptors and input descriptors is used to describe storage */
|
276 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
277 |
+
cudnnGetRNNWorkspaceSize(cudnnHandle_t handle,
|
278 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
279 |
+
const int seqLength,
|
280 |
+
const cudnnTensorDescriptor_t *xDesc,
|
281 |
+
size_t *sizeInBytes);
|
282 |
+
|
283 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
284 |
+
cudnnGetRNNTrainingReserveSize(cudnnHandle_t handle,
|
285 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
286 |
+
const int seqLength,
|
287 |
+
const cudnnTensorDescriptor_t *xDesc,
|
288 |
+
size_t *sizeInBytes);
|
289 |
+
|
290 |
+
cudnnStatus_t CUDNNWINAPI
|
291 |
+
cudnnGetRNNTempSpaceSizes(cudnnHandle_t handle,
|
292 |
+
cudnnRNNDescriptor_t rnnDesc,
|
293 |
+
cudnnForwardMode_t fwdMode,
|
294 |
+
cudnnRNNDataDescriptor_t xDesc,
|
295 |
+
size_t *workSpaceSize,
|
296 |
+
size_t *reserveSpaceSize);
|
297 |
+
|
298 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
299 |
+
cudnnGetRNNParamsSize(cudnnHandle_t handle,
|
300 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
301 |
+
const cudnnTensorDescriptor_t xDesc,
|
302 |
+
size_t *sizeInBytes,
|
303 |
+
cudnnDataType_t dataType);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnGetRNNWeightSpaceSize(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, size_t *weightSpaceSize);
|
307 |
+
|
308 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
309 |
+
cudnnGetRNNLinLayerMatrixParams(cudnnHandle_t handle,
|
310 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
311 |
+
const int pseudoLayer,
|
312 |
+
const cudnnTensorDescriptor_t xDesc,
|
313 |
+
const cudnnFilterDescriptor_t wDesc,
|
314 |
+
const void *w,
|
315 |
+
const int linLayerID,
|
316 |
+
cudnnFilterDescriptor_t linLayerMatDesc,
|
317 |
+
void **linLayerMat);
|
318 |
+
|
319 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnGetRNNLinLayerBiasParams(cudnnHandle_t handle,
|
321 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
322 |
+
const int pseudoLayer,
|
323 |
+
const cudnnTensorDescriptor_t xDesc,
|
324 |
+
const cudnnFilterDescriptor_t wDesc,
|
325 |
+
const void *w,
|
326 |
+
const int linLayerID,
|
327 |
+
cudnnFilterDescriptor_t linLayerBiasDesc,
|
328 |
+
void **linLayerBias);
|
329 |
+
|
330 |
+
cudnnStatus_t CUDNNWINAPI
|
331 |
+
cudnnGetRNNWeightParams(cudnnHandle_t handle,
|
332 |
+
cudnnRNNDescriptor_t rnnDesc,
|
333 |
+
int32_t pseudoLayer,
|
334 |
+
size_t weightSpaceSize,
|
335 |
+
const void *weightSpace,
|
336 |
+
int32_t linLayerID,
|
337 |
+
cudnnTensorDescriptor_t mDesc,
|
338 |
+
void **mAddr,
|
339 |
+
cudnnTensorDescriptor_t bDesc,
|
340 |
+
void **bAddr);
|
341 |
+
|
342 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
343 |
+
cudnnRNNForwardInference(cudnnHandle_t handle,
|
344 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
345 |
+
const int seqLength,
|
346 |
+
const cudnnTensorDescriptor_t *xDesc,
|
347 |
+
const void *x,
|
348 |
+
const cudnnTensorDescriptor_t hxDesc,
|
349 |
+
const void *hx,
|
350 |
+
const cudnnTensorDescriptor_t cxDesc,
|
351 |
+
const void *cx,
|
352 |
+
const cudnnFilterDescriptor_t wDesc,
|
353 |
+
const void *w,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
void *y,
|
356 |
+
const cudnnTensorDescriptor_t hyDesc,
|
357 |
+
void *hy,
|
358 |
+
const cudnnTensorDescriptor_t cyDesc,
|
359 |
+
void *cy,
|
360 |
+
void *workSpace,
|
361 |
+
size_t workSpaceSizeInBytes);
|
362 |
+
|
363 |
+
/* RNN EX API */
|
364 |
+
|
365 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
366 |
+
cudnnSetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned paddingMode);
|
367 |
+
|
368 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
369 |
+
cudnnGetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned *paddingMode);
|
370 |
+
|
371 |
+
cudnnStatus_t CUDNNWINAPI
|
372 |
+
cudnnCreateRNNDataDescriptor(cudnnRNNDataDescriptor_t *rnnDataDesc);
|
373 |
+
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnDestroyRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc);
|
376 |
+
|
377 |
+
cudnnStatus_t CUDNNWINAPI
|
378 |
+
cudnnSetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
379 |
+
cudnnDataType_t dataType,
|
380 |
+
cudnnRNNDataLayout_t layout,
|
381 |
+
int maxSeqLength,
|
382 |
+
int batchSize,
|
383 |
+
int vectorSize,
|
384 |
+
const int seqLengthArray[], /* length of each sequence in the batch */
|
385 |
+
void *paddingFill); /* symbol for filling padding position in output */
|
386 |
+
|
387 |
+
cudnnStatus_t CUDNNWINAPI
|
388 |
+
cudnnGetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
389 |
+
cudnnDataType_t *dataType,
|
390 |
+
cudnnRNNDataLayout_t *layout,
|
391 |
+
int *maxSeqLength,
|
392 |
+
int *batchSize,
|
393 |
+
int *vectorSize,
|
394 |
+
int arrayLengthRequested,
|
395 |
+
int seqLengthArray[],
|
396 |
+
void *paddingFill);
|
397 |
+
|
398 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
399 |
+
cudnnRNNForwardInferenceEx(cudnnHandle_t handle,
|
400 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
401 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
402 |
+
const void *x,
|
403 |
+
const cudnnTensorDescriptor_t hxDesc,
|
404 |
+
const void *hx,
|
405 |
+
const cudnnTensorDescriptor_t cxDesc,
|
406 |
+
const void *cx,
|
407 |
+
const cudnnFilterDescriptor_t wDesc,
|
408 |
+
const void *w,
|
409 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
410 |
+
void *y,
|
411 |
+
const cudnnTensorDescriptor_t hyDesc,
|
412 |
+
void *hy,
|
413 |
+
const cudnnTensorDescriptor_t cyDesc,
|
414 |
+
void *cy,
|
415 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
416 |
+
const void *keys, /* reserved, should pass NULL */
|
417 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
418 |
+
void *cAttn, /* reserved, should pass NULL */
|
419 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
420 |
+
void *iAttn, /* reserved, should pass NULL */
|
421 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
422 |
+
void *queries, /* reserved, should pass NULL */
|
423 |
+
void *workSpace,
|
424 |
+
size_t workSpaceSizeInBytes);
|
425 |
+
|
426 |
+
cudnnStatus_t CUDNNWINAPI
|
427 |
+
cudnnRNNForward(cudnnHandle_t handle,
|
428 |
+
cudnnRNNDescriptor_t rnnDesc,
|
429 |
+
cudnnForwardMode_t fwdMode,
|
430 |
+
const int32_t devSeqLengths[],
|
431 |
+
cudnnRNNDataDescriptor_t xDesc,
|
432 |
+
const void *x,
|
433 |
+
cudnnRNNDataDescriptor_t yDesc,
|
434 |
+
void *y,
|
435 |
+
cudnnTensorDescriptor_t hDesc,
|
436 |
+
const void *hx,
|
437 |
+
void *hy,
|
438 |
+
cudnnTensorDescriptor_t cDesc,
|
439 |
+
const void *cx,
|
440 |
+
void *cy,
|
441 |
+
size_t weightSpaceSize,
|
442 |
+
const void *weightSpace,
|
443 |
+
size_t workSpaceSize,
|
444 |
+
void *workSpace,
|
445 |
+
size_t reserveSpaceSize,
|
446 |
+
void *reserveSpace);
|
447 |
+
|
448 |
+
/* RNN FIND API */
|
449 |
+
|
450 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
451 |
+
cudnnSetRNNAlgorithmDescriptor(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, cudnnAlgorithmDescriptor_t algoDesc);
|
452 |
+
|
453 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
454 |
+
cudnnGetRNNForwardInferenceAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
455 |
+
|
456 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnFindRNNForwardInferenceAlgorithmEx(cudnnHandle_t handle,
|
458 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
459 |
+
const int seqLength,
|
460 |
+
const cudnnTensorDescriptor_t *xDesc,
|
461 |
+
const void *x,
|
462 |
+
const cudnnTensorDescriptor_t hxDesc,
|
463 |
+
const void *hx,
|
464 |
+
const cudnnTensorDescriptor_t cxDesc,
|
465 |
+
const void *cx,
|
466 |
+
const cudnnFilterDescriptor_t wDesc,
|
467 |
+
const void *w,
|
468 |
+
const cudnnTensorDescriptor_t *yDesc,
|
469 |
+
void *y,
|
470 |
+
const cudnnTensorDescriptor_t hyDesc,
|
471 |
+
void *hy,
|
472 |
+
const cudnnTensorDescriptor_t cyDesc,
|
473 |
+
void *cy,
|
474 |
+
const float findIntensity,
|
475 |
+
const int requestedAlgoCount,
|
476 |
+
int *returnedAlgoCount,
|
477 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
478 |
+
void *workspace,
|
479 |
+
size_t workSpaceSizeInBytes);
|
480 |
+
|
481 |
+
/* Sequence data descriptor */
|
482 |
+
|
483 |
+
typedef enum {
|
484 |
+
CUDNN_SEQDATA_TIME_DIM = 0, /* index in time */
|
485 |
+
CUDNN_SEQDATA_BATCH_DIM = 1, /* index in batch */
|
486 |
+
CUDNN_SEQDATA_BEAM_DIM = 2, /* index in beam */
|
487 |
+
CUDNN_SEQDATA_VECT_DIM = 3 /* index in vector */
|
488 |
+
} cudnnSeqDataAxis_t;
|
489 |
+
|
490 |
+
struct cudnnSeqDataStruct;
|
491 |
+
typedef struct cudnnSeqDataStruct *cudnnSeqDataDescriptor_t;
|
492 |
+
|
493 |
+
#define CUDNN_SEQDATA_DIM_COUNT 4 /* dimension count */
|
494 |
+
|
495 |
+
cudnnStatus_t CUDNNWINAPI
|
496 |
+
cudnnCreateSeqDataDescriptor(cudnnSeqDataDescriptor_t *seqDataDesc);
|
497 |
+
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnDestroySeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc);
|
500 |
+
|
501 |
+
cudnnStatus_t CUDNNWINAPI
|
502 |
+
cudnnSetSeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc,
|
503 |
+
cudnnDataType_t dataType,
|
504 |
+
int nbDims,
|
505 |
+
const int dimA[],
|
506 |
+
const cudnnSeqDataAxis_t axes[],
|
507 |
+
size_t seqLengthArraySize,
|
508 |
+
const int seqLengthArray[],
|
509 |
+
void *paddingFill);
|
510 |
+
|
511 |
+
cudnnStatus_t CUDNNWINAPI
|
512 |
+
cudnnGetSeqDataDescriptor(const cudnnSeqDataDescriptor_t seqDataDesc,
|
513 |
+
cudnnDataType_t *dataType,
|
514 |
+
int *nbDims,
|
515 |
+
int nbDimsRequested,
|
516 |
+
int dimA[],
|
517 |
+
cudnnSeqDataAxis_t axes[],
|
518 |
+
size_t *seqLengthArraySize,
|
519 |
+
size_t seqLengthSizeRequested,
|
520 |
+
int seqLengthArray[],
|
521 |
+
void *paddingFill);
|
522 |
+
|
523 |
+
/* Multihead Attention */
|
524 |
+
|
525 |
+
/* Legacy type for backward compatibility */
|
526 |
+
typedef unsigned cudnnAttnQueryMap_t;
|
527 |
+
|
528 |
+
/*
|
529 |
+
* Multi-head attention options passed via 'attnMode' in cudnnSetAttnDescriptor().
|
530 |
+
* Use the bitwise OR operator to combine several settings listed below. Additional
|
531 |
+
* minor options can be added here w/o changing or introducing new API functions.
|
532 |
+
*/
|
533 |
+
#define CUDNN_ATTN_QUERYMAP_ALL_TO_ONE 0 /* multiple Q-s map to a single (K,V) set when beam size > 1 */
|
534 |
+
#define CUDNN_ATTN_QUERYMAP_ONE_TO_ONE (1U << 0) /* multiple Q-s map to multiple (K,V) sets when beam size > 1 */
|
535 |
+
#define CUDNN_ATTN_DISABLE_PROJ_BIASES 0 /* no biases in attention input and output projections */
|
536 |
+
#define CUDNN_ATTN_ENABLE_PROJ_BIASES (1U << 1) /* use biases in attention input and output projections */
|
537 |
+
|
538 |
+
struct cudnnAttnStruct;
|
539 |
+
typedef struct cudnnAttnStruct *cudnnAttnDescriptor_t;
|
540 |
+
|
541 |
+
cudnnStatus_t CUDNNWINAPI
|
542 |
+
cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc);
|
543 |
+
|
544 |
+
cudnnStatus_t CUDNNWINAPI
|
545 |
+
cudnnDestroyAttnDescriptor(cudnnAttnDescriptor_t attnDesc);
|
546 |
+
|
547 |
+
cudnnStatus_t CUDNNWINAPI
|
548 |
+
cudnnSetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
549 |
+
unsigned attnMode,
|
550 |
+
int nHeads,
|
551 |
+
double smScaler,
|
552 |
+
cudnnDataType_t dataType,
|
553 |
+
cudnnDataType_t computePrec,
|
554 |
+
cudnnMathType_t mathType,
|
555 |
+
cudnnDropoutDescriptor_t attnDropoutDesc,
|
556 |
+
cudnnDropoutDescriptor_t postDropoutDesc,
|
557 |
+
int qSize,
|
558 |
+
int kSize,
|
559 |
+
int vSize,
|
560 |
+
int qProjSize,
|
561 |
+
int kProjSize,
|
562 |
+
int vProjSize,
|
563 |
+
int oProjSize,
|
564 |
+
int qoMaxSeqLength,
|
565 |
+
int kvMaxSeqLength,
|
566 |
+
int maxBatchSize,
|
567 |
+
int maxBeamSize);
|
568 |
+
|
569 |
+
cudnnStatus_t CUDNNWINAPI
|
570 |
+
cudnnGetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
571 |
+
unsigned *attnMode,
|
572 |
+
int *nHeads,
|
573 |
+
double *smScaler,
|
574 |
+
cudnnDataType_t *dataType,
|
575 |
+
cudnnDataType_t *computePrec,
|
576 |
+
cudnnMathType_t *mathType,
|
577 |
+
cudnnDropoutDescriptor_t *attnDropoutDesc,
|
578 |
+
cudnnDropoutDescriptor_t *postDropoutDesc,
|
579 |
+
int *qSize,
|
580 |
+
int *kSize,
|
581 |
+
int *vSize,
|
582 |
+
int *qProjSize,
|
583 |
+
int *kProjSize,
|
584 |
+
int *vProjSize,
|
585 |
+
int *oProjSize,
|
586 |
+
int *qoMaxSeqLength,
|
587 |
+
int *kvMaxSeqLength,
|
588 |
+
int *maxBatchSize,
|
589 |
+
int *maxBeamSize);
|
590 |
+
|
591 |
+
cudnnStatus_t CUDNNWINAPI
|
592 |
+
cudnnGetMultiHeadAttnBuffers(cudnnHandle_t handle,
|
593 |
+
const cudnnAttnDescriptor_t attnDesc,
|
594 |
+
size_t *weightSizeInBytes,
|
595 |
+
size_t *workSpaceSizeInBytes,
|
596 |
+
size_t *reserveSpaceSizeInBytes);
|
597 |
+
|
598 |
+
typedef enum {
|
599 |
+
CUDNN_MH_ATTN_Q_WEIGHTS = 0, /* input projection weights for 'queries' */
|
600 |
+
CUDNN_MH_ATTN_K_WEIGHTS = 1, /* input projection weights for 'keys' */
|
601 |
+
CUDNN_MH_ATTN_V_WEIGHTS = 2, /* input projection weights for 'values' */
|
602 |
+
CUDNN_MH_ATTN_O_WEIGHTS = 3, /* output projection weights */
|
603 |
+
CUDNN_MH_ATTN_Q_BIASES = 4, /* input projection bias tensor for 'queries' */
|
604 |
+
CUDNN_MH_ATTN_K_BIASES = 5, /* input projection bias for 'keys' */
|
605 |
+
CUDNN_MH_ATTN_V_BIASES = 6, /* input projection bias for 'values' */
|
606 |
+
CUDNN_MH_ATTN_O_BIASES = 7, /* output projection biases */
|
607 |
+
} cudnnMultiHeadAttnWeightKind_t;
|
608 |
+
|
609 |
+
#define CUDNN_ATTN_WKIND_COUNT 8 /* Number of attention weight/bias tensors */
|
610 |
+
|
611 |
+
cudnnStatus_t CUDNNWINAPI
|
612 |
+
cudnnGetMultiHeadAttnWeights(cudnnHandle_t handle,
|
613 |
+
const cudnnAttnDescriptor_t attnDesc,
|
614 |
+
cudnnMultiHeadAttnWeightKind_t wKind,
|
615 |
+
size_t weightSizeInBytes,
|
616 |
+
const void *weights,
|
617 |
+
cudnnTensorDescriptor_t wDesc,
|
618 |
+
void **wAddr);
|
619 |
+
|
620 |
+
cudnnStatus_t CUDNNWINAPI
|
621 |
+
cudnnMultiHeadAttnForward(cudnnHandle_t handle,
|
622 |
+
const cudnnAttnDescriptor_t attnDesc,
|
623 |
+
int currIdx,
|
624 |
+
const int loWinIdx[],
|
625 |
+
const int hiWinIdx[],
|
626 |
+
const int devSeqLengthsQO[],
|
627 |
+
const int devSeqLengthsKV[],
|
628 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
629 |
+
const void *queries,
|
630 |
+
const void *residuals,
|
631 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
632 |
+
const void *keys,
|
633 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
634 |
+
const void *values,
|
635 |
+
const cudnnSeqDataDescriptor_t oDesc,
|
636 |
+
void *out,
|
637 |
+
size_t weightSizeInBytes,
|
638 |
+
const void *weights,
|
639 |
+
size_t workSpaceSizeInBytes,
|
640 |
+
void *workSpace,
|
641 |
+
size_t reserveSpaceSizeInBytes,
|
642 |
+
void *reserveSpace);
|
643 |
+
|
644 |
+
/*
|
645 |
+
* \brief Cross-library version checker.
|
646 |
+
* This function is implemented differently in each sub-library. Each sublib
|
647 |
+
* checks whether its own version matches that of its dependencies.
|
648 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
649 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
650 |
+
*/
|
651 |
+
cudnnStatus_t CUDNNWINAPI
|
652 |
+
cudnnAdvInferVersionCheck(void);
|
653 |
+
|
654 |
+
#if defined(__cplusplus)
|
655 |
+
}
|
656 |
+
#endif
|
657 |
+
|
658 |
+
#endif /* CUDNN_ADV_INFER_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_infer_v8.h
ADDED
@@ -0,0 +1,658 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_infer : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_INFER_H_)
|
55 |
+
#define CUDNN_ADV_INFER_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_ADV_INFER_MAJOR 8
|
65 |
+
#define CUDNN_ADV_INFER_MINOR 9
|
66 |
+
#define CUDNN_ADV_INFER_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_ADV_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_INFER_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_ADV_INFER_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN ADV INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* BASIC RNN API */
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_FWD_MODE_INFERENCE = 0,
|
81 |
+
CUDNN_FWD_MODE_TRAINING = 1,
|
82 |
+
} cudnnForwardMode_t;
|
83 |
+
|
84 |
+
typedef enum {
|
85 |
+
CUDNN_RNN_RELU = 0, /* basic RNN cell type with ReLu activation */
|
86 |
+
CUDNN_RNN_TANH = 1, /* basic RNN cell type with tanh activation */
|
87 |
+
CUDNN_LSTM = 2, /* LSTM with optional recurrent projection and clipping */
|
88 |
+
CUDNN_GRU = 3, /* Using h' = tanh(r * Uh(t-1) + Wx) and h = (1 - z) * h' + z * h(t-1); */
|
89 |
+
} cudnnRNNMode_t;
|
90 |
+
|
91 |
+
typedef enum {
|
92 |
+
CUDNN_RNN_NO_BIAS = 0, /* rnn cell formulas do not use biases */
|
93 |
+
CUDNN_RNN_SINGLE_INP_BIAS = 1, /* rnn cell formulas use one input bias in input GEMM */
|
94 |
+
CUDNN_RNN_DOUBLE_BIAS = 2, /* default, rnn cell formulas use two bias vectors */
|
95 |
+
CUDNN_RNN_SINGLE_REC_BIAS = 3 /* rnn cell formulas use one recurrent bias in recurrent GEMM */
|
96 |
+
} cudnnRNNBiasMode_t;
|
97 |
+
|
98 |
+
typedef enum {
|
99 |
+
CUDNN_UNIDIRECTIONAL = 0, /* single direction network */
|
100 |
+
CUDNN_BIDIRECTIONAL = 1, /* output concatination at each layer */
|
101 |
+
} cudnnDirectionMode_t;
|
102 |
+
|
103 |
+
typedef enum {
|
104 |
+
CUDNN_LINEAR_INPUT = 0, /* adjustable weight matrix in first layer input GEMM */
|
105 |
+
CUDNN_SKIP_INPUT = 1, /* fixed identity matrix in the first layer input GEMM */
|
106 |
+
} cudnnRNNInputMode_t;
|
107 |
+
|
108 |
+
typedef enum {
|
109 |
+
CUDNN_RNN_CLIP_NONE = 0, /* disables LSTM cell clipping */
|
110 |
+
CUDNN_RNN_CLIP_MINMAX = 1, /* enables LSTM cell clipping */
|
111 |
+
} cudnnRNNClipMode_t;
|
112 |
+
|
113 |
+
typedef enum {
|
114 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_UNPACKED = 0, /* padded, outer stride from one time-step to the next */
|
115 |
+
CUDNN_RNN_DATA_LAYOUT_SEQ_MAJOR_PACKED = 1, /* sequence length sorted and packed as in basic RNN api */
|
116 |
+
CUDNN_RNN_DATA_LAYOUT_BATCH_MAJOR_UNPACKED = 2, /* padded, outer stride from one batch to the next */
|
117 |
+
} cudnnRNNDataLayout_t;
|
118 |
+
|
119 |
+
/* Legacy type for backward compatibility */
|
120 |
+
typedef unsigned cudnnRNNPaddingMode_t;
|
121 |
+
|
122 |
+
/* For auxFlags in cudnnSetRNNDescriptor_v8() and cudnnSetRNNPaddingMode() */
|
123 |
+
#define CUDNN_RNN_PADDED_IO_DISABLED 0
|
124 |
+
#define CUDNN_RNN_PADDED_IO_ENABLED (1U << 0)
|
125 |
+
|
126 |
+
struct cudnnRNNStruct;
|
127 |
+
typedef struct cudnnRNNStruct *cudnnRNNDescriptor_t;
|
128 |
+
|
129 |
+
struct cudnnPersistentRNNPlan;
|
130 |
+
typedef struct cudnnPersistentRNNPlan *cudnnPersistentRNNPlan_t;
|
131 |
+
|
132 |
+
struct cudnnRNNDataStruct;
|
133 |
+
typedef struct cudnnRNNDataStruct *cudnnRNNDataDescriptor_t;
|
134 |
+
|
135 |
+
cudnnStatus_t CUDNNWINAPI
|
136 |
+
cudnnCreateRNNDescriptor(cudnnRNNDescriptor_t *rnnDesc);
|
137 |
+
|
138 |
+
cudnnStatus_t CUDNNWINAPI
|
139 |
+
cudnnDestroyRNNDescriptor(cudnnRNNDescriptor_t rnnDesc);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnSetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
143 |
+
cudnnRNNAlgo_t algo,
|
144 |
+
cudnnRNNMode_t cellMode,
|
145 |
+
cudnnRNNBiasMode_t biasMode,
|
146 |
+
cudnnDirectionMode_t dirMode,
|
147 |
+
cudnnRNNInputMode_t inputMode,
|
148 |
+
cudnnDataType_t dataType,
|
149 |
+
cudnnDataType_t mathPrec,
|
150 |
+
cudnnMathType_t mathType,
|
151 |
+
int32_t inputSize,
|
152 |
+
int32_t hiddenSize,
|
153 |
+
int32_t projSize,
|
154 |
+
int32_t numLayers,
|
155 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
156 |
+
uint32_t auxFlags);
|
157 |
+
|
158 |
+
cudnnStatus_t CUDNNWINAPI
|
159 |
+
cudnnGetRNNDescriptor_v8(cudnnRNNDescriptor_t rnnDesc,
|
160 |
+
cudnnRNNAlgo_t *algo,
|
161 |
+
cudnnRNNMode_t *cellMode,
|
162 |
+
cudnnRNNBiasMode_t *biasMode,
|
163 |
+
cudnnDirectionMode_t *dirMode,
|
164 |
+
cudnnRNNInputMode_t *inputMode,
|
165 |
+
cudnnDataType_t *dataType,
|
166 |
+
cudnnDataType_t *mathPrec,
|
167 |
+
cudnnMathType_t *mathType,
|
168 |
+
int32_t *inputSize,
|
169 |
+
int32_t *hiddenSize,
|
170 |
+
int32_t *projSize,
|
171 |
+
int32_t *numLayers,
|
172 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
173 |
+
uint32_t *auxFlags);
|
174 |
+
|
175 |
+
/*
|
176 |
+
* mathPrec in cudnnSetRNNDescriptor_v6() specifies compute precision
|
177 |
+
* compute precision is further modified by cudnnSetRNNMatrixMathType()
|
178 |
+
* dataType in cudnnGetRNNParamsSize() and wDesc specify weight storage
|
179 |
+
* dropout is between RNN layers, not between recurrent steps
|
180 |
+
*/
|
181 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnSetRNNDescriptor_v6(cudnnHandle_t handle,
|
183 |
+
cudnnRNNDescriptor_t rnnDesc,
|
184 |
+
const int hiddenSize,
|
185 |
+
const int numLayers,
|
186 |
+
cudnnDropoutDescriptor_t dropoutDesc,
|
187 |
+
cudnnRNNInputMode_t inputMode,
|
188 |
+
cudnnDirectionMode_t direction,
|
189 |
+
cudnnRNNMode_t cellMode,
|
190 |
+
cudnnRNNAlgo_t algo,
|
191 |
+
cudnnDataType_t mathPrec);
|
192 |
+
|
193 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
194 |
+
cudnnGetRNNDescriptor_v6(cudnnHandle_t handle,
|
195 |
+
cudnnRNNDescriptor_t rnnDesc,
|
196 |
+
int *hiddenSize,
|
197 |
+
int *numLayers,
|
198 |
+
cudnnDropoutDescriptor_t *dropoutDesc,
|
199 |
+
cudnnRNNInputMode_t *inputMode,
|
200 |
+
cudnnDirectionMode_t *direction,
|
201 |
+
cudnnRNNMode_t *cellMode,
|
202 |
+
cudnnRNNAlgo_t *algo,
|
203 |
+
cudnnDataType_t *mathPrec);
|
204 |
+
|
205 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnSetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t mType);
|
207 |
+
|
208 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
209 |
+
cudnnGetRNNMatrixMathType(cudnnRNNDescriptor_t rnnDesc, cudnnMathType_t *mType);
|
210 |
+
|
211 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnSetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t biasMode);
|
213 |
+
|
214 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnGetRNNBiasMode(cudnnRNNDescriptor_t rnnDesc, cudnnRNNBiasMode_t *biasMode);
|
216 |
+
|
217 |
+
cudnnStatus_t CUDNNWINAPI
|
218 |
+
cudnnRNNSetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
219 |
+
cudnnRNNClipMode_t clipMode,
|
220 |
+
cudnnNanPropagation_t clipNanOpt,
|
221 |
+
double lclip,
|
222 |
+
double rclip);
|
223 |
+
|
224 |
+
cudnnStatus_t CUDNNWINAPI
|
225 |
+
cudnnRNNGetClip_v8(cudnnRNNDescriptor_t rnnDesc,
|
226 |
+
cudnnRNNClipMode_t *clipMode,
|
227 |
+
cudnnNanPropagation_t *clipNanOpt,
|
228 |
+
double *lclip,
|
229 |
+
double *rclip);
|
230 |
+
|
231 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
232 |
+
cudnnRNNSetClip(cudnnHandle_t handle,
|
233 |
+
cudnnRNNDescriptor_t rnnDesc,
|
234 |
+
cudnnRNNClipMode_t clipMode,
|
235 |
+
cudnnNanPropagation_t clipNanOpt,
|
236 |
+
double lclip,
|
237 |
+
double rclip);
|
238 |
+
|
239 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
240 |
+
cudnnRNNGetClip(cudnnHandle_t handle,
|
241 |
+
cudnnRNNDescriptor_t rnnDesc,
|
242 |
+
cudnnRNNClipMode_t *clipMode,
|
243 |
+
cudnnNanPropagation_t *clipNanOpt,
|
244 |
+
double *lclip,
|
245 |
+
double *rclip);
|
246 |
+
|
247 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
248 |
+
cudnnSetRNNProjectionLayers(cudnnHandle_t handle,
|
249 |
+
cudnnRNNDescriptor_t rnnDesc,
|
250 |
+
const int recProjSize,
|
251 |
+
const int outProjSize);
|
252 |
+
|
253 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
254 |
+
cudnnGetRNNProjectionLayers(cudnnHandle_t handle,
|
255 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
256 |
+
int *recProjSize,
|
257 |
+
int *outProjSize);
|
258 |
+
|
259 |
+
/* Expensive. Creates the plan for the specific settings. */
|
260 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
261 |
+
cudnnCreatePersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const int minibatch,
|
263 |
+
const cudnnDataType_t dataType,
|
264 |
+
cudnnPersistentRNNPlan_t *plan);
|
265 |
+
|
266 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
267 |
+
cudnnDestroyPersistentRNNPlan(cudnnPersistentRNNPlan_t plan);
|
268 |
+
|
269 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
270 |
+
cudnnSetPersistentRNNPlan(cudnnRNNDescriptor_t rnnDesc, cudnnPersistentRNNPlan_t plan);
|
271 |
+
|
272 |
+
cudnnStatus_t CUDNNWINAPI
|
273 |
+
cudnnBuildRNNDynamic(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, int miniBatch);
|
274 |
+
|
275 |
+
/* dataType in weight descriptors and input descriptors is used to describe storage */
|
276 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
277 |
+
cudnnGetRNNWorkspaceSize(cudnnHandle_t handle,
|
278 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
279 |
+
const int seqLength,
|
280 |
+
const cudnnTensorDescriptor_t *xDesc,
|
281 |
+
size_t *sizeInBytes);
|
282 |
+
|
283 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
284 |
+
cudnnGetRNNTrainingReserveSize(cudnnHandle_t handle,
|
285 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
286 |
+
const int seqLength,
|
287 |
+
const cudnnTensorDescriptor_t *xDesc,
|
288 |
+
size_t *sizeInBytes);
|
289 |
+
|
290 |
+
cudnnStatus_t CUDNNWINAPI
|
291 |
+
cudnnGetRNNTempSpaceSizes(cudnnHandle_t handle,
|
292 |
+
cudnnRNNDescriptor_t rnnDesc,
|
293 |
+
cudnnForwardMode_t fwdMode,
|
294 |
+
cudnnRNNDataDescriptor_t xDesc,
|
295 |
+
size_t *workSpaceSize,
|
296 |
+
size_t *reserveSpaceSize);
|
297 |
+
|
298 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
299 |
+
cudnnGetRNNParamsSize(cudnnHandle_t handle,
|
300 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
301 |
+
const cudnnTensorDescriptor_t xDesc,
|
302 |
+
size_t *sizeInBytes,
|
303 |
+
cudnnDataType_t dataType);
|
304 |
+
|
305 |
+
cudnnStatus_t CUDNNWINAPI
|
306 |
+
cudnnGetRNNWeightSpaceSize(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, size_t *weightSpaceSize);
|
307 |
+
|
308 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
309 |
+
cudnnGetRNNLinLayerMatrixParams(cudnnHandle_t handle,
|
310 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
311 |
+
const int pseudoLayer,
|
312 |
+
const cudnnTensorDescriptor_t xDesc,
|
313 |
+
const cudnnFilterDescriptor_t wDesc,
|
314 |
+
const void *w,
|
315 |
+
const int linLayerID,
|
316 |
+
cudnnFilterDescriptor_t linLayerMatDesc,
|
317 |
+
void **linLayerMat);
|
318 |
+
|
319 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnGetRNNLinLayerBiasParams(cudnnHandle_t handle,
|
321 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
322 |
+
const int pseudoLayer,
|
323 |
+
const cudnnTensorDescriptor_t xDesc,
|
324 |
+
const cudnnFilterDescriptor_t wDesc,
|
325 |
+
const void *w,
|
326 |
+
const int linLayerID,
|
327 |
+
cudnnFilterDescriptor_t linLayerBiasDesc,
|
328 |
+
void **linLayerBias);
|
329 |
+
|
330 |
+
cudnnStatus_t CUDNNWINAPI
|
331 |
+
cudnnGetRNNWeightParams(cudnnHandle_t handle,
|
332 |
+
cudnnRNNDescriptor_t rnnDesc,
|
333 |
+
int32_t pseudoLayer,
|
334 |
+
size_t weightSpaceSize,
|
335 |
+
const void *weightSpace,
|
336 |
+
int32_t linLayerID,
|
337 |
+
cudnnTensorDescriptor_t mDesc,
|
338 |
+
void **mAddr,
|
339 |
+
cudnnTensorDescriptor_t bDesc,
|
340 |
+
void **bAddr);
|
341 |
+
|
342 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
343 |
+
cudnnRNNForwardInference(cudnnHandle_t handle,
|
344 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
345 |
+
const int seqLength,
|
346 |
+
const cudnnTensorDescriptor_t *xDesc,
|
347 |
+
const void *x,
|
348 |
+
const cudnnTensorDescriptor_t hxDesc,
|
349 |
+
const void *hx,
|
350 |
+
const cudnnTensorDescriptor_t cxDesc,
|
351 |
+
const void *cx,
|
352 |
+
const cudnnFilterDescriptor_t wDesc,
|
353 |
+
const void *w,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
void *y,
|
356 |
+
const cudnnTensorDescriptor_t hyDesc,
|
357 |
+
void *hy,
|
358 |
+
const cudnnTensorDescriptor_t cyDesc,
|
359 |
+
void *cy,
|
360 |
+
void *workSpace,
|
361 |
+
size_t workSpaceSizeInBytes);
|
362 |
+
|
363 |
+
/* RNN EX API */
|
364 |
+
|
365 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
366 |
+
cudnnSetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned paddingMode);
|
367 |
+
|
368 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
369 |
+
cudnnGetRNNPaddingMode(cudnnRNNDescriptor_t rnnDesc, unsigned *paddingMode);
|
370 |
+
|
371 |
+
cudnnStatus_t CUDNNWINAPI
|
372 |
+
cudnnCreateRNNDataDescriptor(cudnnRNNDataDescriptor_t *rnnDataDesc);
|
373 |
+
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnDestroyRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc);
|
376 |
+
|
377 |
+
cudnnStatus_t CUDNNWINAPI
|
378 |
+
cudnnSetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
379 |
+
cudnnDataType_t dataType,
|
380 |
+
cudnnRNNDataLayout_t layout,
|
381 |
+
int maxSeqLength,
|
382 |
+
int batchSize,
|
383 |
+
int vectorSize,
|
384 |
+
const int seqLengthArray[], /* length of each sequence in the batch */
|
385 |
+
void *paddingFill); /* symbol for filling padding position in output */
|
386 |
+
|
387 |
+
cudnnStatus_t CUDNNWINAPI
|
388 |
+
cudnnGetRNNDataDescriptor(cudnnRNNDataDescriptor_t rnnDataDesc,
|
389 |
+
cudnnDataType_t *dataType,
|
390 |
+
cudnnRNNDataLayout_t *layout,
|
391 |
+
int *maxSeqLength,
|
392 |
+
int *batchSize,
|
393 |
+
int *vectorSize,
|
394 |
+
int arrayLengthRequested,
|
395 |
+
int seqLengthArray[],
|
396 |
+
void *paddingFill);
|
397 |
+
|
398 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
399 |
+
cudnnRNNForwardInferenceEx(cudnnHandle_t handle,
|
400 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
401 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
402 |
+
const void *x,
|
403 |
+
const cudnnTensorDescriptor_t hxDesc,
|
404 |
+
const void *hx,
|
405 |
+
const cudnnTensorDescriptor_t cxDesc,
|
406 |
+
const void *cx,
|
407 |
+
const cudnnFilterDescriptor_t wDesc,
|
408 |
+
const void *w,
|
409 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
410 |
+
void *y,
|
411 |
+
const cudnnTensorDescriptor_t hyDesc,
|
412 |
+
void *hy,
|
413 |
+
const cudnnTensorDescriptor_t cyDesc,
|
414 |
+
void *cy,
|
415 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
416 |
+
const void *keys, /* reserved, should pass NULL */
|
417 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
418 |
+
void *cAttn, /* reserved, should pass NULL */
|
419 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
420 |
+
void *iAttn, /* reserved, should pass NULL */
|
421 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
422 |
+
void *queries, /* reserved, should pass NULL */
|
423 |
+
void *workSpace,
|
424 |
+
size_t workSpaceSizeInBytes);
|
425 |
+
|
426 |
+
cudnnStatus_t CUDNNWINAPI
|
427 |
+
cudnnRNNForward(cudnnHandle_t handle,
|
428 |
+
cudnnRNNDescriptor_t rnnDesc,
|
429 |
+
cudnnForwardMode_t fwdMode,
|
430 |
+
const int32_t devSeqLengths[],
|
431 |
+
cudnnRNNDataDescriptor_t xDesc,
|
432 |
+
const void *x,
|
433 |
+
cudnnRNNDataDescriptor_t yDesc,
|
434 |
+
void *y,
|
435 |
+
cudnnTensorDescriptor_t hDesc,
|
436 |
+
const void *hx,
|
437 |
+
void *hy,
|
438 |
+
cudnnTensorDescriptor_t cDesc,
|
439 |
+
const void *cx,
|
440 |
+
void *cy,
|
441 |
+
size_t weightSpaceSize,
|
442 |
+
const void *weightSpace,
|
443 |
+
size_t workSpaceSize,
|
444 |
+
void *workSpace,
|
445 |
+
size_t reserveSpaceSize,
|
446 |
+
void *reserveSpace);
|
447 |
+
|
448 |
+
/* RNN FIND API */
|
449 |
+
|
450 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
451 |
+
cudnnSetRNNAlgorithmDescriptor(cudnnHandle_t handle, cudnnRNNDescriptor_t rnnDesc, cudnnAlgorithmDescriptor_t algoDesc);
|
452 |
+
|
453 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
454 |
+
cudnnGetRNNForwardInferenceAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
455 |
+
|
456 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnFindRNNForwardInferenceAlgorithmEx(cudnnHandle_t handle,
|
458 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
459 |
+
const int seqLength,
|
460 |
+
const cudnnTensorDescriptor_t *xDesc,
|
461 |
+
const void *x,
|
462 |
+
const cudnnTensorDescriptor_t hxDesc,
|
463 |
+
const void *hx,
|
464 |
+
const cudnnTensorDescriptor_t cxDesc,
|
465 |
+
const void *cx,
|
466 |
+
const cudnnFilterDescriptor_t wDesc,
|
467 |
+
const void *w,
|
468 |
+
const cudnnTensorDescriptor_t *yDesc,
|
469 |
+
void *y,
|
470 |
+
const cudnnTensorDescriptor_t hyDesc,
|
471 |
+
void *hy,
|
472 |
+
const cudnnTensorDescriptor_t cyDesc,
|
473 |
+
void *cy,
|
474 |
+
const float findIntensity,
|
475 |
+
const int requestedAlgoCount,
|
476 |
+
int *returnedAlgoCount,
|
477 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
478 |
+
void *workspace,
|
479 |
+
size_t workSpaceSizeInBytes);
|
480 |
+
|
481 |
+
/* Sequence data descriptor */
|
482 |
+
|
483 |
+
typedef enum {
|
484 |
+
CUDNN_SEQDATA_TIME_DIM = 0, /* index in time */
|
485 |
+
CUDNN_SEQDATA_BATCH_DIM = 1, /* index in batch */
|
486 |
+
CUDNN_SEQDATA_BEAM_DIM = 2, /* index in beam */
|
487 |
+
CUDNN_SEQDATA_VECT_DIM = 3 /* index in vector */
|
488 |
+
} cudnnSeqDataAxis_t;
|
489 |
+
|
490 |
+
struct cudnnSeqDataStruct;
|
491 |
+
typedef struct cudnnSeqDataStruct *cudnnSeqDataDescriptor_t;
|
492 |
+
|
493 |
+
#define CUDNN_SEQDATA_DIM_COUNT 4 /* dimension count */
|
494 |
+
|
495 |
+
cudnnStatus_t CUDNNWINAPI
|
496 |
+
cudnnCreateSeqDataDescriptor(cudnnSeqDataDescriptor_t *seqDataDesc);
|
497 |
+
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnDestroySeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc);
|
500 |
+
|
501 |
+
cudnnStatus_t CUDNNWINAPI
|
502 |
+
cudnnSetSeqDataDescriptor(cudnnSeqDataDescriptor_t seqDataDesc,
|
503 |
+
cudnnDataType_t dataType,
|
504 |
+
int nbDims,
|
505 |
+
const int dimA[],
|
506 |
+
const cudnnSeqDataAxis_t axes[],
|
507 |
+
size_t seqLengthArraySize,
|
508 |
+
const int seqLengthArray[],
|
509 |
+
void *paddingFill);
|
510 |
+
|
511 |
+
cudnnStatus_t CUDNNWINAPI
|
512 |
+
cudnnGetSeqDataDescriptor(const cudnnSeqDataDescriptor_t seqDataDesc,
|
513 |
+
cudnnDataType_t *dataType,
|
514 |
+
int *nbDims,
|
515 |
+
int nbDimsRequested,
|
516 |
+
int dimA[],
|
517 |
+
cudnnSeqDataAxis_t axes[],
|
518 |
+
size_t *seqLengthArraySize,
|
519 |
+
size_t seqLengthSizeRequested,
|
520 |
+
int seqLengthArray[],
|
521 |
+
void *paddingFill);
|
522 |
+
|
523 |
+
/* Multihead Attention */
|
524 |
+
|
525 |
+
/* Legacy type for backward compatibility */
|
526 |
+
typedef unsigned cudnnAttnQueryMap_t;
|
527 |
+
|
528 |
+
/*
|
529 |
+
* Multi-head attention options passed via 'attnMode' in cudnnSetAttnDescriptor().
|
530 |
+
* Use the bitwise OR operator to combine several settings listed below. Additional
|
531 |
+
* minor options can be added here w/o changing or introducing new API functions.
|
532 |
+
*/
|
533 |
+
#define CUDNN_ATTN_QUERYMAP_ALL_TO_ONE 0 /* multiple Q-s map to a single (K,V) set when beam size > 1 */
|
534 |
+
#define CUDNN_ATTN_QUERYMAP_ONE_TO_ONE (1U << 0) /* multiple Q-s map to multiple (K,V) sets when beam size > 1 */
|
535 |
+
#define CUDNN_ATTN_DISABLE_PROJ_BIASES 0 /* no biases in attention input and output projections */
|
536 |
+
#define CUDNN_ATTN_ENABLE_PROJ_BIASES (1U << 1) /* use biases in attention input and output projections */
|
537 |
+
|
538 |
+
struct cudnnAttnStruct;
|
539 |
+
typedef struct cudnnAttnStruct *cudnnAttnDescriptor_t;
|
540 |
+
|
541 |
+
cudnnStatus_t CUDNNWINAPI
|
542 |
+
cudnnCreateAttnDescriptor(cudnnAttnDescriptor_t *attnDesc);
|
543 |
+
|
544 |
+
cudnnStatus_t CUDNNWINAPI
|
545 |
+
cudnnDestroyAttnDescriptor(cudnnAttnDescriptor_t attnDesc);
|
546 |
+
|
547 |
+
cudnnStatus_t CUDNNWINAPI
|
548 |
+
cudnnSetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
549 |
+
unsigned attnMode,
|
550 |
+
int nHeads,
|
551 |
+
double smScaler,
|
552 |
+
cudnnDataType_t dataType,
|
553 |
+
cudnnDataType_t computePrec,
|
554 |
+
cudnnMathType_t mathType,
|
555 |
+
cudnnDropoutDescriptor_t attnDropoutDesc,
|
556 |
+
cudnnDropoutDescriptor_t postDropoutDesc,
|
557 |
+
int qSize,
|
558 |
+
int kSize,
|
559 |
+
int vSize,
|
560 |
+
int qProjSize,
|
561 |
+
int kProjSize,
|
562 |
+
int vProjSize,
|
563 |
+
int oProjSize,
|
564 |
+
int qoMaxSeqLength,
|
565 |
+
int kvMaxSeqLength,
|
566 |
+
int maxBatchSize,
|
567 |
+
int maxBeamSize);
|
568 |
+
|
569 |
+
cudnnStatus_t CUDNNWINAPI
|
570 |
+
cudnnGetAttnDescriptor(cudnnAttnDescriptor_t attnDesc,
|
571 |
+
unsigned *attnMode,
|
572 |
+
int *nHeads,
|
573 |
+
double *smScaler,
|
574 |
+
cudnnDataType_t *dataType,
|
575 |
+
cudnnDataType_t *computePrec,
|
576 |
+
cudnnMathType_t *mathType,
|
577 |
+
cudnnDropoutDescriptor_t *attnDropoutDesc,
|
578 |
+
cudnnDropoutDescriptor_t *postDropoutDesc,
|
579 |
+
int *qSize,
|
580 |
+
int *kSize,
|
581 |
+
int *vSize,
|
582 |
+
int *qProjSize,
|
583 |
+
int *kProjSize,
|
584 |
+
int *vProjSize,
|
585 |
+
int *oProjSize,
|
586 |
+
int *qoMaxSeqLength,
|
587 |
+
int *kvMaxSeqLength,
|
588 |
+
int *maxBatchSize,
|
589 |
+
int *maxBeamSize);
|
590 |
+
|
591 |
+
cudnnStatus_t CUDNNWINAPI
|
592 |
+
cudnnGetMultiHeadAttnBuffers(cudnnHandle_t handle,
|
593 |
+
const cudnnAttnDescriptor_t attnDesc,
|
594 |
+
size_t *weightSizeInBytes,
|
595 |
+
size_t *workSpaceSizeInBytes,
|
596 |
+
size_t *reserveSpaceSizeInBytes);
|
597 |
+
|
598 |
+
typedef enum {
|
599 |
+
CUDNN_MH_ATTN_Q_WEIGHTS = 0, /* input projection weights for 'queries' */
|
600 |
+
CUDNN_MH_ATTN_K_WEIGHTS = 1, /* input projection weights for 'keys' */
|
601 |
+
CUDNN_MH_ATTN_V_WEIGHTS = 2, /* input projection weights for 'values' */
|
602 |
+
CUDNN_MH_ATTN_O_WEIGHTS = 3, /* output projection weights */
|
603 |
+
CUDNN_MH_ATTN_Q_BIASES = 4, /* input projection bias tensor for 'queries' */
|
604 |
+
CUDNN_MH_ATTN_K_BIASES = 5, /* input projection bias for 'keys' */
|
605 |
+
CUDNN_MH_ATTN_V_BIASES = 6, /* input projection bias for 'values' */
|
606 |
+
CUDNN_MH_ATTN_O_BIASES = 7, /* output projection biases */
|
607 |
+
} cudnnMultiHeadAttnWeightKind_t;
|
608 |
+
|
609 |
+
#define CUDNN_ATTN_WKIND_COUNT 8 /* Number of attention weight/bias tensors */
|
610 |
+
|
611 |
+
cudnnStatus_t CUDNNWINAPI
|
612 |
+
cudnnGetMultiHeadAttnWeights(cudnnHandle_t handle,
|
613 |
+
const cudnnAttnDescriptor_t attnDesc,
|
614 |
+
cudnnMultiHeadAttnWeightKind_t wKind,
|
615 |
+
size_t weightSizeInBytes,
|
616 |
+
const void *weights,
|
617 |
+
cudnnTensorDescriptor_t wDesc,
|
618 |
+
void **wAddr);
|
619 |
+
|
620 |
+
cudnnStatus_t CUDNNWINAPI
|
621 |
+
cudnnMultiHeadAttnForward(cudnnHandle_t handle,
|
622 |
+
const cudnnAttnDescriptor_t attnDesc,
|
623 |
+
int currIdx,
|
624 |
+
const int loWinIdx[],
|
625 |
+
const int hiWinIdx[],
|
626 |
+
const int devSeqLengthsQO[],
|
627 |
+
const int devSeqLengthsKV[],
|
628 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
629 |
+
const void *queries,
|
630 |
+
const void *residuals,
|
631 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
632 |
+
const void *keys,
|
633 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
634 |
+
const void *values,
|
635 |
+
const cudnnSeqDataDescriptor_t oDesc,
|
636 |
+
void *out,
|
637 |
+
size_t weightSizeInBytes,
|
638 |
+
const void *weights,
|
639 |
+
size_t workSpaceSizeInBytes,
|
640 |
+
void *workSpace,
|
641 |
+
size_t reserveSpaceSizeInBytes,
|
642 |
+
void *reserveSpace);
|
643 |
+
|
644 |
+
/*
|
645 |
+
* \brief Cross-library version checker.
|
646 |
+
* This function is implemented differently in each sub-library. Each sublib
|
647 |
+
* checks whether its own version matches that of its dependencies.
|
648 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
649 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
650 |
+
*/
|
651 |
+
cudnnStatus_t CUDNNWINAPI
|
652 |
+
cudnnAdvInferVersionCheck(void);
|
653 |
+
|
654 |
+
#if defined(__cplusplus)
|
655 |
+
}
|
656 |
+
#endif
|
657 |
+
|
658 |
+
#endif /* CUDNN_ADV_INFER_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_adv_train_v8.h
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/* cudnn_adv_train : cuDNN's advanced and experimental features.
|
51 |
+
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_ADV_TRAIN_H_)
|
55 |
+
#define CUDNN_ADV_TRAIN_H_
|
56 |
+
|
57 |
+
#include <cuda_runtime.h>
|
58 |
+
#include <stdint.h>
|
59 |
+
|
60 |
+
#include "cudnn_version.h"
|
61 |
+
#include "cudnn_ops_infer.h"
|
62 |
+
#include "cudnn_ops_train.h"
|
63 |
+
#include "cudnn_adv_infer.h"
|
64 |
+
|
65 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
66 |
+
#define CUDNN_ADV_TRAIN_MAJOR 8
|
67 |
+
#define CUDNN_ADV_TRAIN_MINOR 9
|
68 |
+
#define CUDNN_ADV_TRAIN_PATCH 2
|
69 |
+
|
70 |
+
#if (CUDNN_ADV_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_ADV_TRAIN_MINOR != CUDNN_MINOR) || \
|
71 |
+
(CUDNN_ADV_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
72 |
+
#error Version mismatch in cuDNN ADV TRAIN!!!
|
73 |
+
#endif
|
74 |
+
|
75 |
+
#if defined(__cplusplus)
|
76 |
+
extern "C" {
|
77 |
+
#endif
|
78 |
+
|
79 |
+
typedef enum {
|
80 |
+
CUDNN_WGRAD_MODE_ADD = 0, /* add partial gradients to wgrad output buffers */
|
81 |
+
CUDNN_WGRAD_MODE_SET = 1, /* write partial gradients to wgrad output buffers */
|
82 |
+
} cudnnWgradMode_t;
|
83 |
+
|
84 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
85 |
+
cudnnRNNForwardTraining(cudnnHandle_t handle,
|
86 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
87 |
+
const int seqLength,
|
88 |
+
const cudnnTensorDescriptor_t *xDesc,
|
89 |
+
const void *x,
|
90 |
+
const cudnnTensorDescriptor_t hxDesc,
|
91 |
+
const void *hx,
|
92 |
+
const cudnnTensorDescriptor_t cxDesc,
|
93 |
+
const void *cx,
|
94 |
+
const cudnnFilterDescriptor_t wDesc,
|
95 |
+
const void *w,
|
96 |
+
const cudnnTensorDescriptor_t *yDesc,
|
97 |
+
void *y,
|
98 |
+
const cudnnTensorDescriptor_t hyDesc,
|
99 |
+
void *hy,
|
100 |
+
const cudnnTensorDescriptor_t cyDesc,
|
101 |
+
void *cy,
|
102 |
+
void *workSpace,
|
103 |
+
size_t workSpaceSizeInBytes,
|
104 |
+
void *reserveSpace,
|
105 |
+
size_t reserveSpaceSizeInBytes);
|
106 |
+
|
107 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
108 |
+
cudnnRNNBackwardData(cudnnHandle_t handle,
|
109 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
110 |
+
const int seqLength,
|
111 |
+
const cudnnTensorDescriptor_t *yDesc,
|
112 |
+
const void *y,
|
113 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
114 |
+
const void *dy,
|
115 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
116 |
+
const void *dhy,
|
117 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
118 |
+
const void *dcy,
|
119 |
+
const cudnnFilterDescriptor_t wDesc,
|
120 |
+
const void *w,
|
121 |
+
const cudnnTensorDescriptor_t hxDesc,
|
122 |
+
const void *hx,
|
123 |
+
const cudnnTensorDescriptor_t cxDesc,
|
124 |
+
const void *cx,
|
125 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
126 |
+
void *dx,
|
127 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
128 |
+
void *dhx,
|
129 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
130 |
+
void *dcx,
|
131 |
+
void *workSpace,
|
132 |
+
size_t workSpaceSizeInBytes,
|
133 |
+
void *reserveSpace,
|
134 |
+
size_t reserveSpaceSizeInBytes);
|
135 |
+
|
136 |
+
cudnnStatus_t CUDNNWINAPI
|
137 |
+
cudnnRNNBackwardData_v8(cudnnHandle_t handle,
|
138 |
+
cudnnRNNDescriptor_t rnnDesc,
|
139 |
+
const int32_t devSeqLengths[],
|
140 |
+
cudnnRNNDataDescriptor_t yDesc,
|
141 |
+
const void *y,
|
142 |
+
const void *dy,
|
143 |
+
cudnnRNNDataDescriptor_t xDesc,
|
144 |
+
void *dx,
|
145 |
+
cudnnTensorDescriptor_t hDesc,
|
146 |
+
const void *hx,
|
147 |
+
const void *dhy,
|
148 |
+
void *dhx,
|
149 |
+
cudnnTensorDescriptor_t cDesc,
|
150 |
+
const void *cx,
|
151 |
+
const void *dcy,
|
152 |
+
void *dcx,
|
153 |
+
size_t weightSpaceSize,
|
154 |
+
const void *weightSpace,
|
155 |
+
size_t workSpaceSize,
|
156 |
+
void *workSpace,
|
157 |
+
size_t reserveSpaceSize,
|
158 |
+
void *reserveSpace);
|
159 |
+
|
160 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
161 |
+
cudnnRNNBackwardWeights(cudnnHandle_t handle,
|
162 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
163 |
+
const int seqLength,
|
164 |
+
const cudnnTensorDescriptor_t *xDesc,
|
165 |
+
const void *x,
|
166 |
+
const cudnnTensorDescriptor_t hxDesc,
|
167 |
+
const void *hx,
|
168 |
+
const cudnnTensorDescriptor_t *yDesc,
|
169 |
+
const void *y,
|
170 |
+
const void *workSpace,
|
171 |
+
size_t workSpaceSizeInBytes,
|
172 |
+
const cudnnFilterDescriptor_t dwDesc,
|
173 |
+
void *dw,
|
174 |
+
const void *reserveSpace,
|
175 |
+
size_t reserveSpaceSizeInBytes);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnRNNBackwardWeights_v8(cudnnHandle_t handle,
|
179 |
+
cudnnRNNDescriptor_t rnnDesc,
|
180 |
+
cudnnWgradMode_t addGrad,
|
181 |
+
const int32_t devSeqLengths[],
|
182 |
+
cudnnRNNDataDescriptor_t xDesc,
|
183 |
+
const void *x,
|
184 |
+
cudnnTensorDescriptor_t hDesc,
|
185 |
+
const void *hx,
|
186 |
+
cudnnRNNDataDescriptor_t yDesc,
|
187 |
+
const void *y,
|
188 |
+
size_t weightSpaceSize,
|
189 |
+
void *dweightSpace,
|
190 |
+
size_t workSpaceSize,
|
191 |
+
void *workSpace,
|
192 |
+
size_t reserveSpaceSize,
|
193 |
+
void *reserveSpace);
|
194 |
+
|
195 |
+
/* RNN EX API */
|
196 |
+
|
197 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
198 |
+
cudnnRNNForwardTrainingEx(cudnnHandle_t handle,
|
199 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
200 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
201 |
+
const void *x,
|
202 |
+
const cudnnTensorDescriptor_t hxDesc,
|
203 |
+
const void *hx,
|
204 |
+
const cudnnTensorDescriptor_t cxDesc,
|
205 |
+
const void *cx,
|
206 |
+
const cudnnFilterDescriptor_t wDesc,
|
207 |
+
const void *w,
|
208 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
209 |
+
void *y,
|
210 |
+
const cudnnTensorDescriptor_t hyDesc,
|
211 |
+
void *hy,
|
212 |
+
const cudnnTensorDescriptor_t cyDesc,
|
213 |
+
void *cy,
|
214 |
+
const cudnnRNNDataDescriptor_t kDesc, /* reserved, should pass NULL */
|
215 |
+
const void *keys, /* reserved, should pass NULL */
|
216 |
+
const cudnnRNNDataDescriptor_t cDesc, /* reserved, should pass NULL */
|
217 |
+
void *cAttn, /* reserved, should pass NULL */
|
218 |
+
const cudnnRNNDataDescriptor_t iDesc, /* reserved, should pass NULL */
|
219 |
+
void *iAttn, /* reserved, should pass NULL */
|
220 |
+
const cudnnRNNDataDescriptor_t qDesc, /* reserved, should pass NULL */
|
221 |
+
void *queries, /* reserved, should pass NULL */
|
222 |
+
void *workSpace,
|
223 |
+
size_t workSpaceSizeInBytes,
|
224 |
+
void *reserveSpace,
|
225 |
+
size_t reserveSpaceSizeInBytes);
|
226 |
+
|
227 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnRNNBackwardDataEx(cudnnHandle_t handle,
|
229 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
230 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
231 |
+
const void *y,
|
232 |
+
const cudnnRNNDataDescriptor_t dyDesc,
|
233 |
+
const void *dy,
|
234 |
+
const cudnnRNNDataDescriptor_t dcDesc, /* reserved, should pass NULL */
|
235 |
+
const void *dcAttn, /* reserved, should pass NULL */
|
236 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
237 |
+
const void *dhy,
|
238 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
239 |
+
const void *dcy,
|
240 |
+
const cudnnFilterDescriptor_t wDesc,
|
241 |
+
const void *w,
|
242 |
+
const cudnnTensorDescriptor_t hxDesc,
|
243 |
+
const void *hx,
|
244 |
+
const cudnnTensorDescriptor_t cxDesc,
|
245 |
+
const void *cx,
|
246 |
+
const cudnnRNNDataDescriptor_t dxDesc,
|
247 |
+
void *dx,
|
248 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
249 |
+
void *dhx,
|
250 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
251 |
+
void *dcx,
|
252 |
+
const cudnnRNNDataDescriptor_t dkDesc, /* reserved, should pass NULL */
|
253 |
+
void *dkeys, /* reserved, should pass NULL */
|
254 |
+
void *workSpace,
|
255 |
+
size_t workSpaceSizeInBytes,
|
256 |
+
void *reserveSpace,
|
257 |
+
size_t reserveSpaceSizeInBytes);
|
258 |
+
|
259 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
260 |
+
cudnnRNNBackwardWeightsEx(cudnnHandle_t handle,
|
261 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
262 |
+
const cudnnRNNDataDescriptor_t xDesc,
|
263 |
+
const void *x,
|
264 |
+
const cudnnTensorDescriptor_t hxDesc,
|
265 |
+
const void *hx,
|
266 |
+
const cudnnRNNDataDescriptor_t yDesc,
|
267 |
+
const void *y,
|
268 |
+
void *workSpace,
|
269 |
+
size_t workSpaceSizeInBytes,
|
270 |
+
const cudnnFilterDescriptor_t dwDesc,
|
271 |
+
void *dw,
|
272 |
+
void *reserveSpace,
|
273 |
+
size_t reserveSpaceSizeInBytes);
|
274 |
+
|
275 |
+
/* RNN FIND API */
|
276 |
+
|
277 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
278 |
+
cudnnGetRNNForwardTrainingAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
279 |
+
|
280 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
281 |
+
cudnnFindRNNForwardTrainingAlgorithmEx(cudnnHandle_t handle,
|
282 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
283 |
+
const int seqLength,
|
284 |
+
const cudnnTensorDescriptor_t *xDesc,
|
285 |
+
const void *x,
|
286 |
+
const cudnnTensorDescriptor_t hxDesc,
|
287 |
+
const void *hx,
|
288 |
+
const cudnnTensorDescriptor_t cxDesc,
|
289 |
+
const void *cx,
|
290 |
+
const cudnnFilterDescriptor_t wDesc,
|
291 |
+
const void *w,
|
292 |
+
const cudnnTensorDescriptor_t *yDesc,
|
293 |
+
void *y,
|
294 |
+
const cudnnTensorDescriptor_t hyDesc,
|
295 |
+
void *hy,
|
296 |
+
const cudnnTensorDescriptor_t cyDesc,
|
297 |
+
void *cy,
|
298 |
+
const float findIntensity,
|
299 |
+
const int requestedAlgoCount,
|
300 |
+
int *returnedAlgoCount,
|
301 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
302 |
+
void *workspace,
|
303 |
+
size_t workSpaceSizeInBytes,
|
304 |
+
void *reserveSpace,
|
305 |
+
size_t reserveSpaceSizeInBytes);
|
306 |
+
|
307 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
308 |
+
cudnnGetRNNBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
309 |
+
|
310 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
311 |
+
cudnnFindRNNBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
312 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
313 |
+
const int seqLength,
|
314 |
+
const cudnnTensorDescriptor_t *yDesc,
|
315 |
+
const void *y,
|
316 |
+
const cudnnTensorDescriptor_t *dyDesc,
|
317 |
+
const void *dy,
|
318 |
+
const cudnnTensorDescriptor_t dhyDesc,
|
319 |
+
const void *dhy,
|
320 |
+
const cudnnTensorDescriptor_t dcyDesc,
|
321 |
+
const void *dcy,
|
322 |
+
const cudnnFilterDescriptor_t wDesc,
|
323 |
+
const void *w,
|
324 |
+
const cudnnTensorDescriptor_t hxDesc,
|
325 |
+
const void *hx,
|
326 |
+
const cudnnTensorDescriptor_t cxDesc,
|
327 |
+
const void *cx,
|
328 |
+
const cudnnTensorDescriptor_t *dxDesc,
|
329 |
+
void *dx,
|
330 |
+
const cudnnTensorDescriptor_t dhxDesc,
|
331 |
+
void *dhx,
|
332 |
+
const cudnnTensorDescriptor_t dcxDesc,
|
333 |
+
void *dcx,
|
334 |
+
const float findIntensity,
|
335 |
+
const int requestedAlgoCount,
|
336 |
+
int *returnedAlgoCount,
|
337 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
338 |
+
void *workspace,
|
339 |
+
size_t workSpaceSizeInBytes,
|
340 |
+
void *reserveSpace,
|
341 |
+
size_t reserveSpaceSizeInBytes);
|
342 |
+
|
343 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
344 |
+
cudnnGetRNNBackwardWeightsAlgorithmMaxCount(cudnnHandle_t handle, const cudnnRNNDescriptor_t rnnDesc, int *count);
|
345 |
+
|
346 |
+
CUDNN_DEPRECATED cudnnStatus_t CUDNNWINAPI
|
347 |
+
cudnnFindRNNBackwardWeightsAlgorithmEx(cudnnHandle_t handle,
|
348 |
+
const cudnnRNNDescriptor_t rnnDesc,
|
349 |
+
const int seqLength,
|
350 |
+
const cudnnTensorDescriptor_t *xDesc,
|
351 |
+
const void *x,
|
352 |
+
const cudnnTensorDescriptor_t hxDesc,
|
353 |
+
const void *hx,
|
354 |
+
const cudnnTensorDescriptor_t *yDesc,
|
355 |
+
const void *y,
|
356 |
+
const float findIntensity,
|
357 |
+
const int requestedAlgoCount,
|
358 |
+
int *returnedAlgoCount,
|
359 |
+
cudnnAlgorithmPerformance_t *perfResults,
|
360 |
+
const void *workspace,
|
361 |
+
size_t workSpaceSizeInBytes,
|
362 |
+
const cudnnFilterDescriptor_t dwDesc,
|
363 |
+
void *dw,
|
364 |
+
const void *reserveSpace,
|
365 |
+
size_t reserveSpaceSizeInBytes);
|
366 |
+
|
367 |
+
cudnnStatus_t CUDNNWINAPI
|
368 |
+
cudnnMultiHeadAttnBackwardData(cudnnHandle_t handle,
|
369 |
+
const cudnnAttnDescriptor_t attnDesc,
|
370 |
+
const int loWinIdx[],
|
371 |
+
const int hiWinIdx[],
|
372 |
+
const int devSeqLengthsDQDO[],
|
373 |
+
const int devSeqLengthsDKDV[],
|
374 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
375 |
+
const void *dout,
|
376 |
+
const cudnnSeqDataDescriptor_t dqDesc,
|
377 |
+
void *dqueries,
|
378 |
+
const void *queries,
|
379 |
+
const cudnnSeqDataDescriptor_t dkDesc,
|
380 |
+
void *dkeys,
|
381 |
+
const void *keys,
|
382 |
+
const cudnnSeqDataDescriptor_t dvDesc,
|
383 |
+
void *dvalues,
|
384 |
+
const void *values,
|
385 |
+
size_t weightSizeInBytes,
|
386 |
+
const void *weights,
|
387 |
+
size_t workSpaceSizeInBytes,
|
388 |
+
void *workSpace,
|
389 |
+
size_t reserveSpaceSizeInBytes,
|
390 |
+
void *reserveSpace);
|
391 |
+
|
392 |
+
cudnnStatus_t CUDNNWINAPI
|
393 |
+
cudnnMultiHeadAttnBackwardWeights(cudnnHandle_t handle,
|
394 |
+
const cudnnAttnDescriptor_t attnDesc,
|
395 |
+
cudnnWgradMode_t addGrad,
|
396 |
+
const cudnnSeqDataDescriptor_t qDesc,
|
397 |
+
const void *queries,
|
398 |
+
const cudnnSeqDataDescriptor_t kDesc,
|
399 |
+
const void *keys,
|
400 |
+
const cudnnSeqDataDescriptor_t vDesc,
|
401 |
+
const void *values,
|
402 |
+
const cudnnSeqDataDescriptor_t doDesc,
|
403 |
+
const void *dout,
|
404 |
+
size_t weightSizeInBytes,
|
405 |
+
const void *weights,
|
406 |
+
void *dweights,
|
407 |
+
size_t workSpaceSizeInBytes,
|
408 |
+
void *workSpace,
|
409 |
+
size_t reserveSpaceSizeInBytes,
|
410 |
+
void *reserveSpace);
|
411 |
+
|
412 |
+
/*
|
413 |
+
* CTC (Connectionist Temporal Classification) loss descriptor create/destory/set/get functions
|
414 |
+
*/
|
415 |
+
/* Input normalization mode for loss function */
|
416 |
+
typedef enum {
|
417 |
+
CUDNN_LOSS_NORMALIZATION_NONE = 0,
|
418 |
+
CUDNN_LOSS_NORMALIZATION_SOFTMAX = 1,
|
419 |
+
} cudnnLossNormalizationMode_t;
|
420 |
+
|
421 |
+
cudnnStatus_t CUDNNWINAPI
|
422 |
+
cudnnCreateCTCLossDescriptor(cudnnCTCLossDescriptor_t *ctcLossDesc);
|
423 |
+
|
424 |
+
cudnnStatus_t CUDNNWINAPI
|
425 |
+
cudnnSetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t compType);
|
426 |
+
|
427 |
+
cudnnStatus_t CUDNNWINAPI
|
428 |
+
cudnnSetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
429 |
+
cudnnDataType_t compType,
|
430 |
+
cudnnLossNormalizationMode_t normMode,
|
431 |
+
cudnnNanPropagation_t gradMode);
|
432 |
+
|
433 |
+
cudnnStatus_t CUDNNWINAPI
|
434 |
+
cudnnSetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
435 |
+
cudnnDataType_t compType,
|
436 |
+
cudnnLossNormalizationMode_t normMode,
|
437 |
+
cudnnNanPropagation_t gradMode,
|
438 |
+
int maxLabelLength);
|
439 |
+
|
440 |
+
cudnnStatus_t CUDNNWINAPI
|
441 |
+
cudnnGetCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc, cudnnDataType_t *compType);
|
442 |
+
|
443 |
+
cudnnStatus_t CUDNNWINAPI
|
444 |
+
cudnnGetCTCLossDescriptorEx(cudnnCTCLossDescriptor_t ctcLossDesc,
|
445 |
+
cudnnDataType_t *compType,
|
446 |
+
cudnnLossNormalizationMode_t *normMode,
|
447 |
+
cudnnNanPropagation_t *gradMode);
|
448 |
+
|
449 |
+
cudnnStatus_t CUDNNWINAPI
|
450 |
+
cudnnGetCTCLossDescriptor_v8(cudnnCTCLossDescriptor_t ctcLossDesc,
|
451 |
+
cudnnDataType_t *compType,
|
452 |
+
cudnnLossNormalizationMode_t *normMode,
|
453 |
+
cudnnNanPropagation_t *gradMode,
|
454 |
+
int *maxLabelLength);
|
455 |
+
|
456 |
+
cudnnStatus_t CUDNNWINAPI
|
457 |
+
cudnnDestroyCTCLossDescriptor(cudnnCTCLossDescriptor_t ctcLossDesc);
|
458 |
+
|
459 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
460 |
+
cudnnStatus_t CUDNNWINAPI
|
461 |
+
cudnnCTCLoss(
|
462 |
+
cudnnHandle_t handle,
|
463 |
+
const cudnnTensorDescriptor_t
|
464 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
465 |
+
mini batch size, A is the alphabet size) */
|
466 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
467 |
+
const int hostLabels[], /* labels, in CPU memory */
|
468 |
+
const int hostLabelLengths[], /* the length of each label, in CPU memory */
|
469 |
+
const int hostInputLengths[], /* the lengths of timing steps in each batch, in CPU memory */
|
470 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
471 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
472 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
473 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
474 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
475 |
+
void *workspace, /* pointer to the workspace, in GPU memory */
|
476 |
+
size_t workSpaceSizeInBytes); /* size of the workspace */
|
477 |
+
|
478 |
+
/* return the ctc costs and gradients, given the probabilities and labels */
|
479 |
+
cudnnStatus_t CUDNNWINAPI
|
480 |
+
cudnnCTCLoss_v8(
|
481 |
+
cudnnHandle_t handle,
|
482 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
483 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
484 |
+
const cudnnTensorDescriptor_t
|
485 |
+
probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the timing steps, N is the
|
486 |
+
mini batch size, A is the alphabet size) */
|
487 |
+
const void *probs, /* probabilities after softmax, in GPU memory */
|
488 |
+
const int labels[], /* labels, in GPU memory */
|
489 |
+
const int labelLengths[], /* the length of each label, in GPU memory */
|
490 |
+
const int inputLengths[], /* the lengths of timing steps in each batch, in GPU memory */
|
491 |
+
void *costs, /* the returned costs of CTC, in GPU memory */
|
492 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the dimensions are T,N,A */
|
493 |
+
void *gradients, /* the returned CTC gradients, in GPU memory, to compute costs only, set it to NULL */
|
494 |
+
size_t workSpaceSizeInBytes, /* size of the workspace */
|
495 |
+
void *workspace); /* pointer to the workspace, in GPU memory */
|
496 |
+
|
497 |
+
/* return the workspace size needed for ctc */
|
498 |
+
cudnnStatus_t CUDNNWINAPI
|
499 |
+
cudnnGetCTCLossWorkspaceSize(
|
500 |
+
cudnnHandle_t handle,
|
501 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
502 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
503 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
504 |
+
dimensions are T,N,A. To compute costs
|
505 |
+
only, set it to NULL */
|
506 |
+
const int *labels, /* labels, in CPU memory */
|
507 |
+
const int *labelLengths, /* the length of each label, in CPU memory */
|
508 |
+
const int *inputLengths, /* the lengths of timing steps in each batch, in CPU memory */
|
509 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
510 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
511 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
512 |
+
|
513 |
+
/* return the workspace size needed for ctc */
|
514 |
+
cudnnStatus_t CUDNNWINAPI
|
515 |
+
cudnnGetCTCLossWorkspaceSize_v8(
|
516 |
+
cudnnHandle_t handle,
|
517 |
+
cudnnCTCLossAlgo_t algo, /* algorithm selected, supported now 0 and 1 */
|
518 |
+
cudnnCTCLossDescriptor_t ctcLossDesc,
|
519 |
+
const cudnnTensorDescriptor_t probsDesc, /* Tensor descriptor for probabilities, the dimensions are T,N,A (T is the
|
520 |
+
timing steps, N is the mini batch size, A is the alphabet size) */
|
521 |
+
const cudnnTensorDescriptor_t gradientsDesc, /* Tensor descriptor for gradients, the
|
522 |
+
dimensions are T,N,A. To compute costs
|
523 |
+
only, set it to NULL */
|
524 |
+
size_t *sizeInBytes); /* pointer to the returned workspace size */
|
525 |
+
|
526 |
+
/*
|
527 |
+
* \brief Cross-library version checker.
|
528 |
+
* This function is implemented differently in each sub-library. Each sublib
|
529 |
+
* checks whether its own version matches that of its dependencies.
|
530 |
+
* \returns CUDNN_STATUS_SUCCESS if the version check passes,
|
531 |
+
* CUDNN_STATUS_VERSION_MISMATCH if the versions are inconsistent.
|
532 |
+
*/
|
533 |
+
cudnnStatus_t CUDNNWINAPI
|
534 |
+
cudnnAdvTrainVersionCheck(void);
|
535 |
+
|
536 |
+
#if defined(__cplusplus)
|
537 |
+
}
|
538 |
+
#endif
|
539 |
+
|
540 |
+
#endif /* CUDNN_ADV_TRAIN_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_backend_v8.h
ADDED
@@ -0,0 +1,608 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
#ifndef _CUDNN_BACKEND_H_
|
51 |
+
#define _CUDNN_BACKEND_H_
|
52 |
+
|
53 |
+
/*
|
54 |
+
* The content in this header file is under development to be included in cudnn.h in the future
|
55 |
+
* Production code should have all include of this header file remove.
|
56 |
+
*/
|
57 |
+
|
58 |
+
#include "cudnn_ops_infer.h"
|
59 |
+
#include "cudnn_cnn_infer.h"
|
60 |
+
|
61 |
+
/* NOTE: definition in extern "C" to be copied later to public header */
|
62 |
+
#if defined(__cplusplus)
|
63 |
+
extern "C" {
|
64 |
+
#endif
|
65 |
+
|
66 |
+
typedef void *cudnnBackendDescriptor_t;
|
67 |
+
|
68 |
+
typedef struct cudnnFractionStruct {
|
69 |
+
int64_t numerator;
|
70 |
+
int64_t denominator;
|
71 |
+
} cudnnFraction_t;
|
72 |
+
|
73 |
+
typedef enum {
|
74 |
+
CUDNN_POINTWISE_ADD = 0,
|
75 |
+
CUDNN_POINTWISE_ADD_SQUARE = 5,
|
76 |
+
CUDNN_POINTWISE_DIV = 6,
|
77 |
+
CUDNN_POINTWISE_MAX = 3,
|
78 |
+
CUDNN_POINTWISE_MIN = 2,
|
79 |
+
CUDNN_POINTWISE_MOD = 7,
|
80 |
+
CUDNN_POINTWISE_MUL = 1,
|
81 |
+
CUDNN_POINTWISE_POW = 8,
|
82 |
+
CUDNN_POINTWISE_SUB = 9,
|
83 |
+
|
84 |
+
CUDNN_POINTWISE_ABS = 10,
|
85 |
+
CUDNN_POINTWISE_CEIL = 11,
|
86 |
+
CUDNN_POINTWISE_COS = 12,
|
87 |
+
CUDNN_POINTWISE_EXP = 13,
|
88 |
+
CUDNN_POINTWISE_FLOOR = 14,
|
89 |
+
CUDNN_POINTWISE_LOG = 15,
|
90 |
+
CUDNN_POINTWISE_NEG = 16,
|
91 |
+
CUDNN_POINTWISE_RSQRT = 17,
|
92 |
+
CUDNN_POINTWISE_SIN = 18,
|
93 |
+
CUDNN_POINTWISE_SQRT = 4,
|
94 |
+
CUDNN_POINTWISE_TAN = 19,
|
95 |
+
CUDNN_POINTWISE_ERF = 20,
|
96 |
+
CUDNN_POINTWISE_IDENTITY = 21,
|
97 |
+
CUDNN_POINTWISE_RECIPROCAL = 22,
|
98 |
+
|
99 |
+
CUDNN_POINTWISE_RELU_FWD = 100,
|
100 |
+
CUDNN_POINTWISE_TANH_FWD = 101,
|
101 |
+
CUDNN_POINTWISE_SIGMOID_FWD = 102,
|
102 |
+
CUDNN_POINTWISE_ELU_FWD = 103,
|
103 |
+
CUDNN_POINTWISE_GELU_FWD = 104,
|
104 |
+
CUDNN_POINTWISE_SOFTPLUS_FWD = 105,
|
105 |
+
CUDNN_POINTWISE_SWISH_FWD = 106,
|
106 |
+
CUDNN_POINTWISE_GELU_APPROX_TANH_FWD = 107,
|
107 |
+
|
108 |
+
CUDNN_POINTWISE_RELU_BWD = 200,
|
109 |
+
CUDNN_POINTWISE_TANH_BWD = 201,
|
110 |
+
CUDNN_POINTWISE_SIGMOID_BWD = 202,
|
111 |
+
CUDNN_POINTWISE_ELU_BWD = 203,
|
112 |
+
CUDNN_POINTWISE_GELU_BWD = 204,
|
113 |
+
CUDNN_POINTWISE_SOFTPLUS_BWD = 205,
|
114 |
+
CUDNN_POINTWISE_SWISH_BWD = 206,
|
115 |
+
CUDNN_POINTWISE_GELU_APPROX_TANH_BWD = 207,
|
116 |
+
|
117 |
+
CUDNN_POINTWISE_CMP_EQ = 300,
|
118 |
+
CUDNN_POINTWISE_CMP_NEQ = 301,
|
119 |
+
CUDNN_POINTWISE_CMP_GT = 302,
|
120 |
+
CUDNN_POINTWISE_CMP_GE = 303,
|
121 |
+
CUDNN_POINTWISE_CMP_LT = 304,
|
122 |
+
CUDNN_POINTWISE_CMP_LE = 305,
|
123 |
+
|
124 |
+
CUDNN_POINTWISE_LOGICAL_AND = 400,
|
125 |
+
CUDNN_POINTWISE_LOGICAL_OR = 401,
|
126 |
+
CUDNN_POINTWISE_LOGICAL_NOT = 402,
|
127 |
+
|
128 |
+
CUDNN_POINTWISE_GEN_INDEX = 501,
|
129 |
+
|
130 |
+
CUDNN_POINTWISE_BINARY_SELECT = 601,
|
131 |
+
} cudnnPointwiseMode_t;
|
132 |
+
|
133 |
+
typedef enum {
|
134 |
+
CUDNN_RESAMPLE_NEAREST = 0,
|
135 |
+
CUDNN_RESAMPLE_BILINEAR = 1,
|
136 |
+
CUDNN_RESAMPLE_AVGPOOL = 2,
|
137 |
+
CUDNN_RESAMPLE_AVGPOOL_INCLUDE_PADDING = 2,
|
138 |
+
CUDNN_RESAMPLE_AVGPOOL_EXCLUDE_PADDING = 4,
|
139 |
+
CUDNN_RESAMPLE_MAXPOOL = 3,
|
140 |
+
} cudnnResampleMode_t;
|
141 |
+
|
142 |
+
typedef enum {
|
143 |
+
CUDNN_SIGNAL_SET = 0,
|
144 |
+
CUDNN_SIGNAL_WAIT = 1,
|
145 |
+
} cudnnSignalMode_t;
|
146 |
+
|
147 |
+
typedef enum {
|
148 |
+
CUDNN_GENSTATS_SUM_SQSUM = 0,
|
149 |
+
} cudnnGenStatsMode_t;
|
150 |
+
|
151 |
+
typedef enum {
|
152 |
+
CUDNN_BN_FINALIZE_STATISTICS_TRAINING = 0,
|
153 |
+
CUDNN_BN_FINALIZE_STATISTICS_INFERENCE = 1,
|
154 |
+
} cudnnBnFinalizeStatsMode_t;
|
155 |
+
|
156 |
+
typedef enum {
|
157 |
+
CUDNN_RNG_DISTRIBUTION_BERNOULLI,
|
158 |
+
CUDNN_RNG_DISTRIBUTION_UNIFORM,
|
159 |
+
CUDNN_RNG_DISTRIBUTION_NORMAL,
|
160 |
+
} cudnnRngDistribution_t;
|
161 |
+
|
162 |
+
typedef enum {
|
163 |
+
CUDNN_ATTR_POINTWISE_MODE = 0,
|
164 |
+
CUDNN_ATTR_POINTWISE_MATH_PREC = 1,
|
165 |
+
CUDNN_ATTR_POINTWISE_NAN_PROPAGATION = 2,
|
166 |
+
CUDNN_ATTR_POINTWISE_RELU_LOWER_CLIP = 3,
|
167 |
+
CUDNN_ATTR_POINTWISE_RELU_UPPER_CLIP = 4,
|
168 |
+
CUDNN_ATTR_POINTWISE_RELU_LOWER_CLIP_SLOPE = 5,
|
169 |
+
CUDNN_ATTR_POINTWISE_ELU_ALPHA = 6,
|
170 |
+
CUDNN_ATTR_POINTWISE_SOFTPLUS_BETA = 7,
|
171 |
+
CUDNN_ATTR_POINTWISE_SWISH_BETA = 8,
|
172 |
+
CUDNN_ATTR_POINTWISE_AXIS = 9,
|
173 |
+
|
174 |
+
CUDNN_ATTR_CONVOLUTION_COMP_TYPE = 100,
|
175 |
+
CUDNN_ATTR_CONVOLUTION_CONV_MODE = 101,
|
176 |
+
CUDNN_ATTR_CONVOLUTION_DILATIONS = 102,
|
177 |
+
CUDNN_ATTR_CONVOLUTION_FILTER_STRIDES = 103,
|
178 |
+
CUDNN_ATTR_CONVOLUTION_POST_PADDINGS = 104,
|
179 |
+
CUDNN_ATTR_CONVOLUTION_PRE_PADDINGS = 105,
|
180 |
+
CUDNN_ATTR_CONVOLUTION_SPATIAL_DIMS = 106,
|
181 |
+
|
182 |
+
CUDNN_ATTR_ENGINEHEUR_MODE = 200,
|
183 |
+
CUDNN_ATTR_ENGINEHEUR_OPERATION_GRAPH = 201,
|
184 |
+
CUDNN_ATTR_ENGINEHEUR_RESULTS = 202,
|
185 |
+
|
186 |
+
CUDNN_ATTR_ENGINECFG_ENGINE = 300,
|
187 |
+
CUDNN_ATTR_ENGINECFG_INTERMEDIATE_INFO = 301,
|
188 |
+
CUDNN_ATTR_ENGINECFG_KNOB_CHOICES = 302,
|
189 |
+
|
190 |
+
CUDNN_ATTR_EXECUTION_PLAN_HANDLE = 400,
|
191 |
+
CUDNN_ATTR_EXECUTION_PLAN_ENGINE_CONFIG = 401,
|
192 |
+
CUDNN_ATTR_EXECUTION_PLAN_WORKSPACE_SIZE = 402,
|
193 |
+
CUDNN_ATTR_EXECUTION_PLAN_COMPUTED_INTERMEDIATE_UIDS = 403,
|
194 |
+
CUDNN_ATTR_EXECUTION_PLAN_RUN_ONLY_INTERMEDIATE_UIDS = 404,
|
195 |
+
CUDNN_ATTR_EXECUTION_PLAN_JSON_REPRESENTATION = 405,
|
196 |
+
|
197 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_UNIQUE_ID = 500,
|
198 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_SIZE = 501,
|
199 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_DEPENDENT_DATA_UIDS = 502,
|
200 |
+
CUDNN_ATTR_INTERMEDIATE_INFO_DEPENDENT_ATTRIBUTES = 503,
|
201 |
+
|
202 |
+
CUDNN_ATTR_KNOB_CHOICE_KNOB_TYPE = 600,
|
203 |
+
CUDNN_ATTR_KNOB_CHOICE_KNOB_VALUE = 601,
|
204 |
+
|
205 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_ALPHA = 700,
|
206 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_BETA = 701,
|
207 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_CONV_DESC = 702,
|
208 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_W = 703,
|
209 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_X = 704,
|
210 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_FORWARD_Y = 705,
|
211 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_ALPHA = 706,
|
212 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_BETA = 707,
|
213 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_CONV_DESC = 708,
|
214 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_W = 709,
|
215 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DX = 710,
|
216 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_DATA_DY = 711,
|
217 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_ALPHA = 712,
|
218 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_BETA = 713,
|
219 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_CONV_DESC = 714,
|
220 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DW = 715,
|
221 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_X = 716,
|
222 |
+
CUDNN_ATTR_OPERATION_CONVOLUTION_BWD_FILTER_DY = 717,
|
223 |
+
|
224 |
+
CUDNN_ATTR_OPERATION_POINTWISE_PW_DESCRIPTOR = 750,
|
225 |
+
CUDNN_ATTR_OPERATION_POINTWISE_XDESC = 751,
|
226 |
+
CUDNN_ATTR_OPERATION_POINTWISE_BDESC = 752,
|
227 |
+
CUDNN_ATTR_OPERATION_POINTWISE_YDESC = 753,
|
228 |
+
CUDNN_ATTR_OPERATION_POINTWISE_ALPHA1 = 754,
|
229 |
+
CUDNN_ATTR_OPERATION_POINTWISE_ALPHA2 = 755,
|
230 |
+
CUDNN_ATTR_OPERATION_POINTWISE_DXDESC = 756,
|
231 |
+
CUDNN_ATTR_OPERATION_POINTWISE_DYDESC = 757,
|
232 |
+
CUDNN_ATTR_OPERATION_POINTWISE_TDESC = 758,
|
233 |
+
|
234 |
+
CUDNN_ATTR_OPERATION_GENSTATS_MODE = 770,
|
235 |
+
CUDNN_ATTR_OPERATION_GENSTATS_MATH_PREC = 771,
|
236 |
+
CUDNN_ATTR_OPERATION_GENSTATS_XDESC = 772,
|
237 |
+
CUDNN_ATTR_OPERATION_GENSTATS_SUMDESC = 773,
|
238 |
+
CUDNN_ATTR_OPERATION_GENSTATS_SQSUMDESC = 774,
|
239 |
+
|
240 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_STATS_MODE = 780,
|
241 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_MATH_PREC = 781,
|
242 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_Y_SUM_DESC = 782,
|
243 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_Y_SQ_SUM_DESC = 783,
|
244 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SCALE_DESC = 784,
|
245 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_BIAS_DESC = 785,
|
246 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_PREV_RUNNING_MEAN_DESC = 786,
|
247 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_PREV_RUNNING_VAR_DESC = 787,
|
248 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_UPDATED_RUNNING_MEAN_DESC = 788,
|
249 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_UPDATED_RUNNING_VAR_DESC = 789,
|
250 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SAVED_MEAN_DESC = 790,
|
251 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_SAVED_INV_STD_DESC = 791,
|
252 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EQ_SCALE_DESC = 792,
|
253 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EQ_BIAS_DESC = 793,
|
254 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_ACCUM_COUNT_DESC = 794,
|
255 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EPSILON_DESC = 795,
|
256 |
+
CUDNN_ATTR_OPERATION_BN_FINALIZE_EXP_AVERATE_FACTOR_DESC = 796,
|
257 |
+
|
258 |
+
CUDNN_ATTR_OPERATIONGRAPH_HANDLE = 800,
|
259 |
+
CUDNN_ATTR_OPERATIONGRAPH_OPS = 801,
|
260 |
+
CUDNN_ATTR_OPERATIONGRAPH_ENGINE_GLOBAL_COUNT = 802,
|
261 |
+
|
262 |
+
CUDNN_ATTR_TENSOR_BYTE_ALIGNMENT = 900,
|
263 |
+
CUDNN_ATTR_TENSOR_DATA_TYPE = 901,
|
264 |
+
CUDNN_ATTR_TENSOR_DIMENSIONS = 902,
|
265 |
+
CUDNN_ATTR_TENSOR_STRIDES = 903,
|
266 |
+
CUDNN_ATTR_TENSOR_VECTOR_COUNT = 904,
|
267 |
+
CUDNN_ATTR_TENSOR_VECTORIZED_DIMENSION = 905,
|
268 |
+
CUDNN_ATTR_TENSOR_UNIQUE_ID = 906,
|
269 |
+
CUDNN_ATTR_TENSOR_IS_VIRTUAL = 907,
|
270 |
+
CUDNN_ATTR_TENSOR_IS_BY_VALUE = 908,
|
271 |
+
CUDNN_ATTR_TENSOR_REORDERING_MODE = 909,
|
272 |
+
CUDNN_ATTR_TENSOR_RAGGED_OFFSET_DESC = 913,
|
273 |
+
|
274 |
+
CUDNN_ATTR_VARIANT_PACK_UNIQUE_IDS = 1000,
|
275 |
+
CUDNN_ATTR_VARIANT_PACK_DATA_POINTERS = 1001,
|
276 |
+
CUDNN_ATTR_VARIANT_PACK_INTERMEDIATES = 1002,
|
277 |
+
CUDNN_ATTR_VARIANT_PACK_WORKSPACE = 1003,
|
278 |
+
|
279 |
+
CUDNN_ATTR_LAYOUT_INFO_TENSOR_UID = 1100,
|
280 |
+
CUDNN_ATTR_LAYOUT_INFO_TYPES = 1101,
|
281 |
+
|
282 |
+
CUDNN_ATTR_KNOB_INFO_TYPE = 1200,
|
283 |
+
CUDNN_ATTR_KNOB_INFO_MAXIMUM_VALUE = 1201,
|
284 |
+
CUDNN_ATTR_KNOB_INFO_MINIMUM_VALUE = 1202,
|
285 |
+
CUDNN_ATTR_KNOB_INFO_STRIDE = 1203,
|
286 |
+
|
287 |
+
CUDNN_ATTR_ENGINE_OPERATION_GRAPH = 1300,
|
288 |
+
CUDNN_ATTR_ENGINE_GLOBAL_INDEX = 1301,
|
289 |
+
CUDNN_ATTR_ENGINE_KNOB_INFO = 1302,
|
290 |
+
CUDNN_ATTR_ENGINE_NUMERICAL_NOTE = 1303,
|
291 |
+
CUDNN_ATTR_ENGINE_LAYOUT_INFO = 1304,
|
292 |
+
CUDNN_ATTR_ENGINE_BEHAVIOR_NOTE = 1305,
|
293 |
+
|
294 |
+
CUDNN_ATTR_MATMUL_COMP_TYPE = 1500,
|
295 |
+
CUDNN_ATTR_MATMUL_PADDING_VALUE = 1503,
|
296 |
+
|
297 |
+
CUDNN_ATTR_OPERATION_MATMUL_ADESC = 1520,
|
298 |
+
CUDNN_ATTR_OPERATION_MATMUL_BDESC = 1521,
|
299 |
+
CUDNN_ATTR_OPERATION_MATMUL_CDESC = 1522,
|
300 |
+
CUDNN_ATTR_OPERATION_MATMUL_DESC = 1523,
|
301 |
+
CUDNN_ATTR_OPERATION_MATMUL_IRREGULARLY_STRIDED_BATCH_COUNT = 1524,
|
302 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_M_OVERRIDE_DESC = 1525,
|
303 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_N_OVERRIDE_DESC = 1526,
|
304 |
+
CUDNN_ATTR_OPERATION_MATMUL_GEMM_K_OVERRIDE_DESC = 1527,
|
305 |
+
|
306 |
+
CUDNN_ATTR_REDUCTION_OPERATOR = 1600,
|
307 |
+
CUDNN_ATTR_REDUCTION_COMP_TYPE = 1601,
|
308 |
+
|
309 |
+
CUDNN_ATTR_OPERATION_REDUCTION_XDESC = 1610,
|
310 |
+
CUDNN_ATTR_OPERATION_REDUCTION_YDESC = 1611,
|
311 |
+
CUDNN_ATTR_OPERATION_REDUCTION_DESC = 1612,
|
312 |
+
|
313 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_MATH_PREC = 1620,
|
314 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_MEAN_DESC = 1621,
|
315 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_INVSTD_DESC = 1622,
|
316 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_BN_SCALE_DESC = 1623,
|
317 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_X_DESC = 1624,
|
318 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DY_DESC = 1625,
|
319 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DBN_SCALE_DESC = 1626,
|
320 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_DBN_BIAS_DESC = 1627,
|
321 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_DY_SCALE_DESC = 1628,
|
322 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_X_SCALE_DESC = 1629,
|
323 |
+
CUDNN_ATTR_OPERATION_BN_BWD_WEIGHTS_EQ_BIAS = 1630,
|
324 |
+
|
325 |
+
CUDNN_ATTR_RESAMPLE_MODE = 1700,
|
326 |
+
CUDNN_ATTR_RESAMPLE_COMP_TYPE = 1701,
|
327 |
+
CUDNN_ATTR_RESAMPLE_SPATIAL_DIMS = 1702,
|
328 |
+
CUDNN_ATTR_RESAMPLE_POST_PADDINGS = 1703,
|
329 |
+
CUDNN_ATTR_RESAMPLE_PRE_PADDINGS = 1704,
|
330 |
+
CUDNN_ATTR_RESAMPLE_STRIDES = 1705,
|
331 |
+
CUDNN_ATTR_RESAMPLE_WINDOW_DIMS = 1706,
|
332 |
+
CUDNN_ATTR_RESAMPLE_NAN_PROPAGATION = 1707,
|
333 |
+
CUDNN_ATTR_RESAMPLE_PADDING_MODE = 1708,
|
334 |
+
|
335 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_XDESC = 1710,
|
336 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_YDESC = 1711,
|
337 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_IDXDESC = 1712,
|
338 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_ALPHA = 1713,
|
339 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_BETA = 1714,
|
340 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_FWD_DESC = 1716,
|
341 |
+
|
342 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DXDESC = 1720,
|
343 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DYDESC = 1721,
|
344 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_IDXDESC = 1722,
|
345 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_ALPHA = 1723,
|
346 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_BETA = 1724,
|
347 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_DESC = 1725,
|
348 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_XDESC = 1726,
|
349 |
+
CUDNN_ATTR_OPERATION_RESAMPLE_BWD_YDESC = 1727,
|
350 |
+
|
351 |
+
CUDNN_ATTR_OPERATION_CONCAT_AXIS = 1800,
|
352 |
+
CUDNN_ATTR_OPERATION_CONCAT_INPUT_DESCS = 1801,
|
353 |
+
CUDNN_ATTR_OPERATION_CONCAT_INPLACE_INDEX = 1802,
|
354 |
+
CUDNN_ATTR_OPERATION_CONCAT_OUTPUT_DESC = 1803,
|
355 |
+
|
356 |
+
CUDNN_ATTR_OPERATION_SIGNAL_MODE = 1900,
|
357 |
+
CUDNN_ATTR_OPERATION_SIGNAL_FLAGDESC = 1901,
|
358 |
+
CUDNN_ATTR_OPERATION_SIGNAL_VALUE = 1902,
|
359 |
+
CUDNN_ATTR_OPERATION_SIGNAL_XDESC = 1903,
|
360 |
+
CUDNN_ATTR_OPERATION_SIGNAL_YDESC = 1904,
|
361 |
+
|
362 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_MODE = 2000,
|
363 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_PHASE = 2001,
|
364 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_XDESC = 2002,
|
365 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_MEAN_DESC = 2003,
|
366 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INV_VARIANCE_DESC = 2004,
|
367 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_SCALE_DESC = 2005,
|
368 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_BIAS_DESC = 2006,
|
369 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_EPSILON_DESC = 2007,
|
370 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_EXP_AVG_FACTOR_DESC = 2008,
|
371 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INPUT_RUNNING_MEAN_DESC = 2009,
|
372 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_INPUT_RUNNING_VAR_DESC = 2010,
|
373 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_OUTPUT_RUNNING_MEAN_DESC = 2011,
|
374 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_OUTPUT_RUNNING_VAR_DESC = 2012,
|
375 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_YDESC = 2013,
|
376 |
+
CUDNN_ATTR_OPERATION_NORM_FWD_PEER_STAT_DESCS = 2014,
|
377 |
+
|
378 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_MODE = 2100,
|
379 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_XDESC = 2101,
|
380 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_MEAN_DESC = 2102,
|
381 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_INV_VARIANCE_DESC = 2103,
|
382 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DYDESC = 2104,
|
383 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_SCALE_DESC = 2105,
|
384 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_EPSILON_DESC = 2106,
|
385 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DSCALE_DESC = 2107,
|
386 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DBIAS_DESC = 2108,
|
387 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_DXDESC = 2109,
|
388 |
+
CUDNN_ATTR_OPERATION_NORM_BWD_PEER_STAT_DESCS = 2110,
|
389 |
+
|
390 |
+
CUDNN_ATTR_OPERATION_RESHAPE_XDESC = 2200,
|
391 |
+
CUDNN_ATTR_OPERATION_RESHAPE_YDESC = 2201,
|
392 |
+
|
393 |
+
CUDNN_ATTR_RNG_DISTRIBUTION = 2300,
|
394 |
+
CUDNN_ATTR_RNG_NORMAL_DIST_MEAN = 2301,
|
395 |
+
CUDNN_ATTR_RNG_NORMAL_DIST_STANDARD_DEVIATION = 2302,
|
396 |
+
CUDNN_ATTR_RNG_UNIFORM_DIST_MAXIMUM = 2303,
|
397 |
+
CUDNN_ATTR_RNG_UNIFORM_DIST_MINIMUM = 2304,
|
398 |
+
CUDNN_ATTR_RNG_BERNOULLI_DIST_PROBABILITY = 2305,
|
399 |
+
|
400 |
+
CUDNN_ATTR_OPERATION_RNG_YDESC = 2310,
|
401 |
+
CUDNN_ATTR_OPERATION_RNG_SEED = 2311,
|
402 |
+
CUDNN_ATTR_OPERATION_RNG_DESC = 2312,
|
403 |
+
CUDNN_ATTR_OPERATION_RNG_OFFSET_DESC = 2313,
|
404 |
+
|
405 |
+
} cudnnBackendAttributeName_t;
|
406 |
+
|
407 |
+
typedef enum {
|
408 |
+
CUDNN_TYPE_HANDLE = 0,
|
409 |
+
CUDNN_TYPE_DATA_TYPE,
|
410 |
+
CUDNN_TYPE_BOOLEAN,
|
411 |
+
CUDNN_TYPE_INT64,
|
412 |
+
CUDNN_TYPE_FLOAT,
|
413 |
+
CUDNN_TYPE_DOUBLE,
|
414 |
+
CUDNN_TYPE_VOID_PTR,
|
415 |
+
CUDNN_TYPE_CONVOLUTION_MODE,
|
416 |
+
CUDNN_TYPE_HEUR_MODE,
|
417 |
+
CUDNN_TYPE_KNOB_TYPE,
|
418 |
+
CUDNN_TYPE_NAN_PROPOGATION,
|
419 |
+
CUDNN_TYPE_NUMERICAL_NOTE,
|
420 |
+
CUDNN_TYPE_LAYOUT_TYPE,
|
421 |
+
CUDNN_TYPE_ATTRIB_NAME,
|
422 |
+
CUDNN_TYPE_POINTWISE_MODE,
|
423 |
+
CUDNN_TYPE_BACKEND_DESCRIPTOR,
|
424 |
+
CUDNN_TYPE_GENSTATS_MODE,
|
425 |
+
CUDNN_TYPE_BN_FINALIZE_STATS_MODE,
|
426 |
+
CUDNN_TYPE_REDUCTION_OPERATOR_TYPE,
|
427 |
+
CUDNN_TYPE_BEHAVIOR_NOTE,
|
428 |
+
CUDNN_TYPE_TENSOR_REORDERING_MODE,
|
429 |
+
CUDNN_TYPE_RESAMPLE_MODE,
|
430 |
+
CUDNN_TYPE_PADDING_MODE,
|
431 |
+
CUDNN_TYPE_INT32,
|
432 |
+
CUDNN_TYPE_CHAR,
|
433 |
+
CUDNN_TYPE_SIGNAL_MODE,
|
434 |
+
CUDNN_TYPE_FRACTION,
|
435 |
+
CUDNN_TYPE_NORM_MODE,
|
436 |
+
CUDNN_TYPE_NORM_FWD_PHASE,
|
437 |
+
CUDNN_TYPE_RNG_DISTRIBUTION
|
438 |
+
} cudnnBackendAttributeType_t;
|
439 |
+
|
440 |
+
typedef enum {
|
441 |
+
CUDNN_BACKEND_POINTWISE_DESCRIPTOR = 0,
|
442 |
+
CUDNN_BACKEND_CONVOLUTION_DESCRIPTOR,
|
443 |
+
CUDNN_BACKEND_ENGINE_DESCRIPTOR,
|
444 |
+
CUDNN_BACKEND_ENGINECFG_DESCRIPTOR,
|
445 |
+
CUDNN_BACKEND_ENGINEHEUR_DESCRIPTOR,
|
446 |
+
CUDNN_BACKEND_EXECUTION_PLAN_DESCRIPTOR,
|
447 |
+
CUDNN_BACKEND_INTERMEDIATE_INFO_DESCRIPTOR,
|
448 |
+
CUDNN_BACKEND_KNOB_CHOICE_DESCRIPTOR,
|
449 |
+
CUDNN_BACKEND_KNOB_INFO_DESCRIPTOR,
|
450 |
+
CUDNN_BACKEND_LAYOUT_INFO_DESCRIPTOR,
|
451 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_FORWARD_DESCRIPTOR,
|
452 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_FILTER_DESCRIPTOR,
|
453 |
+
CUDNN_BACKEND_OPERATION_CONVOLUTION_BACKWARD_DATA_DESCRIPTOR,
|
454 |
+
CUDNN_BACKEND_OPERATION_POINTWISE_DESCRIPTOR,
|
455 |
+
CUDNN_BACKEND_OPERATION_GEN_STATS_DESCRIPTOR,
|
456 |
+
CUDNN_BACKEND_OPERATIONGRAPH_DESCRIPTOR,
|
457 |
+
CUDNN_BACKEND_VARIANT_PACK_DESCRIPTOR,
|
458 |
+
CUDNN_BACKEND_TENSOR_DESCRIPTOR,
|
459 |
+
CUDNN_BACKEND_MATMUL_DESCRIPTOR,
|
460 |
+
CUDNN_BACKEND_OPERATION_MATMUL_DESCRIPTOR,
|
461 |
+
CUDNN_BACKEND_OPERATION_BN_FINALIZE_STATISTICS_DESCRIPTOR,
|
462 |
+
CUDNN_BACKEND_REDUCTION_DESCRIPTOR,
|
463 |
+
CUDNN_BACKEND_OPERATION_REDUCTION_DESCRIPTOR,
|
464 |
+
CUDNN_BACKEND_OPERATION_BN_BWD_WEIGHTS_DESCRIPTOR,
|
465 |
+
CUDNN_BACKEND_RESAMPLE_DESCRIPTOR,
|
466 |
+
CUDNN_BACKEND_OPERATION_RESAMPLE_FWD_DESCRIPTOR,
|
467 |
+
CUDNN_BACKEND_OPERATION_RESAMPLE_BWD_DESCRIPTOR,
|
468 |
+
CUDNN_BACKEND_OPERATION_CONCAT_DESCRIPTOR,
|
469 |
+
CUDNN_BACKEND_OPERATION_SIGNAL_DESCRIPTOR,
|
470 |
+
CUDNN_BACKEND_OPERATION_NORM_FORWARD_DESCRIPTOR,
|
471 |
+
CUDNN_BACKEND_OPERATION_NORM_BACKWARD_DESCRIPTOR,
|
472 |
+
CUDNN_BACKEND_OPERATION_RESHAPE_DESCRIPTOR,
|
473 |
+
CUDNN_BACKEND_RNG_DESCRIPTOR,
|
474 |
+
CUDNN_BACKEND_OPERATION_RNG_DESCRIPTOR
|
475 |
+
} cudnnBackendDescriptorType_t;
|
476 |
+
|
477 |
+
typedef enum {
|
478 |
+
CUDNN_NUMERICAL_NOTE_TENSOR_CORE = 0,
|
479 |
+
CUDNN_NUMERICAL_NOTE_DOWN_CONVERT_INPUTS,
|
480 |
+
CUDNN_NUMERICAL_NOTE_REDUCED_PRECISION_REDUCTION,
|
481 |
+
CUDNN_NUMERICAL_NOTE_FFT,
|
482 |
+
CUDNN_NUMERICAL_NOTE_NONDETERMINISTIC,
|
483 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD,
|
484 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_4x4,
|
485 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_6x6,
|
486 |
+
CUDNN_NUMERICAL_NOTE_WINOGRAD_TILE_13x13,
|
487 |
+
CUDNN_NUMERICAL_NOTE_TYPE_COUNT,
|
488 |
+
} cudnnBackendNumericalNote_t;
|
489 |
+
|
490 |
+
typedef enum {
|
491 |
+
CUDNN_BEHAVIOR_NOTE_RUNTIME_COMPILATION = 0,
|
492 |
+
CUDNN_BEHAVIOR_NOTE_REQUIRES_FILTER_INT8x32_REORDER = 1,
|
493 |
+
CUDNN_BEHAVIOR_NOTE_REQUIRES_BIAS_INT8x32_REORDER = 2,
|
494 |
+
CUDNN_BEHAVIOR_NOTE_TYPE_COUNT,
|
495 |
+
} cudnnBackendBehaviorNote_t;
|
496 |
+
|
497 |
+
typedef enum {
|
498 |
+
CUDNN_KNOB_TYPE_SPLIT_K = 0,
|
499 |
+
CUDNN_KNOB_TYPE_SWIZZLE = 1,
|
500 |
+
CUDNN_KNOB_TYPE_TILE_SIZE = 2,
|
501 |
+
CUDNN_KNOB_TYPE_USE_TEX = 3,
|
502 |
+
CUDNN_KNOB_TYPE_EDGE = 4,
|
503 |
+
CUDNN_KNOB_TYPE_KBLOCK = 5,
|
504 |
+
CUDNN_KNOB_TYPE_LDGA = 6,
|
505 |
+
CUDNN_KNOB_TYPE_LDGB = 7,
|
506 |
+
CUDNN_KNOB_TYPE_CHUNK_K = 8,
|
507 |
+
CUDNN_KNOB_TYPE_SPLIT_H = 9,
|
508 |
+
CUDNN_KNOB_TYPE_WINO_TILE = 10,
|
509 |
+
CUDNN_KNOB_TYPE_MULTIPLY = 11,
|
510 |
+
CUDNN_KNOB_TYPE_SPLIT_K_BUF = 12,
|
511 |
+
CUDNN_KNOB_TYPE_TILEK = 13,
|
512 |
+
CUDNN_KNOB_TYPE_STAGES = 14,
|
513 |
+
CUDNN_KNOB_TYPE_REDUCTION_MODE = 15,
|
514 |
+
CUDNN_KNOB_TYPE_CTA_SPLIT_K_MODE = 16,
|
515 |
+
CUDNN_KNOB_TYPE_SPLIT_K_SLC = 17,
|
516 |
+
CUDNN_KNOB_TYPE_IDX_MODE = 18,
|
517 |
+
CUDNN_KNOB_TYPE_SLICED = 19,
|
518 |
+
CUDNN_KNOB_TYPE_SPLIT_RS = 20,
|
519 |
+
CUDNN_KNOB_TYPE_SINGLEBUFFER = 21,
|
520 |
+
CUDNN_KNOB_TYPE_LDGC = 22,
|
521 |
+
CUDNN_KNOB_TYPE_SPECFILT = 23,
|
522 |
+
CUDNN_KNOB_TYPE_KERNEL_CFG = 24,
|
523 |
+
CUDNN_KNOB_TYPE_WORKSPACE = 25,
|
524 |
+
CUDNN_KNOB_TYPE_TILE_CGA = 26,
|
525 |
+
CUDNN_KNOB_TYPE_TILE_CGA_M = 27,
|
526 |
+
CUDNN_KNOB_TYPE_TILE_CGA_N = 28,
|
527 |
+
CUDNN_KNOB_TYPE_BLOCK_SIZE = 29,
|
528 |
+
CUDNN_KNOB_TYPE_OCCUPANCY = 30,
|
529 |
+
CUDNN_KNOB_TYPE_ARRAY_SIZE_PER_THREAD = 31,
|
530 |
+
CUDNN_KNOB_TYPE_NUM_C_PER_BLOCK = 32,
|
531 |
+
CUDNN_KNOB_TYPE_COUNTS,
|
532 |
+
} cudnnBackendKnobType_t;
|
533 |
+
|
534 |
+
typedef enum {
|
535 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_NCHW = 0,
|
536 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_NHWC = 1,
|
537 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_PAD4CK = 2,
|
538 |
+
CUDNN_LAYOUT_TYPE_PREFERRED_PAD8CK = 3,
|
539 |
+
CUDNN_LAYOUT_TYPE_COUNT = 4,
|
540 |
+
} cudnnBackendLayoutType_t;
|
541 |
+
|
542 |
+
typedef enum {
|
543 |
+
CUDNN_HEUR_MODE_INSTANT = 0,
|
544 |
+
CUDNN_HEUR_MODE_B = 1,
|
545 |
+
CUDNN_HEUR_MODE_FALLBACK = 2,
|
546 |
+
CUDNN_HEUR_MODE_A = 3,
|
547 |
+
CUDNN_HEUR_MODES_COUNT = 4,
|
548 |
+
} cudnnBackendHeurMode_t;
|
549 |
+
|
550 |
+
typedef enum {
|
551 |
+
CUDNN_TENSOR_REORDERING_NONE = 0,
|
552 |
+
CUDNN_TENSOR_REORDERING_INT8x32 = 1,
|
553 |
+
CUDNN_TENSOR_REORDERING_F16x16 = 2,
|
554 |
+
} cudnnBackendTensorReordering_t;
|
555 |
+
|
556 |
+
typedef enum {
|
557 |
+
CUDNN_ZERO_PAD = 0,
|
558 |
+
CUDNN_NEG_INF_PAD = 1,
|
559 |
+
CUDNN_EDGE_VAL_PAD = 2,
|
560 |
+
} cudnnPaddingMode_t;
|
561 |
+
|
562 |
+
typedef enum {
|
563 |
+
CUDNN_LAYER_NORM = 0,
|
564 |
+
CUDNN_INSTANCE_NORM = 1,
|
565 |
+
CUDNN_BATCH_NORM = 2,
|
566 |
+
CUDNN_GROUP_NORM = 3,
|
567 |
+
} cudnnBackendNormMode_t;
|
568 |
+
|
569 |
+
typedef enum {
|
570 |
+
CUDNN_NORM_FWD_INFERENCE = 0,
|
571 |
+
CUDNN_NORM_FWD_TRAINING = 1,
|
572 |
+
} cudnnBackendNormFwdPhase_t;
|
573 |
+
|
574 |
+
cudnnStatus_t CUDNNWINAPI
|
575 |
+
cudnnBackendCreateDescriptor(cudnnBackendDescriptorType_t descriptorType, cudnnBackendDescriptor_t *descriptor);
|
576 |
+
|
577 |
+
cudnnStatus_t CUDNNWINAPI
|
578 |
+
cudnnBackendDestroyDescriptor(cudnnBackendDescriptor_t descriptor);
|
579 |
+
|
580 |
+
cudnnStatus_t CUDNNWINAPI
|
581 |
+
cudnnBackendInitialize(cudnnBackendDescriptor_t descriptor);
|
582 |
+
|
583 |
+
cudnnStatus_t CUDNNWINAPI
|
584 |
+
cudnnBackendFinalize(cudnnBackendDescriptor_t descriptor);
|
585 |
+
|
586 |
+
cudnnStatus_t CUDNNWINAPI
|
587 |
+
cudnnBackendSetAttribute(cudnnBackendDescriptor_t descriptor,
|
588 |
+
cudnnBackendAttributeName_t attributeName,
|
589 |
+
cudnnBackendAttributeType_t attributeType,
|
590 |
+
int64_t elementCount,
|
591 |
+
const void *arrayOfElements);
|
592 |
+
|
593 |
+
cudnnStatus_t CUDNNWINAPI
|
594 |
+
cudnnBackendGetAttribute(cudnnBackendDescriptor_t const descriptor,
|
595 |
+
cudnnBackendAttributeName_t attributeName,
|
596 |
+
cudnnBackendAttributeType_t attributeType,
|
597 |
+
int64_t requestedElementCount,
|
598 |
+
int64_t *elementCount,
|
599 |
+
void *arrayOfElements);
|
600 |
+
|
601 |
+
cudnnStatus_t CUDNNWINAPI
|
602 |
+
cudnnBackendExecute(cudnnHandle_t handle, cudnnBackendDescriptor_t executionPlan, cudnnBackendDescriptor_t variantPack);
|
603 |
+
|
604 |
+
#if defined(__cplusplus)
|
605 |
+
}
|
606 |
+
#endif
|
607 |
+
|
608 |
+
#endif /* _CUDNN_BACKEND_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_infer_v8.h
ADDED
@@ -0,0 +1,571 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_infer : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#if !defined(CUDNN_CNN_INFER_H_)
|
55 |
+
#define CUDNN_CNN_INFER_H_
|
56 |
+
|
57 |
+
#pragma once
|
58 |
+
#include <cuda_runtime.h>
|
59 |
+
#include <stdint.h>
|
60 |
+
|
61 |
+
#include "cudnn_version.h"
|
62 |
+
#include "cudnn_ops_infer.h"
|
63 |
+
|
64 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
65 |
+
#define CUDNN_CNN_INFER_MAJOR 8
|
66 |
+
#define CUDNN_CNN_INFER_MINOR 9
|
67 |
+
#define CUDNN_CNN_INFER_PATCH 2
|
68 |
+
|
69 |
+
#if (CUDNN_CNN_INFER_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_INFER_MINOR != CUDNN_MINOR) || \
|
70 |
+
(CUDNN_CNN_INFER_PATCH != CUDNN_PATCHLEVEL)
|
71 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
72 |
+
#endif
|
73 |
+
|
74 |
+
#if defined(__cplusplus)
|
75 |
+
extern "C" {
|
76 |
+
#endif
|
77 |
+
|
78 |
+
typedef struct cudnnConvolutionStruct *cudnnConvolutionDescriptor_t;
|
79 |
+
|
80 |
+
/*
|
81 |
+
* convolution mode
|
82 |
+
*/
|
83 |
+
typedef enum { CUDNN_CONVOLUTION = 0, CUDNN_CROSS_CORRELATION = 1 } cudnnConvolutionMode_t;
|
84 |
+
|
85 |
+
/*
|
86 |
+
* CUDNN Reorder
|
87 |
+
*/
|
88 |
+
typedef enum {
|
89 |
+
CUDNN_DEFAULT_REORDER = 0,
|
90 |
+
CUDNN_NO_REORDER = 1,
|
91 |
+
} cudnnReorderType_t;
|
92 |
+
|
93 |
+
typedef struct cudnnConvolutionFwdAlgoPerfStruct {
|
94 |
+
cudnnConvolutionFwdAlgo_t algo;
|
95 |
+
cudnnStatus_t status;
|
96 |
+
float time;
|
97 |
+
size_t memory;
|
98 |
+
cudnnDeterminism_t determinism;
|
99 |
+
cudnnMathType_t mathType;
|
100 |
+
int reserved[3];
|
101 |
+
} cudnnConvolutionFwdAlgoPerf_t;
|
102 |
+
|
103 |
+
/* Create an instance of convolution descriptor */
|
104 |
+
cudnnStatus_t CUDNNWINAPI
|
105 |
+
cudnnCreateConvolutionDescriptor(cudnnConvolutionDescriptor_t *convDesc);
|
106 |
+
|
107 |
+
/* Destroy an instance of convolution descriptor */
|
108 |
+
cudnnStatus_t CUDNNWINAPI
|
109 |
+
cudnnDestroyConvolutionDescriptor(cudnnConvolutionDescriptor_t convDesc);
|
110 |
+
|
111 |
+
cudnnStatus_t CUDNNWINAPI
|
112 |
+
cudnnSetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t mathType);
|
113 |
+
|
114 |
+
cudnnStatus_t CUDNNWINAPI
|
115 |
+
cudnnGetConvolutionMathType(cudnnConvolutionDescriptor_t convDesc, cudnnMathType_t *mathType);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnSetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int groupCount);
|
119 |
+
|
120 |
+
cudnnStatus_t CUDNNWINAPI
|
121 |
+
cudnnGetConvolutionGroupCount(cudnnConvolutionDescriptor_t convDesc, int *groupCount);
|
122 |
+
|
123 |
+
cudnnStatus_t CUDNNWINAPI
|
124 |
+
cudnnSetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t reorderType);
|
125 |
+
|
126 |
+
cudnnStatus_t CUDNNWINAPI
|
127 |
+
cudnnGetConvolutionReorderType(cudnnConvolutionDescriptor_t convDesc, cudnnReorderType_t *reorderType);
|
128 |
+
|
129 |
+
cudnnStatus_t CUDNNWINAPI
|
130 |
+
cudnnSetConvolution2dDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
131 |
+
int pad_h, /* zero-padding height */
|
132 |
+
int pad_w, /* zero-padding width */
|
133 |
+
int u, /* vertical filter stride */
|
134 |
+
int v, /* horizontal filter stride */
|
135 |
+
int dilation_h, /* filter dilation in the vertical dimension */
|
136 |
+
int dilation_w, /* filter dilation in the horizontal dimension */
|
137 |
+
cudnnConvolutionMode_t mode,
|
138 |
+
cudnnDataType_t computeType);
|
139 |
+
|
140 |
+
cudnnStatus_t CUDNNWINAPI
|
141 |
+
cudnnGetConvolution2dDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
142 |
+
int *pad_h, /* zero-padding height */
|
143 |
+
int *pad_w, /* zero-padding width */
|
144 |
+
int *u, /* vertical filter stride */
|
145 |
+
int *v, /* horizontal filter stride */
|
146 |
+
int *dilation_h, /* filter dilation in the vertical dimension */
|
147 |
+
int *dilation_w, /* filter dilation in the horizontal dimension */
|
148 |
+
cudnnConvolutionMode_t *mode,
|
149 |
+
cudnnDataType_t *computeType);
|
150 |
+
|
151 |
+
cudnnStatus_t CUDNNWINAPI
|
152 |
+
cudnnSetConvolutionNdDescriptor(cudnnConvolutionDescriptor_t convDesc,
|
153 |
+
int arrayLength, /* nbDims-2 size */
|
154 |
+
const int padA[],
|
155 |
+
const int filterStrideA[],
|
156 |
+
const int dilationA[],
|
157 |
+
cudnnConvolutionMode_t mode,
|
158 |
+
cudnnDataType_t computeType); /* convolution data type */
|
159 |
+
|
160 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
161 |
+
cudnnStatus_t CUDNNWINAPI
|
162 |
+
cudnnGetConvolutionNdDescriptor(const cudnnConvolutionDescriptor_t convDesc,
|
163 |
+
int arrayLengthRequested,
|
164 |
+
int *arrayLength,
|
165 |
+
int padA[],
|
166 |
+
int strideA[],
|
167 |
+
int dilationA[],
|
168 |
+
cudnnConvolutionMode_t *mode,
|
169 |
+
cudnnDataType_t *computeType); /* convolution data type */
|
170 |
+
|
171 |
+
cudnnStatus_t CUDNNWINAPI
|
172 |
+
cudnnGetConvolution2dForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
173 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
174 |
+
const cudnnFilterDescriptor_t filterDesc,
|
175 |
+
int *n,
|
176 |
+
int *c,
|
177 |
+
int *h,
|
178 |
+
int *w);
|
179 |
+
|
180 |
+
/* Helper function to return the dimensions of the output tensor given a convolution descriptor */
|
181 |
+
cudnnStatus_t CUDNNWINAPI
|
182 |
+
cudnnGetConvolutionNdForwardOutputDim(const cudnnConvolutionDescriptor_t convDesc,
|
183 |
+
const cudnnTensorDescriptor_t inputTensorDesc,
|
184 |
+
const cudnnFilterDescriptor_t filterDesc,
|
185 |
+
int nbDims,
|
186 |
+
int tensorOuputDimA[]);
|
187 |
+
|
188 |
+
/* helper function to provide the convolution forward algo that fit best the requirement */
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnGetConvolutionForwardAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
191 |
+
|
192 |
+
cudnnStatus_t CUDNNWINAPI
|
193 |
+
cudnnGetConvolutionForwardAlgorithm_v7(cudnnHandle_t handle,
|
194 |
+
const cudnnTensorDescriptor_t srcDesc,
|
195 |
+
const cudnnFilterDescriptor_t filterDesc,
|
196 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
197 |
+
const cudnnTensorDescriptor_t destDesc,
|
198 |
+
const int requestedAlgoCount,
|
199 |
+
int *returnedAlgoCount,
|
200 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnFindConvolutionForwardAlgorithm(cudnnHandle_t handle,
|
204 |
+
const cudnnTensorDescriptor_t xDesc,
|
205 |
+
const cudnnFilterDescriptor_t wDesc,
|
206 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
207 |
+
const cudnnTensorDescriptor_t yDesc,
|
208 |
+
const int requestedAlgoCount,
|
209 |
+
int *returnedAlgoCount,
|
210 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults);
|
211 |
+
|
212 |
+
cudnnStatus_t CUDNNWINAPI
|
213 |
+
cudnnFindConvolutionForwardAlgorithmEx(cudnnHandle_t handle,
|
214 |
+
const cudnnTensorDescriptor_t xDesc,
|
215 |
+
const void *x,
|
216 |
+
const cudnnFilterDescriptor_t wDesc,
|
217 |
+
const void *w,
|
218 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
219 |
+
const cudnnTensorDescriptor_t yDesc,
|
220 |
+
void *y,
|
221 |
+
const int requestedAlgoCount,
|
222 |
+
int *returnedAlgoCount,
|
223 |
+
cudnnConvolutionFwdAlgoPerf_t *perfResults,
|
224 |
+
void *workSpace,
|
225 |
+
size_t workSpaceSizeInBytes);
|
226 |
+
|
227 |
+
cudnnStatus_t CUDNNWINAPI
|
228 |
+
cudnnIm2Col(cudnnHandle_t handle,
|
229 |
+
const cudnnTensorDescriptor_t xDesc,
|
230 |
+
const void *x,
|
231 |
+
const cudnnFilterDescriptor_t wDesc,
|
232 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
233 |
+
void *colBuffer);
|
234 |
+
|
235 |
+
cudnnStatus_t CUDNNWINAPI
|
236 |
+
cudnnReorderFilterAndBias(cudnnHandle_t handle,
|
237 |
+
const cudnnFilterDescriptor_t filterDesc,
|
238 |
+
cudnnReorderType_t reorderType,
|
239 |
+
const void *filterData,
|
240 |
+
void *reorderedFilterData,
|
241 |
+
int reorderBias,
|
242 |
+
const void *biasData,
|
243 |
+
void *reorderedBiasData);
|
244 |
+
|
245 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
246 |
+
cudnnStatus_t CUDNNWINAPI
|
247 |
+
cudnnGetConvolutionForwardWorkspaceSize(cudnnHandle_t handle,
|
248 |
+
const cudnnTensorDescriptor_t xDesc,
|
249 |
+
const cudnnFilterDescriptor_t wDesc,
|
250 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
251 |
+
const cudnnTensorDescriptor_t yDesc,
|
252 |
+
cudnnConvolutionFwdAlgo_t algo,
|
253 |
+
size_t *sizeInBytes);
|
254 |
+
|
255 |
+
/* Convolution functions: All of the form "output = alpha * Op(inputs) + beta * output" */
|
256 |
+
|
257 |
+
/* Function to perform the forward pass for batch convolution */
|
258 |
+
cudnnStatus_t CUDNNWINAPI
|
259 |
+
cudnnConvolutionForward(cudnnHandle_t handle,
|
260 |
+
const void *alpha,
|
261 |
+
const cudnnTensorDescriptor_t xDesc,
|
262 |
+
const void *x,
|
263 |
+
const cudnnFilterDescriptor_t wDesc,
|
264 |
+
const void *w,
|
265 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
266 |
+
cudnnConvolutionFwdAlgo_t algo,
|
267 |
+
void *workSpace,
|
268 |
+
size_t workSpaceSizeInBytes,
|
269 |
+
const void *beta,
|
270 |
+
const cudnnTensorDescriptor_t yDesc,
|
271 |
+
void *y);
|
272 |
+
|
273 |
+
/* Fused conv/bias/activation operation : y = Act( alpha1 * conv(x) + alpha2 * z + bias ) */
|
274 |
+
cudnnStatus_t CUDNNWINAPI
|
275 |
+
cudnnConvolutionBiasActivationForward(cudnnHandle_t handle,
|
276 |
+
const void *alpha1,
|
277 |
+
const cudnnTensorDescriptor_t xDesc,
|
278 |
+
const void *x,
|
279 |
+
const cudnnFilterDescriptor_t wDesc,
|
280 |
+
const void *w,
|
281 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
282 |
+
cudnnConvolutionFwdAlgo_t algo,
|
283 |
+
void *workSpace,
|
284 |
+
size_t workSpaceSizeInBytes,
|
285 |
+
const void *alpha2,
|
286 |
+
const cudnnTensorDescriptor_t zDesc,
|
287 |
+
const void *z,
|
288 |
+
const cudnnTensorDescriptor_t biasDesc,
|
289 |
+
const void *bias,
|
290 |
+
const cudnnActivationDescriptor_t activationDesc,
|
291 |
+
const cudnnTensorDescriptor_t yDesc,
|
292 |
+
void *y);
|
293 |
+
|
294 |
+
/* helper function to provide the convolution backward data algo that fit best the requirement */
|
295 |
+
|
296 |
+
typedef struct cudnnConvolutionBwdDataAlgoPerfStruct {
|
297 |
+
cudnnConvolutionBwdDataAlgo_t algo;
|
298 |
+
cudnnStatus_t status;
|
299 |
+
float time;
|
300 |
+
size_t memory;
|
301 |
+
cudnnDeterminism_t determinism;
|
302 |
+
cudnnMathType_t mathType;
|
303 |
+
int reserved[3];
|
304 |
+
} cudnnConvolutionBwdDataAlgoPerf_t;
|
305 |
+
|
306 |
+
cudnnStatus_t CUDNNWINAPI
|
307 |
+
cudnnGetConvolutionBackwardDataAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
308 |
+
|
309 |
+
cudnnStatus_t CUDNNWINAPI
|
310 |
+
cudnnFindConvolutionBackwardDataAlgorithm(cudnnHandle_t handle,
|
311 |
+
const cudnnFilterDescriptor_t wDesc,
|
312 |
+
const cudnnTensorDescriptor_t dyDesc,
|
313 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
314 |
+
const cudnnTensorDescriptor_t dxDesc,
|
315 |
+
const int requestedAlgoCount,
|
316 |
+
int *returnedAlgoCount,
|
317 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
318 |
+
|
319 |
+
cudnnStatus_t CUDNNWINAPI
|
320 |
+
cudnnFindConvolutionBackwardDataAlgorithmEx(cudnnHandle_t handle,
|
321 |
+
const cudnnFilterDescriptor_t wDesc,
|
322 |
+
const void *w,
|
323 |
+
const cudnnTensorDescriptor_t dyDesc,
|
324 |
+
const void *dy,
|
325 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
326 |
+
const cudnnTensorDescriptor_t dxDesc,
|
327 |
+
void *dx,
|
328 |
+
const int requestedAlgoCount,
|
329 |
+
int *returnedAlgoCount,
|
330 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults,
|
331 |
+
void *workSpace,
|
332 |
+
size_t workSpaceSizeInBytes);
|
333 |
+
|
334 |
+
cudnnStatus_t CUDNNWINAPI
|
335 |
+
cudnnGetConvolutionBackwardDataAlgorithm_v7(cudnnHandle_t handle,
|
336 |
+
const cudnnFilterDescriptor_t filterDesc,
|
337 |
+
const cudnnTensorDescriptor_t diffDesc,
|
338 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
339 |
+
const cudnnTensorDescriptor_t gradDesc,
|
340 |
+
const int requestedAlgoCount,
|
341 |
+
int *returnedAlgoCount,
|
342 |
+
cudnnConvolutionBwdDataAlgoPerf_t *perfResults);
|
343 |
+
|
344 |
+
/*
|
345 |
+
* convolution algorithm (which requires potentially some workspace)
|
346 |
+
*/
|
347 |
+
|
348 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
349 |
+
cudnnStatus_t CUDNNWINAPI
|
350 |
+
cudnnGetConvolutionBackwardDataWorkspaceSize(cudnnHandle_t handle,
|
351 |
+
const cudnnFilterDescriptor_t wDesc,
|
352 |
+
const cudnnTensorDescriptor_t dyDesc,
|
353 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
354 |
+
const cudnnTensorDescriptor_t dxDesc,
|
355 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
356 |
+
size_t *sizeInBytes);
|
357 |
+
|
358 |
+
cudnnStatus_t CUDNNWINAPI
|
359 |
+
cudnnConvolutionBackwardData(cudnnHandle_t handle,
|
360 |
+
const void *alpha,
|
361 |
+
const cudnnFilterDescriptor_t wDesc,
|
362 |
+
const void *w,
|
363 |
+
const cudnnTensorDescriptor_t dyDesc,
|
364 |
+
const void *dy,
|
365 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
366 |
+
cudnnConvolutionBwdDataAlgo_t algo,
|
367 |
+
void *workSpace,
|
368 |
+
size_t workSpaceSizeInBytes,
|
369 |
+
const void *beta,
|
370 |
+
const cudnnTensorDescriptor_t dxDesc,
|
371 |
+
void *dx);
|
372 |
+
|
373 |
+
/* Helper function to calculate folding descriptors for dgrad */
|
374 |
+
cudnnStatus_t CUDNNWINAPI
|
375 |
+
cudnnGetFoldedConvBackwardDataDescriptors(const cudnnHandle_t handle,
|
376 |
+
const cudnnFilterDescriptor_t filterDesc,
|
377 |
+
const cudnnTensorDescriptor_t diffDesc,
|
378 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
379 |
+
const cudnnTensorDescriptor_t gradDesc,
|
380 |
+
const cudnnTensorFormat_t transformFormat,
|
381 |
+
cudnnFilterDescriptor_t foldedFilterDesc,
|
382 |
+
cudnnTensorDescriptor_t paddedDiffDesc,
|
383 |
+
cudnnConvolutionDescriptor_t foldedConvDesc,
|
384 |
+
cudnnTensorDescriptor_t foldedGradDesc,
|
385 |
+
cudnnTensorTransformDescriptor_t filterFoldTransDesc,
|
386 |
+
cudnnTensorTransformDescriptor_t diffPadTransDesc,
|
387 |
+
cudnnTensorTransformDescriptor_t gradFoldTransDesc,
|
388 |
+
cudnnTensorTransformDescriptor_t gradUnfoldTransDesc);
|
389 |
+
|
390 |
+
/* cudnnFusedOps... */
|
391 |
+
struct cudnnFusedOpsConstParamStruct;
|
392 |
+
typedef struct cudnnFusedOpsConstParamStruct *cudnnFusedOpsConstParamPack_t;
|
393 |
+
|
394 |
+
struct cudnnFusedOpsVariantParamStruct;
|
395 |
+
typedef struct cudnnFusedOpsVariantParamStruct *cudnnFusedOpsVariantParamPack_t;
|
396 |
+
|
397 |
+
struct cudnnFusedOpsPlanStruct;
|
398 |
+
typedef struct cudnnFusedOpsPlanStruct *cudnnFusedOpsPlan_t;
|
399 |
+
|
400 |
+
typedef enum {
|
401 |
+
/* each op in [ ] can be disabled by passing NULL ptr */
|
402 |
+
/* [per channel scale], [per channel bias], [activation], convolution, [generate BN stats] */
|
403 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_CONV_BNSTATS = 0,
|
404 |
+
/* [per channel scale], [per channel bias], [activation], convolutionBackwardWeights */
|
405 |
+
CUDNN_FUSED_SCALE_BIAS_ACTIVATION_WGRAD = 1,
|
406 |
+
/* utility for BN training in BN-conv fusion */
|
407 |
+
/* computes the equivalent scale and bias from ySum ySqSum and learned scale, bias */
|
408 |
+
/* optionally update running stats and generate saved stats */
|
409 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_TRAINING = 2,
|
410 |
+
/* utility for BN inference in BN-conv fusion */
|
411 |
+
/* computes the equivalent scale and bias from learned running stats and learned scale, bias */
|
412 |
+
CUDNN_FUSED_BN_FINALIZE_STATISTICS_INFERENCE = 3,
|
413 |
+
/* reserved for future use: convolution, [per channel scale], [per channel bias], [residual add], [activation] */
|
414 |
+
CUDNN_FUSED_CONV_SCALE_BIAS_ADD_ACTIVATION = 4,
|
415 |
+
/* reserved for future use: [per channel scale], [per channel bias], [residual add], activation, bitmask */
|
416 |
+
CUDNN_FUSED_SCALE_BIAS_ADD_ACTIVATION_GEN_BITMASK = 5,
|
417 |
+
/* reserved for future use */
|
418 |
+
CUDNN_FUSED_DACTIVATION_FORK_DBATCHNORM = 6,
|
419 |
+
} cudnnFusedOps_t;
|
420 |
+
|
421 |
+
typedef enum {
|
422 |
+
/* set XDESC: pass previously initialized cudnnTensorDescriptor_t */
|
423 |
+
/* get XDESC: pass previously created cudnnTensorDescriptor_t */
|
424 |
+
CUDNN_PARAM_XDESC = 0,
|
425 |
+
/* set/get XDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
426 |
+
CUDNN_PARAM_XDATA_PLACEHOLDER = 1,
|
427 |
+
/* set/get BN_MODE: pass cudnnBatchNormMode_t* */
|
428 |
+
CUDNN_PARAM_BN_MODE = 2,
|
429 |
+
/* set CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
430 |
+
/* get CUDNN_PARAM_BN_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
431 |
+
CUDNN_PARAM_BN_EQSCALEBIAS_DESC = 3,
|
432 |
+
/* set/get BN_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
433 |
+
CUDNN_PARAM_BN_EQSCALE_PLACEHOLDER = 4,
|
434 |
+
/* set/get BN_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
435 |
+
CUDNN_PARAM_BN_EQBIAS_PLACEHOLDER = 5,
|
436 |
+
/* set ACTIVATION_DESC: pass previously initialized cudnnActivationDescriptor_t */
|
437 |
+
/* get ACTIVATION_DESC: pass previously created cudnnActivationDescriptor_t */
|
438 |
+
CUDNN_PARAM_ACTIVATION_DESC = 6,
|
439 |
+
/* set CONV_DESC: pass previously initialized cudnnConvolutionDescriptor_t */
|
440 |
+
/* get CONV_DESC: pass previously created cudnnConvolutionDescriptor_t */
|
441 |
+
CUDNN_PARAM_CONV_DESC = 7,
|
442 |
+
/* set WDESC: pass previously initialized cudnnFilterDescriptor_t */
|
443 |
+
/* get WDESC: pass previously created cudnnFilterDescriptor_t */
|
444 |
+
CUDNN_PARAM_WDESC = 8,
|
445 |
+
/* set/get WDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
446 |
+
CUDNN_PARAM_WDATA_PLACEHOLDER = 9,
|
447 |
+
/* set DWDESC: pass previously initialized cudnnFilterDescriptor_t */
|
448 |
+
/* get DWDESC: pass previously created cudnnFilterDescriptor_t */
|
449 |
+
CUDNN_PARAM_DWDESC = 10,
|
450 |
+
/* set/get DWDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
451 |
+
CUDNN_PARAM_DWDATA_PLACEHOLDER = 11,
|
452 |
+
/* set YDESC: pass previously initialized cudnnTensorDescriptor_t */
|
453 |
+
/* get YDESC: pass previously created cudnnTensorDescriptor_t */
|
454 |
+
CUDNN_PARAM_YDESC = 12,
|
455 |
+
/* set/get YDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
456 |
+
CUDNN_PARAM_YDATA_PLACEHOLDER = 13,
|
457 |
+
/* set DYDESC: pass previously initialized cudnnTensorDescriptor_t */
|
458 |
+
/* get DYDESC: pass previously created cudnnTensorDescriptor_t */
|
459 |
+
CUDNN_PARAM_DYDESC = 14,
|
460 |
+
/* set/get DYDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
461 |
+
CUDNN_PARAM_DYDATA_PLACEHOLDER = 15,
|
462 |
+
/* set YSTATS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
463 |
+
/* get YSTATS_DESC: pass previously created cudnnTensorDescriptor_t */
|
464 |
+
CUDNN_PARAM_YSTATS_DESC = 16,
|
465 |
+
/* set/get YSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
466 |
+
CUDNN_PARAM_YSUM_PLACEHOLDER = 17,
|
467 |
+
/* set/get YSQSUM_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
468 |
+
CUDNN_PARAM_YSQSUM_PLACEHOLDER = 18,
|
469 |
+
/* set CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
470 |
+
/* get CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC: pass previously created cudnnTensorDescriptor_t */
|
471 |
+
CUDNN_PARAM_BN_SCALEBIAS_MEANVAR_DESC = 19,
|
472 |
+
/* set/get CUDNN_PARAM_BN_SCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
473 |
+
CUDNN_PARAM_BN_SCALE_PLACEHOLDER = 20,
|
474 |
+
/* set/get CUDNN_PARAM_BN_BIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
475 |
+
CUDNN_PARAM_BN_BIAS_PLACEHOLDER = 21,
|
476 |
+
/* set/get CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
477 |
+
CUDNN_PARAM_BN_SAVED_MEAN_PLACEHOLDER = 22,
|
478 |
+
/* set/get CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
479 |
+
CUDNN_PARAM_BN_SAVED_INVSTD_PLACEHOLDER = 23,
|
480 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
481 |
+
CUDNN_PARAM_BN_RUNNING_MEAN_PLACEHOLDER = 24,
|
482 |
+
/* set/get CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
483 |
+
CUDNN_PARAM_BN_RUNNING_VAR_PLACEHOLDER = 25,
|
484 |
+
|
485 |
+
/* set ZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
486 |
+
/* get ZDESC: pass previously created cudnnTensorDescriptor_t */
|
487 |
+
CUDNN_PARAM_ZDESC = 26,
|
488 |
+
/* set/get ZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
489 |
+
CUDNN_PARAM_ZDATA_PLACEHOLDER = 27,
|
490 |
+
/* set BN_Z_EQSCALEBIAS_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
491 |
+
/* get BN_Z_EQSCALEBIAS_DESC: pass previously created cudnnTensorDescriptor_t */
|
492 |
+
CUDNN_PARAM_BN_Z_EQSCALEBIAS_DESC = 28,
|
493 |
+
/* set/get BN_Z_EQSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
494 |
+
CUDNN_PARAM_BN_Z_EQSCALE_PLACEHOLDER = 29,
|
495 |
+
/* set/get BN_Z_EQBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
496 |
+
CUDNN_PARAM_BN_Z_EQBIAS_PLACEHOLDER = 30,
|
497 |
+
|
498 |
+
/* set ACTIVATION_BITMASK_DESC: pass previously initialized cudnnTensorDescriptor_t */
|
499 |
+
/* get ACTIVATION_BITMASK_DESC: pass previously created cudnnTensorDescriptor_t */
|
500 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_DESC = 31,
|
501 |
+
/* set/get ACTIVATION_BITMASK_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
502 |
+
CUDNN_PARAM_ACTIVATION_BITMASK_PLACEHOLDER = 32,
|
503 |
+
|
504 |
+
/* set DXDESC: pass previously initialized cudnnTensorDescriptor_t */
|
505 |
+
/* get DXDESC: pass previously created cudnnTensorDescriptor_t */
|
506 |
+
CUDNN_PARAM_DXDESC = 33,
|
507 |
+
/* set/get DXDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
508 |
+
CUDNN_PARAM_DXDATA_PLACEHOLDER = 34,
|
509 |
+
/* set DZDESC: pass previously initialized cudnnTensorDescriptor_t */
|
510 |
+
/* get DZDESC: pass previously created cudnnTensorDescriptor_t */
|
511 |
+
CUDNN_PARAM_DZDESC = 35,
|
512 |
+
/* set/get DZDATA_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
513 |
+
CUDNN_PARAM_DZDATA_PLACEHOLDER = 36,
|
514 |
+
/* set/get CUDNN_PARAM_BN_DSCALE_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
515 |
+
CUDNN_PARAM_BN_DSCALE_PLACEHOLDER = 37,
|
516 |
+
/* set/get CUDNN_PARAM_BN_DBIAS_PLACEHOLDER: pass cudnnFusedOpsPointerPlaceHolder_t* */
|
517 |
+
CUDNN_PARAM_BN_DBIAS_PLACEHOLDER = 38,
|
518 |
+
} cudnnFusedOpsConstParamLabel_t;
|
519 |
+
|
520 |
+
typedef enum {
|
521 |
+
CUDNN_PTR_NULL = 0,
|
522 |
+
CUDNN_PTR_ELEM_ALIGNED = 1,
|
523 |
+
CUDNN_PTR_16B_ALIGNED = 2,
|
524 |
+
} cudnnFusedOpsPointerPlaceHolder_t;
|
525 |
+
|
526 |
+
typedef enum {
|
527 |
+
/* set: pass void* pointing to dev memory */
|
528 |
+
/* get: pass void** pointing to host memory */
|
529 |
+
CUDNN_PTR_XDATA = 0,
|
530 |
+
CUDNN_PTR_BN_EQSCALE = 1,
|
531 |
+
CUDNN_PTR_BN_EQBIAS = 2,
|
532 |
+
CUDNN_PTR_WDATA = 3,
|
533 |
+
CUDNN_PTR_DWDATA = 4,
|
534 |
+
CUDNN_PTR_YDATA = 5,
|
535 |
+
CUDNN_PTR_DYDATA = 6,
|
536 |
+
CUDNN_PTR_YSUM = 7,
|
537 |
+
CUDNN_PTR_YSQSUM = 8,
|
538 |
+
CUDNN_PTR_WORKSPACE = 9,
|
539 |
+
CUDNN_PTR_BN_SCALE = 10,
|
540 |
+
CUDNN_PTR_BN_BIAS = 11,
|
541 |
+
CUDNN_PTR_BN_SAVED_MEAN = 12,
|
542 |
+
CUDNN_PTR_BN_SAVED_INVSTD = 13,
|
543 |
+
CUDNN_PTR_BN_RUNNING_MEAN = 14,
|
544 |
+
CUDNN_PTR_BN_RUNNING_VAR = 15,
|
545 |
+
CUDNN_PTR_ZDATA = 16,
|
546 |
+
CUDNN_PTR_BN_Z_EQSCALE = 17,
|
547 |
+
CUDNN_PTR_BN_Z_EQBIAS = 18,
|
548 |
+
CUDNN_PTR_ACTIVATION_BITMASK = 19,
|
549 |
+
CUDNN_PTR_DXDATA = 20,
|
550 |
+
CUDNN_PTR_DZDATA = 21,
|
551 |
+
CUDNN_PTR_BN_DSCALE = 22,
|
552 |
+
CUDNN_PTR_BN_DBIAS = 23,
|
553 |
+
|
554 |
+
/* set/get: pass size_t* pointing to host memory */
|
555 |
+
CUDNN_SCALAR_SIZE_T_WORKSPACE_SIZE_IN_BYTES = 100,
|
556 |
+
/* set/get: pass int64_t* pointing to host memory */
|
557 |
+
CUDNN_SCALAR_INT64_T_BN_ACCUMULATION_COUNT = 101,
|
558 |
+
/* set/get: pass double* pointing to host memory */
|
559 |
+
CUDNN_SCALAR_DOUBLE_BN_EXP_AVG_FACTOR = 102,
|
560 |
+
/* set/get: pass double* pointing to host memory */
|
561 |
+
CUDNN_SCALAR_DOUBLE_BN_EPSILON = 103,
|
562 |
+
} cudnnFusedOpsVariantParamLabel_t;
|
563 |
+
|
564 |
+
cudnnStatus_t CUDNNWINAPI
|
565 |
+
cudnnCnnInferVersionCheck(void);
|
566 |
+
|
567 |
+
#if defined(__cplusplus)
|
568 |
+
}
|
569 |
+
#endif
|
570 |
+
|
571 |
+
#endif /* CUDNN_CNN_INFER_H_ */
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train.h
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_train : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#pragma once
|
55 |
+
#include <cuda_runtime.h>
|
56 |
+
#include <stdint.h>
|
57 |
+
|
58 |
+
#include "cudnn_version.h"
|
59 |
+
#include "cudnn_ops_infer.h"
|
60 |
+
#include "cudnn_ops_train.h"
|
61 |
+
#include "cudnn_cnn_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_CNN_TRAIN_MAJOR 8
|
65 |
+
#define CUDNN_CNN_TRAIN_MINOR 9
|
66 |
+
#define CUDNN_CNN_TRAIN_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_CNN_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_TRAIN_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_CNN_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* helper function to provide the convolution backward filter algo that fit best the requirement */
|
78 |
+
|
79 |
+
typedef struct cudnnConvolutionBwdFilterAlgoPerfStruct {
|
80 |
+
cudnnConvolutionBwdFilterAlgo_t algo;
|
81 |
+
cudnnStatus_t status;
|
82 |
+
float time;
|
83 |
+
size_t memory;
|
84 |
+
cudnnDeterminism_t determinism;
|
85 |
+
cudnnMathType_t mathType;
|
86 |
+
int reserved[3];
|
87 |
+
} cudnnConvolutionBwdFilterAlgoPerf_t;
|
88 |
+
|
89 |
+
cudnnStatus_t CUDNNWINAPI
|
90 |
+
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
91 |
+
|
92 |
+
cudnnStatus_t CUDNNWINAPI
|
93 |
+
cudnnFindConvolutionBackwardFilterAlgorithm(cudnnHandle_t handle,
|
94 |
+
const cudnnTensorDescriptor_t xDesc,
|
95 |
+
const cudnnTensorDescriptor_t dyDesc,
|
96 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
97 |
+
const cudnnFilterDescriptor_t dwDesc,
|
98 |
+
const int requestedAlgoCount,
|
99 |
+
int *returnedAlgoCount,
|
100 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
101 |
+
|
102 |
+
cudnnStatus_t CUDNNWINAPI
|
103 |
+
cudnnFindConvolutionBackwardFilterAlgorithmEx(cudnnHandle_t handle,
|
104 |
+
const cudnnTensorDescriptor_t xDesc,
|
105 |
+
const void *x,
|
106 |
+
const cudnnTensorDescriptor_t dyDesc,
|
107 |
+
const void *y,
|
108 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
109 |
+
const cudnnFilterDescriptor_t dwDesc,
|
110 |
+
void *dw,
|
111 |
+
const int requestedAlgoCount,
|
112 |
+
int *returnedAlgoCount,
|
113 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
|
114 |
+
void *workSpace,
|
115 |
+
size_t workSpaceSizeInBytes);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnnHandle_t handle,
|
119 |
+
const cudnnTensorDescriptor_t srcDesc,
|
120 |
+
const cudnnTensorDescriptor_t diffDesc,
|
121 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
122 |
+
const cudnnFilterDescriptor_t gradDesc,
|
123 |
+
const int requestedAlgoCount,
|
124 |
+
int *returnedAlgoCount,
|
125 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
126 |
+
|
127 |
+
/*
|
128 |
+
* convolution algorithm (which requires potentially some workspace)
|
129 |
+
*/
|
130 |
+
|
131 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
132 |
+
cudnnStatus_t CUDNNWINAPI
|
133 |
+
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnnHandle_t handle,
|
134 |
+
const cudnnTensorDescriptor_t xDesc,
|
135 |
+
const cudnnTensorDescriptor_t dyDesc,
|
136 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
137 |
+
const cudnnFilterDescriptor_t gradDesc,
|
138 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
139 |
+
size_t *sizeInBytes);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnConvolutionBackwardFilter(cudnnHandle_t handle,
|
143 |
+
const void *alpha,
|
144 |
+
const cudnnTensorDescriptor_t xDesc,
|
145 |
+
const void *x,
|
146 |
+
const cudnnTensorDescriptor_t dyDesc,
|
147 |
+
const void *dy,
|
148 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
149 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
150 |
+
void *workSpace,
|
151 |
+
size_t workSpaceSizeInBytes,
|
152 |
+
const void *beta,
|
153 |
+
const cudnnFilterDescriptor_t dwDesc,
|
154 |
+
void *dw);
|
155 |
+
|
156 |
+
/* Function to compute the bias gradient for batch convolution */
|
157 |
+
cudnnStatus_t CUDNNWINAPI
|
158 |
+
cudnnConvolutionBackwardBias(cudnnHandle_t handle,
|
159 |
+
const void *alpha,
|
160 |
+
const cudnnTensorDescriptor_t dyDesc,
|
161 |
+
const void *dy,
|
162 |
+
const void *beta,
|
163 |
+
const cudnnTensorDescriptor_t dbDesc,
|
164 |
+
void *db);
|
165 |
+
|
166 |
+
cudnnStatus_t CUDNNWINAPI
|
167 |
+
cudnnCreateFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t *constPack, cudnnFusedOps_t ops);
|
168 |
+
|
169 |
+
cudnnStatus_t CUDNNWINAPI
|
170 |
+
cudnnDestroyFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t constPack);
|
171 |
+
|
172 |
+
cudnnStatus_t CUDNNWINAPI
|
173 |
+
cudnnSetFusedOpsConstParamPackAttribute(cudnnFusedOpsConstParamPack_t constPack,
|
174 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
175 |
+
const void *param);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnGetFusedOpsConstParamPackAttribute(const cudnnFusedOpsConstParamPack_t constPack,
|
179 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
180 |
+
void *param,
|
181 |
+
int *isNULL);
|
182 |
+
|
183 |
+
cudnnStatus_t CUDNNWINAPI
|
184 |
+
cudnnCreateFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t *varPack, cudnnFusedOps_t ops);
|
185 |
+
|
186 |
+
cudnnStatus_t CUDNNWINAPI
|
187 |
+
cudnnDestroyFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t varPack);
|
188 |
+
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnSetFusedOpsVariantParamPackAttribute(cudnnFusedOpsVariantParamPack_t varPack,
|
191 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
192 |
+
void *ptr);
|
193 |
+
|
194 |
+
cudnnStatus_t CUDNNWINAPI
|
195 |
+
cudnnGetFusedOpsVariantParamPackAttribute(const cudnnFusedOpsVariantParamPack_t varPack,
|
196 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
197 |
+
void *ptr);
|
198 |
+
|
199 |
+
cudnnStatus_t CUDNNWINAPI
|
200 |
+
cudnnCreateFusedOpsPlan(cudnnFusedOpsPlan_t *plan, cudnnFusedOps_t ops);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnDestroyFusedOpsPlan(cudnnFusedOpsPlan_t plan);
|
204 |
+
|
205 |
+
cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnMakeFusedOpsPlan(cudnnHandle_t handle,
|
207 |
+
cudnnFusedOpsPlan_t plan,
|
208 |
+
const cudnnFusedOpsConstParamPack_t constPack,
|
209 |
+
size_t *workspaceSizeInBytes);
|
210 |
+
|
211 |
+
cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnFusedOpsExecute(cudnnHandle_t handle, const cudnnFusedOpsPlan_t plan, cudnnFusedOpsVariantParamPack_t varPack);
|
213 |
+
|
214 |
+
cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnCnnTrainVersionCheck(void);
|
216 |
+
|
217 |
+
#if defined(__cplusplus)
|
218 |
+
}
|
219 |
+
#endif
|
venv/lib/python3.10/site-packages/nvidia/cudnn/include/cudnn_cnn_train_v8.h
ADDED
@@ -0,0 +1,219 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
/*
|
2 |
+
* Copyright 2014-2023 NVIDIA Corporation. All rights reserved.
|
3 |
+
*
|
4 |
+
* NOTICE TO LICENSEE:
|
5 |
+
*
|
6 |
+
* This source code and/or documentation ("Licensed Deliverables") are
|
7 |
+
* subject to NVIDIA intellectual property rights under U.S. and
|
8 |
+
* international Copyright laws.
|
9 |
+
*
|
10 |
+
* These Licensed Deliverables contained herein is PROPRIETARY and
|
11 |
+
* CONFIDENTIAL to NVIDIA and is being provided under the terms and
|
12 |
+
* conditions of a form of NVIDIA software license agreement by and
|
13 |
+
* between NVIDIA and Licensee ("License Agreement") or electronically
|
14 |
+
* accepted by Licensee. Notwithstanding any terms or conditions to
|
15 |
+
* the contrary in the License Agreement, reproduction or disclosure
|
16 |
+
* of the Licensed Deliverables to any third party without the express
|
17 |
+
* written consent of NVIDIA is prohibited.
|
18 |
+
*
|
19 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
20 |
+
* LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
|
21 |
+
* SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE. IT IS
|
22 |
+
* PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
|
23 |
+
* NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
|
24 |
+
* DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
|
25 |
+
* NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
|
26 |
+
* NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
|
27 |
+
* LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
|
28 |
+
* SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
|
29 |
+
* DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
|
30 |
+
* WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
|
31 |
+
* ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
|
32 |
+
* OF THESE LICENSED DELIVERABLES.
|
33 |
+
*
|
34 |
+
* U.S. Government End Users. These Licensed Deliverables are a
|
35 |
+
* "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
|
36 |
+
* 1995), consisting of "commercial computer software" and "commercial
|
37 |
+
* computer software documentation" as such terms are used in 48
|
38 |
+
* C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
|
39 |
+
* only as a commercial end item. Consistent with 48 C.F.R.12.212 and
|
40 |
+
* 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
|
41 |
+
* U.S. Government End Users acquire the Licensed Deliverables with
|
42 |
+
* only those rights set forth herein.
|
43 |
+
*
|
44 |
+
* Any use of the Licensed Deliverables in individual and commercial
|
45 |
+
* software must include, in the user documentation and internal
|
46 |
+
* comments to the code, the above Disclaimer and U.S. Government End
|
47 |
+
* Users Notice.
|
48 |
+
*/
|
49 |
+
|
50 |
+
/*
|
51 |
+
* cudnn_cnn_train : cuDNN's basic definitions and inference CNN functions.
|
52 |
+
*/
|
53 |
+
|
54 |
+
#pragma once
|
55 |
+
#include <cuda_runtime.h>
|
56 |
+
#include <stdint.h>
|
57 |
+
|
58 |
+
#include "cudnn_version.h"
|
59 |
+
#include "cudnn_ops_infer.h"
|
60 |
+
#include "cudnn_ops_train.h"
|
61 |
+
#include "cudnn_cnn_infer.h"
|
62 |
+
|
63 |
+
/* These version numbers are autogenerated, do not edit manually. */
|
64 |
+
#define CUDNN_CNN_TRAIN_MAJOR 8
|
65 |
+
#define CUDNN_CNN_TRAIN_MINOR 9
|
66 |
+
#define CUDNN_CNN_TRAIN_PATCH 2
|
67 |
+
|
68 |
+
#if (CUDNN_CNN_TRAIN_MAJOR != CUDNN_MAJOR) || (CUDNN_CNN_TRAIN_MINOR != CUDNN_MINOR) || \
|
69 |
+
(CUDNN_CNN_TRAIN_PATCH != CUDNN_PATCHLEVEL)
|
70 |
+
#error Version mismatch in cuDNN CNN INFER!!!
|
71 |
+
#endif
|
72 |
+
|
73 |
+
#if defined(__cplusplus)
|
74 |
+
extern "C" {
|
75 |
+
#endif
|
76 |
+
|
77 |
+
/* helper function to provide the convolution backward filter algo that fit best the requirement */
|
78 |
+
|
79 |
+
typedef struct cudnnConvolutionBwdFilterAlgoPerfStruct {
|
80 |
+
cudnnConvolutionBwdFilterAlgo_t algo;
|
81 |
+
cudnnStatus_t status;
|
82 |
+
float time;
|
83 |
+
size_t memory;
|
84 |
+
cudnnDeterminism_t determinism;
|
85 |
+
cudnnMathType_t mathType;
|
86 |
+
int reserved[3];
|
87 |
+
} cudnnConvolutionBwdFilterAlgoPerf_t;
|
88 |
+
|
89 |
+
cudnnStatus_t CUDNNWINAPI
|
90 |
+
cudnnGetConvolutionBackwardFilterAlgorithmMaxCount(cudnnHandle_t handle, int *count);
|
91 |
+
|
92 |
+
cudnnStatus_t CUDNNWINAPI
|
93 |
+
cudnnFindConvolutionBackwardFilterAlgorithm(cudnnHandle_t handle,
|
94 |
+
const cudnnTensorDescriptor_t xDesc,
|
95 |
+
const cudnnTensorDescriptor_t dyDesc,
|
96 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
97 |
+
const cudnnFilterDescriptor_t dwDesc,
|
98 |
+
const int requestedAlgoCount,
|
99 |
+
int *returnedAlgoCount,
|
100 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
101 |
+
|
102 |
+
cudnnStatus_t CUDNNWINAPI
|
103 |
+
cudnnFindConvolutionBackwardFilterAlgorithmEx(cudnnHandle_t handle,
|
104 |
+
const cudnnTensorDescriptor_t xDesc,
|
105 |
+
const void *x,
|
106 |
+
const cudnnTensorDescriptor_t dyDesc,
|
107 |
+
const void *y,
|
108 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
109 |
+
const cudnnFilterDescriptor_t dwDesc,
|
110 |
+
void *dw,
|
111 |
+
const int requestedAlgoCount,
|
112 |
+
int *returnedAlgoCount,
|
113 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults,
|
114 |
+
void *workSpace,
|
115 |
+
size_t workSpaceSizeInBytes);
|
116 |
+
|
117 |
+
cudnnStatus_t CUDNNWINAPI
|
118 |
+
cudnnGetConvolutionBackwardFilterAlgorithm_v7(cudnnHandle_t handle,
|
119 |
+
const cudnnTensorDescriptor_t srcDesc,
|
120 |
+
const cudnnTensorDescriptor_t diffDesc,
|
121 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
122 |
+
const cudnnFilterDescriptor_t gradDesc,
|
123 |
+
const int requestedAlgoCount,
|
124 |
+
int *returnedAlgoCount,
|
125 |
+
cudnnConvolutionBwdFilterAlgoPerf_t *perfResults);
|
126 |
+
|
127 |
+
/*
|
128 |
+
* convolution algorithm (which requires potentially some workspace)
|
129 |
+
*/
|
130 |
+
|
131 |
+
/* Helper function to return the minimum size of the workspace to be passed to the convolution given an algo*/
|
132 |
+
cudnnStatus_t CUDNNWINAPI
|
133 |
+
cudnnGetConvolutionBackwardFilterWorkspaceSize(cudnnHandle_t handle,
|
134 |
+
const cudnnTensorDescriptor_t xDesc,
|
135 |
+
const cudnnTensorDescriptor_t dyDesc,
|
136 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
137 |
+
const cudnnFilterDescriptor_t gradDesc,
|
138 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
139 |
+
size_t *sizeInBytes);
|
140 |
+
|
141 |
+
cudnnStatus_t CUDNNWINAPI
|
142 |
+
cudnnConvolutionBackwardFilter(cudnnHandle_t handle,
|
143 |
+
const void *alpha,
|
144 |
+
const cudnnTensorDescriptor_t xDesc,
|
145 |
+
const void *x,
|
146 |
+
const cudnnTensorDescriptor_t dyDesc,
|
147 |
+
const void *dy,
|
148 |
+
const cudnnConvolutionDescriptor_t convDesc,
|
149 |
+
cudnnConvolutionBwdFilterAlgo_t algo,
|
150 |
+
void *workSpace,
|
151 |
+
size_t workSpaceSizeInBytes,
|
152 |
+
const void *beta,
|
153 |
+
const cudnnFilterDescriptor_t dwDesc,
|
154 |
+
void *dw);
|
155 |
+
|
156 |
+
/* Function to compute the bias gradient for batch convolution */
|
157 |
+
cudnnStatus_t CUDNNWINAPI
|
158 |
+
cudnnConvolutionBackwardBias(cudnnHandle_t handle,
|
159 |
+
const void *alpha,
|
160 |
+
const cudnnTensorDescriptor_t dyDesc,
|
161 |
+
const void *dy,
|
162 |
+
const void *beta,
|
163 |
+
const cudnnTensorDescriptor_t dbDesc,
|
164 |
+
void *db);
|
165 |
+
|
166 |
+
cudnnStatus_t CUDNNWINAPI
|
167 |
+
cudnnCreateFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t *constPack, cudnnFusedOps_t ops);
|
168 |
+
|
169 |
+
cudnnStatus_t CUDNNWINAPI
|
170 |
+
cudnnDestroyFusedOpsConstParamPack(cudnnFusedOpsConstParamPack_t constPack);
|
171 |
+
|
172 |
+
cudnnStatus_t CUDNNWINAPI
|
173 |
+
cudnnSetFusedOpsConstParamPackAttribute(cudnnFusedOpsConstParamPack_t constPack,
|
174 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
175 |
+
const void *param);
|
176 |
+
|
177 |
+
cudnnStatus_t CUDNNWINAPI
|
178 |
+
cudnnGetFusedOpsConstParamPackAttribute(const cudnnFusedOpsConstParamPack_t constPack,
|
179 |
+
cudnnFusedOpsConstParamLabel_t paramLabel,
|
180 |
+
void *param,
|
181 |
+
int *isNULL);
|
182 |
+
|
183 |
+
cudnnStatus_t CUDNNWINAPI
|
184 |
+
cudnnCreateFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t *varPack, cudnnFusedOps_t ops);
|
185 |
+
|
186 |
+
cudnnStatus_t CUDNNWINAPI
|
187 |
+
cudnnDestroyFusedOpsVariantParamPack(cudnnFusedOpsVariantParamPack_t varPack);
|
188 |
+
|
189 |
+
cudnnStatus_t CUDNNWINAPI
|
190 |
+
cudnnSetFusedOpsVariantParamPackAttribute(cudnnFusedOpsVariantParamPack_t varPack,
|
191 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
192 |
+
void *ptr);
|
193 |
+
|
194 |
+
cudnnStatus_t CUDNNWINAPI
|
195 |
+
cudnnGetFusedOpsVariantParamPackAttribute(const cudnnFusedOpsVariantParamPack_t varPack,
|
196 |
+
cudnnFusedOpsVariantParamLabel_t paramLabel,
|
197 |
+
void *ptr);
|
198 |
+
|
199 |
+
cudnnStatus_t CUDNNWINAPI
|
200 |
+
cudnnCreateFusedOpsPlan(cudnnFusedOpsPlan_t *plan, cudnnFusedOps_t ops);
|
201 |
+
|
202 |
+
cudnnStatus_t CUDNNWINAPI
|
203 |
+
cudnnDestroyFusedOpsPlan(cudnnFusedOpsPlan_t plan);
|
204 |
+
|
205 |
+
cudnnStatus_t CUDNNWINAPI
|
206 |
+
cudnnMakeFusedOpsPlan(cudnnHandle_t handle,
|
207 |
+
cudnnFusedOpsPlan_t plan,
|
208 |
+
const cudnnFusedOpsConstParamPack_t constPack,
|
209 |
+
size_t *workspaceSizeInBytes);
|
210 |
+
|
211 |
+
cudnnStatus_t CUDNNWINAPI
|
212 |
+
cudnnFusedOpsExecute(cudnnHandle_t handle, const cudnnFusedOpsPlan_t plan, cudnnFusedOpsVariantParamPack_t varPack);
|
213 |
+
|
214 |
+
cudnnStatus_t CUDNNWINAPI
|
215 |
+
cudnnCnnTrainVersionCheck(void);
|
216 |
+
|
217 |
+
#if defined(__cplusplus)
|
218 |
+
}
|
219 |
+
#endif
|